
Ottinger
Minter

Linwood

Shelve in
Programming Languages/Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Hibernate
Beginning Hibernate, Third Edition is ideal if you’re experienced in Java with
databases (the traditional, or “connected,” approach), but new to open-source,
lightweight Hibernate, a leading object-relational mapping and database-oriented
application development framework.

This book packs in information about the release of the Hibernate 4.x persistence
layer and provides a clear introduction to the current standard for object-relational
persistence in Java. And since the book keeps its focus on Hibernate without wasting
time on nonessential third-party tools, you’ll be able to immediately start building
transaction-based engines and applications.

Experienced authors Joseph Ottinger with Dave Minter and Jeff Linwood provide
more in-depth examples than any other book for Hibernate beginners. The authors also
present material in a lively, example-based manner—not a dry, theoretical, hard-to-read
fashion.

What You’ll Learn:

• How to build enterprise Java-based transaction-type applications
that access complex data with Hibernate

• How to work with Hibernate 4
• Where to integrate into the persistence life cycle
• How to map using annotations, Hibernate XML files, and more
• How to search and query with the new version of Hibernate
• How to integrate with MongoDB using NoSQL

THIRD
EDITION

RELATED

9 781430 265177

54999
ISBN 978-1-4302-6517-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors�� xv

About the Technical Reviewer��� xvii

Acknowledgments�� xix

Introduction�� xxi

�Chapter 1: An Introduction to Hibernate 4.2■■ ���1

Chapter 2: Integrating and Configuring Hibernate■■ ���9

Chapter 3: Building a Simple Application■■ ���19

Chapter 4: The Persistence Life Cycle■■ ��41

Chapter 5: An Overview of Mapping■■ ���69

Chapter 6: Mapping with Annotations■■ ��81

Chapter 7: JPA Integration and Lifecycle Events■■ ��115

Chapter 8: Using the Session■■ ��135

Chapter 9: Searches and Queries■■ ���149

Chapter 10: Advanced Queries Using Criteria■■ ��165

Chapter 11: Filtering the Results of Searches■■ ��175

Chapter 12: Leaving the Relational Database Behind: NoSQL■■ ��183

Appendix: More Advanced Features■■ ���195

Index��205

xxi

Introduction

Hibernate is an amazing piece of software. With a little experience and the power of annotations, you can build a
complex, database-backed system with disturbing ease. Once you have built a system using Hibernate, you will never
want to go back to the traditional approaches.

While Hibernate is incredibly powerful, it presents a steep learning curve when you first encounter it—steep
learning curves are actually a good thing because they impart profound insight once you have scaled them. Yet
gaining that insight takes some perseverance and assistance.

Our aim in this book is to help you scale that learning curve by presenting you with the minimal requirements
of a discrete Hibernate application, explaining the basis of those requirements, and walking you through an example
application that is built using them. We then provide additional material to be digested once the fundamentals are
firmly understood. Throughout, we provide examples rather than relying on pure discourse. We hope that you will
continue to find this book useful as a reference text long after you have become an expert on the subject.

Who This Book Is For
This book assumes a good understanding of Java fundamentals and some familiarity with database programming
using the Java Database Connectivity (JDBC) API. We don’t expect you to know anything about Hibernate—but if
you buy this book, it will probably be because you have had some exposure to the painful process of building a large
database-based system.

All of our examples use open-source software—primarily the Hibernate API itself—so you will not need to
purchase any software to get started with Hibernate development. This book is not an academic text. Our focus is,
instead, on providing extensive examples and taking a pragmatic approach to the technology that it covers.

To true newcomers to the Hibernate API, we recommend that you read at least the first three chapters in order
before diving into the juicy subjects of later chapters. Very experienced developers or those with experience with
tools similar to Hibernate will want to skim the latter half of the book for interesting chapters. Readers familiar with
Hibernate will want to turn to the appendix for discussion of more arcane topics.

How This Book Is Structured
This book is informally divided into three parts. Chapters 1 through 8 describe the fundamentals of Hibernate,
including configuration, the creation of mapping files, and the basic APIs. Chapters 9 through 11 describe the use of
queries, criteria, and filters to access the persistent information in more sophisticated ways. Chapter 12 addresses the
use of Hibernate to talk to nonrelational data stores, providing an easy “on ramp” to NoSQL.

Finally, the appendixes discuss features that you will use less often or that are peripheral to the core Hibernate
functionality. The following list describes more fully the contents of each chapter:

Chapter 1 outlines the purpose of persistence tools and presents excerpts from a simple example application to
show how Hibernate can be applied. It also introduces core terminology and concepts.

Chapter 2 discusses the fundamentals of configuring a Hibernate application. It presents the basic architecture of
Hibernate and discusses how a Hibernate application is integrated into an application.

■ Introduction

xxii

Chapter 3 presents an example application, walking you through the complete process of creating and running
the application. It then looks at a slightly more complex example and introduces the notion of generating the database
schema directly from Hibernate annotations.

Chapter 4 covers the Hibernate lifecycle in depth. It discusses the lifecycle in the context of the methods available
on the core interfaces. It also introduces key terminology and discusses the need for cascading and lazy loading.

Chapter 5 explains why mapping information must be retained by Hibernate and demonstrates the various types
of associations that can be represented by a relational database. It briefly discusses the other information that can be
maintained within a Hibernate mapping.

Chapter 6 explains how Hibernate lets you use the annotations to represent mapping information. It provides
detailed examples for the most important annotations, and discusses the distinctions between the standard JPA 2
annotations and the proprietary Hibernate ones.

Chapter 7 explains some of the uses of the Java Persistence API (as opposed to the Hibernate-native API), as well
as the lifecycle and validation of persisted objects.

Chapter 8 revisits the Hibernate Session object in detail, explaining the various methods that it provides.
The chapter also discusses the use of transactions, locking, and caching, as well as how to use Hibernate in a
multithreaded environment.

Chapter 9 discusses how Hibernate can be used to make sophisticated queries against the underlying relational
database using the built-in Hibernate Query Language (HQL).

Chapter 10 introduces the Criteria API, which is a programmatic analog of the query language discussed
in Chapter 9.

Chapter 11 discusses how the Filter API can be used to restrict the results of the queries introduced in
Chapters 9 and 10.

Chapter 12 introduces Hibernate OGM, which maps objects to non-relational data stores like Infinispan and
Mongodb, among others. It shows some of the uses of Hibernate Search to provide a common search facility for
NoSQL, as well as offering full text query support.

Appendix presents a large number of peripheral features that do not warrant more extensive coverage in a
beginner-level text. The appendix discusses the basics, with examples, of the support for versioning and optimistic
locking, and some of the obscure limitations of Hibernate and various ways that these can be worked around. It also
discusses the use of events and interceptors.

Downloading the Code
The source code for this book is available to readers from www.apress.com, in the Source Code/Download section.
Please feel free to visit the Apress web site and download all the code from there.

Contacting the Authors
We welcome feedback from our readers. If you have any queries or suggestions about this book, or technical questions
about Hibernate, or if you just want to share a really good joke, you can email Joseph Ottinger at joeo@enigmastation.com,
Dave Minter at dave@paperstack.com, and Jeff Linwood at jlinwood@gmail.com.

http://www.apress.com
joeo@enigmastation.com
http://dave@paperstack.com
http://jlinwood@gmail.com

1

Chapter 1

An Introduction to Hibernate 4.2

Most significant development projects involve a relational database.1 The mainstay of most commercial applications
is the large-scale storage of ordered information, such as catalogs, customer lists, contract details, published text, and
architectural designs.

With the advent of the World Wide Web, the demand for databases has increased. Though they may not know it,
the customers of online bookshops and newspapers are using databases. Somewhere in the guts of the application a
database is being queried and a response is offered.

Hibernate 4 is a library that simplifies the use of relational databases in Java applications by presenting relational
data as simple Java objects, accessed through a session manager, therefore earning the description of being an
“Object/Relational Mapper,” or ORM. It provides two kinds of programmatic interfaces: a “native Hibernate” interface
and the Java EE-standard Java Persistence API.

There are solutions for which an ORM-like Hibernate is appropriate, and some for which the traditional approach
of direct access via the Java Database Connectivity (JDBC) API is appropriate. We think that Hibernate represents a
good first choice, as it does not preclude the simultaneous use of alternative approaches, even though some care must
be taken if data is modified from two different APIs.

To illustrate some of Hibernate’s strengths, in this chapter we take a look at a brief example using Hibernate and
contrast this with the traditional JDBC approach.

Plain Old Java Objects (POJOs)
In an ideal world,2 it would be trivial to take any Java object and persist it to the database. No special coding would be
required to achieve this, no performance penalty would ensue, and the result would be totally portable. In this ideal
world, we would perhaps perform such an operation in a manner like that shown in Listing 1-1.

Listing 1-1.  A Rose-Tinted View of Object Persistence

POJO pojo = new POJO();
ORMSolution magic = ORMSolution.getInstance();
magic.save(pojo);
 

There would be no nasty surprises, no additional work to correlate the class with tables in the database, and no
performance problems.

1A relational database is a collection of sets of data items, each of which is formally described and organized. Rules can be put into
place for the data such that it can be validated, and indexes can be created such that the data can be queried and updated quickly
and safely.
2Well, perhaps an ideal world in which an ORM is used for data access. But in this book this can be assumed to be the case.

Chapter 1 ■ An Introduction to Hibernate 4.2

2

Hibernate comes remarkably close to this, at least when compared with the alternatives,but there are
configuration files to create and subtle performance and synchronization issues to consider. Hibernate does, however,
achieve its fundamental aim: it allows you to store POJOs in the database. Figure 1-1 shows how Hibernate fits into
your application between the client code and the database.

The common term for the direct persistence of traditional Java objects is object/relational mapping—that is,
mapping the objects in Java directly to the relational entities in a database.

POJOs can be any Java object at all. Hibernate allows you to persist POJOs with very few constraints. Listing 1-2
is an example of a simple POJO that might be used to represent a message. (We’ll be modifying this class as we walk
through some example code.)

Listing 1-2.  The POJO Used in this Chapter’s Examples

package chapter01.pojo;
 
public class Message {
 String text;
 public Message() {
 }
 
 public Message(String text) {
 setText(text);
 
 public String getText() {
 return text;
 }
 
 public void setText(String text) {
 this.text = text;
 }
}
 

Figure 1-1.  The role of Hibernate in a Java application

Chapter 1 ■ An Introduction to Hibernate 4.2

3

The sole condescension to Hibernate here is the provision of a default constructor. Hibernate demands that all
POJOs to be stored should provide a default constructor;3 but even that situation can be worked around when
third-party classes fail to satisfy this limited requirement (through the use of an Interceptor mechanism in the
Hibernate configuration; we will demonstrate this in Appendix A).

Origins of Hibernate and Object/Relational Mapping
If Hibernate is the solution, what was the problem? One answer is that doing things the right way when using JDBC
requires a considerable body of code and careful observation of various rules (such as those governing connection
management) to ensure that your application does not leak resources. This bit of code from the example JDBC
PersistenceTest class shows how much needs to be done to retrieve a list of Message objects:

Listing 1-3.  The JDBC Approach to Retrieving the POJO

@Test(dependsOnMethods = "saveMessage")
public void readMessage() {
 Connection connection = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 List<Message> list = new ArrayList<>();
 try {
 connection = DriverManager.getConnection("jdbc:hsqldb:db1;shutdown=true");
 
 ps = connection.prepareStatement("SELECT id, text FROM messages");
 
 rs = ps.executeQuery();
 while (rs.next()) {
 Message message = new Message();
 message.setId(rs.getLong(1));
 message.setText(rs.getString(2));
 list.add(message);
 }
 
 if (list.size() > 1) {
 Assert.fail("Message configuration in error; table should contain only one."
 +" Set ddl to drop-create.");
 }
 if (list.size() == 0) {
 Assert.fail("Read of initial message failed; check saveMessage() for errors."
 +" How did this test run?");
 }
 for (Message m : list) {
 System.out.println(m);
 }
 // eagerly free resources
 rs.close();
 ps.close();
 connection.close();

3See http://docs.jboss.org/hibernate/orm/4.2/quickstart/en-US/html/ch02.html#hibernate-gsg-
tutorial-basic-entity for more details. Short form: Hibernate uses reflection to construct an object before data population. The
shortest (and quickest) path to doing that is with a no-argument constructor.

http://docs.jboss.org/hibernate/orm/4.2/quickstart/en-US/html/ch02.html#hibernate-gsg-tutorial-basic-entity
http://docs.jboss.org/hibernate/orm/4.2/quickstart/en-US/html/ch02.html#hibernate-gsg-tutorial-basic-entity

Chapter 1 ■ An Introduction to Hibernate 4.2

4

 } catch (SQLException e) {
 e.printStackTrace();
 throw new RuntimeException(e);
 } finally {
 try {
 if (rs != null && !rs.isClosed()) {
 rs.close();
 }
 } catch (SQLException ignored) {
 }
 try {
 if (ps != null && !ps.isClosed()) {
 ps.close();
 }
 } catch (SQLException ignored) {
 }
 try {
 if (connection != null && !connection.isClosed()) {
 connection.close();
 }
 } catch (SQLException ignored) {
 }
 }
}
 

Could some of this be trimmed down? Of course. The code to close the resources is very long (and since
applications that use JDBC would do this sort of thing a lot, this code begs for refactoring into reusable methods).
Using a connection pool instead of DriverManager would also help with this because most, if not all, connection pools
automatically release resources on garbage collection. (In this case, though, eager release is still valuable.) You could
also use classes like Spring’s JDBCTemplate to handle error conditions and connection management.

However, in the end the problem remains: there’s a lot of resource management involved, primarily around
handling error and termination conditions, and the code itself is very brittle. If we added a field to the database,
we would have to find every SQL statement that might need to access that field, and we would modify the code to
accommodate it.

We also run into the issue of types with this code. This is a very simple object: it stores a simple numeric identifier
with a simple string. However, if we wanted to store a geolocation, we’d have to break the location into its multiple
properties (longitude and latitude, for example), and store each separately, which means your object model no longer
cleanly matches your database.

All of this makes using the database directly look more and more flawed, and that’s not before factoring in other
issues around object persistence and retrieval.

Hibernate as a Persistence Solution
Hibernate addresses a lot of these issues, or alleviates some of the pain where it can’t, so we’ll address the points
in turn.

First, Hibernate provides cleaner resource management, which means that you do not have to worry about the
actual database connections, nor do you have to have giant try/catch/finally blocks. Error conditions may occur such
that you do need to handle them, of course; but these are exceptional conditions, not normal ones. (In other words,
you’re handling exceptions that you actually should have to handle, instead of handling every exception that you
might have to handle.)

Chapter 1 ■ An Introduction to Hibernate 4.2

5

Hibernate handles the mapping of the object to the database table, including constructing the database schema
for you if you so configure it; it doesn’t require one table per object type; you can easily map one object to multiple
tables. And Hibernate also handles relationships for you; for example, if you added a list of addresses to a Person
object, you could easily have the addresses stored in a secondary table, constructed and managed by Hibernate.

In addition to mapping the object to the database table, Hibernate can handle mappings of new types to the
database. The geolocation can be specified as its own table, can be normalized, or can have a custom serialization
mechanism such that you can store it in whatever native form you need.

Hibernate’s startup takes a little bit longer than direct JDBC code, to be sure. However, system initialization
time is usually not a meaningful metric. Most applications have long runtimes and the percentage of time spent
in Hibernate initialization is irrelevant to the actual performance of the application; Hibernate’s advantages in
maintenance and object management more than make up for any time the application spends in configuration.
As usual, the right way to consider performance is through testing and analysis of an actual application, as opposed
to spitballing anecdotal evidence.

Any Java object capable of being persisted to a database is a candidate for Hibernate persistence. Therefore,
Hibernate is a natural replacement for ad hoc solutions (like our JDBC example), or as the persistence engine for
an application that has not yet had database persistence incorporated into it. Furthermore, by choosing Hibernate
persistence, you are not tying yourself to any particular design decisions for the business objects in your
application—including which database the application uses for persistence, which is a configurable aspect.

A Hibernate Hello World Example
Listing 1-4 shows the same test as does Listing 1-3, using Hibernate instead of JDBC. Here, the factory object is
initialized on test startup, but it serves the same role as the Connection initialization from the JDBC-based code.

Listing 1-4.  The Hibernate Approach to Retrieving the POJO

SessionFactory factory;
 
@BeforeClass
public void setup() {
 Configuration configuration = new Configuration();
 configuration.configure();
 ServiceRegistryBuilder srBuilder = new ServiceRegistryBuilder();
 srBuilder.applySettings(configuration.getProperties());
 ServiceRegistry serviceRegistry = srBuilder.buildServiceRegistry();
 factory = configuration.buildSessionFactory(serviceRegistry);
}
 
@Test(dependsOnMethods = "saveMessage")
public void readMessage() {
 Session session = factory.openSession();
 @SuppressWarnings("unchecked")
 List<Message> list = (List<Message>) session.createQuery("from Message").list();
 
 if (list.size() > 1) {
 Assert.fail("Message configuration in error; table should contain only one."
 +" Set ddl to create-drop.");
 }
 if (list.size() == 0) {
 Assert.fail("Read of initial message failed; check saveMessage() for errors."
 +" How did this test run?");
 }

Chapter 1 ■ An Introduction to Hibernate 4.2

6

 for (Message m : list) {
 System.out.println(m);
 }
 session.close();
}
 

Note that the manual coding to populate the Message object has not been eradicated; rather, it has been moved
into an external configuration file that isolates this implementation detail from the main logic.

Also note that we’re using the Hibernate Query Language (HQL) to locate the Message. HQL is very powerful, and
this is a poor usage of it; we’ll dig into HQL quite a bit as we progress.

Some of the additional code in the Hibernate example given in Listing 1-4 actually provides functionality
(particularly transactionality and caching) beyond that of the JDBC example.

Mappings
As we have intimated, Hibernate needs something to tell it which tables relate to which objects. In Hibernate
parlance, this is called a mapping. Mappings can be provided either through Java annotations or through an XML
mapping file. In this book, we will focus on using annotations, as we can mark up the POJO Java classes directly.
Using annotations gives you a clear picture of the structure at the code level, which seems to be preferred by people
writing code.4 Hibernate also takes a configuration-by-exception approach for annotations: if we are satisfied with
the default values that Hibernate provides for us, we do not need to explicitly provide them as annotations. For
instance, Hibernate uses the name of the POJO class as the default value of the database table to which the object is
mapped. In our example, if we are satisfied with using a database table named Message, we do not need to define it
in the source code.

In fact, if our only access is through Hibernate, we don’t really even need to know what the table name is; as our
example shows, we query based on object type and not the table name. Hibernate automatically constructs the query
such that the correct table name is used, even if we were to change the table name to “Messages,” for example.

Listing 1-5 shows the Message POJO with annotations for mapping the Java object into the database. It adds
an identifier and a toString( ) method to our original POJO; we’d want the ID in any event, but the toString( ) adds
convenience as we use the class. (We’ll eventually want to add an equals( ) and hashCode( ) as well.)

Listing 1-5.  The POJO with Mapping Annotations

package chapter01.hibernate;
import javax.persistence.*;
 
@Entity
public class Message {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Long id;
 @Column(nullable = false)
 String text;
 
 public Message(String text) {
 setText(text);
 }
 

4Go figure; who knew coders like for things to be code? (Besides coders, I mean.)

Chapter 1 ■ An Introduction to Hibernate 4.2

7

 public Message() {
 }
 
 public Long getId() {
 return id;
 }
 
 public void setId(Long id) {
 this.id = id;
 }
 
 public String getText() {
 return text;
 }
 
 public void setText(String text) {
 this.text = text;
 }
 
 @Override
 public String toString() {
 return "Message{" +
 "id=" + getId() +
 ", text='" + getText() + '\'' +
 '}';
 }
}

Persisting an Object
In the interest of completeness, here’s the method used to write a Message into the database with Hibernate. (The
JDBC version of this code is present in the downloadable examples, but adds nothing to the knowledge of how to use
Hibernate.)

Listing 1-6.  Saving a Message Object in Hibernate

@Test
public void saveMessage() {
 Message message = new Message("Hello, world");
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 session.persist(message);
 tx.commit();
 session.close();
}

Summary
In this chapter, we have considered the problems and requirements that have driven the development of Hibernate.
We have looked at some of the details of a trivial example application written with and without the aid of Hibernate.
We have glossed over some of the implementation details, but we will discuss these in depth in Chapter 3.

In the next chapter, we will look at the architecture of Hibernate and how it is integrated into your applications.

9

Chapter 2

Integrating and Configuring Hibernate

Integrating Hibernate into a Java application is easy. The designers of Hibernate avoided some of the more common
pitfalls and problems with the existing Java persistence solutions, and created a clean but powerful architecture.
In practice, this means that you do not have to run Hibernate inside any particular Java EE container or framework.
Hibernate only requires Java 6 or later.1

At first, adding Hibernate to your Java project looks intimidating: the distribution includes a large set of libraries.
To get your first Hibernate application to work, you have to set up the database references and the Hibernate
configuration, which might include mapping your objects to the database. You also have to create your POJOs,
including any annotation-based mapping. After you have done all of that, you need to write the logic in your
application that uses Hibernate to actually accomplish something! But once you learn how to integrate Hibernate with
your application, the basics apply for any project that uses Hibernate.

One of the key features of Hibernate’s design is the principle of least intrusiveness: the Hibernate developers did
not want Hibernate to intrude into your application more than was necessary. This led to several of the architectural
decisions made for Hibernate. In Chapter 1, you saw how Hibernate can be applied to solve persistence problems
using conventional Java objects. In this chapter, we explain some of the configuration details needed to support
this behavior.

The Steps Needed to Integrate and Configure Hibernate
This chapter explains configuration and integration in detail, but for a quick overview, refer to the following list to
determine what you need to do to get your first Hibernate application up and running. Then Chapter 3 will lead you
through the building of a pair of small example applications that use Hibernate. The first of these examples is as
simple as we could make it, so it is an excellent introduction to the following necessary steps:

	 1.	 Identify the POJOs that have a database representation.

	 2.	 Identify which properties of those POJOs need to be persisted.

	 3.	 Annotate each of the POJOs to map your Java object’s properties to columns in a database
table (covered in more detail in Chapter 6).

	 4.	 Create the database schema using the schema export tool, use an existing database, or
create your own database schema.

	 5.	 Add the Hibernate Java libraries to your application’s classpath (covered in this chapter).

1The runtime requirement of at least Java 6 was confirmed by Steve Ebersole, lead of the Hibernate project. He also specified that
JDK 1.7 was required in order to build Hibernate from source.

Chapter 2 ■ Integrating and Configuring Hibernate

10

	 6.	 Create a Hibernate XML configuration file that points to your database and your mapped
classes (covered in this chapter).

	 7.	 In your Java application, create a Hibernate Configuration object that references your
XML configuration file (covered in this chapter).

	 8.	 Also in your Java application, build a Hibernate SessionFactory object from the
Configuration object (covered in this chapter).

	 9.	 Retrieve the Hibernate Session objects from the SessionFactory, and write your data
access logic for your application (create, retrieve, update, and delete).

Don’t worry if you don’t understand every term or concept mentioned in this list. After reading this chapter,
and then following the example in the next chapter, you will know what these terms mean and how they fit together.

Understanding Where Hibernate Fits into Your Java Application
You can call Hibernate from your Java application directly, or you can access Hibernate through another framework.
You can call Hibernate from a Swing application, a servlet, a portlet, a JSP page, or any other Java application that
has access to a database. Typically, you would use Hibernate to either create a data access layer for an application or
replace an existing data access layer.

Hibernate supports the Java Management Extensions (JMX), J2EE Connector Architecture (JCA), and Java
Naming and Directory Interface (JNDI) Java language standards. Using JMX, you can configure Hibernate while it is
running. Hibernate may be deployed as a JCA connector, and you can use JNDI to obtain a Hibernate session factory
in your application. In addition, Hibernate uses standard Java Database Connectivity (JDBC) database drivers to
access the relational database. Hibernate does not replace JDBC as a database connectivity layer; Hibernate sits on a
level above JDBC.

In addition to the standard Java APIs, many Java web and application frameworks now integrate with Hibernate.
Hibernate’s simple, clean API makes it easy for these frameworks to support Hibernate in one way or another. The
Spring framework provides excellent Hibernate integration, including generic support for persistence objects, a
generic set of persistence exceptions, and transaction management. Appendix C explains how Hibernate can be
configured within a Spring application.

Regardless of the environment into which you are integrating Hibernate, certain requirements remain constant.
You will need to define the configuration details that apply; these are then represented by a Configuration object.
From the Configuration object, a single SessionFactory object is created; and from this, Session objects are
instantiated, through which your application accesses Hibernate’s representation of the database.

Deploying Hibernate
There are two sets of components necessary for integration of Hibernate into your application: a database driver and
the Hibernate libraries themselves.

The example code for this book uses HSQLDB as a small, embeddable database; this can be found at
http://hsqldb.org/. This is not to indicate that other databases are of less value than HSQLDB, but it is simply
an expedient choice; HSQLDB’s sort-of sibling project H2 is also workable, as is Derby; if you have a MySQL or
PostgreSQL data server handy, those work as well.

If you’re using the Hibernate binary download (from a “release bundle,” via http://www.hibernate.org/downloads),
all of the jars contained in the lib/required directory are mandatory in order to use Hibernate.

http://hsqldb.org/
http://www.hibernate.org/downloads

Chapter 2 ■ Integrating and Configuring Hibernate

11

Perhaps an easier way to integrate Hibernate is through the use of a build tool, like SBT
(http://www.scala-sbt.org/), Gradle (http://www.gradle.org/, used by the Hibernate project itself), or Maven
(http://maven.apache.org/), the latter which is arguably the most popular of the build tools, if not the best.2

All of these build tools are able to bundle dependencies into a deliverable artifact. They’re also able to include
dependencies transitively, which means that projects that depend on a given subproject also inherit that subproject’s
dependencies.

We’ll target Maven as a build environment for the rest of the book; users of other build tools are generally able to
migrate from Maven fairly easily, and we’ll make sure to keep developers who don’t use build tools in mind as well.

Installing Maven
There are many ways to install Maven. This is a cursory overview; different operating systems (and different system
configurations) can affect the installation procedure, so when you are in doubt, you can refer to http://maven.
apache.org/download.cgi#Installation for the actual documentation.

To save you some time, however, you can download Maven from http://maven.apache.org/download.cgi/; you
should get the most recent version. UNIX users (including Linux and MacOS users) should download the file ending
in tar.gz; Windows users should download the zip file.

In UNIX, untar the file into a directory of your choice; an example of the command that might be run is:
 
mkdir ~/work || cd ~/work; tar xf apache-maven-3.0.5-bin.tar.gz
 

This will create ~/work/apache-maven-3.0.5/, and the mvn executable will be in ~/work/apache-maven-3.0.5/bin;
add this to your command path.

For Windows, open the archive and extract it into a known location (for example, C:\tools\). Add the location of
mvn.bat (in this example, C:\tools\apache-maven-3.0.5\bin) to your path via the System Properties dialog, and you
should be able to run Maven with “mvn” in the command prompt.

Maven uses a project object model, typically written in XML, called “pom.xml”. This file describes the project’s
name and versions and builds configurations (if any), as well as any subprojects and any project dependencies. When
Maven is run, it will automatically download any resources it needs in order to complete the build as specified, and
then it will compile the project source code; if the project includes tests, it will run the tests and complete the build if
(and only if) no test failures occur.

This book uses a parent project that contains global dependencies for the book, and subprojects corresponding
to the chapters; much of the operating code is written as a set of tests in the subprojects. Chapter 1, for example,
used two methods to write data to and read data from a database; those tests were written as TestNG test classes:
chapter01.hibernate.PersistenceTest and chapter01.jdbc.PersistenceTest.

The parent project’s configuration file, after Chapter 1 was written, looked like Listing 2-1.

Listing 2-1.  The Top-Level Project Object Model for Maven

<?xml version="1.0"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.osas.books.hibernate</groupId>

2Arguments about “which build tool is best” are a lot like arguments about relative merits of IDEA, Emacs, Netbeans, Eclipse, and
others. Everyone has an opinion, and that opinion is perfectly valid for the one who holds it; however, Maven is generally agreed
upon not to be the “best build tool,” much like Eclipse is not the “best editor.” They’re popular. They’re common. That’s about it.

http://www.scala-sbt.org/
http://www.gradle.org/
http://maven.apache.org/
http://maven.apache.org/download.cgi#Installation
http://maven.apache.org/download.cgi#Installation
http://maven.apache.org/download.cgi/

Chapter 2 ■ Integrating and Configuring Hibernate

12

 <artifactId>hibernate-parent</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <modules>
 <module>chapter01</module>
 </modules>
 <name>hibernate-parent</name>
 
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 
 <dependencies>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>[6.0.12,)</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>[4.2.6,4.2.9]</version>
 </dependency>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>[2.2.9,)</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <showDeprecation>true</showDeprecation>
 <showWarnings>true</showWarnings>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>
 

This specifies a number of things about the project (such as the Java version), and includes three dependencies:
Hibernate itself, the HSQLDB database, and TestNG, the last which is limited to the testing phase (as the “scope”
node instructs).

Chapter 2 ■ Integrating and Configuring Hibernate

13

The child projects—in this listing, this is only chapter01—will receive this configuration and its set of
dependencies automatically, which means we don’t have to repeat ourselves very often.

To build and run this project after installing Maven, you simply have to go to the directory that contains pom.xml,
and execute “mvn package”—which will, as stated, download all the required dependencies, build them, and then test
the projects in order.

Maven projects have a specific folder layout, although it’s configurable; by default, the Java compiler compiles all
code found in src/main/java, and the resulting class files are included with src/main/resources in the deliverable
artifact. The src/test/java directory contains tests, which are then compiled and run (with src/test/resources
and the deliverable artifact in the classpath as well).

Wow, that’s a lot of non-Hibernate discussion–and all of it can be found (and subverted) on the websites for each
given build environment. In general, you can (and should) use what you like; this book uses Maven because of how
common it is, not because it’s the One True Build Tool.

Let’s look at the actual code we’ve been running so far and explain it all. That will give you a basis for future
discussion, even if you’re not going to use it much beyond this chapter.

We’ve already mentioned the top-level pom.xml file; we’re going to start in the chapter02 directory (which is
a clone of the chapter01 directory, except with “chapter02” instead of “chapter01”). Our project description file
(our pom.xml) is very simple, specifying only the parent project and the current project’s name (see Listing 2-2).

Listing 2-2.  Chapter 2’s Project Object Model

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <artifactId>hibernate-parent</artifactId>
 <groupId>com.redhat.osas.books.hibernate</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 
 <artifactId>chapter02</artifactId>
</project>
 

Our Message.java is held in src/main/java/chapter02/Message.java. This is the same POJO as in Listing 1-5,
except that it’s in a different package (chapter02.hibernate instead of chapter01.hibernate). Since everything else
is the same, we won’t list it here.

Our actual running code is in the src/test directory and consists of two relevant files3: src/test/java/
chapter02/hibernate/PersistenceTest.java and src/test/resources/hibernate.cfg.xml.

We’ve already seen the test methods from PersistenceTest.java, but let’s take a look at the entire Listing 2-3 so
you understand everything in it.

3There are other classes in the tree, but we no longer care about JDBC in this chapter; they’re here because you were promised
that chapter02’s tree was the same as chapter01’s. All of the JDBC stuff is going to be ignored.

Chapter 2 ■ Integrating and Configuring Hibernate

14

Listing 2-3.  A Set of Persistence Tests

package chapter02.hibernate;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;
import org.testng.Assert;
import org.testng.annotations.BeforeSuite;
import org.testng.annotations.Test;
 
import java.util.List;
 
public class PersistenceTest {
 SessionFactory factory;
 
 @BeforeSuite
 public void setup() {
 Configuration configuration = new Configuration();
 configuration.configure();
 ServiceRegistryBuilder srBuilder = new ServiceRegistryBuilder();
 srBuilder.applySettings(configuration.getProperties());
 ServiceRegistry serviceRegistry = srBuilder.buildServiceRegistry();
 factory = configuration.buildSessionFactory(serviceRegistry);
 }
 
 @Test
 public void saveMessage() {
 Message message = new Message("Hello, world");
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 session.persist(message);
 tx.commit();
 session.close();
 }
 
 @Test(dependsOnMethods = "saveMessage")
 public void readMessage() {
 Session session = factory.openSession();
 @SuppressWarnings("unchecked")
 List<Message> list = (List<Message>) session.createQuery(
 "from Message").list();
 
 if (list.size() > 1) {
 Assert.fail("Message configuration in error; "
 + "table should contain only one."
 + " Set ddl to drop-create.");
 }

Chapter 2 ■ Integrating and Configuring Hibernate

15

 if (list.size() == 0) {
 Assert.fail("Read of initial message failed; "
 + "check saveMessage() for errors."
 + " How did this test run?");
 }
 for (Message m : list) {
 System.out.println(m);
 }
 session.close();
 }
}
 

To begin, note that we’re using TestNG to run the tests, which in this case affects our class in a few simple ways.
First, the actual test methods are annotated with @Test; we indicate a dependency between tests with a setting

for readMessage(). If saveMessage() were to fail, readMessage() would not be executed, as its execution depends on
a successful saveMessage().

Second, there’s a mehod annotated with @BeforeSuite method, which is executed before any of the tests are
attempted. This gives us a chance to do system initialization. This is where we’re setting up Hibernate for usable
state–in the JDBC code, we use this same mechanism to load the JDBC driver and create our database schema.4

Third, we indicate that failure through the use of Assert.fail(), which should be easy to understand. An
exception also indicates a failure, unless we tell TestNG that we expect an exception to be thrown (and we can also tell
TestNG what specific type of exceptions allow the test to pass).

You’re likely to use this construct often because it’s easy to integrate into your project build lifecycle (as Maven
runs the available tests as part of the build). Also, it gives you a clear order of execution, and also provides an easy way
to see what works and what doesn’t work. You should feel free to write tests to validate your own understanding of
what is being described.

Next, note how the test is constructed.
The test shows the canonically correct way to use Hibernate’s native API5: first, construct a SessionFactory,

which is the entry point to the Hibernate API (much as EntityManager is the entry point for the Java Persistence
Architecture); then use the SessionFactory to retrieve short-lived Session objects through which updates, or reads,
are performed.

The actual tests mirror the JDBC code fairly well6 (or vice versa); in both, we acquire a resource through which
we “talk to” the database, then we perform an action, then we commit our changes (if any) and clean up. (There are
definitely details being skipped; this is the ten-thousand-foot view of the mechanisms in place.)

The last piece of the puzzle is the actual configuration file itself, which is in src/test/resource/hibernate.cfg.xml.
See Listing 2-4.

Listing 2-4.  The hibernate.cfg.xml, the Hibernate Configuration

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

4Hmm, we promised that we weren’t going to mention the JDBC code any more. Whoops.
5Hibernate implements the Java Persistence Architecture as an alternative API. It’s a little more generic than the native API,
and is configured slightly differently, even though most of the concepts are identical.
6�Darn it, we keep on coming across that JDBC code that isn’t supposed to be mentioned.

Chapter 2 ■ Integrating and Configuring Hibernate

16

<hibernate-configuration>
 <session-factory>
 <!-- Database connection settings -->
 <property name="connection.driver_class">
 org.hsqldb.jdbc.JDBCDriver
 </property>
 <property name="connection.url">
 jdbc:hsqldb:db2;shutdown=true
 </property>
 <property name="connection.username">sa</property>
 <property name="connection.password"/>
 <property name="dialect">org.hibernate.dialect.HSQLDialect</property>
 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>
 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">create-drop</property>
 <mapping class="chapter02.hibernate.Message"/>
 </session-factory>
 
</hibernate-configuration>
 

This file might serve as a boilerplate for every Hibernate configuration. In it, we specify the JDBC driver class;
the JDBC URL, user name, and password used to access the database; a dialect (which allows Hibernate to correctly
produce SQL for each given database); some configuration, such as whether to dump the generated SQL to the
console; and what to do for the schema. Lastly, it specifies the classes that should be managed—in this case, only our
Message class.

There are a lot of things we can control from this file; we can even use it to specify the mapping of our objects to
the database (i.e., ignoring the annotations we’ve been using so far). You’ll see a little more of how to do this in later
chapters of this book; it helps quite a bit in mapping existing database schemata7 to object models.

Most coders will (and should) prefer the annotation-based mappings.

Connection Pooling
As you’ve seen, Hibernate uses JDBC connections in order to interact with a database. Creating these connections is
expensive—probably the most expensive single operation Hibernate will execute in a typical-use case.

Since JDBC connection management is so expensive, you can pool the connections, which can open connections
ahead of time (and close them only when needed, as opposed to “when they’re no longer used”).

Thankfully, Hibernate is designed to use a connection pool by default, an internal implementation. However,
Hibernate’s built-in connection pooling isn’t designed for production use. In production, you would use an external
connection pool by using either a database connection provided by JNDI (the Java Naming and Directory Interface) or
an external connection pool configured via parameters and classpath.

7“Schemata” is the plural of “schema.” See http://www.merriam-webster.com/dictionary/schema.

http://www.merriam-webster.com/dictionary/schema

Chapter 2 ■ Integrating and Configuring Hibernate

17

Note:■■   C3P0 (http://www.mchange.com/projects/c3p0/) is an example of an external connection pool. To use it,
we would make two changes. First, we need to add c3p0 and Hibernate’s c3p0 connection provider as dependencies in
the pom.xml. Observe that the version of the hibernate-c3p0 dependency should match the Hibernate version. Listing 2-5
illustrates this connection.

Listing 2-5.  Changes for the Object Model to Include c3p0

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-c3p0</artifactId>
 <version>[4.2.6,4.2.9)</version>
 </dependency>
 <dependency>
 <groupId>com.mchange</groupId>
 <artifactId>c3p0</artifactId>
 <version>[0.9.2.1,)</version>
 </dependency>
</dependencies>
 

Next, we need to change the Hibernate configuration to tell it to use c3p0. To do this, all we need to do is add any
c3p0 configuration property to hibernate.cfg.xml. For example:
 
<property name="c3p0.timeout">10</property>
 

With this line in the configuration, Hibernate will disable its internal connection pool and use c3p0 instead.
However, C3p0 is not the only connection pool; there’s also Proxool (http://proxool.sourceforge.net/),

which gets mentioned often in the Hibernate documentation.
If you’re using Hibernate in a Java EE context–in a web application, for example–then you’ll want to configure

Hibernate to use JNDI. JNDI connection pools are managed by the container (and thus controlled by the deployer),
which is generally the “right way” to manage resources in a distributed environment.

For example, WildFly (http://wildfly.org/) comes preinstalled with an example datasource, named (helpfully)
“java:jboss/datasources/ExampleDS”. It’s an H2 database, so the dialect would need to be changed to org.hibernate.
dialect.H2Dialect; the new configuration would look something like what is shown in Listing 2-6.

Listing 2-6.  Hibernate, configured to Use JNDI as a Datasource

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!-- Database connection settings -->
 <property name="jndi.url">java:jboss/datasources/ExampleDS</property>
 <property name="dialect">org.hibernate.dialect.H2Dialect</property>
 <property name="dialect">org.hibernate.dialect.H2Dialect</property>

http://www.mchange.com/projects/c3p0/
http://proxool.sourceforge.net/
http://wildfly.org/

Chapter 2 ■ Integrating and Configuring Hibernate

18

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>
 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">create-drop</property>
 <mapping class="chapter02.hibernate.Message"/>
 </session-factory>
</hibernate-configuration>
 

Ideally, the java:jboss tree wouldn’t be used; you’d use a name scoped to the application component, in the
java:comp/env tree.8

Summary
In this chapter, we’ve presented a brief overview of how to use Maven to build and test your projects, as well as how to
specify dependencies. We’ve also shown the usage of TestNG as a simple harness to run code. Lastly, we’ve explained
how to configure Hibernate, starting from acquiring the SessionFactory and concluding with the SessionFactory’s
configuration, covering the simple JDBC connection management included with Hibernate, the use of a connection
pool, and employment of JNDI to acquire database connections.

You should now have enough of a harness in place such that you can focus on using Hibernate to help you
manage a persistent object model. We will add more detail on this as needed in the example code.

In the next chapter, we’re going to build some slightly more complex (and useful) object models to illustrate more
of Hibernate’s core concepts.

8See http://www.ibm.com/developerworks/library/j-jndi/?ca=dnt-62 for an article that discusses this concept in some
detail, although the implementation specifics are slightly dated.

http://www.ibm.com/developerworks/library/j-jndi/?ca=dnt-62

19

Chapter 3

Building a Simple Application

In this chapter, we’re going to create the shell of an application, which will allow us to demonstrate a number of
concepts common for systems that use Hibernate. We’ll be covering:

Object model design, including relationships between objects•	

Operations that view and modify persisted data (inserts, reads, updates, and deletes)•	

Ordinarily we’d use a service layer to encapsulate some operations, and in fact we will be adding a service layer as
we proceed, but at this point we want to see more of how to interact with Hibernate itself. The goal here is not to waste
time with a sample application that is “one to throw away.” We’re definitely not going to be able to have a full and ideal
codebase immediately; we’ll be modifying this code quite a bit as we proceed, especially in later chapters, but it will
be a model for how one might actually use Hibernate in the real world.

Of course, such a statement has a caveat: different applications and architects have different approaches. This is
but one way to create an application of this sort; others will take different approaches that are just as valid as this one.

Plus, our model will be progressive, meaning that its quality at its genesis will not be very high. We’re going to
be introducing various new concepts as we proceed; and we’ll have plenty of opportunities to go back to previously
written code and improve it.

A Simple Application
What we’re trying to create is an application that allows peer ranking in various skill areas.

The concept is something like this: John thinks that Tracy is pretty good at Java, so on a scale of 1 to 10, he’d give
Tracy a 7. Sam thinks Tracy is decent, but not great; he’d give Tracy a 5. With these two rankings, one might be able to
surmise that Tracy was a 6 in Java. Realistically, with such a small sample set you wouldn’t be able to gauge whether
this ranking was accurate or not, but after twenty such rankings you would have a chance at a truly legitimate peer
evaluation.

So what we want is a way for an observer to offer a ranking for a given skill for a specific person. We’d also like a
way to determine the actual ranking for each person, as well as a way to find out who was ranked “the best” for a given
skill.

If you’re looking at these paragraphs with an eye toward application design, you’ll see that we have four different
types of entities—objects to store—and a few services.

Our entites are: People (which are observers and subjects, thus two entity types that happen to look exactly the
same), Skills, and Rankings.

Our relationships look something like this:
A subject—a Person—has zero, one, or many skills. A person’s Skills each have zero, one, or many Rankings.
A Ranking has a score (“on a scale of 1 to 10”) and an observer (a Person who submits a particular ranking).

Chapter 3 ■ Building a Simple Application

20

A First Attempt
Our first attempt at this project will allow us to write, read, and update Rankings for different subjects, as well as tell us
who has the highest average score for a given Skill.

It won’t do these things very efficiently at first, but along the way we’ll fulfill our desire for (somewhat) agile
development practices, and we’ll learn quite a bit about how to read and write data with Hibernate.

As usual, we’ll be using test-driven development. Let’s write some tests and then try to get them to pass. Our first
bits of code will be very primitive, testing only our data model, but eventually we’ll be testing services.

Our data model is shown in Figure 3-1. As you can see, it has three object types and three relationships: Person is
related to Ranking in two ways (as subject and observer), and each Ranking has an associated Skill.

It’s probably worth pointing out that this data model is not ideal. For right now, that’s all right—we’re trying to
build something that gives us a starting point, and we’ll factor in our full requirements as we proceed.

We’re also admittedly underspecifying our entities. For example, a Person can be more than just a name.
(A Person can also be a number, correct? . . . Oh, wait, that’s not as funny as it could be because we’re eventually going
to add a numeric identifier to every Person as an artificial key.) Perhaps we’ll fix this and other issues as we develop
our model.

So let’s start by designing our objects.
Since our problem description centers on the concept of a Person (as subject and observer), let’s start with that.

The simplest JavaBean that can represent a Person might look like Listing 3-1:

Listing 3-1.  A POJO Representing Our Person Object

package chapter03.simple;
 
public class Person {
 String name;
 public Person() {}
 public void setName(String name) { this.name=name; }
 public String getName() { return name; }
}
 

For the sake of brevity, from here on we’re going to ignore simple mutators and accessors (the setName() and
getName(), respectively, in the Person class) unless and until we need to include them. We’re also going to ignore
implementations of toString(), although the sample code has it.

This Person implementation only includes the concept of a Person and ignores the other object types. Let’s see
what they look like, so we can revisit Person and flesh it out, so to speak.

The Skill class looks almost exactly like the Person class, as it should; they could inherit from a common base
class, but for right now let’s leave them completely separate, as shown in Listing 3-2.

Person observer

observation

String
1..1

1..1

1..1 0..n

0..n

String Integer

Skill Ranking

+name:

+name: +ranking:

Figure 3-1.  A simple entity relationship diagram

Chapter 3 ■ Building a Simple Application

21

Listing 3-2.  A POJO Representing a Person’s Skills

Package chapter03.simple;
 
public class Skill {
 String name;
 public Skill() {}
}
 

The Ranking class is a little more complicated, but not by much. Really, all it does is encode one side of the
associations shown in the UML. It’s worth noting that we don’t have to consider database associations at all when
we’re designing our objects; a Ranking has an attribute matching a subject, so that’s what it uses. Take a look at
Listing 3-3.

Listing 3-3.  A POJO Representing a Ranking of a Person’s Skill

package chapter03.simple;
 
public class Ranking {
 Person subject;
 Person observer;
 Skill skill;
 Integer ranking;
 public Ranking() { }
}

Writing Data
At this point, we have a fully working data model in Java. We can use this data model with some slight changes to
create entities representing the Person types, the Skill types, and Rankings; and we can use the associations to pull
data enough to fit our requirements. Creating our data model might look like that shown in Listing 3-4:

Listing 3-4.  A Test that Populates a Simple Model

package chapter03.simple;
 
import org.testng.annotations.Test;
 
public class ModelTest {
 @Test
 public void testModelCreation() {
 Person subject=new Person();
 subject.setName("J. C. Smell");
 
 Person observer=new Person();
 observer.setName("Drew Lombardo");
 
 Skill skill=new Skill();
 skill.setName("Java");
 
 Ranking ranking=new Ranking();
 ranking.setSubject(subject);

Chapter 3 ■ Building a Simple Application

22

 ranking.setObserver(observer);
 ranking.setSkill(skill);
 ranking.setRanking(8);
 
 // just to give us visual verification
 System.out.println(ranking);
 }
}
 

However, being able to use the data model isn’t the same as being able to persist or query the data model. This is
a good start to see how the data model might work, but isn’t much as far as actually using it.

In order to allow Hibernate to work with our model, we’re going to first convert the Person object to an entity by
marking it with the @Entity annotation.1 Next, we mark the name as a column (with @Column) for our data model, and
then we’re then going to add an artificial key—a unique identifier—to allow us to use something other than a name for
a primary key.

We’ll describe more about the @Id and @GeneratedValue annotations later; for right now, this marks the attribute
as a unique primary key, autogenerated by the database.

The Person object now looks like what’s shown in Listing 3-5:

Listing 3-5.  The Person Object as a Candidate for Hibernate Persistence

package chapter03.hibernate;
 
import javax.persistence.*;
 
@Entity
public class Person {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 @Column
 String name;
 
 public Person() {
 }
}
 

Now we can create a test that writes an instance into the database. Here’s a snippet of code for that purpose.
Again, we’re going to be refactoring this code quite a bit in future iterations; see Listing 3-6.

Listing 3-6.  A Test that persists the Person Entity

package chapter03.hibernate;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.service.ServiceRegistry;

1This seems almost logical.

Chapter 3 ■ Building a Simple Application

23

import org.hibernate.service.ServiceRegistryBuilder;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.Test;
 
public class PersonTest {
 SessionFactory factory;
 
 @BeforeMethod
 public void setup() {
 Configuration configuration = new Configuration();
 configuration.configure();
 ServiceRegistryBuilder srBuilder = new ServiceRegistryBuilder();
 srBuilder.applySettings(configuration.getProperties());
 ServiceRegistry serviceRegistry = srBuilder.buildServiceRegistry();
 factory = configuration.buildSessionFactory(serviceRegistry);
 }
 
 @AfterMethod
 public void shutdown() {
 factory.close();
 }
 
 @Test
 public void testSavePerson() {
 Session session=factory.openSession();
 Transaction tx=session.beginTransaction();
 Person person=new Person();
 person.setName("J. C. Smell");
 
 session.save(person);
 
 tx.commit();
 session.close();
 }
}
 

This is a near mirror image of our Message example from Chapters 1 and 2, with some important changes.
One change involves initialization; it uses @BeforeMethod and @AfterMethod to initialize and close the

SessionFactory after every test. Our configuration tells Hibernate to create the database schema every time we create
a SessionFactory; this sequence means that before every test, we’re going to reinitialize the database to a known
(and empty) state.

The actual test is very simple. It creates a Person, and it does nothing but persist it. We’re not even trying to
validate that it persists—just that the persistence code runs. Assuming that’s the case (and it is), we can also assume
the same code works for the Skill object; but the Ranking object—with its associations—needs a little more work.

One of the things we need to think about before writing a Ranking object is how to find one of our objects. For
one thing, that sort of ability would help us in the simple persistence test: to validate that not only did the save()
method execute but that it also actually persisted our data. For another, in the testSavePerson() code, we’re creating
a Person when we know that Person doesn’t exist; with Ranking, however, we fully expect to reuse Person instances as
well as Skills.

Chapter 3 ■ Building a Simple Application

24

So we need to create a mechanism by which we can query our database. We’ll create a method to return a Person
reference from the session, using a query; and we’ll revisit the query mechanism in the future to optimize it quite a bit.

Reading Data
Listing 3-7 is the code to look for a Person, given a name. This snippet uses the Hibernate Query Language (HQL),
which is loosely related to SQL; we’ll see more about HQL in later chapters.

Listing 3-7.  A Method to lLcate a Specific Person Instance

private Person findPerson(Session session, String name) {
 Query query=session.createQuery("from Person p where p.name=:name");
 query.setParameter("name", name);
 Person person= (Person) query.uniqueResult();
 return person;
}
 

This code declares a reference to org.hibernate.Query, and it builds a rough analog to a SQL select statement.
This form of the query selects data from the table created from the Person entity (which may or may not have a table
name of “person”), aliased to “p,” and limited to objects whose “name” attribute is equal to a named parameter
(helpfully called “name”).

We then set the parameter value of “name” to the name for which we’re searching.
As we’re interested in only one possible match at this point (a limitation of our implementation for right now),

we return a unique result: a single object. If we have five People with that name in our database, an exception will be
thrown; we could fix this by using query.setMaxResults(1), and returning the first (and only) entry in query.list(),
but the right way to fix it is to figure out how to be very specific in returning the right Person.

If no result is found, a signal value-null-will be returned.
We can now write a findPerson() method that returns an existing Person if one exists by that name, creating a

new Person object if none is found; see Listing 3-8.

Listing 3-8.  A Method to Save a Person Instance, Given a Name

private Person savePerson(Session session, String name) {
 Person person = findPerson(session, name);
 if(person==null) {
 person=new Person();
 person.setName(name);
 session.save(person);
 }
 return person;
}
 

Our first cut at code to build a Ranking (in RankingTest) might then look something like what’s shown in
Listing 3-9:

Listing 3-9.  Saving a Ranking Instance

@Test
public void testSaveRanking() {
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 Person subject = savePerson(session, "J. C. Smell");

Chapter 3 ■ Building a Simple Application

25

 Person observer = savePerson(session, "Drew Lombardo");
 Skill skill = saveSkill(session, "Java");
 
 Ranking ranking = new Ranking();
 ranking.setSubject(subject);
 ranking.setObserver(observer);
 ranking.setSkill(skill);
 ranking.setRanking(8);
 session.save(ranking);
 
 tx.commit();
 session.close();
}
 

The chapter code has this method encoded as it is, but this method also gives us the beginnings of another
method, one that abstracts all of the repeated code such that we can offer the four important pieces of information
and generate data very rapidly.

With that in mind, let’s look at queries again. We have shown that queries return single results; let’s look
at queries that return multiple results, in order, with the understanding that we’re still very far away from being
efficient—or even correct, in many ways.

One of our requirements is to be able to determine the Ranking of a given Person for a given Skill. Let’s write
another test as a proof of concept.

First, we’ll write a method that adds a few more Rankings for J. C. Smell; we’ve already shown him as having an 8
in Java, let’s add a 6 and a 7, which would give him an average Skill of 7, obviously. With that, our test method might
look like what is shown in Listing 3-10:

Listing 3-10.  A Method to Test Ranking Operations

@Test
public void testRankings() {
 populateRankingData();
 
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 
 Query query = session.createQuery("from Ranking r "
 + "where r.subject.name=:name "
 + "and r.skill.name=:skill");
 query.setString("name", "J. C. Smell");
 query.setString("skill", "Java");
 int sum = 0;
 int count = 0;
 for (Ranking r : (List<Ranking>) query.list()) {
 count++;
 sum += r.getRanking();
 System.out.println(r);
 }
 int average = sum / count;
 tx.commit();
 session.close();
 assertEquals(average, 7);
}
 

Chapter 3 ■ Building a Simple Application

26

private void populateRankingData() {
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 createData(session, "J. C. Smell", "Gene Showrama", "Java", 6);
 createData(session, "J. C. Smell", "Scottball Most", "Java", 7);
 createData(session, "J. C. Smell", "Drew Lombardo", "Java", 8);
 tx.commit();
 session.close();
}
 

This uses a slightly more advanced query: the query walks the attribute tree from the Ranking object to match
the subject’s name and Skill’s name. With the entity references in our object model, it’s very easy to do a SQL JOIN
without having to know specific database syntax or capabilities; Hibernate takes care of writing all of the SQL for us,
and we can use the objects “naturally.”

By the way, this isn’t a particularly good use of the query facility; we’ll be revisiting it quite a bit as we progress,
especially in the last section of this chapter, where we use Hibernate’s query capability to do all of the work of
calculating the average for us.2

Updating Data
What if we want to change data? Suppose that Gene Showrama, who in our example code ranked J. C. Smell as a 6 in
Java, realizes that he has changed his opinion? Let’s see what we have to do to update data.

First, let’s take our Ranking average calculation routine and refactor it into a reusable method. (The test code
has the refactored method and the original test as shown here.) Next, we’ll write our test to update the data, and then
recalculate the average, testing it to make sure our data is persisted correctly. See Listing 3-11.

Listing 3-11.  A Test Demonstrating Updates

@Test
public void changeRanking() {
 populateRankingData();
 Session session = factory.openSession();
 Transaction tx = session.beginTransaction();
 Query query = session.createQuery("from Ranking r "
 + "where r.subject.name=:subject and "
 + "r.observer.name=:observer and "
 +" r.skill.name=:skill");
 query.setString("subject", "J. C. Smell");
 query.setString("observer", "Gene Showrama");
 query.setString("skill", "Java");
 Ranking ranking= (Ranking) query.uniqueResult();
 assertNotNull(ranking, "Could not find matching ranking");
 ranking.setRanking(9);
 tx.commit();
 session.close();
 assertEquals(getAverage("J. C. Smell", "Java"), 8);
}
 

2It might be an excellent exercise for the reader to revisit this code and write it such that it's more efficient.

Chapter 3 ■ Building a Simple Application

27

What are we doing here? After we populate the data with known values, we’re building a query to locate the
specific Ranking we want to change (a Ranking on Java for “J. C. Smell,” written by “Gene Showrama”). We check
to make sure we have a valid Ranking—which we should, as that data was created by our populateRankingData()
method—and then we do something very curious.

We set a new Ranking, with ranking.setRanking(9); . . . and that’s it. We commit the current transaction and
close the session because we’re done with it.

Hibernate watches the data model, and when something is changed, it automatically updates the database to
reflect the changes. The transaction commits the update to the database so that other sessions—as contained in the
findRanking() method—can see it.

There are a few caveats for this (with workarounds, naturally). When Hibernate loads an object for you, it is a
“managed object”—that is, it’s managed by that session. Mutations (changes) and accesses go through a special
process to write data to the database, or pull data from the database if the session hasn’t already loaded it. We refer
to this object as being in “persisted state,” which leads us to a concept that will become important for us as we use
persistence in Java.3

Persistence Contexts
There are four states for an object with relation to a session: persistent, transient, detached, or removed.

When we create a new object, it’s transient—that is, no identifier has been assigned to it by Hibernate, and the
database has no knowledge of the object. That doesn’t mean the database might not have the data.Imagine if we’d
created a Ranking manually for J. C. Smell, from Gene Showrama, on Java. The new Ranking would have an analog in
the database, but Hibernate wouldn’t know that the object in memory was an equivalent to the object representation
in the database.

When we call save() on a new object, we’re marking it as “persistent,” and when we query the session for an
object, it’s also in persistent state. Changes are reflected in the current transaction, to be written when the transaction
is committed. We can convert a transient object to a persistent object by using Session.merge(), which we haven’t
seen yet (but we will).

A detached object is a persistent object whose session has been closed or has otherwise been evicted from a
Session. In our example of changing a Ranking, when the session is closed, the Ranking object we changed is in
detached state for the findRanking() call.

A removed object is one that’s been marked for deletion in the current transaction. An object is changed to
removed state when Session.delete() is called for that object reference. Note that an object in removed state
is removed in the database but not in memory, just as an object can exist in the database without an in-memory
representation.

Removing Data
The last thing we want to see is how to delete data or, rather, how to move it into removed state with respect to the
persistence context—which almost amounts to the same thing. (It’s not actually “removed” until the transaction is
committed, and even then the in-memory representation is available until it goes out of scope, as we described in the
paragraph on “removed state.”)

Let’s say, for sake of an example, that Gene Showrama has realized that he really doesn’t have enough
information to offer a valid Ranking for J. C. Smell on Java, so he wishes to delete it. The code for this is very similar to
our update: we’re going to find the Ranking, and then call Session.delete().

We can refactor our mechanism for finding a Ranking (from the changeRanking() test), which will give us a
Ranking in persistent state. Then we remove it via the session and commit the change; we can then ask for the new
average to see if our changes are reflected in the database.

3We’ll be revisiting this topic in more detail in Chapter 4.

Chapter 3 ■ Building a Simple Application

28

Here’s our code, shown in Listing 3-12:

Listing 3-12.  Removing a Ranking

@Test
public void removeRanking() {
 populateRankingData();
 Session session=factory.openSession();
 Transaction tx=session.beginTransaction();
 Ranking ranking=findRanking(session, "J. C. Smell",
 "Gene Showrama", "Java");
 assertNotNull(ranking, "Ranking not found");
 session.delete(ranking);
 tx.commit();
 session.close();
 assertEquals(getAverage("J. C. Smell", "Java"), 7);
}
 

It’s like magic, except that it’s not: it’s just Hibernate managing the database to reflect the changes we’re showing it.

A Note on Managing Sessions
One thing that you may have noticed as we’ve called findRanking() and savePerson() is that we’re establishing a
Session (from the SessionFactory) and passing it around quite a bit.

We’re doing this to make session management very easy. Remember, the session is our demarcation point for
persistence contexts; an object is managed in relation to the current session, which makes the “current session”
a valuable reference. We want to load our data into the current session so we can use it; if we have other sessions
bouncing around, then we’re crossing session boundaries as we assign and manipulate data.

Passing the current session around just makes everything simple and clear; it means our transaction boundaries
and scopes are easily managed.

A Note on Transactions
We’ve mentioned “transactions” quite a bit, too, using them with every session reference. So what are they?

A transaction is a “bundled unit of work” for a database.4

When you start a transaction, you’re saying that you want to see the database as it exists at a certain point in time
(“now”), and any modifications affect only the database as it exists from that starting point.

Changes are committed as a whole, so that no other transaction can see them until the transaction completes.
Transactions can be aborted (“rolled back,” with the Transaction.rollback() method) such that any changes

that have taken place as part of that transaction are discarded. This allows you to guarantee consistency in your
data model.

For example, imagine you’re creating an order entry system, with an order consisting of an Order object,
LineItem objects, and a Customer object. If you were writing an order with seven line items and the sixth line item
failed because of invalid data,5 you wouldn’t want an incomplete order to be lingering in the database. You’d want to
roll back the changes and offer the user a chance to try again, with correct data.

4We’re going to be revisiting transactions quite a bit in Chapter 4.
5Note that Hibernate has validation facilities that make this sort of thing very easy to do; the way this is described here is rather
unglamorous.

Chapter 3 ■ Building a Simple Application

29

Naturally, there are exceptions to the definitions of transactions, and Hibernate provides multiple types of
transactions (for example, you might have a transaction that allows reads of uncommitted data). Also, different
databases might define transactional boundaries in their own ways. Thankfully, this is a pretty important concern
for databases, so each one tends to document how transactions are defined. (See http://hsqldb.org/doc/guide/
sessions-chapt.html for HSQLDB’s documentation of transactions, for example.)

Writing Our Sample Application
What have we seen so far? We’ve seen:

	 1.	 The creation of an object model.

	 2.	 The mapping of that object model to a data model.

	 3.	 The writing of data from an object model into a database.

	 4.	 The reading of data from the database into an object model.

	 5.	 The updating of data in the database via our object model.

	 6.	 The removal of data from the database via our object model.

With all of this, we’re ready to start designing our actual application, armed with the knowledge that our object
model works (although efficiency hasn’t been considered yet) and with example code to perform most of our tasks as
our requirements specify.

We’re going to design our application much as we’ve written our example code; that is, we’re going to define an
application layer (services), and call that application from tests. In the real world, we’d then write a user interface layer
that used the services, just as the tests do.

Just to be clear, our user interactions are:

	 1.	 Add a Ranking for a subject by an observer.

	 2.	 Update a Ranking for a subject by an observer.

	 3.	 Remove a Ranking for a subject by an observer.

	 4.	 Find the average Ranking for particular skill for a subject.

	 5.	 Find all the Rankings for a subject.

	 6.	 Find the highest-ranked subject for a particular skill.

It sounds like a lot, but we’ve already written much of this code; we just need to refactor it into a service layer for
ease of use.

The first thing we want to do is abstract out some basic services—primarily, the acquisition of a session. To do
this, we’re going to add a new module to our parent project—the “util” module—with a single class, the SessionUtil.

In an application server (such as Wildfly, Glassfish, or Geronimo), the persistence API is accessed through
resource injection; the application deployer configures a context for the Java Persistence Architecture, and the
application automatically acquires an EntityManager (the JPA equivalent to the session). It’s entirely possible
(and possibly preferable) to configure Hibernate as the JPA provider; you can then use the Hibernate APIs with a cast
to Session.6

You can also get this same kind of resource injection via libraries such as Spring or Guice. With Spring, for
example, you’d configure a persistence provider, just as you would in a Java EE application server, and Spring would
automatically provide a resource through which you could acquire Sessions.

6Of course, you could also just use the raw JPA interface. However, it’s much more limited than the Hibernate API.

http://hsqldb.org/doc/guide/sessions-chapt.html
http://hsqldb.org/doc/guide/sessions-chapt.html

Chapter 3 ■ Building a Simple Application

30

However, while each of these platforms (Spring, Java EE, and others) are extremely useful and practical (and
probably necessary, in Java EE’s case), we’re going to avoid them for the most part because we want to limit the scope
of what we’re doing to Hibernate and not get into a discussion of various competing architecture choices.

In the source code, there’s a “util” module, apart from the chapter modules. The com.redhat.osas.hibernate.
util.SessionUtil class is a singleton that provides access to a SessionFactory—something we’ve been putting in
our test initialization code so far. It looks like what you see in Listing 3-13:

Listing 3-13.  A Utility Class for Retrieving a Session

package com.redhat.osas.hibernate.util;
 
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;
 
public class SessionUtil {
 private final static SessionUtil instance = new SessionUtil();
 private final SessionFactory factory;
 
 private SessionUtil() {
 Configuration configuration = new Configuration();
 configuration.configure();
 ServiceRegistryBuilder srBuilder = new ServiceRegistryBuilder();
 srBuilder.applySettings(configuration.getProperties());
 ServiceRegistry serviceRegistry = srBuilder.buildServiceRegistry();
 factory = configuration.buildSessionFactory(serviceRegistry);
 }
 
 public static Session getSession() {
 return getInstance().factory.openSession();
 }
 
 private static SessionUtil getInstance() {
 return instance;
 }
}
 

The way this class is used is very simple, and can be seen in the test for SessionUtil, as shown in Listing 3-14:

Listing 3-14.  A Test for the SessionUtil Class

@Test
public void testSessionFactory() {
 Session session = SessionUtil.getSession();
 session.close();
}
 

Chapter 3 ■ Building a Simple Application

31

As you can see, this class does nothing we haven’t done so far; it just does it in a class with general visibility. We
can add a dependency on this module to other projects and immediately have a clean way to acquire a session—and
if need be, we can use this class as an abstraction for acquiring sessions through the Java EE persistence mechanism,
or via Spring.

Add a Ranking
The first thing we want to be able to do is add a Ranking. Let’s do this first by creating our client code, which will give
us an idea of what it is we need to write. See Listing 3-15.

Listing 3-15.  A Test to add a Ranking

public class AddRankingTest {
 RankingService service=new HibernateRankingService();
 @Test
 public void addRanking() {
 service.addRanking("J. C. Smell", "Drew Lombardo", "Mule", 8);
 assertEquals(service.getRankingFor("J. C. Smell", "Mule"), 8);
 }
}
 

Note that we haven’t written our service interface yet, nor its implementation; we’re just trying out the API to see
how it looks and if it seems to fit what we need to do.

Looking at this code in Listing 3-15, we can fairly easily say that addRanking() logically adds a ranking to J. C.
Smell, as observed by Drew Lombardo, about Mule, with a skill level of 8. It’d be easy to confuse the parameters; we’ll
have to be sure to name them clearly, but even with clear names there’s a possibility for confusion.

Likewise, we can say that getRankingFor() fairly clearly retrieves a ranking for J. C. Smell’s skill at Mule.
Again, the possibility lurks for type confusion; the compiler wouldn’t be able to tell us offhand if we called
getRankingFor("Mule", "J. C. Smell"); and while we might be able to mitigate this in code, with this structure
there’s always going to be the possibility for confusion.7

It’s fair to say that this aspect of the API is clear enough and easily tested; let’s get to writing some code.
The test code shown in Listing 3-16 gives us the structure of the RankingService:

Listing 3-16.  The RankingService Interface

package chapter03.application;
 
public interface RankingService {
 int getRankingFor(String subject, String skill);
 
 void addRanking(String subject, String observer, String skill, int ranking);
}
 

Now let’s look at the HibernateRankingService, which will reuse much of the code we’ve written in order to test
our data model.

7How could we address it? Not very easily, that’s how. We could try to add semantic roles to each attribute–for example, we could
mark Drew Lombardo as an observer, and J. C. Smell as a subject. If we used a subject where an observer was expected, then we
could programmatically indicate an error condition. However, that doesn't help if Drew is an observer and a subject–which is likely
to be a normal case.

Chapter 3 ■ Building a Simple Application

32

What we’re doing in this class is fairly simple: we have a top-level method (the one that’s publicly visible) that
acquires a session, then delegates the session along with the rest of the data to a worker method. The worker method
handles the data manipulation, and is for the most part a copy of the createData() method from the RankingTest,
and uses the other utility methods we’d written for RankingTest, too.

Why are we doing this? Mostly, we’re anticipating other methods that might need to use addRanking() in such a
way that it participates with an existing session. See Listing 3-17.

Listing 3-17.  Public and Private Mechanisms to Add a Ranking

@Override
public void addRanking(String subjectName, String observerName,
 String skillName, int rank) {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 addRanking(session, subjectName, observerName, skillName, rank);
 
 tx.commit();
 session.close();
}
 
private void addRanking(Session session, String subjectName,
 String observerName, String skillName, int rank) {
 Person subject = savePerson(session, subjectName);
 Person observer = savePerson(session, observerName);
 Skill skill = saveSkill(session, skillName);
 
 Ranking ranking = new Ranking();
 ranking.setSubject(subject);
 ranking.setObserver(observer);
 ranking.setSkill(skill);
 ranking.setRanking(rank);
 session.save(ranking);
}
 

This leaves our getRankingFor() method unimplemented; however, just as addRanking() was lifted nearly
complete from RankingTest, we can copy the code for getAverage() and change how the Session is acquired, as
shown in Listing 3-18.

Listing 3-18.  Retrieving a Ranking for a Subject

@Override
public int getRankingFor(String subject, String skill) {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
  
 int average = getRankingFor(session, subject, skill);
 tx.commit();
 session.close();
 return average;
}
 

Chapter 3 ■ Building a Simple Application

33

private int getRankingFor(Session session, String subject,
 String skill) {
 Query query = session.createQuery("from Ranking r "
 + "where r.subject.name=:name "
 + "and r.skill.name=:skill");
 query.setString("name", subject);
 query.setString("skill", skill);
 int sum = 0;
 int count = 0;
 for (Ranking r : (List<Ranking>) query.list()) {
 count++;
 sum += r.getRanking();
 System.out.println(r);
 }
 return count == 0 ? 0 : sum / count;
}
 

Just as with the addRanking() method, the publicly visible method allocates a session and then delegates to an
internal method, and it’s for the same reason: we may want to calculate the average in an existing session. (We’ll see
this in action in the next section, when we want to update a Ranking.)

The last line in getRankingFor() adds a guard against division by zero, in the case that no rankings for a given
skill exist for the subject in question.

For the record, this internal method is still awful. It works, but we can optimize it quite a bit. However, our data
sets have been so small that there’s been no point. We’ll get there.

Now, when we run the test (with mvn package in the top-level directory, or via your IDE, if you’re using one),
the AddRankingTest passes, with no drama—which is exactly what we want. Even more satisfying, if we want to play
around with the internals of HibernateRankingService, we can; we will be able to tell as soon as something breaks
because our tests require that things work.

Also, if you look very carefully—okay, not that carefully, because it’s rather obvious—you’ll see that we’ve also
managed to go down the path of fulfilling another of our requirements: determining the average Ranking for a given
subject’s Skill. With that said, though, we don’t have a rigorous test in place yet. We’ll get there.

Update a Ranking
Next, we handle the (not very likely) situation of updating a Ranking. This is potentially very simple, but we need
to think about what happens if a pre-existing Ranking doesn’t exist. Imagine Drew Lombardo trying to change J. C.
Smell’s mastery of Mule to 8, when he’s not bothered to offer any other Ranking yet.

We probably don’t need to think about it too much, because in this situation it’s likely that we’d just add the
Ranking, but other more mission-critical applications may want the extra time spent in thought.

As it is, let’s create two tests: one that uses an existing Ranking and another using a nonexistent Ranking; see
Listing 3-19.

Listing 3-19.  Tests for Updating Rankings

@Test
public void updateExistingRanking() {
 service.addRanking("Gene Showrama", "Scottball Most", "Ceylon", 6);
 assertEquals(service.getRankingFor("Gene Showrama", "Ceylon"), 6);
 service.updateRanking("Gene Showrama", "Scottball Most", "Ceylon", 7);
 assertEquals(service.getRankingFor("Gene Showrama", "Ceylon"), 7);
}
 

Chapter 3 ■ Building a Simple Application

34

@Test
public void updateNonexistentRanking() {
 assertEquals(service.getRankingFor("Scottball Most", "Ceylon"), 0);
 service.updateRanking("Scottball Most", "Gene Showrama", "Ceylon", 7);
 assertEquals(service.getRankingFor("Scottball Most", "Ceylon"), 7);
}
 

These two tests are very simple.
UpdateExistingRanking() first adds a Ranking, then checks to verify that it was added properly; it updates that

same Ranking, then determines if the average has changed. Since this is the only Ranking for this subject and this
Skill, the average should match the changed Ranking.

UpdateNonExistentRanking() does almost the same thing: it makes sure that we have nothing for this subject
and Skill (i.e., checks for 0, our signal value for “no Rankings exist”), then “updates” that Ranking (which, according
to our requirements, should add the Ranking), and then checks the resulting average.

Now let’s look at the service’s code used to put this into effect, as shown in Listing 3-20.

Listing 3-20.  The Code for Updating a Ranking

@Override
public void updateRanking(String subject, String observer, String skill, int rank) {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Ranking ranking = findRanking(session, subject, observer, skill);
 if (ranking == null) {
 addRanking(session, subject, observer, skill, rank);
 } else {
 ranking.setRanking(rank);
 }
 tx.commit();
 session.close();
}
 
private Ranking findRanking(Session session, String subject,
 String observer, String skill) {
 Query query = session.createQuery("from Ranking r where "
 + "r.subject.name=:subject and "
 + "r.observer.name=:observer and "
 + "r.skill.name=:skill");
 query.setParameter("subject", subject);
 query.setParameter("observer", observer);
 query.setParameter("skill", skill);
 Ranking ranking= (Ranking) query.uniqueResult();
 return ranking;
}
 

It’s worth considering that this code could be more efficient for what it does. Since there’s no state to be preserved
from the record that’s been changed, we could feasibly delete the record outright if it exists, then add a new record.

However, if the Rankings had a timestamp of sorts—perhaps createTimestamp and lastUpdatedTimestamp
attributes—then in this scenario an update (as we do here) makes more sense. Our data model isn’t complete yet; we
should anticipate adding fields like these at some point.

Chapter 3 ■ Building a Simple Application

35

Remove a Ranking
Removing a Ranking has two conditions to consider: one is that the Ranking exists (of course!) and the other is that it
does not exist. It might be that our architectural requirements mandate that removal of a Ranking that isn’t actually
present is an error; but for this case, we’ll assume that the removal merely attempts to validate that the Ranking
doesn’t exist.

Here’s our test code, shown in Listing 3-21:

Listing 3-21.  Tests that Validate Removing a Ranking

@Test
public void removeRanking() {
 service.addRanking("R1", "R2", "RS1", 8);
 assertEquals(service.getRankingFor("R1", "RS1"), 8);
 service.removeRanking("R1", "R2", "RS1");
 assertEquals(service.getRankingFor("R1", "RS1"), 0);
}
 
@Test
public void removeNonexistentRanking() {
 service.removeRanking("R3", "R4", "RS2");
}
 

The tests should be fairly easy to step through.
The first test (removeRanking()) creates a Ranking and validates that it gives us a known average, then removes it,

which should change the average back to 0 (which indicates that no data exists for that Ranking, as already stated).
The second test calls removeRanking() that should not exist (because we don’t create it anywhere); it should

change nothing about the subject.
It’s worth pointing out that our tests are fairly complete, but not as complete as they could be. For example, some

of our tests might inadvertently be adding data to the database, depending on how the services are written. While
that’s not very important for this application, it’s worth thinking about how to validate the entire database state after a
test is run.

Find Average Ranking for a Subject’s Skill
We’re nearing the point where we’re starting to exhaust the codebase written to test our data model. It’s time to verify
the code that calculates the average Ranking for a given skill for a given subject. We’ve already used this code to verify
some of our other requirements (all of them so far, in fact), but we’ve done so with limited data. Let’s throw more data
at the getRankingFor() method to validate that it’s actually doing what it’s supposed to do.

Here’s our test code, shown in Listing 3-22:

Listing 3-22.  A Test that Validates Our Ranking Mechanism

@Test
public void validateRankingAverage() {
 service.addRanking("A", "B", "C", 4);
 service.addRanking("A", "B", "C", 5);
 service.addRanking("A", "B", "C", 6);
 assertEquals(service.getRankingFor("A", "C"), 5);

Chapter 3 ■ Building a Simple Application

36

 service.addRanking("A", "B", "C", 7);
 service.addRanking("A", "B", "C", 8);
 assertEquals(service.getRankingFor("A", "C"), 6);
}
 

We actually don’t have any changes for the service—it’s using the getRankingFor() method we’ve already seen.

Find All Rankings for a Subject
What we’re looking for here is a list of Skills, with their averages, for a given subject.

We have a few options as to how we can represent this data; do we want a Map, so that we can easily locate what
Skill level goes with a Skill? Do we want a queue, so that the Skill levels are ranked in order?

This will depend on the architectural requirements for interaction. At this level (and for this particular
application design), we’ll use a Map; it gives us the data we need (a set of Skills with their average Rankings) with a
simple data structure. Eventually, we’ll revisit this requirement and fulfill it more efficiently.

As per usual, let’s write our test code, and then make it run properly; see Listing 3-23.

Listing 3-23.  Test Code for a Person’s Skill Rankings

@Test
public void findAllRankingsEmptySet() {
 assertEquals(service.getRankingFor("Nobody", "Java"),0);
 assertEquals(service.getRankingFor("Nobody", "Python"),0);
 Map<String, Integer> rankings=service.findRankingsFor("Nobody");
 
 // make sure our dataset size is what we expect: empty
 assertEquals(rankings.size(), 0);
}
 
@Test
public void findAllRankings() {
 assertEquals(service.getRankingFor("Somebody", "Java"),0);
 assertEquals(service.getRankingFor("Somebody", "Python"),0);
 service.addRanking("Somebody", "Nobody", "Java", 9);
 service.addRanking("Somebody", "Nobody", "Java", 7);
 service.addRanking("Somebody", "Nobody", "Python", 7);
 service.addRanking("Somebody", "Nobody", "Python", 5);
 Map<String, Integer> rankings=service.findRankingsFor("Somebody");
 
 assertEquals(rankings.size(), 2);
 assertNotNull(rankings.get("Java"));
 assertEquals(rankings.get("Java"), new Integer(8));
 assertNotNull(rankings.get("Python"));
 assertEquals(rankings.get("Python"), new Integer(6));
}
 

We have two tests here, of course: the first looks for a subject for whom there should be no data, and it validates
that we got an empty dataset in return.

The second validates that we have no data for the subject, populates some data, and then looks for the set
of Ranking averages. It then makes sure we have the count of averages we expect, and validates that the Rankings
themselves are what we expect.

Chapter 3 ■ Building a Simple Application

37

Again, it’s doable to write more complete tests, perhaps, but these tests do validate whether our simple
requirements are fulfilled. We’re still not checking for side effects, but that’s outside of the scope of this chapter.8

So let’s look at the code for findAllRankings(). As usual, we’ll have a public method and then an internal
method that participates in an existing Session, as shown in Listing 3-24:

Listing 3-24.  Service Methods for Finding Rankings

@Override
public Map<String, Integer> findRankingsFor(String subject) {
 Map<String, Integer> results;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 results=findRankingsFor(session, subject);
 
 tx.commit();
 session.close();
 
 return results;
}
 
private Map<String, Integer> findRankingsFor(Session session, String subject) {
 Map<String, Integer> results=new HashMap<>();
 
 Query query = session.createQuery("from Ranking r where "
 + "r.subject.name=:subject order by r.skill.name");
 query.setParameter("subject", subject);
 List<Ranking> rankings=query.list();
 String lastSkillName="";
 int sum=0;
 int count=0;
 for(Ranking r:rankings) {
 if(!lastSkillName.equals(r.getSkill().getName())) {
 sum=0;
 count=0;
 lastSkillName=r.getSkill().getName();
 }
 sum+=r.getRanking();
 count++;
 results.put(lastSkillName, sum/count);
 }
 return results;
}
 

The internal findRankingsFor() method (as with all of our methods that calculate averages) is really not very
attractive. It uses a control-break mechanism to calculate the averages as we iterate through the Rankings.9

8One possibility for checking for side effects might be clearing the entire dataset (as we did in the RankingTest code, by closing the
SessionFactory down every test), then clearing the data we expected to write and looking for any extraneous data. There are
certainly other possibilities, but all of these are out of our scope here.
9Pretty much everyone who knows SQL moderately well has probably been fuming about how we’re pulling data from the
database. That’s okay–the way it's being done here is pretty lame.

Chapter 3 ■ Building a Simple Application

38

According to the Wikipedia page on control-break (http://en.wikipedia.org/wiki/Control_break), “[w]ith
fourth generation languages such as SQL, the programming language should handle most of the details of control
breaks automatically.” That’s absolutely correct, and it’s also why I’ve been pointing out the inefficiency of all of these
routines. We’re manually doing something that the database (and Hibernate) should be able to do for us—and it can.
We’re just not using that capability yet. We will finally get there when we look at the next application requirement.

In any event, the new tests should be able to pass (perhaps not with flying colors, because the actual underlying
services aren’t done with an eye for efficiency), which allows us to move to the last (and probably most complicated)
requirement.

Find the Highest Ranked Subject for a Skill
With this requirement, we want to find out who is ranked highest for a given Skill; if we have three people Ranked for
Java, we want the one whose average score is best. If there are no Rankings for this Skill, we want a null response as a
signal value. Off to the tests; let’s look at Listing 3-25:

Listing 3-25.  The Tests for Finding the Best Person for a Given Skill

@Test
public void findBestForNonexistentSkill() {
 Person p = service.findBestPersonFor("no skill");
 assertNull(p);
}
 
@Test
public void findBestForSkill() {
 service.addRanking("S1", "O1", "Sk1", 6);
 service.addRanking("S1", "O2", "Sk1", 8);
 service.addRanking("S2", "O1", "Sk1", 5);
 service.addRanking("S2", "O2", "Sk1", 7);
 service.addRanking("S3", "O1", "Sk1", 7);
 service.addRanking("S3", "O2", "Sk1", 9);
 // data that should not factor in!
 service.addRanking("S3", "O1", "Sk2", 2);
 Person p = service.findBestPersonFor("Sk1");
 assertEquals(p.getName(), "S3");
}
 

Our first test should be obvious: given a nonexistent Skill, we shouldn’t get a Person back. (This follows our
established convention that suggests the use of a signal value rather than an exception.)

Our second test creates three subjects, each with Skills in “Sk1,” whatever that is. (It’s “ability to serve as test
data.”) S1 has an average of 7, S2 has an average of 6, and S3 has an average of 8. We should therefore expect S3 as
the owner of the best Ranking. We’re throwing in some outlier data just to make sure that our service is limited to the
actual data it’s trying to find.

Note that we’re not actually returning the Skill’s average! For an actual application, that’s very likely to be
a requirement; it could easily be fulfilled by immediately calling getRankingFor(), but as designed that’s a very
expensive operation (involving creation of a new Session and a series of database roundtrips). We’ll revisit this before
too long; here, we’re using as few object types as we can.

So let’s look at some code in Listing 3-26. And we’re finally going to get into a more capable query (and see how
we might have been writing some of our other queries more efficiently).

http://en.wikipedia.org/wiki/Control_break

Chapter 3 ■ Building a Simple Application

39

Listing 3-26.  Code for Finding the Highest Average for a Given Skill

@Override
public Person findBestPersonFor(String skill) {
 Person person = null;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 person = findBestPersonFor(session, skill);
 
 tx.commit();
 session.close();
 return person;
}
 
private Person findBestPersonFor(Session session, String skill) {
 Query query = session.createQuery("select r.subject.name, avg(r.ranking)"
 + " from Ranking r where "
 + "r.skill.name=:skill "
 + "group by r.subject.name "
 + "order by avg(r.ranking) desc");
 query.setParameter("skill", skill);
 List<Object[]> result = query.list();
 if(result.size()>0) {
 return findPerson(session, (String)result.get(0)[0]);
 }
 return null;
}
 

Our public method follows the convention we’ve established so far: creating a session and then delegating to an
internal method.

The internal method, though, does some things we’ve not seen yet so far, starting with a different type of query.
Most of our queries have been of the “FROM class alias WHERE condition” form, which is fairly simple.

Hibernate is generating SQL that uses a table name and can do joins automatically to iterate over a tree of data
(“r.skillname”, for example), but the overall form is very simple.

Here, we have an actual SELECT clause. Here’s the full query as written in the code:
 
select r.subject.name, avg(r.ranking) from Ranking r where r.skill.name=:skill group by r.subject.
name order by avg(r.ranking) desc
 

This actually returns tuples, which are sets of arrays of objects.
Our “select” clause specifies that the tuple will have two values, pulled from the subject name associated with the

Ranking, and a calculated value which, in this case, is the average of all of the Rankings in a particular group.
The “where” clause limits the overall dataset to those Rankings where the Skill name matches the parameter.
The “group by” clause means that sets of values are handled together, which in turn means that the average

Ranking (the second value of the tuple that the query returns) will be limited to each subject.
The “order by” clause means that Hibernate is going to give us the highest Ranked subjects before the lowest

Ranked subjects.

Chapter 3 ■ Building a Simple Application

40

Could we do this programmatically? Of course; that’s pretty much what we’ve seen in most of our code, where
we calculate values like the average Skill manually. However, this saves round-trip data time; the database actually
performs the calculations and returns a dataset that’s exactly large enough to fulfill its role. Databases are normally
tuned for efficiency in this kind of calculation, so we’re probably saving time as well, provided we’re not using an
embedded database as we do in this example.10

Summary
In this chapter, we’ve seen how to go from a problem definition to an object model, along with an example of test-
driven design to test the model. We’ve also lightly covered the concepts of object state with respect to persistence and
transactions.

We’ve then focused on the application requirements, building a series of actions through which those
requirements could be fulfilled. We’ve covered how to create, read, update, and delete data, along with using
Hibernate’s query language to perform a fairly complex query with calculated data.

In the next chapter, we will look at the architecture of Hibernate and the lifecycle of a Hibernate-based
application.

10Even with an embedded database, though, it can be faster; an embedded database can use internal access to the data to which our
application code normally has no access, even before we consider the possibility of efficient queries through the use of indexes.

41

Chapter 4

The Persistence Life Cycle

In this chapter, we discuss the life cycle of persistent objects in Hibernate. These persistent objects can be POJOs
without any special marker interfaces or inheritance related to Hibernate. Part of Hibernate’s popularity comes from
its ability to work with a normal object model.

We also discuss the methods of the Session interface that are used for creating, retrieving, updating, and deleting
persistent objects from Hibernate.

Introducing the Life Cycle
After adding Hibernate to your application, you do not need to change your existing Java object model to add
persistence marker interfaces or any other type of hint for Hibernate. Instead, Hibernate works with normal Java
objects that your application creates with the new operator or that other objects create.

For Hibernate’s purposes, these can be drawn up into two categories: objects for which Hibernate has entity
mappings, and objects that are not directly recognized by Hibernate. A correctly mapped entity object will consist
of fields and properties that are mapped, and that are themselves either references to correctly mapped entities,
references to collections of such entities, or “value” types (primitives, primitive wrappers, strings, or arrays of these).

Given an instance of an object that is mapped to Hibernate, it can be in any one of four different states: transient,
persistent, detached, or removed.

Transient objects exist in memory, as illustrated in Figure 4-1. Hibernate does not manage transient objects or
persist changes to transient objects.

Figure 4-1.  Transient objects are independent of Hibernate

To persist the changes to a transient object, you would have to ask the session to save the transient object to the
database, at which point Hibernate assigns the object an identifier and marks the object as being in persistent state.

Persistent objects exist in the database, and Hibernate manages the persistence for persistent objects. We show
this relationship between the objects and the database in Figure 4-2. If fields or properties change on a persistent
object, Hibernate will keep the database representation up to date when the application marks the changes as to be
committed.

Chapter 4 ■ The Persistence Life Cycle

42

Detached objects have a representation in the database, but changes to the object will not be reflected in the
database, and vice versa. This temporary separation of the object and the database is shown in Figure 4-3. A detached
object can be created by closing the session that it was associated with, or by evicting it from the session with a call
to the session’s evict() method. One reason you might consider doing this would be to read an object out of the
database, modify the properties of the object in memory, and then store the results some place other than your
database. This would be an alternative to doing a deep copy of the object.

In order to persist changes made to a detached object, the application must reattach it to a valid Hibernate
session. A detached instance can be associated with a new Hibernate session when your application calls one of the
load, refresh, merge, update(), or save() methods on the new session with a reference to the detached object.
After the call, the detached object would be a persistent object managed by the new Hibernate session.

Removed objects are objects that are being managed by Hibernate (persistent objects, in other words) that have
been passed to the session’s remove() method. When the application marks the changes held in the session as to be
committed, the entries in the database that correspond to removed objects are deleted.

Versions prior to Hibernate 3 had support for the Lifecycle and Validatable interfaces. These allowed your
objects to listen for save, update, delete, load, and validate events using methods on the object. In Hibernate 3, this
function moved into events and interceptors, and the old interfaces were removed. In Hibernate 4, the JPA persistence
life cycle is also supported, so events can be embedded into the objects and marked with annotations.

Entities, Classes, and Names
Entities represent Java objects with mappings that permit them to be stored in the database. The mappings indicate
how the fields and properties of the object should be stored in the database tables. However, it is possible that you will
want objects of a particular type to be represented in two different ways in the database. For instance, you could have
one Java class for users, but two different tables in the database that store users. This may not be the best database
design, but similar problems are common in legacy systems. Other systems that can't be easily modified may depend
on the existing database design, and Hibernate is powerful enough to cover this scenario. In this case, how does
Hibernate choose which to use?

An object representing an entity will be a normal Java class. It will also have an entity name. By default, the
name of the entity will be the same as the name of the class type.1 You have the option, however, to change this via
the mappings or annotations, and thus distinguish between objects of the same type that are mapped to different

Figure 4-2.  Persistent objects are maintained by Hibernate

Figure 4-3.  Detached objects exist in the database but are not maintained by Hibernate

1As we saw in Chapter 3. HQL uses the entity name, not the class name; but because we didn’t specify any custom entity names, the
class name and the entity name were the same.

Chapter 4 ■ The Persistence Life Cycle

43

tables. There are, therefore, methods in the Session API that require an entity name to be provided to determine
the appropriate mapping. If this is omitted, it will either be because no such distinction is needed or because, for
convenience, the method assumes the most common case—that the entity name is the same as the class name–and
duplicates the function of another, more specific method that permits the entity name to specified explicitly.

Identifiers
An identifier, or identity column, maps to the concept of a primary key in relational databases. A primary key is a
unique set of one or more columns that can be used to specify a particular collection of data.

There are two types of identifiers: natural and artificial.
A natural identifier is something that the application finds meaningful–a user ID, for example, or a Social

Security number2 or equivalent.
An artificial identifier is one whose value is arbitrary. Our code so far uses values generated by the database

(identity columns) which have no relation whatsoever with the data associated with that identifier. This tends to yield
more flexibility with respect to associations and other such interactions, because the artificial identifier can be smaller
than a natural identifier in many cases.

Why would artificial identifiers be better than natural identifiers? Well, there are a few possible reasons. One
reason artificial identifiers might be better than natural identifiers is that an artificial identifier might be a smaller type
(in memory) than a natural identifier.

Consider a user email. In most cases, user email addresses won’t change, and they tend to be unique for a given
user; however, the email addresses might be at least ten bytes long (and could be much longer). An integral user ID
(a long, or int) might be four or eight bytes long, and no longer.

Another reason is that artificial identifiers won’t change with the data’s natural life cycle. An email address, for
example, might change over time; someone might abandon an old email address and prefer a new one. Anything that
relied on that email address as a natural identifier would have to be changed synchronously to allow updates.

Yet another reason is that artificial identifiers are simple. Databases (and Hibernate) allow the use of composite
identifiers–identifiers built up from more than one property in an object. However, this means that when you refer to
a specific object or row in the database, you have to include all columns in that identifier, whether as an embedded
object or as a set of individual columns. It’s doable, certainly; some data models require it (for legacy or other business
reasons, for example). However, for efficiency’s sake, most would normally prefer artificial keys.

In Hibernate, an object attribute is marked as an identifier with the @Id annotation, as shown in Listing 4-1.

Listing 4-1.  A Typical Identifier Field

@Id
public Long id;
 

In Listing 4-1, you see a Long–a “big integer” for HSQL–that’s marked as a presumably artificial identifier. This
value will need to be assigned before the object with this attribute can be persisted.

In our example code so far, though, we’ve assigned no identifiers; we’ve used another annotation,
@GeneratedValue, which tells Hibernate that it is responsible for assigning and maintaining the identifier. The
mechanism through which this happens depends quite a bit on the Hibernate configuration and the database
in use.

2The U.S. Social Security Administration says that they have enough Social Security numbers to assign unique identification for
“several generations.” (See http://www.ssa.gov/history/hfaq.html, Q20.) That may be good enough for a natural identifier,
although privacy advocates would rightfully complain; also, note that “several generations” might not be enough. Programmers were
absolutely sure that nobody would still have data with two-digit years in them ... until Y2K, which took a lot of manhours to fix.

http://www.ssa.gov/history/hfaq.html

Chapter 4 ■ The Persistence Life Cycle

44

There are five different generation possibilities: identity, sequence, table, auto, and none. Identity generation
relies on a natural table sequencing. This is requested in the @GeneratedValue annotation by using the
GenerationType.IDENTITY option, as follows:
 
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
Long id;
 

The sequence mechanism depends on the database’s ability to create table sequences (which tends to limit it to
PostgreSQL, Oracle, and a few others). It corresponds to the GenerationType.SEQUENCE strategy.

The table mechanism uses a table whose purpose is to store blocks of artificial identifiers; you can let Hibernate
generate this for you, or you can specify all of the table’s specifics with an additional @TableGenerator annotation. To
use artificial key generation via table, use the GenerationType.TABLE strategy.

The fourth artificial key generation strategy is auto, which normally maps to the IDENTITY strategy, but depends
on the database in question. (It’s supposed to default to something that’s efficient for the database in question.) To use
this, use the GenerationType.AUTO strategy.

The fifth strategy isn’t actually a strategy at all: it relies on manual assignment of an identifier. If Session.persist()
is called with an empty identifier, you’ll have an IdentifierGenerationException thrown.

Entities and Associations
Entities can contain references to other entities, either directly as an embedded property or field, or indirectly via a
collection of some sort (arrays, sets, lists, etc.). These associations are represented using foreign key relationships
in the underlying tables. These foreign keys will rely on the identifiers used by participating tables, which is another
reason to prefer small (and artificial) keys.

When only one of the pair of entities contains a reference to the other, the association is unidirectional. If the
association is mutual, then it is referred to as bidirectional.

Tip■■  A common mistake when designing entity models is to try to make all associations bidirectional. Associations
that are not a natural part of the object model should not be forced into it. Hibernate Query Language often presents a
more natural way to access the same information.

In associations, one (and only one) of the participating classes is referred to as “managing the relationship.” If
both ends of the association manage the relationship, then we would encounter a problem when client code called
the appropriate set method on both ends of the association. Should two foreign key columns be maintained–one in
each direction (risking circular dependencies)–or only one?

Ideally, we would like to dictate that only changes to one end of the relationship will result in any updates to the
foreign key; and indeed, Hibernate allows us to do this by marking one end of the association as being managed by the
other (marked by the mappedBy attribute of the association annotation).

Caution■■   mappedBy is purely about how the foreign key relationships between entities are saved. It has nothing
to do with saving the entities themselves. Despite this, they are often confused with the entirely orthogonal cascade
functionality (described in the “Cascading Operations” section of this chapter).

Chapter 4 ■ The Persistence Life Cycle

45

While Hibernate lets us specify that changes to one association will result in changes to the database, it does not
allow us to cause changes to one end of the association to be automatically reflected in the other end in
the Java POJOs.

Let’s create an example, in chapter04.broken package, of a Message and an Email association, without an
“owning object.” First, the Message class, as shown in Listing 4-2:

Listing 4-2.  A Broken Model, Beginning with Message

package chapter04.broken;
 
import javax.persistence.*;
 
@Entity
public class Message {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 
 @Column
 String content;
 
 @OneToOne
 Email email;
 
 public Message() {
 }
 
 public Message(String content) {
 setContent(content);
 }
 // mutators and accessors not included, for brevity
}
 

Listing 4-3 is the Email class, in the same package:

Listing 4-3.  A Broken Model’s Message Class

package chapter04.broken;
 
import javax.persistence.*;
 
@Entity
public class Email {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 
 @Column
 String subject;
 

Chapter 4 ■ The Persistence Life Cycle

46

 @OneToOne //(mappedBy = "email")
 Message message;
 
 public Email() {
 }
 
 public Email(String subject) {
 setSubject(subject);
 }
 // mutators and accessors not included
}
 

With these classes, there’s no “owning relation”; the mappedBy attribute in Email is commented out. This means
that we need to update both the Email and the Message in order to have our relationship properly modeled in both
directions, as the Listing 4-4 test shows:

Listing 4-4.  A Common Misconception About Bidirectional Associations

@Test()
public void testBrokenInversionCode() {
 Long emailId;
 Long messageId;
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Email email = new Email("Broken");
 Message message = new Message("Broken");
 
 email.setMessage(message);
 // message.setEmail(email);
 
 session.save(email);
 session.save(message);
 
 emailId = email.getId();
 messageId = message.getId();
 
 tx.commit();
 session.close();
 
 assertNotNull(email.getMessage());
 assertNull(message.getEmail());
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 email = (Email) session.get(Email.class, emailId);
 System.out.println(email);
 message = (Message) session.get(Message.class, messageId);
 System.out.println(message);
 

Chapter 4 ■ The Persistence Life Cycle

47

 tx.commit();
 session.close();
 
 assertNotNull(email.getMessage());
 assertNull(message.getEmail());
}
 

The final call to message.getEmail()will return null (assuming simple accessors and mutators are used). To
get the desired effect, both entities must be updated. If the Email entity owns the association, this merely ensures the
proper assignment of a foreign key column value. There is no implicit call of message.setEmail(email). This must be
explicitly given, as in Listing 4-5.

Listing 4-5.  The Correct Maintenance of a Bidirectional Association

@Test
public void testProperSimpleInversionCode() {
 Long emailId;
 Long messageId;
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Email email = new Email("Proper");
 Message message = new Message("Proper");
 
 email.setMessage(message);
 message.setEmail(email);
 
 session.save(email);
 session.save(message);
 
 emailId = email.getId();
 messageId = message.getId();
 
 tx.commit();
 session.close();
 
 assertNotNull(email.getMessage());
 assertNotNull(message.getEmail());
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 email = (Email) session.get(Email.class, emailId);
 System.out.println(email);
 message = (Message) session.get(Message.class, messageId);
 System.out.println(message);
 

Chapter 4 ■ The Persistence Life Cycle

48

 tx.commit();
 session.close();
 
 assertNotNull(email.getMessage());
 assertNotNull(message.getEmail());
}
 

It is common for users new to Hibernate to get confused about this point. The reason it occurs is that Hibernate
is using the actual current state of the entities. In Listing 4-5, when you set the message in the email, but not the email
in the message, Hibernate persists the actual relationships in the object model, instead of trying to infer a relationship,
even when that relationship would be expected. The extra relationship would be an unexpected side effect, even if it
might be useful in this particular case.

If we include the mapping (the mappedBy attribute), we get a different result. We’re going to modify Message
(by moving it to a new package, chapter04.mapped) and Email (by moving it and including the mappedBy attribute,
commented out in the prior listing).

The Message code is identical to the “broken” version, except for the package and the entity name (which means
Hibernate will use “Message2” as the table name for this type), as shown in Listing 4-6:

Listing 4-6.  A Corrected Message Class

package chapter04.mapped;
 
import javax.persistence.*;
 
@Entity(name = "Message2")
public class Message {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 
 @Column
 String content;
 
 @OneToOne
 Email email;
 
 public Message() {
 }
 
 public Message(String content) {
 setContent(content);
 }
}
 

The Email code, in addition to changing the entity name and package, adds the mappedBy attribute. This actually
adds a column to the Message’s database representation, representing the email ID. See Listing 4-7.

Chapter 4 ■ The Persistence Life Cycle

49

Listing 4-7.  A Corrected Email Class

package chapter04.mapped;
 
import javax.persistence.*;
 
@Entity(name = "Email2")
public class Email {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 @Column
 String subject;
 @OneToOne(mappedBy = "email")
 Message message;
 
 public Email() {
 }
 
 public Email(String subject) {
 setSubject(subject);
 }
}
 

With the mapping contained in the Message, there are some unexpected results. Our prior test failed to
reestablish some relationships, requiring them to be set in both Email and Message. Here, we have nearly the same
construct, but without the same result.

First, let’s see the test code, as shown in Listing 4-8; note that this test is using the chapter04.mapped package, so
it’s getting the Email and Message classes we just saw:

Listing 4-8.  Misleading Behavior

@Test
public void testImpliedRelationship() {
 Long emailId;
 Long messageId;
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Email email = new Email("Inverse Email");
 Message message = new Message("Inverse Message");
 
 // email.setMessage(message);
 message.setEmail(email);
 
 session.save(email);
 session.save(message);
 
 emailId = email.getId();
 messageId = message.getId();
 

Chapter 4 ■ The Persistence Life Cycle

50

 tx.commit();
 session.close();
 
 assertEquals(email.getSubject(), "Inverse Email");
 assertEquals(message.getContent(), "Inverse Message");
 assertNull(email.getMessage());
 assertNotNull(message.getEmail());
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 email = (Email) session.get(Email.class, emailId);
 System.out.println(email);
 message = (Message) session.get(Message.class, messageId);
 System.out.println(message);
 
 tx.commit();
 session.close();
 
 assertNotNull(email.getMessage());
 assertNotNull(message.getEmail());
}
 

This test passes, even though we didn’t set the Email’s Message.
That mappingBy attribute is the cause. In the database, the Mapping2 table has a column called “email_id,” which

is set to the Email’s unique identifier when we update the Message’s email property. When we close the session and
reload, the relationship is set only through that column, which means the relationship is set “correctly” even though
we didn’t create the relationship properly when we first created the data.

If we were to manage the relationship in the Email entity (i.e., setting the mappedBy attribute in Message.java
instead of Email.java), the situation would be reversed: setting the Message’s email attribute wouldn’t be reflected in
the database, but setting the Email’s message attribute would.

Here’s a summary of the points made:

You must explicitly manage both ends of an association.•	

Only changes to the owner of an association will be honored in the database.•	

When you load a detached entity from the database, it will reflect the foreign key relationships •	
persisted into the database.

Table 4-1 shows how you can select the side of the relationship that should be made the owner of a bidirectional
association. Remember that to make an association the owner, you must mark the other end as being mapped by the other.

Table 4-1.  Marking the Owner of an Association

Type of Association Options

One-to-one Either end can be made the owner, but one (and only one) of them should be; if you don’t
specify this, you will end up with a circular dependency.

One-to-many The many end must be made the owner of the association.

Many-to-one This is the same as the one-to-many relationship viewed from the opposite perspective,
so the same rule applies: the many end must be made the owner of the association.

Many-to-many Either end of the association can be made the owner.

Chapter 4 ■ The Persistence Life Cycle

51

If this all seems rather confusing, just remember that association ownership is concerned exclusively with the
management of the foreign keys in the database, and things should become clearer as you use Hibernate further.
Associations and mappings are discussed in detail in the next few chapters.

Saving Entities
Creating an instance of a class you mapped with a Hibernate mapping does not automatically persist the object to the
database. Until you explicitly associate the object with a valid Hibernate session, the object is transient, like any other
Java object. In Hibernate, we use one of the save()–or persist(), which is a synonym for save()–methods on the
Session interface to store a transient object in the database, as follows:
 
public Serializable save(Object object) throws HibernateException
 
public Serializable save(String entityName,Object object) throws HibernateException
 

Both save() methods take a transient object reference (which must not be null) as an argument. Hibernate
expects to find a mapping (either annotations or an XML mapping) for the transient object’s class; Hibernate cannot
persist arbitrary unmapped objects. If you have mapped multiple entities to a Java class, you can specify which entity
you are saving (Hibernate wouldn't know from just the Java class name) with the entityName argument.

The save() methods all create a new org.hibernate.event.SaveOrUpdateEvent event. We discuss events in
more detail in Appendix A, although you do not have to worry about these implementation details to use Hibernate
effectively.

At its simplest, we create a new object in Java, set a few of its properties, and then save it through the session.
Here’s a simple object, shown in Listing 4-9:

Listing 4-9.  A Simple Object for Persistence

package chapter04.model;
 
import javax.persistence.*;
 
@Entity
public class SimpleObject {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 @Column
 String key;
 @Column
 Long value;
 
 public SimpleObject() {
 }
 
 // mutators and accessors not included for brevity
 // equals() and hashCode() will be covered later in this chapter
}
 

Chapter 4 ■ The Persistence Life Cycle

52

Listing 4-10 shows how this object is saved, as shown in chapter04.general.PersistingEntitiesTest, in the
testSaveLoad() method:

Listing 4-10.  The testSaveLoad() Method as a Test

Session session = SessionUtil.getSession();
Transaction tx = session.beginTransaction();
 
SimpleObject obj = new SimpleObject();
obj.setKey("sl");
obj.setValue(10L);
 
session.save(obj);
assertNotNull(obj.getId());
// we should have an id now, set by Session.save()
id = obj.getId();
 
tx.commit();
session.close();
 

It is not appropriate to save an object that has already been persisted. Doing so will update the object, which
will actually end up creating a duplicate with a new identifier. This can be seen in PersistingEntitiesTest’s
testSavingEntitiesTwice() method, which looks like that shown in Listing 4-11:

Listing 4-11.  Saving the Same Entity Twice. Don’t Do This!

@Test
public void testSavingEntitiesTwice() {
 Long id;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleObject obj = new SimpleObject();
 
 obj.setKey("osas");
 obj.setValue(10L);
 
 session.save(obj);
 assertNotNull(obj.getId());
 
 id = obj.getId();
 
 tx.commit();
 session.close();
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 obj.setValue(12L);
 
 session.save(obj);
 

Chapter 4 ■ The Persistence Life Cycle

53

 tx.commit();
 session.close();
 
 // note that save() creates a new row in the database!
 // this is wrong behavior. Don't do this!
 assertNotEquals(id, obj.getId());
}
 

When this test is run, the two identifiers would be expected to be equal but they’re not; examining the values
yielded equivalent objects, except for the IDs, which were sequentially assigned as the SimpleObject @Id generation
specified.

You can, however, update an object with Session.saveOrUpdate(). Listing 4-12 shows another method,
testSaveOrUpdateEntity():

Listing 4-12.  Updating an Object

@Test
public void testSaveOrUpdateEntity() {
 Long id;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleObject obj = new SimpleObject();
 
 obj.setKey("osas2");
 obj.setValue(14L);
 
 session.save(obj);
 assertNotNull(obj.getId());
 
 id = obj.getId();
 
 tx.commit();
 session.close();
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 obj.setValue(12L);
 
 session.saveOrUpdate(obj);
 
 tx.commit();
 session.close();
 
 // saveOrUpdate() will update a row in the database
 // if one matches. This is what one usually expects.
 assertEquals(id, obj.getId());
}
 

Chapter 4 ■ The Persistence Life Cycle

54

It wouldn’t be advisable to try to match this code construction in production code. The object goes from transient
state (when it’s created) to persistent state (when it’s first saved), then back to transient state (when the session is
closed). We then update the object while it’s in transient state, and move it back to persistent state when we call
Session.saveOrUpdate().

Ideally, what you would do is load the object from the session in the first place (as we’ve done in most of our
other examples where we show updates); this means that the updates take place on a persistent object, and we don’t
actually have to call Session.save() or Session.saveOrUpdate() at all.3

Once an object is in a persistent state, Hibernate manages updates to the database itself as you change the fields
and properties of the object.

Object Equality and Identity
When we discuss persistent objects in Hibernate, we also need to consider the role that object equality and identity
play with Hibernate. When we have a persistent object in Hibernate, that object represents both an instance of a class
in a particular Java virtual machine (JVM) and a row (or rows) in a database table (or tables).

Requesting a persistent object again from the same Hibernate session returns the same Java instance of a class,
which means that you can compare the objects using the standard Java == equality syntax. If, however, you request a
persistent object from more than one Hibernate session, Hibernate will provide distinct instances from each session,
and the == operator will return false if you compare these object instances.

Taking this into account, if you are comparing objects in two different sessions, you will need to implement the
equals() method on your Java persistence objects, which you should probably do as a regular occurrence anyway.
(Just don’t forget to implement hashCode() along with it.)

Implementing equals() can be interesting. Hibernate wraps the actual object in a proxy (for various
performance-enhancing reasons, like loading data on demand), so you need to factor in a class hierarchy for
equivalency; it’s also typically more efficient to use mutators in your equals() and hashCode() methods, as opposed
to the actual fields.

Listing 4-13 is an implementation of equals() and hashCode() for the SimpleObject entity we’ve been using,
generated by IntelliJ IDEA4 and modified to use accessors:

Listing 4-13.  Sample equals() and hashCode() Implementations

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof SimpleObject)) return false;
 
 SimpleObject that = (SimpleObject) o;
 
 // we prefer the method versions of accessors,
 // because of Hibernate's proxies.
 if (getId() != null ?
 !getId().equals(that.getId()) : that.getId() != null)
 return false;

3We saw this in Chapter 3: chapter03.hibernate.RankingTest’s changeRanking() method does an in-place update of a
persistent object.
4IDEA is an IDE for Java; it has a free community edition and a commercial “ultimate” edition. It can be found at
http://jetbrains.com/idea.

http://jetbrains.com/idea

Chapter 4 ■ The Persistence Life Cycle

55

 if (getKey() != null ?
 !getKey().equals(that.getKey()) : that.getKey() != null)
 return false;
 if (getValue() != null ?
 !getValue().equals(that.getValue()) : that.getValue() != null)
 return false;
 
 return true;
}
 
@Override
public int hashCode() {
int result = getId() != null ? getId().hashCode() : 0;
 result = 31 * result + (getKey() != null ? getKey().hashCode() : 0);
 result = 31 * result + (getValue() != null?getValue().hashCode() : 0);
 return result;
}
 

The PersistentEntitiesTest’s testSaveLoad() method shows off the various possibilities and conditions for
equality, as shown in Listing 4-14:

Listing 4-14.  Testing Various Combinations of Equality

@Test
public void testSaveLoad() {
 Long id = null;
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleObject obj = new SimpleObject();
 obj.setKey("sl");
 obj.setValue(10L);
 
 session.save(obj);
 assertNotNull(obj.getId());
 // we should have an id now, set by Session.save()
 id = obj.getId();
 
 tx.commit();
 session.close();
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 // we're loading the object by id
 SimpleObject o2 = (SimpleObject) session.load(SimpleObject.class, id);
 assertEquals(o2.getKey(), "sl");
 assertNotNull(o2.getValue());
 assertEquals(o2.getValue().longValue(), 10L);
 

Chapter 4 ■ The Persistence Life Cycle

56

 SimpleObject o3 = (SimpleObject) session.load(SimpleObject.class, id);
 
 // since o3 and o2 were loaded in the same session, they're not only
 // equivalent - as shown by equals() - but equal, as shown by ==.
 // since obj was NOT loaded in this session, it's equivalent but
 // not ==.
 assertEquals(o2, o3);
 assertEquals(obj, o2);
 
 assertTrue(o2 == o3);
 assertFalse(o2 == obj);
 
 tx.commit();
 session.close();
}
 

Note that in this code, o2 and o3 are equal (they hold the same reference), while o2 and obj are equivalent
(the references are different but hold equivalent data). Again, you shouldn’t rely on this in production code; object
equivalence should always be tested with equals().

Loading Entities
Hibernate’s Session interface provides several load() methods for loading entities from your database. Each load()
method requires the object’s primary key as an identifier.5

In addition to the ID, Hibernate also needs to know which class or entity name to use to find the object with that
ID. Last, you will need to cast the object returned by load() to the class you desire. The basic load() methods are as
follows:
 
public Object load(Class theClass, Serializable id) throws HibernateException
public Object load(String entityName, Serializable id) throws HibernateException
public void load(Object object, Serializable id) throws HibernateException
 

The last load() method takes an object as an argument. The object should be of the same class as the object you
would like loaded, and it should be empty. Hibernate will populate that object with the object you requested. While
this is similar to other library calls in Java–namely, java.util.List.toArray()–this syntax can be without much of an
actual benefit.

The other load() methods take a lock mode as an argument. The lock mode specifies whether Hibernate should
look into the cache for the object and which database lock level Hibernate should use for the row (or rows) of data
that represent this object. The Hibernate developers claim that Hibernate will usually pick the correct lock mode for
you, although we have seen situations in which it is important to manually choose the correct lock. In addition, your
database may choose its own locking strategy–for instance, locking down an entire table rather than multiple rows
within a table. In order of least restrictive to most restrictive, the various lock modes you can use are:

•	 NONE: Uses no row-level locking, and uses a cached object if available; this is the Hibernate
default.

•	 READ: Prevents other SELECT queries from reading data that is in the middle of a transaction
(and thus possibly invalid) until it is committed.

5As usual, there’s more to this than we’re discussing here. We’ll add more methods to this list as we keep going through Hibernate’s
capabilities. We’re keeping the list small for simplicity’s sake.

Chapter 4 ■ The Persistence Life Cycle

57

•	 UPGRADE: Uses the SELECT FOR UPDATE SQL syntax to lock the data until the transaction is
finished.

•	 UPGRADE_NOWAIT: Uses the NOWAIT keyword (for Oracle), which returns an error immediately if
there is another thread using that row; otherwise this is similar to UPGRADE.

•	 FORCE: Similar to UPGRADE but increments the version for objects with automatic versioning
when loaded.

All of these lock modes are static fields on the org.hibernate.LockMode class. (We discuss locking and deadlocks
with respect to transactions in more detail in Chapter 8.) The load() methods that use lock modes are as follows:
 
public Object load(Class theClass, Serializable id, LockMode lockMode)
 throws HibernateException
 
public Object load(String entityName, Serializable id, LockMode lockMode)
 throws HibernateException
 

You should not use a load() method unless you are sure that the object exists. If you are not certain, then use
one of the get() methods. The load() methods will throw an exception if the unique ID is not found in the database,
whereas the get() methods will merely return a null reference.

Much like load(), the get() methods take an identifier and either an entity name or a class. There are also two
get() methods that take a lock mode as an argument. The get() methods are as follows:
 
public Object get(Class clazz, Serializable id)
 throws HibernateException
 
public Object get(String entityName, Serializable id)
 throws HibernateException
 
public Object get(Class clazz, Serializable id, LockMode lockMode)
 throws HibernateException
 
public Object get(String entityName, Serializable id, LockMode lockMode)
 throws HibernateException
 

If you need to determine the entity name for a given object (by default, this is the same as the class name),
you can call the getEntityName() method on the Session interface, as follows:
 
public String getEntityName(Object object) throws HibernateException
 

Using the get()and load() methods is straightforward. For the following code sample, we would be getting the
Supplier ID from another Java class. For instance, through a web application, someone may select a Supplier details
page for the supplier with the ID 1. If we are not sure that the supplier exists, we use the get() method, with which we
could check for null, as follows:
 
// get an id from some other Java class, for instance, through a web application
Supplier supplier = (Supplier) session.get(Supplier.class,id);
if (supplier == null) {
 System.out.println("Supplier not found for id " + id);
 return;
}
 

Chapter 4 ■ The Persistence Life Cycle

58

We can also retrieve the entity name from Hibernate and use it with either the get() or load() method. The
load() method will throw an exception if an object with that ID cannot be found.
 
String entityName = session.getEntityName(supplier);
Supplier secondarySupplier = (Supplier) session.load(entityName,id);
 

It’s also worth pointing out that you can query for an entity, which allows you to look for objects with a specific
identifier, as well as sets of objects that match other criteria. There’s also a Criteria API that allows you to use a
declarative mechanism to build queries. These topics will be covered in later chapters.

Merging Entities
Merging is performed when you desire to have a detached entity changed to persistent state again, with the detached
entity’s changes migrated to (or overriding) the database. The method signatures for the merge operations are:
 
Object merge(Object object)
 
Object merge(String entityName, Object object)
 

Merging is the inverse of refresh(), which overrides the detached entity’s values with the values from the
database. Listing 4-15 is some example code, from chapter04.general.MergeRefreshTest:

Listing 4-15.  Demonstrating the Use and Function of session.merge()

@Test
public void testMerge() {
 Long id;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleObject simpleObject = new SimpleObject();
 
 simpleObject.setKey("testMerge");
 simpleObject.setValue(1L);
 
 session.save(simpleObject);
 
 id = simpleObject.getId();
 
 tx.commit();
 session.close();
 
 SimpleObject so = validateSimpleObject(id, 1L);
 
 so.setValue(2L);
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 session.merge(so);
 

Chapter 4 ■ The Persistence Life Cycle

59

 tx.commit();
 session.close();
 
 validateSimpleObject(id, 2L);
}
 
private SimpleObject validateSimpleObject(Long id, Long value) {
 Session session;
 Transaction tx;// validate the database values
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 SimpleObject so = (SimpleObject) session.load(SimpleObject.class, id);
 
 assertEquals(so.getKey(), "testMerge");
 assertEquals(so.getValue(), value);
 
 tx.commit();
 session.close();
 
 return so;
}
 

This code creates an entity (a SimpleObject) and then saves it; it then verifies the object’s values (in
validateSimpleObject()), which itself returns a detached entity. We update the detached object and merge()
it–which should update the value in the database, which we verify.

Refreshing Entities
Hibernate provides a mechanism to refresh persistent objects from their database representation. Use one of the
refresh() methods on the Session interface to refresh an instance of a persistent object, as follows:
 
public void refresh(Object object)
 throws HibernateException
 
public void refresh(Object object, LockMode lockMode)
 throws HibernateException
 

These methods will reload the properties of the object from the database, overwriting them; thus, as stated,
refresh() is the inverse of merge(). Merging overrides the database with the values held by the previously transient
object, and refresh() overrides the values in the transient object with the values in the database.

Hibernate usually does a very good job of taking care of this for you, so you do not have to use the refresh()
method very often. There are instances where the Java object representation will be out of sync with the database
representation of an object, however. For example, if you use SQL to update the database, Hibernate will not be aware
that the representation changed. You do not need to use this method regularly, though. Similar to the load() method,
the refresh() method can take a lock mode as an argument; see the discussion of lock modes in the previous
“Loading Entities” section.

Let’s take a look at code in Listing 4-16 that uses refresh()–basically an inverse of the code we saw that
demonstrated merge()–and contained in the same test class.

Chapter 4 ■ The Persistence Life Cycle

60

Listing 4-16.  Demonstrating the Use and Function of session.refresh()

@Test
public void testRefresh() {
 Long id;
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleObject simpleObject = new SimpleObject();
 
 simpleObject.setKey("testMerge");
 simpleObject.setValue(1L);
 
 session.save(simpleObject);
 
 id = simpleObject.getId();
 
 tx.commit();
 session.close();
 
 SimpleObject so = validateSimpleObject(id, 1L);
 
 so.setValue(2L);
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 session.refresh(so);
 
 tx.commit();
 session.close();
 
 validateSimpleObject(id, 1L);
}
 

This code is the same as the merge() test, with two changes: the first is that it calls refresh() rather than merge()
(surprise!), and the other is that it expects the object’s data to revert to the original state from the database, verifying
that refresh() overrides the transient object’s data.

Updating Entities
Hibernate automatically persists changes made to persistent objects into the database.6 If a property changes on a
persistent object, the associated Hibernate session will queue the change for persistence to the database using SQL.
From a developer’s perspective, you do not have to do any work to store these changes, unless you would like to force
Hibernate to commit all of its changes in the queue. You can also determine whether the session is dirty and changes
need to be committed. When you commit a Hibernate transaction, Hibernate will take care of these details for you.

6We’ve mentioned this a few different times now, along with test code.

Chapter 4 ■ The Persistence Life Cycle

61

The flush() method forces Hibernate to flush the session, as follows:
 
public void flush() throws HibernateException
 

You can determine if the session is dirty with the isDirty() method, as follows:
 
public boolean isDirty() throws HibernateException
 

You can also instruct Hibernate to use a flushing mode for the session with the setFlushMode() method. The
getFlushMode() method returns the flush mode for the current session, as follows:
 
public void setFlushMode(FlushMode flushMode)
public FlushMode getFlushMode()
 

The possible flush modes are the following:

•	 ALWAYS: Every query flushes the session before the query is executed. This is going to be very
slow.

•	 AUTO: Hibernate manages the query flushing to guarantee that the data returned by a query is
up to date.

•	 COMMIT: Hibernate flushes the session on transaction commits.

•	 MANUAL: Your application needs to manage the session flushing with the flush() method.
Hibernate never flushes the session itself.

By default, Hibernate uses the auto flush mode. Generally, you should use transaction boundaries to ensure that
appropriate flushing is taking place, rather than trying to “manually” flush at the appropriate times.

Deleting Entities
In order to allow convenient removal of entities from the database, the Session interface provides a delete() method,
as follows:
 
public void delete(Object object) throws HibernateException
 

This method takes a persistent object as an argument. The argument can also be a transient object with the
identifier set to the ID of the object that needs to be erased.

In the simplest form, in which you are simply deleting an object with no associations to other objects, this
is straightforward; but many objects do have associations with other objects. To allow for this, Hibernate can be
configured to allow deletes to cascade from one object to its associated objects.

For instance, consider the situation in which you have a parent with a collection of child objects, and you would
like to delete them all. The easiest way to handle this is to use the cascade attribute on the collection’s element in
the Hibernate mapping. If you set the cascade attribute to delete or all, the delete will be cascaded to all of the
associated objects. Hibernate will take care of deleting these for you: deleting the parent erases the associated objects.

Hibernate also supports bulk deletes, where your application executes a DELETE HQL statement against the
database. These are very useful for deleting more than one object at a time because each object does not need to be
loaded into memory just to be deleted, as shown in Listing 4-17.

Chapter 4 ■ The Persistence Life Cycle

62

Listing 4-17.  A Bulk Delete Using a Hibernate Query

session.createQuery("delete from User").executeUpdate();
 

Network traffic is greatly reduced, as are the memory requirements compared to those for individually issuing a
delete()call against each entity identifier.

Caution■■   Bulk deletes do not cause cascade operations to be carried out. If cascade behavior is needed, you will need
to carry out the appropriate deletions yourself, or use the session’s delete() method.

Cascading Operations
When you perform one of the operations described in this chapter on an entity, the operations will not be performed
on the associated entities unless you explicitly tell Hibernate to perform them.

For example, the code in Listing 4-18 will fail when we try to commit the transaction, because the Message
entity that is associated with the Email entity has not been persisted into the database, so the Email entity cannot be
accurately represented (with its foreign key onto the appropriate message row) in its table.

Listing 4-18.  A Failed save() due to Cascading

Session session = SessionUtil.getSession();
Transaction tx=session.beginTransaction();
 
Email email = new Email("Email title");
Message message = new Message("Message content");
email.setMessage(message);
message.setEmail(email);
 
session.save(email);
 
tx.commit();
session.close();
 

Ideally, we would like the save operation to be propagated from the Email entity to its associated Message object.
We do this by setting the cascade operations for the properties and fields of the entity (or assigning an appropriate
default value for the entity as a whole). So, the code in Listing 4-18 will perform correctly if at least the PERSIST
cascade operation is set for the Email entity’s message property. The cascade types supported by the Java Persistence
Architecture are:

PERSIST•	

•	 MERGE

REFRESH•	

•	 REMOVE

•	 DETACH

•	 ALL

Chapter 4 ■ The Persistence Life Cycle

63

It’s worth pointing out that Hibernate has its own configuration options for cascading, which represent a superset
of these; however, we’re largely following the Java Persistence Architecture specification for modeling, as this will
typically be more common by far than the Hibernate-specific modeling.7

•	 CascadeType.PERSIST means that save() or persist() operations cascade to related entities;
for our Email and Message example, if Email’s @oneToOne includes PERSIST, saving the Email
would save the Message as well.

•	 CascadeType.MERGE means that related entities are merged into managed state when the
owning entity is merged.

•	 CascadeType.REFRESH does the same thing for the refresh() operation.

•	 CascadeType.REMOVE removes all related entities association with this setting when the
owning entity is deleted.

•	 CascadeType.DETACH detaches all related entities if a manual detach were to occur.

CascadeType.ALL is shorthand for all of the cascade operations.•	

The cascade configuration option accepts an array of CascadeTypes; thus, to include only refreshes and merges in
the cascade operation for a one-to-one relationship, you might see the following:
 
@OneToOne(cascade={CascadeType.REFRESH, CascadeType.MERGE})
EntityType otherSide;
 

There’s one more cascading operation that’s not part of the normal set, called orphan removal, which removes an
owned object from the database when it’s removed from its owning relationship.

Let’s suppose we have a Library entity, which contains a list of Book entities. Listing 4-20 is our entity
declarations, omitting constructors, accessors, and mutators:

Listing 4-20.  A One-to-Many Relationship for an Orphan Object Demonstration

package chapter04.orphan;
 
import javax.persistence.*;
import java.util.ArrayList;
import java.util.List;
 
@Entity
public class Library {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 @Column
 String name;
 @OneToMany(orphanRemoval = true, mappedBy = "library")
 List<Book> books = new ArrayList<>();
}
 

7That’s the thing about standards: they’re standard.

Chapter 4 ■ The Persistence Life Cycle

64

package chapter04.orphan;
 
import javax.persistence.*;
 
@Entity
public class Book {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 @Column
 String title;
 @ManyToOne
 Library library;
}
 

Note the use of orphanRemoval in the @OneToMany annotation. Now let’s take a look at some test code, which
will be fairly verbose since we need to validate our initial dataset, change it, and then revalidate; see Listing 4-21:

Listing 4-21.  A Test Showing Orphan Removal

package chapter04.orphan;
 
import com.redhat.osas.hibernate.util.SessionUtil;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.testng.annotations.Test;
 
import static org.testng.Assert.assertEquals;
 
public class OrphanRemovalTest {
 @Test
 public void orphanRemovalTest() {
 Long id = createLibrary();
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Library library = (Library) session.load(Library.class, id);
 assertEquals(library.getBooks().size(), 3);
 
 library.getBooks().remove(0);
 assertEquals(library.getBooks().size(), 2);
 
 tx.commit();
 session.close();
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 
 Library l2 = (Library) session.load(Library.class, id);
 assertEquals(l2.getBooks().size(), 2);
 Query query = session.createQuery("from Book b");

Chapter 4 ■ The Persistence Life Cycle

65

 List books = query.list();
 assertEquals(books.size(), 2);
 
 tx.commit();
 session.close();
 }
 
 private Long createLibrary() {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Library library = new Library();
 library.setName("orphanLib");
 session.save(library);
 
 Book book = new Book();
 book.setLibrary(library);
 book.setTitle("book 1");
 session.save(book);
 library.getBooks().add(book);
 
 book = new Book();
 book.setLibrary(library);
 book.setTitle("book 2");
 session.save(book);
 library.getBooks().add(book);
 
 book = new Book();
 book.setLibrary(library);
 book.setTitle("book 3");
 session.save(book);
 library.getBooks().add(book);
 
 tx.commit();
 session.close();
 
 return library.getId();
 }
}
 

What this does is not complicated: it builds a library with three books associated with it. Then it loads the library
from the database, validates that it looks like it’s supposed to (“a library with three books”), and removes one from
the library. It does not delete the Book entity being removed; it only removes it from the Library’s set of books, which
makes it an orphan.

After committing the Library object’s new state–via tx.commit()–we reload the Library from the database and
validate that it now has only two books. The book we removed is gone from the library.

That doesn’t mean it’s actually been removed, though, so we then query the database for all Book entities to
see if we have two or three. We should have only two, and so it is. We removed the orphan object when updating the
library.

Chapter 4 ■ The Persistence Life Cycle

66

Lazy Loading, Proxies, and Collection Wrappers
Consider the quintessential Internet web application: the online store. The store maintains a catalog of products. At
the crudest level, this can be modeled as a catalog entity managing a series of product entities. In a large store, there
may be tens of thousands of products grouped into various overlapping categories.

When a customer visits the store, the catalog must be loaded from the database. We probably don’t want the
implementation to load every single one of the entities representing the tens of thousands of products to be loaded
into memory. For a sufficiently large retailer, this might not even be possible, given the amount of physical memory
available on the machine. Even if this were possible, it would probably cripple the performance of the site.

Instead, we want only the catalog to load, possibly with the categories as well. Only when the user drills down
into the categories should a subset of the products in that category be loaded from the database.

To manage this problem, Hibernate provides a facility called lazy loading. When enabled (this is the default using
XML mappings, but not when using annotations), an entity’s associated entities will be loaded only when they are
directly requested. For example, the following code loads only a single entity from the database:
 
Email email = (Email)session.get(Email.class,new Integer(42));
 

However, if an association of the class is accessed, and lazy loading is in effect, the association is pulled from the
database as needed. For instance, in the following snippet, the associated Message object will be loaded since it is
explicitly referenced.
 
// surely this email is about the meaning of life, the universe, and everything
Email email = (Email)session.get(Email.class,new Integer(42));
String text = email.getMessage().getContent();
 

The simplest way that Hibernate can force this behavior upon your entities is by providing a proxy
implementation of them.8 Hibernate intercepts calls to the entity by substituting a proxy for it derived from the entity’s
class. Where the requested information is missing, it will be loaded from the database before control is ceded to the
parent entity’s implementation. Where the association is represented as a collection class, a wrapper (essentially
a proxy for the collection, rather than for the entities that it contains) is created and substituted for the original
collection.

Hibernate can only access the database via a session. If an entity is detached from the session when we try
to access an association (via a proxy or collection wrapper) that has not yet been loaded, Hibernate throws a
LazyInitializationException. The cure is to ensure either that the entity is made persistent again by attaching
it to a session or that all of the fields that will be required are accessed before the entity is detached from the
session.

If you need to determine whether a proxy, a persistence collection, or an attribute has been lazy loaded, you
can call the isInitialized(Object proxy) and isPropertyInitialized(Object proxy, String propertyName)
methods on the org.hibernate.Hibernate class. You can also force a proxy or collection to become fully populated
by calling the initialize(Obect proxy) method on the org.hibernate.Hibernate class. If you initialize a collection
using this method, you will also need to initialize each object contained in the collection, as only the collection is
guaranteed to be initialized.

8This is a deeper explanation of some behavior we saw in our sample code for equals() and hashCode().

Chapter 4 ■ The Persistence Life Cycle

67

Querying Objects
Hibernate provides several different ways to query for objects stored in the database. The Criteria Query API is a
Java API for constructing a query as an object. HQL is an object-oriented query language, similar to SQL, that you
may use to retrieve objects that match the query. We discuss these further in Chapters 9 and 10. Hibernate provides
a way to execute SQL directly against the database to retrieve objects, should you have legacy applications that use
SQL or if you need to use SQL features that are not supported through HQL and the Criteria Query API (discussed in
Chapter 11).

Summary
Hibernate provides a simple API for creating, retrieving, updating, and deleting objects from a relational database
through the Session interface. Understanding the differences between transient, persistent, and detached objects in
Hibernate will allow you to understand how changes to the objects update the database tables.

We have touched upon the need to create mappings to correlate the database tables with the fields and
properties of the Java objects that you want to persist. The next chapter covers these in detail, and it discusses why
they are required and what they can contain.

69

Chapter 5

An Overview of Mapping

The purpose of Hibernate is to allow you to treat your database as if it stores Java objects. However, in practice,
relational databases do not store objects—they store data in tables and columns. Unfortunately, there is no simple
way to correlate the data stored in a relational database with the data represented by Java objects.1

The difference between an object-oriented association and a relational one is fundamental. Consider a simple
class to represent a user, and another to represent an email address, as shown in Figure 5-1.

User objects contain fields referring to Email objects. The association has a direction; given a User object, you
can determine its associated Email object. For example, consider Listing 5-1.

Listing 5-1.  Acquiring the Email Object from the User Object

User user = ...
Email email = user.email;
 

The reverse, however, is not true. The natural way to represent this relationship in the database, as illustrated in
Figure 5-2, is superficially similar.

Figure 5-1.  An object-oriented association

1If there were, books like this one probably wouldn’t exist.

Figure 5-2.  A relational association

Chapter 5 ■ An Overview of Mapping

70

Despite that similarity, the direction of the association is effectively reversed. Given an Email row, you can
immediately determine which user row it belongs to in the database; this relationship is mandated by a foreign
key constraint. It is possible to reverse the relationship in the database world through suitable use of SQL—another
difference.

Given the differences between the two worlds, it is necessary to manually intervene to determine how your Java
classes should be represented in database tables.

Why Mapping Cannot Easily Be Automated
It is not immediately obvious why you cannot create simple rules for storing your Java objects in the database so that
they can be easily retrieved. For example, the most immediately obvious rule would be that a Java class must correlate
to a single table. For example, instances of the User class defined in Listing 5-2 could surely be represented by a
simple table like the one for a user, shown in Figure 5-1.

Listing 5-2.  A Simple User Class with a Password Field

public class User {
 String name;
 String password;
}
 

And indeed it could, but some questions present themselves:

How many rows should you end up with if you save a user twice?•	

Are you allowed to save a user without a name?•	

Are you allowed to save a user without a password?•	

When you start to think about classes that refer to other classes, there are additional questions to consider. Have a
look at the Customer and Email classes defined in Listing 5-3.

Listing 5-3.  Customer and Email Classes

public class Customer {
 int customerId;
 int customerReference;
 String name;
 Email email;
}
 
public class Email {
 String address;
}
 

Based on this, the following questions arise:

Is a unique customer identified by its customer ID, or its customer reference?•	

Can an email address be used by more than one customer?•	

Can a customer have more than one email ID?•	

Should the relationship be represented in the •	 Customer table?

Chapter 5 ■ An Overview of Mapping

71

Should the relationship be represented in the •	 Email table?

Should the relationship be represented in some third (link) table?•	

Depending upon the answers to these questions, your database tables could vary considerably. You could take
a stab at a reasonable design, such as that given in Figure 5-3, based upon your intuition about likely scenarios in the
real world.

The field names and foreign keys are important; without them, there’s no way to form any useful decision about
these entities (see Listing 5-4). It would be a nearly impossible task to design an automated tool that could picture this
structure wisely or appropriately.

Listing 5-4.  A Class Identical in Structure to Listing 5-3, but with All Contextual Information Removed

public class Foo {
 int x;
 int y;
 String s;
 Bar bar;
}
 
public class Bar {
 String a;
}

Primary Keys
Most “relational” databases that provide SQL access are prepared to accept tables that have no predefined primary
key. Hibernate is not so tolerant; even if your table has been created without a primary key, Hibernate will require you
to specify one. This often seems perverse to users who are familiar with SQL and databases but not familiar with ORM
tools. As such, let’s examine in more depth the problems that arise when there’s no primary key.

To begin, without a primary key it is impossible to uniquely identify a row in a table. For example, consider
Table 5-1.

Figure 5-3.  Tables in which the customer is identified by customerId. Here, email address entities can be used only by a
single customer, and the relationship is maintained by the Email table

Chapter 5 ■ An Overview of Mapping

72

This table clearly contains information about users and their respective ages. However, there are four users
with the same name (Dave Minter, Denise Minter, Daniel Minter, and Dashiel Minter). There is probably a way of
distinguishing them somewhere else in the system—perhaps by email address or user number. But if, for example,
you want to know the age of Dashiel Minter with user ID 32, there is no way to obtain it from Table 5-1.

While Hibernate will not let you omit the primary key, it will permit you to form the primary key from a collection
of columns. For example, Table 5-2 could be keyed by Usernumber and User.

Neither User nor Usernumber contains unique entries, but in combination they uniquely identify the age of a
particular user, and so they are acceptable to Hibernate as a primary key.

Why does Hibernate need to uniquely identify entries when SQL doesn’t? Because Hibernate is representing
Java objects, which are always uniquely identifiable. The classic mistake made by new Java developers is to compare
strings using the == operator instead of the equals() method. You can distinguish between references to two String
objects that represent the same text and two references to the same String object.2 SQL has no such obligation, and
there are arguably cases in which it is desirable to give up the ability to make the distinction.

For example, if Hibernate could not uniquely identify an object with a primary key, then the following code could
have several possible outcomes in the underlying table.
 
String customer = getCustomerFromHibernate("dcminter");
customer.setAge(10);
saveCustomerToHibernate(customer);
 

Table 5-2.  A Table in Which the Rows Can Be Uniquely Identified

User Usernumber Age

dminter 1 35

dminter 2 40

dminter 3 55

dminter 32 42

jlinwood 1 57

Table 5-1.  A Table in Which the Rows Cannot Be Uniquely Identified

User Age

dminter 35

dminter 40

dminter 55

dminter 40

jlinwood 57

2When comparing objects for equivalence, use equals(). It’s like comparing two doorknobs: are the two like each other, or are they
the same doorknob? The equals() method checks to see if they’re alike. The == operator checks to see if they’re the same.

Chapter 5 ■ An Overview of Mapping

73

Let’s say the table originally contained the data shown in Table 5-3.

Which of the following should be contained in the resulting table?

A single row for the user •	 dcminter, with the age set to 10

Two rows for the user, with both ages set to •	 10

Two rows for the user, with one age set to •	 10 and the other to 42

Two rows for the user, with one age set to •	 10 and the other to 30

Three rows for the user, with one age set to •	 10 and the others to 30 and 42

In short, the Hibernate developers made a decision to enforce the use of primary keys when creating mappings
so that this problem does not arise. Hibernate does provide facilities that will allow you to work around this if it
is absolutely necessary (you can create views or stored procedures to “fake” the appropriate key, or you can use
conventional JDBC to access the table data), but when using Hibernate, it is always more desirable to work with tables
that have correctly specified primary keys, if at all possible.

Lazy Loading
When you load classes into memory from the database, you don’t necessarily want all the information to actually be
loaded. To take an extreme example, loading a list of emails should not cause the full body text and attachments of
every email to be loaded into memory. First, they might demand more memory than is actually available. Second,
even if they fit, it would probably take a long time for all of this information to be obtained. (Remember, data normally
goes from a database process to an application over the network, even if the database and application are on the same
physical machine.)

If you were to tackle this problem in SQL, you would probably select a subset of the appropriate fields for the
query to obtain the list, or limit the range of the data. Here’s an example of selecting a subset of data:
 
SELECT from, to, date, subject FROM email WHERE username = 'dcminter';
 

Hibernate will allow you to fashion queries that are rather similar to this, but it also offers a more flexible
approach, known as lazy loading. Certain relationships can be marked as being “lazy,” and they will not be loaded
from the database until they are actually required.

The default in Hibernate is that classes (including collections like Set and Map) should be lazily loaded. For
example, when an instance of the User class given in the next listing is loaded from the database, the only fields
initialized will be userId and username.3
 

Table 5-3.  Updating an Ambiguous Table

User Age

dcminter 30

dcminter 42

3There are conditions for this. In most of the examples we’ve seen, where the majority of columns are accessed directly via their
attribute references, lazy loading is very much the norm regardless of type. When in doubt, specify and test.

Chapter 5 ■ An Overview of Mapping

74

public class User {
 int userId;
 String username;
 EmailAddress emailAddress;
 Set<Role> roles;
}
 

With this definition, the appropriate objects for emailAddress and roles will be loaded from the database if and
when they are accessed, provided the session is still active.

This is the default behavior only; mappings can be used to specify which classes and fields should behave in
this way.

Associations
When we looked at why the mapping process could not be automated, we discussed the following example classes:
 
public class Customer {
 int customerId;
 int customerReference;
 String name;
 Email email;
}
 
public class Email {
 String address;
}
 

We also gave the following five questions that it raised:

Is a unique customer identified by its customer ID, or its customer reference?•	

Can a given email address be used by more than one customer?•	

Should the relationship be represented in the •	 Customer table?

Should the relationship be represented in the •	 Email table?

Should the relationship be represented in some third (link) table?•	

The first question can be answered simply; it depends on what column you specify as the primary key. The
remaining four questions are related, and their answers depend on the object relationships. Furthermore, if your
Customer class represents the relationship with the EmailAddress using a Collection class or an array, it would be
possible for a user to have multiple email addresses.
 
public class Customer {
 int customerId;
 int customerReference;
 String name;
 Set<Email> email;
}
 

So, you should add another question: Can a customer have more than one email address? The set could contain a
single entry, so you can’t automatically infer that this is the case.

Chapter 5 ■ An Overview of Mapping

75

The key questions from the previous options are as follows:

•	 Q1: Can an email address belong to more than one user?

•	 Q2: Can a customer have more than one email address?

The answers to these questions can be formed into a truth table, as shown in Table 5-4.

These are the four ways in which the cardinality4 of the relationship between the objects can be expressed. Each
relationship can then be represented within the mapping table(s) in various ways.

The One-to-One Association
A one-to-one association between classes can be represented in a variety of ways. At its simplest, the properties of
both classes are maintained in the same table. For example, a one-to-one association between a User and an Email
class might be represented as a single table, as in Table 5-5.

The single database entity representing this combination of a User and an Email class is shown in Figure 5-4.

Table 5-4.  Deciding the Cardinality of an Entity Relationship

Q1 Answer Q2 Answer Relationship Between Customer and Email

No No One-to-one

Yes No Many-to-one

No Yes One-to-many

Yes Yes Many-to-many

Table 5-5.  A Combined User/Email Table

ID Username Email

1 dcminter dcminter@example.com

2 jlinwood jlinwood@example.com

3 tjkitchen tjkitchen@example.com

Figure 5-4.  A single entity representing a one-to-one relationship

4Cardinality refers to numbering, so cardinality in relationships indicates how many of each participant is being referred to by either
side of the relationship.

http://dcminter@example.com
http://jlinwood@example.com
http://tjkitchen@example.com

Chapter 5 ■ An Overview of Mapping

76

Alternatively, the entities can be maintained in distinct tables with identical primary keys, or with a key
maintained from one of the entities into the other, as in Tables 5-6 and 5-7.

It is possible to create a mandatory foreign key relationship from one of the entities to the other, but this should
not be applied in both directions because a circular dependency would then be created. It is also possible to omit
the foreign key relationships entirely (as shown in Figure 5-5) and rely on Hibernate to manage the key selection and
assignment.

If it is not appropriate for the tables to share primary keys, then a foreign key relationship between the two tables
can be maintained, with a “unique” constraint applied to the foreign key column. For example, reusing the User table
from Table 5-6, the Email table can be suitably populated, as shown in Table 5-8.

This has the advantage that the association can easily be changed from one-to-one to many-to-one by removing
the unique constraint. Figure 5-6 shows this type of relationship.

Table 5-6.  The User Table

ID Username

1 Dcminter

2 Jlinwood

3 Tjkitchen

Table 5-7.  The Email Table

ID Username

1 dcminter@example.com

2 jlinwood@example.com

3 tjkitchen@example.com

Figure 5-5.  Entities related by primary keys

Table 5-8.  An Email Table with a Foreign Key to the User Table

ID Email UserID (Unique)

34 dcminter@example.com 1

35 jlinwood@example.com 2

36 tjkitchen@example.com 3

http://dcminter@example.com
http://jlinwood@example.com
http://tjkitchen@example.com
http://dcminter@example.com
http://jlinwood@example.com
http://tjkitchen@example.com

Chapter 5 ■ An Overview of Mapping

77

The One-to-Many and Many-to-One Association
A one-to-many association (or from the perspective of the other class, a many-to-one association) can most simply be
represented by the use of a foreign key, with no additional constraints.

The relationship can also be maintained by the use of a link table. This will maintain a foreign key into each of
the associated tables, which will itself form the primary key of the link table. An example of this is shown in Tables 5-9,
5-10, and 5-11.

Additional columns can be added to the link table to maintain information on the ordering of the entities in the
association.

A unique constraint must be applied to the “one” side of the relationship (the userId column of the
UserEmailLink table in Figure 5-7); otherwise, the link table can represent the set of all possible relationships between
User and Email entities, which is a many-to-many set association.

Figure 5-6.  Entities related by a foreign key relationship

Table 5-9.  A Simple User Table

ID Username

1 dcminter

2 jlinwood

Table 5-10.  A Simple Email Table

ID Email

1 dcminter@example.com

2 dave@example.com

3 jlinwood@example.com

4 jeff@example.com

Table 5-11.  A Link Table Joining User and Email in a One-to-Many Relationship

UserID EmailID

1 1

1 2

2 3

2 4

http://dcminter@example.com
http://dave@example.com
http://jlinwood@example.com
http://jeff@example.com

Chapter 5 ■ An Overview of Mapping

78

The Many-to-Many Association
As noted at the end of the previous section, if a unique constraint is not applied to the “one” end of the relationship
when using a link table, it becomes a limited sort of many-to-many relationship. All of the possible combinations of
User and Email can be represented, but it is not possible for the same user to have the same e-mail address entity
associated twice, because that would require the compound primary key to be duplicated.

If instead of using the foreign keys together as a compound primary key, we give the link table its own primary
key (usually a surrogate key), the association between the two entities can be transformed into a full many-to-many
relationship, as shown in Table 5-12.

Table 5-12 might describe a situation in which the user dcminter receives all email sent to any of the four
addresses, whereas jlinwood receives only email sent to his own accounts.

When the link table has its own independent primary key, as with the association shown in Figure 5-8, thought
should be given to the possibility that a new class needs to be created to represent the contents of the link table as an
entity in its own right.

Figure 5-7.  A relationship represented by a link table (duplicates are not permitted because of the use of a compound
primary key)

Figure 5-8.  A many-to-many relationship represented by a link table (duplicates are permitted because of the use of a
surrogate key)

Table 5-12.  A Many-to-Many User/Email Link Table

ID UserID EmailID

1 1 1

2 1 2

3 1 3

4 1 4

5 2 1

6 2 2

Chapter 5 ■ An Overview of Mapping

79

Applying Mappings to Associations
The mappings are applied to express the various different ways of forming associations in the underlying tables; there
is no absolutely correct way to represent them.5

In addition to the basic choice of approach to take, the mappings are used to specify the minutiae of the tables’
representations. While Hibernate tends to use sensible default values when possible, it is often desirable to override
these. For example, the foreign key names generated automatically by Hibernate will be effectively random, whereas
an informed developer can apply a name (e.g., FK_USER_EMAIL_LINK) to aid in the debugging of constraint violations
at run time.

Other Supported Features
While Hibernate can determine a lot of sensible default values for the mappings, most of these can be overridden
by one or both of the annotation- and XML-based6 approaches. Some apply directly to mapping; others, such as
the foreign key names, are really only pertinent when the mapping is used to create the database schema. Lastly,
some mappings can also provide a place to configure some features that are perhaps not “mappings” in the
purest sense.

The final sections of this chapter discuss the features that Hibernate supports in addition to those already
mentioned.

Specification of (Database) Column Types and Sizes
Java provides the primitive types and allows user declaration of interfaces and classes to extend these. Relational
databases generally provide a small subset of “standard” types and then offer additional proprietary types.

Restricting yourself to the proprietary types will still cause problems, as there are only approximate
correspondences between these and the Java primitive types.

A typical example of a problematic type is java.lang.String (treated by Hibernate as if it were a primitive type
since it is used so frequently), which by default will be mapped to a fixed-size character data database type. Typically,
the database would perform poorly if a character field of unlimited size were chosen, but lengthy String fields will
be truncated as they are persisted into the database. In most databases, you would choose to represent a lengthy
String field as a TEXT, CLOB, or long VARCHAR type (assuming the database supports the specific type). This is one of
the reasons why Hibernate can’t do all of the mapping for you and why you still need to understand some database
fundamentals when you create an application that uses ORM.

By specifying mapping details, the developer can make appropriate trade-offs among storage space,
performance, and fidelity to the original Java representation.

The Mapping of Inheritance Relationships to the Database
There is no SQL standard for representing inheritance relationships for the data in tables; and while some database
implementations provide a proprietary syntax for this, not all do. Hibernate offers several configurable ways in
which to represent inheritance relationships, and the mapping permits users to select a suitable approach for
their model.

5This is why otherwise fantastic tools like Hibernate haven’t replaced good database analysts.
6We haven’t actually spent much time in XML configuration for a very good reason: most people don’t use it in the real world unless
they absolutely have to. It’s also excessively verbose, especially compared to the annotations.

Chapter 5 ■ An Overview of Mapping

80

Primary Key
As stated earlier in this chapter (in the section entitled “Primary Keys,” of all things), Hibernate demands that a
primary key be used to identify entities. The choice of a surrogate key, a key chosen from the business data, and/or a
compound primary key can be made via configuration.

When a surrogate key is used, Hibernate also permits the key-generation technique to be selected from a range of
techniques that vary in portability and efficiency. (This was shown in Chapter 4, in “Identifiers.”)

The Use of SQL Formula–Based Properties
It is sometimes desirable that a property of an entity be maintained not as data directly stored in the database but,
rather, as a function performed on that data—for example, a subtotal field should not be managed directly by the Java
logic, but instead be maintained as an aggregate function of some other property.

Mandatory and Unique Constraints
As well as the implicit constraints of a primary or foreign key relationship, you can specify that a field must not be
duplicated—for example, a username field should often be unique.

Fields can also be made mandatory—for example, requiring a message entity to have both a subject and
message text.

The generated database schema will contain corresponding NOT NULL and UNIQUE constraints so that it is very,
very difficult to corrupt the table with invalid data (rather, the application logic will throw an exception if any attempt
to do so is made).

Note that primary keys are implicitly both mandatory and unique.

Summary
This chapter has given you an overview of the reason why mappings are needed, and what features they support
beyond these absolute requirements. It has discussed the various types of associations and the circumstances under
which you would choose to use them.

The next chapter looks at how mappings are specified.

81

Chapter 6

Mapping with Annotations

In Chapter 5, we discussed the need to create mappings between the database model and the object model. Mappings
can be created in two different ways: via inline annotations (as we’ve done through the book so far), or as separate
XML files in one of two primary formats.

The XML-based mapping is rarely used outside of situations where mapping an object model to a preexisting
schema is required; even then, adept use of the annotations can match the XML configuration’s features.

Creating Hibernate Mappings with Annotations
Prior to the inline annotations, the only way to create mappings was through XML files—although tools from
Hibernate and third-party projects allowed part or all of these to be generated from Java source code. Although using
annotations is the newest way to define mappings, it is not automatically the best way to do so. We will briefly discuss
the drawbacks and benefits of annotations before discussing when and how to apply them.

The Cons of Annotations
If you are upgrading from a Hibernate 2 environment or working with an existing Hibernate 3 environment, you will
already have XML-based mapping files to support your code base. All else being equal, you will not want to re-express
these mappings using annotations just for the sake of it.

If you are migrating from a legacy environment, you may not want to alter the preexisting POJO source code, lest
you contaminate known good code with possible bugs.1

If you do not have the source code to your POJOs (because it was generated by an automated tool or something
similar), you may prefer the use of external XML-based mappings to the decompilation of class files to obtain Java
source code for alteration.

Maintaining the mapping information as external XML files allows that mapping information to be modified to
reflect business changes or schema alterations without forcing you to rebuild the application as a whole.

The Pros of Annotations
Having considered the drawbacks, there are some powerful benefits to using annotations.

First, and perhaps most persuasively, we find annotations-based mappings to be far more intuitive than their
XML-based alternatives, as they are immediately in the source code along with the properties with which they are
associated. Most coders tend to prefer the annotations because fewer files have to be kept synchronized with each other.

1There’s probably value in creating tests for your object model, which would, you hope, eliminate this as a concern, but there’s
no point in creating extra work for its own sake.

Chapter 6 ■ Mapping with Annotations

82

Partly as a result of this, annotations are less verbose than their XML equivalents, as evidenced by the contrast
between Listings 6-1 and 6-2.

Listing 6-1.  A Minimal Class Mapped Using Annotations

import javax.persistence.* ;

@Entity
public class Sample {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 public Integer id;
 public String name;
}  

Listing 6-2.  A Minimal Class Mapped Using XML

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE
 hibernate-mapping
 PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping default-access="field">
 <class name="Sample">
 <id type="int" column="id">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 </class>
</hibernate-mapping>
 

Some of the latter’s verbosity is in the nature of XML itself (the tag names and the boilerplate document-type
declaration), and some of it is due to the closer integration of annotations with the source code. Here, for example, the
XML file must explicitly declare that field access is used in place of property access (i.e., the fields are accessed directly
rather than through their get/set methods); but the annotation infers this from the fact that it has been applied to the
id field rather than the getId() method.

Hibernate uses and supports the JPA 2 persistence annotations. If you elect not to use Hibernate-specific features
in your code and annotations, you will have the freedom to deploy your entities to environments using other ORM
tools that support JPA 2.

Finally—and perhaps a minor point—because the annotations are compiled directly into the appropriate class
files, there is less risk that a missing or stale mapping file will cause problems at deployment (this point will perhaps
prove most persuasive to those who already have some experience with this hazard of the XML technique).

Choosing Which to Use
In general, prefer annotations; the annotations themselves are portable across JPA implementations, and they’re well
known. Tools can create the annotated source code directly from a database, so synchronization is less of an issue
than it could be, even with a preexisting schema.

Chapter 6 ■ Mapping with Annotations

83

The XML mapping can be done either in Hibernate’s proprietary format or JPA’s standard XML configuration,
which is similar but not identical; if you somehow find XML to be a preferable configuration format, you’re probably
better off using the XML format from the industry-standard JPA configuration.2

JPA 2 Persistence Annotations
When you develop using annotations, you start with a Java class and then annotate the source code listing with
metadata notations. The Java Runtime Environment (JRE) parses these annotations. Hibernate uses Java reflection
to read the annotations and apply the mapping information. If you want to use the Hibernate tools to generate your
database schema, you must first compile your entity classes containing their annotations.In this section, we are
going to introduce the significant core of the JPA 2 annotations alongside a simple set of classes to illustrate how they
are applied.

The set of example classes represents a publisher’s catalog of books. You start with a single class, Book, which has
no annotations or mapping information. For purposes of this example, you do not have an existing database schema
to work with, so you need to define your relational database schema as you go.

At the beginning of the example, the Book class is very simple. It has two fields, title and pages; and an identifier,
id, which is an integer. The title is a String object, and pages is an integer. As we go through this example, we will add
annotations, fields, and methods to the Book class. The complete source code listing for the Book and Author classes is
given at the end of this chapter; the source files for the rest are available in the source code download for this chapter
on the Apress web site (www.apress.com).

Listing 6-3 gives the source code of the Book class, in its unannotated form, as a starting point for the example.

Listing 6-3.  The Book Class, Unannotated

ppackage chapter06.primarykey.before;
 
public class Book {
 String title;
 int pages;
 int id;
 
 public String getTitle() {
 return title;
 }
 
 public void setTitle(String title) {
 this.title = title;
 }
 
 public int getPages() {
 return pages;
 }
 
 public void setPages(int pages) {
 this.pages = pages;
 }
 

2The JPA configuration was largely derived from Hibernate’s configuration specification, which preceded JPA.

http://www.apress.com/

Chapter 6 ■ Mapping with Annotations

84

 public int getId() {
 return id;
 }
 
 public void setId(int id) {
 this.id = id;
 }
}
 

As you can see, this is a POJO. We are going to annotate this class as we go along, explaining the concepts behind
annotation. In the end, we’ll move it to a different package so that we’ll have a good before-and-after picture of what
the entity should be.

Entity Beans with @Entity
The first step is to annotate the Book class as a JPA 2 entity bean. We add the @Entity annotation to the Book class,
as follows:
 
package chapter06.primarykey.after;
 
import javax.persistence.*;
 
@Entity
public class Book
 public Book() {
 }
 

The JPA 2 standard annotations are contained in the javax.persistence package, so we import the appropriate
annotations. Some IDEs will use specific imports, as opposed to “star imports,” in situations where few classes in a
given package are imported; typically, an entity will use quite a few annotations from this package so chances are it’ll
end up with star imports in any event.

The @Entity annotation marks this class as an entity bean, so it must have a no-argument constructor that is
visible with at least protected scope.3 Hibernate supports package scope as the minimum, but you lose portability to
other JPA implementations if you take advantage of this. Other JPA 2 rules for an entity bean class are (1) that the class
must not be final, and (2) that the entity bean class must be concrete. Many of the rules for JPA 2 entity bean classes
and Hibernate’s persistent objects are the same—partly because the Hibernate team had much input into the JPA 2
design process, and partly because there are only so many ways to design a relatively unobtrusive object-relational
persistence solution.

So far, we’ve added the Entity annotation, a constructor, and an import statement. The rest of the POJO has been
left alone.

Primary Keys with @Id and @GeneratedValue
Each entity bean has to have a primary key, which you annotate on the class with the @Id annotation. Typically,
the primary key will be a single field, though it can also be a composite of multiple fields.

The placement of the @Id annotation determines the default access strategy that Hibernate will use for the
mapping. If the annotation is applied to a field as shown in Listing 6-4, then field access will be used.

3Naturally, there’s a way around this. The normal requirement is to have a no-argument constructor; interceptors allow you to not
have to do this.

Chapter 6 ■ Mapping with Annotations

85

Listing 6-4.  A Class with Field Access

import javax.persistence.*;
 
@Entity
public class Sample {
 @Id
 int id;
 
 public int getId() {
 return this.id;
 }
 
 public void setId(int id) {
 this.id = id;
 }
}
 

If, instead, the annotation is applied to the accessor for the field, as shown in Listing 6-5, then property access will
be used. Property access means that Hibernate will call the mutator instead of actually setting the field directly; this
also means the mutator can alter the value as it’s being set, or change other state available in the object. Which one
you choose depends on your preference and need; usually field access is enough.4

Listing 6-5.  The Same Class with Property Access

import javax.persistence.*;
 
@Entity
public class Sample {
 int id;
 
 @Id
 public int getId() {
 return this.id;
 }
 
 public void setId(int id) {
 this.id = id;
 }
}
 

Here you can see one of the strengths of the annotations approach. Because the annotations are placed inline with
the source code, information can be extracted from the context of the mapping in the code, allowing many mapping
decisions to be inferred rather than stated explicitly—which helps to further reduce the verbosity of the annotations.

By default, the @Id annotation will not create a primary key generation strategy,5 which means that you, as the
code’s author, need to determine what valid primary keys are. You can have Hibernate determine primary keys for you
through the use of the @GeneratedValue annotation. This takes a pair of attributes: strategy and generator.

4 The reasoning here is that if you needed something to be part of the object’s state, you’d include it in the database, which would
mean you wouldn’t need to set it when the object was instantiated. With that said, your mileage may vary; do what works for you.
5Actually, the default generator is the “assigned” generator, which means the application is responsible for assigning the primary
key before save() is called. This ends up having the same effect as if no key generation is specified.

Chapter 6 ■ Mapping with Annotations

86

The strategy attribute must be a value from the javax.persistence.GeneratorType enumeration. If you
do not specify a generator type, the default is AUTO. There are four different types of primary key generators on
GeneratorType, as follows:

•	 AUTO: Hibernate decides which generator type to use, based on the database’s support for
primary key generation.

•	 IDENTITY: The database is responsible for determining and assigning the next primary key.

•	 SEQUENCE: Some databases support a SEQUENCE column type. See the “Generating Primary Key
Values with @SequenceGenerator” section later in the chapter.

•	 TABLE: This type keeps a separate table with the primary key values. See the “Generating
Primary Key Values with @TableGenerator” section later in the chapter.

The generator attribute allows the use of a custom generation mechanism. Hibernate provides named
generators for each of the four strategies in addition to others, such as “hilo,” “uuid,” and “guid.” If you need to use
Hibernate-specific primary key generators, you risk forfeiting portability of your application to other JPA 2
environments; that said, the Hibernate generators provide more flexibility and control.

For the Book class, we are going to use the AUTO key generation strategy. Letting Hibernate determine which
generator type to use makes your code portable between different databases.
 
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
int id; 

Generating Primary Key Values with @SequenceGenerator
As noted in the section on the @Id tag, we can declare the primary key property as being generated by a database
sequence. A sequence is a database object that can be used as a source of primary key values. It is similar to the use of
an identity column type, except that a sequence is independent of any particular table and can therefore be used by
multiple tables.

To declare the specific sequence object to use and its properties, you must include the @SequenceGenerator
annotation on the annotated field. Here’s an example:
 
@Id
@SequenceGenerator(name="seq1",sequenceName="HIB_SEQ")
@GeneratedValue(strategy=SEQUENCE,generator="seq1")
int id;
 

Here, a sequence-generation annotation named seq1 has been declared. This refers to the database sequence
object called HIB_SEQ. The name seq1 is then referenced as the generator attribute of the @GeneratedValue annotation.

Only the sequence generator name is mandatory; the other attributes will take sensible default values, but you
should provide an explicit value for the sequenceName attribute as a matter of good practice anyway. If not specified,
the sequenceName value to be used is selected by the persistence provider (in this case, Hibernate). The other
(optional) attributes are initialValue (the generator starts with this number) and allocationSize (the number of
ids in the sequence reserved at a time); these default to values of 1 and 50, respectively.

Generating Primary Key Values with @TableGenerator
The @TableGenerator annotation is used in a very similar way to the @SequenceGenerator annotation, but because
@TableGenerator manipulates a standard database table to obtain its primary key values, instead of using a
vendor-specific sequence object, it is guaranteed to be portable between database platforms.

Chapter 6 ■ Mapping with Annotations

87

Note■■   For optimal portability and optimal performance, you should not specify the use of a table generator, but instead
use the @GeneratorValue(strategy=GeneratorType.AUTO) configuration, which allows the persistence provider to
select the most appropriate strategy for the database in use.

As with the sequence generator, the name attributes of @TableGenerator are mandatory and the other attributes
are optional, with the table details being selected by the persistence provider:
 
@Id
@TableGenerator(name="tablegen",
 table="ID_TABLE",
 pkColumnName="ID",
 valueColumnName="NEXT_ID")
@GeneratedValue(strategy=TABLE,generator="tablegen")
int id;
 

The optional attributes are as follows:

•	 allocationSize: Allows the number of primary keys set aside at one time to be tuned for
performance.

•	 catalog: Allows the catalog that the table resides within to be specified.

•	 initialValue: Allows the starting primary key value to be specified.

•	 pkColumnName: Allows the primary key column of the table to be identified. The table can
contain the details necessary for generating primary key values for multiple entities.

•	 pkColumnValue: Allows the primary key for the row containing the primary key generation
information to be identified.

•	 schema: Allows the schema that the table resides within to be specified.

•	 table: The name of the table containing the primary key values.

•	 uniqueConstraints: Allows additional constraints to be applied to the table for schema
generation.

•	 valueColumnName: Allows the column containing the primary key generation information for
the current entity to be identified.

Because the table can be used to contain the primary key values for a variety of entries, it is likely to have a
single row for each of the entities using it. It therefore needs its own primary key (pkColumnName), as well as a column
containing the next primary key value to be used (pkColumnValue) for any of the entities obtaining their primary keys
from it.

Compound Primary Keys with @Id, @IdClass, or @EmbeddedId
While the use of single-column surrogate keys is advantageous for various reasons, you may sometimes be forced
to work with business keys. When these are contained in a single column, you can use @Id without specifying a
generation strategy (forcing the user to assign a primary key value before the entity can be persisted). However, when
the primary key consists of multiple columns, you need to take a different strategy to group these together in a way
that allows the persistence engine to manipulate the key values as a single object.

Chapter 6 ■ Mapping with Annotations

88

You must create a class to represent this primary key. It will not require a primary key of its own, of course, but
it must be a public class, must have a default constructor, must be serializable, and must implement hashCode() and
equals() methods to allow the Hibernate code to test for primary key collisions (i.e., they must be implemented with
the appropriate database semantics for the primary key values).

Your three strategies for using this primary key class once it has been created are as follows:

	 1.	 Mark it as @Embeddable and add to your entity class a normal property for it,
marked with @Id.

	 2.	 Add to your entity class a normal property for it, marked with @EmbeddableId.

	 3.	 Add properties to your entity class for all of its fields, mark them with @Id, and mark your
entity class with @IdClass, supplying the class of your primary key class.

All these techniques require the use of an id class because Hibernate must be supplied with a primary key
object when various parts of its persistence API are invoked. For example, you can retrieve an instance of an entity by
invoking the Session object’s get() method, which takes as its parameter a single serializable object representing the
entity’s primary key.

The use of @Id with a class marked as @Embeddable, as shown in Listing 6-6, is the most natural approach.
The @Embeddable tag can be used for nonprimary key embeddable values anyway (@Embeddable is discussed in more
detail later in the chapter). It allows you to treat the compound primary key as a single property, and it permits the
reuse of the @Embeddable class in other tables.

One thing worth pointing out: the embedded primary key classes must be serializable (i.e., they must implement
java.io.Serializable, although it’s possible you could use java.io.Externalizable as well6).

Listing 6-6.  Using the @Id and @Embeddable Annotations to Map a Compound Primary Key: The CPKBook
 
package chapter06.compoundpk;
 
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
 
@Entity
public class CPKBook {
 @Id
 ISBN id;
 @Column
 String name;
 
 public CPKBook() {
 }
 
 public ISBN getId() {
 return id;
 }
 
 public void setId(ISBN id) {
 this.id = id;
 }
 

6Serializable relies on Java’s introspection to serialize and deserialize data. Externalizable forces the author to implement
explicit serialization mechanisms. Externalizable can be far faster, but this doesn’t give you any real benefits in this case.

Chapter 6 ■ Mapping with Annotations

89

 public String getName() {
 return name;
 }
 
 public void setName(String title) {
 this.name = title;
 }
}
 

The next most natural approach is the use of the @EmbeddedId tag. Here, the primary key class cannot be used
in other tables since it is not an @Embeddable entity, but it does allow us to treat the key as a single attribute of the
Account class (in Listings 6-7 and 6-8, the implementation of AccountPk is identical to that in Listing 6-6, and is thus
omitted for brevity). Note that in Listings 6-7 and 6-8, the AccountPk class is not marked as @Embeddable.

Listing 6- 7.  Using the @Id and @Embeddable Annotations to Map a Compound Primary Key: The ISBN
 
package chapter06.compoundpk;
 
import javax.persistence.Embeddable;
import java.io.Serializable;
 
@Embeddable
public class ISBN implements Serializable {
 @Column(name="group_number") // because "group" is an invalid column name for SQL
 int group;
 int publisher;
 int title;
 int checkdigit;
 
 public ISBN() {
 }
 
 public int getGroup() {
 return group;
 }
 
 public void setGroup(int group) {
 this.group = group;
 }
 
 public int getPublisher() {
 return publisher;
 }
 
 public void setPublisher(int publisher) {
 this.publisher = publisher;
 }
 

Chapter 6 ■ Mapping with Annotations

90

 public int getTitle() {
 return title;
 }
 
 public void setTitle(int title) {
 this.title = title;
 }
 
 public int getCheckdigit() {
 return checkdigit;
 }
 
 public void setCheckdigit(int checkdigit) {
 this.checkdigit = checkdigit;
 }
 
 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof ISBN)) return false;
 
 ISBN isbn = (ISBN) o;
 
 if (checkdigit != isbn.checkdigit) return false;
 if (group != isbn.group) return false;
 if (publisher != isbn.publisher) return false;
 if (title != isbn.title) return false;
 
 return true;
 }
 
 @Override
 public int hashCode() {
 int result = group;
 result = 31 * result + publisher;
 result = 31 * result + title;
 result = 31 * result + checkdigit;
 return result;
 }
} 

Note■■  T he use of @Column(name="group_number") in the ISBN class will be discussed further, in “Mapping
Properties and Fields with @Column” later in this chapter; this is required here because “group”–the natural column name
for this field–is an invalid column name for SQL. We’re going to be seeing more embedded primary keys with the same
format, and this annotation will be used in them, as well.

Chapter 6 ■ Mapping with Annotations

91

Listing 6-8.  Using the @EmbeddedId Annotation to Map a Compound Primary Key 

package chapter06.compoundpk;
 
import javax.persistence.Column;
import javax.persistence.EmbeddedId;
import javax.persistence.Entity;
import java.io.Serializable;
 
@Entity
public class EmbeddedPKBook {
 @EmbeddedId
 EmbeddedISBN id;
 @Column
 String name;
 
 static class EmbeddedISBN implements Serializable {
 // looks fundamentally the same as the ISBN class from Listing 6-7
 }
}
 

Finally, the use of the @IdClass and @Id annotations allows us to map the compound primary key class using
properties of the entity itself corresponding to the names of the properties in the primary key class. The names must
correspond (there is no mechanism for overriding this), and the primary key class must honor the same obligations
as with the other two techniques. The only advantage to this approach is its ability to “hide” the use of the primary key
class from the interface of the enclosing entity.

The @IdClass annotation takes a value parameter of Class type, which must be the class to be used as the compound
primary key. The fields that correspond to the properties of the primary key class to be used must all be annotated with
@Id—note in Listing 6-9 that the getCode() and getNumber() methods of the Account class are so annotated, and the
AccountPk class is not mapped as @Embeddable, but it is supplied as the value of the @IdClass annotation.

Listing 6-9.  Using the @IdClass and @Id Annotations to Map a Compound Primary Key
 
package chapter06.compoundpk;
 
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import java.io.Serializable;
 
@Entity
@IdClass(IdClassBook.EmbeddedISBN.class)
public class IdClassBook {
 @Id
 int group;
 @Id
 int publisher;
 @Id
 int title;
 @Id
 int checkdigit;
 String name;
 

Chapter 6 ■ Mapping with Annotations

92

 public IdClassBook() {
 }
 
 public int getGroup() {
 return group;
 }
 
 public void setGroup(int group) {
 this.group = group;
 }
 
 public int getPublisher() {
 return publisher;
 }
 
 public void setPublisher(int publisher) {
 this.publisher = publisher;
 }
 
 public int getTitle() {
 return title;
 }
 
 public void setTitle(int title) {
 this.title = title;
 }
 
 public int getCheckdigit() {
 return checkdigit;
 }
 
 public void setCheckdigit(int checkdigit) {
 this.checkdigit = checkdigit;
 }
 
 public String getName() {
 return name;
 }
 
 public void setName(String name) {
 this.name = name;
 }
 
 static class Emb eddedISBN implements Serializable {
 // identical to EmbeddedISBN from Listing 6-8
 }
}
 

Regardless of which of these approaches we take to declare our compound primary key, the table that will be
used to represent it will require the same set of columns. Listing 6-10 shows the DDL that will be generated from
Listings 6-7, 6-8, and 6-9; the other table names would differ, but the DDL for each table would be the same.

Chapter 6 ■ Mapping with Annotations

93

Listing 6-10.  The DDL Generated from the CPKBook Class

create table CPKBook (
 checkdigit integer not null,
 group integer not null,
 publisher integer not null,
 title integer not null,
 name varchar(255),
 primary key (checkdigit, group, publisher, title)
) 

Database Table Mapping with @Table and @SecondaryTable
By default, table names are derived from the entity names. Therefore, given a class Book with a simple @Entity
annotation, the table name would be “book,” adjusted for the database’s configuration.

If the entity name is changed (by providing a different name in the @Entity annotation, such as
@Entity("BookThing")), the new name will be used for the table name. (Queries would need to use the entity name;
from the user’s perspective, the table name would be irrelevant.)

The table name can be customized further, and other database-related attributes can be configured via the
 @Table annotation. This annotation allows you to specify many of the details of the table that will be used to persist
the entity in the database. As already pointed out, if you omit the annotation, Hibernate will default to using the class
name for the table name, so you need only provide this annotation if you want to override that behavior.

The @Table annotation provides four attributes, allowing you to override the name of the table, its catalog, and
its schema, and to enforce unique constraints on columns in the table. Typically, you would only provide a substitute
table name thus: @Table(name="ORDER_HISTORY"). The unique constraints will be applied if the database schema is
generated from the annotated classes, and will supplement any column-specific constraints (see discussions of
@Column and @JoinColumn later in this chapter). They are not otherwise enforced.

The @SecondaryTable annotation provides a way to model an entity bean that is persisted across several different
database tables. Here, in addition to providing an @Table annotation for the primary database table, your entity bean
can have an @SecondaryTable annotation, or an @SecondaryTables annotation in turn containing zero or more
@SecondaryTable annotations. The @SecondaryTable annotation takes the same basic attributes as the
@Table annotation, with the addition of the join attribute. The join attribute defines the join column for the primary
database table. It accepts an array of javax.persistence.PrimaryKeyJoinColumn objects. If you omit the join
attribute, then it will be assumed that the tables are joined on identically named primary key columns.

When an attribute in the entity is drawn from the secondary table, it must be marked with the @Column
annotation, with a table attribute identifying the appropriate table. Listing 6-11 shows how a property of the Customer
entity could be drawn from a second table mapped in this way.

Listing 6-11.  An Example of a Field Access Entity Mapped Across Two Tables
 
package chapter06.twotables;
 
import javax.persistence.*;
 
@Entity
@Table(name = "customer")
@SecondaryTable(name = "customer_details")
public class Customer {
 @Id
 public int id;

Chapter 6 ■ Mapping with Annotations

94

 public String name;
 @Column(table = "customer_details")
 public String address;
 
 public Customer() {
 }
}
 

Columns in the primary or secondary tables can be marked as having unique values within their tables by adding
one or more appropriate @UniqueConstraint annotations to @Table or @SecondaryTable’s uniqueConstraints
attribute. You may also set uniqueness at the field level with the unique attribute on the @Column attribute. For
example, to mark the name field in the preceding declaration as being unique, use the following:
 
@Entity
@Table(
 name="customer",
 uniqueConstraints={@UniqueConstraint(columnNames="name")}
)
@SecondaryTable(name="customer_details")
public class Customer {
 ...
} 

Persisting Basic Types with @Basic
By default, properties and instance variables in your POJO are persistent; Hibernate will store their values for you.
The simplest mappings are therefore for the “basic” types. These include primitives, primitive wrappers, arrays of
primitives or wrappers, enumerations, and any types that implement Serializable but are not themselves mapped
entities. These are all mapped implicitly—no annotation is needed. By default, such fields are mapped to a single
column, and eager fetching is used to retrieve them (i.e., when the entity is retrieved from the database, all the basic
fields and properties are retrieved7). Also, when the field or property is not a primitive, it can be stored and retrieved
as a null value.

This default behavior can be overridden by applying the @Basic annotation to the appropriate class member.
The annotation takes two optional attributes, and is itself entirely optional. The first attribute is named optional and
takes a boolean. Defaulting to true, this can be set to false to provide a hint to schema generation that the associated
column should be created NOT NULL. The second is named fetch and takes a member of the enumeration FetchType.
This is EAGER by default, but can be set to LAZY to permit loading on access of the value.

The use of lazy loading is unlikely to be valuable, except when large serializable objects have been mapped
as basic types (rather than given entity mappings of their own) and retrieval time may become significant. While
the (default) EAGER value must be honored, the LAZY flag is considered to be a hint, and can be ignored by the
persistence engine.

The @Basic attribute is usually omitted, with the @Column attribute being used where the @Basic annotation’s
optional attribute might otherwise be used to provide the NOT NULL behavior.

7However, the data for the class might not be initialized yet. When an instance is loaded from the session, the data might have
been retrieved eagerly, but the object won’t be initialized until something in it has been requested. This can yield some “interesting”
behaviors, some of which were exposed in the previous chapters.

Chapter 6 ■ Mapping with Annotations

95

Omitting Persistence with @Transient
Some fields, such as calculated values, may be used at run time only, and they should be discarded from objects as
they are persisted into the database. The JPA specification provides the @Transient annotation for these transient
fields. The @Transient annotation does not have any attributes—you just add it to the instance variable or the getter
method as appropriate for the entity bean’s property access strategy.

The @Transient annotation highlights one of the more important differences between using annotations with
Hibernate and using XML mapping documents. With annotations, Hibernate will default to persisting all of the fields
on a mapped object. When using XML mapping documents, Hibernate requires you to tell it explicitly which fields
will be persisted.8

For our example, if we wanted to add a Date field named publicationDate, not be stored in the database to our
Book class, we could mark this field transient thus:
 
@Transient
Date publicationDate;
 

If we are using a property access strategy for our Book class, we would need to put the @Transient annotation on
the accessor instead.

Mapping Properties and Fields with @Column
The @Column annotation is used to specify the details of the column to which a field or property will be mapped. Some
of the details are schema related, and therefore apply only if the schema is generated from the annotated files. Others
apply and are enforced at run time by Hibernate (or the JPA 2 persistence engine). It is optional, with an appropriate
set of default behaviors, but is often useful when overriding default behavior, or when you need to fit your object
model into a preexisting schema. It is more commonly used than the similar @Basic annotation, with the following
attributes commonly being overridden:

•	 name permits the name of the column to be explicitly specified—by default, this would be the
name of the property. However, it is often necessary to override the default behavior when it
would otherwise result in an SQL keyword being used as the column name (e.g., user).

•	 length permits the size of the column used to map a value (particularly a String value) to be
explicitly defined. The column size defaults to 255, which might otherwise result in truncated
String data, for example.

•	 nullable permits the column to be marked NOT NULL when the schema is generated. The
default is that fields should be permitted to be null; however, it is common to override this
when a field is, or ought to be, mandatory.

•	 unique permits the column to be marked as containing only unique values. This defaults to
false, but commonly would be set for a value that might not be a primary key but would still
cause problems if duplicated (such as username).

We have marked up the title field of our Book entity using the @Column entity to show how three of these attributes
would be applied:
 
@Column(name="working_title",length=200,nullable=false)
String title;
 

8This is not an endorsement of XML configuration. Use @Transient instead.

Chapter 6 ■ Mapping with Annotations

96

The remaining attributes, less commonly used, are as follows:

•	 table is used when the owning entity has been mapped across one or more secondary tables.
By default, the value is assumed to be drawn from the primary table, but the name of one of
the secondary tables can be substituted here (see the @SecondaryTable annotation example
earlier in this chapter).

•	 insertable defaults to true, but if set to false, the annotated field will be omitted from insert
statements generated by Hibernate (i.e., it won’t be persisted).

•	 updatable defaults to true, but if set to false, the annotated field will be omitted from update
statements generated by Hibernate (i.e., it won’t be altered once it has been persisted).

•	 columnDefinition can be set to an appropriate DDL fragment to be used when generating the
column in the database. This can only be used during schema generation from the annotated
entity, and should be avoided if possible, since it is likely to reduce the portability of your
application between database dialects.

•	 precision permits the precision of decimal numeric columns to be specified for schema generation,
and will be ignored when a nondecimal value is persisted. The value given represents the number
of digits in the number (usually requiring a minimum length of n+1, where n is the scale).

•	 scale permits the scale of decimal numeric columns to be specified for schema generation
and will be ignored where a nondecimal value is persisted. The value given represents the
number of places after the decimal point.

Modeling Entity Relationships
Naturally, annotations also allow you to model associations between entities. JPA 2 supports one-to-one,
one-to-many, many-to-one, and many-to-many associations. Each of these has its corresponding annotation.

We discussed the various ways in which these mappings can be established in the tables in Chapter 5. In this
section, we will show how the various mappings are requested using the annotations.

Mapping an Embedded (Component) One-to-One Association
When all the fields of one entity are maintained within the same table as another, the enclosed entity is referred to in
Hibernate as a component. The JPA standard refers to such an entity as being embedded.

The @Embedded and @Embeddable attributes are used to manage this relationship. In this chapter’s example of
primary keys, we associate an ISBN class with a Book class in this way.

The ISBN class is marked with the @Embeddable annotation. An embeddable entity must be composed entirely
of basic fields and attributes. An embeddable entity can only use the @Basic, @Column, @Lob, @Temporal, and
@Enumerated annotations. It cannot maintain its own primary key with the @Id tag because its primary key is the
primary key of the enclosing entity.

The @Embeddable annotation itself is purely a marker annotation, and it takes no additional attributes, as
demonstrated in Listing 6-12. Typically, the fields and properties of the embeddable entity need no further markup.9

Listing 6-12.  Marking an Entity for Embedding Within Other Entities

@Embeddable
public class AuthorAddress {
...
}
 

9The ISBN example required an additional annotation for “group” because group is a reserved word in SQL.

Chapter 6 ■ Mapping with Annotations

97

The enclosing entity then marks appropriate fields or getters in entities, making use of the embeddable class with
the @Embedded annotation, as shown in Listing 6-13.

Listing 6-13.  Marking an Embedded Property

@Embedded
AuthorAddress address;
 

The @Embedded annotation draws its column information from the embedded type, but permits the overriding
of a specific column or columns with the @AttributeOverride and @AttributeOverrides tags (the latter to
enclose an array of the former if multiple columns are being overridden). For example, Listing 6-14 shows how to
override the default column names of the address and country attributes of AuthorAddress with columns named
ADDR and NATION.

Listing 6-14.  Overriding Default Attributes of an Embedded Property

@Embedded
@AttributeOverrides({
 @AttributeOverride(name="address",column=@Column(name="ADDR")),
 @AttributeOverride(name="country",column=@Column(name="NATION"))
})
AuthorAddress address;
 

Neither Hibernate nor the JPA standard supports mapping an embedded object across more than one table.
In practice, if you want this sort of persistence for your embedded entity, you will usually be better off making it a
first-class entity (i.e., not embedded) with its own @Entity marker and @Id annotations, and then mapping it via a
conventional one-to-one association, as explained in the next section.

Mapping a Conventional One-to-One Association
There is nothing intrinsically wrong with mapping a one-to-one association between two entities where one is not
a component of (i.e., embedded into) the other. The relationship is often somewhat suspect, however. You should
give some thought to using the embedded technique described previously before using the @OneToOne annotation.

You can have a bidirectional relationship with a one-to-one association. One side will need to own the
relationship and be responsible for updating a join column with a foreign key to the other side. The nonowning side
will need to use the mappedBy attribute to indicate the entity that owns the relationship.

Assuming that you are resolute on declaring the association in this way (perhaps because you anticipate
converting it to a one-to-many or many-to-one relationship in the foreseeable future), applying the annotation is quite
simple—all of the attributes are optional. Listing 6-15 shows how simply a relationship like this might be declared.

Listing 6-15.  Declaring a Simple One-to-One Relationship

@OneToOne
Address address;
 

The @OneToOne annotation permits the following optional attributes to be specified:

•	 targetEntity can be set to the class of an entity storing the association. If left unset, the
appropriate type will be inferred from the field type, or the return type of the property’s getter.

•	 cascade can be set to any of the members of the javax.persistence.CascadeType
enumeration. It defaults to none being set. See the “Cascading Operations” sidebar for a
discussion of these values.

Chapter 6 ■ Mapping with Annotations

98

•	 fetch can be set to the EAGER or LAZY members of FetchType.

•	 optional indicates whether the value being mapped can be null.

•	 orphanRemoval indicates that if the value being mapped is deleted, this entity will also be
deleted.

•	 mappedBy indicates that a bidirectional one-to-one relationship is owned by the named
entity.10 The owning entity contains the primary key of the subordinate entity.

Mapping a Many-to-One or One-to-Many Association
A many-to-one association and a one-to-many association are the same association seen from the perspective of the
owning and subordinate entities, respectively.

CASCADING OPERATIONS

When an association between two entities is established (such as a one-to-one association between Human
and Pet or a one-to-many association between Customer and Orders), it is common to want certain persistence
operations on one entity to also be applied to the entity that it is linked to. Take, for example, the following code:
 
Human dave = new Human("dave");
Pet cat = new PetCat("Tibbles");
dave.setPet(cat);
session.save(dave);
 
In the last line, we are likely to want to save the Pet object associated with the Human object. In a one-to-one
relationship, we usually expect all operations on the owning entity to be propagated through—that is, to be
cascaded to—the dependent entity. In other associations this is not true, and even in a one-to-one relationship
we may have special reasons for wanting to spare the dependent entity from delete operations (perhaps for
auditing reasons).

We are therefore able to specify the types of operations that should be cascaded through an association to
another entity using the cascade annotation, which takes an array of members of the CascadeType enumeration.
The members correspond with the names of the key methods of the EntityManager class used for EJB 3
persistence, and have the following rough correspondence with operations on entities:

•	 ALL requires all operations to be cascaded to dependent entities. This is the same as including
MERGE, PERSIST, REFRESH, DETACH, and REMOVE.

•	 MERGE cascades updates to the entity’s state in the database (i.e., UPDATE...).

•	 PERSIST cascades the initial storing of the entity’s state in the database (i.e., INSERT...).

•	 REFRESH cascades the updating of the entity’s state from the database (i.e., SELECT...).

10An association is bidirectional if each entity maintains a property or field representing its end of the same relationship. For
example, if our Address<au: code here?> class maintained a reference to the Publisher located there, and the Publisher<au:
code?> class maintained a reference to its Address, then the association would be bidirectional.

Chapter 6 ■ Mapping with Annotations

99

•	 DETACH cascades the removal of the entity from the managed persistence context.

•	 REMOVE cascades deletion of the entity from the database (i.e., DELETE...).

If no cascade type is specified, no operations will be cascaded through the association.•	

In the light of these options, the appropriate annotation for the relationship between a publisher and its address
would be as follows:
 
@OneToOne(cascade=CascadeType.ALL)
Address address; 

The simplest way to maintain a many-to-one relationship between two entities is by managing the foreign key of
the entity at the “one” end of the one-to-many relationship as a column in the “many” entity’s table.

The @OneToMany annotation can be applied to a field or property value for a collection or an array representing
the mapped “many” end of the association.

COLLECTION ORDERING

An ordered collection can be persisted in Hibernate or JPA 2 using the @OrderColumn annotation to maintain the
order of the collection. You can also order the collection at retrieval time by means of the @OrderBy annotation.
For example, if you were to retrieve a list ordered by the books’ names in ascending order, you could annotate a
suitable method.

The following code snippet specifies a retrieval order for an ordered collection:
 
@OneToMany(cascade = ALL, mappedBy = "publisher"
@OrderBy("name ASC")
List<Book> books;
 
The value of the @OrderBy annotation is an ordered list of the field names to sort by, each one optionally
appended with ASC (for ascending order, as in the preceding code) or DESC (for descending order). If neither ASC
nor DESC is appended to one of the field names, the order will default to ascending. @OrderBy can be applied to
any collection-valued association.

The •	 mappedBy attribute is mandatory on a bidirectional association and optional (being implicit)
on a unidirectional association.

•	 cascade is optional, taking a member of the javax.persistence.CascadeType enumeration
and dictating the cascade behavior of the mapped entity.

•	 targetEntity is optional, as it can usually be deduced from the type of the field or property,
as in Listing 6-15, where the property represents a Set of Book entities, making the target entity
implicitly Book. However, if necessary (if generics are not being used, for example), the class of
the target entity can be provided here.

fetch is optional, allowing lazy or eager fetching to be specified as a member of the javax.persistence.
FetchType enumeration.

Chapter 6 ■ Mapping with Annotations

100

Listing 6-16.  Mapping a One-to-Many Relationship from the Book Entity to the Publisher Entity

@OneToMany(cascade = ALL,mappedBy = "publisher")
Set<Book> books;
 

The many-to-one end of this relationship is expressed in similar terms to the one-to-many end, as shown in
Listing 6-17.

Listing 6-17.  Mapping a Many-to-One Relationship from the Publisher Entity to the Book Entity

@ManyToOne
@JoinColumn(name = "publisher_id")
Publisher publisher;
 

The @ManyToOne annotation takes a similar set of attributes to @OneToMany. The following list describes the
attributes, all of which are optional.

•	 cascade indicates the appropriate cascade policy for operations on the association; it defaults
to none.

•	 fetch indicates the fetch strategy to use; it defaults to LAZY.

•	 optional indicates whether the value can be null; it defaults to true.

•	 targetEntity indicates the entity that stores the primary key—this is normally inferred from
the type of the field or property (Publisher, in the preceding example).

We have also supplied the optional @JoinColumn attribute to name the foreign key column required by the association
something other than the default (publisher)—this is not necessary, but it illustrates the use of the annotation.

When a unidirectional one-to-many association is to be formed, it is possible to express the relationship using a
link table. This is achieved by adding the @JoinTable annotation, as shown in Listing 6-18.11

Listing 6-18.  A Simple Unidirectional One-to-Many Association with a Join Table

@OneToMany(cascade = ALL)
@JoinTable
Set<Book> books;
 

The @JoinTable annotation provides attributes that allow various aspects of the link table to be controlled.
These attributes are as follows:

•	 name is the name of the join table to be used to represent the association.

•	 catalog is the name of the catalog containing the join table.

•	 schema is the name of the schema containing the join table.

•	 joinColumns is an array of @JoinColumn attributes representing the primary key of the entity at
the “one” end of the association.

•	 inverseJoinColumns is an array of @JoinColumn attributes representing the primary key of the
entity at the “many” end of the association.

11When a join table is being used, the foreign key relationship is maintained within the join table itself—it is therefore not appropri-
ate to combine the mappedBy attribute of the @OneToMany annotation with the use of an @JoinTable annotation.

Chapter 6 ■ Mapping with Annotations

101

Listing 6-19 shows a fairly typical application of the @JoinTable annotation to specify the name of the join table
and its foreign keys into the associated entities.

Listing 6-19.  A Unidirectional One-to-Many Association with a More Fully Specified Join Table

@OneToMany(cascade = ALL)
@JoinTable(
 name="PublishedBooks",
 joinColumns = { @JoinColumn(name = "publisher_id") },
 inverseJoinColumns = @JoinColumn(name = "book_id")
)
Set<Book> books; 

Mapping a Many-to-Many Association
When a many-to-many association does not involve a first-class entity joining the two sides of the relationship, a link
table must be used to maintain the relationship. This can be generated automatically, or the details can be established
in much the same way as with the link table described in the earlier “Mapping a Many-to-One or One-to-Many
Association” section of the chapter.

The appropriate annotation is naturally @ManyToMany, and takes the following attributes:

•	 mappedBy is the field that owns the relationship—this is only required if the association is
bidirectional. If an entity provides this attribute, then the other end of the association is the
owner of the association, and the attribute must name a field or property of that entity.

•	 targetEntity is the entity class that is the target of the association. Again, this may be inferred
from the generic or array declaration, and only needs to be specified if this is not possible.

•	 cascade indicates the cascade behavior of the association, which defaults to none.

•	 fetch indicates the fetch behavior of the association, which defaults to LAZY.

The example maintains a many-to-many association between the Book class and the Author class. The Book
entity owns the association, so its getAuthors() method must be marked with an appropriate @ManyToMany attribute,
as shown in Listing 6-20.

Listing 6-20.  The Book Side of the Many-to-Many Association

@ManyToMany(cascade = ALL)
Set<Author> authors;
 

The Author entity is managed by the Book entity. The link table is not explicitly managed, so, as shown in
Listing 6-21, we mark it with a @ManyToMany annotation and indicate that the foreign key is managed by the authors
attribute of the associated Book entity.

Listing 6-21.  The Author Side of the Many-to-Many Association

@ManyToMany(mappedBy = "authors")
Set<Book> books;
 

Alternatively, we could specify the link table in full, as in Listing 6-22.

Chapter 6 ■ Mapping with Annotations

102

Listing 6-22.  Specifying the Link Table in Full Using the Book Entity Annotations

@ManyToMany(cascade = ALL)
@JoinTable(
 name="Books_to_Author",
 joinColumns={@JoinColumn(name="book_ident")},
 inverseJoinColumns={@JoinColumn(name="author_ident")}
)
Set272103_1_En authors; 

Inheritance
The JPA 2 standard and Hibernate both support three approaches to mapping inheritance hierarchies into the
database. These are as follows:

	 1.	 Single table (SINGLE_TABLE): One table for each class hierarchy

	 2.	 Joined (JOINED): One table for each subclass (including interfaces and abstract classes)

	 3.	 Table-per-class (TABLE_PER_CLASS): One table for each concrete class implementation

Persistent entities that are related by inheritance must be marked up with the @Inheritance annotation. This
takes a single strategy attribute, which is set to one of three javax.persistence. InheritanceType enumeration
values corresponding to these approaches (shown in brackets in the preceding numbered list).

Single Table
The single-table approach manages one class for the superclass and all its subtypes. There are columns for each
mapped field or property of the superclass, and for each distinct field or property of the derived types. When following
this strategy, you will need to ensure that columns are appropriately renamed when any field or property names
collide in the hierarchy.

To determine the appropriate type to instantiate when retrieving entities from the database, a
@DiscriminatorColumn annotation should be provided in the root (and only in the root) of the persistent hierarchy.12
This defines a column containing a value that distinguishes between the types used. The attributes permitted by the
@DiscriminatorColumn annotation are as follows:

•	 name is the name of the discriminator column.

•	 discriminatorType is the type of value to be stored in the column as selected from the
javax.persistence.DiscriminatorType enumeration of STRING, CHAR, or INTEGER.

•	 columnDefinition is a fragment of DDL defining the column type. Using this is liable to
reduce the portability of your code across databases.

•	 length is the column length of STRING discriminator types. It is ignored for CHAR and
INTEGER types.

All of these (and the annotation itself) are optional, but we recommend supplying at least the name attribute. If no
@DiscriminatorColumn is specified in the hierarchy, a default column name of DTYPE and type of STRING will be used.

12That is to say, the highest class in the hierarchy that is mapped to the database as an entity should be annotated in this way.

Chapter 6 ■ Mapping with Annotations

103

Hibernate will supply an appropriate discriminator value for each of your entities. For example, if the STRING
discriminator type is used, the value this column contains will be the name of the entity (which defaults to the class
name). You can also override this behavior with specific values using the @DiscriminatorValue annotation. If the
discriminator type is INTEGER, any value provided via the @DiscriminatorValue annotation must be convertible
directly into an integer.

In Listing 6-23, we specify that an INTEGER discriminator type should be stored in the column named
DISCRIMINATOR. Rows representing Book entities will have a value of 1 in this column, whereas the following
mapping in Listing 6-24 requires that rows representing ComputerBook entities should have a value of 2 in the
same column.

Listing 6-23.  The Root of the Inheritance Hierarchy Mapped with the SINGLE_TABLE Strategy

@Entity
@Inheritance(strategy = SINGLE_TABLE)
@DiscriminatorColumn(
 name="DISCRIMINATOR",
 discriminatorType=INTEGER
)
@DiscriminatorValue("1")
public class Book {
...
} 

Listing 6-24.  A Derived Entity in the Inheritance Hierarchy

@Entity
@DiscriminatorValue("2")
public class ComputerBook extends Book {
...
} 

Joined Table
An alternative to the monolithic single-table approach is the otherwise similar joined-table approach. Here a
discriminator column is used, but the fields of the various derived types are stored in distinct tables. Other than the
differing strategy, this inheritance type is specified in the same way (as shown in Listing 6-25).

Listing 6-25.  The Root of the Inheritance Hierarchy Mapped with the JOINED Strategy

@Entity
@Inheritance(strategy = JOINED)
@DiscriminatorColumn(
 name="DISCRIMINATOR"
)
public class Book {
...
} 

Chapter 6 ■ Mapping with Annotations

104

Table per Class
Finally, there is the table-per-class approach, in which all of the fields of each type in the inheritance hierarchy are
stored in distinct tables. Because of the close correspondence between the entity and its table, the
@DiscriminatorColumn annotation is not applicable to this inheritance strategy. Listing 6-26 shows how our
Book class could be mapped in this way.

Listing 6-26.  The Root of the Inheritance Hierarchy Mapped with the TABLE_PER_CLASS Strategy

@Entity
@Inheritance(strategy = TABLE_PER_CLASS)
public class Book {
...
} 

Choosing Between Inheritance Types When Modeling Inheritance
Each of these different inheritance types has tradeoffs. When you create a database schema that models a class
hierarchy, you have to weigh performance and database maintainability to decide which inheritance type to use.

It is easiest to maintain your database when using the joined-table approach. If fields are added or removed from
any class in the class hierarchy, only one database table needs to be altered to reflect the changes. In addition, adding
new classes to the class hierarchy only requires that a new table be added, eliminating the performance problems of
adding database columns to large data sets. With the table-per-class approach, a change to a column in a parent class
requires that the column change be made in all child tables. The single-table approach can be messy, leading to many
columns in the table that aren’t used in every row, as well as a rapidly horizontally growing table.

Read performance will be best with the single-table approach. A select query for any class in the hierarchy will
only read from one table, with no joins necessary. The table-per-class type has great performance if you only work
with the leaf nodes in the class hierarchy. Any queries related to the parent classes will require joins on a number
of tables to get results. The joined-table approach will also require joins for any select query, so this will affect
performance. The number of joins will be related to the size of the class hierarchy—large, deep class hierarchies may
not be good candidates for the joined-table approach.

We recommend using the joined-table approach unless performance could be a problem because of the size of
the data set and the depth of the class hierarchy.

Other JPA 2 Persistence Annotations
Although we have now covered most of the core JPA 2 persistence annotations, there are a few others that you will
encounter fairly frequently. We cover some of these in passing in the following sections.

Temporal Data
Fields or properties of an entity that have java.util.Date or java.util.Calendar types represent temporal data.
By default, these will be stored in a column with the TIMESTAMP data type, but this default behavior can be overridden
with the @Temporal annotation.

The annotation accepts a single value attribute from the javax.persistence.TemporalType enumeration.
This offers three possible values: DATE, TIME, and TIMESTAMP. These correspond, respectively, to java.sql.Date,
java.sql.Time, and java.sql.Timestamp. The table column is given the appropriate data type at schema generation
time. Listing 6-27 shows an example mapping a java.util.Date property as a TIME type—the java.sql.Date and
java.sql.Time classes are both derived from the java.util.Date class, so confusingly, both are capable of
representing dates and times!

Chapter 6 ■ Mapping with Annotations

105

Listing 6-27.  A Date Property Mapped as a Time Temporal Field

@Temporal(TemporalType.TIME)
java.util.Date startingTime; 

Element Collections
In addition to mapping collections using one-to-many mappings, JPA 2 introduced an @ElementCollection
annotation for mapping collections of basic or embeddable classes. You can use the @ElementCollection annotation
to simplify your mappings. Listing 6-28 shows an example where you use the @ElementCollection annotation to map
a java.util.List collection of string objects.

Listing 6-28.  An Example of ElementCollections

@ElementCollection
List<String> passwordHints;
 

There are two attributes on the @ElementCollection annotation: targetClass and fetch. The targetClass
attribute tells Hibernate which class is stored in the collection. If you use generics on your collection, you do not
need to specify targetClass because Hibernate will infer the correct class. The fetch attribute takes a member of the
enumeration, FetchType. This is EAGER by default, but can be set to LAZY to permit loading when the value is accessed.

Large Objects
A persistent property or field can be marked for persistence as a database-supported large object type by applying the
@Lob annotation.

The annotation takes no attributes, but the underlying large object type to be used will be inferred from the type
of the field or parameter. String- and character-based types will be stored in an appropriate character-based type. All
other objects will be stored in a BLOB. Listing 6-29 maps a String–a title of some kind13-into a large object column type.

Listing 6-29.  An Example of a Large Object Property

@Lob
String title; // a very, very long title indeed
 

The @Lob annotation can be used in combination with the @Basic or the @ElementCollection annotation.

Mapped Superclasses
A special case of inheritance occurs when the root of the hierarchy is not itself a persistent entity, but various classes
derived from it are. Such a class can be abstract or concrete. The @MappedSuperclass annotation allows you to take
advantage of this circumstance.

The class marked with @MappedSuperclass is not an entity, and is not queryable (it cannot be passed to methods
that expect an entity in the Session or EntityManager objects). It cannot be the target of an association.

The mapping information for the columns of the superclass will be stored in the same table as the details of
the derived class (in this way, the annotation resembles the use of the @Inheritance tag with the SINGLE_TABLE
strategy).

13Before you think this example is entirely contrived, some titles can be amazingly long. Check out
http://oldbooktitles.tumblr.com/ for some examples that might not fit in traditional-size columns.

http://oldbooktitles.tumblr.com/

Chapter 6 ■ Mapping with Annotations

106

In other respects, the superclass can be mapped as a normal entity, but the mappings will apply to the derived
classes only (since the superclass itself does not have an associated table in the database). When a derived class needs
to deviate from the superclass’s behavior, the @AttributeOverride annotation can be used (much as with the use of
an embeddable entity).

For example, if in our example, model Book was a superclass of ComputerBook, but Book objects themselves were
never persisted directly, then Book could be marked as @MappedSuperclass, as shown in Listing 6-30.

Listing 6-30.  Marking the Book Class As a Mapped Superclass

@MappedSuperclass
public class BookSuperclass {
...
}
 

The fields of the ComputerBook entity derived from Book would then be stored in the ComputerBook entity
class’s table. Classes derived directly from Book but not mapped as entities in their own right, such as a hypothetical
MarketingBook class, would not be persistable. In this respect alone, the mapped superclass approach behaves
differently from the conventional @Inheritance approach with a SINGLE_TABLE strategy.

Ordering Collections with @OrderColumn
While @OrderBy allows data to be ordered once it has been retrieved from the database, JPA 2 also provides an
annotation that allows the ordering of appropriate collection types (e.g., List) to be maintained in the database;
it does so by maintaining an order column to represent that order. Here’s an example:
 
@OneToMany
@OrderColumn(
 name="employeeNumber"
)
List<Employee> employees;
 

Here, we are declaring that an employeeNumber column will maintain a value, starting at 0 and incrementing as
each entry is added to the list. The default starting value can be overridden by the base attribute. By default, the column
can contain null (unordered) values. The nullability can be overridden by setting the nullable attribute to false. By
default, when the schema is generated from the annotations, the column is assumed to be an integer type; however,
this can be overridden by supplying a columnDefinition attribute specifying a different column definition string.

Named Queries (HQL or JPQL)
@NamedQuery and @NamedQueries allow one or more Hibernate Query Language or Java Persistence Query Language
(JPQL) queries to be associated with an entity. The required attributes are as follows:

•	 name is the name by which the query is retrieved.

•	 query is the JPQL (or HQL) query associated with the name.

Listing 6-31 shows an example associating a named query with the Author entity. The query would retrieve
Author entities by name, so it is natural to associate it with that entity; however, there is no actual requirement that a
named query be associated in this way with the entity that it concerns.

Chapter 6 ■ Mapping with Annotations

107

Listing 6-31.  A JPQL Named Query Annotation

@Entity
@NamedQuery(
 name="findAuthorsByName",
 query="from Author where name = :author"
)
public class Author {
...
}
 

There is also a hints attribute, taking a QueryHint annotation name/value pair, which allows caching mode,
timeout value, and a variety of other platform-specific tweaks to be applied (this can also be used to comment the SQL
generated by the query).

You do not need to directly associate the query with the entity against which it is declared, but it is normal to do
so. If a query has no natural association with any of the entity declarations, it is possible to make the @NamedQuery
annotation at the package level.14

There is no natural place to put a package-level annotation, so Java annotations allow for a specific file, called
package-info.java, to contain them. Listing 6-32 gives an example of this.

Listing 6-32.  A package-info.java File

@javax.annotations.NamedQuery(
 name="findAuthorsByName",
 query="from Author where name = :author"
)
package chapter06.annotations;
 

Hibernate’s session allows named queries to be accessed directly, as shown in Listing 6-33.

Listing 6-33.  Invoking a Named Query via the Session

Query query = session.getNamedQuery("findAuthorsByName");
query.setParameter("author", "Dave");
List booksByDave = query.list();
System.out.println("There is/are " + booksByDave.size()
 + " author(s) called Dave in the catalog");
 

If you have multiple @NamedQuery annotations to apply to an entity, they can be provided as an array of values of
the @NamedQueries annotation.

Named Native Queries (SQL)
Hibernate also allows the database’s native query language (usually a dialect of SQL) to be used in place of HQL or
JPQL. You risk losing portability here if you use a database-specific feature, but as long as you choose reasonably
generic SQL, you should be okay. The @NamedNativeQuery annotation is declared in almost exactly the same manner

14Note that something being possible is very different from something being preferable. Your author knows of exactly zero
instances of this feature having been used in production; this doesn’t mean it’s not ever been used, but it’s far from common.

Chapter 6 ■ Mapping with Annotations

108

as the @NamedQuery annotation. The following block of code shows a simple example of the declaration of a named
native query:
 
@NamedNativeQuery(
 name="nativeFindAuthorNames",
 query="select name from author"
)
 

All queries are used in the same way; the only difference is how they’re accessed, whether by Session.
getNamedQuery(), Session.createQuery(), or Session.createSQLQuery(); the results can be retrieved as a List
through Query.list(), or a scrollable result set can be accessed via Query.scroll(), Query.iterate() provides an
Iterator (surprise!), and if the Query has only one object returned, Query.uniqueResult() can be used.

Multiple @NamedNativeQuery annotations can be grouped with the @NamedNativeQueries annotation.

Configuring the Annotated Classes
Once you have an annotated class, you will need to provide the class to your application’s Hibernate configuration,
just as if it were an XML mapping. With annotations, you can either use the declarative configuration in the
hibernate.cfg.xml XML configuration document, or programmatically add annotated classes to Hibernate’s
org.hibernate.cfg.AnnotationConfiguration object. Your application may use both annotated entities and XML
mapped entities in the same configuration.

To provide declarative mapping, we use a normal hibernate.cfg.xml XML configuration file and add the
annotated classes to the mapping using the mapping element (see Listing 6-34). Notice that we have specified the
name of the annotated classes as mappings.

Listing 6-34.  A Hibernate XML Configuration File with Annotated Classes

<?xml version="1.0"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!-- Database connection settings -->
 <property name="connection.driver_class">org.hsqldb.jdbc.JDBCDriver</property>
 <property name="connection.url">jdbc:hsqldb:db7;shutdown=true</property>
 <property name="connection.username">sa</property>
 <property name="connection.password"/>
 <property name="dialect">org.hibernate.dialect.HSQLDialect</property>
 <!-- set up c3p0 for use -->
 <property name="ac3p0.max_size">10</property>
 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>
 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">create</property>
 
 <mapping class="chapter06.primarykey.after.Book"/>
 <mapping class="chapter06.compoundpk.CPKBook"/>
 <mapping class="chapter06.compoundpk.EmbeddedPKBook"/>
 <mapping class="chapter06.compoundpk.IdClassBook"/>

Chapter 6 ■ Mapping with Annotations

109

 <mapping class="chapter06.twotables.Customer"/>
 <mapping class="chapter06.mappedsuperclass.BookSuper"/>
 <mapping class="chapter06.mappedsuperclass.ComputerBook"/>
 </session-factory>
</hibernate-configuration>
 

You can also add an annotated class to your Hibernate configuration programmatically. The annotations
toolset comes with an org.hibernate.cfg.AnnotationConfiguration object that extends the base Hibernate
Configuration object for adding mappings. The methods on AnnotationConfiguration for adding annotated classes
to the configuration are as follows:
 
addAnnotatedClass(Class persistentClass) throws MappingException
addAnnotatedClasses(List<Class> classes)
addPackage(String packageName) throws MappingException

 Using these methods, you can add one annotated class, a list of annotated classes, or an entire package (by name)
of annotated classes. As with the Hibernate XML configuration file, the annotated entities are interoperable with XML
mapped entities.15

Hibernate-Specific Persistence Annotations
Hibernate has various annotations that extend the standard persistence annotations. They can be very useful, but you
should keep in mind that their use will constrict your application to Hibernate; this won’t affect any of the code we’ve
written so far, since most of it uses Hibernate-specific classes already.

Tip■■  I t is possible to overstate the importance of portability—most bespoke applications are never deployed to an
environment other than the one for which they were originally developed. As a mature product, Hibernate has numerous
features to offer above and beyond the base JPA 2 specification. You should not waste too much time trying to achieve a
portable solution in preference to these proprietary features unless you have a definite requirement for portability.

@Immutable
The @Immutable annotation marks an entity as being, well, immutable. This is useful for situations in which your
entity represents reference data–things like lists of states, genders, or other rarely mutated data.

Since things like states tend to be rarely changed, someone usually updates the data manually, via SQL or an
administration application. Hibernate can cache this data aggressively, which needs to be taken into consideration;
if the reference data changes, you’d want to make sure that the applications using it are notified or restarted somehow.

What the annotation tells Hibernate is that any updates to an immutable entity should not be passed on to the
database. It’s a “safe” object; one probably shouldn’t update it very often, if only to avoid confusion.

@Immutable can be placed on a collection; in this case, changes to the collection (additions, or removals) will
cause a HibernateException to be thrown.

15Again, this is not an endorsement of the Hibernate XML configuration. It’s also not a condemnation, but...

Chapter 6 ■ Mapping with Annotations

110

Natural IDs
The first part of this chapter spent a lot of pages discussing primary keys, including generated values. Generated values are
referred to as “artificial primary keys,” and are very much recommended16 as a sort of shorthand reference for a given row.

However, there’s also the concept of a “natural ID,” which provides another convenient way to refer to an entity,
apart from an artificial or composite primary key.

An example might be a Social Security number or a Tax Identification Number in the United States. An entity
(being a person or a corporation) might have an artificial primary key generated by Hibernate, but it also might have
a unique tax identifier. This might be annotated with @Column(unique=true, nullable=false, updatable=false),
which would create a unique, immutable index,17 but a natural ID also provides a loadable mechanism that we’ve not
seen yet in any of our previous code, plus an actual optimization.

The Session provides the concept of a loader mechanism, known as a “load access.” There are three loaders
contained in Hibernate 4.2, able to load by ID, natural ID, and simple natural ID.

Loading by ID refers to an internal reference for a given instance. For example, if an object with an ID of 1 is
already referred to by Hibernate, Hibernate doesn’t need to go to the database to load that object–it can look the
object up through its ID, and return that reference.

A natural ID is another form of that ID; in the case of a tax identifier, the system could look it up by the actual
object ID (which would be an artificial key in most cases) or by the tax ID number itself–and if the tax ID is a
“natural ID,” then the library is able to look that object up internally instead of building a query for the database.

Just as there are simple identifiers and composite identifierscomprising single fields and multiple fields,
respectively–there are two forms of natural ID, similarly being made up of single fields or multiple fields.

In the case of the simple IDs, the load process provides a simple load() method, with the ID in question being
the parameter. If no instance with the ID exists, load() returns null. The loader also provides an alternative, a
getReference() method, which will throw an exception if no object with that natural ID is in the database.

For natural IDs, there are two forms of load mechanisms; one uses the simple natural ID (where the natural ID is
one and only one field), and the other uses named attributes as part of a composite natural ID.

Now let’s look at some actual code. First, let’s create a class representing an employee in Listing 6-35; our employee
will have a name (everyone has a name), an artificial ID (an employee number) assigned by the database, and a
natural ID, representing a manually assigned badge number.

Listing 6-35.  SimpleNaturalIdEmployee.java, Without Accessors, Mutators, or Ancillary Methods

package chapter06.naturalid;
 
import org.hibernate.annotations.NaturalId;
 
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
 
@Entity
public class SimpleNaturalIdEmployee {

16Note that there are different views of this. Most anecdotal data would suggest artificial keys as primary keys, because they’re short
and immutable by nature; however, you can find many who advocate natural keys, because they naturally map to the data model
instead of adding to it. With that said, there are some data-oriented applications (data warehousing, for example) in which artificial
keys are advocated without opposition. With this in mind, the recommendation stands: use artificial keys. Your data is likely to be
warehoused at some point.
17The @UniqueConstraints annotation, mentioned earlier in this chapter, can do the same for a compound index. With that said,
we’re trying to look at a better way to do at least some ordering and indexing.

Chapter 6 ■ Mapping with Annotations

111

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @NaturalId
 Integer badge;
 String name;
 
 public SimpleNaturalIdEmployee() {
 }
}
 

The simple natural ID is declared by annotating a single field, badge, with @NaturalId.
To use the loader mechanism, you would get a reference through the use of Session.byId(), Session.

byNaturalId(), or Session.bySimpleNaturalId(), with the type of the entity being passed in. The simple loaders
(for the ID and for the simple natural ID) follow the same form: you acquire the loader, then either load or get the
reference, using the key value as a parameter. Let’s see how that would look, shown in Listing 6-36.

Listing 6-36:  A Simple Test Showing the Use of Both ID and Natural ID Loaders

@Test
public void testSimpleNaturalId() {
 Integer id = createSimpleEmployee("Sorhed", 5401).getId();
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 SimpleNaturalIdEmployee employee =
 (SimpleNaturalIdEmployee) session
 .byId(SimpleNaturalIdEmployee.class)
 .load(id);
 assertNotNull(employee);
 SimpleNaturalIdEmployee badgedEmployee =
 (SimpleNaturalIdEmployee) session
 .bySimpleNaturalId(SimpleNaturalIdEmployee.class)
 .load(5401);
 assertEquals(badgedEmployee, employee);
 
 tx.commit();
 session.close();
}
 
private SimpleNaturalIdEmployee createSimpleEmployee(String name, int badge) {
 SimpleNaturalIdEmployee employee = new SimpleNaturalIdEmployee();
 employee.setName(name);
 employee.setBadge(badge);
 
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 session.save(employee);
 tx.commit();
 session.close();
 return employee;
}
 

Chapter 6 ■ Mapping with Annotations

112

This code creates a new employee, with a specific badge number (5401). It then uses Session.
byId(SimpleNaturalIdEmployee.class) to acquire a loader for the entity, and calls load(id), with the ID returned
by the createSimpleEmployee() method.

There’s an interesting thing happening here, though, that the code demonstrates without it necessarily being
obvious from the code level.

When we run this method, we actually load two references–or else the test for equivalency wouldn’t make any
sense.18 However, if we look at the actual SQL executed in the Session, we see only one call being issued.

This is because Hibernate will cache the natural IDs in objects that it loads in a session. When we use the natural
ID in the load accessor, Hibernate looks in the session cache and finds that natural ID–and knows that this is the
reference for which we’re asking. It doesn’t need to go to the database because it already has it in memory.

This helps make the class more self-documenting, as well as slightly more efficient; it means that if we have a
data about a person from the real world, the API is more efficient. We can find a given employee by using a naturally
indexed badge number instead of relying on other indexes, even if at the database level the other indexes do come
into play.

An entity with a compound natural ID merely has more fields annotated with @NaturalId. Let’s create an
employee for whom a section and department are a natural ID,19 as shown in Listing 6-37.

Listing 6-37.  An Entity with a Compound Natural ID

package chapter06.naturalid;
 
import org.hibernate.annotations.NaturalId;
 
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
 
@Entity
public class Employee {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @NaturalId
 Integer section;
 @NaturalId
 Integer department;
 String name;
 
 public Employee() {
 }
 
 // accessors and mutators removed for brevity
}
 

18Let’s assume that we usually make sense.
19In the previous footnote, we said that we usually make sense. This is a good example of when we really don’t; this is horribly
contrived and would earn a solid scolding in an actual project. With that said, the code works and is fairly demonstrative of
the concept.

Chapter 6 ■ Mapping with Annotations

113

Next, let’s look at a test that demonstrates the use of the natural ID loader, shown in Listing 6-38.

Listing 6-38.  The Natural ID Loader in Action

@Test
public void testLoadByNaturalId() {
 Employee initial=createEmployee("Arrowroot", 11, 291);
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Employee arrowroot = (Employee) session
 .byNaturalId(Employee.class)
 .using("section", 11)
 .using("department", 291)
 .load();
 assertNotNull(arrowroot);
 assertEquals(initial, arrowroot);
 
 tx.commit();
 session.close();
}
 
private Employee createEmployee(String name, int section, int department) {
 Employee employee = new Employee();
 employee.setName(name);
 employee.setDepartment(department);
 employee.setSection(section);
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 session.save(employee);
 tx.commit();
 session.close();
 return employee;
}
 

This is very similar to our previous test for natural ID usage: we create an employee, and then search for the ID.
The object returned by Session.byNaturalId() has a using() method that takes a field name and the field value,
as opposed to using a single reference for the identifier. If we don’t include every field making up the natural ID,
we’ll get an exception.

Note that we’re using the load() method; if the natural ID is not present in the database, load() will return a
signal value of null.

Now let’s look at another test in Listing 6-39. This one, which uses getReference(), will throw an exception if the
ID isn’t present, so we don’t need the check for null.

Listing 6-39.  A Test that Uses getReference() Instead of load()

@Test
public void testGetByNaturalId() {
 Employee initial = createEmployee("Eorwax", 11, 292);
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 

Chapter 6 ■ Mapping with Annotations

114

 Employee eorwax = (Employee) session
 .byNaturalId(Employee.class)
 .using("section", 11)
 .using("department", 292)
 .getReference();
 assertEquals(initial, eorwax);
 
 tx.commit();
 session.close();
} 

Summary
In this chapter, we used JPA 2 annotations to add metadata to our POJOs for Hibernate, and we looked at some
Hibernate-specific annotations that can enhance these at the cost of reduced portability.

In the next chapter, we’re going to discuss JPA configuration for Hibernate, more of the object lifecycle, and data
validation.

115

Chapter 7

JPA Integration and Lifecycle Events

Hibernate provides a number of capabilities beyond the simple “native Hibernate API.” In this chapter, we are going
to discuss using the standard JPA configuration resource, Hibernate’s object validation facilities, and object lifecycle
events—along with a few other tricks.

The Java Persistence Architecture
The Java Persistence Architecture, or JPA, is a standard approved by the Java Community Process, with input from
representatives of a number of projects and vendors. It was created as part of a new Enterprise Java specification,
largely because Entity Beans—the prior standard for enterprise persistence—were difficult to write and use, and even
more difficult to use well.

Hibernate was represented in the community team that created JPA, and it’s fair to say that the JPA specification
bears a strong resemblance to Hibernate’s API; and Hibernate has integrated many JPA practices itself, as the previous
chapter on mapping shows. (Most of the mapping features and annotations are part of the JPA specification; now, the
native Hibernate versions of those annotations are available but rarely used in practice.1)

Hibernate provides an implementation of the JPA specification. Therefore, you can use JPA directly, with a
JPA-specific configuration file, and acquire an EntityManager instead of a Session.

There are a few reasons you might want to do this. For one thing, JPA is a standard, which means that code that
conforms to the standard is generally portable, allowing for differences among varying implementations. You can
use Hibernate for development, for example, and for production you could deploy into an application server that
provides EclipseLink instead. (The opposite applies as well: you could develop with EclipseLink and deploy into an
architecture that uses Hibernate.)

Another reason is the Java EE specification itself. Java EE containers are required to provide JPA, which means
the container can manage and profile resources; leveraging a non-JPA configuration puts a larger burden on the
application developer. However, it’s worth pointing out that one can use Hibernate as the JPA implementation even
in a container that defaults to a different JPA implementation, providing you the best of both worlds: a JPA standard
for configuration (which has its own benefits, in some slight ways), and Hibernate’s excellent performance and
expanded featureset.2

1Statements like this (“X is rarely used in practice”) are almost always anecdotal. This one certainly is; you can probably find
projects that fanatically rely on the Hibernate-specific annotations. The anecdote stands.
2The mechanism for using Hibernate in an environment where it’s not the default provider is fairly simple: in the persistence.xml,
add <provider>org.hibernate.ejb.HibernatePersistence</provider>. You’ll still want to look up how to install Hibernate
into your application server, however.

Chapter 7 ■ JPA Integration and Lifecycle Events

116

So let’s look at what we would need to do to support the JPA configuration file, as opposed to the Hibernate
configuration process. We’re going to walk through a series of simple steps to give us a working toolkit. They are:

	 1. 	 Add Hibernate’s JPA support to the util project, as a nontransitive dependency.3

	 2. 	 Add a JPASessionUtil class, as a close analog to the SessionUtil utility. Much as
SessionUtil provides a Session instance, JPASessionUtil will provide an EntityManager
instance, and we will also add a mechanism by which it will provide a Hibernate Session;
this way, we can use the JPA configuration with the Hibernate API.

	 3. 	 Write a JPA configuration and a test to show functional operation; this will give us an idea
of some of the differences between JPA and Hibernate.

The Project Object Model
Let’s look at the project object model for the util project, which will tell Maven what dependencies to include; see Listing 7-1.

Listing 7-1.  The Util Module’s pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <artifactId>hibernate-parent</artifactId>
 <groupId>com.redhat.osas.books.hibernate</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>util</artifactId>
 
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-c3p0</artifactId>
 <version>[4.2.6,4.2.9)</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>[4.2.6,4.2.9)</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.mchange</groupId>
 <artifactId>c3p0</artifactId>
 <version>[0.9.2.1,)</version>
 </dependency>
 </dependencies>
</project> 

3We want a nontransitive dependency because we don’t want to force all of the modules that use the util project to include JPA support.

Chapter 7 ■ JPA Integration and Lifecycle Events

117

This adds the hibernate-entitymanager dependency to the previous version of the pom.xml. That is all we really
need to do; we can now use JPA in this project. The dependency is scoped as “test” because, while we want it to be
available to the compile and testing phases of the util project, we don’t want it to be automatically (or transitively)
included in modules that depend on this library.

The JPASessionUtil class
JPA uses the concept of “persistence units,” which are named configurations. Every persistence configuration will
have a unique name within a given deployment. Because the persistence units are named, we need to factor in the
possibility of multiple persistence units for our utility class, as shown in Listing 7-2.

Listing 7-2.  Our JPASessionUtil Class

package com.redhat.osas.jpa.util;
 
import org.hibernate.Session;
 
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import java.util.Map;
import java.util.HashMap;
 
public class JPASessionUtil {
 static Map<String, EntityManagerFactory> persistenceUnits = new HashMap<>();
 /**
 Returns a JPA EntityManager given a valid persistence unit name.
 */
 public static synchronized EntityManager getEntityManager(String persistenceUnitName) {
 // have we already created this factory? If not, create it and save it.
 if (persistenceUnits.get(persistenceUnitName) == null) {
 persistenceUnits.put(persistenceUnitName,
 Persistence.createEntityManagerFactory(persistenceUnitName));
 }
 return persistenceUnits.get(persistenceUnitName)
 .createEntityManager();
 }
 /**
 Returns the underlying Hibernate Session object for a valid JPA
 Persistence unit.
 */
 public static Session getSession(String persistenceUnitName) {
 return getEntityManager(persistenceUnitName).unwrap(Session.class);
 }
}
 

In this class, we’re setting up a way to reuse EntityManagerFactory instances, looked up by name. If no
EntityManagerFactory exists for a given name, we’ll create it and save it. If no persistence unit exists for a given name,
a javax.persistence.PersistenceException will be thrown.

Chapter 7 ■ JPA Integration and Lifecycle Events

118

The getSession() method provides access to the underlying implementation of the EntityManager.
For Hibernate, this will be org.hibernate.Session; if the actual implementation isn’t Hibernate, then you’ll have a
runtime exception thrown.

All this is useful, but let’s get around to using it. Let’s write some tests to show how this class should be used.

Testing JPASessionUtil
Our first tests simply try to acquire resources: one set of resources that are properly configured,4 and another set of
resources that do not. This will allow us to validate that the utility returns what it’s expected to return, even when
badly configured. Listing 7-3 shows the code for our first suite of tests; we’re going to follow that up with a JPA
configuration that these tests will use.

Listing 7-3.  Testing Simple Resource Acquisition

@Test
public void getEntityManager() {
 EntityManager em = JPASessionUtil.getEntityManager("utiljpa");
 em.close();
}
 
@Test(expectedExceptions = {javax.persistence.PersistenceException.class})
public void nonexistentEntityManagerName() {
 JPASessionUtil.getEntityManager("nonexistent");
 fail("We shouldn't be able to acquire an EntityManager here");
}
 
@Test
public void getSession() {
 Session session = JPASessionUtil.getSession("utiljpa");
 session.close();
}
 
@Test(expectedExceptions = {javax.persistence.PersistenceException.class})
public void nonexistentSessionName() {
 JPASessionUtil.getSession("nonexistent");
 fail("We shouldn't be able to acquire a Session here");
}
 

You’ll notice that the nonexistent tests do something odd: they declare expected Exceptions. Ordinarily,
exceptions mean that a test has failed; in this case, we’re saying that the test has not failed if a matching exception
is thrown.

However, “not failing” isn’t the same as “passing.” For these tests, we actually want to fail unless we get an
exception; therefore, we try to acquire the resource, and call fail() —and an exception will exit the method before
fail() is executed, which means the test passes.

4Including the Platonic quality of, well, “existence.” Each of us can decide on our own if this is a compliment to The Republic or not.

Chapter 7 ■ JPA Integration and Lifecycle Events

119

However, none of these tests will pass unless we include a JPA configuration file, which is placed in the classpath
at /META-INF/persistence.xml, as shown in Listing 7-4:

Listing 7-4.  util/src/test/resources/META-INF/persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="utiljpa">
 <!-- This next node should be included for use of the Hibernate provider in
 A Java EE environment in which Hibernate is not the default. -->
 <!--
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 -->
 <properties>
 <!-- Properties prefixed with “javax” are part of the JPA specification.
 Hibernate will use them as it can.
 Properties prefixed with “hibernate” are passed to the Hibernate
 provider, and map to the standard hibernate properties.
 -->
 <property name="javax.persistence.jdbc.driver"
 value="org.hsqldb.jdbcDriver"/>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:hsqldb:utiljpa;shutdown=true"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.show_sql" value="true"/>
 </properties>
 </persistence-unit>
</persistence>
 

With this file created, we have a valid persistence unit, named “utiljpa”; we’re now able to run our four tests.
With their passing, you can see that JPASessionUtil returns an instance of EntityManager and Session when
requested, and throws an exception when an invalid request is made.

However, our tests don’t actually show the use of the persistence engine at all. Let’s create an entity and a few
tests that show some operations on it.

Before we do that, though, let’s talk about boilerplate code.5 So far, when we’ve seen code listings for entities,
we usually have seen only part of the code: the class declaration (with an @Entity annotation), and a few attributes.
We’ve been presuming that appropriate implementations of toString(), equals(), hashCode(), and various
accessors and mutators have been present. This is a useful approach because usually such things are routine, and they
are often automatically generated by a development environment.

However, there’s a library that allows us to annotate an object simply and cleanly, such that we can display all
of the code associated with the entity, with all of the boilerplate code removed even from the source. That library is
called “Lombok,” from Project Lombok (http://projectlombok.org).

5Specifically, let’s talk about boilerplate code and how to avoid having to write so much of it.

http://projectlombok.org/

Chapter 7 ■ JPA Integration and Lifecycle Events

120

Lombok provides a number of annotations that can generate all of the boilerplated methods we just mentioned,
and more: toString(), equals(), hashCode(), mutators, accessors, and a no-argument constructor, among many
others. Lombok is a compile-time dependency; we don’t need the library to exist in anything that depends on the
generated classes.

To use Lombok, all we need to do is add another nontransitive dependency to our pom.xml.
 
<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>[1.12.2,)</version>
 <scope>test</scope>
</dependency>
 

Now, we can write an entity with this full source code, as shown in Listing 7-5:

Listing 7-5.  A Lombok-annotated Entity for Our JPA test

package com.redhat.osas.util.model;
 
import lombok.*;
 
import javax.persistence.*;
 
@Entity
@NoArgsConstructor
@ToString
@EqualsAndHashCode
public class Thing {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Getter
 @Setter
 Integer id;
 @Getter
 @Setter
 @Column
 String name;
}
 

The annotations tell Lombok what to generate; @NoArgsConstructor, @ToString, and @EqualsAndHashCode all
apply to the class as a whole, and @Getter and @Setter apply to individual attributes, generating the appropriate
utility methods, accessors, mutators, and constructors. The persistence annotations coexist peacefully with the
Lombok annotations, such that this is our entire class’s source, with no code elided for brevity’s sake.

Of course, the proof’s in the tests that use this class, as we see in Listing 7-6:

Listing 7-6.  More Tests for JPASessionUtil

@Test
public void testEntityManager() {
 EntityManager em = JPASessionUtil.getEntityManager("utiljpa");
 em.getTransaction().begin();
 Thing t = new Thing();

Chapter 7 ■ JPA Integration and Lifecycle Events

121

 t.setName("Thing 1");
 em.persist(t);
 em.getTransaction().commit();
 em.close();
 
 em = JPASessionUtil.getEntityManager("utiljpa");
 em.getTransaction().begin();
 Query q = em.createQuery("from Thing t where t.name=:name");
 q.setParameter("name", "Thing 1");
 Thing result = (Thing) q.getSingleResult();
 assertNotNull(result);
 assertEquals(result, t);
 em.remove(result);
 em.getTransaction().commit();
 em.close();
}
 
@Test
public void testSession() {
 Session session = JPASessionUtil.getSession("utiljpa");
 Transaction tx = session.beginTransaction();
 Thing t = new Thing();
 t.setName("Thing 2");
 session.persist(t);
 tx.commit();
 session.close();
 
 session = JPASessionUtil.getSession("utiljpa");
 tx = session.beginTransaction();
 org.hibernate.Query q =
 session.createQuery("from Thing t where t.name=:name");
 q.setParameter("name", "Thing 2");
 Thing result = (Thing) q.uniqueResult();
 assertNotNull(result);
 assertEquals(result, t);
 session.delete(result);
 tx.commit();
 session.close();
}
 

Here, we see two functionally equivalent tests. In each one, we have two operations. In each, we acquire a class
that offers persistence,6 start a transaction, and persist a Thing entity, then commit the transaction; then we repeat the
process, querying and then deleting the entity. The only difference between the two methods is the persistence API
used; the testEntityManager() test uses JPA, and the testSession() uses the Hibernate API.

Most differences are fairly simple: instead of Session.delete(), JPA uses EntityManager.remove(), for example.
The query types are different, although they are still functionally equivalent. Probably the most relevant change
is in the usage of transactions, and that’s been entirely voluntary. You could, for example, use the block shown in
Listing 7-7 in the testSession() method, which makes it almost entirely identical to the JPA version:

6Something your author calls a “persistence actor,” as in “something that acts on persistence,” but that sounds irrepressibly stuffy.

Chapter 7 ■ JPA Integration and Lifecycle Events

122

Listing 7-7.  Using Some of the EntityManager’s API with the Hibernate Session

Session session = JPASessionUtil.getSession("utiljpa");
session.getTransaction().begin();
Thing t = new Thing();
t.setName("Thing 2");
session.persist(t);
session.getTransaction().commit();
session.close();
 

It’s important to note, however, that Session and EntityManager are similar but not identical; while Listing 7-7
would work if you were using EntityManager instead of Session, even in the small block of testing code Session uses
org.hibernate.Query instead of the javax.persistence.Query.

So which one should you use? Well, it depends on what you need. If you need JPA compatibility, then you’ll have
to restrict yourself to the EntityManager and its capabilities; otherwise, use the one you prefer. The Hibernate API
provides some fine-tuning features that JPA cannot; if you want to use them, you will want to use Session, but apart
from that, the two APIs will be equivalent for most intents and purposes.

Lifecycle Events
The Java Persistence Architecture exposes certain events to a data model. These events allow the developer to
implement additional functionality that the architecture itself might not easily offer. The events are specified through
the use of annotations, and the event handlers can be embedded in an entity directly, or can be held in a separate
entity listener class.

You could use the lifecycle in a few different ways: you could manually update a time stamp, for example, or
perhaps you could write audit data, initialize transient data, or validate data before persisting it.

There are lifecycle events corresponding to object creation, reads, updates, and deletes. For each event type that
makes sense in a persistence context, there are callback hooks for before and after the event occurs.

The event handlers are simple methods corresponding to one of seven lifecycle phases.

Table 7-1.  The Entity Lifecycle Annotations

Lifecycle Annotation When Methods Run

@PrePersist Executes before the data is actually inserted into a database table. It is not used
when an object exists in the database and an update occurs.

@PostPersist Executes after the data is written to a database table.

@PreUpdate Executes when a managed object is updated. This annotation is not used when an
object is first persisted to a database.

@PostUpdate Executes after an update for managed objects is written to the database.

@PreRemove Executes before a managed object’s data is removed from the database.

@PostRemove Executes after a managed object’s data is removed from the database.

@PostLoad Executes after a managed object’s data has been loaded from the database and the
object has been initialized.

Listing 7-8 offers an entity, descriptively named “LifecycleThing,” which offers hooks for the various lifecycle
events. As with our earlier classes, this uses Lombok to hide the boilerplate, such that this is the actual entire source
code listing.

Chapter 7 ■ JPA Integration and Lifecycle Events

123

Listing 7-8.  An Entity with Hooks for Every Available Lifecycle Event

package chapter07.lifecycle;
 
import lombok.*;
import org.jboss.logging.Logger;
 
import javax.persistence.*;
import java.util.BitSet;
 
@Entity
@ToString
@NoArgsConstructor
@EqualsAndHashCode
public class LifecycleThing {
 static Logger logger = Logger.getLogger(LifecycleThing.class);
 static BitSet lifecycleCalls = new BitSet();
 
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Getter
 @Setter
 Integer id;
 @Getter
 @Setter
 @Column
 String name;
 
 @PostLoad
 public void postLoad() {
 log("postLoad", 0);
 }
 
 @PrePersist
 public void prePersist() {
 log("prePersist", 1);
 }
 
 @PostPersist
 public void postPersist() {
 log("postPersist", 2);
 }
 
 @PreUpdate
 public void preUpdate() {
 log("preUpdate", 3);
 }
 
 @PostUpdate
 public void postUpdate() {
 log("postUpdate", 4);
 }
 

Chapter 7 ■ JPA Integration and Lifecycle Events

124

 @PreRemove
 public void preRemove() {
 log("preRemove", 5);
 }
 
 @PostRemove
 public void postRemove() {
 log("postRemove", 6);
 }
 
 private void log(String method, int index) {
 lifecycleCalls.set(index, true);
 logger.errorf("%12s: %s (%s)", method, this.getClass()
 .getSimpleName(), this.toString());
 }
}
 

This class keeps track of the lifecycle calls made in a BitSet. When a lifecycle event occurs, it sets a bit in the
BitSet; a test can (and will) examine the BitSet to make sure there are no gaps, which will give us a clearer picture of
whether we have successfully executed each callback.

We could, of course, just use our eyes and examine the results visually. This works, of course (and is the backbone
of most user testing, sadly), but we want objective, repeatable, and more verifiable results.

Our lifecycle test is shown in Listing 7-9. All it needs to do is create, read, update, and remove an entity; that will
fire off each of our event handlers, and we can see the sequencing (if we watch the application logs) and have the
test validate that no tests have been skipped (because it checks the BitSet). Along the way, we’ll see the use of the
alternative loader mechanism that we discussed near the end of Chapter 6.7

Listing 7-9.  The Lifecycle Test Driver

package chapter07.lifecycle;
 
import com.redhat.osas.jpa.util.JPASessionUtil;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.testng.Reporter;
import org.testng.annotations.Test;
 
import static org.testng.Assert.*;
 
public class LifecycleTest {
 @Test
 public void testLifecycle() {
 Integer id;
 Session session = JPASessionUtil.getSession("chapter07");
 
 Transaction tx = session.beginTransaction();
 LifecycleThing thing1 = new LifecycleThing();
 thing1.setName("Thing 1");
 

7The “alternative loader mechanism” refers to the use of Session.byId().load().

Chapter 7 ■ JPA Integration and Lifecycle Events

125

 session.save(thing1);
 id = thing1.getId();
 
 tx.commit();
 session.close();
 
 session = JPASessionUtil.getSession("chapter07");
 tx = session.beginTransaction();
 LifecycleThing thing2 = (LifecycleThing) session
 .byId(LifecycleThing.class)
 .load(-1);
 assertNull(thing2);
 
 thing2 = (LifecycleThing) session.byId(LifecycleThing.class)
 .getReference(id);
 assertNotNull(thing2);
 assertEquals(thing1, thing2);
 
 thing2.setName("Thing 2");
 
 tx.commit();
 session.close();
 
 session = JPASessionUtil.getSession("chapter07");
 tx = session.beginTransaction();
 LifecycleThing thing3 = (LifecycleThing) session
 .byId(LifecycleThing.class)
 .getReference(id);
 assertNotNull(thing3);
 assertEquals(thing2, thing3);
 
 session.delete(thing3);
 
 tx.commit();
 session.close();
 assertEquals(LifecycleThing.lifecycleCalls.nextClearBit(0), 7);
 }
}
 

There are three sections to this test, each using its own session and transaction. The first creates a
LifecycleThing and persists it. The second attempts to load a nonexistent entity, and then an existing entity; it
then updates the existing entity. The third section loads that same entity, and removes it. This means we have every
lifecycle event in an object represented: creation, reads, updates, and deletes.

For each lifecycle event, a log message is produced (at too high a priority, realistically; it’s just set this way to force
output without extra configuration). At the same time, the internal BitSet is modified to track whether the lifecycle
methods have been called; at the end of the test, the BitSet is checked to see that every bit up through 7 has been set.
If the value is correct, then we know that every lifecycle method has been called at least once.

The result should be fairly obvious: in this case, prePersist() is called before the persistence takes place, and
postPersist() runs after the persistence has occurred.

Chapter 7 ■ JPA Integration and Lifecycle Events

126

Exceptions can be tricky in lifecycle handlers. If an exception occurs in a lifecycle listener before the event—that
is, @PrePersist, @PreUpdate, @PreRemove—it will get passed to the caller for handling. The transaction, however,
remains valid. With that said, you will invalidate the transaction if an error occurs in the @PostPersist, @PostUpdate,
@PostRemove, or @PostLoad code.

An exception in a postloading operation would be . . . interesting to have to handle. (It would indicate that the
data in the database was invalid from the object’s perspective.) It would probably have to be handled in the database
itself, and you’d be well advised to avoid this possibility at all costs.

External Entity Listeners
The greatest weakness of the LifecycleThing (apart from the fact that it’s a class whose sole purpose is illustrating the
persistence lifecycle) is that all of the event listeners are embedded in the class itself. We can, instead, designate an
external class as an entity listener, with the same annotations, through the use of the @EntityListeners annotation.
Listing 7-10 shows a simple entity with an external entity listener, with all of the boilerplate removed.

Listing 7-10.  An Entity with an External Event Listener

@Entity
@EntityListeners({UserAccountListener.class})
public class UserAccount {
 Integer id;
 String name;
 Integer salt;
 Integer passwordHash;
 @Transient
 String password;
}
 

Now, Listing 7-11 shows what a simple external listener might look like:

Listing 7-11.  An External Entity Listener

public class UserAccountListener {
 @PrePersist
 void setPasswordHash(Object o) {
 UserAccount ua = (UserAccount) o;
 if (ua.getSalt() == null || ua.getSalt() == 0) {
 ua.setSalt((int) (Math.random() * 65535));
 }
 ua.setPasswordHash(
 ua.getPassword().hashCode() * ua.getSalt()
);
 }
}
 

When the UserAccount is persisted, the UserAccountListener will set a hashed password, multiplied by a
random salt; presumably, a user-supplied password could be tested by applying the same salt.8 (This is not secure, by
any means. Don’t use this code as an example of security.)

8For more information on cryptographic salt, see http://en.wikipedia.org/wiki/Salt_(cryptography).

http://en.wikipedia.org/wiki/Salt_(cryptography)

Chapter 7 ■ JPA Integration and Lifecycle Events

127

In this case, the listener only watches for one object type; it does no error checking. (It will throw an error if the
incorrect type is passed to it.)

Event listeners factor in conveniently anywhere where you actually need access to the persistence lifecycle,
especially when considering data validation.

Data Validation
Hibernate also offers a validation API, presently the reference implementation of Java’s Bean Validation specification,
version 1.1.9 The Bean Validation specification allows your data model to enforce its own constraints, as opposed to
the coders having to add their own data value checks throughout the application code.

Model-based validation should have obvious value: it means that you are able to trust the state of your model, no
matter at what stage you’re accessing data.

Consider the situation where data validation is applied in a web service; accessing that data apart from the web
service might not have the validation applied, which means that you can trust the data accessed via the web service
more than you can trust it if it’s accessed from other environments. This is a bad thing.

Note that we already have some validation capabilities, as part of the JPA specification itself. We can, for example,
specify that columns’ values are unique (via @Id or @Column(unique=true); we can also specify that columns not be empty
via @Column(nullable=false). Through the magic of the entity lifecycle, we can enforce data validation through callbacks
and external listeners as well,10 and it’s worth noting that in some cases this is still a valuable, workable approach.

So let’s see what we can do to try out some more powerful validation capabilities with Hibernate.
The first step is to add Hibernate Validator to our project. If you’re using Validator in a Java SE project (a

standalone application, for example, like our tests), then you need to add four dependencies; if you’re deploying your
application into a Java EE application server like Wildfly, you only need to add the Validator dependency itself.

The four dependencies for Maven look like what is shown in Listing 7-12:

Listing 7-12.  Dependency Additions to Enable the Use of the Validator API

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.1.0.Alpha1</version>
</dependency>
<!-- these are only necessary if not in a Java EE environment -->
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator-cdi</artifactId>
 <version>5.1.0.Alpha1</version>
</dependency>
<dependency>
 <groupId>javax.el</groupId>
 <artifactId>javax.el-api</artifactId>
 <version>2.2.4</version>
</dependency>

 9See http://jcp.org/en/jsr/detail?id=349 for more details on this specification.
10A callback would be a validation applied through a lifecycle method; you might test a value in a method annotated with
@PrePersist, for example. An external entity listener would do the same sort of thing.

http://jcp.org/en/jsr/detail?id=349

Chapter 7 ■ JPA Integration and Lifecycle Events

128

<dependency>
 <groupId>org.glassfish.web</groupId>
 <artifactId>javax.el</artifactId>
 <version>2.2.4</version>
</dependency>
 

Now let’s look at a class and a test that uses validation to ensure the correctness of our data. As we’re using
Lombok again, Listing 7-13 is the entire source code:

Listing 7-13.  An Entity Using Hibernate Validator

package chapter07.validated;
 
import lombok.*;
import lombok.experimental.Builder;
 
import javax.persistence.*;
import javax.validation.constraints.Min;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
 
@Entity
@EqualsAndHashCode
@ToString
@Builder
@NoArgsConstructor
@AllArgsConstructor(access = AccessLevel.PACKAGE)
public class ValidatedSimplePerson {
 @Id
 @Getter
 @Setter
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Long id;
 @Column
 @NotNull
 @Size(min = 2, max = 60)
 @Getter
 @Setter
 String fname;
 @Column
 @NotNull
 @Size(min = 2, max = 60)
 @Getter
 @Setter
 String lname;
 @Column
 @Min(value = 13)
 @Getter
 @Setter
 Integer age;
}
 

Chapter 7 ■ JPA Integration and Lifecycle Events

129

We’ve actually added some things to this entity via Lombok. The first thing we should look into is the
@AllArgsConstructor annotation, which creates a package-visible constructor with all attributes as parameters;
it’s as if we had created ValidatedSimplePerson(Long id, String fname, String lname, Integer age). We set
it to package-visible because we don’t want any other classes using it, mostly because we’re using another Lombok
annotation, @Builder.

The @Builder annotation creates an inner class, accessible via a builder() method.11 This inner class uses
a fluent API12 to provide a convenient way to construct classes; with the builder, we can use the following code to
construct a ValidatedSimplePerson:
 
ValidatedSimplePerson person=ValidatedSimplePerson.builder()
 .age(15)
 .fname("Johnny")
 .lname("McYoungster").build();
 

Now let’s look at the validation annotations we’re using, and why. It’s worth noting that we’re not using all of
the annotations Validator makes available to us–there are more than 25 currently documented, not counting the
possibility of custom validators. These are just some of the validation annotations in common use.

The first one that stands out is @NotNull, used on the fname attribute. This is an analog to the @Column(nullable=false)
annotation we’ve mentioned earlier, but is applied at a different point in the persistence lifecycle; if @NotNull is used,
the column will still be set the same way (to not allow null values), but the validation occurs before persistence. If we
use @Column(nullable=false), the validation occurs in the database, and gives us a database constraint violation
rather than a validation failure—which is a very slight semantic difference, but a difference nonetheless.

@Size can partially be emulated by using @Column(length=60), but @Column has no way to enforce minimum size
constraints, and again, the validation phase takes place before the persistence phase.

@Min(value=13) specifies that the integral value has a minimum value, as one might expect; there’s a
corresponding @Max annotation for maximum values.

One interesting thing about each of these is that they can actually affect the database definition.13 @Min and @Max,
for example, add table constraints if the database is able to support them, and @NotNull enforces the constraint both
in code and at the database level. @Size will assign a maximum size to a database column, if the maximum size is
given; minimum size isn’t something the database can normally enforce.

Let’s see what some of this looks like, in a test. What we’ll do is write a series of objects into a Hibernate session,
most of which will fail validation in some way. The actual persistence mechanism sounds like something for which
we can write a method, so without further ado,14 let’s look at Listing 7-14 for the entire set of tests so we can see how
validation is applied.

Listing 7-14.  Testing Validation

private ValidatedSimplePerson persist(ValidatedSimplePerson person) {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 session.persist(person);
 tx.commit();
 session.close();
 return person;
}
 

11As with most things, there’s a limitation. Lombok cannot generate builders that are aware of a class hierarchy; this is caused by how
Lombok works and is very difficult to get around.
12See http://en.wikipedia.org/wiki/Fluent_interface for more information on what a Fluent API is and what it can look like.
13The Validator documentation calls the level of effect on the database “Hibernate metadata impact,” such that validations of which the
database is unaware have no metadata impact, but validations like @NotNull are described as meaning “Column(s) are not nullable.”
14Does anyone like lots of ado?

http://en.wikipedia.org/wiki/Fluent_interface

Chapter 7 ■ JPA Integration and Lifecycle Events

130

@Test
public void createValidPerson() {
 persist(ValidatedSimplePerson.builder()
 .age(15)
 .fname("Johnny")
 .lname("McYoungster").build());
}
 
@Test(expectedExceptions = ConstraintViolationException.class)
public void createValidatedUnderagePerson() {
 persist(ValidatedSimplePerson.builder()
 .age(12)
 .fname("Johnny")
 .lname("McYoungster").build());
 fail("Should have failed validation");
}
 
@Test(expectedExceptions = ConstraintViolationException.class)
public void createValidatedPoorFNamePerson2() {
 persist(ValidatedSimplePerson.builder()
 .age(14)
 .fname("J")
 .lname("McYoungster2").build());
 fail("Should have failed validation");
}
 
@Test(expectedExceptions = ConstraintViolationException.class)
public void createValidatedNoFNamePerson() {
 persist(ValidatedSimplePerson.builder()
 .age(14)
 .lname("McYoungster2").build());
 fail("Should have failed validation");
}
 

Our first method in this listing—persist()—exercises the persistence cycle, to save code. Our test methods will
create an object and pass it to this to execute the validation lifecycle.

Our four other methods create entities that match various single criteria: a valid entity, an entity whose fname is
too short, an entity whose lname is too short, and an entity that’s underage. In the case of the tests where we expect
validation failures, we mark the methods as accepting an exception- and failing if the persist() method executes
successfully. This works for us since we expect the persist() method to fail in these cases.

One thing you might notice, though, is that we have validations that encompass only single attributes. We can
use the entity lifecycle to create our own custom validations, but Validator allows us to create our own validation
annotations—including single-field validations (as we’ve seen used) and class-level validations.

Let’s create a coordinate entity—and let’s use, for the sake of example, a validation that ensures that a valid
Coordinate isn’t allowed to be in quadrant III in the Cartesian quadrant system. (Coordinates in quadrant III have
negative x- and y- attributes.) Single-field validations wouldn’t work here, because -5 is valid as an x-coordinate, as
long as the y-coordinate isn’t negative as well.

Chapter 7 ■ JPA Integration and Lifecycle Events

131

We actually have a number of options we can choose to build the validation. The most flexible option is an
annotation that looks up the dependent fields—so a validation on X would contain a reference to Y and the
attendant acceptable criteria, and vice versa. With that said, let’s choose a simpler option, one very specific to our
Coordinate class.15

First, let’s see the Coordinate class, as shown in Listing 7-15. Then we’ll create the tests that we expect to pass,
and last, we’ll take a look at the annotation that applies the validation. Much like the SimpleValidatedPerson entity,
we’re going to use Lombok fairly heavily to eliminate boilerplate code.

Listing 7-15.  A Coordinate Class, Roughly Analogous to java.awt.Point

package chapter07.validated;
 
import lombok.*;
import lombok.experimental.Builder;
 
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.validation.constraints.NotNull;
 
@Entity
@EqualsAndHashCode
@ToString
@NoArgsConstructor
@Builder
@AllArgsConstructor
@NoQuadrantIII
public class Coordinate {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Getter
 @Setter
 Integer id;
 @Getter
 @Setter
 @NotNull
 Integer x;
 @Getter
 @Setter
 @NotNull
 Integer y;
}
 

Note that this class won’t compile without our annotation being defined fully; that’s coming up very shortly. First,
though, let’s look at our test code (shown in Listing 7-16), which creates five Coordinates and persists them all; the
Coordinate objects that represent the origin as well as Quadrants I, II, and IV should all persist successfully, and the
Coordinate for Quadrant III should fail.

15If you’re interested in more detail about custom constraints—and you probably should be, if Validator interests you—see
http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/validator-customconstraints.html.

http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/validator-customconstraints.html

Chapter 7 ■ JPA Integration and Lifecycle Events

132

Listing 7-16.  The Coordinate Validation Test

private Coordinate persist(Coordinate entity) {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 session.persist(entity);
 tx.commit();
 session.close();
 return entity;
}
 
@DataProvider(name = "validCoordinates")
private Object[][] validCoordinates() {
 return new Object[][]{
 {1, 1},
 {1, 0},
 {-1, 1},
 {0, 1},
 {-1, 0},
 {0, -1},
 {1, -1},
 {0, 0}, // trailing comma is valid: see JLS 10.6
 };
}
 
@Test(dataProvider = "validCoordinates")
public void testValidCoordinate(Integer x, Integer y) {
 Coordinate c = Coordinate.builder().x(x).y(y).build();
 persist(c);
 // has passed validation, if we reach this point.
}
 
@Test(expectedExceptions = ConstraintViolationException.class)
public void testInvalidCoordinate() {
 testValidCoordinate(-1, -1);
 fail("Should have gotten a constraint violation");
}
 

Note the use of the @DataProvider annotation, which allows us to call testValidCoordinate() with a series of
values instead of having separate methods. (The tests are all represented separately, so that this selection of code will
result in nine separate tests being run, rather than two tests, one with a set of data.)

Now we finally get a chance to see the validation annotation itself. First, let’s look at the annotation in Listing 7-17,
and then we’ll see how the annotation is implemented, as shown in Listing 7-18.

Listing 7-17.  A Class-level Annotation

@Target({ElementType.TYPE, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = {QuadrantIIIValidator.class})
@Documented
public @interface NoQuadrantIII {
 String message() default "Failed quadrant III test";
 

Chapter 7 ■ JPA Integration and Lifecycle Events

133

 Class<?>[] groups() default {};
 
 Class<? extends Payload>[] payload() default {};
}
 

Listing 7-18.  The Validation Implementation, Used by Listing 7-17

public class QuadrantIIIValidator implements ConstraintValidator<NoQuadrantIII, Coordinate> {
 @Override
 public void initialize(NoQuadrantIII constraintAnnotation) {
 }
 
 @Override
 public boolean isValid(Coordinate value, ConstraintValidatorContext context) {
 return !(value.getX() < 0 && value.getY() < 0);
 }
}
 

With all of these classes as part of the compilation unit, we can now guarantee that any time Hibernate persists a
Coordinate the Coordinate will not be written to the database unless it’s not in Quadrant III.

A good exercise for the reader is to modify the annotation such that the coder can specify which quadrants
should be used for the validation.

Summary
This chapter has covered the use of the standard Java Persistence Architecture configuration file, as well as how to
access the persistence lifecycle and validation before persistence. It has also discussed the use of Lombok to help
avoid boilerplate code, and shown how to use a data provider in TestNG to eliminate extra test code, as well.

In the next chapter, we will look at how a client application communicates with the database representation of
the entities by using the Session object.

135

Chapter 8

Using the Session

You may have noticed that the Session object is the central point of access to Hibernate functionality. We will now
look at what it embodies and what that implies about how you should use it.

Sessions
From the examples in the earlier chapters, you will have noticed that a small number of classes dominate our
interactions with Hibernate. Of these, Session is the linchpin.

The Session object is used to create new database entities, read in objects from the database, update objects in
the database, and delete objects from the database.1 It allows you to manage the transaction boundaries of database
access, and (in a pinch) to obtain a traditional JDBC connection object so that you can do things to the database that
the Hibernate developers have not already considered in their existing design.

If you are familiar with the JDBC approach, it helps to think of a Session object as somewhat like a JDBC
connection, and the SessionFactory, which provides Session objects, as somewhat like a ConnectionPool, which
provides Connection objects. These similarities in roles are illustrated in Figure 8-1.

Figure 8-1.  Similarities between Hibernate and JDBC objects

SessionFactory objects are expensive objects; needlessly duplicating them will cause problems quickly, and
creating them is a relatively time-consuming process. Ideally, you should have a single SessionFactory for each
database your application will access.

1Almost everything, which makes it linchpin-like. Go figure.

Chapter 8 ■ Using the Session

136

SessionFactory objects are threadsafe, so it is not necessary to obtain one for each thread. However, you will
create numerous Session objects—at least one for each thread using Hibernate. Sessions in Hibernate are not
threadsafe, so sharing Session objects between threads could cause data loss or deadlock. In fact, you will often
want to create multiple Session instances even during the lifetime of a specific thread (see the “Threads” section for
concurrency issues).

Caution■■  T he analogy between a Hibernate session and a JDBC connection only goes so far. One important
difference is that if a Hibernate Session object throws an exception of any sort, you must discard it and obtain a new
one. This prevents data in the session’s cache from becoming inconsistent with the database.

We’ve already covered the core methods in Chapter 4, so we won’t discuss all the methods available to you
through the Session interface. For an exhaustive look at what’s available, you should read the API documentation on
the Hibernate website or in the Hibernate 4 download. Table 8-1 gives a broad overview of the various categories of
methods available to you; despite its length, this is not an exhaustive list.

Table 8-1.  Hibernate Method Summary

Method Description

Create, Read, Update, and Delete

save() Saves an object to the database. This should not be called for an object that
has already been saved to the database.

saveOrUpdate() Saves an object to the database, or updates the database if the object already
exists. This method is slightly less efficient than the save() method since it
may need to perform a SELECT statement to check whether the object already
exists, but it will not fail if the object has already been saved.

merge() Merges the fields of a nonpersistent object into the appropriate persistent
object (determined by ID). If no such object exists in the database, then one
is created and saved.

Persist Reassociates an object with the session so that changes made to the object
will be persisted.

Get Retrieves a specific object from the database by the object’s identifier.

getEntityName Retrieves the entity name (this will usually be the same as the fully qualified
class name of the POJO).

getIdentifier Determines the identifier—the object(s) representing the primary key—for a
specific object associated with the session.

load() Loads an object from the database by the object’s identifier (you should use
the get() methods if you are not certain that the object is in the database).

refresh() Refreshes the state of an associated object from the database.

update Updates the database with changes to an object.

delete() Deletes an object from the database.

(continued)

Chapter 8 ■ Using the Session

137

Table 8-1.  (continued)

Method Description

createFilter() Creates a filter (query) to narrow operations on the database.

enableFilter() Enables a named filter in queries produced by createFilter().

disableFilter() Disables a named filter.

getEnabledFilter() Retrieves a currently enabled filter object.

createQuery() Creates a Hibernate query to be applied to the database.

getNamedQuery() Retrieves a query from the mapping file.

cancelQuery() Cancels execution of any query currently in progress from another thread.

createCriteria() Creates a criteria object for narrowing search results.

Transactions and Locking

beginTransaction() Begins a transaction.

getTransaction() Retrieves the current transaction object. This does not return null when no
transaction is in progress. Instead, the active property of the returned object
is false.

lock() Gets a database lock for an object (or can be used like persist() if
LockMode.NONE is given).

Managing Resources

contains() Determines whether a specific object is associated with the database.

clear() Clears the session of all loaded instances and cancels any saves, updates, or
deletions that have not been completed. Retains any iterators that are in use.

evict() Disassociates an object from the session so that subsequent changes to it will
not be persisted.

flush() Flushes all pending changes into the database—all saves, updates, and
deletions will be carried out; essentially, this synchronizes the session with
the database.

isOpen() Determines whether the session has been closed.

isDirty() Determines whether the session is synchronized with the database.

getCacheMode() Determines the caching mode currently employed.

setCacheMode() Changes the caching mode currently employed.

getCurrentLockMode() Determines the locking mode currently employed.

setFlushMode() Determines the approach to flushing currently used. The options are to
flush after every operation, flush when needed, never flush, or flush only on
commit.

setReadOnly() Marks a persistent object as read-only (or as writable). There are minor
performance benefits from marking an object as read-only, but changes to its
state will be ignored until it is marked as writable.

(continued)

Chapter 8 ■ Using the Session

138

Transactions and Locking
Transactions and locking are intimately related: the locking techniques chosen to enforce a transaction can determine
both the performance and the likelihood of success of the transaction. The type of transaction selected dictates, to
some extent, the type of locking that it must use.

You are not obliged to use transactions if they do not suit your needs, but there is rarely a good reason to avoid
them. If you decide to avoid them, you will need to invoke the flush() method on the session at appropriate points to
ensure that your changes are persisted to the database.

Transactions
A transaction is a unit of work guaranteed to behave as if you have exclusive use of the database. Generally speaking,
if you wrap your work in a transaction, the behavior of other system users will not affect your data. A transaction can
be started, committed to write data to the database, or rolled back to remove all changes from the beginning onward
(usually as the result of an error). To properly complete an operation, you obtain a Transaction object from the
database (beginning the transaction) and manipulate the session as shown in the following code:
 
Session session = factory.openSession();
try {
 session.beginTransaction();
 
 // Normal session usage here...
 
 session.getTransaction().commit();
} catch (HibernateException e) {
 Transaction tx = session.getTransaction();
 if (tx.isActive()) tx.rollback();
} finally {
 session.close();
}
 
 
 

Method Description

close() Closes the session, and hence, the underlying database connection; releases
other resources (such as the cache). You must not perform operations on the
Session object after calling close().

getSessionFactory() Retrieves a reference to the SessionFactory object that created the current
Session instance.

The JDBC Connection

connection() Retrieves a reference to the underlying database connection.

disconnect() Disconnects the underlying database connection.

reconnect() Reconnects the underlying database connection.

isConnected() Determines whether the underlying database connection is connected.

Table 8-1.  (continued)

Chapter 8 ■ Using the Session

139

In the real world, it’s not actually desirable for all transactions to be fully ACID (see the sidebar entitled “The ACID
Tests”) because of the performance problems that this can cause.

Different database suppliers support and permit you, to a lesser or greater extent, to break the ACID rules, but the
degree of control over the isolation rule is actually mandated by the SQL-92 standard. There are important reasons
that you might want to break this rule, so both JDBC and Hibernate also make explicit allowances for it.

THE ACID TESTS

•	 Atomicity: A transaction should be all or nothing. If it fails to complete, the database will be left as
if none of the operations had ever been performed—this is known as a rollback.

•	 Consistency: A transaction should be incapable of breaking any rules defined for the database.
For example, foreign keys must be obeyed. If for some reason this is impossible, the transaction
will be rolled back.

•	 Isolation: The effects of the transaction will be completely invisible to all other transactions until
it has completed successfully. This guarantees that the transaction will always see the data in a
sensible state. For example, an update to a user’s address should only contain a correct address
(i.e., it will never have the house name for one location but the ZIP code for another); without this
rule, a transaction could easily see when another transaction had updated the first part but had
not yet completed.

•	 Durability: The data should be retained intact. If the system fails for any reason, it should always
be possible to retrieve the database up to the moment of the failure.

The isolation levels permitted by JDBC and Hibernate are listed in Table 8-2.

Table 8-2.  JDBC Isolation Levels

Level Name Transactional Behavior

0 None Anything is permitted; the database or driver does not support transactions.

1 Read Uncommitted Dirty, nonrepeatable, and phantom reads are permitted.

2 Read Committed Nonrepeatable reads and phantom reads are permitted.

4 Repeatable Read Phantom reads are permitted.

8 Serializable The rule must be obeyed absolutely.

A dirty read may see the in-progress changes of an uncommitted transaction. As with the isolation example
discussed in the preceding sidebar, it could see the wrong ZIP code for an address.

A nonrepeatable read sees different data for the same query. For example, it might determine a specific user’s ZIP
code at the beginning of the transaction and again at the end, and get a different answer both times without making
any updates.

A phantom read sees different numbers of rows for the same query. For example, it might see 100 users in the
database at the beginning of the query and 105 at the end without making any updates.

Hibernate treats the isolation as a global setting: you apply the configuration option hibernate.connection.
isolation in the usual manner, setting it to one of the values permitted in Table 8-2. This is not always ideal, however.
You will sometimes want to treat one particular transaction at a high level of isolation (usually Serializable), while
permitting lower degrees of isolation for others. To do so, you will need to obtain the JDBC connection directly,

Chapter 8 ■ Using the Session

140

alter the isolation level, begin the transaction, roll back or clean up the transaction as appropriate, and reset the
isolation level to its original value before releasing the connection for general usage. Hibernate does not provide
a more direct way to alter the isolation level of the connection in a localized way. The implementation of the
createUser() method, shown in Listing 8-1, demonstrates the additional complexity that the connection-specific
transaction isolation level involves.

Listing 8-1.  Using a Specific Isolation Level

public static void createUser(String username)
 throws HibernateException
{
 Session session = factory.openSession();
 int isolation = -1;
 try {
 isolation = session.connection().getTransactionIsolation();
 session.connection().setTransactionIsolation(
 Connection.TRANSACTION_SERIALIZABLE);
 session.beginTransaction();
 
 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);
 
 // Commit the transaction
 session.getTransaction().commit();
 } catch (SQLException e1) {
 rollback(session);
 throw new HibernateException(e1);
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // reset isolation
 reset(session,isolation);
 
 // Close the session
 close(session);
 }
}
 

Fortunately, the normal case for a transaction using the global isolation level is much simpler. We provide a more
standard implementation of the createUser() method for comparison in Listing 8-2.

Listing 8-2.  Using the Global (Default) Isolation Level

public static void createUser(String username) throws HibernateException {
 Session session = factory.openSession();
 try {
 session.beginTransaction();
 

Chapter 8 ■ Using the Session

141

 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);
 
 // Commit the transaction
 session.getTransaction().commit();
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // Close the session
 close(session);
 }
}

Locking
A database can conform to these various levels of isolation in a number of ways, and you will need a working
knowledge of locking to elicit the desired behavior and performance from your application in all circumstances.

To prevent simultaneous access to data, the database itself will acquire a lock on that data. This can be acquired
for the momentary operation on the data only, or it can be retained until the end of the transaction. The former is
called optimistic locking and the latter is called pessimistic locking.

The Read Uncommitted isolation level always acquires optimistic locks, whereas the Serializable isolation level
will only acquire pessimistic locks. Some databases offer a feature that allows you to append the FOR UPDATE query to
a select operation, which requires the database to acquire a pessimistic lock even in the lower isolation levels.

Hibernate provides some support for this feature when it is available, and takes it somewhat further by adding
facilities that describe additional degrees of isolation obtainable from Hibernate’s own cache.

The LockMode object controls this fine-grained isolation (see Table 8-3). It is only applicable to the get() methods,
so it is limited; however, when possible, it is preferable to the direct control of isolation mentioned previously.

Table 8-3.  Lock Modes

Mode Description

NONE Reads from the database only if the object is not available from the caches.

READ Reads from the database regardless of the contents of the caches.

UPGRADE Obtains a dialect-specific upgrade lock for the data to be accessed (if this is available from
your database).

UPGRADE_NOWAIT Behaves like UPGRADE, but when support is available from the database and dialect, the method
will fail with a locking exception immediately. Without this option, or on databases for which it
is not supported, the query must wait for a lock to be granted (or for a timeout to occur).

An additional lock mode, WRITE, is acquired by Hibernate automatically when it has written to a row within the
current transaction. This mode cannot be set explicitly, but calls to getLockMode may return it.

Having discussed locking in general, we need to touch on some of the problems that locks can cause.

Chapter 8 ■ Using the Session

142

Deadlocks
Even if you have not encountered a deadlock (sometimes given the rather sordid name of “deadly embrace”) in
databases, you have probably encountered the problem in multithreaded Java code. The problem arises from
similar origins.

Two threads of execution can get into a situation in which each is waiting for the other to release a resource that it
needs. The most common way to create this situation in a database is shown in Figure 8-2.

Figure 8-2.  The anatomy of a deadlock

Each thread obtains a lock on its table when the update begins. Each thread proceeds until the table held by
the other user is required. Neither thread can release the lock on its own table until the transaction completes—so
something has to give.

A deadlock can also occur when a single thread of execution is carrying out an equivalent sequence of operations
using two Session objects connected to the same database. In practice, the multiple-thread scenario is more common.

Fortunately, a database management system (DBMS) can detect this situation automatically, at which point
the transaction of one or more of the offending processes will be aborted by the database. The resulting deadlock
error will be received and handled by Hibernate as a normal HibernateException. Now you must roll back your
transaction, close the session, and then (optionally) try again.

Listing 8-3 demonstrates how four updates from a pair of sessions can cause a deadlock. If you look at the output
from the threads, you will see that one of them completes while the other fails, with a deadlock error.

Looking at the database after completion (shown in Listing 8-3), you will see that the test user has been replaced
with either jeff or dave in both tables (you will never see dave from one thread and jeff from the other). Though it is
not necessary here, because we close the session regardless, in a more extensive application it is important to ensure
that the session associated with a deadlock or any other Hibernate exception is closed and never used again, because
otherwise the cache may be left in a corrupted state.

It is worth building and running Listing 8-3 to ensure that you are familiar with the symptoms of a deadlock when
they occur.

Listing 8-3.  Code to Generate a Deadlock

package com.hibernatebook.session.deadlock;
 
import java.sql.Connection;
import java.sql.SQLException;
 

Chapter 8 ■ Using the Session

143

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
 
public class GenerateDeadlock {
 
 private static SessionFactory factory = new Configuration().configure()
 .buildSessionFactory();
 
 public static void createUser(String username) throws HibernateException {
 Session session = factory.openSession();
 try {
 session.beginTransaction();
 
 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);
 
 // Commit the transaction
 session.getTransaction().commit();
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // Close the session
 close(session);
 }
 }
 
 public static void reset(Session session, int isolation) {
 if (isolation >= 0) {
 try {
 session.connection().setTransactionIsolation(isolation);
 } catch (SQLException e) {
 System.err.println("Could not reset the isolation level: " + e);
 } catch (HibernateException e) {
 System.err.println("Could not reset the isolation level: " + e);
 }
 }
 }
 
 public static void close(Session session) {
 try {
 session.close();

Chapter 8 ■ Using the Session

144

 } catch (HibernateException e) {
 System.err.println("Could not close the session: " + e);
 }
 }
 
 public static void rollback(Session session) {
 try {
 Transaction tx = session.getTransaction();
 if (tx.isActive())
 tx.rollback();
 } catch (HibernateException e) {
 System.err.println("Could not rollback the session: " + e);
 }
 }
 
 public static void main(String[] argv) {
 
 System.out.println("Creating test user...");
 createUser("test");
 
 System.out.println("Proceeding to main test...");
 Session s1 = factory.openSession();
 Session s2 = factory.openSession();
 
 try {
 s1.beginTransaction();
 s2.beginTransaction();
 
 System.out.println("Update 1");
 Query q1 = s1.createQuery("from Publisher");
 Publisher pub1 = (Publisher) q1.uniqueResult();
 pub1.setUsername("jeff");
 s1.flush();
 
 System.out.println("Update 2");
 Query q2 = s2.createQuery("from Subscriber");
 Subscriber sub1 = (Subscriber) q2.uniqueResult();
 sub1.setUsername("dave");
 s2.flush();
 
 System.out.println("Update 3");
 Query q3 = s1.createQuery("from Subscriber");
 Subscriber sub2 = (Subscriber) q3.uniqueResult();
 sub2.setUsername("jeff");
 s1.flush();
 
 System.out.println("Update 4");
 Query q4 = s2.createQuery("from Publisher");
 Publisher pub2 = (Publisher) q4.uniqueResult();
 pub2.setUsername("dave");
 s2.flush();
 

Chapter 8 ■ Using the Session

145

 s1.getTransaction().commit();
 s2.getTransaction().commit();
 
 } catch (RuntimeException e1) {
 e1.printStackTrace();
 // Run the boilerplate to roll back the sessions
 rollback(s1);
 rollback(s2);
 throw e1;
 } finally {
 // Run the boilerplate to close the sessions
 close(s1);
 close(s2);
 }
 }
}

Caching
Accessing a database is an expensive operation, even for a simple query. The request has to be sent (usually over the
network) to the server. The database server may have to compile the SQL into a query plan. The query plan has to be
run and is limited largely by disk performance. The resulting data has to be shuttled back (again, usually across the
network) to the client, and only then can the application program begin to process the results.

Most good databases will cache the results of a query if it is run multiple times, eliminating the disk I/O and
query compilation time. But this will be of limited value if there are large numbers of clients making substantially
different requests. Even if the cache generally holds the results, the time taken to transmit the information across the
network is often the larger part of the delay.

Some applications will be able to take advantage of in-process databases, but this is the exception rather than the
rule—and such databases have their own limitations.

The natural and obvious answer is to have a cache at the client end of the database connection. This is not a
feature provided or supported by JDBC directly, but Hibernate provides one cache (the first-level, or L1, cache)
through which all requests must pass. A second-level cache (L2) is optional and configurable.

The L1 cache ensures that, within a session, requests for a given object from a database will always return the
same object instance, thus preventing data from conflicting and preventing Hibernate from trying to load an object
multiple times.

Items in the L1 cache can be individually discarded by invoking the evict() method on the session for the object
that you wish to discard. To discard all items in the L1 cache, invoke the clear() method.

In this way, Hibernate has a major advantage over the traditional JDBC approach: with no additional effort from
the developer, a Hibernate application gains the benefits of a client-side database cache.

Figure 8-3 shows the two caches available to the session: the compulsory L1 cache, through which all requests
must pass, and the optional L2 cache. The L1 cache will always be consulted before any attempt is made to locate
an object in the L2 cache. You will notice that the L2 cache is external to Hibernate; and although it is accessed via
the session in a way that is transparent to Hibernate users, it is a pluggable interface to any one of a variety of caches
that are maintained on the same JVM as your Hibernate application or on an external JVM. This allows a cache to be
shared between applications on the same machine, or even among multiple applications on multiple machines.

Chapter 8 ■ Using the Session

146

In principle, any third-party cache can be used with Hibernate. An org.hibernate.cache.CacheProvider
interface is provided, which must be implemented to provide Hibernate with a handle to the cache implementation.
The cache provider is then specified by giving the implementation class name as the value of the hibernate.cache.
provider_class property.

In practice, the four production-ready caches, which are already supported, will be adequate for most users
(see Table 8-4).

Figure 8-3.  The session’s relationship to the caches

Table 8-4.  L2 Cache Implementations Supported by Hibernate Out of the Box

Cache Name Description

EHCache An in-process cache

Infinispan Open source successor to JBossCache that provides distributed cache support

OSCache An alternative in-process cache

SwarmCache A multicast distributed cache

The type of access to the L2 cache can be configured on a per-session basis by selecting a CacheMode option
(see Table 8-5) and applying it with the setCacheMode() method.

Table 8-5.  CacheMode Options

Mode Description

NORMAL Data is read from and written to the cache as necessary.

GET Data is never added to the cache (although cache entries are invalidated when updated by the session).

PUT Data is never read from the cache, but cache entries will be updated as they are read from the
database by the session.

REFRESH This is the same as PUT, but the use_minimal_puts Hibernate configuration option will be ignored if it
has been set.

IGNORE Data is never read from or written to the cache (except that cache entries will still be invalidated when
they are updated by the session).

Chapter 8 ■ Using the Session

147

The CacheMode setting does not affect the way in which the L1 cache is accessed.
The decision to use an L2 cache is not clear-cut. Although it has the potential to greatly reduce access to the

database, the benefits depend on the type of cache and the way in which it will be accessed.
A distributed cache will cause additional network traffic. Some types of database access may result in the contents

of the cache being flushed before they are used; in this case, it will be adding unnecessary overhead to the transactions.
The L2 cache cannot account for the changes in the underlying data, which are the result of actions by an external

program that is not cache-aware. This could potentially lead to problems with stale data, which is not an issue with
the L1 cache.

In practice, as with most optimization problems, it is best to carry out performance testing under realistic load
conditions. This will let you determine if a cache is necessary and help you select which one will offer the greatest
improvement.

Actually, configuring for cache usage is fairly simple. In order to set everything up, in this example, we will need
to do the following:

	 1.	 Select a cache provider and add the dependency to Maven.

	 2.	 Configure Hibernate to use the cache provider for a second-level cache.

	 3.	 Alter our entities to mark them as cacheable.

We’ll choose EhCache as a cache provider, as it’s trivial to set up in a Java SE environment. The dependency block
for Maven will look like this:
 
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-ehcache</artifactId>
 <version>4.2.8.Final</version>
</dependency>
 

Now, we need to add three properties to Hibernate that will tell it to use a second-level cache and which cache
to use:
 
<property name="cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory
</property>
 

The last thing we need to do is mark the entity as cacheable. In Listing 8-4, we’ll create a simple Supplier entity
(which we’ll revisit in the next chapters) and show how it’s used:

Listing 8-4.  A Simple, Cacheable Supplier Entity

package chapter08.model;
 
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;
 
import javax.persistence.*;
import java.io.Serializable;
 

Chapter 8 ■ Using the Session

148

@Entity
@Cacheable
@Cache(usage = CacheConcurrencyStrategy.READ_ONLY)
public class Supplier implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @Column(unique = true)
 String name;
}
 

We’re not showing the mutators, accessors, equals(), or hashCode() methods, of course.
Now, if we load a specific Supplier in one session, then immediately load the same Supplier in another session,

the database will not (necessarily) be queried because it’s being pulled from the second-level cache instead of from
the database each time. Using different sessions is necessary because the Supplier instance would be cached in the
first-level cache of each Session; the sessions share a second-level cache and not a first-level cache.

Threads
Having considered the caches available to a Hibernate application, you may now be concerned about the risk of
a conventional Java deadlock if two threads of execution were to contend for the same object in the Hibernate
session cache.

In principle, this is possible, and unlike database deadlocks, Java thread deadlocks do not time out with an error
message. Fortunately, there is a very simple solution:

Patient: Doctor, it hurts when I do this.

Doctor: Don’t do that, then.2

Do not share the Session object between threads. This will eliminate any risk of deadlocking on objects
contained within the session cache.

The easiest way to ensure that you do not use the same Session object outside the current thread is to use an
instance local to the current method. If you absolutely must maintain an instance for a longer duration, maintain
the instance within a ThreadLocal object. For most purposes, however, the lightweight nature of the Session object
makes it practical to construct, use, and destroy an instance, rather than to store a session.

Summary
In this chapter, we have discussed the nature of Session objects and how they can be used to obtain and manage
transactions. We have looked at the two levels of caching that are available to applications, and how concurrent
threads should manage sessions.

In the next chapter, we discuss the various ways in which you can retrieve objects from the database. We also
show you how to perform more complicated queries against the database using HQL.

2For some reason, this is one of my favorite jokes. Another one is “Time flies like an arrow, fruit flies like a banana.” Stop rolling
your eyes, please.

149

Chapter 9

Searches and Queries

In the last chapter, we discussed how the Hibernate session is used to interact with the database. Some of the
session’s methods take query strings in their parameter lists or return Query objects. These methods are used to
request arbitrary information from the database. In order to fully show how they’re used, we must introduce the
Hibernate Query Language (HQL), used to phrase these requests. As well as extracting information (with SELECT),
HQL can be used to alter the information in the database (with INSERT, UPDATE, and DELETE). We cover all of this basic
functionality in this chapter. Note: Hibernate’s query facilities do not allow you to alter the database structure.

HQL is an object-oriented query language, similar to SQL, but instead of operating on tables and columns, HQL
works with persistent objects and their properties. It is a superset of the JPQL, the Java Persistence Query Language;
a JPQL query is a valid HQL query, but not all HQL queries are valid JPQL queries.

HQL is a language with its own syntax and grammar. It is written as strings, like from Product p—as opposed
to Hibernate’s criteria queries (discussed in the next chapter), which take the form of a conventional Java API.
Ultimately, your HQL queries are translated by Hibernate into conventional SQL queries; Hibernate also provides an
API that allows you to directly issue SQL queries.

Hibernate Query Language (HQL)
While most ORM tools and object databases offer an object query language, Hibernate’s HQL stands out as complete
and easy to use. Although you can use SQL statements directly with Hibernate (which is covered in detail in the
“Using Native SQL” section of this chapter), we recommend that you use HQL (or criteria) whenever possible to avoid
database portability hassles, as well as to take advantage of Hibernate’s SQL-generation and caching strategies.
In addition to its technical advantages over traditional SQL, HQL is a more compact query language than SQL because
it can make use of the relationship information defined in the Hibernate mappings.

We realize that not every developer trusts Hibernate’s generated SQL to be perfectly optimized. If you do
encounter a performance bottleneck in your queries, we recommend that you use SQL tracing on your database
during performance testing of your critical components. If you see an area that needs optimization, first try to
optimize using HQL, and only later drop into native SQL. Hibernate provides statistics information through a JMX
MBean, which you can use for analyzing Hibernate’s performance. Hibernate’s statistics also give you insight into how
caching is performing.

Note■■   If you would like to execute HQL statements through a GUI-based tool, the Hibernate team provides a Hibernate
console for Eclipse in the Hibernate Tools subproject. This console is a plug-in for recent versions of Eclipse, and the tool
is described in detail in Appendix B.

Chapter 9 ■ Searches and Queries

150

Syntax Basics
HQL was inspired by SQL and is the inspiration for the Java Persistence Query Language (JPQL). The JPQL
specification is included in the standard for JPA available from the Java Community Process web site
(www.jcp.org/en/jsr/detail?id=220). HQL’s syntax is defined as an ANTLR grammar; the grammar files are
included in the grammar directory of the Hibernate core download. (ANTLR is a tool for building language parsers.)

As the ANTLR grammar files are somewhat cryptic, and as not every statement that is permissible according to
the ANTLR grammar’s rules can be used in Hibernate, we outline the syntax for the four fundamental HQL operations
in this section. Note that the following descriptions of syntax are not comprehensive; there are some deprecated or
more obscure usages (particularly for SELECT statements) that are not covered here.

UPDATE
UPDATE alters the details of existing objects in the database. In-memory entities, managed or not, will not be updated
to reflect changes resulting from issuing UPDATE statements. Here’s the syntax of the UPDATE statement:
 
UPDATE [VERSIONED]
 [FROM] path [[AS] alias] [, ...]
 SET property = value [, ...]
 [WHERE logicalExpression]
 

The fully qualified name of the entity or entities is path. The alias names may be used to abbreviate references
to specific entities or their properties, and must be used when property names in the query would otherwise be
ambiguous.

VERSIONED means that the update will update time stamps, if any, that are part of the entity being updated.
The property names are the names of properties of entities listed in the FROM path.
The syntax of logical expressions is discussed later, in the “Using Restrictions with HQL” section.
An example of the update in action might look like this:

 
Query query=session.createQuery("update Person set creditscore=:creditscore where name=:name");
query.setInteger("creditscore", 612);
query.setString("name", "John Q. Public");
int modifications=query.executeUpdate();

DELETE
DELETE removes the details of existing objects from the database. In-memory entities will not be updated to reflect
changes resulting from DELETE statements. This also means that Hibernate’s cascade rules will not be followed for
deletions carried out using HQL. However, if you have specified cascading deletes at the database level (either directly
or through Hibernate, using the @OnDelete annotation), the database will still remove the child rows. This approach
to deletion is commonly referred to as “bulk deletion,” since it is the most efficient way to remove large numbers of
entities from the database. Here’s the syntax of the DELETE statement:
 
DELETE
 [FROM] path [[AS] alias]
 [WHERE logicalExpression]
 

The fully qualified name of an entity is path. The alias names may be used to abbreviate references to specific
entities or their properties, and must be used when property names in the query would otherwise be ambiguous.

http://www.jcp.org/en/jsr/detail?id=220

Chapter 9 ■ Searches and Queries

151

In practice, deletes might look like this:
 
Query query=session.createQuery("delete from Person where accountstatus=:status");
query.setString("status", "purged");
int rowsDeleted=query.executeUpdate();

INSERT
An HQL INSERT cannot be used to directly insert arbitrary entities—it can only be used to insert entities constructed
from information obtained from SELECT queries (unlike ordinary SQL, in which an INSERT command can be used to
insert arbitrary data into a table, as well as insert values selected from other tables). Here’s the syntax of the INSERT
statement:
 
INSERT
 INTO path (property [, ...])
 select
 

The name of an entity is path. The property names are the names of properties of entities listed in the FROM path
of the incorporated SELECT query.

The select query is an HQL SELECT query (as described in the next section).
As this HQL statement can only use data provided by an HQL select, its application can be limited. An example of

copying users to a purged table before actually purging them might look like this:
 
Query query=session.createQuery("insert into purged_users(id, name, status) "+
 "select id, name, status from users where status=:status");
query.setString("status", "purged");
int rowsCopied=query.executeUpdate();

SELECT
An HQL SELECT is used to query the database for classes and their properties. As noted previously, this is very much
a summary of the full expressive power of HQL SELECT queries; however, for more complex joins and the like, you
may find that using the Criteria API described in the next chapter is more appropriate. Here’s the syntax of the SELECT
statement:
 
[SELECT [DISTINCT] property [, ...]]
 FROM path [[AS] alias] [, ...] [FETCH ALL PROPERTIES]
 WHERE logicalExpression
 GROUP BY property [, ...]
 HAVING logicalExpression
 ORDER BY property [ASC | DESC] [, ...]
 

The fully qualified name of an entity is path. The alias names may be used to abbreviate references to specific
entities or their properties, and must be used when property names used in the query would otherwise be ambiguous.

The property names are the names of properties of entities listed in the FROM path.
If FETCH ALL PROPERTIES is used, then lazy loading semantics will be ignored, and all the immediate properties

of the retrieved object(s) will be actively loaded (this does not apply recursively).
When the properties listed consist only of the names of aliases in the FROM clause, the SELECT clause can be

omitted in HQL. If you are using the JPA with JPQL, one of the differences between HQL and JPQL is that the SELECT
clause is required in JPQL.

Chapter 9 ■ Searches and Queries

152

Named Queries
Hibernate (and JPA) provide named queries. Named queries are created via class-level annotations on entities; normally,
the queries apply to the entity in whose source file they occur, but there’s no absolute requirement for this to be true.

Named queries are created with the @NamedQueries annotation, which contains an array of @NamedQuery sets;
each has a query and a name.

First, let’s create an object model we can use as an example. Our object model will contain products and
suppliers; it will also contain a specialized product (“Software”) that adds an attribute to Product. One effect of the
hierarchy we use here is that Lombok is no longer as usable as it has been,1 so we’re going to eliminate some of the
boilerplate from the source code—namely, constructors, mutators, accessors, equals(), hashCode(), and toString().
The source code download for the book will have all of these methods, of course. This object model structure is shown
in Listings 9-1, 9-2, and 9-3.

Listing 9-1.  The Supplier Entity, with Boilerplate Removed

@Entity
public class Supplier implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @Column(unique = true)
 @NotNull
 String name;
 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true,
 mappedBy = "supplier", targetEntity = Product.class)
 List<Product> products = new ArrayList<>();
} 

Listing 9-2.  The Basic Product Entity, with Boilerplate Removed

@Entity
public class Product implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @ManyToOne(optional = false, fetch = FetchType.LAZY)
 Supplier supplier;
 @Column
 @NotNull
 String name;
 @Column
 @NotNull
 String description;
 @Column
 @NotNull
 Double price;
}
 

1Lombok works by analyzing Java source code. It does not walk a hierarchy; while this would be very useful, there are some real
technical challenges to implementation. While someday Lombok may indeed be able to handle object hierarchies as conveniently as
it handles simple objects, as of this writing it doesn’t work well for object hierarchies, so we’re not going to use it in this chapter.

Chapter 9 ■ Searches and Queries

153

Listing 9-3.  The Software Entity, with Boilerplate Removed

@Entity
public class Software extends Product implements Serializable {
 @Column
 @NotNull
 String version;
}
 

Adding a named query is as simple as adding an annotation to one of the entities. For example, if we wanted to
add a named query to retrieve all Supplier entities, we could do so by adding a @NamedQuery annotation to any of the
entities, although it makes the most sense to put the query in Supplier’s source code.
 
@NamedQuery(name = "supplier.findAll", query = "from Supplier s")
 

You can group queries together by adding a @NamedQueries annotation, and then embedding the named queries
in an array as part of that annotation. This would look like this:
 
@NamedQueries({
 @NamedQuery(name = "supplier.findAll", query = "from Supplier s"),
 @NamedQuery(name = "supplier.findByName",
 query = "from Supplier s where s.name=:name"),
})
 

Using the named queries is very simple. Let’s create a test that populates data before every test run, and clears it
out after each test run, along with a test that uses our supplier.findAll query.2 This test is shown in Listing 9-4.

Listing 9-4. A  Test that Works with a Known Dataset

public class QueryTest {
 Session session;
 Transaction tx;
 
 @BeforeMethod
 public void populateData() {
 Session session = SessionUtil.getSession();
 Transaction tx = session.beginTransaction();
 
 Supplier supplier = new Supplier("Hardware, Inc.");
 supplier.getProducts().add(
 new Product(supplier, "Optical Wheel Mouse", "Mouse", 5.00));
 supplier.getProducts().add(
 new Product(supplier, "Trackball Mouse", "Mouse", 22.00));
 session.save(supplier);
 
 supplier = new Supplier("Supplier 2");
 supplier.getProducts().add(

2There are lots of ways to do this; we could use a technique we used earlier in the book, and create a new SessionFactory for each
test, or we could use dbUnit (http://dbunit.sourceforge.net/). This just seems more direct.

http://dbunit.sourceforge.net/

Chapter 9 ■ Searches and Queries

154

 new Software(supplier, "SuperDetect", "Antivirus", 14.95, "1.0"));
 supplier.getProducts().add(
 new Software(supplier, "Wildcat", "Browser", 19.95, "2.2"));
 supplier.getProducts().add(
 new Product(supplier, "AxeGrinder", "Gaming Mouse", 42.00));
 
 session.save(supplier);
 tx.commit();
 session.close();
 
 this.session = SessionUtil.getSession();
 this.tx = this.session.beginTransaction();
 }
 
 @AfterMethod
 public void closeSession() {
 session.createQuery("delete from Product").executeUpdate();
 session.createQuery("delete from Supplier").executeUpdate();
 if (tx.isActive()) {
 tx.commit();
 }
 if (session.isOpen()) {
 session.close();
 }
 }
 
 @Test
 public void testNamedQuery() {
 Query query = session.getNamedQuery("supplier.findAll");
 List<Supplier> suppliers = query.list();
 assertEquals(suppliers.size(), 2);
 }
}
 

The methods annotated with @BeforeMethod and @AfterMethod will run before and after each @Test method;
this means that each test will have a consistent dataset upon entry, as well as an active transaction and session.

The actual test itself is very simple: it acquires a named query (“supplier.findAll”) and executes it, making sure
that we’ve retrieved all of the Supplier instances we expect to find.

We can, of course, create queries on the fly, as we’ve done many times through the book so far. Listing 9-5 is
another example (for the sake of completeness) for querying all Products:

Listing 9-5.  Creating a Query

@Test
public void testSimpleQuery() {
 Query query = session.createQuery("from Product");
 query.setComment("This is only a query for product");
 List<Product> products = query.list();
 assertEquals(products.size(), 5);
} 

Chapter 9 ■ Searches and Queries

155

Note■■   Like all SQL syntax, you can write from in lowercase or uppercase (or mixed case). However, any Java classes
or properties that you reference in an HQL query have to be specified in the proper case. For example, when you query
for instances of a Java class named Product, the HQL query from Product is the equivalent of FROM Product. However,
the HQL query from product is not the same as the HQL query from Product. Because Java class names are case-
sensitive, Hibernate is case-sensitive about class names as well.

The createQuery() method takes a valid HQL statement and returns an org.hibernate.Query object. The Query class
provides methods for returning the query results as a Java List, as an Iterator, or as a unique result. Other functionality
includes named parameters, results scrolling, JDBC fetch sizes, and JDBC timeouts. You can also add a comment to
the SQL that Hibernate creates, which is useful for tracing which HQL statements correspond to which SQL statements.

Logging and Commenting the Underlying SQL
Hibernate can output the underlying SQL behind your HQL queries into your application’s log file. This is especially
useful if the HQL query does not give the results you expect, or if the query takes longer than you wanted. You can
run the SQL that Hibernate generates directly against your database in the database’s query analyzer at a later date to
determine the causes of the problem. This is not a feature you will have to use frequently, but it is useful should you
have to turn to your database administrators for help in tuning your Hibernate application.

Logging the SQL
The easiest way to see the SQL for a Hibernate HQL query is to enable SQL output in the logs with the show_sql
property. Set this property to true in your hibernate.cfg.xml configuration file,3 and Hibernate will output the SQL
into the logs. You do not need to enable any other logging settings, although setting logging for Hibernate to debug
also outputs the generated SQL statements, along with a lot of other verbiage.

After enabling SQL output in Hibernate, you should rerun the previous example. Here is the generated SQL
statement for the HQL statement from Product:
 
Hibernate: /* This is only a query for product */ select product0_.id as id1_0_, product0_.
description as descript2_0_, product0_.name as name3_0_, product0_.price as price4_0_, product0_.
supplier_id as supplier5_0_, product0_1_.version as version1_1_, case when product0_1_.id is not
null then 1 when product0_.id is not null then 0 end as clazz_ from Product product0_ left outer
join Software product0_1_ on product0_.id=product0_1_.id

As an aside, remember that the Software class inherits from Product, which complicates Hibernate’s generated
SQL for this simple query. When we select all objects from our simple Supplier class, the generated SQL for the HQL
query from Supplier is much simpler:
 
select supplier0_.id as id1_2_, supplier0_.name as name2_2_ from Supplier supplier0_
 

When you look in your application’s output for the Hibernate SQL statements, they will be prefixed with
“Hibernate:”. The previous SQL statement would look like this:
 
Hibernate: /* named HQL query supplier.findAll */ select supplier0_.id as id1_2_, supplier0_.name as
name2_2_ from Supplier supplier0_
 

3If you’re using the JPA configuration, the property name is “hibernate.show_sql”.

Chapter 9 ■ Searches and Queries

156

If you turn your log4j logging up to debug for the Hibernate classes, you will see SQL statements in your log files,
along with lots of information about how Hibernate parsed your HQL query and translated it into SQL.

Commenting the Generated SQL
Tracing your HQL statements through to the generated SQL can be difficult, so Hibernate provides a commenting
facility on the Query object that lets you apply a comment to a specific query. The Query interface has a setComment()
method that takes a String object as an argument, as follows:
 
public Query setComment(String comment)
 

Hibernate will not add comments to your SQL statements without some additional configuration, even if you
use the setComment() method. You will also need to set a Hibernate property, hibernate.use_sql_comments, to true
in your Hibernate configuration.4 If you set this property but do not set a comment on the query programmatically,
Hibernate will include the HQL used to generate the SQL call in the comment. We find this to be very useful for
debugging HQL.

Use commenting to identify the SQL output in your application’s logs if SQL logging is enabled. For instance, if
we add a comment to this example, the Java code would look like this:
 
String hql = "from Supplier";
Query query = session.createQuery(hql);
query.setComment("My HQL: " + hql);
List results = query.list();
 

The output in your application’s log will have the comment in a Java-style comment before the SQL:
 
Hibernate: /*My HQL: from Supplier*/ select supplier0_.id as id, supplier0_.name ➥

as name2_ from Supplier supplier0_
 

This can be useful for identifying SQL in your logs, especially because the generated SQL is a little difficult to
follow when you are scanning large quantities of it. (Running the example code from this test class serves as a great
example; it’s hundreds of lines’ worth of output.)

The from Clause and Aliases
We have already discussed the basics of the from clause in HQL in the earlier section, “The First Example with HQL.”
The most important feature to note is the alias. Hibernate allows you to assign aliases to the classes in your query with
the as clause. Use the aliases to refer back to the class inside the query. For instance, our previous simple example
would be the following:
 
from Product as p
 

or the following:
 
from Product as product
 

4In case you’re wondering, this was done in the runtime configuration before copying the logs for this chapter.

Chapter 9 ■ Searches and Queries

157

You’ll see either alias-naming convention in applications. The as keyword is optional—you can also specify the
alias directly after the class name, as follows:
 
from Product product
 

If you need to fully qualify a class name in HQL, just specify the package and class name. Hibernate will take
care of most of this behind the scenes, so you really need this only if you have classes with duplicate names in your
application. If you have to do this in Hibernate, use syntax such as the following:
 
from chapter09.model.Product
 

The from clause is very basic and useful for working directly with objects. However, if you want to work with the
object’s properties without loading the full objects into memory, you must use the select clause.

The select Clause and Projection
The select clause provides more control over the result set than the from clause. If you want to obtain the properties
of objects in the result set, use the select clause. For instance, we could run a projection query on the products in the
database that only returned the names, instead of loading the full object into memory, as follows:
 
select product.name from Product product
 

The result set for this query will contain a List of Java String objects. Additionally, we can retrieve the prices and
the names for each product in the database, like so:
 
select product.name, product.price from Product product
 

This result set contains a List of Object arrays—each array represents one set of properties (in this case, a name
and price pair).

If you’re only interested in a few properties, this approach can allow you to reduce network traffic to the database
server and save memory on the application’s machine.

Using Restrictions with HQL
As with SQL, you use the where clause to select results that match your query’s expressions. HQL provides many
different expressions that you can use to construct a query. In the HQL language grammar, there are many possible
expressions,5 including:

•	 Logic operators: OR, AND, NOT

•	 Equality operators: =, <>, !=, ^=

•	 Comparison operators: <, >, <=, >=, like, not like, between, not between

•	 Math operators: +, -, *, /

•	 Concatenation operator: ||

5If you want to see them all and be amazed, see http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch16.html
#queryhql-expressions. There are a lot.

http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch16.html#queryhql-expressions
http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html/ch16.html#queryhql-expressions

Chapter 9 ■ Searches and Queries

158

•	 Cases: Case when <logical expression> then <unary expression> else _<unary
expression> end

•	 Collection expressions: some, exists, all, any

In addition, you may also use the following expressions in the where clause:

•	 HQL named parameters:, such as :date, :quantity

•	 JDBC query parameter: ?

•	 Date and time SQL-92 functional operators: current_time(), current_date(),
current_timestamp()

•	 SQL functions (supported by the database): length(), upper(), lower(), ltrim(), rtrim(), etc.

Using Named Parameters
Hibernate supports named parameters in its HQL queries. This makes writing queries that accept input from the user
easy—and you do not have to defend against SQL injection attacks.

Note■■   SQL injection is an attack against applications that create SQL directly from user input with string
concatenation. For instance, if we accept a name from the user through a web application form, then it would be very bad
form to construct an SQL (or HQL) query like this:

String sql = "select p from products where name = '" + name + "'";

A malicious user could pass a name to the application that contained a terminating quote and semicolon, followed by
another SQL command (such as delete from products) that would let the user do whatever he wanted. He would
just need to end with another command that matched the SQL statement’s ending quote. This is a very common attack,
especially if the malicious user can guess details of your database structure.6

You could escape the user’s input yourself for every query, but it is much less of a security risk if you let Hibernate
manage all of your input with named parameters. Hibernate’s named parameters are similar to the JDBC query
parameters (?) you may already be familiar with, but Hibernate’s parameters are less confusing. It is also more
straightforward to use Hibernate’s named parameters if you have a query that uses the same parameter in multiple places.

When using JDBC query parameters, any time you add, change, or delete parts of the SQL statement, you need to
update your Java code that sets its parameters, because the parameters are indexed based on the order in which they
appear in the statement. Hibernate lets you provide names for the parameters in the HQL query, so you do not have to
worry about accidentally moving parameters around in the query.

The simplest example of named parameters uses regular SQL types for the parameters:
 
String hql = "from Product where price > :price";
Query query = session.createQuery(hql);
query.setDouble("price",25.0);
List results = query.list();
 

6See http://xkcd.com/327/. You’re welcome.

http://xkcd.com/327/

Chapter 9 ■ Searches and Queries

159

Normally, you do not know the values that are to be substituted for the named parameters; if you did, you would
probably encode them directly into the query string. When the value to be provided will be known only at run time,
you can use some of HQL’s object-oriented features to provide objects as values for named parameters. The Query
interface has a setEntity() method that takes the name of a parameter and an object.

Using this functionality, we could retrieve all the products that have a supplier whose object we already have:
 
String supplierHQL = "from Supplier where name='MegaInc'";
Query supplierQuery = session.createQuery(supplierHQL);
Supplier supplier = (Supplier) supplierQuery.list().get(0);
 
String hql = "from Product as product where product.supplier=:supplier";
Query query = session.createQuery(hql);
query.setEntity("supplier",supplier);
List results = query.list();
 

You can also use regular JDBC query parameters in your HQL queries. We do not particularly see any reason why
you would want to, but they do work.

Paging Through the Result Set
Pagination through the result set of a database query is a very common application pattern. Typically, you would use
pagination for a web application that returned a large set of data for a query. The web application would page through
the database query result set to build the appropriate page for the user. The application would be very slow if the web
application loaded all of the data into memory for each user. Instead, you can page through the result set and retrieve
the results you are going to display one chunk at a time.

There are two methods on the Query interface for paging: setFirstResult() and setMaxResults(), just as with
the Criteria interface. The setFirstResult() method takes an integer that represents the first row in your result
set, starting with row 0. You can tell Hibernate to only retrieve a fixed number of objects with the setMaxResults()
method. Your HQL is unchanged—you need only to modify the Java code that executes the query. Excuse our tiny
dataset for this trivial example of pagination:
 
Query query = session.createQuery("from Product");
query.setFirstResult(1);
query.setMaxResults(2);
List results = query.list();
displayProductsList(results);
 

You can change the numbers around and play with the pagination. If you turn on SQL logging, you can see which
SQL commands Hibernate uses for pagination. For the open-source HSQLDB database, Hibernate uses top and limit.
For other databases, Hibernate uses the appropriate commands for pagination. For instance, Microsoft SQL Server
does not support the limit command, so Hibernate uses only the top command. If your application is having
performance problems with pagination, this can be very helpful for debugging.

If you only have one result in your HQL result set, Hibernate has a shortcut method for obtaining just that object.

Obtaining a Unique Result
HQL’s Query interface provides a uniqueResult() method for obtaining just one object from an HQL query. Although
your query may yield only one object, you may also use the uniqueResult() method with other result sets if you limit
the results to just the first result. You could use the setMaxResults() method discussed in the previous section.

Chapter 9 ■ Searches and Queries

160

The uniqueResult() method on the Query object returns a single object, or null if there are zero results. If there is
more than one result, then the uniqueResult() method throws a NonUniqueResultException.

The following short example demonstrates having a result set that would have included more than one result,
except that it was limited with the setMaxResults() method:
 
String hql = "from Product where price>25.0";
Query query = session.createQuery(hql);
query.setMaxResults(1);
Product product = (Product) query.uniqueResult();
//test for null here if needed
 

Unless your query returns one or zero results, the uniqueResult() method will throw a
NonUniqueResultException exception. Do not expect Hibernate just to pick off the first result and return it—either set
the maximum results of the HQL query to 1, or obtain the first object from the result list.

Sorting Results with the order by Clause
To sort your HQL query’s results, you will need to use the order by clause. You can order the results by any property
on the objects in the result set: either ascending (asc) or descending (desc). You can use ordering on more than one
property in the query, if you need to. A typical HQL query for sorting results looks like this:
 
from Product p where p.price>25.0 order by p.price desc
 

If you wanted to sort by more than one property, you would just add the additional properties to the end of the
order by clause, separated by commas. For instance, you could sort by product price and the supplier’s name, as
follows:
 
from Product p order by p.supplier.name asc, p.price asc
 

HQL is more straightforward for ordering than the equivalent approach using the Criteria Query API.

Associations
Associations allow you to use more than one class in an HQL query, just as SQL allows you to use joins between
tables in a relational database. You add an association to an HQL query with the join clause. Hibernate supports five
different types of joins: inner join, cross join, left outer join, right outer join, and full outer join. If you
use cross join, just specify both classes in the from clause (from Product p, Supplier s). For the other joins, use a
join clause after the from clause. Specify the type of join, the object property to join on, and an alias for the other class.

You can use inner join to obtain the supplier for each product, and then retrieve the supplier name, product
name, and product price, as so:
 
select s.name, p.name, p.price from Product p inner join p.supplier as s
 

You can retrieve the objects using similar syntax:
 
from Product p inner join p.supplier as s
 

Chapter 9 ■ Searches and Queries

161

We used aliases in these HQL statements to refer to the entities in our query expressions. These are particularly
important in queries with associations that refer to two different entities with the same class—for instance, if we are
doing a join from a table back to itself. Commonly, these types of joins are used to organize tree data structures.

Notice that Hibernate does not return Object objects in the result set; instead, Hibernate returns Object arrays in
the results.7 You will have to access the contents of the Object arrays to get the Supplier and the Product objects.

If you would like to start optimizing performance, you can use one query to ask Hibernate to fetch the associated
objects and collections for an object. If you were using lazy loading with Hibernate, the objects in the collection would
not be initialized until you accessed them. If you use fetch on a join in your query, you can ask Hibernate to retrieve
the objects in the collection at the time the query executes. Add the fetch keyword after the join in the query, like so:
 
from Supplier s inner join fetch s.products as p
 

When you use fetch for a query like this, Hibernate will return only the Supplier objects, not the Product
objects. This is because you are specifying the join, so Hibernate knows which objects to fetch (instead of using
lazy loading). If you need to get the Product objects, you can access them through the associated Supplier object.
You cannot use the properties of the Product objects in expressions contained in the where clause. Use of the fetch
keyword overrides any settings you have in the mapping file for object initialization.

Aggregate Methods
HQL supports a range of aggregate methods, similar to SQL. They work the same way in HQL as in SQL, so you do
not have to learn any specific Hibernate terminology. The difference is that in HQL, aggregate methods apply to the
properties of persistent objects. The count(...) method returns the number of times the given column name appears
in the result set. You may use the count(*) syntax to count all the objects in the result set, or count(product.name) to
count the number of objects in the result set with a name property. Here is an example using the count(*) method to
count all products:
 
select count(*) from Product product
 

The distinct keyword only counts the unique values in the row set—for instance, if there are 100 products, but
10 have the same price as another product in the results, then a select count(distinct product.price) from
Product product query would return 90. In our database, the following query will return 2, one for each supplier:
 
select count(distinct product.supplier.name) from Product product
 

If we removed the distinct keyword, it would return 5, one for each product.
All of these queries return a Long object in the list. You could use the uniqueResult() method here to obtain the

result.
The aggregate functions available through HQL include the following:

•	 avg(property name): The average of a property’s value

•	 count(property name or *): The number of times a property occurs in the results

•	 max(property name): The maximum value of the property values

•	 min(property name): The minimum value of the property values

•	 sum(property name): The sum total of the property values

7This join results in a projection, thus the use of the Object arrays.

Chapter 9 ■ Searches and Queries

162

If you have more than one aggregate method, the result set List will contain an Object array with each of the
aggregates you requested. Adding another aggregate to the select clause is straightforward:
 
select min(product.price), max(product.price) from Product product
 

You can also combine these with other projection properties in the result set.

Bulk Updates and Deletes with HQL
The Query interface contains a method called executeUpdate() for executing HQL UPDATE or DELETE statements.8 The
executeUpdate() method returns an int that contains the number of rows affected by the update or delete, as follows:
 
public int executeUpdate() throws HibernateException
 

HQL updates look as you would expect them to, being based on SQL UPDATE statements. Do not include an alias
with the update; instead, put the set keyword right after the class name, as follows:
 
String hql = "update Supplier set name = :newName å
where name = :name";
 
Query query = session.createQuery(hql);
query.setString("name","SuperCorp");
query.setString("newName","MegaCorp");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);
 
//See the results of the update
query = session.createQuery("from Supplier");
List results = query.list();
 

After carrying out this query, any supplier previously named SuperCorp will be named MegaCorp. You may use
a where clause with updates to control which rows get updated, or you may leave it off to update all rows. Notice that
we printed out the number of rows affected by the query. We also used named parameters in our HQL for this bulk
update.

Bulk deletes work in a similar way. Use the delete from clause with the class name you would like to delete
from. Then use the where clause to narrow down which entries in the table you would like to delete. Use the
executeUpdate() method to execute deletes against the database as well.

Be careful when you use bulk delete with objects that are in relationships. Hibernate will not know that you
removed the underlying data in the database, and you can get foreign key integrity errors. To get around this, you
could set the not-found attribute to ignore on your one-to-many and many-to-one mappings, which will make IDs
that are not in the database resolve to null references. The default value for the not-found attribute is exception.
Setting the not-found attribute to ignore also has the side effect of causing your associations to load eagerly and fetch
all related records instead of using lazy loading. This can cause serious performance problems.

8Our test code uses a bulk delete to clear out the data, including the use of executeUpdate(), as mentioned earlier.

Chapter 9 ■ Searches and Queries

163

Our code surrounding the HQL DELETE statement is basically the same—we use named parameters, and we print
out the number of rows affected by the delete:
 
String hql = "delete from Product where name = :name";
Query query = session.createQuery(hql);
query.setString("name","Mouse");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);
 
//See the results of the update
query = session.createQuery("from Product");
List results = query.list(); 

Caution■■   Using bulk updates and deletes in HQL works almost the same as in SQL, so keep in mind that these are
powerful and can erase the data in your tables if you make a mistake with the where clause.

Using Native SQL
Although you should probably use HQL whenever possible, Hibernate does provide a way to use native SQL
statements directly through Hibernate. One reason to use native SQL is that your database supports some special
features through its dialect of SQL that are not supported in HQL. Another reason is that you may want to call stored
procedures from your Hibernate application. We discuss stored procedures and other database-specific integration
solutions in Appendix A. Rather than just providing an interface to the underlying JDBC connection, like other Java
ORM tools, Hibernate provides a way to define the entity (or join) that the query uses. This makes integration with the
rest of your ORM-oriented application easy.

You can modify your SQL statements to make them work with Hibernate’s ORM layer. You do need to modify
your SQL to include Hibernate aliases that correspond to objects or object properties. You can specify all properties
on an object with {objectname.*}, or you can specify the aliases directly with {objectname.property}. Hibernate
uses the mappings to translate your object property names into their underlying SQL columns. This may not be the
exact way you expect Hibernate to work, so be aware that you do need to modify your SQL statements for full ORM
support. You will especially run into problems with native SQL on classes with subclasses—be sure you understand
how you mapped the inheritance across either a single table or multiple tables, so that you select the right properties
off the table.

Underlying Hibernate’s native SQL support is the org.hibernate.SQLQuery interface, which extends the
org.hibernate.Query interface already discussed. Your application will create a native SQL query from the session
with the createSQLQuery() method on the Session interface.
 
public SQLQuery createSQLQuery(String queryString) throws HibernateException
 

After you pass a string containing the SQL query to the createSQLQuery() method, you should associate the SQL
result with an existing Hibernate entity, a join, or a scalar result. The SQLQuery interface has addEntity(), addJoin(),
and addScalar() methods. For the entities and joins, you can specify a lock mode, which we discussed in Chapter 8.
The addEntity() methods take an alias argument and either a class name or an entity name. The addJoin() methods
take an alias argument and a path to join.

Chapter 9 ■ Searches and Queries

164

Using native SQL with scalar results is the simplest way to get started with native SQL. Our Java code looks like this:
  
String sql = "select avg(product.price) as avgPrice from Product product";
SQLQuery query = session.createSQLQuery(sql);
query.addScalar("avgPrice",Hibernate.DOUBLE);
List results = query.list();
 

Because we did not specify any entity aliases, Hibernate executes exactly the same SQL that we passed through:
 
select avg(product.price) as avgPrice from Product product
 

The SQL is regular SQL (we did not have to do any aliasing here). We created an SQLQuery object, and then added
a scalar mapping with the built-in double type (from the org.hibernate._Hibernate class). We needed to map the
avgPrice SQL alias to the object type. The results are a List with one object—a Double.

A bit more complicated than the previous example is the native SQL that returns a result set of objects. In this
case, we will need to map an entity to the SQL query. The entity consists of the alias we used for the object in the SQL
query and its class. For this example, we used our Supplier class:
 
String sql = "select {supplier.*} from Supplier supplier";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("supplier", Supplier.class);
List results = query.list();
 

Hibernate modifies the SQL and executes the following command against the database:
 
select Supplier.id as id0_, Supplier.name as name2_0_ from Supplier supplier
 

The special aliases allow Hibernate to map the database columns back to the object properties.

Summary
HQL is a powerful object-oriented query language that provides the power of SQL while taking advantage of
Hibernate’s object-relational mapping and caching. If you are porting an existing application to Hibernate, you can
use Hibernate’s native SQL facilities to execute SQL against the database. The SQL functionality is also useful for
executing SQL statements that are specific to a given database and have no equivalents in HQL.

You can turn on SQL logging for Hibernate, and Hibernate will log the generated SQL that it executes against the
database. If you add a comment to your HQL query object, Hibernate will display a comment in the log next to the
SQL statement; this helps with tracing SQL statements back to HQL in your application.

165

Chapter 10

Advanced Queries Using Criteria

Hibernate provides three different ways to retrieve data. We have already discussed HQL and the use of native SQL
queries; now we add criteria.

The Criteria Query API lets you build nested, structured query expressions in Java, providing a compile-time
syntax checking that is not possible with a query language like HQL or SQL. The Criteria API also includes query
by example (QBE) functionality. This lets you supply example objects that contain the properties you would like
to retrieve instead of having to step-by-step spell out the components of the query. It also includes projection and
aggregation methods, including counts.

In this chapter, we explore the use of the Criteria API, employing the sample object model established in the
previous chapter. (We are, however, going to move it to a new package, from chapter09.model to chapter10.model).

Using the Criteria API
The Criteria API allows you to build up a criteria query object programmatically; the org.hibernate.Criteria
interface defines the available methods for one of these objects. The Hibernate Session interface contains several
createCriteria() methods. Pass the persistent object’s class or its entity name to the createCriteria() method,
and Hibernate will create a Criteria object that returns instances of the persistence object’s class when your
application executes a criteria query.

The simplest example of a criteria query is one with no optional parameters or restrictions—the criteria query
will simply return every object that corresponds to the class.
 
Criteria crit = session.createCriteria(Product.class);
List<Product> results = crit.list();
 

When you run this example with our sample data, you will get all objects that are instances of the Product class.
Note that this includes any instances of the Software class because they are derived from Product.

Moving on from this simple example, we will add constraints to our criteria queries so we can whittle down the
result set.

Using Restrictions with Criteria
The Criteria API makes it easy to use restrictions in your queries to selectively retrieve objects; for instance, your
application could retrieve only products with a price over $30. You may add these restrictions to a Criteria object
with the add() method. The add() method takes an org.hibernate.criterion.Criterion object that represents an
individual restriction. You can have more than one restriction for a criteria query.

Chapter 10 ■ Advanced Queries Using Criteria

166

Although you could create your own objects implementing the Criterion object, or extend an existing Criterion
object, we recommend that you use Hibernate’s built-in Criterion objects from your application’s business logic.
For instance, you could create your own factory class that returns instances of Hibernate’s Criterion objects
appropriately set up for your application’s restrictions.

Use the factory methods on the org.hibernate.criterion.Restrictions class to obtain instances of the
Criterion objects. To retrieve objects that have a property value that equals your restriction, use the eq() method on
Restrictions, as follows:
 
public static SimpleExpression eq(String propertyName, Object value)
 

We would typically nest the eq() method in the add() method on the Criteria object. Here is an example of how
this would look if we were searching for products with the name “Mouse”:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.eq("description","Mouse"));
List<Product> results = crit.list()
 

Next, we search for products that do not have the name “Mouse.” For this, we would use the ne() method on the
Restrictions class to obtain a not-equal restriction:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ne("description","Mouse"));
List<Product> results = crit.list(); 

Tip■■   You cannot use the not-equal restriction to retrieve records with a NULL value in the database for that property
(in SQL, and therefore in Hibernate, NULL represents the absence of data, and so cannot be compared with data). If you
need to retrieve objects with NULL properties, you will have to use the isNull() restriction, which we discuss further on
in the chapter. You can combine the two with an OR logical expression, which we also discuss later in the chapter.

Instead of searching for exact matches, we can retrieve all objects that have a property matching part of a given
pattern. To do this, we need to create an SQL LIKE clause, with either the like() or the ilike() method. The ilike()
method is case-insensitive. In either case, we have two different ways to call the method:
 
public static SimpleExpression like(String propertyName, Object value)
 

or
 
public static SimpleExpression like(String propertyName,
 String value,
 MatchMode matchMode)
 

The first like() or ilike() method takes a pattern for matching. Use the % character as a wildcard to match parts
of the string, like so:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.like("name","Mou%"));
List<Product> results = crit.list();
 

Chapter 10 ■ Advanced Queries Using Criteria

167

The second like() or ilike() method uses an org.hibernate.criterion.MatchMode object to specify how
to match the specified value to the stored data. The MatchMode object (a type-safe enumeration) has four different
matches:

•	 ANYWHERE: Anyplace in the string

•	 END: The end of the string

•	 EXACT: An exact match

•	 START: The beginning of the string

Here is an example that uses the ilike() method to search for case-insensitive matches at the end of the string:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ilike("description","ser", MatchMode.END));
List<Product> results = crit.list();
 

The isNull() and isNotNull() restrictions allow you to do a search for objects that have (or do not have) null
property values. This is easy to demonstrate:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.isNull("name"));
List<Product> results = crit.list();
 

Several of the restrictions are useful for doing math comparisons. The greater-than comparison is gt(),
the greater-than-or-equal-to comparison is ge(), the less-than comparison is lt(), and the less-than-or-equal-to
comparison is le(). We can do a quick retrieval of all products with prices over $25 like this, relying on Java’s type
promotions to handle the conversion to Double:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price", 25.0));
List<Product> results = crit.list();
 

Moving on, we can start to do more complicated queries with the Criteria API. For example, we can combine AND
and OR restrictions in logical expressions. When we add more than one constraint to a criteria query, it is interpreted
as an AND, like so:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.lt("price",10.0));
crit.add(Restrictions.ilike("description","mouse", MatchMode.ANYWHERE));
List<Product> results = crit.list();
 

If we want to have two restrictions that return objects that satisfy either or both of the restrictions, we need to use
the or() method on the Restrictions class, as follows:
 
Criteria crit = session.createCriteria(Product.class);
Criterion priceLessThan = Restrictions.lt("price", 10.0);
Criterion mouse = Restrictions.ilike("description", "mouse", MatchMode.ANYWHERE);
LogicalExpression orExp = Restrictions.or(priceLessThan, mouse);
crit.add(orExp);
List<Product> results=crit.list();
 

Chapter 10 ■ Advanced Queries Using Criteria

168

The orExp logical expression that we have created here will be treated like any other criterion. We can therefore
add another restriction to the criteria:
 
Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description","blocks%"));
List results = crit.list();
 

If we wanted to create an OR expression with more than two different criteria (for example, “price > 25.0 OR
name like Mou% OR description not like blocks%”), we would use an org.hibernate.criterion.Disjunction
object to represent a disjunction.1 You can obtain this object from the disjunction() factory method on the
Restrictions class. The disjunction is more convenient than building a tree of OR expressions in code. To represent
an AND expression with more than two criteria, you can use the conjunction() method, although you can easily just
add those to the Criteria object. The conjunction can be more convenient than building a tree of AND expressions
in code. Here is an example that uses the disjunction:
 
Criteria crit = session.createCriteria(Product.class);
Criterion priceLessThan = Restrictions.lt("price", 10.0);
Criterion mouse = Restrictions.ilike("description", "mouse", MatchMode.ANYWHERE);
Criterion browser = Restrictions.ilike("description", "browser", MatchMode.ANYWHERE);
Disjunction disjunction = Restrictions.disjunction();
disjunction.add(priceLessThan);
disjunction.add(mouse);
disjunction.add(browser);
crit.add(disjunction);
List<Product> results = crit.list();
 

The last type of restriction is the SQL restriction sqlRestriction(). This restriction allows you to directly specify
SQL in the Criteria API. It’s useful if you need to use SQL clauses that Hibernate does not support through the Criteria
API. Your application’s code does not need to know the name of the table your class uses. Use {alias} to signify the
class’s table, as follows:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.sqlRestriction("{alias}.description like 'Mou%'"));
List<Product> results = crit.list();
 

There are two other sqlRestriction() methods that permit you to pass JDBC parameters and values into the
SQL statement. Use the standard JDBC parameter placeholder (?) in your SQL fragment.

1A disjunction represents data sets in which a data element fulfills one of a set of conditions, therefore an “or” construct. Given
condition A (where value<4) and condition B (where value>9), and a data set consisting of 0, 5, and 10, a disjunction of A and B
would give you 0 and 10.

A conjunction, conversely, represents an “and.” A conjunction of A and B, with the same data set, would give you an empty
set because no value is both less than 4 and greater than 9.

In practice, you’ll probably never see these terms used outside of technical applications like this one. I can imagine the
conversation now: “You could use a disjunction …” “No, thanks, I’d rather use an OR.”

Chapter 10 ■ Advanced Queries Using Criteria

169

Paging Through the Result Set
One common application pattern that criteria can address is pagination through the result set of a database query.
When we say pagination, we mean an interface in which the user sees part of the result set at a time, with navigation
to go forward and backward through the results. A naïve pagination implementation might load the entire result set
into memory for each navigation action, and would usually lead to atrocious performance.2 Both of us have worked
on improving performance for separate projects suffering from exactly this problem. The problem appeared late
in testing because the sample data set that developers were working with was trivial, and they did not notice any
performance problems until the first test data load.

If you are programming directly to the database, you will typically use proprietary database SQL or database
cursors to support paging. Hibernate abstracts this away for you: behind the scenes, Hibernate uses the appropriate
method for your database.

There are two methods on the Criteria interface for paging, just as there are for Query: setFirstResult() and
setMaxResults(). The setFirstResult() method takes an integer that represents the first row in your result set,
starting with row 0. You can tell Hibernate to retrieve a fixed number of objects with the setMaxResults() method.
Using both of these together, we can construct a paging component in our web or Swing application. We have a very
small data set in our sample application, so here is an admittedly trivial example:
 
Criteria crit = session.createCriteria(Product.class);
crit.setFirstResult(1);
crit.setMaxResults(2);
List<Product> results = crit.list();
 

As you can see, this makes paging through the result set easy. You can increase the first result you return
(for example, from 1, to 21, to 41, etc.) to page through the result set. If you have only one result in your result set,
Hibernate has a shortcut method for obtaining just that object.

Obtaining a Unique Result
Sometimes you know you are going to return only zero or one object from a given query. This could be because you
are calculating an aggregate (like COUNT, which we discuss later) or because your restrictions naturally lead to a unique
result—when selecting upon a property under a unique constraint, for example. You may also limit the results of any
result set to just the first result, using the setMaxResults() method discussed earlier. In any of these circumstances,
if you want obtain a single Object reference instead of a List, the uniqueResult() method on the Criteria object
returns an object or null. If there is more than one result, the uniqueResult() method throws a HibernateException.

The following short example demonstrates having a result set that would have included more than one result,
except that it was limited with the setMaxResults() method:
 
Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
crit.setMaxResults(1);
Product product = (Product) crit.uniqueResult();
 

Again, we stress that you need to make sure that your query returns only one or zero results if you use the
uniqueResult() method. Otherwise, Hibernate will throw a NonUniqueResultException exception, which may not be
what you would expect—Hibernate does not just pick the first result and return it.3

2When naïve pagination would not lead to atrocious performance, chances are the result set is small enough that you wouldn’t need
pagination in the first place.
3Thus, it’s about a unique result and not just a single result. You have to enforce uniqueness if it’s not already present.

Chapter 10 ■ Advanced Queries Using Criteria

170

Sorting the Query’s Results
Sorting the query’s results works much the same way with criteria as it would with HQL or SQL. The Criteria API
provides the org.hibernate.criterion.Order class to sort your result set in either ascending or descending order,
according to one of your object’s properties.

Create an Order object with either of the two static factory methods on the Order class: asc() for ascending or
desc() for descending. Both methods take the name of the property as their only argument. After you create an Order,
use the addOrder() method on the Criteria object to add it to the query.

This example demonstrates how you would use the Order class:
 
Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",10.0));
crit.addOrder(Order.desc("price"));
List<Product> results = crit.list();
 

You may add more than one Order object to the Criteria object. Hibernate will pass them through to the
underlying SQL query. Your results will be sorted by the first order, then any identical matches within the first sort
will be sorted by the second order, and so on. Beneath the covers, Hibernate passes this on to an SQL ORDER BY clause
after substituting the proper database column name for the property.

Associations
To add a restriction on a class that is associated with your criteria’s class, you will need to create another Criteria
object. Pass the property name of the associated class to the createCriteria() method, and you will have another
Criteria object. You can get the results from either Criteria object, although you should pick one style and be
consistent for readability’s sake. We find that getting the results from the top-level Criteria object (the one that takes
a class as a parameter) makes it clear what type of object is expected in the results.

The association works when going from either one-to-many or from many-to-one. First, we will demonstrate how
to use one-to-many associations to obtain suppliers who sell products with a price over $25. Notice that we create a
new Criteria object for the products property, add restrictions to the products’ criteria we just created, and then
obtain the results from the supplier Criteria object:
 
Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",25.0));
List<Supplier> results = crit.list();
 

Going the other way, we obtain all the products from the supplier MegaInc using many-to-one associations:
 
Criteria crit = session.createCriteria(Product.class);
Criteria suppCrit = crit.createCriteria("supplier");
suppCrit.add(Restrictions.eq("name","Hardware Are We"));
List<Product> results = crit.list();
 

Although we can use either Criteria object to obtain the results, it makes a difference which criteria we use for
ordering the results. In the following example, we are ordering the supplier results by the supplier names:
 
Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",25.0));
crit.addOrder(Order.desc("name"));
List<Supplier> results = prdCrit.list();
 

Chapter 10 ■ Advanced Queries Using Criteria

171

If we wanted to sort the suppliers by the descending price of their products, we would use the following line of
code. This code would have to replace the previous addOrder() call on the supplier Criteria object.
 
prdCrit.addOrder(Order.desc("price"));
 

Although the products are not in the result set, SQL still allows you to order by those results. If you get mixed up
about which Criteria object you are using and pass the wrong property name for the sort-by order, Hibernate will
throw an exception.

Distinct Results
If you would like to work with distinct results from a criteria query, Hibernate provides a result transformer for distinct
entities, org.hibernate.transform.DistinctRootEntityResultTransformer, which ensures that no duplicates will
be in your query’s result set. Rather than using SELECT DISTINCT with SQL, the distinct result transformer compares
each of your results using their default hashCode() methods, and only adds those results with unique hash codes
to your result set. This may or may not be the result you would expect from an otherwise equivalent SQL DISTINCT
query, so be careful with this. An additional performance note: the comparison is done in Hibernate’s Java code, not
at the database, so non-unique results will still be transported across the network.

Projections and Aggregates
Instead of working with objects from the result set, you can treat the results from the result set as a set of rows and
columns, also known as a projection of the data. This is similar to how you would use data from a SELECT query with
JDBC; also, Hibernate supports properties, aggregate functions, and the GROUP BY clause.

To use projections, start by getting the org.hibernate.criterion.Projection object you need from the
org.hibernate.criterion.Projections factory class. The Projections class is similar to the Restrictions class
in that it provides several static factory methods for obtaining Projection instances. After you get a Projection
object, add it to your Criteria object with the setProjection() method. When the Criteria object executes, the list
contains object references that you can cast to the appropriate type.

The row-counting functionality provides a simple example of applying projections. The code looks similar to the
restrictions examples we were working with earlier in the chapter:
 
Criteria crit = session.createCriteria(Product.class);
crit.setProjection(Projections.rowCount());
List<Long> results = crit.list();
 

The results list will contain one object, a Long that contains the results of executing the COUNT SQL statement.
Other aggregate functions available through the Projections factory class include the following:

•	 avg(String propertyName): Gives the average of a property’s value

•	 count(String propertyName): Counts the number of times a property occurs

•	 countDistinct(String propertyName): Counts the number of unique values the
property contains

•	 max(String propertyName): Calculates the maximum value of the property values

•	 min(String propertyName): Calculates the minimum value of the property values

•	 sum(String propertyName): Calculates the sum total of the property values

Chapter 10 ■ Advanced Queries Using Criteria

172

We can apply more than one projection to a given Criteria object. To add multiple projections, get a projection
list from the projectionList() method on the Projections class. The org.hibernate.criterion.ProjectionList
object has an add() method that takes a Projection object. You can pass the projections list to the setProjection()
method on the Criteria object because ProjectionList implements the Projection interface. The following
example demonstrates some of the aggregate functions, along with the projection list:
 
Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.max("price"));
projList.add(Projections.min("price"));
projList.add(Projections.avg("price"));
projList.add(Projections.countDistinct("description"));
crit.setProjection(projList);
List<Object[]> results = crit.list();
 

When you execute multiple aggregate projections, you get a List with an Object array as the first element.
The Object array contains all of your values, in order. For this projection, you’ll have three Double references, and
then a Long reference for the count.

Another use of projections is to retrieve individual properties, rather than entities. For instance, we can
retrieve just the name and description from our product table, instead of loading the entire object representation
into memory. Use the property() method on the Projections class to create a Projection for a property. When
you execute this form of query, the list() method returns a List of Object arrays. Each Object array contains
the projected properties for that row. The following example returns just the contents of the name and description
columns from the Product data. Remember, Hibernate is polymorphic, so this also returns the name and description
from the Software objects that inherit from Product.4

 
Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.property("name"));
projList.add(Projections.property("description"));
crit.setProjection(projList);
List<Object[]> results = crit.list();
 

Use this query style when you want to cut down on network traffic between your application servers and your
database servers. For instance, if your table has a large number of columns, this can slim down your results. In other cases,
you may have a large set of joins that would return a very wide result set, but you are only interested in a few columns.
Lastly, if your clients have limited memory, this can save you trouble with large data sets. But make sure you don’t have to
retrieve additional columns for the entire result set later, or your optimizations may actually decrease performance.

You can group your results (using SQL’s GROUP BY clause) with the groupProperty projection. The following
example groups the products by name and price:
 
Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.groupProperty("name"));
projList.add(Projections.groupProperty("price"));
crit.setProjection(projList);
crit.addOrder(Order.asc("price"));
List<Object> results = crit.list();
 

4This kind of projection is supported by JPA, via JPQL, as well.

Chapter 10 ■ Advanced Queries Using Criteria

173

As you can see, projections open up aggregates to the Criteria API, which means that developers do not have to
drop into HQL for aggregates. Projections offer a way to work with data that is closer to the JDBC result set style, which
may be appropriate for some parts of your application.

Query By Example (QBE)
In this section, because of the confusing terminology, we will refer to excerpts from our demonstration code as
“samples” rather than “examples,” reserving “example” for its peculiar technical meaning in the context of QBE.

In QBE, instead of programmatically building a Criteria object with Criterion objects and logical expressions,
you can partially populate an instance of the object. You use this instance as a template and have Hibernate build
the criteria for you based upon its values. This keeps your code clean and makes your project easier to test. The
org.hibernate.criterion.Example class contains the QBE functionality. Note that the Example class implements
the Criterion interface, so you can use it like any other restriction on a criteria query.

For instance, if we have a user database, we can construct an instance of a user object, set the property values for
type and creation date, and then use the Criteria API to run a QBE query. Hibernate will return a result set containing
all user objects that match the property values that were set. Behind the scenes, Hibernate inspects the Example object
and constructs an SQL fragment that corresponds to the properties on the Example object.

To use QBE, we first need to construct an Example object. Then we need to create an instance of the Example
object, using the static create() method on the Example class. The create() method takes the Example object as its
argument. You add the Example object to a Criteria object just like any other Criterion object.

The following basic example searches for suppliers that match the name on the example Supplier object:
 
Criteria crit = session.createCriteria(Supplier.class);
Supplier supplier = new Supplier();
supplier.setName("MegaInc");
crit.add(Example.create(supplier));
List<Supplier> results = crit.list();
 

When Hibernate translates our Example object into an SQL query, all the properties on our Example objects get
examined. We can tell Hibernate which properties to ignore; the default is to ignore null-valued properties. To search
our products or software in the sample database with QBE, we need either to specify a price or to tell Hibernate to
ignore properties with a value of zero, because we used a double primitive for storage instead of a Double object. The
double primitive initializes to zero, while a Double would have been null; and so, left to its own devices, the QBE logic
will assume that we are specifically searching for prices of zero, whereas we want it to ignore this default value.

We can make the Hibernate Example object exclude zero-valued properties with the excludeZeroes() method.
We can exclude properties by name with the excludeProperty() method, or exclude nothing (compare for null values
and zeroes exactly as they appear in the Example object) with the excludeNone() method. This sample applies the
excludeZeroes() method to ignore the default zero prices:
 
Criteria crit = session.createCriteria(Product.class);
Product exampleProduct = new Product();
exampleProduct.setName("Mouse");
Example example = Example.create(exampleProduct);
example.excludeZeroes();
crit.add(example);
List<Product> results = crit.list();
 

Other options on the Example object include ignoring the case for strings with the ignoreCase() method and
enabling use of SQL’s LIKE for comparing strings, instead of just using equals().

Chapter 10 ■ Advanced Queries Using Criteria

174

We can also use associations for QBE. In the following sample, we create two Example objects: one for the product
and one for the supplier. We use the technique explained in the “Associations” section of this chapter to retrieve
objects that match both criteria.
 
Criteria prdCrit = session.createCriteria(Product.class);
Product product = new Product();
product.setName("M%");
Example prdExample = Example.create(product);
prdExample.excludeProperty("price");
prdExample.enableLike();
Criteria suppCrit = prdCrit.createCriteria("supplier");
Supplier supplier = new Supplier();
supplier.setName("SuperCorp");
suppCrit.add(Example.create(supplier));
prdCrit.add(prdExample);
List<Product> results = prdCrit.list();
 

We also ignore the price property for our product, and we use LIKE for object comparison, instead of equals.
The QBE API works best for searches in which you are building the search from user input. The Hibernate team

recommends using QBE for advanced searches with multiple fields because it’s easier to set values on business
objects than to manipulate restrictions with the Criteria API.

JPA 2 AND THE TYPE-SAFE CRITERIA API

In addition to the Hibernate Criteria API described in this chapter, Hibernate 4.2 includes a new type-safe Criteria
API based on the JPA 2 standard. The advantage of this new API is that if you use it, you will not have any errors
related to typos in the Criteria restrictions, such as “prduct”. Rather than relying on strings in Criteria, there is a
new metamodel class for each JPA entity. You would use the references to properties in these metamodel classes
in your criteria restrictions, but you would use the javax.persistence criteria classes. Hibernate can generate the
metamodel classes for you from the annotations in your existing classes.

The JPA 2 type-safe criteria does not replace the Hibernate Criteria API covered in this chapter. Both criteria APIs
will accomplish the same thing for building a query. In this book, we covered the Hibernate way of doing things.
Using the JPA 2 Criteria API is similar to the Hibernate Criteria API, but references to fields as strings are replaced
with references to fields on generated metamodel classes.

In our example for this chapter, we would run the Hibernate Static Metamodel Generator against our annotated
classes to generate the metamodel class files. The Metamodel Generator is a Java 6 annotation processor, so your
existing build tools should automatically create the generated metamodel classes. Depending on how you have
your source repository and project layout arranged, you will have to decide where to put the generated classes.

Summary
Using the Criteria API is an excellent way to get started developing with HQL. The developers of Hibernate have
provided a clean API for adding restrictions to queries with Java objects. Although HQL isn’t too difficult to learn,
some developers prefer the Criteria Query API, as it offers compile-time syntax checking—although column names
and other schema-dependent information cannot be checked until run time.

In the next chapter, we discuss the use of Hibernate filters to restrict the range of data against which queries
are applied.

175

Chapter 11

Filtering the Results of Searches

Your application will often need to process only a subset of the data in the database tables. In these cases, you can
create a Hibernate filter to eliminate the unwanted data. Filters provide a way for your application to limit the results
of a query to data that passes the filter’s criteria. Filters are not a new concept—you can achieve much the same effect
using SQL database views or, well, named queries—but Hibernate offers a centralized management system for them.

Unlike database views, Hibernate filters can be enabled or disabled during a Hibernate session. In addition,
Hibernate filters are parameterized, which is particularly useful when you are building applications on top of
Hibernate that use security roles or personalization.

Filters are particularly useful when you have many similar queries with generalizable selection clauses. Filters
allow you to use a generalized query, adding criteria for the query as needed.

When to Use Filters
As an example, consider an application that uses users and groups. A user has a status indicating whether that user
is active or inactive, and a set of memberships; if your application needs to manage users based on status and/or
group membership, you’re looking at four separate queries (or a wildcard query, which seems silly). The wildcard
query could indeed work, but it would add a burden on the database that shouldn’t be there, especially if one set of
wildcards was very common.

If we were to use four different queries (“all users,” “all users with this status,” “all users in this group,” and “all
users with this status and in this group”), not only would we have four queries to test and maintain but we’d also have
to have a way of keeping track of which query we were supposed to be using at any given time.

We could also use custom queries for each execution (building the query as needed, instead of storing a set of
queries). It’s doable, but not entirely efficient, and it pollutes your services with query data.1

Filters allow us to define sets of restrictions. Instead of custom queries or sets of similar queries, we can create a filter
and apply it when we query the database, such that our actual query doesn’t change, even though the data set does.

The advantage to using Hibernate filters is that you can programmatically turn filters on or off in your application
code, and your filters are defined in consistent locations for easy maintainability. The major disadvantage of filters
is that you cannot create new filters at run time. Instead, any filters your application requires need to be specified in
the proper Hibernate annotations or mapping documents. Although this may sound somewhat limiting, the fact that
filters can be parameterized makes them pretty flexible. For our user status filter example, only one filter would need
to be defined in the mapping document (albeit in two parts). That filter would specify that the status column must
match a named parameter. You would not need to define the possible values of the status column in the Hibernate
annotations or mapping documents—the application can specify those parameters at run time.

1Query data are the methods that retrieved users would have to keep track of the specific criteria in question. To some degree,
this is going to be necessary anyway, but we’d prefer the impact be as small as possible.

Chapter 11 ■ Filtering the Results of Searches

176

Although it is certainly possible to write applications with Hibernate that do not use filters, we find them to be an
excellent solution to certain types of problems—notably security and personalization.

Defining and Attaching Filters
Your first step is to create a filter definition. A filter definition is like metadata for a filter, including parameter
definitions; it’s not the filter itself, but it serves as a starting point.2 After you have the filter definition, you create the
filter itself; this contains the actual filter specification. Using the filter is a simple matter of enabling the filter by name
and populating the parameters, if any.

What’s the reason for having a filter definition separate from the filter itself? It’s that the filter definitions are
often written for a specific database, and thus they trend to being nonportable. If the filters and their definitions were
unified, it’d be much more difficult to keep them portable; with a separated definition, it’s easy to put a filter in a
separately included resource.

Let’s look at some filters, to make their usage clear.

Filters with Annotations
To use filters with annotations, you will need to use the @FilterDef, @ParamDef, and @Filter annotations. The
@FilterDef annotation defines the filter and belongs to either the class or the package. To define a filter on a class,
add an @FilterDef annotation after the @Entity annotation.

After you have defined your filters, you can attach them to classes or collections with the @Filter annotation.
The @Filter annotation takes two parameters: name and condition. The name references a filter definition that we
have previously described in an annotation. The condition parameter is an HQL WHERE clause. The parameters in the
condition are denoted with colons, similar to named parameters in HQL. The parameters have to be defined on the
filter definition. Here is a skeleton example of the filter annotations:
 
@Entity
@FilterDef(name = "byStatus", parameters = @ParamDef(name = "status", type = "boolean"))
@Filter(name = "byStatus", condition = "active = :status")
public class User {
 // other fields removed for brevity’s sake
 boolean status;
} 

Note■■   Defining filters on each class is simple, but if you use filters in multiple classes, you will have a lot of duplication.
To define any annotation at a package level, you will need to create a Java source file named package-info.java in the
package. The package-info.java class should only include the package-level annotations and then declare the package
immediately afterward. It is not meant to be a Java class. You will also need to tell Hibernate to map the package when
you configure Hibernate, either through the addPackage() method on AnnotationConfiguration or in your Hibernate
configuration XML.

2In this, it’s like JNDI; you refer to a name in the filter definition, but the filter itself is defined elsewhere.

Chapter 11 ■ Filtering the Results of Searches

177

Filters with XML Mapping Documents
For the XML mapping documents, use the <filter-def> XML element. These filter definitions must contain the name
of the filter and the names and types of any filter parameters. You specify filter parameters with the <filter-param>
XML element. Here is an excerpt from a mapping document with a filter called latePaymentFilter defined:
 
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
 
<hibernate-mapping>
 <class ...
 
 </class>
 <filter-def name="latePaymentFilter">
 <filter-param name="dueDate" type="date"/>
 </filter-def>
</hibernate-mapping>
 

Once you have created the filter definitions, you need to attach the filters to class or collection mapping
elements. You can attach a single filter to more than one class or collection. To do this, you add a <filter> XML
element to each class and/or collection. The <filter> XML element has two attributes: name and condition.
The name references a filter definition (for instance: latePaymentFilter). The condition represents a WHERE clause
in HQL. Here’s an example:
 
<class ...
 <filter name="latePaymentFilter" condition=":dueDate = paymentDate"/>
</class>
 

Each <filter> XML element must correspond to a <filter-def> element.

Using Filters in Your Application
Your application programmatically determines which filters to activate or deactivate for a given Hibernate session.
Each session can have a different set of filters with different parameter values. By default, sessions do not have any
active filters—you must explicitly enable filters programmatically for each session. The Session interface contains
several methods for working with filters, as follows:

•	 public Filter enableFilter(String filterName)

•	 public Filter getEnabledFilter(String filterName)

•	 public void disableFilter(String filterName)

These are pretty self-explanatory—the enableFilter(String filterName) method activates the specified filter,
the disableFilter(String filterName) method deactivates the method, and if you have already activated a named
filter, getEnabledFilter(String filterName) retrieves that filter.

Chapter 11 ■ Filtering the Results of Searches

178

The org.hibernate.Filter interface has six methods. You are unlikely to use validate(); Hibernate uses that
method when it processes the filters. The other five methods are as follows:

•	 public Filter setParameter(String name, Object value)

•	 public Filter setParameterList(String name, Collection values)

•	 public Filter setParameterList(String name, Object[] values)

•	 public String getName()

•	 public FilterDefinition getFilterDefinition()

The setParameter() method is the most useful. You can substitute any Java object for the parameter, although its
type should match the type you specified for the parameter when you defined the filter. The two setParameterList()
methods are useful for using IN clauses in your filters. If you want to use BETWEEN clauses, use two different
filter parameters with different names. Finally, the getFilterDefinition() method allows you to retrieve a
FilterDefinition object representing the filter metadata (its name, its parameters’ names, and the parameter types).

Once you have enabled a particular filter on the session, you do not have to do anything else to your application
to take advantage of filters, as we demonstrate in the following example.

A Basic Filtering Example
Because filters are very straightforward, a basic example allows us to demonstrate most of the filter functionality,
including activating filters and defining filters in mapping documents.

We’re going to create a User entity, with an active status and membership in groups. We’re going to define three
filters: one very simple filter with no parameters (just to show how), and then two parameterized filters, which we’ll
apply in various combinations.

We’re going to stick with the annotation configuration, as we’re using a single database (HSQL), and it simplifies
our example drastically.3 We’re going to also revert to using Lombok, because that will shorten our example code,
as shown in Listing 11-1.

Listing 11-1.  User.java

package chapter11.model;
 
import lombok.*;
import lombok.experimental.Builder;
import org.hibernate.annotations.*;
 
import javax.persistence.*;
import javax.persistence.Entity;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
 
@Entity
@NoArgsConstructor
@Builder
@AllArgsConstructor

3We could anticipate multiple database engines, but most environments use the same databases for testing and production, as they
should. It’s a good habit to follow.

Chapter 11 ■ Filtering the Results of Searches

179

@EqualsAndHashCode
@ToString
@FilterDefs({
 @FilterDef(name = "byStatus",
 parameters = @ParamDef(name = "status", type = "boolean")),
 @FilterDef(name = "byGroup",
 parameters = @ParamDef(name = "group", type = "string")),
 @FilterDef(name = "userEndsWith1")
})
@Filters({
 @Filter(name = "byStatus", condition = "active = :status"),
 @Filter(name = "byGroup",
 condition = ":group in (select ug.groups from user_groups ug where ug.user_id = id)"),
 @Filter(name = "userEndsWith1", condition = "name like '%1'")
})
public class User {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 Integer id;
 @Getter
 @Setter
 @Column(unique = true)
 String name;
 @Getter
 @Setter
 boolean active;
 @Getter
 @Setter
 @ElementCollection
 Set<String> groups;
 
 public void addGroups(String... groupSet) {
 if (getGroups() == null) {
 setGroups(new HashSet<String>());
 }
 getGroups().addAll(Arrays.asList(groupSet));
 
 }
}
 

There are a few things about this that stand out, especially with regard to groups.
First, groups are defined as a Set, annotated with @ElementCollection. This will create a table, USER_GROUPS,

that will contain a user ID and a single column, with the various group names in a column named after the collection
(thus, “groups” and not “group.”).

Then, the filter that selects by group uses a subselect to limit the users returned. This condition is database-specific
and uses knowledge of the actual table structure; filters do some introspection, but not as much as they could. Be
prepared to do some analysis to work out exactly what the filter condition should be.

Now let’s create a test class in Listing 11-2, FilterTests.java, that runs a simple query to make sure we have a
basic framework in place. We’ll add various test methods to this class to show the filters in action.

Chapter 11 ■ Filtering the Results of Searches

180

Listing 11-2.  Our basic test framework, FilterTests.java

public class FilterTests {
 Session session;
 Transaction tx;
 Query query;
 List<User> users;
 
 @BeforeMethod
 public void setupTest() {
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 User user = User.builder().name("user1").active(true).build();
 user.addGroups("group1", "group2");
 session.save(user);
 user = User.builder().name("user2").active(true).build();
 user.addGroups("group2", "group3");
 session.save(user);
 user = User.builder().name("user3").active(false).build();
 user.addGroups("group3", "group4");
 session.save(user);
 user = User.builder().name("user4").active(true).build();
 user.addGroups("group4", "group5");
 session.save(user);
 tx.commit();
 session.close();
 
 session = SessionUtil.getSession();
 tx = session.beginTransaction();
 query = session.createQuery("from User");
 }
 
 @AfterMethod
 public void endTest() {
 if (session.isOpen()) {
 if (tx.isActive()) {
 tx.commit();
 }
 tx = session.beginTransaction();
 session.disableFilter("byGroup");
 session.disableFilter("byStatus");
 session.createSQLQuery("DELETE FROM USER_GROUPS").executeUpdate();
 session.createSQLQuery("DELETE FROM USER").executeUpdate();
 tx.commit();
 session.close();
 }
 session = null;
 tx = null;
 query = null;
 users = null;
 }
 

Chapter 11 ■ Filtering the Results of Searches

181

 @Test
 public void testSimpleQuery() {
 users = (List<User>) query.list();
 assertEquals(users.size(), 4);
 }
}
 

This creates a set of users, some active, some inactive, and with membership in various groups. It also runs a
basic query (“from User”) and validates that it retrieved all of the users.

First, let’s test the simplest filter we have in Listing 11-3, which is named “userEndsWith1” – a filter that is
constructed solely for the sake of showing a non-parameterized filter.4

Listing 11-3.  Using a non-parameterized filter

@Test
public void testNoParameterFilter() {
 session.enableFilter("userEndsWith1");
 List<User> users = query.list();
 assertEquals(users.size(), 1);
 assertEquals(users.get(0).getName(), "user1");
}
 

This test enables a filter for the session, and then runs our basic query (which is “from User,” as you’ll recall).
With no other configuration or specification, our data set returns only those users whose name ends with a “1” –and
since we created only one user like that, that’s the user that’s returned.

Now let’s see how to use a parameter in a filter with two tests, shown in Listing 11-4.

Listing 11-4.  A filter using a parameter

@Test
public void testActivesFilter() {
 session.enableFilter("byStatus").setParameter("status", Boolean.TRUE);
 users = (List<User>) query.list();
 assertEquals(users.size(), 3);
}
 
@Test
public void testInactivesFilter() {
 session.enableFilter("byStatus").setParameter("status", Boolean.FALSE);
 users = (List<User>) query.list();
 assertEquals(users.size(), 1);
}
 

Here, we try both of our status conditions, first enabling the filter and then setting a parameter on the filter
reference. Again, we’re relying on our known data set.

We can combine filters, as well. We’re going to include two more tests, in Listing 11-5; the first will test our group
filter, and the second will combine the two filters for a single query.

4A better example might have been a constant status, instead of “name ends with a 1”, but the status is ideally parameterized as
well. The data model would have been polluted without a contrived example, so that’s what we have.

Chapter 11 ■ Filtering the Results of Searches

182

Listing 11-5.  Combining filters

@Test
public void testGroupFilter() {
 session.enableFilter("byGroup").setParameter("group", "group4");
 users = (List<User>) query.list();
 assertEquals(users.size(), 2);
 session.enableFilter("byGroup").setParameter("group", "group1");
 users = (List<User>) query.list();
 assertEquals(users.size(), 1);
 // should be user 1
 assertEquals(users.get(0).getName(), "user1");
}
 
@Test
public void testBothFilters() {
 session.enableFilter("byGroup").setParameter("group", "group4");
 session.enableFilter("byStatus").setParameter("status", Boolean.TRUE);
 List<User> users = query.list();
 assertEquals(users.size(), 1);
 assertEquals(users.get(0).getName(), "user4");
}
 

It’s worth noting again that our query has not changed for any of this code; we’re reusing the same query
definition, over and over again, while getting different data sets from it.

You can see here that it’s trivial to concatenate criteria via filters, allowing us to use simpler (and fewer) queries,
and applying simple criteria.

Summary
Filters are a useful way to separate some database concerns from the rest of your code. A set of filters can cut back on
the complexity of the HQL queries used in the rest of your application, at the expense of some run-time flexibility.
Instead of using views (which must be created at the database level), your applications can take advantage of dynamic
filters that can be activated as and when they are required.

183

Chapter 12

Leaving the Relational Database
Behind: NoSQL

Hibernate doesn’t limit you to using purely relational databases; Hibernate OGM stands as a project that can carry
an object model into the realm of the NoSQL datastore, allowing developers to use a familiar mechanism to access
multiple types of storage.

Relational databases are tabular in nature; sets of data (“tables”) are homogenous and regular, often described in
terms of rows and columns. Relationships are fixed; a table can require that the value of one column be represented
as a column or set of columns in another table. Rows cannot change shape or form (or size); the row and column sizes
are generally fixed.

NoSQL datastores are more easily described in negative terms: they’re typically not tabular, data structures
are not fixed, relationships are not enforced, data types for a given attribute are not consistent. That’s not to say that
NoSQL data stores can’t have these characteristics. It just means that NoSQL datastores tend to be able to turn the
rules of traditional databases on their heads. This can yield massive scalability or flexibility. Scalability in this context
can refer to speed or size; Cassandra, for example, can use a cell concept, distributed among rows and columns–such
that if you wanted, you could theoretically have a single row with two billion pieces of data.1

Flexible data structures mean that you can represent your data as a tree, or a set of trees, just as correctly as you
can represent your data as a map, a set of values associated with a single key.2

The biggest problem with NoSQL is the object/data impedance mismatch. With a relational database, if your
table has four columns in it, you can easily model that with an object. Each column would map to an object attribute,
and that attribute’s type is presumably easily derived from the database metadata. However, most NoSQL databases
don’t follow a mandated structure.3 A single item of a given type might have four attributes, but another item of the
same type might have 15 attributes, or 70, or 400.

Because of the lack of mandated structure, objects can be difficult to design well, if at all,4 and many NoSQL
Java APIs either ignore object design altogether (where information is represented simply as a stream of data) or
enforce regular structures on a data storage system where regular structures aren’t the norm. As a result, migrating an
application to NoSQL can be a problem to address.

1 This is not a good idea. 64,000 columns, sure. Two billion is a bit much.
2Many caches are now billing themselves as forms of NoSQL. Whether this is true or not tends to depend on how persistent the
cache really is.
3The Java Content Repository (JCR) can manage both; nodes in JCR can have an enforced schema or be freeform. Most adherents
strongly advocate the freeform aspect.
4The shrieks of horror you’re hearing are from all the advocates of good design, wondering how one can ever create an application
where objects aren’t designed, but just happen.

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

184

In the end, NoSQL is not necessarily better than a relational database as much as it’s merely different. NoSQL
datastores have their own challenges and strengths, and whether you can leverage them properly or not depends on
the specific use case you have and your own expertise. Contrast that with relational systems, which are well known
and much understood in terms of strengths and weaknesses; looking at the well of experience, we find for most
problems SQL is by far the most appropriate solution, if only because so many people know what SQL can do and
how to do it.

This chapter will not be able to tell you everything you will ever need to know about NoSQL. One of the strengths
and weaknesses of the NoSQL landscape is that it’s not restricted by the definition of SQL, such that a NoSQL
implementation can target specific use cases very well, being a master of one aspect of data rather than a jack of all
trades, as the relational model is.

Where Is Hibernate When it Comes to NoSQL?
Hibernate can serve as a mapper for nonrelational datastores too, through Hibernate OGM. OGM is an adaptive layer
between a strict object model and NoSQL’s typically rather flexible object model.

From the Java coder’s perspective, usage of Hibernate is fairly typical,5 in most respects; one defines objects
annotated with @Entity, and interaction is through a standard Hibernate Session or JPA EntityManager object.

There are exceptions to the seamless integration, which range from minor to severe. This is unavoidable,
because of the mismatch of features between SQL and NoSQL. Most of the exceptions center on queries, because
NoSQL databases typically index and query differently from how SQL does. Hibernate provides a query language
layer for NoSQL, but there’s no guarantee of feature completeness between SQL and NoSQL. This is less of a problem
than it could be, because accessing a NoSQL datastore as if it were a SQL database can have negative performance
implications. You don’t necessarily want to have an exact correspondence between feature sets.

So let’s get started.

Basic CRUD Operations
What we’d like to do is see a set of operations done with Hibernate, with a few NoSQL backends. We’ll test writes,
reads, updates, and deletes, with some queries thrown in for good measure. Our object model will be very simple,
because mapping from Java to a nonrelational backing store really should be tuned for each NoSQL implementation.
There’s no good generalized solution here.6

Our project has a unique set of dependencies. Obviously, we need to include OGM and drivers for the specific
NoSQL backends we’re using. The project file can be seen in Listing 12-1.

Listing 12-1.  The OGM Project’s pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <groupId>com.redhat.osas.books.hibernate</groupId>
 <artifactId>chapter12</artifactId>
 <version>1.0-SNAPSHOT</version>
 <modelVersion>4.0.0</modelVersion>
 

5 This is by far the most important sentence in this chapter, in terms of how powerful Hibernate can be.
6It’s possibly a bit unfair to say that there’s no generalized solution; there may be.

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

185

 <dependencies>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 <version>[4.0.0.Beta4,4.1.0)</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-infinispan</artifactId>
 <version>[4.0.0.Beta4,)</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate.javax.persistence</groupId>
 <artifactId>hibernate-jpa-2.0-api</artifactId>
 <version>1.0.1.Final</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.transaction</groupId>
 <artifactId>jboss-transaction-api_1.1_spec</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search</artifactId>
 <version>4.4.2.Final</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.jbossts</groupId>
 <artifactId>jbossjta</artifactId>
 <version>4.16.4.Final</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>[6.8.7,)</version>
 </dependency>
 <dependency>
 <groupId>org.mongodb.morphia</groupId>
 <artifactId>morphia</artifactId>
 <version>[0.105,)</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

186

 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>
 

Listing 12-2 shows our entire object model, a Person object, containing an ID, a name, and a balance. We’re
going to eliminate the boilerplate methods again; Lombok could help, but let’s keep the listing more focused.

Listing 12-2.  The Object Model forOour NoSQL Venture, in src/main/java/chapter12/Person.java

package chapter12;
 
import org.hibernate.search.annotations.Analyze;
import org.hibernate.search.annotations.Field;
import org.hibernate.search.annotations.Indexed;
 
import javax.persistence.*;
 
@Entity
@Indexed
public class Person {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Field(name = "id")
 Integer id;
 @Field(analyze = Analyze.NO)
 @Column
 String name;
 @Field(analyze = Analyze.NO)
 @Column
 Integer balance;
 
 public Person() {
 }
 
 public Person(String name, int balance) {
 this.name = name;
 this.balance = balance;
 }
 // We’re not showing the mutators, accessors, or equals()/hashCode()
}
 

We’ve introduced some new annotations: @Indexed and @Field. These will be important for searching our data,
in the event that HQL isn’t supported or doesn’t fit our needs. These annotations come from Hibernate Search, which
provides a bridge between an object model and a search engine (Lucene, in this case); the annotations tell Hibernate
Search what factors to use for searching and how the elements should be used.

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

187

We’re going to configure two persistence units via JPA for our examples; the persistence.xml file looks
like Listing 12-3.

Listing 12-3.  The two NoSQL Persistence Units, Both Using the Same Object Model

<?xml version="1.0"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 
 <persistence-unit name="chapter12-mongo" transaction-type="RESOURCE_LOCAL">
 <!-- Use Hibernate OGM provider: configuration will be transparent -->
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>chapter12.Person</class>
 <properties>
 <property name="hibernate.ogm.datastore.provider"
 value="org.hibernate.ogm.datastore.mongodb.impl.MongoDBDatastoreProvider"/>
 <property name="hibernate.ogm.mongodb.database" value="chapter12"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>
 </properties>
 </persistence-unit>
 
 <persistence-unit name="chapter12-ispn" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>chapter12.Person</class>
 <properties>
 <property name="hibernate.ogm.datastore.provider"
 value="org.hibernate.ogm.datastore.infinispan.impl.InfinispanDatastoreProvider"/>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>
 </properties>
 </persistence-unit>
</persistence>
 

The code to acquire a working EntityManager from this is trivial. If we want the chapter12-ispn persistence unit,
we could use the following snippet of code:
 
EntityManagerFactory factory = null;
public synchronized EntityManager getEntityManager() {
 if (factory == null) {
 factory = Persistence.createEntityManagerFactory(“chapter12-ispn”);
 }
 return factory.createEntityManager();
}

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

188

The Tests
Since we have two persistence units, we could create an abstract base class for the tests that contains the actual tests
themselves, with extending classes providing specific custom information for the test–like the persistence unit name.
Listing 12-4 shows a skeleton BaseOGMTest.java, to which we’ll add some tests as we progress.

Listing 12-4.  BaseOGMTest.java Skeleton

public abstract class BaseOGMTest {
 
 abstract String getPersistenceUnitName();
 
 EntityManagerFactory factory = null;
 
 public synchronized EntityManager getEntityManager() {
 if (factory == null) {
 factory = Persistence.createEntityManagerFactory(getPersistenceUnitName());
 }
 return factory.createEntityManager();
 }
}
 

Extending classes would provide a definition for getPersistenceUnitName(), and any methods annotated with
@Test in either class can be executed.

Testing Create and Read
Listing 12-5 shows our first test; this test creates a Person, persists it, and then reads it. After we see the code, we’ll
create an InfinispanTest class that extends BaseOGMTest, which will give us enough to actually run our code.

Listing 12-5.  The testCR Method, Which Tests Creates and Reads

@Test
public void testCR() {
 EntityManager em = getEntityManager();
 em.getTransaction().begin();
 Person person = new Person("user 1", 1);
 em.persist(person);
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 Person p2 = em.find(Person.class, person.getId());
 em.close();
 System.out.println(p2);
 assertNotNull(p2);
 assertEquals(p2, person);
}
 

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

189

One thing that stands out about this code is that it is idiomatic normal Java persistence. We’re not using anything
here that would indicate that we weren’t using a standard JPA entity manager.

As we see in Listing 12-6, the InfinispanTest class is very simple, but it provides the persistence unit name
we’ll be using for Infinispan:

Listing 12-6.  The Full Definition for InfinispanTest.java

public class InfinispanTest extends BaseOGMTest {
 @Override
 String getPersistenceUnitName() {
 return "chapter12-ispn";
 }
}

Testing Updates
Now let’s take a look at test for updates, in Listing 12-7; this will also follow the standard JPA idiom.

Listing 12-7.  Testing NoSQL Updates with JPA

@Test
public void testUpdate() {
 EntityManager em = getEntityManager();
 em.getTransaction().begin();
 Person person = new Person("user 2", 1);
 em.persist(person);
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 em.getTransaction().begin();
 Person p2 = em.find(Person.class, person.getId());
 p2.setBalance(2);
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 em.getTransaction().begin();
 Person p3 = em.find(Person.class, person.getId());
 em.getTransaction().commit();
 em.close();
 
 assertEquals(p3, p2);
}
 

As usual, we acquire the EntityManager; we start a transaction; we load a managed Person reference, update it,
and commit the transaction. This is very much the same process that we use for any such updates; from the coder’s
perspective, we don’t know if we’re using PostgreSQL or Infinispan as a datastore.7

7 From a runtime perspective, we would notice; PostgreSQL is very fast, but an in-memory datagrid like Infinispan will typically
run circles around a relational database.

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

190

Testing Removal
As one might expect, removing entities remains idiomatic as well, as Listing 12-8 shows:

Listing 12-8.  Removing Entities with JPA

@Test
public void testDelete() {
 EntityManager em = getEntityManager();
 em.getTransaction().begin();
 Person person = new Person("user 3", 1);
 em.persist(person);
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 em.getTransaction().begin();
 Person p2 = em.find(Person.class, person.getId());
 em.remove(p2);
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 em.getTransaction().begin();
 Person p3 = em.find(Person.class, person.getId());
 em.getTransaction().commit();
 em.close();
 
 assertNull(p3);
}

Querying in OGM
That leaves queries, which is where we finally see a divergence from idiomatic JPA.

As of this writing, Hibernate OGM does not support the use of JP-QL, the standard query language for JPA. It
does, however, support the use of some HQL, depending on which NoSQL datastore you’re using. Thus, to use a query
language with NoSQL, we’re going to need to break idiom and use the Session underneath the EntityManager we’ve
been using.

Note, also, that the full HQL language is not likely to be available. Basic operations are likely to be supported; the
more advanced your HQL gets, the less likely that OGM will support it.

The lack of full HQL is inconvenient, but not necessarily a terrible thing; providing SQL-like concepts across
a nonrelational database can cripple performance. Since HQL provides features that are likely to be kinder to the
datastores, you can usually use what capabilities are provided without wondering if you’re brutalizing performance
too much.

Listing 12-9 shows how we populate our data set. We not only persist data but also preserve the entities in a Map
so we can validate the returned data. Listing 12-10 shows an HQL query that uses this data.

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

191

Listing 12-9.  Populating Some Data for Our HQL Tests

Map<Integer, Person> people = new HashMap<>();
EntityManager em = getEntityManager();
em.getTransaction().begin();
 
for (int i = 4; i < 7; i++) {
 people.put(i, new Person("user " + i, i));
 em.persist(people.get(i));
}
 
em.getTransaction().commit();
em.close();
 

Listing 12-10.  A Simple HQL Query

em = getEntityManager();
em.getTransaction().begin();
Session session = em.unwrap(Session.class);
Query q = session.createQuery("from Person p where p.balance = :balance");
q.setInteger("balance", 4);
Person p = (Person) q.uniqueResult();
System.out.println(p);
assertEquals(p, people.get(4));
em.getTransaction().commit();
em.close();
 

As you can see, we unwrap the Session from our EntityManager so that we can use Hibernate’s query language
instead of JPA’s query language. Apart from that, the usage of the query is idiomatic; we don’t have to do much to
our code yet.8

Our selection statement (the “where clause”) can combine elements, as shown in Listing 12-11:

Listing 12-11.  Using AND in a “Where Clause” in HQL

em = getEntityManager();
em.getTransaction().begin();
session = em.unwrap(Session.class);
q = session.createQuery("from Person p where p.balance = :balance and p.name=:name");
q.setInteger("balance", 4);
q.setString("name", "user 4");
p = (Person) q.uniqueResult();
assertEquals(p, people.get(4));
em.getTransaction().commit();
em.close();
 

Lastly, we can use comparison operators too, although here we’ll see yet another potential difference between
SQL and NoSQL.

8 Unless, of course, you consider dropping back to HQL to be “much.”

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

192

The concept of uniqueness in NoSQL isn’t quite the same as it is in relational models; it’s possible, depending
on the datastore, to retrieve multiple copies of the same entity for a given query.9 As a result, we might get two values
from our simple query, even though it should return only one; here, we’re adding the list of results into a Set<Person>,
which will trim duplicates and give us single references for each entity. Our code is shown in Listing 12-12.

Listing 12-12.  Using More Comparison Operators in HQL

em = getEntityManager();
em.getTransaction().begin();
session = em.unwrap(Session.class);
q = session.createQuery("from Person p where p.balance > :balance");
q.setInteger("balance", 4);
// we use a Set because NoSQL's concept of uniqueness is.. difficult
Set<Person> peopleList = new HashSet<Person>(q.list());
assertEquals(peopleList.size(), 2);
em.getTransaction().commit();
em.close();
 

This leads us to Hibernate Search, which provides a programmatic interface to Apache Lucene. If an entity is
indexed, its fields will be stored in a Lucene directory, which means they’re available for full-text queries.

To mark an entity as being indexed for Lucene, one simply adds the @Indexed annotation to the class, as we
did for Person. The fields are annotated with @Field; the default is to have the fields analyzed, which makes them
appropriate for use in a full-text, fuzzy search.10 If we want to use the fields verbatim for searches, we want to turn
analysis off, which is done with @Field(analyze = Analyze.NO).

Actually executing the query involves creating a FullTextEntityManager, then building a Lucene query with
that; one then converts the Lucene query into something that Hibernate can use to return entities. Lucene is even
more prone to returning single entities multiple times, so one has to trim the result set for uniqueness here as well.
Listing 12-13 shows an example of querying on a simple value with Hibernate Search, including populating data:

Listing 12-13.  A Simple Hibernate Search Example

@Test
public void testQueryLucene() {
 Map<Integer, Person> people = new HashMap<>();
 EntityManager em = getEntityManager();
 em.getTransaction().begin();
 
 for (int i = 7; i < 9; i++) {
 people.put(i, new Person("user " + i, i));
 em.persist(people.get(i));
 }
 
 em.getTransaction().commit();
 em.close();
 
 em = getEntityManager();
 em.getTransaction().begin();
 FullTextEntityManager ftem = Search.getFullTextEntityManager(em);
 

9 We’ll see this again when we look at the Hibernate Search facility.
10In a fuzzy search, it’s possible to get a hit on “gives” with “give” as a search term, and vice versa. Verbatim searches wouldn’t return
a hit on “give” with “gives.”

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

193

 //Optionally use the QueryBuilder to simplify Query definition:
 QueryBuilder b = ftem.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Person.class)
 .get();
 org.apache.lucene.search.Query lq =
 b.keyword().onField("id").matching(people.get(7).getId()).createQuery();
 
 //Transform the Lucene Query in a JPA Query:
 FullTextQuery ftQuery = ftem.createFullTextQuery(lq, Person.class);
 //This is a requirement when using Hibernate OGM instead of ORM:
 ftQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,
 DatabaseRetrievalMethod.FIND_BY_ID);
 
 Set<Person> resultList = new HashSet<Person>(ftQuery.getResultList());
 // lucene can return multiple results for a given query!
 Set<Person> personSet = new HashSet<>();
 personSet.addAll(resultList);
 assertEquals(personSet.size(), 1);
 em.getTransaction().commit();
 em.close();
}
 

This looks like a lot of code to accomplish something very simple, but it’s worth noting that we’re also able to
execute full-text queries with similar code. Full-text and fuzzy queries aren’t trivial; the Hibernate Search code isn’t
entirely trivial either, but it’s fairly simple.

All of this code runs against Infinispan fairly well, but what happens if we switch to another datastore, such as
MongoDB?

MongoDB
MongoDB (http://www.mongodb.org) is an open-source document database using JSON as a serialization format.
It can shard well, has full indexing, and performs atomic operations for single documents; it’s also incredibly fast.

Installing mongodb is very easy.

On Windows, it’s as simple as downloading the appropriate Windows installer and running it. •	

Note■■  T he same process works for other operating systems, as well, but the Linux and MacOSX package managers
have mongodb available. 

On Linux, Fedora users can install the •	 mongodb server packages by using sudo yum install
mongodb-server; Ubuntu users can do the same with sudo apt-get install mongodb-server.

MacOSX users can install it with •	 brew install mongodb.

http://www.mongodb.org/

Chapter 12 ■ Leaving the Relational Database Behind: NoSQL

194

Once mongodb is installed, you can start mongo for our tests by going to a temporary working directory and
executing the following command:
 
mongod --dbpath . --noauth
 

This will run through a few steps for initialization, then wait for connection.
For us to use mongodb as a backend datastore instead of Infinispan, all we need to do is provide the mongodb

persistence unit’s name. Listing 12-14 is our example MongoTest.java code:

Listing 12-14.  Using mongodb Instead of Infinispan for Our Datastore

public class MongoTest extends BaseOGMTest {
 @Override
 String getPersistenceUnitName() {
 return "chapter12-mongo";
 }
}
 

Apart from that, all of our tests should run cleanly. We have preserved the benefit of using a library for persistence,
even while giving ourselves the chance to leverage the features that NoSQL datastores offer us.

Summary
Hibernate OGM is a library that offers a bridge from Hibernate to nonrelational datastores, allowing easy and convenient
usage of data grids or other document storage mechanisms. The code can be unusual compared to idiomatic Java
persistence code, largely because of impedance mismatches between storage models.

195

Appendix

More Advanced Features

In this appendix, we discuss some of the features that, strictly speaking, lie outside the scope of this book, but that you
should be aware of if you go on to use Hibernate in more depth.

Managed Versioning and Optimistic Locking
While we have saved versioning for this appendix’s discussion of advanced features, it is actually quite straightforward
to understand and apply. Consider the following scenario:

Client A loads and edits a record.•	

Client B loads and edits the same record.•	

Client A commits its edited record data.•	

Client B commits its differently edited record data.•	

While the scenario is simple, the problems it presents are not. If Client A establishes a transaction, then Client B
may not be able to load and edit the same record. Yet in a Web environment, it is not unlikely that Client A will close
a browser window on the open record, never committing or canceling the transaction, so that the record remains
locked until the session times out. Clearly this is not a satisfactory solution. Usually, you will not want to permit the
alternative scenario, in which no locking is used, and the last person to save a record wins!

The solution, versioning, is essentially a type of optimistic locking (see Chapter 8). When any changes to an entity
are stored, a version column is updated to reflect the fact that the entity has changed. When a subsequent user tries to
commit changes to the same entity, the original version number will be compared against the current value—if they
differ, the commit will be rejected.

The Hibernate/JPA 2 annotation mappings and the Hibernate XML-based mappings both provide a simple
syntax for indicating which field should be used for storing the managed version information. The annotation for this
field is shown in Listing A-1.

Listing A-1.  Marking the Version Attribute Using Annotations

@Version
protected int getVersionNum() {
 return versionNum;
}
 

The default optimistic locking strategy for Hibernate is versioning, so if you provide a column annotated with
@Version in your object model, this will be used as long as you have enabled dynamic updates (as shown in Listing A-2).

Appendix ■ More Advanced Features

196

Listing A-2.  Marking the Version Attribute Using XML Mappings

@Entity
public class MyObject {
 @Version
 @Column
 Integer version;
 ...
}
 

The version attribute is defined in a very similar way to the normal property configuration. The version can be of
type long, integer, short, timestamp, or calendar.

You can modify the default lock mode for a given managed object by using Session.load() and include a LockMode,
or Session.lock(); or–if you’re accessing the managed objects through a Query–through Query.setLockMode().

If you elect not to use versioning, dirty checking offers an alternative form of optimistic locking. Here, the values
of the entities are themselves checked to see if they have changed since the entity was originally obtained. As with
versioning-based optimistic locking, the check against the database is carried out when the changes are committed.
If an optimistic lock type of dirty is selected, then only those fields that have changed since the persistent entity was
obtained will be checked (the Session keeps track of the appropriate state information). If an optimistic lock type of
all is selected, then all the fields making up the entity will be checked for changes. If the fields being checked have
changed prior to the commit, then the commit will fail.

Versioning is generally a simpler and more reliable approach, so we suggest that you use this whenever you need
optimistic locking features.

Limitations of Hibernate
First and foremost, Hibernate wants every entity to be identifiable with a primary key. Ideally, it would like this to be
a surrogate key (a single column distinct from the fields of the table). Hibernate will accept a primary key that is not
a surrogate key. For example, the username column might be used to uniquely identify an entry in the user table.
Hibernate will also accept a composite key as its primary key, so that the username and hostname might be used to
form the primary key if the username alone does not serve to identify the row.

In the real world, things do not really work like that. Any database that has been around the block a few times is
likely to have at least one table for which the primary key has been omitted. For instance, the contents of the table may
not have needed to be involved in any relations with other tables. While this is still bad database design, the error is
only exposed when Hibernate tries to map objects to data. It may be that adding a suitable surrogate key column is an
option—when this is the case, we urge you to do so. In practice, however, the fundamental schema may not be under
the developer’s control, or other applications may break if the schema is radically changed.

In most scenarios, a developer will be able to arrange the creation of views or stored procedures. It may be
possible to create the appearance of a suitable primary key using these if no other options present themselves, but you
should consult with your database administrators, since a table for which no true primary key can be obtained is likely
to cause long-term corruption of your data.

Finally, if you can neither change a broken schema nor add views or stored procedures to ameliorate its effects,
you have the option of obtaining a pure JDBC connection (see Listing A-3) from the session to the database, and
carrying out traditional connected database access. This is the option of last resort, and is only truly of value when you
anticipate being able to correct the faulty schema at some future time.

Listing A-3.  Obtaining a JDBC Connection from Hibernate

SessionFactory factory =
 new Configuration().configure().buildSessionFactory();
Session session = factory.openSession();
Connection connection = session.getConnection();

Appendix ■ More Advanced Features

197

Hand-Rolled SQL
While Hibernate cannot operate upon entities that lack primary keys, it is also extremely awkward to use Hibernate
when there is a poor correspondence between the tables and the classes of your object model.

Using a Direct Mapping
Figure A-1 presents a fairly typical example of a valid database model that may be painful to represent in our
mapping files.

Figure A-1.  A problematic but legal schema

Here, the product table represents a product (for example, a flashlight). The color table represents the colors in
which it is sold. The link table named product_color then allows us to identify a product by stock keeping unit (SKU),
and identify the colors in which it is available.

If we do not mind the Product object retaining a set of colors (representing the colors in which it can be sold),
then we have no problem; but if we want to distinguish between a red flashlight and a green one, things become more
difficult (see Listing A-4).

Listing A-4.  A Fairly Direct Representation of the Product as an XML Mapping

<class name="com.hibernatebook.legacy.Product" table="product_color">
 
 <composite-id
 class="com.hibernatebook.legacy.ProductKey"
 name="key">
 
 <key-property type="int" name="id" column="product_id"/>
 <key-property type="int" name="colorId" column="color_id"/>
 
 </composite-id>
  
 <many-to-one
 name="color"
 class="com.hibernatebook.legacy.Color"
 column="color_id"
 insert="false"
 update="false"/>
  

Appendix ■ More Advanced Features

198

 <many-to-one
 name="data"
 class="com.hibernatebook.legacy.ProductData"
 column="product_id"
 insert="false"
 update="false"/>
 
</class>
 

There are several dissatisfying aspects to the mapping in Listing A-5. First, rather than mapping our product
table, we have mapped the link table. This makes sense when you consider that the primary key formed from the two
columns of this table uniquely identifies a “colored product,” which the product table alone cannot do.

Second, we are obliged to create a number of distinct objects to represent the class: the Product class itself, a
class to represent the primary key (inevitable where a composite id occurs), a class to represent the other attributes of
the product, and the Color class.

Last, the use of the columns more than once within the mapping requires us to flag them so that they cannot be
written—this is a read-only mapping.

Using a View
Fortunately, most databases provide a simple mechanism for manipulating a schema so that it better matches the
business requirements. A database view will allow you to put together a join that appears to be a table. By a suitable
choice of columns from the existing tables, you can construct a view that is much easier to map (see Listing A-5).

Listing A-5.  A View on the Product Tables

create view vwProduct (ProductKey,ColorKey,Id,SKU,ColorId)
AS
 select
 p.id as ProductKey,
 c.id as ColorKey,
 p.id as Id,
 p.sku as SKU,
 c.id as ColorId
 from
 product p,
 product_color pc,
 color c
 where
 p.id = pc.product_id
 and
 pc.color_id = c.id;
 

This view effectively reformats our table so that it has a correct (composite) primary key formed from the link
table’s two columns. It makes the SKU data available directly, and it retains the foreign key into the color table.

Listing A-6 is a much more natural mapping.

Appendix ■ More Advanced Features

199

Listing A-6.  The Revised Mapping

<class name="com.hibernatebook.legacy.Product" table="vwProduct">
 <composite-id
 class="com.hibernatebook.legacy.ProductKey"
 name="key">
 <key-property
 type="int"
 name="id"
 column="ProductKey"/>
 <key-property
 type="int"
 name="colorId"
 column="ColorKey" />
 </composite-id>
 
 <property
 name="id"
 type="int"
 column="id"
 insert="false"
 update="false"
 unique="true"/>
  
 <property
 name="SKU"
 type="int"
 column="sku"
 insert="false"/>
 
 <many-to-one
 name="color"
 class="com.hibernatebook.legacy.Color"
 column="ColorId"/>
</class>
 

The behavior of the composite primary key is unchanged, but the SKU now becomes a simple property. The color
entity is mapped as before.

The caveat for this approach is the problem of writing data to the mapping. Some databases (for example, versions 4
and lower of MySQL) do not support writable views, and others may have only limited support for them. To avoid views
in these circumstances, we must abandon complete portability in favor of database-specific SQL inserted directly into
the mapping file.

Putting SQL into an Annotation or Mapping
Hibernate provides three annotations and several XML tags that can be used to override the default behavior when
writing to the database. Instead of accepting the SQL generated by Hibernate from the information in the mapping file,
you can dictate exactly how changes to an entity should be enforced. The disadvantage is that you will lose Hibernate’s
guarantee of cross-database platform portability. The advantage is that you can carry out operations that are not
explicitly described in the mapping, such as calculating and inserting values in the process of carrying out an insert.

Appendix ■ More Advanced Features

200

The annotations are @SQLInsert, @SQLUpdate, and @SQLDelete; while the XML mapping elements are <sql-insert>,
<sql-update>, and <sql-delete>. All of these work in the same way.

If you take a look at the DDL script for this example, you will see that our client table includes seven fields, the last
of which is the country field, as shown in Listing A-7.

Listing A-7.  The DDL Script to Create the Client Table

create table client (
 id int not null primary key,
 name varchar(32) not null,
 number varchar(10),
 streetname varchar(128),
 town varchar(32),
 city varchar(32),
 country varchar(32)
);
 

We will, however, ignore the country field in our mapping file. We would like this to be automatically set to
UK whenever a client entity is persisted.

Depending on the database, this could be implemented as part of the view’s support for writing operations, or
as a trigger invoked when the other fields are written—but we use the @SQLInsert annotation or <sql-insert> tag to
specify the operation to perform.

The necessary ordering of the parameters can be determined by running Hibernate with logging enabled for the
org.hibernate.persister.entity level. You must do this before you add the mapping. Listing A-8 shows a suitably
formatted <sql-insert> element with the parameters suitably ordered. Note that the identifier field id is in the last
position—not the first, as you might have expected.

Listing A-8.  The Mapping File Using Explicit SQL to Update the Tables

<class name="com.hibernatebook.legacy.Client" table="Client">
 <id type="int" name="id" column="id">
 <generator class="native"/>
 </id>
 <property type="text" name="name" column="name"/>
 <property type="text" name="number" column="number"/>
 <property type="text" name="streetname" column="streetname"/>
 <property type="text" name="town" column="town"/>
 <property type="text" name="city" column="city"/>
 
 <sql-insert>
 insert into client(name,number,streetname,town,city,id,country)
 values (?,?,?,?,?,?,'UK');
 </sql-insert>
</class>
 

In addition to the three SQL terms for writing to the database, you can specify hand-rolled SQL for reading.
This is appended as <sql-query> tags outside the class tag (see Listing A-9). They are not intrinsically a part of the
mapping. However, you can specify that one of them should be used as the default loader for your class.

Appendix ■ More Advanced Features

201

Listing A-9.  An Alternative Mapping File Defining a Default Loader

...
<hibernate-mapping>
 <class name="com.hibernatebook.legacy.Client"
 table="Client">
 <id type="int" name="id" column="id">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="number"/>
 <property name="streetname"/>
 <property name="town"/>
 <property name="city"/>
 
 <loader query-ref="DefaultQuery"/>
 </class>
 
<sql-query name="DefaultQuery">
 <return alias="c"
 class="com.hibernatebook.legacy.Client"/>
 SELECT
 id as {c.id},
 'NOT SPECIFIED' as {c.name},
 number as {c.number},
 streetname as {c.streetname},
 town as {c.town},
 city as {c.city}
 FROM
 Client
 WHERE
 id = ?
</sql-query>
 
</hibernate-mapping> 

Tip■■  U nfortunately, this technique is not quite as sophisticated as you might hope—the custom SQL will not be
invoked in general terms. Only if the id is explicitly supplied, as is the case when calling the Session class’s get()
method, will the default handling be overridden in favor of the loader query.

Invoking Stored Procedures
Data outlives application logic. This is a general rule of thumb, and as we can attest, it holds true in practice. The
natural lifespan of a database will tend to see multiple applications. The lifespan of some of these applications will, in
turn, tend to overlap, so that at any one time we expect substantially different code bases to be accessing the same data.

To resolve such issues, databases usually provide their own programming language to allow complex business
rules to be expressed and enforced within the boundary of the database itself. These languages are expressed in stored
procedures—essentially an API to the database. Often, free-form SQL access to such a database is denied, and only

Appendix ■ More Advanced Features

202

access through stored procedures is permitted. Barring errors in the code of the stored procedures themselves, this
removes any risk of corruption.

One final advantage of using stored procedures is that when a substantial calculation is required, the use of a
stored procedure can reduce the network traffic involved. For example, if you invoke a stored procedure to calculate
the grand total of a table of accounts, only the request and the result figure would need to traverse the network. The
equivalent client-side implementation would need to acquire the value to be totaled from every row!

Taking the client example from the “Putting SQL into a Mapping” section, we could replace the SQL logic in
the <sql-insert> tag with a call to a suitable stored procedure. The callable attribute is set to true to indicate that
Hibernate needs to issue a call to a stored procedure instead of a standard query (see Listing A-10).

Listing A-10.  Mapping a Call to the Stored Procedure

<sql-insert callable="true">
 {call insertClient(?,?,?,?,?,?)}
</sql-insert>
 

In the stored procedure definition (see Listing A-11), you will note that the order of the parameters to be passed
in has been tailored to match the order in which they will be provided by Hibernate.

Listing A-11.  The Logic of the Stored Procedure

CREATE PROCEDURE
 insertClient(p_name varchar(32),
 p_number varchar(10),
 p_streetname varchar(128),
 p_town varchar(32),
 p_city varchar(32),
 p_id int)
AS
BEGIN
 INSERT INTO client
 (id,name,number,streetname,town,city,country)
 VALUES
 (:p_id,:p_name,:p_number,:p_streetname,:p_town,:p_city,'UK');
END
 

By obtaining a JDBC connection from the session, it is of course possible to invoke stored procedures directly;
however, you must be aware that the Hibernate session cache cannot track these updates.

Overriding the Default Constructor
Occasionally, you will find that it is necessary to persist a POJO that has no default constructor. Usually you will
have access to the source code, and should just make the change directly. Occasionally, however, you may find that
you are working with classes for which the source code is not available—or that you are working with large bodies
of generated objects for which it is extremely inconvenient to manage changes made to the source code. In these
circumstances, it is possible to use an interceptor to replace the default object-creation logic.

This technique can be used as long as you have some way of obtaining or applying default values for the
parameters of the POJO’s non-default constructor. Listing A-12 shows an example of the use of this technique to
instantiate a POJO whose only constructor demands a String parameter.

Appendix ■ More Advanced Features

203

Listing A-12.  Invoking a Non-Default Constructor

private static class OverrideCtor implements Interceptor {
 
 public Object instantiate(
 String entityName,
 EntityMode entityMode,
 Serializable id)
 throws CallbackException
 {
 if(entityName.equals(MissingDefaultCtorClass.class.getName())) {
 // My call to CTor
 return new MissingDefaultCtorClass("NOT SET");
 } else {
 // Some other class - continue to default handling
 return null;
 }
 }
 
 // ... the remaining default method declarations...
}

Summary
In this appendix, we have looked at alternative mechanisms for accessing Hibernate entities, and we have shown how
SQL and stored procedures can be integrated into the Hibernate environment.

A�       �
Annotations

Hibernate mappings, 81, 195
Hibernate-specific persistence annotations

Immutable annotation, 109
natural ID, 110

Hibernate XML configuration file, 108
JPA 2 persistence (see JPA 2 persistence annotations)

B�       �
Basic annotation, 94
BeforeSuite method, 15

C�       �
CacheMode setting, 147
CacheProvider interface, 146
Column annotation, 93, 95
Criteria query API, 160

aggregate functions, 171
createCriteria() methods, 165
groupProperty projection, 172
JPA 2, 174
many-to-one associations, 170
one-to-many associations, 170
pagination, 169
projections, 171–172
QBE, 173–174
restrictions

conjunction() method, 168
disjunction() factory method, 168
eq() method, 166
factory methods, 166
like() or ilike() method, 166
ne() method, 166
or() method, 167
sqlRestriction() methods, 168

setMaxResults() method, 169
sorting, 170
SQL DISTINCT query, 171
uniqueResult() method, 169

D�       �
Database management system (DBMS), 142
DiscriminatorColumn annotation, 102

E�       �
ElementCollection annotation, 105
Entities

annotation, 84
associations

bidirectional, 46–48
corrected email class, 48–49
corrected message class, 48
email class, 45
mappingBy attribute, 50
message class, 45
misleading behavior, 49–50
owner, 50
relationship management, 44
types, 44

delete() method, 61
loading

basic load() methods, 56
getEntityName() method, 57
get() methods, 57
lock mode, 56–57
supplier ID, 57–58

mappings, 42
merging, 58–59
refresh() methods, 59–60
save method

entityName argument, 51
object updation, 53–54

Index

205

session interface, 51
simple object, 51
testSaveLoad() method, 52
testSavingEntitiesTwice() method, 52–53

updation, 60–61

F�       �
Filters

activating filters, 178
advantage of, 175
annotations, 176
application, 177
combining filters, 182
custom queries, 175
definition, 176
ElementCollection, 179
FilterTests.java, 179
Lombok, 178
non-parameterized filter, 181
parameter, 181
wildcard query, 175
XML mapping documents, 177

Flush() method, 138

G�       �
GeneratedValue annotation, 85
getReference() test, 113
getSession() method, 118

H�       �
Hibernate

API, 1
binary download
cache.provider_class property, 146
criteria API (see Criteria query API)
default constructor, 202–203
hand-rolled SQL

annotation/mapping, 199–201
direct mapping, 197–198
views, 198–199

integration and configuration
C3P0, 17
concept, 9
database driver and libraries, 10
Java Application, 10
JDBC connection management, 16
JNDI, 17–18
Maven installation (see Maven installation)

invoking stored procedures, 201–202
JDBC, 5–6

JPA integration (see Java persistence
architecture (JPA))

life cycle (see Life cycle)
limitations, 196
mappings, 6, 81 (see also Mapping; Annotations)
message object, 7
NoSQL datastore (see NoSQL datastores)
object model design (see Object model design)
object/relational mapping, 3–4
origins, 3–4
persistence solution, 4–5
POJO (see Plain Old Java Objects (POJOs))
searches and queries

filters (see Filters)
HQL (see Hibernate Query Language (HQL))

session object (see Session object)
versioning and optimistic locking

annotations, 195
dirty checking, 196
scenario, 195
XML mappings, 196

Hibernate Query Language (HQL), 6
aggregate methods, 161
alias, 156
associations, 160
basic syntax

ANTLR grammar, 150
DELETE, 150
INSERT, 151
SELECT, 151
UPDATE, 150

bulk deletes, 162
bulk updates, 162
commenting SQL, 156
definition, 149
executeUpdate() method, 162
from clause, 156
JMX MBean, 149
logging the SQL, 155
named parameters, 158
named queries

Basic Product entity, 152
class-level annotations, 152
createQuery() method, 155
software entity, 153
supplier entity, 152
test method, 153

native SQL, 163
object model design (see Object model design)
pagination, 159
query’s expressions, 157
select clause and projection, 157
sorting, 160
uniqueResult() method, 159

■ index

206

Entities (cont.)

I�       �
Id annotation, 84
Immutable annotation, 109

J, K�       �
J2EE Connector Architecture (JCA), 10
Java Database Connectivity (JDBC), 1, 3, 6, 10, 196
Java Management Extensions (JMX), 10
Java Naming and Directory

Interface (JNDI), 10
Java persistence architecture (JPA)

data validation
AllArgsConstructor annotation, 129
Bean Validation specification, 127
class-level annotation, 132
coordinate validation test, 132
hibernate validator, 128
implementation, 133
persist() method, 130
SimpleValidatedPerson entity, 131
testing, 129
validator API, 127

external entity listeners, 126
JPASessionUtil class, 117
lifecycle events

lifecycle phases, 122
lifecycle test driver, 124
LifecycleThing, 122–123

project object model, 116
Testing JPASessionUtil

EntityManager.remove(), 121
Lombok-annotated Entity, 120
testSession() method, 121

Java Persistence Query
Language (JPQL), 150

Java Runtime Environment (JRE), 83
JPA 2 persistence annotations

Basic annotation, 94
Book class, unannotated, 83
column annotation, 95
compound primary keys

DDL, 92
Embeddable annotations, 88, 91
Id annotation, 88, 91

element collections, 105
entity annotation, 84
inheritance

joined table, 103
joined-table approach, 104
single table, 102
table-per-class approach, 104

Lob annotation, 105
many-to-many association, 101

MappedSuperclass, 105
one-to-one association

cascading operations, 98
conventional, 97
Embedded annotation, 97
OrderColumn annotation, 99

OrderColumn
NamedNativeQuery annotation, 107
NamedQueries, 106

primary keys
GeneratedValue annotation, 85
Id annotation, 84
property access, 85
SequenceGenerator, 86
TableGenerator, 86

SecondaryTable annotation, 93
Table annotation, 93
temporal data, 104
Transient annotation, 95

L�       �
Life cycle

cascading operations
configuration option, 63
Failed save(), 62
Java Persistence Architecture, 62
library object, 65
orphan removal, 63–65

detached objects, 42
entities (see Entities)
identifiers, 43

artificial, 43
columns, 43
Id annotation, 43–44
natural, 43

lazy loading, 66
object equality and identity, 54–56
persistent objects, 41–42
querying objects, 67
removed objects, 42
transient objects, 41

Lob annotation, 105
LockMode object, 141

M�       �
MappedSuperclass, 105
Mapping

annotations, 195
associations

entity relationship, 75
many-to-many association, 78
many-to-one association, 77–78
one-to-many association, 77–78

■ Index

207

one-to-one association, 75, 77
public customer, 74

column types and sizes, 79
email object acquiring, 69
inheritance relationships, 79
lazy loading

data subset selection, 73
email, 73
userId and username, 73

mandatory and
unique constraints, 80

object-oriented association, 69
primary keys, 80

ambiguous table updation, 73
row identification, 71–72
string object, 72
user and usernumber, 72

relational association, 69–70
SQL formula–based properties, 80
user class

customer and email classes, 70
customer and email table, 71
password field, 70
tool design, 71

Maven installation
Assert.fail(), 15
BeforeSuite method, 15
child projects, 13
dialect, 16
PersistenceTest.java, 13
pom.xml file, 13
project object model, 11
SessionFactory, 15
src/test/java directory, 13
src/test/resource/hibernate.cfg.xml, 15
@Test, 15
UNIX users, 11

MongoDB, 193

N�       �
NamedQuery annotations, 107
NoSQL datastores

BaseOGMTest.java Skeleton, 188
flexible data, 183
Hibernate Search, 192–193
HQL query, 191
@Indexed and @Field, 186
InfinispanTest.java, 189
Lucene directory, 192
MongoDB, 193
object model, 186
OGM Project’s pom.xml, 184–186

persistence.xml file, 187
removing entities, 190
scalability, 183
testCR Method, 188
testing updates, 189
“Where Clause” statement, 191

O�       �
Object model design

data reading
findPerson() method, 24
“name” attribute, 24
person instance, 24
ranking instance, 24
ranking object, 26
ranking operation testing, 25

data removing, 27–28
data updation, 26–27
data writing

data model, 21–22
initialization, 23
object finding, 23
person entity, 22–23
person object, 22
query mechanism, 24

entities, 19
persistence contexts, 27
ranking, 19

data reading and writing, 20
entity relationship diagram, 20
ignore simple mutators, 20
JavaBean, 20
person’s skill, 20–21

sample application writing
application server, 29
object model, 29
ranking, 31
ranking (see Ranking)
session retrieving, 30
SessionUtil Class test, 30
user interactions, 29

sessions management, 28
transactions, 28–29

Object/relational
mapping (ORM), 1, 3–4

Optimistic locking, 141
annotations, 195
dirty checking, 196
scenario, 195
XML mappings, 196

OrderColumn annotation, 99
org.hibernate.persister.

entity level, 200

■ index

208

Mapping (cont.)

P�       �
PersistenceTest.java, 13
Pessimistic locking, 141
Plain Old Java Objects (POJOs), 6, 202

constraints, 2
default constructor, 3
Java application, 2
mapping annotations, 6–7
retrieving

Hibernate approach, 5–6
JDBC approach, 3–4

rose-rinted view, 1–2
Primary key, 196
Product class, 198
Product object, 197
Product table, 197–198
Project object model, 11

Q�       �
Query by example (QBE), 173–174

R�       �
Ranking

addition
getRankingFor() method, 32–33
internal method, 33
public and private mechanisms, 32
RankingService Interface, 31–32
test, 31

average, 35
findings

control-break mechanism, 37
highest ranked subject, 38, 40
service methods, 37
test code, 36

removal, 35
updation

service’s code, 34
tests, 33–34

Read-only mapping, 198

S�       �
SecondaryTable annotation, 93
SequenceGenerator, 86
Session object

caching
CacheMode options, 146
database server, 145
implementations, 146
L1 and L2 cache, 145–146
properties, 147
supplier entity, 147
usage, 147

deadlocks, 142
hibernate method, 136
JDBC approach, 135
locking, 141
SessionFactory objects, 136
threads, 148
transactions

ACID tests, 139
createUser() method, 140
database and

manipulate, 138
dirty read, 139
JDBC isolation levels, 139
nonrepeatable read, 139
phantom read, 139

setCacheMode() method, 146
setParameter() method, 178
Stock keeping

unit (SKU), 197
String parameter, 202
Surrogate key, 196

T, U, V, W, X, Y, Z�       �
Table annotation, 93
TableGenerator, 86
Transient annotation, 95

■ Index

209

Beginning Hibernate
Third Edition

Joseph B. Ottinger

Dave Minter

Jeff Linwood

Beginning Hibernate

Copyright © 2014 by Joseph B. Ottinger, Dave Minter, Jeff Linwood

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6517-7

ISBN-13 (electronic): 978-1-4302-6518-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Rohan Walia
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editor: Carole Berglie
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Dedicated to recursive dedications found around the globe. And my beloved wife.

vii

Contents

About the Authors�� xv

About the Technical Reviewer��� xvii

Acknowledgments�� xix

Introduction�� xxi

Chapter 1: An Introduction to Hibernate 4.2■■ ���1

Plain Old Java Objects (POJOs)��1

Origins of Hibernate and Object/Relational Mapping���3

Hibernate as a Persistence Solution��4

A Hibernate Hello World Example���5

Mappings��6

Persisting an Object���7

Summary��7

Chapter 2: Integrating and Configuring Hibernate■■ ���9

The Steps Needed to Integrate and Configure Hibernate���9

Understanding Where Hibernate Fits into Your Java Application��10

Deploying Hibernate���10

Installing Maven��� 11

Connection Pooling���16

Summary��18

■ Contents

viii

Chapter 3: Building a Simple Application■■ ���19

A Simple Application��19

A First Attempt�� 20

Writing Data�� 21

Reading Data�� 24

Updating Data��� 26

Persistence Contexts�� 27

Removing Data��� 27

A Note on Managing Sessions�� 28

A Note on Transactions��� 28

Writing Our Sample Application�� 29

Summary��40

Chapter 4: The Persistence Life Cycle■■ ��41

Introducing the Life Cycle��41

Entities, Classes, and Names���42

Identifiers���43

Entities and Associations���44

Saving Entities��51

Object Equality and Identity���54

Loading Entities��56

Merging Entities���58

Refreshing Entities���59

Updating Entities��60

Deleting Entities���61

Cascading Operations��62

Lazy Loading, Proxies, and Collection Wrappers��66

Querying Objects��67

Summary��67

■ Contents

ix

Chapter 5: An Overview of Mapping■■ ���69

Why Mapping Cannot Easily Be Automated��70

Primary Keys��71

Lazy Loading��73

Associations���74

The One-to-One Association��� 75

The One-to-Many and Many-to-One Association�� 77

The Many-to-Many Association�� 78

Applying Mappings to Associations�� 79

Other Supported Features��79

Specification of (Database) Column Types and Sizes��� 79

The Mapping of Inheritance Relationships to the Database��� 79

Primary Key�� 80

The Use of SQL Formula–Based Properties�� 80

Mandatory and Unique Constraints�� 80

Summary��80

Chapter 6: Mapping with Annotations■■ ��81

Creating Hibernate Mappings with Annotations���81

The Cons of Annotations��� 81

The Pros of Annotations�� 81

Choosing Which to Use��� 82

JPA 2 Persistence Annotations���83

Entity Beans with @Entity�� 84

Primary Keys with @Id and @GeneratedValue��� 84

Compound Primary Keys with @Id, @IdClass, or @EmbeddedId��� 87

Database Table Mapping with @Table and @SecondaryTable��� 93

Persisting Basic Types with @Basic��� 94

Omitting Persistence with @Transient��� 95

Mapping Properties and Fields with @Column�� 95

Modeling Entity Relationships�� 96

Inheritance�� 102

■ Contents

x

Other JPA 2 Persistence Annotations��� 104

Ordering Collections with @OrderColumn�� 106

Configuring the Annotated Classes��108

Hibernate-Specific Persistence Annotations��109

@Immutable��� 109

Natural IDs�� 110

Summary��114

Chapter 7: JPA Integration and Lifecycle Events■■ ��115

The Java Persistence Architecture���115

The Project Object Model��� 116

The JPASessionUtil class�� 117

Testing JPASessionUtil��� 118

Lifecycle Events���122

External Entity Listeners��126

Data Validation���127

Summary��133

Chapter 8: Using the Session■■ ��135

Sessions���135

Transactions and Locking���138

Transactions��� 138

Locking��� 141

Deadlocks��� 142

Caching��145

Threads��148

Summary��148

■ Contents

xi

Chapter 9: Searches and Queries■■ ���149

Hibernate Query Language (HQL)���149

Syntax Basics���150

UPDATE��� 150

DELETE��� 150

INSERT�� 151

SELECT��� 151

Named Queries���152

Logging and Commenting the Underlying SQL���155

Logging the SQL��� 155

Commenting the Generated SQL�� 156

The from Clause and Aliases��156

The select Clause and Projection���157

Using Restrictions with HQL���157

Using Named Parameters���158

Paging Through the Result Set���159

Obtaining a Unique Result��159

Sorting Results with the order by Clause���160

Associations���160

Aggregate Methods��161

Bulk Updates and Deletes with HQL���162

Using Native SQL��163

Summary��164

Chapter 10: Advanced Queries Using Criteria■■ ��165

Using the Criteria API���165

Using Restrictions with Criteria�� 165

Paging Through the Result Set��� 169

Obtaining a Unique Result�� 169

Sorting the Query’s Results�� 170

■ Contents

xii

Associations���170

Distinct Results��171

Projections and Aggregates���171

Query By Example (QBE)��173

Summary��174

Chapter 11: Filtering the Results of Searches■■ ��175

When to Use Filters��175

Defining and Attaching Filters��176

Filters with Annotations�� 176

Filters with XML Mapping Documents�� 177

Using Filters in Your Application���177

A Basic Filtering Example���178

Summary��182

Chapter 12: Leaving the Relational Database Behind: NoSQL■■ ��183

Where Is Hibernate When it Comes to NoSQL?��184

Basic CRUD Operations��184

The Tests��� 188

Testing Create and Read��� 188

Testing Updates�� 189

Testing Removal��� 190

Querying in OGM��� 190

MongoDB��193

Summary��194

Appendix: More Advanced Features■■ ���195

Managed Versioning and Optimistic Locking���195

Limitations of Hibernate���196

■ Contents

xiii

Hand-Rolled SQL��197

Using a Direct Mapping�� 197

Using a View��� 198

Putting SQL into an Annotation or Mapping�� 199

Invoking Stored Procedures���201

Overriding the Default Constructor���202

Summary��203

Index��205

xv

About the Authors

Joseph B. Ottinger is a Principal Engineer at Red Hat. He’s been messing around with computers since the 1980s,
thinking about systems and architecture through war games and music. He’s worked as a developer, architect, consultant,
and writer since then, including editing stints at Java Developer Journal and TheServerSide.com.

A musician, programmer, artist, writer, father, and husband, his interests tend to range far and wide, through
philosophy, history, science, art, basketball, and education.

Jeff Linwood has been involved in software programming since he had a 286 in
high school. He got caught up with the Internet when he got access to a UNIX shell
account, and it has been downhill ever since.

When he’s not playing on the computer, his hobby is running ultramarathons.
Jeff is based in Austin, Texas, and helps large companies solve tough problems with
content management, search engines, and web application development. Jeff also
co-authored Professional Struts Applications (Apress), Building Portals with the Java
Portlet API (Apress), and Pro Hibernate 3 (Apress).

Dave Minter has adored computers since he was small enough to play in the boxes
they came in. He built his first PC from discarded, faulty, and obsolete components;
and he considers that to be the foundation of his career as an integration consultant.
Dave is based in London, where he helps large and small companies build systems
that “just work.” He wrote Beginning Spring 2: From Novice to Professional (Apress)
and co-authored Building Portals with the Java Portlet API (Apress) and
Pro Hibernate 3 (Apress)

http://TheServerSide.com

xvii

About the Technical Reviewer

Rohan Walia is a Software Consultant with extensive experience in Client-Server,
Web-Based, and Enterprise application development. He is an Oracle Certified ADF
Implementation Specialist and Sun Certified Java Programmer. Rohan is responsible
for designing and developing end-to-end Java/J2EE applications consisting of
various cutting-edge frameworks and utilities. His areas of expertise are Oracle ADF,
WebCenter, Spring, Hibernate, and Java/J2EE. When not working, Rohan loves to
play tennis, travel, and go hiking.

xix

Acknowledgments

Joseph would like to thank various people for encouraging and enabling him to write this book, and so he will: first,
his wife and children for allowing him the time and energy to put into the project; Steve Ebersole, project lead for
Hibernate; the Open Source and Standards team at Red Hat; friends like Tracy Snell, Andrew Lombardi, Eugene
Ciurana, and Justin Lee for serving as sounding boards and source material; his editors, for putting up with his quirks1;
bands like Rush, Pink Floyd, and Tool for providing the soundtrack to the book2; the letter Z, for allowing itself to go
underused throughout the book; his Gibson guitar; Robert Sedgewick, just because Joseph has not had the chance
to thank him in print yet; Toby Segaran, because he hasn’t had a chance to thank him, either; and lastly, Stan Lee, for
giving Joseph a worthwhile impetus to learn to read when he was very young.

1Quirks like his endless footnotes; when asked, they allowed Joseph to have one footnote for every three pages, to which the
response was, “Thanks! Three footnotes maximum for every page, got it!”
2A soundtrack you won’t hear, nor is it likely to be easily detected unless you listen very well. Listen more than that—no,
more than that, too. Keep going. Let me know which song you hear, okay?

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Hibernate 4.2
	Plain Old Java Objects (POJOs)
	Origins of Hibernate and Object/Relational Mapping
	Hibernate as a Persistence Solution
	A Hibernate Hello World Example
	Mappings
	Persisting an Object
	Summary

	Chapter 2: Integrating and Configuring Hibernate
	The Steps Needed to Integrate and Configure Hibernate
	Understanding Where Hibernate Fits into Your Java Application
	Deploying Hibernate
	Installing Maven

	Connection Pooling
	Summary

	Chapter 3: Building a Simple Application
	A Simple Application
	A First Attempt
	Writing Data
	Reading Data
	Updating Data
	Persistence Contexts
	Removing Data
	A Note on Managing Sessions
	A Note on Transactions
	Writing Our Sample Application
	Add a Ranking
	Update a Ranking
	Remove a Ranking
	Find Average Ranking for a Subject’s Skill
	Find All Rankings for a Subject
	Find the Highest Ranked Subject for a Skill

	Summary

	Chapter 4: The Persistence Life Cycle
	Introducing the Life Cycle
	Entities, Classes, and Names
	Identifiers
	Entities and Associations
	Saving Entities
	Object Equality and Identity
	Loading Entities
	Merging Entities
	Refreshing Entities
	Updating Entities
	Deleting Entities
	Cascading Operations
	Lazy Loading, Proxies, and Collection Wrappers
	Querying Objects
	Summary

	Chapter 5: An Overview of Mapping
	Why Mapping Cannot Easily Be Automated
	Primary Keys
	Lazy Loading
	Associations
	The One-to-One Association
	The One-to-Many and Many-to-One Association
	The Many-to-Many Association
	Applying Mappings to Associations

	Other Supported Features
	Specification of (Database) Column Types and Sizes
	The Mapping of Inheritance Relationships to the Database
	Primary Key
	The Use of SQL Formula–Based Properties
	Mandatory and Unique Constraints

	Summary

	Chapter 6: Mapping with Annotations
	Creating Hibernate Mappings with Annotations
	The Cons of Annotations
	The Pros of Annotations
	Choosing Which to Use

	JPA 2 Persistence Annotations
	Entity Beans with @Entity
	Primary Keys with @Id and @GeneratedValue
	Generating Primary Key Values with @SequenceGenerator
	Generating Primary Key Values with @TableGenerator

	Compound Primary Keys with @Id, @IdClass, or @EmbeddedId
	Database Table Mapping with @Table and @SecondaryTable
	Persisting Basic Types with @Basic
	Omitting Persistence with @Transient
	Mapping Properties and Fields with @Column
	Modeling Entity Relationships
	Mapping an Embedded (Component) One-to-One Association
	Mapping a Conventional One-to-One Association
	Mapping a Many-to-One or One-to-Many Association
	Mapping a Many-to-Many Association

	Inheritance
	Single Table
	Joined Table
	Table per Class
	Choosing Between Inheritance Types When Modeling Inheritance

	Other JPA 2 Persistence Annotations
	Temporal Data
	Element Collections
	Large Objects
	Mapped Superclasses

	Ordering Collections with @OrderColumn
	Named Queries (HQL or JPQL)
	Named Native Queries (SQL)

	Configuring the Annotated Classes
	Hibernate-Specific Persistence Annotations
	@Immutable
	Natural IDs

	Summary

	Chapter 7: JPA Integration and Lifecycle Events
	The Java Persistence Architecture
	The Project Object Model
	The JPASessionUtil class
	Testing JPASessionUtil

	Lifecycle Events
	External Entity Listeners
	Data Validation
	Summary

	Chapter 8: Using the Session
	Sessions
	Transactions and Locking
	Transactions
	Locking
	Deadlocks

	Caching
	Threads
	Summary

	Chapter 9: Searches and Queries
	Hibernate Query Language (HQL)
	Syntax Basics
	UPDATE
	DELETE
	INSERT
	SELECT

	Named Queries
	Logging and Commenting the Underlying SQL
	Logging the SQL
	Commenting the Generated SQL

	The from Clause and Aliases
	The select Clause and Projection
	Using Restrictions with HQL
	Using Named Parameters
	Paging Through the Result Set
	Obtaining a Unique Result
	Sorting Results with the order by Clause
	Associations
	Aggregate Methods
	Bulk Updates and Deletes with HQL
	Using Native SQL
	Summary

	Chapter 10: Advanced Queries Using Criteria
	Using the Criteria API
	Using Restrictions with Criteria
	Paging Through the Result Set
	Obtaining a Unique Result
	Sorting the Query’s Results

	Associations
	Distinct Results
	Projections and Aggregates
	Query By Example (QBE)
	Summary

	Chapter 11: Filtering the Results of Searches
	When to Use Filters
	Defining and Attaching Filters
	Filters with Annotations
	Filters with XML Mapping Documents

	Using Filters in Your Application
	A Basic Filtering Example
	Summary

	Chapter 12: Leaving the Relational Database Behind: NoSQL
	Where Is Hibernate When it Comes to NoSQL?
	Basic CRUD Operations
	The Tests
	Testing Create and Read
	Testing Updates
	Testing Removal
	Querying in OGM

	MongoDB
	Summary

	Chapter 13:
More Advanced Features
	Managed Versioning and Optimistic Locking
	Limitations of Hibernate
	Hand-Rolled SQL
	Using a Direct Mapping
	Using a View
	Putting SQL into an Annotation or Mapping

	Invoking Stored Procedures
	Overriding the Default Constructor
	Summary

	Index

