
63

Chapter 17

Importing Files

The same code often needs to be called on multiple pages. This can be done by first placing
the code inside a separate file and then including that file using the include statement. This
statement takes all the text in the specified file and includes it in the script, just as if the code
had been copied to that location. Just like echo, include is a special language construct and
not a function, so parentheses should not be used.
 
<?php
include 'myfile.php';
?>
 

When a file is included parsing changes to HTML mode at the beginning of the target
file and resumes PHP mode again at the end. For this reason any code inside the included
file that needs to be executed as PHP code must be enclosed within PHP tags.
 
<?php
// myfile.php
?> 

Include path
An include file can either be specified with a relative path, an absolute path or without
a path. A relative file path will be relative to the importing file’s directory, and an absolute
file path will include the full file path.
 
// Relative path
include 'myfolder\myfile.php';
 
// Absolute path
include 'C:\xampp\htdocs\myfile.php';
 

CHAPTER 17 ■ Importing Files

64

When a relative path or no path is specified, include will first search for the file in
the current working directory, which defaults to the directory of the importing script.
If the file is not found there, include will check the folders specified by the include_path1
directive defined in php.ini before failing.
 
// No path
include 'myfile.php';
 

In addition to include there are three other language constructs available for
importing the content of one file into another: require, include_once and require_once.

Require
The require construct includes and evaluates the specified file. It is identical to include,
except in how it handles failure. When a file import fails require will halt the script with an
error, whereas include will only issue a warning. An import may fail either because the file
is not found or because the user running the web server does not have read access to it.
 
require 'myfile.php'; // halt on error
 

Generally it is best to use require for any complex PHP application or CMS site.
That way the application will not attempt to run in case a key file is missing. For less
critical code segments and simple PHP websites include may suffice, in which case PHP
will go on and show the output even if the included file is missing.

Include_once
The include_once statement behaves like include, except that if the specified file has
already been included it will not be included again.
 
include_once 'myfile.php'; // include only once 

Require_once
The require_once statement works like require, but will not import a file if it has already
been imported before.
 
require_once 'myfile.php'; // require only once
 

The include_once and require_once statements may be used instead of include
and require in cases where the same file might be imported more than once during
a particular execution of a script. This avoids errors caused by, for example, function and
class redefinitions.

1http://www.php.net/manual/en/ini.core.php#ini.include-path

http://www.php.net/manual/en/ini.core.php#ini.include-path

CHAPTER 17 ■ Importing Files

65

Return
It is possible to execute a return statement inside an imported file. This will stop the
execution and return to the script that called the file import.
 
<?php
// myimport.php
return 'OK';
?>
 

If a return value is specified, the import statement will evaluate to that value just as
a normal function.
 
<?php
// myfile.php
if ((include 'myimport.php') == 'OK')
 echo 'OK';
?> 

Auto load
For large web applications the number of includes required in every script may be
substantial. This can be avoided by defining an __autoload function. This function is
automatically invoked when an undefined class or interface is used in order to try to load
that definition. It takes one parameter, which is the name of the class or interface that
PHP is looking for.
 
function __autoload($class_name){
 include $class_name . '.php';
}
 
// Attempt to auto include MyClass.php
$obj = new MyClass();
 

A good coding practice to follow when writing object-oriented applications is to have
one source file for every class definition and to name the file according to the class name.
Following this convention the __autoload function above will be able to load the class,
provided that it is in the same folder as the script file that needed it.
 
<?php
// myclass.php
class MyClass {}
?>
 

If the file is located in a subfolder the class name can include underscore characters
to symbolize this. The underscore characters would then need to be converted into
directory separators in the __autoload function.

	Chapter 17: Importing Files
	Include path
	Require
	Include_once
	Require_once
	Return
	Auto load

