
37

Chapter 11

Inheritance

Inheritance allows a class to acquire the members of another class. In the example below, 
the class Square inherits from Rectangle, specified by the colon. Rectangle then becomes 
the base class of Square, which in turn becomes a derived class of Rectangle. In addition 
to its own members, Square gains all accessible members in Rectangle, except for any 
constructors and destructor.
 
// Base class (parent class)
class Rectangle
{
  public int x = 10, y = 10;
  public int GetArea() { return x * y; }
}
  
// Derived class (child class)
class Square : Rectangle {} 

Object class
A class in C# may only inherit from one base class. If no base class is specified the class 
will implicitly inherit from System.Object. It is therefore the root class of all other classes.
 
class Rectangle : System.Object {}
 

C# has a unified type system in that all data types directly or indirectly inherit from 
Object. This does not only apply to classes, but also to other data types, such as arrays 
and simple types. For example, the int keyword is only an alias for the System.Int32 
struct type. Likewise, object is an alias for the System.Object class.
 
System.Object o = new object();
 

Because all types inherit from Object, they all share a common set of methods. One 
such method is ToString, which returns a string representation of the current object.
 
System.Console.Write( o.ToString() ); // System.Object
 



CHAPTER 11 ■ Inheritance

38

Downcast and upcast
Conceptually, a derived class is a specialization of the base class. This means that 
Square is a kind of Rectangle as well as an Object, and can therefore be used anywhere 
a Rectangle or Object is expected. If an instance of Square is created, it can be upcast to 
Rectangle since the derived class contains everything in the base class.
 
Square s = new Square();
Rectangle r = s;
 

The object is now viewed as a Rectangle, so only Rectangle’s members can be 
accessed. When the object is downcast back into a Square everything specific to the 
Square class will still be preserved. This is because the Rectangle only contained  
the Square, it did not change the Square object in any way.
 
Square s2 = (Square)r;
 

The downcast has to be made explicit since downcasting an actual Rectangle into a 
Square is not allowed.
 
Rectangle r2 = new Rectangle();
Square s3 = (Square)r2; // error 

Is keyword
There are two operators that can be used to avoid exceptions when casting objects.  
First there is the is operator, which returns true if the left side object can be cast to the 
right side type without causing an exception.
 
Rectangle q = new Square();
if (q is Square) { Square o = q; } // condition is true 

As keyword
The second operator used to avoid object casting exceptions is the as operator.  
This operator provides an alternative way of writing an explicit cast, with the difference 
that if it fails the reference will be set to null.
 
Rectangle r = new Rectangle();
Square o = r as Square; // invalid cast, returns null
 



CHAPTER 11 ■ Inheritance

39

Boxing
The unified type system of C# allows for a variable of value type to be implicitly converted 
into a reference type of the Object class. This operation is known as boxing and once the 
value has been copied into the object it is seen as a reference type.
 
int myInt = 5;
object myObj = myInt; // boxing 

Unboxing
The opposite of boxing is unboxing. This converts the boxed value back into a variable of 

its value type. The unboxing operation must be explicit since if the object is not unboxed 

into the correct type a run-time error will occur.
 
myInt = (int)myObj; // unboxing
 


	Chapter 11: Inheritance
	Object class
	Downcast and upcast
	Is keyword
	As keyword
	Boxing
	Unboxing




