THE EXPERT'S VOICE®
e et AL IILAIIIIITY

C# Quick 25ste
Syntax Reference

Mikael Olsson

/IS S/ IS S S S S SSISITTTT™ -
Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the Authorccccssismmismms e ——— Xv
About the Technical ReVIEWErcvcssvesssssssssssssassssssssssssassnsnsnsns xvii
Introduction.......cccsvemismmimm e ——————— Xix
Chapter 1: Hello World..........ccconnnmmmmmmmmmmmmmmmsssssssssssssssssssssssssssssssnnns 1
Chapter 2: Compile and RuN..........cccivnisnemnnmnsssssnnmmssssssssssssssssssssnns 3
Chapter 3: Variablescccueemmmnsssemnmmnsssssnmmmssssssnmssssssssssssssssnnssssnns 5
Chapter 4: Operatorscccueeemmmmsssssnmmssssssnnmssssssssssssssssssssssssnnssssnnns 9
Chapter 5: Sringccccvvnnemmmmnnsnsnmmnmsssnnmmssssnssss s ——. 13
Chapter 6: Arraysccccomsssssnmmsssssssmmssssssnssssssssnssssssssnssssssnnnssssnans 17
Chapter 7: Conditionalscccuusssemmmmmmnmmsmssssssssssnssnesssssssssssssssnns 19
Chapter 8: LOOPS.....cuueemrmmssssnnmmssssnssssssssssnssssssnnssssssssnssssssannnsssssnns 21
Chapter 9: Methodsccuseemmmisssnmnmmssssssnmmssssssnmsssssssnssssssssssssssnns 23
Chapter 10: Classucceurmmssssnnmmssssnsnmsssssssnssssssnsnssssssnsnssssssnnnsssssnns 29
Chapter 11: Inheritance.........cccnmeemmmmmmmmmmmsssss s ————— 37
Chapter 12: Redefining Members..........cccinnssmmmmmmssssnsnmssssassnssssnnns 41
Chapter 13: Access LeVels.......cccummmmemmmsssnsmsssssssssssssssssssssssssssanes 45
Chapter 14: StatiC......cccccmrrrmmmmmmmmsesssnnnn s ————— 49
Chapter 15: Propertiescccnmumsmmmmmmmssssnmmsssssssnsssssssssssssssssssssssnns 53
Chapter 16: INAEeXErScccurerrssnmmssanssssansesssnsesssnsesssnsesssnsesssnnssssnnes 57
Chapter 17: Interface.........cccummmmmmmmssnnmmmmmmmmssssssssnnssssnssssms 61

CONTENTS AT A GLANCE

Chapter 18: Abstractccciinnemmmmmnnsemnmmnsssnmmnsssnmsass——— 65
Chapter 19: NameSPACES....ccuurrrssssnssssssssnsnssssssnnnssssssnnnssssssnnnssssnnns 69
Chapter 20: ENUM.....cccceeemrmmmmmmmmssssssssssssssssssssssssssssssssssssnnsssssssnss 73
Chapter 21: Exception Handlingccccvvnnnsssssssnnnnnnsmsssssssssssssnnns 75
Chapter 22: Operator Overloading........cccuseresssmsssssnsssssnssssssnssssanas 79
Chapter 23: Custom CONVersionsccccummsssssssssmsssssssssssssssssnsnss 83
Chapter 24: Constants..........cccinunemmmmmssssnnnmmmsssssnmsssssssssssssssssessssnns 85
Chapter 25: PreproCessor.....cuumrussmrsssnsesssnsesssnsesssnsesssnsssssnnssssnnss 87
Chapter 26: Delegatesccccmmmssemnmmmssssnnmmsssssnnsssssssssssssssssssssssnnns 91
Chapter 27: Eventsccccneemmmmmsssmmmmmmsssssmmsssssssmmsssssssssssssssssssssnnns 97
Chapter 28: GENEIiCScuuusemrrssansrssanssssanssssansssssnsesssnsssssnnssssnnsssnns 101
Chapter 29: Structccccciviinnmssesssnnn s ————— 109
Chapter 30: Asynchronous methodscccuseemmmssssnnnmsssssnsnnnnnns 113
IN@X.ueiiieriersimsnss s s —————————— 117

iv

Introduction

The C# programming language is a modern, object-oriented language created by
Microsoft for the .NET Framework. C# (pronounced “see sharp”) builds upon some of the
best features of the major programming languages. It combines the power of C++ with
the simplicity of Visual Basic and also borrows much from Java. This results in a language
that is easy to learn and use, robust against errors and that enables rapid application
development. All this is achieved without sacrificing much of the power or speed, when
compared to C++.

In the years following its release in 2002, C# has become the third most popular
programming language - after Java and C/C++ - and its popularity keeps growing. It is
a general-purpose programming language, so it is useful for creating a wide range of
programs. Everything from small utilities to computer games, desktop applications or
even operating systems can be built in C#. The language can also be used with ASP.NET
to create web based applications.

When developing in .NET, programmers are given a wide range of choice as to which
programming language to use. Some of the more popular .NET languages include: VB.NET,
C++/CLI, F# and C#. Among these, C# is often the language of choice. Like the other NET
languages, C# is initially compiled to an intermediate language. This language is called the
Common Intermediate Language (CIL) and is run on the .NET Framework. A .NET program
will therefore be able to execute on any system that has that framework installed.

The .NET Framework is a software framework that includes a common execution
engine and a rich class library. It runs on Microsoft Windows and is therefore only used
for writing Windows applications. However, there are also cross-platform ports available,
the the two largest being Mono' and DotGNU.? These are both open source projects
that allow .NET applications to be run on other platforms, such as Linux, Mac OS X and
embedded systems.

'http://www.mono-project.com
*http://www.dotgnu.org

Xix

http://www.mono-project.com/
http://www.dotgnu.org/

CHAPTER 1

Hello World

Choosing an IDE

To begin coding in C# you need an Integrated Development Environment (IDE) that
supports the Microsoft .NET Framework. The most popular choice is Microsoft’s own
Visual Studio.! This IDE is also available for free as a light version called Visual Studio
Express, which can be downloaded from Microsoft’s website.?

The C# language has undergone a number of updates since the initial release of
C# 1.0 in 2002. At the time of writing, C# 5.0 is the current version which was released
in 2012. Each version of the language corresponds to a version of Visual Studio, so
in order to use the features of C# 5.0 you need Visual Studio 2012 or Visual Studio
Express 2012.

Creating a project

After installing the IDE, go ahead and launch it. You then need to create a new project,
which will manage the C# source files and other resources. To display the New Project
window go to File » New » Project in Visual Studio, or File » New Project in Visual
Studio Express. From there select the Visual C# template type in the left frame. Then
select the Console Application template in the right frame. At the bottom of the window
you can configure the name and location of the project if you want to. When you are done
click OK and the project wizard will create your project.

You have now created a C# project. In the Solution Explorer pane (View »
Solution Explorer) you can see that the project consists of a single C# source file (.cs)
that should already be opened. If not, you can double-click on the file in the Solution
Explorer in order to open it. In the source file there is some basic code to help you get
started. However, to keep things simple at this stage go ahead and simplify the code
into this.

'http://www.microsoft.com/visualstudio
*http://www.microsoft.com/express

http://www.microsoft.com/visualstudio
http://www.microsoft.com/express

CHAPTER 1 © HELLO WORLD

class MyApp

static void Main()

{

}
}

The application now consists of a class called MyApp containing an empty

Main method, both delimited by curly brackets. The Main method is the entry point
of the program and must have this format. The casing is also important since C# is
case-sensitive. The curly brackets delimit what belongs to a code entity, such as a class

or method, and they must be included. The brackets, along with their content, is referred
to as a code block, or just a block.

Hello World

As is common when learning a new programming language the first program to write is
one that displays a “Hello World” text string. This is accomplished by adding the following
line of code between the curly brackets of the Main method.

System.Console.Writeline("Hello World");

This line of code uses the Writeline method which accepts a single string
parameter delimited by double quotes. The method is located inside the Console class,
which belongs to the System namespace. Note that the dot operator (.) is used to access
members of both namespaces and classes. The statement must end with a semicolon, as
must all statements in C#. Your code should now look like this.

class MyApp

static void Main()

{
System.Console.Writeline("Hello World");
}
}

IntelliSense

When writing code in Visual Studio a window called IntelliSense will pop-up wherever
there are multiple predetermined alternatives from which to choose. This window is
incredibly useful and can be brought up manually by pressing Ctrl + Space. It gives you
quick access to any code entities you are able to use within your program, including the
classes and methods of the .NET Framework along with their descriptions. This is a very
powerful feature that you should learn to make good use of.

CHAPTER 2

Compile and Run

Visual Studio compilation

With the Hello World program completed, the next step is to compile and run it. To do
so open up the Debug menu and select Start Without Debugging, or simply press
Ctrl + F5. Visual Studio will then compile and run the application which displays the
string in a console window.

The reason why you do not want to choose the Start Debugging command (F5) is
because the console window will then close as soon as the program has finished executing.

Console compilation

If you did not have an IDE such as Visual Studio, you could still compile the program as
long as you have the .NET Framework installed. To try this, open up a console window
(C:\Windows\System32\cmd.exe) and navigate to the project folder where the source
file is located. You then need to find the C# compiler called csc.exe, which is located in
a path similar to the one shown below. Run the compiler with the source filename as an
argument and it will produce an executable in the current folder.

C:\MySolution\MyProject>
\Windows\Microsoft.NET\Framework64\v2.0.50727\
csc.exe Program.cs

If you try running the compiled program it will show the same output as that created
by Visual Studio.

C:\MySolution\MyProject> Program.exe
Hello World

CHAPTER 2 © COMPILE AND RUN

Comments

Comments are used to insert notes into the source code. C# uses the standard C++ comment
notations, with both single-line and multi-line comments. They are meant only to enhance
the readability of the source code and have no effect on the end program. The single-line
comment begins with “//” and extends to the end of the line. The multi-line comment may
span multiple lines and is delimited by “/*” and “*/”.

// single-line comment

/* multi-line
comment */

In addition to these, there are two documentation comments. One single-line
documentation comment that starts with “///’, and one multi-line documentation
comment that is delimited by “/**” and “*/”. These comments are used when producing
class documentation.

/// <summary>Class level documentation.</summary>
class MyApp
{

/** <summary>Program entry point.</summary>
<param name="args">Command line arguments.</param>
*/
static void Main(string[] args)
{
System.Console.WritelLine("Hello World");
}
}

CHAPTER 3

Variables

Variables are used for storing data during program execution.

Data types

Depending on what data you need to store there are several different kinds of data types.
The simple types in C# consist of four signed integer types and four unsigned, three
floating-point types as well as char and bool.

Data Type Size (bits) Description

sbyte 8 Signed integers
short 16

int 32

long 64

byte 8 Unsigned integers
ushort 16

uint 32

ulong 64

float 32 Floating-point numbers
double 64

decimal 128

char 16 Unicode character
bool 4 Boolean value

CHAPTER 3 ' VARIABLES

Declaration

In C#, a variable must be declared (created) before it can be used. To declare a variable
you start with the data type you want it to hold followed by a variable name. The name
can be almost anything you want, but it is a good idea to give your variables names that
are closely related to the value they will hold.

int myInt;

Assignment

A value is assigned to the variable by using the equals sign, which is the assignment
operator (=). The variable then becomes defined or initialized.

myInt = 10;
The declaration and assignment can be combined into a single statement.
int myInt = 10;

If multiple variables of the same type are needed there is a shorthand way of
declaring or defining them by using the comma operator (,).

int myInt = 10, myInt2 = 20, myInt3;

Once a variable has been defined (declared and assigned) it can be used by
referencing the variable’s name.

System.Console.Write(myInt); // 10

Integer types

There are four signed integer types that can be used depending on how large a number
you need the variable to hold.

// Signed integers

sbyte myInt8 = 2; // -128 to +127
short myInt16 = 1; // -32768 to +32767
int myInt32 = 0; // -2"31 to +2"31-1
long myInté4 =-1; // -2"63 to +2763-1

CHAPTER 3 ' VARIABLES

The unsigned types can be used if you only need to store positive values.

// Unsigned integers

byte uInt8 =0; // 0 to 255
ushort uInti16 // 0 to 65535
uint uInt32 = 2; // 0 to 2732-1
ulong uInté4 = 3; // 0 to 2"64-1

n
[N
-

In addition to the standard decimal notation, integers can also be assigned using
hexadecimal notation.

int myHex = OxF; // hexadecimal (base 16)

Floating-point types

The floating-point types can store real numbers with different levels of precision.
Constant floating-point numbers in C# are always kept as doubles, so in order to assign
such a number to a float variable an “F” character needs to be appended to convert the
number to the float type. The same applies to the “M” character for decimals.

float myFloat 3.14F; // 7 digits of precision
double myDouble 3.14; // 15-16 digits of precision
decimal myDecimal = 3.14M; // 28-29 digits of precision

A more common and useful way to convert between data types is to use an explicit
cast. An explicit cast is performed by placing the desired data type in parentheses before
the variable or constant that is to be converted. This will convert the value to the specified
type, in this case float, before the assignment occurs.

myFloat = (float)myDecimal; // explicit cast

The precisions shown above refer to the total number of digits that the types can
hold. For example, when attempting to assign more than 7 digits to a float, the least
significant ones will get rounded off.

myFloat = 12345.6789F; // rounded to 12345.68

Floating-point numbers can be assigned using either decimal or exponential
notation.

myDouble = 3e2; // 3*10"2 = 300

CHAPTER 3 ' VARIABLES

Char type

The char type can contain a single Unicode character delimited by single quotes.

char ¢ = '3"; // Unicode char

Bool type

The bool type can store a Boolean value, which is a value that can only be either true or
false. These values are specified with the true and false keywords.

bool b = true; // bool value

Variable scope

The scope of a variable refers to the code block within which it is possible to use that
variable without qualification. For example, a local variable is a variable declared within
a method. Such a variable will only be available within that method’s code block, after

it has been declared. Once the scope of the method ends, the local variable will be
destroyed.

int main()

{

int localvar; // local variable

}

In addition to local variables, C# has field and parameter type variables, which will
be looked at in later chapters. However, C# does not have global variables, as for example
does C++.

CHAPTER 4

Operators

Operators are used to operate on values. They can be grouped into five types: arithmetic,
assignment, comparison, logical and bitwise operators.

Arithmetic operators

The arithmetic operators include the four basic arithmetic operations, as well as the
modulus operator (%) which is used to obtain the division remainder.

float x = 3 + 2; // 5 // addition
X =13 -2; // 1 // subtraction
x =3 *2;// 6 // multiplication
Xx=3/2;//1// division
X =3%2; //1// modulus (division remainder)

Notice that the division sign gives an incorrect result. This is because it operates on
two integer values and will therefore round the result and return an integer. To get the
correct value, one of the numbers needs to be converted into a floating-point number.

x =3 / (float)2; // 1.5

Assignment operators

The second group is the assignment operators. Most importantly, the assignment
operator (=) itself, which assigns a value to a variable.

Combined assignment operators

A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

CHAPTER 4 © OPERATORS

int x = 0;
X += 5; // X = X+5;
X -=5; // X = x-5;
X *= 5; // x = x*5;
x /=5; // x = x/5;
X %=5; // x = x%5;

Increment and decrement operators

Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (- -) operators.

X++; // X = X+1;
X--; // x = x-1;

Both of these operators can be used either before or after a variable.

x++; // post-increment
x--; // post-decrement
++X; // pre-increment
--X; // pre-decrement

The result on the variable is the same whichever is used. The difference is that
the post-operator returns the original value before it changes the variable, while the
pre-operator changes the variable first and then returns the value.

X =75;y
X =055y

1] 1]
+ x
+ F
x +
Kol
~N O
~
T

Comparison operators

The comparison operators compare two values and return either true or false. They are
mainly used to specify conditions, which are expressions that evaluate to either true
or false.

bool x = (2 == 3); // false // equal to
x = (2 1=3); // true // not equal to
x = (2>3); // false // greater than
x=(2<3); // true // less than
x = (2 »>=3); // false // greater than or equal to
x = (2 <= 3); // true // less than or equal to

10

CHAPTER 4 © OPERATORS

Logical operators

The logical operators are often used together with the comparison operators. Logical and
(8&) evaluates to true if both the left and right side are true, and logical or (| |) evaluates to
true if either the left or right side is true. The logical not (!) operator is used for inverting

a Boolean result. Note that for both “logical and” and “logical or” the right side of the
operator will not be evaluated if the result is already determined by the left side.

bool x = (true &% false); // false // logical and
x = (true || false); // true // logical or
x = I(true); // false // logical not

Bitwise operators

The bitwise operators can manipulate individual bits inside an integer. For example, the
bitwise and (&) operator makes the resulting bit 1 if the corresponding bits on both sides
of the operator are set.

int x = 5 & 4; // 101 & 100 = 100 (4) // and
x=51]|4; // 101 | 100 = 101 (5) // or
X =5"4; // 101 ~ 100 = 001 (1) // xor
X =4 << 1; // 100 << 1 =1000 (8) // left shift
X =4 > 1; // 100 >> 1 = 10 (2) // right shift
X = ~4; // ~00000100 = 11111011 (-5) // invert

These bitwise operators have shorthand assignment operators, just like the
arithmetic operators.

int x=5; x &= 4; // 101 & 100 = 100 (4) // and
x=5; X |=4; // 101 | 100 = 101 (5) // or
x=5; X "= 4; // 101 * 100 = 001 (1) // xor
X=5; X <<= 1;// 101 << 1 =1010 (10)// left shift
X=5; X >>= 1;// 101 >> 1 = 10 (2) // right shift

Operator precedents

In C#, expressions are normally evaluated from left to right. However, when an expression
contains multiple operators, the precedence of those operators decides the order in
which they are evaluated.

11

CHAPTER 4 © OPERATORS

Pre Operator Pre Operator
1 ++--1~ 7 &

2 1% 8 A

3 +- 9 |

4 << >> 10 &&

5 <<=>>= 11 I

6 === 12 =op=

For example, logical and (88&) binds weaker than relational operators, which in turn
bind weaker than arithmetic operators.

bool x = 243 > 1*4 && 5/5 == 1; // true

To make things clearer, parentheses can be used to specify which part of the expression
will be evaluated first. Parentheses have the highest precedence of all operators.

bool x = ((2+3) > (1*4)) & ((5/5) == 1); // true

12

CHAPTER 5

String

The string data type is used to store string constants, which are delimited by double quotes.

string a = "Hello";

String concatenation

The plus sign is used to combine two strings. It is known as the concatenation operator
(+) in this context. It also has an accompanying assignment operator (+=), which appends
a string to another and creates a new string.

string b = a + " World"; // Hello World
a += " World"; // Hello World

Escape characters

A statement can be broken up across multiple lines, but a string constant must be on
a single line. In order to divide it, the string constant has to first be split up using the
concatenation operator.

string c
= "Hello " +
"World";
To add new lines into the string itself, the escape character “\n” is used.
string c¢ = "Hello\nWorld";
This backslash notation is used to write special characters, such as the backslash

itself or a double-quote. Among the special characters is also a Unicode character
notation for writing any character.

13

CHAPTER 5 * STRING

Character ~ Meaning Character Meaning

\n newline \f form feed

\t horizontal tab \a alert sound

\v vertical tab \ single quote

\b backspace \” double quote

\r carriagereturn \\ backslash

\0 null character \uFFFF Unicode character (4-digit hex number)

Escape characters can be ignored by adding an “@” symbol before the string. This is
called a verbatim string and can for example be used to make file paths more readable.

string e = "c:\\Windows\\System32\\cmd.exe";
string f = @"c:\Windows\System32\cmd.exe";

String compare

The way to compare two strings is simply by using the equal to operator. This will not
compare the memory addresses, as in some other languages such as Java.

bool ¢ = (a == b); // true

String members

The string class has a lot of useful members. For example, methods like Replace, Insert
and Remove. An important thing to note is that there are no methods for changing a string.
Methods that appear to modify a string actually always return a completely new string.
This is because the string class is immutable. The content of a string variable cannot be
changed, unless the whole string is replaced.

string a = "String";

string b = a.Replace("i", "o"); // Strong
b = a.Insert(o, "My "); // My String
b = a.Remove(0, 3); // ing
b = a.Substring(o, 3); // Str
b = a.ToUpper(); // STRING
int i = a.length; /16

14

CHAPTER 5 * STRING

StringBuilder class

StringBuilder is a mutable string class. Because of the performance cost associated with
replacing a string, the StringBuilder class is a better alternative when a string needs to
be modified many times.

System.Text.StringBuilder sb = new
System.Text.StringBuilder("Hello");

The class has several methods that can be used to manipulate the actual content of
a string, such as: Append, Remove and Insert.

sb.Append(" World"); // Hello World
sb.Remove(0, 5); // World
sb.Insert(o, "Bye"); // Bye World

To convert a StringBuilder object back into a regular string, the ToString method
isused.

string s = sb.ToString(); // Bye World

15

CHAPTER 6

Arrays

An array is a data structure used for storing a collection of values that all have the same
data type.

Array declaration

To declare an array, a set of square brackets is appended to the data type the array will
contain, followed by the array’s name. An array can be declared with any data type and all
of its elements will then be of that type.

int[] x; // not int x[]

Array allocation

The array is allocated with the new keyword, followed again by the data type and a set of
square brackets containing the length of the array. This is the fixed number of elements
that the array can contain. Once the array is created, the elements will automatically be
assigned to the default value for that data type.

int[] x = new int[3];

Array assignment

To fill the array elements they can be referenced one at a time and then assigned values.
An array element is referenced by placing the element’s index inside square brackets.
Notice that the index for the first element starts with zero.

x[0] = 1;
x[1] = 2;
x[2] = 3;

17

CHAPTER 6 * ARRAYS

Alternatively, the values can be assigned all at once by using a curly bracket notation. The
new keyword and data type may optionally be left out if the array is declared at the same time.

new int[] { 1, 2, 3 };
{1,2,3%

int[]y
int[] z

Array access

Once the array elements are initialized, they can be accessed by referencing the elements’
indexes inside the square brackets.

System.Console.Write(x[0] + x[1] + x[2]); // 6

Rectangular arrays

There are two kinds of multi-dimensional arrays in C#: rectangular and jagged.
A rectangular array has the same length of all sub-arrays and separates the dimensions
using a comma.

string[,] x = new string[2, 2];

As with single-dimensional arrays, they can either be filled in one at a time or all at
once during the allocation.

x[0, 0] = "o0"; x[0, 1] = "01";
x[1, 0] = "10"; x[1, 1] = "11";

stringl,] y = { { "00", 01" }, { "10, "11" } };

Jagged arrays

Jagged arrays are arrays of arrays, and can have irregular dimensions. The dimensions are
allocated one at a time and the sub-arrays can therefore be allocated to different sizes.

string[][] a = new string[2][];
a[o] = new string[1]; a[o][0] = "00";
a[1] = new string[2]; a[1][0] = "10"; a[1][1] = "11";

It is possible to assign the values during the allocation.

string[][] b = { new string[] { "o00" },
new string[] { "10", "11" } };

These are all examples of two-dimensional arrays. If more than two dimensions are

needed, more commas can be added for the rectangular array, or more square brackets
for the jagged array.

18

CHAPTER 7

Conditionals

Conditional statements are used to execute different code blocks based on different
conditions.

If statement

The if statement will only execute if the condition inside the parentheses is evaluated to
true. The condition can include any of the comparison and logical operators.

int x = new System.Random().Next(3); // gives 0, 1 or 2

if (x < 1) {
System.Console.Write(x + " < 1");

}

To test for other conditions, the if statement can be extended by any number of else if
clauses. Each additional condition will only be tested if all previous conditions are false.

else if (x » 1) {
System.Console.Write(x + " > 1");

}

The if statement can have one else clause at the end, which will execute if all
previous conditions are false.

else {
System.Console.Write(x + " == 1");

}

As for the curly brackets, they can be left out if only a single statement needs to be
executed conditionally.

if (x < 1)

System.Console.Write(x + " < 1");
else if (x > 1)

System.Console.Write(x + " > 1");
else

System.Console.Write(x + " == 1");

19

CHAPTER 7 © CONDITIONALS

Switch statement

The switch statement checks for equality between either an integer or a string and a series
of case labels, and then passes execution to the matching case. The statement can contain
any number of case clauses and may end with a default label for handling all other cases.

int x = new System.Random().Next(3); // gives 0, 1 or 2

switch (x)

{
case 0: System.Console.Write(x + " is 0"); break;
case 1: System.Console.Write(x + " is 1"); break;
default:System.Console.Write(x + " is 2"); break;

}

Note that the statements after each case label are not surrounded by curly brackets.
Instead, the statements end with the break keyword to break out of the switch. Unlike many
other languages, case clauses in C# must end with a jump statement, such as break. This means
that the break keyword cannot be left out to allow the execution to fall-through to the next
label. The reason for this is that unintentional fall-throughs is a common programming error.

Goto statement

To cause a fall-through to occur, this behavior has to be explicitly specified using the goto
jump statement followed by a case label. This will cause the execution to jump to that label.

case 0: gOtO case 1;

Goto may be used outside of switches to jump to a label within the same method’s
scope. Control may then be transferred out of a nested scope, but not into a nested scope.
However, using goto in this manner is discouraged since it can become difficult to follow
the flow of execution.

goto myLabel;
/...
myLabel:

Ternary operator

In addition to the if and switch statements there is the ternary operator (? :). This operator
can replace a single if/else clause that assigns a value to a specific variable. The operator
takes three expressions. If the first one is evaluated to true then the second expression is
returned, and if it is false, the third one is returned.

// Value between 0.0 and 1.0
double x = new System.Random().NextDouble();

x = (x < 0.5) 2 0:1; // ternary operator (?:)

20

CHAPTER 8

Loops

There are four looping structures in C#. These are used to execute a specific code block
multiple times. Just as with the conditional if statement, the curly brackets for the loops
can be left out if there is only one statement in the code block.

While loop

The while loop runs through the code block only if its condition is true, and will continue
looping for as long as the condition remains true. Note that the condition is only checked
at the beginning of each iteration (loop).

int i = 0;
while (i < 10) { System.Console.Write(i++); } // 0-9

Do-while loop

The do-while loop works in the same way as the while loop, except that it checks the
condition after the code block and will therefore always run through the code block at
least once. Bear in mind that this loop ends with a semicolon.

int j = 0;
do { System.Console.Write(j++); } while (j < 10); // 0-9

For loop

The for loop is used to go through a code block a specific number of times. It uses three
parameters. The first parameter initializes a counter and is always executed once, before
the loop. The second parameter holds the condition for the loop and is checked before
each iteration. The third parameter contains the increment of the counter and is executed
at the end of each iteration.

for (int k = 0; k < 10; k++) {

System.Console.Write(k); // 0-9
}

21

CHAPTER 8 © LOOPS

The for loop has several variations. For instance, the first and third parameters can
be split into several statements using the comma operator.

for (int k = 0, m = 5; k < 10; k++, m--) {
System.Console.Write(k+m); // 5 (10x)
}

There is also the option of leaving out one or more of the parameters. For example,
the third parameter may be moved into the body of the loop.

for (int k = 0; k < 10;) {
System.Console.Write(k++); // 0-9
}

Foreach loop

The foreach loop provides an easy way to iterate through arrays. At each iteration the
next element in the array is assigned to the specified variable (the iterator) and the loop
continues to execute until it has gone through the entire array.

int[]a:{lx 2, 3};

foreach (int n in a) {
System.Console.Write(n); // 123
}

Note that the iterator variable is read-only and can therefore not be used to change
elements in the array.

Break and continue

There are two special keywords that can be used inside loops - break and continue.
The break keyword ends the loop structure, and continue skips the rest of the current
iteration and continues at the start of the next iteration.

for (int i = 0; 1 < 10; i++)
{
break; // end for
continue; // start next iteration

}

22

CHAPTER 9

Methods

Methods are reusable code blocks that will only execute when called.

Defining methods

A method can be created inside a class by typing void followed by the method’s name,
a set of parentheses and a code block. The void keyword means that the method will
not return a value. The naming convention for methods is the same as for classes - a
descriptive name with each word initially capitalized.

class MyApp
void MyPrint()

System.Console.Write("Hello World");

}
}

All methods in C# must belong to a class, and they are the only place where
statements may be executed. C# does not have global functions, which are methods
defined outside of classes.

Calling methods

The method above will print out a text message. To invoke (call) it an instance of the
MyApp class must first be created by using the new keyword. The dot operator is then used
after the instance’s name to access its members, which includes the MyPrint method.

class MyApp

static void Main()

{
MyApp m = new MyApp();
m.MyPrint(); // Hello World

23

CHAPTER 9 © METHODS

void MyPrint()

System.Console.Write("Hello World");

}
}

Method parameters

The parentheses that follow the method name are used to pass arguments to the method.
To do this the corresponding parameters must first be specified in the method definition
in the form of a comma separated list of variable declarations.

void MyPrint(string si, string s2)

System.Console.Write(s1 + s2);

}

A method can be defined to take any number of arguments, and they can have
any data types. Just ensure the method is called with the same types and number of
arguments.

static void Main()

{
MyApp m = new MyApp();
m.MyPrint("Hello", " World"); // Hello World

To be precise, parameters appear in method definitions, while arguments appear in
method calls. However, the two terms are sometimes used interchangeably.

Params keyword

To take a variable number of arguments of a specific type, an array with the params
modifier can be added as the last parameter in the list. Any extra parameters of the
specified type that are passed to the method will automatically be stored in that array.

void MyPrint(params string[] s)

foreach (string x in s)
System.Console.Write(x);

24

CHAPTER 9 © METHODS

Method overloading

It is possible to declare multiple methods with the same name as long as the parameters
vary in type or number. This is called method overloading and can for example be seen
in the implementation of the System.Console.Write method, which has 18 method
definitions. It is a powerful feature that allows a method to handle a variety of arguments
without the programmer needing to be aware of using different methods.

void MyPrint(string s)

System.Console.Write(s);

}
void MyPrint(int i)

System.Console.Write(i);

}

Optional parameters

As of C# 4.0, parameters can be declared as optional by providing a default value for them
in the method declaration. When the method is invoked, these optional arguments may
be omitted to use the default values.

class MyApp

void MySum(int i, int j = 0, int k = 0)
{
System.Console.Write(1*i + 2*j + 3%*k);

}

static void Main()

{
new MyApp().MySum(1, 2); // 5

Named arguments

C# 4.0 also introduced named arguments, which allow an argument to be passed using

the name of its corresponding parameter. This feature complements optional parameters

by enabling arguments to be passed out of order, instead of relying on their position in the
parameter list. Therefore, any optional parameters can be specified without having to specify
the value for every optional parameter before it. Both optional and required parameters can
be named, but the named arguments must be placed after the unnamed ones.

25

CHAPTER 9 © METHODS

static void Main()

{
new MyApp().MySum(1, k: 2); // 7

Return statement

A method can return a value. The void keyword is then replaced with the data type that
the method will return, and the return keyword is added to the method body with an
argument of the specified return type.

string GetPrint()

return "Hello";

}

Return is a jump statement that causes the method to exit and return the value to
the place where the method was called. For example, the GetPrint method above can be
passed as an argument to the Write method since the method evaluates to a string.

static void Main()
{

MyApp m = new MyApp();

System.Console.Write(m.GetPrint()); // Hello World
}

The return statement may also be used in void methods to exit before the end block
is reached.

void MyMethod()

return;

}

Value and reference types

There are two kinds of data types in C#: value types and reference types. Variables of value
types directly contain their data, whereas variables of reference types hold references to
their data. The reference types in C# include: class, interface, array and delegate types.
The value types include the simple types, as well as the struct, enum and nullable types.
Reference type variables are typically created using the new keyword, though that is not
always necessary, as for example in the case of string objects.

26

CHAPTER 9 © METHODS

A variable of a reference type is generally called an object, though strictly speaking
the object is the data that the variable refers to. With reference types, multiple variables
can reference the same object, and therefore operations performed through one variable
will affect any other variables that reference the same object. In contrast, with value types,
each variable will store its own value and operations on one will not affect another.

Pass by value

When passing parameters of value type only a local copy of the variable is passed, so if the
copy is changed it will not affect the original variable.

void Set(int i) { i = 10; }

static void Main()

{
MyApp m = new MyApp();
int x = 0; // value type
m.Set(x); // pass value of x
System.Console.Write(x); // 0

}

Pass by reference

For reference data types C# uses true pass by reference. This means that when a reference
type is passed it is not only possible to change its state, but also to replace the entire
object and have the change propagate back to the original object.

void Set(int[] i) { i = new int[] { 20 }; }

static void Main()

{
MyApp m = new MyApp();
int[Ty=9{01}; // reference type
m.Set(y); // pass object reference
System.Console.Write(y[0]); // 10

}

Ref keyword

A variable of value type can be passed by reference by using the ref keyword, both in the
caller and method declaration. This will cause the variable to be passed in by reference,
and therefore changing it will update the original value.

27

CHAPTER 9 = METHODS
void Set(ref int i) { i = 10; }

static void Main()

{
MyApp m = new MyApp();
int x = 0; // value type
m.Set(ref x); // pass reference to value type
System.Console.Write(x); // 10
}

Out keyword

Sometimes you may want to pass an unassigned variable by reference and have it assigned
in the method. However, using an unassigned local variable will give a compile-time error.
For this situation the out keyword can be used. It has the same function as ref, except that
the compiler will allow use of the unassigned variable, and it will force you to actually set
the variable in the method.

void Set(out int i) { i = 10; }

static void Main()

{
MyApp m = new MyApp();
int x; // value type
m.Set(out x); // pass reference to unset value type
System.Console.Write(x); // 10
}

28

CHAPTER 10

Class

A class is a template used to create objects. They are made up of members, the main two
of which are fields and methods. Fields are variables that hold the state of the object,
while methods define what the object can do.

class MyRectangle
{

int x, y;
int GetArea() { return x * y; }

}

Object creation

To use a class’s members from outside the defining class, an object of the class must first
be created. This is done by using the new keyword, which will create a new object in the
system’s memory.

class MyClass
{

static void Main()

{

// Create an object of MyRectangle
MyRectangle r = new MyRectangle();

An object is also called an instance. The object will contain its own set of fields,
which can hold values that are different to those of other instances of the class.

Accessing object members

In addition to creating the object, the members of the class that are to be accessible need
to be declared as public in the class definition.

29

CHAPTER 10 * CLASS

class MyRectangle
{

// Make members accessible for instances of the class
public int x, y;
public int GetArea() { return x * y; }

}

The dot operator is used after the object’s name to reference its accessible members.

static void Main()

{
MyRectangle r = new MyRectangle();
T.x = 10;
r.y =5;
int a = r.GetArea(); // 50
}

Constructor

The class can have a constructor. This is a special kind of method used to instantiate
(construct) the object. It always has the same name as the class and does not have a
return type, because it implicitly returns a new instance of the class. To be accessible from
another class it needs to be declared with the public access modifier.

public MyRectangle() { x = 10; y = 5; }

When a new instance of the class is created the constructor method is called, which
in the example above sets the fields to the specified initial values.

static void Main()

{
MyRectangle r = new MyRectangle();

The constructor can have a parameter list, just as any other method. As seen below,
this can be used to make the fields’ initial values depend on the parameters passed when
the object is created.

class MyRectangle
{

public int x, y;

public MyRectangle(int width, int height)
{

}

x = width; y = height;

30

CHAPTER 10 © CLASS

static void Main()

{
MyRectangle r = new MyRectangle(20, 15);

This keyword

Inside the constructor, as well as in other methods belonging to the object, a special
keyword called this can be used. This keyword is a reference to the current instance of
the class. Suppose, for example, that the constructor’s parameters have the same names
as the corresponding fields. The fields could then still be accessed by using the this
keyword, even though they are overshadowed by the parameters.

class MyRectangle
{

int x, y;

public MyRectangle(int x, int y)
{
this.x
this.y
}
}

x; // set field x to parameter x
Ys

Constructor overloading

To support different parameter lists the constructor can be overloaded. In the example
below, the fields will be assigned default values if the class is instantiated without any
arguments. With one argument both fields will be set to the specified value, and with
two arguments each field will be assigned a separate value. Attempting to create an
object with the wrong number of arguments, or with incorrect data types, will result in a
compile-time error, just as with any other method.

public MyRectangle()

{
X =10; y = 5;
}
public MyRectangle(int a)
{
X= a;y=a;
}
public MyRectangle(int a, int b)
{
X = a;y=b;
}

31

CHAPTER 10 * CLASS

Constructor chaining

The this keyword can also be used to call one constructor from another. This is known as
constructor chaining and allows for greater code reuse. Note that the keyword appears as
a method call before the constructor body and after a colon.

public MyRectangle() : this(10,5) {}
public MyRectangle(int a) : this(a,a) {}
public MyRectangle(int a, int b) { x =a; y = b; }

Initial field values

If there are fields in the class that need to be assigned initial values, such as in the case of
the first constructor above, the fields can simply be initialized at the same time as they are
declared. This can make the code a bit cleaner. The initial values will be assigned when
the object is created before the constructor is called.

class MyRectangle
{

int x = 10, y = 20;

}

An assignment of this type is called a field initializer. Such an assignment cannot
refer to another instance field.

Default constructor

It is possible to create a class even if no constructors are defined. This is because the
compiler will automatically add a default parameterless constructor to such a class. The
default constructor will instantiate the object and set each field to its default value.

class MyRectangle {}
class MyApp

static void Main()

{
// Calls default constructor

MyRectangle r = new MyRectangle();
}
}

32

CHAPTER 10 © CLASS

Object initializers

When creating an object, as of C# 3.0, it is possible to initialize the object’s public

fields within the instantiation statement. A code block is then added, containing

a comma-separated list of field assignments. The object initializer block will be processed
after the constructor has been called.

class MyRectangle

{
public int x, y;

}

class MyClass
{

static void Main()

{

// Object initializer
MyRectangle r = new MyRectangle() { x = 10, y = 5 };
}
}

If there are no arguments for the constructor, the parentheses may be removed.

MyRectangle r = new MyRectangle { x = 10, y = 5 };

Partial class

A class definition can be split up into separate source files by using the partial type
modifier. These partial classes will be combined into the final type by the compiler. All
parts of a partial class must have the partial keyword and share the same access level.

// Filel.cs
public partial class MyPartialClass {}

// File2.cs
public partial class MyPartialClass {}

Splitting classes across multiple source files is primarily useful when part of a class
is generated automatically. For example, this feature is used by Visual Studio’s graphical
user interface builder to separate automatically generated code from manually written
code. Partial classes can also make it easier for multiple programmers to work on the
same class simultaneously.

33

CHAPTER 10 * CLASS

Garbage collector

The .NET Framework has a garbage collector that periodically releases the memory used
by objects when they are no longer accessible. This frees the programmer from the often
tedious and error-prone task of manual memory management. An object will be eligible

for destruction when there are no more references to it. This occurs, for example, when a
local object variable goes out of scope. An object cannot be explicitly deallocated in C#.

Destructor

In addition to constructors, a class can also have a destructor. The destructor is used to
release any unmanaged resources allocated by the object. It is called automatically before
an object is destroyed, and cannot be called explicitly. The name of the destructor is the
same as the class name, but preceded by a tilde (~). A class may only have one destructor
and it does not take any parameters or return any value.

class MyComponent

{

public System.ComponentModel.Component comp;

public MyComponent()
{

comp = new System.ComponentModel.Component();

}

// Destructor
~MyComponent ()

comp.Dispose();

In general, the .NET Framework garbage collector automatically manages the
allocation and release of memory for objects. However, when a class uses unmanaged
resources - such as files, network connections, and user interface components - a
destructor should be used to free up those resources when they are no longer needed.

Null keyword

The null keyword is used to represent a null reference, which is a reference that does not
refer to any object. It can only be assigned to variables of reference type, and not to value
type variables. The equal to operator (==) can be used to test whether an object is null.

String s = null;
if (s == null) s = new String();

34

CHAPTER 10 © CLASS

Nullable types

A value type can be made to hold the value null in addition to its normal range of values
by appending a question mark (?) to its underlying type. This is called a nullable type
and allows the simple types, as well as other struct types, to indicate an undefined value.
For example, bool? is a nullable type that can hold the values true, false and null.

bool? b = null;

Null-coalescing operator

The null-coalescing operator (??) returns the left-hand operand if it is not null and
otherwise returns the right-hand operand. This conditional operator provides an easy
syntax for assigning a nullable type to a non-nullable type.

int? i = null;
int j=17?20;//0

A variable of a nullable type should not be explicitly cast to a non-nullable type.
Doing so will cause a run-time error if the variable has null as its value.

int j = (int)i; // run-time error

Default values

The default value of a reference type is null. For the simple data types the default values
are as follows: numerical types become 0, a char has the Unicode character for zero
(\0000) and a bool is false. Default values will be assigned automatically by the compiler
for fields. However, explicitly specifying the default value for fields is considered good
programming since it makes the code easier to understand. For local variables the default
values will not be set by the compiler. Instead, the compiler forces the programmer to
assign values to any local variables that are used, so as to avoid problems associated with
using unassigned variables.

class MyApp
int x; // field is assigned default value O
int dummy()

int x; // local variable must be assigned if used

}
}

35

CHAPTER 11

Inheritance

Inheritance allows a class to acquire the members of another class. In the example below,
the class Square inherits from Rectangle, specified by the colon. Rectangle then becomes
the base class of Square, which in turn becomes a derived class of Rectangle. In addition
to its own members, Square gains all accessible members in Rectangle, except for any
constructors and destructor.

// Base class (parent class)
class Rectangle

{

public int x = 10, y = 10;

public int GetArea() { return x * y; }
}

// Derived class (child class)
class Square : Rectangle {}

Object class

A class in C# may only inherit from one base class. If no base class is specified the class
will implicitly inherit from System.0Object. It is therefore the root class of all other classes.

class Rectangle : System.Object {}

C# has a unified type system in that all data types directly or indirectly inherit from
Object. This does not only apply to classes, but also to other data types, such as arrays
and simple types. For example, the int keyword is only an alias for the System.Int32
struct type. Likewise, object is an alias for the System.0Object class.

System.Object o = new object();

Because all types inherit from Object, they all share a common set of methods. One
such method is ToString, which returns a string representation of the current object.

System.Console.Write(o.ToString()); // System.Object

37

CHAPTER 11 INHERITANCE

Downcast and upcast

Conceptually, a derived class is a specialization of the base class. This means that
Square is a kind of Rectangle as well as an Object, and can therefore be used anywhere
a Rectangle or Object is expected. If an instance of Square is created, it can be upcast to
Rectangle since the derived class contains everything in the base class.

Square s = new Square();
Rectangle r = s;

The object is now viewed as a Rectangle, so only Rectangle’s members can be
accessed. When the object is downcast back into a Square everything specific to the
Square class will still be preserved. This is because the Rectangle only contained
the Square, it did not change the Square object in any way.

Square s2 = (Square)r;

The downcast has to be made explicit since downcasting an actual Rectangle into a
Square is not allowed.

Rectangle r2 = new Rectangle();
Square s3 = (Square)r2; // error

Is keyword

There are two operators that can be used to avoid exceptions when casting objects.
First there is the is operator, which returns true if the left side object can be cast to the
right side type without causing an exception.

Rectangle q = new Square();
if (q is Square) { Square o = g; } // condition is true

As keyword

The second operator used to avoid object casting exceptions is the as operator.
This operator provides an alternative way of writing an explicit cast, with the difference
that if it fails the reference will be set to null.

Rectangle r = new Rectangle();
Square o = r as Square; // invalid cast, returns null

38

CHAPTER 11 INHERITANCE

Boxing

The unified type system of C# allows for a variable of value type to be implicitly converted
into a reference type of the Object class. This operation is known as boxing and once the
value has been copied into the object it is seen as a reference type.

int myInt = 5;
object myObj = myInt; // boxing

Unboxing

The opposite of boxing is unboxing. This converts the boxed value back into a variable of
its value type. The unboxing operation must be explicit since if the object is not unboxed
into the correct type a run-time error will occur.

myInt = (int)myObj; // unboxing

39

CHAPTER 12

Redefining Members

A member in a derived class can redefine a member in its base class. This can be done
for all kinds of inherited members, but it is most often used to give instance methods new
implementations. To give a method a new implementation, the method is redefined in
the child class with the same signature as it has in the base class. The signature includes
the name, parameters and return type of the method.

class Rectangle

{
public int x = 1, y = 10;
public int GetArea() { return x * y; }

}
class Square : Rectangle
{
public int GetArea() { return 2 * x; }
}

Hiding members

It must be specified whether the method is intended to hide or override the inherited
method. By default, the new method will hide it, but the compiler will give a warning
that the behavior should be explicitly specified. To remove the warning the new modifier
needs to be used. This specifies that the intention was to hide the inherited method and
to replace it with a new implementation.

class Square : Rectangle

{

public new int GetArea() { return 2 * x; }

}

41

CHAPTER 12 © REDEFINING MEMBERS

Overriding members

Before a method can be overridden, the virtual modifier must first be added to the method
in the base class. This modifier allows the method to be overridden in a derived class.

class Rectangle

{
public int x = 1, y = 10;
public virtual int GetArea() { return x * y; }

}

The override modifier can then be used to change the implementation of the
inherited method.

class Square : Rectangle

{

public override int GetArea() { return 2 * x; }

}

Hiding and overriding

The difference between override and new is shown when a Square is upcast to a
Rectangle. If the method is redefined with the new modifier then this allows access to

the previously hidden method defined in Rectangle. On the other hand, if the method is
redefined using the override modifier then the upcast will still call the version defined in
Square. Basically, the new modifier redefines the method down the class hierarchy, while
override redefines the method both up and down in the hierarchy.

Sealed keyword

To stop an overridden method from being further overridden in classes that inherit from
the derived class, the method can be declared as sealed to negate the virtual modifier.

class MyClass
{

public sealed override int NonOverridable() {}

}

A class can also be declared as sealed to prevent any class from inheriting it.

sealed class NonInheritable {}

42

CHAPTER 12 © REDEFINING MEMBERS

Base keyword

There is a way to access a parent’s method even if it has been redefined. This is done
by using the base keyword to reference the base class instance. Whether the method is
hidden or overridden it can still be reached by using this keyword.

class Triangle : Rectangle

{

public override GetArea() { return base.GetArea()/2; }

}

The base keyword can also be used to call a base class constructor from a derived
class constructor. The keyword is then used as a method call before the constructor’s
body, prefixed by a colon.

class Rectangle

{

public int x = 1, y = 10;

public Rectangle(int a, int b) { x = a; y = b; }
}

class Square : Rectangle

{
public Square(int a) : base(a,a) {}

When a derived class constructor does not have an explicit call to the base class
constructor, the compiler will automatically insert a call to the parameterless base class
constructor in order to ensure that the base class is properly constructed.

class Square : Rectangle

public Square(int a) {} // : base() implicitly added

Note that if the base class has a constructor defined that is not parameterless,
the compiler will not create a default parameterless constructor. Therefore, defining
a constructor in the derived class, without an explicit call to a defined base class
constructor, will cause a compile-time error.

class Base { public Base(int a) {} }
class Derived : Base {} // compile-time error

43

CHAPTER 13

Access Levels

Every class member has an accessibility level that determines where the member
will be visible. There are five of them available in C#: public, protected, internal,
protected internal and private. The default access level for members of a class
is private

Private access

All members regardless of access level are accessible in the class in which they are declared,
the enclosing class. This is the only place where a private member can be accessed.

class MyBase

{

}

// Unrestricted access
public int myPublic;

// Defining assembly or derived class
protected internal int myProtInt;

// Defining assembly
internal int myInternal;

// Defining or derived class
protected int myProtected;

// Defining class only
private int myPrivate;

void Test()

{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // allowed
}

45

CHAPTER 13 * ACCESS LEVELS

Protected access

A protected member can also be accessed from within a derived class, but it is
inaccessible from other classes.

class Derived : MyBase

{
void Test()
{
myPublic = 0; // allowed
myProtInt = 0; // allowed
myInternal = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
}

Internal access

An internal member can be accessed anywhere within the local assembly, but not from
another assembly. In .NET, an assembly is either a program (.exe) or a library (.dll).

// Defining assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // allowed
m.myInternal = 0; // allowed
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

Protected internal access

Protected internal access means either protected or internal. A protected internal
member can therefore be accessed anywhere within the current assembly, or in classes
outside the assembly that are derived from the enclosing class.

// Other assembly
class Derived : MyBase

{

void Test(MyBase m)

46

CHAPTER 13 © ACCESS LEVELS

{
m.myPublic = 0; // allowed
m.myProtInt = 0; // allowed
m.myInternal = 0; // inaccessible
m.myProtected = 0; // allowed
m.myPrivate = 0; // inaccessible
}

Public access

Public access gives unrestricted access from anywhere that the member can be
referenced.

// Other assembly
class AnyClass

{
void Test(MyBase m)
{
m.myPublic = 0; // allowed
m.myProtInt = 0; // inaccessible
m.myInternal = 0; // inaccessible
m.myProtected = 0; // inaccessible
m.myPrivate = 0; // inaccessible
}
}

Top-level access levels

A top-level member is a type that is declared outside of any other types. In C#, the
following types can be declared on the top-level: class, interface, struct, enum and
delegate. By default, these uncontained members are given internal access. To be able
to use a top-level member from another assembly the members have to be marked as
public. This is the only other access level allowed for top-level members.

internal class MyInternalClass {}
public class MyPublicClass {}

Inner classes

Classes may contain inner classes, which can be set to either one of the five access levels.
The access levels have the same effect on inner classes as they do on other members.

If the class is inaccessible, it cannot be instantiated or inherited. By default, inner classes
are private, which means that they can only be used within the class where they are defined.

47

CHAPTER 13 * ACCESS LEVELS

class MyBase

{
// Inner classes (nested classes)
public class MyPublic {}
protected internal class MyProtInt {}
internal class MyInternal {}
protected class MyProtected {}
private class MyPrivate {}

Access level guideline

As a guideline, when choosing an access level it is generally best to use the most restrictive
level possible. This is because the more places a member can be accessed the more
places it can be accessed incorrectly, which makes the code harder to debug. Using
restrictive access levels will also make it easier to modify the class without breaking the
code for any other programmers using that class.

48

CHAPTER 14

Static

The static keyword can be used to declare fields and methods that can be accessed
without having to create an instance of the class. Static (class) members only exist in one
copy, which belongs to the class itself, whereas instance (non-static) members are created
as new copies for each new object. This means that static methods cannot use instance
members since these methods are not part of an instance. On the other hand, instance
methods can use both static and instance members.

class MyCircle

{
// Instance variable (one per object)
float r=10;

// Static/class variable (only one copy)
static float pi=3.14 F;

// Instance method
float GetArea()
{

return ComputeArea(r);

}

// Static/class method
static float ComputeArea(float a)
{
return pi*a*a;
}
}

Accessing static members

To access a static member from outside the class, the class name is used followed by the
dot operator. This operator is the same as the one used to access instance members, but
to reach them an object reference is required. An object reference cannot be used to
access a static member.

49

CHAPTER 14 © STATIC

static void Main()

float f=MyCircle.ComputeArea(MyCircle.pi);
}

Static methods

The advantage of static members is that they can be used by other classes without having
to create an instance of the class. Fields should therefore be declared static when only

a single instance of the variable is needed. Methods should be declared static if they
perform a generic function that is independent of any instance variables. A good example
of this is the System.Math class, which provides a multitude of mathematical methods.
This class contains only static members and constants.

static void Main()

double pi=System.Math.PI;
}

Static fields

Static fields have the advantage that they persist throughout the life of the application.
A static variable can therefore be used, for example, to record the number of times that a
method has been called.

static int count=0;
public static void Dummy()
{

count++;

}

The default value for a static field will only be set once before it is first used.

Static classes

A class can also be marked static if it only contains static members and constant fields.
A static class cannot be inherited or instantiated into an object. Attempting to do so will
cause a compile-time error.

static class MyCircle {}

50

CHAPTER 14 © STATIC

Static constructor

A static constructor can perform any actions needed to initialize a class. Typically, these
actions involve initializing static fields that cannot be initialized as they are declared. This
can be necessary if their initialization requires more than one line, or some other logic, to
be initialized.

class MyClass
{

static int[] array=new int[5];
static MyClass()

int i=0;
for(int element : array)
element=1i++;

The static constructor, in contrast to the regular instance constructor, will only be run
once. This occurs automatically either when an instance of the class is created, or when a
static member of the class is referenced. Static constructors cannot be called directly and
are not inherited. In case the static fields also have initializers, those initial values will be
assigned before the static constructor is run.

Extension methods

A new feature in C# 3.0 is extension methods, which provide a way to seemingly add new
instance methods to an existing class outside its definition. An extension method must be
defined as static in a static class and the keyword this is used on the first parameter to
designate which class to extend.

static class MyExtensions

{

// Extension method

public static int ToInt(this string s) {
return Int32.Parse(s);

}

}

51

CHAPTER 14 © STATIC

The extension method is callable for objects of its first parameter type, in this
case string, as if it was an instance method of that class. No reference to the static class
is needed.

class MyApp

static void Main() {
string s="10";
int i=s.ToInt();
}
}

Because the extension method has an object reference, it can make use of instance
members of the class it is extending. However, it cannot use members of that class that
are inaccessible due to their access level. The benefit of extension methods is that they
enable you to “add” methods to a class without having to modify or derive the original type.

52

CHAPTER 15

Properties

Properties in C# provide the ability to protect a field by reading and writing to it through
special methods called accessors. They are generally declared as public with the same
data type as the field they are going to protect, followed by the name of the property and
a code block that defines the get and set accessors.

class Time

{

private int seconds;

public int sec

{
get { return seconds; }
set { seconds = value; }

}
}

Properties are implemented as methods, but used as though they are fields.

static void Main()

{
Time t = new Time();
int s = t.sec;

}

Note that the contextual value keyword corresponds to the value assigned to
the property.

53

CHAPTER 15 © PROPERTIES

Auto-implemented properties

The kind of property where the get and set accessors directly correspond to a field is very
common. Because of this there is a shorthand way of writing such a property, by leaving
out the accessor code blocks and the private field. This syntax was introduced in C# 3.0
and is called an auto-implemented property.

class Time
{ public int sec
{
get;
set;
}
}

Property advantages

Since there is no special logic in the property above, it is functionally the same as if it had
been a public field. However, as a general rule public fields should never be used in real
world programming because of the many advantages that properties bring.

First of all, properties allow a programmer to change the internal implementation
of the property without breaking any programs that are using it. This is of particular
importance for published classes, which may be in use by other programmers. In the
Time class for example, the field’s data type could need to be changed from int to byte.
With properties, this conversion could be handled in the background. With a public field,
however, changing the underlying data type for a published class will likely break any
programs that are using the class.

class Time

{

private byte seconds;

public int sec

{
get

{

return (int)seconds;

set

{

}
}
}

seconds = (byte)value;

54

CHAPTER 15 © PROPERTIES

A second advantage of properties is that they allow the programmer to validate the
data before allowing a change. For example, the seconds field can be prevented from
being assigned a negative value.

set

if (value
seconds

else
seconds = 0;

n v
< O
[
—
<
D
-

Properties do not have to correspond to an actual field. They can just as well
compute their own values. The data could even come from outside the class, such as from
a database. There is also nothing that prevents the programmer from doing other things
in the accessors, such as keeping an update counter.

public int hour

{
get

{

return seconds / 3600;

set

{
seconds = value * 3600;
count++;

}
}

private int count = 0;

Read-only and write-only properties

Either one of the accessors can be left out. Without the set accessor the property becomes
read-only, and by leaving out the get accessor instead the property is made write-only.

// Read-only property
private int sec

{

public get { return seconds; }

}

// Write-only property
private int sec

{

public set { seconds = value; }

}

55

CHAPTER 15 © PROPERTIES

Property access levels

The accessor’s access levels can be restricted. For instance, by making the set
property private.

private set { seconds = value; }

The access level of the property itself can also be changed to restrict both accessors.
By default, the accessors are public and the property itself is private.

private int sec { get; set; }

56

CHAPTER 16

Indexers

Indexers allow an object to be treated as an array. They are declared in the same way as
properties, except that the this keyword is used instead of a name and their accessors
take parameters. In the example below, the indexer corresponds to an object array called
data, so the type of the indexer is set to object.

class MyArray
object[] data = new object[10];

public object this[int i]
{

get

{

return data[i];

set
{
data[i] = value;
}
}
}

The get accessor returns the specified element from the object array, and the set
accessor inserts the value into the specified element. With the indexer in place an instance
of this class can be created and used as an array, both to get and set the elements.

static void Main()

{
MyArray a = new MyArray();
a[5] = "Hello World";
object o = a[5]; // Hello World

}

57

CHAPTER 16 INDEXERS

Indexer parameters

The parameter list of an indexer is similar to that of a method, except that it must have
atleast one parameter and that the ref or out modifiers are not allowed. For example,
if there is a two-dimensional array, the column and row indexes can be passed as
separate parameters.

class MyArray
{

object[,] data = new object[10,10];

public object this[int i, int j]
{
get { return data[i,j]; }
set { data[i,j] = value; }
}
}

The index parameter does not have to be of an integer type. An object can just as well
be passed as the index parameter. The get accessor can then be used to return the index
position where the passed object is located.

class MyArray

{
object[] data = new object[10];

public int this[object o]

{
get { return System.Array.IndexOf(data, o); }

}
}

Indexer overloading

Both of these functionalities can be provided by overloading the indexer. The type and
number of arguments will then determine which indexer gets called.

class MyArray
object[] data = new object[10];
public int this[object o]

{
get { return System.Array.IndexOf(data, o); }

}

58

CHAPTER 16 ' INDEXERS

public object this[int i]
{
get { return data[i]; }
set { data[i] = value; }
}
}

Keep in mind that in a real program a range check should be included in the
accessors, so as to avoid exceptions caused by trying to go beyond the length of the array.

public object this[int i]

{
get
{
return (i >= 0 8% i < data.Length) ? data[i] : null;
}
set
{
if (i »>= 0 & i < data.Length)
data[i] = value;
}
}

59

CHAPTER 17

Interface

An interface is used to specify members that deriving classes must implement. They are
defined with the interface keyword followed by a name and a code block. Their naming
convention is to start with a capital “I” and then to have each word initially capitalized.

interface IMyInterface {}

Interface signatures

The interface code block can only contain signatures, and only those of methods,
properties, indexers and events. The interface members cannot have any
implementations. Instead, their bodies are replaced by semicolons. They also cannot
have any access modifiers since interface members are always public.

interface IMyInterface

{

// Interface method
int GetArea();

// Interface property
int Area { get; set; }

// Interface indexer
int this[int index] { get; set; }

// Interface event
event System.EventHandler MyEvent;

61

CHAPTER 17 INTERFACE

Interface example

In the following example, an interface called IComparable is defined with a single method
named Compare.

interface IComparable

{

int Compare(object o);

}

The class Circle defined below implements this interface, by using the same
notation as is used for inheritance. The Circle class then needs to define the Compare
method, which for this class will return the difference between the circle radiuses. The
implemented member must be public, in addition to having the same signature as the
one defined in the interface.

class Circle : IComparable

{

int r;

public int Compare(object o)
{

}
}

return r - (o as Circle).r;

Although a class can only inherit from one base class it may implement any number
of interfaces, by specifying them in a comma separated list after any base class.

Functionality interface

IComparable demonstrates the first usage of interfaces, which is to define a specific
functionality that classes can share. It allows programmers to use the interface members
without having to know the actual type of a class. To illustrate, the method below takes
two IComparable objects and returns the largest one. This method will work for all classes
that implement the IComparable interface, regardless of their type, since the method only
uses the functionality exposed through that interface.

static object Largest(IComparable a, IComparable b)
{

return (a.Compare(b) > 0) ? a : b;

}

62

CHAPTER 17 INTERFACE

Class interface

A second way to use an interface is to provide an actual interface for a class, through
which the class can be used. Such an interface defines the functionality that programmers
using the class will need.

interface IMyClass

void Exposed();

class MyClass : IMyClass

{
public void Exposed() {}

public void Hidden() {}
}

The programmers can then view instances of the class through this interface,
by enclosing the objects in variables of the interface type.

IMyInterface m = new MyClass();
This abstraction provides two benefits. First, it makes it easier for other programmers
to use the class since they now only have access to the members that are relevant to them.

Second, it makes the class more flexible since its implementation can change without
being noticeable by other programmers using the class, as long as the interface is followed.

63

CHAPTER 18

Abstract

An abstract class provides a partial implementation that other classes can build on.
When a class is declared as abstract it means that the class can contain incomplete
members that must be implemented in derived classes, in addition to normal class
members.

Abstract members

Any member that requires a body can be declared abstract - such as methods, properties
and indexers. These members are then left unimplemented and only specify their
signatures, while their bodies are replaced by semicolons.

abstract class Shape

{
// Abstract method
public abstract int GetArea();
// Abstract property
public abstract int area { get; set; }
// Abstract indexer
public abstract int this[int index] { get; set; }
// Abstract event
public delegate void MyDelegate();
public abstract event MyDelegate MyEvent;
// Abstract class
public abstract class InnerShape {};
}

65

CHAPTER 18 © ABSTRACT

Abstract example

As an example, the class below has an abstract method named GetArea.

abstract class Shape

{
private int x = 100, y = 100;
public abstract int GetArea();
}

If a class derives from this abstract class it is then forced to override the abstract
member. This is different from the virtual modifier, which specifies that the member
may be overridden.

class Rectangle : Shape

{

public int GetArea() { return x * y; }
}

The deriving class can be declared abstract as well, in which case it does not have
to implement any of the abstract members.

abstract class Rectangle : Shape {}
An abstract class can also inherit from a non-abstract class.

class NonAbstract {}
abstract class Abstract : NonAbstract {}

If the base class has virtual members, these can be overridden as abstract to force
further deriving classes to provide new implementations for them.

class MyClass

{

void virtual Dummy() {}
}
abstract class Abstract : MyClass
{

void abstract override Dummy() {}
}

An abstract class can be used as an interface to hold objects made from derived
classes.

Shape s = new Rectangle();

66

CHAPTER 18 © ABSTRACT

It is not possible to instantiate an abstract class. Even so, an abstract class may have
constructors that can be called from derived classes by using the base keyword.

Shape s = new Shape(); // compile-time error

Abstract classes and interfaces

Abstract classes are similar to interfaces in many ways. They can both define member
signatures that deriving classes must implement, and neither one of them can be
instantiated. The key differences are first that the abstract class can contain non-abstract
members, while the interface cannot. And second, that a class can implement any
number of interfaces but only inherit from one class, abstract or not.

// Defines default functionality and definitions
abstract class Shape
{

public int x = 100, y = 100;

public abstract int GetArea();

}
class Rectangle : Shape {} // class is a Shape

// Defines an interface or a specific functionality
interface IComparable

{

int CompareTo();
class MyClass : IComparable {} // class can be compared
An abstract class can, just as a non-abstract class, extend one base class and
implement any number of interfaces. An interface, however, cannot inherit from a class.

Although it can inherit from another interface, which effectively combines the two
interfaces into one.

67

CHAPTER 19

Namespaces

Namespaces provide a way to group related top-level members into a hierarchy. They are
also used to avoid naming conflicts. A top-level member, such as a class, that is not
included in a namespace is said to belong to the default namespace. It can be moved to
another namespace by being enclosed in a namespace block. The naming convention for
namespaces is the same as for classes, with each word initially capitalized.

namespace MyNamespace

class MyClass {}
}

Nested namespaces

Namespaces can be nested any number of levels deep to further define the namespace
hierarchy.

namespace MyNamespace

namespace NestedNamespace

{
class MyClass {}

}
}

A quicker way to write this is to just separate the namespaces with a dot.
namespace MyNamespace.NestedNamespace

class MyClass {}
}

Note that declaring the same namespace again in another class within the project
has the same effect as if both namespaces were included in the same block, even if the
class is located in another code file.

69

CHAPTER 19 © NAMESPACES

Namespace access

To access a class from another namespace its fully qualified name needs to be specified.
namespace MyNamespace.NestedNamespace

public class MyClass {}
}

namespace OtherNamespace

{
class MyApp

static void Main()

{

MyNamespace.NestedNamespace.MyClass myClass;

Using directive

The fully qualified name can be shortened by including the namespace with a using
directive. The members of that namespace can then be accessed anywhere in the code
file without having to prepend the namespace to every reference. It is mandatory to place
using directives before all other members in the code file.

using MyNamespace.NestedNamespace;

Having direct access to these members means that if there is a conflicting member
signature in the current namespace the member in the included namespace will be
hidden. For example, if there is a MyClass in the OtherNamespace as well, that class will
be used by default. To use the class in the included namespace, the fully qualified name
would again have to be specified.

using MyNamespace.NestedNamespace;

namespace MyNamespace.NestedNamespace

{
public class MyClass

{

}
}

public static int x;

70

CHAPTER 19 © NAMESPACES

namespace OtherNamespace

public class MyClass

{
static void Main()
{
int x = MyNamespace.NestedNamespace.MyClass.x
}
}

}

To simplify this reference, the using directive can instead be changed to assign the
namespace to an alias.

using MyAlias = MyNamespace.NestedNamespace;
/...
int x = MyAlias.MyClass.x;

An even shorter way would be to define the fully qualified class name as a new type
for the code file, by using the same alias notation.

using MyType = MyNamespace.NestedNamespace.MyClass;

/...
int x = MyType.x;

71

CHAPTER 20

Enum

An enumeration is a special kind of value type consisting of a list of named constants.
To create one, the enum keyword is used followed by a name and a code block, containing
a comma-separated list of constant elements.

enum State { Run, Wait, Stop, Offline };

This enumeration type can be used to create variables that can hold these constants.
To assign a value to the enum variable, the elements are accessed from the enum as if
they were static members of a class.

State s = State.Run;

Enum example

The switch statement provides a good example of when an enumeration can be useful.
Compared to using ordinary constants, an enumeration has the advantage of allowing
the programmer to clearly specify what constant values are allowed. This provides
compile-time type safety, and IntelliSense also makes the values easier to remember.

switch (s)

{
case State.Run: break;
case State.Wait: break;

case State.Stop: break;
case State.Offline: break;

Enum constant values

There is usually no need to know the actual constant values that the constants represent,
but sometimes it may be necessary. By default, the first element has the value 0, and each
successive element has one value higher.

73

CHAPTER 20 © ENUM

enum State

{
Run, // 0
Wait, // 1
Stop, // 2
Offline // 3

b

These default values can be overridden by assigning values to the constants.
The values can be computed and do not have to be unique.

enum State
{

Run = 0, Wait = 3, Stop = 5, Offline = Stop + 5
b

Enum constant type

The underlying type of the constant elements is implicitly specified as int, but this can
be changed by using a colon after the enumeration’s name followed by the desired

integer type.

enum MyEnum : byte {};

Enum access levels and scope

The access levels for enumerations are the same as for classes. They are internal by
default, but can also be declared as public. Although enumerations are usually defined at
the top-level, they may be contained within a class. In a class they have private access by
default, and can be set to either one of the access levels.

Enum methods

An enumeration constant can be cast to an int and the ToString method can be used to
obtain its name. Most other enumeration methods can be found in the System.Enum class.

static void Main()

{
State s = State.Run;
int i = (int)s; /10
string t = s.ToString(); // Run
}

4

CHAPTER 21

Exception Handling

Exception handling allows programmers to deal with unexpected situations that may
occur in programs. As an example, consider opening a file using the StreamReader class
in the System.I0 namespace. To see what kinds of exceptions this class may throw, you
can hover the cursor over the class name in Visual Studio. For instance, the System.IO
exceptions FileNotFoundException and DirectoryNotFoundException. If anyone of
those exceptions occurs, the program will terminate with an error message.

using System;
using System.IO;

class ErrorHandling
{
static void Main()
{
// Run-time error
StreamReader sr = new StreamReader("missing.txt");
}
}

Try-catch statement

To avoid crashing the program the exceptions must be caught using a try-catch statement.
This statement consists of a try block containing the code that may cause the exception,
and one or more catch clauses. If the try block successfully executes, the program will
then continue running after the try-catch statement. However, if an exception occurs the
execution will then be passed to the first catch block able to handle that exception type.

try
{

StreamReader sr = new StreamReader("missing.txt");

}

catch

{

Console.Write("File not found");

}

75

CHAPTER 20 * EXCEPTION HANDLING

Catch block

Since the catch block above is not set to handle any specific exception it will catch all of
them. This is equivalent to catching the System.Exception class, because all exceptions
derive from this class.

catch (Exception) {}

To catch a more specific exception the catch block needs to be placed before more
general exceptions.

catch (FileNotFoundException) {}
catch (Exception) {}

The catch block can optionally define an exception object that can be used to obtain
more information about the exception, such as a description of the error.

catch (Exception e)

{

Console.Write("Error:

}

+ e.Message);

Finally block

As the last clause in the try-catch statement, a finally block can be added. This block is
used to clean up certain resources allocated in the try block. Typically, limited system
resources and graphical components need to be released in this way once they are no
longer needed. The code in the finally block will always execute, whether or not there is
an exception. This will be the case even if the try block ends with a jump statement, such
as return.

In the example used previously, the file opened in the try block should be closed if
it was successfully opened. This is done properly in the next code segment. To be able
to access the StreamReader object from the finally clause it must be declared outside of
the try block. Keep in mind that if you forget to close the stream the garbage handler will
eventually close it for you, but it is a good practice to do it yourself.

StreamReader sr = null;

try
{

st = new StreamReader("missing.txt");

}

catch (FileNotFoundException) {}
finally

{
if (sr !'= null) sr.Close();

}

76

CHAPTER 20 © EXCEPTION HANDLING

The statement above is known as a try-catch-finally statement. The catch block can
be left out to create a try-finally statement. This statement will not catch any exceptions.
Instead, it will ensure the proper disposal of any resources allocated in the try block.
This can be useful if the allocated resource does not throw any exceptions. For instance,
such a class would be Bitmap, in the System.Drawing namespace.

using System.Drawing;

/...

Bitmap b = null;

try

{
b = new Bitmap(100, 100);
System.Console.WriteLine("Width: " + b.Width +

", Height: " + b.Height);
}

finally

if (b !'= null) b.Dispose();
}

Note that when using a Console Project a reference to the System.Drawing assembly
needs to be manually added for those members to be accessible. To do so right click the
References folder in the Solution Explorer window and select Add References. Then from
the .NET tab select the System.Drawing assembly and click OK to add its reference to
your project.

Using statement

The using statement provides a simpler syntax for writing the try-finally statement.

This statement starts with the using keyword followed by the resource to be acquired,
specified in parentheses. It then includes a code block in which the obtained resource can
be used. When the code block has finished executing, the Dispose method of the object

is automatically called to clean it up. This method comes from the System.IDisposable
interface, so the specified resource must implement this interface. The code below
performs the same function as the one in the previous example, but with fewer lines

of code.

using System.Drawing;
/...
using (Bitmap b = new Bitmap(100, 100))

System.Console.WritelLine("Width: " + b.Width +
", Height: " + b.Height);

7l

CHAPTER 20 * EXCEPTION HANDLING

Throwing exceptions

When a situation occurs that a method cannot recover from it can generate an exception
to signal the caller that the method has failed. This is done using the throw keyword
followed by a new instance of a class deriving from System.Exception.

static void MakeError()

{
}

throw new System.DivideByZeroException("My Error");

The exception will then propagate up the caller stack until it is caught. If a caller
catches the exception but is not able to recover from it, the exception can be re-thrown
using only the throw keyword.

static void Main()

{
}

try { MakeError(); } catch { throw; }

If there are no more try-catch statements the program will stop executing and display
the error message.

78

CHAPTER 22

Operator Overloading

Operator overloading allows operators to be redefined and used where one or both of the
operands are of a certain class. When done correctly, this can simplify the code and make
user-defined types as easy to use as the simple types.

Operator overloading example

In this example, there is a class called MyNum with an integer field and a constructor for
setting that field. There is also a static Add method that adds two MyNum objects together
and returns the result as a new MyNum object.

class MyNum

{
public int val;
public MyNum(int i) { val = i; }
public static MyNum Add(MyNum a, MyNum b) {
return new MyNum(a.val + b.val);
}
}
Two MyNum instances can be added together using the Add method.
MyNum a = new MyNum(10), b = new MyNum(5);
MyNum c¢ = MyNum.Add(a, b);

Binary operator overloading

What operator overloading does is to simplify this syntax and thereby provide a more
intuitive interface for the class. To convert the Add method to an overload method for the
addition sign, replace the name of the method with the operator keyword followed by the
operator that is to be overloaded. The whitespace between the keyword and the operator
can optionally be left out. Note that for an operator overloading method to work, it must
be defined as both public and static.

79

CHAPTER 22 © OPERATOR OVERLOADING

class MyNum
{

public int val;
public MyNum(int i) { val = i; }

public static MyNum operator +(MyNum a, MyNum b)
{

return new MyNum(a.val + b.val);

}
}

Since the class now overloads the addition sign this operator can be used to perform
the required calculation.

MyNum a
MyNum c

new MyNum(10), b = new MyNum(5);
a+ b;

Unary operator overloading

Addition is a binary operator, because it takes two operands. To overload a unary operator,
such as increment (++), a single method parameter is used instead.

public static MyNum operator ++(MyNum a)
{

return new MyNum(a.val + 1);

}

Note that this will overload both the postfix and prefix versions of the increment
operator.

MyNum a = new MyNum(10);
a+t;
++a;

Return types and parameters

When overloading a unary operator the return type and parameter type must be of the
enclosing type. On the other hand, when overloading most binary operators the return
type can be anything, except for void, and only one of the parameters must be of the
enclosing type. This means that it is possible to further overload a binary operator with
other method parameters, for example to allow a MyNum and an int to be added together.

public static MyNum operator +(MyNum a, int b)

{

return new MyNum(a.val + b);

}

80

CHAPTER 22 © OPERATOR OVERLOADING

Overloadable operators

C# allows overloading of almost all operators, as can be seen in the table below. The
combined assignment operators cannot be explicitly overloaded. Instead, they are implicitly
overloaded when their corresponding arithmetic or bitwise operators are overloaded.

Binary operators Unary operators Not overloadable

+-%/% (+=-=*= /= %=) +-!~++--truefalse &&]||=.():?: newasis typeof
&| N << >> (&=|=N=<<=>>=) checked unchecked

== !: >S<<>=<L=

The comparison operators, as well as true and false, must be overloaded in pairs.
For example, overloading the equal operator means that the not equal operator also has
to be overloaded.

True and false operator overloading

Notice in the previous table that true and false are considered to be operators.

By overloading them, objects of the class can be used in conditional statements where the
object needs to be evaluated as a Boolean type. When overloading them the return types
must be bool.

class MyNum

{
public int val;
public MyNum(int i) { val = i; }
public static bool operator true(MyNum a) {
return (a.val != 0);
}
public static bool operator false(MyNum a) {
return (a.val == 0);
}
}
class MyClass
{
static void Main() {
MyNum a = new MyNum(10);
if (a) System.Console.WritelLine("object is true");
else System.Console.WritelLine("object is false");
}
}

81

CHAPTER 23

Custom Conversions

This chapter covers how to define custom type conversions for an object. As can be

seen in the example below, there is a class called MyNum with a single int field and

a constructor. With a custom type conversion, it is possible to allow an int to be implicitly
converted to an object of this class.

class MyNum
{

public int val;
public MyNum(int i) { val = i; }
}

Implicit conversion methods

For this to work an implicit conversion method needs to be added to the class. This
method’s signature looks similar to that used for unary operator overloading. It must be
declared as public static and includes the operator keyword. However, instead of an
operator symbol the return type is specified, which is the target type for the conversion.
The single parameter will hold the value that is to be converted. The implicit keyword
is also included, which specifies that the method is used to perform implicit conversions.

public static implicit operator MyNum(int a)

{

return new MyNum(a);

}
With this method in place an int can be implicitly converted to a MyNum object.
MyNum a = 5;

Another conversion method can be added that handles conversions in the opposite
direction, from a MyNum object to an int.

public static implicit operator int(MyNum a)

{

return a.val;

}

83

CHAPTER 23 © CUSTOM CONVERSIONS

Explicit conversion methods

To prevent potentially unintended object type conversions by the compiler, the
conversion method can be declared as explicit instead of implicit.

public static explicit operator int(MyNum a)

{
}

return a.val;

The explicit keyword means that the programmer has to specify an explicit cast in
order to invoke the type conversion method. In particular, explicit conversion methods
should be used if the result of the conversion leads to loss of information, or if the
conversion method may throw exceptions.

MyNum a = 5;
int i = (int)a;

84

CHAPTER 24

Constants

Avariable in C# can be made into a compile-time constant by adding the const keyword
before the data type. This modifier means that the variable cannot be changed and it
must therefore be assigned a value at the same time as it is declared. Any attempts to
assign a new value to the constant will result in a compile-time error.

Local constants

A local constant must always be initialized at the same time as it is declared.

static void Main()

{

const int a = 10; // compile-time constant

}

The const modifier creates a compile-time constant, and so the compiler will
replace all usage of the constant with its value. The assigned value must therefore be
known at compile-time. As a result of this, the const modifier may only be used together
with the simple types, as well as with enum and string types.

Constant fields

The const modifier can be used on fields as well as on local variables. Unlike C++,
C# does not allow method parameters to be made constant.

class MyClass
{

const int b = 5; // compile-time constant field

}

A field that is marked with const is accessed as if it was a static field. Constant fields
cannot be made static.

int a = MyClass.b;

85

CHAPTER 24 © CONSTANTS

Readonly keyword

Another variable modifier similar to const is readonly, which creates a run-time
constant. This modifier may only be applied to fields, and like const it makes the field
unchangeable.

class MyClass
{

readonly int c = 3; // run-time constant field

}

However, since a readonly field is assigned at run-time it can be assigned a dynamic
value that is not known until run-time.

readonly int d = System.DateTime.Now.Hour;
Unlike const, readonly can be applied to any data type.
readonly int[] e = { 1, 2, 3 };

In addition, a readonly field cannot only be initialized when it is declared. It can
alternatively be assigned a value in the constructor.

class MyClass
{

readonly string s;
public MyClass() { s = "Hello World"; }

Constant guideline

In general, it is a good idea to always declare variables as constants if they do not need
to be reassigned. This ensures that the variables will not be changed anywhere in the
program by mistake, which in turn helps to prevent bugs.

86

CHAPTER 25

Preprocessor

C# includes a set of preprocessor directives that are mainly used for conditional
compilation. Although the C# compiler does not have a separate preprocessor, as C and
C++ compilers, the directives shown below are processed as if there was one. That is, they
appear to be processed before the actual compilation takes place.

Directive Description

#if If

#elif Else if

#else Else

#endif End if

#define Symbol define
#undef Symbol undefine
#error Generate error
#warning Generate warning
#line Setline number
#region Mark section start
#endregion Mark section end

Preprocessor directive syntax

The preprocessor directives are easily distinguished from normal programming code in
that they start with a hash sign (#). They must always occupy a line that is separate from
anything else, except for single-line comments. Whitespace may optionally be included
before and after the hash mark.

#line 1 // set line number

87

CHAPTER 25 © PREPROCESSOR

Conditional compilation — #if and #endif

The #if and #endif directives specify a section of code that will be included or
excluded based on a given condition. Most often, this condition will be a conditional
compilation symbol.

#if MySymbol
/...
#endif

Defining symbols

A conditional compilation symbol is created using the #define directive followed by the
symbol’s name. When a symbol is defined, it will then cause a conditional expression
using that condition to be evaluated as true. The symbol will remain defined only within
the current source file starting from the line where the symbol is created.

#define MySymbol

Undefining symbols

The #undef (undefine) directive can disable a previously defined symbol.

#undef MySymbol

Conditional compilation — #elif and #else

Just as with the C# if statement, the #if directive can optionally include any number of
#elif (else if) directives and one final #else directive. Conditional directives may also
be nested within another conditional section. In longer conditionals, it is a good practice
to add comments to the #endif directives to help keep track of which #1if directive they
correspond to.

#if Professional
/...
#elif Advanced || Enterprise
/1 ...
#else
#if Debug
/1 ...
#endif // Debug
#endif // not Professional, Advanced or Enterprise

88

CHAPTER 25 © PREPROCESSOR

Diagnostic directives

There are two diagnostic directives: #error and #warning. The #error directive is used
to abort a compilation by generating a compilation error. This directive can optionally
take a parameter that specifies the error description.

#if Professional && Enterprise
#error Build cannot be both Professional and Enterprise
#endif

Similar to error, the #warning directive generates a compilation warning message.
This directive will not stop the compilation.

#if IProfessional &% !Enterprise
#warning Build should be Professional or Enterprise
#endif

Line directive

Another directive that affects the compiler’s output is #1ine. This directive is used to
change the line number and optionally the source file name that is displayed when an
error or warning occurs during compilation. This is mainly useful when using a program
that combines the source files into an intermediate file which is then compiled.

#line 500 "MyFile"
#error MyError // MyError on line 500

Region directive

The last two directives are #region and #endregion. They delimit a section of code that
can be expanded or collapsed using the outlining feature of Visual Studio.

#region MyRegion
#endregion

Just as the conditional directives, regions can be nested any number of levels deep.
#region MyRegion
#region MySubRegion

#endregion
#endregion

89

CHAPTER 26

Delegates

A delegate is a type used to reference a method. This allows methods to be assigned to
variables and passed as arguments. The delegate’s declaration specifies the method
signature to which objects of the delegate type can refer. Delegates are by convention
named with each word initially capitalized followed by “Delegate” at the end of the name.

delegate void MyDelegate(string s);

A method that matches the delegate’s signature can be assigned to a delegate object
of this type.

class MyClass
{

static void Print(string t)

{
System.Console.Write(t);

}

static void Main()
{
MyDelegate d = Print;
}
}

This delegate object will behave as if it was the method itself, no matter whether it
refers to a static or an instance method. A method call on the object will be forwarded
by the delegate to the method, and any return value will be passed back through
the delegate.

MyDelegate d = Print;
d("Hello");

The syntax used above to instantiate the delegate is actually a simplified notation
that was introduced in C# 2.0. The backwards compatible way to instantiate a delegate is
to use the regular reference type initialization syntax.

MyDelegate d = new MyDelegate(Print);

91

CHAPTER 26 © DELEGATES

Anonymous methods

C# 2.0 also introduced anonymous methods, which can be assigned to delegate objects.
An anonymous method is specified by using the delegate keyword followed by a method
parameter list and body. This can simplify the delegate’s instantiation since a separate
method will not have to be defined in order to instantiate the delegate.

MyDelegate f = delegate(string t)

{
System.Console.Write(t);
};

Lambda expressions

C# 3.0 went one step further and introduced lambda expressions. They achieve the same
goal as anonymous methods, but with a more concise syntax. A lambda expression is
written as a parameter list followed by the lambda operator (=>) and an expression.

delegate int MyDelegate(int i);

static void Main()

{
// Anonymous method
del a = delegate(int x) { return x * x; };

// Lambda expression
del b = (int x) => x * x;

a(5); // 25
b(5); // 25

The lambda must match the signature of the delegate. Typically, the compiler
can determine the data type of the parameters from the context, so they do not need
to be specified. The parentheses may also be left out if the lambda has only one input
parameter.

del c = x => x * x;
If no input parameters are needed an empty set of parentheses must be specified.
delegate void MyEmptyDelegate();

/...
MyEmptyDelegate d = () => System.Console.Write("Hello");

92

CHAPTER 26 * DELEGATES

A lambda expression that only executes a single statement is called an expression
lambda. The expression of alambda can also be enclosed in curly brackets to allow it to
contain multiple statements. This form is called a statement lambda.

MyDelegate e = (int x) => {
inty = x * x;
return y;

};

Multicast delegates

Itis possible for a delegate object to refer to more than one method. Such an object is
known as a multicast delegate and the methods it refers to are contained in a so called
invocation list. To add another method to the delegate’s invocation list, either the
addition operator or the addition assignment operator can be used.

static void Hi() { System.Console.Write("Hi"); }
static void Bye() { System.Console.Write("Bye"); }
/...

MyDelegate d = Hi;

d = d + Hi;

d += Bye;

Similarly, to remove a method from the invocation list, the subtraction or subtraction
assignment operators are used.

d -= Hi;

When calling a multicast delegate object, all methods in its invocation list will be
invoked with the same arguments in the order that they were added to the list.

d(); // HiBye

If the delegate returns a value, only the value of the last invoked method will be
returned. Likewise, if the delegate has an out parameter, its final value will be the value
assigned by the last method.

Delegate signature

As mentioned before, a method can be assigned to a delegate object if it matches the
delegate’s signature. However, a method does not have to match the signature exactly.
A delegate object can also refer to a method that has a more derived return type than
that defined in the delegate, or that has parameter types that are ancestors of the
corresponding delegate’s parameter types.

93

CHAPTER 26 © DELEGATES

class Base {}
class Derived : Base {}

delegate Base MyDelegate(Derived d);

class MyClass
{

static Derived Dummy(Base o) { return new Derived(); }

static void Main()

{
MyDelegate d = Dummy;

}
}

Delegates as parameters

An important property of delegates is that they can be passed as method parameters. To
demonstrate the benefit of this, two simple classes will be defined. The first one is a data
storage class called PersonDB that has an array containing a couple of names. It also has a
method that takes a delegate object as its argument, and calls that delegate for each name
in the array.

delegate void ProcessPersonDelegate(string name);

class PersonDB

{

string[] list = { "John", "Sam", "Dave" };

public void Process(ProcessPersonDelegate f)

{
foreach (string s in list) f(s);
}
}

The second class is Client, which will use the storage class. It has a Main method
that creates an instance of PersonDB, and it calls that object’s Process method with a
method that is defined in the Client class.

class Client

{

static void Main()

{

PersonDB p = new PersonDB();
p.Process(PrintName);

}

94

CHAPTER 26 * DELEGATES

static void PrintName(string name)

{
System.Console.WritelLine(name);
}
}

The benefit of this approach is that it allows the implementation of the data storage
to be separated from the implementation of the data processing. The storage class only
handles the storage and has no knowledge of the processing that is done on the data.
This allows the storage class to be written in a more general way than if this class had to
implement all of the potential processing operations that a client may want to perform on
the data. With this solution, the client can simply plug its own processing code into the
existing storage class.

95

CHAPTER 27

Events

Events enable an object to notify other objects when something of interest occurs.
The object that raises the event is called the publisher and the objects that handle the
event are called subscribers.

Publisher

To demonstrate the use of events the publisher will be created first. This will be a class
that inherits from ArraylList, but this version will raise an event whenever an item is
added to the list. Before the event can be created a delegate is needed that will hold the
subscribers. This could be any kind of delegate, but the standard design pattern is to use
avoid delegate that accepts two parameters. The first parameter specifies the source
object of the event, and the second parameter is a type that either is or inherits from the
System.EventArgs class. This parameter usually contains the details of the event, but in
this example there is no need to pass any event data and so the base EventArgs class will
be used as the parameter’s type.

public delegate void
EventHandlerDelegate(object sender,
System.EventArgs e);

class Publisher : System.Collections.Arraylist
{
/] ...

}

Event keyword

With the delegate defined, the event can be created in the Publisher class using the
event keyword followed by the delegate and the name of the event. The event keyword
creates a special kind of delegate that can only be invoked from within the class where it
is declared. Its access level is public so that other classes are allowed to subscribe to this
event. The delegate that follows the event keyword is called the event delegate. The name
of the event is commonly a verb. In this case the event will be raised after the item has

97

CHAPTER 27 EVENTS

been added so the past-tense of the verb “Add” is used, which is “Added”. If a pre-event
was created instead, which is raised before the actual event, then the -ing form of the verb
would be used, in this case “Adding”

public event EventHandlerDelegate Added;

Alternatively, in place of this custom event delegate the predefined
System.EventHandler delegate could have been used. This delegate is identical to the
one defined previously, and is used in the .NET class libraries for creating events that
have no event data.

Event caller

To invoke the event an event caller can be created. The naming convention for this
method is to precede the event’s name with the word “On’, which in this case becomes
“OnAdded” The method has the protected access level to prevent it from being called
from an unrelated class, and it is marked as virtual to allow deriving classes to override it.
It takes the event arguments as its one parameter, which in this case is of the EventArgs
type. The method will only raise the event if it is not null, meaning only when the event
has any registered subscribers. To raise the event the this instance reference is passed
as the sender, and the EventArgs object is the object that was passed to the method.

protected virtual void OnAdded(System.EventArgs e)

if (Added !'= null) Added(this, e);
}

Raising events

Now that the class has an event and a method for calling it, the final step is to override
the ArrayList’s Add method to make it raise the event. In this overridden version of the
method the base class’s Add method is first called, and the result is stored. The event

is then raised with the OnAdded method, by passing to it the Empty field in the
System.EventArgs class, which represents an event with no data. Finally, the result is
returned to the caller.

public override int Add(object value)

{
int i = base.Add(value);

OnAdded(System.EventArgs.Empty);
return i;

}

98

CHAPTER 27 EVENTS

The complete publisher class now has the following appearance.

class Publisher : System.Collections.ArraylList

{
public delegate void

EventHandlerDelegate(object sender,
System.EventArgs e);

public event EventHandlerDelegate Added;

protected virtual void OnAdded(System.EventArgs e)

{
if (Added !'= null) Added(this, e);

}

public override int Add(object value)

{

int i = base.Add(value);
OnAdded(System.EventArgs.Empty);
return i;

}
}

Subscriber

To make use of the publisher class another class will be created that will subscribe to
the event.

class Subscriber

{
/..

}

Event handler

This class contains an event handler, which is a method that has the same signature as the
event delegate and is used to handle an event. The name of the handler is commonly
the same as the name of the event followed by the “EventHandler” suffix.

class Subscriber

public void AddedEventHandler(object sender,
System.EventArgs e)
{

System.Console.WritelLine("AddEvent occurred");

}
}

99

CHAPTER 27 EVENTS

Subscribing to events

The publisher and subscriber classes are now complete. To demonstrate their use, a Main
method is added where objects of the Publisher and Subscriber classes are created.

In order to register the handler in the Subscriber object to the event in the Publisher
object, the event handler is added to the event as if it was a delegate. Unlike a delegate,
however, the event may not be called directly from outside its containing class. Instead,
the event can only be raised by the Publisher class, which in this case occurs when an
item is added to that object.

class MyApp

static void Main()

{

Subscriber s = new Subscriber();
Publisher p = new Publisher();

p.Added += s.AddedEventHandler;
p.Add(10); // AddEvent occurred

100

CHAPTER 28

Generics

Generics refer to the use of type parameters, which provide a way to design code
templates that can operate with different data types. Specifically, it is possible to create
generic methods, classes, interfaces, delegates and events.

Generic methods

In the example below, there is a method that swaps two integer arguments.

static void Swap(ref int a, ref int b)

{
int temp = a;
a = b;
b = temp;

}

To make this into a generic method that can work with any data type, a type
parameter first needs to be added after the method’s name, enclosed between
angle-brackets. The naming convention for type parameters is that they should start with
a capital T, and then have each word that describes the parameter initially capitalized.
In cases such as this however, where a descriptive name would not add much value, it is
common to simply name the parameter with a capital T.

static void Swap<T>(ref int a, ref int b)

{
int temp = a;
a = b;
b = temp;

}

The type parameter can now be used as any other type inside the method, and so the
second thing that needs to be done to complete the generic method is to replace the data
type that will be made generic with the type parameter.

101

CHAPTER 28 * GENERICS

static void Swap<T>(ref T a, ref T b)

{
T temp = a;
a = b;
b = temp;
}

Calling generic methods

The generic method is now finished. To call it, the desired type argument needs to be
specified in angle-brackets before the method arguments.

inta=0, b =1;
Swap<int>(ref a, ref b);

In this case, the generic method may also be called as if it was a regular method,
without specifying the type argument. This is because the compiler can automatically
determine the type since the generic method’s parameters use the type parameter.
However, if this was not the case, or to use another type argument than the one the
compiler would select, the type argument would then need to be explicitly specified.

Swap(ref a, ref b);

Whenever a generic is called for the first time during run-time, a specialized version
of the generic will be instantiated that has every occurrence of the type parameter
substituted with the specified type argument. It is this generated method that will be
called and not the generic method itself. Calling the generic method again with the same
type argument will reuse this instantiated method.

Swap<int>(ref a, ref b); // create & call Swap<int>
Swap<int>(ref a, ref b); // call Swap<int>

When the generic method is called with a new type, another specialized method will
be instantiated.

long c =0, d = 1;
Swap<long>(ref c, ref d); // create & call Swap<long>

Generic type parameters

A generic can be defined to accept more than one type parameter just by adding more of
them between the angle brackets. Generic methods can also be overloaded based on the
number of type parameters that they define.

static void Dummy<T, U>() {}
static void Dummy<T>() {}

102

CHAPTER 28 © GENERICS

Default value

When using generics, one issue that may arise is how to assign a default value to a type
parameter since this value depends on the type. The solution is to use the default
keyword followed by the type parameter enclosed in parentheses. This expression will
return the default value no matter which type parameter is used.

static void Reset<T>(ref T a)
{

a = default(T);
}

Generic classes

Generic classes allow class members to use type parameters. They are defined in the
same way as generic methods, by adding a type parameter after the class name.

class Point<T>
{

public T x, y;
}

To instantiate an object from the generic class the standard notation is used, but
with the type argument specified after both class names. Note that in contrast to generic
methods, a generic class must always be instantiated with the type argument explicitly
specified.

Point<short> p = new Point<short>();

Generic class inheritance

Inheritance works slightly differently with generic classes. A generic class can first of all
inherit from a non-generic class, also called a concrete class. Second, it can inherit from
another generic class that has its type argument specified, a so called closed constructed
base class. Finally, it can inherit from an open constructed base class, which is a generic
class that has its type argument left unspecified.

class BaseConcrete {}
class BaseGeneric<T>{}

class Geni<T> : BaseConcrete {} // concrete

class Gen2<T> : BaseGeneric<int>{} // closed constructed
class Gen3<T> : BaseGeneric<T> {} // open constructed

103

CHAPTER 28 * GENERICS

A generic class that inherits from an open constructed base class must define all of
the base class’s type arguments, even if the derived generic class does not need them.
This is because only the child class’s type arguments can be sent along when the child
class is instantiated.

class BaseMultiple<T, U, V> {}
class Gen4<T, U> : BaseMultiple<T, U, int> {}

This also means that a non-generic class can only inherit from a closed constructed
base class, and not from an open one, because a non-generic class cannot specify any
type arguments when it is instantiated.

class Conl : BaseGeneric<int> {} // ok
class Con2 : BaseGeneric<T> {} // error

Generic interfaces

Interfaces that are declared with type parameters become generic interfaces. Generic
interfaces have the same two purposes as regular interfaces. They are either created

to expose members of a class that will be used by other classes, or to force a class to
implement a specific functionality. When a generic interface is implemented, the type
argument must be specified. The generic interface can be implemented by both generic
and non-generic classes.

// Generic functionality interface
interface IGenericCollection<T>

void store(T t);

}

// Non-generic class implementing generic interface
class Box : IGenericCollection<int>
{

public int myBox;

public void store(int i) { myBox = i; }

}

// Generic class implementing generic interface
class GenericBox<T> : IGenericCollection<T>

{

public T myBox;

public void store(T t) { myBox = t; }
}

104

CHAPTER 28 © GENERICS

Generic delegates

A delegate can be defined with type parameters. As an example, the generic delegate
below uses its type parameter to specify the referable method’s parameter. From this
delegate type a delegate object can be created that can refer to any void method that takes
a single argument, regardless of its type.

class MyClass

{
public delegate void MyDelegate<T>(T arg);
public void Print(string s)
{
System.Console.Write(s);
}
static void Main()
{
MyDelegate<string> d = Print;
}
}

Generic events

Generic delegates can be used to define generic events. For example, instead of using the
typical design pattern where the sender of the event is of the Object type, a type parameter
can allow the senders actual type to be specified. This will make the argument strongly-typed,
which allows the compiler to enforce that the correct type is used for that argument.

delegate void MyDelegate<T, U>(T sender, U eventArgs);
event MyDelegate<MyClass, System.EventArgs> myEvent;

Generics and Object

In general, using the Object type as a universal container should be avoided. The reason
why Object containers, such as the Arraylist, exist in the .NET class library is because
generics were not introduced until C# 2.0. When compared with the Object type, generics
not only ensure type safety at compile-time, but they also remove the performance
overhead associated with boxing and unboxing value types into an Object container.

// Object container class
class MyBox { public object o; }

// Generic container class
class MyBox<T> { public T o; }

105

CHAPTER 28 * GENERICS

class MyClass
{

static void Main()

{

// .NET object container
System.Collections.ArraylList a;

// .NET generic container (preferred)
System.Collections.Generic.List<int> b;

Constraints

When defining a generic class or method, compile-time enforced restrictions can be
applied on the kinds of type arguments that may be used when the class or method is
instantiated. These restrictions are called constraints and are specified using the where
keyword. All in all there are six kinds of constraints.

First, the type parameter can be restricted to value types by using the struct keyword.

class C<T> where T : struct {} // value type
Second, the parameter can be constrained to reference types by using the class keyword.
class D<T> where T : class {} // reference type

Third, the constraint can be a class name. This will restrict the type to either that
class or one of its derived classes.

class B {}
class E<T> where T : B {} // be/derive from base class

Fourth, the type can be constrained to either be or derive from another type parameter.
class F<T, U> where T : U {} // be/derive from U

The fifth constraint is to specify an interface. This will restrict the type parameter to
only those types that implement the specified interface, or that is of the interface type itself.

interface I {}
class G<T> where T : I {} // be/implement interface

Finally, the type argument can be constrained to only those types that have a public
parameterless constructor.

class H<T> where T : new() {} // no parameter constructor

106

CHAPTER 28 © GENERICS

Multiple constraints

Multiple constraints can be applied to a type parameter by specifying them in a comma
separated list. Furthermore, to constrain more than one type parameter additional where
clauses can be added. Note that if either the class or the struct constraint is used it must
appear first in the list. Moreover, if the parameterless constructor constraint is used it
must be the last one in the list.

class T, U>
where T : class, I
where U : I, new() {}

Why to use constraints

Aside from restricting the use of a generic method or class to only certain parameter
types, another reason for applying constraints is to increase the number of allowed
operations and method calls supported by the constraining type. An unconstrained type
may only use the System.0Object methods. However, by applying a base class constraint,
the accessible members of that base class also become available.

class Person

{

public string name;

}

class PersonNameBox<T> where T : Person

{

public string box;

public void StorePersonName(T a)

{

box = a.name;

}
}

Another example below uses the parameterless constructor constraint. This
constraint enables new objects of the type parameter to be instantiated.

class MyClass<T> where T : new() {}
Note that if a class has a constraint on its type parameter, and a child of that class
has a type parameter which is constrained by the base class, that constraint must also be

applied to the child class’s type parameter.

class MyChild<T> : MyClass<T>
where T : MyClass<T>, new() {}

107

CHAPTER 29

Struct

The struct keyword in C# is used to create value types. A struct is similar to a class in that
it represents a structure with mainly field and method members. However, a struct is a
value type, whereas a class is a reference type. Therefore, a struct variable directly stores
the data of the struct, while a class variable only stores a reference to an object allocated
in the memory.

Struct variable

Structs share most of the same syntax as classes. For example, the struct below is named
Point and consists of two public fields.

struct Point

{
public int x, y;

}

Given the above struct definition, a variable of the Point type can be initialized in the
familiar way using the new operator.

Point p = new Point();

When creating a struct variable in this way the default constructor will be called,
which sets the fields to their default value. Unlike classes, structs can also be instantiated
without using the new operator. The fields will then remain unassigned. However, similar
to when attempting to use a local uninitialized variable, the compiler will not allow the
fields to be read until they have been initialized.

Point g;
int y = q.x; // compile-time error

109

CHAPTER 29 STRUCT

Struct constructors

Structs can contain the same members that classes can, except that they cannot
contain destructors or parameterless constructors. The parameterless constructor is
automatically provided and may not be user-defined. However, a struct may declare
constructors that have parameters. The compiler will then enforce that all struct fields
are assigned in the constructors, so as to avoid problems associated with unassigned
variables.

struct Point
{
public int x, y;
public Point(int x, int y)
{
this.x
this.y

X5

Ys

}
}

Given the above definition, the following statements will both create a Point with the
fields initialized to zero.

Point p1 = new Point();
Point p2 = new Point(0, 0);

Struct field initializers

Fields within a struct cannot be given initial values, unless they are declared as const
or static.

struct Point

{
public int x = 1, y = 1; // compile-time error
public static int A = 5; // allowed
public const int B = 10; // allowed

}

Struct inheritance

Structs cannot inherit from another struct or class, and they cannot be a base class.
This also means that struct members cannot be declared as protected or protected
internal, and that struct methods cannot be marked as virtual. Structs implicitly
inherit from System.ValueType, which in turn inherits from System.0Object. Although
structs do not support user-defined inheritance, they can implement interfaces in the
same way as classes.

110

CHAPTER 29 © STRUCT

Struct guideline

The struct type is typically used to represent lightweight classes that encapsulate small
groups of related variables. The primary reason for using a struct instead of a class is to
get value type semantics. For example, the simple types are in fact all struct types. For
these types it is more natural that assignment copies the value rather than the reference.
Structs can also be useful for performance reasons. A struct is more efficient than
a class in terms of memory. It not only takes up less memory than a class, but it also
does not need memory to be allocated for it as required by reference type objects.
Furthermore, a class requires two memory spaces, one for the variable and one for the
object, whereas a struct only needs one. This can make a significant difference for a
program that operates on a great number of data structures. Bear in mind that assignment
and value parameter passing are typically more expensive with structs than with
reference types, because the entire struct needs to be copied for such operations.

111

CHAPTER 30

Asynchronous methods W,

An asynchronous method is a method that can return before it has finished executing.
Any method that performs a potentially long running task, such as accessing a web
resource or reading a file, can be made asynchronous to improve the responsiveness of
the program. This is especially important in graphical applications, because any method
that takes a long time to execute on the user interface thread will cause the program to be
unresponsive while waiting for that method to complete.

Async and await

Introduced in C# 5.0, the async and await keywords allow asynchronous methods to
be written with a simple structure that is similar to synchronous (regular) methods.
The async modifier specifies that the method is asynchronous and that it can therefore
contain one or more await expressions. An await expression consists of the await
keyword followed by an awaitable method call.

async void MyAsync()

System.Console.Write("A");
await System.Threading.Tasks.Task.Delay(2000);
System.Console.Write("C");

}

The method above will run synchronously until the await expression is reached, at
which point the method is suspended and execution returns to the caller. The awaited
task is scheduled to run in the background on the same thread. In this case the task is
a timed delay that will complete after 2000 milliseconds. Once the task is complete the
remainder of the async method will execute.

Calling the async method from Main will output “AB” followed by “C” after the delay.
Note the use of the ReadKey method here to prevent the console program from exiting
before the async method has finished.

113

CHAPTER 30 © ASYNCHRONOUS METHODS

static void Main()

{

new MyApp().MyAsync();
System.Console.Write("B");
System.Console.ReadKey();

}

Async return types

An async method can have one of three built-in return types: Task<T>, Task, and void.
Specifying Task or void denotes that the method does not return a value, whereas
Task<T> means it will return a value of type T. In contrast to void, the Task and Task<T>
types are awaitable, so a caller can use the await keyword to suspend itself until after the
task has finished. The void type is mainly used to define async event handlers, as event
handlers require a void return type.

Custom async methods

In order to call a method asynchronously it has to be wrapped in another method that
returns a started task. To illustrate, the following method defines, starts and returns a task
which takes 2000 milliseconds to execute before it returns the letter “Y”. The task is here
defined through the use of a lambda expression for conciseness.

using System.Threading.Tasks;
using System.Threading;
/] ...
Task<string> MyTask()
{
return Task.Run<string>(() => {
Thread.Sleep(2000);
return "Y";
b;
}

This task method can be called asynchronously from an async method. The naming
convention for these methods is to append “Async” to the method name. The asynchronous
method in this example awaits the result of the task and then prints it.

async void MyTaskAsync()

{
string result = await MyTask();

System.Console.Write(result);

}

114

CHAPTER 30 © ASYNCHRONOUS METHODS

The async method is called in the same way as a regular method, as can be seen in
the following Main method. The output of the program will be “XY".

static void Main()

{
new MyApp().MyTaskAsync();
System.Console.Write("X");
System.Console.ReadKey();

}

115

Index

A

abstract, 65

access levels, 45

accessor, 53

anonymous methods, 92
arrays, 17

as, 38

assembly, 46

assignment operator (=), 9
async, 113

asynchronous methods, 113
await, 113

base, 43
bool, 8
boxing, 39
break, 22
byte, 7

C

catch, 75
char, 8
class, 29
class member, 49
code block, 2
comma operator (,), 6, 22
comments, 4
compile, 3
concatenation

operator (+), 13
conditionals, 19
const, 85
constraints, 106
constructor, 30

continue, 22
curly brackets ({}), 2
custom conversions, 83

D

data types, 5

decimal, 7

declare, 6

decrement operator (--), 10
default, 103

default constructor, 32
default values, 35
define, 6

#define, 88

delegate, 91
destructor, 34

dot operator (.), 2, 23
double, 7

do-while, 21
downcast, 38

E

#elif, 88

#else, 88

enclosing class, 45
#endif, 88
#endregion, 89
enum, 73

#error, 89

escape characters, 13
event, 97

event handler, 99
exception handling, 75
explicit, 84

explicit cast, 7
extension method, 51

117

INDEX

F

false, 10

field, 29

field initializer, 32
finally, 76

float, 7

for, 21

foreach, 22

G

garbage collector, 34
generics, 101
goto, 20

H

hello world, 1

IDE, 1

if, 19

#if, 88

implicit, 83
increment operator (++), 10
indexers, 57
inheritance, 37
initialize, 6

inner class, 47
instance, 29
instance member, 49
instantiate, 30

int, 6

interface, 61
internal, 46
invocation list, 93
invoke, 23

is, 38

iteration, 21

J, K

jagged array, 18

L

lambda expressions, 92
lambda operator (=>), 92
#line, 89

118

logical and (&&), 11
logical not (1), 11
logical or (]|), 11
long, 6

loops, 21

Main method, 2

Method(s), 23

Method overloading, 25
modulus operator (%), 9
Multicast delegate, 93
Multi-dimensional array, 18

N

Named argument, 25
Namespace, 69

new, 23, 26, 29, 41
null, 34

Nullable types, 35

null-coalescing operator (??), 35

(0

Object, 27, 29, 37

Object initializer, 33
Operator(s), 9, 79
Operator overloading, 79
Optional parameter, 25
out, 28

override, 42

PQ

params, 24

partial, 33
Preprocessor, 87
private, 45
Properties, 53
protected, 46
protected internal, 46
public, 47

Publisher, 97

R

readonly, 86
Rectangular array, 18
Redefine, 41

ref, 27

Reference type, 26
#region, 89
return, 26

S

sbyte, 6

scope, 8
sealed, 42
semicolon (;), 2
short, 6
signature, 41
Simple types, 5
static, 49
String, 13
StringBuilder, 15
struct, 109
Subscriber, 99
switch, 20

T

ternary operator (?:), 20
this, 31-32

throw, 78

Top-level member, 47
ToString, 37

INDEX

true, 10
try, 75

U

uint, 7
ulong, 7
unboxing, 39
#undef, 88
upcast, 38
ushort, 7
using, 70, 77

\'

value, 53

value type, 26
variable, 5
verbatim string, 14
virtual, 42

void, 23

W XY,Z
#warning, 89
where, 106
while, 21
WriteLine, 2

119

C# Quick Syntax
Reference

Mikael Olsson

Apress’

C# Quick Syntax Reference
Copyright © 2013 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6280-0
ISBN-13 (electronic): 978-1-4302-6281-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Technical Reviewer: Michael Thomas

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, Or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

Contents

About the AUthOrccoviiimmmmmmnsssrss s XV
About the Technical REVIEWETuccusssssnssssansssssnsssssnsssssnsssssnnssss Xvii
Introduction ... ——————— Xix
Chapter 1: Hello World..........cccinnnemmmmmnsssssnmmssssssssmsssssssssssssssssnssssnns 1
ChooSiNg AN IDEcooeveverereeree e ses s s s sas e sassnssnssnssnssessnssnns 1
Creating @ ProjEct....... e 1
g (o100 o 2
INEEIIISENSE......ceeereeerece e 2
Chapter 2: Compile and RuN..........cccininmmmnmmnsssssnmmmssssssssssssssssnssssnns 3
Visual Studio compilation...........ccoeevernsniennieser e 3
Console compilation..........ccceeeeereeeresese e sne e 3
COMMENTS ... 4
Chapter 3: Variablescccuemmmmnsssmmnmmnsssssnmmsssssnmmssssssmsssssssssnsssnnns 5
Data tYPLS .. ——————— 5
Declaration ... ———————— 6
ASSIGNMENT ... e 6
INTEYET TYPES ...eeerceecer e e 6
Floating-point tyPescccceeerererereree e sns e e snnenns 7
(0T T 1 o1 SRS 8
BOOITYPE ... s 8
Variable SCOPE.....cccoe e 8

vi

CONTENTS

Chapter 4: Operatorscccueenmmmssssnnmmssssssnmmsssssssssssssssssesssssssnsssssnns 9
Arithmetic OPEratorsccocvevererrrr s 9
Assignment OPEratorscocceeeeeererese s 9
Combined assignment 0Peratorsccovveenserenessesnsesessssessssesessssens 9
Increment and decrement operators...........cccccvvrrrrir e, 10
Comparison OPErators........c.ccocceeeerereresessese e sse e e e e ssesaessessessenns 10
Logical OPErators.........ceceeerereresrersesse e sae s sne s snssaesse s s 11
BitwiSe OPeratorscocciernersnnesn s 11
Operator precedentsccoceviernnincsnseses s 11
Chapter 5: Sringccccinnnemmmmmnsssnnmmnsssnsss - 13
String concatenation ... ———— 13
ESCAPE CharacClers.........cccvvcerrieerrerrer e s s e s ses s s e sn e ssse s e e ssnessneenns 13
StriNG COMPATE.....coeerrcrercre e r e s 14
Sring MEMDEIS......ooe e ———— 14
StriNGBUIIAET ClASSccveeecerrierir et n e 15
Chapter 6: Arraysccccruusssssmmmssssssnmmsssssssmsssssssssssssssssssssssnnnssssnns 17
Array declaration.........cccoeeerererenere e 17
Array alloCALIONcoeeeeerererere e e sn e nn e nnenan 17
Array asSignmeNtcccoceeerererere e 17
AITAY ACCESS....eeierrrerirrsesserssesssessessse st sssessesssessesssesesssessssssssssessssssessesns 18
Rectangular arrays.........ccocuevrersmnsssssssssssssssssssesssssss s ssssssssssssssssssssssssnes 18
B 1oL LT I Ty | SRS 18
Chapter 7: Conditionalsccccccrvssmmrmssanmmsssnsssssnsssssssesssssssssnsssssnns 19
If statement ... —————— 19
Switch statement ... ——— 20

CONTENTS

Goto Statement..........ccc v —————— 20
Ternary OPErator.........cccveerrersersersersesse s seenas 20
Chapter 8: LOOPS.....cuuuseemmmmsssnsnmmssssnsnssssssnnnssssssnsnssssssnsnsssssnnnnssssnnns 21
L L LTIN[0 o SRS 21
DO-WHIlE 100D ...ceeciree e 21
0] g (0T oSSR 21
FOreach lI00D.......ccccrierirre e ne 22
Break and CONtINUE ... 22
Chapter 9: Methodsccuseemmmnsssennmmsssssnnmmsssssssmssssssssssssssssnsssssans 23
Defining MEthodScccvereerrerrrrerer s 23
Calling Methodscccceeeeeererece e 23
Method parameters........cc e n e e 24
Params KEYWOIdcccvvrrernmnnessensessessessss s s s s e s e s e s snssnssssssnnes 24
Method overloading........c.ccocvcrrercersersrser s 25
Optional PAramMEters.......cccevverreeriirree s s e s n e sneeae s 25
Named arguments.........cccvererrernensn s s 25
Return statement ... 26
Value and reference tyPes.......covererrrrrsrensessss s sas s e sasens 26
PasS DY VAIUEccocrcercircirerer s 27
Pass by referenCe.........coouvreniiernsnnesssr e 27
LT G AT (o S 27
QUL KEBYWOId ...ttt 28
Chapter 10: Classuuvseeeeesmmmmsmmmsssssssssmsmsssssssnssssssssssssssssnnnssssnsnss 29
ODbject Creation.........cccceeececere e s 29
Accessing 0bject MEMDENS........ccoceveenieiesnerr e 29
(00 Y 1T (0] 30

vii

CONTENTS

THiS KEYWOIcceeerererer st sn s sn s 31
Constructor overloadingccoveeerseresessesssssssessssessssssessssesssssssessssesns 31
(7010 553 (1T (0] g0 1 P 11 1 oS 32
Initial field ValUES ..ot 32
Default CONSIIUCTON.......ccc vt 32
Object iNItiAliZers.......cccveeerererre e 33
Partial ClIass.........ccounrernnircrrer s 33
Garbage COIIECIONcccvereereerere e sa e sn s 34
DESITUCTON ... s 34
NUIKEYWOId ...ttt 34
NUIIADIE tYPES......eecerectr et 35
Null-coalescing OpPerator............cccuereerressessessessssssssessss s ses s ssssssssssssnes 35
Default valUes..........ccvceiircnrere s 35
Chapter 11: Inheritance.......cccrrnsssennmmssssnnnssssssssnssssssssnsssssssnssssssnns 37
ODJECL ClaSS.....eeeeeeeeeeeerre e n s 37
Downcast and UPCAST.........cceverrerrrirrierrrr e ssesrrse s e e sseessseesseessnessneenns 38
IS KEYWOI ...t nesr e sne s n e nesn e sn e sn s sn e sn e sn e nn e nnenna s 38
LAl (A0 o 38
210 (1o S 39
UNDOXING ..o ce e sse s sse s snesnesne s snesnesnssnesnesnesnensssnanes 39
Chapter 12: Redefining Members..........cccinnmmmmnmnssssnsnnsssssnsssssssnns 41
Hiding MEMDEIS.....ccecceeeeceeecere e sn e 41
Overriding MembErs..........cceeviiernnncr s 42
Hiding and oVerridingc.cccocvverirveninse s s 42
Sealed KEYWOI.........ccceeeeceecercrecee s ss s sn s sn s snssn e nenns 42
5T TN (= AT] o 43

viii

CONTENTS

Chapter 13: Access LeVels.......ccuummmmmmmsnmmmmmmssssnnmmssssssnmsssssssssssssans 45
Privale @CCESSveerereereree e 45
Protected @CCESS.......coiererirrirerere e 46
INTEINAI ACCESS......eeieeeereereerrerie e 46
Protected internal @CCess..........ccvrirereriennnnnsssss e 46
PUDBIIC @CCESScceiuerererieircrie i s 47
Top-level aCCeSS IBVEISccvceeverreerrree e 47
INNEK ClASSEScvieertreircre s 47
Access level guIideling..........cocoeeeeeceresere e 48
Chapter 14: Static.......cccivnnmmmmmnnennnmnnsssnnssss s ——— 49
Accessing static MEMDErS..........cccceeeererere s 49
Static MEthods ... 50
B3] 2 L Te 1] 0 T 50
STALIC ClASSEScouererrreisi e s 50
Static CONSIIUCTONceeercerc s 51
Extension Methods.........ccovcrrcnnnnsnne e 51
Chapter 15: Propertiesccccummmmmsmsmmmmmmmmmmmssssssssnssssssssssssssssnnns 53
Auto-implemented Propertiesc.ccoeeeeeeeresesessssssses s see s seenas 54
Property advantagesccccoceeererreresessese e sse e sss s sss s s s snenes 54
Read-only and write-only properties.......cccoeevevererressessessessessessessessennns 55
Property acCess [VEISccvcvercerserserser s 56
Chapter 16: INUEXErsceeurrrrmmmmmssnssssnsmmmssssssssnsssssssssssssssssnnssssnsnss 57
Indexer PArametersccererererere e 58
Indexer OVerloading.........cccceeeerererererre e n s 58

ix

CONTENTS

Chapter 17: Interface.......ccucccmmmmsssmmmmmssssnnnmmsssssnnmnssssssnssssssssnsssssans 61
Interface SIgNAtUIeScccvevere v 61
Interface eXamplecccoeeeeerecere e ——— 62
Functionality interface..........c.cccvverrrrennniesnsessssess s 62
(0 R) T g T 63
Chapter 18: Abstractcccinninemmmnnnsennmmnsssnmmssssnmssssm——. 65
ADStract MEMDENS.........cciircirr 65
ADSTract BXAMPIEcoveeeeeeecreceree e r e 66
Abstract classes and interfaces..........coouuvervsernsessesnsesesessessssessessssens 67
Chapter 19: NameSPACEeS....ucuerrrssssnnsssssssnnnssssssnnnssssssnnnssssssnnnssssnnns 69
Nested NAMESPACES.........cceevirreerirrrerr s s s sr s s neenessnesneans 69
NAMESPACE ACCESSeevuererrerreererssesesssesesssessesssessesssessesssessesssssssesaesns 70
IR T 1 LT =T (TS 70
Chapter 20: ENUMccccurinisseenmmsssssssmmssssssssssssssssssssssssssessssssnsssssnns 73
ENUM eXample.......ocvcrcrcrcrr i 73
Enum constant values ... 73
Enum constant type ... 74
Enum access Ievels and SCOPEccvvvrrrersessensesses s s sss e e 74
Enum methods ... 74
Chapter 21: Exception Handlingcccccevnnssssssmsssmnnmsssssssssssssnsnnns 75
Try-catch statement ... —— 75
(071 (0 1 010 T 76
FiN@llY DIOCKeeererertrtrtr ettt 76
Using statement ... 77

Throwing XCePLioNScccveerrersersesses s sessss s s e s ses s s sr s e sns s e snssnnnas 78

CONTENTS

Chapter 22: Operator Overloading..........ccccvssssmnnmsssssnnnsssssannnssssnnns 79
Operator overloading eXampleccocevererernreereeresser e seenes 79
Binary operator overloading...........ccoeeeereresresessesesse e 79
Unary operator overloading.........ccocueeverensernsmssessssesssssssessssesssssssessssesns 80
Return types and parameters...........cccvvervrrninnnsen e 80
Overloadable Operators.........cccoeceeerererese s 81
True and false operator overloading.........cccuovreeerserresessessssesessssessessnsens 81
Chapter 23: Custom CONVErsionsccueesmmusssssnmsssssssnsssssssnnsssssnns 83
Implicit conversion Methods ..o 83
Explicit conversion methods ... 84
Chapter 24: Constants........ccccnmmmmmemmmnmnmmmmmmssssssssnnsmssssssssss 85
Local constants ... 85
Constant fields ... 85
Readonly KEYWOId............cceeireeeerirneecerse s s ses e sses e se s s sessnessnesnens 86
Constant guIdelingccocvcceeerierrrenesre s 86
Chapter 25: PreproCeSSOr......cuuuussssssssmsmsssssssssnsssssssssssssssnnnnsssssnss 87
Preprocessor direCtive SYNtaX..........ccveeeensersessensessesssssssssssssssssssssnsennns 87
Conditional compilation — #if and #endif............ccceoveeeeererecececrenene 88
Defining SYMDBOIS........ccccvvrrrrirr e 88
Undefining SYMDOIS........cooeeeeercrere e snesne s 88
Conditional compilation — #elif and #elseccccceeevererececereseecnene 88
Diagnostic direCliVeS........ccuvvvrrercrrr s 89
Line dirCtiVe......covcereirerrire e 89
Region dir€CHIVEcccecereercrrcirrr e 89

xi

CONTENTS

Chapter 26: Delegatescccusesmsssmsmsssnsssssnsssssssssssnsssssnsssssnnssssanss 91
Anonymous mMethods.........ccvvrercrnrncr 92
Lambda eXPreSSioNnscccceeeererrersessessessessessessessessssssssssssssssssssssssssenes 92
Multicast delegates........ccceverererrrc s 93
Delegate Signature ... 93
Delegates as Parameterscccovcercnernernnesnesesse s 94
Chapter 27: EVeNtSccccvnsemmnmssssssnmmssssssnmsssssssssssssssssssssssssssssssnns 97
PUBIISNEN ...ttt 97
EVENt KEYWOId........oeeeeec e 97
Event Caller ... 98
RaiSING BVENTS......c.eceeeeeeee e s 98
SUDSCIIDEN ... 99
Event RandIer ... 99
Subscribing 10 BVENTS.........coccierirr 100
Chapter 28: GENEIICS ...uurusmsrsssnsrsssnsssssnsssssnsssssnsssssnnssssnnssssnnssssns 101
Generic MEhOAS ... 101
Calling generic Methods...........ccceverererrrcns s 102
Generic type parameters.........ovvcvceeeerereresnssssssesese s eesens 102
Default ValUEcccerireirerinr s 103
GENEIIC ClASSESecuceereeueerreereresee s e sasnnnens 103
Generic Class iNNErtaANCe...........ccceereereresere e 103
GENEriC INtEIfACES ..ot 104
GeneriC delegatesocveverererecrr e ————— 105
GENENIC BVENTScvecereccerreese s san e 105
Generics and ODJECToccevcrrerrrerrsr e 105

xii

CONTENTS

CONSErAINES ... ——————— 106
Multiple CONSraintS.........cocevererercrere e 107
Why 10 use constraints.........ccccecrverirrnsn s 107
Chapter 29: Structccccviieemmmninnnes s ———————— 109
StruCt variable...........cccorecnrrerr s 109
SruCt CONSTIUCTONS......eceiccrrcr s 110
Struct field iNtialiZerscocovreerrererrsere s 110
STruCt INNErtaNCe.......ccov e s 110
Struct UIdEIINE......ceeeceeee s 111
Chapter 30: Asynchronous methodscccusemmmssnnsssssnssssansssnns 113
ASyNnC and aWalil..........ccceeeeereierere e 113
ASYNC return tYPEeScocevceecirrrr e 114
Custom async Methods........cccccveerernsnesnscse e 114
INA@X.uueeiiiemsniensnisen s s ———— 117

xiii

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and author. He works
for an R&D company in Finland where he specializes in software development. In

his spare time he writes books and creates websites that summarize various fields of
interest. The books he writes are focused on teaching their subject in the most efficient
way possible, by explaining only what is relevant and practical without any unnecessary
repetition or theory.

XV

About the Technical
Reviewer

Michael Thomas has worked in software development for over 20 years as an individual
contributor, team lead, program manager, and Vice President of Engineering. Michael has
over 10 years experience working with mobile devices. His current focus is in the medical
sector using mobile devices to accelerate information transfer between patients and
health care providers.

xvii

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Choosing an IDE
	Creating a project
	Hello World
	IntelliSense

	Chapter 2: Compile and Run
	Visual Studio compilation
	Console compilation
	Comments

	Chapter 3: Variables
	Data types
	Declaration
	Assignment
	Integer types
	Floating-point types
	Char type
	Bool type
	Variable scope

	Chapter 4: Operators
	Arithmetic operators
	Assignment operators
	Combined assignment operators
	Increment and decrement operators
	Comparison operators
	Logical operators
	Bitwise operators
	Operator precedents

	Chapter 5: String
	String concatenation
	Escape characters
	String compare
	String members
	StringBuilder class

	Chapter 6: Arrays
	Array declaration
	Array allocation
	Array assignment
	Array access
	Rectangular arrays
	Jagged arrays

	Chapter 7: Conditionals
	If statement
	Switch statement
	Goto statement
	Ternary operator

	Chapter 8: Loops
	While loop
	Do-while loop
	For loop
	Foreach loop
	Break and continue

	Chapter 9: Methods
	Defining methods
	Calling methods
	Method parameters
	Params keyword
	Method overloading
	Optional parameters
	Named arguments
	Return statement
	Value and reference types
	Pass by value
	Pass by reference
	Ref keyword
	Out keyword

	Chapter 10: Class
	Object creation
	Accessing object members
	Constructor
	This keyword
	Constructor overloading
	Constructor chaining
	Initial field values
	Default constructor
	Object initializers
	Partial class
	Garbage collector
	Destructor
	Null keyword
	Nullable types
	Null-coalescing operator
	Default values

	Chapter 11: Inheritance
	Object class
	Downcast and upcast
	Is keyword
	As keyword
	Boxing
	Unboxing

	Chapter 12: Redefining Members
	Hiding members
	Overriding members
	Hiding and overriding
	Sealed keyword
	Base keyword

	Chapter 13: Access Levels
	Private access
	Protected access
	Internal access
	Protected internal access
	Public access
	Top-level access levels
	Inner classes
	Access level guideline

	Chapter 14: Static
	Accessing static members
	Static methods
	Static fields
	Static classes
	Static constructor
	Extension methods

	Chapter 15: Properties
	Auto-implemented properties
	Property advantages
	Read-only and write-only properties
	Property access levels

	Chapter 16: Indexers
	Indexer parameters
	Indexer overloading

	Chapter 17: Interface
	Interface signatures
	Interface example
	Functionality interface
	Class interface

	Chapter 18: Abstract
	Abstract members
	Abstract example
	Abstract classes and interfaces

	Chapter 19: Namespaces
	Nested namespaces
	Namespace access
	Using directive

	Chapter 20: Enum
	Enum example
	Enum constant values
	Enum constant type
	Enum access levels and scope
	Enum methods

	Chapter 21: Exception Handling
	Try-catch statement
	Catch block
	Finally block
	Using statement
	Throwing exceptions

	Chapter 22: Operator Overloading
	Operator overloading example
	Binary operator overloading
	Unary operator overloading
	Return types and parameters
	Overloadable operators
	True and false operator overloading

	Chapter 23: Custom Conversions
	Implicit conversion methods
	Explicit conversion methods

	Chapter 24: Constants
	Local constants
	Constant fields
	Readonly keyword
	Constant guideline

	Chapter 25: Preprocessor
	Preprocessor directive syntax
	Conditional compilation – #if and #endif
	Defining symbols
	Undefining symbols
	Conditional compilation – #elif and #else
	Diagnostic directives
	Line directive
	Region directive

	Chapter 26: Delegates
	Anonymous methods
	Lambda expressions
	Multicast delegates
	Delegate signature
	Delegates as parameters

	Chapter 27: Events
	Publisher
	Event keyword
	Event caller
	Raising events
	Subscriber
	Event handler
	Subscribing to events

	Chapter 28: Generics
	Generic methods
	Calling generic methods
	Generic type parameters
	Default value
	Generic classes
	Generic class inheritance
	Generic interfaces
	Generic delegates
	Generic events
	Generics and Object
	Constraints
	Multiple constraints
	Why to use constraints

	Chapter 29: Struct
	Struct variable
	Struct constructors
	Struct field initializers
	Struct inheritance
	Struct guideline

	Chapter 30: Asynchronous methods
	Async and await
	Async return types
	Custom async methods

	Index

