
31

Chapter 4

Controls and Layout

Ext JS 4 provides a suite of UI controls that are used in applications. The UI controls include simple form controls like 
text boxes, buttons, layout containers like accordion, table, and so on. In this chapter we’ll discuss the UI controls and 
layout containers.

Just like OO UI frameworks such as Swing for Java and WinForms for .NET, EXT JS 4 provides a well-defined 
hierarchy of UI components starting with a base class that establishes a common set of properties and functionalities 
to all the components. Let’s start exploring the UI components in Ext JS 4 by looking at the Ext.Component class.

Ext.Component
The Ext.Component class serves as the base class for all the UI components in Ext JS 4. Ext.Component inherits the  
Ext.AbstractComponent class. It provides the common behavior and properties for all the UI components. The common 
functions include the basic creation, destruction, and rendering of the components. You can instantiate this class as 
shown below, though you’ll use it very rarely in the raw format.
 
Ext.create("Ext.Component", {
       html: "Raw Component",
       renderTo : Ext.getBody()
});
 

The above code displays a text Raw Component in the page. It generates the following HTML snippet.
 
<div id="component-1099 class="x-component x-component-default">Raw Component</div>
 

The Ext.Component generates a <div> tag with an automatically generated id and a default CSS class.  
You’ll learn about the CSS classes in Theming and Styling chapter.

All the components used in a page can be accessed through a singleton object Ext.ComponentManager. Ext.
ComponentManager serves as a registry of all the components. You can access all the components by using the all 
property as Ext.ComponentManager.all.

You can access the individual components based on their id by using the get method as Ext.ComponentManager.
get("id of the component"). We’ll discuss more about the id attribute later in this section.

It’s important to understand the common configuration attributes and methods of the Ext.Component class 
before you start working with the UI controls that are just derived classes of Ext.Component.



Chapter 4 ■ Controls and layout

32

Configuration attributes of Ext.Component
Ext.Component class provides a large number of configuration attributes. You can get the complete list of the 
attributes from http://docs.sencha.com/extjs/4.2.0/#!/api/Ext.Component.

Let’s discuss some of the configuration attributes of the Ext.Component class. These attributes are available to all 
the UI controls that you’ll use.

id
Every component has an automatically generated unique id assigned to it. You can use Ext.getCmp() method to access 
the component by specifying the id. You can assign your own id for the component as well.
 
Ext.create("Ext.Component",{
 id : "mycomp1"
});
 

You can use Ext.getCmp as shown below
 
Ext.getCmp("mycomp1");
 

It’s generally not recommended to define your own id, because as the application grows and you start adding 
components dynamically it may lead to duplication issues.

itemId
You can mark the component with an itemId instead of an id. The component that has itemId assigned to it can be 
accessed using that itemId through its parent component. Say, you have a Panel that has a component with an itemId. 
You can access the component using the itemId by invoking the method getComponent() on the Panel.
 
var panel1 = Ext.create("Ext.panel.Panel",{
 // ...
 items : [
 Ext.create("Ext.Component",{
 html : "Raw Component inside panel",
 itemId : "rawcomp1"
})
]
// ...
      });
 
panel1.getComponent("rawcomp1")
 

The itemId property is preferred to the id as you don’t have to worry about the complications that arise due to 
duplicate id.

http://docs.sencha.com/extjs/4.2.0/#!/api/Ext.Component


Chapter 4 ■ Controls and layout

33

autoEl
The autoEl attribute is used to specify a custom HTML element that will encapsulate the the component. This 
attribute is usually used when we create custom components. You’ll learn this in detail in Chapter 10. Here’s a 
component that generates a hyperlink element using autoEl attribute.
 
Ext.create("Ext.Component", {
       renderTo: Ext.getBody(),
       autoEl: {
          html: "Link",
          href: "#",
          tag: "a"
       }
});
 

The code snippet will generate the following HTML snippet.
 
<a class="x-component x-component-default" href="#" id="component-1009">Link</a> 

listeners
The listeners attribute is used to wire up the events with their handlers. listeners is a simple object that contains the 
list of all events along with their event handler functions.
 
listeners : {
         eventname1 : function(...) { ... },
         eventname2 : function(...){ ... },
   ...
} 

renderTo
The component is rendered to the specified HTML element. If a component is added to a container, it’s then the 
container’s job to render the components. You can use renderTo as shown below.
 
renderTo : Ext.getBody() //renders to the body element
renderTo : Ext.get("content") //renders to the HTML element with the id "content" 

hidden, disabled
The hidden and disabled attributes are used to specify visibility and whether the component is disabled or not, 
respectively. The default value for these attributes is false.

tpl, data
The components have a tpl property that’s used to configure the UI template for the Component. The data attribute 
supplies data to be applied to the template. You’ll learn about Templates in detail later in this chapter.

Let’s discuss some of the methods in Component class.



Chapter 4 ■ Controls and layout

34

Methods in Ext.Component
up
This method is used to navigate to the ancestors of the component that matches the expression passed as an 
argument. For example, if you have a component, say cmp1, calling cmp1.up("panel") walks up the container and 
returns the panel component that’s a parent or grandparent or any ancestor. This method returns the immediate 
parent if the argument is ignored.

enable, disable
These are two commonly used methods that are used to enable and disable the components. Here’s how you can use 
them on a component say comp1.
 
comp1.enable()
comp1.disable() 

show, hide
These are two commonly used methods that are used to show and hide the components. Here’s how you can use 
them on a component say comp1.
 
comp1.hide()
comp1.show() 

destroy
The destroy method destroys the component. It removes the reference to the element in the DOM tree.

on, un
The listeners attribute is used to statically register the events and handler functions. The on method is used to 
dynamically do that. The on method accepts the name of the event, the event handler function and the scope or 
context of the executing handler function as arguments.
 
comp1.on("eventName",function(){...},scope)
 
mycombobox1.on("change",function(){...},this)
 

In the code snippet above, you’ve registered the change event on the combobox object. The scope ‘this’ refers to 
the context object where the handler function gets executed. The scope is an optional parameter.

The un method is used to remove the event handler for the specified event.
 
comp1.un("eventName",function(){...},scope)
 

You have to specify the same event handler function and scope used in the on method.



Chapter 4 ■ Controls and layout

35

addEvents, fireEvent
The Component class provides methods addEvents and fireEvent for adding events and firing the event respectively. 
These two methods are mainly used when you create custom components with custom events. You can call addEvents 
on a component comp by writing comp.addEvents(‘eventname1’,’eventname2’ ...). You can invoke the fireEvent 
like comp.fireEvent(‘eventname’).

You’ll learn more about these functions in Chapter 10 when we discuss creating custom components.
Now let’s discuss the events in the Component class.

Events in Ext.Component
The Component class provides a number of lifecycle events. These are raised when the component is created, 
activated, rendered, destroyed, and so on. All these events can be handled by registering them using the listeners 
attribute or using the on method. Most of these lifecycle events are actually defined in the Ext.AbstractComponent 
class. Table 4-1 describes some of the events.

Table 4-1. Events in a Component

Event Description

Added Raised when the component is added to the container

Removed Raised when the component is removed from the container

beforerender Raised before rendering the component on to the HTML element

render Raised after the component is rendered to the HTML element

afterrender Raised after completion of the component rendering

beforedestroy Raised before calling destroying the component or before calling destroy method

destroy Raised after destroy or after calling the destroy method

beforeactivate Raised before a component is activated. This is mainly used in accordions and tab panels.

activate Raised after a component is activated

beforedeactivate Raised before a component is deactivated

deactivate Raised after a component is deactivated

beforeshow Raised before calling the show method on the component

show Raised after calling the show method on the component

beforehide Raised before calling the hide method on the component

hide Raised after calling the hide method on the component

Listing 4-1 shows the code snippet where you create a component and add to a Panel. The component has some 
of these events handled.



Chapter 4 ■ Controls and layout

36

Listing 4-1. Events in Component

var pnl = Ext.create("Ext.panel.Panel", {
         items: [
             Ext.create("Ext.Component", {
                 html: "Raw Component",
                 itemId : "rawcomp1",
                 listeners: {
                     activate: function () {
                         console.log("activate")
                     },
                     added: function () {
                         console.log("added")
                     },
                     afterrender: function () {
                                console.log("afterrender")
                     },
                     beforeactivate: function () {
                                console.log("beforeactivate")
                     },
                     beforedeactivate: function () {
                                console.log("beforedeactivate")
                     },
                     beforerender: function () {
                                console.log("beforerender")
                     },
                     beforeshow: function () {
                                console.log("beforeshow")
                     },
                     beforedestroy: function () {
                                console.log("beforedestroy")
                     },
                     destroy: function () {
                                console.log("destroy")
                            },
                     render: function () {
                                console.log("render")
                            },
 
                    show: function () {
                                console.log("show")
                    },
                    beforehide: function () {
                                console.log("beforehide")
                    },
                    hide: function () {
                                console.log("hide")
                   },
                    enable: function () {
                                console.log("enable")
                    },



Chapter 4 ■ Controls and layout

37

                    disable: function () {
                                console.log("disable")
                    },
                    removed: function () {
                                console.log("removed")
                   }
             }
          })
       ],
     renderTo: Ext.getBody()
            });
             
            console.log("******Calling disable")
            pnl.getComponent("rawcomp1").disable();
            console.log("******Calling enable")
            pnl.getComponent("rawcomp1").enable();
            console.log("******Calling hide")
            pnl.getComponent("rawcomp1").hide();
            console.log("******Calling show")
            pnl.getComponent("rawcomp1").show();
            console.log("******Calling destroy")
            pnl.getComponent("rawcomp1").destroy();
 

In Listing 4-1 we’ve registered the events using the listeners block. After rendering the component, we call 
methods like enable, disable, show, hide, or destroy to understand the event handling sequence. Here’s the output 
of this code. 

added
beforerender
render
afterrender
******Calling disable
disable
******Calling enable
enable
******Calling hide
beforehide
hide
******Calling show
beforeshow
show
******Calling destroy
beforedestroy
removed

destroy Another important aspect of the components in Ext JS 4 is xtype. Let’s take a look at xtype in detail.



Chapter 4 ■ Controls and layout

38

xtype
In Ext JS 4 every UI component class has an alias name or a short name known as ‘xtype.’ Using xtype in our code 
offers some advantages. Let’s discuss them by creating a Panel with a textbox and a button as shown below.
 
Ext.create("Ext.panel.Panel",{
  items : [
 Ext.create("Ext.form.field.Text",{
   fieldLabel : "Name"
 }),
 Ext.create("Ext.Button",{
   text : "Submit"
 })
 ]
});
 

Let’s move the creation of textbox and button out of the Panel as shown below.
 
var nameText = Ext.create("Ext.form.field.Text",{
     fieldLabel : "Name"
});
var submitButton = Ext.create("Ext.Button",{
     text : "Submit"
});
 

The Panel will refer to the nameText and submitButton variables in the items collection.
 
Ext.create("Ext.Panel",{
 items : [
  nameText,submitButton
 ]
});
 

We’ve stored the textbox and button objects in separate variables and reused them inside the Panel. There 
are some disadvantages to writing code in this fashion, although it is useful to segregate the container and the 
individual components.

Ext.create("Ext.form.field.Text") creates a text box and holds it in the DOM tree. It occupies memory even 
if we don’t render it on to the screen. Suppose we don’t add the nameText variable in the Panel, it would remain in the 
DOM tree occupying memory. In an application, we want to instantiate UI components only when required and not 
create them at will. At the same time we want the component creation code maintained separately.

Using the fully qualified class name like Ext.form.field.Text everywhere is a tedious task, particularly when we 
create custom components. It would be better if we can use the xtype of these UI components. Let’s rewrite the 
example as shown below.
 
var nameText = {
   xtype : "textfield",
   fieldLabel : "Name"
};
var submitButton = {
   xtype : "button",
   text : "Submit"
};



Chapter 4 ■ Controls and layout

39

Ext.create("Ext.panel.Panel",{
   renderTo : Ext.getBody(),
   items : [
     nameText,submitButton
   ]
});
 

The nameText and submitButton are plain JavaScript objects. They have an additional xtype property with values 
textfield and button, respectively. The actual text box and button objects are created when they get added to the Panel 
and rendered to the body. This not only makes the code simpler but also provides us the lazy instantiation facility, 
thereby improving the performance.

As we discussed earlier, Ext.Component is inherited by a number of classes. Table 4-2 shows the list of subclasses 
of Ext.Component.

Table 4-2. Subclasses of Ext.Component

Class Description

Ext.container.AbstractContainer Base class for the container controls

Ext.button.Button The button control

Ext.form.Label The standard label element

Ext.form.field.Base Base class for all the field components like textfield

Ext.draw.Component Represents the surface on which you can draw shapes

One of the important subclasses of Ext.Component is Ext.container.AbstractContainer. This class is inherited by 
Ext.container.Container that serves as the base class for all the container clases like the Panel. Let’s discuss the Ext.
container.Container class in detail.

Ext.container.Container
Ext.container.Container class is the base class for all the container-based components in Ext JS 4. It provides the common 
behavior and properties for all the UI containers. The common functions include the addition, udpation, and removal 
of the components. You can instantiate this class as shown below, though you’ll use it very rarely in the raw format.
 
Ext.create("Ext.container.Container", {
     html : "Raw Container",
     renderTo: Ext.getBody()
});
 

In the code snippet above, we’ve created an instance of Container class. This instance is empty as we’ve not added 
any components to it. The code displays a text Raw Container in the page. It generates the following HTML snippet.
 
<div id="container-1009" class="x-container x-container-default">Raw Container
<div id="container-1009-clearEl" class="x-clear" role="presentation"></div>
</div>
 

It’s necessary to understand the common configuration attributes and methods of the Container class before you 
start working with the UI controls that are just derived classes of Container.



Chapter 4 ■ Controls and layout

40

Configuration Attributes of Ext.container.Container
Let’s discuss some of the configuration attributes of the Container class.

items
The items attribute refers to the collection of components that you’ll add to the container. A Container class with a 
textbox and button component added to it using items is shown below.
 
Ext.create("Ext.container.Container",{
   items : [
            Ext.create("Ext.form.field.Text",{...}),
            Ext.create("Ext.button.Button",{...})
   ]
}); 

layout
This attribute is used to configure the layout for the container, so that the components may be arranged in a particular 
fashion. You’ll learn more about the layout later in this chapter.

defaults
The defaults attribute is used to specify a set of default properties for all the items in the container. It helps you 
avoid duplication of code. If you want all the items in the container to have a specific width and height, then you can 
configure that using defaults as shown below.
 
Ext.create("Ext.container.Container",{
        defaults : {
        width:100,height:150
        },
        items : [
            ...
        ]
}); 

Some Methods in Container class.Methods of Ext.container.Container
add
The add method is used to dynamically add components into the container. When the components are added 
dynamically using the add method the container rearranges itself automatically. You can pass component or an array 
of components as argument to the add method.
 
var container1 = Ext.create("Ext.container.Container",{
 ...
});
var item1 = Ext.create("Ext.Component",{...});
container1.add(item1); 



Chapter 4 ■ Controls and layout

41

doLayout
doLayout method triggers the container to recalculate the layout and refresh itself.

down
This method, similar to the up method in Component class, is used to navigate to the descendants of the container 
that matches the expression passed as an argument. For example if you have a container, say container1, that has a 
button calling container1.down("button") walks down the container and returns the button component that’s a 
child or grandchild or any descendant.

remove
The remove method is used to remove the components from the container. You can invoke remove method by passing 
the component or id of the component to be removed as argument.
 
var container1 = Ext.create("Ext.container.Container",{
 ...
});
var item1 = Ext.create("Ext.Component",{...});
container1.add(item1);
container1.remove(item1);
 

Let’s discuss some of the events in Container class.

Events of Ext.container.Container
Table 4-3 shows the events in the Container class.

Table 4-3. Events in Container class

Event Description

beforeadd Fired before adding an item to the container

Add Fired after an item is added

beforeremove Fired before removing an item from the container

remove Fired after removing an item from the container

Listing 4-2 shows the code snippet where you create a component and add to a Container. The Container has 
these events handled.



Chapter 4 ■ Controls and layout

42

Listing 4-2. Events in Container

var container = Ext.create("Ext.container.Container", {
   html: "Default Container",
   listeners: {
      beforeadd: function () {
        console.log("beforeadd");
      },
      add: function () {
        console.log("add");
      },
      beforeremove: function () {
        console.log("beforeremove");
      },
      remove: function () {
        console.log("remove");
      }
   }
});
 
console.log("***Adding comp1");
container.add({
   xtype: "component", html: "Raw",id:"comp1"
});
 
console.log("***Removing comp1");
container.remove("comp1");
 

In Listing 4-2 we’ve registered the events using the listeners block. Here’s the output of this code.

***Adding comp1
beforeadd
add
***Removing comp1
beforeremove
remove

Ext.container.Container is inherited by several classes that you’ll commonly use. Table 4-4 shows the 
subclasses of Container class.

Table 4-4. Subclass of Ext.container.Container

Class Description

Ext.container.Viewport Represents the viewable area

Ext.panel.AbstractPanel Base class for all the panel based containers

Ext.toolbar.Toolbar Represents a toolbar

We’ve discussed the basics of the Component and Container classes. All the UI controls in Ext JS 4 are subclasses 
of these two classes. Let’s discuss these UI controls.

http://localhost:13135/ExtJS4Book/chapter4/container1.htm#http://localhost:13135/ExtJS4Book/chapter4/container1.htm:35


Chapter 4 ■ Controls and layout

43

Container Controls
Ext.panel.Panel
Ext.panel.Panel with the xtype ‘panel' is the root container class for several container classes. It’s probably the most 
commonly used container class. You can create a Panel as shown below.
 
Ext.create("Ext.panel.Panel",{
     title : "Sample Panel",
     items : [
          ...
     ]
});
 

Ext.panel.Panel is inherited by a number of classes shown in Table 4-5.

Table 4-5. Panel Controls

Class Description

Ext.form.Panel Represents a form

Ext.menu.Menu Represents a menu

Ext.window.Window Represents a floatable, draggable window component

Ext.tab.Panel Represents a tabbed container

Ext.window.Window
Window represents a floatable, draggable, resizable panel. Windows can be configured to be modal. You can create  
a Window as shown in Listing 4-3.

Listing 4-3. Window

var win = Ext.create("Ext.window.Window", {
  title: "Find and Replace",
  modal: true,
  items: [
   {
     xtype: "textfield",
     fieldLabel: "Find what"
   }
  ],
  buttons: [
   {
     text: "Find next"
   },
   {
     text: "Cancel"
   }
  ]
});
win.show(); 



Chapter 4 ■ Controls and layout

44

In Listing 4-3 we’ve created a Window object with a textbox and two buttons using the items and buttons properties, 
respectively. Invoking the show method on the window object will show the window as shown in Figure 4-1.

Figure 4-1. A Window component

The window will be a modal one masking the background completely as you’ve configured the modal property 
to be true.

Ext.menu.Menu
Ext.menu.Menu is the container that’s used to display menus. Menu is made up of Ext.menu.Item controls. A menu 
can be shown as a standalone control or can be added as a child. A standalone menu can be created as shown in 
Listing 4-4.

Listing 4-4. Menu

var editMenu = Ext.create('Ext.menu.Menu', {
  items: [
    {
      text: 'Undo'
    },
    {
      text: 'Cut'
    },
    {
      text: 'Copy'
    },
    {
      text: "Paste"
    }
  ]
});
editMenu.show();
 

The menu is made of menu items. The default xtype of each menu item is a panel, and it has a text property that 
can be used to configure the text. You’ll get the menu displayed as shown in Figure 4-2.



Chapter 4 ■ Controls and layout

45

You can add the menu as a child item as well. Let’s add the menu to a Button using its menu attribute as shown below.
 
Ext.create("Ext.button.Button",{
    text : "Edit",
    menu : editMenu
});
 

You’ll get an Edit button with the menu as shown in Figure 4-3.

Figure 4-2. Menu component

Figure 4-3. Menu added to a Button

Ext.tab.Panel
This class is used to create tabbed containers. It can be intepreted as a panel with the child items following a card 
layout. A tab panel has a tab bar represented by the Ex.tab.Bar class that can be positioned at the top, bottom, left, or 
right. Each tab in the panel is an object of the Ext.tab.Tab class. You can create a tab panel as shown in Listing 4-5.

Listing 4-5. Tab Panel

Ext.create('Ext.tab.Panel', {
  renderTo: Ext.getBody(),
  title: "Documentation",
  plain: false,
  height : 200,
  tabPosition: "bottom",



Chapter 4 ■ Controls and layout

46

  items: [
    {
      title: 'Home',
      html : "Welcome to Ext JS 4"
    },
    {
      title: 'API',
      html : "API docs"
    },
    {
      title: 'Guides',
      html : "Standard guides"
    }
  ]
});
 

The tab panel has three tabs. The tab panel is configured to be plain, with no background for the tab bar. You’ll 
get the tab panel as shown in Figure 4-4.

Figure 4-4. Tabbed Pane

Ext.form.Panel
Form panel class serves as the container for forms. You can add the controls in Ext.form.field package to the form 
panel class. The form panel provides support for processing form, validation, and so forth.

Ext.form and Ext.form.field are the packages that supply us the form controls. The list of commonly used UI 
controls along with their xtype is shown in Table 4-6.



Chapter 4 ■ Controls and layout

47

Let’s create a form using some of these controls. We’ll develop a page as shown in the Figure 4-5.

Table 4-6. Form Controls

Class xtype

Ext.form.field.Text textfield

Ext.form.field.TextArea textarea

Ext.form.field.Checkbox checkbox

Ext.form.field.ComboBox combobox

Ext.form.field.Radio radio

Ext.form.field.Date datefield

Ext.form.field.Number numberfield

Ext.form.Label label

Ext.form.RadioGroup radiogroup

Ext.form.CheckboxGroup checkboxgroup

Ext.form.FieldSet fieldset

Figure 4-5. A Form panel

The controls form has a radio group, date field, number field, text area, and a button.
Listing 4-6 shows the code for the form control.



Chapter 4 ■ Controls and layout

48

Listing 4-6. Form Panel

Ext.create("Ext.form.Panel",
            {
  title : "Controls",
  items : [
   {
    xtype : "radiogroup",
    fieldLabel : "Title",
    vertical:true,columns:1,
   items : [
             {boxLabel:"Mr",name:"title"},
                    {boxLabel:"Ms",name:"title"}
    ]
   },
   {
    xtype : "textfield",
    fieldLabel : "Name"
   },
   {
    xtype : "datefield",
    fieldLabel : "Date of birth"
   },
   {
    xtype : "textfield",
    fieldLabel : "Blog"
   }
   {
    xtype : "numberfield",
    fieldLabel : "Years of experience",
    minValue : 5,
    maxValue : 15
   },
   {
    xtype : "textarea",
    fieldLabel : "Address"
   },
   {
    xtype : "button",
    text : "Submit"
   }
   ],
 });
 

The form controls can be wired up with basic validation rules. For instance, the common validation properties of 
the text based controls are allowBlank, maxLength, minLength, and so on. In the form we created, we can apply the 
validation rules to Listing 4-6 as shown below.
 



Chapter 4 ■ Controls and layout

49

{
 xtype : "textfield",
 fieldLabel : "Name",
 allowBlank : false,
 maxLength : 50,
 msgTarget : "side"
},
{
      xtype : "datefield",
 fieldLabel : "Date of birth",
 msgTarget : "side"
}
 

The name textfield has validation rules used. The msgTarget displays the error message by the side of the 
textfield when the validation fails. The default value is qtip where the error message is displayed as a quick tip as 
shown in Figure 4-6.

Figure 4-6. Form panel with validation rules

Another useful property called vtype can be used for using built-in validation rules like e-mail, URL, and so forth. 
The blog text field we have used in our example can be configured to have a validation type as shown here.
 
{
  xtype : "textfield",
  fieldLabel : "Blog",
  vtype : "url"
}
 

The blog field will display an error message as shown in Figure 4-7.



Chapter 4 ■ Controls and layout

50

We can also register our own validation functions using validator property. The validator function is passed in the 
value of the field. It returns the error message or true based on the outcome of validation. The address field with  
a custom validator is shown below.
 
{
 xtype : "textarea",
 fieldLabel : "Address",
 validator : function(val){
  if(val.indexOf("#") != -1 || val.indexOf(".") != -1)
   return "Invalid characters like # or . in address";
  return true;
 }
  
}
 

The error message for the address field when the validation fails is shown in Figure 4-8.

Figure 4-8. Text area with custom validation function

Figure 4-7. Text field with url vtype

The FormPanel has a submit() method that can be used to submit the form to the server. The form values are 
submitted to the server using AJAX by default. The server URL can be specified using the url property. The submit 
button’s click event can be handled to submit the form. The form will be submitted only when there are no validation 
errors. The FormPanel’s submit method can be invoked as shown in Listing 4-7.

Listing 4-7. FormPanel With a submit

Ext.create("Ext.form.Panel",
             {
   title : "Controls",



Chapter 4 ■ Controls and layout

51

    url : "someUrl",
   items : [
    {
     xtype : "datefield",
     fieldLabel : "Date of Birth",
     name : "dob"
    },
    {
     xtype : "textfield",
     fieldLabel : "Blog",
     name : "blog"
    }
    {
      xtype : "button",
      text : "Submit",
      listeners : {
             "click" : function(src){
              src.up("form").submit();
              }
      }
    }
   ]
 });
 

The click listener for the button navigates to the form using the up() method. The form is automatically 
submitted to the configured url attribute. The form data is passed to the server using the name property of the 
elements. The server resource can access the form elements using their respective names.

The submit method can optionally accept an Ext.form.action.Action object as parameter with AJAX callback 
functions.
 
src.up("form").submit({
success :  function(form,action){
         alert("Successfully submitted");
        },
    failure : function(form,action){
      console.log(action.failureType);
      console.log(action.result);
alert(action.response.status + ", " + action.response.statusText);
      }
   });
 

The success and failure callback functions are invoked after the form submission. We can disable AJAX and 
opt for a normal form submission instead using the standardSubmit property. Inside the FormPanel we can set 
standardSubmit property to be true.

Ext.toolbar.Toolbar
This container class is used to create toolbars. The toolbar is composed of various child controls. The default 
component that is added to a toolbar is a button. You can add items declaratively to a toolbar and also dynamically 
using the add() method present in the Toolbar class. You can also add the following toolbar-related items to a toolbar 
apart from the regular collection of controls like textfield, label, and so on.



Chapter 4 ■ Controls and layout

52

Ext.toolbar.TextItem (tbtext)
This class is used to render a simple text in a toolbar. You can use it as shown below.
 
{xtype:"tbtext", text:"Sample text"} 

Ext.toolbar.Separator (tbseparator)
This class adds a vertical separator bar in the toolbar. You can use it as shown below.
 
{xtype:"tbseparator"}
 

You can use a Separator with a "-" hyphen symbol instead of configuring it using xtype.

Ext.toolbar.Spacer (tbspacer)
This class adds a default 2px space in the toolbar. You can use it as shown below.
 
{xtype:"tbspacer"}
 

You can use a Spacer with a " " blank space instead of configuring it using xtype.

Ext.toolbar.Fill (tbfill)
This class right justifies the items to be added after adding this item. You can use it as shown below.
 
{xtype:"tbfill"}
 

You can use a Fill with a "➤" right arrow instead of configuring it using xtype.

Ext.toolbar.Paging (pagingtoolbar)
This class is used to display a paging bar when you use data components like grid panel. We’ll discuss this topic in 
Chapter 6 on data controls.

Let’s create a panel with a toolbar at the bottom as shown in Figure 4-9.

Figure 4-9. Panel with a toolbar



Chapter 4 ■ Controls and layout

53

The toolbar contains text items, combobox, and buttons. Listing 4-8 shows the code snippet for creating  
a toolbar.

Listing 4-8. Panel With a toolbar

Ext.create("Ext.panel.Panel", {
     renderTo: Ext.getBody(),
     title: "Panel with a toolbar",
     html : "This is an example to use a toolbar",
     dockedItems: [
       {
         xtype: "toolbar",
         dock: "bottom",
         items: [
             {
               xtype: "tbtext",
               text: "Item: 19"
             },
             "-",
             {
               xtype: "tbtext",
               text: "English (United States)"
             },
             " ",
             {
                xtype : "combo",
                fieldLabel : "Go to",
                labelAlign : "right",
             },
             "➤",
             {
                text: "Print",
             },
             " ",
             {
                text: "Outline",
             }
         ]
      }
    ]
});
 

The toolbar is docked to the bottom of the toolbar. The toolbar has the spacer, separator, and tbfill items added 
using the shortcut notations. The combobox is intentionally empty.



Chapter 4 ■ Controls and layout

54

Ext.container.Viewport
All the containers that we have discussed lack the capability to resize themselves when the browser window is resized. 
You’ve a specialized container for this purpose called Viewport. ViewPort is present in Ext.Container package and 
it represents the viewable browser area. Items added to the Viewport automatically get resized when the browser 
window is resized. Viewport is usually created as the root container of an application. Viewport is a container defined 
with an Auto layout by default, and it can be changed according to our requirement. We can create a Viewport with 
border layout as shown below.
 
Ext.create("Ext.container.Viewport",{
 layout : "border",
 items : [
  ..
]
});
 

Ext JS4 provides a number of layout controls that can be used to design our applications. Let’s discuss these 
layout controls.

Layout Controls
All the container classes arrange their items in a specific fashion based on the layout you provide. A container with  
a table layout arranges the items in a tabular format, the one with a vbox layout arranges the components vertically. 
Ext.layout.Layout is the base class for all the layout classes. Layout class is inherited by the Ext.layout.container.
Container that serves as the base class for all layout controls.

The Ext.layout.container package provides the different layout controls that are used to arrange our components. 
Table 4-7 shows the list of layout controls with a brief description.

Table 4-7. Layout controls

Class xtype Description

Absolute absolute Used to arrange the components by specifying the x- and y-coordinates.

Accordion accordion Denotes the accordion style

Anchor anchor Arrange the components relative to their container’s position.

Border border Split the entire page into different regions. It’s usually used to design an 
entire page in the application.

Card card The container’s items are treated as a pack of cards and only one of them 
is shown at any point of time.

Form form The components are rendered one after the other as a typical form.

Table table Arrange the components in a tabular fashion.

HBox hbox Arrange the components horizontally.

VBox vbox Arrange the components vertically.

Fit fit The components of the container with fit layout is arranged to fit the 
entire area of the container.



Chapter 4 ■ Controls and layout

55

The general configuration required for using any layout is given below. 
 
Ext.create("container",{
 layout :  {
  type : "xtype of any layout control",
  //propertiesOfTheLayoutControl
 }
 
});

If you don’t have any additional properties of the layout to be configured, the layout configuration is
 
Ext.create("container",{
 layout : "xtype of any layout control"
});
 

Let’s discuss the various layout components.

Auto Layout
The default layout for the containers in Ext JS4 is Auto layout. This layout manager automatically renders the 
components in a container.

Fit Layout
The fit layout arranges the contents of the container to occupy the space completely. It fits the items to the container’s 
size. Fit layout is usually used on containers that have a single item. Fit layout is the base class for the Card layout that 
we’ll discuss later in this section. Let’s add a text field to a Panel with a fit layout as shown below.
 
Ext.create("Ext.panel.Panel",{
 layout :  "fit",
       height:200,width:200,
       title : "Fit layout panel",
       items : [
                   {
                        xtype : "textfield",
                        fieldLabel : "Email"
                    }
      ]
});
 

The panel has a textfield that will be fit into the container to occupy the complete space as shown  
in Figure 4-10.



Chapter 4 ■ Controls and layout

56

Anchor Layout
The anchor layout manager arranges the items of a container relative to the size of the container. Whenever the 
container is resized, the anchor layout manager rearranges the items relative to the new size of the container. You can 
configure an anchor property to the child items. You can configure the width and height values in percentage and the 
offset values in the anchor property as shown below.
 
anchor : "width% height%"
(or)
anchor : "offsetWidth offsetHeight"
 

You can also mix these two options by specifying an offset value and a percentage. Here’s a simple panel 
that has a text field and a button and configured with an anchor layout. The items are configured with anchor 
attributes. Whenever you click the button, the width and height of the panel are increased by 5px. Here’s the 
code for that.
 
var pnl = Ext.create('Ext.panel.Panel', {
      layout: "anchor",
      height: 200, width: 200,
      title: "Anchor layout panel",
      items: [
          {
            xtype: "textfield",
            fieldLabel: "Name",
            anchor : "90% 15%"
          },
          {
            xtype: "button",
            text: "Resize",
            anchor : "-80 -145",
            listeners: {
               click: function () {
                  pnl.setWidth(pnl.getWidth() + 5);
                  pnl.setHeight(pnl.getHeight() + 5);
               }
            }

Figure 4-10. Panel with Fit layout



Chapter 4 ■ Controls and layout

57

         }
       ],
       renderTo: Ext.getBody()
});
 

By clicking on the resize button continuously, you’ll find out that the size of the textfield and button increase 
proportionately.

Box Layout
Ext.layout.container.Box serves as the base class for VBox and HBox layouts. VBox and HBox stand for vertical box 
and horizontal box, respectively.

A Panel with three buttons (A, B, and C) using a VBox layout is shown below. The buttons are arranged vertically 
in the center of the panel as shown in Figure 4-11.

Figure 4-11. Panel with a VBox layout

The pack and align properties of the VBox layout are used for positioning the buttons inside the container.  
Listing 4-9 shows how to do that.

Listing 4-9. VBox Layout

Ext.create("Ext.panel.Panel", {
     height: 200, width: 200,
     title : "VBox panel",
     layout : {
 type : "vbox",
 pack : "center",
 align : "center"
     },
     defaults : {xtype : "button",margin:"10"},
     items : [
  {text : "A"},
  {text : "B"},
  {text : "C"},
            ],
    renderTo : Ext.getBody()
});
  



Chapter 4 ■ Controls and layout

58

The code in Listing 4-9 can be modified to use the hbox layout. The layout configuration can be modified as 
shown below.
 
layout : {
          type : "hbox",
          pack : "center",
          align : "middle"
            }
 

The panel will look as shown in Figure 4-12.

Figure 4-12. Panel with HBox layout

Accordion Layout
Accordion layout is an extension of VBox layout. It arranges a set of panels vertically with collapse and expandable 
features. Listing 4-10 shows the code snippet of a panel that uses the accordion layout.

Listing 4-10. Accordion Layout

Ext.create("Ext.panel.Panel", {
   height: 300, width: 300,
   title: "Accordion layout ",
   layout: {
              type : "accordion",
              multi : true
           },
   items: [
     {
  title: "Inbox",
                html : "Inbox contents"
            },
            {
                title: "Outbox",
                html: "Outbox contents"
            },
            {



Chapter 4 ■ Controls and layout

59

                title: "Sent Items",
                html: "Sent Items"
            }
          ],
   renderTo: Ext.getBody()
});
 
 

The accordion layout is configured with a multi attribute which enables viewing multiple panels. The code 
throws up the output as shown in Figure 4-13.

Figure 4-13. Panel with Accordion layout

Table Layout
Table layout is used to render a HTML table element. It has all the properties of a table, the most commonly used 
being the columns attribute. Listing 4-11 shows the code snippet of a panel that uses a table layout.

Listing 4-11. Table Layout

Ext.create("Ext.panel.Panel", {
   height: 200, width: 200,
   title: "Table layout ",
   layout: {
             type: "table",
             columns: 2
           },



Chapter 4 ■ Controls and layout

60

   defaults: {
              xtype: "button",
              margin: "10"
           },
   items: [
            {
               text: "A"
            },
            {
               text: "B"
            },
            {
               text: "C"
            },
            {
               text: "D"
            },
            {
              text: "E"
            },
            {
              text: "F"
            }
   ],
   renderTo: Ext.getBody()
});
 

You’ll get an output as shown in Figure 4-14.

Figure 4-14. Panel with a Table layout

Column Layout
Column layout arranges the container in separate columns starting from left to right. Each item in the container that uses 
column layout is configured with a columnWidth attribute. The sum of the values of columnWidth attributes of all the 
items need to be equal to the total width of the container. You can provide the values of columnWidth in percentage or a 
concrete value. The percentage value is provided as a decimal number where the total columnWidth equals 1.

Let’s create a panel with column layout as shown in Figure 4-15.



Chapter 4 ■ Controls and layout

61

Listing 4-12 shows the code for that.

Listing 4-12. Column Layout

Ext.create('Ext.panel.Panel', {
  title: 'Column',
  width: 600, height: 200,
  layout: 'column',
  defaults : {margin : "10"},
  items: [
    {
      title : "Folder List",
      html : "Folder List contents",
      columnWidth : 0.20
    },
    {
      title: "Inbox",
      html: "Inbox contents",
      columnWidth : 0.30
    },
    {
      html: "Mail contents",
      columnWidth: 0.50
    }
  ],
  renderTo: Ext.getBody()
}); 

Border Layout
Border layout is usually the master layout in an Ext JS 4 application. You can design a master layout with regions like 
header, footer, and menus. In Ext JS 4, which is predominantly used for building single-page applications, border 
layout is used to design the entire layout of the page. The Ext JS 4 API documentation page, shown in Figure 4-16, is a 
good example of the use of border layout.

Figure 4-15. Panel with a Column layout



Chapter 4 ■ Controls and layout

62

The border layout splits the page into different regions like north, south, east, west, and center. The center region 
has to be mandatorily configured while the other regions are optional. For example, in the figure above, you can say 
that the page has three regions, a header with a menu bar in the north, the list of classes in a tree format in the east, 
and the main content in the center.

Let’s create a simple example of using Border layout. We’ll create a panel that uses border layout as shown in Figure 4-17.

Figure 4-17. A panel with a Border layout

Figure 4-16. A page that uses Border layout



Chapter 4 ■ Controls and layout

63

Listing 4-13 shows the code snippet for a panel with Border layout.

Listing 4-13. Border Layout

Ext.create("Ext.panel.Panel",{
   layout : "border",padding:30,id:"main",height:500,width:400,
   items : [
             {
               xtype : "panel",
               html : "Top ",
               region : "north"
             },
             {
               xtype : "panel",
               html : "Main contents",
               region : "center"
             },
             {
               xtype : "panel",
               html : "Side bar",
               collapsible : false,
               split : true,
               region : "west"
             }
   ],
   renderTo : Ext.getBody()
});
 

The Panel is split into north, west, and center regions. In this example each region has a panel configured in it. 
The west region has optional properties like collapsible, split, and so forth, configured to be able to hide and resize the 
region dynamically.

Card Layout
You have a Panel with a number of child components and only one child control needs to be shown at a time. The Panel 
can use a card layout for this purpose. Card layout, when used on a container, treats its items as a collection of cards 
and shows only one item at any point of time.

Card layout has an important property called activeItem that holds the information about the item that has to be 
displayed. This property has to be manipulated to change the item to be shown. Listing 4-14 shows the code snippet 
for using card layout.

Listing 4-14. Card Layout

Ext.create("Ext.panel.Panel",{
    layout : "card",padding:30,id:"main",
    items : [
      {
        xtype : "panel",
        title : "Screen 1",
        items : [



Chapter 4 ■ Controls and layout

64

          {
            xtype : "button",
            text : "go to screen 2",
            handler : function(){
              Ext.getCmp("main").getLayout().setActiveItem(1);
            }
          }
        ]
     },
     {
       xtype : "panel",
       title : "Screen 2",
       items : [
         {
           xtype : "button",
           text : "go to screen 3",
           handler : function(){
             Ext.getCmp("main").getLayout().setActiveItem(2);
           }
         }
       ]
     },
    {
      xtype : "panel",
      title : "Screen 3"
    }
  ],
  renderTo : Ext.getBody()
});
 

The main Panel uses the card layout. It has three panel children. The Screen1 and Screen2 panels have a button 
when clicked change the active item of the card layout. The setActiveItem method on the Card Layout class accepts a 
number that represents the index of the controls as the parameter. The setActiveItem can accept the id of the control 
as a parameter as well. If Screen 2 panel’s id is “screen2”, we can the change the active item by
 
Ext.getCmp("mainpanel").getLayout().setActiveItem("screen2")
 

We can also pass the component as the parameter like this:
Ext.getCmp(“mainpanel”).getLayout().setActiveItem(Ext.create(“Ext.Button”,{…})). This can be used if you create 

a new object and set it as an active item, instead of creating it beforehand and not showing it. Figure 4-18 shows the 
output of the code in Listing 4-14. You’ll get Screen 1 panel, and when you click the “Got to Screen 2” button, you’ll get 
Screen2. Clicking on “Go to Screen 3” button will give you the Screen 3. Please note that only one screen is showed at 
any point of time in card layout.

Figure 4-18. Output of Card layout example



Chapter 4 ■ Controls and layout

65

One of the advantages of using Ext JS 4 as we discussed earlier is the support for writing modularized code. In the 
card layout code snippet shows in Listing 4-10 you can bring in some modularity by organizing the items of the main 
panel into individual classes. Listing 4-15 shows a modularized version of using card layout.

Listing 4-15. Modularized Version of Card Layout

Ext.define("Screen1",{
   extend : "Ext.panel.Panel",
   xtype : "screen1",
   title : "Screen 1",
   items : [
     {
       xtype : "button",
       text : "Go to Screen 2",
       handler : function(){
         Ext.getCmp("viewport").getLayout().setActiveItem(1);
       }
     }
   ]
});
 
Ext.define("Screen2",{
   extend : "Ext.panel.Panel",
   xtype : "screen2",
   title : "Screen 2",
   items : [
     {
       xtype : "button",
       text : "Go to Screen 3",
       handler : function(){
         Ext.getCmp("viewport").getLayout().setActiveItem(2);
       }
     }
   ]
});
 
Ext.define("Screen3",{
   extend : "Ext.panel.Panel",
   xtype : "screen3",
   title : "Screen 3"
});
 
Ext.onReady(function(){
   Ext.create("Ext.container.Viewport",{
     layout : "card",padding:30,id:"viewport",
     items : [
       {
         xtype : "screen1",
         id : "screen1"
       },



Chapter 4 ■ Controls and layout

66

       {
         xtype : "screen2",
         id : "screen2"
       },
       {
         xtype : "screen3",
         id : "screen3"
       }
     ],
     renderTo : Ext.getBody()
  });
}
);
 

In the example above, we’ve defined three new classes Screen1, Screen2, and Screen3. These classes inherit  
Ext.panel.Panel and have screen1, screen2, and screen3 as xtypes, respectively. The main container, a Viewport with 
card layout, contains the instances of these classes. The Screen1 and Screen2 classes have simple buttons with their 
handlers taking care of the navigation to the next item. The best place to write the handler logic is a Controller class. 
We’ll discuss the controller classes in our MVC chapter.

Summary
In this chapter I discussed the controls and layout of Ext JS 4. All UI controls inherit from Ext.Component class.  
Ext.Component provides several properties, methods, and events. The Ext.container.Container class serves as the 
base class for all the container controls like Panel, Viewport, and Toolbars. The form panel represents the standard 
HTML form with functionalities like validations, processing and so on. You can add the field controls to the form 
panel. Ext.layout.Layout is the base class for all the layout components. Border Layout defines the master layout of an 
application and Card layout is used to show one item at any point of time.

In the next chapter you’ll learn the data handling mechanisms in Ext JS 4. I’ll discuss the Ext.data package in 
detail and take a look at the core concepts of fetching, saving, and updating data from various data sources.


	Chapter 4: Controls and Layout
	Ext.Component
	Configuration attributes of Ext.Component
	id
	itemId
	autoEl
	listeners
	renderTo
	hidden, disabled
	tpl, data

	Methods in Ext.Component
	up
	enable, disable
	show, hide
	destroy
	on, un
	addEvents, fireEvent

	Events in Ext.Component
	xtype

	Ext.container.Container
	Configuration Attributes of Ext.container.Container
	items
	layout
	defaults

	Some Methods in Container class.Methods of Ext.container.Container
	add
	doLayout
	down
	remove

	Events of Ext.container.Container

	Container Controls
	Ext.panel.Panel
	Ext.window.Window
	Ext.menu.Menu
	Ext.tab.Panel
	Ext.form.Panel


	Ext.toolbar.Toolbar
	Ext.toolbar.TextItem (tbtext)
	Ext.toolbar.Separator (tbseparator)
	Ext.toolbar.Spacer (tbspacer)
	Ext.toolbar.Fill (tbfill)
	Ext.toolbar.Paging (pagingtoolbar)

	Ext.container.Viewport
	Layout Controls
	Auto Layout
	Fit Layout
	Anchor Layout
	Box Layout
	Accordion Layout
	Table Layout
	Column Layout
	Border Layout
	Card Layout

	Summary


