
185

Chapter 10

Extending, Unit Testing,
and Packaging

In the first nine chapters of this book we have analyzed various features of Ext JS 4. You learned how to use the UI
controls, work with data components, create custom themes, and build applications that follow the MVC architecture.
In this chapter you’ll find out about some miscellaneous features in Ext JS 4. For example, you’ll see how to extend the
UI controls by creating custom components. I’ll discuss various options involved in creating custom components and
plugins. You’ll also learn how to write unit tests in JavaScript to test our Ext JS 4 application. Finally you’ll learn how to
create an Ext JS 4 application from scratch, package it, and deploy it to the web server.

Extending the UI
In Chapter 9 when I discussed the MVC architecture, we created classes that extended some built-in classes such as
Ext.panel.Panel, Ext.grid.Panel. These derived classes just modified the attributes of the built-in classes without
really making a drastic change to their look and feel or behavior. In this section let’s take a look at how to create
custom UI components, custom plugins, etc., from scratch.

Custom Components
Let’s start with a HelloWorld component that we will use, like this.

{xtype:"helloworld"}

Let’s implement the helloworld component in such a way that it emits the following HTML code.

Hello World

We can implement this component by extending the Ext.Component class. The autoEl attribute of the Component
class can be configured to provide the tag name and inner HTML of the element that you want to create.

Listing 10-1 shows the code for the HelloWorld component.

Chapter 10 ■ extending, Unit testing, and paCkaging

186

Listing 10-1. HelloWorld Component

Ext.define("HelloWorld",{
 xtype : "helloworld",
 extend : "Ext.Component",
 autoEl : {
 tag : "span",
 html : "Hello World"
 }
});

When you use an instance of the HelloWorld component in an application you will get the Hello World text
displayed on the screen with the following generated HTML code snippet.

Hello World

As shown in Listing 10-1 we have specified the HTML data using the autoEl attribute. The autoEl attribute
corresponds to the Ext.DomHelper object. The autoEl attribute can have properties like tag, html, cls, and children
for decorating the HTML code that will be generated. Any property other than these four items is treated as the
attribute of the generated HTML tag.

Let’s create a hyperlink component that will be used like this.

{
 xtype:"link",
 url:"http://www.apress.com",
 text:"Apress Inc"
}

Listing 10-2 shows the code snippet for the link component built using autoEl attribute.

Listing 10-2. Link Component

Ext.define("Link",{
 extend : "Ext.Component",
 xtype : "link",
 autoEl : {
 tag : "a",
 html : "Click",
 href : "#"
 },
 initComponent : function(){
 if(this.text)
 this.autoEl.html = this.text;
 if(this.url)
 this.autoEl.href = this.url;
 this.callParent(arguments);
}
});

http://www.apress.com/

Chapter 10 ■ extending, Unit testing, and paCkaging

187

As shown in Listing 10-2, we have used the autoEl property of the Component class to create an anchor element.
We’ve overridden the initComponent() method where we initialize the autoEl attribute using the values passed while
creating the instance of this component. The initComponent() method can be treated as the constructor for custom
components. You can write your initialization logic in it. You need to have a call default initComponent() method in
the Component class using this.callParent() method.

When you use the Link component in an application you will get a hyperlink on the screen with the following
generated HTML code snippet.

<a id="link-1010" class="x-component x-component-default"
href="http://www.apress.com">Apress Inc

Figure 10-1 shows the output of the link component.

The autoEl attribute of the Component class can become tedious if you want to build a complex component
where the HTML snippet that you’re generating is a lot more verbose—such as a <table> element, for instance.
Here’s where you can use Ext.XTemplate. The Ext.Component class has two attributes: tpl for configuring XTemplate,
and data for providing values to the template.

Let’s build our link component using XTemplate. Listing 10-3 shows the code for the link component using
XTemplate.

Listing 10-3. Link Component Using XTemplate

Ext.define("Link",{
 xtype : "link",
 extend : "Ext.Component",
 tpl : '{text}',
 initComponent : function(){
 this.data = {
 text : this.text,
 url : this.url
 };
 this.callParent(arguments);
 }
});

As shown in Listing 10-3, the Link class has the tpl attribute configured. In the initComponent() method,
we initialize the data attribute with the values for the url and text properties.

Figure 10-1. Link component

http://www.apress.com">Apress

Chapter 10 ■ extending, Unit testing, and paCkaging

188

Let’s throw in some validation for the url that’s passed to the link component. You can write a validation
function in the XTemplate instance and invoke it. In Listing 10-3, the tpl attribute can be modified to include the
function like this:

Ext.define("Link",{
 ...
 tpl : Ext.create("Ext.XTemplate",
 '{text}',
 {
 validateUrl: function (url) {
 var valid = url.match(/^(ht|f)tps?:\/\/[a-z0-9-\.]+\.[a-
z]{2,4}\/?([^\s<>\#%"\,\{\}\\|\\\^\[\]`]+)?$/);
 return valid?url:"#";
 }
 }
),
 ...
});

As you notice in the tpl attribute, we’ve created an instance of XTemplate using Ext.create() method and have
a validateUrl() function that validates the url using a regular expression. If the url is valid, the function returns the url.
Otherwise it returns a hash (#). We’ve invoked this function using the expression {[this.validateUrl(values.url)]}
where values refers to the data attribute of the XTemplate class.

Let’s add a custom event to this component. When you click the anchor element, let’s alert a message. Handling
the click event for an anchor element is really easy in the traditional approach where you use the onclick handler, but
it’s not the same in this case. We may have to wire up the click event programmatically with the generated anchor
element. Let’s override the onRender() method in our Link class where we programmatically wire up the click event
on the anchor element. In Listing 10-3 we modify the Link class to add the onRender() method.

Ext.define("Link",{
 ..
 onRender: function () {
 this.callParent(arguments);
 this.mon(this.el,
 "click",
 function () {
 alert("Clicked");
 },
 this);
 }
});

We have overridden the onRender() method, where the click event is registered with a handler function using
the mon() method. The mon() method is used for adding listeners to events. The arguments for the mon() method are
the HTML element, event name, event handler function, and the scope in which the handler function is executed.

Let’s create our own event—say, “go”—which will be called when you click the link component. Also, you want
to add a listener using the listeners property as shown below.

Chapter 10 ■ extending, Unit testing, and paCkaging

189

{
 xtype:"link",
 url:"http://www.apress.com",
 text:"Apress Inc",
 listeners : {
 go : function(){
 alert(“You clicked the link”);
 }
 }
}

Ext.Component class provides a addEvents() method that can be used to add custom events. You can raise the
event using the fireEvent() method. Listing 10-4 shows the link component with a custom event called go. The go
event is fired when you click the anchor element.

Listing 10-4. Link Component With go Event

Ext.define("Link", {
 xtype: "link",
 extend: "Ext.Component",
 tpl: '{text}',
 initComponent: function () {
 this.data = {
 text: this.text,
 url: this.href
 };
 this.addEvents("go");
 this.callParent(arguments);
 },
 onRender: function () {
 this.callParent(arguments);
 this.mon(this.el,
 "click",
 function () {
 this.fireEvent("go}
 },
 this);
 }
});

As shown in Listing 10-4, in the initComponent() method we have the go event added using addEvents()
method. In the onRender() method, we have the go event fired using the fireEvent() method. The fireEvent()
method is called from the event handler of the traditional click event.

I explained the use of plugins in components like grid in Chapter 6. Let’s develop a custom plugin now.

Custom Plugin
Plugins in Ext JS 4 (which you saw in Chapter 6 on data controls) are used to inject custom functionality to the UI
components.

Let’s create a plugin for the Ext.panel.Panel class. We’ll develop a timer plugin and apply it to the panel.
The timer plugin will display a timer for 10 seconds. After 10 seconds, the timer is stopped and the panel is disabled.
Figure 10-2 shows the screenshot of the Panel with a timer plugin.

http://www.apress.com/

Chapter 10 ■ extending, Unit testing, and paCkaging

190

You can create a custom plugin by extending the Ext.AbstractPlugin class. The AbstractPlugin class has an
init(component) method where the component argument corresponds to the underlying UI component where the
plugin is used. In our case the component refers to the Panel object. Inside this init() method we’ll start a timer that
runs for 10 seconds. Listing 10-5 shows the timer plugin.

Listing 10-5. Timer Plugin

Ext.define("TimerPlugin", {
 extend: "Ext.AbstractPlugin",
 alias: "plugin.timerplugin",
 limit: 10,
 count: 0,
 intervalId: null,
 init: function (component) {
 var me = this;
 this.intervalId = window.setInterval(function () {
 me.timer(component);
 }, 1000);
 },
 timer: function (component) {
 if (this.count != this.limit) {
 this.count += 1;
 component.setTitle("Time left : " + (this.limit - this.count) + " seconds");
 }
 if(this.count == this.limit) {
 component.disable();
 window.clearInterval(this.intervalId);
 }
}
});

In Listing 10-5 we’ve created a TimerPlugin class that extends AbstractPlugin. The init() method users the
window.setInterval() method, which runs every 1000 milliseconds and calls a timer() method.

In the timer() method we have the logic to compute the end time and update the panel’s title. When the count
variable reaches the limit, the panel is disabled.

Listing 10-6 shows the Panel object that uses the timer plugin.

Figure 10-2. Panel with a timer plugin

Chapter 10 ■ extending, Unit testing, and paCkaging

191

Listing 10-6. Panel that Uses the Timer Plugin

Ext.create("Ext.panel.Panel", {
 title: "Timer",
 html: "This is a panel with timer plugin",
 plugins : [{ptype:"timerplugin"}]
 });

Unit Testing Ext JS 4
Code written in any language needs to be tested. That is a well-accepted fact in the programming world, and
JavaScript code is no exception. Since JavaScript is used on the client side and a lot of developers mix it with HTML, it
can be difficult to test the JavaScript code alone. It’s important to keep the JavaScript code decoupled from the UI until
you can test it.

We don’t have to worry about writing modularized and decoupled JavaScript code in Ext JS 4 due to the MVC
architecture we follow. So it’s pretty easy to test the Ext JS 4 code. There are a number of tools and libraries like Ext
Spec, Siesta, Jasmine, etc., available for testing Ext JS 4 code. We’ll use the Jasmine toolkit for testing Ext JS 4 code.

Jasmine is a JavaScript unit testing library. In fact, it’s more than a mere testing library. Jasmine is a Behavior-Driven
Development (BDD) library. BDD is a development methodology based on Test-Driven Development and
Domain-Driven Design. We’ll not delve into BDD, however; instead, we’ll focus on the unit testing abilities of Jasmine.
Jasmine has a simple syntax to unit-test JavaScript code. Jasmine API does not come with the burden of DOM on its
shoulders.

While this section is about using Jasmine to test Ext JS 4 code, let’s start with an example of using Jasmine for
testing plain JavaScript code, where you’ll learn the basics of Jasmine. After that, we’ll discuss how to use Jasmine to
test an Ext JS 4 application.

You can visit https://github.com/pivotal/jasmine/downloads and download the latest stable version of
Jasmine. At the time of writing, the latest version is 1.3.1. When you download the standalone zip file and extract it,
you get the files shown in Figure 10-3.

Figure 10-3. Jasmine extract

As shown in Figure 10-3, you need the contents of the lib folder in your application. In our case you need the
jasmine-1.3.1 folder. The three files jasmine.css, jasmine.js, and jasmine-html.js need to be referenced in our web
page that runs all the tests. Let’s create a HTML page—say, sample-tests.html—and set up a Jasmine environment.
Listing 10-7 shows the code snippet for the sample-tests.html file.

https://github.com/pivotal/jasmine/downloads

Chapter 10 ■ extending, Unit testing, and paCkaging

192

Listing 10-7. sample-tests.html

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="jasmine-1.3.1/jasmine.css">
 <script type="text/javascript" src="jasmine-1.3.1/jasmine.js"></script>
 <script type="text/javascript" src="jasmine-1.3.1/jasmine-html.js"></script>
 <script>
 function init() {
 jasmine.getEnv().addReporter(new jasmine.HtmlReporter());
 jasmine.getEnv().execute();
 }
 window.onload = init;
</script>
</head>
<body>
</body>
</html>

As shown in Listing 10-7, we’ve added the Jasmine stylesheet and scripts. In the init() function we add an
HtmlReporter provided by the Jasmine API to the Jasmine environment that will generate an HTML report for the
tests we execute. You can run sample-tests.html file just to make sure there are no errors reported by the browser.

Let’s write some simple JavaScript code and test it using Jasmine. As our intention is to get accustomed to
Jasmine basics, let us write simple add() and subtract() functions. We’ll create a file calc.js and implement the add()
and subtract() functions over there. Listing 10-8 shows calc.js with add() and subtract() functions.

Listing 10-8. calc.js

function add(num1, num2) {
 return num1 + num2;
}

function subtract(num1, num2) {
 return num1 - num2;
}

Let’s start writing the tests, using the Jasmine API to test the add() and subtract() functions shown in Listing 10-8.
In Jasmine terminology the tests are called specifications, or specs. You create a suite of specs and execute them.

The basic functions you would use in Jasmine to write the specs are listed below.

describe()•	

You create a test suite using the describe function. The •	 describe() function is composed
of specs. The general format of the describe() function is

describe("name of the test suite", function(){
//collection of specs
})

Chapter 10 ■ extending, Unit testing, and paCkaging

193

it()•	

Each spec or the test is specified by the •	 it() function. The format of the it() function is

it("name of the spec",function(){
 //the actual test code
})

expect()•	

The •	 expect() function specifies the expectations and is used for performing the actual
check or the test. For the Java or C# developers, expect() is equivalent to the assert()
function. The expect() function is chained with Matcher functions to perform the test.
The expect() function takes in a value that is matched with the expected value. Here are
some examples of using the expect() function:

expect(123).toEqual(123)
expect(someVar).toBeDefined()
expect(true).toBe(true)

There are some more functions in Jasmine, such as the describe(), it(), and expect(), that we can use.

We’ll not get into those as it’s beyond the scope of this chapter. If you want to read more about the Jasmine API,
you can read its documentation at http://pivotal.github.io/jasmine/.

Let’s develop our specs for the add() and subtract() methods as shown in Listing 10-9. We’ll write our code
in a file called ‘calcspecs.js’.

Listing 10-9. calcspecs.js

describe("Addition", function () {
 it("test add() is defined", function () {
 expect(add).toBeDefined();
 });
 it("test add 2 simple numbers", function () {
 expect(add(1,2)).toEqual(3);
 });
});

describe("Subtraction", function () {
 it("test subtract() is defined", function () {
 expect(subtract).toBeDefined();
 });
 it("test subtract 2 simple numbers", function () {
 expect(subtract(11, 2)).toEqual(9);
 });
});

describe("Multiplication", function () {
 it("test multiply() is defined", function () {
 expect(multiply).toBeDefined();
 });
});

http://pivotal.github.io/jasmine/

Chapter 10 ■ extending, Unit testing, and paCkaging

194

We’ve created three suites—namely, Addition, Subtraction, and Multiplication. The Addition and
Subtraction suites have two specs each. The Multiplication suite has a spec that checks whether multiply function
is defined. This spec will throw an error obviously.

You have to modify the sample-tests.html file to include calc.js and calcspecs.js files. Figure 10-4 shows the
output when you run the sample-tests.html file.

Now that you’ve learned the basics of Jasmine, let’s test our Ext JS 4 application using Jasmine.
To begin with, let’s create a simple MVC application where we display a grid and the details of each item in the

grid in a window as shown in Figure 10-5.

Figure 10-5. MVC application to be tested using Jasmine

Figure 10-4. Output of sample-tests.html

Chapter 10 ■ extending, Unit testing, and paCkaging

195

As shown in Figure 10-4, the grid shows a list of countries and when you click on any item you see the details of
the country shown in a pop-up window. Let’s implement this application using the MVC architecture. As we have
discussed MVC in detail in Chapter 9, we’ll take a fast-track approach to get to the testing part. Figure 10-6 shows the
app folder that contains the code for the application.

Listing 10-10 shows the code for the Country and CountryStore classes.

Listing 10-10. Country and CountryStore

Ext.define("Chapter10.model.Country",{
 extend : "Ext.data.Model",
 fields : ["name","capital","continent"]
});
Ext.define("Chapter10.store.CountryStore",{
 extend : "Ext.data.Store",
 autoLoad : false,
 model : "Chapter10.model.Country",
 proxy : {
 url : "countries.txt",
 type : "ajax",
 reader : {
 type : "json",
 root : "countries"
 }
 }
});

Listing 10-11 shows the code for the view classes CountryGrid and CountryDetailWindow.

Figure 10-6. File structure for the MVC application to be tested using Jasmine

Chapter 10 ■ extending, Unit testing, and paCkaging

196

Listing 10-11. CountryGrid and CountryDetailWindow Classes

Ext.define("Chapter10.view.CountryGrid", {
 extend: "Ext.grid.Panel",
 xtype: "countrygrid",
 store: "CountryStore",
 columns: [
 { header: "Name", dataIndex: "name" },
 { header: "Capital", dataIndex: "capital" }
]
});
Ext.define("Chapter10.view.CountryDetailWindow", {
 extend: "Ext.window.Window",
 xtype: "countrydetail",
 title: "Detail", height: 75, width: 200, padding: 2,
 layout : "vbox",
 items: [
 { xtype: "label", id: "capitallabel" },
 { xtype: "label", id: "continentlabel" }
]
});

Listing 10-12 shows the code for the CountryController class.

Listing 10-12. CountryController Class

Ext.define("Chapter10.controller.CountryController", {
 extend: "Ext.app.Controller",
 models: ["Country"],
 stores: ["CountryStore"],
 views: ["CountryGrid", "CountryDetailWindow"],
 refs: [
 { ref: "countryGrid", selector: "countrygrid" },
 { ref: "countryDetail", selector: "countrydetail" },
 { ref: "continent", selector: "countrydetail label[id=continentlabel]" },
 { ref: "capital", selector: "countrydetail label[id=capitallabel]" },
],
 init: function () {
 Ext.getStore("CountryStore").load();
 this.control({
 "countrygrid": {
 itemclick: this.onCountryClicked
 }
 });
 },
 onCountryClicked: function (src, record) {
 if (!this.getCountryDetail())
 Ext.create("Chapter10.view.CountryDetailWindow");
 this.getCountryDetail().setTitle(record.get("name"));
 this.getCapital().setText(record.get("capital"));

Chapter 10 ■ extending, Unit testing, and paCkaging

197

 this.getContinent().setText(record.get("continent"));
 this.getCountryDetail().show();
 }
});

The root namespace name of the application is Chapter10, as you can notice from the code snippets above. We’ll
ignore the app.js file as it’s not of much importance in this example.

Let’s set up the Jasmine environment and create the specs. We’ll create two specs—one each for testing the
CountryStore and CountryController classes. Let’s create a folder called app-test and store the jasmine library
and the specs in it. We’ll configure the test application in a file called app-test.js and the main HTML file that will be
executed will be tests.html file. Figure 10-7 shows the file structure of the project after adding the above mentioned files.

As you notice in Figure 10-7, I have used Jasmine version 1.3.1.
Listing 10-13 shows the code snippet for tests.html file that will be executed in the browser.

Listing 10-13. tests.html

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" type="text/css" href="app-test/lib/jasmine-1.3.1/jasmine.css">
 <script src="extjs/ext-all.js"></script>
 <script type="text/javascript" src="app-test/lib/jasmine-1.3.1/jasmine.js"></script>
 <script type="text/javascript" src="app-test/lib/jasmine-1.3.1/jasmine-html.js"></script>
 <script src="app-test.js"></script>

Figure 10-7. File Structure of the MVC application with Jasmine library

Chapter 10 ■ extending, Unit testing, and paCkaging

198

 <script src="app-test/specs/CountryStoreSpec.js"></script>
 <script src="app-test/specs/CountryControllerSpec.js"></script>
</head>
<body>
</body>
</html>

We’ve added the Jasmine related files, app-test.js and the two specs in tests.html.
Listing 10-14 shows the code snippet for app-tests.js file where the test environment is set up.

Listing 10-14. app-test.js

Ext.Loader.setConfig({enabled : true});

var Application = null;

Ext.onReady(function() {
 Application = Ext.create('Ext.app.Application', {
 name: 'Chapter10',
 controllers: ["CountryController"],
 launch: function() {
 jasmine.getEnv().addReporter(new jasmine.HtmlReporter());
 jasmine.getEnv().execute();
 }
 });
});

The interesting difference between what we wrote in app.js and what we’ve written in app-test.js is the way we
create the instance of Ext.app.Application class. As shown in the code snippet in Listing 10-14, we explicitly create
an instance of the Application class and assign it to a global variable called Application. This global variable will be
used in the specs we’ll implement later. The launch() function has the Jasmine environment configured.

Let’s create the specs now. You can create any number of specs. You have to add them to the test page. Let’s
create a spec to test the CountryStore. You can give any name for the spec file. The CountryStore spec will load the
store data and test if the data is properly loaded. Listing 10-15 shows the code snippet for CountryStoreSpec.js.

Listing 10-15. CountryStoreSpec.js

describe("Country Store", function () {
var store = null;

beforeEach(function () {
 store = Application.getStore("CountryStore");
 store.load();
 waitsFor(function () {
 return !store.isLoading(); },
 "Unable to load countries.txt",
 5000);
});

 it("test store data", function () {
 expect(store.getCount()).toEqual(4);
 var country = store.getAt(0);

Chapter 10 ■ extending, Unit testing, and paCkaging

199

 expect(country.get("name")).toEqual("India");
 expect(country.get("capital")).toEqual("New Delhi");
 expect(country.get("continent")).toEqual("Asia");
 });
});

In Listing 10-15 we have writen a spec to test the store data, where we test for the record count and also check the
first records’ details. The beforeEach() function in Jasmine is a set up method that is called before running each spec.
It’s not of prime importance here as there’s only one spec in this suite.

In the beforeEach() function we access the store instance and call the load() method. Since the store loads
records asynchronously, we give it 5000 milliseconds and check if the store has completed loading the records. The
whole asynchronous loading process is achieved using the waitsFor() function provided in Jasmine.

You can add more specs to test the CountryStore instance based on your needs.
Let’s create the CountryControllerSpec.js, which has the specs to test the CountryController class. We’ll test the

references in the CountryController and check if the details of the country are displayed in a window when the row
in the grid is clicked. Listing 10-16 shows the code for CountryControllerSpec.js.

Listing 10-16. CountryControllerSpec.js

describe("CountryController", function () {
 var countryController = null;
 var countryGrid = null;
 var countryStore = null;

 beforeEach(function () {
 countryController = Application.getController("CountryController");
 countryGrid = Ext.create("Chapter10.view.CountryGrid");
 countryStore = Application.getStore("CountryStore");
 countryStore.load();
 waitsFor(function () {
 return !countryStore.isLoading();
 }, "Unable to load countries.txt", 5000);
 });

 it("test Country Grid", function () {
 var grid = countryController.getCountryGrid();
 expect(grid).toBeDefined();
 expect(grid.columns.length).toEqual(2);
 });

 it("test country grid item click", function () {
 var grid = countryController.getCountryGrid();
 grid.fireEvent("itemclick", grid.getView(), countryStore.getAt(0));
 expect(countryController.getCountryDetail()).toBeDefined();
 });
});

In the code snippet in Listing 10-16 we’ve a beforeEach() function where we initialize the countryStore,
countryController and create an instance of the CountryGrid.

In the ‘test country grid’ spec we access the country grid using the getCountryGrid() method generated for the
reference variable countryGrid in the CountryController.

Chapter 10 ■ extending, Unit testing, and paCkaging

200

The ‘test country grid item click’ spec is interesting. We programmatically fire the itemclick event using the
fireEvent() method by passing the first record in the store as one of the arguments. According to the code in
Listing 10-12, clicking the item in the grid will invoke the onCountryClicked() method and create an instance of the
CountryDetailWindow. We check if the CountryDetailWindow object is created or not.

Running tests.html page will give you the output shown in Figure 10-8.

We’ve explored the basics of testing an Ext JS 4 application using Jasmine. Apart from the options discussed here,
there are various parts of an Ext JS 4 application that you can effectively test using Jasmine to make your application
foolproof. You also need to be careful while unit testing Ajax calls to the server resources as it will take a long time
to do that. You can do it by creating mock data and unit testing it. It’s also important to be a little cautious while unit
testing complex UI interactions like drag and drop behavior, grid, and tree interactions as you may have to tweak your
code a bit to make it suitable for testing.

Let’s try creating and deploying an Ext JS 4 application using the Sencha Cmd tool.

Packaging
We have been creating an Ext JS 4 application manually from scratch, adding all the source files, CSS files, themes
folder, and the MVC folder structure so far. Though it’s a one-time job in a project, it’s a tedious one.

You can use the Sencha Cmd tool that you met in Chapter 8, while learning about Theming and Styling, to
generate an Ext JS 4 application that creates a complete template for generating the application. In technical circles
this is commonly referred to as Scaffolding.

Let’s generate an Ext JS 4 application using the generate command shown below.

sencha –sdk PathToSDK generate app NameOfTheApp PathToTheApp

Figure 10-9 shows the screenshot of the generate command run from the command prompt.

Figure 10-8. The output of the tests.html page

Chapter 10 ■ extending, Unit testing, and paCkaging

201

As shown in Figure 10-9 we’ve generated the Chapter10 application. Figure 10-10 shows the contents of the
Chapter10 application.

Figure 10-10. Contents of Chapter10 application

Figure 10-9. sencha generate command

Chapter 10 ■ extending, Unit testing, and paCkaging

202

As shown in Figure 10-10, the Chapter10 seems to be loaded with all the basic folders and files.

•	 .sencha folder contains the project-related configuration files.

•	 app folder has the MVC folder structure. This folder contains the app.js file also.

•	 ext folder contains the source files.

•	 packages folder contains the custom packages that you may want to use in your application,
like the themes.

•	 resources folder contains the images that you want to use in your application.

•	 index.html file is the executable web page where all the appropriate files have been
referenced.

As a developer all you need to do now is load this generated application folder in the IDE of your choice and start
building the models, views, controllers, and stores. You can also play with themes and other resources. I loaded this
application in Visual Studio, one of my favorite IDEs, as a web application like that shown in Figure 10-11.

Figure 10-11. Chapter10 application loaded in IDE

I launched the index.html page in a local development web server. Figure 10-12 shows the output of the
index.html page.

Chapter 10 ■ extending, Unit testing, and paCkaging

203

As shown in Figure 10-12, the default view is the Ext.container.Viewport instance with border layout. The center
region of the Viewport is a tab panel.

You can now modify the code and start building your application. After completing development we need to
build it so that it can be deployed to the production web server. Building the application involves tasks like minifying
the JavaScript files, generating CSS from SCSS files, finding and including only the source code of those components
used in the application, etc. All these tasks can be implemented using the simple build command shown here.

sencha build app production

You can build the application for a production or a testing environment.
Figure 10-13 shows the build command run from the command prompt.

Figure 10-12. Output of index.html page

Chapter 10 ■ extending, Unit testing, and paCkaging

204

The build command generates a build folder in your application. The build folder contains the production code
that can be copied to the production web server. Figure 10-14 shows the generated build folder.

Figure 10-13. sencha build command

Figure 10-14. build folder

Chapter 10 ■ extending, Unit testing, and paCkaging

205

As shown in Figure 10-14, the build folder contains Chapter10/production folder, which has the files that you
can deploy to the application. Ideally you just need to copy the resources folder, index.html, and all-classes.js files to
the production server. The all-classes.js file contains all the JavaScript code used in the application. This includes
the API code that our application needs and the code that we’ve written. The all-classes.js has the JavaScript code
in a compressed format, thereby reducing the size. Sencha Cmd uses the YUI (Yahoo User Interface) JavaScript
compressor to compress the JavaScript code.

Summary
In this chapter you learned how to extend the Ext JS 4 API by creating custom components and plugins. You can
create a custom component by using the autoEl attribute to specify the HTML element. If you want to build a complex
component, you can use the XTemplate using the tpl attribute and a data attribute for supplying data to the template.
Plugins can be developed by inheriting the Ext.AbstractPlugin class and overriding the init() method.

You can test Ext JS 4 applications using the Jasmine toolkit. You can create specs and specify the expectations
on the Ext JS4 application. Ext JS 4 applications can be created from scratch using Sencha cmd tool. You can use the
generate app command to scaffold the application. Finally you can package the application and build it using a single
sencha build command.

	Chapter 10: Extending, Unit Testing, and Packaging
	Extending the UI
	Custom Components
	Custom Plugin

	Unit Testing Ext JS 4
	Packaging
	Summary

