CHAPTER 8

Balancing Performance with
Software Engineering Best Practices
and Running in Production

Chapter 7 explored ways to improve runtime performance. You quantified these improvements using the
example perfLogger library and charted the results with R. That has been a theme throughout this book—
measure and prove a point with data. If I had to choose a single sentence to serve as a thesis statement for
this book, it would have to be something that I said in the first chapter that deserves repeating: Any
journeyman can create something to spec, but a master crafts with excellence and proves that excellence
with empirical data.

We've strived to do that so far throughout this book, creating our own tools to instrument our code
and monitor the web performance of our web sites. We crafted data visualizations to prepare our data for
easier consumption.

But this chapter is a little different. We will still look at raw data and performance optimizations, but
the focus will be on balancing the need to optimize with other needs, like adhering to coding standards
and best practices, readability, and making our code modular for use across a larger team.

We'll also take a closer look at how to generate test data at scale, either making our own test lab using
virtual machines, or putting our code on a production web site to crowd-source the data.

Balancing Performance with Readability, Modularity, and Good
Design

At the time of this writing the size of the group that I lead is roughly 20 to 25 engineers, managers, and
engineering leads. That’s a lot of hands to have making changes in just two to three code repositories. I
track our performance like a hawk would track a field mouse. I chart out our web performance from
WebPagetest for tens of URLs. I meet with the team regularly to discuss the output of these reports, going
over our first view and repeat view data to make sure we are making efficient use of cache. We look at all of
the aspects of performance and try to eke out as many optimizations as we can.

But there are other things that I track as well; among them are things like: What is our defect density?
What is our incident rate for each product in production? Those things can be harmful to a product brand,
arguably more than performance, depending on the severity of the issue.

T. Barker, Pro JavaScript Performance

© Tom Barker 2012

175

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

176

In looking at things like defects and production incidents, one of the leading root causes, in my
experience, is communication. Are the engineers talking to the QA staff updating them on features? Are the
engineers talking with the production operations staff about how to support the features? And are the
engineers talking with each other? But communication issues don't stop there. With literally millions of
lines of code, does everyone know what all of the code does? Are libraries written to modularize
functionality? Does everyone know about these libraries? If I were to read through a piece of code, would I
know what it does and how to use it? How readable is the code?

When code is breaking in production, it is more important to me that all twenty of my engineers know
how to use all of the code and functionality available to them than to wring out an extra millisecond or two
of performance.

That’s why we strive for modularity, reusability, and readability.

We try to practice modular code design, in that we try to write code in small self-contained and
interchangeable modules. Writing code in modules minimizes the potential harm that can come from
changes—because the modules communicate with each other via their interfaces, we can easily unit-test
the interface and create integration tests around how they interact.

By striving for reusability we reduce the chances of creating new bugs. Ideally, the code that we are
reusing has been tested and proven already.

Making our code readable means we try to make it obvious what our code does. This includes

e Abstracting complex logic into clearly and meaningfully named functions or self-
contained objects or modules (it’s all circular).

e Using consistent formatting that we have all agreed upon as our standard.
e Using good and clear naming patterns for our variable names.

While all of those are good practices, they generally also work counter to having the leanest, most
performant code humanly possible. Long, meaningful variable names take up characters that add to file
size, which increases the payload of a page. The same principle applies to the extra lines of code needed to
write functions and constructors, not to mention the extra overhead for the interpreter of creating these
objects in the heap, managing their garbage collection, and traversing their scope chain.

But having our code in objects and functions abstracts our logic to meaningfully named, atomic
pieces that can be updated and maintained without having too much of an impact on the rest of the
system.

It’'s all about perspective and finding balance. That’s part of what we will talk about this chapter.

Scorched-Earth Performance

In earlier chapters I've mentioned the term scorched-earth performance. That’s a term I've coined that
indicates that we have sacrificed all else in the ultimate pursuit of performance. In this section we look at
some scorched-earth practices, and we quantify the benefit, but also discuss the cost involved to give the
full picture.

Inlining Functions

Let’s first look at the run-time performance benefit that we get from inlining functions. In past chapters
we've looked at the overhead cost of having and traversing memory structures. Last chapter we talked
about this in the context of differing memory scopes, but the same concept applies to object hierarchies
we create.

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

Ostensibly there is a runtime performance boost that we can gain by coalescing all of our functionality
into a single function, instead of abstracting out functionality into separate functions or even objects. Let’s
look at this.

In the next example you'll create a single page where you will benchmark the results of coalescing
functionality into a single function, breaking the code into different functions, and creating objects to
contain functionality. Let’s get started!

Creating the Example
First create a new page with the basic skeletal HTML structure and include the perfLogger. js library:

<IDOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />
<title>Methodology Comparison</title>
<script src="/lab/perflogger.js"></script>
</head>

<body>

</body>

</html>

Next you'll create a script tag in the body of the page and create a function that will combine
everything that we want to do. Call the function unwoundfunction():

<script>
function unwoundfunction(){

}

</script>

Within unwoundfunction() you'll create a variable named sum, iterate through a for loop 300 times and
sum up the incremental value of each step in the loop:

var sum = 0;

for(var x = 0; x < 300; x++){
sum += X;

}

Then you will create a variable named average, iterate 300 times, sum up the incrementor, and divide
the sum by 300. This gives you two operations to calculate—summing up series of numbers and finding an
average.

var average = 0;

for(var x = 0; x < 300; x++){
average += X;

}

average = average/300;

The completed function should look like the following. It is this function that you will benchmark to
get the time for coalescing functionality:

177

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

function unwoundfunction(){
var sum = 0;
for(var x = 0; x < 300; x++){
sum += X;
}

var avgerage = 0O;

for(var x = 0; X < 300; x++){
avgerage += X;

}

avgerage = avgerage/300;

Next create two new functions, one to handle summing the numbers and the other to handle the
averaging of the result:

function getAvg(p){
var avg = 0;
for(var x = 0; x < p; x++){
avg += X;
}

return(avg/p);
}

function getSum(a){
var sum = 0O,
for(var x = 0; x < a; x++){
sum += X;
}

return(sum);

Next create a third function that will invoke getSum() and getAvg(). You'll benchmark this function as
an example of using functions:

function usingfunctions(){
var average = getAvg(300);
var sum = getSum(300)

Now create an object constructor to handle this functionality. You can call this object simpleMath and
give it two public methods, sum() and avg():

function simpleMath(){
this.sum = function(a){
var sum = 0,
for(var x = 0; x < a; x++){
sum += X;
}

return(sum);

178

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

this.avg = function(p){
var avg = 0;
for(var x = 0; x < p; x++){
avg += X;
}

return(avg/p);

Then create a function called usingobjects that will instantiate a new simpleMath object and call the
sum and avg methods. You will benchmark this function to get the metrics for using objects.

function usingobjects(){
var m = new simpleMath();
var average = m.avg(300);
var sum = m.sum(300);

And finally you'll benchmark these functions, having perflLogger execute each function 100 times:

perflLogger.logBenchmark("UsingObjects", 100, usingobjects, true, true);
perflLogger.logBenchmark("UsingFunctions", 100, usingfunctions, true, true);
perflLogger.logBenchmark("unwoundfunction", 100, unwoundfunction, true, true);

The complete test page should look like this:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>Methodology Comparison</title>
<script src="/lab/perflogger.js"></script>
<script>
function getAvg(p){

var avg = 0;

for(var x = 0; x < p; x++){

avg += X;
}

return(avg/p);
}

function getSum(a){
var sum = 0;
for(var x = 0; x < a; x++){

sum += X;
}

return(sum);

function simpleMath(){
this.sum = function(a){

179

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

var sum =

for(var x = 0; x < a; x++){
sum += X;

}

return(sum);

0;

this.avg = function(p){
var avg = 0;
for(var x = 0; x < p; X++){

avg += X;
}
return(avg/p);
}
}
</script>
</head>
<body>
<script>

function usingfunctions(){
var average = getAvg(300);
var sum = getSum(300)

}

function usingobjects(){
var m = new simpleMath();
var average = m.avg(300);
var sum = m.sum(300);

}

function unwoundfunction(){
var sum = 0;
for(var x = 0; x < 300; x++){
sum += X;
}

var average = 0;

for(var x = 0; x < 300; x++){
average += X;

}

average = average/300;

perflLogger.logBenchmark("UsingObjects", 100, usingobjects, true, true);
perflLogger.logBenchmark("UsingFunctions", 100, usingfunctions, true, true);
perflLogger.logBenchmark("unwoundfunction", 100, unwoundfunction, true, true);

</script>
</body>

180

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

</html>
Viewing this page in a browser you should see something like the following results:

benchmarking function usingobjects() { var m = new simpleMath; var average = m.avg(300); var sum
= m.sum(300); }

average run time: 0.025260580000000914ms

path: http://tom-barker.com/lab/useFunctions.html

useragent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.5; rv:16.0) Gecko/16.0 Firefox/16.0

benchmarking function usingfunctions() { var average = getAvg(300); var sum = getSum(300); }
average run time: 0.020855050000000687ms

path: http://tom-barker.com/lab/useFunctions.html

useragent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.5; rv:16.0) Gecko/16.0 Firefox/16.0

benchmarking function unwoundfunction() { var sum = 0; for (var x = 0; x < 300; x++) { sum += Xx;
} var avgerage = 0; for (var x = 0; x < 300; x++) { avgerage += x; } avgerage = avgerage / 300;

average run time: 0.01648929999999666ms
path: http://tom-barker.com/lab/useFunctions.html
useragent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.5; rv:16.0) Gecko/16.0 Firefox/16.0

Once again you'll put this either in production or in a test lab to get traffic pointed at the code to give a
nice breadth of results in the log file.
Let’s grab these results and chart them in R!

Analyzing Results

For charting you can reuse the PlotResultsofTestsByBrowser () function from the last chapter, and pass in
the ID of each test. This will create the chart shown in Figure 8-1.

PlotResultsofTestsByBrowser(c("unwoundfunction”, "UsingFunctions"”, "UsingObjects"),
c("Firefox"), "Comparison of average benchmark time \nfor coding methodology \nin milliseconds")

181

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

182

Comparison of average benchmark time
for coding methodology
in milliseconds

0.014

0.012

0.010 —

0.008 —

0.006 —

0.004

0.002 —

0.000 -
Firefox Firefox Firefox

unwoundfun UsingFunct UsingObject

Figure 8-1. Comparison of runtime performance for coalescing functionality, using functions, and using
objects

So you can see that there is a performance increase by stripping out all overhead and writing the code
as line-by-line imperative statements. In this simple example the differences are less than a millisecond in
scope, but the percentages are significant. From the smallest to the largest there is a 23% improvement in
performance for coalescing functionality compared to using functions, and an 18% improvement in
performance for coalescing functionality over using objects. In situations where performance is
everything, as in financial transactions, this is a significant difference.

But splitting our functionality into functions makes our code much more readable. It’s fairly obvious
what code like average = getAvg or sum = getSum does.

Creating objects takes that improvement even further. You can reuse objects between projects, pass
the objects between applications, extend the objects into new ones, or decorate the prototype chain, to
reuse functionality.

In most cases the extra overhead is worth the reusability and readability gains.

Closure Compiler

Another case of scorched-earth performance is what Google’s Closure Compiler does to JavaScript when
using Advanced mode. I touched a little on Closure Compiler back in Chapter 2, but let’s now look at a
fleshed-out example.

Closure Compiler can be run in either of two modes:

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

¢ In Simple mode it mostly performs like most other minifiers, removing whitespace,
line breaks, and comments

e In Advanced mode it rewrites the JavaScript by renaming variables and functions
from longer descriptive names to single letters to save file size, and it inlines
functions, coalescing them into single functions wherever it determines that it can.

It is Advanced mode that I would consider scorched-earth. Let’s take a look at an example.

Creating an Example

First create a baseline file called benchmarkobjects.html. On this page you will create two objects, a user
object and a video object. The user will be able to add video to their favorites list. You'll exercise this ability
in a function and benchmark that function.

Start with the familiar basic skeletal HTML structure and include the perflLogger library:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Loop Comparison</title>

<script src="/lab/perflogger.js"></script>
</head>

<body>

</body>

</html>

In the body, create a script tag and start making object constructors. First create the constructor for
the video object; it will accept a parameter that becomes the video title, and it has a public method called
printInfo() that simply returns the video title.

<script>
function video(title){
this.title = title;
this.printInfo = function(){
return this.title;
}

}

</script>

Next create the constructor for the user object. The user object accepts a parameter that is set as the
user name, and it has two public methods: addToFavorite(), which pushes the passed-in object into the
user’s favoritelist, and showFavorites(), which loops through the favoritelList. The user object then
console-logs the return value from calling printInfo on each video in the favoritelList:

function user(uname){
this.username = uname;
this.favoritelist = [];
this.addToFavorite = function(a){
this.favoritelList[this.favoriteList.length] = a;
}

183

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

this.showFavorites = function(){
for(var f = 0; f < this.favoriteList.length; f++){
var t = this.favoritelList[f].printInfo();
console.log(t);

Finally, create a function that will exercise the functionality you just created and benchmark that
function. It will create a new user object and iterate 20 times, creating a new video object each step and
adding that new video to the user’s favoritelist

function testUserObject(){
var ul = new user("tom");
for(var i = 0; 1 < 20; i++){
ul.addToFavorite(new video("video "+ i));
}

ul.showFavorites();

}

perflLogger.logBenchmark("benchmarkObject", 10, testUserObject, true, true);
Your completed page should look like this:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>Loop Comparison</title>
<script src="/lab/perflogger.js"></script>
</head>
<body>
<script>
function user(uname){
this.username = uname;
this.favoritelist = [];
this.addToFavorite = function(a){
this.favoritelist[this.favoritelist.length] = a;
}

this.showFavorites = function(){
for(var f = 0; f < this.favoritelist.length; f++){
var t = this.favoritelist[f].printInfo();
console.log(t);

}

function video(title){
this.title = title;
this.printInfo = function(){
return this.title;

184

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

}

function testUserObject(){
var ul = new user("tom");
for(var i = 0; 1 < 20; i++){
ul.addToFavorite(new video("video "+ i));
}

ul.showFavorites();

}

perflogger.logBenchmark("benchmarkObject", 10, testUserObject, true, true);
</script>

</body>

</html>

And when you look at the page in a browser, you should see something like the following:

benchmarking function testUserObject(){ var ul = new user("tom"); for(var i = 0; i < 20; i++){
ul.addToFavorite(new video("video "+ i)); } ul.showFavorites(); }

average run time: 0.6119000026956201ms

path: http://tom-barker.com/lab/benchmarkobjects.html

useragent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_5_8) AppleWebKit/536.11 (KHTML, like Gecko)
Chrome/20.0.1132.47 Safari/536.11

Run Through Closure Compiler

Now you are ready to run the code through Closure Compiler. The easiest way to do that is to use the
Closure Compiler UI, accessible here: http://closure-compiler.appspot.com/home.

Closure Compiler Ul is a web application (see Figure 8-2). On the left you enter the JavaScript and
choose from a number of options, and on the right is the output of Closure Compiler.

185

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

*3 Closure Compiler g4t/ 13 BESTAP| Halg

Add 1 URL v | Add
Exampls: hmpiwarm sx ample. combigiis 4
Optimization: © Whitespace ooty ® Simple O Advanced
Which oolimizalion is dgh for my code?
Formatting: = Pretty pirt ! Prirt inpedt deimiter
Compilo | Buset Compiled Code Warnings Emors POST data

Oviginal Size:
Compiled Size:

/f w=ClosureConpilerss

// Boompilation_ level SIMPLE_OPTIMIZATIONS
// Soutpur_file_nase default.js

#/ w=iClosureConpilerss

£/ ADD YOUR CODE HERE

funcrion helloCname) {
alert(*Hella, * + name);

}

hellof New user'):

©2009 Google - Tarms of Service - Privacy Pobicy - Google Home

Figure 8-2. The Closure Compiler UI

The options on the top left are:

e Atext box where you can enter the URL of a remote JavaScript file to be included in
the compilation. To use this, simply type in the URL and click the Add button. You'll
see the URL reflected in the large text area in the bottom, like so:

// @code_url http://tom-barker.com/lib/perflLogger.js

e Aseries of radio buttons that indicate the mode that Closure Compiler should run
in, either Whitespace Only, Simple, or Advanced. Whitespace Only does just what it
sounds like; it removes comments, line breaks, and unneeded whitespace. Simple
compilation removes whitespace, line breaks, and comments but it also renames
local variables to use smaller names. As you've already seen, Advanced compilation
completely rewrites the JavaScript.

¢ Your choice of formatting. Pretty Print includes line breaks and indents for easier
reading, and Print Input Delimiter allows you to pass in a string that will function as
boundaries between blocks of passed-in code—if we pass in multiple remote files,
the input delimiter will print (in comments) between the code from each file so that
we can tell which code block came from which file.

e A Compile button, and finally a large text area where you can enter your options and
any additional code you want to compile.

On the right side is a large text area where the compiled code is output. There are also tabs to see any
warnings or errors that were generated during compilation.

For this test if you include perflLogger. js as a file include and compile it, you get a JavaScript error
when trying to use the results because Closure Compiler has renamed the shim for performance.now(); see
Figure 8-3.

186

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

[| Console~ | HTML €S5 Scipt DOM Net Cookies Ul

/4 Clear Persist Profile All Errors Warnings Info Debuginfo Cookies Code Coverage

@ TypeLrror: performance.a is undefined
+o.erformance.a.p - performence.c.B |1 8, q = performonce.a.A - performance.a.p 11 ... benchm_er.html (fine 36)

Figure 8-3. JavaScript error thrown when running perfLogger through Closure Compiler Advanced
Compilation

So to make the test work you can just copy and paste the contents of perfLogger into the text area on
the right side, and change the performance.now references to Date.now().Then copy the contents of the
script tag from benchmarkobjects.html into the text area below the contents of perfLogger. See Figure 8-4.

*3 Closure Compiler 1o 1 REST API| Help
Add & URL: :] [) Compilation was 5 succons!
e R Original Sizo: 511KB (1.65KE geipped)

et e Compiled Size: 2 BAK (1,13KE gzipped)
GpfliRtation: e ooty 9 Sl © Asvanced Saved 43.62% off the onginal size [31.25% off the gzipped size)

mmmmmmm:_m The code may also be accessed at gatault is.
Fomatting: ™ Pretty print] Priet input dolimiter
Coenpile Haast Compiod Code Ermors POST data

A var ¢, e

var perflogger = function({ function) {

var serverloglRL = “savePerfData.phg”,
TeggerPool = [1;
(FMW.RFNW(Q}I

funceion gla) {
var d = f.prototype, b

——y|

—oTime = Dare.row(d - far{b in d) {
perfornance, tising. naﬁqa(tusun 1o, alb] = dib]
redirTine = perforsance. tinming, redirectind -
performance. timing. reﬁireusur(1o, return a
acheTize = performance.timing, domainiookupStart -
verlomu»ce.nmne.fmnswrz 1o, funceion jla) {
“dnsTise = perforsance. tising. dosainLockupend - var d = docusent_getElenentlyld("debug”), b = “apcstrong” « klal.description + “</stronga<hr/s™, b=
performance. tising.dosainLeckupStart |1 0, k[a] € 7 b+ (“average run time: “ + kfal.c + “michr/> al + &fa] =
_tepTime = perforsance. tising. conmectEnd - + (“path: ~ » k[a].url + “dbr/>"}, b= b 3.
performance. tising.conmectStary |1 0, "u: “ = k[al.g » "cbr/>"), b = b+ ("Redi Thl l[a] h + “cbr/»"), b = b + ("Cathe Time: "
_roundtripTine = perforsance. timing, FesponseEnd - K[a].d = “cbr/x"), b = b + (NS Lookup Time: " = k[al.e » "<br/="), b = b + {“tep Connection Time:
performance. timing.conmectStart |1 0, k[h]‘} n -‘b\bbrr‘; 1 b; b -‘5 rmndTrinTlu ® = k[a].i » "abr/s"), b = b + (“pageRenderTime: " «
renderTize = x - perf - timing. i a].f « “sbr, a=b+"
o ~FemerEing = Dakninonc):~ e ioemnce TR (o odd g &7 d.innerHTML += 3 : (d = docusent.createflesent("div), d.1d = “debug”, d.innerdT™L = a,
docusent .body . -nundchnd(n))
: funu.inﬂ Ta) {
function TestResults(1i}; 4 = "Eatas" + JSON.stringdfy(gk[al));
Testesults.prototype.perceivedTine = _pTime; console. Tog(a):
TestResults.prototype.redirectTise = _redirTime; var d = new)Mhumltwest
Testhesults.prototype.cacheTime - _cacheTime; d.open("POST", =,
TestResults.prototype. dnsLookupTime = _dnsTime; d. se\Requesmeaﬂer(contenn -type”, “application/x-mer-fors-urlencoded) ;
TestResults.prototype. toplonnectionTise = _topfime; Mﬂmmmaﬂerqmml-n@th" &, length):
TestAesults prototype. roundTripTime = _roundtripTise; d.sethequestheader {"Connection”, "elose™);
TestResults. prototype pageRenderTime = _renderTime; :‘Mfﬂdrﬂ“&cmt = funceion() {
function jsonloncat{cbjectl, object2) { 4 d.send(a)
for (uar key in ohiect2) { aniE;
I = = BRI var ® = “savePerfData.php”, k = []; | .
A (wi ndicw. D) { re
¥ar n = Date.now() - per a.C 11 0, 0= pe .2.G - per a1 0, pe v

2000 Google - Terms of Secvice - Prvacy Policy - Googlo Home

Figure 8-4. Running perfLogger through Closure Compiler Ul

Then create a new page with just the basic HTML skeletal structure, put a script tag in the body, and
copy and paste the compiled JavaScript into the script tag. The test file should look like the following:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>Closure Compiler Benchmark</title>
</head>

<body>

<script>

var c, e;

function f() {

}
function g(a) {

187

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

var d = f.prototype, b;
for(b in d) {
a[b] = d[b]

}

return a

}
function j(a) {

var d = document.getElementById("debug"), b = "<p>" + k[a].description + "</
strong>
", b = k[a].c ? b + ("average run time: " + k[a].c + "ms
") : b + ("run time:
+ k[a].j + "ms
"), b = b + ("path: " + k[a].url + "
"), b = b + ("useragent: " + k[a].v
+ "
"), b = b + ("Perceived Time: " + k[a].g + "
"), b = b + ("Redirect Time: " + k[a].h
+ "
"), b = b + ("Cache Time: " + k[a].d + "
"), b = b + ("DNS Lookup Time: " + k[a].e +
"
"), b = b + ("tcp Connection Time: " +

k[a].m + "<bx/>"), b = b + ("roundTripTime: " + k[a].i + "<bx/>"), b = b + ("pageRenderTime:
+ k[a].f + "
"), a = b + "</p>";

d ? d.innerHTML += a : (d = document.createElement("div"), d.id = "debug", d.innerHTML = a,
document .body.appendChild(d))

}
function 1(a) {

a = "data=" + JSON.stringify(g(k[a]));

console.log(a);

var d = new XMLHttpRequest;

d.open("POST", m, !0);

d.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
d.setRequestHeader("Content-length", a.length);

d.setRequestHeader("Connection", "close");

d.onreadystatechange = function() {

¥

d.send(a)

}
var m = "savePerfData.php", k = [];

if(window.D) {

var n = Date.now() - performance.a.C || 0, o = performance.a.G - performance.a.H || 0, p =
performance.a.p - performance.a.B || 0, q = performance.a.A - performance.a.p || 0, r =
performance.a.w - performance.a.o || 0, t = performance.a.I - performance.a.o || 0, u = Date.
now() - performance.a.z || 0

}

f.prototype;
:n;

g

h = o;
d=p;
.e = g;
m

i

.F

=1,
t;

= Uu;
{k:function(a, d, b, h) {
k[a] = new f;

k[a].id = a;

k[a].startTime = Date.now();
k[a].description = d;

k[a].q = b;

D N0 N N N NN NN

188

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

k[a].s = h

}, l:function(a) {

k[a].u = Date.now();

k[a].j = k[a].u - k[a].startTime;
k[a].url = window.location.href;
k[a].v = navigator.userAgent;
k[al.q 8& j(a);

k[a].s && 1(a)

}, r:function(a, d, b, h, v) {
for(var i = 0, s = 0;s < d;s++) {

}

k[al.c =1/ d;
h & j(a);

v 88 1(a)

}, g:function() {
return n

}, h:function() {
0

}, d:function() {
return p

}, e:function() {
return q

}, m:function() {
return r

}, i:function() {
return t

}, f:function() {
return u

}, J:function() {

e.k(a, "benchmarking " + b, !1, !1), b(), e.1(a), i += k[a].j

this.k("no_id", "draw perf data to page", !0,

this.1("no_id")

1

function w() {

this.K = "tom";

this.b = [];

this.n = function(a) {
this.b[this.b.length] = a

s

this.t = function() {
for(var a = 0;a < this.b.length;a++) {

console.log(this.b[a].title)

}

}
}

function x(a) {
this.title = a;
this.F = function() {
return this.title
}
}

10);

189

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

190

e.r("benchmarkClosureCompiler", 10, function() {
for(var a = new w, d = 0;20 > d;d++) {
a.n(new x("video " + d))
}
a.t()
}, to, 10);
</script>
</body>
</html>

If you view this in a browser you should see the following.

benchmarking function () { for(var a = new w, d = 0;20 > d;d++) { a.n(new x("video " + d)) }
a.t() }

average run time: 0.9ms

path: http://tom-barker.com/lab/benchmarkclosurecompiler.html

useragent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10 5 8) AppleWebKit/536.11 (KHTML, like Gecko)
Chrome/20.0.1132.47 Safari/536.11

When checking the log file, you can see that the Closure Compiler-rewritten code doesn't quite save
all of the fields to the log file. This is because Closure Compiler renamed most of the variables, including
runtime. If you console.log the serialized data, you can see that the data being posted looks like this:

data={"id":"benchmarkClosureCompiler","startTime" :1344114475936, "description”: "benchmarking
function () {\n for (var a = new w, d = 0; 20 > d; d++) {\n a.n(new x(\"video \" +
d));\n Hn a.t();\n}","q":false,"s":false, "u":1344114475943,"§":7, "url" : "http://tom-
barker.com/lab/benchmarkclosurecompiler.html","v":"Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.5;
1v:16.0) Gecko/16.0 Firefox/16.0","c":18.6}

The runtime variable is that little "c" value at the end. Good luck trying to parse that out of the stew
that the compiled source code is now. To be fair, there are ways to preserve property names, like using
quoted string property names—for example by using testResult["runtime"] instead of obj.runTime. For
more information about this, see Google’s documentation here: https://developers.google.com/closure/
compiler/docs/api-tutorial3.

When you pass the data back to savePerfData.php, that code is expecting a variable runTime or
avgRunTime, not c, so runtime data is never retrieved.

But that’s OK; the benefit we are interested in here is in web performance, so we’ll compare the two
pages in WebPagetest.

Compare and Analyze

Let’s go to webpagetest.com and run tests for both of our URLs. The following table has the URLs tested and
the test result URLs for the tests that I ran.

URL to Test Test Result URL

tom-barker.com/lab/benchmarkobjects.html http://www.webpagetest.org/result/120803_WS_
ad105844519fccc308dd9f678bcocaae/

tom-barker.com/lab/benchmarkclosurecompiler.html http://www.webpagetest.org/result/120803_B0_20
df854313c5101e6339e24bb0d958ec/

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

The summary results are shown in Figures 8-5 and 8-6.

Hoh Coge ferfomance Testior Al A B NA B x

From: Dulles, VA - Chrome - DSL K

; First Byte Cache CDN
Fri Aug 03 2012 12:58:56 GMT-0400 (EDT) Time Enabled Text Imaaes static detectad
content
Summary Details Performance Review Content Breakdown Domains Screen Shot
[Re-run the test) Raw page data - Raw object data
HTT] hive (.

Document Complete Fully Loaded
Load Time First Byte Start Render| Time Requests Bytesin| Time Requests BytesIn
First View 0.917s 0.355s 0.982s 0.917s 3 BKB |1.078s 4 BKB

Repeat View 0.525s 0.262s 0.136s 0.525s 2 1 KB |0.534s 2 1KB

Figure 8-5. Summary Web Performance Results for benchmarkobject.html

Web Page Perf Test i
e age ormance esor A A .NIA. X

Fw: Dulles, VA - Chrome - DSL First Byte Keep-alive Compress Compress Cache CDN
Fri Aug 03 2012 13:00:22 GMT-0400 (EDT) Tima Enabled Text Images static detected

content

Summary Datalls Performance Review Content Breakdown Domains Screen Shot
—— >
(" Re-run the test } Raw page data - Raw object dala
Expont HTTP Archive (har)

Document Complete Fully Loaded
Load Time First Byte Start Render| Time Requests Bytes In| Time Requests Bytesin
First View 0.772s 0.250s 0.397s 0.772s 3 4KB |0.787s 3 4 KB

Repeat View 0.588s 0.258s 0.138s 0.588s 2 1KB |0.597s 2 1KB

Figure 8-6. Summary Web Performance Results for benchmarkclosurecompiler.html

From the result screens just shown, you can see that the Closure Compiler-generated test has aload
time that is 200 milliseconds faster, a first byte time that is 100 milliseconds faster, a start render time that
is almost 600 milliseconds faster, a document complete time that is 145 milliseconds faster, and a fully
loaded time that is 291 milliseconds faster. Clearly there are significant gains to be had by using Closure
Compiler’s Advanced mode.

But at this point you should also be able to see the downside. It was necessary to alter the original
code just for the compiled code to work in the browser without generating errors. Once it was working in a
browser, you saw that some of the hooks into the back-end stopped working.

And all of this is just a small test example, very self-contained. Imagine if we had third-party ad code
embedded in the page. Imagine if we interacted with plug-ins with our JavaScript.

Now imagine adding new features to our original code and doing this all over again. Every week. With
20 people having their hands in the code base.

We've had to alter our workflow and introduce at least one extra debugging step, testing that
everything actually works after compilation. We've added a level of complexity, a new breakpoint for our
code to stop working. And debugging at this level, after everything has been obfuscated, is degrees of
magnitude harder than debugging our own native code that we have already written.

Are the gains in performance that we see worth the extra effort and additional level of complexity that
would be entailed in maintaining and updating compiled code?

191

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

Next Steps: From Practice to Practical Application

Throughout the book so far we have been creating tests and talking about and looking at data that is being
generated from these tests at scale. We now look at the tactics of doing this on the job.

Monitoring Web Performance

This is fairly straightforward. You'll just need to choose a number of URLSs that you want to monitor, plug
them into WPTRunner, and begin tracking those URLs over time.

As you gather data you should review that data with your team. Identify areas for improvement—are
your images not optimized, is your content not gzipped, how can you minimize HTTP requests? Set
performance goals and begin working toward those goals with your team.

Instrumenting Your Site

The next thing you want to do, if you aren’t doing so already;, is to instrument your site—to put
benchmarking code live in production to gather real live performance data for your pages that are already
out in the wild.

To do this, you just need to choose what pages you want to monitor, choose a set of metrics that you
want to gather—maybe the perceived load time of the page, maybe the runtime of the more complex
pieces of functionality—and integrate perfLogger into those pages to capture that data. Note that you
probably don’t want to use the benchmark feature of perfLogger, since that will impact the performance of
the pages, but rather use the startTimeLogging and stopTimeLogging functions to capture timing
information.

I do this on my own site. In Figure 8-7 you can see a screenshot of my home page with perfLogger
debug information on the far right side of the page.

1o BARKER con
hors:
il dth Socrates on iava.ulll.Map
Pasted an March 15, 2017 by Tom Barker

George ineer working at Sun {pve-Oracie by 1 prgyect codenamen the Green Prayect. & facet a1 that projectis 8 new
darguage caitedt Ok, 1t wourd fater Gome to e cail Jva because GFa Grademark issue. He has been tasked with Crasting the clssses and intarfces in the
“Ubr” namespace On i team i5 Socrates, ancient Greek phiosonher.

George: Mi Soeratas, could 153 and tall with you sbout an issue lm having? T lave to get yeur insight inta this...

Socrates: Hi George. of course] have time. but I wam you: 1 doubt my awn insight is any greater than your own. Come and sit with me and we will tatk. |
hope that wou dant rind me asking os many cuestions of uou that uey ask of me.

Georga: Thanks Socrates. My issu is this As pavt of the util namespace that I'm warking an | wish t reprosont sot thecey. | have croated a Calloctions
Interface and a heerarchy of collections classes. But as | have come to the idea of maps | find myself tom and unsuee of how to procesd.

Socrates: Why is this George? ireyou confissed as to what a map is?

George: Mo, Socrates [knaw whata map iz While s true that in set theoey a map would just be 2 sot of pairs, in my visian of this sutends beyand this.
Socrates: Tell me of your vision.

George- Wil | seemy vision of the Map as being a koy value pair, whore the transactions happen at the koy level.

Socrates: Interesting.

George:Sal crosted a Map abatract class that Implements the Calloctians interface [t decarates the core idos of collections with new methods that taget
oy e tho indiex, bt it dasen fesl ight.

Socrates: Why is that?

George: Well, | foed that the eare philosenhy of 8 Mag is very difforent fram a callestion, & collestion s 8 bue Mathomsticsl sot. o distingt collestion of
Iberms. But a map |s more skinto a relational databese table, akey indexes it and [transact against tho keys.

As | have it now, where 1 implements Colloction, most af the methods that make up the inter
that deta i pecessed 18 82 Bifferent - ar i 1TSS 1hen delegates to My decomled funeteaBily

because the draw porf data ta page
s times 0.016000048336246267ms

paths hitpufarww tom- barker.camiblogi?

and way

Socrates: Sa if you wren uging the signalure tnat you are implomonting whiy 84 you aven imglomenting 7
George- At this paint I'm not sure.

Socrates: 11 sounds to me e oy know haw yeu should prosed,

George: 1 go. | tink | should make Map it's Swn iNLracs, SinCe it foaly doos
make sevoral classes that that imploment it

dfernnt motaphar i interface. From thare | can

Thanks for your nsight, Socrates.

[End Distog]

s
useragent: Mazilla/s.0 (Macintash: intel
Mac O5 X 10_5.8) AppleWWebIGUSI6.1
IHHTML ke Gecha) Chrome/20.0.1132.47
Satarii5as.

Perceived Time 2013

DNE Lociup Time 0
tep Connoction Time O
raundTripTime: 2231
pageitenderTime 283

Figure 8-7. The tom-barker.com site with performance data drawn to the screen

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

The benefit of putting instrumentation on our live sites is that we get real live data from our actual
users. We track this data over time and look for issues as conditions change—new browsers and browser
versions get introduced, new features get promoted to production, and so on. Issues can appear as spikes
in performance numbers to indicate that something is suddenly running much slower, or even unexpected
drops in performance numbers, which could indicate that your site might be unavailable to your users.

Instrumenting your site is something that is done as regular maintenance of your site.

Benchmark in Your Test Lab

So we instrument our code in production and we monitor our web performance regularly, but how do we
make sure our code is performant before we release it? We benchmark in a test lab.

A test lab can be a physical lab full of workstations, or it can be one or two machines with virtual
machines running on them.

If you have the scale, budget, and staff for a physical test lab, then that’s awesome! That’s how it’s done
for real world-class web applications. But for 7 out of the last 12 companies that I've worked at, that was a
pipe dream. My developers and I would have to test and certify our own code on our own machines. And
in some cases that may be all that you need.

In either case your first order of business is to establish a browser support matrix—how else can you
know what browsers and clients to assemble if you don’'t have a clear list of what you will support. At the
bare minimum a browser support matrix is a list of browsers and browser versions and what level of
support you will provide for those browsers. In my own experience there are generally three levels of
support—will we provide support to an end user using this browser (Support in Production), should our
QA team test with this browser in their regular testing (Test in QA), and should our engineers be
conducting developer testing with these browsers, at least making sure that features function in these
browsers (Developer Testing)? See Figure 8-8 for an example of this sort of browser matrix.

| Browse
IE 10

N Y Y

IES Y Y Y
IE8 Y Y N
[IE7 Y Y N
|Chrome 21b N Y Y
Chrome 20 Y Y Y
|Chrome 19 Y Y N
. Firefox Aurora N N X
|Firefox Beta N ¥ Y
|Firefox 14 Y Y Y
Firefox 13 Y Y N
|safari 5.5 Y Y Y
_Safari 5.0x N & N

Figure 8-8. A bare-minimum browser support matrix

Ideally and eventually, though, your browser support matrix should include things like plug-ins, as
well as a breakdown of features, because not every feature may work in every browser. See Figure 8-9 for a
more robust browser support matrix.

193

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

1055.0

¥ 3 ¥ ¥ ¥ Y ¥
i054.3 Y Y N Y ¥ ¥ Y
Android 4.0 Y Y Y ¥ L § ¥ Y
Android 3.1 Y Y N Y 5 X Y
IE10 N ¥ Y Y Y ¥ ¥
IES Y Y Y ¥ Y Y Y
IES ¥ Y N Y N X N
IE7 Y Y N N N ¥ N
Chrome 21b N N Y Y y X Y
Chrome 20 Y Y Y Y ¥ Y Y
Chrome 19 Y Y N Y 1 i i Y
Firefox Aurora N N X Y Y ¥ ¥
FirefoxBeta N N ¥ Y Y Y s
Firefox 14 Y Y Y Y ¥ Y Y
Firefox 13 Y Y N Y Y i Y
Safari 5.5 Y Y Y Y Y Y ¥
Flash 11 Y Y Y N/A N/A N/A N/A
Flash 10 Y Y N N/A N/A N/A N/A
Silverlight 5 Y Y Y NfA N/A N/A N/A
Silverlight 4 Y Y N N/A N/A N/A N/A

Figure 8-9. A more detailed browser support matrix

The way you start to choose your browser matrix is by looking at your logs—what browsers are most
used by your clients? Make sure you take into account at least the most active browsers, which won'’t
always be the most attractive browsers. (How many years did you need to support IE 6 just because your
user base was locked into it because of corporate upgrade policy?) But don’'t assume that because a certain
set of browsers are being used to visit your site, you only need to focus on those browsers. It may just be
that your site only works best on those browsers. Also make sure you include beta and earlier browsers in
your matrix as well, so that you can code for the future.

Once you have your browser support matrix, you can begin gathering workstations or virtual
machines to test on those. Even if you have a QA staff that handles testing, as web developers the onus is
on us to make sure that what we create is functional and in a good state before handing off to QA. That
includes benchmarking our code against our browser matrix.

If you are going to use virtual machines (VMs), my favorite option is to use Virtual Box from Oracle,
available at https://www.virtualbox.org/. It's a completely free, open source, lightweight, professional-
level solution for running VMs. See Figure 8-10 for the Virtual Box homepage.

194

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

Welcome to VirtualBox.org!

VirtualBox is a powerful x86 and AMDG4/Intel64 virtualization product for enterprise as well as home use. Not only is VirtualBox | yewy Flash
Abaut an extremely feature rich, high performance product for enterprise customers, it is also the only professional solution that is
freely avallabie as Open Source Software under the terms of the GNU General Public License (GPL) version 2. See "Abaut lullmt 3rd, 2012
Screenshots - 4.2.0 Beta 1 available!
VirtualBox” for an introduction. TharR TS hm ot Tl o
Downloads upcoming 4.2 release wallahlc Get
Presently, VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts and supports & large number of guest operating a first impression of the
Documantation systems including but not limited to Windows (NT 4.0, 2000, XP, Server 2003, Vista, Windows 7), DOS/Windows 3.x, Linux (2.4 features!
and 2.6), Solaris and OpenSolaris, 05/2, and OpenBSD. « [Juna 2008, 2012
Enchdney crea VirtualBox 4.1,18 released!
T iirdial A VirtualBox |s being ocu\u.-lv U:valuped with frequent mlznlu and has an ever growing list of features, supported guest Brache today released VirtualBox
systems and t runs on. is effart backed by o dedicated company: everyone Is :]:é::‘a:«mamu nﬁ"hﬁ of
Contribute encouraged to contribute while W:Jr: ensures the n!udul:t always meets professional quality criteria. stability and fines ,,g,,z:m_ See
muni) the Changeleg for
Com Ld Hot picks: + [danuary 20th, 2012
This site has switched to Oracla
* Pre-built virtual machines for developers over at —»Oracle Tech Network singlo-sign-on authentication.
« phpVirtualBox AJAX web imerface project site Get Wx.r:mo;!mak SO
» IQEmu automated Windows VM creation, application integration project site Pl el ‘}:‘N"j:
new ar existing nick name.
» [T 3anuary 13th, 2012
p P VirtualBox 4.0.16 released!
Oraca iy reicased Iriiox
4 3inten,

Contact - Privacy palicy - Terms of Use LS makieaanca ittee ol
stabilty and fixes regressions. See
the Changelog for detads.

Mare information...

Figure 8-10. The homepage for Virtual Box

You simply go to the download section and choose the correct binary for your native operating
system. See Figure 8-11 for the Virtual Box download page.

Download VirtualBox

Here, you will find links to VirtualBox binaries and its source code.

VirtualBox binaries

By downloading, you agree to the terms and conditions of the respective license.

. Vlm.lnIBuu pliltfom pad(ugas The binaries are re!easod under the terms of the GPL version 2,
o Wir 8 for hosts -
+ VirtualBox 4 l. l.sl‘or 05 X hosts xss;amas«
o VirtualBox 4.1.18 for Linux hosts
= WirtualBox 4.1.18 for Solaris hosts |~ x86/amd64

+ VirtualBox 4.1.18 Oracle VM Pack Al p
Support for USB 2.0 devices, VirtualBox RDP and PXE boot for Intel cards. See this chapter from the User Manual for an introduction to this Extension Pack.
The Extension Pack binaries are released under the VirtualBox Personal Use and Evaluation License (PUEL).
Please install the extension pack with the same version as your installed version of VirtualBox!
If you are using VirtualBox 4.0.16, plcase download the extension pack ~+here.

. 4.1.18 Kit (SDK) ' +All platforms

Figure 8-11. The Virtual Box download page

Once you've downloaded and installed Virtual Box, you can simply add new virtual machines by
following the instructions in the application. Note that you'll need the install disk or the disk images for
each operating system that you want to run. Once you have all of your VMs set up, your Virtual Box
installation should look something like Figure 8-12.

195

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

Ubuntu

[Details | @5

@ Description —_— .

© Powered Off
= &l General
4&' Win7 IE9 Name: Ubuntu
L7 [saved 0S Type: Ubuntu
"ﬁ © Powered Off Base Memory: 535 MB
T Processor(s): 1
ﬂ gm:ﬁ - Boot Order: Floppy, CD/DVD-ROM, Hard Disk
VT-x/AMD-V: Enabled
Nested Paging: Enabled
Display
Video Memory: 12 MB
3D Acceleration: Disabled
2D Video Acceleration: Disabled
Remote Display Server: Disabled
@ storage
IDE Controller
IDE Primary Master: Ubuntu.vdi (Normal, 8.00 GB)
IDE Secondary Master (CD/DVD): Empty
Floppy Controller
Floppy Device 0: Empty
B Audio
Host Driver: CoreAudio 1T
Cantenallor: ICH ArQ7 I+

Figure 8-12. Virtual Box with multiple VMs

In this post-PC era don't forget to include mobile browsers in your matrix. Your best bet is, of course,
to have devices on hand to test on, but barring that you can run an emulator/simulator on your laptop or
use a third party like Keynote Device Anywhere that can make available a complete test center full of
devices, available for manual or scripted testing remotely. More information about Keynote Device
Anywhere can be found at their website, http://www.keynotedeviceanywhere.com/.

The i0S simulator comes bundled in with XCode, but getting and installing the Android emulator it is
a bit more involved. You must first download the Android SDK from http://developer.android.com/sdk/
index.html. Figure 8-13 shows the download page.

196

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

i Developers ~ Design Develop Distribute Q

Android Training API Guides Reference

Developer Tools Get the Android SDK

Download
The Android SDK provides you the APl libraries and

developer tools necessary to build, test, and debug
apps for Android.

Download the SDK for Mac

Other piatforms | System requirements

Installing the
SDK

Exploring the SDK
NDK

Workflow

Tools Help
Revisions

Extras

Creative Commons Attribution 2.5. F tail: i1 B Content License.

Samples

ADK

Figure 8-13. Android SDK download page

Once it's downloaded you’ll need to expand the compressed file and navigate to the tools directory to
get to the SDK Manager. On a Windows machine you can simply double-click the SDK Manager executable
in the tools directory. On a Mac or Linux box you need to go into Terminal, cd to the directory, and launch
android sdk:

>cd /android-sdk-macosx/tools
> ./android sdk

This opens the SDK Manager, shown in Figure 8-14. From the SDK Manager you can download and
install an Android Platform and a set of platform tools. The platform you download will be the device
image that you load up.

197

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

SDK Path: /Users/tharkeQ00/Downloads/android-sdk-macosx

Packages
-"‘l'_' Name | APl | Rev. |Status

X Android SDK Tools 20.0.1 & installed
"\ Android SDK Platform-tools P Not installed
¥ izl Android 4.1 (APl 16)
Documentation for Android SDK 16 2
% SDK Platform 16 2 ¥ Notinstalled
& Samples for SDK 16 1§ Not installed
‘% ARM EABI v7a System Image 16 2§ Not installed
2
2

& Not installed

‘. Coogle APls 16 & Not installed
Sources for Android SDK 16 & Not installed

» 2] Android 4.0.3 (APl 15)

¥ (=) Android 4.0 (APl 14)

> [z Android 3.2 (APl 13)

¥ Lzl Android 3.1 (API 12)

» (5] Android 3.0 (API 11)

> 2] Android 2.3.3 (API 10)

¥ 2] Android 2.2 (API 8)

» =) Android 2.1 (APl 7)

» .zl Android 1.6 (API 4)

* =] Android 1.5 (API 3)

|| Extras

00000000000 REEREEREEEE

Show: g Updates /New Elnstalled "] Obsolete Select New or Lipdates (Install 7 packages...)

Sort by: (®) AP level (") Repository Deselect All C " Delete pac-icages... .)

Done loading packages.,

Figure 8-14. Android SDK Manager

Once you have downloaded a platform and the platform tools, you next need to launch the Android
Virtual Device Manager, by running android avd in the tools directory:

./android avd

The Android Device Manager, much like Virtual Box, will allow you to create and run virtual machines.
See Figure 8-15 for the Android Virtual Device Manager.

198

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

el Al

List of existing Android Virtual Devices located at fUsers/tbarke000/.android /avd

[AVD Name :Targe(Name [Platform [API Level [cPu/aBI I|

= 'No AVD available = —=
Edit...

Delete...
Repair... |

Details...

Start...

~ A valid Android Virtual Device. r A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 8-15. The Android Virtual Device Manager, running on a Mac

In the Android Virtual Device Manager you can create a new virtual device from the platform that you
just downloaded. To do so, just click the New button to bring up the screen shown in Figure 8-16. Here you
configure your new virtual device.

199

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

8.0.0 Edit Android Virtual Device (AVD)

Name: Ijellybean]

Target: | Android 4.1 - API Level 16

ar

CPU/ABI: ARM (armeabi-v7a)

“

SD Card: 5 -
() Size: |500 [MiB =]
O File: Browse...

Snapshot: i
|| Enabled

Skin: -
(®)Built-in: | WVGA800 3
() Resolution: X

Hardware: .
Property Value New...
Abstracted LCD density 240
Max VM application he: 48 Delete
Device ram size 512

Override the existing AVD with the same name
| Cancel | [EditAvD |

Figure 8-16. Adding an Android Virtual Device

When you are done you can launch the device and load up the browser. See Figure 8-17 for the
emulator in action.

200

CHAPTER 8 " BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

8.0.0 5554;Jellybean

tom- BARKER com

home

A

Dialogue

with

Socrates

on

java.util.Map

Posted

on

March

18,

iﬂ ialnddiidedsdpidsaoio
T R o R

Barker e e e s e

George

is

an

engineer
working

at

Sun
Microsystems
(pre-

Figure 8-17. tom-barker.com running on the Android emulator

OK. You're instrumenting your production code, monitoring the web performance of your pages in
production, and benchmarking the code in a test lab against your browser matrix. What now?

Share Your Findings

Benchmarking, instrumenting, and monitoring are great, but if you don'’t tell anyone, what is the point?
Share your findings with your team. But first analyze your data—I mean really understand your data so
that you can speak to each data point and have an idea about the cause or implication of each finding.

Use the data visualization skills that you have been refining throughout the course of the book to
generate charts, assemble the charts into a report, and share your analysis. Play with different types of
charts to see which ones better communicate your point.

Have an open mind, and consider the context. Are you missing something that can explain a larger
picture? Get second opinions and double-check your tests. Maybe the test you are benchmarking is flawed
in some way, like an improperly scoped variable throwing off your results.

Once you have your findings double-checked your analysis complete, and your charts created, you
should assemble your results into a report, maybe an email, maybe a PDE maybe a wiki entry; it just needs

201

CHAPTER 8 © BALANCING PERFORMANCE WITH SOFTWARE ENGINEERING BEST PRACTICES AND RUNNING IN PRODUCTION

202

to be something in which you can include not just your graphs but your analysis and context as well, and
that can be distributed.

Review your report with your team, go over root causes, and come up with a plan of attack to address
the areas for improvement. Above all else always strive to improve.

Summary

In this chapter we explored some closing thoughts about performance.

We talked about balancing performance with keeping the best practices of readability, reuse, and
modularity. We looked at scorched-earth performance practices. We looked at the practice of inlining
functions, coalescing them into a single function to reduce overhead that the JavaScript interpreter must
go through to construct and execute function and object hierarchy. We created a test to compare the
runtime performance of inlining functions versus using functions versus using objects.

While we saw performance gains with this scorched-earth performance practice, we also lost the gains
of modularity, readability, and reusability that good software design gives us.

We also looked at running our code through Google’s Closure Compiler. We saw significant web
performance benefits. But we also saw that compiling our JavaScript down to the barest minimum also
made our code much harder to debug, and would add a much more difficult layer of abstraction to
maintain and update.

The point of these two examples was not just the raw numbers, it was that in all things we do we must
strive to find balance. Performance is immensely important, but there are other aspects of quality just as
important, if not more so.

We also talked about how to implement the things that we have learned. We discussed monitoring the
web performance of our production sites using WPTRunner. We talked about using perfLogger to
instrument our code live in the wild. We talked about assembling a browser support matrix and creating a
test lab to benchmark our code in our test lab.

And finally we talked about the importance of sharing our data; using our findings as a feedback loop
to identify areas of improvement in our continual quest to be excellent.

	Chapter 8: Balancing Performance with Software Engineering Best Practices
	Balancing Performance with Readability, Modularity, and Good Design
	Scorched-Earth Performance
	Inlining Functions
	Closure Compiler

	Next Steps: From Practice to Practical Application
	Monitoring Web Performance
	Instrumenting Your Site
	Benchmark in Your Test Lab
	Share Your Findings

	Summary

