
1

■ ■ ■

CHAPTER 1

What is Performance

Performance refers to the speed at which an application functions. It is a multifaceted aspect of quality.
When we’re talking about web applications, the time it takes your application to be presented to your users
is what we will call web performance. The speed at which your application responds to your users’
interactions is what we’ll call runtime performance. These are the two facets of performance that we will be
looking at.

Performance in the context of web (and especially mobile web) development is a relatively new
subject, but it is absolutely overdue for the attention it has been getting.

In this book we will explore how to quantify and optimize JavaScript performance, in the context of
both web performance and runtime performance. This is vitally important because JavaScript is
potentially the largest area for improvement when trying to address the total performance of your site.
Steve Souders, architect of both YSlow and PageSpeed, and pioneer in the world of web performance, has
demonstrated this point in an experiment where he showed an average performance improvement of 31%
when removing JavaScript from a sample of web sites.1 We can completely remove any JavaScript from our
site as Steve did in his experiment, or we can refine how we write JavaScript and learn to measure the
efficiencies in what we write.

It’s not realistic to remove JavaScript from our front-end, so let’s look at making our JavaScript more
efficient. Arguably even more important, let’s look at how we can create automated tools to track these
efficiencies and visualize them for reporting and analysis.

Web Performance
Sitting with your laptop or holding your device, you open a web browser, type in a URL and hit Enter, and
wait for the page to be delivered to and rendered by your browser. The span of time that you are waiting for
the page to be usable depends on web performance. For our purposes we will define web performance as
an overall indicator of the time it takes for a page to be delivered and made available to your end user.

There are many things that influence web performance, network latency being the first. How fast is
your network? How many round trips and server responses are needed to serve up your content?

To better understand network latency, let’s first look at the steps in an HTTP transaction (Figure 1.1).
When it requests a URL, whether the URL for a web page or a URL for each asset on a web page, the

browser spins up a thread to handle the request and initiates a DNS lookup at the remote DNS server. This
allows the browser to get the IP address for the URL entered.

1 http://www.stevesouders.com/blog/2012/01/13/javascript-performance/

T. Barker, Pro JavaScript Performance
© Tom Barker 2012

CHAPTER 1 ■ WHAT IS PERFORMANCE

2

Browser

DNS Lookup

DNS Reply

SYN

SYN-ACK

ACK

HTTP GET

FIN

FIN-ACK

ACK

HTTP Response

2XX | 3XX | 4XX | 5XX

DNS Server Server

Figure 1-1. Sequence diagram of network transactions in a request for a web page and repeated for each
remote -object included in a web page

3

CHAPTER 1 ■ WHAT IS PERFORMANCE

■ Note Threads are sequential units of controlled execution for applications. Whenever an application performs
any operation, it uses a thread. Some applications are multithreaded, which means that they can do multiple things
at once. Generally browsers use at least one thread per tab. That means that the steps that the thread executes—
the steps that we outline as part of the connection, download and rendering process—are handled sequentially.

Next the browser negotiates a TCP three-way handshake with the remote web server to set up a TCP/
IP connection. This handshake consists of a Synchronize, Synchronize-Acknowledge, and Acknowledge
message to be passed between the browser and the remote server. This handshake allows the client to
attempt communication, the server to acknowledge and accept the attempt, and the client to acknowledge
that the attempt has been accepted.

This handshake is much like the military voice procedure for two way radio communication. Picture
two parties on either end of a two way radio—how do they know when the other party has finished their
message, how do they know not to talk over each other, and how do they know that the one side
understood the message from the other? These have been standardized in voice procedure, where certain
key phrases have nuanced meaning; for example, Over means that one party has finished speaking and is
waiting for a response, and Roger indicates that the message has been understood.

The TCP handshake, like all communication protocols, is just a standardized way to define
communication between multiple parties.

THE TCP/IP MODEL

TCP stands for Transmission Control Protocol. It is the protocol that is used in the TCP/IP model that defines
how communications between a client and a server are handled, specifically breaking the data into
segments, and handling the handshake that we described earlier (Figure 1.1).

The TCP/IP model is a four-layer model that represents the relationship between the different protocols that
define how data is shared across the Internet. The specification for the TCP/IP model is maintained by the
Internet Engineering Task Force, in two RFC (Request For Comment) documents, found here: http://
tools.ietf.org/html/rfc1122 and http://tools.ietf.org/html/rfc1123.

The four layers in the TCP/IP model are, in order from furthest to closest to the end user, the Network Access
layer, the Internet layer, the Transport layer, and the Application layer.

The Network Access layer controls the communication between the hardware in the network.

The Internet layer handles network addressing and routing, getting IP and MAC addresses.

The Transport layer is where our TCP (or UDP) communication takes place.

The Application layer handles the top-level communication that the client and servers use, like HTTP and
SMTP for email clients.

CHAPTER 1 ■ WHAT IS PERFORMANCE

4

If we compare the TCP/IP model to our sequence diagram, we see how the browser must traverse up and
down the model to serve up our page, as shown here.

Once the TCP/IP connection has been established, the browser sends an HTTP GET request over the
connection to the remote server. The remote server finds the resource and returns it in an HTTP Response,
the status of which is 200 to indicate a good response. If the server cannot find the resource or generates
an error when trying to interpret it, or if the request is redirected, the status of the HTTP Response will
reflect these as well. The full list of status codes can be found at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html but the most common ones are these:

• 200 indicates a successful response from the server.

• 404 means that the server could not find the resource requested.

�� 500 means that there was an error when trying to fulfill the request.

It is here that the web server serves up the asset and the client begins downloading it. It is here that
the total payload of your page—which includes file sizes of all images, CSS, and JavaScript—comes into
play.

The total size of the page is important, not just because of the time it takes to download, but because
the maximum size of an IP packet is 65535 octets for IPv4 and IPv6. If you take your total page size
converted to bytes and divide it by the maximum packet size, you will get the number of server responses
needed to serve up your total payload.

Figure 1-2. Browser architecture

5

CHAPTER 1 ■ WHAT IS PERFORMANCE

Another contributor to network latency is the number of HTTP requests that your page needs to make
to load all of the objects on the page. Every asset that is included on the page—each image and external
JavaScript and CSS file—requires a round trip to the server. Each spins up a new thread and a new instance
of the flow shown in Figure 1-1, which again includes a cost for DNS lookup, TCP connection, and HTTP
request and response, plus the cost in time transmitting the sheer file size of each asset.

See Figure 1-2 for an idea of how this simple concept can exponentially grow and cause performance
hits in scale.

Waterfall charts are a tool to demonstrate the time it takes to request a page and all of the assets
included in the page. They show the HTTP transaction for each asset needed to construct a page, including
the size of each asset, how long each one took to download, and the sequence in which they were
downloaded. At a high level, each bar in the waterfall chart is a resource that we are downloading. The
length of a bar corresponds to how long an item takes to connect to and download. The chart runs on a
sequential timeline, so that the top bar is the first item that gets downloaded and the last bar is the final
item, and the far left of the timeline is when the connections begin and the far right is when they end. We
will talk much more about waterfall charts in Chapter 2, when we discuss tools for measuring and
impacting performance.

Parsing and Rendering
Another influencer of web performance, outside of network concerns, is browser parsing and rendering.
Browser parsing and rendering is influenced by a number of things. To better understand this concept let’s
first look at an overview of the browser’s architecture as it pertains to parsing and rendering web pages
(Figure 1-3).

Most modern browsers have the following architecture: code to handle the UI, including the location
bar and the history buttons, a Rendering Engine for parsing and drawing all of the objects in the page, a
JavaScript Engine for interpreting the JavaScript, and a network layer to handle the HTTP requests.

Since the browser reads content from the top down, where you place your assets impacts the
perceived speed of your site. For example, if you put your JavaScript tags before HTML content, the
browser will launch the JavaScript interpreter and parse the JavaScript before it finishes rendering the
remainder of the HTML content, which can delay making the page usable for the end user.

Browsers are your bread and butter as a web developer, and so you should be more than familiar with
each of the rendering engines and JavaScript engines. It is more than worth your time to download the

Ul Layer

Rendering Engine

Network
Layer

JavaScript
Interpreter

Figure 1-3. Time series of my lift log

CHAPTER 1 ■ WHAT IS PERFORMANCE

6

ones that are open-source (see the next section for URLs where available) and read through some of the
source code. If you are really adventurous you can put your own instrumentation or logging into the
source code and automate your own performance tests running in your forked engine.

Rendering Engines
Let’s take a look at some of the more widely used rendering engines out in the wild. It’s important to think
of the rendering engine as more than the browser. By modularizing the architecture of the browsers, the
browser makers have been able to federate the components. More tools than just browsers render HTML,
including email clients and web components in other applications. By having a distributable rendering
engine, browser makers can reuse their own engines or license them for use by other companies. This also
usually allows developers to know what to expect from a software package just by knowing which
rendering engine it is using.

Firefox and all of its derivatives and cousins (like Thunderbird, Mozilla’s email client) use Gecko,
available at https://developer.mozilla.org/en/Gecko. Gecko was first developed at Netscape, before the
Mozilla Project spun out as its own entity, as the successor to the original Netscape rendering engine, back
in 1997.

Webkit is what Chrome and Safari use, and is your target for most mobile web development since it is
used as the layout or rendering engine for Android devices as well as mobile Safari for iOS devices and the
Silk browser on Kindle Fires. Webkit is available at http://www.webkit.org/. WebKit was started in 2001 at
Apple as a fork of a previous rending engine, KHTML from KDE. WebKit was open sourced publicly in
2005.

Opera on desktop, mobile, and even all the Nintendo consoles (NDS, Wii) use Presto, which was
introduced in 2003 with Opera 7. More information about Presto can be found at http://dev.opera.com/
articles/view/presto-2-1-web-standards-supported-by/.

And finally, Internet Explorer, along with other Microsoft products like Outlook, uses MSHTML,
codenamed Trident. Microsoft first introduced Trident with Internet Explorer 4 in 1997 and has been
iterating on the engine since. Documentation for Trident can be found here: http://msdn.microsoft.com/
en-us/library/bb508515.

JavaScript Engines
Next let’s take a look at the JavaScript engines used by the most popular browsers. Modularizing the
JavaScript interpreter makes the same kind of sense as modularizing the rendering engine, or
modularizing any code for that matter. The interpreter can be shared with other properties, or embedded
in other tools. The open source interpreters can even be used in your own projects, perhaps to build your
own static code analysis tools, or even just to build in JavaScript support to allow your users to script
certain functionality in your applications.

SpiderMonkey is the JavaScript engine made by Mozilla that is used in Firefox. Brendan Eich, creator
of JavaScript, created SpiderMonkey in 1996 and it has been the JavaScript interpreter for Netscape and
then Firefox ever since. The documentation for SpiderMonkey is available here: https://developer.
mozilla.org/en/SpiderMonkey. Mozilla has provided documentation showing how to embed
SpiderMonkey into our own applications here: https://developer.mozilla.org/en/How_to_embed_the_
JavaScript_engine.

Opera uses Carakan, which was introduced in 2010. More information about Carakan can be found
here: http://my.opera.com/dragonfly/blog/index.dml/tag/Carakan.

Google’s open source JavaScript Engine used by Chrome is available here: http://code.google.com/p/
v8/. Documentation for it is available here: https://developers.google.com/v8/intro.

Safari uses JavaScriptCore, sometimes called Nitro. More information about JavaScriptCore can be
found here: http://www.webkit.org/projects/javascript/index.html.

7

CHAPTER 1 ■ WHAT IS PERFORMANCE

And finally, Internet Explorer uses Chakra as their JScript engine. Remember that, as Douglas
Crockford details at http://www.yuiblog.com/blog/2007/01/24/video-crockford-tjpl/, JScript started life
as Microsoft’s own reverse-engineered version of JavaScript. Microsoft has since gone on to give JScript its
own voice in the overall ecosystem. It is a legitimate implementation of the ECMAScript spec, and Chakra
even supports some aspects of the spec that most other JavaScript engines don’t, specifically conditional
compilation (see the accompanying discussion of conditional compilation).

All of these are nuances to consider when talking about and optimizing the overall web performance
of your site.

The JavaScript team at Mozilla also maintains a site, http://arewefastyet.com/, that compares
benchmarking times for V8 and SpiderMonkey, comparing the results of both engines running the
benchmarking test suites of each engine.

CONDITIONAL COMPILATION

Conditional compilation is a feature of some languages that traditionally allows the language compiler to
produce different executable code based on conditions specified at compile time. This is somewhat of a
misnomer for JavaScript because, of course, JavaScript is interpreted, not compiled (it doesn’t run at the
kernel level but in the browser), but the idea translates.

Conditional compilation allows for writing JavaScript that will only be interpreted if specific conditions are
met. By default conditional compilation is turned off for JScript; we need to provide an interpreter-level flag
to turn it on: @cc_on. If we are going to write conditionally compiled JavaScript, we should wrap it in
comments so that our code doesn’t break in other JavaScript interpreters that don’t support conditional
compilation.

An example of JScript conditional compilation is

<script>

var useAX = false; //use ActiveX controls default to false

/*@cc_on

@if (@_win32)

 useAX = true;

@end

*/

</script>

CHAPTER 1 ■ WHAT IS PERFORMANCE

8

Runtime Performance
Runtime is the duration of time that your application is executing, or running. Runtime performance
speaks to how quickly your application responds to user input while it is running—for example, while
saving preferences, or when accessing elements in the DOM.

Runtime performance is influenced by any number of things—from the efficiency of the algorithms
employed for specific functionality, to optimizations or shortcomings of the interpreter or browser
rendering engine, to effective memory management and CPU usage, to design choices between
synchronous or asynchronous operations.

While runtime performance is thus a subjective perception of the overall peppiness of your
application, you can build in instrumentation that will allow you to track the shape and trend of your
users’ overall experiences and analyze the outliers. You can also conduct multivariate testing experiments
to see what approach yields the greatest performance gain at scale and with the browsers in use with your
specific user base.

We will explore these ideas in Chapter 4.

Why does performance matter?
The first reason should be obvious—faster web sites mean a better overall user experience for your end
user. A better experience in theory should equate to happier users.

A faster experience also means that users can access your features faster, hopefully before they
abandon the session. Session or site abandonment happens for any number of reasons: pages taking too
long to load, users losing interest, browsers crashing, or any other of a near-infinite number of reasons.

Figuring out your own site abandonment rate is easy. Just take the total number of users who do
whatever action you want of them—purchase an item, register a new account, upsell to a service, view
pages in other sections, click a given button on the homepage, whatever the high-level objective is that
you have for your site. You take that number and divide it by the total number of visits. Subtract that from
one and multiply that by 100 to give you the percentage of traffic that abandoned your site before fulfilling
your objective:

[abandonment rate] = (1 - ([number of fulfilled objectives] \ [total number of visits])) * 100

As an example, say we have a web form, maybe a customer registration page. The whole point of that
page is to get users to create accounts—once they have an account we can start tailoring things to their
own personal preferences, we can target ads to their purchasing habits, and we can make
recommendations to them based on past purchases and viewing history. Whatever the purpose, we want
them signed in and that’s how we’ll measure the success of this page. Once a user hits Submit on the form,
we go to a PHP script that updates a database, creates a new entry in our User table, and then directs to
our homepage.

So we look at the page view metrics for this page and see that we have 100,000 unique page views; in
our algorithm this is the total number of visits. If we look at the number of users created in our database,
we see that we have 30,000 users. At this point we could apply the algorithm to get our abandonment rate
of 70%:

(1 – (30,000 \ 100,000)) * 100 = 70

Improving performance can bring significant benefits to your bottom line by reducing your
abandonment rate. There have been a number of prominent case studies where companies have
demonstrated the tangible harm (seen in increased abandonment rates) caused by poor web performance.

Keynote has made available an article by Alberto Savoia, detailing the impact of performance on
abandonment rates at http://www.keynote.com/downloads/articles/tradesecrets.pdf. In their

9

CHAPTER 1 ■ WHAT IS PERFORMANCE

whitepaper “Why Web Performance Matters,” available at http://www.gomez.com/pdfs/wp_why_web_
performance_matters.pdf, Gomez details how abandonment rates can increase from 8% up to 38% just by
introducing latency in page web performance.

You can run your own experiments using the calculation just shown to quantify and extrapolate the
return on investment for optimizing site performance.

Instrumentation and Visualization
A big part of this book is about putting tooling in your code and using data visualizations to demonstrate
the results. In truth, that is kind of the point of this book. There is no one silver-bullet solution when it
comes to performance. The results that one person sees may not be the same results that another gets,
because they may have a completely different user base, using a completely different browser.

Maybe your users are locked into using Internet Explorer because of corporate policy, or maybe your
audience is made up of early adopters and you have a high population of people using beta releases of
browsers, which may have different optimizations in their interpreter or rendering engine, or may even
have bugs in their interpreter or rendering engine.

Whatever the case, your results will vary. And they will vary at scale, because of connection speed at
different times of the day (users at work versus users at home), because of their method of connecting
(cable versus dial up), or any other reason.

But by measuring your own results and visualizing them to see the overall shape of what your data
looks like, you’ll be able to fine-tune your own site based on your own real data and trends.

Data visualization as a discipline has blossomed lately. No longer is it relegated solely to the world of
mathematics, theory, or cartography. I remember when I first got an inkling of what I could do with data
visualization. I was at a conference; it was Velocity in Santa Clara surrounded by my peers. I watched John
Rauser give a talk about how he and his team at Amazon debug production issues by analyzing production
logs. In his session he talked about sometimes needing to pull out granular data at the individual user
level, lay it out in hard copy, and just squint at the data to see the overall shape of it. The shape is what was
telling.

That really resonated with me, and since then I’ve explored that in almost every aspect of my life.
At work I use data visualizations as management tools for running my organization. Some of the

charts that we will be creating in this book are derived from charts that I regularly run for my own team.
In my leisure time I trend my power lifting lift log to see my increases, my resets, and when I plateau

(see Figure 1-4). I can see how other things going on in my life affect my lift increases, by cross-referencing
dates in the time series. Data analysis is actually a key concept in power lifting, enabling you to manage
your increases in weight by measuring your recover time. The sign that you have advanced to a higher level
of experience is the time it takes to recover from heavy lifts and the increase in the amount that you are
lifting. Beginners advance very quickly because they are lifting far from their potential weight ceiling, but
intermediate and advanced lifters push their muscles so hard and work so close to their potential ceiling
that it takes them much longer to recover and increase their lift weights.2

At home I also track the humidity level in each room of my house, and I play with the dials. I see what
effect running the heat has on the humidity, or caulking the spaces between the floorboards and the walls,
or even just having the doors open instead of closed for each room in the house. In such a way I can aspire
to naturally have the lowest possible humidity level in my house without running my dehumidifier.

Visualizing my data allows me to see a larger scope of a situation and to clearly see any spikes,
outliers, or trends that might not be obvious in the raw data.

2 See Mark Rippetoe’s Starting Strength (Aasgard Press)

CHAPTER 1 ■ WHAT IS PERFORMANCE

10

The Goal of This Book
There is no shortage of information available online and in other books about current best practices for
performance—but performance is a moving target. Because each browser uses a different JavaScript
interpreter and rendering engine, your results will differ between browsers and browser versions. Best
practices are changing or becoming redefined continually because of changes and optimizations at the
interpreter level, differences in system configuration, and network speeds. This pace of change is
exacerbated by the quickened release schedule that most browsers have adopted.

But just as important as following best practices is the ability to measure your own performance, so
that you can adjust as times change, and so that you can note the subtle nuances in your own code and
define your own best practices by your own observations.

My goal with this book is to give you the tools to observe and track over time the performance of your
web applications from multiple perspectives, so that you are always aware of all aspects of your
performance. And by tools, I don’t just mean the code that we will develop through the course of the book
or the applications available that we will talk about and even automate. I mean the insight to care about
these metrics and the mental models to build such instrumentation and visualization into everything that
you do.

In many ways, analyzing and optimizing the efficiency of how things operate and perform is part of
reaching the next level of excellence. Any journeyman can create something to spec, but a master crafts
with excellence and proves that excellence with empirical data.

Technologies Used and Further Reading
As the title suggests, we use JavaScript extensively throughout this book. We also use PHP to automate
certain tools, scrape results, and format data. If you aren’t already familiar with PHP, its grammar and
lexicon are fairly similar to JavaScript, so you should have no problem switching context between the two
languages. Extensive coverage of PHP is outside the scope of this book. If you want more of an
introduction to the language you can check out Beginning PHP and MySQL, by W. Jason Gilmore (Apress,
2005), or if you want a deeper dive into modern PHP, check out Pro PHP Programming, by Peter MacIntyre,
Brian Danchilla, and Mladen Gogala (Apress, 2011).

Figure 1-4 Time series of my lift log

11

CHAPTER 1 ■ WHAT IS PERFORMANCE

Another language we will use quite a bit is R, which is both a language and the environment that runs
the language, and it is used to run statistical calculations and chart data that you import or derive. It is a
very interesting language with a very specific use.

R can be daunting at first if you aren’t familiar with its syntax or even things as fundamental as its
different data types. Don’t worry; I will explain everything that you need to know to understand the code
that we will be writing in R. If you’d like a deeper dive into R—and with most statistical information from
the top companies being derived in R,3 and data science being one of the largest growth fields in the
coming years,4 why wouldn’t you want to know more about R?—then I recommend R in Action, by Robert
Kabicoff (Manning, 2011) and The Art of R Programming: A Tour of Statistical Design, by Norman Matloff
(No Starch Press, 2011). Both books approach R as a programming language, as opposed to a mathematical
environment, which makes it easier for developers to grasp.

R is amazingly useful to learn, and the more you use it the more you’ll find uses for it. And it’s
completely extensible, with a rich plugin architecture and a huge community that builds plugins; it’s rare
to find something that R can’t do—at least in the realm of statistics and data visualization.

As I said earlier, there are many resources available for further reading and exploration on the subject
of overall web performance optimization. I’ve referenced Steve Souders’ works already; he is a luminary in
the field of web performance. His web site is http://www.stevesouders.com/ and he has written two books
that go deep into many aspects of web performance. He also runs http://httparchive.org/, whose goal is
to be an archive of performance metrics and statistics for the web. All manner of interesting things are to
be found here, from the percentage of the web using JQuery to the overall trend of Flash usage over time.
This is hugely useful for seeing overall trends as well as doing competitive analysis when developing new
features or applications.

The Worldwide Web Consortium (W3C) has a working group dedicated to web performance. This
group is working to create specifications and extensions to current standards to expose functionality that
will give developers more control in tracking performance natively in a browser. Their charter is located
here: http://www.w3.org/2010/webperf/. We will be discussing the progress and specifications that have
come from this group in Chapter 5.

Since the point of this book is not just about performance but also about visualizing information, I
recommend Nathan Yau’s book Visualize This: The FlowingData Guide to Design, Visualization, and
Statistics (Wiley, 2011) as a great primer for data visualization as a craft. Nathan also maintains http://
flowingdata.com/.

Summary
This chapter explored some introductory concepts around performance. We defined two aspects of
performance for web applications; web performance is an indication of the time it takes to serve content
to our end users, and runtime performance is an indication of how responsive our applications are while
our end users are using them.

We briefly explored some of the protocols that hold the web together, like the TCP/IP model, and we
traced a request for content from our browser up the TCP/IP model, correlating each action along the way
with where in the model it was taking place. We examined the architecture of a TCP round trip and saw the
steps involved that our browsers need to take for every piece of content that we request—sometimes in the
case of HTTP redirects, multiple times for each of content.

3 http://www.revolutionanalytics.com/what-is-open-source-r/companies-using-r.php and http://
www.nytimes.com/2009/01/07/technology/business-computing/07program.html

4 http://mashable.com/2012/01/13/career-of-the-future-data-scientist-infographic/

CHAPTER 1 ■ WHAT IS PERFORMANCE

12

We looked at modern browser architecture and saw that browsers are no longer huge black-box
monoliths, but instead are modular and some even open source. We talked about the benefits of this
modular architecture, noting that as the web becomes ubiquitous, rendering engines are being used for
other applications to parse and render markup in email clients or embedded in custom applications, and
that we can even embed pieces of browsers in our own applications.

We looked at why performance matters to our business, from customer happiness to looking at
abandonment rates.

Finally we started to talk about gathering, analyzing, and visualizing our data. This last point is a
recurring theme that we will see throughout this book—measuring and quantifying with empirical data,
visualizing that data to show the overall shape of the data. The shape of the data is key; it can reveal trends
and patterns that aren’t obvious in the raw data. We can look at a visualization immediately and know
generally what it is saying.

We’ll look much deeper into these concepts in the coming chapters, and we begin in the next chapter
by exploring tools that are available for us to track and improve performance.

	Chapter 1: What is Performance
	Web Performance
	Parsing and Rendering
	Rendering Engines
	JavaScript Engines

	Runtime Performance
	Why does performance matter?
	Instrumentation and Visualization
	The Goal of This Book
	Technologies Used and Further Reading
	Summary

