
503

■ ■ ■

CHAPTER 18

Libraries and Interoperating
with Other Languages

Programming in different languages is like composing pieces in different keys, particularly
if you work at the keyboard. If you have learned or written pieces in many keys, each key
will have its own special emotional aura. Also, certain kinds of figurations “lie in the
hand” in one key but are awkward in another. So you are channeled by your choice of key.
In some ways, even enharmonic keys, such as C-sharp and D-flat, are quite distinct in
feeling. This shows how a notational system can play a significant role in shaping the
final product.

Gödel, Escher, Bach: an eternal golden braid, Hofstadter, 1980, Chapter X

Software integration and reuse is becoming one of the most relevant activities in software development.
This chapter discusses how F# programs can interoperate with the outside world, accessing code available
from both .NET and other languages.

Types, memory and interoperability
F# programs need to call libraries, even for the very basic tasks, such as printing or accessing files, and
these libraries come in binary form as part of the Common Language Runtime (CLR), the piece of software
responsible for running programs after compilation. Libraries can be, and have been, written using
different programming languages, leveraging on the fact that the output of the compilation has a common
format that the CLR uses for executing their code. Even considering just the core libraries, such as
mscorlib.dll (containing essential types such as System.String, the underlying type for the F# type
string), most of the code has been written using C#.

You need to understand language interoperability, at least to some extent, to be a proficient F#
programmer. There are four levels of interoperability to consider:

F# library

Non-F# .NET library

COM library

Binary DLL library

D. Syme et al., Expert F# 3.0
© Don Syme, Adam Granicz, and Antonio Cisternino 2012

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

504

If a library has been compiled using the F# compiler and it is meant to be used from F#, everything
feels like F#—types, modules, and functions are available as in F# source form, except for scope
restrictions introduced by visibility clauses, such as private. The F# compiler, unless told otherwise,
generates additional information into the binary files meant to be used when compiling other F# source
files that depend on them.

■ Note: For more information about designing F# libraries to be used from other .NET languages, see the F#
component design guidelines, available at http://tinyurl.com/fs-component-design-guidelines

In all the other cases, the problem is essentially the same: how to represent types defined in a library
within F# so that their values can be safely accessed from the program. Sometimes a value can be accessed
as is, accessing the single in-memory copy from F# generated code; otherwise, some form of marshalling
is needed to convert a value from the library representation to one accessible from F#. Although simple in
theory, sharing types and their values among different runtimes of programming languages results in
many subtle issues in practice, with increasing complexity depending how close their runtime support is.
Even a relatively simple type, such as the .NET string, has a memory representation very different from C.

.NET libraries compiled with languages other than F# and designed to be consumed from many .NET
languages (i.e., designed according to the Common Language Specification, http://tinyurl.com/dotnetCLS,
to define a subset of the .NET type system that can be safely shared among different programming
languages) are easy accessible from F# programs in the form of a set of classes that can be instantiated and
whose methods can be invoked. F# specific types, such as tuples or discriminated unions, are usually
unavailable as type of method arguments; thus, you need some form of marshalling to convert F# types
into simpler .NET types. Apart from these small issues, using these libraries is seamless, because the
runtime is shared and the .NET binary format contains meta-information, such as the type structure, that
can be used by compilers to spare many details related to interoperability.

COM components have been constituents of the Windows operating system and are still widely used
for integrating binary components. Notorious ActiveX controls are, in fact, a kind of COM component
capable of displaying a UI inside a host application. The CLR itself is exposed as a COM component, and it
tightly couples with the COM infrastructure. The COM type system and memory management are less rich
and safe than .NET, but type libraries and IDispatch interface approximate .NET reflection, and the CLR
usually can wrap COM components as .NET types. COM is still underlying in some form to the newest
WinRT API released by Microsoft for programming Windows 8-style applications.

C has been de facto standard for language interoperability for many years. CLR is capable of
interoperating with C binary interfaces at the cost of manually annotating .NET types and, sometime,
taking care explicitly of marshalling and memory handling.

This chapter explores the various levels of interoperability, giving an overview of the .NET libraries in
the first place. An overview of the COM components is also given, with the goal of enabling F#
programmers to consume these software units. Finally, the platform invoke API is introduced, showing
how to link binary libraries and interacting with C code; this interface is part of the .NET ECMA standard
and it is available on different CLR implementations, including Mono, the open-source implementation
running on MacOS X and Linux.

Libraries: A High-Level Overview
One way to get a quick overview of the .NET Framework and the F# library is to look at the primary DLLs
and namespaces contained in them. Recall from Chapters 2 and 7 that DLLs correspond to the physical
organization of libraries, and that namespaces and types give the logical organization of a naming

505

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

hierarchy. Let’s look at the physical organization first. The types and functions covered in this chapter are
drawn from the DLLs in Table 18-1.

Table 18-1. DLLs containing the library constructs referred to in this chapter

DLL Name Notes
mscorlib.dll Minimal system constructs, including the types in the System namespace.

System.dll Additional commonly used constructs in namespaces, such as System
and System.Text.

System.Xml.dll See the corresponding namespace in Table 18-2.

System.Data.dll See the corresponding namespace in Table 18-2.

System.Drawing.dll See the corresponding namespace in Table 18-2.

System.Web.dll See the corresponding namespace in Table 18-2.

System.Windows.Forms.dll See the corresponding namespace in Table 18-2.

System.Core.dll The foundation types for LINQ and some other useful types. From .NET
3.5 onward.

DLL Name Notes

WindowsBase.dll Core functionality for Windows Presentation Foundation.

PresentationCore.dll Core functionality for Windows Presentation Foundation.

PresentationFramework.dll Core functionality for Windows Presentation Foundation.

FSharp.Core.dll Minimal constructs for F# assemblies.

To reference additional DLLs, you can embed a reference directly into your source code in F# scripting
files that use .fsx extension. For example:

#I @"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5";;
#r "System.Core.dll";;

The first line specifies an include path, the equivalent of the -I command-line option for the F#
compiler. The second line specifies a DLL reference, the equivalent of the -r command-line option.
Chapter 7 described these. If you’re using Visual Studio, you can adjust the project property settings for
your project.

■ Note: Hundreds of high-quality frameworks and libraries are available for .NET, and more are appearing all the
time. For space reasons, this chapter covers only the .NET libraries and frameworks listed in Table 18-1. “Some
Other .NET Libraries” lists some libraries you may find interesting.

Namespaces from the .NET Framework
Table 18-2 shows the primary namespaces in .NET Framework DLLs from Table 18-1. In some cases, parts
of these libraries are covered elsewhere in this book; the table notes these cases. For example, Chapter 4
introduced portions of the .NET I/O library from the System.IO namespace.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

506

Table 18-2. Namespaces in the DLLs from Table 18-1, with MSDN descriptions

Namespace Description
System Types and methods that define commonly used value and reference

data types, events and event handlers, interfaces, attributes, and
processing exceptions, supporting data-type conversions,
mathematics, application environment management, and runtime
supervision of managed and unmanaged applications. See Chapter 3
for many of the basic types in this namespace.

System.CodeDom Types that can be used to represent the elements and structure of a
source-code document. Not covered in this book.

Namespace Description

System.Collections Types that define various nongeneric collections of objects, such as
lists, queues, and bit arrays. Partially covered in “Using Further F# and
.NET Data Structures” later in this chapter.

System.Collections.Generic Types that define generic collections. See Chapter 4 and “Using Further
F# and .NET Data Structures” later in this chapter.

System.ComponentModel Types that are used to implement the runtime and design-time
behavior of components and controls. See Chapter 16.

System.Configuration Types that provide the programming model for handling configuration
data.

System.Data Types that represent the ADO.NET database access architecture. See
Chapter 13.

System.Diagnostics Types that allow you to interact with system processes, event logs, and
performance counters. See Chapter 19.

System.Drawing Types that allow access to GDI+ basic graphics functionality. More
advanced functionality is provided in the System.Drawing.Drawing2D,
System.Drawing.Imaging, and System.Drawing.Text namespaces. See
Chapter 16.

System.Globalization Types that define culture-related information, including the language,
the country/region, the calendars in use, the format patterns for dates,
the currency, the numbers, and the sort order for strings. Not covered
in this book.

System.IO Types that allow reading and writing files and data streams, as well as
types that provide basic file and directory support. See Chapter 4 for a
basic overview.

System.Media Types for playing and accessing sounds and other media formats. Not
covered in this book. .NET 3.0 and later.

System.Net Types to programmatically access many of the protocols used on
modern networks. See Chapters 2 and 14 for examples and a basic
overview.

System.Reflection Types that retrieve information about assemblies, modules, members,
parameters, and other entities in managed code. See Chapter 17 for a
brief overview.

System.Reflection.Emit Types for generating .NET code dynamically at runtime.

System.Resources Types that let you create, store, and manage various culture-specific
resources used in an application. See Chapter 7 for a brief overview.

507

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

Namespace Description
System.Security Types to interface with the underlying structure of the CLR security

system, including base classes for permissions. Not covered in this
book.

System.Text Types representing ASCII, Unicode, UTF-8, and other character
encodings. Also abstract types for converting blocks of characters to
and from blocks of bytes. See Chapter 3 and “Using Regular
Expressions and Formatting” later in this chapter.

System.Threading Types for creating and synchronizing threads and, in .NET 4.0, tasks.
Also parallel operations and some functionality related to cancellation.
See Chapter 11.

System.Web Types that enable Web applications. See Chapter 14.

System.Windows.Forms Types for creating windowed applications. See Chapter 16.

System.Xml Types that implement standards-based support for processing XML.
See Chapter 8.

Microsoft.Win32 Types that wrap Win32 API common dialog boxes and components.
Not covered in this book.

Namespaces from the F# Libraries
Table 18-3 shows the primary namespaces in F# library DLLs from Table 18-1. The following are opened by
default in F# code:

Microsoft.FSharp.Core
Microsoft.FSharp.Collections
Microsoft.FSharp.Control
Microsoft.FSharp.Text

Table 18-3. Namespaces in the DLLs from Table 18-1

Namespace Description
Microsoft.FSharp.Core Provides primitive constructs related to the F# language, such as tuples.

See Chapter 3.

Microsoft.FSharp.Collections Provides functional programming collections, such as sets and maps
implemented using binary trees. See Chapter 3 and “Using Further F#
and .NET Data Structures” later in this chapter.

Namespace Description

Microsoft.FSharp.Control Provides functional programming control structures, including
asynchronous and lazy programming. Chapter 11 covers programming
with the IEvent<'T> type and the IEvent module, as well as the
Async<'T> type.

Microsoft.FSharp.Text Provides types for structured and printf-style textual formatting of
data. See Chapter 4 for an introduction to printf formatting.

Microsoft.FSharp.Reflection Provides extensions to the System.Reflection functionality that deal
particularly with F# record and discriminated union values. See Chapter
17 for a brief introduction, and see “Further Libraries for Reflective
Techniques” section later in this chapter for more details.

Microsoft.FSharp.Quotations Provides access to F# expressions as abstract syntax trees. See Chapter
17.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

508

Using the System Types
Table 18-4 shows some of the most useful core types from the System namespace. These types are
particularly useful because of the care and attention taken crafting them and the functionality they
provide.

Table 18-4. Useful core types from the System Namespace

Function Description
System.DateTime A type representing a date and time

System.DayOfWeek An enumeration type representing a day of the week

System.Decimal A numeric type suitable for financial calculations requiring large numbers of
significant integral and fractional digits and no round-off errors

System.Guid A type representing a 128-bit globally unique ID

System.Nullable<'T> A type with an underlying value type 'T but that can be assigned null like a
reference type

System.TimeSpan A type representing a time interval

System.Uri A type representing a uniform resource identifier (URI), such as an Internet URL

Many .NET types are used to hold static functions, such as those for converting data from one format
to another. Types such as System.Random play a similar role via objects with a small amount of state. Table
18-5 shows some of the most useful of these types.

Table 18-5. Useful services from the System Namespace

Function Description
System.BitConverter Contains functions to convert numeric representations to and from bit

representations

System.Convert Contains functions to convert between various numeric representations

System.Math Contains constants and static methods for trigonometric, logarithmic, and
other common mathematical functions

System.Random Provides objects to act as random-number generators

System.StringComparer Provides objects implementing various types of comparisons on strings
(case insensitive, and so on)

Using Further F# and .NET Data Structures
As you saw in Chapter 2, F# comes with a useful implementation of some functional programming data
structures. Recall that functional data structures are persistent: you can’t mutate them, and if you add an
element or otherwise modify the collection, you generate a new collection value, perhaps sharing some
internal nodes but from the outside appearing to be a new value.

Table 18-6 summarizes the most important persistent functional data structures that are included in
FSharp.Core.dll. It’s likely that additional functional data structures will be added in future F# releases.

509

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

Table 18-6. The F# Functional Data Structures from Microsoft.FSharp.Collections

Type Description
List<'T> Immutable lists implemented using linked lists

Set<'T> Immutable sets implemented using trees

Map<'Key,'Value> Immutable maps (dictionaries) implemented using trees

LazyList<'T> Lists generated on demand, with each element computed only once

System.Collections.Generic and Other .NET Collections
Table 18-7 summarizes the imperative collections available in the System.Collections.Generic
namespace.

Table 18-7. The .NET and F# imperative data structures from System.Collections.Generic

Type Description
List<'T> Mutable, resizable integer-indexed arrays, usually called

ResizeArray<'T> in F#.

SortedList<'T> Mutable, resizable lists implemented using sorted arrays.

Dictionary<'Key,'Value> Mutable, resizable dictionaries implemented using hash tables.

SortedDictionary<'Key,'Value> Mutable, resizable dictionaries implemented using sorted arrays.

Queue<'T> Mutable, first-in, first-out queues of unbounded size.

Type Description

Stack<'T> Mutable, first-in, last-out stacks of unbounded size.

HashSet<'T> Mutable, resizable sets implemented using hash tables. New in .NET
3.5. The F# library also defines a Microsoft.FSharp.Collections.
HashSet type usable in conjunction with earlier versions of .NET.

SOME OTHER COLLECTION LIBRARIES

Two additional libraries of .NET collections deserve particular attention. The first is PowerCollections,
currently provided by Wintellect. It provides additional generic types, such as Bag<'T>,
MultiDictionary<'Key,'Value>, OrderedDictionary<'Key,'Value>,
OrderedMultiDictionary<'T>, and OrderedSet<'T>. The second is the C5 collection library, provided
by ITU in Denmark. It includes implementations of some persistent/functional data structures, such as
persistent trees, that may be of particular interest for use from F#.

Supervising and Isolating Execution
The .NET System namespace includes a number of useful types that provide functionality related to the
execution of running programs in the .NET Common Language Runtime. Table 18-8 summarizes them.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

510

Table 18-8. Types related to runtime supervision of applications

Function Description
System.Runtime Contains advanced types that support compilation and native interoperability

System.Environment Provides information about, and the means to manipulate, the current
environment and platform.

System.GC Controls the system garbage collector. Garbage collection is discussed in more
detail later in this chapter.

Function Description

System.WeakReference Represents a weak reference, which references an object while still allowing
that object to be reclaimed by garbage collection.

System.AppDomain Represents an application domain, which is a software-isolated environment in
which applications execute. Application domains can hold code generated at
runtime and can be unloaded.

Further Libraries for Reflective Techniques
As discussed in Chapter 17, .NET and F# programming frequently use reflective techniques to analyze the
types of objects, create objects at runtime, and use type information to drive generic functions in general
ways. For example, in Chapter 17, you saw an example of a technique called schema compilation, which
was based on .NET attributes, F# data types, and a compiler to take these and use reflective techniques to
generate an efficient text-file reader and translator. The combination of reflective techniques and .NET
generics allows programs to operate at the boundary between statically typed code and dynamically typed
data.

Using General Types
There are a number of facets to reflective programming with .NET. In one simple kind of reflective
programming, a range of data structures are accessed in a general way. For example, .NET includes a type
System.Array that is a parent type of all array types. The existence of this type allows you to write code that
is generic over all array types, even one-dimensional and multidimensional arrays. This is occasionally
useful, such as when you’re writing a generic array printer.

Table 18-9 summarizes the primary general types defined in the .NET Framework.

Table 18-9. General types in the .NET Framework

Function Description
System.Array General type of all array values.

System.Delegate General type of all delegates.

System.Enum General type of all enum values.

System.Exception General type of all exception values.

System.Collections.IEnumerable General type of all sequence values. This is the nongeneric version
of the F# type seq<'T>, and all sequence and collection values are
compatible with this type.

System.IComparable General type of all comparable types.

511

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

Function Description
System.IDisposable General type of all explicitly reclaimable resources.

System.IFormattable General type of all types supporting .NET formatting.

System.Object General type of all values.

System.Type Runtime representation of .NET types.

System.ValueType General type of all value types.

Using Microsoft.FSharp.Reflection
In Chapter 17, the schema compiler used functions from the Microsoft.FSharp.Reflection namespace.
This namespace is a relatively thin extension of the System.Reflection namespace. It offers an interesting
set of techniques for creating and analyzing F# values and types in ways that are somewhat simpler than
those offered by the System.Reflection namespace. These operations are also designed to be used in
precompilation phases to amortize costs associated with reflective programming.

Table 18-10 summarizes the two types in this namespace

Table 18-10. Some operations in the Microsoft.FSharp.Reflection namespace

Class and Static Members Description
Microsoft.FSharp.Reflection.FSharpType Operations to analyze F# types

Microsoft.FSharp.Reflection.FSharpValue Operations to analyze F# values

Some Other .NET Types You May Encounter
When .NET was first designed, the .NET type system didn’t include generics or a general notion of a
function type as used by F#. Instead of functions, .NET uses delegates, which you can think of as named
function types (that is, each kind of function type is given a different name).

This means that you often encounter delegate types when using .NET libraries from F#. Since .NET
2.0, some of these are even generic, giving an approximation of the simple and unified view of function
types used by F#. Every .NET delegate type has a corresponding F# function type. For example, the F#
function type for the .NET delegate type System.Windows.Forms.PaintEventHandler is obj -> System.
Windows.Forms.PaintEventArgs -> unit. You can figure out this type by looking at the signature for the
Invoke method of the given delegate type.

.NET also comes with definitions for some generic delegate types. F# tends to use function types
instead of these, so you don’t see them often in your coding. However, Table 18-11 shows these delegate
types just in case you meet them.

Table 18-11. Delegate types encountered occasionally in F# coding

Function F# Function Type Description
System.Action<'T> 'T -> unit Used for imperative actions.

System.AsyncCallback System.IAsyncResult -> unit Used for callbacks when asynchronous
actions complete.

System.Converter<'T,'U> 'T -> 'U Used to convert between values.

System.Comparison<'T> 'T -> 'T -> int Used to compare values.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

512

Function F# Function Type Description
System.EventHandler<'T> obj -> 'T -> unit Used as a generic event-handler type.

System.Func<'T,'U> 'T -> 'U A .NET 3.5 LINQ function delegate.
Further arity-overloaded types exist
accepting additional arguments: for
example, System.Func<'T,'U,'V>,
System.Func<'T,'U,'V,'W>.

System.Predicate<'T> 'T -> bool Used to test a condition.

Under the Hood: Interoperating with C# and
other .NET Languages
Libraries and binary components provide a common way to reuse software; even the simplest C program is
linked to the standard C runtime to benefit from core functions, such as memory management and I/O.
Modern programs depend on a large number of libraries that are shipped in binary form, and only some of
them are written in the same language as the program. Libraries can be linked statically during compilation
into the executable, or they can be loaded dynamically during program execution. Dynamic linking has
become significantly common to help share code (dynamic libraries can be linked by different programs and
shared among them) and adapt program behavior while executing.

Interoperability among binaries compiled by different compilers, even of the same language, can be a
nightmare. One of the goals of the .NET initiative was to ease this issue by introducing the Common
Language Runtime (CLR), which is targeted by different compilers and different languages to help
interoperability among software developed in those languages.

The Common Language Runtime
The CLR is a runtime designed to run programs compiled for the .NET platform; in addition to Microsoft.
NET, CLR has been implemented by the open source project Mono. The binary format of these programs
differs from the traditional one adopted by executables; Microsoft terminology uses managed for the first
class of programs and unmanaged otherwise (see Figure 18-1).

Figure 18-1. Compilation scheme for managed and unmanaged code

513

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

A DEEPER LOOK INSIDE .NET EXECUTABLES

Programs for the .NET platform are distributed in a form that is executed by the CLR. Binaries are expressed
in an intermediate language that is compiled incrementally by the Just-In-Time (JIT) compiler during
program execution. A .NET assembly, in the form of a .dll or an .exe file, contains the definition of a set of
types and the definition of the method bodies, and the additional data describing the structure of the code in
the intermediate language form are known as metadata. The intermediate language is used to define method
bodies based on a stack-based machine, with operations performed by loading values on a stack of
operands and then invoking methods or operators.

Consider the following simple F# program in the Program.fs source file:

open System

let i = 2g

Console.WriteLine("Input a number:")

let v = Int32.Parse(Console.ReadLine())

Console.WriteLine(i * v)

The F# compiler generates an executable that can be disassembled using the ildasm.exe tool distributed
with the .NET Framework. The following screenshot shows the structure of the generated assembly. Because
everything in the CLR is defined in terms of types, the F# compiler must introduce the class
$Program$Main in the <StartupCode$applicationname> namespace. In this class, the definition of
the main@ static method is the entry point for the execution of the program. This method contains the
intermediate language corresponding to the example F# program. The F# compiler generates several
elements that aren’t defined in the program, whose goal is to preserve the semantics of the F# program in
the intermediate language.

If you open the main@ method, you find the following code, which is annotated here with the corresponding
F# statements:

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

514

.method public static void main@() cil managed
{
 .entrypoint
 // Code size 38 (0x26)
 .maxstack 4

 // Console.WriteLine("Input a number:")
 IL_0000: ldstr "Input a number:"
 IL_0005: call void [mscorlib]System.Console::WriteLine(string)

 // let v = Int32.Parse(Console.ReadLine())
 IL_000a: call string [mscorlib]System.Console::ReadLine()
 IL_000f: call int32 [mscorlib]System.Int32::Parse(string)
 IL_0014: stsfld int32 '<StartupCode$ConsoleApplication1>'.$Program::v@4

 // Console.WriteLine(i * v) // Note that i is constant and its value has been inlined
 IL_0019: ldc.i4.2
 IL_001a: call int32 Program::get_v()
 IL_001f: mul
 IL_0020: call void [mscorlib]System.Console::WriteLine(int32)

// Exits
 IL_0025: ret
} // end of method $Program$Main::main@

The ldxxx instructions are used to load values onto the operand stack of the abstract machine, and the
stxxx instructions store values from that stack in locations (locals, arguments, or class fields). In this
example, a static field is used for v, and the value of i is inlined using the ldc instruction. For method
invocations, arguments are loaded on the stack, and a call operation is used to invoke the method.

The JIT compiler is responsible for generating the binary code that runs on the actual processor. The code
generated by the JIT interacts with all the elements of the runtime, including external code loaded
dynamically in the form of DLLs or COM components.

Because the F# compiler targets the CLR, its output is managed code, allowing compiled programs to
interact directly with other programming languages targeting the .NET platform. Chapter 16 showed how
to exploit this form of interoperability, demonstrating how to develop a graphic control in F# and use it in
a C# application.

Memory Management at Runtime
Interoperability of F# programs with unmanaged code requires an understanding of the structure of the
most important elements of a programming language’s runtime. In particular, consider how program
memory is organized at runtime. Memory used by a program is generally classified in three classes
depending on the way it’s handled:

Static memory: Allocated for the entire lifetime of the program

Automatic memory: Allocated and freed automatically when functions or methods
are executed

515

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

Dynamic memory: Explicitly allocated by the program, and freed explicitly or by an
automatic program called the garbage collector

As a rule of thumb, top-level variables and static fields belong to the first class, function arguments
and local variables belong to the second class, and memory explicitly allocated using the new operator
belongs to the last class. The code generated by the JIT compiler uses different data structures to manage
memory and automatically interacts with the operating system to request and release memory during
program execution.

Each execution thread has a stack where local variables and arguments are allocated when a function
or method is invoked (see Figure 18-2). A stack is used, because it naturally follows the execution flow of
method and function calls. The topmost record contains data about the currently executing function;
below that is the record of the caller of the function, which sits on top of another record of its caller, and so
on. These activation records are memory blocks used to hold the memory required during the execution of
the function and are naturally freed at the end of its execution by popping the record off the stack. The
stack data structure is used to implement the automatic memory of the program, and because different
threads execute different functions at the same time, a separate stack is assigned to each of them.

Figure 18-2. Memory organization of a running CLR program

Dynamic memory is allocated in the heap, which is a data structure where data resides for an amount
of time not directly related to the events of program execution. The memory is explicitly allocated by the
program, and it’s deallocated either explicitly or automatically, depending on the strategy adopted by the
runtime to manage the heap. In the CLR, the heap is managed by a garbage collector, which is a program
that tracks memory usage and reclaims memory that is no longer used by the program. Data in the heap is
always referenced from the stack—or other known areas, such as static memory—either directly or
indirectly. The garbage collector can deduce the memory potentially reachable by program execution in
the future, and the remaining memory can be collected. During garbage collection, the running program
may be suspended, because the collector may need to manipulate objects needed by its execution. In
particular, a garbage collector may adopt a strategy called copy collection that can move objects in
memory; during this process, the references may be inconsistent. To avoid dangling references, the
memory model adopted by the CLR requires that methods access the heap through object references
stored on the stack; objects in the heap are forbidden to reference data on the stack.

Data structures are the essential tool provided by programming languages to group values. A data
structure is rendered as a contiguous area of memory in which the constituents are available at a given offset
from the beginning of the memory. The actual layout of an object is determined by the compiler (or by the
interpreter for interpreted languages) and is usually irrelevant to the program because the programming

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

516

language provides operators to access fields without having to explicitly access the memory. System
programming, however, often requires explicit manipulation of memory, and programming languages such
as C let you control the in-memory layout of data structures. The C specification, for instance, defines that
fields of a structure are laid out sequentially, although the compiler is allowed to insert extra space between
them. Padding is used to align fields at word boundaries of the particular architecture in order to optimize
the access to the fields of the structure. Thus, the same data structure in a program may lead to different
memory layouts depending on the strategy of the compiler or the runtime, even in a language such as C , in
which field ordering is well defined. By default, the CLR lays out structures in memory without any
constraint, which gives you the freedom of optimizing memory usage on a particular architecture, although it
may introduce interoperability issues if a portion of memory must be shared among the runtimes of different
languages.1

Interoperability among different programming languages revolves mostly around memory layouts,
because the execution of a compiled routine is a jump to a memory address. But routines access memory
explicitly, expecting that data are organized in a certain way. The rest of this chapter discusses the
mechanisms used by the CLR to interoperate with external code in the form of DLLs or COM components.

COM Interoperability
Component Object Model (COM) is a technology that Microsoft introduced in the 1990s to support
interoperability among different programs that were possibly developed by different vendors. The Object
Linking and Embedding (OLE) technology that lets you embed arbitrary content in a Microsoft Word
document, for instance, relies on this infrastructure. COM is a binary standard that allows code written in
different languages to interoperate, assuming that the programming language supports this infrastructure.
Most of the Windows operating system and its applications are based on COM components.

The CLR was initially conceived of as an essential tool to develop COM components, because COM
was the key technology at the end of 1990s. It’s no surprise that the Microsoft implementation of CLR
interoperates easily and efficiently with the COM infrastructure.

This section briefly reviews how COM components can be consumed from F# (and vice versa) and
how F# components can be exposed as COM components.

Calling COM Components from F#
COM components can be easily consumed from F# programs, and the opposite is also possible, by
exposing .NET objects as COM components. The following example is based on the Windows Scripting
Host and uses F# and fsi.exe:

> open System;;
> let o = Activator.CreateInstance(Type.GetTypeFromProgID("Word.Application"));;
val o : obj

> let t = o.GetType();;
val t : Type = Microsoft.Office.Interop.Word.ApplicationClass

> t.GetProperty("Visible").SetValue(o, (true :> Object), null);;
val it : unit = ()

1Languages targeting .NET aren’t affected by these interoperability issues because they share the same CLR
runtime.

517

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

> let m = t.GetMethod("Quit");;
val m : Reflection.MethodInfo =
 Void Quit(System.Object ByRef, System.Object ByRef, System.Object ByRef)

> m.GetParameters().Length;;
val it : int = 3

> m.GetParameters();;
val it : Reflection.ParameterInfo [] =
 [|System.Object& SaveChanges
 {Attributes = In, Optional, HasFieldMarshal;
 CustomAttributes = seq
 [[System.Runtime.InteropServices.InAttribute()];
 [System.Runtime.InteropServices.OptionalAttribute()];
 [System.Runtime.InteropServices.MarshalAsAttribute((System.
Runtime.InteropServices.UnmanagedType)27, ArraySubType = 0, SizeParamIndex = 0, SizeConst = 0,
IidParameterIndex = 0, SafeArraySubType = 0)]];
 DefaultValue = System.Reflection.Missing;
 HasDefaultValue = false;
 IsIn = true;
 IsLcid = false;
 IsOptional = true;
 IsOut = false;
 IsRetval = false;
 Member = Void Quit(System.Object ByRef, System.Object ByRef, System.Object ByRef);
 MetadataToken = 134223584;
 Name = "SaveChanges";
 ParameterType = System.Object&;
 Position = 0;
 RawDefaultValue = System.Reflection.Missing;};
 ... more ... |]

> m.Invoke(o, [|null; null; null|]);;

val it : obj = null Because F# imposes type inference, you can’t use the simple syntax provided by an
interpreter. The compiler should know in advance the number and type of arguments of a method and the
methods exposed by an object. Remember that even though fsi.exe allows you to interactively execute F#
statements, it’s still subject to the constraints of a compiled language. Because you’re creating an instance
of a COM component dynamically in this example, the compiler doesn’t know anything about this
component, so it can be typed as System.Object. To obtain the same behavior as an interpreted language,
you must resort to .NET runtime’s reflection support. Using the GetType method, you can obtain an object
describing the type of the object o. Then, you can obtain a PropertyInfo object describing the Visible
property, and you can invoke the SetValue method on it to show the Word main window. The SetValue
method is generic; therefore, you have to cast the Boolean value to System.Object to comply with the
method signature.

In a similar way, you can obtain an instance of the MethodInfo class describing the Quit method.
Because a method has a signature, you ask for the parameters; there are three of them, and they’re
optional. You can invoke the Quit method by calling the Invoke method and passing the object target of the
invocation and an array of arguments that you set to null, because arguments are optional.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

518

■ Note: Although COM technology is still widely used for obtaining so-called automation, .NET is quietly entering
the picture, and several COM components are implemented using the CLR. Whenever a reference to mscoree.dll
appears in the InprocServer32 registry key, the .NET runtime is used to deliver the COM services using the
specified assembly. Through COM interfaces, native and .NET components can be composed seamlessly, leading to
very complex interactions between managed and unmanaged worlds. Microsoft Word 2010, for instance, returns a
.NET object instead of a COM wrapper, which provides access to Word services without the need for explicit use of
reflection.

How can the runtime interact with COM components? The basic approach is based on the COM
callable wrapper (CCW) and the runtime callable wrapper (RCW), as shown in Figure 18-3. The former is a
chunk of memory dynamically generated with a layout compatible with the one expected from COM
components, so that external programs—even legacy Visual Basic 6 applications—can access services
implemented as managed components. The latter is more common and creates a .NET type dealing with
the COM component, taking care of all the interoperability issues. It’s worth noting that although the CCW
can always be generated, because the .NET runtime has full knowledge about assemblies, the opposite
isn’t always possible. Without IDispatch or type libraries, there is no description of a COM component at
runtime. Moreover, if a component uses custom marshalling, it can’t be wrapped by an RCW. Fortunately,
for the majority of COM components, it’s possible to generate an RCW.

Figure 18-3. The wrappers generated by the CLR to interact with COM components

Programming patterns based on event-driven programming are widely adopted, and COM components
have a programming pattern to implement callbacks based on the notion of a sink. The programming
pattern is based on the delegate event model, and the sink is where a listener can register a COM interface
that should be invoked by a component to notify an event. The Internet Explorer Web Browser COM
component (implemented by shdocvw.dll), for instance, provides a number of events to notify its host about
various events, such as loading a page or clicking a hyperlink. The RCW generated by the runtime exposes
these events in the form of delegates and takes care of handling all the details required to perform the
communication between managed and unmanaged code.

Although COM components can be accessed dynamically using .NET reflection, explicitly relying on
the ability of the CLR to generate CCW and RCW, it’s desirable to use a less verbose approach to COM
interoperability. The .NET runtime ships with tools that allow you to generate RCW and CCW wrappers
offline, which lets you use COM components as .NET classes and vice versa. These tools are:

519

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

tlbimp.exe: This is a tool for generating an RCW of a COM component given its type
library.

aximp.exe: This is similar to tlbimp.exe and supports the generation of “ActiveX”
COM components2 that have graphical interfaces and that can be integrated with
Windows Forms.

tlbexp.exe: This generates a COM type library describing a .NET assembly. The CLR
is loaded as a COM component and generates the appropriate CCW to make .NET
types accessible as COM components.

regasm.exe: This is similar to tlbexp.exe. It also performs the registration of the
assembly as a COM component.

To better understand how COM components can be accessed from your F# programs and vice versa, let’s
consider two examples. In the first, you wrap the widely used Flash Player into a form interactively; in the
second, you see how an F# object type can be consumed as if it were a COM component.

The Flash Player you’re accustomed to using in everyday browsing is a COM control that is loaded by
Internet Explorer using an OBJECT element in the HTML page (it’s also a plug-in for other browsers, but
here you’re interested in the COM component). By using a search engine, you can easily find that an HTML
element similar to the following is used to embed the player in Internet Explorer:

<OBJECT
 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
 title="My movie" width="640" height="480">
 <param name="movie" value="MyMovie.swf" />
 <param name="quality" value="high" />
</OBJECT>

From this tag, you know that the CLSID of the Flash Player COM component is the one specified with
the classid attribute of the OBJECT element. You can now look in the Windows registry under HKEY_
CLASSES_ROOT\CLSID for the subkey corresponding to the CLSID of the Flash COM control. If you look at the
subkeys, you notice that the ProgID of the component is ShockwaveFlash.ShockwaveFlash, and
InprocServer32 indicates that its location is C:\Windows\system32\Macromed\Flash\Flash10d.ocx. You can
also find the GUID relative to the component type library—which, when investigated, shows that the type
library is contained in the same OCX file.

■ Note: With a 64-bit version of Windows and the 32-bit version of the Flash Player, you should look for the key
CLSID under HKEY_CLASSES_ROOT\Wow6432Node, which is where the 32-bit component’s information is stored.
In general, all references to the 32-bit code are stored separately from the 64-bit information. The loader tricks old
32-bit code into seeing different portions of the registry. In addition, executable files are stored under %WinDir%\
SysWow64 instead of %WinDir%\system32. Moreover, to wrap 32- or 64-bit components, you need the
corresponding version of the .NET tool.

2ActiveX components are COM components implementing a well-defined set of interfaces. They have a
graphical interface. Internet Explorer is well known for loading these components, but ActiveX can be
loaded by any application using the COM infrastructure.

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

520

Because Flash Player is a COM control with a GUI, you can rely on aximp.exe rather than just tlbimp.
exe to generate the RCW for the COM component (for 64-bit systems, use c:\Windows\SysWOW64 instead
of c:\Windows\System32 and link the .ocx file contained in the Flash directory):

C:\> aximp c:\Windows\System32\Macromed\Flash\Flash32_11_3_370_17810d.ocx
Generated Assembly: C:\ShockwaveFlashObjects.dll
Generated Assembly: C:\AxShockwaveFlashObjects.dll

If you use ildasm.exe to analyze the structure of the generated assemblies, notice that the wrapper
of the COM component is contained in ShockwaveFlashObjects.dll and is generated by the tlbimp.exe
tool. The second assembly contains a Windows Forms host for COMM components and is configured to
host the COM component, exposing the GUI features in terms of the elements of the Windows Forms
framework.

You can test the Flash Player embedded in an interactive F# session:

#I @"c:\";;
--> Added 'c:\ ' to library include path

#r "AxShockwaveFlashObjects.dll";;
--> Referenced 'c:\AxShockwaveFlashObjects.dll'

> open AxShockwaveFlashObjects;;
> open System.Windows.Forms;;

> let f = new Form();;
val f : Form = System.Windows.Forms.Form, Text:

> let flash = new AxShockwaveFlash();;
val flash : AxShockwaveFlash = AxShockwaveFlashObjects.AxShockwaveFlash

> f.Show();;
> flash.Dock <- DockStyle.Fill;;
> f.Controls.Add(flash);;
> flash.LoadMovie(0, "http://laptop.org/img/meshDemo18.swf");;

First add to the include path of the fsi.exe directory containing the assemblies generated by aximp.exe
using the #I directive, and then reference the AxShockwaveFlashObjects.dll assembly using the #r directive.
The namespace AxShockwaveFlashObjects containing the AxShockwaveFlash class is opened; this is the
managed class wrapping the COM control. You create an instance of the Flash Player that is now exposed as a
Windows Forms control; then set the Dock property to DockStyle.Fill to let the control occupy the entire
area of the form. Finally, add the control to the form.

When you’re typing the commands into F# Interactive, it’s possible to test the content of the form.
When it first appears, a right-click on the client area is ignored. After the COM control is added to the form,
the right-click displays the context menu of the Flash Player. You can now programmatically control the
player by setting the properties and invoking its methods; the generated wrapper takes care of all the
communications with the COM component.

521

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

The Running Object Table
Sometimes you need to obtain a reference to an out-of-process COM object that is already running. This is
useful when you want to automate some task of an already-started application or reuse an object model
without needing to start a process more than once. The easiest way to achieve this is through the
GetActiveObject method featured by the Marshal class:

#r "EnvDTE80"
open System.Runtime.InteropServices

let appObj = Marshal.GetActiveObject("VisualStudio.DTE.11.0") :?> EnvDTE80.DTE2
printfn "%s" appObj.ActiveDocument.FullName.

In this example, you obtain a reference to one of the most important interfaces of Visual Studio’s COM
automation model. An interesting experiment is printing the name of the active document open in the
editor and trying to run different instances of Visual Studio, opening different documents. The COM
infrastructure connects to one instance of the COM server without being able to specify a particular one.

You can find a specific instance by accessing a system-wide data structure called the Running Object
Table (ROT), which provides a list of running COM servers. Because the name of a running server must be
unique within the ROT, many servers mangle the PID with the COM ProgID, so it’s possible to connect to a
given instance. This is the case for Visual Studio. The following F# function connects to a specific Visual
Studio instance:

#r "EnvDTE"

open System.Runtime.InteropServices
open System.Runtime.InteropServices.ComTypes

[<DllImport("ole32.dll")>]
extern int internal GetRunningObjectTable(uint32 reserved, IRunningObjectTable& pprot)

[<DllImport("ole32.dll")>]
extern int internal CreateBindCtx(uint32 reserved, IBindCtx& pctx)

let FetchVSDTE (pid : int) =
 let mutable prot : IRunningObjectTable = null
 let mutable pmonkenum : IEnumMoniker = null
 let (monikers : IMoniker[]) = Array.create 1 null
 let pfeteched = System.IntPtr.Zero
 let mutable (ret :obj) = null
 let endpid = sprintf ":%d" pid

 try
 if (GetRunningObjectTable(0u, &prot) <> 0) || (prot = null) then
 failwith "Error opening the ROT"
 prot.EnumRunning(&pmonkenum)
 pmonkenum.Reset()
 while pmonkenum.Next(1, monikers, pfeteched) = 0 do
 let mutable (insname : string) = null
 let mutable (pctx : IBindCtx) = null
 CreateBindCtx(0u, &pctx) |> ignore
 (monikers.[0]).GetDisplayName(pctx, null, &insname);

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

522

 Marshal.ReleaseComObject(pctx) |> ignore
 if insname.StartsWith("!VisualStudio.DTE") && insname.EndsWith(endpid) then
 prot.GetObject(monikers.[0], &ret) |> ignore
 finally
 if prot <> null then Marshal.ReleaseComObject(prot) |> ignore
 if pmonkenum <> null then Marshal.ReleaseComObject(pmonkenum) |> ignore
 (ret :?> EnvDTE.DTE)

You use two PInvoke declarations to import functions from the ole.dll COM library in which the ROT
is defined. After you get a reference to the table, you perform an enumeration of its elements, retrieving
the display name and looking for any Visual Studio DTE with a specific PID at its end. The GetObject
method is used to finally connect to the desired interface.

This example shows the flexible control .NET and F# can provide over COM infrastructure. The ability
to access specific COM object instances is widely used on the server side to implement services made
available through Web pages.

Interoperating with C and C++ with PInvoke
Through the CLI, F# implements a standard mechanism for interoperating with C and C++ code that is
called “Platform Invoke”, normally known as “PInvoke”. This is a core feature of the standard available on
all CLI implementations, including Mono.

The basic model underlying PInvoke is based on loading DLLs into the program, which allows
managed code to invoke functions exported from C and C++. DLLs don’t provide information other than
the entry point location of a function; this isn’t enough to perform the invocation unless additional
information is made available to the runtime.

The invocation of a function requires:

The address of the code in memory

The calling convention, which is how parameters, return values, and other
information are passed through the stack to the function

Marshalling of values and pointers so that the different runtime support can operate
consistently on the same values

You obtain the address of the entry point using a system call that returns the pointer to the function
given a string. You must provide the remaining information to instruct the CLR about how the function
pointer should be used.

CALLING CONVENTIONS

Function and method calls (a method call is similar to a function call but with an additional pointer referring
to the object passed to the method) are performed by using a shared stack between the caller and the callee.
An activation record is pushed onto the stack when the function is called, and memory is allocated for
arguments, the return value, and local variables. Additional information—such as information about
exception handling and the return address when the execution of the function terminates— is also stored in
the activation record,

The physical structure of the activation record is established by the compiler (or by the JIT in the case of the
CLR), and this knowledge must be shared between the caller and the called function. When the binary code

523

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

is generated by a compiler, this isn’t an issue, but when code generated by different compilers must interact,
it may become a significant issue. Although each compiler may adopt a different convention, the need to
perform system calls requires that the calling convention adopted by the operating system is implemented,
and it’s often used to interact with different runtimes. Another popular approach is to support the calling
convention adopted by C compilers, because it’s widely used and has become a fairly universal language for
interoperability. Note that although many operating systems are implemented in C, the libraries providing
system calls may adopt different calling conventions. This is the case with Microsoft Windows: the operating
system adopts the stdcall calling convention rather than cdecl, which is the C calling convention.

A significant dimension in the arena of possible calling conventions is the responsibility for removing the
activation record from the thread stack. At first glance, it may seem obvious that before returning, the called
function resets the stack pointer to the previous state. This isn’t the case for programming languages such
as C that allow functions with a variable number of arguments, such as printf. When variable arguments
are allowed, the caller knows the exact size of the activation record; therefore, it’s the caller’s responsibility
to free the stack at the end of the function call. Apart from being consistent with the chosen convention,
there may seem to be little difference between the two choices, but if the caller is responsible for cleaning
the stack, each function invocation requires more instructions, which leads to larger executables. For this
reason, Windows uses the stdcall calling convention instead of the C calling convention. It’s important to
notice that the CLR uses an array of objects to pass a variable number of arguments, which is very different
from the variable arguments of C: the method receives a single pointer to the array that resides in the heap.

It’s important to note that if the memory layout of the activation record is compatible, as it is in Windows,
using the cdecl convention instead of the stdcall convention leads to a subtle memory leak. If the runtime
assumes the stdcall convention (which is the default), and the callee assumes the cdecl convention, the
arguments pushed on the stack aren’t freed, and at each invocation, the height of the stack grows until a
stack overflow happens.

The CLR supports a number of calling conventions. The two most important are stdcall and cdecl. Other
implementations of the runtime may provide additional conventions to the user. In the PInvoke design,
nothing restricts the supported conventions to these two (and in fact the runtime uses the fcall convention to
invoke services provided by the runtime from managed code).

The additional information required to perform the function call is provided by custom attributes that
are used to decorate a function prototype and inform the runtime about the signature of the exported
function.

Getting Started with PInvoke
This section starts with a simple example of a DLL developed using C++, to which you add code during
your experiments using PInvoke. The CInteropDLL.h header file declares a macro defining the decorations
associated with each exported function:

#define CINTEROPDLL_API __declspec(dllexport)
extern "C" {
void CINTEROPDLL_API HelloWorld();
}

The __declspec directive is specific to the Microsoft Visual C++ compiler. Other compilers may
provide different ways to indicate the functions that must be exported when compiling a DLL.

The first function is HelloWorld; its definition is as expected:

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

524

void CINTEROPDLL_API HelloWorld()
{
 printf("Hello C world invoked by F#!\n");
}

Say you now want to invoke the HelloWorld function from an F# program. You have to define the
prototype of the function and inform the runtime how to access the DLL and the other information
needed to perform the invocation. The program performing the invocation is:

open System.Runtime.InteropServices

module CInterop =
 [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
 extern void HelloWorld()

CInterop.HelloWorld()

The extern keyword informs the compiler that the function definition is external to the program and
must be accessed through the PInvoke interface. A C-style prototype definition follows the keyword, and
the whole declaration is annotated with a custom attribute defined in the System.Runtime.
InteropServices namespace. The F# compiler adopts C-style syntax for extern prototypes, including
argument types (as you see later), because C headers and prototypes are widely used; this choice helps in
the PInvoke definition. The DllImport custom attribute provides the information needed to perform the
invocation. The first argument is the name of the DLL containing the function; the remaining option
specifies the calling convention chosen to make the call. Because you don’t specify otherwise, the runtime
assumes that the name of the F# function is the same as the name of the entry point in the DLL. You can
override this behavior using the EntryPoint parameter in the DllImport attribute.

It’s important to note the declarative approach of the PInvoke interface. No code is involved in
accessing external functions. The runtime interprets metadata in order to automatically interoperate with
native code contained in a DLL. This is a different approach from the one adopted by different virtual
machines, such as the Java virtual machine. The Java Native Interface (JNI) requires that you define a layer
of code using types of the virtual machine and invoke the native code.

PInvoke requires high privileges in order to execute native code, because the activation record of the
native function is allocated on the same stack that contains the activation records of managed functions
and methods. Moreover, as discussed shortly, it’s also possible to have the native code invoking a delegate
marshalled as a function pointer, allowing stacks with native and managed activation records to be
interleaved.

The HelloWorld function is a simple case, because the function doesn’t have input arguments and
doesn’t return any value. Consider this function with input arguments and a return value:

int CINTEROPDLL_API Sum(int i, int j)
{
 return i + j;
}

Invoking the Sum function requires integer values to be marshalled to the native code and the value
returned to managed code. Simple types, such as integers, are easy to marshal, because they’re usually
passed by value and use types of the underlying architecture. The F# program using the Sum function is:

module CInterop =
 [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
 extern int Sum(int i, int j)

printf "Sum(1, 1) = %d\n" (CInterop.Sum(1, 1));

525

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

Parameter passing assumes the same semantics of the CLR, and parameters are passed by value for
value types and by the value of the reference for reference types. Again, you use the custom attribute to
specify the calling convention for the invocation.

Mapping C Data Structures to F# Code
Let’s first cover what happens when structured data are marshalled by the CLR in the case of nontrivial
argument types. Here, you see the SumC function responsible for adding two complex numbers defined by
the Complex C data structure:

typedef struct _Complex {
 double re;
 double im;
} Complex;

Complex CINTEROPDLL_API SumC(Complex c1, Complex c2)
{
 Complex ret;
 ret.re = c1.re + c2.re;
 ret.im = c1.im + c2.im;
 return ret;
}

To invoke this function from F#, you must define a data structure in F# corresponding to the Complex C
structure. If the memory layout of an instance of the F# structure is the same as that of the corresponding
C structure, values can be shared between the two languages. How can you control the memory layout of a
managed data structure? Fortunately, the PInvoke specification helps with custom attributes that let you
specify the memory layout of data structures. The StructLayout custom attribute indicates the strategy
adopted by the runtime to lay out fields of the data structure. By default, the runtime adopts its own
strategy in an attempt to optimize the size of the structure, keeping fields aligned to the machine world in
order to ensure fast access to the structure’s fields. The C standard ensures that fields are laid out in
memory sequentially in the order they appear in the structure definition; other languages may use
different strategies. Using an appropriate argument, you can indicate that a C-like sequential layout
strategy should be adopted. It’s also possible to provide an explicit layout for the structure, indicating the
offset in memory for each field of the structure. This example uses the sequential layout for the Complex
value type:

module CInterop =
 [<Struct; StructLayout(LayoutKind.Sequential)>]
 type Complex =
 val mutable re : double
 val mutable im : double

 new(r, i) = {re = r; im = i}

 [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
 extern Complex SumC(Complex c1, Complex c2)

let c1 = CInterop.Complex(1.0, 0.0)
let c2 = CInterop.Complex(0.0, 1.0)

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

526

let mutable c3 = CInterop.SumC(c1, c2)
printf "c3 = SumC(c1, c2) = %f + %fi\n" c3.re c3.im

The SumC prototype refers to the F# Complex value type. But because the layout of the structure in
memory is the same as the corresponding C structure, the runtime passes the bits that are consistent with
those expected by the C code.

Marshalling Parameters to and from C
A critical aspect of dealing with PInvoke is ensuring that values are marshalled correctly between managed
and native code, and vice versa. A structure’s memory layout doesn’t depend only on the order of the fields.
Compilers often introduce padding to align fields to memory addresses so that access to fields requires
fewer memory operations, because CPUs load data into registers with the same strategy. Padding may
speed up access to the data structure, but it introduces inefficiencies in memory usage: there may be gaps
in the structures, leading to allocated but unused memory.

Consider, for instance, the C structure:

struct Foo {
 int i;
 char c;
 short s;
};

Depending on the compiler decision, it may occupy from 8 to 12 bytes on a 32-bit architecture. The
most compact version of the structure uses the first 4 bytes for i, a single byte for c, and 2 more bytes for s.
If the compiler aligns fields to addresses that are multiples of 4, then the integer i occupies the first slot, 4
more bytes are allocated for c (although only one is used), and the same happens for s.

Padding is a common practice in C programs; because it may affect performance and memory usage,
directives instruct the compiler about padding. It’s possible to have data structures with different padding
strategies running within the same program.

The first step you face when using PInvoke to access native code is finding the definition of data
structures, including information about padding. Then, you can annotate F# structures to have the same
layout as the native ones, and the CLR can automate the marshalling of data. You can pass parameters by
reference; thus, the C code may access the memory managed by the runtime, and errors in memory layout
may result in corrupted memory. For this reason, keep PInvoke code to a minimum and verify it accurately
to ensure that the execution state of the virtual machine is preserved. The declarative nature of the
interface is a great help in this respect, because you must check declarations and not interop code.

Not all the values are marshalled as is to native code; some may require additional work from the
runtime. Strings, for instance, have different memory representations between native and managed code.
C strings are arrays of bytes that are null terminated, whereas runtime strings are .NET objects with a
different layout. Also, function pointers are mediated by the runtime: the calling convention adopted by
the CLR isn’t compatible with external conventions, so code stubs are generated that can be called by
native code from managed code, and vice versa.

In the SumC example, arguments are passed by value, but native code often requires data structures to
be passed by reference to avoid the cost of copying the entire structure and passing only a pointer to the
native data. The ZeroC function resets a complex number whose pointer is passed as an argument:

void CINTEROPDLL_API ZeroC(Complex* c)
{
 c->re = 0;
 c->im = 0;
}

527

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

The F# declaration for the function is the same as the C prototype:

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void ZeroC(Complex* c)

Now you need a way to obtain a pointer given a value of type Complex in F#. You can use the &&
operator to indicate a pass by reference; this results in passing the pointer to the structure expected by the
C function:

let mutable c4 = CInterop.SumC(c1, c2)
printf "c4 = SumC(c1, c2) = %f + %fi\n" c4.re c4.im

CInterop.ZeroC(&&c4)
printf "c4 = %f + %fi\n" c4.re c4.im

In C and C++, the notion of objects (or struct instances) and the classes of memory are orthogonal: an
object can be allocated on the stack or on the heap and share the same declaration. In .NET, this isn’t the
case; objects are instances of classes and are allocated on the heap, and value types are stored in the stack
or wrapped into objects in the heap.

Can you pass objects to native functions through PInvoke? The main issue with objects is that the
heap is managed by the garbage collector, and one possible strategy for garbage collection is copy
collection (a technique that moves objects in the heap when a collection occurs). Thus, the base address in
memory of an object may change over time, which can be a serious problem if the pointer to the object
has been marshalled to a native function through a PInvoke invocation. The CLR provides an operation
called pinning that prevents an object from moving during garbage collection. Pinned pointers are
assigned to local variables, and pinning is released when the function performing the pinning exits. It’s
important to understand the scope of pinning: if the native code stores the pointer somewhere before
returning, the pointer may become invalid but still usable from native code.

Now, let’s define an object type for Complex and marshal F# objects to a C function. The goal is to
marshal the F# object to the ZeroC function. In this case, you can’t use the pass-by-reference operator, and
you must define everything so that the type checker is happy. You can define another function that refers
to ZeroC but with a different signature involving ObjComplex, which is an object type similar to the Complex
value type. The EntryPoint parameter maps the F# function onto the same ZeroC C function, although in
this case, the argument is of type ObjComplex rather than Complex:

module CInterop =
 [<StructLayout(LayoutKind.Sequential)>]
 type ObjComplex =
 val mutable re : double
 val mutable im : double

 new() = {re = 0.0; im = 0.0}
 new(r : double, i : double) = {re = r; im = i}

 [<DllImport("CInteropDLL", EntryPoint = "ZeroC",
 CallingConvention = CallingConvention.Cdecl)>]
 extern void ObjZeroC(ObjComplex c)

let oc = CInterop.ObjComplex(2.0, 1.0)
printf "oc = %f + %fi\n" oc.re oc.im
CInterop.ObjZeroC(oc)
printf "oc = %f + %fi\n" oc.re oc.im

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

528

In this case, the object reference is marshalled as a pointer to the C code, and you don’t need the &&
operator in order to call the function. The object is pinned to ensure that it doesn’t move during the
function call.

Marshalling Strings to and from C
PInvoke defines the default behavior for mapping common types used by the Win32 API. Table 18-12
shows the default conversions. Most of the mappings are natural, but note that there are several entries for
strings. This is because strings are represented in different ways in programming language runtimes.

Table 18-12. Default mapping for types of the Win32 API listed in Wtypes.h

Unmanaged Type
in Wtypes.h

Unmanaged
C Type Managed Class Description

HANDLE void* System.IntPtr 32 bits on 32-bit Windows
operating systems, 64 bits on 64-bit
Windows operating systems

BYTE unsigned char System.Byte 8 bits

SHORT short System.Int16 16 bits

WORD unsigned short System.UInt16 16 bits

INT int System.Int32 32 bits

UINT unsigned int System.UInt32 32 bits

LONG long System.Int32 32 bits

BOOL long System.Int32 32 bits

DWORD unsigned long System.UInt32 32 bits

ULONG unsigned long System.UInt32 32 bits

CHAR char System.Char Decorate with ANSI

LPSTR char* System.String or System.Text.
StringBuilder

Decorate with ANSI

LPCSTR const char* System.String or System.Text.
StringBuilder

Decorate with ANSI

LPWSTR wchar_t* System.String or System.Text.
StringBuilder

Decorate with Unicode

LPCWSTR const wchar_t* System.String or System.Text.
StringBuilder

Decorate with Unicode

FLOAT Float System.Single 32 bits

DOUBLE Double System.Double 64 bits

To see how strings are marshalled, start with a simple C function that echoes a string on the console:

void CINTEROPDLL_API echo(char* str)
{
 puts(str);
}

The corresponding F# PInvoke prototype is:

529

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void echo(string s)

What happens when the F# function echo is invoked? The managed string is represented by an array of
Unicode characters described by an object in the heap; the C function expects a pointer to an array of
single-byte ANSI characters that are null terminated. The runtime is responsible for performing the
conversion between the two formats, and it’s performed by default when mapping a .NET string to an
ANSI C string.

It’s common to pass strings that are modified by C functions, yet .NET strings are immutable. For this
reason, it’s also possible to use a System.Text.StringBuilder object instead of a string. Instances of this
class represent mutable strings and have an associated buffer containing the characters of the string. You
can write a C function in the DLL that fills a string buffer given the size of the buffer:

void CINTEROPDLL_API sayhello(char* str, int sz)
{
 static char* data = "Hello from C code!";
 int len = min(sz, strlen(data));
 strncpy(str, data, len);
 str[len] = 0;
}

Because the function writes into the string buffer passed as an argument, use a StringBuilder rather
than a string to ensure that the buffer has the appropriate room for the function to write. You can use the
F# PInvoke prototype:

open System.Text
[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void sayhello(StringBuilder sb, int sz)

Because you have to indicate the size of the buffer, you can use a constructor of the StringBuilder
class that allows you to do so:

let sb = new StringBuilder(50)
sayhello(sb, 50)
printf "%s\n" (sb.ToString())

You’ve used ANSI C strings so far, but this isn’t the only type of string. Wide-character strings are
becoming widely adopted and use 2 bytes to represent a single character; following the C tradition, the
string is terminated by a null character. Consider a wide-character version of the sayhello function:

void CINTEROPDLL_API sayhellow(wchar_t* str, int sz)
{
 static wchar_t* data = L"Hello from C code Wide!";
 int len = min(sz, wcslen(data));
 wcsncpy(str, data, len);
 str[len] = 0;
}

How can you instruct the runtime that the StringBuilder should be marshalled as a wide-character
string rather than an ANSI string? The declarative nature of PInvoke helps by providing a custom attribute
to annotate function parameters of the prototype and to inform the CLR about the marshalling strategy to
be adopted. The sayhello function is declared in F# as:

open System.Text
[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

530

extern void sayhellow([<MarshalAs(UnmanagedType.LPWStr)>]StringBuilder sb, int sz)

In this case, the MarshalAs attribute indicates that the string should be marshalled as LPWSTR rather
than LPSTR.

Passing Function Pointers to C
Another important data type that often should be passed to native code is a function pointer. Function
pointers, which are widely used to implement callbacks, provide a simple form of functional
programming; think, for instance, of a sort function that receives as input the pointer to the comparison
function. Graphical toolkits have widely used this data type to implement event-driven programming, and
they often have to pass a function that is invoked by another one.

PInvoke can marshal delegates as function pointers; again, the runtime is responsible for generating a
suitable function pointer callable from native code. When the marshalled function pointer is invoked, a
stub is called, and the activation record on the stack is rearranged to be compatible with the calling
convention of the runtime. Then, the delegate function is invoked.

Although in principle the generated stub is responsible for implementing the calling convention
adopted by the native code receiving the function pointer, the CLR supports only the stdcall calling
convention for marshalling function pointers. Thus, the native code should adopt this calling convention
when invoking the pointer. This restriction may cause problems, but in general, on the Windows platform,
the stdcall calling convention is widely used.

The following C function uses a function pointer to apply a function to an array of integers:

typedef int (_stdcall *TRANSFORM_CALLBACK)(int);

void CINTEROPDLL_API transformArray(int* data, int count, TRANSFORM_CALLBACK fn)
{
 int i;
 for (i = 0; i < count; i++)
 data[i] = fn(data[i]);
}

The TRANSFORM_CALLBACK type definition defines the prototype of the function pointer you’re interested
in here: a function takes an integer as the input argument and returns an integer as a result. The CALLBACK
macro is specific to the Microsoft Visual C++ compiler and expands to __stdcall in order to indicate that
the function pointer, when invoked, should adopt the stdcall calling convention instead of the cdecl
calling convention.

The transformArray function takes as input an array of integers with its length and the function to
apply to its elements. You now have to define the F# prototype for this function by introducing a delegate
type with the same signature as TRANSFORM_CALLBACK:

type Callback = delegate of int -> int

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void transformArray(int[] data, int count, Callback transform)

Now you can increment all the elements of an array by using the C function:

let anyToString any = sprintf "%A" any
let data = [|1; 2; 3|]
printf "%s\n" (String.Join("; ", (Array.map anyToString data)))

531

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

transformArray(data, data.Length, new Callback(fun x -> x + 1))
printf "%s\n" (String.Join("; ", (Array.map anyToString data)))

PInvoke declarations are concise, but for data types such as function pointers, parameter passing can
be expensive. In general, libraries assume that crossing the language boundary causes a loss of efficiency
and callbacks are invoked at a price different from ordinary functions. In this respect, the example
represents a situation in which the overhead of PInvoke is significant: a single call to transformArray
causes a number of callbacks without performing any real computation into the native code.

PInvoke Memory Mapping
As a more complicated example of PInvoke usage, this section shows you how to benefit from memory
mapping into F# programs. Memory mapping is a popular technique that allows a program to see a file (or
a portion of a file) as if it were in memory. This provides an efficient way to access files, because the
operating system uses the machinery of virtual memory to access files and significantly speed up data
access on files. After proper initialization, which is covered in a moment, the program obtains a pointer
into the memory, and access to that portion of memory appears the same as accessing data stored into the
file.

You can use memory mapping to both read and write files. Every access performed to memory is
reflected in the corresponding position in the file.

This is a typical sequence of system calls in order to map a file into memory:

1. A call to the CreateFile system call to open the file and obtain a handle to the
file.

2. A call to the CreateFileMapping system call to create a mapped file object.

3. One or more calls to MapViewOfFile and UnmapViewOfFile to map and release
portions of a file into memory. In a typical usage, the whole file is mapped at
once in memory.

4. A call to CloseHandle to release the file.

The PInvoke interface to the required functions involves simple type mappings, as is usual for Win32
API functions. All the functions are in kernel32.dll, and the signature can be found in the Windows SDK.
Listing 18-1 contains the definition of the F# wrapper for memory mapping.

The SetLastError parameter informs the runtime that the called function uses the Windows
mechanism for error reporting and that the GetLastError function can be read in case of error; otherwise,
the CLR ignores such a value. The CharSet parameter indicates the character set assumed, and it’s used to
distinguish between ANSI and Unicode characters; with Auto, you delegate the runtime to decide the
appropriate version.

You can define the generic class MemMap that uses the functions to map a given file into memory. The
goal of the class is to provide access to memory mapping in a system in which memory isn’t directly
accessible, because the runtime is responsible for its management. A natural programming abstraction to
expose the memory to F# code is to provide an array-like interface in which the memory is seen as a
homogeneous array of values.

Listing 18-1. Exposing memory mapping in F#

module MMap =
 open System
 open System.IO
 open System.Runtime.InteropServices

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

532

 open Microsoft.FSharp.NativeInterop
 open Printf

 type HANDLE = nativeint
 type ADDR = nativeint

 [<DllImport("kernel32", SetLastError = true)>]
 extern bool CloseHandle(HANDLE handler)

 [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
 extern HANDLE CreateFile(string lpFileName,
 int dwDesiredAccess,
 int dwShareMode,
 HANDLE lpSecurityAttributes,
 int dwCreationDisposition,
 int dwFlagsAndAttributes,
 HANDLE hTemplateFile)

 [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
 extern HANDLE CreateFileMapping(HANDLE hFile,
 HANDLE lpAttributes,
 int flProtect,
 int dwMaximumSizeLow,
 int dwMaximumSizeHigh,
 string lpName)

 [<DllImport("kernel32", SetLastError = true)>]
 extern ADDR MapViewOfFile(HANDLE hFileMappingObject,
 int dwDesiredAccess,
 int dwFileOffsetHigh,
 int dwFileOffsetLow,
 int dwNumBytesToMap)

 [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
 extern HANDLE OpenFileMapping(int dwDesiredAccess,
 bool bInheritHandle,
 string lpName)

 [<DllImport("kernel32", SetLastError = true)>]
 extern bool UnmapViewOfFile(ADDR lpBaseAddress)

 let INVALID_HANDLE = new IntPtr(-1)
 let MAP_READ = 0x0004
 let GENERIC_READ = 0x80000000
 let NULL_HANDLE = IntPtr.Zero
 let FILE_SHARE_NONE = 0x0000
 let FILE_SHARE_READ = 0x0001
 let FILE_SHARE_WRITE = 0x0002
 let FILE_SHARE_READ_WRITE = 0x0003
 let CREATE_ALWAYS = 0x0002
 let OPEN_EXISTING = 0x0003

533

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

 let OPEN_ALWAYS = 0x0004
 let READONLY = 0x00000002

 type MemMap<'T when 'T : unmanaged> (fileName) =

 let ok =
 match typeof<'T> with
 | ty when ty = typeof<int> -> true
 | ty when ty = typeof<int32> -> true
 | ty when ty = typeof<byte> -> true
 | ty when ty = typeof<sbyte> -> true
 | ty when ty = typeof<int16> -> true
 | ty when ty = typeof<uint16> -> true
 | ty when ty = typeof<int64> -> true
 | ty when ty = typeof<uint64> -> true
 | _ -> false

 do if not ok then failwithf "the type %s is not a basic blittable type" ((typeof<'T>).
ToString())
 let hFile =
 CreateFile (fileName,
 GENERIC_READ,
 FILE_SHARE_READ_WRITE,
 IntPtr.Zero, OPEN_EXISTING, 0, IntPtr.Zero)
 do if (hFile.Equals(INVALID_HANDLE)) then
 Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());
 let hMap = CreateFileMapping (hFile, IntPtr.Zero, READONLY, 0, 0, null)
 do CloseHandle(hFile) |> ignore
 do if hMap.Equals(NULL_HANDLE) then
 Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());

 let start = MapViewOfFile (hMap, MAP_READ, 0, 0 ,0)

 do if (start.Equals(IntPtr.Zero)) then
 Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error())

 member m.AddressOf(i : int) : 'T nativeptr =
 NativePtr.ofNativeInt(start + (nativeint i))

 member m.GetBaseAddress (i : int) : int -> 'T =
 NativePtr.get (m.AddressOf(i))

 member m.Item with get(i : int) : 'T = m.GetBaseAddress 0 i

 member m.Close() =
 UnmapViewOfFile(start) |> ignore;
 CloseHandle(hMap) |> ignore

 interface IDisposable with
 member m.Dispose() = m.Close()

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

534

The class exposes two properties: Item and Element. The former returns a function that allows access
to data in the mapped file at a given offset using a function; the latter allows access to the mapped file at a
given offset from the origin.

This example uses the MemMap class to read the first byte of a file:

let mm = new MMap.MemMap<byte>("somefile.txt")

printf "%A\n" (mm.[0])

mm.Close()

Memory mapping provides good examples of how easy it can be to expose native functionalities into the
.NET runtime and how F# can be effective in this task. It’s also a good example of the right way to use PInvoke
to avoid calling PInvoked functions directly and build wrappers that encapsulate them. Verifiable code is one
of the greatest benefits provided by virtual machines, and PInvoke signatures often lead to nonverifiable code
that requires high execution privileges and risks corrupting the runtime’s memory.

A good approach to reducing the amount of potentially unsafe code is to define assemblies that are
responsible for accessing native code with PInvoke and that expose functionalities in a .NET verifiable
approach. This way, the code that should be trusted by the user is smaller, and programs can have all the
benefits provided by verified code.

Wrapper Generation and Limits of PInvoke
PInvoke is a flexible and customizable interface, and it’s expressive enough to define prototypes for most
libraries available. In some situations, however, it can be difficult to map directly the native interface into
the corresponding signature. A significant example is function pointers embedded into structures, which
are typical C programming patterns that approximate object-oriented programming. Here, the structure
contains a number of pointers to functions that can be used as methods; but you must take care to pass
the pointer to the structure as the first argument to simulate the this parameter. Oracle’s Berkeley
Database (BDB) is a popular database library that adopts this programming pattern. The core structure
describing an open database is:

struct __db {
 /* ... */
 DB_ENV *dbenv; /* Backing environment. */
 DBTYPE type; /* DB access method type. */
 /* ... */
 int (*close) __P((DB *, u_int32_t));
 int (*cursor) __P((DB *, DB_TXN *, DBC **, u_int32_t));
 int (*del) __P((DB *, DB_TXN *, DBT *, u_int32_t));
 // ...
}

The System.Runtime.InteropServices.Marshal class features the GetFunctionPointerForDelegate for
obtaining a pointer to a function that invokes a given delegate. The caller of the function must guarantee that
the delegate object will remain alive for the lifetime of the structure, because stubs generated by the runtime
aren’t moved by the garbage collector but can still be collected. Furthermore, callbacks must adopt the stdcall
calling convention: if this isn’t the case, the PInvoke interface can’t interact with the library.

When PInvoke’s expressivity isn’t enough for wrapping a function call, you can still write an adapter
library in a native language such as C. This is the approach followed by the BDB# library, in which an
intermediate layer of code has been developed to make the interface to the library compatible with

535

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES

PInvoke. The trick has been, in this case, to define a function for each database function, taking as input
the pointer to the structure and performing the appropriate call:

DB *db;
// BDB call
db->close(db, 0);
// Wrapper call
db_close(db, 0);

The problem with wrappers is that they must be maintained manually when the signatures of the
original library change. The intermediate adapter makes it more difficult to maintain the code’s overall
interoperability.

Many libraries have a linear interface that can be easily wrapped using PInvoke, and, of course,
wrapper generators have been developed. At the moment, there are no wrapper generators for F#, but the
C-like syntax for PInvoke declarations makes it easy to translate C# wrappers into F# code. An example of
such a tool is SWIG, which is a multilanguage wrapper generator that reads C header files and generates
interop code for a large number of programming languages, such as C#.

Summary
In this chapter, you saw how F# can interoperate with native code in the form of COM components and
the standard Platform Invoke interface defined by the ECMA and ISO standards. Neither mechanism is
dependent on F#, but the language exposes the appropriate abstractions built into the runtime. You
studied how to consume COM components from F# programs and vice versa, and how to access DLLs
through PInvoke.

	CHAPTER 18 Libraries and Interoperating with Other Languages
	Types, memory and interoperability
	Libraries: A High-Level Overview
	Namespaces from the .NET Framework
	Namespaces from the F# Libraries

	Using the System Types
	Using Further F# and .NET Data Structures
	System.Collections.Generic and Other .NET Collections

	Supervising and Isolating Execution
	Further Libraries for Reflective Techniques
	Using General Types
	Using Microsoft.FSharp.Reflection

	Some Other .NET Types You May Encounter
	Under the Hood: Interoperating with C# and other .NET Languages
	The Common Language Runtime
	Memory Management at Runtime

	COM Interoperability
	Calling COM Components from F#
	The Running Object Table

	Interoperating with C and C++ with PInvoke
	Getting Started with PInvoke
	Mapping C Data Structures to F# Code
	Marshalling Parameters to and from C
	Marshalling Strings to and from C
	Passing Function Pointers to C
	PInvoke Memory Mapping
	Wrapper Generation and Limits of PInvoke

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

