
391

■ ■ ■

CHAPTER 15

Building Mobile Web Applications

Mobile applications are changing the way people interact with software. With the abundance of mobile
devices such as smart phones and tablets, developing mobile applications and delivering content to
mobile devices requires learning new skills and technologies. This chapter examines how you can build
mobile web and native applications in F# using WebSharper. The topics covered are:

Why web-based mobile applications are becoming increasingly important

How you can use feature detection and polyfilling libraries in your applications to
work around mobile browser limitations and missing features

How you can serve mobile web content from your WebSharper applications

How you can develop WebSharper applications for iOS that use platform-specific
markup to access unique features such as multi-touch events

How you can develop WebSharper applications that use the Facebook API, parts of
which you bind manually using a WebSharper Extension project

How you can use WebSharper Mobile to create native Android and Windows Phone
packages for your WebSharper applications

How you can integrate mobile formlets and Bing Maps in a WebSharper application

Web-based vs. Native Mobile Applications
Mobile applications are designed to run on mobile devices and to utilize their additional capabilities such
as GPS positioning, camera, and touch screen; more technically, they rely on the executing mobile
operating system to provide access to mobile capabilities found on the device. When mobile devices first
appeared, various vendors produced operating systems for them, each providing a unique user experience
and capabilities, and with that, a unique way to develop applications for these platforms.

Native applications are those designed to run specifically on a given platform (or even a specific
hardware device), and depend on the exact capabilities that are provided on that platform by its execution
environment. Typically, a native application needs heavy adaptation or even an entire rewrite in order to
run on another platform. For instance, many iPhone or iPad applications are developed in Apple’s own
programming language, using vendor-specific libraries and development environments. The same holds
for native Android, Windows Phone, Symbian, and other applications.

To add to the diverse mobile operating system landscape, each platform comes with its own
application store, giving end-users a one-stop shop for new applications and their updates. While the

D. Syme et al., Expert F# 3.0
© Don Syme, Adam Granicz, and Antonio Cisternino 2012

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

392

existence of application stores has resulted in a massive explosion in the number of mobile applications
available and, with that, several mainstream mobile platforms solidifying, it has also played an important
role in developers looking for cross-platform solutions to build their applications in order to reach a larger
audience, and undoubtedly, to save on their efforts by avoiding to build several versions of the same
application for different platforms.

One approach to cross-platform mobile development is utilizing the existing HTML4-based mobile
browsers and providing mobile websites (you probably saw countless examples of these sitting at URLs
like http://m.something.com) next to native mobile applications. These are web applications with reduced
capabilities, compared to their mobile counterparts, due to their lack of web/HTML features that could
provide similar user experience and functionality. Nonetheless, mobile websites played and continue to
play an important role in providing content and applications on mobile devices, thus contributing to
mobile device explosion. On one hand, mobile websites provide a clean and simple version of an
application, therefore prompting the developers to consider the essential parts of their applications. On
the other hand, mobile websites acted as a conduit to explore new and innovative uses of web applications
coupled with the convenience of mobile devices.

Another parallel development is the appearance of various HTML5 standards. HTML5 is a large and
constantly evolving set of standards, now covering important mobile features such as multi-touch, native-
strength audio, video and camera capabilities, efficient client-server communication via web sockets, and
so on. HTML5 along with CSS3 now provide a standards-driven alternative to native mobile applications,
and have proven not only viable, but also in many respects, superior to native application development.

In this chapter, you will be taking a short introduction into developing mobile web applications in F#
using WebSharper, the F# web framework you saw in Chapter 14. You will learn about progressive
enhancement, responsive web design, feature detection and polyfilling, various HTML and JavaScript
features such as multi-touch events and mobile meta tags supported on different mobile browsers,
developing WebSharper mobile web applications using these features, and finally, using WebSharper
Mobile to package these applications into native Android or Windows Phone applications.

PROGRESSIVE ENHANCEMENT AND RESPONSIVE WEB DESIGN

One of the challenges of mobile web development (or ordinary web development for that matter) is
accommodating the vast diversity of end-user devices that come with different capabilities to render content.
In the past, one way to work with this added complexity was to detect certain devices or browsers and
implicitly causing or even explicitly advising users to update to a newer version that better supports the
features of the given application. This is a failed attempt to provide graceful degradation, a technique that
starts with a feature-rich version customized to a particular browser technology and provides various
fallback mechanisms for certain features when they are detected missing.

In today’s world, new techniques are emerging to tackle this problem in a fundamentally different, better
way. For one, you can apply progressive enhancement, a strategy where you develop applications based on
clean and rich semantic markup that is accessible to all devices, and add more sophisticated features as
enhancements in layers that, where interpreted correctly, yield an improved user experience. These
enhancements can be applied on the presentation layer using various CSS and styling elements, and on the
behavioral layer using client-side scripting.

We have used the term progressive enhancement in a similar but slightly different context in Chapter 14,
where you saw how you can apply incremental enhancements to formlets and their input controls. These
enhancements concerned visual details such as labels, icons, and layout, and dynamic behaviors such as
validation, and were applied incrementally to build progressively more enhanced formlets.

Responsive web design uses progressive enhancement to enable web applications to adapt to different
screen resolution and plays an important role in developing modern mobile web applications. It relies on

393

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

three fundamental building blocks: fluid grids, flexible images, and media queries. Fluid grids structure their
content depending on the available screen size, and may shift cells in predictable ways to better adapt to the
real estate available on the device. Flexible images resize on demand to keep the content in which they are
embedded consistently formatted. Media queries provide conditional styling based on a CSS media type
(such as handheld, print, projection, or tv) and an optional set of expressions that involve particular
media features such as width or orientation. A handful of media query examples are shown in Table 15-1.

Table 15-1. Examples for Media Queries

Media Query Note
@media screen and (max-width: 640px) {...} Apply if the width of the viewing area is no

more than 640 pixels.

@media screen and (min-width: 1024px) {...} Apply if the width of the viewing area is at
least 1024 pixels.

@media screen and (max-device-width: 480px) {...} Apply if the width of the device is no more
than 480 pixels.

@media screen and (min-device-width: 320px) {...} Apply if the width of the device is at least
320 pixels.

@media (orientation: portrait) {...} Apply if the orientation of the device is
portrait.

Feature Detection and Polyfilling in WebSharper
At first look, mobile web applications differ little from ordinary web applications. However, although
HTML5 is spreading quickly to mobile browsers, there are still various differences that need to be dealt
with on various platforms. Coming to the rescue, you should design your applications with running in
different contexts in mind using feature detection, via a multitude of JavaScript libraries such as Modernizr
(http://modernizr.com) or has.js. In conjunction with feature checking, you can also use what is often
referred to as polyfilling, e.g., using JavaScript to fill in for missing browser features. Many of the polyfilling
libraries exist to provide various HTML5 support such as canvas, video or audio on older browsers such as
IE7 and IE8, that otherwise do not support HTML5.

It is impossible to do justice to the various available feature-checking and polyfilling libraries in one
short chapter, nor are they set in stone, as there are new and better libraries appearing all the time.
Instead, you can find a short list of libraries and the various features they relate to in Table 15-2.

Feature detection libraries provide an easy-to-use API to query for various browser features, often as a
table lookup facility or a function call that identifies browser features with keys (usually as strings), and
returning a Boolean value depending on whether the given feature is supported in the executing context or
not. For instance, in has.js, you can check whether the end user’s browser supports HTML5/video with the
following JavaScript snippet:

if(has("video")) {
 // Your enviroment supports HTML5 video
} else {
 // It doesn't, so you must use some kind of video polyfill
}

Modernizr also provides a convenient shorthand notation not only to check for various features, but
also to polyfill them if they are absent. Consider the following Modernizr JavaScript snippet:

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

394

Modernizr.load({
 test: Modernizr.geolocation,
 yep : 'geo.js',
 nope: 'geo-polyfill.js'
});

This snippet defines a conditional loading of a script based on the result of a particular test function
Modernizr.geolocation, which checks for geolocation support in the executing environment. Modernizr
includes a large number of tests for various CSS, JavaScript, HTML5, and other features you can use in
your applications to detect context support and fall back accordingly.

Table 15-2. Some Notable Polyfill Libraries Available

Name Library URL Type
AmplifyJS http://amplifyjs.com/ HTML5/LocalStorage

audio.js http://kolber.github.com/audiojs/ HTML5/Audio

excanvas http://code.google.com/p/explorercanvas/ HTML5/Canvas

Flashcanvas http://flashcanvas.net/ HTML5/Canvas

HTML-History-API https://github.com/devote/HTML5-History-API HTML5/History

MediaElement.JS http://mediaelementjs.com/ HTML5/Video+Audio

pdf.js https://github.com/mozilla/pdf.js PDF

Raphaël http://raphaeljs.com SVG/VML Graphics

Shumway https://github.com/mozilla/shumway Flash

Socket.IO http://socket.io HTML5/WebSockets

Video.js http://videojs.com HTML5/Video

To use JavaScript libraries like Modernizr or has.js in your WebSharper applications, you have several
choices. First, you can define JavaScript inlines in your WebSharper code to “stub” certain functions and to
instruct WebSharper to output your inlines for them at code generation time. For this to work correctly,
you need to make sure that the module containing your inlined functions is properly annotated to require
any JavaScript/CSS artifacts that belong to the library you are referencing. Here is an example to inline has.
js’s has(…) function you saw earlier and to make it available to your F# code as HasJs.Has:

open IntelliFactory.WebSharper

module MyResources =
 type HasJs() =
 inherit Resources.BaseResource("http://[put-URL-here]/has.js")

 module Features =
 type Video() =
 inherit Resources.BaseResource("http://[put-URL-here]/has.js")

 ...

[<Require(typeof<MyResources.HasJs>)>]
module HasJs =
 module Features =

395

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

 [<Require(typeOf<MyResources.Features.Video>)>]
 [<JavaScript>]
 let Video() = "video"
 ...

 [<Inline("has($s) ? $ifyes() : $ifno()")>]
 let Has (s: string) (ifyes: unit -> unit) (ifno: unit -> unit) =
 ()

With this JavaScript stub, your WebSharper code could use has.js to detect various browser features.
For instance, the snippet you saw above could be phrased in WebSharper as:

do HasJs.Has (HasJs.Features.Video())
 <| fun () ->
 // Your enviroment supports HTML5 video
 ...
 <| fun () ->
 // It doesn't, so you must use some kind of video polyfill
 ...

In addition to manually stubbing out JavaScript functions with inlines, you can also create a new
WebSharper extension for your JavaScript library at hand using the WebSharper Interface Generator tool
you saw in Chapter 14. Extensions are an essential part of using WebSharper because they provide the
bridge to the outside world and to any JavaScript library; and you may find the need to build WebSharper
extensions from time to time, either to existing third-party JavaScript libraries or to libraries of your own.
You will see an example of developing a WebSharper extension to a small part of the Facebook API later in
this chapter.

Alternatively, you can check if a given WebSharper extension is already available on the WebSharper
downloads page at http://websharper.com/downloads. WebSharper extensions are added regularly, so
there is a good chance that someone has already done the work for you. At the time of writing, WebSharper
has over two dozen extensions available, covering a good selection of mobile libraries, including jQuery
Mobile (http://jquerymobile.com/), Sencha Touch (http://www.sencha.com/products/touch/), and Kendo
UI (http://kendoui.com/), and many other JavaScript libraries you can use in your web or mobile web
applications.

Mobile Capabilities, Touch Events, and Mobile Frameworks
One of key differentiators of mobile applications is the ability to use various touch events to control them.
You will see later in this chapter how you can add handlers to these events using JavaScript libraries, such
as jQuery Mobile, that provide access to vendor-specific JavaScript events in a unified way. There are a
growing number of similar JavaScript libraries that aim to enable your applications to respond to touch
events. For instance, hammer.js (http://eightmedia.github.com/hammer.js) and zepto.js (http://zeptojs.
com) both provide support for touch events. Table 15-3 summarizes the different kinds of touch events that
emerged as “standard” on touch-based devices.

Table 15-3. Summary of Touch Events

Event Description
Tap Touching on a single point for a short period.

Double Tap Tapping on a single point twice within a time threshold.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

396

Event Description
Swipe Touching on a single point and moving horizontally or vertically.

Hold Touching on a single point for a longer period.

Transform Touching on at least two points and moving them in any direction.

Drag / Pan Touching on a single point and moving in any direction.

Beyond single and multi-touch events, mobile devices also provide a number of other capabilities to
applications running on them. Some of these mobile capabilities are listed in Table 15-4. Mobile JavaScript
libraries and frameworks, and technologies such as WebSharper Mobile (introduced later in this chapter)
and PhoneGap (http://phonegap.com) provide access to some or all of these capabilities using JavaScript.
More advanced capabilities, such as access to local storage, the file system on the device, its
communication and networking capabilities, and any contacts databases stored on the device are also
becoming available to JavaScript as these technologies mature.

Table 15-4. Some Mobile Capabilities Available in Mobile Devices

Capability Description
Accelerometer Providing information on the device’s acceleration

Audio/Media Playing sounds using the device’s speakerphone(s)

Camera Taking pictures using the device camera

Communication Enabling access to the device’s communication channels

Compass Providing directional/compass information

Geolocation Providing geolocation information using GPS or A-GPS

Vibration Responding by vibration

Storage Providing access to local storage

Touch and Multi Touch Responding to touch events, summarized in Table 15-3

As you will shortly see in this chapter, serving mobile content and developing mobile web applications
that use various mobile capabilities doesn’t involve any magic and is actually quite fun to learn to do. To
take this experience even further, a large number of JavaScript mobile web frameworks exist that not only
enable you to use various mobile user interface widgets and capabilities, but also provide a sort of
application framework (some basic, some nearly end-to-end) in which to develop your mobile web
applications. Some of these frameworks are listed in Table 15-5.

Table 15-5. A Handful of JavaScript Mobile Web Application Frameworks

Framework URL
Appcelerator Titanium http://www.appcelerator.com/

DHTMLX Touch http://www.dhtmlx.com/touch/

iUI http://www.iui-js.org

jQuery Mobile http://jquerymobile.com/

Sencha Touch http://www.sencha.com/products/touch/

Sproutcore http://sproutcore.com/

wink http://www.winktoolkit.org/

397

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Serving Mobile Content
So far in this chapter you saw how you can apply feature detection and polyfilling to accommodate
different rendering environments, preparing your application to gracefully fall back on older devices and
browsers. In this section, you will look at a couple fundamental details that you need to be aware of before
you can start serving mobile web content, in particular, understanding how mobile browsers interpret
your content differently than desktop browsers.

To start with, consider what happens when you view a basic web page with a header and some text in
a desktop browser and compare it with the same page viewed in a mobile browser. You will find that the
mobile browser will scale it like a web page. For instance, on Safari it will be scaled to a 980 pixels width,
with the expectation that you want to surf pages like on a desktop. However, most mobile devices have
fewer physical pixels and therefore the header and text in your test page will appear tiny, if at all visible.

You can fix this by embedding more information in your markup to let your mobile browser know that
it is receiving content intended for mobile devices. For instance, to solve the scaling issue, you can emit an
additional meta tag in the header of your page:

 <meta name="viewport" content="width=device-width, initial-scale=1"/>

This tells mobile browsers to set the default width of the page to the actual width of the device (likely
to something fewer than 980 pixels) and not to scale the content. You can also set minimum-scale and
maximum-scale to 1 to avoid the mobile browser zooming in and out, but many users might find this less
usable.

The available options for viewport and some further iOS meta tags are listed in Table 15-6.

Table 15-6. Special Meta Tags Available in iOS/Safari

Meta tag key (name=”...”) Meta tag value (content=”...”) Description
apple-mobile-web-app-capable yes/no If yes, run application in full screen

mode.

apply-mobile-web-app-status-bar-
style

default/black/black-
translucent

In full screen mode, specifies how the
status bar is displayed.

format-detection telephone=no Disable making strings that look like
phone numbers into dial links.

viewport width=... [980]
height=...
initial-scale=...
maximum-scale=... [0.25]
minimum-scale=... [5.0]
user-scalable=... [yes]

Using comma as a separator,
configure various viewport options.
The defaults of each option are
shown in brackets.
You can use device-height and
device-width to refer to the
dimensions of the device.

Another way to fix the viewport is to apply a different document type, one that specifically targets
mobile devices (such as XHTML Mobile Profile 1.0/1.2). However, to use HTML5 features, your best bet
remains using the plain HTML5 document type:

<!DOCTYPE html>

You can serve content with this document type and with the extra meta tags programmatically as you
saw in Chapter 14, or you can embed them directly into your dynamic template file. You will use this latter
approach for the examples in the remainder of this chapter.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

398

Building a Mobile Web Application for iOS Devices
For the examples that follow in this chapter, you will be using various WebSharper extensions, providing
stubs to different JavaScript libraries. Some of these extensions you will develop yourself, and some you
will download from the WebSharper website (http://websharper.com).

In this section, you are going to build a web application that uses specific iOS/Safari mobile browser
features and its JavaScript support for multi touch events. Your application will work on other mobile
browsers as well, but some features such as multi-touch events may be missing. To simplify your coding,
we assume that no feature detection needs to be done; you can insert these on demand in your real life
coding. As you’ll see, these mobile browser features provide for a user experience that is reasonably similar
to native applications. Yet, the development effort and the ability to move a lot of the code to other
platforms without changes makes mobile web applications much more attractive than their native
counterparts.

The application you are going to be developing in this section is shown in Figure 15-1. It implements a
basic image viewer application that preloads a large image and enables the user to rotate it, move it, and
zoom it using multi-touch events.

Figure 15-1. The image viewer application running on iPad

399

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Fleshing Out the Application
The application is implemented using the HTML Site WebSharper template. You can use this template for
a basic application that will implement an HTML site with pure HTML and JavaScript code. Go ahead and
create a new solution based on this template. At this point, you should have the basic project references
configured, and your project should contain three files: extra.files, Main.fs, and Main.html.

In this application, you will be using WebSharper Extensions for jQuery Mobile, available on the
WebSharper download page (http://websharper.com/downloads). At the time of writing, WebSharper
extensions install under %ProgramFiles%\IntelliFactory\WebSharper\Extensions. After installing this
extension, find and add a library reference to IntelliFactory.WebSharper.JQuery.Mobile.dll. At this
point, you are all set to use this extension later in your application code.

A special configuration file used by offline WebSharper projects, extra.files is used to copy files that
belong to sitelets from the containing F# project. This enables you to encapsulate external artifacts such as
images and style sheet files inside a single F# project instead of having to manually manage them in a
consuming project. Playing an important role in Android and Windows Phone WebSharper applications as
well, extra.files instructs the packaging application to include any additional and necessary artifacts in
target mobile packages.

In this example, you will only need a large image (say, containing more than 1000x1000 pixels) that
will be preloaded into the application for manipulating its size, position, and dimensions. Assuming that
you put it under an images folder as map.jpg in the HTML Site project, add it to extra.files as shown in
Listing 15-1:

Listing 15-1. extra.files

images/map.jpg

Main.html is used as the dynamic site template for this application, and you can make a few changes
to it to fit your needs. First, you can remove the title-related markup to keep the application to a minimum.
Then you can add a meta tag to set the viewport as you saw in the previous section, and also introduce a
few lines of styling. The resulting template is shown in Listing 15-2.

Listing 15-2. Main.html

<!DOCTYPE html>
<html>
 <head>
 <meta name="generator" content="websharper" data-replace="scripts" />
 <meta name="viewport" content="width=device-width, initial-scale=1"/>
 <style type="text/css"><![CDATA[
 *
 {
 margin: 0;
 padding: 0;
 }

 .main
 {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

400

 overflow: hidden;
 }

 .head
 {
 position: absolute;
 height: 30px;
 text-align: center;
 line-height: 30px;
 background-color: Black;
 color: White;
 z-index: 1;
 width: 100%;
 }

 .head > *
 {
 float: left;
 margin-right: 10px;
 }

 .pan-image
 {
 display: none;
 }

 .pan-canvas
 {
 position: absolute;
 top: 30px;
 left: 0;
 }
]]></style>
 </head>
 <body>
 <div data-hole="body"></div>
 </body>
</html>

Note in Listing 15-2 that you use the HTML5 document type, and that the style markup is contained in
a CDATA block to avoid any XML parsing errors. WebSharper dynamic templates must be valid XML
documents, and using CDATA blocks to embed text with special characters is a convenient way to get
around any limitations you may encounter otherwise. And the last bit, your main content placeholder body
is wrapped in a div node.

Now that you have your basic template and the extra.files configuration set up, the only piece left is
the main application code itself. This is shown in Listing 15-3.

Listing 15-3. Main.fs

namespace MyNamespace

401

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

open System
open System.IO
open System.Web
open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Sitelets

module MySite =
 open IntelliFactory.Html

 type Action = | Index

 module Skin =
 type Page =
 {
 Body: Content.HtmlElement list
 }

 let MainTemplate =
 let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
 Content.Template<Page>(path)
 .With("body", fun x -> x.Body)

 let WithTemplate body : Content<Action> =
 Content.WithTemplate MainTemplate <| fun context ->
 {
 Body = body context
 }

 module Client =
 open IntelliFactory.WebSharper.Html
 open IntelliFactory.WebSharper.JQuery

 type State =
 {
 mutable x: float
 mutable y: float
 mutable scale: float
 mutable angle: float
 }

 type MyControl() =
 inherit IntelliFactory.WebSharper.Web.Control()

 [<JavaScript>]
 override this.Body =
 let main = Div [Attr.Class "main"]
 let head =
 Div [Attr.Class "head"] -< [
 Text "WebSharper Image Viewer"
]
 main -< [

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

402

 head
 HTML5.Tags.Canvas [
 Attr.Class "pan-canvas";Attr.Width "600";Attr.Height "600"
]
 |>! OnAfterRender (fun e ->
 let canvas = As<Html5.CanvasElement> e.Body
 let ctx = canvas.GetContext "2d"
 Img [Attr.Src "images/map.jpg"; Attr.Class "pan-image"]
 |> Events.OnLoad (fun img ->
 let state = { x = 0.; y = 0.; scale = 1.; angle = 0. }
 let delta = { x = 0.; y = 0.; scale = 1.; angle = 0. }
 let redraw() =
 // Reset the transformation matrix
 // and clear the canvas.
 ctx.SetTransform(1., 0., 0., 1., 0., 0.)
 ctx.ClearRect(0., 0.,
 float canvas.Width, float canvas.Height)

 // In order to have centered rotation and zoom, we
 // must first put the center of the image at the
 // origin of the coordinate system.
 ctx.Translate(float canvas.Width / 2.,
 float canvas.Height / 2.)
 ctx.Scale(state.scale * delta.scale,
 state.scale * delta.scale)
 ctx.Rotate(state.angle + delta.angle)

 // Then, when the rotation and zoom are done, we put
 // the image back at the center of the screen, plus
 // the (x, y) translation.
 ctx.Translate(state.x+delta.x - float canvas.Width/2.,
 state.y + delta.y - float canvas.Height / 2.)
 ctx.DrawImage(img.Body, 0., 0.)
 let settleDelta() =
 state.x <- state.x + delta.x
 state.y <- state.y + delta.y
 state.angle <- state.angle + delta.angle
 state.scale <- state.scale * delta.scale
 delta.x <- 0.
 delta.y <- 0.
 delta.scale <- 1.
 delta.angle <- 0.
 redraw()
 let panStartPosition = ref None
 // Pan events
 Mobile.Events.VMouseDown.On(JQuery.Of(e.Body), fun ev ->
 panStartPosition:=Some(ev.Event.PageX, ev.Event.PageY)
 ev.Event.PreventDefault())
 Mobile.Events.VMouseMove.On(JQuery.Of(e.Body), fun ev ->
 match !panStartPosition with
 | None -> ()

403

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

 | Some (sx, sy) ->
 let dx = float(ev.Event.PageX - sx)
 let dy = float(ev.Event.PageY - sy)
 let angle = state.angle + delta.angle
 let scale = state.scale * delta.scale
 delta.x <- (dx * Math.Cos angle + dy * Math.Sin angle) / scale
 delta.y <- (dy * Math.Cos angle - dx * Math.Sin angle) / scale
 redraw()
 ev.Event.PreventDefault())
 Mobile.Events.VMouseUp.On(JQuery.Of("body"), fun ev ->
 if (!panStartPosition).IsSome then
 settleDelta()
 panStartPosition := None
 ev.Event.PreventDefault())
 // iOS-only rotozoom events
 e.Body.AddEventListener("gesturechange", (fun (ev: Dom.Event) ->
 delta.scale <- ev?scale
 delta.angle <- ev?rotation * System.Math.PI / 180.
 redraw()
 ev.PreventDefault()
), false)
 e.Body.AddEventListener("gestureend", (fun (ev: Dom.Event) ->
 settleDelta()
 ev.PreventDefault()
), false)
 redraw()
)
)
] :> IPagelet

 let Index =
 Skin.WithTemplate <| fun ctx ->
 [
 Div [new Client.MyControl()]
]

 let MySitelet =
 Sitelet.Content "/index" Action.Index Index

type MyWebsite() =
 interface IWebsite<MySite.Action> with
 member this.Sitelet = MySite.MySitelet
 member this.Actions = [MySite.Action.Index]

[<assembly: Website(typeof<MyWebsite>)>]
do ()

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

404

Digging Deeper
The main application code above sets up basic dynamic templating based on Main.html in your project,
and defines the main pagelet MyControl in the Client module, along with a single-page sitelet, MySitelet.
These are then used to declare the sitelet as a website on the assembly. Note that you specified a singleton
list of actions for the Actions member in the website declaration: this is used to instruct the offline sitelet
generator tool to output the sitelet page that handles this action; in other words, to output the single
HTML page in your application. This will yield an HTML file named after the single Action case, index.
html. Building the project in Visual Studio successfully will pop up a Windows Explorer window containing
the generated files, and you can open index.html in a browser to see it in action.

To use it from an iOS device, you need to publish the application to a public URL and open that URL
in your iPad’s or iPhone’s Safari browser. These devices support multi-touch events, so you should be able
to rotate and scale the image you added to your application.

Now, let’s look at how the application works. The main client-side control Client.MyControl creates
the following dynamic markup:

<div class="main">
 <div class="head">WebSharper Image Viewer</div>
 <canvas class="pan-canvas" width="600" height="600">
 </canvas>
</div>

When the <canvas> element is first created and rendered, the OnAfterRender event is fired. This event
handler is the heart of your application and is attached using the |!> operator, which registers a callback
function to the given event without returning the parent DOM node. First, it creates an node and
loads the image you added earlier to the project. Although this image is never added as an actual DOM
node, creating it dynamically still causes the browser to construct it and to call its OnLoad event. This event
then performs a number of steps:

Creates some bookkeeping for representing the visual state and the delta in between
various touch events

Defines a redraw() function that draws the loaded image onto the <canvas> element
respecting the current state and delta registers

Defines a settleDelta() function that propagates the current delta register into the
state and initiates a redraw

Registers various event handlers

The general format for registering an event handler involves finding the event handler by name and
registering a callback function to it taking the event argument and performing the actions you need.

In the above example, you take two different approaches for binding to various events. Recall that
earlier you added a reference to WebSharper Extensions for jQuery Mobile to your project. You did this
because jQuery Mobile provides a useful abstraction over single-touch events under what it calls virtual
mouse events, making touch and mouse events uniform regardless of running on mobile or desktop
browsers. These events can be addressed with the jQuery Mobile extensions in a type-safe manner:

 Mobile.Events.VMouseDown.On(JQuery.Of(e.Body), fun ev ->
 panStartPosition := Some (ev.Event.PageX, ev.Event.PageY)
 ev.PreventDefault())

The above call registers an event handler for jQuery Mobile’s VMouseDown event: the event that occurs
when the user clicks down using the mouse or when a touch device is touched. The event handler is added
to the canvas element (represented by e), and the callback function takes an event arguments parameter ev

405

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

of type Mobile.VMouseEventArgs. This type contains various important virtual mouse-related members,
such ClientX, ClientY, ScreenX, ScreenY, and an Event member to refer back to the underlying jQuery
event object. This object carries, among others, the click/touch coordinates in PageX and PageY.

The various other events available in the IntelliFactory.WebSharper.Mobile.Events class are
summarized in Table 15-7. Many of these events are key to mobile applications, providing interactions
such as swiping, scrolling, and tapping on a mobile device, and responding to important events such as
changes in the orientation of the device or updating the presentation layout.

Next to binding to events using jQuery Mobile, the second approach you saw in the example above
involves binding to non-standard events, such as the multi touch events not available in the current
version of WebSharper Extensions for jQuery Mobile, using the plain JavaScript event binding primitive
AddEventListener. Consider the following snippet from the example:

 e.Body.AddEventListener("gesturechange", (fun (ev: Dom.Event) ->
 delta.scale <- ev?scale
 delta.angle <- ev?rotation * System.Math.PI / 180.
 redraw()
 ev.PreventDefault()
), false)

This registers an event handler for the gesturechange event, a non-standard event available in iOS/
Safari browsers. Here, the callback function takes a plain DOM event object that contains standard
JavaScript functions to manipulate how the event is propagated (such as PreventDefault), where and
when it was initiated, etc. It also contains in various browser implementations additional pieces of data
that are tagged onto it for specific events. In the above snippet, scale and rotation are extracted using the
dynamic access operator (?). This operator attempts to fetch from its first argument a field with a name
given by an F# identifier following it: roughly the dynamic equivalent of the dot used for ordinary .NET
member access. In our example, scale and rotation are known to be available in browsers that support
the gesturechange event (most notably, iOS/Safari), but in general, you should provide for a fallback when
the dynamic lookup fails.

Table 15-7. Mobile Events Provided by WebSharper Extensions for jQuery Mobile

Event Type Description
OrientationChange Mobile.Event<

Mobile.
OrientationChangeEvent>

Triggered when the orientation of the devices
changes. [portrait | landscape]

ScrollStart Mobile.Event Triggered when scrolling starts.

ScrollStop Mobile.Event Triggered when scrolling stops.

Swipe Mobile.Event Triggered when a horizontal drag occurs within a
specific duration.

SwipeLeft Mobile.Event Triggered when a swipe event occurs moving in the
left direction.

SwipeRight Mobile.Event Triggered when a swipe event occurs moving in the
right direction.

Tap Mobile.Event Triggered after a quick, complete touch event.

TapHold Mobile.Event Triggered after a held complete touch event.

UpdateLayout Mobile.Event Triggered when the application’s layout changes.

VClick Mobile.Event Triggered on a mouse click or a touch event.

VMouseCancel Mobile.Event Triggered when a virtual mouse event is cancelled.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

406

Event Type Description
VMouseDown Mobile.Event Triggered on a mouse or touch click down event.

VMouseMove Mobile.Event Triggered on a mouse or touch move event.

VMouseOut Mobile.Event Triggered on a mouse or touch out event.

VMouseOver Mobile.Event Triggered on a mouse or touch over event.

VMouseUp Mobile.Event Triggered on a mouse or touch up event.

Developing Social Networking Applications
In the previous section you saw how you can build an HTML5 mobile application that uses specific mobile
browser features such as multi-touch events to enhance user experience. In this section, you are going to
build another HTML5 mobile application that interfaces with the Facebook API (http://developers.
facebook.com) to retrieve a Facebook user’s status updates and to display them in a mobile application
built with WebSharper Extensions for jQuery Mobile. The example demonstrates how you can build a
WebSharper extension to the subset of the Facebook API you need, and how to use this extension to build
an HTML5 application that is enhanced to run on mobile devices using the jQuery Mobile library and its
corresponding WebSharper extension.

Figure 15-2. Displaying Facebook status messages

407

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

The application in this section is built as a multi-project solution in Visual Studio. You should start by
creating a WebSharper Extension project, and later add a WebSharper HTML Site project to complete the
application. As a first step, after you created your new Extension project, replace the contents of Main.fs
with the code in Listing 15-4.

Listing 15-4. Main.fs – Defining a WebSharper Extension to a Part of Facebook API

namespace IntelliFactory.WebSharper.Facebook

module Definition =
 open IntelliFactory.WebSharper.InterfaceGenerator
 open IntelliFactory.WebSharper.Dom

 module Res =
 let FacebookAPI =
 Resource "FacebookAPI" "https://connect.facebook.net/en_US/all.js"

 let FlashHidingArgs =
 Class "FB.FlashHidingArgs"
 |+> Protocol [
 "state" =? T<string>
 "elem" =? T<Element>
]

 let InitOptions =
 Pattern.Config "FB.InitOptions" {
 Required = []
 Optional =
 [
 "appId", T<string>
 "cookie", T<bool>
 "logging", T<bool>
 "status", T<bool>
 "xfbml", T<bool>
 "channelUrl", T<string>
 "authResponse", T<obj>
 "frictionlessRequests", T<bool>
 "hideFlashCallback", FlashHidingArgs ^-> T<unit>
]
 }

 let AuthResponse =
 Class "FB.AuthResponse"
 |+> Protocol [
 "accessToken" =? T<string>
 "expiresIn" =? T<string>
 "signedRequest" =? T<string>
 "userId" =? T<string>
]

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

408

 let UserStatus =
 Pattern.EnumStrings "FB.UserStatus"
 ["connected"; "not_authorized"; "unknown"]

 let LoginResponse =
 Class "FB.LoginResponse"
 |+> Protocol [
 "authResponse" =? AuthResponse
 "status" =? UserStatus
]

 let LoginOptions =
 Pattern.Config "FB.LoginOptions" {
 Optional =
 [
 "scope", T<string>
 "display", T<string>
]
 Required = []
 }

 let FB =
 Class "FB"
 |+> [
 "init" => !?InitOptions ^-> T<unit>
 "login" => (LoginResponse ^-> T<unit>) * !?LoginOptions ^-> T<unit>
 "logout" => (LoginResponse ^-> T<unit>) ^-> T<unit>
 "getLoginStatus" => (LoginResponse ^-> T<unit>) ^-> T<unit>
 "getAuthResponse" => T<unit> ^-> AuthResponse
 "api" => T<string>?url * !?T<string>?''method'' * !?T<obj>?options * (T<obj> ^->
T<unit>)?callback ^-> T<unit>
]
 |> Requires [Res.FacebookAPI]

 let Assembly =
 Assembly [
 Namespace "IntelliFactory.WebSharper.Facebook" [
 FlashHidingArgs
 InitOptions
 AuthResponse
 UserStatus
 LoginResponse
 LoginOptions
 FB
]
 Namespace "IntelliFactory.WebSharper.Facebook.Resources" [
 Res.FacebookAPI
]
]

409

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

module Main =
 open IntelliFactory.WebSharper.InterfaceGenerator

 do Compiler.Compile stdout Definition.Assembly

The various operators you see in this code listing are explained in more detail in the WebSharper
documentation in the chapter that describes the WebSharper Interface Generator tool. For instance, given
a class type defined via the Class function, |+> enhances it with new members. You can create a new
member giving its name as a string, the => operator, and its type. In addition, you can also use the =?/=!/=@
operators to create a read-only/write-only/mutable property, or =% to create a field. Types are constructed
using the types you created in code, using the T<…> operator to refer to existing .NET types, using the star
(*) operator for tuple types, using the ^-> operator for function types, using the !? operator for optional
parameters, and !+ operator for a variable number of arguments, among others.

The extension definition above covers a subset of the Facebook API. In particular, it deals with
authenticating users, retrieving their login status, and provides a generic api function to retrieve various
bits of information from the Facebook service. These functions are defined in a class called FB, inside the
main IntelliFactory.WebSharper.Facebook namespace, along with the various configuration and helper
types necessary. To make these functions work correctly at runtime, the FB class is enhanced to require the
main Facebook API JavaScript file, defined as the resource Res.FacebookAPI, pointing to the Facebook
domain. This resource will be automatically referenced and included in any sitelet page or ASPX markup
that uses the functionality provided by the FB class.

Configuring Your New Facebook Application
Before you can implement the main application code, you need to register your application with Facebook
to receive an ID that you can use to query the Facebook API. To register your application, go to http://
developers.facebook.com/apps, sign in if you haven’t already, make sure your account is verified, and click
the Create New App button on the top. In the popup in Figure 15-3, add the name of your application,
select if you need optional hosting, and click Continue.

Figure 15-3. Creating a new Facebook application

In the next step, you need to enter some CAPTCHA validation, and then proceed onto setting up the
application properties. By this point, your new Facebook application has been created and it has a unique
ID and secret code pair as shown in Figure 15-4, and shortly you will need the former in your application
code.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

410

But first, in the Basic Info panel, enter the URL of your new application: either the URL where you will
be manually hosting your application files, or you can create and configure a hosting domain on Heroku if
you have chosen to tick the Web Hosting option in the previous step. You can see an example setup in
Figure 15-5, where you used Heroku to host your application files.

Figure 15-4. The unique identifiers of your Facebook application

Figure 15-5. Configuring the domains and the URL of your application

As a last configuration step, enter your application URL in the Website with Facebook Login option of
the application integration section as shown in Figure 15-6.

Figure 15-6. Configuring your application

Defining the Main HTML Application
The main HTML application uses the same kind of dynamic templating that you saw in the previous
section. The template markup in Main.html is shown in Listing 15-5.

411

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Listing 15-5. Main.html – Defining the Dynamic Template for the Facebook Application

<!DOCTYPE html>
<html>
 <head>
 <title>My Facebook Wall</title>
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="generator" content="websharper" data-replace="scripts" />
 </head>
 <body>
 <div data-replace="body" />
 <div data-role="page" id="dummy" />
 </body>
</html>

The templating functionality should look familiar to you already. The main application is placed in the
Client module and is shown in Listing 15-6.

Listing 15-6. Main.fs– The Application Code

namespace IntelliFactory.Facebook.Application

open System
open System.IO
open IntelliFactory.WebSharper.Sitelets

module MySite =
 open IntelliFactory.WebSharper
 open IntelliFactory.Html

 type Action = | Index

 module Skin =

 type Page =
 {
 Body : Content.HtmlElement list
 }

 let MainTemplate =
 let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
 Content.Template<Page>(path)
 .With("body", fun x -> x.Body)

 let WithTemplate body : Content<Action> =
 Content.WithTemplate MainTemplate <| fun context ->
 {
 Body = body context
 }

 module Client =
 open IntelliFactory.WebSharper.Html

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

412

 open IntelliFactory.WebSharper.Facebook
 open IntelliFactory.WebSharper.JQuery
 open IntelliFactory.WebSharper.JQuery.Mobile

 type Control() =
 inherit IntelliFactory.WebSharper.Web.Control()

 [<JavaScript>]
 let (||?) (x: 'a) (y: 'a) = if As<bool> x then x else y

 [<JavaScript>]
 override this.Body =
 Mobile.Use()
 Mobile.Instance.DefaultPageTransition <- "slide"
 FB.Init(InitOptions(AppId="<<PUT-YOUR-APPID-HERE>>"))
 let btncStatus = Span [Text "Log in"]
 let btnGetPosts =
 A [
 Text "Get latest wall posts"
 Attr.HRef "#"; Attr.Style "display: none;"
]
 let updateStatus (resp: LoginResponse) =
 if resp.Status = UserStatus.Connected then
 btncStatus.Text <- "Log out"
 JQuery.Of(btnGetPosts.Body).Show().Ignore
 else
 btncStatus.Text <- "Log in"
 JQuery.Of(btnGetPosts.Body).Hide().Ignore
 let wallPage =
 Div [
 Attr.Id "wall"; HTML5.Attr.Data "role" "page"
 HTML5.Attr.Data "url" "#wall"
]
 let wall =
 UL [
 HTML5.Attr.Data "role" "listview"
 HTML5.Attr.Data "inset" "true"
]
 wallPage -< [
 Div [
 HTML5.Attr.Data "role" "header"
 HTML5.Attr.Data "position" "fixed"
] -< [
 H1 [Text "My Facebook Wall"]
 A [Attr.HRef "#"] -< [btncStatus]
 |>! OnClick (fun el ev ->
 FB.GetLoginStatus <| fun resp ->
 if resp.Status = UserStatus.Connected then
 FB.Logout updateStatus
 else
 FB.Login(

413

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

 updateStatus,
 LoginOptions(Scope = "read_stream"))
)
 |>! OnAfterRender (fun _ -> FB.GetLoginStatus updateStatus)
 btnGetPosts
 |>! OnClick (fun el ev ->
 Mobile.Instance.ShowPageLoadingMsg("a","Receiving posts")
 FB.Api("/me/home", fun o ->
 wall.Clear()
 o?data |> Array.iter (fun x ->
 let message = x?message ||? x?story ||? x?caption
 LI [
 yield H6 [Text message]
 yield P [Text ("From: " + x?from?name)]
 let numComments =
 if x?comments && x?comments?count > 0 then
 "See " + x?comments?count
 else
 "0"
 yield P [Text (numComments + " comments")]
 yield Img [Attr.Src (if x?picture then x?picture else "")]
 if x?comments && x?comments?data then
 yield UL [
 yield! x?comments?data |> Array.map (fun comment ->
 LI [
 H6 [Text comment?message]
 P [Text comment?from?name]
]
)
 yield LI [
 HTML5.Attr.Data "iconpos" "left";
 HTML5.Attr.Data "icon" "arrow-l"] -< [
 A [Attr.HRef "#"] -< [Text "Back"]
 |>! OnClick (fun _ _ ->
 Mobile.Instance.ChangePage(
 JQuery.Of(wallPage.Body),
 ChangePageConfig(
 Reverse = true))
)
]
]
]
 |> wall.Append
 Mobile.Instance.HidePageLoadingMsg()
)
 JQuery.Of(wall.Body) |> ListView.Refresh
)
)
]
 Div [HTML5.Attr.Data "role" "content"] -< [wall]
]

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

414

 |>! OnAfterRender (fun el ->
 JQuery.Of(el.Body)
 |> JQuery.Page
 |> Mobile.Instance.ChangePage
) :> IPagelet

 let Index =
 Skin.WithTemplate <| fun ctx ->
 [
 Div [new Client.Control()]
]

 let MySitelet =
 Sitelet.Content "/" Action.Index Index

type MyWebsite() =
 interface IWebsite<MySite.Action> with
 member this.Sitelet = MySite.MySitelet
 member this.Actions = [MySite.Action.Index]

[<assembly: Website(typeof<MyWebsite>)>]
do ()

The main client control creates the following skeleton markup:
<div id="wall" data-role="page" data-url="#wall">
 <div data-role="header" data-position="fixed">
 ...
 <div>
 <div data-role="content">
 <ul data-role="listview" data-inset="true">
 ...

 </div>
</div>

This markup represents a jQuery Mobile “page” with a header and a content panel, the latter with a list
of items displayed. Pages are an essential user interface abstraction in jQuery Mobile, as they provide the
basic building blocks of multi-page applications where control transfers from one page to another usually
enhanced with some sort of visual effect such as sliding in and out, creating a native-like user experience.

In the example above, the header part of the main page contains a title and two buttons: one that
reflects the user’s login status and displays Log in or Log out, accordingly, and another to fetch the user’s
wall posts if the user is logged in. This piece of logic is implemented in the updateStatus function, which is
called when the user logs in or signs out. Logging in and signing out is implemented using the FB.Login
and FB.Logout functions, respectively. Logging in prompts the familiar Facebook login as a new page, and
upon successfully authenticating with it, the popup is closed and control is returned to the requesting
page. It is therefore important that your application sits on a public URL and that this URL is set up
correctly with Facebook, so this redirection can successfully happen.

The main part of the application is in the Click event handler for btnGetPosts: the “Get latest wall
posts” button. Since the call to the Facebook API to retrieve the user’s wall posts can take a few moments, a
loading animation is shown using Mobile.Instance.ShowPageLoadingMsg. This animation is then turned off
by the time control is transferred to handling the data returned from the Facebook service. This is
initialized with an FB.Api call to /me/home, and registering a callback to display the data received. The data

415

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

you get back from this call is highly dynamic in structure and may contain different pieces for the different
types of wall posts. The following line is used to extract either the message, the story, or the caption (for
picture posts) of the post:

 let message = x?message ||? x?story ||? x?caption

This bit uses the dynamic “OR” operator ||? you defined earlier in the Client module. This operator
uses the fact that a dynamic lookup (using the standard ? operator) in a record for a non-existing field
returns null, which can be checked against as a Boolean value. So the fragment above returns either the
message, the story, or the caption fields – whichever is non-null first in the given order. You should refer to
the Facebook API documentation for the various post types and the structure they adhere to in case you
need to cater to further post types.

The code then returns an LI node for each wall post retrieved and these are then wrapped inside the
main UL list view placeholder node. These LI nodes contain the extracted message text, the author of the
post, the number of comments, and an optional image that might accompany the post. Any embedded
comment data is shown as a nested list view with a Back button to return to the original post.

You should take a look at the Facebook API and incorporate new bits of it into your WebSharper
extension, and in turn use these in your application to provide more features such as posting comments,
enabling users to like posts, etc. These pieces of functionality are straightforward to add, and you are urged
to try out more possibilities the Facebook API and a bit of WebSharper coding can enable.

WebSharper Mobile
In the previous sections you saw how you can build web applications that use specific mobile browser
features and WebSharper mobile extensions to implement a native-like user experience on various mobile
devices. These included the ability to use the entire device screen for your applications, adding them as
icons to your iOS device, using multi-touch events and other gestures, etc. In this section, you are going to
build native application packages using WebSharper Mobile, a set of extensions to WebSharper that
provide mobile capabilities and native application containers for mobile web applications. These mobile
features are shipped with the standard WebSharper installer.

The native mobile capabilities supported in WebSharper Mobile across different platforms are
encapsulated in IntelliFactory.WebSharper.Mobile as a set of interfaces and helper types, and are given
concrete implementations in the corresponding mobile namespaces such as IntelliFactory.WebSharper.
Android. At the time of writing, WebSharper Mobile supports creating native applications for Android and
Windows Phone, and exposes WebSharper access to accelerometer and geo location data, camera
functionality, and logging. These members are summarized in Tables 15-8, 15-9, 15-10, and 15-11.

Table 15-8. Members Related to Acceleration in IntelliFactory.WebSharper.Mobile.IAcceleration

Member Type Description
AccelerationChange IEvent<

Mobile.Acceleration>
Allows subscription to acceleration
updates

IsMeasuringAcceleration Bool Gets or sets the state of acceleration
subscription

Table 15-9. Members Related to Locations in IntelliFactory.WebSharper.Mobile.IGeolocator

Member Type Description
GetLocation unit -> Async<Mobile.Location> Returns the current location of the device

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

416

Table 15-10. Members Related to Logging in IntelliFactory.WebSharper.Mobile.ILog

Member Type Description
Trace Mobile.Priority ->

string -> string ->
unit

Traces a message to the system log

Table 15-11. Members Related to Camera Support in IntelliFactory.WebSharper.Mobile.ICamera

Member Type Description
Location.Latitude Double Gets the latitude of the current location

TakePicture unit -> Async<Mobile.Jpeg> Uses the device camera, if available, to take a
picture

The concrete platform implementations may also contain specific features beyond the core set of
mobile functions. For instance, WebSharper, at the time of writing, provides experimental support to
Bluetooth communication on Android devices. This API is listed in Table 15-12.

Table 15-12. Members in IntelliFactory.WebSharper.Android.Bluetooth

Member Type Description
CancelDiscovery unit -> unit Cancels the Bluetooth discovery process

ConnectToDevice Bluetooth.Device * string ->
Async<Bluetooth.Socket>

Connects to the given Bluetooth device
asynchronously

Enable unit -> async<unit> Enables Bluetooth on the device

GetBondedDevices unit -> seq<Bluetooth.Device> Gets all paired Bluetooth devices

MakeDiscoverable int -> Async<unit> Makes the current device discoverable
for a given number of seconds.

Serve string -> string -> (Bluetooth.
Connection -> Async<unit>) ->
Bluetooth.Server

Starts a Bluetooth server with the given
name and UUID

StartDiscovery unit -> unit Starts the Bluetooth device discovery
process

Discovery IEvent<Bluetooth.Device> The Bluetooth device discovery event

IsDiscoverable bool Tests if the current Android device is
discoverable via Bluetooth

IsDiscovering bool Tests if the Bluetooth device discovery
process is active

IsEnabled bool Tests if Bluetooth is enabled on the
current Android device

this.Get unit -> Bluetooth.Context option Gets a Bluetooth context, if present on
the current platform

The easiest way to get started developing native mobile applications with WebSharper is by creating a
WebSharper Android or Windows Phone Application project. These templates contain, beyond the basic
offline sitelet library hooks and the basic WebSharper Mobile foundation, the Android and Windows Phone
implementations of the WebSharper Mobile core capabilities and any platform-specific extensions,
respectively.

417

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Developing Android Applications with WebSharper
In this section, you will be developing a small native Android application that combines some of the
WebSharper Mobile capabilities with specific extensions such as Formlets for jQuery Mobile and Bing
Maps. In particular, Formlets for jQuery Mobile provides a formlet abstraction using the jQuery Mobile
look and feel, giving you the ability to define type-safe, composable mobile user interfaces: an important
building block to declaratively build native mobile applications with attractive user interfaces.

The application you will develop is shown in Figure 15-7, running on the Android emulator from the
Android SDK. It constructs a simple login dialog using jQuery Mobile formlets, and proceeds onto a page
with a Bing map showing your current location, updating regularly to reflect the user’s location as he or
she may be moving around. Naturally, to see this application in action you should deploy it on an actual
Android device; nonetheless, testing with the Android emulator is a good way to get going. Alternatively,
you can also test device-neutral functionality in a plain browser such as Firefox or Chrome.

Figure 15-7. Your native Android application running in the Android emulator

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

418

Setting Up and Testing with Your Android Environment
To develop for Android, and before you get started with your application, you should make sure to have
the following prerequisites installed and set up on your machine:

The Java Development Kit (JDK) 7, available from http://www.oracle.com/
technetwork/java/javase/downloads/jdk-7u4-downloads-1591156.html

The Android SDK, available from http://developer.android.com/sdk/index.html

Apache Ant, available from http://ant.apache.org/

Set JAVA_HOME to the path of your JDK installation, such as c:\Program Files\Java\
jdk1.7.0

Set ANDROID_SDK to the path of your Android SDK, such as c:\android-sdk

Set ANT_HOME to the path of your Ant installation, such as c:\tools\apache-ant-1.8.4

Add the values of %JAVA_HOME%, %ANDROID_SDK%, %ANDROID_SDK%\platform-tools, and
%ANT_HOME% to your PATH

Figure 15-8 shows the Android SDK Manager, the tool you can use to manage your installed Android
APIs and their associated libraries. This tool will also notify you if you have updates to any library, or when
a new API version or revision is published. Android has evolved quickly, and up to date, still enjoys a strong
momentum of updates, with consecutive API versions introducing new and enriched capabilities and a
wider reach of mobile devices to run on. Android 3.X or above is an appropriate choice for tablets, so if you

Figure 15-8. The Android SDK Manager

419

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

want to develop and test applications for Android tablets, choose and install an API 3.x or above. Older
Android versions such as API 2.2 and API 2.3 are an appropriate choice for targeting smaller devices such
as smart phones.

Once you have the appropriate Android APIs installed, you need to configure the Android virtual
machines you want to target and test with.

This you can do by creating an Android Virtual Device using the Manage AVDs link in the Tools menu
in the SDK Manager, or the separate AVD Manager tool installed with Android SDK. We recommend that
you create an Android 2.3 and an Android 3.2 virtual device for the sample in this section, so you can test it
on various formats such as smart phones and tablets.

Go ahead and click New… in the AVD Manager and create these new AVDs: an example configuration
for Android 2.3 is shown in Figure 15-9. The Target dropdown is populated based on the APIs you have
installed on your system. For each API, you can choose between various built-in skins that are available, or
specify a custom resolution for your device. The Hardware section lists various properties for your device.
Figure 15-9 contains a few properties that enable, among others, GPS support on the emulated device. You
should consult the Android SDK documentation for a more in-depth treatment of communicating
“hardcoded” settings such as your current location into your virtual devices, or interacting with them on
the fly in various other ways.

A couple useful tools that you should be aware of while developing Android applications:

adb.exe (in %ANDROID_HOME%\platform-tools) – the Android Debug Bridge. This is the
tool/server that enables you to interact with a physical Android device connected to
your machine in USB debug mode, or with a running virtual device. Running it
without parameters will display a long list of options and parameters that control
different aspects of communicating with the connected Android device. A few
important commands are:

o adb.exe install <apk-package> – installs the given .apk package. In general,
this is the easiest and quickest way to install your WebSharper-generated .apk
to your emulator or to your connected physical device.

o abd.exe uninstall <apk-package> – uninstalls the given .apk package.
Alternatively, you can also uninstall a package in the emulator itself via
Settings \ Applications.

o adb.exe kill-server – attempts to kill the Android Debug Bridge server and
might be necessary if your device is not detected.

o adb.exe start-server – attempts to start the Android Debug Bridge server on
a given port and might be necessary if your device is not detected.

telnet.exe (in %SystemRoot%\System32) – your old friend from the past, a client tool
that enables you to communicate with the Android Debug Bridge using the Telnet
communication protocol. Telnet can be installed via the system Control Panel,
under Programs and Features, by turning on the Telnet feature. In general, you
invoke it as telnet.exe localhost <port>, where <port> is the port number your
Android Debug Bridge server is listening on.

Once you have successfully connected to the Android bridge server, you can issue
various commands. For instance, you can hardcode the GPS coordinates to the
connected Android device with the following command:

geo fix <long> <lat>

Here, <lat> and <long> are the latitude and longitude values, respectively.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

420

Using the Android Application Visual Studio Template
Now that you are familiar with installing different Android APIs and setting up virtual devices running
those APIs, you can get started on your native Android application. First, choose the Android Application
template in Visual Studio and create your new project. This template provides the necessary tooling to
distill a set of JavaScript files and other artifacts from your application, and to package them into a native
Android application, a technique employed by other popular tools like PhoneGap (http://phonegap.com).

Figure 15-9. Configuring an Android virtual device

421

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

PhoneGap provides packaging for several mobile platforms, including Android, Windows Phone, iOS,
Blackberry, Bada, and others, and can be used in conjunction with WebSharper offline sitelets to package
your WebSharper applications for any of these mobile platforms. You may want to use PhoneGap for
packaging WebSharper applications for iOS, such as the ones you saw in earlier sections in this chapter, as
iOS is not yet supported as a target native application format in WebSharper Mobile. Nonetheless,
WebSharper Mobile provides a hassle-free packaging experience for Android and Windows Phone
applications and is tightly coupled with WebSharper.

The Android Application template you used to create your application from contains an android
folder with files that are related to packaging your final Android application. In particular, the .project file
in the root of this folder contains the name of your Android package, set by default to DroidSite. You may
want to rename this according to your needs later on.

Another important artifact in the android folder is ant.properties, a configuration file used in
conjunction with building with ant. This file contains your signature settings for signing the resulting
packages. By default, these settings are not configured and your application packages are unsigned.
Therefore, before distributing your packages, you should generate a key store using the keytool.exe tool
in your JDK, and configure ant.properties accordingly.

Building via ant is the preferred way of building Android packages, as the msbuild script shipped with
the Android Application WebSharper template will trigger ant as part of the build process to bundle the
final Android package automatically. Your resulting Android package will be under android\bin, whereas
the distilled HTML+JavaScript code along with any additional artifacts that were packaged will be copied
under android\assets to make it easier to investigate them offline.

Implementing Your Native Android Application
Other than the android folder you saw in the previous section, your empty Android application project has
the same two files you saw in previous sections: Main.fs for your application code, and Main.html for your
dynamic template markup. The latter is shown in Listing 15-7, and it may look quite familiar to you since it
contains a barebones mobile-aware markup you used in other examples in this chapter.

Listing 15-7. Main.html – Defining the Dynamic Template for the Android Application

<!DOCTYPE html>
<html>
 <head>
 <title>Your Android Application</title>
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="generator" content="websharper" data-replace="scripts" />
 </head>
 <body>
 <div data-hole="body" />
 </body>
</html>

The main application code is shown in Listing 15-8. The code uses the jQuery Mobile formlets
extension (which depends on the jQuery Mobile extension) and the Bing Maps extension, so you need to
download and install WebSharper Extensions for jQuery Mobile, Formlets for jQuery Mobile, and Bing
Maps, respectively, from the WebSharper download site (http://websharper.com/downloads), and add
references to IntelliFactory.WebSharper.JQuery.Mobile, IntelliFactory.WebSharper.Formlets.
JQueryMobile, IntelliFactory.WebSharper.Bing, and IntelliFactory.WebSharper.Bing.Rest from the
folders you installed them into.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

422

Listing 15-8. Main.fs– Implementing your Android Application

namespace MyApplication

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Sitelets

module MySite =
 type Action = | Home

 module Skin =
 open System.IO

 type Page =
 {
 Body : list<Content.HtmlElement>
 }

 let MainTemplate =
 let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
 Content.Template<Page>(path)
 .With("body", fun x -> x.Body)

 let WithTemplate body : Content<Action> =
 Content.WithTemplate MainTemplate <| fun context ->
 {
 Body = body context
 }

 module Client =
 open IntelliFactory.WebSharper.Html
 open IntelliFactory.WebSharper.Bing
 open IntelliFactory.WebSharper.JQuery
 open IntelliFactory.WebSharper.JQuery.Mobile
 open IntelliFactory.WebSharper.Formlet
 open IntelliFactory.WebSharper.Formlets.JQueryMobile

 [<JavaScript>]
 let BingMapsKey = "<put-your-bing-maps-key-here>"

 [<JavaScript>]
 let ShowMap () =
 let screenWidth = JQuery.Of("body").Width()
 let MapOptions = Bing.MapViewOptions(
 Credentials = BingMapsKey,
 Width = screenWidth - 20,
 Height = screenWidth - 40,
 Zoom = 16)
 let label = Span []
 let setMap (map : Bing.Map) =
 let updateLocation() =

423

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

 // Gets the current location
 match Android.Context.Get() with
 | Some ctx ->
 if ctx.Geolocator.IsSome then
 async {
 let! loc = ctx.Geolocator.Value.GetLocation()
 // Sets the label to be the address of
 // the current location.
 Rest.RequestLocationByPoint(
 BingMapsKey,
 loc.Latitude, loc.Longitude, ["Address"],
 fun result ->
 let locInfo = result.ResourceSets.[0].Resources.[0]
 label.Text <-
 "You are currently at " +
 JavaScript.Get "name" locInfo)
 // Sets the map at the current location.
 let loc =
 Bing.Location(loc.Latitude, loc.Longitude)
 let pin = Bing.Pushpin loc
 map.Entities.Clear()
 map.Entities.Push pin
 map.SetView(Bing.ViewOptions(Center = loc))
 }
 |> Async.Start
 else
 ()
 | None ->
 ()
 JavaScript.SetInterval updateLocation 1000 |> ignore
 let map =
 Div []
 |>! OnAfterRender (fun this ->
 let map = Bing.Map(this.Body, MapOptions)
 map.SetMapType(Bing.MapTypeId.Road)
 setMap map)
 Div [
 label
 Br []
 map
]

 [<JavaScript>]
 let LoginSequence () =
 Formlet.Do {
 let! username, password =
 Formlet.Yield (fun user pass -> user, pass)
 <*> (Controls.TextField "" Enums.Theme.C
 |> Enhance.WithTextLabel "Username"
 |> Validator.IsNotEmpty "Username cannot be empty!")
 <*> (Controls.Password "" Enums.Theme.C

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

424

 |> Enhance.WithTextLabel "Password: "
 |> Validator.IsRegexMatch "^[1-4]{4,}[5-9]$"
 "The password is wrong!")
 |> Enhance.WithSubmitButton "Log in" Enums.Theme.C
 do! Formlet.OfElement (fun _ ->
 Div [
 H3 [Text ("Welcome " + username + "!")]
 ShowMap()
])
 }
 |> Formlet.Flowlet

 type ApplicationControl() =
 inherit Web.Control()

 [<JavaScript>]
 override this.Body =
 Div [LoginSequence ()] :> _

 module Pages =
 open IntelliFactory.Html

 let Home =
 Skin.WithTemplate <| fun ctx ->
 [
 Div [
 HTML5.Data "role" "page"
 Id "main"
 HTML5.Data "url" "main"
] -< [
 new Client.ApplicationControl()
]
]

 type MyWebsite() =
 interface IWebsite<Action> with
 member this.Sitelet =
 Sitelet.Content "/index" Action.Home Pages.Home
 member this.Actions = [Action.Home]

[<assembly: Website(typeof<MySite.MyWebsite>)>]
do ()

In order to be able to run your application, you need to configure your own Bing Maps key in Client.
BingMapsKey. To obtain such a key, you should consult the Bing Maps home page. This key enables you to
make programmatic queries to the Bing Maps service, such calling the various REST APIs provided by
WebSharper Extensions for Bing Maps.

The main part of the application is in the Client module. There are two distinct components: one for
showing a map marked with the user’s current GPS location, and another for displaying a login form that
“authenticates” the current user to see this map. The main “application” control, defined with the

425

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

ApplicationControl server control type, simply exposes this login formlet, which then in turn invokes the
map if the user passed the authentication step.

The ShowMap() function creates a <div> node, with a label and the map component. The map itself is
embedded in a nested <div> node, with an event handler firing once the corresponding DOM node has
been inserted into and rendered in the document the user sees:

 let map =
 Div []
 |>! OnAfterRender (fun this ->
 let map = Bing.Map(this.Body, MapOptions)
 map.SetMapType(Bing.MapTypeId.Road)
 setMap map)
 ...

This code creates a Bing Map control with the options defined in MapOptions, sets its map type to road
map, and calls setMap on it. In turn, setMap defines an update function updateLocation and registers it to
fire every second using the JavaScript.SetInterval function. The heart of the map functionality,
updateLocation retrieves the GPS geo-locator object from the Android context (if either is missing, it does
nothing – here, you may want to add some fallback logic yourself to make the application testable on plain
non-mobile browsers, etc.), and uses this object to retrieve the device’s current GPS coordinates, then
queries the Bing Maps service to map those to an actual street name, and displays that in the label
component along with a pushpin on the map itself.

The formlet code is even more intuitive. Take a look at the partial snippet below:

 Formlet.Do {
 let! username, password =
 Formlet.Yield (fun user pass -> user, pass)
 <*> <... formlet-1 ...>
 <*> <... formlet-2 ...>
 |> Enhance.WithSubmitButton "Log in" Enums.Theme.C
 do! Formlet.OfElement (fun _ ->
 Div [
 H3 [Text ("Welcome " + username + "!")]
 ShowMap()
])
 }
 |> Formlet.Flowlet

Here, “formlet-1” and “formlet-2” declare two input boxes, enhanced with a label and a validator to
input the user name and the password strings from the user. Note that these validators require that the
user enters a non-empty user name, and a password that contains at least four digits between 1 and 4
followed by a digit between 5 and 9, for instance, “12345”. These input boxes are then composed into a
single formlet, returning a (username, password) tuple, and enhanced with a submit button. Here, all three
functions Controls.TextField, Controls.Password, and Enhance.WithSubmitButton are from the
IntelliFactory.WebSharper.Formlets.JQueryMobile namespace, and implement their functionality using
jQuery Mobile look and feel.

The username/password formlet is enhanced as a flowlet; e.g., its individual formlet steps (marked
with let!) are executed in a sequential wizard-style presentation, one following the other. In your formlet
example above, once the user enters a username/password pair and successfully passes the validations
after pressing the Submit button, control transfers to the do! block, which responds by welcoming the
newly signed-in user and showing the Bing Map control defined in ShowMap.

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

426

Summary
This chapter gave you a short introduction to developing web and native mobile applications with
WebSharper. You saw how a new breed of mobile applications is emerging, utilizing HTML5 and CSS3; how
you can output this sort of mobile HTML5 markup from WebSharper sitelets; apply various feature
detection and polyfilling libraries to get over missing browser features; and develop iOS mobile web
applications that use easy-to-embed, Safari-specific markup instructions to mimic some of the features of
native mobile applications, such as the ability to use the entire screen or adding web applications as icons
to the desktop. In the latter half of the chapter, you also saw how you can develop WebSharper extensions
to third-party JavaScript APIs and use these extensions in a mobile web application to display a user’s
Facebook status updates with jQuery Mobile-based list views, giving an elegant mobile look to your
application. And last, you saw how you can combine the expressiveness of WebSharper formlets with
mobile UI controls to build declarative, composable, type-safe mobile user interfaces and apply them in
an application that uses Bing Maps to show your location.

All in all, you learned that the functional concepts such as formlets and sitelets that WebSharper
enables yield a powerful device that you can employ to develop mobile web applications, and together
with WebSharper Mobile, package them into native application packages for Android and Windows Phone,
or use third-party packaging technologies such as PhoneGap (http://phonegap.com) to cover alternate
platforms. At this point, you have keen eyes on upcoming HTML5 support of various mobile features, and
recognize that it is only a short time away until mobile browser features are unified in further HTML5
standards to bring uniformity into developing for touch-based mobile devices.

	CHAPTER 15 Building Mobile Web Applications
	Web-based vs. Native Mobile Applications
	Feature Detection and Polyfilling in WebSharper
	Mobile Capabilities, Touch Events, and Mobile Frameworks
	Serving Mobile Content
	Building a Mobile Web Application for iOS Devices
	Fleshing Out the Application
	Digging Deeper

	Developing Social Networking Applications
	Configuring Your New Facebook Application
	Defining the Main HTML Application

	WebSharper Mobile
	Developing Android Applications with WebSharper
	Setting Up and Testing with Your Android Environment
	Using the Android Application Visual Studio Template
	Implementing Your Native Android Application

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

