

Expert F# 3.0

■ ■ ■

Don Syme
Adam Granicz
Antonio Cisternino

Expert F# 3.0

Copyright © 2012 by Don Syme, Adam Granicz, and Antonio Cisternino

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4650-3

ISBN 978-1-4302-4651-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editors: Gwenan Spearing and Matthew Moodie
Technical Reviewer: Phil de Joux
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editors: Pat Morris and Daryl Edelman
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Goblal
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781430246503. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code.

(eBook)

This book is dedicated to the memory of James Huddleston, the editor at Apress
who initiated the first edition of Expert F# and encouraged the authors with his insights,

loyalty, enthusiasm, and humor. Jim passed away in February 2007, an enormous loss
to his family, Apress, and the authors.

iv

Contents at a Glance
■ About the Authors ...xx
■ About the Technical Reviewer ...xxi
■ Acknowledgments ...xxii
■ Chapter 1: Introduction ...1
■ Chapter 2: Your First F# Program – Getting Started With F# ...7
■ Chapter 3: Introducing Functional Programming...25
■ Chapter 4: Introducing Imperative Programming ..49
■ Chapter 5: Understanding Types in Functional Programming ...81
■ Chapter 6: Programming with Objects ...111
■ Chapter 7: Encapsulating and Organizing Your Code ..147
■ Chapter 8: Working with Textual Data ..163
■ Chapter 9: Working with Sequences and Structured Data ...189
■ Chapter 10: Numeric Programming and Charting ..231
■ Chapter 11: Reactive, Asynchronous, and Parallel Programming257
■ Chapter 12: Symbolic Programming with Structured Data ..295
■ Chapter 13: Integrating External Data and Services ...331
■ Chapter 14: Building Smart Web Applications ...353
■ Chapter 15: Building Mobile Web Applications ..391
■ Chapter 16: Visualization and Graphical User Interfaces ..427
■ Chapter 17: Language-Oriented Programming: Advanced Techniques477
■ Chapter 18: Libraries and Interoperating with Other Languages503
■ Chapter 19: Packaging, Debugging and Testing F# Code ..537
■ Chapter 20: Designing F# Libraries ..565
Index ..583

v

Contents

■ About the Authors ...xx
■ About the Technical Reviewer ...xxi
■ Acknowledgments ...xxii
■ Chapter 1: Introduction ...1

The Genesis of F# ...2
About This Book ..2
Who This Book Is For ..5

■ Chapter 2: Your First F# Program – Getting Started With F# ...7
Creating Your First F# Program ..7

Documenting Code ..9

Using let ..9

Understanding Types ..10

Calling Functions ..11

Lightweight Syntax ..11

Understanding Scope ...12

Using Data Structures ...14

Using Properties and the Dot-Notation ...14

Using Tuples ...15

Using Imperative Code ..17

Using Object-Oriented Libraries from F# ..18
Using open to Access Namespaces and Modules ..19

Using new and Setting Properties ..20

Fetching a Web Page ..22

Summary ..23

 ■ CONTENTS

vi

■ Chapter 3: Introducing Functional Programming...25
Starting with Numbers and Strings ..25

Some Simple Types and Literals ...25

Arithmetic Conversions...26

Arithmetic Comparisons ...27

Simple Strings ..27

Working with Conditionals: && and || ...28
Defining Recursive Functions ...28
Lists ...30
Options ...33
Getting Started with Pattern Matching ...34

Matching on Structured Values...35

Guarding Rules and Combining Patterns ..36

Further Ways of Forming Patterns ..37

Introducing Function Values ...37
Using Anonymous Function Values ...39

Computing with Aggregate Operators ..39

Composing Functions with >> ...41

Building Functions with Partial Application ..42

Using Local Functions...42

Iterating with Aggregate Operators ..44

Abstracting Control with Functions ..44

Using Object Methods as First-Class Functions ...45

Some Common Uses of Function Values ..45

Summary ..47
■ Chapter 4: Introducing Imperative Programming ..49

About Functional and Imperative Programming ...49
Imperative Looping and Iterating..50

Simple for Loops ...50

Simple While Loops ..51

More Iteration Loops over Sequences ..51

Using Mutable Records ..52
Mutable Reference Cells ...53

Avoiding Aliasing ..54

Hiding Mutable Data ...55

vii

 ■ CONTENTS

Using Mutable Locals ...56
Working with Arrays ...56

Generating and Slicing Arrays ..58

Two-Dimensional Arrays ...59

Introducing the Imperative .NET Collections ..59
Using Resizeable Arrays ...59

Using Dictionaries ...60

Using Dictionary’s TryGetValue ...61

Using Dictionaries with Compound Keys ..62

Some Other Mutable Data Structures ...62

Exceptions and Controlling Them ...63
Catching Exceptions ...64

Using try . . . finally ...65

Defining New Exception Types ..65

Having an Effect: Basic I/O ...66
.NET I/O via Streams ...67

Some Other I/O-Related Types ..68

Using System.Console ..69

Combining Functional and Imperative: Efficient Precomputation and Caching69
Precomputation and Partial Application ...69

Precomputation and Objects ..70

Memoizing Computations ...71

Lazy Values ...74

Other Variations on Caching and Memoization ...75

Combining Functional and Imperative: Functional Programming with Side Effects75
Consider Replacing Mutable Locals and Loops with Recursion ...76

Separating Pure Computation from Side-Effecting Computations ...76

Separating Mutable Data Structures ..76

Not All Side Effects Are Equal ...77

Avoid Combining Imperative Programming and Laziness ..78

Summary ..79
■ Chapter 5: Understanding Types in Functional Programming ...81

Exploring Some Simple Type Definitions ..81
Defining Type Abbreviations ...81

Defining Record Types ..82

Handling Non-Unique Record Field Names ..83

 ■ CONTENTS

viii

Cloning Records ..84

Defining Discriminated Unions ...84

Using Discriminated Unions as Records ...86

Defining Multiple Types Simultaneously ...87

Understanding Generics ...87
Writing Generic Functions ..88

Some Important Generic Functions ..89

Making Things Generic ...94
Generic Algorithms through Explicit Arguments ...94

Generic Algorithms through Function Parameters ..95

Generic Algorithms through Inlining ..97

More on Different Kinds of Types..99
Reference Types and Value Types ...99

Other Flavors of .NET Types ..100

Understanding Subtyping ...100
Casting Up Statically ...101

Casting Down Dynamically ...101

Performing Type Tests via Pattern Matching ..102

Knowing When Upcasts Are Applied Automatically ..102

Flexible Types ...104

Troubleshooting Type-Inference Problems ...104
Using a Visual Editing Environment ..105

Using Type Annotations ...105

Understanding the Value Restriction ..106

Working Around the Value Restriction ..107

Understanding Generic Overloaded Operators ...109

Summary ..109
■ Chapter 6: Programming with Objects ...111

Getting Started with Objects and Members ...111
Using Classes ...114
Adding Further Object Notation to Your Types ..117

Working with Indexer Properties ..118

Adding Overloaded Operators ...118

Using Named and Optional Arguments ...120

Adding Method Overloading ...121

Defining Object Types with Mutable State ..122

ix

 ■ CONTENTS

Using Optional Property Settings ..124

Declaring Auto-Properties ..125

Getting Started with Object Interface Types ...126
Defining New Object Interface Types ..127

Implementing Object Interface Types Using Object Expressions ..127

Implementing Object Interface Types Using Concrete Types ..129

Using Common Object Interface Types from the .NET Libraries ...129

Understanding Hierarchies of Object Interface Types ...130

More Techniques to Implement Objects ...131
Combining Object Expressions and Function Parameters ..131

Defining Partially Implemented Class Types ...133

Using Partially Implemented Types via Delegation ...133

Using Partially Implemented Types via Implementation Inheritance ..134

Combining Functional and Objects: Cleaning Up Resources ..135
Resources and IDisposable ...136

Managing Resources with More Complex Lifetimes ..138

Cleaning Up Internal Objects ..139

Cleaning Up Unmanaged Objects ...140

Extending Existing Types and Modules...141
Working with F# Objects and .NET Types ...143

Structs ..144

Delegates ..144

Enums ...145

Working with null Values ..145

Summary ..146
■ Chapter 7: Encapsulating and Organizing Your Code ..147

Hiding Things ...147
Hiding Things with Local Definitions ..148

Hiding Things with Accessibility Annotations ...150

Organizing Code with Namespaces and Modules ..152
Putting Your Code in a Module ..153

Putting Your Modules and Types in Namespaces ...153

Hiding Things with Signatures ..154

Designing with Signatures ...156

When Are Signature Types Checked? ...156

Defining a Module with the Same Name as a Type ..156

 ■ CONTENTS

x

Preventing Client Code from Opening a Module ..156

Using Files as Modules ...157

Automatically Opening Modules ...158

Reusing Your Code ..158
Using Files as Small Reusable Components ..159

Creating Assemblies, DLLs, and EXEs ...159

Creating and Sharing Packages ...161

Summary ..162
■ Chapter 8: Working with Textual Data ..163

Building Strings and Formatting Data ..163
Building Strings ..163

More about String Literals ..164

Using printf and Friends ...165

Generic Structural Formatting ..167

Formatting Strings Using .NET Formatting ...167

Parsing Strings and Textual Data ..168
Parsing Basic Values ..168

Processing Line-Based Input ..169

Using Regular Expressions to Parse Lines ...170

More on Matching with System.Text.RegularExpressions ..171

Encoding and Decoding Unicode Strings ..175

Encoding and Decoding Binary Data ..176

Using XML as a Concrete Language Format ...176
Using the System.Xml Namespace ...176

From Concrete XML to Abstract Syntax ..178

Some Recursive Descent Parsing...180
A Simple Tokenizer ...181

Recursive-Descent Parsing ..181

Binary Parsing and Formatting ..183
Summary ..187

■ Chapter 9: Working with Sequences and Structured Data ...189
Getting Started with Sequences ...189

Using Range Expressions ...190

Iterating a Sequence ..191

Transforming Sequences with Aggregate Operators ..191

Which Types Can Be Used as Sequences? ...192

xi

 ■ CONTENTS

Using Lazy Sequences from External Sources ...192

Using Sequence Expressions ..193

Enriching Sequence Expressions with Additional Logic ...194

Generating Lists and Arrays Using Sequence Expressions ..195

More on Working with Sequences ..196
Using Other Sequence Operators: Truncate and Sort ...197

Selecting Multiple Elements From Sequences ...198

Finding Elements and Indexes in Sequences ...199

Grouping and Indexing Sequences ...200

Folding Sequences ...201

Cleaning Up in Sequence Expressions ...202

Expressing Some Operations Using Sequence Expressions ...203

Structure Beyond Sequences: Working with Trees ..203
Example: Abstract Syntax Representations ..204

Transforming Abstract Syntax Representations..205

Using On-Demand Computation with Abstract Syntax Trees ..206

Caching Properties in Abstract Syntax Trees ..208

Memoizing Construction of Syntax Tree Nodes ..208

Active Patterns: Views for Structured Data ..210
Converting the Same Data to Many Views ..211

Matching on .NET Object Types ..213

Defining Partial and Parameterized Active Patterns ...214

Hiding Abstract Syntax Implementations with Active Patterns ...214

Equality, Hashing, and Comparison for New Structured Data Types216
Equality, Hashing, and Comparison ...216

Asserting Equality, Hashing, and Comparison Using Attributes ..218

Fully Customizing Equality, Hashing, and Comparison on a Type ...219

Suppressing Equality, Hashing, and Comparison on a Type ...220

Customizing Generic Collection Types ..221

Tail Calls and Recursive Programming ..222
Tail Recursion and List Processing ...223

Tail Recursion and Object-Oriented Programming ...225

Tail Recursion and Processing Unbalanced Trees ..226

Using Continuations to Avoid Stack Overflows ...227

Another Example: Processing Syntax Trees ..228

Summary ..230

 ■ CONTENTS

xii

■ Chapter 10: Numeric Programming and Charting ..231
Basic Charting with FSharpChart ...231
Basic Numeric Types and Literals ..233

Arithmetic Operators ..234

Checked Arithmetic ..234

Arithmetic Conversions...235

Arithmetic Comparisons ...235

Overloaded Math Functions ..236

Bitwise Operations ...236

Sequences, Statistics and Numeric Code ..237
Summing, Averaging, Maximizing and Minimizing Sequences ...237

Counting and Categorizing ...239

Writing Fresh Numeric Code ...240

Making Numeric Code Generic ..241

Example: KMeans ...242

Statistics, Linear Algebra and Distributions with Math.NET ...244
Basic Statistical Functions in Math.NET Numerics ...245

Using Histograms and Distributions from Math.NET Numerics ..246

Using Matrices and Vectors from Math.NET ..248

Matrix Inverses, Decompositions and Eigenvalues...249

Units of Measure ..250
Adding Units to a Numeric Algorithms ..251

Adding Units to a Type Definition ..253

Applying and Removing Units ...254

Some Limitations of Units of Measure ..254

Summary ..255
■ Chapter 11: Reactive, Asynchronous, and Parallel Programming257

Introducing Some Terminology ...258
Events ...259

Events as First-Class Values ...260

Creating and Publishing Events ..260

Using and Designing Background Workers ..262
Building a Simpler Iterative Worker ..264

Raising Additional Events from Background Workers ...267

Connecting a Background Worker to a GUI ...268

xiii

 ■ CONTENTS

Introducing Asynchronous and Parallel Computations ...270
Fetching Multiple Web Pages in Parallel, Asynchronously ..270

Understanding Thread Hopping ..272

Under the Hood: What Are Asynchronous Computations? ..273

Parallel File Processing Using Asynchronous Workflows ...275

Running Asynchronous Computations ..278

Common I/O Operations in Asynchronous Workflows ...279

Using Tasks with Asynchronous Programming ...280

Understanding Exceptions and Cancellation ..280

Under the Hood: Implementing Async.Parallel ..281

Using async for CPU Parallelism with Fixed Tasks ...282

Agents ..282
Introducing Agents..283

Creating Objects That React to Messages ..284

Scanning Mailboxes for Relevant Messages ..286

Example: Asynchronous Web Crawling ...287

Observables ..290
Using Shared-Memory Concurrency ..290

Creating Threads Explicitly ...291

Shared Memory, Race Conditions, and the .NET Memory Model ..291

Using Locks to Avoid Race Conditions ..292

Using ReaderWriterLock ...293

Some Other Concurrency Primitives ...294

Summary ..294
■ Chapter 12: Symbolic Programming with Structured Data ..295

Verifying Circuits with Propositional Logic ...295
Representing Propositional Logic ...296

Evaluating Propositional Logic Naively ...298

From Circuits to Propositional Logic ...300

Checking Simple Properties of Circuits ..303

Representing Propositional Formulae Efficiently Using BDDs ..303

Circuit Verification with BDDs ...307

Symbolic Differentiation and Expression Rendering ..309
Modeling Simple Algebraic Expressions ...310

Implementing Local Simplifications ...312

A Richer Language of Algebraic Expressions ...313

 ■ CONTENTS

xiv

Parsing Algebraic Expressions ...315

Simplifying Algebraic Expressions ..317

Symbolic Differentiation of Algebraic Expressions ...319

Rendering Expressions ...320

Building the User Interface ...327

Summary ..329
■ Chapter 13: Integrating External Data and Services ...331

Some Basic REST Requests ...332
Getting Data in JSON Format ..333

Parsing the XML or JSON Data ..333

Handling Multiple Pages ...334

Getting Started with Type Providers and Queries ...335
Example - Language Integrated OData ...335

What is a Type Provider? ..336

What is a Query? ..337

Handling Pagination in OData ...339

Example - Language Integrated SQL ..340

More on Queries ...341
Sorting ..342

Aggregation ..342

Nullables ...343

Inner Queries ..343

Grouping ...344

Joins ...344

More on Relational Databases and ADO.NET ..345
Establishing Connections using ADO.NET ...347

Creating a Database using ADO.NET ...348

Creating Tables using ADO.NET ...348

Using Stored Procedures via ADO.NET ..350

Using WSDL Services ...351
Summary ..352

■ Chapter 14: Building Smart Web Applications ...353
Serving Web Content the Simple Way ..353
Building Ajax Rich Client Applications ..358

Learning More from the WebSharper Documentation ..359

Getting Started with WebSharper ...360

xv

 ■ CONTENTS

Calling Server Code from the Client ...362

WebSharper Sitelets ...363

Online vs. Offline Sitelets..364

Serving Content from WebSharper Sitelets ..365

Using Dynamic Templates...367

Embedding Client-Side Controls in Sitelet Pages ...368

Constructing and Combining Sitelets ...369

Sitelet Routers and Controllers ...372

Constructing Sitelets for Handling Non-GET HTTP Commands ...372

WebSharper Formlets ...379

Dependent Formlets and Flowlets ..387

Automated Resource Tracking and Handling ..387

Using Third-Party JavaScript Libraries ...388

Working with .NET Proxies ...389

Summary ..390
■ Chapter 15: Building Mobile Web Applications ..391

Web-based vs. Native Mobile Applications ..391
Feature Detection and Polyfilling in WebSharper ...393
Mobile Capabilities, Touch Events, and Mobile Frameworks ..395
Serving Mobile Content ...397
Building a Mobile Web Application for iOS Devices ..398

Fleshing Out the Application ...399

Digging Deeper ...404

Developing Social Networking Applications ...406
Configuring Your New Facebook Application ..409

Defining the Main HTML Application ...410

WebSharper Mobile ..415
Developing Android Applications with WebSharper ..417

Setting Up and Testing with Your Android Environment ..418

Using the Android Application Visual Studio Template ..420

Implementing Your Native Android Application ...421

Summary ..426
■ Chapter 16: Visualization and Graphical User Interfaces ..427

Writing “Hello, World!” in a Click ..427
Understanding the Anatomy of a Graphical Application ...428

 ■ CONTENTS

xvi

Composing User Interfaces ..429
Drawing Applications ..433
Writing Your Own Controls ..438

Developing a Custom Control ...438

Anatomy of a Control ..441

Displaying Samples from Sensors ..441
Building the GraphControl: The Model ..443

Building the GraphControl: Style Properties and Controller ..445

Building the GraphControl: The View ..449

Putting It Together ..453

Creating a Mandelbrot Viewer ..454
Computing Mandelbrot ...454

Setting Colors ...455

Creating the Visualization Application ..457

Creating the Application Plumbing ...460

Windows Presentation Foundation ...465
When GUIs Meet the Web ...466

Drawing ..468

Controls ..471

Bitmaps and Images ...474

Final Considerations ...476

Summary ..476
■ Chapter 17: Language-Oriented Programming: Advanced Techniques477

Computation Expressions ...478
An Example: Success/Failure Workflows ..480

Defining a Workflow Builder ...483

Workflows and Untamed Side Effects ..485

Computation Expressions with Custom Query Operators ...486

Example: Probabilistic Workflows ...487

Combining Workflows and Resources ..492

Recursive Workflow Expressions ..492

Using F# Reflection ..492
Reflecting on Types...493

Schema Compilation by Reflecting on Types ..493

Using the F# Dynamic Reflection Operators ...497

Using F# Quotations ...498

xvii

 ■ CONTENTS

Example: Using F# Quotations for Error Estimation ..499

Resolving Reflected Definitions ..501

Summary ..501
■ Chapter 18: Libraries and Interoperating with Other Languages503

Types, memory and interoperability ...503
Libraries: A High-Level Overview ..504

Namespaces from the .NET Framework ...505

Namespaces from the F# Libraries...507

Using the System Types ...508
Using Further F# and .NET Data Structures ..508

System.Collections.Generic and Other .NET Collections ..509

Supervising and Isolating Execution ..509
Further Libraries for Reflective Techniques ..510

Using General Types ...510

Using Microsoft.FSharp.Reflection ...511

Some Other .NET Types You May Encounter ...511
Under the Hood: Interoperating with C# and other .NET Languages512

The Common Language Runtime ...512

Memory Management at Runtime ..514

COM Interoperability ...516
Calling COM Components from F# ..516

The Running Object Table ...521

Interoperating with C and C++ with PInvoke ...522
Getting Started with PInvoke ..523

Mapping C Data Structures to F# Code ..525

Marshalling Parameters to and from C ...526

Marshalling Strings to and from C ..528

Passing Function Pointers to C ...530

PInvoke Memory Mapping ..531

Wrapper Generation and Limits of PInvoke ..534

Summary ..535
■ Chapter 19: Packaging, Debugging and Testing F# Code ..537

Packaging Your Code ...537
Mixing Scripting and Compiled Code ..537

Choosing Optimization Settings ..538

 ■ CONTENTS

xviii

Generating Documentation ...539

Building Shared Libraries ..539

Using Static Linking ..541

Packaging Different Kinds of Code ...541

Using Data and Configuration Settings ...542

Debugging Your Code ...543
Using More Features of the Visual Studio Debugger ..546

Instrumenting Your Program with the
System.Diagnostics Namespace ..548

Debugging Concurrent and Graphical Applications ..551

Debugging and Testing with F# Interactive ..553
Controlling F# Interactive ...553

Some Common F# Interactive Directives ..554

Understanding How F# Interactive Compiles Code ...555

F# Interactive and Visual Studio ...556

Testing Your Code ...557
Summary ..563

■ Chapter 20: Designing F# Libraries ..565
Designing Vanilla .NET Libraries ...566
Understanding Functional Design Methodology ...571

Understanding Where Functional Programming Comes From ..571

Understanding Functional Design Methodology ...572

Applying the .NET Library Design Guidelines to F# ..574
Recommendation: Use the .NET Naming and Capitalization Conventions Where Possible 574

Recommendation: Avoid Using Underscores in Names ...576

Recommendation: Follow the .NET Guidelines for Exceptions ...577

Recommendation: Consider Using Option Values for Return Types Instead of Raising Exceptions577

Recommendation: Follow the .NET Guidelines for Value Types ..577

Recommendation: Consider Using Explicit Signature Files for Your Framework ..578

Recommendation: Consider Avoiding the Use of Implementation Inheritance for Extensibility578

Recommendation: Use Properties and Methods for Attributes and Operations Essential to a Type 578

Recommendation: Avoid Revealing Concrete Data Representations Such as Records 579

Recommendation: Use Active Patterns to Hide the Implementations of Discriminated Unions..................579

Recommendation: Use Object Interface Types Instead of Tuples or Records of Functions579

Recommendation: Understand When Currying Is Useful in Functional Programming APIs579

Recommendation: Use Tuples for Return Values, Arguments, and Intermediate Values 580

xix

 ■ CONTENTS

Some Recommended Coding Idioms ..580
Recommendation: Use the Standard Operators ..581

Recommendation: Place the Pipeline Operator |> at the Start of a Line ..581

Recommendation: Format Object Expressions Using the member Syntax ...581

Summary ..582
Index ..583

xx

About the Authors

 Don Syme is a principal researcher at Microsoft Research, and the main
designer of F#. Since joining Microsoft Research in 1998, he has been a
seminal contributor to a wide variety of leading-edge projects, including
generics in C# and the .NET Common Language Runtime, F# itself, F#
asynchronous programming, and units of measure in F#. He received a Ph.D.
from the University of Cambridge Computer Laboratory in 1999.

 Adam Granicz is the chief executive officer of IntelliFactory, the leading
provider of F# training, development and consulting services, and
technologies that enable rapid functional, reactive web development. He has
over eight years of experience applying F# in commercial projects, and works
on WebSharper, IntelliFactory’s web development platform that offers
unrivaled productivity, a uniform programming model based on F#, and the
fastest way to develop robust, client-based rich Internet and mobile
applications. Adam is an active F# evangelist, a regular F# author and speaker
at development conferences and workshops, and serves on the steering
committee of the Commercial Users of Functional Programming (CUFP)
Workshop, representing the F# segment.

 Antonio Cisternino is assistant professor in the computer science
department of the University of Pisa, Italy. His primary research is on meta-
programming and domain-specific languages on virtual-machine-based
execution environments. He has been active in the .NET community since
2000. He recently developed VSLab, a Visual Studio add-in designed to add
the ability of creating dynamic tool-windows, and he also contributed to the
development of Octopus, a scheduler of virtual machines running on
Hyper-V. He teaches F# in the Programming Graphical Interfaces course at

the University of Pisa. Antonio has a Ph.D. in computer science from the University of Pisa.

xxi

About the Technical Reviewer

 Phil de Joux was a child math whiz, dirtbag climber, and bicycle
messenger. His medical studies went asymptotic, and his eventual degree was
in mathematical modeling. Like many kiwis, he left his native New Zealand
islands to see a bit more of the world, and worked as a contracting software
developer in England and France, financing a few long road trips rock
climbing in the United States and Australia.
On return to New Zealand in 2003, he formed his company, Block Scope,
named in allusion to the scoping rule, how contractors are hired for defined
blocks of work, and for bouldering, a form of rock climbing where finding
new problems involves scoping new lines on the rocks. He has used F# on
commercial projects, analyzing time series data in the REPL, pulling in web
services with type providers, and distributing messages with mailbox
processors.
In Australia since the earthquakes hit his home town of Christchurch, he is

learning a slew of functional programming languages and enjoying meetups with the Brisbane Functional
Programming Group.

xxii

Acknowledgments

We would like to thank Dominic Shakeshaft, Gwenan Spearing, Matt Moodie, and Mark Powers from
Apress, who have worked with us and kept us on track for publication. Likewise, we thank Phil de Joux,
who acted as technical reviewer and whose comments were invaluable in ensuring that the book is a
comprehensive and reliable source of information.

The drafts and first two editions of this book were read and commented on by many people, and
Expert F# 3.0 has benefited greatly from their input. In particular, we would like to thank Ashley Feniello,
whose meticulous reviews proved invaluable, as well as John Bates, Nikolaj Bjorner, Luca Bolognese,
Laurent le Brun, Richard Black, Chris Brumme, Andrew Herbert, Ralf Herbrich, Luke Hoban, Jason Hogg,
Anders Janmyr, Paulo Janotti, Pouya Larjani, Julien Laugel, Richard Mortier, Enrique Nell, Gregory Neverov,
Raj Pai, Ravi Pandya, Phil Trelford, Dave Waterworth, Dave Wecker, and Onno Zoeter, to name but a few.

We also thank Microsoft Research, without which neither F# nor this book would have been possible,
and we are very grateful for the interactions, help, and support given by other researchers and language
designers, including Byron Cook, Anders Hejlsberg, Xavier Leroy, Simon Marlow, Erik Meijer, Malcolm
Newey, Martin Odersky, Simon Peyton Jones, Mads Torgersen, and Phil Wadler. Finally, we thank our
families and loved ones for their long-suffering patience. It would have been impossible to complete this
book without their unceasing support.

1

■ ■ ■

CHAPTER 1

Introduction

F# is a strongly-typed functional programming language designed to empower programmers and domain
experts to write simple, robust code to solve complex problems. It combines the succinctness, expressivity,
efficiency, and compositionality of typed functional programming with the runtime support, libraries,
interoperability, tools, and object models of modern programming frameworks. The aim of this book is to
help you become an expert in using F# for a range of practical programming problems.

Functional programming has long inspired researchers, students, and programmers alike with its
simplicity and expressive power. Applied functional programming is booming: a new generation of typed
functional languages is reaching maturity; some functional language constructs have been integrated into
languages such as C#, Python, and Visual Basic; and there is now a widespread expertise available in the
pragmatic application of functional programming techniques. There is also strong evidence that
functional programming offers significant productivity gains in important application areas such as data
access, financial modeling, statistical analysis, machine learning, software verification, and bio-
informatics. More recently, functional programming is part of the rise of declarative programming models,
especially in the data query, concurrent, reactive, and parallel programming domains.

F# is a “functional-first” language, where functional programming is the first option used for solving
most programming problems. However, F# differs from many functional languages in that it embraces
imperative and object-oriented (OO) programming where necessary. It also provides a missing link
between compiled and dynamic languages, allowing the idioms and programming styles typical of
dynamic languages while preserving the performance and robustness of a strongly-typed compiled
language. The F# designers have adopted a design philosophy that allows you to take the best and most
productive aspects of these paradigms and combine them while still placing primary emphasis on simple
functional programming techniques. This book helps you understand the power that F# offers through this
combination.

F# offers an approach to computing that will continue to surprise and delight, and mastering
functional programming techniques will help you become a better programmer regardless of the language
you use. There has been no better time to learn functional programming, and F# offers the best route to
learn and apply functional programming to solve real-world problems.

Although F# is an open-source language under an OSS-approved license, supported tooling for F# is
available from Microsoft through tools such as Visual Studio 2010 and Visual Studio 2012, making
functional programming a viable choice for many mainstream and professional programming activities.
F# also has a vibrant community, contributing projects for using F# on a wide range of platforms, and
contributing an ecosystem of supporting commercial and open-source components and tools. The
designer of the F# language, Don Syme, is one of the authors of this book. This book benefits from his
authority on F# and .NET and from all the authors’ years of experience with F# and other programming
languages.

CHAPTER 1 ■ INTRODUCTION

2

The Genesis of F#
F# began in 2002, when Don Syme and others at Microsoft Research decided to ensure that the ML approach
to pragmatic but theoretically based language design found a high-quality expression for the .NET platform.
The project was closely associated with the design and implementation of Generics for the .NET Common
Language Runtime. The first stabilized, supported version of F# was F# 2.0, included with Visual Studio 2010.
In 2012, Microsoft released F# 3.0. This is the version of the language described in this book and is also the
version included with Visual Studio 2012.

F# shares a core language with the programming language OCaml, which in turn comes from the ML
family of programming languages, which dates back to 1974. F# also draws from Haskell, particularly with
regard to two language features: sequence expressions and workflows.

Despite the similarities to OCaml and Haskell, programming with F# is quite different in practice. In
particular, the F# approach to OO programming, and dynamic language techniques is substantially
different from other mainstream functional languages. Programming in F# tends to be more object-
oriented than in other functional languages. Programming also tends to be more flexible, as F# embraces
techniques such as dynamic loading, dynamic typing, and reflection, and it adds techniques such as
expression quotation, units-of-measure, type providers and active patterns. We cover these topics in this
book and use them in many application areas.

F# also owes a lot to the designers of .NET, whose vision of language interoperability between C++,
Visual Basic, and the language that eventually became C# is still shaping the computer industry. Today, F#
draws much from the broader community around the Common Language Infrastructure (CLI),
implemented by the Microsoft .NET Framework and Mono. F# is able to leverage libraries and techniques
developed by Microsoft, the broader .NET community, the highly active open source community centered
around Mono, and open source and cross-platform implementation of the ECMA CLI standard that works
well on Windows, Mac, and Linux environments. Mono can also be used to author applications for the
Android and Apple iOS platforms. F# code can also be edited and executed directly in most web browsers
through sites such as www.tryfsharp.org. F# 3.0 can be compiled to Javascript through the open-source
community project Pit and the professional open-source product WebSharper, www.websharper.com.

About This Book
This book is structured in three parts. Chapters 2 to 11 deal with the F# language and basic techniques
such as functional, imperative and object-oriented programming, techniques to program with textual,
structured and numeric data, and techniques for parallel, reactive and concurrent programming. Chapters
12 to 20 deal with a series of applied programming samples and topics ranging from building applications
to software engineering and design issues.

Throughout this book, we address both programming constructs and programming techniques. Our
approach is driven by examples: we show code, and then we explain it. Frequently, we give reference
material describing the constructs used in the code and related constructs you may use in similar
programming tasks. We’ve found that an example-driven approach helps bring out the essence of a
language and how the language constructs work together. You can find a complete syntax guide in the
appendix, and we encourage you to reference it while reading the book.

The book’s chapters are as follows, starting with basic F# techniques:

Chapter 2, “Your First F# Program – Getting Started With F#,” begins by
introducing F# Interactive, a tool you can use to interactively evaluate F#
expressions and declarations and that we encourage you to use while reading this
book. In this chapter, you use F# Interactive to explore some basic F# and .NET
constructs, and we introduce many concepts that are described in more detail in
later chapters.

3

CHAPTER 1 ■ INTRODUCTION

Chapter 3, “Introducing Functional Programming,” focuses on the basic
constructs of typed functional programming, including arithmetic and string
primitives, type inference, tuples, lists, options, function values, aggregate
operators, recursive functions, function pipelines, function compositions, and
pattern matching.

Chapter 4, “Introducing Imperative Programming,” introduces the basic
constructs used for imperative programming in F#. Although the use of
imperative programming is often minimized with F#, it’s used heavily in some
programming tasks such as scripting. You learn about loops, arrays, mutability
mutable records, locals and reference cells, the imperative .NET collections,
exceptions, and the basics of .NET I/O.

Chapter 5, “Understanding Types in Functional Programming,”, covers types in
more depth, especially the more advanced topics of generic type variables and
subtyping. You learn techniques that you can use to make your code generic and
how to understand and clarify type error messages reported by the F# compiler.

Chapter 6, “Programming with Objects,” introduces object-oriented
programming in F#. You learn how to define concrete object types to implement
data structures, how to use OO notational devices such as method overloading
with your F# types, and how to create objects with mutable state. You then learn
how to define object interface types and a range of techniques to implement
objects, including object expressions, constructor functions, delegation, and
implementation inheritance.

Chapter 7, “Encapsulating and Organizing Your Code,” shows the techniques you
can use to hide implementation details through encapsulation and to organize
your code with namespaces and modules.

Chapter 8, “Working with Textual Data,” looks at techniques for formatting
data, working with strings, JSON and XML, tokenizing text, parsing text, and
marshaling binary values.

Chapter 9, “Working with Sequences and Structured Data,” looks at two
important sets of functional programming techniques. In this chapter, you learn
succinct and compositional techniques for building, transforming, and querying
in-memory data structures and sequences. In addition, you learn techniques for
working with tree-structured data, especially abstract syntax representations,
how to use F# active patterns to hide representations, and how to traverse large
structured data without causing stack overflows through the use of tail calls.

Chapter 10, “Numeric Programming and Charting,” looks at constructs and
libraries for programming with numerical data in F#. In this chapter, you learn
about basic numeric types, how to use library routines for summing, aggregating,
maximizing and minimizing sequences, how to implement numeric algorithms,
how to use the FSharpChart library for charting, how to use units of measure
in F# to give strong typing to numeric data, and how to use the powerful open
source Math.NET library for advanced vector, matrix, statistical, and linear-
algebra programming.

CHAPTER 1 ■ INTRODUCTION

4

Chapter 11, “Reactive, Asynchronous, and Parallel Programming,” shows how you
can use F# for programs that have multiple logical threads of execution and that
react to inputs and messages. You first learn how to construct basic background
tasks that support progress reporting and cancellation. You then learn how
to use F# asynchronous workflows to build scalable, massively concurrent
reactive programs that make good use of the .NET thread pool and other .NET
concurrency-related resources. This chapter concentrates on message-passing
techniques that avoid or minimize the use of shared memory. However, you also
learn the fundamentals of concurrent programming with shared memory using
.NET.

Chapters 12 to 20 deal with applied topics in F# programming.

Chapter 12, “Symbolic Programming with Structured Data,” applies some of
the techniques from Chapters 9 and 11 in two case studies. The first is symbolic
expression differentiation and rendering, an extended version of a commonly
used case study in symbolic programming. The second is verifying circuits with
propositional logic; you learn how to use symbolic techniques to represent digital
circuits, specify properties of these circuits, and verify these properties using
binary decision diagrams (BDDs).

Chapter 13, “Integrating External Data and Services,” looks at several dimensions
of querying and accessing data from F#. You first learn how to use the type
provider feature of F# 3.0 to give fluent data scripting against databases and
web services. You then learn how to use queries with F#, in particular the LINQ
paradigm supported by .NET. You then look at how to use F# in conjunction with
relational databases, particularly through the use of the ADO.NET and LINQ-to-
SQL technologies that are part of the .NET Framework.

Chapter 14, “Build Smart Web Applications,” shows how to use F# with ASP.NET
to write server-side scripts that respond to web requests. You learn how to serve
web-page content using ASP.NET controls. We also describe how projects such as
the WebSharper Platform let you write HTML5 Web Applications in F#.

Chapter 15, “Building Mobile Web Applications,” shows how to use the
WebSharper framework to build web applications customized for mobile devices.
In this chapter, you learn how you can serve mobile web content from your
WebSharper applications, how you can use feature detection and polyfilling
libraries in your applications to work around mobile browser limitations and
missing features, how you can develop WebSharper applications for iOS that use
platform-specific markup to access unique features such as multi-touch events,
how you can develop WebSharper applications that use the Facebook API, how
you can use WebSharper Mobile to create native Android and Windows Phone
packages for your WebSharper applications, and how you can integrate mobile
formlets and Bing Maps in a WebSharper application.

Chapter 16, “Visualization and Graphical User Interfaces,” shows how to design
and build graphical user interface applications using F# and the .NET Windows
Forms and WPF libraries. We also show how to design new controls using
standard OO design patterns and how to script applications using the controls
offered by the .NET libraries directly.

5

CHAPTER 1 ■ INTRODUCTION

Chapter 17, “Language-Oriented Programming: Advanced Techniques,” looks
at what is effectively a fourth programming paradigm supported by F#: the
manipulation and representation of languages using a variety of concrete and
abstract representations. In this chapter, you learn three advanced features of F#
programming: F# computation expressions (also called workflows), F# reflection,
and F# quotations. These are also used in other chapters, particularly Chapters 13
and 15.

Chapter 18, “Libraries and Interoperating with Other Languages,” shows how to
use F# with other software libraries. In particular, you learn you how use F# with
.NET libraries and look at some of the libraries available. You also learn how to
interoperate C# code with COM, learn more about the .NET Common Language
Runtime, look at how memory management works, and learn how to use the
.NET Platform Invoke mechanisms from F#.

Chapter 19, “Packaging, Debugging and Testing F# Code,” shows the primary
tools and techniques you can use to eliminate bugs from your F# programs. You
learn how to package your code into .NET assemblies, learn about other package
sharing techniques, learn how to use the .NET and Visual Studio debugging tools
with F#, how to use F# Interactive for exploratory development and testing, and
how to use the NUnit testing framework with F# code.

Chapter 20, “Designing F# Libraries,” gives our advice on methodology and
design issues for writing libraries in F#. You learn how to write vanilla .NET
libraries that make relatively little use of F# constructs at their boundaries in
order to appear as natural as possible to other .NET programmers. We then cover
functional programming design methodology and how to combine it with the OO
design techniques specified by the standard .NET Framework design guidelines.

The appendix, “F# Brief Language Guide,” gives a compact guide to all key F# language constructs and
the key operators used in F# programming.

Because of space limitations, we only partially address some important aspects of programming with
F#. There are also hundreds of open-source projects related to .NET programming, many with a specific
focus on F#. F# can also be used with alternative implementations of the CLI such as Mono, topics we
address only tangentially in this book. Quotation meta-programming is described only briefly in Chapter
16, and some topics in functional programming such as the design and implementation of applicative data
structures aren’t covered at all. We do not describe how to create new instances of the F# 3.0 feature called
“type providers” because excellent material on authoring type providers is available from Microsoft. Also,
some software engineering issues such as performance tuning are largely omitted.

Who This Book Is For
We assume you have some programming knowledge and experience. If you don’t have experience with F#,
you’ll still be familiar with many of the ideas it uses. However, you may also encounter some new and
challenging ideas. For example, if you’ve been taught that OO design and programming are the only ways
to think about software, then programming in F# may be a re-education. F# fully supports OO
development, but F# programming combines elements of both functional and OO design. OO patterns
such as implementation inheritance play a less prominent role than you may have previously experienced.
Chapter 6 covers many of these topics in depth.

The following notes will help you set a path through this book, depending on your background:

CHAPTER 1 ■ INTRODUCTION

6

C++, C#, Java, and Visual Basic: If you’ve programmed in a typed OO language, you may find that
functional programming, type inference, and F# type parameters take a while to get used to. However,
you’ll soon see how to use these to be a more productive programmer. Be sure to read Chapters 2, 3, 5,
and 6 carefully.

Python, Scheme, Ruby, and dynamically typed languages: F# is statically typed and type-safe. As
a result, F# development environments can discover many errors while you program, and the F#
compiler can more aggressively optimize your code. If you’ve primarily programmed in an untyped
language such as Python, Scheme, or Ruby, you may think that static types are inflexible and wordy.
However, F# static types are relatively nonintrusive, and you’ll find the language strikes a balance
between expressivity and type safety. You’ll also see how type inference lets you recover succinctness
despite working in a statically typed language. Be sure to read Chapters 2 to 6 carefully, paying
particular attention to the ways in which types are used and defined.

Typed functional languages: If you’re familiar with Haskell, OCaml, or Standard ML, you’ll find the
core of F# readily familiar, with some syntactic differences. However, F# embraces .NET, including
the .NET object model, and it may take you awhile to learn how to use objects effectively and how to
use the .NET libraries themselves. This is best done by learning how F# approaches OO programming
in Chapters 6 to 8, and then exploring the applied .NET programming material in Chapters 11 to 20,
referring to earlier chapters as necessary. Haskell programmers also need to learn the F# approach
to imperative programming, described in Chapter 4, because many .NET libraries require a degree of
imperative coding to create, configure, connect, and dispose of objects.

We strongly encourage you to use this book in conjunction with a development environment that
supports F# directly, such as Visual Studio 2012 or Mono Develop 3.0. In particular, the interactive type
inference in these environments is exceptionally helpful for understanding F# code; with a simple mouse
movement, you can examine the inferred types of the sample programs. These types play a key role in
understanding the behavior of the code.

■ Note You can download and install F# from www.fsharp.net. You can download all the code samples used in
this book from www.expert-fsharp.com; they were prepared and checked with F# 3.0. As with all books, it’s
inevitable that minor errors may exist in the text. An active errata and list of updates will be published at www.
expert-fsharp.com.

7

■ ■ ■

CHAPTER 2

Your First F# Program –
Getting Started With F#

This chapter covers simple interactive programming with F# and .NET. To begin, download and install a
version of the F# distribution from www.fsharp.net. (You may have a version on your machine already—for
instance, if you have installed Visual Studio.) The sections that follow use F# Interactive, a tool you can use
to execute fragments of F# code interactively, and one that is convenient for exploring the language. Along
the way, you will see examples of the most important F# language constructs and many important
libraries.

Creating Your First F# Program
Listing 2-1 shows your first complete F# program. You may not follow it all at first glance, but we explain it
piece by piece after the listing.

Listing 2-1. Analyzing a String for Duplicate Words

/// Split a string into words at spaces
let splitAtSpaces (text: string) =
 text.Split ' '
 |> Array.toList

/// Analyze a string for duplicate words
let wordCount text =
 let words = splitAtSpaces text
 let wordSet = Set.ofList words
 let numWords = words.Length
 let numDups = words.Length - wordSet.Count
 (numWords, numDups)

/// Analyze a string for duplicate words and display the results.
let showWordCount text =
 let numWords, numDups = wordCount text
 printfn "--> %d words in the text" numWords
 printfn "--> %d duplicate words" numDups

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

8

Paste this program into F# Interactive, which you can start by using the command line, by running
fsi.exe from the F# distribution or by using an interactive environment, such as Visual Studio. If you’re
running from the command line, remember to enter ;; to terminate the interactive entry—you don’t need
to do this in Visual Studio or other interactive environments.

■ Tip You can start F# Interactive in Visual Studio by selecting F# Interactive in the View menu or by pressing
Ctrl+Alt+F in an F# file or script. A tool window appears, and you can send text to F# Interactive by selecting the text
and pressing Alt+Enter.

C:\Users\dsyme\Desktop> fsi.exe

Microsoft (R) F# 3.0 Interactive build 11.0.50522.1
Copyright (c) Microsoft Corporation. All Rights Reserved.

For help type #help;;

> <paste in the earlier program here> ;;

val splitAtSpaces : text:string -> string list
val wordCount : text:string -> int * int
val showWordCount : text:string -> unit

Here, F# Interactive reports the type of the functions splitAtSpaces, wordCount, and showWordCount
(you will learn more about types in a moment). The keyword val stands for value; in F# programming,
functions are just values, a topic we return to in Chapter 3. Also, sometimes F# Interactive shows a little
more information than we show in this book (such as some internal details of the generated values); if
you’re trying out these code snippets, you can ignore that additional information. For now, let’s use the
wordCount function interactively:

> let (numWords,numDups) = wordCount "All the king's horses and all the king's men";;

val numWords : int = 9
val numDups : int = 2

This code shows the results of executing the function wordCount and binding its two results to the
names numWords and numDups, respectively. Examining the values shows that the given text contains nine
words: two duplicates and seven words that occur only once. showWordCount prints the results instead of
returning them as a value:

> showWordCount "Couldn't put Humpty together again";;

--> 5 words in the text
--> 0 duplicate words

From the output, you can more or less see what the code does. Now that you’ve done that, let’s go
through the program in detail.

9

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

Documenting Code
Let’s start with the definition of the wordCount function in Listing 2-1. The first line of the definition isn’t
code; rather, it’s a comment:

/// Analyze a string for duplicate words

Comments are either lines starting with // or blocks enclosed by (* and *). Comment lines
beginning with three slashes (///) are XMLDoc comments and can, if necessary, include extra XML tags
and markup. The comments from a program can be collected into a single .xml file and processed with
additional tools.

Using let
Now, look at the first two lines of the function wordCount in Listing 2-1. These lines define the function
wordCount and the local value words, both using the keyword let:

let wordCount (text:string) =
 let words = ...

let is the single most important keyword you use in F# programming: it’s used to define data,
computed values, and functions. The left of a let binding is often a simple identifier, but it can also be a
pattern. (See “Using Tuples” for examples.) It can also be a function name followed by a list of argument
names, as in the case of wordCount, which takes one argument: text. The right of a let binding (after the =)
is an expression.

VALUES AND IMMUTABILITY

In other languages, a local value is called a local variable. In F#, however, you can’t change the immediate
value of locals after they’ve been initialized unless the local is explicitly marked as mutable, a topic we
return to in Chapter 4. For this reason, F# programmers and the language specification tend to prefer the
term value to variable.

As you’ll see in Chapter 4, data indirectly referenced by a local value can still be mutable even if the local
value isn’t. For example, a local value that is a handle to a hash table can’t be changed to refer to a different
table, but the contents of the table itself can be changed by invoking operations that add and remove
elements from the table. Many values and data structures in F# programming are completely immutable,
however; in other words, neither the local value nor its contents can be changed through external mutation.
These are usually just called immutable values. For example, all basic .NET types—such as integers, strings,
and System.DateTime values—are immutable, and the F# library defines a range of immutable data
structures, such as Set and Map, based on binary trees.

Immutable values offer many advantages. At first it may seem strange to define values you can’t change.
Knowing a value is immutable, however, means you rarely need to think about the value’s object identity—
you can pass such values to routines and know that they won’t be mutated. You can also pass them among
multiple threads without worrying about unsafe concurrent access to the values, which is discussed in
Chapter 11.

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

10

Understanding Types
F# is a typed language, so it’s reasonable to ask what the type of wordCount is. F# Interactive has shown it
already, but we can see it again:

wordCount;;

val it : (string -> int * int) = <fun:it@36>

This indicates that wordCount takes one argument of type string and returns int * int, which is F#’s
way of saying “a pair of integers.” The keyword val stands for value, and the symbol -> indicates that
wordCount is a function. No explicit type is given in the program for the type of the argument text, because
the full type for wordCount is inferred from its definition. We discuss type inference further in “What Is Type
Inference?” and in more detail in later chapters.

Types are significant in both F# and .NET programming more generally for reasons that range from
performance to coding productivity and interoperability. Types are used to help structure libraries, to
guide you through the complexity of an API, and to place constraints on code to ensure that it can be
implemented efficiently. Unlike in many other typed languages, F#’s type system is both simple and
powerful, because it uses orthogonal, composable constructs, such as tuples and functions, to form
succinct and descriptive types. Furthermore, type inference means you almost never have to write types in
your program, although doing so can be useful.

Table 2-1 shows some of the most important Type constructors, which are the operators F# offers for
defining new types (classes and delegates are well-known examples from other programming languages).
Chapters 3 and 4 discuss all these types in more detail.

Table 2-1. Some important types and type constructors and their corresponding values—int is the type
representing integer numbers.

Family of Types Examples Description
type option int option, option<int> A value of the given type or the special value None. For

example: Some 3, Some "3", None.

type list int list, list<int> An immutable linked list of values of the given type. All
elements of the list must have the same type. For
example: [], [3;2;1].

type1 -> type2 int -> string A function type, representing a value that accepts
values of the first type and computes results of the
second type. For example: (fun x -> x+1).

Family of Types Examples Description

type1 * ... * typeN int * string A tuple type, such as a pair, triple, or larger
combination of types. For example: (1,"3"), (3,2,1).

type[] int[] An array type for a flat, fixed-size, mutable collection.

unit unit A type containing a single value (), akin to void in
many imperative languages.

'T 'T, 'a, 'Key, 'Value A variable type, used in generic code.

Some type constructors, such as list and option, are generic, which means they can be used to form a
range of types by instantiating the generic variables, such as int list, string list, int list list, and so
on. You can write instantiations of generic types using either prefix notation (such as int list) or postfix

11

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

notation (such as list<int>). Variable types such as 'a and 'T are placeholders for any type. Chapters 3
and 5 discuss generics and variable types in more detail.

WHAT IS TYPE INFERENCE?

Type inference works by analyzing your code to collect constraints from the way you use let-introduced
names without explicit type annotations. These are collected over the scope of particular parts of your
program, such as each file for the F# command-line compiler and each chunk entered in F# Interactive.
These constraints must be consistent, thus ensuring that your program is well typed; you get a type error if
they are not. Constraints are collected from top to bottom, left to right, and outside in. This is important,
because in some situations it may affect the inference process.

Type inference also automatically generalizes your code, which means that when your code is reusable and
generic in certain obvious ways, it’s given a suitable generic type without your needing to write down the
generic type. Automatic generalization is the key to succinct but reusable typed programming. Chapter 5
discusses automatic generalization.

Calling Functions
Functions are at the heart of most F# programming. It’s not surprising that the first thing the wordCount
function does is call a function—in this case, the splitAtSpaces function, which is the first function
defined in the program:

let wordCount (text: string) =
 let words = splitAtSpaces text

Let’s first investigate the splitAtSpaces function by running F# Interactive:

> splitAtSpaces "hello world";;

val it : string list = ["hello"; "world"]

You can see that splitAtSpaces breaks the given text into words, splitting at spaces.
In the sample code, you can also see examples of:

Literal characters, such as ' ' and 'a'

Literal strings, such as "hello world"

Literal lists of strings, such as the returned value ["hello"; "world"]

Chapter 3 covers literals and lists in detail. Lists are an important data structure in F#, and you see
many examples of their use in this book.

Lightweight Syntax
The F# compiler and F# Interactive use the indentation of F# code to determine where constructs start and
finish. The indentation rules are very intuitive; we discuss them in the appendix, which is a guide to the F#
syntax. Listing 2-2 shows a version of the wordCount function that explicits all the scopes of names using
the in keyword.

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

12

Listing 2-2. A version of the wordCount function using explicit “in” tokens

/// Analyze a string for duplicate words
let wordCount text =
 let words = splitAtSpaces text in
 let wordSet = Set.ofList words in
 let numWords = words.Length in
 let numDups = numWords - wordSet.Count in
 (numWords, numDups)

Double semicolons (;;) are still required to terminate entries to F# Interactive. If you’re using an
interactive development environment such as Visual Studio, however, the environment typically adds
them automatically when code is selected and executed. We show the double semicolons in the interactive
code snippets used in this book, although not in the larger samples.

Sometimes it’s convenient to write let definitions on a single line. Do this by separating the
expression that follows a definition from the definition itself, using in. For example:

let powerOfFour n =
 let nSquared = n * n in nSquared * nSquared

Here’s an example use of the function:

> powerOfFour 3;;

val it : int = 81

Indeed, let pat = expr1 in expr2 is the true primitive construct in the language, with pat standing
for pattern, and expr1 and expr2 standing for expressions. The F# compiler inserts the in if expr2 is column-
aligned with the let keyword on a subsequent line.

■ Tip We recommend that you use four-space indentation for F# code. Tab characters can’t be used, and the F#
tools give an error if they’re encountered. Most F# editors convert uses of the Tab key to spaces automatically.

Understanding Scope
Local values ,such as words and wordCount, can’t be accessed outside their scope. In the case of

variables defined using let, the scope of the value is the entire expression that follows the definition,
although not the definition itself. Here are two examples of invalid definitions that try to access variables
outside their scope. As you see, let definitions follow a sequential, top-down order, which helps ensure
that programs are well-formed and free from many bugs related to uninitialized values:

let badDefinition1 =
 let words = splitAtSpaces text
 let text = "We three kings"
 words.Length

gives

error FS0039: The value or constructor 'text' is not defined

13

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

and

let badDefinition2 = badDefinition2 + 1

gives

let badDefinition2 = badDefinition2 + 1
error FS0039: The value or constructor 'badDefinition2' is not defined

Within function definitions, you can outscope values by declaring another value of the same name. For
example, the following function computes (n*n*n*n)+2:

let powerOfFourPlusTwo n =
 let n = n * n
 let n = n * n
 let n = n + 2
 n

This code is equivalent to:

let powerOfFourPlusTwo n =
 let n1 = n * n
 let n2 = n1 * n1
 let n3 = n2 + 2
 n3

Outscoping a value doesn’t change the original value; it just means that the name of the value is no
longer accessible from the current scope.

Because let bindings are simply a kind of expression, you can use them in a nested fashion. For
example:

let powerOfFourPlusTwoTimesSix n =
 let n3 =
 let n1 = n * n
 let n2 = n1 * n1
 n2 + 2
 let n4 = n3 * 6
 n4

Here, n1 and n2 are values defined locally by let bindings within the expression that defines n3. These
local values aren’t available for use outside their scope. For example, this code gives an error:

let invalidFunction n =
 let n3 =
 let n1 = n + n
 let n2 = n1 * n1
 n1 * n2
 let n4 = n1 + n2 + n3 // Error! n3 is in scope, but n1 and n2 are not!
 n4

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

14

Local scoping is used for many purposes in F# programming, especially to hide implementation
details that you don’t want revealed outside your functions or other objects. Chapter 7 covers this topic in
more detail.

Using Data Structures
The next portion of the code is:

let wordCount (text:string) =
 let words = splitAtSpaces text
 let wordSet = Set.ofList words
 ...

This gives you your first taste of using data structures from F# code. The last of these lines lies at the
heart of the computation performed by wordCount. It uses the function Set.ofList from the F# library to
convert the given words to a concrete data structure that is, in effect, much like the mathematical notion
of a set, although internally, it’s implemented using a data structure based on trees. You can see the results
of converting data to a set by using F# Interactive:

> Set.ofList ["b"; "a"; "b"; "b"; "c"];;

val it : Set<string> = set ["a"; "b"; "c"]

> Set.toList (Set.ofList ["abc"; "ABC"]);;

val it : string list = ["ABC"; "abc"]

Here you can see several things:

F# Interactive prints the contents of structured values, such as lists and sets.

Duplicate elements are removed by the conversion.

The elements in the set are ordered.

The default ordering on strings used by sets is case sensitive.

The name Set references the F# module Microsoft.FSharp.Collections.Set in the F# library. This
contains operations associated with values of the Set<_> type. It’s common for types to have a separate
module that contains associated operations. All modules under the Microsoft.FSharp namespaces Core,
Collections, Text, and Control can be referenced by simple one-word prefixes, such as Set.ofList. Other
modules under these namespaces include List, Option, and Array.

Using Properties and the Dot-Notation
The next two lines of the wordCount function compute the result you’re after—the number of duplicate
words. This is done by using two properties, Length and Count, of the values you’ve computed:

 let numWords = words.Length
 let numDups = numWords - wordSet.Count

15

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

F# performs resolution on property names at compile time (or interactively when you’re using F#
Interactive, in which there is no distinction between compile time and runtime). This is done using
compile-time knowledge of the type of the expression on the left of the dot—in this case, words and
wordSet. Sometimes, a type annotation is required in your code in order to resolve the potential ambiguity
among possible property names. For example, the following code uses a type annotation to note that inp
refers to a list. This allows the F# type system to infer that Length refers to a property associated with values
of the list type:

let length (inp:'T list) = inp.Length

Here, the 'T indicates that the length function is generic; that is, it can be used with any type of list.
Chapters 3 and 5 cover generic code in more detail.

As you can see from the use of the dot-notation, F# is both a functional language and an object-
oriented language. In particular, properties are a kind of member, a general term used for any functionality
associated with a type or value. Members referenced by prefixing a type name are called static members,
and members associated with a particular value of a type are called instance members; in other words,
instance members are accessed through an object on the left of the dot. We discuss the distinction
between values, properties, and methods later in this chapter, and Chapter 6 discusses members in full.

■ Note Type annotations can be useful documentation; when you use them, they should generally be added at
the point where a variable is declared.

Sometimes, explicitly named functions play the role of members. For example, you could write the
earlier code as:

let numWords = List.length words
let numDups = numWords - Set.count wordSet

You see both styles in F# code. Some F# libraries don’t use members at all or use them only sparingly.
Judiciously using members and properties, however, can greatly reduce the need for trivial get/set
functions in libraries, can make client code much more readable, and can allow programmers who use
environments such as Visual Studio to easily and intuitively explore the primary features of libraries they
write.

If your code doesn’t contain enough type annotations to resolve the dot-notation, you see an error
such as:

> let length inp = inp.Length;;

error FS0072: Lookup on object of indeterminate type based on information prior to this
program point. A type annotation may be needed prior to this program point to constrain the
type of the object. This may allow the lookup to be resolved. You can resolve this by adding a
type annotation as shown earlier.

Using Tuples
The final part of the wordCount function returns the results numWords and numDups as a tuple:

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

16

 ...
 let numWords = words.Length
 let numDups = numWords - wordSet.Count
 (numWords, numDups)

Tuples are the simplest, but perhaps the most useful, of all F# data structures. A tuple expression is a
number of expressions grouped together to form a new expression:

let site1 = ("www.cnn.com", 10)
let site2 = ("news.bbc.com", 5)
let site3 = ("www.msnbc.com", 4)
let sites = (site1, site2, site3)

Here, the inferred types and computed values are:

val site1 : string * int = ("www.cnn.com", 10)
val site2 : string * int = ("news.bbc.com", 5)
val site3 : string * int = ("www.msnbc.com", 4)
val sites : (string * int) * (string * int) * (string * int) =
 (("www.cnn.com", 10), ("news.bbc.com", 5), ("www.msnbc.com", 4))

Tuples can be decomposed into their constituent components in two ways. For pairs—that is, tuples
with two elements—you can explicitly call the functions fst and snd, which, as their abbreviated names
imply, extract the first and second parts of the pair:

> fst site1;;

val it : string = "www.cnn.com"

> let relevance = snd site1;;

val relevance : int = 10

The functions fst and snd are defined in the F# library and are always available for use by F#
programs. Here are their simple definitions:

let fst (a, b) = a
let snd (a, b) = b

More commonly, tuples are decomposed using patterns, as in the code:

let url, relevance = site1
let siteA, siteB, siteC = sites

In this case, the names in the tuples on the left of the definitions are bound to the respective elements
of the tuple value on the right; so again, url gets the value "www.cnn.com" and relevance gets the value 10.

Tuple values are typed, and strictly speaking, there are an arbitrary number of families of tuple types:
one for pairs holding two values, one for triples holding three values, and so on. This means that if you try
to use a triple where a pair is expected, you get a type-checking error before your code is run:

17

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

> let a, b = (1, 2, 3);;

error FS0001: Type mismatch. Expecting a
 'a * 'b
but given a
 'a * 'b * 'c
The tuples have differing lengths of 2 and 3

Tuples are often used to return multiple values from functions, as in the wordCount example earlier.
They’re also often used for multiple arguments to functions, and frequently the tupled output of one
function becomes the tupled input of another function. This example shows a different way of writing
the showWordCount function defined and used earlier:

let showResults (numWords, numDups) =
 printfn "--> %d words in the text" numWords
 printfn "--> %d duplicate words" numDups

let showWordCount text = showResults (wordCount text)

The function showResults accepts a pair as input, decomposed into numWords and numDups. The two
outputs of wordCount become the two inputs of showResults.

VALUES AND OBJECTS

In F#, everything is a value. In some other languages, everything is an object. In practice, you can use the
words largely interchangeably, although F# programmers tend to reserve object for special kinds of values:

Values whose observable properties change as the program executes, usually
through the explicit mutation of underlying in-memory data or through external state
changes

Values that refer to data or to a state that reveals an identity, such as a unique
integer stamp or the overall object identity, where that identity is used to distinguish
the object from otherwise identical values

Values that can be queried to reveal additional functionality, through the use of casts,
conversions, and interfaces

F# thus supports objects, but not all values are referred to as objects. F# programming is not “object-
oriented”; rather, it uses objects where they are most useful. Chapter 4 discusses identity and mutation in
more detail.

Using Imperative Code
The showWordCount and showResults functions defined in the previous section output results using a library
function called printfn:

printfn "--> %d words in the text" numWords
printfn "--> %d duplicate words" numDups

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

18

If you’re familiar with OCaml, C, or C++, printfn will look familiar as a variant of printf— printfn also
adds a newline character at the end of printing. Here, the pattern %d is a placeholder for an integer, and the
rest of the text is output verbatim to the console.

F# also supports related functions, such as printf, sprintf, and fprintf, which are discussed further
in Chapter 4. Unlike C/C++, printf is a type-safe text formatter in which the F# compiler checks that the
subsequent arguments match the requirements of the placeholders. There are also other ways to format
text with F#. For example, you can use the .NET libraries directly:

System.Console.WriteLine("--> {0} words in the text", box numWords)
System.Console.WriteLine("--> {0} duplicate words", box numDups)

Here, {0} acts as the placeholder, although no checks are made that the arguments match the
placeholder before the code is run. The use of printfn also shows how you can use sequential expressions
to cause effects in the outside world.

As with let ... in ... expressions, it’s sometimes convenient to write sequential code on a single
line. Do this by separating two expressions with a semicolon (;). The first expression is evaluated (usually
for its side effects), its result is discarded, and the overall expression evaluates to the result of the second.
Here is a simpler example of this construct:

let two = (printfn "Hello World"; 1 + 1)
let four = two + two

When executed, this code prints Hello World precisely once, when the right side of the definition of
two is executed. F# doesn’t have statements as such—the fragment (printfn "Hello World"; 1 + 1) is an
expression, but when evaluated, the first part of the expression causes a side effect, and its result is
discarded. It’s also often convenient to use parentheses to delimit sequential code. The code from the
script could, in theory, be parenthesized, with a semicolon added to make the primitive constructs
involved more apparent:

(printfn "--> %d words in the text" numWords;
 printfn "--> %d duplicate words" numDups)

■ Note The token ; is used to write sequential code within expressions, and ;; is used to terminate interactions
with the F# Interactive session. Semicolons are optional when the individual fragments of your sequential code are
placed on separate lines beginning at the same column position.

Using Object-Oriented Libraries from F#
The value of F# lies not just in what you can do inside the language but also in what you can connect to
outside the language. For example, F# doesn’t come with a GUI library. Instead, F# is connected to .NET
and via .NET to most of the significant programming technologies available on major computing
platforms. You’ve already seen one use of the .NET libraries, in the first function defined earlier:

/// Split a string into words at spaces
let splitAtSpaces (text:string) =
 text.Split ' '
 |> Array.toList

19

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

Here, text.Split is a call to a .NET library instance method called Split defined on all string objects.
To emphasize this, the second sample uses two of the powerful libraries that come with the .NET

Framework: System.Net and System.Windows.Forms. The full sample, in Listing 2-3, is a script for use with
F# Interactive.

Listing 2-3. Using the .NET Framework Windows Forms and networking libraries from F

open System.Windows.Forms

let form = new Form(Visible = true, TopMost = true, Text = "Welcome to F#")

let textB = new RichTextBox(Dock = DockStyle.Fill, Text = "Here is some initial text")
form.Controls.Add textB

open System.IO
open System.Net

/// Get the contents of the URL via a web request
let http (url: string) =
 let req = System.Net.WebRequest.Create(url)
 let resp = req.GetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let html = reader.ReadToEnd()
 resp.Close()
 html

textB.Text <- http "http://news.bbc.co.uk"

The above example uses several important .NET libraries and helps you explore some interesting F#
language constructs. The following sections walk you through this listing.

Using open to Access Namespaces and Modules
The first thing you see in the sample is the use of open to access functionality from the namespace System.
Windows.Forms:

open System.Windows.Forms

Chapter 7 discusses namespaces in more detail. The earlier declaration means you can access any
content under this path without quoting the long path. If it didn’t use open, you’d have to write the
following, which is obviously a little verbose:

let form = new System.Windows.Forms.Form(Visible = true, TopMost = true, Text = "Welcome to F#")

You can also use open to access the contents of an F# module without using long paths. Chapter 7
discusses modules in more detail.

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

20

MORE ABOUT OPEN

Using open is an easy way to access the contents of namespaces and modules. There are some subtleties,
however. For example, open doesn’t actually load or reference a library—instead, it reveals functionality
from already-loaded libraries. You load libraries by referring to a particular DLL, using #r in a script or -r as
a command-line option.

Libraries and namespaces are orthogonal concepts: multiple libraries can contribute functionality to the
same namespace, and each library can contribute functionality to multiple namespaces. Often, one particular
library contributes most of the functionality in a particular namespace. For example, most of the functionality
in the System.Windows.Forms namespace comes from a library called System.Windows.Forms.dll.
As it happens, this library is automatically referenced by F# Interactive at startup, which is why you haven’t
needed an explicit reference to the library so far. You can place your code in a namespace by using a
namespace declaration at the top of your file, as discussed in Chapter 7.

If two namespaces have types, subnamespaces, and/or modules with identical names, when you open these,
you can access the contents of both using the same shortened paths. For example, the namespace System
contains a type String, and the namespace Microsoft.FSharp.Core contains a module String. In this
case, long identifier lookups such as String.map search the values and members under both of these,
preferring the most recently opened if there is an ambiguity.

Finally, if you ever have name collisions, you can define your own short aliases for modules and types, such
as by using module MyString = My.Modules.String and type SysString = System.String.
You cannot alias namespaces.

Using new and Setting Properties
The next lines of the sample script use the keyword new to create a top-level window (called a form) and set
it to be visible. If you run this code in F# Interactive, you see a top-level window appear with the title text
Welcome to F#:

let form = new Form(Visible = true, TopMost = true, Text = “Welcome to F#”)

Here, new is shorthand for calling a function associated with the type System.Windows.Forms.Form that
constructs a value of the given type—these functions are called constructors. Not all F# and .NET types
have constructors; you also see values being constructed using names such as System.Net.WebRequest.
Create, String.init, or Array.init. You see examples of each throughout this book.

A form is an object; that is, its properties change during the course of execution, and it’s a handle that
mediates access to external resources (the display device, mouse, and so on). Sophisticated objects such as
forms often need to be configured, either by passing in configuration parameters at construction or by
adjusting properties from their default values after construction. The arguments Visible=true,
TopMost=true, and Text=”Welcome to F#” set the initial values for three properties of the form. The labels
Visible, TopMost, and Text must correspond to either named arguments of the constructor being called or
properties on the return result of the operation. In this case, all three are object properties, and the
arguments indicate initial values for the object properties.

Most properties on graphical objects can be adjusted dynamically. You set the value of a property
dynamically using the notation obj.Property <- value. For example, you could also construct the form
object as:

21

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

open System.Windows.Forms
let form = new Form()
form.Visible <- true
form.TopMost <- true
form.Text <- “Welcome to F#”

Likewise, you can watch the title of the form change by running the following code in F# Interactive:

form.Text <- “Programming is Fun!”

Setting properties dynamically is frequently used to configure objects, such as forms, that support
many potential configuration parameters that evolve over time.

The object created here is bound to the name form. Binding this value to a new name doesn’t create a
new form; rather, two different handles now refer to the same object (they’re said to alias the same object).
For example, the following code sets the title of the same form, despite its being accessed via a different
name:

let form2 = form
form2.Text <- “F# Forms are Fun”

VALUES, FUNCTIONS, METHODS, AND PROPERTIES

Here are the differences among values, methods, and properties:

Values: Parameters and top-level items defined using let or Pattern matching.
Examples: form, text, wordCount.

Methods: Named operations associated with types or values. Both simple values
and objects may have methods. Methods can be overloaded (see Chapter 6) and
must be applied immediately to their arguments. Examples: System.Net.
WebRequest.Create(url) and resp.GetResponseStream().

Properties: Named “get” or “set” operations associated with types or values. A
property is just shorthand for invoking method members that get or set
underlying data. Examples: System.DateTime.Now and form.TopMost.

Indexer properties: A property that accepts index arguments. Indexer properties
named Item can be accessed using the .[_] syntax (note that the dot is
required). Examples: vector.[3] and matrix.[3,4].

The next part of the sample creates a new RichTextBox control and stores it in a variable called textB:

let textB = new RichTextBox(Dock = DockStyle.Fill)
form.Controls.Add(textB)

A control is typically an object with a visible representation—or, more generally, an object that reacts to
operating-system events related to the windowing system. A form is one such control, but there are many
others. A RichTextBox control is one that can contain formatted text, much like a word processor.

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

22

Fetching a Web Page
The second half of Listing 2-3 uses the System.Net library to define a function http to read HTML Web
pages. You can investigate the operation of the implementation of the function by entering the following
lines into F# Interactive:

> open System;;
> open System.IO;;
> open System.Net;;

> let req = WebRequest.Create("http://www.microsoft.com");;

val req : WebRequest

> let resp = req.GetResponse();;

val resp : WebResponse

> let stream = resp.GetResponseStream();;

val stream : Stream

> let reader = new StreamReader(stream);;

val reader : StreamReader

> let html = reader.ReadToEnd();;

val html : string =
 "<html><head><title>Microsoft Corporation</title><meta http-eq"+[959 chars]

> textB.Text <- html;;

The final line sets the contents of the text-box form to the HTML contents of the Microsoft home page.
Let’s look at this code line by line.

The first line of the code creates a WebRequest object using the static method Create, a member of the
type System.Net.WebRequest. The result of this operation is an object that acts as a handle to a running
request to fetch a Web page—you could, for example, abandon the request or check to see whether the
request has completed. The second line calls the instance method GetResponse. The remaining lines of the
sample get a stream of data from the response to the request using resp.GetResponseStream(), make an
object to read this stream using new StreamReader(stream), and read the full text from this stream. Chapter
4 covers .NET I/O in more detail; for now, you can test by experimentation in F# Interactive that these
actions do indeed fetch the HTML contents of a Web page. The inferred type for http that wraps up this
sequence as a function is:

http;;

val it : (string -> string) = <fun:it@312-1>

23

CHAPTER 2 ■ YOUR FIRST F# PROGRAM – GETTING STARTED WITH F#

■ Note Static members are items qualified by a concrete type or module. Examples include System.String.
Compare, System.DateTime.Now, and List.map. Instance members are methods, properties, and values
qualified by an expression. Examples include form.Visible, resp.GetResponseStream(), and cell.
contents.

XML HELP IN VISUAL STUDIO

In a rich editor such as Visual Studio, you can easily find out more about the functionality of .NET libraries by
hovering your mouse over the identifiers in your source code. For example, if you hover over Dock in textB.Dock,
you see the XML help shown here:

Summary
This chapter looked at some simple interactive programming with F# and .NET. Along the way, you met
many of the constructs you use in day-to-day F# programming. The next chapter takes a closer look at
these and other constructs that are used to perform compositional and succinct functional programming
in F#.

■ Note In Chapter 3, you will use some of the functions defined in this chapter. If you’re using F# Interactive, you
may want to leave your session open as you proceed.

25

■ ■ ■

CHAPTER 3

Introducing Functional Programming

F#’s effectiveness rests on the tried and tested foundation of functional programming. This chapter covers
the core building blocks of functional programming with F#, including simple types and function values,
pattern matching, lists and options. Chapters 4 through 6 cover imperative programming, generics, and
object-oriented programming, and Chapters 9 and 10 cover many more advanced topics in functional
programming with sequences, and structured and numeric data.

Starting with Numbers and Strings
We first cover the most common base types of data manipulated in F# code, beginning with numbers and
strings.

Some Simple Types and Literals
Table 3-1 lists the basic numeric types used in F# code and their corresponding literal forms. The table also
lists the nonnumeric types bool and unit.

Table 3-1. Some Simple Types and Literals

Type Description Sample Literals Long Name
bool True/false values true, false System.Boolean

int 32-bit signed integers 0, 19, 0x0800, 0b0001 System.Int32

float 64-bit IEEE floating-point 0.0, 19.7, 1.3e4 System.Double

string Unicode strings "abc", @"\a\b" System.String

unit The type with only one value () Core.Unit

Table 3-2 lists the most commonly used arithmetic operators. These are overloaded to work with all
basic numeric types, including int and float.

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

26

Table 3-2. Arithmetic Operators and Examples

Operator Description Sample Use on int Sample Use on float
+ Unchecked addition 1 + 2 1.0 + 2.0

- Unchecked subtraction 12 – 5 12.3 - 5.4

* Unchecked multiplication 2 * 3 2.4 * 3.9

/ Division 5 / 2 5.0 / 2.0

% Modulus 5 % 2 5.4 % 2.0

- Unary negation -(5+2) -(5.4+2.4)

The behavior of these and other operators can be extended for user-defined types, a topic covered in
Chapter 6. In F#, addition, subtraction, and multiplication over integers are unchecked; that is, if overflow
or underflow occurs beyond the representable range, then wraparound occurs. Checked arithmetic is
discussed in Chapter 10.

Operator overloading interacts with type inference—if a use of an overloaded operator isn’t otherwise
constrained to work on a particular type, then F# assumes it works on 32-bit integers. To constrain a use of
an operator to a particular type, you must give a type annotation that has the effect of telling the compiler the
type on the left of the two arguments to the binary operator. For example, in the absence of additional type
information, the following function is assumed to work with integers:

> let squareAndAdd a b = a * a + b;;

val squareAndAdd : a:int -> b:int -> int

A single type annotation on a is sufficient to indicate that a * a is an operation on float values and
thus returns a float value, and that a * a + b is also an operation on float:

> let squareAndAdd (a:float) b = a * a + b;;

val squareAndAdd : a:float -> b:float -> float

In general, you can place such annotations on any of the function arguments or directly when you use
them in the body of the function. If you want, you can also give full type annotations for the arguments
and return type of a function:

> let squareAndAdd (a:float) (b:float) : float = a * a + b;;

val squareAndAdd : a:float -> b:float -> float

Arithmetic Conversions
Numeric types aren’t implicitly converted—conversions between different numeric types must be made
explicitly. You do this by using overloaded conversion operators. These work the same way as overloaded
infix operators, such as + and *. Table 3-3 shows the simplest and most common conversion operators.
More conversion operators are described in Chapter 10.

27

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

Table 3-3. The Simplest Overloaded Arithmetic Conversions and Examples

Operator Description Sample Use Result
int/int32 Convert/truncate to int32 int 17.8

int -17.8

17

-17

string Convert to string string 65 "65"

float Convert to float/double float 65 65.0

Arithmetic Comparisons
When used with numeric values, the binary comparison operators =, <>, <, <=, >, >=, min, and max perform
comparisons according to the natural ordering for each particular numeric type. You can also use these
operators on other data types, such as to compare lists of integers, and you can customize their behavior
for new types that you define. Chapter 5 discusses generic comparison in detail, and Chapter 8 discusses
customizing generic comparison.

Simple Strings
The F# type string is an abbreviation for the type System.String and represents a sequence of Unicode
UTF-16 characters. The operator str.[index] is used to access the elements of a string, the property
Length retrieves its length, and the operator str.[index..index] can be used to take substrings:

> let s = "Couldn't put Humpty";;

val s : string = "Couldn't put Humpty"

> s.Length;;

val it : int = 19

> s.[13];;

val it : char = 'H'

> s.[13..16];;

val it : string = "Hump"

Strings are immutable; that is, a string value can’t be modified after it’s built. For example, the
Substring method on the string type doesn’t modify the original string but instead returns a new string
representing the result. As mentioned in Chapter 2, immutability is a key concept for many F# values, and
you encounter it many places in this book. If you attempt to mutate a string, you get an error like the one
shown here:

> let s = "Couldn't put Humpty";;

val s : string = "Couldn't put Humpty"

> s.[13] <- 'h';;

error FS0751: Invalid indexer expression

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

28

The simplest way to build strings is via concatenation using the + operator:

> "Couldn't put Humpty" + " " + "together again";;

val it : string = "Couldn't put Humpty together again"

Chapter 8 discusses other techniques for working with strings.

Working with Conditionals: && and ||
A basic control construct in F# programming is if/then/elif/else. Here’s an example:

let round x =
 if x >= 100 then 100
 elif x < 0 then 0
 else x

Conditionals are really shorthand for pattern matching; for example, the previous code could be
written like this:

let round x =
 match x with
 | _ when x >= 100 -> 100
 | _ when x < 0 -> 0
 | _ -> x

Conditionals are always guarded by a Boolean-valued expression. You can build them using && and ||
(the “and” and “or” operators) as well as any library functions that return Boolean values:

let round2 (x, y) =
 if x >= 100 || y >= 100 then 100, 100
 elif x < 0 || y < 0 then 0, 0
 else x, y

The operators && and || have the usual short-circuit behavior in that the second argument of && is
evaluated only if the first evaluates to true and, likewise, the second argument of || is evaluated only if the
first evaluates to false.

Defining Recursive Functions
A fundamental building block of computation in F# is recursion. The following code shows a simple, well-
known recursive function:

> let rec factorial n = if n <= 1 then 1 else n * factorial (n - 1);;

val factorial : n:int -> int

> factorial 5;;

val it : int = 120

29

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

This example shows that a recursive function is simply one that can call itself as part of its own
definition. Recursive functions are introduced by let rec. Functions aren’t recursive by default, because
it’s wise to isolate recursive functions to help you control the complexity of your algorithms and keep your
code maintainable. It may help to visualize the execution of factorial 5 in the following way (note that, in
reality, F# executes the function using efficient native code):

factorial 5
= 5 * factorial 4
= 5 * (4 * factorial 3)
= 5 * (4 * (3 * factorial 2))
= 5 * (4 * (3 * (2 * factorial 1)))
= 5 * (4 * (3 * (2 * 1)))
= 5 * (4 * (3 * 2))
= 5 * (4 * 6)
= 5 * 24

= 120

As with all calls, the execution of the currently executing instance of the function is suspended while a
recursive call is made.

Many of the operators you’ve encountered so far can be coded as recursive functions. For example,
the following is one possible implementation of List.length:

let rec length l =
 match l with
 | [] -> 0
 | h :: t -> 1 + length t

Likewise, many other list processing functions, such as List.iter, are often implemented using
recursive functions.

Recursion is sometimes used as a means of programming particular patterns of control. For example,
the following code repeatedly fetches the HTML for a particular web page, printing each time it’s fetched:

let rec repeatFetch url n =
 if n > 0 then
 let html = http url
 printfn "fetched <<< %s >>> on iteration %d" html n
 repeatFetch url (n - 1)

Recursion is powerful, but it is not always the ideal way to encode either data manipulations or
control constructs, at least if other techniques are readily available. For example, the previous program
could be implemented using a for loop (as explained in Chapter 4), which would be clearer. Likewise, you
should typically avoid explicit recursion if an operator that captures the pattern of recursion being used is
available. For example, many explicit loops and recursive functions can be replaced by uses of functions
such as List.map and Array.map.

A typical error with recursion is to forget to decrement a variable at the recursive call. For example, we
incorrectly entered the following nonterminating function when writing this chapter:

let rec badFactorial n = if n <= 1 then 1 else n * badFactorial n

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

30

You should always check your recursive calls to ensure that the function is tending toward
termination—that is, that the arguments are approaching the base case. This is called well-founded
recursion.

You can define multiple recursive functions simultaneously by separating the definitions with and.
These are called mutually recursive functions. For example:

let rec even n = (n = 0u) || odd(n - 1u)
and odd n = (n <> 0u) && even(n - 1u)

This gives the following types:

val even : n:uint32 -> bool
val odd : n:uint32 -> bool

Of course, a more efficient, nonrecursive implementation of these is available:

let even n = (n % 2u) = 0u
let odd n = (n % 2u) = 1u

You must sometimes take care with recursive functions to ensure that they’re tail recursive, or else the
computation stack of your program may be exhausted by large inputs. This is particularly important for
library functions or functions that operate over large data structures with very large numbers of recursive
calls. Indeed, the implementation of length shown previously isn’t tail recursive. Chapter 9 discusses tail
recursion in depth.

Lists
Some of the foundational data structures of F# coding are tuples, lists, and options. The following sections
discuss these and some related topics by example.

F# lists are a common data structure used in functional programming. You saw some examples of
concrete lists in Chapter 2. Table 3-4 shows the primitive constructs for building lists.

Table 3-4. Some List-Related Language Constructs and Operators

Operator/Expression Description Examples
[] The empty list []

expr :: expr “Cons” an element with a list 1 :: [2; 3]

[expr; ...; expr] A list value [1; 2; 3]

[expr .. expr] A range [1 .. 99] and ['A' .. 'Z'];;

[for x in list …] A generated list (see end of chapter) [for x in 1..99 -> x * x]

expr @ expr Concatenates two lists [1; 2] @ [3]

Here are some basic list values:

let oddPrimes = [3; 5; 7; 11]
let morePrimes = [13; 17]

31

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

let primes = 2 :: (oddPrimes @ morePrimes)

The type and value of primes are as follows:

val primes : int list = [2; 3; 5; 7; 11; 13; 17]

Lists are immutable: the cons :: and append @ operations don’t modify the original lists; instead, they
create new lists. You can see this in the following interactive session:

> let people = ["Adam"; "Dominic"; "James"];;

val people : string list = ["Adam"; "Dominic"; "James"]

> "Chris" :: people;;

val it : string list = ["Chris"; "Adam"; "Dominic"; "James"]

> people;;

val it : string list = ["Adam"; "Dominic"; "James"]

Note that people has not been changed by the construction of a new list using the cons operator. F#
lists are immutable, and they are represented in memory as linked lists; each F# list value is a cons cell
containing a value plus a pointer to the next chain in the list, or else it’s a special nil object. When you
create a new list using the :: operator, then the tail of the new list points to the old list, which ensures that
the inner memory associated with lists is often reused as part of multiple list values.

The F# library also includes a module List that contains some useful functions related to
programming with lists. You see many of these functions in the next section and throughout this book.
Table 3-5 shows some of them.

F# lists aren’t appropriate for all circumstances. For example, very large data structures should
probably be represented using arrays or other data structures, or even managed by an external tool, such
as a relational database. We discuss a number of immutable data structures in “Some Common Immutable
Data Structures” (see sidebar).

Table 3-5. Some Sample Functions in the List Module

Function Type Description
List.length 'T list -> int Returns the length of the list.

List.head 'T list -> 'T Returns the first element of a nonempty list.

List.tail 'T list -> 'T list Returns all the elements of a nonempty list
except the first.

List.init int -> (int -> 'T) -> 'T list Returns a new list. The length of the new list
is specified by the first parameter. The
second parameter must be a generating
function that maps list indexes to values.

List.append 'T list -> 'T list -> 'T list Returns a new list containing the elements
of the first list followed by the elements of
the second list.

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

32

List.filter ('T -> bool) -> 'T list -> 'T list Returns a new list containing only those
elements of the original list where the
function returns true.

List.map ('T -> 'U) -> 'T list -> 'U list Creates a new list by applying a function to
each element of the original list.

List.iter ('T -> unit) -> 'T list -> unit Executes the given function for each
element of the list.

List.unzip ('T * 'U) list -> 'T list * 'U list Returns two new lists containing the first
and second elements of the pairs in the
input list.

List.zip 'T list -> 'U list -> ('T * 'U) list Returns a new list containing the elements of
the two input lists combined pairwise. The
input lists must be the same length;
otherwise, an exception is raised.

List.toArray 'T list -> 'T [] Creates an array from the given list.

List.ofArray 'T [] -> 'T list Creates a list from the given array.

Here are examples of how to use some of the functions from Table 3-5. The last two use function
values, which we cover in more detail in “Introducing Function Values” later in this chapter.

> List.head [5; 4; 3];;

val it : int = 5

> List.tail [5; 4; 3];;

val it : int list = [4; 3]

> List.map (fun x -> x * x) [1; 2; 3];;

val it : int list = [1; 4; 9]

> List.filter (fun x -> x % 3 = 0) [2; 3; 5; 7; 9];;

val it : int list = [3; 9]

SOME COMMON IMMUTABLE DATA STRUCTURES

Data structures are generally divided between mutable and immutable, a distinction touched on in Chapter 2
and covered in more detail in Chapter 4. Immutable data structures are sometimes called persistent, or
simply functional. Here are some of the immutable data structures commonly used with F#:

Tuple values and option values: These are immutable and are basic workhorses
of F# programming.

Immutable linked lists of type 'T list: These are cheap to access from the left
end. They’re inefficient for random-access lookup because the list must be
traversed from the left for each lookup—that is, random-access lookup is O(n),
where n is the number of elements in the collection. The full name of this type is
Microsoft.FSharp.Collections.List<'T>.

33

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

Immutable sets based on balanced trees: Chapter 2 shows some examples of
uses of immutable sets, and an implementation is provided via the type
Set<'T> in the F# library namespace Microsoft.FSharp.Collections.
These are cheap to add, access, and union, with O(log(n)) access times, where n
is the number of elements in the collection. Because the type is immutable,
internal nodes can be shared among different sets.

Immutable maps based on balanced trees: These are similar to immutable sets but
associate keys with values (that is, they’re immutable dictionaries). One
implementation of these is provided via the F# library type Map<'Key,'Value> in
Microsoft.FSharp.Collections. As with sets, these have O(log(n)) access
times.

Chapter 4 covers imperative programming and mutable data structures.

Options
Like lists and tuples, option values are simple constructs frequently used as workhorses in F# coding. An
option is simply either a value “Some v” or the absence of a value “None”. For example, options are useful
for returning the value of a search where you may or may not have a result. You see in the section “Defining
Discriminated Unions” in Chapter 4 that the option type is defined in the F# library as follows:

type 'T option =
 | None
 | Some of 'T

The following is a data structure that uses options to represent the (optional) parents of some well-
known characters:

> let people = [("Adam", None);
 ("Eve" , None);
 ("Cain", Some("Adam","Eve"));
 "Abel", Some("Adam","Eve"))];;

val people : (string * (string * string) option) list =
 [("Adam", None); ("Eve", None); ("Cain", Some ("Adam", "Eve"));
 ("Abel", Some ("Adam", "Eve"))]

One use of option values is to represent the success or failure of a computation. This can be useful
when you’re catching an exception, as shown in the following example (which uses the function http from
Chapter 2):

let fetch url =
 try Some (http url)
 with :? System.Net.WebException -> None

Chapter 4 describes exceptions in more detail. What matters here is that if a network error occurs
during the HTTP request, the exception is caught and the result of the fetch function is the value None.
Successful web-page requests return a Some value. Option values can then be discriminated and
decomposed using pattern matching, as shown here:

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

34

> match (fetch "http://www.nature.com") with
 | Some text -> printfn "text = %s" text
 | None -> printfn "**** no web page found";;

text = <!DOCTYPE html PUBLIC ... (note: the HTML is shown here if connected to the web)

Getting Started with Pattern Matching
One important tool in F# programming is pattern matching, a general construct that combines
decomposition and control. In the previous sections, you got a taste of how you can use pattern matching
with some simple values, such as tuples and options. You can also use pattern matching in many other
situations, however. You will see many other examples of pattern matching in this book, but let’s start with
some simple pattern matching over strings and integers. As you’ve already seen, pattern matches on
explicit values are introduced using the match ... with ... construct:

let isLikelySecretAgent url agent =

 match (url, agent) with
 | "http://www.control.org", 99 -> true
 | "http://www.control.org", 86 -> true
 | "http://www.kaos.org", _ -> true | _ -> false

The inferred type of the function is as follows:

val isLikelySecretAgent : url:string -> agent:int -> bool

The expression (url, agent) after the keyword match is a tuple of type (string*int). You can omit the
parentheses here (as in the subsequent | patterns) and use them only when you need to group inner
tuples together, but it’s a good practice to keep them around the values you are matching against. Each
rule of the match is introduced with a | followed by a pattern, then ->, and then a result expression. When
executed, the patterns of the rules are used one by one, and the first successful pattern match determines
which result expression is used. In the previous example, the first rule matches if url and agent are
"http://www.control.org" and 99, respectively. Likewise, the second rule matches "http://www.control.
org" and 86. The third roule matches if url is "http://www.kaos.org", regardless of agent number. The last
two rules all use “wildcard” patterns represented by the underscore character; these match all inputs.

The overall conditions under which isLikelySecretAgent returns true can be determined by reading
through the pattern match: agents 86 and 99 are known agents of "http://www.control.org", all agent
numbers at http://www.kaos.org are assumed to be agents, and no other inputs are categorized as agents.

Patterns are a rich and powerful technique for simultaneous data analysis and decomposition.
Patterns are also used in many workhorse situations. For example, pattern matching can be used to
decompose list values from the head downward:

let printFirst primes =
 match primes with
 | h :: t -> printfn "The first prime in the list is %d" h
 | [] -> printfn "No primes found in the list"

> printFirst oddPrimes;;

The first prime in the list is 3

35

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

The first line after the match is a pattern-matching rule that matches the input primes against the
pattern h :: t. If primes is a nonempty list, then the match is successful, and the first printfn is executed
with h bound to the head of the list and t to its tail. The second line considers the case in which primes is
an empty list. Note that the :: and [] symbols can be used both to build up lists in expressions and to
decompose them in pattern matching.

Likewise, pattern matching can be used to examine option values:

> let showParents (name, parents) =
 match parents with
 | Some (dad, mum) -> printfn "%s has father %s, mother %s" name dad mum
 | None -> printfn "%s has no parents!" name;;

val showParents : name:string * parents:(string * string) option -> unit

> showParents ("Adam", None);;

Adam has no parents!

Matching on Structured Values
Pattern matching can be used to decompose structured values. Here is an example in which you match
nested tuple values:

let highLow a b =
 match (a, b) with
 | ("lo", lo), ("hi", hi) -> (lo, hi)
 | ("hi", hi), ("lo", lo) -> (lo, hi)
 | _ -> failwith "expected a both a high and low value"

The match examines two pairs and looks at the strings in the first element of each, returning the
associated values:

> highLow ("hi", 300) ("lo", 100);;

val it : int * int = (100, 300)

The first rule matches if the first parts of the input pairs are the strings "lo" and "hi", respectively. It
then returns a pair made from the respective second parts of the tuples. The second rule is the mirror of
this in case the values appeared in reverse order.

The final cases of both of the previous examples use wildcard patterns to cover remaining cases. This
makes the patterns exhaustive. Frequently, no wildcard is needed to ensure this, because for many input
types, F# is able to determine whether the given set of rules is sufficient to cover all possibilities for the
given shape of data. If a match isn’t exhaustive, however, a warning is given:

> let urlFilter3 url agent =
 match url,agent with
 | "http://www.control.org", 86 -> true
 | "http://www.kaos.org", _ -> false;;

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

36

warning FS0025: Incomplete pattern matches on this expression. For example, the value '(_,0)'
may indicate a case not covered by the pattern(s).
val urlFilter3 : url:string -> agent:int -> bool

In these cases, it may be necessary to add an extra exception-throwing clause to indicate to the F#
compiler that the given inputs aren’t expected:

let urlFilter4 url agent =
 match url,agent with
 | "http://www.control.org", 86 -> true
 | "http://www.kaos.org", _ -> false
 | _ -> failwith "unexpected input"

Nonexhaustive matches are automatically augmented by a default case in which a
MatchFailureException is thrown. Chapter 4 discusses exceptions.

F# is frequently able to determine whether pattern-matching rules are redundant, such as if a rule can
never be selected because previous rules subsume all such cases. In this case, a warning is given. For
example:

> let urlFilter2 url agent =
 match url,agent with
 | "http://www.control.org", _ -> true
 | "http://www.control.org", 86 -> true
 | _ -> false;;

warning FS0026: This rule will never be matched
val urlFilter2 : url:string -> agent:int -> bool

■ Tip Use wildcard patterns with care. F# can often determine whether a match is exhaustive, and the use of
wildcard patterns effectively disables this analysis for any particular pattern match. Sometimes it’s better to write out
the extra cases of a match as explicit patterns, because you can then adjust your code when new kinds of input data
are introduced.

Guarding Rules and Combining Patterns
Individual rules of a match can be guarded by a condition that is tested if the pattern itself succeeds. Here
is a simple use of this mechanism to record the three clauses of computing the sign of an integer:

let sign x =
 match x with
 | _ when x < 0 -> -1
 | _ when x > 0 -> 1
 | _ -> 0

You can combine two patterns to represent two possible paths for matching:

37

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

let getValue a =
 match a with
 | (("lo" | "low"), v) -> v
 | ("hi", v) | ("high", v) -> v
 | _ -> failwith "expected a both a high and low value"

Here, the pattern ("lo" | "low") matches either string. The pattern ("hi", v) | ("high", v) plays
essentially the same role by matching pairs values where the left of the pair is "hi" or "high" and by
binding the value v on either side of the pattern.

Further Ways of Forming Patterns
Table 3-6 summarizes all the ways to form patterns in F#; many of these involve building up patterns from
other patterns. Chapter 8 covers active patterns and looks at further techniques for working with
structured data.

Table 3-6. Different Ways to Form Patterns

General Form Kind Example
(pat, ... , pat) Tuple pattern (1, 2, ("3", x))

[pat; ... ; pat] List pattern [x; y; z]

[| pat; ...; pat |] Array pattern [|"cmd"; arg1; arg2|]

{id=pat; ...; id=pat} Record pattern { X = 1; Y = 2 }

Tag(pat, ... , pat) Tagged union or active pattern Point(x, y)

pat | pat “Or” pattern [x] | ["X"; x]

pat & pat “And” pattern [p] & [Point(x, y)]

pat as id Named pattern [x] as inp

id Variable pattern x

_ Wildcard pattern _

Any literal Constant pattern 36, "36", 27L, System.DayOfWeek.
Monday

:? Type Type test pattern :? string

null Null test pattern null

■ Note Individual patterns can’t bind the same variables twice. For example, a pattern (x, x) isn’t permitted,
although (x, y) when x = y is permitted. Furthermore, each side of an “or” pattern must bind the same set of
variables, and these variables must have the same types.

Introducing Function Values
This section covers the foundational building block of F# functional programming: function values. We
begin with a simple and well-known example: using function values to transform one list into another.

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

38

One of the primary uses of F# lists is as a general-purpose, concrete data structure for storing ordered
input lists and ordered results. Input lists are often transformed to output lists using aggregate operations
that transform, select, filter, and categorize elements of the list according to a range of criteria. These
aggregate operations provide an excellent introduction to how to use function values. Let’s take a closer
look at this in the following code sample, which continues from the definition of http from Listing 2-2 in
Chapter 2:

> let sites = ["http://www.live.com"; "http://www.google.com"];;

val sites : string list = ["http://www.live.com"; "http://www.google.com"];;

> let fetch url = (url, http url);;

val fetch : url:string -> string * string

> List.map fetch sites;;

val it : (string * string) list =

 [("http://www.live.com",
 "<!-- ServerInfo:...
</body></html>");
 ("http://www.google.com",
 "<!doctype html>...
</script>")]

The first interaction defines sites as a literal list of URLs, and the second defines the function fetch.
The third calls the aggregate operation List.map. This accepts the function value fetch as the first
argument and the list sites as the second argument. The function applies fetch to each element of the list
and collects the results in a new list.

Types are one useful way to help learn what a function does. Here’s the type of List.map:

> List.map;;

val it : (('a -> 'b) -> 'a list -> 'b list)

This says List.map accepts a function value as the first argument and a list as the second argument,
and it returns a list as the result. The function argument can have any type 'a -> 'b, and the elements of
the input list must have a corresponding type 'a. The symbols 'a and 'b are called type parameters, and
functions that accept type parameters are called generic. Chapter 5 discusses type parameters in detail.

■ Tip You can often deduce the behavior of a function from its type, especially if its type involves type parameters.
For example, look at the type of List.map. Using type parameters, you can observe that the type 'T list of the
input list is related to the type 'T accepted by the function passed as the first parameter. Similarly, the type 'U
returned by this function is related to the type 'U list of the value returned by List.map. From this, it’s
reasonable to conclude that List.map calls the function parameter for items in the list and constructs its result
using the values returned.

39

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

Using Anonymous Function Values
Function values are so common in F# programming that it’s convenient to define them without giving
them names. Here is a simple example:

> let primes = [2; 3; 5; 7];;

val primes : int list = [2; 3; 5; 7]

> let primeCubes = List.map (fun n -> n * n * n) primes;;

val primeCubes: int list = [8; 27; 125; 343]

The definition of primeCubes uses the anonymous function value (fun n -> n * n * n). Such values
are similar to function definitions but are unnamed and appear as an expression rather than as a let
declaration. fun is a keyword meaning function, n represents the argument to the function, and n * n * n
is the result of the function. The overall type of the anonymous function expression is int -> int. You
could use an anonymous function instead of the intermediary function fetch in the earlier sample:

let resultsOfFetch = List.map (fun url -> (url, http url)) sites

You will see anonymous functions throughout this book. Here is another example:

> List.map (fun (_,p) -> String.length p) resultsOfFetch;;

val it : int list = [12134; 45134]

Here you see two things:

The argument of the anonymous function is a tuple pattern. Using a tuple pattern
automatically extracts the second element from each tuple and gives it the name p
within the body of the anonymous function.

Part of the tuple pattern is a wildcard pattern, indicated by an underscore. This
indicates that you don’t care what the first part of the tuple is; you’re interested only
in extracting the length from the second part of the pair.

Computing with Aggregate Operators
Functions such as List.map are called aggregate operators, and they’re powerful constructs, especially
when combined with the other features of F#. Here is a longer example that uses the aggregate operators
Array.filter and List.map to count the number of URL links in an HTML page and then collects stats on a
group of pages (this sample uses the function http defined in Chapter 2):

let delimiters = [| ' '; '\n'; '\t'; '<'; '>'; '=' |]

let getWords (s: string) = s.Split delimiters

let getStats site =
 let url = "http://" + site
 let html = http url

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

40

 let hwords = html |> getWords
 let hrefs = html |> getWords |> Array.filter (fun s -> s = "href")
 (site, html.Length, hwords.Length, hrefs.Length)

Here, you use the function getStats with three web pages:

> let sites = ["www.live.com"; "www.google.com"; "search.yahoo.com"];;

val sites : string list

> sites |> List.map getStats;;

val it : (string * int * int * int) list =
 [("www.live.com", 12132, 892, 11); ("www.google.com", 44139, 2586, 33);
 ("search.yahoo.com", 12617, 846, 23)]

The function getStats computes the length of the HTML for the given web site, the number of words
in the text of that HTML, and the approximate number of links on that page.

The previous code sample extensively uses the |> operator to pipeline operations, discussed in
“Pipelining with |>” (see sidebar). The F# library design ensures that a common, consistent set of
aggregate operations is defined for each structured type. Table 3-7 shows how the same convention is used
for the map abstraction.

Table 3-7. A Recurring Aggregate Operator Design Pattern from the F# Library

Operator Type
List.map ('T -> 'U) -> 'T list -> 'U list

Array.map ('T -> 'U) -> 'T [] -> 'U []

Option.map ('T -> 'U) -> 'T option -> 'U option

Seq.map ('T -> 'U) -> seq<'T> -> seq<'U>

You may see types that define methods that provide a slightly more succinct way of transforming data,
such as Map. For example, you might represent sites by a new type with a Map instance member to compute
site statistics, allowing you to write a transformation on a given site instance, like so:

site.Map getStats

This may require the use of a type annotation. Both styles are used in F# programming, depending on
the methods and properties available for a particular data type.

PIPELINING WITH |>

The |> forward pipe operator is perhaps the most important operator in F# programming. Its definition is
deceptively simple:

let (|>) x f = f x

Here is how to use the operator to compute the cubes of three numbers:

[1;2;3] |> List.map (fun x -> x * x * x)

41

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

This produces [1; 8; 27], just as if you had written:

List.map (fun x -> x * x * x) [1; 2; 3]

In a sense, |> is function application in reverse. However, using |> has distinct advantages:

Clarity: When used in conjunction with functions such as List.map, the |>
operator allows you to perform the data transformations and iterations in a
forward-chaining, pipelined style.

Type inference: Using the |> operator lets type information flow from input
objects to the functions manipulating those objects. F# uses information
collected from type inference to resolve some language constructs, such as
property accesses and method overloading. This relies on information being
propagated left to right through the text of a program. In particular, typing
information to the right of a position isn’t taken into account when resolving
property access and overloads.

For completeness, here is the type of the operator:

val (|>) : 'T -> ('T -> 'U) -> 'U

Composing Functions with >>
You saw earlier how to use the |> forward pipe operator to pipe values through a number of functions. This
was a small example of the process of computing with functions, an essential and powerful programming
technique in F#. This section covers ways to compute new function values from existing ones using
compositional techniques. First, let’s look at function composition. For example, consider the following
code:

let google = http "http://www.google.com"

google |> getWords |> Array.filter (fun s -> s = "href") |> Array.length

You can rewrite this code using function composition as follows:

let countLinks = getWords >> Array.filter (fun s -> s = "href") >> Array.length

google |> countLinks

You define countLinks as the composition of three function values using the >> forward composition
operator. This operator is defined in the F# library as follows:

let (>>) f g x = g(f(x))

You can see from the definition that f >> g gives a function value that first applies f to the x and then
applies g. Here is the type of >>:

val (>>) : ('T -> 'U) -> ('U -> 'V) -> ('T -> 'V)

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

42

Note that >> is typically applied to only two arguments: those on either side of the binary operator,
here named f and g. The final argument x is typically supplied at a later point.

F# is good at optimizing basic constructions of pipelines and composition sequences from
functions—for example, the function countLinks shown earlier becomes a single function calling the three
functions in the pipeline in sequence. This means sequences of compositions can be used with relatively
low overhead.

Building Functions with Partial Application
Composing functions is just one way to compute interesting new functions. Another useful way is to use
partial application. Here’s an example:

let shift (dx, dy) (px, py) = (px + dx, py + dy)
let shiftRight = shift (1, 0)
let shiftUp = shift (0, 1)
let shiftLeft = shift (-1, 0)
let shiftDown = shift (0, -1)

The last four functions are defined by calling shift with only one argument, in each case leaving a
residue function that expects an additional argument. F# Interactive reports the types as follows:

val shiftRight : (int * int -> int * int)
val shiftUp : (int * int -> int * int)
val shiftLeft : (int * int -> int * int)
val shiftDown : (int * int -> int * int)

Here is an example of how to use shiftRight and how to apply shift to new arguments (2, 2):

> shiftRight (10, 10);;

val it : int * int = (11, 10)

> List.map (shift (2,2)) [(0,0); (1,0); (1,1); (0,1)];;

val it : (int * int) list = [(2, 2); (3, 2); (3, 3); (2, 3)]

In the second example, the function shift takes two pairs as arguments. You bind the first parameter
to (2, 2). The result of this partial application is a function that takes one remaining tuple parameter and
returns the value shifted by two units in each direction. This resulting function can now be used in
conjunction with List.map.

Using Local Functions
Partial application is one way in which functions can be computed rather than simply defined. This
technique becomes very powerful when combined with additional local definitions. Here’s a simple and
practical example, representing an idiom common in graphics programming:

open System.Drawing

43

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

let remap (r1:Rectangle) (r2:Rectangle) =
 let scalex = float r2.Width / float r1.Width
 let scaley = float r2.Height / float r1.Height
 let mapx x = int (float r2.Left + truncate (float (x - r1.Left) * scalex))
 let mapy y = int (float r2.Top + truncate (float (y - r1.Top) * scaley))
 let mapp (p:Point) = Point(mapx p.X, mapy p.Y)
 mapp

The function remap computes a new function value mapp that maps points in one rectangle to points in
another. F# Interactive reports the type as follows:

val remap : r1: Rectangle -> r2: Rectangle -> (Point -> Point)

The type Rectangle is defined in the library System.Drawing.dll and represents rectangles specified by
integer coordinates. The computations on the interior of the transformation are performed in floating
point to improve precision. You can use this as follows:

> let mapp = remap (Rectangle(100, 100, 100, 100)) (Rectangle(50, 50, 200, 200));;

val mapp : Point -> Point

> mapp (Point(100, 100));;

val it : Point = {X=50,Y=50} {IsEmpty = false;
 X = 50;
 Y = 50;}

> mapp (Point(150, 150));;

val it : Point = {X=150,Y=150}

> mapp (Point(200, 200));;

val it : Point = {X=250,Y=250}

The intermediate values scalex and scaley are computed only once, despite the fact that you’ve called
the resulting function mapp three times. It may be helpful to think of mapp as a function object being
generated by the remap function.

In the previous example, mapx, mapy, and mapp are local functions—functions defined locally as part of
the implementation of remap. Local functions can be context dependent—in other words, they can be
defined in terms of any values and parameters that happen to be in scope. Here, mapx is defined in terms of
scalex, scaley, r1, and r2.

■ Note Local and partially applied functions are, if necessary, implemented by taking the closure of the variables
they depend on and storing them away until needed. In optimized F# code, the F# compiler often avoids this and
instead passes extra arguments to the function implementations. Closure is a powerful technique that is used
frequently in this book. It’s often used in conjunction with functions, as in this chapter, but it is also used with object
expressions, sequence expressions, and class definitions.

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

44

Iterating with Aggregate Operators
It’s common to use data to drive control. In functional programming, the distinction between data and
control is often blurred: function values can be used as data, and data can influence control flow. One
example is using a function such as List.iter to iterate over a list:

let sites = ["http://www.live.com";
 "http://www.google.com";
 "http://search.yahoo.com"]

sites |> List.iter (fun site -> printfn "%s, length = %d" site (http site).Length)

List.iter simply calls the given function (here an anonymous function) for each element in the input
list. Many additional aggregate iteration techniques are defined in the F# and .NET libraries, particularly
by using values of type seq<type>, discussed in “Getting Started with Sequences” later in this chapter.

Abstracting Control with Functions
As a second example of how you can abstract control using functions, let’s consider the common pattern
of timing the execution of an operation (measured in wall-clock time). First, let’s explore how to use
System.DateTime.Now to get the wall-clock time:

> open System;;

> let start = DateTime.Now;;

val start : DateTime = 13/06/2012 9:54:36 p.m.

> http "http://www.newscientist.com";;

val it : string = "<!DOCTYPE html...</html>"

> let finish = DateTime.Now;;

val finish : DateTime = 13/06/2012 9:54:37 p.m.

> let elapsed = finish - start;;

val elapsed : TimeSpan = 00:00:01.1550660

Note that the type TimeSpan has been inferred from the use of the overloaded operator in the
expression finish - start. Chapter 6 discusses overloaded operators in depth. You can now wrap up this
technique as a function time that acts as a new control operator:

open System

let time f =
 let start = DateTime.Now
 let res = f()
 let finish = DateTime.Now
 (res, finish - start)

This function runs the input function f but takes the time on either side of the call. It then returns
both the result of the function and the elapsed time. The inferred type is as follows:

45

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

val time : f:(unit -> 'a) -> 'a * TimeSpan

Here 'T is a type variable that stands for any type, and thus the function can be used to time functions
that return any kind of result. Note that F# automatically infers a generic type for the function, a technique
called automatic generalization that lies at the heart of F# type inference. Chapter 5 discusses automatic
generalization in detail. Here is an example of using the time function, which again reuses the http
function defined in Chapter 2:

> time (fun () -> http "http://www.newscientist.com");;

val it : string * TimeSpan = ... (The HTML text and time will be shown here)

Using Object Methods as First-Class Functions
You can use existing .NET methods as first-class functions. For example:

> open System.IO;;
> [@"C:\Program Files"; @"C:\Windows"] |> List.map Directory.GetDirectories;;

val it : string [] list =
 [[|"C:\Program Files\7-Zip"; "C:\Program Files\Application Verifier";
 "C:\Program Files\Common Files"; "C:\Program Files\DVD Maker";...
 "C:\Windows\Vss"; "C:\Windows\Web"; "C:\Windows\winsxs"|]]

Sometimes you need to add extra type information to indicate which overload of the method is
required. Chapter 6 discusses method overloading in more detail. For example, the following causes an
error:

> open System;;
> let f = Console.WriteLine;;

error FS0041: A unique overload for method 'WriteLine' could not be determined based on type
information prior to this program point. A type annotation may be needed.

However, the following succeeds:

> let f = (Console.WriteLine : string -> unit);;

val f : string -> unit

Some Common Uses of Function Values
The function remap from the previous section generates values of type Point -> Point, representing
“transformations for points.” You haven’t needed to define a new type for “transformations”—you just use
functions as a way of modeling transformations. Many useful concepts can be modeled using function
types and values. For example:

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

46

Actions. The type unit -> unit is frequently used to model actions: operations that
run and perform some unspecified side effect. For example, consider the expression
(fun () -> printfn "Hello World").

Predicates. Types of the form type -> bool are frequently used to model predicates,
which select a subset of values.

Counting Functions. Types of the form type -> int are frequently used to model
counting functions, which give a number for each input; the numbers may then be
accumulated.

Statistical Functions. Types of the form type -> float are frequently used to model
statistical functions, which give a floating point number for each input. These may
be used as an input into a statistical routine such Seq.averageBy.

Key Functions. Types of the form type -> keytype are frequently used to model key
functions, which give a key value for each input. For example, a key function may be
an integer associated with each input. Operations such as Seq.groupBy and Seq.
sortBy accept key functions.

Orderings. Types of the form type -> type -> int are frequently used to model
comparison functions over the type type. You also see type * type -> int used for
this purpose, where a tuple is accepted as the first argument. In both cases, a
negative result indicates less than, zero indicates equals, and a positive result
indicates greater than. Operations such as Seq.sortWith accept ordering functions.

Callbacks. Types of the form type -> unit are frequently used to model callbacks.
Callbacks are often run in response to a system event, such as when a user clicks a
user interface element. In this case, the parameter sent to the handler has some
specific type, such as System.Windows.Forms.MouseEventArgs.

Delayed Computations. Types of the form unit -> type are frequently used to
model delayed computations, which are values that, when required, produce a value
of type type. For example, a threading library can accept such a function value and
execute it on a different thread, eventually producing a value of type type. Delayed
computations are related to lazy computations and sequence expressions; these are
discussed in “Using Sequence Expressions.”

Sinks. Types of the form type -> unit are frequently used to model sinks, which are
function values that, when required, consume a value of type type. For example, a
logging API may use a sink to consume values and write them to a log file.

Generators. Types of the form int -> type are frequently used to model generators,
which are used to initialize a collection. The parameter may be an integer index into
the collection. For example, Array.init accepts a generator function. More complex
generators may accumulate state and optionally indicate the end of the generation
process. For an example, see Seq.unfold.

Binary Operators. Types of the form type -> type -> type are frequently used to
model binary operations, which take two input values and combine them into one.
Operations such as List.reduce accept binary operators.

Transformations. Types of the form type1 -> type2 are frequently used to model
transformers, which are functions that transform each element of a collection. You
see this pattern in the map operator for many common collection types.

47

CHAPTER 3 ■ INTRODUCING FUNCTIONAL PROGRAMMING

Accumulators. Types of the form type1 -> type2 -> type2 are frequently used to
model visitor accumulating functions, which are functions that visit each element of
a collection (type type1) and accumulate a result (type type2). For example, a visitor
function that accumulates integers into a set of integers has type int -> Set<int>
-> Set<int>.

■ Note The power of function types to model many different concepts is part of the enduring appeal of functional
programming. This is one of the refreshing features F# brings to object-oriented programming: many simple
abstractions are modeled in very simple ways and often have simple implementations through orthogonal, unified
constructs, such as anonymous function values and function compositions.

Summary
F# is a multiparadigm language, and this chapter looked at the core language constructs used for
functional programming. The next chapter explores how to use F# for imperative programming: how to
use mutable state, raise and handle exceptions, and perform I/O.

49

■ ■ ■

CHAPTER 4

Introducing Imperative Programming

In Chapter 3, you saw some of the constructs that make up F# functional programming. At the core of the
functional-programming paradigm is “programming without side effects,” called pure functional
programming. In this chapter you learn about programming with side effects, called imperative
programming.

About Functional and Imperative Programming
In the functional programming paradigm, programs compute the result of a mathematical expression and
don’t cause any side effects, simply returning the result of the computation. The formulas used in
spreadsheets are often pure, as is the core of functional-programming languages such as Haskell.

However, F# is not a pure functional language – functions and expressions can have side-effects. It is
very common to write pure functions and expressions in F#, but you can also write function and
expression which mutate data, perform input/output, communicate over the network, start new parallel
threads, and raise exceptions. These side-effects are collectively called imperative programming. The F#-
type system doesn’t enforce a strict distinction between expressions that perform these actions and
expressions that don’t.

If your primary programming experience has been with an imperative language such as C, C#, or Java,
you may initially find yourself using imperative constructs fairly frequently in F#. Over time, however, F#
programmers learn to perform a surprisingly large proportion of routine programming tasks within the
side-effect-free subset of the language – functional programming can express an astounding range of
computations succinctly and accurately. However, when you reach the limits of what functional
programming can do, you will need to turn to imperative programming. In particular, F# programmers
tend to use imperative programming in the following situations:

When scripting and prototyping using F# Interactive

When working with .NET library components that use side effects heavily, such as
GUI libraries and I/O libraries

When initializing complex data structures

When using inherently imperative, efficient data structures, such as hash tables,
hash sets and matrices

When locally optimizing functions in a way that improves performance

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

50

When working with very large data structures or in scenarios in which the allocation
of data structures must be minimized for performance reasons

Some F# programs don’t use any imperative techniques except as part of the outermost layer of their
program architecture. Adopting this form of pure functional programming for a time is an excellent way to
hone your functional programming techniques.

Programming with fewer side effects is attractive for many reasons. For example, eliminating
unnecessary side effects nearly always reduces the complexity of your code, so it leads to fewer bugs and
more rapid delivery of high-quality components. Another thing experienced functional programmers
appreciate is that the programmer or compiler can easily adjust the order in which expressions are
computed. If your programs don’t have side effects, then it’s easier to think clearly about your code: you
can visually check when two programs are equivalent, and it’s easier to make radical adjustments to your
code without introducing new, subtle bugs. Programs that are free from side effects can often be computed
on demand or in parallel, often by making very small, local changes to your code to introduce the use of
delayed data structures or parallelism. Finally, mutation and other side-effects introduce complex time-
dependent interactions into your code, making your code difficult to test and debug, especially when data
is accessed concurrently from multiple threads, discussed further in Chapter 11.

Imperative Looping and Iterating
The first imperative constructs you look at are those associated with looping and iteration. Three available
looping constructs help simplify writing iterative code with side effects:

Simple for loops: for val = start-expr to end-expr do work-expr

Simple while loops: while condition-exprdo work-expr

Sequence loops: for pattern in collection-expr do work-expr

All three constructs are for writing imperative programs, indicated partly by the fact that in all cases
the body of the loop must have a return type of unit. Note that unit is the F# type that corresponds to void
in imperative languages, such as C, and it has the single value (). This means the loops don’t produce a
useful value, so the only use a loop can have is to perform some kind of side-effect. The following sections
cover these three constructs in more detail.

Simple for Loops
Simple for loops are used to iterate over integer ranges. This is illustrated here by a replacement
implementation of the repeatFetch function from Chapter 2:

The first looping construct is simple for loops, which iterate over a range of integers. For example, the
following construct fetched the same web page n times, printing the result each time:

let repeatFetch url n =
 for i = 1 to n do
 let html = http url
 printf "fetched <<< %s >>>\n" html
 printf "Done!\n"

This loop is executed for successive values of i over the given range, including both start and end
indexes.

51

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Simple While Loops
The second looping construct is a while loop, which repeats until a given guard is false. For example, here
is a way to keep your computer busy until the weekend:

open System

let loopUntilSaturday() =
 while (DateTime.Now.DayOfWeek <> DayOfWeek.Saturday) do
 printf "Still working!\n"

 printf "Saturday at last!\n"

When executing this code in F# Interactive, you can interrupt its execution by choosing the “Cancel
Interactive Evaluation” command in Visual Studiom or by using Ctrl+C when running fsi.exe from the
command line.

More Iteration Loops over Sequences
As you will learn in depth in Chapter 9, any values compatible with the type seq<type> can be iterated
using the for pattern in seq do ... construct. The input seq may be an F# list value, any seq<type>, or a
value of any type supporting a GetEnumerator method. Here are some simple examples:

> for (b, pj) in [("Banana 1", false); ("Banana 2", true)] do
 if pj then
 printfn "%s is in pyjamas today!" b;;

Banana 2 is in pyjamas today!

The following example iterates the results of a regular expression match. The type returned by the .
NET method System.Text.RegularExpressions.Regex.Matches is a MatchCollection, which, for reasons
known best to the .NET designers, doesn’t directly support the seq<Match> interface. It does, however,
support a GetEnumerator method that permits iteration over the individual results of the operation, each of
which is of type Match; the F# compiler inserts the conversions necessary to view the collection as a
seq<Match> and perform the iteration. You will learn more about using the .NET Regular Expression library
in Chapter 8:

> open System.Text.RegularExpressions;;
> for m in Regex.Matches("All the Pretty Horses","[a-zA-Z]+") do
 printf "res = %s\n" m.Value;;

res = All
res = the
res = Pretty
res = Horses

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

52

Using Mutable Records
One of the most common kinds of imperative programming is to use mutation to adjust the contents of
values. Values whose contents can be adjusted are called mutable values. The simplest mutable values in
F# are mutable records. Record types and their use in functional programming are discussed in more
detail in Chapter 5. A record is mutable if one or more of its fields is labeled mutable. This means that
record fields can be updated using the <- operator:—that is, the same syntax used to set a property.
Mutable fields are generally used for records that implement the internal state of objects, discussed in
Chapters 6 and 7.

For example, the following code defines a record used to count the number of times an event occurs
and the number of times the event satisfies a particular criterion:

type DiscreteEventCounter =
 { mutable Total : int;
 mutable Positive : int;
 Name : string }

let recordEvent (s : DiscreteEventCounter) isPositive =
 s.Total <- s.Total+1
 if isPositive then s.Positive <- s.Positive + 1

let reportStatus (s : DiscreteEventCounter) =
 printfn "We have %d %s out of %d" s.Positive s.Name s.Total

let newCounter nm =
 { Total = 0;
 Positive = 0;
 Name = nm }

You can use this type as follows (this example uses the http function from Chapter 2):

let longPageCounter = newCounter "long page(s)"

let fetch url =
 let page = http url
 recordEvent longPageCounter (page.Length > 10000)
 page

Every call to the function fetch mutates the mutable-record fields in the global variable
longPageCounter. For example:

> fetch "http://www.smh.com.au" |> ignore;;
> fetch "http://www.theage.com.au" |> ignore;;
> reportStatus longPageCounter;;

We have 2 long page(s) out of 2

Record types can also support members (for example, properties and methods) and give explicit
implementations of interfaces, discussed in Chapter 6. When compiled, records become .NET classes and
can be used fromC# and other .NET languages. Practically speaking, this means you can use them as one
way to implement object-oriented abstractions.

53

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Mutable Reference Cells
One particularly useful mutable record is the general-purpose type of mutable reference cells, or ref cells
for short. These often play much the same role as pointers in other imperative programming languages.
You can see how to use mutable reference cells in this example:

> let cell1 = ref 1;;

val cell1 : int ref = {contents = 1;}

> cell1.Value;;

val it : int = 1

> cell1 := 3;;

val it : unit = ()

> cell1;;

val it : int ref = {contents = 3;}

> cell1.Value;;

val it : int = 3

The type is 'T ref, and three associated functions are ref, !, and :=. The types of these are:

val ref : 'T -> 'T ref
val (:=) : 'T ref -> 'T -> unit
val (!) : 'T ref -> 'T

These allocate a reference cell, mutate the cell, and read the cell, respectively. The operation cell1 :=
3 is the key one; after this operation, the value returned by evaluating the expression !cell1 is changed.
You can also use either the contents field or the Value property to access the value of a reference cell.

Both the 'T ref type and its operations are defined in the F# library as simple record-data structures
with a single mutable field:

type 'T ref =
 {mutable contents : 'T}
 member cell.Value = cell.contents

let (!) r = r.contents

let (:=) r v = r.contents <- v

let ref v = {contents = v}

The type 'T ref is a synonym for a type Microsoft.FSharp.Core.Ref<'T> defined in this way.

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

54

WHICH DATA STRUCTURES ARE MUTABLE?

It’s useful to know which data structures are mutable and which aren’t. If a data structure can be mutated,
this is typically evident in the types of operations you can perform on that structure. For example, if a data
structure Table<'Key,'Value> has an operation such as the following, in practice you can be sure that
updates to the data structure modify the data structure itself:

val add : Table<'Key,'Value> -> 'Key -> 'Value -> unit

That is, the updates to the data structure are destructive, and no value is returned from the operation; the
result is the type unit, which is akin to void in C and many other languages. Likewise, the following
member indicates that the data structure is almost certainly mutable:

member Add : 'Key * 'Value -> unit

In both cases, the presence of unit as a return type is a sure sign that an operation performs some side
effects. In contrast, operations on immutable data structures typically return a new instance of the data
structure when an operation such as add is performed. For example:

val add : 'Key -> 'Value -> Table<'Key,'Value> -> Table<'Key,'Value>

Or for example:

member Add : 'Key * 'Value -> Table<'Key,'Value>

As discussed in Chapter 3, immutable data structures are also called functional or persistent. The latter
name is used because the original table isn’t modified when adding an element. Well-crafted persistent data
structures don’t duplicate the actual memory used to store the data structure every time an addition is
made; instead, internal nodes can be shared between the old and new data structures. Example persistent
data structures in the F# library are F# lists, options, tuples, and the types Microsoft.FSharp.
Collections.Map<'Key,'Value> and Microsoft.FSharp.Collections.Set<'Key>. Most data
structures in the .NET libraries aren’t persistent, although if you’re careful, you can use them as persistent
data structures by accessing them in read-only mode and copying them if necessary.

Avoiding Aliasing
Like all mutable data structures, two mutable record values or two values of type 'T ref may refer to the
same reference cell—this is called aliasing. Aliasing of immutable data structures isn’t a problem; no client
consuming or inspecting the data values can detect that the values have been aliased. Aliasing of mutable
data can lead to problems in understanding code, however. In general, it’s good practice to ensure that no
two values currently in scope directly alias the same mutable data structures. The following example
continues from earlier and shows how an update to cell1 can affect the value returned by !cell2:

> let cell2 = cell1;;

val cell2 : int ref = {contents = 3;}

> !cell2;;

val it : int = 3

> cell1 := 7;;

val it : unit = ()

55

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

> !cell2;;

val it : int = 7

Hiding Mutable Data
Mutable data is often hidden behind an encapsulation boundary. Chapter 7 looks at encapsulation in
more detail, but one easy way to do this is to make data private to a function. For example, the following
shows how to hide a mutable reference within the inner closure of values referenced by a function value:

let generateStamp =
 let count = ref 0
 (fun () -> count := !count + 1; !count)

val generateStamp: unit -> int

The line let count = ref 0 is executed once, when the generateStamp function is defined. Here is an
example of the use of this function:

> generateStamp();;

val it : int = 1

> generateStamp();;

val it : int = 2

This is a powerful technique for hiding and encapsulating mutable state without resorting to writing new
type and class definitions. It’s good programming practice in polished code to ensure that all related items of
mutable state are collected under some named data structure or other entity, such as a function.

UNDERSTANDING MUTATION AND IDENTITY

F# encourages the use of objects whose logical identity (if any) is based purely on the characteristics (for
example, fields and properties) of the object. For example, the identity of a pair of integers (1,2) is
determined by the two integers themselves; two tuple values that each contain these two integers are, for
practical purposes, identical. This is because tuples are immutable and support structural equality, hashing,
and comparison, discussed further in Chapters 5 and 9.

Mutable reference cells are different; they can reveal their identities through aliasing and mutation. Not all
mutable values necessarily reveal their identity through mutation, however. For example, sometimes
mutation is used just to bootstrap a value into its initial configuration, such as when connecting the nodes of
a graph. These are relatively benign uses of mutation.

Ultimately, you can detect whether two mutable values are the same object by using the function System.
Object.ReferenceEquals. You can also use this function on immutable values to detect whether two
values are represented by the physically same value. In this circumstance, however, the results returned by
the function may change according to the optimization settings you apply to your F# code.

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

56

Using Mutable Locals
You saw in the previous section that mutable references must be explicitly dereferenced. F# also supports
mutable locals that are implicitly dereferenced. These must either be top-level definitions or be local
variables in a function:

> let mutable cell1 = 1;;

val mutable cell1 : int = 1

> cell1;;

val it : int = 1

> cell1 <- 3;;
> cell1;;

val it : int = 3

The following shows how to use a mutable local:

let sum n m =
 let mutable res = 0
 for i = n to m do
 res <- res + i
 res

> sum 3 6;;

val it : int = 18

F# places strong restrictions on the use of mutable locals. In particular, unlike mutable references,
mutable locals are guaranteed to be stack-allocated values, which is important in some situations because
the .NET garbage collector won’t move stack values. As a result, mutable locals may not be used in any
inner anonymous functions or other closure constructs, with the exception of top-level mutable values,
which can be used anywhere, and mutable fields of records and objects, which are associated with the
heap-allocated objects themselves. You will learn more about mutable object types in Chapter 6. Reference
cells and types containing mutable fields can be used instead to make the existence of heap-allocated
imperative state obvious.

Working with Arrays
Mutable arrays are a key data structure used as a building block in many high-performance computing
scenarios. This example illustrates how to use a one-dimensional array of float values:

> let arr = [|1.0; 1.0; 1.0|];;

val arr : float [] = [|1.0; 1.0; 1.0|]

> arr.[1];;

val it : float = 1.0

57

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

> arr.[1] <- 3.0;;
> arr;;

val it : float [] = [|1.0; 3.0; 1.0|]

F# array values are usually manipulated using functions from the Array module; its full path is
Microsoft.FSharp.Collections.Array, but you can access it with the short name Array. Arrays are created
either by using the creation functions in that module (such as Array.init, Array.create, and Array.
zeroCreate) or by using sequence expressions, as discussed in Chapter 9. Some useful methods are also
contained in the System.Array class. Table 4-1 shows some common functions from the Array module.

Table 4-1. Some Important Expressions, Functions, and Aggregate Operators from the Array Module

Operator Type Explanation
Array.append 'T[] -> 'T[] -> 'T[] Returns a new array containing elements of the

first array followed by elements of the second
array

Array.sub 'T[] -> int -> int -> 'T[] Returns a new array containing a portion of
elements of the input array

Array.copy 'T[] -> 'T[] Returns a copy of the input array

Array.iter ('T -> unit) -> 'T[] -> unit Applies a function to all elements of the input
array

Array.filter ('T -> bool) -> 'T[] -> 'T[] Returns a new array containing a selection of
elements of the input array

Array.length 'T[] -> int Returns the length of the input array

Array.map ('T -> 'U) -> 'T[] -> 'U[] Returns a new array containing the results of
applying the function to each element of the
input array

Array.fold ('T -> 'U -> 'T) -> 'T -> 'U[] ->
'T

Accumulates left to right over the input array

Array.foldBack ('T -> 'U -> 'U) -> 'T[] -> 'U ->
'U

Accumulates right to left over the input array

F# arrays can be very large, up to the memory limitations of the machine (a 3GB limit applies on 32-
bit systems). For example, the following creates an array of 100 million elements (of total size
approximately 400MB for a 32-bit machine):

> let bigArray = Array.zeroCreate<int> 100000000;;

val bigArray : int [] = ...

The following attempt to create an array more than 4GB in size causes an OutOfMemoryException on
one of our machines:

> let tooBig = Array.zeroCreate<int> 1000000000;;

System.OutOfMemoryException: Exception of type 'System.OutOfMemoryException'
was thrown.

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

58

■ Note Arrays of value types (such as int, float32, float, int64) are stored flat, so only one object is allocated
for the entire array. Arrays of other types are stored as an array of object references. Primitive types, such as integers
and floating-point numbers, are all value types; many other .NET types are also value types. The .NET documentation
indicates whether each type is a value type. Often, the word struct is used for value types. You can also define new
struct types directly in F# code, as discussed in Chapter 6. All other types in F# are reference types, such as all
record, tuple, discriminated union, and class and interface values.

Generating and Slicing Arrays
As you will explore in more depth in Chapter 9, you can use “sequence expressions” as a way to generate
interesting array values. For example:

> let arr = [|for i in 0 .. 5 -> (i, i * i)|];;

val arr : (int * int) [] = [|(0, 0); (1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|]

You can also use a convenient syntax for extracting subarrays from existing arrays; this is called slice
notation. A slice expression for a single-dimensional array has the form arr.[start..finish], where one of
start and finish may optionally be omitted, and index zero or the index of the last element of the array is
assumed instead. For example:

> let arr = [|for i in 0 .. 5 -> (i, i * i)|];;

val arr : (int * int) [] = [|(0, 0); (1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|]

> arr.[1..3];;

val it : (int * int) [] = [|(1, 1); (2, 4); (3, 9);|]

> arr.[..2];;

val it : (int * int) [] = [|(0, 0); (1, 1); (2, 4);|]

> arr.[3..];;

val it : (int * int) [] = [|(3, 9); (4, 16); (5, 25)|]

Slicing syntax is used extensively in the example “Verifying Circuits with Propositional Logic” in
Chapter 12. You can also use slicing syntax with strings and several other F# types, such as vectors and
matrices, and the operator can be overloaded to work with your own type definitions. The F# library
definitions of vectors and matrices can be used as a guide.

■ Note Slices on arrays generate fresh arrays. Sometimes it’s more efficient to use other techniques, such as
accessing the array via an accessor function or object that performs one or more internal index adjustments before
looking up the underlying array. If you add support for the slicing operators to your own types, you can choose
whether they return copies of data structures or an accessor object.

59

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Two-Dimensional Arrays
Like other .NET languages, F# directly supports two-dimensional array values that are stored flat—that is,
where an array of dimensions (N, M) is stored using a contiguous array of N * M elements. The types for
these values are written using [,], such as in int[,] and float[,], and these types also support slicing
syntax. Values of these types are created and manipulated using the values in the Array2D module.
Likewise, there is a module for manipulating three-dimensional array values whose types are written
int[,,]. You can also use the code in those modules as a template for defining code to manipulate arrays
of higher dimension.

Introducing the Imperative .NET Collections
The .NET Framework comes equipped with an excellent set of imperative collections under the
namespace System.Collections.Generic. You’ve seen some of these already. The following sections look at
some simple uses of these collections.

Using Resizeable Arrays
As mentioned in Chapter 3, the .NET Framework comes with a type System.Collections.Generic.List<'T>,
which, although named List, is better described as a resizeable array, and is like std::vector<T> in C++. The
F# library includes the following type abbreviation for this purpose:

type ResizeArray<'T> = System.Collections.Generic.List<'T>

Here is a simple example of using this data structure:

> let names = new ResizeArray<string>();;

val names : ResizeArray<string>

> for name in ["Claire"; "Sophie"; "Jane"] do
 names.Add(name);;

val it : unit = ()

> names.Count;;

val it : int = 3

> names.[0];;

val it : string = "Claire"

> names.[1];;

val it : string = "Sophie"

> names.[2];;

val it : string = "Jane"

Resizable arrays use an underlying array for storage and support constant-time random-access
lookup. In many situations, this makes a resizable array more efficient than an F# list, which supports
efficient access only from the head (left) of the list. You can find the full set of members supported by this

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

60

type in the .NET documentation. Commonly used properties and members include Add, Count, ConvertAll,
Insert, BinarySearch, and ToArray. A module ResizeArray is included in the F# library; it provides
operations over this type in the style of the other F# collections.

Like other .NET collections, values of type ResizeArray<'T> support the seq<'T> interface. There is also
an overload of the new constructor for this collection type that lets you specify initial values via a seq<'T>. This
means you can create and consume instances of this collection type using sequence expressions:

> let squares = new ResizeArray<int>(seq {for i in 0 .. 100 -> i * i});;

val squares : ResizeArray<int>

> for x in squares do

 printfn "square: %d" x;;

square: 0
square: 1
square: 4
square: 9
...
square: 9801
square: 10000

Using Dictionaries
The type System.Collections.Generic.Dictionary<'Key,'Value> is an efficient hash-table structure that is
excellent for storing associations between keys and values. Using this collection from F# code requires a
little care, because it must be able to correctly hash the key type. For simple key types such as integers,
strings, and tuples, the default hashing behavior is adequate. Here is a simple example:

> open System.Collections.Generic;;
> let capitals = new Dictionary<string, string>(HashIdentity.Structural);;

val capitals : Dictionary<string,string> = dict []

> capitals.["USA"] <- "Washington";;
> capitals.["Bangladesh"] <- "Dhaka";;
> capitals.ContainsKey("USA");;

val it : bool = true

> capitals.ContainsKey("Australia");;

val it : bool = false

> capitals.Keys;;

val it : Dictionary'2.KeyCollection<string,string> = seq ["USA"; "Bangladesh"]

> capitals.["USA"];;

val it : string = "Washington"

61

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Dictionaries are compatible with the type seq<KeyValuePair<'key,'value>>, where KeyValuePair is a
type from the System.Collections.Generic namespace and simply supports the properties Key and Value.
Armed with this knowledge, you can use iteration to perform an operation for each element of the
collection:

> for kvp in capitals do
 printf "%s has capital %s\n" kvp.Key kvp.Value;;

USA has capital Washington
Bangladesh has capital Dhaka

Using Dictionary’s TryGetValue
The Dictionary method TryGetValue is of special interest, because its use from F# is a little nonstandard.
This method takes an input value of type 'Key and looks it up in the table. It returns a bool indicating
whether the lookup succeeded: true if the given key is in the dictionary and false otherwise. The value
itself is returned via a .NET idiom called an out parameter. From F# code, three ways of using .NET
methods rely on out parameters:

You may use a local mutable in combination with the address-of operator &.

You may use a reference cell.

You may simply not give a parameter, and the result is returned as part of a tuple.

Here’s how you do it using a mutable local:

open System.Collections.Generic

let lookupName nm (dict : Dictionary<string, string>) =
 let mutable res = ""
 let foundIt = dict.TryGetValue(nm, &res)
 if foundIt then res
 else failwithf "Didn't find %s" nm

The use of a reference cell can be cleaner. For example:

> let res = ref "";;

val res : string ref = {contents = "";}

> capitals.TryGetValue("Australia", res);;

val it : bool = false

> capitals.TryGetValue("USA", res);;

val it : bool = true

> res;;

val it : string ref = {contents = "Washington"}

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

62

Finally, with this technique you don’t pass the final parameter, and instead the result is returned as
part of a tuple:

> capitals.TryGetValue("Australia");;

val it : bool * string = (false, null)

> capitals.TryGetValue("USA");;

val it : bool * string = (true, "Washington")

Note that the value returned in the second element of the tuple may be null if the lookup fails when
this technique is used; null values are discussed in the section “Working with null Values” in Chapter 6.

Using Dictionaries with Compound Keys
You can use dictionaries with compound keys, such as tuple keys of type (int * int). If necessary, you can
specify the hash function used for these values when creating the instance of the dictionary. The default is
to use generic hashing, also called structural hashing, a topic covered in more detail in Chapter 9. To
indicate this explicitly, specify Microsoft.FSharp.Collections.HashIdentity.Structural when creating
the collection instance. In some cases, this can also lead to performance improvements, because the F#
compiler often generates a hashing function appropriate for the compound type.

This example uses a dictionary with a compound key type to represent sparse maps:

> open System.Collections.Generic;;
> open Microsoft.FSharp.Collections;;
> let sparseMap = new Dictionary<(int * int), float>();;

val sparseMap : Dictionary<(int * int),float> = dict []

> sparseMap.[(0,2)] <- 4.0;;
> sparseMap.[(1021,1847)] <- 9.0;;
> sparseMap.Keys;;

val it : Dictionary'2.KeyCollection<(int * int),float> =
 seq [(0, 2); (1021, 1847)]

Some Other Mutable Data Structures
Some other important mutable data structures in the F# and .NET libraries are:

System.Collections.Generic.SortedList<'Key,'Value>: A collection of sorted
values. Searches are done by a binary search. The underlying data structure is a
single array.

System.Collections.Generic.SortedDictionary<'Key,'Value>: A collection of key/
value pairs sorted by the key, rather than hashed. Searches are done by a binary
search The underlying data structure is a single array.

System.Collections.Generic.Stack<'T>: A variable-sized last-in/first-out (LIFO)
collection.

63

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

System.Collections.Generic.Queue<'T>: A variable-sized first-in/first-out (FIFO)
collection.

System.Text.StringBuilder: A mutable structure for building string values.

Microsoft.FSharp.Collections.HashSet<'Key>: A hash table structure holding only
keys and no values. From .NET 3.5, a HashSet<'T> type is available in the System.
Collections.Generic namespace.

Exceptions and Controlling Them
When evaluating an expression encounters a problem, it may respond in several ways: by recovering
internally, emitting a warning, returning a marker value or incomplete result, or throwing an exception.
The following code indicates how an exception can be thrown by some of the code you’ve been using:

> let req = System.Net.WebRequest.Create("not a URL");;

System.UriFormatException: Invalid URI: The format of the URI could not be
determined.

Similarly, the GetResponse method also used in the http function may raise a System.Net.WebException
exception. The exceptions that may be raised by routines are typically recorded in the documentation for
those routines. Exception values may also be raised explicitly by F# code:

> (raise (System.InvalidOperationException("not today thank you")) : unit);;

System.InvalidOperationException: not today thank you

In F#, exceptions are commonly raised using the F# failwith function:

> if false then 3 else failwith "hit the wall";;

System.Exception: hit the wall

Types of some common functions used to raise exceptions are:

val failwith : string -> 'T
val raise : System.Exception -> 'T
val failwithf : Printf.StringFormat<'T,'U> -> 'T
val invalidArg : string -> string -> 'T

Note that the return types of all these are generic type variables: the functions never return normally
and instead return by raising an exception. This means they can be used to form an expression of any
particular type and can be handy when you’re drafting your code. For example, in the following example,
we’ve left part of the program incomplete:

if (System.DateTime.Now > failwith "not yet decided") then
 printfn "you've run out of time!"

Table 4-2 shows some common exceptions raised by failwith and other operations.

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

64

Table 4-2. Common Categories of Exceptions and F# Functions That Raise Them

Exception Type F# Abbreviation Description Example
Exception Failure General failure failwith "fail"

ArgumentException InvalidArgument Bad input invalidArg "x" "y"

DivideByZeroException Integer divide by 0 1 / 0

NullReferenceException Unexpected null (null : string).Length

Catching Exceptions
You can catch exceptions using the try ... with ... language construct and :? type-test patterns, which
filter any exception value caught by the with clause. For example:
 try
 raise (System.InvalidOperationException ("it's just not my day"))
 with
 :? System.InvalidOperationException -> printfn "caught!"
Giving:

caught!

Chapter 5 covers these patterns more closely. The following code sample shows how to use try ...
with ... to catch two kinds of exceptions that may arise from the operations that make up the http
method, in both cases returning the empty string "" as the incomplete result. Note that try ... with ...
is just an expression, and it may return a result in both branches:

open System.IO

let http (url : string) =
 try
 let req = System.Net.WebRequest.Create(url)
 let resp = req.GetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let html = reader.ReadToEnd()
 html
 with
 | :? System.UriFormatException -> ""
 | :? System.Net.WebException -> ""

When an exception is thrown, a value is created that records information about the exception. This
value is matched against the earlier type-test patterns. It may also be bound directly and manipulated in
the with clause of the try ... with constructs. For example, all exception values support the Message
property:

 try
 raise (new System.InvalidOperationException ("invalid operation"))
 with
 err -> printfn "oops, msg = '%s'" err.Message

65

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Giving:

oops, msg = 'invalid operation'

Using try . . . finally
Exceptions may also be processed using the try ... finally ... construct. This guarantees to run the
finally clause both when an exception is thrown and when the expression evaluates normally. This allows
you to ensure that resources are disposed after the completion of an operation. For example, you can
ensure that the web response from the previous example is closed as follows:

let httpViaTryFinally(url : string) =
 let req = System.Net.WebRequest.Create(url)
 let resp = req.GetResponse()
 try
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let html = reader.ReadToEnd()
 html
 finally
 resp.Close()

In practice, you can use a shorter form to close and dispose of resources simply by using a use binding
instead of a let binding if the resource implements IDisposable, a technique covered in Chapter 6. This
closes the response at the end of the scope of the resp variable. Here is how the previous function looks
using this form:

let httpViaUseBinding(url: string) =
 let req = System.Net.WebRequest.Create(url)
 use resp = req.GetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let html = reader.ReadToEnd()
 html

Defining New Exception Types
F# lets you define new kinds of exception objects that carry data in a conveniently accessible form. For
example, here is a declaration of a new class of exceptions and a function that wraps http with a filter that
catches particular cases:

exception BlockedURL of string

let http2 url =
 if url = "http://www.kaos.org"
 then raise(BlockedURL(url))
 else http url

You can extract the information from F# exception values, again using pattern matching:

 try
 raise(BlockedURL("http://www.kaos.org"))

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

66

 with
 BlockedURL(url) -> printfn "blocked! url = '%s'" url

Giving:

blocked! url = 'http://www.kaos.org'

Exception values are always subtypes of the F# type exn, an abbreviation for the .NET type System.
Exception. The declaration exception BlockedURL of string is shorthand for defining a new F# class
type BlockedURLException, which is a subtype of System.Exception. Exception types can also be defined
explicitly by defining new object types. Chapters 5 and 6 look more closely at object types and
subtyping.

Table 4-3 summarizes the exception-related language and library constructs.

Table 4-3. Exception-Related Language and Library Constructs

Example Code Kind Notes
raise expr F# library function Raises the given exception

failwith expr F# library function Raises an Exception exception

try expr with rules F# expression Catches expressions matching the pattern
rules

try expr finally expr F# expression Executes the finally expression both when
the computation is successful and when an
exception is raised

| :? ArgumentException -> F# pattern rule A rule matching the given .NET exception
type

| :? ArgumentException as e -> F# pattern rule A rule matching the given .NET exception
type and naming it as its stronger type

| Failure(msg) -> expr F# pattern rule A rule matching the given data-carrying F#
exception

| exn -> expr F# pattern rule A rule matching any exception, binding the
name exn to the exception object value

| exn when expr -> expr F# pattern rule A rule matching the exception under the
given condition, binding the name exn to
the exception object value

Having an Effect: Basic I/O
Imperative programming and input/output are closely related topics. The following sections show some
very simple I/O techniques using F# and .NET libraries.

The .NET types System.IO.File and System.IO.Directory contain a number of simple functions to
make working with files easy. For example, here’s a way to output lines of text to a file:

> open System.IO;;
> File.WriteAllLines("test.txt", [|"This is a test file.";
 "It is easy to read."|]);;

67

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Many simple file-processing tasks require reading all the lines of a file. You can do this by reading all
the lines in one action as an array using System.IO.File.ReadAllLines:

> open System.IO;;
> File.ReadAllLines "test.txt";;

val it : string [] = [|"This is a test file."; "It is easy to read."|]

If necessary, the entire file can be read as a single string using System.IO.File.ReadAllText:

> File.ReadAllText "test.txt";;

val it : string = "This is a test file.
It is easy to read.

You can also use the method System.IO.File.ReadLines, which reads lines on-demand, as a sequence.
This is often used as the input to a sequence expression or to a pipeline on sequence operators. For
example, this;

seq { for line in File.ReadLines("test.txt") do
 let words = line.Split [|' '|]
 if words.Length > 3 && words.[2] = "easy" then
 yield line}

give results:

val it : seq<string> = seq ["It is easy to read."]

.NET I/O via Streams
The .NET namespace System.IO contains the primary .NET types for reading/writing bytes and text from/
to data sources. The primary output constructs in this namespace are:

System.IO.BinaryWriter: Writes primitive data types as binary values. Create using
new BinaryWriter(stream). You can create output streams using File.
Create(filename).

System.IO.StreamWriter: Writes textual strings and characters to a stream. The text
is encoded according to a particular Unicode encoding. Create by using new
StreamWriter(stream) and its variants or by using File.CreateText(filename).

System.IO.StringWriter: Writes textual strings to a StringBuilder, which eventually
can be used to generate a string.

Here is a simple example of using System.IO.File.CreateText to create a StreamWriter and write two
strings:

> let outp = File.CreateText "playlist.txt";;

val outp : StreamWriter

> outp.WriteLine "Enchanted";;

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

68

> outp.WriteLine "Put your records on";;

> outp.Close();

The primary input constructs in the System.IO namespace are:

System.IO.BinaryReader: Reads primitive data types as binary values. When reading
the binary data as a string, it interprets the bytes according to a particular Unicode
encoding. Create using new BinaryReader(stream).

System.IO.StreamReader: Reads a stream as textual strings and characters. The bytes
are decoded to strings according to a particular Unicode encoding. Create by using
new StreamReader(stream) and its variants or by using File.OpenText(filename).

System.IO.StringReader: Reads a string as textual strings and characters.

Here is a simple example of using System.IO.File.OpenText to create a StreamReader and read two
strings:

> let inp = File.OpenText("playlist.txt");;

val inp : StreamReader

> inp.ReadLine();;

val it : string = "Enchanted"

> inp.ReadLine();;

val it : string = "Put your records on"

> inp.Close();;

■ Tip In non-scripting production code, whenever you create objects such as a StreamReader that have a
Close or Dispose operation or that implement the IDisposable interface, consider how to eventually close or
otherwise dispose of the resource. We discuss this in Chapter 6.

Some Other I/O-Related Types
The System.IO namespace contains a number of other types, all of which are useful for corner cases of
advanced I/O but that you won’t need to use from day to day. For example, these abstractions appear in
the .NET documentation:

System.IO.TextReader: Reads textual strings and characters from an unspecified
source. This is the common functionality implemented by the StreamReader and
StringReader types and the System.Console.In object. The latter is used to access
the stdin input.

System.IO.TextWriter: Writes textual strings and characters to an unspecified
output. This is the common functionality implemented by the StreamWriter and

69

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

StringWriter types and the System.Console.Out and System.Console.Error objects.
The latter are used to access the stdout and stderr output streams.

System.IO.Stream: Provides a generic view of a sequence of bytes.

Some functions that are generic over different kinds of output streams make use of these; for example,
the formatting function twprintf discussed in “Using printf and Friends” writes to any System.IO.
TextWriter.

Using System.Console
Some simple input/output routines are provided in the System.Console class. For example:

> System.Console.WriteLine "Hello World";;

Hello World

> System.Console.ReadLine();;

<enter "I'm still here" here>

val it : string = "I'm still here"

The System.Console.Out object can also be used as a TextWriter.

Combining Functional and Imperative:
Efficient Precomputation and Caching
All experienced programmers are familiar with the concept of precomputation, by which computations are
performed as soon as some of the inputs to a function are known. The following sections cover a number of
manifestations of precomputation in F# programming and the related topics of memoization and caching.
These represent one common pattern in which imperative programming is used safely and non-intrusively
within a broader setting of functional programming.

Precomputation and Partial Application
Let’s say you’re given a large input list of words and you want to compute a function that checks whether a
word is in this list. Do this:

let isWord (words : string list) =
 let wordTable = Set.ofList words
 fun w -> wordTable.Contains(w)

Here, isWord has the following type:

val isWord : words:string list -> (string -> bool)

The efficient use of this function depends crucially on the fact that useful intermediary results are
computed after only one argument is applied and a function value is returned. For example:

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

70

> let isCapital = isWord ["London"; "Paris"; "Warsaw"; "Tokyo"];;

val isCapital : (string -> bool)

> isCapital "Paris";;

val it : bool = true

> isCapital "Manchester";;

val it : bool = false

Here, the internal table wordTable is computed as soon as isCapital is applied to one argument. It
would be a mistake to write isCapital as:

let isCapitalSlow inp = isWord ["London"; "Paris"; "Warsaw"; "Tokyo"] inp

This function computes the same results as isCapital. It does so inefficiently, however, because
isWord is applied to both its first argument and its second argument every time you use the function
isCapitalSlow. This means the internal table is rebuilt every time the function isCapitalSlow is applied,
somewhat defeating the point of having an internal table in the first place. In a similar vein, the definition
of isCapital shown previously is more efficient than either isCapitalSlow2 or isCapitalSlow3 in the
following:

let isWordSlow2 (words : string list) (word : string) =
 List.exists (fun word2 -> word = word2) words

let isCapitalSlow2 word = isWordSlow2 ["London"; "Paris"; "Warsaw"; "Tokyo"] word

let isWordSlow3 (words : string list) (word : string) =
 let wordTable = Set<string>(words)
 wordTable.Contains(word)

let isCapitalSlow3 word = isWordSlow3 ["London"; "Paris"; "Warsaw"; "Tokyo"] word

The first uses an inappropriate data structure for the lookup (an F# list, which has O(n) lookup time),
and the second attempts to build a better intermediate data structure (an F# set, which has O(log n)
lookup time) but does so on every invocation.

There are often trade-offs among different intermediate data structures or whether to use them at all.
For example, in the previous example, you could just as well use a HashSet as the internal data structure.
This approach, in general, gives better lookup times (constant time), but it requires slightly more care to
use, because a HashSet is a mutable data structure. In this case, you don’t mutate the data structure after
you create it, and you don’t reveal it to the outside world, so it’s entirely safe:

let isWord (words : string list) =
 let wordTable = HashSet<string>(words)
 fun word -> wordTable.Contains word

Precomputation and Objects
The examples of precomputation given previously are variations on the theme of computing functions,
introduced in Chapter 3. The functions computed capture the precomputed intermediate data structures.
It’s clear, however, that precomputing via partial applications and functions can be subtle, because it

71

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

matters when you apply the first argument of a function (triggering the construction of intermediate data
structures) and when you apply the subsequent arguments (triggering the real computation that uses the
intermediate data structures).

Luckily, functions don’t just have to compute functions; they can also return more sophisticated
values, such as objects. This can help make it clear when precomputation is being performed. It also allows
you to build richer services based on precomputed results. For example, Listing 4-1 shows how to use
precomputation as part of building a name-lookup service. The returned object includes both a Contains
method and a ClosestPrefixMatch method.

Listing 4-1. Precomputing a Word Table Before Creating an Object

open System

type NameLookupService =
 abstract Contains : string -> bool

let buildSimpleNameLookup (words : string list) =
 let wordTable = HashSet<_>(words)
 {new NameLookupService with
 member t.Contains w = wordTable.Contains w}

The internal data structure used in Listing 4-1 is the same as before: an F# set of type Microsoft.
FSharp.Collections.Set<string>. The service can now be instantiated and used as follows:

> let capitalLookup = buildSimpleNameLookup ["London"; "Paris"; "Warsaw"; "Tokyo"];;

val capitalLookup : NameLookupService

> capitalLookup.Contains "Paris";;

val it : bool = true

In passing, note the following about this implementation:

You can extend the returned service to support a richer set of queries of the
underlying information by adding further methods to the object returned.

Precomputation of the kind used previously is an essential technique for implementing many services
and abstractions, from simple functions to sophisticated computation engines. You see further examples
of these techniques in Chapter 9.

Memoizing Computations
Precomputation is one important way to amortize the costs of computation in F#. Another is called
memoization. A memoizing function avoids recomputing its results by keeping an internal table, often
called a lookaside table. For example, consider the well-known Fibonacci function, whose naive,
unmemoized version is:

let rec fib n = if n <= 2 then 1 else fib (n - 1) + fib (n - 2)

Not surprisingly, a version keeping a lookaside table is much faster:

let fibFast =
 let t = new System.Collections.Generic.Dictionary<int, int>()

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

72

 let rec fibCached n =
 if t.ContainsKey n then t.[n]
 elif n <= 2 then 1
 else let res = fibCached (n - 1) + fibCached (n - 2)
 t.Add (n, res)
 res
 fun n -> fibCached n

// From Chapter 2, but modified to use stop watch.
let time f =
 let sw = System.Diagnostics.Stopwatch.StartNew()
 let res = f()
 let finish = sw.Stop()
 (res, sw.Elapsed.TotalMilliseconds |> sprintf "%f ms")

time(fun () -> fibFast 30)
time(fun () -> fibFast 30)
time(fun () -> fibFast 30)

val fibFast : (int -> int)
val time : f:(unit -> 'a) -> 'a * string
val it : int * string = (832040, "0.727200 ms")
val it : int * string = (832040, "0.066100 ms")
val it : int * string = (832040, "0.077400 ms")

On one of our laptops, with n = 30, there’s an order of magnitude speed up from the first to second run.
Listing 4-2 shows how to write a generic function that encapsulates the memoization technique.

Listing 4-2. A Generic Memoization Function

open System.Collections.Generic

let memoize (f : 'T -> 'U) =
 let t = new Dictionary<'T, 'U>(HashIdentity.Structural)
 fun n ->
 if t.ContainsKey n then t.[n]
 else let res = f n
 t.Add (n, res)
 res

let rec fibFast =
 memoize (fun n -> if n <= 2 then 1 else fibFast (n - 1) + fibFast (n - 2))

Here, the functions have the types:

val memoize : f:('T -> 'U) -> ('T -> 'U) when 'T : equality
val fibFast : (int -> int)

In the definition of fibFast, you use let rec because fibFast is self-referential—that is, used as part of
its own definition. You can think of fibFast as a computed, recursive function. Such a function generates an

73

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

informational warning when used in F# code, because it’s important to understand when this feature of F#
is being used; you then suppress the warning with #nowarn "40". As with the examples of computed
functions from the previous section, omit the extra argument from the application of memoize, because
including it would lead to a fresh memoization table being allocated each time the function fibNotFast was
called:

let rec fibNotFast n =
 memoize (fun n -> if n <= 2 then 1 else fibNotFast (n - 1) + fibNotFast (n - 2)) n

Due to this subtlety, it’s often a good idea to define your memoization strategies to generate objects
other than functions (think of functions as very simple kinds of objects). For example, Listing 4-3 shows
how to define a new variation on memoize that returns a Table object that supports both a lookup and a
Discard method.

Listing 4-3. A Generic Memoization Service

open System.Collections.Generic

type Table<'T, 'U> =
 abstract Item : 'T -> 'U with get
 abstract Discard : unit -> unit

let memoizeAndPermitDiscard f =
 let lookasideTable = new Dictionary<_, _>(HashIdentity.Structural)
 {new Table<'T, 'U> with
 member t.Item
 with get(n) =
 if lookasideTable.ContainsKey(n)
 then lookasideTable.[n]
 else let res = f n
 lookasideTable.Add(n, res)
 res

 member t.Discard() =
 lookasideTable.Clear()}

#nowarn "40" // do not warn on recursive computed objects and functions

let rec fibFast =
 memoizeAndPermitDiscard
 (fun n ->
 printfn "computing fibFast %d" n
 if n <= 2 then 1 else fibFast.[n - 1] + fibFast.[n - 2])

In Listing 4-3, lookup uses the a.[b] associative Item lookup property syntax, and the Discard method
discards any internal partial results. The functions have these types:

val memoizeAndPermitDiscard : ('T -> 'U) -> Table<'T, 'U> when 'T : equality
val fibFast : Table<int,int>

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

74

This example shows how fibFast caches results but recomputes them after a Discard:

> fibFast.[3];;
computing fibFast 3
computing fibFast 2
computing fibFast 1
val it : int = 2

> fibFast.[5];;
computing fibFast 5
computing fibFast 4
val it : int = 5

> fibFast.Discard();;
> fibFast.[5];;
computing fibFast 5
computing fibFast 4
computing fibFast 3
computing fibFast 2
computing fibFast 1
val it : int = 5

■ Note Memoization relies on the memoized function being stable and idempotent. In other words, it always
returns the same results, and no additional interesting side effects are caused by further invocations of the function.
In addition, memoization strategies rely on mutable internal tables. The implementation of memoize shown in this
chapter isn’t thread safe, because it doesn’t lock this table during reading or writing. This is fine if the computed
function is used only from at most one thread at a time, but in a multithreaded application, use memoization
strategies that use internal tables protected by locks, such as a .NET ReaderWriterLock. Chapter 11 further
discusses thread synchronization and mutable state.

Lazy Values
Memoization is a form of caching. Another important variation on caching is a simple lazy value, a delayed
computation of type Microsoft.FSharp.Control.Lazy<'T> for some type 'T. Lazy values are usually formed
by using the special keyword lazy (you can also make them explicitly using the functions in the Microsoft.
FSharp.Core.Lazy module). For example:

> let sixty = lazy (30 + 30);;

val sixty : Lazy<int> = Value is not created.

> sixty.Force();;

val it : int = 60

75

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

Lazy values of this kind are implemented as thunks holding either a function value that computes the
result or the actual computed result. The lazy value is computed only once, and thus its effects are
executed only once. For example, in the following code fragment, “Hello world” is printed only once:

> let sixtyWithSideEffect = lazy (printfn "Hello world"; 30 + 30);;

val sixtyWithSideEffect: Lazy<int> = Value is not created.

> sixtyWithSideEffect.Force();;

Hello world

val it : int = 60

> sixtyWithSideEffect.Force();;

val it : int = 60

Lazy values are implemented by a simple data structure containing a mutable reference cell. The
definition of this data structure is in the F# library source code.

Other Variations on Caching and Memoization
You can apply many different caching and memoization techniques in advanced programming, and this
chapter can’t cover them all. Some common variations are:

Using an internal data structure that records only the last invocation of a function
and basing the lookup on a very cheap test on the input.

Using an internal data structure that contains both a fixed-size queue of input keys
and a dictionary of results. Entries are added to both the table and the queue as they’re
computed. When the queue is full, the input keys for the oldest computed results are
dequeued, and the computed results are discarded from the dictionary.

Combining Functional and Imperative:
Functional Programming with Side Effects
F# stems from a tradition in programming languages in which state is made explicit, largely by passing extra
parameters. Many F# programmers use functional-programming techniques first before turning to their
imperative alternatives, and we encourage you to do the same, for all the reasons listed at the start of this
chapter.

F# also integrates imperative and functional programming together in a powerful way. F# is actually
an extremely succinct imperative-programming language! Furthermore, in some cases, no good functional
techniques exist to solve a problem, or those that do are too experimental for production use. This means
that in practice, using imperative constructs and libraries is common in F#. For example, many examples
you saw in Chapters 2 and 3 used side effects to report their results or to create GUI components.

Regardless, we still encourage you to think functionally, even about your imperative programming. In
particular, it’s always helpful to be aware of the potential side effects of your overall program and the
characteristics of those side effects. The following sections describe five ways to help tame and reduce the
use of side effects in your programs.

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

76

Consider Replacing Mutable Locals and Loops with Recursion
When imperative programmers begin to use F#, they frequently use mutable local variables or reference
cells heavily as they translate code fragments from their favorite imperative language into F#. The resulting
code often looks very bad. Over time, programmers learn to avoid many uses of mutable locals. For
example, consider this (naive) implementation of factorization, transliterated from C code:

let factorizeImperative n =
 let mutable factor1 = 1
 let mutable factor2 = n
 let mutable i = 2
 let mutable fin = false
 while (i < n && not fin) do
 if (n % i = 0) then
 factor1 <- i
 factor2 <- n / i
 fin <- true
 i <- i + 1

 if (primefactor1 = 1) then None
 else Some (primefactor1, primefactor2)

This code can be replaced by use of an inner recursive function:
let factorizeRecursive n =
 let rec find i =
 if i >= n then None
 elif (n % i = 0) then Some(i, n / i)
 else find (i + 1)
 find 2

The second code is not only shorter but also uses no mutation, which makes it easier to reuse and
maintain. You can also see that the loop terminates (i is increasing toward n) and see the two exit conditions
for the function (i >= n and n % i = 0). Note that the state i has become an explicit parameter.

Separating Pure Computation from Side-Effecting Computations
Where possible, separate out as much of your computation as possible using side-effect-free functional
programming. For example, sprinkling printf expressions throughout your code may make for a good
debugging technique but, if not used wisely, it can lead to code that is difficult to understand and
inherently imperative.

Separating Mutable Data Structures
A common technique of object-oriented programming is to ensure that mutable data structures are
private, and where possible, fully separated, which means there is no way that distinct pieces of code
can access one another’s internal state in undesirable ways. Fully separated state can even be used
inside the implementation of what, to the outside world, appears to be a purely functional piece of
code.

For example, where necessary, you can use side effects on private data structures allocated at the start
of an algorithm and then discard these data structures before returning a result; the overall result is then
effectively a side-effect-free function. One example of separation from the F# library is the library’s

77

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

implementation of List.map, which uses mutation internally; the writes occur on an internal, separated
data structure that no other code can access. Thus, as far as callers are concerned, List.map is pure and
functional.

This second example divides a sequence of inputs into equivalence classes (the F# library function
Seq.groupBy does a similar thing):

open System.Collections.Generic

let divideIntoEquivalenceClasses keyf seq =

 // The dictionary to hold the equivalence classes
 let dict = new Dictionary<'key, ResizeArray<'T>>()

 // Build the groupings
 seq |> Seq.iter (fun v ->
 let key = keyf v
 let ok, prev = dict.TryGetValue(key)
 if ok then prev.Add(v)
 else let prev = new ResizeArray<'T>()
 dict.[key] <- prev
 prev.Add(v))

 // Return the sequence-of-sequences. Don't reveal the
 // internal collections: just reveal them as sequences
 dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value)

This uses the Dictionary and ResizeArray mutable data structures internally, but these mutable data
structures aren’t revealed externally. The inferred type of the overall function is:

val divideIntoEquivalenceClasses :
 keyf:('T -> 'key) -> seq:seq<'T> -> seq<'key * seq<'T>> when 'key : equality

Here is an example use:

> divideIntoEquivalenceClasses (fun n -> n % 3) [0 .. 10];;

val it : seq<int * seq<int>>
= seq [(0, seq [0; 3; 6; 9]); (1, seq [1; 4; 7; 10]); (2, seq [2; 5; 8])]

Not All Side Effects Are Equal
It’s often helpful to use the weakest set of side effects necessary to achieve your programming task and at
least be aware when you’re using strong side effects:

Weak side effects are effectively benign, given the assumptions you’re making about
your application. For example, writing to a log file is very useful and essentially
benign (if the log file can’t grow arbitrarily large and crash your machine!). Similarly,
reading data from a stable, unchanging file store on a local disk is effectively treating

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

78

the disk as an extension of read-only memory, so reading these files is a weak form
of side effect that isn’t difficult to incorporate into your programs.

Strong side effects have a much more corrosive effect on the correctness and
operational properties of your program. For example, blocking network I/O is a
relatively strong side effect by any measure. Performing blocking network I/O in the
middle of a library routine can destroy the responsiveness of a GUI application, at
least if the routine is invoked by the GUI thread of an application. Any constructs
that perform synchronization between threads are also a major source of strong side
effects.

Whether a particular side effect is stronger or weaker depends on your application and whether the
consequences of the side effect are sufficiently isolated and separated from other entities. Strong side
effects can and should be used freely in the outer shell of an application or when you’re scripting with F#
Interactive; otherwise, not much can be achieved.

When you’re writing larger pieces of code, write your application and libraries in such a way that most
of your code either doesn’t use strong side effects or at least makes it obvious when these side effects are
being used. Threads and concurrency are commonly used to mediate problems associated with strong
side effects. Chapter 11 covers these issues in more depth.

Avoid Combining Imperative Programming and Laziness
It’s generally thought to be bad style to combine delayed computations (that is, laziness) and side effects.
This isn’t entirely true; for example, it’s reasonable to set up a read from a file system as a lazy computation
using sequences. It’s relatively easy to make mistakes in this sort of programming, however. For example,
consider:

open System.IO
let reader1, reader2 =
 let reader = new StreamReader(File.OpenRead("test.txt"))
 let firstReader() = reader.ReadLine()
 let secondReader() = reader.ReadLine()

 // Note: we close the stream reader here!
 // But we are returning function values which use the reader
 // This is very bad!
 reader.Close()
 firstReader, secondReader

// Note: stream reader is now closed! The next line will fail!
let firstLine = reader1()
let secondLine = reader2()
firstLine, secondLine

This code is wrong, because the StreamReader object reader is used after the point indicated by the
comment. The returned function values are then called, and they try to read from the captured variable
reader. Function values are just one example of delayed computations; others are lazy values, sequences,
and any objects that perform computations on demand. Avoid building delayed objects such as reader
that represent handles to transient, disposable resources, unless those objects are used in a way that
respects the lifetime of that resource.

The previous code can be corrected to avoid using laziness in combination with a transient resource:

79

CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING

open System.IO

let line1, line2 =
 let reader = new StreamReader(File.OpenRead("test.txt"))
 let firstLine = reader.ReadLine()
 let secondLine = reader.ReadLine()
 reader.Close()
 firstLine, secondLine

Another technique uses language and/or library constructs that tie the lifetime of an object to some
larger object. For example, you can use a use binding within a sequence expression, which augments the
sequence object with the code needed to clean up the resource when iteration is finished or terminates.
This technique, discussed further in Chapter 9, is shown by example here (see also the System.IO.File.
ReadLines, which serves a similar role):

let linesOfFile =
 seq {use reader = new StreamReader(File.OpenRead("test.txt"))
 while not reader.EndOfStream do
 yield reader.ReadLine()}

The general lesson is to minimize the side effects you use, and to use separated, isolated state where
possible. Orchestrating compositional, separated objects using functional programming as the
orchestration language is often a highly effective technique. Use both delayed computations (laziness) and
imperative programming (side effects) where appropriate, but be careful about using them together.

Summary
In this chapter, you learned how to do imperative programming in F#, from some of the basic mutable
data structures, such as reference cells, to working with side effects, such as exceptions and I/O. You also
looked at some general principles for avoiding the need for imperative programming and isolating your
uses of side effects. The next chapter continues to explore some building-blocks of typed functional
programming in F#, with a deeper look at types, type inference, and generics.

81

■ ■ ■

CHAPTER 5

Understanding Types in
Functional Programming

F# is a typed language, and F# programmers often use types in sophisticated ways. In this chapter, you
learn about the foundations of types, focusing on how types are defined and used in F# functional
programming. You also look closely at generics, and closely related to generics is the notion of subtyping.
Generics and subtyping combine to allow you to write code that is generic over families of types. You will
see how F# uses automatic generalization to automatically infer generic types for your code, and the
chapter covers some of the basic generic functions in the F# libraries, such as generic comparison,
hashing, and binary serialization.

Exploring Some Simple Type Definitions
Given that F# is a typed language, you will often need to declare new shapes of types via type definitions
and type abbreviations. This chapter covers only some of the simpler type definitions that are useful and
succinct workhorses for functional programming. F# also lets you define a range of sophisticated type
definitions related to object-oriented programming, discussed in Chapter 6. Often, however, these aren’t
required in basic functional programming.

Defining Type Abbreviations
Type abbreviations are the simplest type definitions:

type index = int
type flags = int64
type results = string * System.TimeSpan * int * int

It’s common to use lowercase names for type abbreviations, but it’s certainly not compulsory. Type
abbreviations aren’t concrete, because they simply alias an existing type. For example, when doing .NET
programming with F#, they’re expanded during the process of compiling F# code to the format shared
among multiple .NET languages. Because of this, a number of restrictions apply to type abbreviations. For
example, you can’t augment them with additional members, as can be done for concrete types, such as

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

82

records, discriminated unions, and classes. In addition, you can’t truly hide a type abbreviation using a
signature (see Chapter 7).

Defining Record Types
The simplest concrete type definitions are records. Here’s an example:

type Person =
 {Name : string
 DateOfBirth : System.DateTime}

You can construct record values by using the record labels:

> {Name = "Bill"; DateOfBirth = new System.DateTime(1962, 09, 02)};;

val it : Person = {Name="Bill"; DateOfBirth = 09/02/1962 ...}

Here, semicolons are used to separate each field, which are optional in the longer, one-field-per-line
form above. Should there be a conflict between labels among multiple records, you can also construct
record values by using an explicit type annotation:

> ({Name = "Anna"; DateOfBirth = new System.DateTime(1968, 07, 23)} : Person);;

val it : Person = {Name="Anna"; DateOfBirth = 23/07/1968 ... }

Other times, referencing the containing type for any given record label using the type.field syntax
helps to avoid conflicts. Record values are often used to return results from functions:

type PageStats =
 {Site : string;
 Time : System.TimeSpan;
 Length : int;
 NumWords : int;
 NumHRefs : int}

This technique works well when returning a large number of heterogeneous results:

//Using the time, http and getWords functions from Chapter 3.
let stats site =
 let url = "http://" + site
 let html, t = time (fun () -> http url)
 let words = html |> getWords
 let hrefs = words |> Array.filter (fun s -> s = "href")
 {Site = site; Time = t; Length = html.Length;
 NumWords = words.Length; NumHRefs = hrefs.Length}

Here is the type of stats:

83

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

val stats : site:string -> PageStats

Here is how F# Interactive shows the results of applying the function:

> stats "www.live.com";;

val it : PageStats = {Site = "www.live.com";
 Time = 00:00:03.0941770 {Days = 0; ...};
 Length = 12139;
 NumWords = 892;
 NumHRefs = 11;}

Handling Non-Unique Record Field Names
Record labels need not be unique among multiple record types. Here is an example:

type Person =
 {Name : string
 DateOfBirth : System.DateTime}
type Company =
 {Name : string
 Address : string}

When record names are non-unique, constructions of record values may need to use object
expressions in order to indicate the name of the record type, thus disambiguating the construction. For
example, consider the following type definitions:

type Dot = {X : int; Y : int}
type Point = {X : float; Y : float}

On lookup, record labels are accessed using the dot (.) notation in the same way as properties. One
slight difference is that in the absence of further qualifying information, the type of the object being
accessed is inferred from the record label. This is based on the latest set of record labels in scope from
record definitions and uses of open. For example, given the previous definitions, you have the following:

> let coords1 (p:Point) = (p.X, p.Y);;

val coords1 : p:Point -> float * float

> let coords2 (d:Dot) = (d.X, d.Y);;

val coords2 : d:Dot -> int * int

> let dist p = sqrt (p.X * p.X + p.Y * p.Y);; // use of X and Y implies type "Point"

val dist : p:Point -> float

The accesses to the labels X and Y in the first two definitions have been resolved using the type
information provided by the type annotations. The accesses in the third definition have been resolved
using the default interpretation (taking the last definition that fits) of record field labels in the absence of
any other qualifying information.

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

84

Cloning Records
Records support a convenient syntax to clone all the values in the record, creating a new value with some
values replaced. Here is a simple example:

type Point3D = {X : float; Y : float; Z : float}

let p1 = {X = 3.0; Y = 4.0; Z = 5.0}
let p2 = {p1 with Y = 0.0; Z = 0.0}val p1 : Point3D = {X = 3.0; Y = 4.0; Z = 5.0;}

val p2 : Point3D = {X = 3.0; Y = 0.0; Z = 0.0;}

The definition of p2 is identical to this:

let p2 = {X = 3.0; Y = 0.0; Z = 0.0}

This expression form doesn’t mutate the values of a record, even if the fields of the original record are
mutable.

Defining Discriminated Unions
The second kind of concrete type definition discussed in this section is a discriminated union. Here is a
very simple example:

type Route = int
type Make = string
type Model = string
type Transport =
 | Car of Make * Model
 | Bicycle
 | Bus of Route

Each alternative of a discriminated union is called a discriminator. You can build values by using the
discriminator much as if it were a function:

> let ian = Car("BMW","360");;

val ian : Transport = Car ("BMW","360")

> let don = [Bicycle; Bus 8];;

val don : Transport list = [Bicycle; Bus 8]

> let peter = [Car ("Ford","Fiesta"); Bicycle];;

val peter : Transport list = [Car ("Ford","Fiesta"); Bicycle];;

You can also use discriminators in pattern matching:

let averageSpeed (tr : Transport) =

85

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

 match tr with
 | Car _ -> 35
 | Bicycle -> 16
 | Bus _ -> 24

Discriminated unions can include recursive references (the same is true of records and other type
definitions). This is frequently used when representing structured languages via discriminated unions, a
topic covered in depth in Chapter 9:

type Proposition =
 | True
 | And of Proposition * Proposition
 | Or of Proposition * Proposition
 | Not of Proposition

Recursive functions can be used to traverse such a type. For example:

let rec eval (p : Proposition) =
 match p with
 | True -> true
 | And(p1,p2) -> eval p1 && eval p2
 | Or (p1,p2) -> eval p1 || eval p2
 | Not(p1) -> not (eval p1)

Several of the types you’ve already met are defined as discriminated unions. For example, the 'T
option type and the F# type of immutable lists are effectively defined as:

type 'T option =
 | None
 | Some of 'T

type 'T list =
 | ([])
 | (::) of 'T * 'T list

A broad range of tree-like data structures are conveniently represented as discriminated unions. For
example:

type Tree<'T> =
 | Tree of 'T * Tree<'T> * Tree<'T>
 | Tip of 'T

You can use recursive functions to compute properties of trees:

let rec sizeOfTree tree =
 match tree with
 | Tree(_, l, r) -> 1 + sizeOfTree l + sizeOfTree r
 | Tip _ -> 1

Here is the inferred type of sizeOfTree:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

86

val sizeOfTree : tree:Tree<'a> -> int

Here is an example of a constructed tree term and the use of the size function:

> let smallTree = Tree ("1", Tree ("2", Tip "a", Tip "b"), Tip "c");;

val smallTree : Tree<string> = Tree ("1",Tree ("2",Tip "a",Tip "b"),Tip "c")

> sizeOfTree smallTree;;

val it : int = 5

Chapters 9 and 12 discuss symbolic manipulation based on trees.

■ Note Discriminated unions are a powerful and important construct and are useful when modeling a finite,
sealed set of choices. This makes them a perfect fit for many constructs that arise in applications and symbolic
analysis libraries. They are, by design, nonextensible: subsequent modules can’t add new cases to a discriminated
union. This is deliberate: you get strong and useful guarantees by placing a limit on the range of possible values for a
type.

Using Discriminated Unions as Records
Discriminated union types with only one data tag are an effective way to implement record-like types:

type Point3D = Vector3D of float * float * float

let origin = Vector3D(0., 0., 0.)
let unitX = Vector3D(1., 0., 0.)
let unitY = Vector3D(0., 1., 0.)
let unitZ = Vector3D(0., 0., 1.)

These are particularly effective because they can be decomposed using succinct patterns in the same
way as tuple arguments:

let length (Vector3D(dx, dy, dz)) = sqrt(dx * dx + dy * dy + dz * dz)

This technique is most useful for record-like values where there is some natural order on the
constituent elements of the value (as shown earlier) or where the elements have different types.

It might also be helpful to be aware that when pattern matching against single-case discriminated
union values in a match construct, the use of the pipe | operator is optional. This is also the case above, in
the type definition.

87

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

Defining Multiple Types Simultaneously
Multiple types can be declared together to give a mutually recursive collection of types, including record
types, discriminated unions, and abbreviations. The type definitions must be separated by the keyword
and:

type Node =
 {Name : string;
 Links : Link list}and Link =
 | Dangling
 | Link of Node

Understanding Generics
F# constructs such as lists, tuples, and function values are all generic, which means they can be
instantiated with multiple different types. For example, int list, string list, and (int * int) list are
all instantiations of the generic family of F# list types. Likewise, int -> int and string -> int are both
instantiations of the generic family of F# function types. The F# library and the .NET Framework have
many other generic types and operations in addition to these.

Generic constructs are always represented through the use of type variables, which in F# syntax are
written 'T, 'U, 'a, 'Key, and so on. For example, the definition of the Set type in the F# library begins like
this:

type Set<'T> = ...

Type abbreviations can also be generic, e.g.

type StringMap<'T> = Map<string, 'T>

type Projections<'T, 'U> = ('T -> 'U) * ('U -> 'T)

Values can also be generic. A typical generic value is List.map, whose type is as follows:

val map : ('T -> 'U) -> 'T list -> 'U list

Each time you name a generic type or value, the F# type system must infer instantiations for the type
variables involved. For example, in Chapter 3, you used List.map fetch over an input list, where fetch had
the following type:

val fetch : url:string -> string * string

In this case, the type variable 'T in the signature of List.map is instantiated to string, and the type
variable 'U is instantiated to string * string, giving a return type of (string * string) list.

Generic values and functions such as List.map are common in F# programming; they’re so common
that you usually don’t even write the declarations of the type variables in the types of these values.
Sometimes, however, the declaration point of these variables is made explicit in output from tools and the
F# compiler. For example, you may see this:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

88

val map<'T, 'U> : ('T -> 'U) -> 'T list -> 'U list

Frequently, type variables have an implicit scope, governed by the rules of automatic generalization
discussed in the section “Writing Generic Functions.” This means you can introduce type variables simply
by writing them as part of the type annotations of a function:

let rec map (f : 'T -> 'U) (l : 'T list) =
 match l with
 | h :: t -> f h :: map f t
 | [] -> []

If you want, you can also write the type parameters explicitly on a declaration. You typically have to
use each type variable at least once in a type annotation in order to relate the type parameters to the actual
code:

let rec map<'T, 'U> (f : 'T -> 'U) (l : 'T list) =
 match l with
 | h :: t -> f h :: map f t
 | [] -> []

■ Note By convention, uppercase type-variable names are used for user-declared type parameters, and
lowercase names are used for inferred type parameters. In general, the style TypeName<'T> is preferred for F#
types, although for historical reasons, the style 'T TypeName is used for list, option, reference, and array types.

Writing Generic Functions
A key feature of F# is the automatic generalization of code. The combination of automatic generalization
and type inference makes many programs simpler, more succinct, and more general. It also greatly
enhances code reuse. Languages without automatic generalization force programmers to compute and
explicitly write down the most general type of their functions, and often this is so tedious that
programmers don’t take the time to abstract common patterns of data manipulation and control.

For example, type parameters are automatically introduced when you write simple functions that are
independent of some of their arguments:

let getFirst (a,b,c) = a

The inferred type of getFirst is reported as follows:

val getFirst : a:'a * b:'b * c:'c -> 'a

Here, getFirst has been automatically inferred to be generic. The function is generic in three type
variables, where the result type is the first element of the input tuple type. Automatic generalization is
applied when a let or member definition doesn’t fully constrain the types of inputs or outputs. You can tell
automatic generalization has been applied by the presence of type variables in an inferred type and
ultimately by the fact that you can reuse a construct with multiple types.

89

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

Automatic generalization is particularly useful when taking functions as inputs. For example, the
following takes two functions as input and applies them to each side of a tuple:

let mapPair f g (x, y) = (f x, g y)

The generalized, inferred type is as follows:

val mapPair : f:('a -> 'b) -> g:('c -> 'd) -> x:'a * y:'c -> 'b * 'd

Some Important Generic Functions
The F# and .NET libraries include definitions for some important generic functions. You saw a number of
these in action in earlier chapters. It’s important to have a working knowledge of these building blocks,
because often your code will automatically become generic when you use these primitives.

Generic Comparison
The first primitives are all related to generic comparison, also often called structural comparison. Every
time you use operators such as <, >, <=, >=, =, <>, compare, min, and max in F# code, you’re using generic
comparison. All of these operators are located in the Microsoft.FSharp.Core.Operators module, which is
opened by default in all F# code. Some important data structures also use generic comparison internally;
for example, you may also be using generic comparison when you use F# collection types such as
Microsoft.FSharp.Collections.Set and Microsoft.FSharp.Collections.Map. This is discussed in the
documentation for these types. The type signatures of the basic generic comparison operators are shown
here:

val compare : 'T -> 'T -> int when 'T : comparison
val (=) : 'T -> 'T -> bool when 'T : equality
val (<) : 'T -> 'T -> bool when 'T : comparison
val (<=) : 'T -> 'T -> bool when 'T : comparison
val (>) : 'T -> 'T -> bool when 'T : comparison
val (>=) : 'T -> 'T -> bool when 'T : comparison
val (min) : 'T -> 'T -> 'T when 'T : comparison
val (max) : 'T -> 'T -> 'T when 'T : comparison

All of these routines are constrained, which means they may be used only on a subset of types that are
known to support either equality (for =) or ordered comparison (for the others). It may help to think of
those that implement ordered comparison as being implemented in terms of compare, which returns 0 if
the arguments are equal and returns –1 and 1 for less than and greater than, respectively.

On ordinary simple types, such as integers, generic comparison works by invoking the default .NET
behavior for these types, giving the natural ordering for these types. For strings, culture-neutral ordinal
comparison is used, which means the local culture settings on your machine don’t affect string
comparison (see System.Globalization, System.Threading.Thread.CurrentThread.CurrentCulture, and
String.Compare for more information about local culture settings and culture-specific string ordering).
Most other .NET base types implement the System.IComparable interface, such as System.DateTime values,
and generic comparison uses these implementations where necessary.

You can also use the comparison operators on most structured types. For example, you can use them
on F# tuple values, where a lexicographic left-to-right comparison is used:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

90

> ("abc", "def") < ("abc", "xyz");;

val it : bool = true

> compare (10, 30) (10, 20);;

val it : int = 1

Likewise, you can use generic comparison with list and array values:

> compare [10; 30] [10; 20];;

val it : int = 1

> compare [|10; 30|] [|10; 20|];;

val it : int = 1

> compare [|10; 20|] [|10; 30|];;

val it : int = -1

Generic Hashing
Generic hashing is an important partner of generic comparison. The primary primitive function used to
invoke generic hashing is hash, again located in the Microsoft.FSharp.Core.Operators module. The type
signature is:

val hash : 'T -> int when 'T : equality

Again, this is a constrained operation, requiring that the type support equality. Most types support
some form of equality, even if it’s the default reference equality of .NET.

When used with simple structural types, the function returns an integer that gives a stable hash of the
input value:

> hash 100;;

val it : int = 100

> hash "abc";;

val it : int = 536991770

> hash (100, "abc");;

val it : int = 536990974

Generic hashing is implemented similarly to generic comparison. Like generic comparison, generic
hashing should generally be used only with base types, such as integers, and with structural types built
using records and discriminated unions.

For the most part, generic hashing and comparison are implemented efficiently—code is
autogenerated for each type definition where possible fast-path comparison techniques are used. For
example, the generated code uses primitive Common IL/native instructions for integer comparisons. This

91

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

means that in practice, structural comparison is typically fast when used with appropriately sized keys.
However, you should consider the following before using generic comparison over complex new data
types:

When using .NET collections, consider passing the HashIdentity.Structural or
ComparisonIdentity.Structural parameters to the object constructor of the
collection. This helps the F# compiler optimize the performance of the hashing,
equality, and comparison functions for the collection instance.

Hashing, comparison, and equality on tuples can be slower than expected in some
circumstances where the F# compiler can’t optimize the hashing, equality, and
comparison functions for these types. Consider replacing uses of tuples as keys by
the use of a new, named key type, often using a union type with a single case, e.g.
type Key = Key of string * int. This allows the compiler to optimize the hashing.

Consider customizing the behavior of generic hashing, comparison, and equality for
new types you define, at least when those types will be used as keys in a data
structure. You can do this by implementing the System.IComparable interface and
overriding the System.Object.Equals method, covered in Chapter 8. You can
customize generic hashing for new types by either overriding the GetHashCode
method or implementing the Microsoft.FSharp.Core.IStructuralHash interface,
also covered in Chapter 8.

Both ordered comparison and equality (in combination with hashing) can be used
to build interesting indexed data structures. Collections built using these techniques
are efficient over small keys. Performance issues may arise, however, if they’re used
repeatedly over large structured keys. In this case, using custom comparison may be
appropriate.

Generic Pretty-Printing
Some useful generic functions do generic formatting of values. The simplest ways to access this
functionality is to use the %A specifiers in printf format strings. Here is an example:

> sprintf "result = %A" ([1], [true]);;

val it : string = "result = ([1], [true])"

This code uses .NET and F# reflection to walk the structure of values to build a formatted
representation of the value. You format structural types such as lists and tuples using the syntax of F#
source code. Unrecognized values are formatted by calling the .NET ToString() method for these values.
F# and .NET reflection are discussed in more depth toward the end of Chapter 17.

Generic Boxing and Unboxing
Two useful generic functions convert any F# data to and from the universal type System.Object (the F#
type obj):

val box : 'T -> obj
val unbox : obj -> 'T

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

92

Here are some simple examples of these functions in action:

> box 1;;

val it : obj = 1

> box "abc";;

val it : obj = "abc"

> let stringObj = box "abc";;

val stringObj : obj = "abc"

> (unbox<string> stringObj);;

val it : string = "abc"

> (unbox stringObj : string);;

val it : string = "abc"

Note that using unbox generally requires you to specify the target type, given either as an explicit type
parameter unbox<string> or as a type constraint (unbox stringObj: string)—these forms are equivalent.
A runtime check is performed on unboxing to ensure that the object can be safely converted to the target
type. Values of type obj carry dynamic type information, and attempting to unbox a value to an
incompatible type raises an error:

> (unbox stringObj : int);;

System.InvalidCastException: Specified cast is not valid.
 at <StartupCode$FSI_0046>.$FSI_0046.main@()
Stopped due to error

Boxing is important partly because many early .NET libraries provide operations through functions
that accept arguments of type obj. You see an example in the next section. Furthermore, some .NET APIs
are dynamically typed, and almost all parameters are of type obj. This was common before generics were
added in v2.0 of the .NET framework.

Generic Binary Serialization via the .NET Libraries
The .NET libraries provide an implementation of generic binary serialization that is useful as a quick and
easy way of saving computed values to disk and sending values over the network. Let’s use this as an
example to see how you can define building-block generic operations using functionality in the .NET
libraries combined with box and unbox. You first define functions with the following signatures:

val writeValue : outputStream:System.IO.Stream -> x:'T -> unit
val readValue : inputStream:Stream -> 'a

The function writeValue takes an arbitrary value and writes a binary representation of its underlying
object graph to the given I/O stream. The function readValue reverses this process, in much the same way

93

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

that unbox reverses the process performed by box. Here are the implementations of the functions in terms
of the .NET binary serializer located in the namespace System.Runtime.Serialization.Formatters.Binary:

open System.IO
open System.Runtime.Serialization.Formatters.Binary

let writeValue outputStream (x : 'T) =
 let formatter = new BinaryFormatter()
 formatter.Serialize(outputStream, box x)

let readValue inputStream =
 let formatter = new BinaryFormatter()
 let res = formatter.Deserialize(inputStream)
 unbox res

Note that box and unbox are used in the implementation, because the Serialize and Deserialize
functions accept and return a value of type obj. Here is an example of how to use the functions to write a
value of type Microsoft.FSharp.Collections.Map<string,string> to a FileStream and read it back in again:

open System.IO
let addresses = Map.ofList ["Jeff", "123 Main Street, Redmond, WA 98052"
 "Fred", "987 Pine Road, Phila., PA 19116"
 "Mary", "PO Box 112233, Palo Alto, CA 94301"]

let fsOut = new FileStream("Data.dat", FileMode.Create)
writeValue fsOut addresses
fsOut.Close()
let fsIn = new FileStream("Data.dat", FileMode.Open)
let res : Map<string, string> = readValue fsIn
fsIn.Close()

The final result of this code when executed interactively is:

> res;;

val it : Map<string,string> =
 map
 [("Fred", "987 Pine Road, Phila., PA 19116");
 ("Jeff", "123 Main Street, Redmond, WA 98052");
 ("Mary", "PO Box 112233, Palo Alto, CA 94301")]

Note that values of type Map<string,string> are printed interactively as sequences of key/value pairs.
Also, a type annotation is required when reading the data back in using readValue, and a runtime type
error results if the types of the objects reconstructed from the binary data don’t match this type
annotation.

The .NET Framework provides several other generic serializers that differ in output format and
operational characteristics. The most important of these are based around the notion of DataContract
serialization:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

94

System.Runtime.Serialization.Json.DataContractJsonSerializer: Used for
serializing public data objects into the popular JavaScript Object Notation (JSON)
format, using formats that aren’t specifically tied to particular .NET types but that
are, rather, compatible with a range of types

System.Runtime.Serialization.DataContractSerializer: Used for serializing public
data objects into XML, using formats that aren’t specifically tied to particular .NET
types but that are, rather, compatible with a range of types

System.Runtime.Serialization.NetDataContractSerializer: Used for serializing
arbitrary object graphs, including private data and closures, into XML using the
same idioms as the other DataContract serializers

In addition, you can use some older serializers with F#. For example, System.Runtime.Serialization.
XmlSerializer is used for serializing public data into XML. This serializer is now used less frequently; you
should generally use NetDataContractSerializer instead. You can also write your own generic serializer,
for example using the techniques described in Chapter 8.

Making Things Generic
The following sections discuss how to make existing code more generic (that is, reusable) and how to
systematically represent the abstract parameters of generic algorithms.

Generic Algorithms through Explicit Arguments
A common pattern in F# programming is to accept function parameters in order to make an algorithm
abstract and reusable. A simple sample is the following generic implementation of Euclid’s algorithm for
finding the highest common factor (HCF) of two numbers:

let rec hcf a b =
 if a = 0 then b
 elif a < b then hcf a (b - a)
 else hcf (a - b) b

The type of this function is:

val hcf : a:int -> b:int -> int

For example:

> hcf 18 12;;

val it : int = 6

> hcf 33 24;;

val it : int = 3

This algorithm isn’t generic, however, because as written, it works only over integers. In particular,
although the operator (-) is by default overloaded in F#, each use of the operator must be associated with at

95

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

most one type decided at compile time. This restriction is discussed in more detail in the section
“Understanding Generic Overloaded Operators.” In addition, the constant 0 is an integer and isn’t
overloaded.

Despite this, this algorithm can be easily generalized to work over any type. To achieve this, you must
provide an explicit zero, a subtraction function, and an ordering. Here’s one way:

let hcfGeneric (zero, sub, lessThan) =
 let rec hcf a b =
 if a = zero then b
 elif lessThan a b then hcf a (sub b a)
 else hcf (sub a b) b
 hcf

The inferred, generic type of this function is as follows:

val hcfGeneric :
 zero:'a * sub:('a -> 'a -> 'a) * lessThan:('a -> 'a -> bool) ->
 ('a -> 'a -> 'a) when 'a : equality

The numeric type being manipulated has type 'a in the inferred type, and the result is a
computed function. This approach uses techniques for computing functions similar to those discussed in
Chapter 3. Here are some examples of using this generic function:

let hcfInt = hcfGeneric (0, (-), (<))
let hcfInt64 = hcfGeneric (0L, (-), (<))
let hcfBigInt = hcfGeneric (0I, (-), (<))

Note that when you instantiate the generic function for these cases, you’re drawing on particular
instances of the default overloaded operator (-). You can check that the code is executing correctly as
follows:

> hcfInt 18 12;;

val it : int = 6

> hcfBigInt 1810287116162232383039576I 1239028178293092830480239032I;;

val it : System.Numerics.BigInteger = 33224

Generic Algorithms through Function Parameters
The generic implementation from the previous section took three related parameters for zero,
comparison, and subtraction. It’s common practice to package related operations together. One way to do
this is to use a concrete record type containing function values:

type Numeric<'T> =
 {Zero : 'T;
 Subtract : ('T -> 'T -> 'T);
 LessThan : ('T -> 'T -> bool);}

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

96

let intOps = {Zero = 0; Subtract = (-); LessThan = (<)}
let bigintOps = {Zero = 0I; Subtract = (-); LessThan = (<)}
let int64Ops = {Zero = 0L; Subtract = (-); LessThan = (<)}

let hcfGeneric (ops : Numeric<'T>) =
 let rec hcf a b =
 if a = ops.Zero then b
 elif ops.LessThan a b then hcf a (ops.Subtract b a)
 else hcf (ops.Subtract a b) b
 hcf

let hcfInt = hcfGeneric intOps
let hcfBigInt = hcfGeneric bigintOps

The inferred types are as follows and the hcfGeneric type is now simpler:

val hcfGeneric : ops:Numeric<'T> -> ('T -> 'T -> 'T) when 'T : equality
val hcfInt : (int -> int -> int)
val hcfBigInt :
 (System.Numerics.BigInteger -> System.Numerics.BigInteger -> System.Numerics.BigInteger)

To double-check that everything works as before:

> hcfInt 18 12;;

val it : int = 6

> hcfBigInt 1810287116162232383039576I 1239028178293092830480239032I;;

val it : System.Numerics.BigInteger = 33224

Record types such as Numeric<'T>, often called dictionaries of operations, are similar to vtables from
object-oriented programming and the compiled form of type classes from Haskell. As you’ve seen,
dictionaries such as these can be represented in different ways according to your tastes, using tuples or
records. For larger frameworks, a carefully constructed classification of object interface types is often used
in place of records. Here is an interface type definition that plays the same role as the record in the
previous example:

type INumeric<'T> =
 abstract Zero : 'T
 abstract Subtract : 'T * 'T -> 'T
 abstract LessThan : 'T * 'T -> bool

You can implement interface types with object expressions similarly to record values:

let intOps =
 {new INumeric<int> with
 member ops.Zero = 0
 member ops.Subtract(x, y) = x - y

97

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

 member ops.LessThan(x, y) = x < y}

val intOps : INumeric<int>

The code for Euclid’s algorithm using interface types is essentially the same as for the code based on
record types:

let hcfGeneric (ops : INumeric<'T>) =
 let rec hcf a b =
 if a = ops.Zero then b
 elif ops.LessThan(a, b) then hcf a (ops.Subtract(b, a))
 else hcf (ops.Subtract(a, b)) b
 hcf

GENERIC ALGORITHMS AND FUNCTION PARAMETERS

One of the remarkable features of functional programming with F# is that generic programming is practical
even when the types involved aren’t explicitly related. For example, the previous generic algorithm shows
how you can write reusable code without resorting to relating the types involved through an inheritance
hierarchy: the generic algorithm works over any type if an appropriate set of operations is provided to
manipulate values of that type. This is a form of explicit factoring by functions. Object-oriented programming
typically uses implicit factoring by hierarchy, because the library designer decides the relationships that hold
among various types, and these are fixed in stone.

Type inference in F# makes explicit factoring by functions convenient. Given the simplicity and flexibility of this
approach, it’s a useful way to write applications and to prototype frameworks. Factoring by hierarchy still plays
a role in F# programming, however. For example, all F# values can be implicitly converted to and from the type
System.Object, something that is extremely useful when you’re interoperating with many libraries. It would
obviously be inconvenient to have to pass around functions to marshal (box/unbox) types to System.Object
and back. Similarly, many F# values can be implicitly converted to the IDisposable interface. Hierarchical
factoring requires careful design choices; in general, we recommend that you use explicit factoring first, moving
toward implicit factoring only when an algorithmic pattern is truly universal and repeats itself many times, as is
the case with the IDisposable idiom. The .NET and F# libraries contain definitions of many of the implicit
factors you should use in practice, such as IDisposable and IEnumerable.

Some functional languages, such as Haskell, allow you to implicitly pass dictionaries of operations through
an extension to type inference known as type classes. At the time of writing, this isn’t supported by F#, but
the designers of F# have stated that they expect a future version of the language to support this. Either way,
explicitly passing dictionaries of operations is common in all functional programming and is an important
technique to master.

Generic Algorithms through Inlining
An additional way to make code generic is to mark a function as inline. You can use this technique for
code that uses F# operators, such as float, int, +, -, *, /, and other arithmetic operations. As we’ll discuss in
the section “Understanding Generic Overloaded Operators,” each use of these operators is normally
statically resolved. For example, consider this code:

let convertToFloat x = float x

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

98

In the F# type system, the type of the float function is 'T -> float (requires member op_Explicit).
This means the type 'T must support an explicit conversion from 'T to float. Thus, you can use it with
integers, singles, doubles, decimals, and so on, but you can’t use it with any old type. The 'T is constrained.

As mentioned earlier, F# operators such as float are statically resolved. This means each use of float is
associated with one statically inferred type. The same applies to other operators such as +, *, and so on.
These operators also generally default to working over integers. For example, this shows float being used
with three different statically resolved types:

float 3.0 + float 1 + float 3L

To make code such as this generic, you can use inline. For example, consider:

let inline convertToFloatAndAdd x y = float x + float y

convertToFloatAndAdd can be used with an integer and a float, or a decimal and an integer, or
two decimals. You can use inline to write code and algorithms that are implicitly generic over arithmetic
type while still maintaining type safety. This gives you generic, type-safe code while ensuring static
resolution of basic numeric operations, making it easy to reason about the efficiency of your code.

You can also apply this technique to the earlier HCF algorithm:

let hcfGeneric (ops : INumeric<'T>) =
 let rec hcf a b =
 if a = ops.Zero then b
 elif ops.LessThan(a, b) then hcf a (ops.Subtract(b, a))
 else hcf (ops.Subtract(a, b)) b
 hcf

The type of this function is:

val inline hcf :
 a: ^a -> b: ^a -> ^a
 when ^a : (static member get_Zero : -> ^a) and ^a : comparison and
 ^a : (static member (-) : ^a * ^a -> ^a)

For example:

> hcf 18 12;;

val it : int = 6

> hcf 18I 12I;;

val it : System.Numerics.BigInteger = 6

The algorithm is now generic. You should use this technique sparingly, but it can be extremely
powerful. Note the use of the F# library primitive GenericZero to get a zero value for an arbitrary type
supporting a Zero static property.

One variation on this technique provides a simple wrapper that delegates to a non-inlined generic
routine. For example, the following code delegates to the non-inlined routine hcfGeneric, defined earlier
in this section:

99

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

let inline hcf a b =
 hcfGeneric
 {new INumeric<'T> with
 member ops.Zero = LanguagePrimitives.GenericZero<'T>
 member ops.Subtract(x, y) = x - y
 member ops.LessThan(x, y) = x < y}
 a b

This gives you a generic function hcfGeneric that can be used with any explicit set of arithmetic
operations, and a generic routine hcf that can be used with any type that supports an implicit set of
arithmetic operations.

More on Different Kinds of Types
For the most part, programming in F# involves using types in a simple way: each type has some values,
and types are related by using explicit functions to map from one type to another. In reality, however, types
in F# are more sophisticated than this statement implies. First, F# types are really .NET types, and .NET
makes some distinctions among different kinds of types that are occasionally important, such as between
value types and reference types.

Furthermore, .NET and F# support hierarchical relationships between types through subtyping.
The following sections first cover .NET types from the F# perspective and then cover subtyping.

Reference Types and Value Types
The .NET documentation and other .NET languages often describe types as either reference types or value
types. You can use System.String and System.DateTime as a typical example of each. First note that both of
these types are immutable. That is, given a value of type System.String, you can’t modify the contents of
the string; the same is true for System.DateTime. This is by far the most important fact you need to know
about these types: for immutable types the reference/value type distinction is relatively unimportant. It’s
still useful, however, to know the following:

Representation: Values of type System.String are single pointers into the garbage-
collected heap where the actual data for the string reside. Two System.String values
may point to the same data. In contrast, values of type System.DateTime are somewhat
larger blobs of integer data (64-bits of data, in this case), and no data live on the
garbage-collected heap. The full data for the value are copied as needed.

Boxing: All .NET types can be marshaled to and from the .NET type System.Object
(the F# type obj) by using F# functions such as box and unbox. All reference types are
trivially marshaled to this type without any change of representation or identity, so
for reference types, box is a no-op. Boxing a value type involves a heap allocation,
resulting in a new object. Often this object is immediately discarded after the
operation on the obj type has been performed.

If a value can be mutated, then the distinction between value types and reference types is more
serious. Fortunately, essentially all mutable values in the .NET libraries are reference types, which means
mutation actually mutates the heap-allocated data referred to by the reference.

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

100

Other Flavors of .NET Types
The .NET type system makes some additional distinctions among types that are occasionally significant
for F# programming:

Delegate types: Delegate types , such as System.Windows.Forms.MouseEventHandler,
are a form of named function type supported by all .NET languages. They tend not
to be as convenient to use as F# function types, because they don’t support
compositional operations such as pipelining and forward composition, but .NET
APIs use delegates extensively. To create a delegate value, you name the delegate
type and pass it a function value that accepts the same arguments expected by the
delegate type, such as MouseEventHandler(fun sender args -> printf "click!\n").

Attribute types: Types derived from the System.Attribute class are used to add
metadata to source-code declarations and typically end in the suffix Attribute. You
can access these attributes via .NET and F# reflection. You can add attributes to F#
declarations using the [<...>] syntax. For example, System.ObsoleteAttribute
marks a function as obsolete, and the F# compiler produces a warning if the
function is used. Attribute names such as this one, when used inside the [<…>]
syntax, can omit the …Attribute suffix, which is then automatically inserted by the
F# compiler.

Exception types: Types derived from the System.Exception class are used to represent
raised exceptions. Chapter 4 discussed exceptions in detail.

Enum types: .NET enum types are simple integer-like value types associated with a
particular name. They’re typically used for specifying flags to APIs; for example,
FileMode in the System.IO namespace is an enum type with values such as FileMode.
Open and FileMode.Create. .NET enum types are easy to use from F# and can be
combined using bitwise AND, OR, and XOR operations using the &&&, |||, and ^^^
operators. Most commonly, the ||| operator is used to combine multiple flags. On
occasion, you may have to mask an attribute value using &&& and compare the result
to enum 0. You see how to define .NET-compatible enum types in F# at the end of
Chapter 6.

Understanding Subtyping
Simple types are related in simple ways. For example, values of the type int are distinct from values of the
type float, and values of one record type are distinct from values of another. This approach to types is
powerful and often sufficient, partly because type inference and function values make it easy to write
generic code, although .NET and F# also support hierarchical relationships between types through
subtyping. Subtyping is a key concept of object-oriented programming and is discussed in more detail in
Chapter 6. In addition, you can use subtyping in conjunction with pure functional programming, because
it offers one technique to make algorithms generic over a restricted family of types.

The following sections explain how these constructs appear to the F# programmer and the role they
play in F# programming. Subtyping in F# is the same as that used by the .NET Framework, so if you’re
familiar with another .NET language, you already know how things work.

101

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

Casting Up Statically
You can explore how subtyping works by using F# Interactive. First, let’s look at how some of the F# types
you’ve already seen relate to the type obj:

> let xobj = (1 :> obj);;

val xobj : obj = 1

> let sobj = ("abc" :> obj);;

val sobj : obj = "abc"

This example shows the subtyping relationship through the use of the built-in coercion (or upcast)
operator, which is :>. This operator converts a value to any of its supertypes in precisely the same way as
the box function.

The previous code indicates the subtyping between ordinary types and the type obj. Subtyping occurs
between other kinds of types as well (Chapters 3 and 6 discuss the various kinds of type definitions, such
as records, discriminated unions, classes, and interfaces):

All types are subtypes of System.Object (called obj in F#).

Record and discriminated union types are subtypes of the interface types they
implement.

Interfaces types are subtypes of the other interfaces they extend.

Class types are subtypes of both the interfaces they implement and the classes they
extend.

Array types are subtypes of the .NET type System.Array.

Value types (types such as int32 that are abbreviations of .NET value types) are
subtypes of the .NET type System.ValueType. Likewise, .NET enumeration types are
subtypes of System.Enum.

Casting Down Dynamically
Values that may have subtypes carry a runtime type, and you can use runtime-type tests to query the type
of an object and convert it to one of the subtypes. You can do this in three main ways: the unbox operation,
downcasts, and pattern type tests. We’ve already explained the unbox function. As with most object-
oriented languages, the upcasts performed through subtyping are reversible through the use of
downcasts—in other words, by using the:?> operator. Consider these examples:

> let boxedObject = box "abc";;

val boxedObject : obj

> let downcastString = (boxedObject :?> string);;

val downcastString : string = "abc"

Downcasts are checked at runtime and all values of the obj type are implicitly annotated with the
runtime type of the value. The operator :?> raises an exception if the object isn’t of a suitable type:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

102

> let xobj = box 1;;

val xobj : obj = 1

> let x = (xobj :?> string);;

System.InvalidCastException: Unable to cast object of type 'System.Int32' to type 'System.
String'.
 at <StartupCode$FSI_0037>.$FSI_0037.main@()

Performing Type Tests via Pattern Matching
A more convenient way of performing dynamic type tests uses type-test patterns—in particular the :?
pattern construct, which you encountered in Chapter 4 in the context of catching various .NET exception
types. This example uses a pattern-type test to query the dynamic type of a value of type obj:

let checkObject (x : obj) =
 match x with
 | :? string -> printfn "The object is a string"
 | :? int -> printfn "The object is an integer"
 | _ -> printfn "The input is something else"

> checkObject (box "abc");;

The object is a string

Such a pattern may also bind the matched value at its more specific type:

let reportObject (x : obj) =
 match x with
 | :? string as s -> printfn "The input is the string '%s'" s
 | :? int as d -> printfn "The input is the integer '%d'" d
 | _ -> printfn "the input is something else"

> reportObject (box 17);;

The input is the integer '17'

Knowing When Upcasts Are Applied Automatically
Like most object-oriented languages, F# automatically applies upcasts whenever a function or method is
called or wherever a value is used. If a parameter to an F# function has a named type, then the function
implicitly accepts parameters that are any subtype, assuming that type supports subtyping. This is
particularly common when working with .NET libraries that use subtyping heavily. For example:

> open System.Windows.Forms;;
> let setTextOfControl (c : Control) (s : string) = c.Text <- s;;

103

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

val setTextOfControl : c:Control -> s:string -> unit

> let form = new Form();;

val form : Form = System.Windows.Forms.Form, Text:

> let textBox = new TextBox();;

val textBox : TextBox = System.Windows.Forms.TextBox, Text:

> setTextOfControl form "Form Text";;
> setTextOfControl textBox "Text Box Text";;

Here, the function setTextOfControl is used on two different subtypes of Control. When functions
have parameters that accept named types such as Control, you don’t need to supply an upcast explicitly.

F# doesn’t apply upcasts in all the situations where other object-oriented languages do, however. In
practice, this means you sometimes have to add explicit upcasts to your code to throw away information.
For example, if each branch of an if ... then ... else ... construct returns different types, then you
need to upcast the results of one or both of the branches. This is shown by the type error given for the
following code, which returns Console.In (a TextReader) from one branch and the results of File.OpenText
(a StreamReader) from the other branch:

open System
open System.IO

let textReader =
 if DateTime.Today.DayOfWeek = DayOfWeek.Monday
 then Console.In
 else File.OpenText("input.txt")

The error reported is as follows:

error FS0001: This expression was expected to have type
 TextReader
but here has type
 StreamReader

StreamReader is a subtype of TextReader, so the code can be corrected by throwing away the
information that the returned type is a StreamReader:

open System
open System.IO

let textReader =
 if DateTime.Today.DayOfWeek = DayOfWeek.Monday
 then Console.In
 else (File.OpenText("input.txt") :> TextReader)

Upcasts are applied automatically in the following situations:

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

104

When passing arguments to functions and all members associated with .NET and F#
objects and types. This applies when parameters have named types, such as
TextReader, rather than generic types.

When calling functions with flexible parameter types (see in the following section),
such as #TextReader.

When assigning into fields and properties.

When accessing members using dot notation. For example, given a value of type
StreamReader, all the members associated with TextReader can also be accessed
without needing to apply an upcast.

Note particularly that upcasts aren’t applied automatically for the result of a function. For example, an
upcast is needed here, to coerce a StreamReader to a TextReader, despite the presence of an explicit type
annotation for the return type:

let getTextReader () : TextReader = (File.OpenText("input.txt") :> TextReader)

Flexible Types
F# also has the notion of a flexible type constraint, which is shorthand for a generic function and a
constraint on the type variable. You could equally write this:

> open System.Windows.Forms;;
> let setTextOfControl (c : 'T when 'T :> Control) (s : string) = c.Text <- s;;

val setTextOfControl: c:#Control -> s:string -> unit

Automatic generalization lifts the constraints implicit in types of the form #type to the nearest
enclosing function or member definition. Flexible type constraints sometimes occur when you’re working
with sequence values. For example, consider this function from the F# library:

module Seq =
 ...
 val concat : seq<#seq<'T>> -> seq<'T>
 ...

When implicit flexibility of arguments is taken into account, the signature of concat means that Seq.
concat accepts a list of lists, or a list of arrays, or an array of lists, and so forth. For example:

Seq.concat [[1;2;3]; [4;5;6]]
Seq.concat [[|1; 2; 3|]; [|4; 5; 6|]]]

Troubleshooting Type-Inference Problems
The following sections cover some of the techniques you can use to understand the type-inference process
and to debug problems when inferred types aren’t as expected.

105

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

Using a Visual Editing Environment
The best and most important technique to debug and understand type inference is to use a visual editing
environment for F#. For example, Visual Studio performs interactive type-checking as you’re writing code.
Such tools display errors interactively and show inferred types as you move the mouse pointer over
identifiers.

Using Type Annotations
Type inference in F# works through a process of type-constraint propagation. As a programmer, you can
add further type constraints to your code in several ways. For example, you can do the following:

Add a rigid type constraint using the : notation, such as let t : float = 5.0.

Add a type constraint to an argument, such as let setTextOfControl (c : Control)
(s : string) = c.Text <- s.

Apply a function that accepts only a particular type of argument, such as let f x =
String.length x. Here, the use of String.length generates a constraint on the type
of x.

Adding type annotations to and removing them from your code is the standard technique to
troubleshoot type-inference problems. For example, the following code doesn’t type-check:

> let getLengths inp = inp |> Seq.map (fun y -> y.Length) ;;

error FS0072: Lookup on object of indeterminate type based on information prior to this
program point. A type annotation may be needed prior to this program point to constrain the
type of the object. This may allow the lookup to be resolved.

You can easily solve this problem by adding a type annotation, such as to y:

let getLengths inp =
 inp |> Seq.map (fun (y : string) -> y.Length)

You can also use type annotations to discover why code isn’t as generic as you think it should be. For
example, the following code has a mistake, and the F# type checker says the code is less generic than
expected:

let printSecondElements (inp : seq<'T * int>) =
 inp
 |> Seq.iter (fun (x, y) -> printfn "y = %d" x)

> ... enter the code above ...

warning FS0064: This construct causes code to be less generic than indicated by the type
annotations. The type variable 'T has been constrained to be type 'int'.

The mistake here is that you’re printing the variable x instead of y, but it’s not always so easy to spot
what has caused this kind of problem. One way to track down this problem is to temporarily change the
generic type parameter to some arbitrary, unrelated type. After all, if code is generic, then you should be

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

106

able to use any type; and by changing the type variable to an unrelated type, you can track down where the
inconsistency first arises. For example, let’s change 'T to the type PingPong:

type PingPong = Ping | Pong

let printSecondElements (inp : seq<PingPong * int>) =
 inp
 |> Seq.iter (fun (x,y) -> printfn "y = %d" x)

You now get a different and in many ways more informative error message, localized to the first place
that the value x marked with type PingPong is used in an unexpected way:

> ... enter the code above ...

error FS0001: The type 'PingPong' is not compatible with any of the types byte,int16,int32,int
64,sbyte,uint16,uint32,uint64,nativeint,unativeint, arising from the use of a printf-style
format string

Understanding the Value Restriction
F# sometimes requires a little help before a definition is automatically generalized. In particular, only
function definitions and simple immutable data expressions are automatically generalized; this is called
the value restriction. For example, the following definition doesn’t result in a generic type and gives an
error:

> let empties = Array.create 100 [];;

error FS0030: Value restriction. The value 'empties' has been inferred to have generic type

 val empties : '_a list []

Either define 'empties' as a simple data term, make it a function with explicit arguments or,
if you do not intend for it to be generic, add a type annotation.

The code attempts to create an array of empty lists. The error message indicates that type inference
has given empties the type '_a list []. The underscore (_) indicates that the type variable 'a is
ungeneralized, meaning this code isn’t fully generic. It would make no sense to give empties the truly
generic type 'a list [], because this would imply that you’ve created an array of lists somehow suitable
for use with any type 'a. In reality, any particular array should have one specific type, such as int list []
or string list [], but not both. (If it were usable with both types, then you could store an integer list in
the array and fetch it out as a string list!)

The value restriction ensures that declarations don’t result in this kind of confusion; automatic
generalization isn’t applied to declarations unless they’re functions or simple, immutable data constructs.
One way to think of this is that you can create concrete objects only after the type-inference problem is
sufficiently constrained so that every concrete object created at the top level of your program has a ground
type—a type that doesn’t contain any ungeneralized type variables.

The value restriction doesn’t apply to simple immutable data constants or function definitions. For
example, the following declarations are all automatically generalized, giving the generic types shown:

let emptyList = []
let initialLists = ([], [2])

107

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

let listOfEmptyLists = [[]; []]
let makeArray () = Array.create 100 []

val emptyList : 'a list
val initialLists : 'a list * int list
val listOfEmptyLists : 'a list list
val makeArray : unit -> 'a list []

Working Around the Value Restriction
The value restriction crops up with mild regularity in F# coding—particularly when you’re using F#
Interactive, where the scope of type inference is at the granularity of each entry sent to the tool rather than
an entire file, and hence, fewer constraints are placed on these code fragments. You can work around the
value restriction in several ways, depending on what you’re trying to do.

Technique 1: Constrain Values to Be Nongeneric
The first technique applies when you make a definition such as empties, shown earlier, but you meant to
create one value. Recall that this definition was problematic because it’s not clear what type of array is
being created:

let empties = Array.create 100 []

If you meant to create one value with a specific type, then use an explicit type annotation:

let empties : int list [] = Array.create 100 []

The value is then not generic, and the value restriction doesn’t apply.

Technique 2: Ensure Generic Functions Have Explicit Arguments
The next technique applies when you’re defining generic functions. In this case, make sure you define
them with explicit arguments. For example, look at the following definition of a function value:

let mapFirst = List.map fst

You may expect this to be a generic function with type ('a * 'b) list -> 'a list. This isn’t what
happens. Type variables are automatically generalized at true syntactic function definitions—that is,
function definitions with explicit arguments. The function mapFirst has implicit arguments. Fortunately,
it’s easy to work around this by making the arguments explicit (or in academic terms, performing η [eta]
abstraction):

let mapFirst inp = List.map fst inp

This function now has the following type:

val mapFirst : inp:('a * 'b) list -> 'a list

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

108

When there is only one argument, our favorite way of writing the extra arguments is as follows:

let mapFirst inp = inp |> List.map (fun (x, y) -> x)

The same problem arises when you try to define functions by composition. For example:

let printFstElements = List.map fst >> List.iter (printf "res = %d")

The arguments here are implicit, which causes problems. This definition isn’t automatically
generalized because this isn’t a syntactic function. Again, make the arguments explicit:

let printFstElements inp = inp |> List.map fst |> List.iter (printf "res = %d")

Technique 3: Add Dummy Arguments to Generic Functions When Necessary
Look at this definition again:

let empties = Array.create 100 []

It’s possible that you really did intend to define a function that generates arrays of different types on
demand. In this case, add a dummy argument:

let empties () = Array.create 100 []
let intEmpties : int list [] = empties()
let stringEmpties : string list [] = empties()

The dummy argument ensures that empties is a function with generic arguments and that it can be
automatically generalized.

Technique 4: Add Explicit Type Arguments When Necessary
You can use one final technique to make a value generic. This one is rarely used, but it is very handy

when it’s required. It’s normally used when you’re defining values that are generic but that are neither
functions nor simple data expressions. For example, let’s define a sequence of 100 empty lists:

let emptyLists = Seq.init 100 (fun _ -> [])

The expression on the right isn’t a function or simple data expression (it’s a function application), so
the value restriction applies. One solution is to add an extra dummy argument, as in the previous section.
If you’re designing a library, however, this can seem very artificial. Instead, you can use the following
declaration form to make emptyLists generic:

let emptyLists<'T> : seq<'T list> = Seq.init 100 (fun _ -> [])

You can now use emptyLists as a type function to generate values of different types. For example:

> Seq.length emptyLists;;

val it : int = 100

> emptyLists<int>;;

109

CHAPTER 5 ■ UNDERSTANDING TYPES IN FUNCTIONAL PROGRAMMING

val it : seq<int list> = seq [[]; []; []; []; ...]

> emptyLists<string>;;

val it : seq<string list> = seq [[]; []; []; []; ...]

Some values and functions in the F# library are defined in this way, including typeof<_>, Seq.empty,
and Set.empty. Chapter 17 covers typeof.

Understanding Generic Overloaded Operators
There is one further important way in which code doesn’t automatically become generic in F#: when you
use overloaded operators such as +, -, *, and /, or overloaded conversion functions such as float and int64.
For example, the following is not a generic function:

let twice x = (x + x)

In the absence of further information, the type of this function is as follows:

val twice : x:int -> int

This is because the overloaded operator + defaults to operating on integers. If you add type
annotations or further type constraints, you can force the function to operate on any type supporting the
overloaded + operator:

let twiceFloat (x : float) = x + x

val twiceFloat : x:float -> float

The information that resolves a use of an overloaded operator can come after the use of the operator:

let threeTimes x = (x + x + x)
let sixTimesInt64 (x:int64) = threeTimes x + threeTimes x

val threeTimes : x:int64 -> int64
val sixTimesInt64 : x:int64 -> int64

Note how the constraint in the definition of sixTimesInt64 is the only mention of int64 and affects the
type of threeTimes. The technical explanation is that overloaded operators such as + give rise to floating
constraints, which can be resolved later in the type-inference scope.

Summary
F# is a typed language, and F# programmers often use types in sophisticated ways. In this chapter, you
learned about the foundations of types, focusing on how types are used in functional programming and
with generics and subtyping in particular. The next chapter covers the related topics of object-oriented
and modular programming in F#.

111

■ ■ ■

CHAPTER 6

Programming with Objects

Chapters 2 through 5 dealt with the basic constructs of F# functional and imperative programming, and by
now we trust you’re familiar with the foundational concepts and techniques of practical, small-scale F#
programming. This chapter covers language constructs related to object programming.

Programming in F# tends to be less “object-oriented” than in other languages, since functional
programming with values, functions, lists, tuples and other shaped data is enough to solve many
programming problems. Objects are used as a means to an end rather than as the dominant paradigm.

The first part of this chapter focuses on object programming with concrete types. We assume some
familiarity with the basic concepts of object-oriented programming, although you may notice that our
discussion of objects deliberately deemphasizes techniques such as implementation inheritance. You’re
then introduced to the notion of object interface types and some simple techniques to implement them.
The chapter covers more advanced techniques to implement objects using function parameters,
delegation, and implementation inheritance. Finally, it covers the related topics of modules (which are
simple containers of functions and values) and extensions (in other words, how to add ad hoc dot-
notation to existing modules and types). Chapter 7 covers the topic of encapsulation.

This chapter deemphasizes the use of .NET terminology for object types. However, all F# types are
ultimately compiled as .NET types.

Getting Started with Objects and Members
One of the most important activities of object programming is defining concrete types equipped with dot-
notation. A concrete type has fixed behavior: that is, it uses the same member implementations for each
concrete value of the type.

You’ve already met many important concrete types, such as integers, lists, strings, and records
(introduced in Chapter 3). It’s easy to add object members to concrete types. Listing 6-1 shows an example.

Listing 6-1. A Vector2D Record Type with Object Members

/// Two-dimensional vectors
type Vector2D =
 { DX : float; DY : float }

 /// Get the length of the vector
 member v.Length = sqrt(v.DX * v.DX + v.DY * v.DY)

 /// Get a vector scaled by the given factor
 member v.Scale(k) = { DX = k * v.DX; DY = k * v.DY }

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

112

 /// Return a vector shifted by the given delta in the X coordinate
 member v.ShiftX(x) = { v with DX = v.DX + x }

 /// Return a vector shifted by the given delta in the Y coordinate
 member v.ShiftY(y) = { v with DY = v.DY + y }

 /// Return a vector shifted by the given distance in both coordinates
 member v.ShiftXY(x,y) = { DX = v.DX + x; DY = v.DY + y }

 /// Get the zero vector
 static member Zero = { DX = 0.0; DY = 0.0 }

 /// Return a constant vector along the X axis
 static member ConstX(dx) = { DX = dx; DY = 0.0 }

 /// Return a constant vector along the Y axis
 static member ConstY(dy) = { DX = 0.0; DY = dy }

You can use the properties and methods of this type as follows:

> let v = { DX = 3.0; DY=4.0 };;

val v : Vector2D = {DX = 3.0; DY = 4.0;}

> v.Length;;

val it : float = 5.0

> v.Scale(2.0).Length;;

val it : float = 10.0

> Vector2D.ConstX(3.0);;

val it : Vector2D = {DX = 3.0; DY = 0.0}

As usual, it’s useful to look at inferred types to understand a type definition. Here are the inferred
types for the Vector2D type definition of Listing 6-1.

type Vector2D =
 {DX: float;
 DY: float;}
 with
 member Scale : k:float -> Vector2D
 member ShiftX : x:float -> Vector2D
 member ShiftXY : x:float * y:float -> Vector2D
 member ShiftY : y:float -> Vector2D
 member Length : float
 static member ConstX : dx:float -> Vector2D
 static member ConstY : dy:float -> Vector2D
 static member Zero : Vector2D
 end

You can see that the Vector2D type contains the following:

113

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

A collection of record fields

One instance property (Length)

Four instance methods (Scale, ShiftX, ShiftY, ShiftXY)

One static property (Zero)

Two static methods (ConstX, ConstY)

Let’s look at the implementation of the Length property:

 member v.Length = sqrt(v.DX * v.DX + v.DY * v.DY)

Here, the identifier v stands for the Vector2D value on which the property is being defined. In many
other languages, this is called this or self, but in F# you can name this parameter as you see fit. The
implementation of a property such as Length is executed each time the property is invoked; in other words,
properties are syntactic sugar for method calls. For example, let’s repeat the earlier type definition with an
additional property that adds a side effect:

 member v.LengthWithSideEffect =
 printfn "Computing!"
 sqrt(v.DX * v.DX + v.DY * v.DY)

Each time you use this property, you see the side effect:

> let x = {DX = 3.0; DY = 4.0};;

val x : Vector2D = {DX = 3.0; DY = 4.0;}

> x.LengthWithSideEffect;;

Computing!
val it : float = 5.0

> x.LengthWithSideEffect;;

Computing!
val it : float = 5.0

The method members for a type look similar to the properties but also take arguments. For example,
let’s look at the implementation of the ShiftX method member:

 member v.ShiftX(x) = { v with DX = v.DX + x }

Here the object is v, and the argument is dx. The return result clones the input record value and
adjusts the DX field to be v.DX+dx. Cloning records is described in Chapter 3. The ShiftXY method member
takes two arguments:

 member v.ShiftXY(x, y) = { DX = v.DX + x; DY = v.DY + y }

Like functions, method members can take arguments in either tupled or iterated form. For example,
you could define ShiftXY as follows:

 member v.ShiftXY x y = { DX = v.DX + x; DY = v.DY + y }

However, it’s conventional for methods to take their arguments in tupled form. This is partly because
OO programming is strongly associated with the design patterns and guidelines of the .NET Framework,
and arguments always appear as tupled when using .NET methods from F#.

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

114

Discriminated unions are also a form of concrete type. In this case, the shape of the data associated
with a value is drawn from a finite, fixed set of choices. Discriminated unions can also be given members.
For example:

/// A type of binary trees, generic in the type of values carried at nodes and tips
type Tree<'T> =
 | Node of 'T * Tree<'T> * Tree<'T>
 | Tip

 /// Compute the number of values in the tree
 member t.Size =
 match t with
 | Node(_, l, r) -> 1 + l.Size + r.Size
 | Tip -> 0

SHOULD YOU USE MEMBERS OR FUNCTIONS?

F# lets you define both members associated with types and objects via the dot-notation and static functions
that can perform essentially the same operations. For example, the length of a string s can be computed by
both the s.Length property and the String.length function. Given the choice, which should you use in
your code? Although there is no fixed answer to this, here are some general rules:

Use members (methods and properties) where they already exist, unless you
have other good reasons not to do so. It’s better to use s.Length than
String.length, simply because it’s shorter, even if it occasionally requires
using an additional type annotation. That is, embrace dot-notation, but use it
tastefully.

When designing a framework or library, define members for the intrinsic,
essential properties and operations associated with a type.

When designing a framework or library, define additional functionality in new
modules or by using extension members. The section “Extending Existing Types
and Modules” later in this chapter covers extension members.

Sometimes there is duplication in functionality between dot-notation members and values in associated
modules. This is intended and should be accepted as part of the mixed OO/functional nature of F#.

Using Classes
Record and union types are symmetric: the values used to construct an object are the same as those stored
in the object, which are a subset of those published by the object. This symmetry makes record and union
types succinct and clear, and it helps give them other properties; for example, the F# compiler
automatically derives generic equality, comparison, and hashing routines for these types.

However, more advanced object programming often needs to break these symmetries. For example,
let’s say you want to precompute and store the length of a vector in each vector value. It’s clear you don’t
want everyone who creates a vector to have to perform this computation for you. Instead, you precompute
the length as part of the construction sequence for the type. You can’t do this using a record, except by
using a helper function, so it’s convenient to switch to a more general notation for class types. Listing 6-2
shows the Vector2D example using a class type.

115

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

Listing 6-2. A Vector2D Type with Length Precomputation via a Class Type

type Vector2D(dx : float, dy : float) =

 let len = sqrt(dx * dx + dy * dy)

 /// Get the X component of the vector
 member v.DX = dx

 /// Get the Y component of the vector
 member v.DY = dy

 /// Get the length of the vector
 member v.Length = len

 /// Return a vector scaled by the given factor
 member v.Scale(k) = Vector2D(k * dx, k * dy)

 /// Return a vector shifted by the given delta in the Y coordinate
 member v.ShiftX(x) = Vector2D(dx = dx + x, dy = dy)

 /// Return a vector shifted by the given delta in the Y coordinate
 member v.ShiftY(y) = Vector2D(dx = dx, dy = dy + y)

 /// Return a vector that is shifted by the given deltas in each coordinate
 member v.ShiftXY(x, y) = Vector2D(dx = dx + x, dy = dy + y)

 /// Get the zero vector
 static member Zero = Vector2D(dx = 0.0, dy = 0.0)

 /// Get a constant vector along the X axis of length one
 static member OneX = Vector2D(dx = 1.0, dy = 0.0)

 /// Get a constant vector along the Y axis of length one
 static member OneY = Vector2D(dx = 0.0, dy = 1.0)

You can now use this type as follows:

> let v = Vector2D(3.0, 4.0);;

val v : Vector2D

> v.Length;;

val it : float = 5.0

> v.Scale(2.0).Length;;

val it : float = 10.0

Once again, it’s helpful to look at the inferred type signature for the Vector2D type definition of Listing
6-2:

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

116

type Vector2D =
 class
 new : dx:float * dy:float -> Vector2D
 member Scale : k:float -> Vector2D
 member ShiftX : x:float -> Vector2D
 member ShiftXY : x:float * y:float -> Vector2D
 member ShiftY : y:float -> Vector2D
 member DX : float
 member DY : float
 member Length : float
 static member OneX : Vector2D
 static member OneY : Vector2D
 static member Zero : Vector2D
 end

The signature of the type is almost the same as that for Listing 6-1. The primary difference is in the
construction syntax. Let’s look at what’s going on here. The first line says you’re defining a type Vector2D
with a primary constructor. This is sometimes called an implicit constructor. The constructor takes two
arguments, dx and dy. The variables dx and dy are in scope throughout the (nonstatic) members of the type
definition.

The second line is part of the computation performed each time an object of this type is constructed:

 let len = sqrt(dx * dx + dy * dy)

Like the input values, the len value is in scope throughout the rest of the (nonstatic) members of the
type. The next three lines publish both the input values and the computed length as properties:

 member v.DX = dx
 member v.DY = dy
 member v.Length = len

The remaining lines implement the same methods and static properties as the original record type.
The Scale method creates its result by calling the constructor for the type using the expression Vector2D(k
* dx, k * dy). In this expression, arguments are specified by position.

Class types with primary constructors always have the following form:

type TypeName <type-arguments>
optional

 arguments [as ident]
 optional

 =
 [inherit type [as base]

 optional
]

 optional
 [let-binding | let-rec bindings]

 zero-or-more

 [do-statement]
 zero-or-more

 [abstract-binding | member-binding | interface-implementation]

 zero-or-more

Later sections cover inheritance, abstract bindings, and interface implementations.
The Vector2D in Listing 6-2 uses a construction sequence. Construction sequences can enforce object

invariants. For example, the following defines a vector type that checks that its length is close to 1.0 and
refuses to construct an instance of the value if not:

/// Vectors whose length is checked to be close to length one.
type UnitVector2D(dx,dy) =
 let tolerance = 0.000001

 let length = sqrt (dx * dx + dy * dy)

117

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

 do if abs (length - 1.0) >= tolerance then failwith "not a unit vector";

 member v.DX = dx

 member v.DY = dy

 new() = UnitVector2D (1.0,0.0)

This example shows something else: sometimes it’s convenient for a class to have multiple
constructors. You do this by adding extra explicit constructors using a member named new. These must
ultimately construct an instance of the object via the primary constructor. The inferred signature for this
type contains two constructors:

type UnitVector2D =
 class
 new : unit -> UnitVector2D
 new : dx:float * dy:float -> UnitVector2D
 member DX : float
 member DY : float
 end

This represents a form of method overloading, covered in more detail in the “Adding Method
Overloading” section later in this chapter.

Class types can also include static bindings. For example, this can be used to ensure only one vector
object is allocated for the Zero and One properties of the vector type:

/// A class including some static bindings
type Vector2D(dx : float, dy : float) =

 static let zero = Vector2D(0.0, 0.0)
 static let onex = Vector2D(1.0, 0.0)
 static let oney = Vector2D(0.0, 1.0)

 /// Get the zero vector
 static member Zero = zero

 /// Get a constant vector along the X axis of length one
 static member OneX = onex

 /// Get a constant vector along the Y axis of length one
 static member OneY = oney

Static bindings in classes are initialized once, along with other module and static bindings in the file. If
the class type is generic, it’s initialized once per concrete type generic instantiation.

Adding Further Object Notation to Your Types
As we mentioned, one of the most useful aspects of object programming is the notational convenience of
dot-notation. This extends to other kinds of notation, in particular expr.[expr] indexer notation, named

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

118

arguments, optional arguments, operator overloading, and method overloading. The following sections
cover how to define and use these notational conveniences.

Working with Indexer Properties
Like methods, properties can take arguments; these are called indexer properties. The most commonly
defined indexer property is called Item, and the Item property on a value v is accessed via the special
notation v.[i]. As the notation suggests, these properties are normally used to implement the lookup
operation on collection types. The following example implements a sparse vector in terms of an
underlying sorted dictionary:

open System.Collections.Generic

type SparseVector(items : seq<int * float>)=
 let elems = new SortedDictionary<_,_>()
 do items |> Seq.iter (fun (k, v) -> elems.Add(k, v))

 /// This defines an indexer property
 member t.Item
 with get(idx) =
 if elems.ContainsKey(idx) then elems.[idx]
 else 0.0

You can define and use the indexer property as follows:

> let v = SparseVector [(3, 547.0)];;

val v : SparseVector

> v.[4];;

val it : float = 0.0

> v.[3];;

val it : float = 547.0

You can also use indexer properties as mutable setter properties with the syntax expr.[expr] <- expr.
This is covered in the section “Defining Object Types with Mutable State.” Indexer properties can also take
multiple arguments; for example, the indexer property for the F# Power Pack type Microsoft.FSharp.Math.
Matrix<'T> takes two arguments. Chapter 10 describes this type.

Adding Overloaded Operators
Types can also include the definition of overloaded operators. Typically, you do this by defining static
members with the same names as the relevant operators. Here is an example:

type Vector2DWithOperators(dx : float,dy : float) =
 member x.DX = dx
 member x.DY = dy

 static member (+) (v1 : Vector2DWithOperators, v2 : Vector2DWithOperators) =

119

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

 Vector2DWithOperators(v1.DX + v2.DX, v1.DY + v2.DY)

 static member (-) (v1 : Vector2DWithOperators, v2 : Vector2DWithOperators) =
 Vector2DWithOperators (v1.DX - v2.DX, v1.DY - v2.DY)

> let v1 = new Vector2DWithOperators (3.0, 4.0);;

val v1 : Vector2DWithOperators

> v1 + v1;;

val it : Vector2DWithOperators = {DX = 6.0; DY = 8.0;}

> v1 - v1;;

val it : Vector2DWithOperators = {DX = 6.0; DY = 8.0;}

If you add overloaded operators to your type, you may also have to customize how generic equality,
hashing, and comparison are performed. In particular, the behavior of generic operators such as hash, <, >,
<=, >=, compare, min, and max isn’t specified by defining new static members with these names, but rather by
the techniques described in Chapter 9.

HOW DOES OPERATOR OVERLOADING WORK?

Operator overloading in F# works by having fixed functions that map uses of operators through to particular
static members on the static types involved in the operation. These functions are usually defined in the F#
library. For example, the F# library includes the following definition for the (+) operator:

let inline (+) x y = ((^a or ^b): (static member (+) : ^a * ^b -> ^c) (x,y))

This defines the infix function (+) and is implemented using a special expression that says “implement x +
y by calling a static member (+) on the type of the left or right operand.” The function is marked inline to
ensure that F# can always check for the existence of this member and call it efficiently. When you name a
static member (+), then that is really shorthand for the name op_Addition, which is the .NET standard
encoded name for addition operators.

You can define your own operators if you want, but they aren’t automatically overloaded in the same way as
F# library definitions like the one shown previously. For example, the following defines a new infix operator
that appends a single element to the end of a list:

let (++) x y = List.append x [y]

This operator isn’t overloaded; it’s a single fixed function. Defining non-overloaded operators can help make
some implementation code more succinct, and you use this technique in the symbolic programming
examples in Chapter 12.

In principle, you can define new operators that are truly overloaded in the same way as the definition of (+) in
the F# library, mapping the operator across to particular static members. However, code is generally much
clearer if you stick to the standard overloaded operators.

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

120

Using Named and Optional Arguments
The F# object programming constructs are designed largely for use in APIs for software components.
Two useful mechanisms in APIs permit callers to name arguments and let API designers make certain
arguments optional.

Named arguments are simple. For example, in Listing 6-2, the implementations of some methods
specify arguments by name, as in the expression Vector2D(dx=dx+x, dy=dy). You can use named
arguments with all dot-notation method calls. Code written using named arguments is often much more
readable and maintainable than code relying on argument position. The rest of this book frequently uses
named arguments.

You declare a member argument optional by prefixing the argument name with ?. Within a function
implementation, an optional argument always has an option<_> type; for example, an optional argument of
type int appears as a value of type option<int> within the function body. The value is None if no argument is
supplied by the caller and Some(arg) if the argument arg is given by the caller. For example:

open System.Drawing

type LabelInfo(?text : string, ?font : Font) =
 let text = defaultArg text ""
 let font = match font with
 | None -> new Font(FontFamily.GenericSansSerif, 12.0f)
 | Some v -> v
 member x.Text = text
 member x.Font = font

 /// Define a static method which creates an instance
 static member Create(?text, ?font) = new LabelInfo(?text=text, ?font=font)

The inferred signature for this type shows how the optional arguments have become named
arguments accepting option values:

type LabelInfo =
 new : ?text:string * ?font:System.Drawing.Font -> LabelInfo
 static member Create : ?text:string * ?font:System.Drawing.Font -> LabelInfo
 member Font : System.Drawing.Font
 member Text : string

You can now create LabelInfo values using several different techniques:

> LabelInfo (text="Hello World");;

val it : LabelInfo = LabelInfo {Font = [Font: Name=Microsoft Sans Serif, Size=12, …];

> LabelInfo("Goodbye Lenin");;

val it : LabelInfo = LabelInfo {Font = [Font: Name=Microsoft Sans Serif, Size=12 …];

> LabelInfo(font = new Font(FontFamily.GenericMonospace, 36.0f),
 text = "Imagine");;

val it : LabelInfo = LabelInfo {Font = [Font: Name=Courier New, Size=36, …];

121

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

Optional arguments must always appear last in the set of arguments accepted by a method. They’re
usually used as named arguments by callers. At the callsite, this is done using the syntax argument-name =
argument-value. If the argument has type T option, then argument-value must have type T.

In the example, you see the static member Create which also takes optional arguments, the code for
which is repeated below.

type LabelInfo … =
 ...

 /// Define a static method which creates an instance
 static member Create(?text, ?font) = new LabelInfo(?text = text, ?font = font)

This represents a common pattern when using optional arguments heavily within a framework
implementation: one method taking optional arguments is defined in terms of another. The
implementation of the Create method simply passes the optional arguments through to be optional
arguments of the constructor. At the callsite, this is done using the syntax ?argument-name = argument-
value. Note the extra question mark at the callsite! If the argument has type T option, then argument-value
must have type T option as well.

The implementation of LabelInfo uses the F# library function defaultArg, which is a useful way to
specify simple default values for optional arguments. Its type is as follows:

val defaultArg : 'T option -> 'T-> 'T

■ Note The second argument given to the defaultArg function is evaluated before the function is called. This
means you should take care that this argument isn’t expensive to compute and doesn’t need to be disposed. The
previous example uses a match expression to specify the default for the font argument for this reason.

Adding Method Overloading
.NET APIs and other object frameworks frequently use a notational device called method overloading. This
means a type can support multiple methods with the same name, and uses of methods are distinguished
by name, number of arguments, and argument types. For example, the System.Console.WriteLine method
of .NET has 19 overloads!

Method overloading is used relatively rarely in F#-authored classes, partly because optional
arguments and mutable property setters tend to make it less necessary. However, method overloading is
permitted in F#. First, methods can easily be overloaded by the number of arguments. For example, Listing
6-3 shows a concrete type representing an interval of numbers on the number line. It includes two
methods called Span, one taking a pair of intervals and the other taking an arbitrary collection of intervals.
The overloading is resolved according to argument count.

Listing 6-3. An Interval Type with Overloaded Methods

/// Interval(lo,hi) represents the range of numbers from lo to hi,
/// but not including either lo or hi.
type Interval(lo, hi) =
 member r.Lo = lo

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

122

 member r.Hi = hi
 member r.IsEmpty = hi <= lo
 member r.Contains v = lo < v && v < hi

 static member Empty = Interval(0.0, 0.0)

 /// Return the smallest interval that covers both the intervals
 /// This method is overloaded.
 static member Span (r1 : Interval, r2 : Interval) =
 if r1.IsEmpty then r2 else
 if r2.IsEmpty then r1 else
 Interval(min r1.Lo r2.Lo, max r1.Hi r2.Hi)

 /// Return the smallest interval that covers all the intervals
 /// This method is overloaded.
 static member Span(ranges : seq<Interval>) =
 Seq.fold (fun r1 r2 -> Interval.Span(r1, r2)) Interval.Empty ranges

Second, multiple methods can also have the same number of arguments and be overloaded by type. One
of the most common examples is providing multiple implementations of overloaded operators on the same
type. The following example shows a Point type that supports two subtraction operations, one subtracting a
Point from a Point to give a Vector and one subtracting a Vector from a Point to give a Point:

type Vector =
 { DX : float; DY : float }
 member v.Length = sqrt(v.DX * v.DX + v.DY * v.DY)

type Point =
 { X : float; Y : float }

 static member (-) (p1 : Point, p2 : Point) =
 { DX = p1.X - p2.X; DY = p1.Y - p2.Y }

 static member (-) (p : Point, v : Vector) =
 { X = p.X - v.DX; Y = p.Y - v.DY }

Overloads must be unique by signature, and you should take care to make sure your overload set isn’t
too ambiguous—the more overloads you use, the more type annotations users of your types will need to
add.

Defining Object Types with Mutable State
All the types you’ve seen so far in this chapter have been immutable. For example, the values of the
Vector2D types shown in Listing 6-1 and Listing 6-2 can’t be modified after they’re created. Sometimes you
may need to define mutable objects, particularly because object programming is a generally useful
technique for encapsulating mutable and evolving state. Listing 6-4 shows the definition of a mutable
representation of a 2D vector.

123

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

Listing 6-4. An Object Type with State

type MutableVector2D(dx : float, dy : float) =
 let mutable currDX = dx
 let mutable currDY = dy

 member vec.DX with get() = currDX and set v = currDX <- v
 member vec.DY with get() = currDY and set v = currDY <- v

 member vec.Length
 with get () = sqrt (currDX * currDX + currDY * currDY)
 and set len =
 let theta = vec.Angle
 currDX <- cos theta * len
 currDY <- sin theta * len

 member vec.Angle
 with get () = atan2 currDY currDX
 and set theta =
 let len = vec.Length
 currDX <- cos theta * len
 currDY <- sin theta * len

The mutable state is held in two mutable local let bindings for currDX and currDY. It also exposes
additional settable properties, Length and Angle, that interpret and adjust the underlying currDX/currDY
values. Here is the inferred signature for the type:

type MutableVector2D =
 class
 new : dx:float * dy:float -> MutableVector2D
 member Angle : float
 member DX : float
 member DY : float
 member Length : float
 member Angle : float with set
 member DX : float with set
 member DY : float with set
 member Length : float with set
 end

You can use this type as follows:

> let v = MutableVector2D(3.0, 4.0);;

val v : MutableVector2D

> (v.DX, v.DY);;

val it : float * float = (3.0, 4.0)

> (v.Length, v.Angle);;

val it : float * float = (5.0, 0.927295218)

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

124

> v.Angle <- System.Math.PI / 6.0;; // "30 degrees"
> (v.DX, v.DY);;

val it : float * float = (4.330127019, 2.5)

> (v.Length, v.Angle);;

val it : float * float = (5.0, 0.523598775)

Adjusting the Angle property rotates the vector while maintaining its overall length. This example uses
the long syntax for properties, where you specify both set and get operations for the property.

If the type has an indexer (Item) property, then you write an indexed setter as follows:

open System.Collections.Generic
type IntegerMatrix(rows : int, cols : int)=
 let elems = Array2D.zeroCreate<int> rows cols

 /// This defines an indexer property with getter and setter
 member t.Item
 with get (idx1, idx2) = elems.[idx1, idx2]
 and set (idx1, idx2) v = elems.[idx1, idx2] <- v

■ Note Class types with a primary constructor are useful partly because they implicitly encapsulate internal
functions and mutable state. This is because all the construction arguments and let bindings are private to the
object instance being constructed. This is just one of the ways of encapsulating information in F# programming.
Chapter 7 covers encapsulation more closely.

OBJECTS AND MUTATION

Object programming was original developed as a technique for controlling the complexity of mutable state.
However, many of the concerns of object programming are orthogonal to this. For example, programming
constructs such as object interface types, inheritance, and higher-level design patterns such as publish/
subscribe stem from the OO tradition, whereas techniques such as functions, type abstraction, and
aggregate operations such as map and fold stem from the functional programming tradition. Many object
programming techniques have no fundamental relationship to object mutation and identity; for example,
interfaces and inheritance can be used very effectively with immutable objects. Much of the expressivity of
F# lies in the way it brings the techniques of object programming and functional programming comfortably
together.

Using Optional Property Settings
Throughout this book, you’ve used a second technique to specify configuration parameters when creating
objects: initial property settings for objects. For example, in Chapter 2, you used the following code:

open System.Windows.Forms
let form = new Form(Visible = true, TopMost = true, Text = "Welcome to F#")

125

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

The constructor for the System.Windows.Forms.Form class takes no arguments, so in this case the
named arguments indicate set operations for the given properties. The code is shorthand for this:

open System.Windows.Forms

let form =
 let tmp = new Form()
 tmp.Visible <- true
 tmp.TopMost <- true
 tmp.Text <- "Welcome to F#"
 tmp

The F# compiler interprets unused named arguments as calls that set properties of the returned
object. This technique is widely used for mutable objects that evolve over time, such as graphical
components, because it greatly reduces the number of optional arguments that need to be plumbed
around.

Here’s how to define a version of the LabelInfo type used earlier that is configurable by optional
property settings:

open System.Drawing

type LabelInfoWithPropertySetting() =
 let mutable text = "" // the default
 let mutable font = new Font(FontFamily.GenericSansSerif, 12.0f)
 member x.Text with get() = text and set v = text <- v
 member x.Font with get() = font and set v = font <- v

> LabelInfoWithPropertySetting(Text="Hello World");;

let form = new Form(Visible = true, TopMost = true, Text = "Welcome to F#")

The “Defining Object Types with Mutable State” section later in this chapter covers mutable objects in
more detail.

Declaring Auto-Properties
When declaring properties, especially settable ones, a common pattern occurs where the property storage is
defined, the initial value for the property is specified, and the member to allow external access to the
property is defined. This has a more convenient syntactic declaration form called an auto-property. An auto-
property declaration has the form member val id = expr followed by an optional with get,set if the
property storage is mutable and a property setter should be exported. An example is shown below, defining
the same type as above.

type LabelInfoWithPropertySetting() =
 member val Name = "label"
 member val Text = "" with get, set
 member val Font = new Font(FontFamily.GenericSansSerif, 12.0f) with get, set

Note that the initializer for an auto-property is executed once per object, when the object is
initialized. Auto-properties can also be static.

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

126

Getting Started with Object Interface Types
So far in this chapter, you’ve seen only how to define concrete object types. One of the key advances in both
functional and object-oriented programming has been the move toward using abstract types for large
portions of modern software. These values are typically accessed via interfaces, and you now look at
defining new object interface types.

The notion of an object interface type can sound a little daunting at first, but the concept is actually
simple; object interface types are ones whose member implementations can vary from value to value. As it
happens, you’ve already met one important family of types whose implementations also vary from value
to value: F# function types!

In Chapter 3, you saw how functions can be used to model a range of concepts such
as comparison functions, aggregation functions, and transformation functions.

In Chapter 5, you saw how records of function values can be used for the parameters
needed to make an algorithm generic.

You’ve also already met some other important object interface types such as System.Collections.
Generic.IEnumerable<'T> and System.IDisposable. .NET object interface types always begin with the
letter I.

Object interface types are always implemented, and the type definition itself doesn’t specify how this is
done. Listing 6-5 shows an object interface type IShape and a number of implementations of it. This
section walks through the definitions in this code piece by piece, because they illustrate the key concepts
behind object interface types and how they can be implemented.

Listing 6-5. An Object Interface Type IShape and Some Implementations

open System.Drawing
type IShape =
 abstract Contains : Point -> bool
 abstract BoundingBox : Rectangle

let circle (center : Point, radius : int) =
 { new IShape with

 member x.Contains(p : Point) =
 let dx = float32 (p.X - center.X)
 let dy = float32 (p.Y - center.Y)
 sqrt(dx * dx + dy * dy) <= float32 radius

 member x.BoundingBox =
 Rectangle(
 center.X - radius, center.Y - radius,
 2 * radius + 1, 2 * radius + 1)}

let square (center : Point, side : int) =
 { new IShape with

 member x.Contains(p : Point) =
 let dx = p.X - center.X
 let dy = p.Y - center.Y
 abs(dx) < side / 2 && abs(dy) < side / 2

 member x.BoundingBox =
 Rectangle(center.X - side, center.Y - side, side * 2, side * 2)}

127

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

type MutableCircle() =

 member val Center = Point(x = 0, y = 0) with get, set
 member val Radius = 10 with get, set

 member c.Perimeter = 2.0 * System.Math.PI * float c.Radius

 interface IShape with

 member c.Contains(p : Point) =
 let dx = float32 (p.X - c.Center.X)
 let dy = float32 (p.Y - c.Center.Y)
 sqrt(dx * dx + dy * dy) <= float32 c.Radius

 member c.BoundingBox =
 Rectangle(
 c.Center.X - c.Radius, c.Center.Y - c.Radius,
 2 * c.Radius + 1, 2 * c.Radius + 1)

Defining New Object Interface Types
The key definition in Listing 6-5 is the following (it also uses Rectangle and Point, two types from the
System.Drawing namespace):

open System.Drawing
type IShape =
 abstract Contains : Point -> bool
 abstract BoundingBox : Rectangle

Here you use the keyword abstract to define the member signatures for this type, indicating that the
implementation of the member may vary from value to value. Also note that IShape isn’t concrete; it’s
neither a record nor a discriminated union or class type. It doesn’t have any constructors and doesn’t
accept any arguments. This is how F# infers that it’s an object interface type.

Implementing Object Interface Types Using Object Expressions
The following code from Listing 6-5 implements the object interface type IShape using an object
expression:

let circle(center : Point, radius : int) =
 { new IShape with

 member x.Contains(p : Point) =
 let dx = float32 (p.X - center.X)
 let dy = float32 (p.Y - center.Y)
 sqrt(dx * dx + dy * dy) <= float32 radius

 member x.BoundingBox =
 Rectangle(
 center.X - radius, center.Y - radius,
 2 * radius + 1, 2 * radius + 1)}

The type of the function circle is as follows:

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

128

val circle : center:Point * radius:int -> IShape

The construct in the braces, { new IShape with ... }, is the object expression. This is a new
expression form that you haven’t encountered previously in this book, because it’s generally used only
when implementing object interface types. An object expression must give implementations for all the
members of an object interface type. The general form of this kind of expression is simple:

{ new Type optional-arguments with
 member-definitions
 optional-extra-interface-definitions }

The member definitions take the same form as members for type definitions described earlier in this
chapter. The optional arguments are given only when object expressions inherit from a class type, and the
optional interface definitions are used when implementing additional interfaces that are part of a
hierarchy of object interface types.

You can use the function circle as follows:

> let bigCircle = circle(Point(0, 0), 100);;

val bigCircle : IShape

> bigCircle.BoundingBox;;

val it : Rectangle = {X=-100,Y=-100,Width=201,Height=201}

> bigCircle.Contains(Point(70, 70));;

val it : bool = true

> bigCircle.Contains(Point(71, 71));;

val it : bool = false

Listing 6-5 also contains another function square that gives a different implementation for IShape,
also using an object expression:

> let smallSquare = square(Point(1, 1), 1);;

val smallSquare : IShape

> smallSquare.BoundingBox;;

val it : Rectangle = {X=0,Y=0,Width=2,Height=2}

> smallSquare.Contains(Point(0,0));;

val it : bool = false

■ Note In object-oriented languages, implementing types in multiple ways is commonly called polymorphism,
which you may call polymorphism of implementation. Polymorphism of this kind is present throughout F#, and not
just with respect to the object constructs. In functional programming, the word polymorphism is used to mean
generic type parameters. These are an orthogonal concept discussed in Chapters 2 and 5.

129

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

Implementing Object Interface Types Using Concrete Types
It’s common to have concrete types that both implement one or more object interface types and provide
additional services of their own. Collections are a primary example, because they always implement
IEnumerable<'T>. To give another example, in Listing 6-5 the type MutableCircle is defined as follows:

type MutableCircle() =
 let radius = 0
 member val Center = Point(x = 0, y = 0) with get, set
 member val Radius = radius with get, set
 member c.Perimeter = 2.0 * System.Math.PI * float radius

 interface IShape with
 member c.Contains(p : Point) =
 let dx = float32 (p.X - c.Center.X)
 let dy = float32 (p.Y - c.Center.Y)
 sqrt(dx * dx + dy * dy) <= float32 c.Radius

 member c.BoundingBox =
 Rectangle(
 c.Center.X - c.Radius, c.Center.Y - c.Radius,
 2 * c.Radius + 1, 2 * c.Radius + 1)

This type implements the IShape interface, which means MutableCircle is a subtype of IShape, but it
also provides three properties—Center, Radius, and Perimeter—that are specific to the MutableCircle type,
two of which are settable. The type has the following signature:

type MutableCircle =
 interface IShape
 new : unit -> MutableCircle
 member Perimeter : float
 member Center : Point with get,set
 member Radius : int with get,set

You can now reveal the interface (through a type cast) and use its members. For example:

> let circle2 = MutableCircle();;

val circle2 : MutableCircle

> circle2.Radius;;

val it : int = 10

> (circle2 :> IShape).BoundingBox;;

val it : Rectangle = {X=-10,Y=-10,Width=21,Height=21}

Using Common Object Interface Types from the .NET Libraries
Like other constructs discussed in this chapter, object interface types are often encountered when using .
NET libraries. Some object interface types such as IEnumerable<'T> (called seq<'T> in F# coding) are also

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

130

used throughout F# programming. It’s a .NET convention to prefix the name of all object interface types
with I. However, using object interface types is very common in F# object programming, so this
convention isn’t always followed.

Here’s the essence of the definition of the System.Collections.Generic.IEnumerable<'T> type and the
related type IEnumerator using F# notation:

type IEnumerator<'T> =
 abstract Current : 'T
 abstract MoveNext : unit -> bool

type IEnumerable<'T> =
 abstract GetEnumerator : unit -> IEnumerator<'T>

The IEnumerable<'T> type is implemented by most concrete collection types. It can also be
implemented by a sequence expression or by calling a library function such as Seq.unfold, which in turn
uses an object expression as part of its implementation.

■ Note The IEnumerator<'T> and IEnumerable<'T> interfaces are defined in a library component that is
implemented using another .NET language. This section uses the corresponding F# syntax. In reality,
IEnumerator<'T> also inherits from the nongeneric interface System.Collections.IEnumerator and the
type System.IDisposable, and IEnumerable<'T> also inherits from the nongeneric interface System.
Collections.IEnumerable. For clarity, we’ve ignored this. See the F# library documentation for full example
implementations of these types.

Some other useful predefined F# and .NET object interface types are as follows:

System.IDisposable: Represents values that may own explicitly reclaimable
resources.

System.IComparable and System.IComparable<'T>: Represent values that can be
compared to other values. F# generic comparison is implemented via these types, as
you see in Chapter 9.

Microsoft.FSharp.Control.IEvent: Represents mutable ports into which you can
plug event listeners, or callbacks. This technique is described in Chapter 11. Some
other entity is typically responsible for raising the event and thus calling all the
listener callbacks. In F#, .NET events become values of this type or the related type
Microsoft.FSharp.Control.IDelegateEvent, and the module Microsoft.FSharp.
Control.Event contains many useful functions for manipulating these values. You
can open this module by using open Event.

Understanding Hierarchies of Object Interface Types
Object interface types can be arranged in hierarchies using interface inheritance. This provides a way to
classify types. To create a hierarchy, you use the inherit keyword in an object interface type definition
along with each parent object interface type. For example, the .NET Framework includes a hierarchical
classification of collection types: ICollection<'T> extends IEnumerable<'T>. Here are the essential
definitions of these types in F# syntax, with some minor details omitted:

131

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

type IEnumerable<'T> =
 abstract GetEnumerator : unit -> IEnumerator<'T>

type ICollection<'T> =
 inherit IEnumerable<'T>
 abstract Count : int
 abstract IsReadOnly : bool
 abstract Add : 'T -> unit
 abstract Clear : unit -> unit
 abstract Contains : 'T -> bool
 abstract CopyTo : 'T [] * int -> unit
 abstract Remove : 'T -> unit

When you implement an interface that inherits from another interface, you must effectively
implement both interfaces.

■ Caution Although hierarchical modeling is useful, you must use it with care: poorly designed hierarchies often
have to be abandoned late in the software development life cycle, leading to major disruptions. For many
applications, it’s adequate to use existing classification hierarchies in conjunction with some new nonhierarchical
interface types.

More Techniques to Implement Objects
Objects can be difficult to implement from scratch; for example, a graphical user interface (GUI)
component must respond to many different events, often in regular and predictable ways, and it would
be tedious to have to recode all this behavior for each component. This makes it essential to support the
process of creating partial implementations of objects, where the partial implementations can then be
completed or customized. The following sections cover techniques to build partial implementations of
objects.

Combining Object Expressions and Function Parameters
One of the easiest ways to build a partial implementation of an object is to qualify the implementation of
the object by a number of function parameters that complete the implementation. For example, the
following code defines an object interface type called ITextOutputSink, a partial implementation of that
type called simpleOutputSink, and a function called simpleOutputSink that acts as a partial
implementation of that type. The remainder of the implementation is provided by a function parameter
called writeCharFunction:

/// An object interface type that consumes characters and strings
type ITextOutputSink =

 /// When implemented, writes one Unicode character to the sink
 abstract WriteChar : char -> unit

 /// When implemented, writes one Unicode string to the sink
 abstract WriteString : string -> unit

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

132

/// Returns an object that implements ITextOutputSink by using writeCharFunction
let simpleOutputSink writeCharFunction =
 { new ITextOutputSink with
 member x.WriteChar(c) = writeCharFunction c
 member x.WriteString(s) = s |> String.iter x.WriteChar }

This construction function uses function values to build an object of a given shape. Here the inferred
type is as follows:

val simpleOutputSink : writeCharFunction:(char -> unit) -> ITextOutputSink

The following code instantiates the function parameter to output the characters to a particular
System.Text.StringBuilder object, an imperative type for accumulating characters in a buffer before
converting these to an immutable System.String value:

let stringBuilderOuputSink (buf : System.Text.StringBuilder) =
 simpleOutputSink (fun c -> buf.Append(c) |> ignore)

Here is an example that uses this function interactively:

> let buf = new System.Text.StringBuilder();;

val buf : StringBuilder =

> let c = stringBuilderOuputSink(buf);;

val c : ITextOutputSink

> ["Incy"; " "; "Wincy"; " "; "Spider"] |> List.iter c.WriteString;;
> buf.ToString();;

val it : string = "Incy Wincy Spider"

Object expressions must give definitions for all unimplemented abstract members and can’t add other
members.

One powerful technique implements some or all abstract members in terms of function parameters.
As you saw in Chapter 3, function parameters can represent a wide range of concepts. For example, here is
a type CountingOutputSink that performs the same role as the earlier function simpleOutputSink, except
that the number of characters written to the sink is recorded and published as a property:

/// A type which fully implements the ITextOutputSink object interface
type CountingOutputSink(writeCharFunction : char -> unit) =

 let mutable count = 0

 interface ITextOutputSink with
 member x.WriteChar(c) = count <- count + 1; writeCharFunction(c)
 member x.WriteString(s) = s |> String.iter (x :> ITextOutputSink).WriteChar

 member x.Count = count

133

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

■ Note Qualifying object implementations by function parameters can be seen as a simple form of the OO design
pattern known as delegation, because parts of the implementation are delegated to the function values. Delegation
is a powerful and compositional technique for reusing fragments of implementations and is commonly used in F# as
a replacement for OO implementation inheritance.

Defining Partially Implemented Class Types
In this chapter, you’ve seen how to define concrete types, such as Vector2D in Listings 6-2 and 6-3, and
you’ve seen how to define object interface types, such as IShape in Listing 6-5. Sometimes it’s useful to
define types that are halfway between these types: partially concrete types. Partially implemented types are
class types that also have abstract members, some of which may be unimplemented and some of which
may have default implementations. For example, consider the following class:

/// A type whose members are partially implemented
[<AbstractClass>]
type TextOutputSink() =
 abstract WriteChar : char -> unit
 abstract WriteString : string -> unit
 default x.WriteString s = s |> String.iter x.WriteChar

This class defines two abstract members, WriteChar and WriteString, but gives a default
implementation for WriteString in terms of WriteChar. (In C# terminology, WriteString is virtual and
WriteChar is abstract). Because WriteChar isn’t yet implemented, you can’t create an instance of this type
directly; unlike other concrete types, partially implemented types still need to be implemented. One way
to do this is to complete the implementation via an object expression. For example:

{ new TextOutputSink() with
 member x.WriteChar c = System.Console.Write(c)}

Using Partially Implemented Types via Delegation
This section covers how you can use partially implemented types to build complete objects. One approach
is to instantiate one or more partially implemented types to put together a complete concrete type. This is
often done via delegation to an instantiation of the partially concrete type; for example, the following
example creates a private, internal TextOutputSink object whose implementation of WriteChar counts the
number of characters written through that object. You use this object to build the HtmlWriter object that
publishes three methods specific to the process of writing a particular format:

/// A type which uses a TextOutputSink internally
type HtmlWriter() =
 let mutable count = 0
 let sink =
 { new TextOutputSink() with
 member x.WriteChar c =
 count <- count + 1;
 System.Console.Write c }

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

134

 member x.CharCount = count
 member x.OpenTag(tagName) = sink.WriteString(sprintf "<%s>" tagName)
 member x.CloseTag(tagName) = sink.WriteString(sprintf "</%s>" tagName)
 member x.WriteString(s) = sink.WriteString(s)

Using Partially Implemented Types via Implementation Inheritance
Another technique to use partially implemented types is called implementation inheritance, which is
widely used in OO languages despite being a somewhat awkward technique. Implementation inheritance
tends to be much less significant in F# because it comes with major drawbacks:

Implementation inheritance takes base objects and makes a new type that is more
complex, by adding new members. This is against the spirit of functional
programming, where the aim is to build simple, composable abstractions.
Functional programming, object expressions, and delegation tend to provide good
alternative techniques for defining, sharing, and combining implementation
fragments.

Implementation hierarchies tend to leak across API boundaries, revealing how
objects are implemented rather than how they can be used and composed.

Implementation hierarchies are often fragile in response to minor changes in
program specification. There is pressure on developers to put too much
functionality in base classes, anticipiating the needs of all derivations. There’s also
pressure to go back and change the base class as new needs arise. This gives rise the
the “fragile base class” problem, a major curse of object-oriented programming.

If implementation inheritance is used, you should in many cases consider making all implementing
classes private or hiding all implementing classes behind a signature. For example, the Microsoft.FSharp.
Collections.Seq module provides many implementations of the seq<'T> interface but exposes no
implementation inheritance.

Nevertheless, hierarchies of classes are important in domains such as GUI programming, and the
technique is used heavily by .NET libraries written in other .NET languages. For example, System.Windows.
Forms.Control, System.Windows.Forms.UserControl, and System.Windows.Forms.RichTextBox are part of a
hierarchy of visual GUI elements. Should you want to write new controls, then you must understand this
implementation hierarchy and how to extend it. However, even in this domain, implementation
inheritance is often less important than you may think, because these controls can often be configured in
powerful and interesting ways by adding function callbacks to events associated with the controls.

Here is a simple example of applying the technique to instantiate and extend the partially
implemented type TextOutputSink:

/// An implementation of TextOutputSink, counting the number of bytes written
type CountingOutputSinkByInheritance() =
 inherit TextOutputSink()

 let mutable count = 0

 member sink.Count = count

 default sink.WriteChar c =
 count <- count + 1;
 System.Console.Write c

135

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

The keywords override and default can be used interchangeably; both indicate that an
implementation is being given for an abstract member. By convention, override is used when giving
implementations for abstract members in inherited types that already have implementations, and default
is used for implementations of abstract members that didn’t previously have implementations.

Implementations are also free to override and modify default implementations such as the
implementation of WriteString provided by TextOutputSink. Here is an example:

{ new TextOutputSink() with
 member sink.WriteChar c = System.Console.Write c
 member sink.WriteString s = System.Console.Write s }

You can also build new partially implemented types by extending existing partially implemented
types. The following example takes the TextOutputSink type from the previous section and adds two
abstract members called WriteByte and WriteBytes, adds a default implementation for WriteBytes, adds
an initial implementation for WriteChar, and overrides the implementation of WriteString to use
WriteBytes. The implementations of WriteChar and WriteString use the .NET functionality to convert the
Unicode characters and strings to bytes under System.Text.UTF8Encoding, documented in the .NET
Framework class libraries:

open System.Text

/// A component to write bytes to an output sink
[<AbstractClass>]
type ByteOutputSink() =
 inherit TextOutputSink()

 /// When implemented, writes one byte to the sink
 abstract WriteByte : byte -> unit

 /// When implemented, writes multiple bytes to the sink
 abstract WriteBytes : byte[] -> unit

 default sink.WriteChar c = sink.WriteBytes(Encoding.UTF8.GetBytes [|c|])

 override sink.WriteString s = sink.WriteBytes(Encoding.UTF8.GetBytes s)

 default sink.WriteBytes b = b |> Array.iter sink.WriteByte

Combining Functional and Objects: Cleaning Up Resources
Many constructs in the System.IO namespace need to be closed after use, partly because they hold on to
operating-system resources such as file handles. This is an example where objects are used to encapsulate
and manage resource lifetime. In polished code, you use language constructs such as use val = expr to
ensure that the resource is closed at the end of the lexical scope where a stream object is active. For
example:

let myWriteStringToFile() =
 use outp = File.CreateText("playlist.txt")
 outp.WriteLine("Enchanted")
 outp.WriteLine("Put your records on")

This is equivalent to the following:

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

136

let myWriteStringToFile () =
 let outp = File.CreateText("playlist.txt")
 try
 outp.WriteLine("Enchanted")
 outp.WriteLine("Put your records on")
 finally
 (outp :> System.IDisposable).Dispose()

Both forms ensure that the underlying stream is closed deterministically and the operating system
resources are reclaimed when the lexical scope is exited. The longer form uses the :> operator to call
Dispose, explained further in Chapter 5. This happens regardless of whether the scope is exited because of
normal termination or because of an exception.

■ Note: If you don’t use using or otherwise explicitly close the stream, the stream is closed when the stream
object is finalized by the .NET garbage collector. It’s generally bad practice to rely on finalization to clean up
resources this way, because finalization isn’t guaranteed to happen in a deterministic, timely fashion.

Resources and IDisposable
All programming involves the use of real resources on the host machine(s) and operating system. For
example:

Stack: Implicitly allocated and deallocated as functions are called

Heap allocated memory: Used by all reference-typed objects

File handles: Such as operating-system file handles represented by System.IO.
FileStream objects and its subtypes

Network connections: Such as operating system I/O completion ports represented by
System.Net.WebResponse and its subtypes

Threads: Such as operating-system threads represented by System.Threading.Thread
objects and also worker threads in the .NET thread pool

Graphics objects: Such as drawing objects represented by various constructs under
the System.Drawing namespace

Concurrency objects: Such as operating-system synchronization objects represented
by System.Threading.WaitHandle objects and its subtypes

All resources are necessarily finite. In .NET programming, some resources such as memory are fully
managed, in the sense that you almost never need to consider when to clean up memory. This is done
automatically through a process called garbage collection. Chapter 18 looks at garbage collection in more
detail. Other resources must be reclaimed and/or recycled.

When prototyping, you can generally assume that resources are unbounded, although it’s good
practice when you’re using a resource to be aware of how much of the resource you’re using and roughly
what your budget for the resource is. For example:

On a modern 32-bit desktop machine, 10,000 tuple values occupy only a small
fragment of a machine’s memory, roughly 160KB, but 10,000 open file handles is an
extreme number and will stress the operating system. Ten thousand simultaneous
web requests may stress your network administrator.

137

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

In some cases, even memory should be explicitly and carefully reclaimed. For
example, on a modern 64-bit machine, the largest single array you can allocate in a
.NET 2.0 program is 2GB. If your machine has, say, 4GB of real memory, you may be
able to have only a handful of these objects and should strongly consider moving to
a regime in which you explicitly recycle these objects and think carefully before
allocating them.

With the exception of stack and memory, all objects that own resources should be subtypes of the .
NET type System.IDisposable. This is the primary way you can recognize primitive resources and objects
that wrap resources. The System.IDisposable interface has a single method; in F# syntax, it can be defined
as:

namespace System
 type IDisposable =
 abstract Dispose : unit -> unit

A simple approach to managing IDisposable objects is to give each resource a lifetime: that is, some
well-defined portion of the program execution for which the object is active. This is even easier when the
lifetime of a resource is lexically scoped, such as when a resource is allocated on entry to a function and
deallocated on exit. In this case, the resource can be tied to the scope of a particular variable, and you can
protect and dispose of a value that implements IDisposable by using a use binding instead of a let
binding. For example, in the following code, three values implement IDisposable, all of which are bound
using use:

/// Fetch a web page
let http (url : string) =
 let req = System.Net.WebRequest.Create url
 use resp = req.GetResponse()
 use stream = resp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 let html = reader.ReadToEnd()
 html

This is an improved version of the similar function you defined in Chapter 2, because it
deterministically closes the network connections. In all three cases, the objects (a WebResponse, a Stream,
and a StreamReader) are automatically closed and disposed at the end of an execution of the function.

A number of important types implement IDisposable; Table 6-1 shows some of them. You can use
tables such as this to chart the portions of the .NET Framework that reveal operating system functionality
to .NET applications.

Table 6-1. A Selection of the Types That Implement IDisposable

Namespace Some Types Implementing IDisposable
System.IO BinaryReader, BinaryWriter, FileSystemWatcher, IsolatedFileStorage,

Stream, TextReader, TextWriter, …

System.Drawing Brush, BufferedGraphics, Font, FontFamily, Graphics, Icon, Image, Pen,
Region, TextureBrush, …

System.Drawing.Text FontCollection, …

System.Drawing.Drawing2D CustomLineCap, GraphicsPath, GraphicsPathIterator, Matrix, …

System.Drawing.Imaging EncoderParameter, ImageAttributes, …

System.Net WebResponse, …

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

138

System.Net.Sockets Socket, TcpClient, …

System.Data.SqlClient SqlBulkCopy, SqlCommand, SqlConnection, SqlTransaction, …

System.Threading Timer, WaitHandle, AutoResetEvent, ManualResetEvent, Mutex, Semaphore, …

System.Web.UI Control, HttpApplication, …

System.Web.UI.WebControls Button, CheckBox, DataGrid, …

System.Windows.Forms Button, CheckBox, Cursor, Control, DataGrid, Form, …

Microsoft.Win32 RegistryKey, …

■ Tip: A tool such as Visual Studio can help you determine when a type has implemented IDisposable. When
you rest your mouse pointer over a value, you usually see this noted on the information displayed for a value.

WHEN WILL THE RUNTIME CLEAN UP FOR YOU?

People often ask if the .NET Common Language Runtime automatically cleans up resources such as file
handles the same way it cleans up memory. While when an object gets garbage collected, it may be finalized,
if the object is well implemented, this results in it deallocating any unmanaged resources, closing any
outstanding file connections, and releasing any operating-system resources. Although it’s appropriate to rely
on finalization when prototyping, never rely on finalization in code where you’re hitting resource limits.

For example, let’s say you have a loop where you open files using System.IO.File.OpenRead. If you
forget to close the file handles, you may quickly allocate thousands of them. If you’re lucky, the garbage
collector may finalize these before you run out of OS resources, but if not, one of your File.OpenRead calls
will fail with an exception, even if the file exists on disk.

Also, be aware of the potential for memory stickiness. This occurs when the .NET Common Language
Runtime is unable to garbage-collect memory even though objects have become unreachable. This happens
especially when long-running computations and inactive callbacks hold on to object handles related to the
earlier phases of execution of a program. Memory stickiness can also lead to objects never being finalized,
reinforcing that you shouldn’t rely on finalization to release nonmemory resources. Memory profiling tools
such as CLRProfiler are indispensable when you’re tracking down memory leaks in production code or long-
running applications.

Managing Resources with More Complex Lifetimes
Sometimes, the lifetime of a resource isn’t simple in the sense that it doesn’t follow a stack discipline. In
these cases, you should almost always adopt one of two techniques:

Design objects that can own one or more resources and that are responsible for
cleaning them up. Make sure these objects implement System.IDisposable.

Use control constructs that help you capture the kind of computation you’re
performing. For example, when generating sequences of data (such as from a database
connection), you should strongly consider using sequence expressions, discussed in
Chapter 3. These may have internal use bindings, and the resources are disposed
when each sequence iteration finishes. Likewise, when using asynchronous I/O, it

139

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

may be helpful to write your computation as an asynchronous workflow. Chapter 11
and the following sections provide examples.

 Consider implementing the IDisposable interface on objects and types in situations such as:

When you build an object that uses one or more IDisposable objects internally.

When you’re writing a wrapper for an operating-system resource or some resource
allocated and managed in a native (C or C++) DLL. In this case, implement a
finalizer by overriding the Object.Finalize method.

When you implement the System.Collections.Generic.IEnumerable<'T> (that is,
sequence) interface on a collection. The IEnumerable interface isn’t IDisposable, but
it must generate System.Collection.Generic.IEnumerator<'T> values, and this
interface inherits from IDisposable. For nearly all collection types, the disposal
action returns without doing anything.

The following sections give some examples of these.

Cleaning Up Internal Objects
Listing 6-6 shows an example that implements an object that reads lines from a pair of text files, choosing
the file at random at each line pull. You must implement the type IDisposable, because the object owns
two internal System.IO.StreamReader objects, which are IDisposable. You also must explicitly check to see
whether the object has already been disposed.

Listing 6-6. Implementing IDisposable to Clean Up Internal Objects

open System.IO

type LineChooser(fileName1, fileName2) =
 let file1 = File.OpenText(fileName1)
 let file2 = File.OpenText(fileName2)
 let rnd = new System.Random()

 let mutable disposed = false

 let cleanup() =
 if not disposed then
 disposed <- true;
 file1.Dispose();
 file2.Dispose();

 interface System.IDisposable with
 member x.Dispose() = cleanup()

 member obj.CloseAll() = cleanup()

 member obj.GetLine() =
 if not file1.EndOfStream &&
 (file2.EndOfStream || rnd.Next() % 2 = 0) then file1.ReadLine()
 elif not file2.EndOfStream then file2.ReadLine()
 else raise (new EndOfStreamException())

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

140

You can now instantiate, use, and dispose of this object as follows:

> open System; open System.IO;;
> File.WriteAllLines("test1.txt", [|"Daisy, Daisy"; "Give me your hand oh do"|]);;
> File.WriteAllLines("test2.txt", [|"I'm a little teapot"; "Short and stout"|]);;
> let chooser = new LineChooser ("test1.txt", "test2.txt");;

val chooser : LineChooser

> chooser.GetLine();;

val it : string = "Daisy, Daisy"

> chooser.GetLine();;

val it : string = "I'm a little teapot"

> (chooser :> IDisposable).Dispose();;
> chooser.GetLine();;

System.ObjectDisposedException: Cannot read from a closed TextReader.

Disposal should leave an object in an unusable state, as shown in the last line of the previous example.
It’s also common for objects to implement a member with a more intuitive name that does precisely the
same thing as its implementation of IDisposable.Dispose, which is CloseAll in Listing 6-6.

Cleaning Up Unmanaged Objects
If you’re writing a component that explicitly wraps some kind of unmanaged resource, then implementing
IDisposable is a little trickier. Listing 6-7 shows the pattern that is used for this cleanup. Here, you mimic
an external resource via a data structure that generates fresh, reclaimable integer tickets. The idea is that
each customer is given an integer ticket, but this is kept internal to the customer, and customers return
their tickets to the pool when they leave (that is, are disposed).

Listing 6-7. Reclaiming Unmanaged Tickets with IDisposable

open System

type TicketGenerator() =
 let mutable free = []
 let mutable max = 0
 member h.Alloc() =
 match free with
 | [] -> max <- max + 1; max
 | h :: t -> free <- t; h
 member h.Dealloc(n:int) =
 printfn "returning ticket %d" n
 free <- n :: free

let ticketGenerator = new TicketGenerator()

type Customer() =
 let myTicket = ticketGenerator.Alloc()

141

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

 let mutable disposed = false
 let cleanup() =
 if not disposed then
 disposed <- true
 ticketGenerator.Dealloc(myTicket)
 member x.Ticket = myTicket
 interface IDisposable with
 member x.Dispose() = cleanup(); GC.SuppressFinalize(x)
 override x.Finalize() = cleanup()

Note that you override the Object.Finalize method. This makes sure cleanup occurs if the object isn’t
disposed but is still garbage-collected. If the object is explicitly disposed, you call GC.SuppressFinalize()
to ensure that the object isn’t later finalized. The finalizer shouldn’t call the Dispose() of other managed
objects, because they have their own finalizers if needed. The following example session generates some
customers, and tickets used by some of the customers are automatically reclaimed as they exit their
scopes:

> let bill = new Customer();;

val bill : Customer

> bill.Ticket;;

val it : int = 1

> begin
 use joe = new Customer()
 printfn "joe.Ticket = %d" joe.Ticket
 end;;

joe.Ticket = 2
returning ticket 2

> begin
 use jane = new Customer()
 printfn "jane.Ticket = %d" jane.Ticket
 end;;

jane.Ticket = 2
returning ticket 2

In the example, Joe and Jane get the same ticket. Joe’s ticket is returned at the end of the scope
where the joe variable is declared because of the IDisposable cleanup implicit in the use binding.

Extending Existing Types and Modules
The final topic covered in this chapter is how you can define ad hoc dot-notation extensions to existing
library types and modules. This technique is used rarely but can be invaluable in certain circumstances.
For example, the following definition adds the member IsPrime to Int32.

module NumberTheoryExtensions =
 let isPrime i =
 let lim = int (sqrt (float i))

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

142

 let rec check j =
 j > lim || (i % j <> 0 && check (j + 1))
 check 2

 type System.Int32 with
 member i.IsPrime = isPrime i

The IsPrime property is then available for use in conjunction with int32 values whenever the
NumberTheoryExtensions module has been opened. (Note, F# extension members are very similar to C#
extension methods). For example:

> open NumberTheoryExtensions;;
> (2 + 1).IsPrime;;

val it : bool = true

> (6093700 + 11).IsPrime;;

val it : bool = false

Type extensions can be given in any assembly, but priority is always given to the intrinsic members of
a type when resolving dot-notation.

Modules can also be extended in a fashion. For example, say you think the List module is missing an
obvious function such as List.pairwise to return a new list of adjacent pairs. You can extend the set of
values accessed by the path List by defining a new module List:

module List =
 let rec pairwise l =
 match l with
 | [] | [_] -> []
 | h1 :: ((h2 :: _) as t) -> (h1, h2) :: pairwise t

> List.pairwise [1; 2; 3; 4];;

val it : (int * int) list = [(1,2); (2,3); (3,4)]

■ Note Type extensions are a good technique for equipping simple type definitions with extra functionality. However,
don’t fall into the trap of adding too much functionality to an existing type via this route. Instead, it’s often simpler to use
additional modules and types. For example, the module Microsoft.FSharp.Collections.List contains extra
functionality associated with the F# list type.

USING MODULES AND TYPES TO ORGANIZE CODE

You often have to choose whether to use modules or object types to organize your code. Here are some of
the rules for using these to organize your code effectively and to lay the groundwork for applying good .NET
library and framework design principles to your code:

143

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

Use modules when prototyping and to organize scripts, ad hoc algorithms,
initialization code, and active patterns.

Use concrete types (records, discriminated unions, and class types) to implement
concrete data structures. In the long term, plan on completely hiding the
implementation of these types. You see how to do this in Chapter 7. You can
provide dot-notation operations to help users access parts of the data structure.
Avoid revealing other representation details.

Use object interface types for types that have several possible implementations.

Implement object interface types by private concrete types or by object
expressions.

In polished libraries, most concrete types exposed in an implementation should
also implement one or more object interface types. For example, collections
should implement IEnumerable<'T>, and many types should implement
IDisposable.

Avoid relying on or revealing complex type hierarchies. In particular, avoid relying
on implementation inheritance, except as an internal implementation technique
or when doing GUI programming or authoring very large objects.

Avoid nesting modules or types inside other modules or types. Nested modules
and types are useful implementation details, but they’re rarely made public in
APIs. Deep hierarchical organization can be confusing; when you’re designing a
library, you should place nearly all public modules and types immediately inside
a well-named namespace.

Working with F# Objects and .NET Types
This chapter has deemphasized the use of .NET terminology for object types, such as class and interface.
However, all F# types are ultimately compiled as .NET types. Here is how they relate:

Concrete types such as record types, discriminated unions, and class types are
compiled as .NET classes.

Object interface types are by default compiled as .NET interface types.

If you want, you can delimit class types using class/end:

type Vector2D(dx : float, dy : float) =
 class
 let len = sqrt(dx * dx + dy * dy)
 member v.DX = dx
 member v.DY = dy
 member v.Length = len
 end

or you can use a Class attribute:

[<Class>]
type Vector2D(dx : float, dy : float) =
 let len = sqrt(dx * dx + dy * dy)
 member v.DX = dx

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

144

 member v.DY = dy
 member v.Length = len

You see this in F# code samples on the Web and in other books. However, we have found that this
tends to make types harder to understand, so we’ve omitted class/end and Class attributes throughout
this book. You can also delimit object interface types by interface/end:

type IShape =
 interface
 abstract Contains : Point -> bool
 abstract BoundingBox : Rectangle
 end

or you can use an attribute:

[<Interface>]
type IShape =
 abstract Contains : Point -> bool
 abstract BoundingBox : Rectangle

Again, we omit these attributes in this book.

Structs
It’s occasionally useful to direct the F# compiler to use a .NET struct (value type) representation for small,
generally immutable objects. You can do this by adding a Struct attribute to a class type and adding type
annotations to all arguments of the primary constructor:

[<Struct>]
type Vector2DStruct(dx : float, dy : float) =
 member v.DX = dx
 member v.DY = dy
 member v.Length = sqrt (dx * dx + dy * dy)

Finally, you can also use a form that makes the values held in a struct explicit:

[<Struct>]
type Vector2DStructUsingExplicitVals =
 val dx : float
 val dy : float
 member v.DX = v.dx
 member v.DY = v.dy
 member v.Length = sqrt (v.dx * v.dx + v.dy * v.dy)

Structs are often more efficient, but you should use them with care because the full contents of struct
values are frequently copied. The performance characteristics of structs can also change depending on
whether you’re running on a 32-bit or 64-bit machine.

Delegates
Occasionally, you need to define a new .NET delegate type in F#:

type ControlEventHandler = delegate of int -> bool

145

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

This is usually required only when using C code from F#, because some magic performed by the .NET
Common Language Runtime lets you marshal a delegate value as a C function pointer. Chapter 18 looks at
interoperating with C and COM. For example, here’s how you add a new handler to the Win32 Ctrl+C–
handling API:

open System.Runtime.InteropServices
let ctrlSignal = ref false
[<DllImport("kernel32.dll")>]
extern void SetConsoleCtrlHandler(ControlEventHandler callback, bool add)

let ctrlEventHandler = new ControlEventHandler(fun i -> ctrlSignal := true; true)

SetConsoleCtrlHandler(ctrlEventHandler,true)

Enums
Occasionally, you need to define a new .NET enum type in F#. You do this using a notation similar to
discriminated unions:

type Vowels =
 | A = 1
 | E = 5
 | I = 9
 | O = 15
 | U = 21

This type is compiled as a .NET enum whose underlying bit representation is a simple integer.
Likewise, you can define enums for other .NET primitive types such as byte, int64 and uint64.

Working with null Values
The keyword null is used in programming languages as a special, distinguished value of a type that
represents an uninitialized value or some other kind of special condition. In general, null isn’t used in
conjunction with types defined in F# code, although it’s common to simulate null with a value of the
option type. For example:

> let parents = [("Adam", None); ("Cain", Some("Adam", "Eve"))];;

val parents : (string * (string * string) option) list = ...

Reference types defined in other .NET languages do support null, however; when using .NET APIs,
you may have to explicitly pass null values to the API and also, where appropriate, test return values for
null. The .NET Framework documentation specifies when null may be returned from an API. It’s
recommended that you test for this condition using null value tests. For example:

match System.Environment.GetEnvironmentVariable("PATH") with
| null -> printf "the environment variable PATH is not defined\n"
| res -> printf "the environment variable PATH is set to %s\n" res

The following is a function that incorporates a pattern match with type tests and a null-value test:

CHAPTER 6 ■ PROGRAMMING WITH OBJECTS

146

let switchOnType (a : obj) =
 match a with
 | null -> printf "null!"
 | :? System.Exception as e -> printf "An exception: %s!" e.Message
 | :? System.Int32 as i -> printf "An integer: %d!" i
 | :? System.DateTime as d -> printf "A date/time: %O!" d
 | _ -> printf "Some other kind of object\n"

There are other important sources of null values. For example, the semisafe function Array.
zeroCreate creates an array whose values are initially null or, in the case of value types, an array each of
whose entries is the zero bit pattern. This function is included with F# primarily because there is no other
technique for initializing and creating the array values used as building blocks of larger, more
sophisticated data structures, such as queues and hash tables. Of course, you must use this function with
care, and in general you should hide the array behind an encapsulation boundary and be sure the values of
the array aren’t referenced before they’re initialized.

■ Note: Although F# generally enables you to code in a null-free style, F# isn’t totally immune to the potential
existence of null values: they can come from the .NET APIs, and it’s also possible to use Array.zeroCreate and
other back-door techniques to generate null values for F# types. If necessary, APIs can check for this condition by
first converting F# values to the obj type by calling box and then testing for null (see the F# Informal Language
Specification for full details). In practice, this isn’t required by the vast majority of F# programs; for most purposes,
the existence of null values can be ignored.

Summary
This chapter looked at the basic constructs of object-oriented programming in F#, including concrete object
types, object notation, and object interface types and their implementations, as well as more advanced
techniques to implement object interface types. You also saw how implementation inheritance is less
important as an object implementation technique in F# than in other object-oriented languages and then
learned how the F# object model relates to the .NET object model. The next chapter covers language
constructs and practical techniques related to encapsulating, packaging, and deploying your code.

147

■ ■ ■

CHAPTER 7

Encapsulating and Organizing
Your Code

Organizing code and making it available for people and programs to use is a key part of making the best
use of F#. In this book, you’ve already seen many of the constructs to help do this: functions, objects, type
definitions, modules, namespaces, and assemblies. In some cases, however, you’ve encountered these only
peripherally when using the libraries that come with F#. This chapter covers these constructs from the
perspective of code organization and encapsulation.

Packaging code has four distinct but related meanings:

Organizing code into sensible entities using namespaces, types, and modules.

Encapsulating internal data structures and implementation details by making them
private.

Assembling code and data as one component, which for F# is called an assembly. An
assembly is code packaged together with supporting resources as a single, logical
unit of deployment.

Deploying one or more assemblies, for example as a Web application or using a Web-
based community packaging mechanism, such as NuGET.

The first two of these topics are associated with the F# language, and the last is more associated with
the pragmatics of deploying, installing, configuring, and maintaining software. The third lies in between,
because a .NET assembly can act as both a unit of encapsulation and a unit of deployment. In Chapter 19,
we also consider some of the different kinds of software you may write with F# and how you can organize
and package your code for these different cases.

Hiding Things
In all kinds of software, it’s common to hide implementation details of data structures and algorithms
behind encapsulation boundaries. Encapsulation is a fundamental technique when writing software and is
possibly the most important idea associated with object-oriented programming.

For this book’s purposes, encapsulation means hiding implementation details behind well-defined
boundaries. This lets you enforce consistency properties and makes the structure of a program easier to
manage. It also lets an implementation evolve over time. A good rule of thumb is to hide anything you
don’t want used directly by client code.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

148

Later, this chapter explains how encapsulation applies when you’re building assemblies, frameworks,
and applications. In the extreme, you may even be ensuring that your code is secure when used in partial
trust mode—in other words, that it can’t be inadvertently or deliberately used to achieve malicious results
when used as a library by code that doesn’t have full permissions. The most important kind of
encapsulation, however, is the day-to-day business of hiding the internal implementation details of
functions, objects, types, and modules. The primary techniques used to do this are:

Local definitions

Accessibility annotations

Explicit signatures

We cover the first two of these techniques next, and we cover explicit signatures in “Hiding Things
with Signatures” later in this chapter.

Hiding Things with Local Definitions
The easiest way to hide definitions is to make them local to expressions or constructed class definitions
using inner let bindings. These aren’t directly accessible from outside their scope. This technique is
frequently used to hide state and other computed values inside the implementations of functions and
objects. Let’s begin with a simple example. Here is the definition of a function that incorporates a single
item of encapsulated state:

let generateTicket =
 let count = ref 0
 (fun () -> incr count; !count)

If you examine this definition, you see that the generateTicket function isn’t defined immediately as a
function; instead, it first declares a local element of state called count and then returns a function value
that refers to this state. Each time the function value is called, count is incremented and dereferenced, but
the reference cell is never published outside the function implementation, and it is thus encapsulated.

Encapsulation through local definitions is a particularly powerful technique in F# when used in
conjunction with object expressions. For example, Listing 7-1 shows the definition of an object interface
type called IPeekPoke and a function that implements objects of this type using an object expression.

Listing 7-1. Implementing Objects with Encapsulated State

type IPeekPoke =
 abstract member Peek : unit -> int
 abstract member Poke : int -> unit

let makeCounter initialState =
 let state = ref initialState
 {new IPeekPoke with
 member x.Poke n = state := !state + n
 member x.Peek() = !state}

The type of the function Counter is:

val makeCounter : initialState:int -> IPeekPoke

149

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

As with the earlier generateTicket function, the internal state for each object generated by the
makeCounter function is hidden and accessible only via the published Peek and Poke methods.

The previous examples show how to combine let bindings with anonymous functions and object
expressions. You saw in Chapter 6 how let bindings can also be used in constructed class types. For
example, Listing 7-2 shows a constructed class type with private mutable state count that publishes two
methods: Next and Reset.

Listing 7-2. A Type for Objects with Encapsulated State

type TicketGenerator() =
 // Note: let bindings in a type definition are implicitly private to the object
 // being constructed. Members are implicitly public.
 let mutable count = 0

 member x.Next() =
 count <- count + 1;
 count

 member x.Reset () =
 count <- 0

The variable count is implicitly private to the object being constructed and is hence hidden from
outside consumers. By default, other F# definitions are public, which means they’re accessible throughout
their scope.

Frequently, more than one item of state is hidden behind an encapsulation boundary. For example,
the following code shows a function makeAverager that uses an object expression and two local elements of
state, count and total, to implement an instance of the object interface type IStatistic:

type IStatistic<'T,'U> =
 abstract Record : 'T -> unit
 abstract Value : 'U

let makeAverager(toFloat: 'T -> float) =
 let count = ref 0
 let total = ref 0.0
 {new IStatistic<'T, float> with
 member stat.Record(x) = incr count; total := !total + toFloat x
 member stat.Value = (!total / float !count)}

The inferred types here are:

type IStatistic<'T,'U> =
 interface
 abstract member Record : 'T -> unit
 abstract member Value : 'U
 end
val makeAverager : toFloat:('T -> float) -> IStatistic<'T,float>

The internal state is held in values count and total and is, once again, encapsulated.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

150

■ Note Most of the examples of encapsulation in this chapter show ways to hide mutable state behind
encapsulation boundaries. Encapsulation can be just as important for immutable constructs, however, especially in
larger software components. For example, the implementation of the immutable System.DateTime type in the .NET
BCL hides the way the date and time are stored internally but reveals the information via properties.

Hiding Things with Accessibility Annotations
Local definitions are good for hiding most implementation details. Sometimes, however, you may need
definitions that are local to a type, a module, or an assembly. You can change the default accessibility of an
item by using an accessibility annotation to restrict the code locations that can use a construct. These
indicate what is private or partially private to a module, file, or assembly. The primary accessibility
annotations are private, internal, and public:

private makes a construct private to the enclosing type definition/module.

internal makes a construct private to the enclosing assembly (DLL or EXE).

public makes a construct available globally, which is the default for most constructs.

Accessibility annotations are placed immediately prior to the name of the construct. Listing 7-3 shows
how to protect an internal table of data in a module using accessibility annotations.

Listing 7-3. Protecting a Table Using Accessibility Annotations

open System

module public VisitorCredentials =

 /// The internal table of permitted visitors and the
 /// days they are allowed to visit.
 let private visitorTable =
 dict [("Anna", set [DayOfWeek.Tuesday; DayOfWeek.Wednesday]);
 ("Carolyn", set [DayOfWeek.Friday])]

 /// This is the function to check if a person is a permitted visitor.
 /// Note: this is public and can be used by external code
 let public checkVisitor(person) =
 visitorTable.ContainsKey(person) &&
 visitorTable.[person].Contains(DateTime.Today.DayOfWeek)

 /// This is the function to return all known permitted visitors.
 /// Note: this is internal and can be used only by code in this assembly.
 let internal allKnownVisitors() =
 visitorTable.Keys

The private table is visitorTable. Attempting to access this value from another module gives a type-
checking error. The function checkVisitor is marked public and is thus available globally. The function
allKnownVisitors is available only within the same assembly (or the same F# Interactive session) as the

151

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

definition of the VisitorCredentials module. Note that you could drop the public annotations from
function checkVisitor and module VisitorCredentials, because these declarations are public by default.

Accessibility annotations are often used to hide state or handles to resources such as files. In Listing
7-4, you protect a single reference cell containing a value that alternates between Tick and Tock. This
example uses an internal event, a technique covered in more detail in Chapter 11.

Listing 7-4. Protecting Internal State Using Accessibility Annotations

module public GlobalClock =

 type TickTock = Tick | Tock

 let mutable private clock = Tick

 let private tick = new Event<TickTock>()

 let internal oneTick() =
 (clock <- match clock with Tick -> Tock | Tock -> Tick);
 tick.Trigger (clock)

 let tickEvent = tick.Publish

module internal TickTockDriver =

 open System.Threading

 let timer = new Timer(callback=(fun _ -> GlobalClock.oneTick()),
 state = null, dueTime = 0, period = 100)

In Listing 7-4, the private state is clock. The assembly-internal module TickTockDriver uses the
System.Threading.Timer class to drive the alternation of the state via the internal function oneTick. The
GlobalClock module publishes one IEvent value, tickEvent, which any client can use to add handlers to
listen for the event. The sample uses the Event type, covered in more detail in Chapter 11.

Another assembly can now contain the following code, which adds a handler to TickEvent:

module TickTockListener =
 GlobalClock.tickEvent.Add(function
 | GlobalClock.Tick -> printfn "tick!"
 | GlobalClock.Tock -> printfn "tock!")

You can add accessibility annotations in a number of places in F# code:

On let, and extern definitions in modules, and in individual identifiers in patterns

On new(...) object constructor definitions

On member definitions associated with types

On module definitions

On type definitions associated with types

On primary constructors, such as type C private (...) = ...

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

152

■ Note You can add accessibility annotations to type abbreviations. The abbreviation, however, is still just an
abbreviation—only the name, and not the actual equivalence, is hidden. That is, if you define a type abbreviation
such as type private label = int, then all users of the type label know that it’s really just an abbreviation for
int and not a distinct type definition of its own. This is because .NET provides no way to hide type abbreviations; the
F# compiler expands type abbreviations in the underlying generated .NET IL code.

Listing 7-5 shows a type in which some methods and properties are labeled public but the methods
that mutate the underlying collection (Add and the set method associated with the Item property) are
labeled internal.

Listing 7-5. Making Property Setters Internal to a Type Definition

open System.Collections.Generic

type public SparseVector () =

 let elems = new SortedDictionary<int, float>()

 member internal vec.Add (k, v) = elems.Add(k ,v)

 member public vec.Count = elems.Keys.Count
 member vec.Item
 with public get i =
 if elems.ContainsKey(i) then elems.[i]
 else 0.0
 and internal set i v =
 elems.[i] <- v

■ Note In class types, let bindings in types are always private to the object being constructed, and all member
bindings default to public—they have the same accessibility as the type definition. This is a useful default, because
it corresponds to the common situation in which internal implementation details are fully private and published
constructs are available widely, and because omitting accessibility annotations makes code more readable in the
common case.

Organizing Code with Namespaces and Modules
The most important organizational technique for large-scale software is giving sensible qualified names to
your types and values. A qualified name is, for example, Microsoft.FSharp.Collections.List (for the F#
list type) or System.IO.StreamReader (for one of the types in the .NET Framework BCL). Qualified names
are particularly important when you’re writing frameworks to be used by other people, and they are also a
useful way to organize your own code.

You give types and functions qualified names by placing them in namespaces, modules, and type
definitions. Table 7-1 shows these three kinds of containers and what they can contain. For completeness,

153

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

the table includes type abbreviations, which are slightly different, because you can’t use them as a
container for other constructs.

Table 7-1. Namespaces, modules, types, and what they can contain

Entity Description Examples
Namespace A namespace can contain further

namespaces, modules, and types. Multiple
DLLs can contribute to the same
namespace.

System, Microsoft.FSharp

Module A module can contain nested modules,
types, and values.

Microsoft.FSharp.Collections.Map,
Microsoft.FSharp.Collections.List

Concrete type
definition

A type definition can contain members
and nested type definitions.

System.String, System.Int32

Type abbreviation A type abbreviation such as string, for
System.String, can’t act as a container for
additional members, values, or types.

int, string

Putting Your Code in a Module
One way to group items together with a common qualified name is to use a module. A module is a simple
container for values, type definitions, and submodules. For example, here is the Vector2D example
rewritten to use a module to hold the operations associated with the type:

type Vector2D =
 {DX : float; DY : float}

module Vector2DOps =
 let length v = sqrt (v.DX * v.DX + v.DY * v.DY)
 let scale k v = {DX = k * v.DX; DY = k * v.DY}
 let shiftX x v = {v with DX = v.DX + x}
 let shiftY y v = {v with DY = v.DY + y}
 let shiftXY (x, y) v = {DX = v.DX + x; DY = v.DY + y}
 let zero = {DX = 0.0; DY = 0.0}
 let constX dx = {DX = dx; DY = 0.0}
 let constY dy = {DX = 0.0; DY = dy}

Some people prefer to use classes with static members for this purpose, although modules tend to be
more convenient for rapid prototyping. Modules may also contain type and submodule definitions.

Putting Your Modules and Types in Namespaces
When designing a library, it is usually better to place your code in a namespace, which can contain only
types and modules. Think of this as a restricted form of module, because it is forbidden to use let bindings
outside of module or type definitions. Using namespaces forces you to adopt design- and code-
organization patterns that are familiar to other F#, C#, and .NET programmers.

For example, Listing 7-6 shows a file that contains two type definitions, both located in the namespace
Acme.Widgets.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

154

Listing 7-6. A File Containing Two Type Definitions in a Namespace

namespace Acme.Widgets
 type Wheel = Square | Round | Triangle
 type Widget = {id : int; wheels : Wheel list; size : string}

Most significantly, namespaces are open, which means multiple source files and assemblies can
contribute to the same namespace. For example, another implementation file or assembly can contain the
definitions shown in Listing 7-7.

Listing 7-7. A File Containing Two Type Definitions in Two Namespaces

namespace Acme.Widgets
 type Lever = PlasticLever | WoodenLever

namespace Acme.Suppliers
 type LeverSupplier = {name : string; leverKind : Acme.Widgets.Lever}

The file in Listing 7-7 contributes to two namespaces: Acme.Widgets and Acme.Suppliers. The two files
can occur in the same assembly or in different assemblies. Either way, when you reference the assembly
(or assemblies), the namespace Acme.Widgets appears to have at least three type definitions (perhaps
more, if other assemblies contribute further type definitions), and the namespace Acme.Suppliers has at
least one.

Hiding Things with Signatures
Every piece of F# code you write has a signature type. The inferred signature type for a piece of code is
shown for every code fragment you enter into F# Interactive, and it can also be reported by using the F#
command-line compiler, fsc.exe, with the -i option. For example, consider the following code, placed in
an implementation file clock.fs:

module Clock

type TickTock = Tick | Tock

let ticker x =
 match x with
 | Tick -> Tock
 | Tock -> Tick

You can now invoke the command-line compiler from a command prompt:

C:\Users\dsyme\Desktop> fsc -i -a clock.fs

module Clock

type TickTock =
 | Tick
 | Tock

val ticker : x:TickTock -> TickTock

155

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

The inferred signature shows the results of type inference and takes into account other information,
such as accessibility annotations.

If you want, you can make the inferred types explicit by using an explicit signature type for each
implementation file. The syntax used for explicit signature types is identical to the inferred types reported
by F# Interactive or fsc.exe, like those shown previously. If you use explicit signatures, they’re placed in a
signature file, and they list the names and types of all values and members that are accessible in some way
to the outside world. Signature files should use the same root name as the matching implementation file
with the extension .fsi. For example, Listing 7-8 shows the explicit signature file vector.fsi and the
implementation file vector.fs.

Listing 7-8. A Signature File vector.fsi with Implementation File vector.fs

// The contents of vector.fsi
namespace Acme.Collections
 type SparseVector =
 new: unit -> SparseVector
 member Add : int * float -> unit
 member Item : int -> float with get

// The contents of vector.fs
namespace Acme.Collections
 open System.Collections.Generic
 type SparseVector() =
 let elems = new SortedDictionary<int, float>()
 member vec.Add(k, v) = elems.Add(k, v)
 member vec.Item
 with get i =
 if elems.ContainsKey(i) then elems.[i]
 else 0.0
 and set i v =
 elems.[i] <- v

You can now invoke the command-line compiler from a command-line shell:

C:\Users\dsyme\Desktop> fsc -a vector.fsi vector.fs

■ Note You can use signature types to hide constructs, which can be used as an alternative to giving accessibility
annotations on types, values, and members. Neither accessibility annotations nor signatures can hide type
abbreviations, for the reasons discussed earlier in “Hiding Things with Accessibility Annotations.” Some additional
restrictions apply to both hiding techniques. For example, if a type is revealed to be a constructed class type or
interface type, all of its abstract members must be included in the signature. Similarly, a record type must reveal all
of its fields, and a discriminated union type must reveal all of its cases. Also, in some languages, such as OCaml, a
signature may restrict the type of an implementation construct. For example, if a function is inferred to have a
generic type 'a -> 'a, then in OCaml, the signature may specify a more restricted type, such as int -> int.
This isn’t permitted in F#.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

156

Designing with Signatures
Although explicit signature types are optional, many programmers like to use them, especially when
writing a library framework, because the signature file gives a place to document and maintain a
component’s public interface. For example, a signature file can be used to contain the “public facing” API
and documentation for a library, while the implementation contains the implementation.

Using explicit signature types comes with a cost: the signature files duplicate names, documentation,
attributes, and some other information found in the implementation.

When Are Signature Types Checked?
A signature file appears before the implementation file in the compilation order for the files in an F#
program. The conformance between the signature type and the corresponding implementation is checked
after an implementation has been fully processed, however. This is unlike type annotations that occur
directly in an implementation file, which are applied before an implementation fragment is processed.
This means that the type information in a signature file isn’t used as part of the type-inference process
when processing the implementation.

■ Note Each signature file must appear before its corresponding implementation file in the compilation order in
an F# project. In Visual Studio, this means that the signature file must come before the implementation file in the
project listing.

Defining a Module with the Same Name as a Type
Sometimes it is useful to have a module with the same name as one of your types. You can do this by
adding an attribute to your code:

type Vector2D =
 {DX : float; DY : float}

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module Vector2D =
 let length v = sqrt(v.DX * v.DX + v.DY * v.DY)

Preventing Client Code from Opening a Module
Values in a module can be used via a long path, such as Vector2D.length. Alternatively, you can open the
module, which makes all the contents accessible without qualification. For example, open Vector2D makes
the identifier length available without qualification.

Modules, however, are often designed in such a way that client code should not normally “open” the
module, because doing so will create too many ambiguities among various function and value names.
Allowing clients to open your modules may make client code more brittle as you add new functions to
your modules. For this reason, you can add an attribute RequireQualifiedAccess indicating that qualified
access to the module or type is required:

157

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

[<RequireQualifiedAccess>]
module Vector2D =
 let length v = sqrt(v.DX * v.DX + v.DY * v.DY)
 let zero = {DX=0.0; DY=0.0}

The following code then gives an error:

> open Vector2D;;

error FS0892: This declaration opens the module 'FSI_0003.Vector2D', which is marked as
'RequireQualifiedAccess'. Adjust your code to use qualified references to the elements of the
module instead, e.g. 'List.map' instead of 'map'. This change will ensure that your code is
robust as new constructs are added to libraries.

Using Files as Modules
In F#, a module is a simple container for values and type definitions. Modules also often are used to
provide outer structure for fragments of F# code; many of the simple F# programs you’ve seen so far in
this book have been in modules without your knowing about them. In particular:

Code fragments typed into F# Interactive and delimited by ;; are each implicitly
placed in a module of their own.

Files compiled with the command-line compiler using Visual Studio or loaded into
F# Interactive with #load have their values and types placed in a namespace or
module according to the leading module or namespace declaration in the file.
Declarations in files without a leading module or namespace declaration are placed in
a module whose name is derived from the name of the implementation file.

Let’s look at the second case in more detail. You can explicitly declare the name of the namespace/
module for a file by using a leading module declaration. For example, Listing 7-9 defines the module Acme.
Widgets.WidgetWheels, regardless of the name of the file containing the constructs.

Listing 7-9. An Implementation Module With an Explicit Initial Module Declaration

module Acme.Widgets.WidgetWheels

type Wheel = Square | Triangle | Round

let wheelCornerCount =
 dict [(Wheel.Square, 4)
 (Wheel.Triangle, 3)
 (Wheel.Round, 0)]

Here, the first line gives the name for the module defined by the file. The namespace is Acme.Widgets,
the module name is WidgetWheels, and the full path to the value is Acme.Widgets.WidgetWheels.
wheelCornerCount.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

158

Automatically Opening Modules
Modules can be labeled AutoOpen, meaning they’re treated as opened whenever the enclosing namespace
or module is opened. This can be useful when you’re defining ad hoc top-level operators and functions:

namespace Acme.Compenents

[<AutoOpen>]
module private Utilities =
 let swap (x,y) = (y,x)

// Note, the module is not explicitly opened, but 'swap' is accessible throughout the file
swap (3,4)

This mechanism can also be useful when designing libraries and frameworks, especially for modules
holding extension members and functions. For example:

namespace Acme.NumberTheory

[<AutoOpen>]
module NumberTheoryExtensions =
 let private isPrime i =
 let lim = int (sqrt (float i))
 let rec check j =
 j > lim || (i % j <> 0 && check (j+1))
 check 2

 type System.Int32 with
 member i.IsPrime = isPrime i

In this example, the IsPrime extension property is automatically available as soon as the path Acme.
NumberTheory is opened. There is then no need to open the specific extension module directly—you can
simply open the enclosing namespace.

You can also attach an AutoOpen attribute to an assembly, with a string path. This means the path is
opened as soon as the assembly is referenced, in the order in which the assemblies are given to the F#
command- line compiler:

[<assembly:AutoOpen("Acme.NumberTheory")>]
do()

The path can be to a namespace or to a module. This last mechanism should be used rarely and
diligently. It is most useful when writing a framework that configures F# as a scripting environment for a
specific programming domain, because referencing an assembly can then automatically add various
modules, types, functions, and extension members into the environment of the consuming code, without
requiring “open” declarations in client code.

Reusing Your Code
This book has used F# Interactive for most of the samples. F# Interactive is excellent when you’re exploring a
set of libraries and writing scripts or small applications that use them. As your F# programming progresses,

159

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

however, you will need to venture beyond these small scripts and start to write libraries and components that
are reused across multiple projects and scripts.

Using Files as Small Reusable Components
One of the simplest kinds of reusable components in F# is the “single standalone F# file with optional
signature,” which we’ll call a single file component. We’ve seen examples of these earlier in this chapter, for
example in Listing 7-8, showing implementation-file vector.fs and signature-file vector.fsi.

A single file component can be included in multiple assemblies simply by referencing the common file
in multiple compilations. In Visual Studio, you can link to a single file from multiple projects—for example,
using “Add Existing File” à “Add as Link” and using Alt-Up and Alt-Down to move the file(s) to the right place
in the compilation order for the project.

A single file component can be referenced from an F# Interactive script using #load, e.g.,

#load "vector.fs"

In F#, a single file may sometimes contain a very large amount of functionality, especially if
accompanied by a signature file. If a single file component has a signature file, you can also refer to that in the
#load, directive, e.g.,

#load "vector.fsi" "vector.fs"

A single file component may not list its dependencies in terms of other components or assemblies. This
means the project that hosts the single file must list the dependencies in its references. For use from F#
Interactive, however, you can place the dependencies in an accompanying script file that contains the
necessary #r directives. For example, if you are using an F# wrapper for a charting library, and the wrapper is
in charting.fs and charting.fsi, then it can be useful to also create a charting.fsx containing any
necessary #r directives.

#load "charting.fsi" "charting.fs" "charting.fsx"

The #load directive for F# Interactive is not limited to a single file—you can include multiple
signature files and implementation files in a single directive. For example:

#load "matrix.fsi" "matrix.fs" "vector.fsi" "vector.fs"

Again, the #load is only used in F# Interactive and is not valid in .fs or .fsi files.

Creating Assemblies, DLLs, and EXEs
F# Interactive is excellent when you’re exploring a set of libraries and writing scripts or small applications
that use them. But to understand how to write libraries and organize other kinds of applications, you need to
learn how to use the F# command-line compiler, fsc.exe, to compile your code into DLLs and EXEs. A
Dynamic Link Library (DLL) is a name for library components, and .exe is the extension used for executable
programs.

As you saw at the start of this chapter, all .NET code compiled to IL exists in an assembly, which is,
roughly speaking, either a DLL or an EXE. Assemblies can also contain supporting code and data files.
Every time you compile a set of files using fsc.exe, you create one assembly, either a DLL or an EXE. Even
when you use F# Interactive (fsi.exe), you’re dynamically adding code to a dynamically generated
assembly. You will now learn how to use the command-line compiler to create assemblies.

To compile code to an EXE, you call fsc.exe with the names of your source-code files in dependency
order. For example, if the file dolphin.fs contains the code in Listing 7-10, then you can compile the code
using fsc dolphin.fs. You can also use the -o flag to name the generated EXE.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

160

Listing 7-10. File dolphins.fs

let longBeaked = "Delphinus capensis"
let shortBeaked = "Delphinus delphis"
let dolphins = [longBeaked; shortBeaked]
printfn "Known Dolphins: %A" dolphins

You can now compile this code to an EXE:

C:\fsharp> fsc dolphins.fs
C:\fsharp> dir dolphins.exe

...
18/06/2012 02:30 p.m. 4,608 dolphin.exe

C:\fsharp> dolphins.exe

Known Dolphins: ["Delphinus capensis"; "Delphinus delphis"]

To compile F# code into a DLL, take one or more source files and invoke fsc.exe with the -a option.
For example, let’s assume the file whales.fs contains the code shown in Listing 7-11. (This sample also
includes some documentation comments, referred to in the “Generating Documentation” section later in
this chapter.)

Listing 7-11. File whales.fs

module Whales.Fictional

/// The three kinds of whales we cover in this release
type WhaleKind =
 | Blue
 | Killer
 | GreatWhale

/// The main whale
let moby = "Moby Dick, Pacific", GreatWhale

/// The backup whale
let bluey = "Blue, Southern Ocean", Blue

/// This whale is for experimental use only
let orca = "Orca, Pacific", Killer

/// The collected whales
let whales = [|moby; bluey; orca|]

You can now compile the code as follows:

C:\test> fsc -g -a whales.fs
C:\test> dir whales.dll

161

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

...
18/06/2012 02:37 p.m. 9,216 whales.dll

Here you’ve added one command-line flag: -g to generate debug output. When compiling other
assemblies, you need to reference your DLLs. For example, consider the code in Listing 7-12, which needs
to reference whales.dll.

Listing 7-12. File whalewatcher.fs

open Whales
open System

let idx = Int32.Parse(Environment.GetCommandLineArgs().[1])
let spotted = Fictional.whales.[idx]

printfn "You spotted %A!" spotted

You can compile this file by adding an -r flag to reference the DLLs on which the code depends. You
can also use the -o flag to name the generated EXE or DLL and the -I flag to list search paths:

C:\fsharp> fsc -g -r whales.dll -o watcher.exe whaleWatcher.fs
C:\fsharp> dir watcher.exe

...
18/06/2012 02:48 p.m. 5,120 watcher.exe
C:\fsharp> watcher.exe 1

You spotted ("Blue, Southern Ocean", Blue)!

■ Note F# assemblies often contain a large amount of code. For example, a single assembly may contain the
compiled output from as many as 30 to 50 F# source-code files. Having many small assemblies may seem tempting,
but it can lead to difficulties when you’re managing updates, and it can be confusing to end users. Large assemblies
are easier to version: you have to update only one component, and you can package multiple updates into a single
new version of the DLL.

Creating and Sharing Packages
Once you have organized your code into files and assemblies, you may wish to make these available to a
wider audience using a packaging and sharing mechanism. Sharing is at the heart of modern
communities. Some alternatives for packaging your code for reuse and sharing are:

NuGET. At the time of writing, one of the most popular package sharing mechanisms
for F# and .NET code is NuGET, see www.nuget.org.

Open Source Snippet Sites. Place your code on a snippet site, such as www.fssnip.net
and www.tryfsharp.org.

Open Source Forges. Make your code a project on a forge site, such as www.github.
com or www.codeplex.com.

CHAPTER 7 ■ ENCAPSULATING AND ORGANIZING YOUR CODE

162

Blogs and Web Sites. Make a ZIP of your code available on the Web.

Installers. Package your code as an installer that installs local copies of components
on a target machine in known locations.

Network Drives. If using an intranet, place a copy of your code on a mounted
network drive.

Summary
In this chapter, you learned about a number of techniques related to encapsulating and organizing your
code, from the language mechanisms used for accessibility, encapsulation, modules, namespaces, and
signatures to building assemblies and the related topics of building applications and DLLs.

The next three chapters look at some of the techniques you need to master to work with different
kinds of data as you progress with learning to program in F#.

163

■ ■ ■

CHAPTER 8

Working with Textual Data

Chapters 2 and 3 introduced the F# type for strings. While F#’s specialty is in programming with structured
data, unstructured or semi-structured textual data are exceptionally common in programming, both as a
data format and as working representation internally in algorithms that work over documents and text. In
this section, you will learn some of the techniques available for working with textual data in F# programs,
including working with the XML and JSON structured data formats, which are initially represented as text.

Building Strings and Formatting Data
In Chapter 3, you saw the different forms of string literals (strings with escape characters and verbatim
strings) and the most typical operations, such as concatenation using string builders. You may also
remember that string values are immutable and that string operations that seem to change their input
actually return a new string that represents the result. The following sections cover further ways to work
with strings.

Building Strings
In Chapter 3, you saw how the + operator is one simple tool for building strings, and you saw a number of
simple string literals. You can also build strings using objects of the type System.Text.StringBuilder.
These objects are mutable buffers that you can use to accumulate and modify text, and they’re more
efficient than repeated uses of the + operator. Here’s an example:

> let buf = new System.Text.StringBuilder();;

val buf : System.Text.StringBuilder

> buf.Append("Humpty Dumpty");;

> buf.Append(" sat on the wall");;

> buf.ToString();;

val it : string = "Humpty Dumpty sat on the wall"

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

164

More about String Literals
The F# type string is an abbreviation for the type System.String and represents a sequence of Unicode
UTF-16 characters. The following sections briefly introduce strings and the most useful functions for
formatting them. Table 8-1 shows the different forms for writing string literals.

Table 8-1. String and Character Literals

Example Kind Type
"Humpty Dumpty" String string

"c:\\Program Files" String string

@"c:\Program Files" Verbatim string string

"""I "like" you""" Triple quote string string

"xyZy3d2"B Literal byte array byte []

'c' Character char

As shown in Table 8-1, a literal form is also available for arrays of bytes: the characters are interpreted
as ASCII characters, and non-ASCII characters can be embedded using escape codes. This can be useful
when you’re working with binary protocols. Verbatim string literals are particularly useful for file and path
names that contain the backslash character (\):

> "MAGIC"B;;

val it : byte [] = [|77uy; 65uy; 71uy; 73uy; 67uy|]

> let dir = @"c:\Program Files";;

val dir : string = "c:\Program Files"

> let text = """I "like" you""";;

val text : string = "I "like" you"

Triple-quote string literals can contain both embedded quotation marks (“) and backslashes (\)
without escape, and include all the text until the terminating triple quote. You can also use multiline string
literals:

> let s = "All the kings horses
- and all the kings men";;

val s : string = " All the kings horses
and all the kings men"

> let s2 = """All the kings' "horses"
- and all the kings men""";;

val s2 : string = "All the kings' "horses"
- and all the kings men"

165

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

Table 8-2 shows the escape characters you can use in strings and characters.

Table 8-2. Escape Characters in Nonverbatim Strings

Escape Character ASCII/Unicode Value Examples
\n New line 10 "\n"

\r Carriage return 13 "\r"

\t Tab 9 "\t"

\b Backspace 8 “a\b” (“a”)

\NNN Trigraph NNN "\032" (space)

\uNNNN Unicode character NNNN "\u00a9" (©)

\UNNNNNNNN Long Unicode character NNNN NNNN "\U00002260" ()

Using printf and Friends
Throughout this book, you’ve used the printfn function, which is one way to print strings from F# values.
This is a powerful, extensible technique for type-safe formatting. A related function called sprintf builds
strings:

> sprintf "Name: %s, Age: %d" "Anna" 3;;

val it : string = "Name: Anna, Age: 3"

The format strings accepted by printf and sprintf are recognized and parsed by the F# compiler, and
their use is statically type checked to ensure that the arguments given for the formatting holes are
consistent with the formatting directives. For example, if you use an integer where a string is expected, you
see a type error:

> sprintf "Name: %s, Age: %d" 3 10;;

error FS0001: This expression was expected to have type
 string
but here has type
 int

Several printf-style formatting functions are provided in the Microsoft.FSharp.Text.Printf module.
Table 8-3 shows the most important of these.

Table 8-3. Formatting Functions in the printf Module

Function(s) Outputs via Type Outputs via Object Example
printf(n)a TextWriter Console.Out printf "Result: %d" res

eprintf(n) TextWriter Console.Error eprintf "Result: %d" res

fprintf(n) TextWriter Any TextWriter fprintf stderr "Error: %d" res

sprintf string Generates strings sprintf "Error: %d" res

bprintf(n) StringBuilder Any StringBuilder bprintf buf "Error: %d" res

a The functions with a suffix n add a new line to the generated text.

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

166

Table 8-4 shows the basic formatting codes for printf-style formatting.

Table 8-4. Formatting Codes for printf-style String and Output Formatting

Code Type Accepted Notes
%b bool Prints true or false

%s string Prints the string

%d, %u, %x, %X, %o int/int32 Signed and unsigned decimal whole numbers, hex in lower
and upper case, and octal formats for any integer types

%e, %E, %f, %g float Floating-point formats

%M decimal See the .NET documentation

%A Any type Uses structured formatting, discussed in the section
“Generic Structural Formatting” and in Chapter 5

%+A Any type Uses structured formatting, but accesses to private internals
of data structures if they are accessible via reflection

%O Any type Uses Object.ToString()

%a Any type Takes two arguments: one is a formatting function, and one
is the value to format

%t Function Runs the function given as an argument

Any value can be formatted using a %O or %A pattern; these patterns are extremely useful when you’re
prototyping or examining data. %O converts the object to a string using the Object.ToString() function
supported by all values. For example:

// The formatting of dates and times varies by region.
> System.DateTime.Now.ToString();;

val it : string = "28/06/20.. 17:14:07 PM"

> sprintf "It is now %O" System.DateTime.Now;;

val it : string = "It is now 28/06/20... 17:14:09"

■ Note The format strings used with printf are scanned by the F# compiler during type checking, which means
the use of the formats are type safe; if you forget arguments, a warning is given, and if your arguments are of the
wrong type, an error is given. The format strings may also include the usual range of specifiers for padding and
alignment used by languages such as C, as well as some other interesting specifiers for computed widths and
precisions. You can find the full details in the F# library documentation for the Printf module.

167

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

Generic Structural Formatting
Object.ToString() is a somewhat undirected way of formatting data. Structural types—such as tuples,
lists, records, discriminated unions, collections, arrays, and matrices—are often poorly formatted by this
technique. The %A pattern uses .NET reflection to format any F# value as a string based on the structure of
the value. For example:

> printf "The result is %A\n" [1; 2; 3];;

The result is [1; 2; 3]

Generic structural formatting can be extended to work with any user-defined data types, a topic
covered on the F# Web site. This is covered in detail in the F# library documentation for the printf
function.

Formatting Strings Using .NET Formatting
Throughout this book, you’ve used F# printf format strings to format text and output; Chapter 4 and the
section above introduced the basic format specifiers for this kind of text formatting. Functions such as
printf and printfn are located in the Microsoft.FSharp.Text.Printf module.

Another way to format strings is to use the System.String.Format static method or the other .NET
composite formatting functions, such as System.Console.WriteLine and TextWriter.WriteLine. This is a
distinct set of formatting functions and directives redesigned and implemented from the ground up for the
.NET platform. Like printf, these methods take a format specifier and the objects to be formatted. The
format specifier is a string with any number of format items acting as placeholders and designating which
object is to be formatted and how. Consider this simple example:

> System.String.Format("{0} {1} {2}", 12, "a", 1.23);;

val it : string = "12 a 1.23"

Each format item is enclosed in braces giving the index of the object to be formatted, and each can
include an optional alignment specification (always preceded by a comma after the index, giving the width
of the region in which the object is to be inserted, as in {0, 10}) and a format type that guides how the
given object is formatted (as in {0:C}, where C formats as a system currency). The general syntax of the
format item is:

{index[,alignment][:formatType]}

You can use the alignment value to pad the formatted object with spaces; text alignment is left if its
value is negative and right if positive. Table 8-5 summarizes the most-often-used format types.

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

168

Table 8-5. The .NET Format Specifiers

Type
C Currency

D Decimal/long date

E Scientific

F Fixed-point

G General

N Number

P Percent

X Hexadecimal

d/D Short/long date

t/T Short/long time

M Month

Y Year

You can find more information about .NET composite formatting at www.expert-fsharp.com/Topics/
TextFormatting.

Parsing Strings and Textual Data

Parsing Basic Values
The following session shows some sample uses of the DateTime type:

> open System;;
> DateTime.Parse("13 July 1968");;

val it : DateTime = 13/07/1968 00:00:00

> let date x = DateTime.Parse(x);;

val date : x:string -> DateTime

> printfn "date = %A" (date "13 July 1968");;

date = 13/07/1968 00:00:00

> printfn "birth = %A" (date "18 March 2003, 6:21:01pm");;

birth = 18/03/2003 18:21:01

Note that formatting dates depends on the user’s localization settings; you can achieve more explicit
formatting by using the System.DateTime.ToString overload that accepts explicit format information.

169

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

Here you use the System.Uri type to parse a URL:

> open System;;

> Uri.TryCreate("http://www.thebritishmuseum.ac.uk/", UriKind.Absolute);;

val it : bool * Uri =
 (true,
 http://www.thebritishmuseum.ac.uk/)
> Uri.TryCreate("e3£%//ww.gibberish.com", UriKind.Absolute);;

val it : bool * Uri = (false, null)

Processing Line-Based Input
A common, simple case of parsing and lexing occurs when you’re working with an existing line-based,
text-file format. In this case, parsing is often as easy as splitting each line of input at a particular separator
character and trimming whitespace off the resulting partial strings:

> let line = "Smith, John, 20 January 1986, Software Developer";;

val line : string = "Smith, John, 20 January 1986, Software Developer"

> line.Split ',';;

val it : string [] = [|"Smith"; " John"; " 20 January 1986"; " Software Developer"|]

> line.Split ',' |> Array.map (fun s -> s.Trim());;

val it : string [] = [|"Smith"; "John"; "20 January 1986"; "Software Developer"|]

You can then process each column in the data format:

let splitLine (line : string) =
 line.Split [|','|] |> Array.map (fun s -> s.Trim())

let parseEmployee (line : string) =
 match splitLine line with
 | [|last; first; startDate; title|] ->
 last, first, System.DateTime.Parse(startDate), title
 | _ ->
 failwithf "invalid employee format: '%s'" line

The type of this function is:

val parseEmployee : line:string -> string * string * DateTime * string

Here is an example use:

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

170

> parseEmployee line;;

val it : string * string * DateTime * string
 = ("Smith", "John", 20/01/1986 00:00:00 { ... }, "Software Developer")

You can now use on-demand reading of files to turn a file into an on-demand sequence of results. The
following example takes the first three entries from an artificially generated file containing 10,000 copies of
the same employee, sets up a processing pipeline for the lines of the file, and then truncates that to the
first three elements.

open System.IO

File.WriteAllLines("employees.txt", Array.create 10000 line)

let readEmployees (fileName : string) =
 fileName |> File.ReadLines |> Seq.map parseEmployee

let firstThree = readEmployees "employees.txt" |> Seq.truncate 3 |> Seq.toList

> firstThree |> Seq.iter (fun (last, first, startDate, title) ->
 printfn "%s %s started on %A" first last startDate);;

John Smith started on 20/01/1986 00:00:00
John Smith started on 20/01/1986 00:00:00
John Smith started on 20/01/1986 00:00:00

This technique often is used to do exploratory analysis of large data files. After the algorithm is refined
using a prefix of the data, the analysis can then be run directly over the full data file by removing the Seq.
truncate 3 step.

Using Regular Expressions to Parse Lines
Another technique that’s frequently used to extract information from strings is to use regular expressions.
The System.Text.RegularExpressions namespace provides convenient string-matching and -replacement
functions. For example, let’s say you have a log file containing a record of HTML GET requests. Here is a
sample request:

GET /favicon.ico HTTP/1.1

The following code captures the name of the requested resource (favicon.ico) and the lower version
number of the HTML protocol (1) used:

open System.Text.RegularExpressions

let parseHttpRequest line =
 let result = Regex.Match(line, @"GET (.*?) HTTP/1\.([01])$")
 let file = result.Groups.[1].Value
 let version = result.Groups.[2].Value
 file, version

171

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

The relevant fields are extracted by using the Groups attribute of the regular expression match to
access the matched strings for each parenthesized group in the regular expression.

More on Matching with System.Text.RegularExpressions
One of the most popular ways of working with strings as data is through the use of regular expressions. You
do this using the functionality from the .NET System.Text.RegularExpressions namespace. To get started,
first note that the F# library includes the following definition:

open System.Text.RegularExpressions
let regex s = new Regex(s)

To this, you can add the following Perl-like operators:

let (=~) s (re:Regex) = re.IsMatch(s)
let (<>~) s (re:Regex) = not (s =~ re)

Here, the inferred types are:

val regex : s:string -> Regex
val (=~) : s:string -> re:Regex -> bool
val (<>~) : s:string -> re:Regex -> bool

The infix operators allow you to test for matches:

> let samplestring = "This is a string";;

val samplestring : string = "This is a string"

> if samplestring =~ regex "his" then
 printfn "A Match! ";;
A Match!

Regular expressions can include *, +, and ? symbols for zero or more occurrences, one or more
occurrences, and zero or one occurrences of the immediately preceding regular expression, respectively,
and they can include parentheses to group regular expressions. For example:

> "This is a string" =~ regex "(is)+";;

val it : bool = true

Regular expressions also can be used to split strings:

> regex(" ").Split("This is a string");;

val it : string [] = [|"This"; "is"; "a"; "string"|]

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

172

Here, you use the regular expression " " for whitespace. In reality, you probably want to use the
regular expression " +" to match multiple spaces. Better still, you can match any Unicode whitespace
character using \s, including end-of-line markers. When using escape characters, however, you should use
verbatim strings to specify the regular expression, such as @"\s+". Let’s try:

> regex(@"\s+").Split("I'm a little teapot");;

val it : string [] = [|"I'm"; "a"; "little"; "teapot"|]

> regex(@"\s+").Split("I'm a little \t\t\n\t\n\t teapot");;

val it : string [] = [|"I'm"; "a"; "little"; "teapot"|]

Here’s how to match by using the method Match instead of using =~ and IsMatch. This lets you examine
the positions of a match:

> let m = regex("joe").Match("maryjoewashere");;

val m : Match = joe

> if m.Success then
 printfn "Matched at position %d" m.Index;;

Matched at position 4

Replacing text is also easy:

> let text = "was a dark and stormy night";;

val text : string = "was a dark and stormy night"

> let t2 = regex(@"\w+").Replace(text, "WORD");;

val t2: string = "WORD WORD WORD WORD WORD WORD"

Here, you use the regular expression "\w+" for a sequence of word characters.
Table 8-6 shows the broad range of specifiers you can use with .NET regular expressions.

Table 8-6. Regular Expression Escape Characters

Characters Description
Ordinary characters Characters other than . $ ^ { [(|) * + ? \ match themselves.

. Matches any character except \n. If RegexOptions.SingleLine is specified, it
matches every character.

[aeiou0-9] Matches any of the given characters or character ranges.

[^aeiou0-9] Matches any character other than the given characters or character ranges.

\p{name} Matches any character in the named character class specified by {name}. See
the .NET documentation for full details.

173

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

Characters Description
\P{name} Matches text not included in groups and block ranges specified in {name}.

\w Matches any word character.

\W Matches any nonword character.

\s Matches any whitespace character.

\S Matches any nonwhitespace character.

Characters Description

\d Matches any decimal digit.

\D Matches any nondigit.

\a Matches a bell (alarm) \u0007.

\b Matches a backspace \u0008 if in a [] character class; otherwise, in a regular
expression, \b denotes a word boundary (between \w and \W characters). In a
replacement pattern, \b always denotes a backspace.

\t Matches a tab \u0009.

\r Matches a carriage return \u000D.

\v Matches a vertical tab \u000B.

\f Matches a form feed \u000C.

\n Matches a new line \u000A.

\e Matches an escape \u001B.

\digit Matches a back reference.

\040 Matches an ASCII character as octal.

\x20 Matches an ASCII character using hexadecimal representation (exactly two
digits).

\cC Matches an ASCII control character; for example, \cC is Ctrl+C.

\u0020 Matches a Unicode character using hexadecimal representation (exactly four
digits).

\ When followed by a character that isn’t recognized as an escaped character,
matches that character. For example, * is the same as \x2A.

You can specify case-insensitive matches by using (?i) at the start of a regular expression:

> samplestring =~ regex "(?i)HIS";;

val it : bool = true

> samplestring =~ regex "HIS";;

val it : bool = false

This final example shows the use of named groups:

let entry = @"
Jolly Jethro

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

174

13 Kings Parade
Cambridge, Cambs CB2 1TJ
"

let re =
 regex @"(?<=\n)\s*(?<city>[^\n]+)\s*,\s*(?<county>\w+)\s+(?<pcode>.{3}\s*.{3}).*$"

You can now use this regular expression to match the text and examine the named elements of the
match:

> let r = re.Match(entry);;

val r : Match = Cambridge, Cambs CB2 1TJ

> r.Groups.["city"].Value;;

val it : string = "Cambridge"

> r.Groups.["county"].Value;;

val it : string = "Cambs"

> r.Groups.["pcode"].Value;;

val it : string = "CB2 1TJ"

You can also combine regular expression matching with active patterns, which are described in
Chapter 9. For example:

let (|IsMatch|_|) (re : string) (inp : string) =
 if Regex(re).IsMatch(inp) then Some() else None

This active pattern can now be used as:

> match "This is a string" with
| IsMatch "(?i)HIS" -> "yes, it matched"
| IsMatch "ABC" -> "this would not match"
| _ -> "nothing matched"

val it : string = "yes, it matched "

Likewise, you can define functions or active patterns that extract and return named results from the
match:

let firstAndSecondWord (inp : string) =
 let re = regex "(?<word1>\w+)\s+(?<word2>\w+)"
 let results = re.Match(inp)
 if results.Success then
 Some (results.Groups.["word1"].Value, results.Groups.["word2"].Value)
 else
 None

> firstAndSecondWord "This is a super string"

val it : (string * string) option = Some ("This", "is")

175

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

The string-based lookup of group names “word1” and “word2” in the result set is a little dissatisfying
in a strongly typed language, and there are a couple of things you can do to improve this. First, you can use
the dynamic operator, described in Chapter 17, to make the lookups slightly more natural. This code
requires

let (?) (results : Match) (name : string) =
 results.Groups.[name].Value

let firstAndSecondWord (inp : string) =
 let re = regex "(?<word1>\w+)\s+(?<word2>\w+)"
 let results = re.Match(inp)
 if results.Success then
 Some (results ? word1, results ? word2)
 else
 None

■ Note .NET regular expressions have many more features than those described here. For example, you can
compile regular expressions to make them match very efficiently. You can also use regular expressions to define
sophisticated text substitutions.

Encoding and Decoding Unicode Strings
It’s often necessary to convert string data between different formats. For example, files read using the
ReadLine method on the System.IO.StreamReader type are read with respect to a Unicode encoding. You
can specify this when creating the StreamReader. If left unspecified, the .NET libraries attempt to
determine the encoding for you.

One common requirement is to convert strings to and from ASCII representations, assuming that all
the characters in the strings are in the ASCII range 0 to 127. You can do this using System.Text.Encoding.
ASCII.GetString and System.Text.Encoding.ASCII.GetBytes. Table 8-7 shows the predefined encodings
and commonly used members in the System.Text.Encoding type.

Table 8-7. Types and Members Related to Unicode Encodings

Type/Member Description
System.Text.Encoding Represents a character encoding

 UTF8 : Encoding The encoding for the UTF-8 Unicode format

 ASCII : Encoding The encoding for the ASCII 7-bit character set

 Unicode : Encoding The encoding for the UTF-16 Unicode format

 UTF32 : Encoding The encoding for the UTF-32 Unicode format

 GetEncoding : string -> Encoding Fetches an encoding by name

 member GetBytes : string -> byte[] Encodes a string to bytes

 member GetChars: byte[] -> char[] Decodes a sequence of bytes

 member GetString : byte[] -> string Decodes a sequence of bytes

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

176

Encoding and Decoding Binary Data
Another common requirement is to convert binary data to and from the standard 64-character, string-
encoded representation of binary data used in XML, e-mail, and other formats. You can do this using
System.Convert.FromBase64String and System.Convert.ToBase64String.

Using XML as a Concrete Language Format
One common source of structured data in a textual format is the data formatted in the Extensible Markup
Language (XML). F# comes with well-engineered libraries for reading and generating XML, which you can
use to manipulate a typed abstract representation of an XML document in memory, without having to
worry about parsing/generating strings corresponding to the XML.

Using the System.Xml Namespace
XML is a general-purpose markup language; it is extensible, because it allows its users to define their own
tags. Its primary purpose is to facilitate the sharing of data across different information systems,
particularly via the Internet. Here is a sample fragment of XML, defined as a string directly in F#:

let inp = """<?xml version="1.0" encoding="utf-8" ?>
 <Scene>
 <Composite>
 <Circle radius='2' x='1' y='0'/>
 <Composite>
 <Circle radius='2' x='4' y='0'/>
 <Square side='2' left='-3' top='0'/>
 </Composite>
 <Ellipse top='2' left='-2' width='3' height='4'/>
 </Composite>
 </Scene>"""

The backbone of an XML document is a hierarchical structure, and each node is decorated with
attributes keyed by name. You can parse XML using the types and methods in the System.Xml namespace
provided by the .NET libraries and then examine the structure of the XML interactively:

> open System.Xml;;
> let doc = new XmlDocument();;

val doc : XmlDocument

> doc.LoadXml(inp);;

val it : unit = ()

> doc.ChildNodes;;

val it : XmlNodeList =
 seq [seq []; seq [seq [seq []; seq [seq []; seq []]; seq []]]]

177

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

The default F# Interactive display for the XmlNode type isn’t particularly useful. Luckily, you can add an
interactive printer to the fsi.exe session using the AddPrinter method on the fsi object:

> fsi.AddPrinter(fun (x:XmlNode) -> x.OuterXml);;

> doc.ChildNodes;;

val it : XmlNodeList =
 seq
 [<?xml version="1.0" encoding="utf-8"?>;
 <Scene><Composite><Circle radius="2" x="1" y="0" /><Composite>...</Scene>]

> doc.ChildNodes.Item(1);;

val it : XmlNode =
 <Scene><Composite><Circle radius="2" x="1" y="0" /><Composite>...</Scene>

> doc.ChildNodes.Item(1).ChildNodes.Item(0);;

val it : XmlNode =
 <Composite><Circle radius="2" x="1" y="0" />...</Composite>

> doc.ChildNodes.Item(1).ChildNodes.Item(0).ChildNodes.Item(0);;

val it : XmlNode = <Circle radius="2" x="1" y="0" />

> doc.ChildNodes.Item(1).ChildNodes.Item(0).ChildNodes.Item(0).Attributes;;

val it : XmlAttributeCollection = seq [radius="2"; x="1"; y="0"]

Table 8-8 shows the most commonly used types and members from the System.Xml namespace.

Table 8-8. Commonly Used Types and Members from the System.Xml Namespace

Type/Member Description
type XmlNode Represents a single node in an XML document

 member ChildNodes Gets all the child nodes of an XmlNode

 member Attributes Gets all the attributes of an XmlNode

 member OuterXml Gets the XML text representing the node and all its children

 member InnerText Gets the concatenated values of the node and all its children

 member SelectNodes Selects child nodes using an XPath query

Type/Member Description

type XmlAttribute Represents one attribute for an XmlNode; also an XmlNode

 member Value Gets the string value for the attribute

type XmlDocument Represents an entire XML document; also an XmlNode

 member Load Populates the document from the given XmlReader, stream, or file name

 member LoadXml Populates the document object from the given XML string

type XmlReader Represents a reader for an XML document or source

type XmlWriter Represents a writer for an XML document

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

178

From Concrete XML to Abstract Syntax
Often, your first task in processing a concrete language is to bring the language fragments under the type
discipline of F#. This section shows how to transform the data contained in the XML from the previous
section into an instance of the recursive type shown here. This kind of type is usually called an abstract
syntax tree (AST):

open System.Drawing
type Scene =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | Composite of Scene list

This example uses the types PointF and RectangleF from the System.Drawing namespace, although
you can equally define your own types to capture the information carried by the leaves of the tree. Listing
8-1 shows a recursive transformation to convert XML documents like the one used in the previous section
into the type Scene.

Listing 8-1. Converting XML into a Typed Format Using the System.Xml Namespace

open System.Xml
open System.Drawing
type Scene =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | Composite of Scene list

 /// A derived constructor
 static member Circle(center : PointF, radius) =
 Ellipse(RectangleF(center.X - radius, center.Y - radius,
 radius * 2.0f, radius * 2.0f))

 /// A derived constructor
 static member Square(left, top, side) =
 Rect(RectangleF(left, top, side, side))

/// Extract a number from an XML attribute collection
let extractFloat32 attrName (attribs : XmlAttributeCollection) =
 float32 (attribs.GetNamedItem(attrName).Value)

/// Extract a Point from an XML attribute collection
let extractPointF (attribs : XmlAttributeCollection) =
 PointF(extractFloat32 "x" attribs, extractFloat32 "y" attribs)

/// Extract a Rectangle from an XML attribute collection
let extractRectangleF (attribs : XmlAttributeCollection) =
 RectangleF(extractFloat32 "left" attribs, extractFloat32 "top" attribs,
 extractFloat32 "width" attribs, extractFloat32 "height" attribs)

/// Extract a Scene from an XML node
let rec extractScene (node : XmlNode) =

179

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

 let attribs = node.Attributes
 let childNodes = node.ChildNodes
 match node.Name with
 | "Circle" ->
 Scene.Circle(extractPointF(attribs), extractFloat32 "radius" attribs)
 | "Ellipse" ->
 Scene.Ellipse(extractRectangleF(attribs))
 | "Rectangle" ->
 Scene.Rect(extractRectangleF(attribs))
 | "Square" ->
 Scene.Square(extractFloat32 "left" attribs, extractFloat32 "top" attribs,
 extractFloat32 "side" attribs)
 | "Composite" ->
 Scene.Composite [for child in childNodes -> extractScene(child)]
 | _ -> failwithf "unable to convert XML '%s'" node.OuterXml

/// Extract a list of Scenes from an XML document
let extractScenes (doc : XmlDocument) =
 [for node in doc.ChildNodes do
 if node.Name = "Scene" then
 yield (Composite
 [for child in node.ChildNodes -> extractScene(child)])]

The inferred types of these functions are:

type Scene =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | Composite of Scene list
 with
 static member Circle : center:PointF * radius:float32 -> Scene
 static member Square : left:float32 * top:float32 * side:float32 -> Scene
 end

val extractFloat32 :
 attrName:string -> attribs:XmlAttributeCollection -> float32
val extractPointF : attribs:XmlAttributeCollection -> PointF
val extractRectangleF : attribs:XmlAttributeCollection -> RectangleF
val extractScene : node:XmlNode -> Scene
val extractScenes : doc:XmlDocument -> Scene list

The definition of extractScenes in Listing 8-1 generates lists using sequence expressions, which are
covered in Chapter 3. You can now apply the extractScenes function to the original XML. (You first add a
pretty-printer to the F# Interactive session for the RectangleF type using the AddPrinter function on the
fsi object.)

> fsi.AddPrinter(fun (r:RectangleF) ->
 sprintf "[%A,%A,%A,%A]" r.Left r.Top r.Width r.Height);;

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

180

> extractScenes doc;;

val it : Scene list
= [Composite
 [Composite
 [Ellipse [-1.0f,-2.0f,4.0f,4.0f];
 Composite [Ellipse [2.0f,-2.0f,4.0f,4.0f]; Rect [-3.0f,0.0f,2.0f,2.0f]];
 Ellipse [-2.0f,2.0f,3.0f,4.0f]]]]

The following sections more closely explain some of the choices we’ve made in the abstract syntax
design for the type Scene.

■ Tip Translating to a typed representation isn’t always necessary: some manipulations and analyses are better
performed directly on heterogeneous, general-purpose formats, such as XML or even on strings. For example, XML
libraries support XPath, accessed via the SelectNodes method on the XmlNode type. If you need to query a large,
semistructured document whose schema is frequently changing in minor ways, using XPath is the right way to do it.
Likewise, if you need to write a significant amount of code that interprets or analyzes a tree structure, converting to
a typed abstract syntax tree is usually better.

Some Recursive Descent Parsing
Sometimes, you want to tokenize and parse a nonstandard language format, such as XML or JSON. The
typical task is to parse the user input into your internal representation by breaking down the input string
into a sequence of tokens (“lexing”) and then constructing an instance of your internal representation
based on a grammar (“parsing”). Lexing and parsing don’t have to be separated, and there are often
convenient .NET methods for extracting information from text in particular formats, as shown in this
chapter. Nevertheless, it’s often best to treat the two processes separately.

In this section, you implement a simple tokenizer and parser for a language of polynomial expressions
for input text fragments, such as

 x^5 – 2x^3 + 20
or

 x + 3

The aim is simply to produce a structured value that represents the polynomial to permit subsequent
processing. For example, this may be necessary when writing an application that performs simple
symbolic differentiation—say, on polynomials only. You want to read polynomials, such as x^5 - 2x^3 +
20, as input from your users, which in turn is converted to your internal polynomial representation so that
you can perform symbolic differentiation and pretty-print the result to the screen. One way to represent
polynomials is as a list of terms that are added or subtracted to form the polynomial:

type Term =
 | Term of int * string * int
 | Const of int

type Polynomial = Term list

181

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

For instance, the polynomial x^5 – 2x^3 + 20 is represented as:

[Term (1,"x",5); Term (-2,"x",3); Const 20]

A Simple Tokenizer
First, you implement a tokenizer for the input, using regular expressions:

Listing 8-2. Tokenizer for Polynomials Using Regular Expressions

type Token =
 | ID of string
 | INT of int
 | HAT
 | PLUS
 | MINUS

let tokenR = regex @"((?<token>(\d+|\w+|\^|\+|-))\s*)*"

let tokenize (s : string) =
 [for x in tokenR.Match(s).Groups.["token"].Captures do
 let token =
 match x.Value with
 | "^" -> HAT
 | "-" -> MINUS
 | "+" -> PLUS
 | s when System.Char.IsDigit s.[0] -> INT (int s)
 | s -> ID s
 yield token]

The inferred type of the function is:

val tokenize : s:string -> Token list

We can now test the tokenizer on some sample inputs:

> tokenize "x^5 - 2x^3 + 20";;

val it : Token list =
 [ID "x"; HAT; INT 5; MINUS; INT 2; ID "x"; HAT; INT 3; PLUS; INT 20]

The tokenizer works by simply matching the entire input string, and for each text captured by the
labeled “token” pattern, we yield an appropriate token depending on the captured text.

Recursive-Descent Parsing
You can now turn your attention to parsing. In Listing 8-2, you built a lexer and a token type suitable for
generating a token stream for the input text (shown as a list of tokens here):

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

182

[ID "x"; HAT; INT 5; MINUS; INT 2; ID "x"; HAT; INT 3; PLUS; INT 20]

Listing 8-3 shows a recursive-decent parser that consumes this token stream and converts it into the
internal representation of polynomials. The parser works by generating a lazy list for the token stream.
Lazy lists are a data structure in the F# library module Microsoft.FSharp.Collections.LazyList, and
they’re a lot like sequences, with one major addition—lazy lists effectively allow you to pattern-match on a
sequence and return a residue lazy list for the tail of the sequence.

Listing 8-3. Recursive-descent Parser for Polynomials

type Term =
 | Term of int * string * int
 | Const of int

type Polynomial = Term list
type TokenStream = Token list

let tryToken (src : TokenStream) =
 match src with
 | tok :: rest -> Some(tok, rest)
 | _ -> None

let parseIndex src =
 match tryToken src with
 | Some (HAT, src) ->
 match tryToken src with
 | Some (INT num2, src) ->
 num2, src
 | _ -> failwith "expected an integer after '^'"
 | _ -> 1, src

let parseTerm src =
 match tryToken src with
 | Some (INT num, src) ->
 match tryToken src with
 | Some (ID id, src) ->
 let idx, src = parseIndex src
 Term (num, id, idx), src
 | _ -> Const num, src
 | Some (ID id, src) ->
 let idx, src = parseIndex src
 Term(1, id, idx), src
 | _ -> failwith "end of token stream in term"

let rec parsePolynomial src =
 let t1, src = parseTerm src
 match tryToken src with
 | Some (PLUS, src) ->
 let p2, src = parsePolynomial src
 (t1 :: p2), src
 | _ -> [t1], src

183

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

let parse input =
 let src = tokenize input
 let result, src = parsePolynomial src
 match tryToken src with
 | Some _ -> failwith "unexpected input at end of token stream!"
 | None -> result

The functions here have these types (using the type aliases you defined):

val tryToken : src:TokenStream -> (Token * Token list) option
val parseIndex : src:TokenStream -> int * Token list
val parseTerm : src:TokenStream -> Term * Token list
val parsePolynomial : src:TokenStream -> Term list * Token list
val parse : input:string -> Term list

Note in the previous examples that you can successfully parse either constants or complete terms, but
after you locate a HAT symbol, a number must follow. This sort of parsing, in which you look only at the
next token to guide the parsing process, is referred to as LL(1), which stands for left-to-right, leftmost
derivation parsing; 1 means that only one look-ahead symbol is used. To conclude, you can look at the
parse function in action:

> parse "1+3";;

val it : Term list = [Const 1; Const 3]

> parse "2x^2+3x+5";;

val it : Term list = [Term (2,"x",2); Term (3,"x",1); Const 5]

Binary Parsing and Formatting
One final case of parsing is common when working with binary data. That is, say you want to work with a
format that is conceptually relatively easy to parse and generate (such as a binary format) but in which the
process of actually writing the code to crack and encode the format is somewhat tedious. This section
covers a useful set of techniques to write readers and writers for binary data quickly and reliably.

The running example shows a set of pickling (also called marshalling) and unpickling combinators to
generate and read a binary format of our design. You can easily adapt the combinators to work with
existing binary formats, such as those used for network packets. Picklers and unpicklers for different data
types are function values that have signatures as follows:

type OutState = System.IO.BinaryWriter
type InState = System.IO.BinaryReader

type Pickler<'T> = 'T -> OutState -> unit
type Unpickler<'T> = InState -> 'T

Here, OutState and InState are types that record information during the pickling or unpickling
process. In this section, these are just binary readers and writers; more generally, they can be any type that

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

184

can collect information and help compact the data during the writing process, such as by ensuring that
repeated strings are given unique identifiers during the pickling process.

At the heart of every such library lies a set of primitive leaf functions for the base cases of aggregate
data structures. For example, when you’re working with binary streams, this is the usual set of primitive
read/write functions:

// P is the suffix for pickling and U is the suffix for unpickling
let byteP (b : byte) (st : OutState) = st.Write(b)
let byteU (st : InState) = st.ReadByte()

You can now begin to define additional pickler/unpickler pairs:

let boolP b st = byteP (if b then 1uy else 0uy) st
let boolU st = let b = byteU st in (b = 1uy)

let int32P i st =
 byteP (byte (i &&& 0xFF)) st
 byteP (byte ((i >>> 8) &&& 0xFF)) st
 byteP (byte ((i >>> 16) &&& 0xFF)) st
 byteP (byte ((i >>> 24) &&& 0xFF)) st

let int32U st =
 let b0 = int (byteU st)
 let b1 = int (byteU st)
 let b2 = int (byteU st)
 let b3 = int (byteU st)
 b0 ||| (b1 <<< 8) ||| (b2 <<< 16) ||| (b3 <<< 24)

These functions have the following types (to keep output readable, Pickler and Unpickler types are
used in the output instead of their expanded version that is reported by F# Interactive):

val byteP : Pickler<byte>
val byteU : Unpickler<byte>
val boolP : Pickler<bool>
val boolU : Unpickler<bool>
val int32P : Pickler<int>
val int32U : Unpickler<int>

So far, so simple. One advantage of this approach comes as you write combinators that put these
together in useful ways. For example, for tuples:

let tup2P p1 p2 (a, b) (st : OutState) =
 (p1 a st : unit)
 (p2 b st : unit)

let tup3P p1 p2 p3 (a, b, c) (st : OutState) =
 (p1 a st : unit)
 (p2 b st : unit)
 (p3 c st : unit)

185

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

let tup2U p1 p2 (st : InState) =
 let a = p1 st
 let b = p2 st
 (a, b)

let tup3U p1 p2 p3 (st : InState) =
 let a = p1 st
 let b = p2 st
 let c = p3 st
 (a, b, c)

and for lists:

/// Outputs a list into the given output stream by pickling each element via f.
/// A zero indicates the end of a list, a 1 indicates another element of a list.
let rec listP f lst st =
 match lst with
 | [] -> byteP 0uy st
 | h :: t -> byteP 1uy st; f h st; listP f t st

// Reads a list from a given input stream by unpickling each element via f.
let listU f st =
 let rec loop acc =
 let tag = byteU st
 match tag with
 | 0uy -> List.rev acc
 | 1uy -> let a = f st in loop (a :: acc)
 | n -> failwithf "listU: found number %d" n
 loop []

These functions conform to the types:

val tup2P : Pickler<'a> -> Pickler<'b> -> Pickler<'a * 'b>
val tup3P : Pickler<'a> -> Pickler<'b> -> Pickler<'c> -> Pickler<'a * 'b * 'c>
val tup2U : Unpickler<'a> -> Unpickler<'b> -> Unpickler<'a * 'b>
val tup3U : Unpickler<'a> -> Unpickler<'b> -> Unpickler<'c> -> Unpickler<'a* 'b* 'c>
val listP : Pickler<'a> -> Pickler<'a list>
val listU : Unpickler<'a> -> Unpickler<'a list>

It’s now beginning to be easy to pickle and unpickle aggregate data structures using a consistent
format. For example, imagine that the internal data structure is a list of integers and Booleans:

type format = list<int32 * bool>

let formatP = listP (tup2P int32P boolP)
let formatU = listU (tup2U int32U boolU)

open System.IO

let writeData file data =

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

186

 use outStream = new BinaryWriter(File.OpenWrite(file))
 formatP data outStream

let readData file =
 use inStream = new BinaryReader(File.OpenRead(file))
 formatU inStream

You can now invoke the pickle/unpickle process:

> writeData "out.bin" [(102, true); (108, false)] ;;

val it : unit = ()

> readData "out.bin";;

val it : (int * bool) list = [(102, true); (108, false)]

Combinator-based pickling is a powerful technique that can be taken well beyond what has been
shown here. For example, it’s possible to:

Ensure data are compressed and shared during the pickling process by keeping
tables in the input and output states. Sometimes this requires two or more phases in
the pickling and unpickling process.

Build in extra-efficient primitives that compress leaf nodes, such as writing out all
integers using BinaryWriter.Write7BitEncodedInt and BinaryReader.
Read7BitEncodedInt.

Build extra combinators for arrays, sequences, and lazy values and for lists stored in
binary formats other than the 0/1 tag scheme used here.

Build combinators that allow dangling references to be written to the pickled data,
usually written as a symbolic identifier. When the data are read, the identifiers must
be resolved and relinked, usually by providing a function parameter that performs
the resolution. This can be a useful technique when processing independent
compilation units.

Combinator-based pickling is used mainly because it allows data formats to be created and read in a
relatively bug-free manner. It isn’t always possible to build a single pickling library suitable for all
purposes, and you should be willing to customize and extend code samples, such as those listed
previously, in order to build a set of pickling functions suitable for your needs.

■ Note Combinator-based parsing borders on a set of techniques called parser combinators that we don’t cover
in this book. The idea is very much the same as the combinators presented here; parsing is described using a
compositional set of functions. You also can write parser combinators using the workflow notation described in
Chapter 17.

187

CHAPTER 8 ■ WORKING WITH TEXTUAL DATA

Summary
In this chapter, you explored several topics related to working with textual data. You learned about
formatting text using both F# type-safe formatting and .NET formatting, some simple techniques to parse
data to primitive types, and the basics of working with regular expressions. You also learned how to work
with XML as a concrete text format for structured data. Finally, you learned how to use recursive descent
parsing and some combinator-based approaches for generating and reading binary data to/from
structured data types. The next chapter goes deeper into working with structured data itself using the
strongly typed functional-programming facilities of .NET.

189

■ ■ ■

CHAPTER 9

Working with Sequences
and Structured Data

In the previous chapter, you learned about some techniques used to manipulate unstructured data,
including how to parse and format structured data as unstructured text. In this chapter, you focus on F#
programming techniques related to structured data.

Structured data, and its processing, is a broad topic that lies at the heart of much applied F#
programming. In this chapter, you will learn about a number of applied topics in structured programming,
including:

building, transforming and querying in-memory data structures—in particular,
using sequence-based programming

working with abstract syntax representations, including some efficiency-related
representation techniques

building new data structures, including implementing equality and comparison
operations for these types

defining structured views of existing data structures using active patterns

using recursion and tail-calls, especially over recursively structured types.

Closely related to programming with structured data is the use of recursion in F# to describe some
algorithms. In order to use recursion effectively over structured data, you will also learn about tail calls and
how they affect the use of the “stack” as a computational resource.

Getting Started with Sequences
Many programming tasks require the iteration, aggregation, and transformation of data streamed from
various sources. One important and general way to code these tasks is in terms of values of the type
System.Collections.Generic.IEnumerable<type>, which is typically abbreviated to seq<type> in F# code. A
seq<type> is a value that can be iterated, producing results of type type on demand. Sequences are used to
wrap collections, computations, and data streams and are frequently used to represent the results of
database queries. The following sections present some simple examples of working with seq<type> values.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

190

Using Range Expressions
You can generate simple sequences using range expressions. For integer ranges, these take the form of seq
{n .. m} for the integer expressions n and m:

> seq {0 .. 2};;

val it : seq<int> = seq [0; 1; 2;]

You can also specify range expressions using other numeric types, such as double and single:

> seq {-100.0 .. 100.0};;

val it : seq<float> = seq [-100.0; -99.0; -98.0; -97.0; ...]

By default, F# Interactive shows the value of a sequence only to a limited depth; seq<'T> values are
lazy in the sense that they compute and return the successive elements on demand. This means you can
create sequences representing very large ranges, and the elements of the sequence are computed only if
they’re required by a subsequent computation. In the next example, you don’t actually create a concrete
data structure containing one trillion elements, but rather, you create a sequence value that has the
potential to yield this number of elements on demand. The default printing performed by F# Interactive
forces this computation up to depth 4:

> seq {1I .. 1000000000000I};;

val it : seq<Numerics.BigInteger> = seq [1 ; 2; 3; ...]

The default increment for range expressions is always 1. A different increment can be used via range
expressions of the form seq {n .. skip .. m}:

> seq {1 .. 2 .. 5};;

val it : seq<int> = seq [1; 3; 5]

> seq {1 .. -2 .. -5};;

val it : seq<int> = seq [1; -1; -3; -5]

If the skip causes the final element to be overshot, then the final element isn’t included in the result:

> seq {0 .. 2 .. 5};;

val it : seq<int> = seq [0; 2; 4]

The (..) and (.. ..) operators are overloaded operators in the same sense as (+) and (-), which
means their behavior can be altered for user-defined types. Chapter 6 discusses this in more detail.

191

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Iterating a Sequence
You can iterate sequences using the for ... in ... do construct, as well as the Seq.iter aggregate
operator discussed in the next section. Here is a simple example of the first:

> let range = seq {0 .. 2 .. 6};;

val range : seq<int>

> for i in range do printfn "i = %d" i;;
i = 0
i = 2
i = 4
i = 6

This construct forces the iteration of the entire seq. Use it with care when you’re working with
sequences that may yield a large number of elements.

Transforming Sequences with Aggregate Operators
Any value of type seq<type> can be iterated and transformed using functions in the Microsoft.FSharp.
Collections.Seq module. For example:

> let range = seq {0 .. 10};;

val range : seq<int>

> range |> Seq.map (fun i -> (i,i*i));;

val it : seq<int * int> = seq [(0, 0); (1, 1); (2, 4); (3, 9); ...]

Table 9-1 shows some important functions in this library module. The following operators necessarily
evaluate all the elements of the input seq immediately:

Seq.iter: This iterates all elements, applying a function to each.

Seq.toList: This iterates all elements, building a new list.

Seq.toArray: This iterates all elements, building a new array.

Most other operators in the Seq module return one or more seq<type> values and force the
computation of elements in any input seq<type> values only on demand.

Table 9-1. Some Important Functions and Aggregate Operators from the Seq Module

Operator Type
Seq.append seq<'T> -> seq<'T> -> seq<'T>

Seq.concat seq<#seq<'T>> -> seq<'T>

Seq.choose ('T -> 'U option) -> seq<'T> -> seq<'U>

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

192

Operator Type
Seq.delay (unit -> seq<'T>) -> seq<'T>

Seq.empty seq<'T>

Seq.iter ('T -> unit) -> seq<'T> -> unit

Seq.filter ('T -> bool) -> seq<'T> -> seq<'T>

Seq.map ('T -> 'U) -> seq<'T> -> seq<'U>

Seq.singleton 'T -> seq<'T>

Seq.truncate int -> seq<'T> -> seq<'T>

Seq.toList seq<'T> -> 'T list

Seq.ofList 'T list -> seq<'T>

Seq.toArray seq<'T> -> 'T []

Seq.ofArray 'T [] -> seq<'T>

Which Types Can Be Used as Sequences?
Table 9-1 includes many uses of types such as seq<'T>. When a type appears as the type of an argument,
the function accepts any value that’s compatible with this type. Chapter 5 explained the notions of
subtyping and compatibility in more detail; the concept should be familiar to OO programmers because
it’s the same as that used by languages such as C#, which itself is close to that used by Java and C++. In
practice, you can easily discover which types are compatible with which others by using F# Interactive and
tools such as Visual Studio: when you hover over a type name, the compatible types are shown. You can
also refer to the online documentation for the F# libraries and the .NET Framework, which you can easily
obtain using the major search engines.

Here are some of the types compatible with seq<'T>:

Array types: For example, int[] is compatible with seq<int>.

F# list types: For example, int list is compatible with seq<int>.

All other F# and .NET collection types: For example, System.Collections.Generic.
SortedList<string> is compatible with seq<string>.

Using Lazy Sequences from External Sources
Sequences are frequently used to represent the process of streaming data from an external source, such as
from a database query or from a computer’s file system. For example, the following recursive function
constructs a seq<string> that represents the process of recursively reading the names of all the files under
a given path. The return types of Directory.GetFiles and Directory.GetDirectories are string[]; and, as
noted earlier, this type is always compatible with seq<string>:

open System.IO
let rec allFiles dir =
 Seq.append
 (dir |> Directory.GetFiles)
 (dir |> Directory.GetDirectories |> Seq.map allFiles |> Seq.concat)

This gives the following type:

193

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

val allFiles : dir:string -> seq<string>

Here is an example of the function being used on one of our machines:

> allFiles @"c:\WINDOWS\system32";;

val it : seq<string> =
 seq
 ["c:\WINDOWS\system32\12520437.cpx"; "c:\WINDOWS\system32\12520850.cpx";
 "c:\WINDOWS\system32\aaclient.dll";
 "c:\WINDOWS\system32\accessibilitycpl.dll"; ...]

The allFiles function is interesting partly because it shows many aspects of F# working seamlessly
together:

Functions as values: The function allFiles is recursive and is used as a first-class
function value within its own definition.

Pipelining: The pipelining operator |> provides a natural way to present the
transformations applied to each subdirectory name.

Type inference: Type inference computes all types in the obvious way, without any
type annotations.

NET interoperability: The System.IO.Directory operations provide intuitive
primitives, which can then be incorporated in powerful ways using succinct F#
programs.

Laziness where needed: The function Seq.map applies the argument function lazily
(on demand), which means subdirectories aren’t read until required.

One subtlety with programming with on-demand or lazy values such as sequences is that side effects
such as reading and writing from an external store shouldn’t in general happen until the lazy sequence value
is consumed. For example, the previous allFiles function reads the top-level directory C:\ as soon as
allFiles is applied to its argument. This may not be appropriate if the contents of C:\ are changing. You can
delay the computation of the sequence by using the library function Seq.delay or by using a sequence
expression, covered in the next section, in which delays are inserted automatically by the F# compiler.

Using Sequence Expressions
Aggregate operators are a powerful way of working with seq<type> values. However, F# also provides a
convenient and compact syntax called sequence expressions for specifying sequence values that can be
built using operations such as choose, map, filter, and concat. You can also use sequence expressions to
specify the shapes of lists and arrays. It’s valuable to learn how to use sequence expressions:

They’re a compact way of specifying interesting data and generative processes.

They’re used to specify database queries when using data-access layers such as
Microsoft’s Language Integrated Queries (LINQ). See Chapter 15 for examples of
using sequence expressions this way.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

194

They’re one particular use of computation expressions, a more general concept that
has several uses in F# programming. Chapter 9 discusses computation expressions,
and we show how to use them for asynchronous and parallel programming in
Chapter 13.

The simplest form of a sequence expression is seq { for value in expr .. expr -> expr }. Here, ->
should be read “yield.” This is a shorthand way of writing Seq.map over a range expression. For example,
you can generate an enumeration of numbers and their squares as follows:

> let squares = seq { for i in 0 .. 10 -> (i, i * i) };;

val squares : seq<int * int>

The more complete form of this construct is seq { for pattern in sequence -> expression }. The
pattern allows you to decompose the values yielded by the input enumerable. For example, you can
consume the elements of squares using the pattern (i,iSquared):

> seq { for (i, iSquared) in squares -> (i, iSquared, i * iSquared) };;

val it : seq<int * int * int> =
 seq [(0, 0, 0); (1, 1, 1); (2, 4, 8); (3, 9, 27); ...]

The input sequence can be a seq<type> or any type supporting a GetEnumerator method.

Enriching Sequence Expressions with Additional Logic
A sequence expression often begins with for ... in ..., but you can use additional constructs. For
example:

A secondary iteration: for pattern in seq do seq-expr

A filter: if expression then seq-expr

A conditional: if expression then seq-expr else seq-expr

A let binding: let pattern = expression in seq-expr

Yielding a value: yield expression

Secondary iterations generate additional sequences, all of which are collected and concatenated
together. Filters let you skip elements that don’t satisfy a given predicate. To see both of these in action, the
following computes a checkerboard set of coordinates for a rectangular grid:

let checkerboardCoordinates n =
 seq { for row in 1 .. n do
 for col in 1 .. n do
 let sum = row + col
 if sum % 2 = 0 then
 yield (row, col)}

195

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

> checkerboardCoordinates 3;;

val it : seq<int * int> = seq [(1, 1); (1, 3); (2, 2); (3, 1); ...]

Using let clauses in sequence expressions allows you to compute intermediary results. For example,
the following code gets the creation time and last-access time for each file in a directory:

let fileInfo dir =
 seq { for file in Directory.GetFiles dir do
 let creationTime = File.GetCreationTime file
 let lastAccessTime = File.GetLastAccessTime file
 yield (file, creationTime, lastAccessTime)}

In the previous examples, each step of the iteration produces zero or one result. The final yield of a
sequence expression can also be another sequence, signified through the use of the yield! keyword. The
following sample shows how to redefine the allFiles function from the previous section using a sequence
expression. Note that multiple generators can be included in one sequence expression; the results are
implicitly collated together using Seq.append:

let rec allFiles dir =
 seq { for file in Directory.GetFiles dir do
 yield file
 for subdir in Directory.GetDirectories dir do
 yield! allFiles subdir}

Generating Lists and Arrays Using Sequence Expressions
You can also use range and sequence expressions to build list and array values. The syntax is identical,
except the surrounding braces are replaced by the usual [] for lists and [| |] for arrays (Chapter 4
discusses arrays in more detail):

> [1 .. 4];;

val it: int list = [1; 2; 3; 4]

> [for i in 0 .. 3 -> (i, i * i)];;

val it : (int * int) list = [(0,0); (1,1); (2,4); (3,9)]

> [|for i in 0 .. 3 -> (i, i * i)|];;

val it : (int * int) [] = [|(0, 0); (1, 1); (2, 4); (3, 9)|]

■ Caution F# lists and arrays are finite data structures built immediately rather than on demand, so you must
take care that the length of the sequence is suitable. For example, [1I .. 1000000000I] attempts to build a list
that is 1 billion elements long.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

196

More on Working with Sequences
In this section, we look at more techniques for working with sequences of data. This extends the initial
techniques you learned in the previous section. For example, consider the map and filter operations. You
can use these operators in a straightforward manner to query and transform in-memory data. For
instance, given a table representing some people in your contacts list, you can select those names that
start with the letter A as:

/// A table of people in our startup
let people =
 [("Amber", 27, "Design")
 ("Wendy", 35, "Events")
 ("Antonio", 40, "Sales")
 ("Petra", 31, "Design")
 ("Carlos", 34, "Marketing")]

/// Extract information from the table of people
let namesOfPeopleStartingWithA =
 people
 |> Seq.map (fun (name, age, dept) -> name)
 |> Seq.filter (fun name -> name.StartsWith "A")
 |> Seq.toList

At the end of the set of sequence operations, we use Seq.toList to evaluate the sequence once and
convert the results into a concrete list. Similarly, the following finds all those in the design department:

/// Extract the names of designers from the table of people
let namesOfDesigners =
 people
 |> Seq.filter (fun (_, _, dept) -> dept = "Design")
 |> Seq.map (fun (name, _, _) -> name)
 |> Seq.toList

The output from evaluating these declarations is:

val people : (string * int * string) list =
 [("Amber", 27, "Design"); ("Wendy", 35, "Events"); ("Antonio", 40, "Sales");
 ("Petra", 31, "Design"); ("Carlos", 34, "Marketing")]
val namesOfPeopleStartingWithA : string list = ["Amber"; "Antonio"]
val namesOfDesigners : string list = ["Amber"; "Petra"]

The map and filter operations on sequences, arrays, lists, and other structured data types are
examples of queries. In these cases, the queries are expressed by using pipelined combinators that accept
the data structure as input. In database terminology, the “map” and “filter” operations are, respectively,
called “select” and “where.”. Sequence-based functional programming gives you the tools to apply in-
memory query logic on all types that are compatible with the F# sequence type, such as F# lists, arrays,
sequences, and anything else that implements the IEnumerable<'a>/seq<'a> interface.

In the rest of this section, you learn about additional operations over sequences. Some further
statistical and numeric operations, such as summing and averaging over sequences, are described in
Chapter 10.

197

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Using Other Sequence Operators: Truncate and Sort
The Seq module contains many other useful functions in addition to the map and filter operators, some of
which were described in Chapter 3. For instance, a useful query-like function is Seq.truncate, which takes
the first n elements of a sequence and discards the rest. Likewise, you can sort a sequence by using Seq.
sort. In the following example, you extract the first 3,000 even numbers from an unbounded stream of
random numbers, and for each you return a pair of the number and its square. The sort operation uses the
default comparison semantics for the type of elements in the sequence.

/// A random-number generator
let rand = System.Random()

/// An infinite sequence of numbers
let randomNumbers = seq { while true do yield rand.Next(100000) }

/// The first 10 random numbers, sorted
let firstTenRandomNumbers =
 randomNumbers
 |> Seq.truncate 10
 |> Seq.sort // sort ascending
 |> Seq.toList

/// The first 3000 even random numbers and sort them
let firstThreeThousandEvenNumbersWithSquares =
 randomNumbers
 |> Seq.filter (fun i -> i % 2 = 0) // "where"
 |> Seq.truncate 3000
 |> Seq.sort // sort ascending
 |> Seq.map (fun i -> i, i*i) // "select"
 |> Seq.toList

The output for evaluating this expression is:

// random – results will vary!

val randomNumbers : seq<int>
val firstTenRandomNumbers : int list =
 [9444; 14443; 15015; 20448; 31038; 46145; 69447; 85050; 85509; 92181]
val firstThreeThousandEvenNumbersWithSquares : (int * int) list =
 [(56, 3136); (62, 3844); (66, 4356); (68, 4624); (70, 4900); (86, 7396);
 (144, 20736); (238, 56644); (248, 61504); (250, 62500); ...]

The operations Seq.sortBy and Seq.sortWith take custom key-extraction and key-comparison
functions, respectively. For example, the next code sample takes the first 10 numbers from our random-
number sequence and sorts them by the last digit only (so 17510 appears before 16351, because the last
digit 0 is lower than 1):

/// The first 10 random numbers, sorted by last digit
let firstTenRandomNumbersSortedByLastDigit =
 randomNumbers
 |> Seq.truncate 10

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

198

 |> Seq.sortBy (fun x -> x % 10)
 |> Seq.toList

The output is:

val firstTenRandomNumbersSortedByLastDigit : int list =
 [51220; 56640; 88543; 97424; 90744; 11784; 23316; 1368; 71878; 89719]

Selecting Multiple Elements From Sequences
Often, you will find yourself writing sequence transformations that select multiple elements or zero-or-one
elements for each input element in the sequence. This is in contrast to the operation Seq.map, which
always selects one new element. The types of Seq.collect and Seq.choose are:

module Seq =
 val choose : chooser : ('T -> 'U option) -> source : seq<'T> -> seq<'U>
 val collect : mapping : ('T -> #seq<'U>) -> source : seq<'T> -> seq<'U>
 val map : mapping : ('T -> 'U) -> source : seq<'T> -> seq<'U>

For example, given a list of numbers 1 to 10, the following sample shows how to select the “triangle” of
numbers 1, 1, 2, 1, 2, 3, 1, 2,3, 4, etc. At the end of the set of sequence operations, we use Seq.toList to
evaluate the sequence once and convert the results into a concrete list.

// Take the first 10 numbers and build a triangle 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, …
let triangleNumbers =
 [1 .. 10]
 |> Seq.collect (fun i -> [1 .. i])
 |> Seq.toList

The output is:

val triangleNumbers : int list =
 [1; 1; 2; 1; 2; 3; 1; 2; 3; 4; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 6; 1; 2; 3; 4;
 5; 6; 7; 1; 2; 3; 4; 5; 6; 7; 8; 1; 2; 3; 4; 5; 6; 7; 8; 9; 1; 2; 3; 4; 5;
 6; 7; 8; 9; 10]

Likewise, you can use Seq.choose for the special case in which returning only zero-or-one
elements, returning an option value None to indicate no new elements are produced and Some value to
indicate the production of one element. The Seq.choose operation is logically the same as combining a
filter and map operation into a single step. In the example below, you create an 8x8 “game board” full of
random numbers, in which each element of the data structure includes the index position and a “game
value” at that position. (Note that you will reuse this data structure below to explore several other sequence
operations.)

let gameBoard =
 [for i in 0 .. 7 do
 for j in 0 .. 7 do
 yield (i,j,rand.Next(10))]

199

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

We then select the positions containing an even number:

let evenPositions =
 gameBoard
 |> Seq.choose (fun (i,j,v) -> if v % 2 = 0 then Some (i,j) else None)
 |> Seq.toList

The output is:

// random – results will vary!
val gameBoard : (int * int * int) list = [(0, 0, 9); (0, 1, 2); (0, 2, 8); (0, 3, 2); ...]
val evenPositions : (int * int) list = [(0, 1); (0, 2); (0, 3); ...]

Finding Elements and Indexes in Sequences
One of the most common operations in sequence programming is searching a sequence for an element
that satisfies a specific criteria. The operations you use to do this are Seq.find, Seq.findIndex and Seq.
pick. These both will raise an exception if an element or index is not found, and they also have
corresponding nonfailing partners Seq.tryFind, Seq.tryFindIndex and Seq.tryPick. The types of these
operations are:

module Seq =
 val find : predicate : ('T -> bool) -> source : seq<'T> -> 'T
 val findIndex : predicate : ('T -> bool) -> source : seq<'T> -> int
 val pick : chooser : ('T -> bool) -> source : seq<'T> -> 'T
 val tryFind : predicate : ('T -> bool) -> source : seq<'T> -> 'T option
 val tryFindIndex : predicate : ('T -> bool) -> source : seq<'T> -> int option
 val tryPick : chooser : ('T -> 'U option) -> source : seq<'T> -> 'U option

For example, given the board you defined above, you can search the game board for the first location with a
zero game value by using Seq.tryFind. This will return None if the search fails and Some value if it
succeeds. Likewise, you can combine a selection and projection into a single operation using Seq.tryPick.
let firstElementScoringZero =
 gameBoard |> Seq.tryFind (fun (i, j, v) -> v = 0)

let firstPositionScoringZero =
 gameBoard |> Seq.tryPick (fun (i, j, v) -> if v = 0 then Some(i, j) else None)

The output is:

// random – results will vary!

val firstElementScoringZero : (int * int * int) option = Some (1, 5, 0)
val firstPositionScoringZero : (int * int) option = Some (1, 5)

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

200

Grouping and Indexing Sequences
Search operations such as Seq.find search the input sequence linearly, from left to right. Frequently, it will
be critical to performance of your code to index your operations over your data structures. There are
numerous ways to do this, usually by building an indexed data structure, such as a Dictionary (see Chapter
4) or an indexed functional map (see Chapter 3).

In the process of building an indexed collection, you will often start with sequences of data and then
group the data into buckets. Grouping is also useful, for many other reasons, when categorizing data for
structural and statistical purposes. In the following example, you group the elements of the gameBoard
defined previously into buckets according to the game value at each position:

let positionsGroupedByGameValue =
 gameBoard
 |> Seq.groupBy (fun (i, j, v) -> v)
 |> Seq.sortBy (fun (k, v) -> k)
 |> Seq.toList

The output is:

val positionsGroupedByGameValue : (int * seq<int * int * int>) list =
 [(0, <seq>); (1, <seq>); (2, <seq>); (3, <seq>); (4, <seq>); (5, <seq>);
 (6, <seq>); (7, <seq>); (8, <seq>); (9, <seq>)]

Note that each element in the grouping is a key and a sequence of values for that key. It is very
common to immediately post-process the results of grouping into a dictionary or map. The built-in
functions dict and Map.ofSeq are useful for this purpose, as they build dictionaries and immutable tree-
maps, respectively. For example:

let positionsIndexedByGameValue =
 gameBoard
 |> Seq.groupBy (fun (i, j, v) -> v)
 |> Seq.sortBy (fun (k, v) -> k)
 |> Seq.map (fun (k, v) -> (k, Seq.toList v))
 |> dict
let worstPositions = positionsIndexedByGameValue.[0]
let bestPositions = positionsIndexedByGameValue.[9]

The output is:

// random – results will vary!

val positionsIndexedByGameValue :
 System.Collections.Generic.IDictionary<int,(int * int * int) list>
val worstPositions : (int * int * int) list =
 [|(0, 6, 0); (2, 1, 0); (2, 3, 0); (6, 0, 0); (7, 0, 0)|]
val bestPositions : (int * int * int) list =
 [|(0, 3, 9); (0, 7, 9); (5, 3, 9); (6, 4, 9); (6, 7, 9)|]

Note that for highly-optimized grouping and indexing, it can be useful to rewrite your core
indexed tables into direct uses of highly optimized data structures, such as System.Collections.Generic.
Dictionary, as described in Chapter 4.

201

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Folding Sequences
Some of the most general operators supported by most F# data structures are fold and foldBack. These
apply a function to each element of a collection and accumulate a result. For fold and foldBack, the
function is applied in left-to-right or right-to-left order, respectively. If you use the name fold, the
ordering typically is left to right. Both functions also take an initial value for the accumulator. For
example:

> List.fold (fun acc x -> acc + x) 0 [4; 5; 6];;

val it : int = 15

> Seq.fold (fun acc x -> acc + x) 0.0 [4.0; 5.0; 6.0];;

val it : float = 15.0

> List.foldBack (fun x acc -> min x acc) [4; 5; 6; 3; 5] System.Int32.MaxValue;;

val it : int = 3

The following are equivalent, but no explicit anonymous function values are used:

> List.fold (+) 0 [4; 5; 6];;

val it : int = 15

> Seq.fold (+) 0.0 [4.0; 5.0; 6.0];;

val it : float = 15.0

> List.foldBack min [4; 5; 6; 3; 5] System.Int32.MaxValue;;

val it : int = 3

If used carefully, the various foldBack operators are pleasantly compositional, because they let you
apply a selection function as part of the accumulating function:

> List.foldBack (fst >> min) [(3, "three"); (5, "five")] System.Int32.MaxValue;;

val it : int = 3

The F# library also includes more direct accumulation functions, such as Seq.sum and Seq.sumBy.
These use a fixed accumulation function (addition) with a fixed initial value (zero), and they are described
in Chapter 10.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

202

■ Caution: Folding operators are very powerful and can help you avoid many explicit uses of recursion or loops in
your code. They’re sometimes overused in functional programming, however, and they can be hard for novice users
to read and understand. Take the time to document uses of these operators, or consider using them to build simpler
operators that apply a particular accumulation function.

Cleaning Up in Sequence Expressions
It’s common to implement sequence computations that access external resources such as databases but
that return their results on demand. This raises a difficulty: how do you manage the lifetime of the
resources for the underlying operating-system connections? One elegant solution is via use bindings in
sequence expressions:

When a use binding occurs in a sequence expression, the resource is initialized each
time a client enumerates the sequence.

The connection is closed when the client disposes of the enumerator.

For example, consider the following function that creates a sequence expression that reads the first
two lines of a file on demand:

open System.IO

let firstTwoLines file =
 seq {use s = File.OpenText(file)
 yield s.ReadLine()
 yield s.ReadLine()}

Let’s now create a file and a sequence that reads the first two lines of the file on demand:

> File.WriteAllLines("test1.txt", [|"Es kommt ein Schiff";
 "A ship is coming"|]);;
> let twolines() = firstTwoLines "test1.txt";;

val twolines : unit -> seq<string>

At this point, the file hasn’t yet been opened, and no lines have been read from the file. If you now
iterate the sequence expression, the file is opened, the first two lines are read, and the results are
consumed from the sequence and printed. Most important, the file has now also been closed, because the
Seq.iter aggregate operator is careful to dispose of the underlying enumerator it uses for the sequence,
which in turn disposes of the file handle generated by File.OpenText:

> twolines() |> Seq.iter (printfn "line = '%s'")

line = 'Es kommt ein Schiff'
line = A ship is coming'

203

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Expressing Some Operations Using Sequence Expressions
Sequences written using map, filter, choose, and collect can often be rewritten to use a sequence
expression, as described in Chapter 3. For example, the triangleNumbers and evenPositions examples
above can also be written as:

let triangleNumbers =
 [for i in 1 .. 10 do
 for j in 1 .. i do
 yield (i, j)]

let evenPositions =
 [for (i, j, v) in gameBoard do
 if v % 2 = 0 then
 yield (i, j)]

The output in each case is the same. In many cases, rewriting to use generative sequence expressions
results in considerably clearer code. There are pros and cons to using sequence-expression syntax for
some parts of queries:

Sequence expressions are very good for the subset of queries expressed using
iteration (for), filtering (if/then), and mapping (yield). They’re particularly good for
queries containing multiple nested for statements.

Other query constructs, such as ordering, truncating, grouping, and aggregating,
must be expressed directly using aggregate operators, such as Seq.sortBy and Seq.
groupBy, or by using the more general notion of “query expressions” (see Chapter
14).

Some queries depend on the index position of an item within a stream. These are
best expressed directly using aggregate operators such as Seq.mapi.

Many queries are part of a longer series of transformations chained by |> operators.
Often, the type of the data being transformed at each step varies substantially
through the chain of operators. These queries are best expressed using operator
chains.

■ Note: F# also has a more general “query-expression” syntax that includes support for specifying grouping,
aggregation, and joining operations. This is mostly used for querying external data sources and is discussed in
Chapter 14.

Structure Beyond Sequences: Working with Trees
In Chapter 5, you learned about some simple techniques to represent record and tree-structured data in
F# using record types and union types. In Chapter 8, you learned how to move from an unstructured,
textual representation such as XML to a structured, tree-like structures representation of the input data. In
the following sections, you will learn techniques for working with structured data, in particular tree
structures associated with the representation of the abstract syntax of languages. In particular, you will
look at some important recurring techniques in designing and working with abstract syntax
representations.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

204

Example: Abstract Syntax Representations
Let’s look at the design of the abstract syntax type Scene from Listing 9-1. The type Scene uses fewer kinds
of nodes than the concrete XML representation: the concrete XML has node kinds Circle, Square,
Composite, and Ellipse, whereas Scene has just three (Rect, Ellipse, and Composite), with two derived
constructors, Circle and Square, defined as static members of the Scene:

 static member Circle(center:PointF,radius) =
 Ellipse(RectangleF(center.X-radius,center.Y-radius,
 radius*2.0f,radius*2.0f))

 /// A derived constructor
 static member Square(left,top,side) =
 Rect(RectangleF(left,top,side,side))

This is a common step when abstracting from a concrete syntax; details are dropped and unified to
make the abstract representation simpler and more general. Extra functions are then added that compute
specific instances of the abstract representation. This approach has pros and cons:

Transformational and analytical manipulations are almost always easier to program
if you have fewer constructs in your abstract syntax representation.

You must be careful not to eliminate truly valuable information from an abstract
representation. For some applications, it may really matter if the user specified a
Square or a Rectangle in the original input; for example, an editor for this data may
provide different options for editing these objects.

The AST uses the types PointF and RectangleF from the System.Drawing namespace. This
simplification is a design decision that should be assessed: PointF and RectangleF use 32-bit, low-
precision, floating-point numbers, which may not be appropriate if you’re eventually rendering on high-
precision display devices. You should be wary of deciding on abstract representations on the basis of
convenience alone, although of course this is useful during prototyping.

The lesson here is that you should look carefully at your abstract syntax representations, trimming out
unnecessary nodes and unifying nodes where possible, but only as long as doing so helps you achieve your
ultimate goals.

Common operations on abstract syntax trees include traversals that collect information and
transformations that generate new trees from old. For example, the abstract representation from Listing
9-1 has the property that, for nearly all purposes, the Composite nodes are irrelevant (this wouldn’t be the
case if you added an extra construct, such as an Intersect node). This means you can flatten to a sequence
of Ellipse and Rectangle nodes:

let rec flatten scene =
 seq { match scene with
 | Composite scenes -> for x in scenes do yield! flatten x
 | Ellipse _ | Rect _ -> yield scene }

Here, flatten is defined using sequence expressions, introduced in Chapter 3. Its type is:

val flatten : scene:Scene -> seq<Scene>

Let’s look at this more closely. Recall from Chapter 3 that sequences are on-demand (lazy)
computations. Using functions that recursively generate seq<'T> objects can lead to inefficiencies in your

205

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

code if your abstract syntax trees are deep. It’s often better to traverse the entire tree in an eager way (eager
traversals run to completion immediately). For example, it’s typically faster to use an accumulating
parameter to collect a list of results. Here’s an example:

let rec flattenAux scene acc =
 match scene with
 | Composite(scenes) -> List.foldBack flattenAux scenes acc
 | Ellipse _
 | Rect _ -> scene :: acc

let flatten2 scene = flattenAux scene [] |> Seq.ofList

The following does an eager traversal using a local mutable instance of a ResizeArray as the
accumulator and then returns the result as a sequence. This example uses a local function and ensures
that the mutable state is locally encapsulated:

let flatten3 scene =
 let acc = new ResizeArray<_>()
 let rec flattenAux s =
 match s with
 | Composite(scenes) -> scenes |> List.iter flattenAux
 | Ellipse _ | Rect _ -> acc.Add s
 flattenAux scene;
 Seq.readonly acc

The types of these are:

val flatten2 : scene:Scene -> seq<Scene>
val flatten3 : scene:Scene -> seq<Scene>

There is no hard and fast rule about which of these is best. For prototyping, the second option—doing
an efficient, eager traversal with an accumulating parameter—is often the most effective. Even if you
implement an accumulation using an eager traversal, however, returning the result as an on-demand
sequence still can give you added flexibility later in the design process.

Transforming Abstract Syntax Representations
In the previous section, you saw examples of accumulating traversals of a syntax representation. It’s
common to traverse abstract syntax in other ways:

Leaf rewriting (mapping): Translating some leaf nodes of the representation but
leaving the overall shape of the tree unchanged

Bottom-up rewriting: Traversing a tree but making local transformations on the way
up

Top-down rewriting: Traversing a tree, but before traversing each subtree,
attempting to locally rewrite the tree according to some particular set of rules

Accumulating and rewriting transformations: For example, transforming the tree left
to right but accumulating a parameter along the way

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

206

For example, this mapping transformation rewrites all leaf ellipses to rectangles:

let rec rectanglesOnly scene =
 match scene with
 | Composite scenes -> Composite (scenes |> List.map rectanglesOnly)
 | Ellipse rect | Rect rect -> Rect rect

Often, whole classes of transformations are abstracted into aggregate transformation operations,
taking functions as parameters. For example, here is a function that applies one function to each leaf
rectangle:

let rec mapRects f scene =
 match scene with
 | Composite scenes -> Composite (scenes |> List.map (mapRects f))
 | Ellipse rect -> Ellipse (f rect)
 | Rect rect -> Rect (f rect)

The types of these functions are:

val rectanglesOnly : scene:Scene -> Scene
val mapRects : f:(RectangleF -> RectangleF) -> scene:Scene -> Scene

Here is a use of the mapRects function to adjust the aspect ratio of all the RectangleF values in the
scene (RectangleF values support an Inflate method):

let adjustAspectRatio scene =
 scene |> mapRects (fun r -> RectangleF.Inflate(r, 1.1f, 1.0f / 1.1f))

Using On-Demand Computation with Abstract Syntax Trees
Sometimes it’s feasible to delay loading or processing some portions of an abstract syntax tree. For example,
imagine if the XML for the small geometric language from the previous section included a construct such as
the following, in which the File nodes represent entire subtrees defined in external files:

<Composite>
 <File file='spots.xml'/>
 <File file='dots.xml'/>
</Composite>

It may be useful to delay loading these files. One general way to do this is to add a Delay node to the
Scene type:

type Scene =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | Composite of Scene list
 | Delay of Lazy<Scene>

You can then extend the extractScene function of Listing 9-1 with the following case to handle this
node:

207

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

let rec extractScene (node : XmlNode) =
 let attribs = node.Attributes
 let childNodes = node.ChildNodes
 match node.Name with
 | "Circle" ->
 ...
 | "File" ->
 let file = attribs.GetNamedItem("file").Value
 let scene = lazy (let d = XmlDocument()
 d.Load(file)
 extractScene(d :> XmlNode))
 Scene.Delay scene

Code that analyzes trees (for example, via pattern matching) must typically be adjusted to force the
computation of delayed values. One way to handle this is to first call a function to eliminate immediately
delayed values:

let rec getScene scene =
 match scene with
 | Delay d -> getScene (d.Force())
 | _ -> scene

Here is the function flatten2 from the “Processing Abstract Syntax Representations” section, but
redefined to first eliminate delayed nodes:

let rec flattenAux scene acc =
 match getScene(scene) with
 | Composite scenes -> List.foldBack flattenAux scenes acc
 | Ellipse _ | Rect _ -> scene :: acc
 | Delay _ -> failwith "this lazy value should have been eliminated by getScene"

let flatten2 scene = flattenAux scene []

It’s generally advisable to have a single representation of laziness within a single syntax tree design.
For example, the following abstract syntax design uses laziness in too many ways:

type SceneVeryLazy =
 | Ellipse of Lazy<RectangleF>
 | Rect of Lazy<RectangleF>
 | Composite of seq<SceneVeryLazy>
 | LoadFile of string

The shapes of ellipses and rectangles are lazy computations; each Composite node carries a
seq<SceneVeryLazy> value to compute subnodes on demand, and a LoadFile node is used for delayed file
loading. This is a bit of a mess, because a single Delay node would, in practice, cover all these cases.

■ Note: The Lazy<'T>type is defined in System and represents delayed computations. You access a lazy value
via the Value property. F# includes the special keyword lazy for constructing values of this type. Chapter 8 also
covered lazy computations.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

208

Caching Properties in Abstract Syntax Trees
For high-performance applications of abstract syntax trees, it can occasionally be useful to cache
computations of some derived attributes within the syntax tree itself. For example, let’s say you want to
compute bounding boxes for the geometric language described in Listing 9-1. It’s potentially valuable to
cache this computation at Composite nodes. You can use a type such as the following to hold a cache:

type SceneWithCachedBoundingBox =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | CompositeRepr of SceneWithCachedBoundingBox list * RectangleF option ref

This is useful for prototyping, although you should be careful to encapsulate the code that is
responsible for maintaining this information. Listing 9-1 shows the full code for doing this.

Listing 9-1. Adding the cached computation of a local attribute to an abstract syntax tree

type SceneWithCachedBoundingBox =
 | Ellipse of RectangleF
 | Rect of RectangleF
 | CompositeRepr of SceneWithCachedBoundingBox list * RectangleF option ref

 member x.BoundingBox =
 match x with
 | Ellipse rect | Rect rect -> rect
 | CompositeRepr (scenes, cache) ->
 match !cache with
 | Some v -> v
 | None ->
 let bbox =
 scenes
 |> List.map (fun s -> s.BoundingBox)
 |> List.reduce (fun r1 r2 -> RectangleF.Union(r1, r2))
 cache := Some bbox
 bbox

 /// Create a Composite node with an initially empty cache
 static member Composite(scenes) = CompositeRepr(scenes, ref None)

Other attributes that are sometimes cached include the hash values of tree-structured terms and the
computation of all the identifiers in a subexpression. The use of caches makes it more awkward to pattern-
match on terms. This issue can be largely solved by using active patterns, covered later in this chapter.

Memoizing Construction of Syntax Tree Nodes
In some cases, abstract syntax tree nodes can end up consuming significant portions of the application’s
memory budget. In this situation, it can be worth memoizing some or all of the nodes constructed in the
tree. You can even go as far as memoizing all equivalent nodes, ensuring that equivalence between nodes
can be implemented by pointer equality, a technique often called hash-consing. Listing 9-2 shows an
abstract representation of propositional logic terms that ensures that any two nodes that are syntactically

209

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

identical are shared via a memoizing table. Propositional logic terms are terms constructed using P AND
Q, P OR Q, NOT P, and variables a, b, and so on. A noncached version of the expressions is:

type Prop =
 | And of Prop * Prop
 | Or of Prop * Prop
 | Not of Prop
 | Var of string
 | True

Listing 9-2. Memoizing the construction of abstract syntax tree nodes

type Prop =
 | Prop of int

and PropRepr =
 | AndRepr of Prop * Prop
 | OrRepr of Prop * Prop
 | NotRepr of Prop
 | VarRepr of string
 | TrueRepr

open System.Collections.Generic

module PropOps =

 let internal uniqStamp = ref 0
 type internal PropTable() =
 let fwdTable = new Dictionary<PropRepr, Prop>(HashIdentity.Structural)
 let bwdTable = new Dictionary<int, PropRepr>(HashIdentity.Structural)
 member t.ToUnique repr =
 if fwdTable.ContainsKey repr then fwdTable.[repr]
 else let stamp = incr uniqStamp; !uniqStamp
 let prop = Prop stamp
 fwdTable.Add (repr, prop)
 bwdTable.Add (stamp, repr)
 prop
 member t.FromUnique (Prop stamp) =
 bwdTable.[stamp]

 let internal table = PropTable ()

 // Public construction functions
 let And (p1, p2) = table.ToUnique (AndRepr (p1, p2))
 let Not p = table.ToUnique (NotRepr p)
 let Or (p1, p2) = table.ToUnique (OrRepr (p1, p2))
 let Var p = table.ToUnique (VarRepr p)
 let True = table.ToUnique TrueRepr
 let False = Not True

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

210

 // Deconstruction function
 let getRepr p = table.FromUnique p

You can construct terms using the operations in PropOps much as you would construct terms using
the nonmemoized representation:

> open PropOps;;
> True;;

val it : Prop = Prop 1

> And (Var "x",Var "y");;

val it : Prop = Prop 5

> getRepr it;;

val it : PropRepr = AndRepr(Prop 3, Prop 4)

> And(Var "x",Var "y");;

val it : Prop = Prop 5

In this example, when you create two syntax trees using the same specification, And (Var "x",Var
"y"), you get back the same Prop object with the same stamp 5. You can also use memoization techniques
to implement interesting algorithms; in Chapter 12, you see an important representation of propositional
logic called a binary decision diagram (BDD) based on a memoization table similar to the previous
example.

The use of unique integer stamps and a lookaside table in the previous representation also has some
drawbacks; it’s harder to pattern match on abstract syntax representations, and you may need to reclaim
and recycle stamps and remove entries from the lookaside table if a large number of terms is created or if
the overall set of stamps must remain compact. You can solve the first problem by using active patterns,
covered next in this chapter. If necessary, you can solve the second problem by scoping stamps in an
object that encloses the uniqStamp state, the lookaside table, and the construction functions. Alternatively,
you can explicitly reclaim the stamps by using the IDisposable idiom described in Chapter 8, although this
approach can be intrusive to your application.

Active Patterns: Views for Structured Data
Pattern matching is a key technique provided in F# for decomposing abstract syntax trees and other
abstract representations of languages. So far in this book, all the examples of pattern matching have been
directly over the core representations of data structures: for example, directly matching on the structure of
lists, options, records, and discriminated unions. But pattern matching in F# is also extensible—that is, you
can define new ways of matching over existing types. You do this through a mechanism called active
patterns.

This book covers only the basics of active patterns. They can be indispensable, because they can let
you continue to use pattern matching with your types even after you hide their representations. Active
patterns also let you use pattern matching with .NET object types. The following section covers active
patterns and how they work.

211

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Converting the Same Data to Many Views
In high-school math courses, you were probably taught that you can view complex numbers in two ways:
as rectangular coordinates x + yi or as polar coordinates of a phase r and magnitude . In most computer
systems, complex numbers are stored in the first format, although often the second format is more useful.

Wouldn’t it be nice if you could look at complex numbers through either lens? You could do this by
explicitly converting from one form to another when needed, but it would be better to have your
programming language look after the transformations needed to do this for you. Active patterns let you do
exactly that. First, here is a standard definition of complex numbers:

[<Struct>]
type Complex(r : float, i : float) =
 static member Polar(mag, phase) = Complex(mag * cos phase, mag * sin phase)
 member x.Magnitude = sqrt(r * r + i * i)
 member x.Phase = atan2 i r
 member x.RealPart = r
 member x.ImaginaryPart = i

Here is a pattern that lets you view complex numbers as rectangular coordinates:

let (|Rect|) (x : Complex) = (x.RealPart, x.ImaginaryPart)

Here is an active pattern to help you view complex numbers in polar coordinates:

let (|Polar|) (x : Complex) = (x.Magnitude, x.Phase)

The key thing to note is that these definitions let you use Rect and Polar as tags in pattern
matching. For example, you can now write the following to define addition and multiplication over
complex numbers:

let addViaRect a b =
 match a, b with
 | Rect (ar, ai), Rect (br, bi) -> Complex (ar + br, ai + bi)

let mulViaRect a b =
 match a, b with
 | Rect (ar, ai), Rect (br, bi) -> Complex (ar * br - ai * bi, ai * br + bi * ar)

As it happens, multiplication on complex numbers is easier to express using polar coordinates,
implemented as:

let mulViaPolar a b =
 match a, b with
 | Polar (m, p), Polar (n, q) -> Complex.Polar (m * n, p + q)

Here is an example of using the (|Rect|) and (|Polar|) active patterns directly on some complex
numbers via the pattern tags Rect and Polar. You first make the complex number 3+4i:

> fsi.AddPrinter (fun (c : Complex) -> sprintf "%gr + %gi" c.RealPart c.ImaginaryPart)

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

212

> let c = Complex (3.0, 4.0);;

val c : Complex = 3r + 4i

> c;;

val it : Complex = 3r + 4i

> match c with
 | Rect (x, y) -> printfn "x = %g, y = %g" x y;;

x = 3, y = 4

> match c with
 | Polar (x, y) -> printfn "x = %g, y = %g" x y;;

x = 5, y = 0.927295

> addViaRect c c;;

val it : Complex = 6r + 8i

> mulViaRect c c;;

val it : Complex = -7r + 24i

> mulViaPolar c c;;

val it : Complex = -7r + 24i

As you may expect, you get the same results if you multiply via rectangular or polar coordinates. The
execution paths are quite different, however. Let’s look closely at the definition of mulViaRect:

let mulViaRect a b =
 match a, b with
 | Rect (ar, ai), Rect (br, bi) ->
 Complex (ar * br - ai * bi, ai * br + bi * ar)

When F# needs to match the values a and b against the patterns Rect (ar, ai) and Rect (br, bi), it
doesn’t look at the contents of a and b directly. Instead, it runs a function as part of pattern matching (which
is why they’re called active patterns). In this case, the function executed is (|Rect|), which produces a pair as
its result. The elements of the pair are then bound to the variables ar and ai. Likewise, in the definition of
mulViaPolar, the matching is performed partly by running the function (|Polar|).

The functions (|Rect|) and (|Polar|) are allowed to do anything, as long as each ultimately produces
a pair of results. Here are the types of (|Rect|) and (|Polar|):

val (|Rect|) : x:Complex -> float * float
val (|Polar|) : x:Complex -> float * float

213

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

These types are identical, but they implement completely different views of the same data.
The definitions of addViaRect and mulViaPolar can also be written using pattern matching in

argument position:

let add2 (Rect (ar, ai)) (Rect (br, bi)) = Complex (ar + br, ai + bi)
let mul2 (Polar (r1, th1)) (Polar (r2, th2)) = Complex (r1 * r2, th1 + th2)

Matching on .NET Object Types
One useful thing about active patterns is that they let you use pattern matching with existing.NET object
types. For example, the .NET object type System.Type is a runtime representation of types in .NET and F#.
Here are the members found on this type:

type System.Type with
 member IsGenericType : bool
 member GetGenericTypeDefinition : unit -> Type
 member GetGenericArguments : unit -> Type[]
 member HasElementType : bool
 member GetElementType : unit -> Type
 member IsByRef : bool
 member IsPointer : bool
 member IsGenericParameter : bool
 member GenericParameterPosition : int

This type looks very much like one you’d like to pattern match against. There are clearly three or four
distinct cases here, and pattern matching helps you isolate them. You can define an active pattern to
achieve this, as shown in Listing 9-3.

Listing 9-3. Defining an active pattern for matching on System.Type values

let (|Named|Array|Ptr|Param|) (typ : System.Type) =
 if typ.IsGenericType
 then Named(typ.GetGenericTypeDefinition(), typ.GetGenericArguments())
 elif typ.IsGenericParameter then Param(typ.GenericParameterPosition)
 elif not typ.HasElementType then Named(typ, [||])
 elif typ.IsArray then Array(typ.GetElementType(), typ.GetArrayRank())
 elif typ.IsByRef then Ptr(true, typ.GetElementType())
 elif typ.IsPointer then Ptr(false, typ.GetElementType())
 else failwith "MSDN says this can't happen"

This then lets you use pattern matching against a value of this type:

open System

let rec formatType typ =
 match typ with
 | Named (con, [||]) -> sprintf "%s" con.Name
 | Named (con, args) -> sprintf "%s<%s>" con.Name (formatTypes args)
 | Array (arg, rank) -> sprintf "Array(%d,%s)" rank (formatType arg)
 | Ptr(true, arg) -> sprintf "%s&" (formatType arg)

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

214

 | Ptr(false, arg) -> sprintf "%s*" (formatType arg)
 | Param(pos) -> sprintf "!%d" pos

and formatTypes typs =
 String.Join(",", Array.map formatType typs)

or collect the free generic type variables:

let rec freeVarsAcc typ acc =
 match typ with
 | Array (arg, rank) -> freeVarsAcc arg acc
 | Ptr (_, arg) -> freeVarsAcc arg acc
 | Param _ -> (typ :: acc)
 | Named (con, args) -> Array.foldBack freeVarsAcc args acc

let freeVars typ = freeVarsAcc typ []

Defining Partial and Parameterized Active Patterns
Active patterns can also be partial. You can recognize a partial pattern by a name such as (|MulThree|_|)
and by the fact that it returns a value of type 'T option for some 'T. For example:

let (|MulThree|_|) inp = if inp % 3 = 0 then Some(inp / 3) else None
let (|MulSeven|_|) inp = if inp % 7 = 0 then Some(inp / 7) else None

Finally, active patterns can also be parameterized. You can recognize a parameterized active pattern by
the fact that it takes several arguments. For example:

let (|MulN|_|) n inp = if inp % n = 0 then Some(inp / n) else None

The F# quotation API Microsoft.FSharp.Quotations uses both parameterized and partial patterns
extensively.

Hiding Abstract Syntax Implementations with Active Patterns
Earlier in this chapter, you saw the following type that defines an optimized representation of
propositional logic terms using a unique stamp for each syntactically unique term:

type Prop = Prop of int
and internal PropRepr =
 | AndRepr of Prop * Prop
 | OrRepr of Prop * Prop
 | NotRepr of Prop
 | VarRepr of string
 | TrueRepr

What happens, however, if you want to pattern match against values of type Prop? Even if you exposed
the representation, all you would get is an integer, which you would have to look up in an internal table.
You can define an active pattern for restoring matching on that data structure, as shown in Listing 9-4.

215

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Listing 9-4. Extending Listing 9-2 with an active pattern for the optimized representation

module PropOps =
 ...
 let (|And|Or|Not|Var|True|) prop =
 match table.FromUnique prop with
 | AndRepr (x, y) -> And (x, y)
 | OrRepr (x, y) -> Or (x, y)
 | NotRepr x -> Not x
 | VarRepr v -> Var v
 | TrueRepr -> True

This code defines an active pattern in the auxiliary module PropOps that lets you pattern match
against Prop values, despite the fact that they’re using optimized unique-integer references under the
hood. For example, you can define a pretty-printer for Prop terms as follows, even though they’re using
optimized representations:

open PropOps

let rec showProp precedence prop =
 let parenIfPrec lim s = if precedence < lim then "(" + s + ")" else s
 match prop with
 | Or (p1, p2) -> parenIfPrec 4 (showProp 4 p1 + " || " + showProp 4 p2)
 | And (p1, p2) -> parenIfPrec 3 (showProp 3 p1 + " && " + showProp 3 p2)
 | Not p -> parenIfPrec 2 ("not " + showProp 1 p)
 | Var v -> v
 | True -> "T"

Likewise, you can define functions to place the representation in various normal forms. For example,
the following function computes negation normal form (NNF), where all instances of NOT nodes have
been pushed to the leaves of the representation:

let rec nnf sign prop =
 match prop with
 | And (p1, p2) ->
 if sign then And (nnf sign p1, nnf sign p2)
 else Or (nnf sign p1, nnf sign p2)
 | Or (p1, p2) ->
 if sign then Or (nnf sign p1, nnf sign p2)
 else And (nnf sign p1, nnf sign p2)
 | Not p ->
 nnf (not sign) p
 | Var _ | True ->
 if sign then prop else Not prop

let NNF prop = nnf true prop

The following demonstrates that two terms have equivalent NNF normal forms:

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

216

> let t1 = Not(And(Not(Var("x")), Not(Var("y"))));;

val t1 : Prop = Prop 8

> fsi.AddPrinter(showProp 5);;
> t1;;

val it : Prop = not (not x && not y)

> let t2 = Or(Not(Not(Var("x"))),Var("y"));;

val t2 : Prop = not (not x) || y

> (t1 = t2);;

val it : bool = false

> NNF t1;;

val it : Prop = x || y

> NNF t2;;

val it : Prop = x || y

> NNF t1 = NNF t2;;

val it : bool = true

Equality, Hashing, and Comparison for
New Structured Data Types

Equality, Hashing, and Comparison
Many efficient algorithms over structured data are built on primitives that efficiently compare and hash
representations of information. In Chapter 5, you saw a number of predefined generic operations,
including generic comparison, equality, and hashing, accessed via functions such as:

val compare : 'T -> 'T -> int when 'T : comparison
val (=) : 'T -> 'T -> bool when 'T : equality
val (<) : 'T -> 'T -> bool when 'T : comparison
val (<=) : 'T -> 'T -> bool when 'T : comparison
val (>) : 'T -> 'T -> bool when 'T : comparison
val (>=) : 'T -> 'T -> bool when 'T : comparison
val min : 'T -> 'T -> 'T when 'T : comparison

217

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

val max : 'T -> 'T -> 'T when 'T : comparison
val hash : 'T -> int when 'T : equality

First, note that these are generic operations—they can be used on objects of many different types. This
can be seen by the use of 'T in the signatures of these operations. The operations take one or two
parameters of the same type. For example, you can apply the = operator to two Form objects, or two System.
DateTime objects, or two System.Type objects, and something reasonable happens. Some other important
derived generic types, such as the immutable (persistent) Set<_> and Map<_,_> types in the F# library, also
use generic comparison on their key type:

type Set<'T when 'T : comparison> = ...
type Map<'Key, 'Value when 'Key : comparison> = ...

These operations and types are all constrained, in this case by the equality and/or comparison
constraints. The purpose of constraints on type parameters is to make sure the operations are used only on
a particular set of types. For example, consider equality and ordered comparison on a System.Windows.
Forms.Form object. Equality is permitted, because the default for nearly all .NET object types is reference
equality:

let form1 = new System.Windows.Forms.Form()
let form2 = new System.Windows.Forms.Form()
form1 = form1 // true
form1 = form2 // false

Ordered comparison isn’t permitted, however:

let form1 = new System.Windows.Forms.Form()
let form2 = new System.Windows.Forms.Form()
form1 <= form2
error FS0001: The type 'Windows.Forms.Form' does not support the 'comparison' constraint. For
example, it does not support the 'System.IComparable' interface

That’s good! There is no natural ordering for form objects, or at least no ordering is provided by the .
NET libraries.

Equality and comparison can work over the structure of types. For example, you can use the equality
operators on a tuple only if the constituent parts of the tuple also support equality. This means that using
equality on a tuple of forms is permitted:

> let form1 = new System.Windows.Forms.Form();;
> let form2 = new System.Windows.Forms.Form();;
> (form1, form2) = (form1, form2);;

val it : bool = true

> (form1, form2) = (form2, form1);;

val it : bool = false

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

218

But using ordered comparison of a tuple isn’t:

> (form1, "Data for Form1") <= (form2, " Data for Form2");;

error FS0001: The type 'Windows.Forms.Form' does not support the 'comparison' constraint. For
example, it does not support the 'System.IComparable' interface

Again, that’s good—this ordering would be a bug in your code. Now, let’s take a closer look at when
equality and comparison constraints are satisfied in F#.

The equality constraint is satisfied if the type definition doesn’t have the NoEquality
attribute, and any dependencies also satisfy the equality constraint.

The comparison constraint is satisfied if the type definition doesn’t have the
NoComparison attribute, and the type definition implements System.IComparable,
and any dependencies also satisfy the comparison constraint.

An equality constraint is relatively weak, because nearly all CLI types satisfy it. A comparison
constraint is a stronger constraint, because it usually implies that a type must implement System.
IComparable.

Asserting Equality, Hashing, and Comparison Using Attributes
These attributes control the comparison and equality semantics of type definitions:

 StructuralEquality and StructuralComparison: Indicate that a structural type must
support equality and comparison

NoComparison and NoEquality: Indicate that a type doesn’t support equality or
comparison

CustomEquality and CustomComparison: Indicate that a structural type supports
custom equality and comparison

Let’s look at examples of these. Sometimes you may want to assert that a structural type must support
structural equality, and you want an error at the definition of the type if it doesn’t. Do this by adding the
StructuralEquality or StructuralComparison attribute to the type:

[<StructuralEquality; StructuralComparison>]
type MiniIntegerContainer = MiniIntegerContainer of int

This adds extra checking. In the following example, the code gives an error at compile time—the type
can’t logically support automatic structural comparison, because one of the element types doesn’t support
ordered comparison:

[<StructuralEquality; StructuralComparison>]
type MyData = MyData of int * string * string * System.Windows.Forms.Form

 error FS1177: The struct, record or union type 'MyData' has the
 'StructuralComparison' attribute but the component type
 'System.Windows.Forms.Form' does not satisfy the 'comparison' constraint

219

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Fully Customizing Equality, Hashing, and Comparison on a Type
Many types in the .NET libraries come with custom equality, hashing, and comparison implementations.
For example, System.DateTime has custom implementations of these.

F# also allows you to define custom equality, hashing, and comparison for new type definitions. For
example, values of a type may carry a unique integer tag that can be used for this purpose. In such cases,
we recommend that you take full control of your destiny and define custom comparison and equality
operations on your type. For example, Listing 9-5 shows how to customize equality, hashing (using the
predefined hash function), and comparison based on a unique stamp integer value. The type definition
includes an implementation of System.IComparable and overrides of Object.Equals and Object.
GetHashCode.

Listing 9-5. Customizing equality, hashing, and comparison for a record type definition

/// A type abbreviation indicating we're using integers for unique stamps
/// on objects
type stamp = int

/// A structural type containing a function that can't be compared for equality
[<CustomEquality; CustomComparison>]
type MyThing =
 {Stamp : stamp;
 Behaviour : (int -> int)}

 override x.Equals(yobj) =
 match yobj with
 | :? MyThing as y -> (x.Stamp = y.Stamp)
 | _ -> false

 override x.GetHashCode() = hash x.Stamp
 interface System.IComparable with
 member x.CompareTo yobj =
 match yobj with
 | :? MyThing as y -> compare x.Stamp y.Stamp
 | _ -> invalidArg "yobj" "cannot compare values of different types"

The System.IComparable interface is defined in the .NET libraries:

namespace System

 type IComparable =
 abstract CompareTo : obj -> int

Recursive calls to compare subexpressions are processed using the functions:

val hash : 'T -> int when 'T : equality
val (=) : 'T -> 'T -> bool when 'T : equality
val compare : 'T -> 'T -> int when 'T : comparison

Listing 9-6 shows the same for a union type, this time using some helper functions.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

220

Listing 9-6. Customizing generic hashing and comparison on a union type

let inline equalsOn f x (yobj : obj) =
 match yobj with
 | :? 'T as y -> (f x = f y)
 | _ -> false

let inline hashOn f x = hash (f x)

let inline compareOn f x (yobj : obj) =
 match yobj with
 | :? 'T as y -> compare (f x) (f y)
 | _ -> invalidArg "yobj" "cannot compare values of different types"

type stamp = int

[<CustomEquality; CustomComparison>]
type MyUnionType =
 | MyUnionType of stamp * (int -> int)

 static member Stamp (MyUnionType (s, _)) = s

 override x.Equals y = equalsOn MyUnionType.Stamp x y
 override x.GetHashCode() = hashOn MyUnionType.Stamp x
 interface System.IComparable with
 member x.CompareTo y = compareOn MyUnionType.Stamp x y

Listing 9-6 also shows how to implement the System.Object method GetHashCode. This follows the
same pattern as generic equality.

Finally, you can declare that a structural type should use reference equality:

[<ReferenceEquality>]
type MyFormWrapper = MyFormWrapper of System.Windows.Forms.Form * (int -> int)

There is no such thing as reference comparison (the object pointers used by .NET move around, so the
ordering would change). You can implement that by using a unique tag and custom comparison.

Suppressing Equality, Hashing, and Comparison on a Type
You can suppress equality on an F# defined type by using the NoEquality attribute on the definition of the
type. This means the type isn’t considered to satisfy the equality constraint. Likewise, you can suppress
comparison on an F# defined type by using the NoComparison attribute on the definition of the type:

[<NoEquality; NoComparison>]
type MyProjections =
 | MyProjections of (int * string) * (string -> int)

Adding these attributes to your library types makes client code safer, because it’s less likely to
inadvertently rely on equality and comparison over types for which these operations make no sense.

221

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

Customizing Generic Collection Types
Programmers love defining new generic collection types. This is done less often in .NET and F#
programming than in other languages, because the F# and .NET built-in collections are so good, but it’s
still important.

Equality and comparison play a role here. For example, it’s common to have collections in which some of
the values can be indexed using hashing, compared for equality when searching, or compared using an
ordering. For example, seeing a constraint on this signature on a library type would come as no surprise:

type Graph<'Node when 'Node : equality>() = ...

The presence of the constraint is somewhat reassuring, because the requirement on node types is
made clearer. Sometimes it’s also desirable to be able to compare entire containers: for example, to
compare one set with another, one map with another, or one graph with another. Consider the simplest
generic collection type of all, which holds only one element. You can define it easily in F#:

type MiniContainer<'T> = MiniContainer of 'T

In this case, this is a structural type definition, and F# infers that there is an equality and comparison
dependency on 'T. All done! You can use MiniContainer<_> with values of any type, and you can do
equality and comparison on MiniContainer values only if the element type also supports equality and
comparison. Perfect.

If MiniContainer is a class type or has customized comparison and equality logic, however, then you
need to be more explicit about dependencies. You can declare dependencies by using the
EqualityConditionalOn and ComparisonConditionalOn attributes on the type parameter. You should also
use the operators Unchecked.equals, Unchecked.hash, and Unchecked.compare to process elements
recursively. With these attributes, MiniContainer<A> satisfies the equality and comparison constraints if A
satisfies these constraints. Here’s a full example:

type MiniContainer<[<EqualityConditionalOn; ComparisonConditionalOn >]'T>(x : 'T) =
 member x.Value = x
 override x.Equals(yobj) =
 match yobj with
 | :? MiniContainer<'T> as y -> Unchecked.equals x.Value y.Value
 | _ -> false

 override x.GetHashCode() = Unchecked.hash x.Value

 interface System.IComparable with
 member x.CompareTo yobj =
 match yobj with
 | :? MiniContainer<'T> as y -> Unchecked.compare x.Value y.Value
 | _ -> invalidArg "yobj" "cannot compare values of different types"

■ Note: Be careful about using generic equality, hashing, and comparison on mutable data. Changing the value of
a field may change the value of the hash or the results of the operation. It’s normally better to use the operations on
immutable data or data with custom implementations.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

222

Tail Calls and Recursive Programming
In the previous section, you saw how to process tree-structured using recursive functions. In this section,
you learn about important topics associated with programming with recursive functions: stack usage and
tail-calls.

When F# programs execute, two resources are managed automatically, stack- and heap-allocated
memory. Stack space is needed every time you call an F# function and is reclaimed when the function
returns or when it performs a tail call. It’s perhaps surprising that stack space is more limited than space in
the garbage-collected heap. For example, on a 32-bit Windows machine, the default settings are such that
each thread of a program can use up to 1MB of stack space. Because stack is allocated every time a
function call is made, a very deep series of nested function calls causes a StackOverflowException to be
raised. For example, on a 32-bit Windows machine, the following program causes a stack overflow when n
reaches about 79000:

let rec deepRecursion n =
 if n = 1000000 then () else
 if n % 100 = 0 then
 printfn "--> deepRecursion, n = %d" n
 deepRecursion (n+1)
 printfn "<-- deepRecursion, n = %d" n

You can see this in F# Interactive:

> deepRecursion 0;;

--> deepRecursion, n = 0
...
--> deepRecursion, n = 79100
--> deepRecursion, n = 79200
--> deepRecursion, n = 79300
Process is terminated due to StackOverflowException
Session termination detected. Press Enter to restart.

Stack overflows are extreme exceptions, because it’s often difficult to recover correctly from them. For
this reason, it’s important to ensure that the amount of stack used by your program doesn’t grow in an
unbounded fashion as your program proceeds, especially as you process large inputs. Furthermore, deep
stacks can hurt in other ways; for example, the .NET garbage collector traverses the entire stack on every
garbage collection. This can be expensive if your stacks are very deep.

Because recursive functions are common in F# functional programming, this may seem to be a major
problem. There is, however, one important case in which a function call recycles stack space eagerly: a tail
call. A tail call is any call that is the last piece of work done by a function. For example, Listing 9-7 shows
the same program with the last line deleted.

Listing 9-7. A simple tail-recursive function

let rec tailCallRecursion n : unit =
 if n = 1000000 then () else
 if n % 100 = 0 then
 printfn "--> tailCallRecursion, n = %d" n
 tailCallRecursion (n+1)

223

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

The code now runs to completion without a problem:

> tailCallRecursion 0;;

...
--> tailCallRecursion, n = 999600
--> tailCallRecursion, n = 999700
--> tailCallRecursion, n = 999800
--> tailCallRecursion, n = 999900

When a tail call is made, the .NET Common Language Runtime can drop the current stack frame
before executing the target function, rather than waiting for the call to complete. Sometimes this
optimization is performed by the F# compiler. If the n = 1000000 check were removed in the previous
program, the program would run indefinitely. (Note that n would cycle around to the negative numbers,
because arithmetic is unchecked for overflow unless you open the module Microsoft.FSharp.Core.
Operators.Checked.)

Functions such as tailCallRecursion are known as tail-recursive functions. When you write recursive
functions, you should check either that they’re tail recursive or that they won’t be used with inputs that
cause them to recurse to an excessive depth. The following sections give some examples of techniques you
can use to make your functions tail recursive.

Tail Recursion and List Processing
Tail recursion is particularly important when you’re processing F# lists, because lists can be long and
recursion is the natural way to implement many list-processing functions. For example, here is a function
to find the last element of a list (this must traverse the entire list, because F# lists are pointers to the head
of the list):

let rec last l =
 match l with
 | [] -> invalidArg "l" "the input list should not be empty"
 | [h] -> h
 | h::t -> last t

This function is tail recursive, because no work happens after the recursive call last t. Many list
functions are written most naturally in non-tail-recursive ways, however. Although it can be a little
annoying to write these functions using tail recursion, it’s often better to use tail recursion than to leave
the potential for stack overflow lying around your code. For example, the following function creates a list of
length n in which every entry in the list is the value x:

let rec replicateNotTailRecursiveA n x =
 if n <= 0 then []
 else x :: replicateNotTailRecursiveA (n - 1) x

The problem with this function is that work is done after the recursive call. This becomes obvious
when you write the function in this fashion:

let rec replicateNotTailRecursiveB n x =
 if n <= 0 then []
 else
 let recursiveResult = replicateNotTailRecursiveB (n - 1) x
 x :: recursiveResult

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

224

Clearly, a value is being constructed by the expression x :: recursiveResult after the recursive call
replicateNotTailRecursiveB (n-1) x. This means that the function isn’t tail recursive. The solution is to
write the function using an accumulating parameter. This is often done by using an auxiliary function that
accepts the accumulating parameter:

let rec replicateAux n x acc =
 if n <= 0 then acc
 else replicateAux (n - 1) x (x :: acc)

let replicate n x = replicateAux n x []

Here, the recursive call to replicateAux is tail recursive. Sometimes the auxiliary functions are written
as inner recursive functions:

let replicate n x =
 let rec loop i acc =
 if i >= n then acc
 else loop (i + 1) (x :: acc)
 loop 0 []

The F# compiler optimizes inner recursive functions such as these to produce an efficient pair of
functions that pass extra arguments as necessary.

When you’re processing lists, accumulating parameters often accumulate a list in reverse order. This
means a call to List.rev may be required at the end of the recursion. For example, consider this
implementation of List.map, which isn’t tail recursive:

let rec mapNotTailRecursive f inputList =
 match inputList with
 | [] -> []
 | h :: t -> (f h) :: mapNotTailRecursive f t

Here is an implementation that neglects to reverse the accumulating parameter:
let rec mapIncorrectAcc f inputList acc =
 match inputList with
 | [] -> acc // whoops! Forgot to reverse the accumulator here!
 | h :: t -> mapIncorrectAcc f t (f h :: acc)

let mapIncorrect f inputList = mapIncorrectAcc f inputList []

> mapIncorrect (fun x -> x * x) [1; 2; 3; 4];;

val it : int list = [16; 9; 4; 1]

Here is a correct implementation:

let rec mapAcc f inputList acc =
 match inputList with
 | [] -> List.rev acc

225

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

 | h::t -> mapAcc f t (f h :: acc)

let map f inputList = mapAcc f inputList []

> map (fun x -> x * x) [1; 2; 3; 4];;

val it : int list = [1; 4; 9; 16]

Tail Recursion and Object-Oriented Programming
You often need to implement object members with a tail-recursive implementation. For example, consider
this list-like data structure:

type Chain =
 | ChainNode of int * string * Chain
 | ChainEnd of string

 member chain.LengthNotTailRecursive =
 match chain with
 | ChainNode(_, _, subChain) -> 1 + subChain.LengthNotTailRecursive
 | ChainEnd _ -> 0

The implementation of LengthNotTailRecursive is not tail recursive, because the addition 1 + applies
to the result of the recursive property invocation. One obvious tail-recursive implementation uses a local
recursive function with an accumulating parameter, as shown in Listing 9-8.

Listing 9-8. Making an object member tail recursive

type Chain =
 | ChainNode of int * string * Chain
 | ChainEnd of string

 // The implementation of this property is tail recursive.
 member chain.Length =
 let rec loop c acc =
 match c with
 | ChainNode(_, _, subChain) -> loop subChain (acc + 1)
 | ChainEnd _ -> acc
 loop chain 0

■ Note: The list-processing functions in the F# library module Microsoft.FSharp.Collections.List are
tail recursive, except where noted in the documentation. Some of them have implementations that are specially
optimized to take advantage of the implementation of the list data structure.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

226

Tail Recursion and Processing Unbalanced Trees
This section considers tail-recursion problems that are much less common in practice but for which it’s
important to know the techniques to apply if required. The techniques also illustrate some important
aspects of functional programming—in particular, an advanced technique called continuation passing.

Tree-structured data are generally more difficult to process in a tail-recursive way than list-structured
data. For example, consider this tree structure:

type Tree =
 | Node of string * Tree * Tree
 | Tip of string

let rec sizeNotTailRecursive tree =
 match tree with
 | Tip _ -> 1
 | Node(_, treeLeft, treeRight) ->
 sizeNotTailRecursive treeLeft + sizeNotTailRecursive treeRight

The implementation of this function isn’t tail recursive. Luckily, this is rarely a problem, especially if
you can assume that the trees are balanced. A tree is balanced when the depth of each subtree is roughly
the same. In that case, a tree of depth 1,000 will have about 21,000 entries. Even for a balanced tree of this
size, the recursive calls to compute the overall size of the tree won’t recurse to a depth greater than 1,000—
not deep enough to cause stack overflow except when the routine is being called by some other function
already consuming inordinate amounts of stack. Many data structures based on trees are balanced by
design; for example, the Set and Map data structures implemented in the F# library are based on balanced
binary trees.

Some trees can be unbalanced, however. For example, you can explicitly make a highly unbalanced
tree:

let rec mkBigUnbalancedTree n tree =
 if n = 0 then tree
 else Node("node", Tip("tip"), mkBigUnbalancedTree (n - 1) tree)

let tree1 = Tip("tip")
let tree2 = mkBigUnbalancedTree 15000 tree1
let tree3 = mkBigUnbalancedTree 15000 tree2
let tree4 = mkBigUnbalancedTree 15000 tree3
let tree5 = mkBigUnbalancedTree 15000 tree4
let tree6 = mkBigUnbalancedTree 15000 tree5

Calling sizeNotTailRecursive(tree6) now risks a stack overflow (note that this may depend on the
amount of memory available on a system; change the size of the tree to force the stack overflow). You can
solve this in part by trying to predict whether the tree will be unbalanced to the left or the right and by
using an accumulating parameter:

let rec sizeAcc acc tree =
 match tree with
 | Tip _ -> 1 + acc
 | Node(_, treeLeft, treeRight) ->
 let acc = sizeAcc acc treeLeft
 sizeAcc acc treeRight

227

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

let size tree = sizeAcc 0 tree

This algorithm works for tree6, because it’s biased toward accepting trees that are skewed to the right.
The recursive call that processes the right branch is a tail call, which the call that processes the left branch
isn’t. This may be OK if you have prior knowledge of the shape of your trees. This algorithm still risks a
stack overflow, however, and you may have to change techniques. One way to do this is to use a much
more general and important technique known as continuation passing.

Using Continuations to Avoid Stack Overflows
A continuation is a function that receives the result of an expression after it’s been computed. Listing 9-9
shows an example implementation of the previous algorithm that handles trees of arbitrary size.

Listing 9-9. Making a function tail recursive via an explicit continuation

let rec sizeCont tree cont =
 match tree with
 | Tip _ -> cont 1
 | Node(_, treeLeft, treeRight) ->
 sizeCont treeLeft (fun leftSize ->
 sizeCont treeRight (fun rightSize ->
 cont (leftSize + rightSize)))

let size tree = sizeCont tree (fun x -> x)

What’s going on here? Let’s look at the type of sizeCont and size:

val sizeCont : tree:Tree -> cont:(int -> 'a) -> 'a
val size : tree:Tree -> int

The type of sizeCont tree cont can be read as “compute the size of the tree and call cont with that
size.” If you look at the type of sizeCont, you can see that it will call the second parameter of type int ->
'T at some point—how else could the function produce the final result of type 'T? When you look at the
implementation of sizeCont, you can see that it does call cont on both branches of the match.

Now, if you look at recursive calls in sizeCont, you can see that they’re both tail calls:

sizeCont treeLeft (fun leftSize ->
 sizeCont treeRight (fun rightSize ->
 cont (leftSize + rightSize)))

That is, the first call to sizeCont is a tail call with a new continuation, as is the second. The first
continuation is called with the size of the left tree, and the second is called with the size of the right tree.
Finally, you add the results and call the original continuation cont. Calling size on an unbalanced tree
such as tree6 now succeeds:

> size tree6;;

val it : int = 50001

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

228

How did you turn a tree walk into a tail-recursive algorithm? The answer lies in the fact that
continuations are function objects, which are allocated on the garbage-collected heap. Effectively, you’ve
generated a work list represented by objects, rather than keeping a work list via a stack of function
invocations.

As it happens, using a continuation for both the right and left trees is overkill, and you can use an
accumulating parameter for one side. This leads to a more efficient implementation, because each
continuation-function object is likely to involve one allocation (short-lived allocations such as
continuation objects are very cheap but not as cheap as not allocating at all!). For example, Listing 9-10
shows a more efficient implementation.

Listing 9-10. Combining an accumulator with an explicit continuation

let rec sizeContAcc acc tree cont =
 match tree with
 | Tip _ -> cont (1 + acc)
 | Node (_, treeLeft, treeRight) ->
 sizeContAcc acc treeLeft (fun accLeftSize ->
 sizeContAcc accLeftSize treeRight cont)

let size tree = sizeContAcc 0 tree (fun x -> x)

The behavior of this version of the algorithm is:

1. You start with an accumulator acc of 0.

2. You traverse the left spine of the tree until a Tip is found, building up a
continuation for each Node along the way.

3. When a Tip is encountered, the continuation from the previous Node is called
with accLeftSize increased by 1. The continuation makes a recursive call to
sizeContAcc for its right tree, passing the continuation for the second-to-last
node along the way.

4. When all is done, all the left and right trees have been explored, and the final
result is delivered to the (fun x -> x) continuation.

As you can see from this example, continuation passing is a powerful control construct, although it’s
used only occasionally in F# programming.

Another Example: Processing Syntax Trees
One real-world example where trees may become unbalanced is syntax trees for parsed languages when the
inputs are very large and machine generated. In this case, some language constructs may be repeated very
large numbers of times in an unbalanced way. For example, consider this data structure:

type Expr =
 | Add of Expr * Expr
 | Bind of string * Expr * Expr
 | Var of string
 | Num of int

This data structure would be suitable for representing arithmetic expressions of the forms var, expr +
expr, and bind var = expr in expr. This chapter and Chapter 11 are dedicated to techniques for representing

229

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

and processing languages of this kind. As with all tree structures, most traversal algorithms over this type
of abstract syntax trees aren’t naturally tail recursive. For example, here is a simple evaluator:

type Env = Map<string, int>

let rec eval (env : Env) expr =
 match expr with
 | Add (e1, e2) -> eval env e1 + eval env e2
 | Bind (var, rhs, body) -> eval (env.Add(var, eval env rhs)) body
 | Var var -> env.[var]
 | Num n -> n

The recursive call eval env rhs isn’t tail recursive. For the vast majority of applications, you never
need to worry about making this algorithm tail recursive. Stack overflow may be a problem, however, if
bindings are nested to great depth, such as in bind v1 = (bind v2 = . . . (bind v1000000 = 1. . .)) in v1+v1. If
the syntax trees come from human-written programs, you can safely assume this won’t be the case. If you
need to make the implementation tail recursive, however, you can use continuations, as shown in Listing
9-11.

Listing 9-11. A tail-recursive expression evaluator using continuations

let rec evalCont (env : Env) expr cont =
 match expr with
 | Add (e1, e2) ->
 evalCont env e1 (fun v1 ->
 evalCont env e2 (fun v2 ->
 cont (v1 + v2)))
 | Bind (var, rhs, body) ->
 evalCont env rhs (fun v1 ->
 evalCont (env.Add(var, v1)) body cont)
 | Num n ->
 cont n
 | Var var ->
 cont (env.[var])

let eval env expr = evalCont env expr (fun x -> x)

■ Note: Programming with continuations can be tricky, and you should use them only when necessary, or use the
F# async type as a way of managing continuation-based code. Where possible, abstract the kind of transformation
you’re doing on your tree structure (for example, a map, fold, or bottom-up reduction) so you can concentrate on
getting the traversal right. In the previous examples, the continuations all effectively play the role of a work list. You
can also reprogram your algorithms to use work lists explicitly and to use accumulating parameters for special
cases. Sometimes this is necessary to gain maximum efficiency, because an array or a queue can be an optimal
representation of a work list. When you make a work list explicit, the implementation of an algorithm becomes more
verbose, but in some cases, debugging can become simpler.

CHAPTER 9 ■ WORKING WITH SEQUENCES AND STRUCTURED DATA

230

Summary
This chapter covered some of the techniques you’re likely to use in your day-to-day F# programming when
working with sequences and structured data. Nearly all the remaining chapters use some of the techniques
described in this chapter, and Chapter 12 goes deeper into symbolic programming based on structured-data
programming techniques.

In the next chapter, you’ll learn about programming techniques for another fundamental kind of data:
programming with numeric data using structural and statistical methods.

231

■ ■ ■

CHAPTER 10

Numeric Programming and Charting

In Chapters 8 and 9, you learned constructs and techniques for programming with three important kinds
of data in F#: textual data, sequences of data, and structured data. In this chapter, we return to constructs
and techniques for one of the most important kinds of data in all programming systems: numeric data.

Programming with numbers is a huge topic, ultimately overlapping with many fields of mathematics,
statistics, and computer science, and highly related to applied science, engineering, economics, and
finance. In this chapter, you learn about:

Programming with additional basic numeric types and literals beyond simple
“integers” and “floating point” numbers already covered in Chapter 3

Using library and hand-coded routines for summing, aggregating, maximizing, and
minimizing sequences

Some simple algorithmic programming with F#, implementing the KMeans
clustering algorithm and applying it to some input data

Some charting with F#, using the FSharpChart library

Using the Math.NET library for statistics, distributions, and linear algebra

Using the unique F# feature units of measure for giving strong types to numeric data

This chapter makes extensive reference to the Math.NET open-source math library. You can find out
more about Math.NET at http://www.mathdotnet.com/.

Basic Charting with FSharpChart
Your primary focus in this chapter is on numeric programming itself. A very common activity associated
with working with numbers is charting. You will now explore some basic charting using the FSharpChart
charting library, available by searching for “FSharpChart” on the Web.

FSharpChart is very easy to get going with. For example, consider creating 1,000 random points and
plotting them:

#load "FSharpChart.fsx"
open MSDN.FSharp.Charting

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

232

let rnd = System.Random()
let rand() = rnd.NextDouble()

let randomPoints = [for i in 0 .. 1000 -> 10.0 * rand(), 10.0 * rand()]

randomPoints |> FSharpChart.Point

This gives the chart:

Likewise, consider two sinusoidal data sets with some random noise added.

let randomTrend1 = [for i in 0.0 .. 0.1 .. 10.0 -> i, sin i + rand()]
let randomTrend2 = [for i in 0.0 .. 0.1 .. 10.0 -> i, sin i + rand()]

You can combine two charts – the first data set as a line, and the second as a set of points – as follows:

type Chart = FSharpChart
Chart.Combine [Chart.Line randomTrend1; Chart.Point randomTrend2]

233

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

Giving:

Many other chart types and options are available for use with FSharpChart. For example, you can add
a title to your chart:

Chart.Line (randomPoints,Title="Expected Trend")

Charting is often used with pipelining, so attributes like this are often specified using “|> fun c ->
“ as follows:

randomPoints
 |> fun c -> Chart.Line (c,Title="Expected Trend")

Basic Numeric Types and Literals
We first cover the most common base types of data manipulated in F# code, beginning with the basics of
F# arithmetic. Table 10-1 lists the basic numeric types used in F# code and their corresponding literal
forms. The table also lists the non-numeric types bool and unit.

Table 10-1. Basic Types and Literals

Type Description Sample Literals Long Name
bool True/false values true, false System.Boolean

byte 8-bit unsigned integers 0uy, 19uy, 0xFFuy System.Byte

sbyte 8-bit signed integers 0y, 19y, 0xFFy System.SByte

int16 16-bit signed integers 0s, 19s, 0x0800s System.Int16

uint16 16-bit unsigned integers 0us, 19us, 0x0800us System.UInt16

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

234

Type Description Sample Literals Long Name
int, int32 32-bit signed integers 0, 19, 0x0800, 0b0001 System.Int32

uint32 32-bit unsigned integers 0u, 19u, 0x0800u System.UInt32

int64 64-bit signed integers 0L, 19L, 0x0800L System.Int64

uint64 64-bit unsigned integers 0UL, 19UL, 0x0800UL System.UInt64

nativeint Machine-sized signed integers 0n, 19n, 0x0800n System.IntPtr

unativeint Machine-sized unsigned integers 0un, 19un, 0x0800un System.UIntPtr

single, float32 32-bit IEEE floating-point 0.0f, 19.7f, 1.3e4f System.Single

double, float 64-bit IEEE floating-point 0.0, 19.7, 1.3e4 System.Double

decimal High-precision decimal values 0M, 19M, 19.03M System.Decimal

bigint Arbitrarily large integers 0I, 19I System.Numerics.
BigInteger

complex Complex numbers based on 64-bit
floating point numbers

Complex(2.0, 3.0) System.Numerics.
Complex

Arithmetic Operators
Table 10-2 lists the most commonly used arithmetic operators. These are overloaded to work with all the
numeric types listed in Table 10-1.

Table 10-2. Arithmetic Operators and Examples

Operator Description Sample Use on int Sample Use on float
+ Unchecked addition 1 + 2 1.0 + 2.0

- Unchecked subtraction 12 - 5 12.3 - 5.4

* Unchecked multiplication 2 * 3 2.4 * 3.9

/ Division 5 / 2 5.0 / 2.0

% Modulus 5 % 2 5.4 % 2.0

- Unary negation -(5+2) -(5.4+2.4)

Checked Arithmetic
The behavior of these and other operators can be extended for user-defined types, a topic covered in
Chapter 6. In F#, addition, subtraction, and multiplication over integers are unchecked; that is, if overflow
or underflow occur beyond the representable range, wraparound occurs. For example, 2147483647 is the
largest representable 32-bit integer of the int type:

> 2147483647 + 1;;

val it : int = -2147483648

You can access checked versions of arithmetic operators that raise System.OverflowException
exceptions by opening the Microsoft.FSharp.Core.Operators.Checked module. If avoiding overflow is a
priority, using the decimal, bigint, and bignum types is recommended. Division by zero raises a System.

235

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

DivideByZeroException exception, except in the case of floating-point numbers, in which it returns one of
the special floating-point numbers Infinity, -Infinity and NaN. Operator overloading interacts with type
inference—if a use of an overloaded operator isn’t otherwise constrained to work on a particular type, F#
assumes it works on 32-bit integers.

Arithmetic Conversions
Numeric types aren’t implicitly converted—conversions among different numeric types must be made
explicitly. You do this by using overloaded conversion operators. These work the same way as overloaded
infix operators such as + and *. Table 10-3 shows the primary conversion operators.

Table 10-3. Overloaded Arithmetic Conversions and Examples

Operator Description Sample Use Result
sbyte Convert/truncate to sbyte sbyte (-17) -17y

byte Convert/truncate to byte byte 255 255uy

int16 Convert/truncate to int16 int16 0 0s

uint16 Convert/truncate to uint16 uint16 65535 65535us

int/int32 Convert/truncate to int32 int 17.8 17

uint32 Convert/truncate to uint32 uint32 12 12u

int64 Convert/truncate to int64 int64 (-100.4) -100L

uint64 Convert/truncate to uint64 uint64 1 1UL

decimal Convert to decimal decimal 65.3 65.3M

float32 Convert to float32/single float32 65 65.0f

float Convert to float/double float 65 65.0

These conversions are all unchecked in the sense that they won’t raise exceptions. Again, the
Microsoft.FSharp.Core.Operators.Checked module has corresponding definitions of these operators. An
alternative is to use the library static methods contained in the type System.Convert, such as System.
Convert.ToDouble(). These do perform checking, which means they raise an exception if the source
number can’t be represented within the numeric range of the target type. As with many object-oriented
library constructs, uses of System.Convert methods may require type annotations to resolve overloading,
which is discussed in Chapters 5 and 6.

Arithmetic Comparisons
When used with numeric values, the binary comparison operators =, <>, <, <=, >, >=, min, and max perform
comparisons according to the natural ordering for each particular numeric type. You can also use these
operators on other data types, such as to compare lists of integers, and you can customize their behavior
for new types you define. Chapter 5 discusses generic comparison in detail, and Chapter 8 discusses
customizing generic comparison.

When used with floating-point values, these operators implement the IEEE semantics for NaN (Not a
Number) values. For example, (NaN = NaN) is false, as are (NaN <= NaN) and (NaN < NaN).

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

236

Overloaded Math Functions
The module Microsoft.FSharp.Core.Operators includes the definition of a number of useful overloaded
math operators. These are shown in Table 10-4 and are overloaded either on a suitable range of integer
types or on the basic floating-point types.

Table 10-4. Overloaded Math Functions and Examples

Function Description Sample Use Result
abs Absolute value of signed numeric types abs (-10.0f) 10.0f

cos, sin, tan Trigonometric functions cos 0.0 1.0

cosh, sinh, tanh Hyperbolic trigonometric functions cosh 1.0 1.543080635

acos, asin, atan, atan2 Inverse trigonometric functions acos 1.0 0.0

ceil, floor Round up, round down ceil 1.001 2.0

truncate Round toward zero truncate 8.9 8.0

exp, log, log10 Exponent, logarithm, base-10 logarithm exp 1.0 2.718281828

(**) Power 2.0 ** 4.0 16.0

Bitwise Operations
All the integer types listed in Table 10-1 support bitwise manipulations on their underlying
representations. Table 10-5 shows the bitwise manipulation operators.

Table 10-5. Bitwise Arithmetic Operators and Examples

Operator Description Sample Use Result
&&& Bitwise “and” 0x65 &&& 0x0F 0x05

||| Bitwise “or” 0x65 ||| 0x18 0x7D

ˆˆˆ Bitwise “exclusive or” 0x65 ^^^ 0x0F 0x6A

~~~ Bitwise negation ~~~0x65 0xFFFFFF9a

<<< Left shift 0x01 <<< 3 0x08

>>> Right shift (arithmetic if signed) 0x65 >>> 3 0x0C

The following sample shows how to use these operators to encode 32-bit integers into 1, 2, or 5 bytes, 
represented by returning a list of integers. Integers in the range 0 to 127 return a list of length 1:

let encode (n : int32) =
    if (n >= 0 && n <= 0x7F) then [n]
    elif (n >= 0x80 && n <= 0x3FFF) then
        [(0x80 ||| (n >>> 8)) &&& 0xFF;
         (n &&& 0xFF)]
    else  [0xC0;
           ((n >>> 24) &&& 0xFF);
           ((n >>> 16) &&& 0xFF);
           ((n >>> 8) &&& 0xFF);
           (n &&& 0xFF)]



237

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

Here’s an example of the function in action:

> encode 32;;
 
val it : int32 list = [32]

> encode 320;;
 
val it : int32 list = [129; 64]

> encode 32000;; 

val it : int32 list = [192; 0; 0; 125; 0]

Sequences, Statistics and Numeric Code 
Some of the most common and simplest numerical programming techniques with F# involves taking 
aggregate statistics over sequences of objects. In this section, you learn how to use the built-in aggregation 
operators, such as Seq.sum and Seq.averageBy. Further, you look at how to define additional functions with 
similar characteristics. In later sections, you learn how to use functionality from the Math.NET library to 
perform more advanced statistical analysis of sequences of numbers.

Summing, Averaging, Maximizing and Minimizing Sequences
The table below shows how to compute the average, sum, maximum, and minimums over input sequences 
using operations from the Seq module to process the data. 

  data |> Seq.average                     
  data |> Seq.sum                         
  data |> Seq.max                         
  data |> Seq.min                         
  data |> Seq.averageBy (fun x -> proj)   
  data |> Seq.sumBy (fun x -> proj)       
  data |> Seq.maxBy (fun x -> proj)       
  data |> Seq.minBy (fun x -> proj)       

For example, consider taking the average, sum, maximum, and minimum of a set of 1,000 numbers 
between 0 and 1, each generating by multiplying two random numbers drawn from a random-number 
generator.

let rnd = new System.Random()
let rand() = rnd.NextDouble()
let data = [for i in 1 .. 1000 -> rand() * rand()]

let averageOfData = data |> Seq.average
let sumOfData = data |> Seq.sum
let maxOfData = data |> Seq.max
let minOfData = data |> Seq.min

The results are:



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

238

// Random numbers, results may differ!
val averageOfData : float = 0.2365092084
val sumOfData : float = 236.5092084
val maxOfData : float = 0.9457838635
val minOfData : float = 6.153537535e-05

As expected, the average of the sequence lies near 0.25. 
Normally, however, statistics are generated by projecting information from particular objects using 

operators such as Seq.sumBy. For example, consider taking the average X, Y, and Z positions of a random set 
of 1,000 points drawn in three dimensions:

type RandomPoint = {X : float; Y : float; Z : float}

let random3Dpoints = 
    [for i in 1 .. 1000 -> {X = rand(); Y = rand(); Z = rand()}]

let averageX = random3Dpoints |> Seq.averageBy (fun p -> p.X)
let averageY = random3Dpoints |> Seq.averageBy (fun p -> p.Y)
let averageZ = random3Dpoints |> Seq.averageBy (fun p -> p.Z)

As expected, the results center around 0.5: 

// Random numbers, results may differ!
val averageX : float = 0.4910144491
val averageY : float = 0.5001688922
val averageZ : float = 0.5170302648

Likewise, you can use Seq.maxBy to determine the element where a maximum occurs for a particular 
measure: 

let maxY = random3Dpoints |> Seq.maxBy (fun p -> p.Y)

This operator returns the object that corresponds to the maximum: 

// Random numbers, results may differ!
val maxY : RandomPoint = {X = 0.9829979292;
                          Y = 0.9997189497;
                          Z = 0.4552816481;}

Likewise, you can use minimize and maximize by other measures. For example, consider finding the 
point that minimizes the distance from the origin to the point: 

let norm (p : RandomPoint) = sqrt (p.X * p.X + p.Y * p.Y + p.Z * p.Z)
let closest = random3Dpoints |> Seq.minBy (fun p -> norm p)

As expected, the point has relatively low values for all of X, Y, and Z: 

// Random numbers, results may differ!
val norm : p:RandomPoint -> float
val closest : RandomPoint = {X = 0.05287901873;



239

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

                             Y = 0.0570056001;
                             Z = 0.1018355787;}

Note that Seq.maxBy and Seq.minBy return the input object that maximizes/minimizes the function 
respectively—that is, they return the input object and not the maximum/minimum value. Some other 
similar operations in the F# libraries and .NET framework return the value itself—the type signature of the 
operation allows you to tell the difference.

■ Note Sums, averages, maximums, and minimums can also be computed by using F# 3.0 query expressions, 
discussed in Chapter 13.  For example, you can compute an average by using an expression such as query { for 
x in data do averageBy p.X }. The advantage of this approach is that, for some external data sources such 
as databases, the queries and aggregation can be executed on the remote server. As we shall see in Chapter 13, this 
depends on how data has been defined. While queries can be used over sequences and other in-memory data, for 
most in-memory processing, you should just use operations such as Seq.averageBy to process the data.

Counting and Categorizing
A common statistical operation is categorizing elements according to some key (grouping, as discussed in 
Chapter 9) and counting the number of elements in each group. This corresponds to building a histogram 
for the data based on a selection function. 

The simplest way to generate a histogram for in-memory data is to use Seq.countBy, which returns a 
sequence of key/count pairs. For example, consider the random3Dpoints you generated in the previous 
section. These can be categorized into 10 quantiles depending on how far they are from the origin. The 
maximum distance a point can be away from the origin is 3, so we multiply by 10, divide by 3, and round 
down to the nearest integer to compute the bucket a point belongs to:

let histogram = 
    random3Dpoints 
    |> Seq.countBy (fun p -> int (norm p * 10.0 / sqrt 3.0) ) 
    |> Seq.sortBy fst 
    |> Seq.toList

The results reveal a concentration of points at distance 0.6 * 3 = 1.03.

// Random numbers, results may differ!
val closest : (int * int) list =
  [(0, 1); (1, 15); (2, 52); (3, 97); (4, 173); (5, 233); (6, 256); (7, 116);
   (8, 52); (9, 5)]

Note that you usually have to sort the counted results by the key and convert the overall results to a 
concrete data structure, such as a list, array, map, or dictionary. 

■ Note The Math.NET library includes the type Statistics.Histogram for incrementally computing 
histograms from numerical input sets. You use this type later in this chapter.



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

240

Writing Fresh Numeric Code
If you are writing a lot of numeric code, you will almost certainly want to use one of the standard math and 
statistical packages that can be used with F# programming, such as Math.NET, described later in this 
chapter. It is often necessary, however, to define new statistical computations in F# to extend the basic set 
of operations that are available for routine use. 

As an example of this, consider defining the variance and standard deviation of a sequence of 
numbers. These are simple computations based on taking the average of a sequence and then the average 
of the sum-of-squares of variations from the average. 

First, the simplest form of the operation simply computes the variance over an input array of floating-
point numbers:

/// Compute the variance of an array of inputs
let variance (values : float[]) = 
    let sqr x = x * x
    let avg = values |> Array.average
    let sigma2 = values |> Array.averageBy (fun x -> sqr (x - avg))
    sigma2

let standardDeviation values =
    sqrt (variance values)

These operations have types:

val variance : values:float [] -> float
val standardDeviation : values:float [] -> float

You can apply the functions to sequences of data. For example:

let sampleTimes = [|for x in 0 .. 1000 -> 50.0 + 10.0 * rand()|]

let exampleDeviation = standardDeviation  sampleTimes
let exampleVariance = variance sampleTimes

Giving results:

val exampleDeviation : float = 2.865331753
val exampleVariance : float = 8.210126054

In some circumstances, it may make sense to define projection “By” versions of these operations, 
and further, it may make sense to place the operations in a utility module called “Seq”, “Array” or “List”, 
depending on the kind of input data accepted by the routine: 

module Seq = 
    /// Compute the variance of the given statistic from from the input data
    let varianceBy (f : 'T -> float) values = 
        let sqr x = x * x
        let xs = values |> Seq.map f |> Seq.toArray
        let avg = xs |> Array.average
        let res = xs |> Array.averageBy (fun x -> sqr (x - avg))
        res



241

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

    /// Compute the standard deviation of the given statistic drawn from the input data
    let standardDeviationBy f values =
        sqrt (varianceBy f values)

■ Note The Math.NET library includes the functions Statistics.StandardDeviation, Statistics.
Variance, Statistics.Mean, Statistics.Maximum, Statistics.Minimum, and Statistics.
DescriptiveStatistics for computing basic statistics from sequences of floating-point numbers. 

Making Numeric Code Generic 
It is often sufficient to define statistical functions over base types, such as floating-point numbers. If 
necessary, this code can be made either unitized or generic. You have already seen generic numeric 
algorithms in Chapter 5. You can make the code for variance and standardDeviation generic, because the 
underlying operations Array.average and Array.averageBy are themselves generic. For example:

let inline variance values = 
    let sqr x = x * x
    let avg = values |> Array.average
    let sigma2 = values |> Array.averageBy (fun x -> sqr (x - avg))
    sigma2 

let inline standardDeviation values =
    sqrt (variance values)

This code can now be used with any numeric types. The downside is that a complex relationship is 
asserted between the input and output types:

val inline variance :
  values: ^a [] ->  ^c
    when  ^a : (static member ( + ) :  ^a *  ^a ->  ^a) and
          ^a : (static member DivideByInt :  ^a * int ->  ^a) and
          ^a : (static member get_Zero : ->  ^a) and
          ^a : (static member ( - ) :  ^a *  ^a ->  ^b) and
          ^b : (static member ( * ) :  ^b *  ^b ->  ^c) and
          ^c : (static member ( + ) :  ^c *  ^c ->  ^c) and
          ^c : (static member DivideByInt :  ^c * int ->  ^c) and
          ^c : (static member get_Zero : ->  ^c)
val inline standardDeviation :
  values: ^a [] ->  ^d
    when  ^a : (static member ( + ) :  ^a *  ^a ->  ^a) and
          ^a : (static member DivideByInt :  ^a * int ->  ^a) and
          ^a : (static member get_Zero : ->  ^a) and
          ^a : (static member ( - ) :  ^a *  ^a ->  ^b) and
          ^b : (static member ( * ) :  ^b *  ^b ->  ^c) and
          ^c : (static member ( + ) :  ^c *  ^c ->  ^c) and
          ^c : (static member DivideByInt :  ^c * int ->  ^c) and
          ^c : (static member get_Zero : ->  ^c) and
          ^c : (static member Sqrt :  ^c ->  ^d)



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

242

This cost can sometimes be worth it, as the operation is very general—it can be used on decimals, 
floating-point numbers, and unitized versions of these. Further, the code produced is also usually as 
efficient as can be without writing a highly case-specific optimized routine.

Example: KMeans
As an example, in Listing 10-1, we use one simple machine-learning algorithm, called KMeans 
Clustering. This algorithm accepts a set of inputs, each with a vector of numbers representing features. 
For example, each input may represent an observed object, such as a flower or animal in a biology field 
experiment, and the features may represent a set of observed measurements of that object.

The algorithm proceeds by clustering the data around a fixed number of centroids in the feature 
space. Each object is assigned to the “nearest” centroid according to a distance function. Once the groups 
are determined, new centers are then computed, and the process is repeated.

In this implementation of the algorithm, we keep a reference to the original data, of some type T, and 
assume a function is given that extracts the actual feature vectors from the parameters.

Listing 10-1. KMeans Clustering Algorithm

type Input<'T> = {Data : 'T; Features : float[]}
type Centroid = float[]

module Array = 
    /// Like Seq.groupBy, but returns arrays 
    let classifyBy f (xs : _[]) = 
         xs |> Seq.groupBy f |> Seq.map (fun (k, v) -> (k, Seq.toArray v)) |> Seq.toArray

module Seq = 
    /// Return x, f(x), f(f(x)), f(f(f(x))), ...
    let iterate f x = x |> Seq.unfold (fun x -> Some (x, f x))

/// Compute the norm distance between an input and a centroid
let distance (xs : Input<_>) (ys : Centroid) =
    (xs.Features,ys) 
        ||> Array.map2 (fun x y -> (x - y) * (x - y))
        |> Array.sum

/// Find the average of set of inputs. First compute xs1 + ... + xsN, pointwise, 
/// then divide each element of the sum by the number of inputs.
let computeCentroidOfGroup (_, group : Input<_>[]) =
    let e0 = group.[0].Features
    [|for i in 0 .. e0.Length - 1 -> group |> Array.averageBy (fun e -> e.Features.[i])|]

/// Group all the inputs by the nearest centroid
let classifyIntoGroups inputs centroids = 
    inputs |> Array.classifyBy (fun v -> centroids |> Array.minBy (distance v))

/// Repeatedly classify the inputs, starting with the initial centroids
let rec computeCentroids inputs centroids = seq {
    let classification = classifyIntoGroups inputs centroids
    yield classification



243

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

    let newCentroids = Array.map computeCentroidOfGroup classification
    yield! computeCentroids inputs newCentroids}

/// Extract the features and repeatedly classify the inputs, starting with the 
/// initial centroids
let kmeans inputs featureExtractor initialCentroids = 
    let inputs = 
        inputs 
        |> Seq.map (fun i -> {Data = i; Features = featureExtractor i}) 
        |> Seq.toArray
    let initialCentroids = initialCentroids |> Seq.toArray
    computeCentroids inputs initialCentroids

We now generate a synthetic input data set that features four clusters of data:

open Microsoft.FSharp.Data.UnitSystems.SI.UnitSymbols

type Observation = {Time : float<s>; Location : float<m>}

let rnd = System.Random()
let rand() = rnd.NextDouble() 
let randZ() = rnd.NextDouble() - 0.5

/// Create a point near the given point
let near p = {Time= p.Time + randZ() * 20.0<s>; 
              Location = p.Location + randZ() * 5.0<m>}

let data = 
    [for i in 1 .. 1000 -> near {Time= 100.0<s>; Location = 60.0<m>}
     for i in 1 .. 1000 -> near {Time= 120.0<s>; Location = 80.0<m>}
     for i in 1 .. 1000 -> near {Time= 180.0<s>; Location = 30.0<m>}
     for i in 1 .. 1000 -> near {Time= 70.0<s>; Location = 40.0<m>}]

The algorithm is run by extracting two features from the data into a normalized (0,1) range and 
choosing 10 initial centroids at random in this two-dimensional feature space. 

We discard the classifications of the points to the centroids and simply report the centroids that have 
been found, renormalized into the original input space:

let maxTime = data |> Seq.maxBy (fun p -> p.Time) |> fun p -> p.Time
let maxLoc = data |> Seq.maxBy (fun p -> p.Location) |> fun p -> p.Location

let initialCentroids = [for i in 0 .. 9 -> [|rand(); rand()|]]
let featureExtractor (p : Observation) = [|p.Time / maxTime; p.Location / maxLoc|]

kmeans data featureExtractor initialCentroids

This gives an infinite sequence of centroid/classification groups representing repeated iterations of 
the algorithm. We discard the classifications and simply report the centroids that have been found, taking 
only the 100th iteration of the algorithm, and renormalize the centroids into the original input space:

kmeans data featureExtractor initialCentroids
   |> Seq.map (Array.map (fun (c, _) -> c.[0] * maxTime, c.[1] * maxLoc))
   |> Seq.nth 100



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

244

This gives the resulting centroids. For example, on one sample execution, the discovered centroids for 
the 100th iteration are:

> val it : (float<s> * float<m>) [] =
  [|(95.21297664, 59.92134092); (105.128182, 60.03017317);
    (120.0522592, 79.99954457); (179.7447501, 29.96446713);
    (65.97080136, 38.75120135); (75.63604991, 40.05351476);
    (64.8228706, 41.26265782)|]

The algorithm has determined seven centroids—those that no classify no points are discarded—and 
each of these correspond to one of the four original centroids—(100,60), (120,80), (180,30), (70,40)—used 
in the random generation of the data. (Several discovered centroids correspond to one original centroid; 
thus, the data are “over-fitted.” The over-fitting of the centroid model to the data is characteristic of naïve 
clustering algorithms. The use of more advanced statistical methods can avoid this.)

Statistics, Linear Algebra and Distributions  
with Math.NET
In this chapter so far, you have seen how to use F# language and library constructs to implement a 
variety of numerical programming tasks “from scratch.” This is commonly done when using F# for 
writing simulators or doing basic data scripting, charting, and reporting.

For even moderately advanced math and numeric programming, however, you will want to make use 
of an existing F# or .NET math library. Several high-quality .NET libraries are available, and more are 
appearing all the time. Also, math and statistics libraries tend to have different characteristics: 

Some libraries use C/C++ code “under the hood.” For example, many managed .NET 
libraries use the Intel MKL library or an equivalent.

Some libraries also have an “all managed” mode, meaning that most or all of the 
functionality in the library is authored in C# and F#. This means, for example, that 
math libraries can be highly portable and used across a number of situations in 
which .NET code is accepted.

Some libraries implement optimizations such as “GPU” execution, allowing some or 
all of the routines to execute on a graphics processor.

The libraries differ by license and availability.  Some are open source, and some are 
commercial.

Some libraries are designed for use from C# or F# but also have an F#-specific 
wrapper.

A detailed overview of math library choices for F# can also be found on the Microsoft MSDN pages at 
http://msdn.microsoft.com/en-us/library/hh304368.aspx. People often ask us which libraries we 
recommend. Table 10-6 shows some of the frameworks and libraries available at the time of writing that 
may interest you.



245

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

Table 10-6. Some Math Frameworks and Libraries Not Covered in This Chapter

Library Name Description URL
Alglib ALGLIB is a cross-platform numerical-analysis 

and data-processing library.
www.alglib.net

Extreme Optimization A commercial math, vector, statistics, and 
matrix library for .NET.

www.extremeoptimization.com

FCore A commercial F#-specific math and statistics 
library, particularly suitable for quantitative 
development.

www.statfactory.co.uk

Math.NET The standard open-source math library for the 
.NET Framework. Includes special functions, 
linear algebra, probability models, statistics, 
random numbers, interpolation, and integral 
transforms (FFT).

www.mathdotnet.com

NMath An object-oriented .NET math library that 
supports linear algebra and function 
optimization. NMath Stats is a .NET statistics 
library that can be used for data manipulation 
and statistical computation, as well as for 
biostatistics.

www.centerspace.net

Basic Statistical Functions in Math.NET Numerics
In the rest of this book, we use the open-source library Math.NET Numerics. The preferred open-source 
math library for use with F# is called Math.NET Numerics, which is part of a larger project called Math.
NET, an umbrella project for open-source math libraries on the .NET and Mono Frameworks. Math.NET 
Numerics includes:

Types representing dense as well sparse vectors and matrices

A library containing a full set of standard linear-algebra routines 

A range of random-number generators with different strengths 

Additional features that include support for certain numerical integration and 
statistical functions.

Math.NET Numerics is available for use as a pure-managed library, but it also includes wrappers for 
highly optimized native math libraries, such as Intel MKL and AMD ACML. This library is available under a 
broad open-source license, and it is available as a NuGET package. To install the library, either add it as a 
NuGET package to an existing project or install it directly from www.mathdotnet.com.

From an F# script in the root folder of a project with version 2.1.2 of MathNet.Numerics.FSharp 
installed as a NuGET package, the references can be added with relative paths.

#r @".\packages\MathNet.Numerics.2.1.2\lib\Net40\MathNet.Numerics.dll"
#r @".\packages\MathNet.Numerics.FSharp.2.1.2\lib\Net40\MathNet.Numerics.FSharp.dll"
#r @".\packages\zlib.net.1.0.4.0\lib\zlib.net.dll"

Some basic statistical functions in Math.NET are shown in Table 10-7. We can use the functions in 
the expected way:



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

246

open MathNet.Numerics.Statistics 

let data = [for i in 0.0 .. 0.01 .. 10.0 -> sin i]

let exampleVariance = data |> Statistics.Variance 
let exampleMean = data |> Statistics.Mean 
let exampleMin = data |> Statistics.Minimum
let exampleMax = data |> Statistics.Maximum

Giving:

val exampleVariance : float = 0.443637494
val exampleMean : float = 0.1834501596
val exampleMin : float = -0.9999971464
val exampleMax : float = 0.9999996829

Table 10-7. Some Statistical Functions in Math.NET, in Namespace MathNet.Numerics.Statistics

Notation Description URL
Standard Deviation Statistics.StandardDeviation

2 Variance Statistics.Variance

μ Mean Statistics.Mean

max Maximum Statistics.Maximum

min Minimum Statistics.Minimum

Computes an object giving a range of 
descriptive statistics for a set of 
numbers

Statistics.DescriptiveStatistics

Binomial function, number of ways of 
choosing k elements from n choices, 
“n choose k”

Combinatorics.Combinations
SpecialFunctions.Binomial

Multinomial function SpecialFunctions.Multinomial

erf(x) Error function SpecialFunctions.Erf

erfc(x) Complementary Error function SpecialFunctions.Erfc

x) Gamma function SpecialFunctions.Gamma

B(x,y) Beta function SpecialFunctions.Beta

n! Factorial function SpecialFunctions.Factorial

Using Histograms and Distributions from Math.NET Numerics
The Math.NET Numerics library includes implementations of all the most important statistical 
distributions in the namespace MathNet.Numerics.Distributions. For example, consider a normal (bell-
curve) distribution centered on 100.0 with standard deviation 10.0.  

open MathNet.Numerics.Distributions 
open System.Collections.Generic

let exampleBellCurve = Normal(100.0, 10.0)



247

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

You can now draw random samples from this distribution as: 

> exampleBellCurve.Samples();;

val it : IEnumerable<float> =
  seq [102.4361311; 88.10527203; 100.1478871; 88.2344663; ...]

Math.NET Numerics also includes a type MathNet.Numerics.Distributions.Histogram for categorizing 
numeric data into a histogram. For example, we can define a function that categorizes data into a given 
number of buckets and generates a label for each bucket as: 

let histogram n data = 
    let h = Histogram(data, n)
    [|for i in 0 .. h.BucketCount - 1 -> 
          (sprintf "%.0f-%.0f" h.[i].LowerBound h.[i].UpperBound, h.[i].Count)|]

Using this function, we can now chart the sample data drawn from the normal distribution as:

exampleBellCurve.Samples() 
    |> Seq.truncate 1000 
    |> histogram 10 
    |> Chart.Column

Giving:

 The Math.NET library supports many more-sophisticated distribution types, including multivariate 
Gaussian distributions (MatrixNormal), coin flips (Bernoulli), decaying-exponential distributions 
(Exponential), and distributions that can be used to simulate the time dealys between occurrences of 
events (Poisson). 



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

248

Using Matrices and Vectors from Math.NET 
The Math.NET Numerics library includes extensive support for matrices, vectors, and linear algebra. For 
example, you can create and add two vectors:

open MathNet.Numerics.FSharp
open MathNet.Numerics.LinearAlgebra.Generic

let vector1 = vector [1.0; 2.4; 3.0]
let vector2 = vector [7.0; 2.1; 5.4]

vector1 + vector2

giving:

val it : Vector<float> = seq [8.0; 4.5; 8.4]

Likewise, you can define and multiply two matrices: 

let matrix1 = matrix [[1.0; 2.0]; [1.0; 3.0]];;
let matrix2 = matrix [[1.0; -2.0]; [0.5; 3.0]];;
let matrix12 = matrix1 * matrix2;;

Giving:

val matrix1 : Matrix<float> = 1,2
1,3
val matrix2 : Matrix<float> = 1,-2
0.5,3
val matrix12 : Matrix<float> = 2,4
2.5,7

The default formatting for vectors and matrices is not particularly good. Better formatting can be 
achieved by adding a print-transformer to first convert to one- or two-dimensional arrays, which offers 
better formatting in F# Interactive:

open MathNet.Numerics.LinearAlgebra.Double 

fsi.AddPrintTransformer (fun (x : DenseVector) -> 
     box [|for i in 0 .. x.Count - 1 -> x.[i]|])

fsi.AddPrintTransformer (fun (x : DenseMatrix) -> 
     box (array2D [for i in 0 .. x.RowCount - 1 -> 
                       [for j in 0 .. x.ColumnCount - 1 -> x.[i, j]]]))

The results above then become:

val vector1 : Vector<float> = [|1.0; 2.4; 3.0|]
val vector2 : Vector<float> = [|7.0; 2.1; 5.4|]
val it : Vector<float> = seq [8.0; 4.5; 8.4]



249

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

and:

val matrix1 : Matrix<float> = [[1.0; 2.0]
                               [1.0; 3.0]]
val matrix2 : Matrix<float> = [[1.0; -2.0]
                               [0.5; 3.0]]
val matrix12 : Matrix<float> = [[2.0; 4.0]
                                [2.5; 7.0]]

Matrix Inverses, Decompositions and Eigenvalues
The linear-algebra support in the Math.NET Numerics library is extensive and can be configured to use 
highly optimized native linear-algebra packages under-the-hood. The defaults are to use fully managed 
linear algebra. For example, to compute the inverse of a matrix, simply call the .Inverse() method on the 
matrix. 

First, define a large 100x100 matrix with random numbers and compute its inverse:

let largeMatrix = matrix [for i in 1 .. 100 -> [for j in 1 .. 100 -> rand()]]

let inverse = largeMatrix.Inverse()

Next, multiply the two to check that the inverse is correct:

let check = largeMatrix * largeMatrix.Inverse()

Giving:

val check : Matrix<float> =
  [[1.0; 2.775557562e-16; 4.371503159e-15; 1.887379142e-15; 1.887379142e-15;
    -1.054711873e-15; -2.664535259e-15; 6.689093723e-15; 4.440892099e-16;
    -5.551115123e-16; -2.664535259e-15; -5.551115123e-16; 2.664535259e-15;
    -2.220446049e-15; 1.110223025e-16; -1.776356839e-15; -2.886579864e-15; 
    ...

As expected, this is numerically very close to the identity matrix. Likewise, common decompositions 
of matrices can be computed using the Svd(), Evd(), LU(), and QR() methods on the matrix itself. For 
example, to compute the eigenvalues and eigenvectors of a matrix:

// Open this namespace so we can use the Evd extension method.
open MathNet.Numerics.LinearAlgebra.Double
open MathNet.Numerics.LinearAlgebra.Generic

let evd = largeMatrix.Evd()
let eigenValues = evd.EigenValues()

Giving:

val evd : Factorization.Evd
val eigenValues : Vector<Numerics.Complex>

> eigenValues;;



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

250

val it : Vector<Numerics.Complex> =
  seq
    [(49.9915503772098, 0);
     (-0.406120558380603, 2.92962073514449);
    ...

Adding a printer for complex numbers:

fsi.AddPrinter (fun (c : System.Numerics.Complex) -> sprintf "%fr + %fi" c.Real c.Imaginary)

Gives:

val eigenValues : Vector<Numerics.Complex> =
  seq
    [49.991550r + 0.000000i; -0.406121r + 2.929621i; -0.406121r + -2.929621i;
     3.095556r + 0.000000i; ...]
    ...

Units of Measure
F# includes a beautiful feature in its type system called units of measure. This feature lets you annotate 
numeric types with annotations such as kg, m, and sec that indicate the kind of number the quantity 
represents—that is, its unit of measure. You can also use the feature to annotate other, user-defined types 
that are ultimately based on numeric quantities. This feature is best explained using code for physical 
simulations and is rooted in scalable quantities. It also has a wide range of surprising applications outside 
physical simulation, including annotating code with units for integer quantities such as pixels, currencies, 
or click-counts.

The F# 3.0 library comes with predefined unit definitions matching the Système International (SI) 
standard in the namespaces Microsoft.FSharp.Data.UnitSystems.SI.UnitNames (for base unit names such 
as kilogram and derived units such as hertz) and namespaces Microsoft.FSharp.Data.UnitSystems.SI.
UnitSymbols (for standard abbreviations of these names, such as kg and hz, respectively). To define a new 
kind of measure annotation, use a type definition with a Measure attribute:

[<Measure>] 
type click

[<Measure>] 
type pixel

[<Measure>] 
type money

Once a set of measures is defined or chosen from the library, the basic numeric types and literals can 
include these qualifications. For example, consider the computation “we are receiving 200 clicks every 
second, and the Web site has been running 3.5 seconds.” This computation can be performed as: 

open Microsoft.FSharp.Data.UnitSystems.SI.UnitNames
open Microsoft.FSharp.Data.UnitSystems.SI.UnitSymbols

let rateOfClicks = 200.0<click/s>
let durationOfExecution = 3.5<s>



251

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

A calculation involving these quantities is:

let numberOfClicks = rateOfClicks * durationOfExecution 

The inferred type of numberOfClicks is float<click>. 

val numberOfClicks: float<click> = 700.0

If a mismatched unit type is used in such a calculation, a type error is reported. 

Adding Units to a Numeric Algorithms
Code that uses units of measure may also be generic over the units involved. This is particularly important 
for generic algorithms. To demonstrate this, consider three simple algorithms for integrating a function, as 
learned in elementary calculus. We will take the first three numerical-integration techniques for 
integrating a function f(x) of one variable over the range from a to b, taken from http://en.wikipedia.org/
wiki/Numerical_integration. These are 

integrating by evaluating f at a midpoint 

integrating by evaluating f at the endpoints

integrating by evaluating f at a mesh of n sub-intervals evenly spaced between a  
and b

Translating these into code, the nonunitized implementations are:

let integrateByMidpointRule f (a, b) = (b - a) * f ((a + b) / 2.0)

let integrateByTrapezoidalRule f (a, b) = (b - a) * ((f a + f b) / 2.0)

let integrateByIterativeRule f (a, b) n = 
    (b - a) / float n * 
    ((f a + f b) / 2.0 + 
      List.sum [for k in 1 .. n - 1 -> f (a + float k * (b - a) / float n)])

Here are the unitized implementations. Note that you author the unitized numbers by 
introducing type annotations:

let integrateByMidpointRule (f : float<'u> -> float<'v>) (a : float<'u>, b : float<'u>) = 
    (b - a) * f ( (a+b) / 2.0)

let integrateByTrapezoidalRule (f : float<'u> -> float<'v>) (a : float<'u>, b : float<'u>) = 
    (b - a) * ((f a + f b) / 2.0)



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

252

let integrateByIterativeRule (f : float<'u> -> float<'v>) (a : float<'u>, b : float<'u>) n = 
    (b - a) / float n * 
    ((f a + f b) / 2.0 + 
      List.sum [for k in 1 .. n - 1 -> f (a + float k * (b - a) / float n)])

In all three cases, the inferred, generic unitized type for the functions gives a return type of float<'u 
'v>:

val integrateByMidpointRule :
  f:(float<'u> -> float<'v>) -> a:float<'u> * b:float<'u> -> float<'u 'v>
val integrateByTrapezoidalRule :
  f:(float<'u> -> float<'v>) -> a:float<'u> * b:float<'u> -> float<'u 'v>
val integrateByIterativeRule :
  f:(float<'u> -> float<'v>) ->
    a:float<'u> * b:float<'u> -> n:int -> float<'u 'v>

For example, if the x dimension is “time”,—for example, float<s>—and the y dimension is “velocity”—
for example, float<m/s>—the result type is float<s m / s>, which simplifies to float<m>—for example, a 
distance. This is as expected: integrating a velocity over a period of time gives the distance travelled.

When we run these implementations of integration using a linear function as input, they all give the 
same answer. For example, consider a velocity function for a ball thrown upward at an initial velocity of 
100.0<m/s> and falling back to earth at 9.81<m/s>. Using the numeric-integration techniques, we can 
evaluate the distance the ball is above the earth at time 10 seconds as:

let velocityFunction (t : float<s>) = 100.0<m/s> + t * -9.81<m/s^2>

let distance1 = integrateByMidpointRule velocityFunction (0.0<s>, 10.0<s>)
let distance2 = integrateByTrapezoidalRule velocityFunction (0.0<s>, 10.0<s>)
let distance3 = integrateByIterativeRule velocityFunction (0.0<s>, 10.0<s>) 10

As expected, the results of these approximate integration techniques are precise for a linear function, 
and in all three cases, the distance computed is 509.5 meters:

val distance1 : float<m> = 509.5
val distance2 : float<m> = 509.5
val distance3 : float<m> = 509.5

As our second example, consider adding units to the variance function you defined earlier in this 
chapter. In this case, we also change the input to be a sequence, to make the operation more general still:

let variance (values : seq<float<_>>) = 
    let sqr x = x * x
    let xs = values |> Seq.toArray
    let avg = xs |> Array.average
    let variance = xs |> Array.averageBy (fun x -> sqr (x - avg))
    variance

let standardDeviation values =
    sqrt (variance values)

The types of the operations are now unitized:



253

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

val variance : values:seq<float<'u>> -> float<'u ^ 2>
val standardDeviation : values:seq<float<'u>> -> float<'u>

You can now apply the functions to unitized sequences of data. For example:

let sampleTimes = [for x in 0 .. 1000 -> 50.0<s> + 10.0<s> * rand()]

let exampleDeviation = standardDeviation sampleTimes
let exampleVariance = variance sampleTimes

Giving:

val exampleDeviation : float<s> = 2.865331753
val exampleVariance : float<s ^ 2> = 8.210126054

Adding Units to a Type Definition
When you define a new type, you may include measure parameters as part of the definition of the type. 
These parameters must be marked with the Measure attribute. For example:

type Vector2D<[<Measure>] 'u> = {DX : float<'u>; DY : float<'u>}

You can use units of measure in conjunction with object-oriented programming, discussed in Chapter 
6. For example, here is a vector-type generic over units of measure:

/// Two-dimensional vectors
type Vector2D<[<Measure>] 'u>(dx : float<'u>, dy : float<'u>) =

    /// Get the X component of the vector
    member v.DX = dx    
    
    /// Get the Y component of the vector
    member v.DY = dy    
    
    /// Get the length of the vector
    member v.Length = sqrt(dx * dx + dy * dy)
    
    /// Get a vector scaled by the given factor
    member v.Scale k = Vector2D(k * dx, k * dy)
    
    /// Return a vector shifted by the given delta in the X coordinate
    member v.ShiftX x = Vector2D(dx + x, dy)

    /// Return a vector shifted by the given delta in the Y coordinate
    member v.ShiftY y = Vector2D(dx, dy + y)

    /// Get the zero vector
    static member Zero = Vector2D<'u>(0.0<_>, 0.0<_>)



CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

254

    /// Return a constant vector along the X axis
    static member ConstX dx = Vector2D<'u>(dx, 0.0<_>)

    /// Return a constant vector along the Y axis
    static member ConstY dy = Vector2D<'u>(0.0<_>, dy)

    /// Return the sum of two vectors
    static member (+) (v1 : Vector2D<'u>, v2 : Vector2D<'u>) = 
        Vector2D(v1.DX + v2.DX, v1.DY + v2.DY)

    /// Return the difference of two vectors
    static member (-) (v1 : Vector2D<'u>, v2 : Vector2D<'u>) = 
        Vector2D(v1.DX - v2.DX, v1.DY - v2.DY)

    /// Return the pointwise-product of two vectors
    static member (.*) (v1 : Vector2D<'u>, v2 : Vector2D<'u>) = 
        Vector2D(v1.DX * v2.DX, v1.DY * v2.DY)

Note that some measure annotations are needed on zero values in this sample. In addition, a vector 
type such as this should normally implement the IComparable interface and the Equals and GetHashCode 
methods, as described in Chapter 8.

Applying and Removing Units
When you have a unitized value, you can remove the units by simply applying the float function. When you 
have a nonunitized value, you can apply units to it by using LanguagePrimitives.FloatWithMeasure. For 
example:

let three = float 3.0<kg>
let sixKg = LanguagePrimitives.FloatWithMeasure<kg> (three + three)

Giving:
val three : float = 3.0
val sixKg : float<kg> = 6.0

Some Limitations of Units of Measure
Units of measure can help tame the sea of floating-point numbers that tends to characterize modern 
numerical programming. It is important, however, to be aware of limitations of this feature, to avoid its 
over-zealous application to the detriment of productivity, code-stability, and readability. In particular:

Units of measure work best for algorithms that deal with summing, multiplying, 
dividing, and taking integral roots of inputs, such as square roots. Units of measure 
do not work well for algorithms or computations that deal with other functions, 
such as exponentials. Algorithms that use these functions can still often be 
“coarsely” unitized, first by removing units from the inputs and then by reapplying 
them to the outputs.

Units of measure must be applied to a particular type, such as float<_>, decimal<_>, 
or a user-defined type, such as Vector2D<_> above. In particular, you can’t easily be 
generic over both this type and the unit of measure, except by writing an inlined 
generic algorithm, as explained in Chapter 5.



255

CHAPTER 10 ■ NUMERIC PROGRAMMING AND CHARTING

Units of measure are an F#-only feature, and they are “erased” at runtime. This 
means that the unit information isn’t available to “reflective” metaprogramming. 
Unit information can be provided by F# type providers, something we will look at in 
Chapter 17.

■ Note F# units of measure are covered only briefly in this book. For more information, see the MSDN 
documentation or Andrew Kennedy’s four-part introduction to the topic: search for “Andrew Kennedy Units of 
Measure Part One” or visit http://blogs.msdn.com/andrewkennedy.

EXERCISE: UNITIZING KMEANS

The KMeans algorithm uses distances between feature vectors based on sums of squares. This means that 
the feature vectors should, ideally, be “normalized” to prevent one dimension dominating another. 

This indicates that units of measure can be used with the algorithm, in the sense that the algorithm 
should be generic w.r.t. to the “dimension” of the normalized numbers used in the feature space. As an 
exercise, try to apply units of measure to the code above. Start by making the type definitions unitized in this 
way:

type Input<'T, [<Measure>] 'u> = 

   { Data : 'T 

     Features: float<'u>[] }

type Centroid<[<Measure>] 'u> = float<'u>[]

You then simply need to adjust the code in a couple of places, and type inference will look after the 
rest. The adjustments needed are:

let distance (xs : Input<_, _>) (ys : Centroid<_>) = …

let computeCentroidOfGroup (_, group : Input<_>[]) = …

Summary
In this chapter, you’ve seen how to use F# to perform a range of numeric programming tasks, including the 
use of the powerful open-source Math.NET library. In the next chapter, we turn to an increasingly 
important part of programming— building parallel, reactive, and event-driven systems.



257

■ ■ ■

CHAPTER 11

Reactive, Asynchronous, and 
Parallel Programming

So far in this book, you’ve seen functions and objects that process their inputs immediately using a single 
thread of execution in which the code runs to completion and produces useful results or state changes. In 
this chapter, you turn your attention to concurrent, parallel, asynchronous, and reactive programs. These 
represent substantially different approaches to programming from those you’ve seen so far. Some reasons 
for turning to these techniques are:

To achieve better responsiveness in a graphical user interface (GUI)

To report progress results during a long-running computation and to support 
cancellation of these computations

To achieve greater throughput in a reactive application or service

To achieve faster processing rates on a multiprocessor machine or cluster

To take advantage of the I/O parallelism available in modern disk drives or network 
connections

To sustain processing while network and disk I/O operations are in process

This chapter covers some techniques that can help achieve these outcomes:

Using threads and the BackgroundWorker class for background computations

Using events and messages to report results back to a GUI

Using F# asynchronous workflows and the “thread pool” to handle network requests 
and other asynchronous I/O operations

Using F# pattern matching to process message queues

Using low-level shared-memory primitives to implement new concurrency 
techniques and control access to mutable data structures

In Chapter 2, you saw a very simple sample of the most common type of reactive programs: GUI 
programs that respond to events raised on the GUI thread. The inner loop of such an application 
(contained in the Windows Forms library) spends most of its time blocked and waiting for the underlying 
operating system to notify it of a relevant event, such as a click from the user or a timer event from the 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

258

operating system. This notification is received as an event in a message queue. Many GUI programs have 
only a single thread of execution, so all computation happens on the GUI thread. This can lead to 
problems, such as nonresponsive user interfaces. This is one of many reasons it’s important to master 
some techniques of concurrent and asynchronous programming.

Introducing Some Terminology
Let’s begin by looking more closely at some terminology:

Processes are, in the context of this chapter, standard operating system (OS) 
processes. Each instance of the .NET Common Language Runtime (CLR) runs in its 
own process, and multiple instances of the .NET CLR are often running on the same 
machine.

Threads are, in the context of this chapter, standard .NET threads. On most 
implementations of .NET, these correspond to operating system threads. Each .NET 
process has many threads running within the one process.

Concurrent programs are ones with multiple threads of execution, each typically 
executing different code, or at different execution points within the same code. 
Simultaneous execution may be simulated by scheduling and descheduling the 
threads, which is done by the OS. For example, most OS services and GUI 
applications are concurrent.

Parallel programs are one or more processes or threads executing simultaneously. 
For example, many modern microprocessors have two or more physical CPUs 
capable of executing processes and threads in parallel. Parallel programs can also be 
data parallel. For example, a massively parallel device, such as a graphics processor 
unit (GPU), can process arrays and images in parallel. Parallel programs can also be 
a cluster of computers on a network, communicating via message passing. 
Historically, some parallel scientific programs have even used e-mail for 
communication.

Asynchronous programs perform requests that don’t complete immediately but that 
are fulfilled at a later time and where the program issuing the request has to do 
meaningful work in the meantime. For example, most network I/O is inherently 
asynchronous. A web crawler is also a highly asynchronous program, managing 
hundreds or thousands of simultaneous network requests.

Reactive programs are ones whose normal mode of operation is to be in a state of 
waiting for some kind of input, such as waiting for user input or for input from a 
message queue via a network socket. For example, GUI applications and web servers 
are reactive programs.

Parallel, asynchronous, concurrent, and reactive programs bring many challenges. For example, these 
programs are nearly always nondeterministic. This makes debugging more challenging, because it’s 
difficult to step through a program; even pausing a running program with outstanding asynchronous 
requests may cause timeouts. Most dramatically, incorrect concurrent programs may deadlock, which 
means that all threads are waiting for results from some other thread, and no thread can make progress. 
Programs may also livelock, in which processing is occurring and messages are being sent between 
threads, but no useful work is being performed.



259

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Events
One recurring idiom in .NET programming (and, for example, JavaScript) is that of events. An event is 
something you can listen to by registering a callback with the event. For example, here’s how you can 
create a WinForms form and listen to mouse clicks on the form:

> open System.Windows.Forms;;

> let form = new Form(Text = "Click Form", Visible = true, TopMost = true);;

val form : Form = System.Windows.Forms.Form, Text: Click Form

> form.Click.Add(fun evArgs -> printfn "Clicked!");;

When you run this code in F# Interactive, a window appears; and each time you click the window with 
the mouse, you see “Clicked!” printed to the console. In .NET terminology, form.Click is an event, and 
form.Click.Add registers an event handler, also known as callback, with the event. You can register 
multiple callbacks with the same event, and many objects publish many events. For example, when you 
add the following, you see a stream of output when you move the mouse over the form:

> form.MouseMove.Add(fun args -> printfn "Mouse, (X, Y) = (%A, %A)" args.X args.Y);;

If necessary, you can remove event handlers by first adding them using the AddHandler method and 
then removing them by using RemoveHandler.

The process of clicking the form triggers (or fires) the event, which means that the callbacks are called 
in the order they were registered. Events can’t be triggered from the outside. In other words, you can’t 
trigger the Click event on a form; you can only handle it. Events also have event arguments. In the first 
example shown previously, the event arguments are called evArgs, and they are ignored. .NET events 
usually pass arguments of type System.EventArgs or some related type, such as System.Windows.Forms.
MouseEventArgs or System.Windows.Forms.PaintEventArgs. These arguments usually carry pieces of 
information. For example, a value of type MouseEventArgs has the properties Button, Clicks, Delta, 
Location, X, and Y.

■ Note:  NET event handlers also have an argument meant to bring information about the object source of the 
event. F# hides this argument in the process of making events first class and allowing their composition, as is 
explained later.

Events occur throughout the design of the .NET class libraries. Table 11-1 shows some of the more 
important events.

Table 11-1. A selection of events from the .NET libraries

Type Some Sample Events
System.AppDomain AssemblyLoad, AssemblyResolve, DomainUnload, ProcessExit, 

UnhandledException (and others)

System.Diagnostics.Process ErrorDataReceived, Exited, OutputDataReceived (and others)

System.IO.FileSystemWatcher Changed, Created, Deleted, Error, Renamed (and others)



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

260

Type Some Sample Events
System.Windows.Forms.Control BackgroundImageChanged, Click, Disposed, DragDrop, KeyPress, KeyUp, 

KeyDown, Layout, LostFocus, MouseClick, MouseDown, MouseEnter, 
MouseHover, MouseLeave, MouseUp, Paint, Resize, TextChanged, Validated, 
Validating (and others)

System.Windows.Forms.Timer Tick

System.Timers.Timer Elapsed

Events as First-Class Values
In F#, an event such as form.Click is a first-class value, which means you can pass it around like any other 
value. The main advantage this brings is that you can use the combinators in the F# library module 
Microsoft.FSharp.Control.Event to map, filter, and otherwise transform the event stream in 
compositional ways. For example, the following code filters the event stream from form.MouseMove so that 
only events with X > 100 result in output to the console:

form.MouseMove
    |> Event.filter (fun args -> args.X > 100)
    |> Event.listen (fun args -> printfn "Mouse, (X, Y) = (%A, %A)" args.X args.Y)

If you work with events a lot, you find yourself factoring out useful portions of code into functions that 
preprocess event streams. Table 11-2 shows some functions from the F# Event module. One interesting 
combinator is Event.partition, which splits an event into two events based on a predicate.

Table 11-2. Some functions from the event module

Function Type
Event.choose : ('T -> 'U option) -> IEvent<'T> -> IEvent<'U>

Event.create : unit -> ('T -> unit) * IEvent<'T>

Event.filter : ('T -> bool) -> IEvent<'T> -> IEvent<'T>

Event.scan : ('U -> 'T -> 'U) -> 'U -> IEvent<'T> -> IEvent<'U>

Event.listen : ('T -> unit) -> IEvent<'T> -> unit

Event.map : ('T -> 'U) -> IEvent<'T> -> IEvent<'U>

Event.partition : ('T -> bool) -> IEvent<'T> -> IEvent<'T> * IEvent<'T>

Creating and Publishing Events
As you write code in F#, particularly object-oriented code, you need to implement, publish, and trigger 
events. The normal idiom for doing this is to call new Event<_>(). Listing 11-1 shows how to define an 
event object that is triggered at random intervals.

Listing 11-1. Creating a RandomTicker that defines, publishes, and triggers an event

open System
open System.Windows.Forms



261

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

type RandomTicker(approxInterval) =
    let timer = new Timer()
    let rnd = new System.Random(99)
    let tickEvent = new Event<int> ()

    let chooseInterval() : int =
        approxInterval + approxInterval / 4 - rnd.Next(approxInterval / 2)

    do timer.Interval <- chooseInterval()

    do timer.Tick.Add(fun args ->
        let interval = chooseInterval()
        tickEvent.Trigger interval;
        timer.Interval <- interval)

    member x.RandomTick = tickEvent.Publish
    member x.Start() = timer.Start()
    member x.Stop() = timer.Stop()
    interface IDisposable with
        member x.Dispose() = timer.Dispose()

Here’s how you can instantiate and use this type:

> let rt = new RandomTicker(1000);;

val rt : RandomTicker

> rt.RandomTick.Add(fun nextInterval -> printfn "Tick, next = %A" nextInterval);;

> rt.Start();;

Tick, next = 1072
Tick, next = 927
Tick, next = 765
...

> rt.Stop();;

Events are idioms understood by all .NET languages. F# event values are immediately compiled in the 
idiomatic .NET form. This is because F# allows you to go one step further and use events as first-class 
values. If you need to ensure that your events can be used by other .NET languages, do both of the 
following:

Create the events using new Event<DelegateType, Args> instead of new Event<Args>.

Publish the event as a property of a type with the [<CLIEvent>] attribute.

Events are used in most of the later chapters of this book, and you can find many examples there.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

262

■ Note: Because events allow you to register callbacks, it’s sometimes important to be careful about the thread 
on which an event is being raised. This is particularly true when you’re programming with multiple threads or the .
NET thread pool. Events are usually fired on the GUI thread of an application. 

Using and Designing Background Workers
One of the easiest ways to get going with concurrency and parallelism is to use the System.
ComponentModel.BackgroundWorker class of the .NET Framework. A BackgroundWorker class runs on its own 
dedicated operating system thread. These objects can be used in many situations, but they are especially 
useful for coarse-grained concurrency and parallelism, such as checking the spelling of a document in the 
background. This section shows some simple uses of BackgroundWorker and how to build similar objects 
that use BackgroundWorker internally.

Listing 11-2 shows a simple use of BackgroundWorker that computes the Fibonacci numbers on the 
worker thread.

Listing 11-2. A simple BackgroundWorker

open System.ComponentModel
open System.Windows.Forms

let worker = new BackgroundWorker()
let numIterations = 1000

worker.DoWork.Add(fun args ->

    let rec computeFibonacci resPrevPrev resPrev i =
        // Compute the next result
        let res = resPrevPrev + resPrev

        // At the end of the computation write the result into mutable state
        if i = numIterations then
            args.Result <- box res
        else
            // Compute the next result
            computeFibonacci resPrev res (i + 1)

    computeFibonacci 1 1 2)

worker.RunWorkerCompleted.Add(fun args ->
    MessageBox.Show(sprintf "Result = %A" args.Result) |> ignore)

// Execute the worker
worker.RunWorkerAsync()

Table 11-3 shows the primary members of a BackgroundWorker object. The execution sequence of the 
code in Listing 11-2 is:



263

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

1. The main application thread creates and configures a BackgroundWorker object.

2. After configuration is complete, the main application thread calls the 
RunWorkerAsync method on the BackgroundWorker object. This causes the DoWork 
event to be raised on the worker thread.

3. The DoWork event handler is executed in the worker thread and computes the 
1,000th Fibonacci number. At the end of the computation, the result is written 
into args.Result, a mutable storage location, in the event arguments for the 
DoWork event. The DoWork event handler then completes.

4. At some point after the DoWork event handler completes, the RunWorkerCompleted 
event is automatically raised on the main application thread. This displays a 
message box with the result of the computation, retrieved from the args field of 
the event arguments.

Table 11-3. Primary members of the BackgroundWorker class

Member and Usage Description
worker.RunWorkerAsync() Starts the process on a separate thread asynchronously. Called 

from the main thread.

worker.CancelAsync() Sets the CancellationPending flag of the background task. 
Called from the main thread.

worker.CancellationPending Set to true by raising CancelAsync. Used by the worker thread.

worker.WorkerReportsProgress Set to true if the worker can support progress updates. Used 
by the main thread.

worker.WorkerSupportsCancellation Set to true if the worker can support cancellation of the 
current task in progress. Used by the main thread.

worker.ReportProgress(count) Indicates the progress of the operation. Used by the worker 
thread.

worker.DoWork Event fires in response to a call to RunWorkerAsync. Invoked on 
the worker thread.

worker.RunWorkerCompleted Event fires when the background operation is canceled, when 
the operation is completed, or when an exception is thrown. 
Invoked on the main thread.

worker.ProgressChanged Event fires whenever the ReportProgress property is set. 
Invoked on the main thread.

■ Note: An object such as a BackgroundWorker is two-faced: it has some methods and events that are for use 
from the main thread and some that are for use on the worker thread. This is common in  concurrent programming. 
In particular, understand which thread an event is raised on. For BackgroundWorker, the RunWorkerAsync and 
CancelAsync methods are for use from the GUI thread, and the ProgressChanged and RunWorkerCompleted 
events are raised on the GUI thread. The DoWork event is raised on the worker thread, and the ReportProgress 
method and the CancellationPending property are for use from the worker thread when handling this event.

The members in Table 11-3 show two additional facets of BackgroundWorker objects: they can 
optionally support protocols for both cancellation and for reporting progress. To report progress 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

264

percentages, a worker must call the ReportProgress method, which raises the ProgressChanged event in the 
GUI thread. For cancellation, a worker computation need only check the CancellationPending property at 
regular intervals, exiting the computation as a result.

Building a Simpler Iterative Worker
Capturing common control patterns, such as cancellation and progress reporting, is an essential part of 
mastering concurrent programming. One problem with .NET classes such as BackgroundWorker, however, 
is that they’re often more imperative than you may want, and they force other common patterns to be 
captured by using mutable data structures shared between threads. This leads to the more difficult topic of 
shared-memory concurrency, discussed later in this chapter. Furthermore, the way BackgroundWorker 
handles cancellation means that you must insert flag-checks and early-exit paths in the executing 
background process. Finally, BackgroundWorker isn’t useful for background threads that perform 
asynchronous operations, because the background thread exits too early, before the callbacks for the 
asynchronous operations have executed.

For this reason, it can often be useful to build abstractions that are similar to BackgroundWorker but 
that capture richer or different control patterns, preferably in a way that doesn’t rely on the use of mutable 
state and that interferes less with the structure of the overall computation. Much of the rest of this chapter 
looks at various techniques to build these control structures.

You start with a case study in which you build a type IterativeBackgroundWorker that represents a 
variation on the BackgroundWorker design pattern. Listing 11-3 shows the code.

Listing 11-3. A variation on the BackgroundWorker design pattern for iterative computations

open System.ComponentModel
open System.Windows.Forms

/// An IterativeBackgroundWorker follows the BackgroundWorker design pattern
/// but instead of running an arbitrary computation it iterates a function
/// a fixed number of times and reports intermediate and final results.
/// The worker is paramaterized by its internal state type.
///
/// Percentage progress is based on the iteration number. Cancellation checks
/// are made at each iteration. Implemented via an internal BackgroundWorker.
type IterativeBackgroundWorker<'T>(oneStep : ('T -> 'T),
                                   initialState : 'T,
                                   numIterations : int) =

    let worker =         new BackgroundWorker(WorkerReportsProgress = true,
                             WorkerSupportsCancellation = true)

    // Create the events that we will later trigger
    let completed = new Event<_>()
    let error = new Event<_>()
    let cancelled = new Event<_>()
    let progress = new Event<_>()

    do worker.DoWork.Add(fun args ->
        // This recursive function represents the computation loop.



265

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

        // It runs at "maximum speed", i.e., is an active rather than
        // a reactive process, and can only be controlled by a
        // cancellation signal.
        let rec iterate state i =
            // At the end of the computation, terminate the recursive loop
            if worker.CancellationPending then
               args.Cancel <- true
            elif i < numIterations then
                // Compute the next result
                let state' = oneStep state

                // Report the percentage computation and the internal state
                let percent = int ((float (i + 1) / float numIterations) * 100.0)
                do worker.ReportProgress(percent, box state);

                // Compute the next result
                iterate state' (i + 1)
            else
                args.Result <- box state

        iterate initialState 0)

    do worker.RunWorkerCompleted.Add(fun args ->
        if args.Cancelled then cancelled.Trigger()
        elif args.Error <> null then error.Trigger args.Error
        else completed.Trigger (args.Result :?> 'T))

    do worker.ProgressChanged.Add(fun args ->
        progress.Trigger (args.ProgressPercentage,(args.UserState :?> 'T)))

    member x.WorkerCompleted = completed.Publish
    member x.WorkerCancelled = cancelled.Publish
    member x.WorkerError = error.Publish
    member x.ProgressChanged = progress.Publish

    // Delegate the remaining members to the underlying worker
    member x.RunWorkerAsync() = worker.RunWorkerAsync()
    member x.CancelAsync() = worker.CancelAsync()

The types inferred for the code in Listing 11-3 are:

type IterativeBackgroundWorker<'T> =
  class
    new : oneStep:('T -> 'T) * initialState:'T * numIterations:int ->
            IterativeBackgroundWorker<'T>
    member CancelAsync : unit -> unit
    member RunWorkerAsync : unit -> unit
    member ProgressChanged : IEvent<int * 'T>
    member WorkerCancelled : IEvent<unit>
    member WorkerCompleted : IEvent<'T>



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

266

    member WorkerError : IEvent<exn>
  end

Let’s look at this signature first, because it represents the design of the type. The worker constructor is 
given a function of type 'State -> 'State to compute successive iterations of the computation, plus an 
initial state and the number of iterations to compute. For example, you can compute the Fibonacci 
numbers using the iteration function:

let fibOneStep (fibPrevPrev : bigint, fibPrev) = (fibPrev, fibPrevPrev + fibPrev);;

The type of this function is:

val fibOneStep :

  fibPrevPrev:bigint * fibPrev:Numerics.BigInteger ->

    Numerics.BigInteger * Numerics.BigInteger

The RunWorkerAsync and CancelAsync members follow the BackgroundWorker design pattern, as do the 
events, except that you expand the RunWorkerCompleted event into three events to correspond to the three 
termination conditions and modify the ProgressChanged to include the state. You can instantiate the type 
as:

> let worker = new IterativeBackgroundWorker<_>(fibOneStep, (1I, 1I), 100);;

val worker : IterativeBackgroundWorker<bigint * Numerics.BigInteger>

> worker.WorkerCompleted.Add(fun result ->
      MessageBox.Show(sprintf "Result = %A" result) |> ignore);;

> worker.ProgressChanged.Add(fun (percentage, state) ->
    printfn "%d%% complete, state = %A" percentage state);;

> worker.RunWorkerAsync();;

1% complete, state = (1I, 1I)
2% complete, state = (1I, 2I)
3% complete, state = (2I, 3I)
4% complete, state = (3I, 5I)
...
98% complete, state = (135301852344706746049I, 218922995834555169026I)
99% complete, state = (218922995834555169026I, 354224848179261915075I)
100% complete, state = (354224848179261915075I, 573147844013817084101I)

One difference here is that cancellation and percentage progress reporting are handled automatically, 
based on the iterations of the computation. This is assuming that each iteration takes roughly the same 
amount of time. Other variations on the BackgroundWorker design pattern are possible. For example, 
reporting percentage completion of fixed tasks such as installation is often performed by timing sample 
executions of the tasks and adjusting the percentage reports appropriately.



267

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

■ Note: You implement IterativeBackgroundWorker via delegation rather than inheritance. This is because 
its external members are different from those of BackgroundWorker. The .NET documentation recommends that 
you use implementation inheritance for this, but we disagree. Implementation inheritance can only add complexity to 
the signature of an abstraction and never makes things simpler, whereas an IterativeBackgroundWorker is in 
many ways simpler than using a BackgroundWorker, despite the fact that it uses an instance of the latter 
internally. Powerful, compositional, simple abstractions are the primary building blocks of functional programming.

Raising Additional Events from Background Workers
Often, you need to raise additional events from objects that follow the BackgroundWorker design pattern. 
For example, let’s say you want to augment IterativeBackgroundWorker to raise an event when the worker 
starts its work and for this event to pass the exact time that the worker thread started as an event 
argument. Listing 11-4 shows the extra code you need to add to the IterativeBackgroundWorker type to 
make this happen. You use this extra code in the next section.

Listing 11-4. Code to raise GUI-thread events from an IterativeBackgroundWorker object

open System
open System.Threading

// Pseudo-code for adding event-raising to this object
type IterativeBackgroundWorker<'T>(...) =

    let worker = ...

    // The constructor captures the synchronization context. This allows us to post
    // messages back to the GUI thread where the BackgroundWorker was created.
    let syncContext = SynchronizationContext.Current
    do if syncContext = null then failwith "no synchronization context found"

    let started = new Event<_>()

    // Raise the event when the worker starts. This is done by posting a message
    // to the captured synchronization context.
    do worker.DoWork.Add(fun args ->
        syncContext.Post(SendOrPostCallback(fun _ -> started.Trigger(DateTime.Now)),
                         state = null)
        ...

    /// The Started event gets raised when the worker starts. It is
    /// raised on the GUI thread (i.e. in the synchronization context of
    /// the thread where the worker object was created).
    // It has type IEvent<DateTime>
    member x.Started = started.Publish

The simple way to raise additional events is often wrong. For example, it’s tempting to create an event, 
arrange for it to be triggered, and publish it, as you would do for a GUI control. If you do that, however, you 
end up triggering the event on the background worker thread, and its event handlers run on that thread. 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

268

This is dangerous, because most GUI objects, and many other objects, can be accessed only from the 
thread they were created on; this is a restriction enforced by most GUI systems.

■ Note: One nice feature of the BackgroundWorker class is that it automatically arranges to raise the 
RunWorkerCompleted and ProgressChanged events on the GUI thread. Listing 11-4 shows how to achieve this. 
Technically speaking, the extended IterativeBackgroundWorker object captures the synchronization context of 
the thread where it was created and posts an operation back to that synchronization context. A synchronization 
context is an object that lets you post operations back to another thread. For threads such as a GUI thread, this 
means that posting an operation posts a message through the GUI event loop.

Connecting a Background Worker to a GUI
To round off this section on the BackgroundWorker design pattern, Listing 11-5 shows the full code required 
to build a small application with a background worker task that supports cancellation and reports 
progress. 

Listing 11-5. Connecting an IterativeBackgroundWorker to a GUI

open System.Drawing
open System.Windows.Forms

let form = new Form(Visible = true, TopMost = true)

let panel = new FlowLayoutPanel(Visible = true,
                                Height = 20,
                                Dock = DockStyle.Bottom,
                                BorderStyle = BorderStyle.FixedSingle)

let progress = new ProgressBar(Visible = false,
                               Anchor = (AnchorStyles.Bottom ||| AnchorStyles.Top),
                               Value = 0)

let text = new Label(Text = "Paused",
                     Anchor = AnchorStyles.Left,
                     Height = 20,
                     TextAlign = ContentAlignment.MiddleLeft)

panel.Controls.Add(progress)
panel.Controls.Add(text)
form.Controls.Add(panel)

let fibOneStep (fibPrevPrev : bigint, fibPrev) = (fibPrev, fibPrevPrev + fibPrev)

// Run the iterative algorithm 500 times before reporting intermediate results
let rec repeatMultipleTimes n f s = 
    if n <= 0 then s else repeatMultipleTimes (n - 1) f (f s)



269

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

// Burn some additional cycles to make sure it runs slowly enough
let rec burnSomeCycles n f s = 
    if n <= 0 then f s else ignore (f s); burnSomeCycles (n - 1) f s

let step = (repeatMultipleTimes 500 (burnSomeCycles 1000 fibOneStep))

// Create the iterative worker.
let worker = new IterativeBackgroundWorker<_>(step, (1I, 1I), 80)

worker.ProgressChanged.Add(fun (progressPercentage, state)->
    progress.Value <- progressPercentage)

worker.WorkerCompleted.Add(fun (_, result) ->
    progress.Visible <- false;
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Result = %A" result) |> ignore)

worker.WorkerCancelled.Add(fun () ->
    progress.Visible <- false;
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Cancelled OK!") |> ignore)

worker.WorkerError.Add(fun exn ->
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Error: %A" exn) |> ignore)

form.Menu <- new MainMenu()
let workerMenu = form.Menu.MenuItems.Add("&Worker")

workerMenu.MenuItems.Add(new MenuItem("Run", onClick = (fun _ args ->
    text.Text <- "Running";
    progress.Visible <- true;
    worker.RunWorkerAsync())))

workerMenu.MenuItems.Add(new MenuItem("Cancel", onClick = (fun _ args ->
    text.Text <- "Cancelling";
    worker.CancelAsync())))

form.Closed.Add(fun _ -> worker.CancelAsync())

When you run the code in F# Interactive, a window appears, as shown in Figure 11-1.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

270

■ Note: Forcibly aborting computations uncooperatively isn’t recommended in .NET programming. You can 
attempt to do this using System.Threading.Thread.Abort(), but this may have many unintended 
consequences, discussed later in this chapter.

Introducing Asynchronous and Parallel Computations
The two background worker samples shown so far run at full throttle. In other words, the computations 
run on the background threads as active loops, and their reactive behavior is limited to flags that check for 
cancellation. In reality, background threads often have to do different kinds of work: by responding to 
completed asynchronous I/O requests, by processing messages, by sleeping, or by waiting to acquire 
shared resources. Fortunately, F# comes with a powerful set of techniques for structuring asynchronous 
programs in a natural way. These are called asynchronous workflows. The next three sections cover how to 
use asynchronous workflows to structure asynchronous and message-processing tasks in ways that 
preserve the essential logical structure of your code.

Fetching Multiple Web Pages in Parallel, Asynchronously
One of the most intuitive asynchronous tasks is fetching a Web page; we all use Web browsers that can 
fetch multiple pages simultaneously. The samples in Chapter 2 show how to fetch pages synchronously. 
This is useful for many purposes, but browsers and high-performance Web crawlers have tens or 
thousands of connections in flight at once.

The type Microsoft.FSharp.Control.Async<'T> lies at the heart of F# asynchronous workflows. A 
value of type Async<'T> represents a program fragment that will generate a value of type 'T at some 
point in the future. Listing 11-6 shows how to use asynchronous workflows to fetch several Web pages 
simultaneously. 

Figure 11-1. A GUI window with a BackgroundWorker reporting progress percentage



271

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Listing 11-6. Fetching three Web pages simultaneously

open System.Net
open System.IO

let museums = ["MOMA", "http://moma.org/";
               "British Museum", "http://www.thebritishmuseum.ac.uk/";
               "Prado", "http://www.museodelprado.es/"]

let fetchAsync(nm, url : string) = async {
    printfn "Creating request for %s..." nm
    let req = WebRequest.Create(url)

    let! resp = req.AsyncGetResponse()

    printfn "Getting response stream for %s..." nm
    let stream = resp.GetResponseStream()

    printfn "Reading response for %s..." nm
    let reader = new StreamReader(stream)
    let! html = reader.AsyncReadToEnd()

    printfn "Read %d characters for %s..." html.Length nm}

Async.Parallel [for nm, url in museums -> fetchAsync(nm, url)]
    |> Async.Ignore
    |> Async.RunSynchronously

The types of these functions and values are:

val museums : (string * string) list
val fetchAsync : nm:string * url:string -> Async<unit>

When run on one of our machines via F# Interactive, the output of the code from Listing 11-6 is:

Creating request for MOMA...
Creating request for British Museum...
Creating request for Prado...
Getting response for MOMA...
Reading response for MOMA...
Getting response for Prado...
Reading response for Prado...
Read 188 characters for Prado...
Read 41635 characters for MOMA...
Getting response for British Museum...
Reading response for British Museum...
Read 24341 characters for British Museum...

The heart of the code in Listing 11-6 is the construct introduced by async { ... }. This is an 
application of the workflow syntax that is covered in Chapter 17. 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

272

Let’s take a closer look at Listing 11-6. The key operations are the two let! operations within the 
workflow expression:

    async { ...
            let! resp  = req.AsyncGetResponse()
            ...
            let! html = reader.AsyncReadToEnd()
            ... }

Within asynchronous workflow expressions, the language construct let! var = expr in body means 
“perform the asynchronous operation expr and bind the result to var when the operation completes. Then, 
continue by executing the rest of the computation body.”

With this in mind, you can now see what fetchAsync does:

It synchronously requests a Web page.

It asynchronously awaits a response to the request.

It gets the response Stream and StreamReader synchronously after the asynchronous 
request completes.

It reads to the end of the stream asynchronously.

After the read completes, it prints the total number of characters read 
synchronously.

Finally, you use the method Async.RunSynchronously to initiate the execution of a number of 
asynchronous computations. This works by queueing the computations in the .NET thread pool. The 
following section explains the .NET thread pool in more detail.

Understanding Thread Hopping
Asynchronous computations are different from normal, synchronous computations: an asynchronous 
computation tends to hop between different underlying .NET threads. To see this, let’s augment the 
asynchronous computation with diagnostics that show the ID of the underlying .NET thread at each point 
of active execution. You can do this by replacing uses of printfn in the function fetchAsync with uses of the 
function:

let tprintfn fmt =
    printf "[.NET Thread %d]" System.Threading.Thread.CurrentThread.ManagedThreadId;
    printfn fmt

After doing this, the output changes to:

[.NET Thread 12]Creating request for MOMA...
[.NET Thread 13]Creating request for British Museum...
[.NET Thread 12]Creating request for Prado...
[.NET Thread 8]Getting response for MOMA...
[.NET Thread 8]Reading response for MOMA...
[.NET Thread 9]Getting response for Prado...
[.NET Thread 9]Reading response for Prado...
[.NET Thread 9]Read 188 characters for Prado...
[.NET Thread 8]Read 41635 characters for MOMA...
[.NET Thread 8]Getting response for British Museum...



273

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

[.NET Thread 8]Reading response for British Museum...
[.NET Thread 8]Read 24341 characters for British Museum...

Note how each individual Async program hops between threads; the MOMA request started on .NET 
thread 12 and finished life on .NET thread 8. Each asynchronous computation in Listing 11-6 executes in 
the same way:

It starts life as a work item in the .NET thread pool. (The .NET thread pool is 
explained in “What Is the .NET Thread Pool?” These are processed by a number of 
.NET threads.

When the asynchronous computations reach the AsyncGetResponse and 
AsyncReadToEnd calls, the requests are made, and the continuations are registered as 
I/O completion actions in the .NET thread pool. No thread is used while the request 
is in progress.

When the requests complete, they trigger a callback in the .NET thread pool. These 
may be serviced by threads other than those that originated the calls.

WHAT IS THE .NET THREAD POOL?

.NET objects such as BackgroundWorker use a single .NET background thread, which corresponds to a 
single Windows or other OS thread. OS threads have supporting resources, such as an execution stack, that 
consume memory and are relatively expensive to create and run.

Many concurrent processing tasks, however, require only the ability to schedule short-lived tasks that then 
suspend, waiting for further input. To simplify the process of creating and managing these tasks, the .NET 
Framework provides the System.Threading.ThreadPool class. The thread pool consists of two main 
sets of suspended tasks: a queue containing user work items and a pool of I/O completion callbacks, each 
waiting for a signal from the operating system. The number of threads in the thread pool is automatically 
tuned, and items can be either queued asynchronously or registered against a .NET WaitHandle 
synchronization object (for example, a lock, a semaphore, or an I/O request). This is how to queue a work 
item in the .NET thread pool:

    open System.Threading

    ThreadPool.QueueUserWorkItem(fun _ -> printf "Hello!") |> ignore

 

Under the Hood: What Are Asynchronous Computations?
Async<'T> values, the result of async workflows, are essentially a way of writing continuation-passing or 
callback programs explicitly. Continuations themselves were described in Chapter 9 along with techniques to 
pass them explicitly. Async<'T> computations call a success continuation when the asynchronous 
computation completes and an exception continuation if it fails. They provide a form of managed 
asynchronous computation, in which managed means that several aspects of asynchronous programming are 
handled automatically:

Exception propagation is added for free: If an exception is raised during an 
asynchronous step, the exception terminates the entire asynchronous computation 
and cleans up any resources declared using use, and the exception value is then 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

274

handed to a continuation. Exceptions may also be caught and managed within the 
asynchronous workflow by using try/with/finally.

Cancellation checking is added for free: The execution of an Async<'T> workflow 
automatically checks a cancellation flag at each asynchronous operation. 
Cancellation can be controlled through the use of cancellation tokens.

Resource lifetime management is fairly simple: You can protect resources across parts 
of an asynchronous computation by using use inside the workflow syntax.

If you put aside the question of cancellation, values of type Async<'T> are effectively identical to the 
type:

type Async<'T> = Async of ('T -> unit) * (exn -> unit) -> unit

Here, the functions are the success continuation and exception continuations, respectively. Each 
value of type Async<'T> should eventually call one of these two continuations. The async object is of type 
AsyncBuilder and supports the following methods, among others:

type AsyncBuilder with
    member Return : value: 'T -> Async<'T>
    member Delay : generator:(unit -> Async<'T>) -> Async<'T>
    member Using: resource:'T * binding:('T -> Async<'U>) -> Async<'U> when 'T :> System.
IDisposable
    member Bind: computation:Async<'T> * binder:('T -> Async<'U>) -> Async<'U>

The full definition of Async<'T> values and the implementations of these methods for the async object 
are given in the F# library source code. Builder objects, such as async, that contain methods like those 
shown previously mean that you can use the syntax async { ... } as a way of building Async<'T> values 
(see Chapter 17 for more on builder objects).

Table 11-4 shows the common constructs used in asynchronous workflow expressions. For example, 
the asynchronous workflow

async {let req = WebRequest.Create("http://moma.org/")
       let! resp = req.AsyncGetResponse()
       let stream = resp.GetResponseStream()
       let reader = new StreamReader(stream)
       let! html = reader.AsyncReadToEnd()
       html}

is shorthand for the code

async.Delay(fun () ->
    let req = WebRequest.Create("http://moma.org/")
    async.Bind(req.AsyncGetResponse(), (fun resp ->
        let stream = resp.GetResponseStream() 
        let reader = new StreamReader(stream)  
        async.Bind(reader.AsyncReadToEnd(), (fun html ->
            async.Return html)))))

As you will see in Chapter 17, the key to understanding the F# workflow syntax is always to understand 
the meaning of let!. In the case of async workflows, let! executes one asynchronous computation and 
schedules the next computation for execution after the first asynchronous computation completes. This is 
syntactic sugar for the Bind operation on the async object.



275

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Table 11-4. Common constructs used in async { ... } workflow expressions

Construct Description
let! pat = expr Executes the asynchronous 

computation expr, and binds its result to pat when it completes. If expr has type 
Async<'T>, then pat has type 'T. Equivalent to async.Bind(expr,(fun pat -> ...)).

let pat = expr Executes an expression synchronously, and binds its result to pat immediately. If 
expr has type 'T, pat has type 'T.

do! expr Equivalent to let! () = expr.

do expr Equivalent to let () = expr.

return expr Evaluates the expression and returns its value as the result of the containing 
asynchronous workflow. Equivalent to async.Return(expr).

return! expr Executes the expression as an asynchronous computation, and returns its result as the 
overall result of the containing asynchronous workflow. Equivalent to expr.

use pat = expr Executes the expression immediately and binds its result immediately. Calls the 
Dispose method on each variable bound in the pattern when the subsequent 
asynchronous workflow terminates, regardless of whether it terminates normally or by 
an exception. Equivalent to async.Using(expr,(fun pat -> ...)).

Parallel File Processing Using Asynchronous Workflows
This section shows a slightly longer example of asynchronous I/O processing. The running sample is an 
application that must read a large number of image files and perform some processing on them. This kind 
of application may be compute bound (if the processing takes a long time and the file system is fast) or I/O 
bound (if the processing is quick and the file system is slow). Using asynchronous techniques tends to give 
good overall performance gains when an application is I/O bound and can also give performance 
improvements for compute-bound applications if asynchronous operations are executed in parallel on 
multicore machines.

Listing 11-7 shows a synchronous implementation of the image-transformation program.

Listing 11-7. A synchronous image processor

open System.IO
let numImages = 200
let size = 512
let numPixels = size * size

let makeImageFiles () =
    printfn "making %d %dx%d images... " numImages size size
    let pixels = Array.init numPixels (fun i -> byte i)
    for i = 1 to numImages  do
        System.IO.File.WriteAllBytes(sprintf "Image%d.tmp" i, pixels)
    printfn "done."

let processImageRepeats = 20

let transformImage (pixels, imageNum) =
    printfn "transformImage %d" imageNum;
    // Perform a CPU-intensive operation on the image.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

276

    for i in 1 .. processImageRepeats do 
        pixels |> Array.map (fun b -> b + 1uy) |> ignore
    pixels |> Array.map (fun b -> b + 1uy)

let processImageSync i =
    use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
    let pixels = Array.zeroCreate numPixels
    let nPixels = inStream.Read(pixels,0,numPixels);
    let pixels' = transformImage(pixels,i)
    use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
    outStream.Write(pixels',0,numPixels)

let processImagesSync () =
    printfn "processImagesSync...";
    for i in 1 .. numImages do
        processImageSync(i)

You assume the image files already are created using the code:

> System.Environment.CurrentDirectory <- __SOURCE_DIRECTORY__;;

> makeImageFiles();;

You leave the transformation on the image largely unspecified, such as the function transformImage. 
By changing the value of processImageRepeats, you can adjust the computation from compute bound to 
I/O bound.

The problem with this implementation is that each image is read and processed sequentially, when in 
practice, multiple images can be read and transformed simultaneously, giving much greater throughput. 
Listing 11-8 shows the implementation of the image processor using an asynchronous workflow.

Listing 11-8. The asynchronous image processor

let processImageAsync i =
    async {use inStream = File.OpenRead(sprintf "Image%d.tmp" i)
           let! pixels = inStream.AsyncRead(numPixels)
           let  pixels' = transformImage(pixels, i)
           use outStream = File.OpenWrite(sprintf "Image%d.done" i)
           do! outStream.AsyncWrite(pixels')}

let processImagesAsync() =
    printfn "processImagesAsync...";
    let tasks = [for i in 1 .. numImages -> processImageAsync(i)]
    Async.RunSynchronously (Async.Parallel tasks) |> ignore
    printfn "processImagesAsync finished!"

On one of our machines, the asynchronous version of the code ran up to three times as fast as the 
synchronous version (in total elapsed time) when processImageRepeats is 20 and numImages is 200. A factor 
of 2 was achieved consistently for any number of processImageRepeats, because this machine had two 
CPUs.

Let’s take a closer look at this code. The call Async.RunSynchronously (Async.Parallel ...) executes a 
set of asynchronous operations in the thread pool, collects their results (or their exceptions), and returns 



277

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

the overall array of results to the original code. The core asynchronous workflow is introduced by the async 
{ ... } construct. Let’s look at the inner workflow line by line:

    async { use inStream = File.OpenRead(sprintf "Image%d.tmp" i)
            ... }

This line opens the input stream synchronously using File.OpenRead. Although this is a synchronous 
operation, the use of use indicates that the lifetime of the stream is managed over the remainder of the 
workflow. The stream is closed when the variable is no longer in scope—that is, at the end of the workflow, 
even if asynchronous activations occur in between. If any step in the workflow raises an uncaught 
exception, the stream is also closed while handling the exception.

The next line reads the input stream asynchronously using inStream.AsyncRead:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.AsyncRead(numPixels)
            ... }

Stream.AsyncRead is an extension method added to the .NET System.IO.Stream class defined in the F# 
library, and it generates a value of type Async<byte[]>. The use of let! executes this operation 
asynchronously and registers a callback. When the callback is invoked, the value pixels is bound to the 
result of the operation, and the remainder of the asynchronous workflow is executed. The next line 
transforms the image synchronously using transformImage:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.AsyncRead(numPixels)
            let  pixels' = transformImage(pixels, i)
            ... }

Like the first line, the next line opens the output stream. Using use guarantees that the stream is 
closed by the end of the workflow regardless of whether exceptions are thrown in the remainder of the 
workflow:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.AsyncRead(numPixels)
            let  pixels' = transformImage(pixels, i)
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
            ... }

The final line of the workflow performs an asynchronous write of the image. Once again, AsyncWrite is 
an extension method added to the .NET System.IO.Stream class defined in the F# library:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.AsyncRead(numPixels)
            let  pixels' = transformImage(pixels,i)
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
            do! outStream.AsyncWrite(pixels')  }

If you now return to the first part of the function, you can see that the overall operation of the function 
is to create numImages individual asynchronous operations, using a sequence expression that generates a 
list:

    let tasks = [ for i in 1 .. numImages -> processImageAsync(i) ]

You can compose these tasks in parallel using Async.Parallel and then run the resulting process 
using Async.RunSynchronously. This waits for the overall operation to complete and returns the result:



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

278

    Async.RunSynchronously  (Async.Parallel tasks)

Table 11-5 shows some of the primitives and combinators commonly used to build asynchronous 
workflows. Take the time to compare Listings 11-8 and 11-7. Notice:

The overall structure and flow of the core of Listing 11-8 is similar to Listing 11-7: 
that is, the synchronous algorithm, even though it includes steps executed 
asynchronously.

The performance characteristics of Listing 11-8 are the same as those of Listing 11-7. 
Any overhead involved in executing the asynchronous workflow is easily dominated 
by the overall cost of I/O and image processing. It’s also much easier to experiment 
with modifications, such as making the write operation synchronous.

Table 11-5. Some common primitives used to build Async<'T> values

Member/Type Description
Async.FromContinuations(callback) Builds a single primitive asynchronous step of an asynchronous 

computation. The function that implements the step is passed 
continuations to call after the step is complete or if the step fails.

Async.FromBeginEnd(beginAction, 
endAction)

Builds a single asynchronous computation from a .NET pair of 
BeginOperation/EndOperation methods. 

Async.AwaitTask(task) Builds a single asynchronous computation from a .NET 4.0 task. 
.NET tasks are returned by many .NET 4.0 APIs. These represent 
already-started asynchronous computations.

Async.Parallel(computations) Builds a single asynchronous computation that runs the given 
asynchronous computations in parallel and waits for results from 
all to be returned. Each may either terminate with a value or 
return an exception. If any raises an exception, then the others 
are cancelled, and the overall asynchronous computation also 
raises the same exception.

Running Asynchronous Computations
Values of type Async<'T> are usually run using the functions listed in Table 11-6. You have seen samples of 
Async.RunSynchronoulsy earlier in this chapter. 

The most important function in this list is Async.StartImmediate. This starts an asynchronous 
computation using the current thread to run the prefix of the computation. For example, if you start an 
asynchronous computation from a GUI thread, this will run the prefix of the computation on the GUI 
thread. This should be your primary way of starting asynchronous computations when doing GUI 
programming or when implementing server-side asynchronous processes using systems such as ASP.NET 
that have a dedicated “page handling” thread.

Table 11-6. Common methods in the Async type used to run Async<'T> values

Member/Type Description
Async.RunSynchronously(async) Runs an operation in the thread pool and waits for its result.

Async.Start(async) Queues the asynchronous computation as an operation in the thread 
pool.



279

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Async.StartImmediate(async) Starts the asynchronous computation on the current thread. It will 
run on the current thread until the first point where a continuation in 
scheduled for the thread—for example, at a primitive asynchronous 
I/O operation.

Async.StartChild(async) Queues the asynchronous computation, initially as a work item in the 
thread pool, but inherits the cancellation handle from the current 
asynchronous computation.

Common I/O Operations in Asynchronous Workflows
Asynchronous programming is becoming more widespread because of the use of multicore machines and 
networks in applications, and many .NET APIs now come with both synchronous and asynchronous 
versions of their functionality. For example, all Web-service APIs generated by .NET tools have 
asynchronous versions of their requests. A quick scan of the .NET API documentation on the Microsoft 
Web site reveals the asynchronous operations listed in Table 11-7. These all have equivalent Async<'T> 
operations defined in the F# libraries as extensions to the corresponding .NET types.

Table 11-7. Some asynchronous operations in the .NET libraries and corresponding expected F# naming 
Scheme

.NET Asynchronous Operation F# Naming Scheme Description
Stream.Begin/EndRead AsyncRead Reads a stream of bytes asynchronously. See 

also FileStream, NetworkStream, DeflateStream, 
IsolatedStorageFileStream, and SslStream.

Stream.Begin/EndWrite AsyncWrite Writes a stream 
of bytes asynchronously. See also FileStream.

Socket.BeginAccept/ 
EndAccept

AsyncAccept Accepts an incoming network socket request 
asynchronously.

Socket.BeginReceive/ 
EndReceive

AsyncReceive Receives data on a network socket 
asynchronously.

Socket.BeginSend/EndSend AsyncSend Sends data on a network socket 
asynchronously.

WebRequest.Begin/ 
EndGetResponse

AsyncGetResponse Makes an asynchronous Web request. See also 
FtpWebRequest, SoapWebRequest, and 
HttpWebRequest.

SqlCommand.Begin/ 
EndExecuteReader

AsyncExecuteReader Executes an SqlCommand asynchronously.

SqlCommand.Begin/ 
EndExecuteXmlReader

AsyncExecuteXmlReader Executes a read of XML asynchronously.

SqlCommand.Begin/ 
EndExecuteNonQuery

AsynExecuteNonQuery Executes a nonreading SqlCommand 
asynchronously.

Sometimes, you may need to write a few primitives to map .NET asynchronous operations into the F# 
asynchronous framework. You will see some examples later in this section.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

280

Using Tasks with Asynchronous Programming
In C# 5.0 and .NET 4.0, the .NET Framework was updated with asynchronous programming using tasks.  
Tasks represent already-started asynchronous computations, and many tasks are returned by many .NET 
4.0 APIs. In F#, the best way to deal with tasks is normally to immediately consume tasks in an 
asynchronous computation by using Async.AwaitTask, and you publish F# asynchronous computations as 
tasks by using Async.StartAsTask.

Table 11-8. Some methods to consume and produce tasks

Member/Usage Description
Async.AwaitTask(task) Builds a single asynchronous computation that awaits the 

completion of an already-running .NET 4.0 task 

Async.StartAsTask(computation) Start an asynchronous computation as a .NET 4.0 task

It can also sometimes be useful to program with tasks directly using the library primitives available in 
the .NET libraries. In particular, tasks support a rich (and somewhat bewildering) number of primitives for 
controlling timing and scheduling of computations.  Examples of doing this can be found in C# 
programming guides on the web, and they can readily be translated to F#. 

Understanding Exceptions and Cancellation
Two recurring topics in asynchronous programming are exceptions and cancellation. Let’s first explore 
some of the behavior of asynchronous programs with regard to exceptions:

> let failingTask = async { do failwith "fail" };;

val failingTask: Async<unit>

> Async.RunSynchronously failingTask;;

System.Exception
Stopped due to error

> let failingTasks = [async {do failwith "fail A"};
                      async {do failwith "fail B"}];;

val failingTasks : Async<unit> list

> Async.RunSynchronously (Async.Parallel failingTasks);;

System.Exception: fail A
stopped due to error

> Async.RunSynchronously (Async.Parallel failingTasks);;

System.Exception: fail B
stopped due to error



281

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

From these examples, you can see:

Tasks fail only when they’re actually executed. The construction of a task using the 
async { ... } syntax never fails.

Tasks that are run using Async.RunSynchronously report any failure back to the 
controlling thread as an exception.

It’s nondeterministic which task will fail first.

Tasks composed using Async.Parallel report the first failure from among the 
collected set of tasks. An attempt is made to cancel other tasks by setting the 
cancellation flag for the group of tasks, and any further failures are ignored.

You can wrap a task using the Async.Catch combinator. This has the type:

static member Catch : computation:Async<'T> -> Async<Choice<'T,exn>>

For example:

> Async.RunSynchronously (Async.Catch failingTask);;

val it : Choice<unit,exn> =
  Choice2Of2
    System.Exception: fail

You can also handle errors by using try/finally in an async { ... } workflow.

Under the Hood: Implementing Async.Parallel
Async.Parallel can  appear magical. Computation tasks are created, executed, and resynchronized almost 
without effort. Listing 11-9 shows that a basic implementation of this operator is simple and again helps 
you see how Async<'T> values work under the hood.

Listing 11-9. A basic implementation of a fork-join parallel operator

let forkJoinParallel(taskSeq) =
    Async.FromContinuations (fun (cont, econt, ccont) ->
        let tasks = Seq.toArray taskSeq
        let count = ref tasks.Length
        let results = Array.zeroCreate tasks.Length
        tasks |> Array.iteri (fun i p ->
            Async.Start
               (async {let! res = p
                       results.[i] <- res;
                       let n = System.Threading.Interlocked.Decrement(count)
                       if n = 0 then cont results})))

This basic implementation first converts the input task sequence to an array and then creates mutable 
state count and results to record the progress of the parallel computations. It then iterates through the 
tasks and queues each for execution in the .NET thread pool. Upon completion, each writes its result and 
decrements the counter using an atomic Interlocked.Decrement operator, discussed further in the section 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

282

“Using Shared-Memory Concurrency” at the end of this chapter. The last process to finish calls the 
continuation with the collected results.

In practice, Async.Parallel is implemented more efficiently and takes into account exceptions and 
cancellation; again, see the F# library code for full details.

Using async for CPU Parallelism with Fixed Tasks
One of the great advantages of F# async programming is that it can be used for both CPU and I/O parallel-
programming tasks. For example, you can use it for many CPU parallelism tasks that don’t perform any I/O 
but rather carry out straight CPU-bound computations. 

For optimized, partitioned CPU parallelism, this is often done by using Async.Parallel with a number 
of tasks that exactly matches the number of physical processors on a machine. For example, the following 
code shows parallel initialization of an array in which each cell is filled by running the input function. The 
implementation of this function makes careful use of shared-memory primitives (a topic discussed later in 
this book) and is highly efficient:

open System.Threading
open System

// Initialize an array by a parallel init using all available processors
// Note, this primitive doesn't support cancellation.
let parallelArrayInit n f = 
   let currentLine = ref -1
   let res = Array.zeroCreate n
   let rec loop () = 
       let y = Interlocked.Increment(currentLine)
       if y < n then res.[y] <- f y; loop()

   // Start just the right number of tasks, one for each physical CPU
   Async.Parallel [for i in 1 .. Environment.ProcessorCount -> async {do loop()}]
      |> Async.Ignore 
      |> Async.RunSynchronously

   res

> let rec fib x = if x < 2 then 1 else fib (x - 1) + fib (x - 2)
> parallelArrayInit 25 (fun x -> fib x);;

val it : int [] =
  [|1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987; 1597; 2584;
    4181; 6765; 10946; 17711; 28657; 46368; 75025; 121393; 196418; 317811;
    514229; 832040|]

Agents
A distinction is often made between shared-memory concurrency and message passing concurrency. The 
former is often more efficient on local machines and is covered in the section “Using Shared-Memory 
Concurrency” later in this chapter. The latter scales to systems in which there is no shared memory—for 
example, distributed systems—and also can be used to avoid performance problems associated with 
shared memory. Asynchronous message passing and processing is a common foundation for concurrent 
programming, and this section looks at some simple examples of message-passing programs.



283

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Introducing Agents
In a sense, you’ve already seen a good deal of message passing in this chapter. For example:

In the BackgroundWorker design pattern, the CancelAsync method is a simple kind of 
message.

Whenever you raise events on a GUI thread from a background thread, you are, 
under the hood, posting a message to the GUI’s event queue. On Windows, this 
event queue is managed by the OS, and the processing of the events on the GUI 
thread is called the Windows event loop.

This section covers a simple kind of message processing called mailbox processing that’s popular in 
languages such as Erlang. A mailbox is a message queue that you can scan for a message that is 
particularly relevant to the message-processing agent you’re defining. Listing 11-10 shows a concurrent 
agent that implements a simple counter by processing a mailbox as messages arrive. The type 
MailboxProcessor is defined in the F# library—in this book, we use the name Agent for this type, through 
the use of a type alias.

Listing 11-10. Implementing a counter using an agent

type Agent<'T> = MailboxProcessor<'T>

let counter =
    new Agent<_>(fun inbox ->
        let rec loop n =
            async {printfn "n = %d, waiting..." n
                   let! msg = inbox.Receive()
                   return! loop (n + msg)}
        loop 0)

The type of counter is Agent<int>, in which the type argument indicates that this object expects to be 
sent messages of type int:

type Agent<'T> = MailboxProcessor<'T>
val counter : Agent<int>

The “Message Processing and State Machines” sidebar describes the general pattern of Listing 11-10 
and the other MailboxProcessor examples in this chapter, all of which can be thought of as state machines. 
With this in mind, let’s take a closer look at Listing 11-10. First, let’s use counter on some simple inputs:

> counter.Start();;
n = 0, waiting...

> counter.Post(1);;
n = 1, waiting...

> counter.Post(2);;
n = 3, waiting...

> counter.Post(1);;
n = 4, waiting...



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

284

Looking at Listing 11-10, note that calling the Start method causes the processing agent to enter loop 
with n = 0. The agent then performs an asynchronous Receive request on the inbox for the 
MailboxProcessor; that is, the agent waits asynchronously until a message has been received. When the 
message msg is received, the program calls loop (n+msg). As additional messages are received, the internal 
counter (actually an argument) is incremented further.

You post messages to the agent using counter.Post. The type of inbox.Receive is:

member Receive: ?timeout:int -> Async<'Message>

Using an asynchronous receive ensures that no real threads are blocked for the duration of the wait. 
This means the previous techniques scale to many thousands of concurrent agents.

MESSAGE PROCESSING AND STATE MACHINES

Listing 11-10 shares a common structure with many of the other message-processing components you see 
in this chapter, all of which are state machines. This general structure is:

let agent =

    MailboxProcessor.Start(fun inbox ->

        // The states of the state machine

        let rec state1(args) = async { ... }

        and state2(args) = async { ... }

        ...

        and stateN(args) = async { ... }

        // Enter the initial state

        state1(initialArgs))

That is, message-processing components typically use sets of recursive functions, each defining an 
asynchronous computation. Each of these functions can be thought of as a state, and one of these states is 
identified as the initial state. You can pass arguments between these states just as you pass them between 
any other set of recursive functions.

Creating Objects That React to Messages
Often, it’s wise to hide the internals of an asynchronous computation behind an object, because the use of 
message passing can be seen as an implementation detail. Listing 11-10 doesn’t show you how to retrieve 
information from the counter, except by printing it to the standard output. Furthermore, it doesn’t show 
how to ask the processing agent to exit. Listing 11-11 shows how to implement an object wrapping an 
agent that supports Increment, Stop, and Fetch messages.



285

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Listing 11-11. Hiding a mailbox and supporting a fetch method

/// The internal type of messages for the agent
type internal msg = Increment of int | Fetch of AsyncReplyChannel<int> | Stop

type CountingAgent() =
    let counter = MailboxProcessor.Start(fun inbox ->
         // The states of the message-processing state machine...
         let rec loop n =
             async {let! msg = inbox.Receive()
                    match msg with
                    | Increment m ->
                        // increment and continue...
                        return! loop(n + m)
                    | Stop ->
                        // exit
                        return ()
                    | Fetch replyChannel  ->
                        // post response to reply channel and continue
                        do replyChannel.Reply n
                        return! loop n}

         // The initial state of the message-processing state machine...
         loop(0))

    member a.Increment(n) = counter.Post(Increment n)
    member a.Stop() = counter.Post Stop
    member a.Fetch() = counter.PostAndReply(fun replyChannel -> Fetch replyChannel)

The inferred public types indicate how the presence of a concurrent agent is successfully hidden by 
the use of an object:

type CountingAgent =
  class
    new : unit -> CountingAgent
    member Fetch : unit -> int
    member Increment : n:int -> unit
    member Stop : unit -> unit
  end

Here, you can see an instance of this object in action:

> let counter = new CountingAgent();;

val counter : CountingAgent

> counter.Increment(1);;

> counter.Fetch();;
val it : int = 1

> counter.Increment(2);;

> counter.Fetch();;



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

286

val it : int = 3

> counter.Stop();;

Listing 11-11 shows several important aspects of message passing and processing using the mailbox-
processing model:

Internal message protocols are often represented using discriminated unions. Here, 
the type msg has cases Increment, Fetch, and Stop, corresponding to the three 
methods accepted by the object that wraps the overall agent implementation.

Pattern matching over discriminated unions gives a succinct way to process 
messages. A common pattern is a call to inbox.Receive() or inbox.TryReceive() 
followed by a match on the message contents.

The PostAndReply on the MailboxProcessor type gives a way to post a message and 
wait for a reply. The temporary reply channel created should form part of the 
message. A reply channel is an object of type Microsoft.FSharp.Control.
AsyncReplyChannel<'reply>, which in turn supports a Post method. The 
MailboxProcessor can use this to post a reply to the waiting caller. In Listing 11-11, 
the channel is sent to the underlying message-processing agent counter as part of 
the Fetch message.

Table 11-9 summarizes the most important members available on the MailboxProcessor type.

Table 11-9. Some members of the MailboxProcessor<'Message> type

Member/Usage Description
agent.Post(message) Posts a message to a mailbox queue.

agent.Receive(?timeout) Returns the next message in the mailbox queue. If no messages are 
present, performs an asynchronous wait until the message arrives. 
If a timeout occurs, then raises a TimeoutException.

agent.Scan(scanner, ?timeout) Scans the mailbox for a message in which the function returns a 
Some(_) value. Returns the chosen result. If no messages are 
present, performs an asynchronous wait until more messages 
arrive. If a timeout occurs, then raises a TimeoutException.

agent.TryReceive(?timeout) Like Receive, but if a timeout occurs, then returns None.

agent.TryScan(scanner, ?timeout) Like Scan, but if a timeout occurs, then returns None.

Scanning Mailboxes for Relevant Messages
It’s common for a message-processing agent to end up in a state in which it’s not interested in all messages 
that may appear in a mailbox but only in a subset of them. For example, you may be awaiting a reply from 
another agent and aren’t interested in serving new requests. In this case, it’s essential that you use 
MailboxProcessor.Scan rather than MailboxProcessor.Receive. Table 11-9 shows the signatures of both of 
these. The former lets you choose between available messages by processing them in order, whereas the 
latter forces you to process every message. Listing 11-12 shows an example of using MailboxProcessor.
Scan.



287

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

Listing 11-12. Scanning a mailbox for relevant messages

type Message =
    | Message1
    | Message2 of int
    | Message3 of string

let agent =
    MailboxProcessor.Start(fun inbox ->
        let rec loop() =
            inbox.Scan(function
                | Message1 ->
                   Some (async {do printfn "message 1!"
                                return! loop()})
                | Message2 n ->
                   Some (async {do printfn "message 2!"
                                return! loop()})
                | Message3 _ ->
                   None)
        loop())

You can now post these agent messages, including messages of the ignored kind Message3:

> agent.Post(Message1);;
message 1!
val it : unit = ()

> agent.Post(Message2(100));;
message 2!
val it : unit = ()

> agent.Post(Message3("abc"));;
val it : unit = ()

> agent.Post(Message2(100));;
message 2!
val it : unit = ()

> agent.CurrentQueueLength;;
val it : int = 1

When you send Message3 to the message processor, the message is ignored. The last line, however, 
shows that the unprocessed Message3 is still in the message queue, which you could examine using the 
backdoor property UnsafeMessageQueueContents.

Example: Asynchronous Web Crawling
At the start of this chapter, we mentioned that the rise of the Web and other forms of networks is a major 
reason for the increasing importance of concurrent and asynchronous programming. Listing 11-13 shows an 
implementation of a Web crawler using asynchronous programming and mailbox-processing techniques.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

288

Listing 11-13. A scalable, controlled, asynchronous Web crawler

open System.Collections.Generic
open System.Net
open System.IO
open System.Threading
open System.Text.RegularExpressions

let limit = 50
let linkPat = "href=\s*\"[^\"h]*(http://[^&\"]*)\""
let getLinks (txt:string) =
    [ for m in Regex.Matches(txt,linkPat)  -> m.Groups.Item(1).Value ]

// A type that helps limit the number of active web requests
type RequestGate(n:int) =
    let semaphore = new Semaphore(initialCount=n,maximumCount=n)
    member x.AsyncAcquire(?timeout) =
        async { let! ok = Async.AwaitWaitHandle(semaphore,
                                                ?millisecondsTimeout=timeout)
                if ok then
                   return
                     { new System.IDisposable with
                         member x.Dispose() =
                             semaphore.Release() |> ignore }
                else
                   return! failwith "couldn't acquire a semaphore" }

// Gate the number of active web requests
let webRequestGate = RequestGate(5)

// Fetch the URL, and post the results to the urlCollector.
let collectLinks (url:string) =
    async { // An Async web request with a global gate
            let! html =
                async { // Acquire an entry in the webRequestGate. Release
                        // it when 'holder' goes out of scope
                        use! holder = webRequestGate.AsyncAcquire()

                        let req = WebRequest.Create(url,Timeout=5)

                        // Wait for the WebResponse
                        use! response = req.AsyncGetResponse()

                        // Get the response stream
                        use reader = new StreamReader(response.GetResponseStream())

                        // Read the response stream (note: a synchronous read)
                        return reader.ReadToEnd()  }

            // Compute the links, synchronously
            let links = getLinks html

            // Report, synchronously
            do printfn "finished reading %s, got %d links" url (List.length links)

            // We're done
            return links }

/// 'urlCollector' is a single agent that receives URLs as messages. It creates new
/// asynchronous tasks that post messages back to this object.



289

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

let urlCollector =
    MailboxProcessor.Start(fun self ->

        // This is the main state of the urlCollector
        let rec waitForUrl (visited : Set<string>) =

           async { // Check the limit
                   if visited.Count < limit then

                       // Wait for a URL...
                       let! url = self.Receive()
                       if not (visited.Contains(url)) then
                           // Start off a new task for the new url. Each collects
                           // links and posts them back to the urlCollector.
                           do! Async.StartChild
                                   (async { let! links = collectLinks url
                                            for link in links do
                                               self.Post link }) |> Async.Ignore

                       // Recurse into the waiting state
                       return! waitForUrl(visited.Add(url)) }

        // This is the initial state.
        waitForUrl(Set.empty))

You can initiate a web crawl from a particular URL as follows:

> urlCollector.Post "http://news.google.com";;
finished reading http://news.google.com, got 191 links
finished reading http://news.google.com/?output=rss, got 0 links
finished reading http://www.ktvu.com/politics/13732578/detail.html, got 14 links
finished reading http://www.washingtonpost.com/wp-dyn/content/art..., got 218 links
finished reading http://www.newsobserver.com/politics/story/646..., got 56 links
finished reading http://www.foxnews.com/story/0,2933,290307,0...l, got 22 links
...

The key techniques shown in Listing 11-13 are:

The type RequestGate encapsulates the logic needed to ensure that you place a 
global limit on the number of active Web requests occurring at any point.. This is 
instantiated to the particular instance webRequestGate with limit 5. This uses a 
System.Threading.Semaphore object to coordinate access to this shared resource. 
Semaphores are discussed in more detail in “Using Shared-Memory Concurrency.”

The RequestGate type ensures that Web requests sitting in the request queue don’t 
block threads but rather wait asynchronously as callback items in the thread pool 
until a slot in the webRequestGate becomes available.

The collectLinks function is a regular asynchronous computation. It first enters the 
RequestGate (that is, acquires one of the available entries in the Semaphore). After a 
response has been received, it reads off the HTML from the resulting reader, scrapes 
the HTML for links using regular expressions, and returns the generated set of links.

The urlCollector is the only message-processing program. It’s written using a 
MailboxProcessor. In its main state, it waits for a fresh URL and spawns a new 



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

290

asynchronous computation to call collectLinks once one is received. For each 
collected link, a new message is sent back to the urlCollector’s mailbox. Finally, you 
recurse to the waiting state, having added the fresh URL to the overall set of URLs 
you’ve traversed so far.

The operator <-- is used as shorthand for posting a message to an agent. This is a 
recommended abbreviation in F# asynchronous programming.

The AsyncAcquire method of the RequestGate type uses a design pattern called a 
holder. The object returned by this method is an IDisposable object that represents 
the acquisition of a resource. This holder object is bound using use, and this ensures 
that the resource is released when the computation completes or when the 
computation ends with an exception.

Listing 11-13 shows that it’s relatively easy to create sophisticated, scalable asynchronous programs 
using a mix of message passing and asynchronous I/O techniques. Modern Web crawlers have thousands 
of outstanding open connections, indicating the importance of using asynchronous techniques in modern 
scalable Web-based programming.

Observables
As you learned earlier in this chapter, events are a central F# idiom to express configurable callback 
structures. F# also supports a more advanced mechanism for configurable callbacks that is more 
compositional than events. These are called observables, and in particular, they are characterized by the 
System.IObservable and System.IObserver types in the core libraries.  

F# makes working with observables very easy, because all event objects also implement these 
interfaces and so can be used as observables. F# has only a limited library of combinators for working with 
observables in its core library, however. For example, here’s how you can use observables to work with click 
events raised by a form: 

> open System.Windows.Forms;;

> let form = new Form(Text = "Click Form", Visible = true, TopMost = true);;

val form : Form

> form.Click |> Observable.add (fun evArgs -> printfn "Clicked!");;

val it : unit = ()

When you run this code in F# Interactive, you see the expected printing each time the form is clicked. 
Likewise, you can filter and map using Observable.filter and Observable.map observables. 

Programming with observables is powerful and compositional, and many further combinators are 
supported by the Rx programming library, available through the Rx library website on www.codeplex.com.

Using Shared-Memory Concurrency
The final topics covered in this chapter are the various primitive mechanisms used for threads, shared-
memory concurrency, and signaling. In many ways, these are the assembly language of concurrency.



291

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

This chapter has concentrated mostly on techniques that work well with immutable data structures. 
That isn’t to say you should always use immutable data structures. It is, for example, perfectly valid to use 
mutable data structures as long as they’re accessed from only one particular thread. Furthermore, private 
mutable data structures can often be safely passed through an asynchronous workflow, because at each 
point the mutable data structure is accessed by only one thread, even if different parts of the asynchronous 
workflow are executed by different threads. This doesn’t apply to workflows that use operators, such as 
Async.Parallel and Async.StartChild, that start additional threads of computation.

This means we’ve largely avoided covering shared-memory primitives so far, because F# provides 
powerful declarative constructs, such as asynchronous workflows and message passing, that often subsume 
the need to resort to shared-memory concurrency. A working knowledge of thread primitives and shared-
memory concurrency is still very useful, however, especially if you want to implement your own basic 
constructs or highly efficient concurrent algorithms on shared-memory hardware.

Creating Threads Explicitly
This chapter has avoided showing how to work with threads directly, instead relying on abstractions, such 
as BackgroundWorker and the .NET thread pool. If you want to create threads directly, here is a short 
sample:

open System.Threading
let t = new Thread(ThreadStart(fun _ ->
                printfn "Thread %d: Hello" Thread.CurrentThread.ManagedThreadId));
t.Start();
printfn "Thread %d: Waiting!" Thread.CurrentThread.ManagedThreadId
t.Join();
printfn "Done!"

When run, this gives:

val t : Thread

Thread 1: Waiting!
Thread 10: Hello
Done!

■ Caution: Always avoid using Thread.Suspend, Thread. Resume, and Thread.Abort. These are guaranteed 
to put obscure concurrency bugs in your program. The MSDN Web site has a good description of why Thread.
Abort may not even succeed. One of the only compelling uses for Thread.Abort is to implement Ctrl+C in an 
interactive development environment for a general-purpose language, such as F# Interactive.

Shared Memory, Race Conditions, and the .NET Memory Model
Many multithreaded applications use mutable data structures shared among multiple threads. Without 
synchronization, these data structures will almost certainly become corrupt: threads may read data that 
have been only partially updated (because not all mutations are atomic), or two threads may write to the 
same data simultaneously (a race condition). Mutable data structures are usually protected by locks, 
although lock-free mutable data structures are also possible.



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

292

Shared-memory concurrency is a difficult and complicated topic, and a considerable amount of good 
material on .NET shared-memory concurrency is available on the Web. All this material applies to F# when 
you’re programming with mutable data structures such as reference cells, arrays, and hash tables, and the 
data structures can be accessed from multiple threads simultaneously. F# mutable data structures map to 
.NET memory in fairly predictable ways; for example, mutable references become mutable fields in a .NET 
class, and mutable fields of word size can be assigned atomically.

On modern microprocessors, multiple threads can see views of memory that aren’t consistent; that is, 
not all writes are propagated to all threads immediately. The guarantees given are called a memory model 
and are usually expressed in terms of the ordering dependencies among instructions that read/write 
memory locations. This is, of course, deeply troubling, because you have to think about a huge number of 
possible reorderings of your code, and it’s one of the main reasons why shared mutable data structures are 
difficult to work with. You can find further details on the .NET memory model at www.expert-fsharp.net/
topics/MemoryModel.

Using Locks to Avoid Race Conditions
Locks are the simplest way to enforce mutual exclusion between two threads attempting to read or write 
the same mutable memory location. Listing 11-14 shows an example of code with a race condition.

Listing 11-14. Shared-memory code with a race condition

type MutablePair<'T, 'U>(x : 'T, y : 'U) =
    let mutable currentX = x
    let mutable currentY = y
    member p.Value = (currentX, currentY)
    member p.Update(x, y) =
        // Race condition: This pair of updates is not atomic
        currentX <- x
        currentY <- y

let p = new MutablePair<_, _>(1, 2)
do Async.Start (async {do (while true do p.Update(10, 10))})
do Async.Start (async {do (while true do p.Update(20, 20))})

Here is the definition of the F# lock function:
open System.Threading
let lock (lockobj : obj) f  =
    Monitor.Enter lockobj
    try
        f()
    finally
        Monitor.Exit lockobj

The pair of mutations in the Update method isn’t atomic; that is, one thread may have written to 
currentX, another then writes to both currentX and currentY, and the final thread then writes to currentY, 
leaving the pair holding the value (10,20) or (20,10). Mutable data structures are inherently prone to this 
kind of problem if shared among multiple threads. Luckily, F# code tends to have fewer mutations than 
imperative languages, because functions normally take immutable values and return a calculated value. 
When you do use mutable data structures, they shouldn’t be shared among threads, or you should design 
them carefully and document their properties with respect to multithreaded access.

Here is one way to use the F# lock function to ensure that updates to the data structure are atomic. 
Locks are also required on uses of the property p.Value:



293

CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

do Async.Start (async { do (while true do lock p (fun () -> p.Update(10,10))) })
do Async.Start (async { do (while true do lock p (fun () -> p.Update(20,20))) })

■ Caution: If you use locks inside data structures, do so only in a simple way that uses them to enforce the 
concurrency properties you’ve documented. Don’t lock just for the sake of it, and don’t hold locks longer than 
necessary. In particular, beware of making indirect calls to externally supplied function values, interfaces, or abstract 
members while a lock is held. The code providing the implementation may not be expecting to be called when a lock 
is held, and it may attempt to acquire further locks in an inconsistent fashion.

Using ReaderWriterLock
It’s common for mutable data structures to be read more than they’re written. Indeed, mutation often is 
used only to initialize a mutable data structure. In this case, you can use a .NET ReaderWriterLock to 
protect access to a resource. For example, consider the functions:

open System.Threading

let readLock (rwlock : ReaderWriterLock) f  =
  rwlock.AcquireReaderLock(Timeout.Infinite)
  try
      f()
  finally
      rwlock.ReleaseReaderLock()

let writeLock (rwlock : ReaderWriterLock) f  =
  rwlock.AcquireWriterLock(Timeout.Infinite)
  try
      f()
      Thread.MemoryBarrier()
  finally
      rwlock.ReleaseWriterLock()

Listing 11-15 shows how to use these functions to protect the MutablePair class.

Listing 11-15. Shared-memory code with a race condition

type MutablePair<'T, 'U>(x : 'T, y : 'U) =
    let mutable currentX = x
    let mutable currentY = y
    let rwlock = new ReaderWriterLock()
    member p.Value =
        readLock rwlock (fun () ->
            (currentX, currentY))
    member p.Update(x, y) =
        writeLock rwlock (fun () ->
            currentX <- x
            currentY <- y)



CHAPTER 11 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING

294

Some Other Concurrency Primitives
Table 11-10 shows some other shared-memory concurrency primitives available in the .NET Framework.

Table 11-10. .NET shared-memory concurrency primitives

Type Description
System.Threading.WaitHandle A synchronization object for signaling the control of threads.

System.Threading.AutoResetEvent A two-state (on/off) WaitHandle that resets itself to “off” 
automatically after the signal is read. Similar to a two-state traffic 
light.

System.Threading.ManualResetEvent A two-state (on/off) WaitHandle that requires a call 
to ManualResetEvent.Reset() to set it “off.”

System.Threading.Mutex A lock-like object that can be shared among operating system 
processes.

System.Threading.Semaphore Used to limit the number of threads simultaneously accessing a 
resource. Use a mutex or lock if at most one thread can access a 
resource at a time, however.

System.Threading.Interlocked Atomic operations on memory locations. Especially useful for 
atomic operations on F# reference cells.

Summary
This chapter covered concurrent, reactive, and asynchronous programming, topics of growing importance 
in modern programming because of the widespread adoption of multicore microprocessors, network-
aware applications, and asynchronous I/O channels. It discussed, in depth, background processing and a 
powerful F# construct called asynchronous workflows. Finally, the chapter covered applications of 
asynchronous workflows to message-processing agents and Web crawling, and it examined some of the 
shared-memory primitives for concurrent programming on the .NET platform. The next chapter returns to 
look at further applied topics in symbolic programming.



295

■ ■ ■

CHAPTER 12

Symbolic Programming with 
Structured Data 

Symbols are everywhere. Numbers are symbols that stand for quantities, and you can add, multiply, or 
take square roots of numbers that are so small or large that it’s hard to imagine the quantity they represent. 
You can solve equations, multiply polynomials, approximate functions using series, and differentiate or 
integrate numerically or symbolically—these are just a few everyday examples of using symbols in 
mathematics.

It would be a mistake to think symbols are useful only in mathematics and related fields. General 
problem-solving can’t do without symbols; they provide the ability to abstract away details to make the 
larger picture clearer and help you understand relationships that may not appear obvious otherwise. 
Symbols always stand for something and have an attached meaning; they’re created to bind this additional 
content to an existing object. This gives you an extraordinary tool to solve problems, describe behavior, 
make strategic decisions, create new words, and write poetry—the list could go on forever.

F# is well suited for symbolic computations. This chapter covers in depth two symbolic manipulation 
problems. First, it presents an implementation of a symbolic differentiation application, including 
expression rendering using techniques based on Windows Forms programming. The second example 
shows how you can use symbolic programming to model hardware circuits and presents the core of a 
symbolic hardware-verification engine based on binary decision diagrams. We could have chosen other 
examples of symbolic programming, but we found these two particularly enjoyable to code in F#.

Chapter 9 already covered many of the foundational techniques for symbolic programming. One 
technique that is particularly important in this chapter is the use of discriminated unions to capture the 
shape of the abstract syntax trees for symbolic languages. Using functions as first-class values and 
applying recursive problem decomposition also leads to a natural and clean approach to computations on 
symbolic entities. These and other features of F# combine to make symbolic programming concise and 
painless, allowing you to focus on the really interesting parts of your application domain.

Verifying Circuits with Propositional Logic
The next example turns to a traditional application area for functional programming: describing digital 
hardware circuits and symbolically verifying their properties. We assume a passing familiarity with 
hardware design, but if you haven’t looked inside a microprocessor chip for some time, a brief recap is 
included in the “About Hardware Design” sidebar.



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

296

In this example, you model circuits by propositional logic, a simple and familiar symbolic language 
made up of constructs such as AND, OR, NOT, and TRUE/FALSE values. You then implement an analysis 
that converts propositional logic formulae into a canonical form called binary decision diagrams (BDDs). 
Converting to a canonical form allows you to check conditions and properties associated with the digital 
circuits.

ABOUT HARDWARE DESIGN

Digital hardware circuits such as microprocessors almost universally manipulate bits—that is, signals that 
are either low or high, represented by 0/1 or false/true values, respectively. The building blocks of 
interesting hardware circuits are primitives such as gates and registers. Gates are logical components that 
relate their inputs to their outputs; for example, an AND gate takes two input signals, and if both are high, it 
gives a high signal on its output. Registers are stateful components associated with a clock. This chapter 
doesn’t consider registers and stateful circuits, although they can be tackled using techniques similar to 
those described here.

Hardware design is largely about building interesting behavior out of these primitives. For example, you can 
build arithmetic circuits that compute the sum or product of integers by using logical gates alone. These 
combinatorial circuits can be massive, and a key concern is to both verify their correctness and minimize the 
overall electrical delay through the circuit.

■ Note The examples in this section are inspired by the tutorials for the HOL88 system, a symbolic theorem 
prover implemented using an F#-like language that has been used for many purposes, including hardware 
verification. The carry/select adder and the BDD implementation follow those given by John Harrison in his HOL Light 
version of the same system. You can find out more about these and other systems, as well as delve into theorem 
proving, in Handbook of Practical Logic and Automated Reasoning by John Harrison (Cambridge University Press, 
2009).

Representing Propositional Logic
You begin by using language-oriented programming techniques to implement a little logic of Boolean 
expressions, of the kind that might be used to describe part of a hardware circuit or a constraint. Let’s 
assume these have forms like the following:

P1 AND P2
P1 OR P2
P1 IMPLIES P2
NOT(P1)
v                    -- variable, ranging over true/false
TRUE
FALSE
Exists v. P[v]       -- v ranges over true/false, P may use v
Forall v. P[v]       -- v ranges over true/false, P may use v

This is known as quantified Boolean formulae (QBF) and is an expressive way of modeling many 
interesting problems and artifacts that work over finite data domains. Listing 12-1 shows how you model 
this language in F#.



297

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

Listing 12-1. A Minimalistic Representation of Propositional Logic

type Var = string

type Prop =
    | And of Prop * Prop
    | Var of Var
    | Not of Prop
    | Exists of Var * Prop
    | False

let True          = Not False
let Or(p, q)      = Not(And(Not(p), Not(q)))
let Iff(p, q)     = Or(And(p, q), And(Not(p), Not(q)))
let Implies(p, q) = Or(Not(p), q)
let Forall(v, p)  = Not(Exists(v, Not(p)))

let (&&&) p q = And(p, q)
let (|||) p q = Or(p, q)
let (~~~) p   = Not p
let (<=>) p q = Iff(p, q)
let (===) p q = (p <=> q)
let (==>) p q = Implies(p, q)
let (^^^) p q = Not (p <=> q)

let var (nm: Var) = Var nm

let fresh =
    let count = ref 0
    fun nm -> incr count; (sprintf "_%s%d" nm !count : Var)

Listing 12-1 uses a minimalistic encoding of propositional logic terms, where True, Or, Iff, Implies, 
and Forall are derived constructs, defined using their standard classical definitions in terms of the 
primitives Var, And, Not, Exists, and False. This is adequate for your purposes because you aren’t so 
interested in preserving the original structure of formulae; if you do need to display a symbolic 
propositional formula, you’re happy to display a form different than the original input.

Variables in formulae of type Prop are primitive propositions. A primitive proposition is often used 
to model some real-world possibility. For example, “it is raining,” “it is cold,” and “it is snowing” can be 
represented by Var("raining"), Var("cold"), and Var("snowing"). A Prop formula may be a tautology—
that is, something that is always true regardless of the interpretation of these primitives. A formula is 
satisfiable if there is at least one interpretation for which it’s true. A formula can also be an axiom; for 
example, “if it’s snowing, then it’s cold” can be represented as the assumption Implies(Var("snowing"), 
Var("cold")). In this example, variables are used to represent a wire in a digital circuit that may be low 
or high.

When you’re dealing directly with the abstract syntax for Prop, it can be convenient to define infix 
operators to help you build abstract syntax values. Listing 12-1 shows the definition of seven operators 
(&&&, |||, ~~~, <=>, ===, ==>, and ^^^) that look a little like the notation you expect for propositional logic. 
You also define the function var for building primitive propositions and fresh for generating fresh 
variables. The types of these functions are as follows:

val var : nm:Var -> Prop
val fresh : (string -> Var)



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

298

■ NOTE The operators in Listing 12-1 aren’t overloaded and indeed outscope the default overloaded bitwise 
operations on integers discussed in Chapter 3. However, that doesn’t matter for the purposes of this chapter. If 
necessary, you can use alternative operator names.

Evaluating Propositional Logic Naively
Before tackling the problem of representing hardware using propositional logic, let’s look at some naive 
approaches for working with propositional logic formulae. Listing 12-2 shows routines that evaluate 
formulae given an assignment of variables and that generate the rows of a truth table for a Prop formula.

Listing 12-2. Evaluating Propositional Logic Formulae

let rec eval (env: Map<Var,bool>) inp =
    match inp with
    | Exists(v, p) -> eval (env.Add(v, false)) p || eval (env.Add(v, true)) p
    | And(p1, p2)  -> eval env p1 && eval env p2
    | Var v        -> if env.ContainsKey(v) then env.[v]
                      else failwithf "env didn't contain a value for %A" v
    | Not p        -> not (eval env p)
    | False        -> false

let rec support f =
    match f with
    | And(x, y)    -> Set.union (support x) (support y)
    | Exists(v, p) -> (support p).Remove(v)
    | Var p        -> Set.singleton p
    | Not x        -> support x
    | False        -> Set.empty

let rec cases supp =
    seq {
        match supp with
        | [] ->  yield Map.empty
        | v :: rest ->
            yield! rest |> cases |> Seq.map (Map.add v false)
            yield! rest |> cases |> Seq.map (Map.add v true)
    }

let truthTable x =
    x |> support |> Set.toList |> cases
    |> Seq.map (fun env -> env, eval env x)

let satisfiable x =
    x |> truthTable |> Seq.exists (fun (env, res) -> res)

let tautology x =
    x |> truthTable |> Seq.forall (fun (env, res) -> res)

let tautologyWithCounterExample x =
    x |> truthTable |> Seq.tryFind (fun (env, res) -> not res)
    |> Option.map fst

let printCounterExample = function
    | None     -> printfn "tautology verified OK"
    | Some env -> printfn "tautology failed on %A" (Seq.toList env)



299

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

The types of these functions are as follows:

val eval : env:Map<Var,bool> -> inp:Prop -> bool
val support : f:Prop -> Set<Var>
val cases : supp:'a list -> seq<Map<'a,bool>> when 'a : comparison
val truthTable : x:Prop -> seq<Map<Var,bool> * bool>
val satisfiable : x:Prop -> bool
val tautology : x:Prop -> bool
val tautologyWithCounterExample : x:Prop -> Map<Var,bool> option
val printCounterExample : _arg1:#seq<'b> option -> unit

The function eval computes the value of a formula given assignments for each of the variables that 
occurs in the formula. support computes the set of variables that occurs in the formula. You can now use 
these functions to examine truth tables for some simple formulae, although first you may want to define 
the following functions to display truth tables neatly in F# Interactive:

let stringOfBit b = if b then "T" else "F"

let stringOfEnv env =
    Map.fold (fun acc k v -> sprintf "%s=%s;" k (stringOfBit v) + acc) "" env

let stringOfLine (env, res) =
    sprintf "%20s %s" (stringOfEnv env) (stringOfBit res)

let stringOfTruthTable tt =
    "\n" + (tt |> Seq.toList |> List.map stringOfLine |> String.concat "\n")

Here are the truth tables for x, x AND y, and x OR NOT(x):

> fsi.AddPrinter(fun tt -> tt |> Seq.truncate 20 |> stringOfTruthTable);;

> truthTable (var "x");;
val it : seq<Map<Var,bool> * bool> =
  
                x=F; F
                x=T; T
> truthTable (var "x" &&&  var "y");;
val it : seq<Map<Var,bool> * bool> =
  
            y=F;x=F; F
            y=T;x=F; F
            y=F;x=T; F
            y=T;x=T; T
> truthTable (var "x" ||| ~~~(var "x"));;
val it : seq<Map<Var,bool> * bool> =
  
                x=F; T

From this, you can see that x OR NOT(x) is a tautology, because it always evaluates to TRUE regardless 
of the value of the variable x.



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

300

From Circuits to Propositional Logic
Figure 12-1 shows a diagrammatic representation of three hardware circuits: a half adder, a full adder, and 
a 2-bit carry ripple adder. The first of these has two input wires, x and y, and sets the sum wire high if 
exactly one of these is high. If both x and y are high, then the sum is low, and the carry wire is high instead. 
Thus, the circuit computes the 2-bit sum of the inputs. Likewise, a full adder computes the sum of three 
Boolean inputs, which, because it’s at most three, can still be represented by 2 bits. A 2-bit carry ripple 
adder is formed by composing a half adder and a full adder together, wiring the carry from the first adder 
to one of the inputs of the second adder. The overall circuit has four inputs and three outputs.

Figure 12-1. Three simple hardware circuits

The following code models these circuit components. This uses relational modeling, where each 
circuit is modeled not as a function but as a propositional logic predicate that relates its input wires to its 
output wires:

let sumBit x y = (x ^^^ y)
let carryBit x y = (x &&& y)
let halfAdder x y sum carry =
    (sum === sumBit x y)  &&&
    (carry === carryBit x y)

let fullAdder x y z sum carry =
    let xy = (sumBit x y)
    (sum === sumBit xy z) &&&
    (carry === (carryBit x y ||| carryBit xy z))

let twoBitAdder (x1, x2) (y1, y2) (sum1, sum2) carryInner carry =
    halfAdder x1 y1 sum1 carryInner &&&
    fullAdder x2 y2 carryInner sum2 carry



301

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

Note the close relation between the diagram for the 2-bit adder and its representation as code. You can 
read the implementation as a specification of the diagram, and vice versa. But the types of these functions 
are a little less informative:

val sumBit : x:Prop -> y:Prop -> Prop
val carryBit : x:Prop -> y:Prop -> Prop
val halfAdder : x:Prop -> y:Prop -> sum:Prop -> carry:Prop -> Prop
val fullAdder : x:Prop -> y:Prop -> z:Prop -> sum:Prop -> carry:Prop -> Prop
val twoBitAdder :
  x1:Prop * x2:Prop ->
    y1:Prop * y2:Prop ->
      sum1:Prop * sum2:Prop -> carryInner:Prop -> carry:Prop -> Prop

In practice, circuits are defined largely with respect to vectors of wires, not just individual wires. You 
can model these using arrays of propositions; and because it’s now clear that you’re modeling bits via 
propositions, you make an appropriate type abbreviation for them as well:

type bit = Prop
type bitvec = bit[]

let Lo : bit = False
let Hi : bit = True
let vec n nm : bitvec = Array.init n (fun i -> var (sprintf "%s%d" nm i))
let bitEq (b1: bit) (b2: bit) = (b1 <=> b2)
let AndL l = Seq.reduce (fun x y -> And(x, y)) l
let vecEq (v1: bitvec) (v2: bitvec) = AndL (Array.map2 bitEq v1 v2)

These functions have types as follows:

type bit = Prop
type bitvec = bit []
val Lo : bit = False
val Hi : bit = Not False
val vec : n:int -> nm:string -> bitvec
val bitEq : b1:bit -> b2:bit -> Prop
val AndL : l:seq<Prop> -> Prop
val vecEq : v1:bitvec -> v2:bitvec -> Prop

You can now proceed to define larger circuits. For example:

let fourBitAdder (x: bitvec) (y: bitvec) (sum: bitvec) (carry: bitvec) =
    halfAdder  x.[0] y.[0]           sum.[0] carry.[0] &&&
    fullAdder  x.[1] y.[1] carry.[0] sum.[1] carry.[1] &&&
    fullAdder  x.[2] y.[2] carry.[1] sum.[2] carry.[2] &&&
    fullAdder  x.[3] y.[3] carry.[2] sum.[3] carry.[3]

Or, more generally, you can chain an arbitrary series of adders to form an N-bit adder. First you define 
an abbreviation for the AndL function to represent the composition of multiple circuit blocks:

let Blocks l = AndL l



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

302

And here is the definition of an N-bit adder with a halfAdder at one end:

let nBitCarryRippleAdder (n: int) (x: bitvec) (y: bitvec)
                         (sum: bitvec) (carry: bitvec) =
    Blocks [ for i in 0 .. n-1 ->
                if i = 0
                then halfAdder x.[i] y.[i] sum.[i] carry.[i]
                else fullAdder x.[i] y.[i] carry.[i-1] sum.[i] carry.[i]  ]

Using a similar approach, you get the following satisfying specification of a symmetric N-bit adder 
that accepts a carry as input and also gives a carry as output:

let rippleAdder (n: int) (x: bitvec) (y: bitvec) 
                (sum: bitvec) (carry: bitvec)  =
    Blocks [ for i in 0 .. n-1 ->
                fullAdder x.[i] y.[i] carry.[i] sum.[i] carry.[i+1] ]

Let’s now look at the propositional formula for a halfAdder with variable inputs and outputs:

> halfAdder (var "x") (var "y") (var "sum") (var "carry");;

val it : Prop =
  And
    (Not
       (And
          (Not
             (And
                (Var "sum",
                 Not
                   (Not
                      (And
                         (Not (And (Var "x",Var "y")),
                          Not (And (Not (Var "x"),Not (Var "y")))))))),
           Not
             (And
                (Not (Var "sum"),
                 Not
                   (Not
                      (Not
                         (And
                            (Not (And (Var "x",Var "y")),
                             Not (And (Not (Var "x"),Not (Var "y"))))))))))),
     Not
       (And
          (Not (And (Var "carry",And (Var "x",Var "y"))),
           Not (And (Not (Var "carry"),Not (And (Var "x",Var "y")))))))

Clearly, you don’t want to be doing too much of that! You see better ways of inspecting circuits and 
the symbolic values of bit vectors in the section “Representing Propositional Formulae Efficiently Using 
BDDs.”

In passing, note that the twoBitAdder uses an internal wire. You can model this using an existential 
formula:



303

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

let twoBitAdderWithHiding (x1, x2) (y1, y2) (sum1, sum2) carry =
    let carryInnerVar = fresh "carry"
    let carryInner = var(carryInnerVar)
    Exists(carryInnerVar, halfAdder x1 y1 sum1 carryInner &&&
                          fullAdder x2 y2 carryInner sum2 carry)

However, this brings up issues beyond the scope of this chapter. Instead, you take an approach to 
modeling where there are no boundaries to the circuits and where all internal wires are exposed.

Checking Simple Properties of Circuits
Now that you’ve modeled the initial hardware circuits, you can check simple properties of these circuits. 
For example, you can check that if you give a fullAdder all low (that is, false) inputs, then the output 
wires may be low as well, and, conversely, that you have a contradiction if one of the output wires is 
high:

> tautology (fullAdder Lo Lo Lo Lo Lo);;
val it : bool = true

> satisfiable (fullAdder Lo Lo Lo Hi Lo);;
val it : bool = false

It’s of course much better to check these results symbolically by giving symbolic inputs. For example, 
you can check that if the same value is given to the two inputs of a halfAdder, then the sum output is low 
and the carry output is the same as the input:

> tautology (halfAdder (var "x") (var "x") Lo (var "x"));;
val it : bool = true

Likewise, you can check that a 2-bit adder is commutative—in other words, that it doesn’t matter if 
you swap the x and y inputs:

> tautology
    (nBitCarryRippleAdder 2 (vec 2 "x") (vec 2 "y") (vec 2 "sum") (vec 3 "carry")
 === nBitCarryRippleAdder 2 (vec 2 "y") (vec 2 "x") (vec 2 "sum") (vec 3 "carry"));;
val it : bool = true

However, if you repeat the same for sizes of 5 or bigger, things start to slow down, and the naive 
implementation of checking propositional logic tautology based on truth tables begins to break down. 
Hence, you have to turn to more efficient techniques to process propositional formulae.

Representing Propositional Formulae Efficiently Using BDDs
In practice, propositional formulae to describe hardware can be enormous, involving hundreds of 
thousands of nodes. As a result, hardware companies have an interest in smart algorithms to process these 
formulae and check them for correctness. The circuits in the computers you use from day to day have 
almost certainly been verified using advanced propositional logic techniques, often using a functional 
language as the means to drive and control the analysis of the circuits.



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

304

A major advance in the application of symbolic techniques to hardware design occurred in the late 
1980s with the discovery of binary decision diagrams, a representation for propositional logic formulae 
that is compact for many common circuit designs. BDDs represent a propositional formula via the use of 
if ... then ... else conditionals alone, which you write as (variable => true-branch | false-branch). 
Special nodes are used for true and false at the leaves: you write these as T and F. Every BDD is 
constructed with respect to a global variable ordering, so x AND NOT y can be represented as (x => (y => 
F | T) | F) if x comes before y in this ordering and as (y => F | (x => T | F)) if y comes before x. The 
variable ordering can be critical for performance of the representation.

BDDs are efficient because they use some of the language representation techniques you saw in 
Chapter 9. In particular, they work by uniquely memoizing all BDD nodes that are identical, which works 
by representing a BDD as an integer index into a lookup table that stores the real information about the 
node. Furthermore, negative indexes are used to represent the negation of a particular BDD node without 
creating a separate entry for the negated node. Listing 12-3 shows an implementation of BDDs. Fully 
polished BDD packages are often implemented in C. It’s easy to access those packages from F# using the 
techniques described in Chapter 19. Here, you have a clear and simple implementation entirely in F# code.

Listing 12-3. Implementing Binary Decision Diagrams

open System.Collections.Generic

let memoize f =
    let tab = new Dictionary<_, _>()
    fun x ->
        if tab.ContainsKey(x) then tab.[x]
        else let res = f x in tab.[x] <- res; res

type BddIndex = int
type Bdd = Bdd of BddIndex
type BddNode = Node of Var * BddIndex * BddIndex
type BddBuilder(order: Var -> Var -> int) =

    // The core data structures that preserve uniqueness
    let nodeToIndex = new Dictionary<BddNode, BddIndex>()
    let indexToNode = new Dictionary<BddIndex, BddNode>()

    // Keep track of the next index
    let mutable nextIdx = 2
    let trueIdx = 1
    let falseIdx = -1
    let trueNode = Node("", trueIdx, trueIdx)
    let falseNode = Node("", falseIdx, falseIdx)

    // Map indexes to nodes. Negative indexes go to their negation.
    // The special indexes -1 and 1 go to special true/false nodes.
    let idxToNode(idx) =
        if idx = trueIdx then trueNode
        elif idx = falseIdx then falseNode
        elif idx > 0 then indexToNode.[idx]
        else
            let (Node(v, l, r)) = indexToNode.[-idx]
            Node(v, -l, -r)



305

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

    // Map nodes to indexes. Add an entry to the table if needed.
    let nodeToUniqueIdx(node) =
        if nodeToIndex.ContainsKey(node) then nodeToIndex.[node]
        else
            let idx = nextIdx
            nodeToIndex.[node] <- idx
            indexToNode.[idx] <- node
            nextIdx <- nextIdx + 1
            idx

    // Get the canonical index for a node. Preserve the invariant that the
    // left-hand node of a conditional is always a positive node
    let mkNode(v: Var, l: BddIndex, r: BddIndex) =
        if l = r then l
        elif l >= 0 then nodeToUniqueIdx(Node(v, l, r) )
        else -nodeToUniqueIdx(Node(v, -l, -r))

    // Construct the BDD for a conjunction "m1 AND m2"
    let rec mkAnd(m1, m2) =
        if m1 = falseIdx || m2 = falseIdx then falseIdx
        elif m1 = trueIdx then m2
        elif m2 = trueIdx then m1
        else
            let (Node(x, l1, r1)) = idxToNode(m1)
            let (Node(y, l2, r2)) = idxToNode(m2)
            let v, (la, lb), (ra, rb) =
                match order x y with
                | c when c = 0 -> x, (l1, l2), (r1, r2)
                | c when c < 0 -> x, (l1, m2), (r1, m2)
                | c -> y, (m1, l2), (m1, r2)
            mkNode(v, mkAnd(la, lb), mkAnd(ra, rb))

    // Memoize this function
    let mkAnd = memoize mkAnd

    // Publish the construction functions that make BDDs from existing BDDs
    member g.False = Bdd falseIdx
    member g.And(Bdd m1, Bdd m2) = Bdd(mkAnd(m1, m2))
    member g.Not(Bdd m) = Bdd(-m)
    member g.Var(nm) = Bdd(mkNode(nm, trueIdx, falseIdx))
    member g.NodeCount = nextIdx 

The types of these functions are as follows:

val memoize : f:('a -> 'b) -> ('a -> 'b) when 'a : equality
type BddIndex = int
type Bdd = | Bdd of BddIndex
type BddNode = | Node of Var * BddIndex * BddIndex
type BddBuilder =
  class
    new : order:(Var -> Var -> int) -> BddBuilder



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

306

    member And : Bdd * Bdd -> Bdd
    member Not : Bdd -> Bdd
    member Var : nm:Var -> Bdd
    member False : Bdd
    member NodeCount : int
  end

In addition to the functions that ensure that nodes are unique, the only substantial function in the 
implementation is mkAnd. It relies on the following logical rules for constructing BDD nodes formed by 
taking the conjunction of existing nodes. Note how the second rule is used to interleave variables:

 (x => P | Q) AND (x => R | S) is identical to (x => P AND R | Q AND S).

 (x => P | Q) AND (y => R | S) is identical to (x => P AND T | Q AND T) where T is 
simply (y => R | S).

One final important optimization in the implementation is to memoize the application of the mkAnd 
operation.

Given the previous implementation of BDDs, you can now add the members ToString to convert 
BDDs to strings, Build to convert a Prop representation of a formula into a BDD, and Equiv to check for 
equivalence between two BDDs:

type BddBuilder(order: Var -> Var -> int) =
    ...
    member g.ToString(Bdd idx) =
        let rec fmt dep idx =
            if dep > 3 then "..." else
            let (Node(p, l, r)) = idxToNode(idx)
            if p = "" then if l = trueIdx then "T" else "F"
            else sprintf "(%s => %s | %s)" p (fmt (dep+1) l) (fmt (dep+1) r)
        fmt 1 idx

    member g.Build(f) =
        match f with
        | And(x, y) -> g.And(g.Build x, g.Build y)
        | Var(p) -> g.Var(p)
        | Not(x) -> g.Not(g.Build x)
        | False -> g.False
        | Exists(v, p) -> failwith "Exists node"

    member g.Equiv(p1, p2) = g.Build(p1) = g.Build(p2))

You can now install a pretty-printer and inspect the BDDs for some simple formulae:

> let bddBuilder = BddBuilder(compare);;
val bddBuilder: BddBuilder

> fsi.AddPrinter(fun bdd -> bddBuilder.ToString(bdd));;
val it: unit = ()

> bddBuilder.Build(var "x");;
val it : Bdd = (x => T | F)



307

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

> bddBuilder.Build(var "x" &&& var "x");;
val it : Bdd = (x => T | F)

> bddBuilder.Build(var "x") = bddBuilder.Build(var "x" &&& var "x");;
val it : bool = true

> (var "x") = (var "x" &&& var "x");;
val it : bool = false

> bddBuilder.Build(var "x" &&& var "y");;
val it : Bdd = (x => (y => T | F) | F)

> bddBuilder.Equiv(var "x", var "x" &&& var "x");;
val it : bool = true

Note that the BDD representations of x and x AND x are identical, whereas the Prop representations 
aren’t. The Prop representation is an abstract syntax representation, whereas the BDD representation is 
more of a semantic or computational representation. The BDD representation incorporates all the logic 
necessary to prove propositional formula equivalent; in other words, this logic is built into the 
representation.

Circuit Verification with BDDs
You can now use BDDs to perform circuit verification. For example, the following verifies that you can 
swap the x and y inputs to an 8-bit adder:

> bddBuilder.Equiv(
    nBitCarryRippleAdder 8 (vec 8 "x") (vec 8 "y") (vec 8 "sum") (vec 9 "carry"),
    nBitCarryRippleAdder 8 (vec 8 "y") (vec 8 "x") (vec 8 "sum") (vec 9 "carry"));;
val it : bool = true

Thirty-three variables are involved in this circuit. A naive exploration of this space would involve 
searching a truth table of more than eight billion entries. The BDD implementation takes moments on any 
modern computer. Efficient symbolic representations pay off!

A more substantial verification problem involves checking the equivalence of circuits that have 
substantial structural differences. To explore this, let’s take a different implementation of addition called a 
carry select adder. This avoids a major problem with ripple adders caused by the fact that the carry signal 
must propagate along the entire length of the chain of internal adders, causing longer delays in the 
electrical signals and thus reducing the clock rates of a circuit or possibly increasing power consumption. 
A carry select adder gets around this through a common hardware trick of speculative execution. It divides 
the inputs into blocks and adds each block twice: once assuming the carry is low and once assuming it’s 
high. The result is then selected after the circuit, when the carry for the block has been computed. Listing 
12-4 shows the specification of the essence of the hardware layout of a carry select adder using the 
techniques developed so far. The specification uses the slicing syntax for arrays described in Chapter 4.

Listing 12-4. A Carry Select Adder Modeled Using Propositional Logic



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

308

let mux a b c = ((~~~a ==> b) &&& (a ==> c))

let carrySelectAdder
       totalSize maxBlockSize
       (x: bitvec) (y: bitvec)
       (sumLo: bitvec) (sumHi: bitvec)
       (carryLo: bitvec) (carryHi: bitvec)
       (sum: bitvec) (carry: bitvec) =
  Blocks
    [ for i in 0..maxBlockSize..totalSize-1 ->
        let sz = min (totalSize-i) maxBlockSize
        let j = i+sz-1
        let carryLo = Array.append [| False |] carryLo.[i+1..j+1]
        let adderLo = rippleAdder sz x.[i..j] y.[i..j] sumLo.[i..j] carryLo
        let carryHi = Array.append [| True  |] carryHi.[i+1..j+1]
        let adderHi = rippleAdder sz x.[i..j] y.[i..j] sumHi.[i..j] carryHi
        let carrySelect = (carry.[j+1] === mux carry.[i] carryLo.[sz] carryHi.[sz])
        let sumSelect =
            Blocks
                [ for k in i..j ->
                    sum.[k] === mux carry.[i] sumLo.[k] sumHi.[k] ]
        adderLo &&& adderHi &&& carrySelect &&& sumSelect ]

You can now check that a carrySelectAdder is equivalent to a rippleAdder. Here’s the overall 
verification condition:

let checkAdders n k =
    let x = vec n "x"
    let y = vec n "y"
    let sumA    = vec n "sumA"
    let sumB    = vec n "sumB"
    let sumLo   = vec n "sumLo"
    let sumHi   = vec n "sumHi"
    let carryA  = vec (n+1) "carryA"
    let carryB  = vec (n+1) "carryB"
    let carryLo = vec (n+1) "carryLo"
    let carryHi = vec (n+1) "carryHi"
    let adder1 = carrySelectAdder n k x y sumLo sumHi carryLo carryHi sumA carryA
    let adder2 = rippleAdder n x y sumB carryB
    (adder1 &&& adder2 &&& (carryA.[0] === carryB.[0]) ==>
         (vecEq sumA sumB &&& bitEq carryA.[n] carryB.[n]))

Ignoring the construction of the inputs, the verification condition specifies the following:

Assume you have the two adder circuits, with the same inputs.

Assume the input carry bits are the same.

Then, the output sum vectors are identical, and the final output carry bits are 
identical.

Here is the verification condition being checked interactively, for 5-bit inputs, in chunks of 2 for the 
carrySelectAdder:



309

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

> bddBuilder.Equiv(checkAdders 5 2, True);;
val it : bool = true

In practice, BDDs require a good variable ordering, and the default alphabetic ordering is unlikely to 
be the best. Here is a larger verification using a more random ordering induced by first comparing on the 
hash codes of the names of the variables:

let approxCompareOn f x y =
    let c = compare (f x) (f y)
    if c <> 0 then c else compare x y
let bddBuilder2 = BddBuilder(approxCompareOn hash)

> bddBuilder2.Equiv(checkAdders 7 2, True);;
val it : bool = true

Seventy-four Boolean variables are involved in this last verification problem. You would have to 
generate up to 274 test cases to explore this systematically via testing; that’s 22 thousand billion billion test 
cases. By using symbolic techniques, you’ve explored this entire space in a matter of seconds and in only a 
few hundred lines of code.

■ Note Hardware and software verification are highly active areas of research and one of the most important 
applications of symbolic programming techniques in the industrial arena. The verifications performed here aim to 
give you a taste of how symbolic techniques can provide nontrivial results about circuits in a matter of seconds. 
We’ve omitted some simple techniques that can make these verifications scale to very large circuits; for example, 
we expand equivalence nodes in propositional formulae. Preserving them can lead to smaller symbolic descriptions 
and more efficient processing with BDDs. 

Symbolic Differentiation and Expression Rendering
You’ve probably come across the need to perform symbolic differentiation one way or another; and unless 
you had access to a full-fledged mathematics application such as Maple, Matlab or Mathematica, you had 
to resort to working out the math yourself on paper. This no longer has to be the case, because you can 
develop your own symbolic differentiation tool in almost no time and with surprising brevity and clarity. 
Figure 12-2 shows the symbolic differentiation application that you will implement in this chapter.



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

310

Modeling Simple Algebraic Expressions
Let’s take it easy at first and assume you’re dealing with simple algebraic expressions that can consist 
only of numbers, a single variable (it doesn’t matter what it is, but let’s assume it’s x), sums, and 
products. Listing 12-5 shows the implementation of symbolic differentiation over this simple expression 
type.

Listing 12-5. Symbolic Differentiation Over a Simple Expression Type

open System

type Expr =
    | Var
    | Num of int
    | Sum of Expr * Expr
    | Prod of Expr * Expr

let rec deriv expr =
    match expr with
    | Var           -> Num 1
    | Num _         -> Num 0
    | Sum (e1, e2)  -> Sum (deriv e1, deriv e2)
    | Prod (e1, e2) -> Sum (Prod (e1, deriv e2), Prod (e2, deriv e1))

Figure 12-2. The visual symbolic differentiation application



311

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

The type of the deriv function is as follows:

val deriv : expr:Expr -> Expr

Now, let’s find the derivative of a simple expression, say 1+2x:

> let e1 = Sum (Num 1, Prod (Num 2, Var));;
val e1 : Expr = Sum (Num 1,Prod (Num 2,Var))

> deriv e1;;
val it : Expr = Sum (Num 0,Sum (Prod (Num 2,Num 1),Prod (Var,Num 0)))

The resulting expression is a symbolic representation of 0+(2*1+x*0), which indeed is 2— so it’s right. 
You should do a couple of things next. First, install a custom printer so that F# Interactive responds using 
expressions that you’re more used to using. Before you apply brute force and put parentheses around the 
expressions in each sum and product, let’s contemplate it a bit. Parentheses are usually needed to give 
precedence to operations that would otherwise be applied later in the sequence of calculations. For 
instance, 2+3*4 is calculated as 2+(3*4) because the product has a higher precedence; if you were to find 
(2+3)*4, you would need to use parentheses to designate the new order of calculation. Taking this 
argument further, you can formulate the rule for using parentheses: they’re needed in places where an 
operator has lower precedence than the one surrounding it. You can apply this reasoning to the expression 
printer by passing a context precedence parameter:

let precSum = 10
let precProd = 20

let rec stringOfExpr prec expr =
    match expr with
    | Var   -> "x"
    | Num i -> i.ToString()
    | Sum (e1, e2) ->
        let sum = stringOfExpr precSum e1 + "+" + stringOfExpr precSum e2
        if prec > precSum then
            "(" + sum + ")"
        else
            sum
    | Prod (e1, e2) ->
        stringOfExpr precProd e1 + "*" + stringOfExpr precProd e2

You can add this as a custom printer for this expression type:

> fsi.AddPrinter (fun expr -> stringOfExpr 0 expr);;
val it : unit = ()

> let e3 = Prod (Var, Prod (Var, Num 2));;
val e3 : Expr = x*x*2

> deriv e3;;
val it : Expr = x*(x*0+2*1)+x*2*1



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

312

Parentheses are omitted only when a sum is participating in an expression that has a higher 
precedence, which in this simplified example means products. If you didn’t add precedence to the pretty-
printer, you’d get x*x*0+2*1+x*2*1 for the last expression, which is incorrect.

Implementing Local Simplifications
The next thing to do is to get your symbolic manipulator to simplify expressions so you don’t have to do so. 
One easy modification is to replace the use of the Sum and Prod constructors in deriv with local functions that 
perform local simplifications such as removing identity operations, performing arithmetic, bringing forward 
constants, and simplifying across two operations. Listing 12-6 shows how to do this.

Listing 12-6. Symbolic Differentiation with Local Simplifications

let simpSum = function
    | Num n, Num m -> Num (n+m)      // constants!
    | Num 0, e | e, Num 0 -> e       // 0+e = e+0 = e
    | e1, e2 -> Sum(e1, e2)

let simpProd = function
    | Num n, Num m -> Num (n*m)      // constants!
    | Num 0, e | e, Num 0 -> Num 0   // 0*e=0
    | Num 1, e | e, Num 1 -> e       // 1*e = e*1 = e
    | e1, e2 -> Prod(e1, e2)

let rec simpDeriv = function
    | Var           -> Num 1
    | Num _         -> Num 0
    | Sum (e1, e2)  -> simpSum (simpDeriv e1, simpDeriv e2)
    | Prod (e1, e2) -> simpSum (simpProd (e1, simpDeriv e2),
                                simpProd (e2, simpDeriv e1))

These measures produce significant improvement over the previous naive approach, but they don’t 
place the result in a normal form, as the following shows:

> simpDeriv e3;;

val it : Expr = x*2+x*2

However, you can’t implement all simplifications using local rules; for example, collecting like terms 
across a polynomial involves looking at every term of the polynomial.

■ Note Listing 12-6 uses the expression form function pattern-rules -> expression. This is equivalent 
to (fun x -> match x with pattern-rules -> expression) and is especially convenient as a way to 
define functions working directly over discriminated unions.



313

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

A Richer Language of Algebraic Expressions
This section goes beyond the approach presented so far and shows how to develop a UI application that can 
accept algebraic expressions as input and simplify, differentiate, and render them graphically. Figure 12-3 
shows the project structure. To run this example, you will need to install the F# PowerPack, a collection of 
useful F# tools and libraries available at http://fsharppowerpack.codeplex.com; and add library references 
to FSharp.PowerPack from the F# PowerPack and System.Windows.Forms from the standard .NET libraries. For 
convenience, you can add the lexer ExprLexer.fsl and the parser ExprParser.fsy to the project so you can 
quickly edit them if necessary. You can manually include a reference to the F# PowerPack targets in the 
project file to automatically generate code for the parser and lexer definitions, or you can manually generate 
these files. You do the latter for this example, but in both cases you need to add the generated files 
(ExprParser.fs and ExprLexer.fs) to the project.

The main Expr type that represents algebraic expressions is contained in Expr.fs. Although you can 
use the expression constructors defined in this type to create expression values on the fly, the most 
convenient method for embedding complex expressions into this representation is by parsing them.

Armed with the ability to encode and parse algebraic expressions, you place the derivation and 
simplification logic in its own module and file (ExprUtil.fs). The last piece is rendering (in VisualExpr.
fs). Finally, a simple UI client in Main.fs completes the application.

Listing 12-7 shows the definition of the abstract syntax representation of expressions using a single 
Expr type. Expressions contain numbers, variables, negation, sums, differences, products, fractions, 
exponents, basic trigonometric functions (sin x, cos x), and ex.

Figure 12-3. The Symbolic Differentiation Solution in Visual Studio 2012



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

314

Let’s look at this abstract syntax design more closely. In Chapter 9, you saw that choosing an abstract 
syntax often involves design choices, and that these choices often relate to the roles the abstract syntax 
representation should serve. In this case, you use the abstract syntax to compute symbolic derivatives and 
simplifications (using techniques similar to those earlier in this chapter) and also to graphically visualize 
the resulting expressions in a way that is pleasant for the human user. For this reason, you don’t use an 
entirely minimalistic abstract syntax (for example, by replacing quotients with an inverse node), because 
it’s helpful to maintain some additional structure in the input.

Here, you represent sums and differences not as binary terms (as you do for products and quotients) 
but instead as a list of expression terms. The Sub term also carries the minuend, the term that is to be 
reduced, separately. As a result, you have to apply different strategies when simplifying them.

Listing 12-7. Expr.fs: The Core Expression Type for the Visual Symbolic Differentiation Application

namespace Symbolic.Expressions

type Expr =
    | Num  of decimal
    | Var  of string
    | Neg  of Expr
    | Add  of Expr list
    | Sub  of Expr * Expr list
    | Prod of Expr * Expr
    | Frac of Expr * Expr
    | Pow  of Expr * decimal
    | Sin  of Expr
    | Cos  of Expr
    | Exp  of Expr

    static member StarNeeded e1 e2 =
        match e1, e2 with
        | Num _, Neg _ | _, Num _ -> true
        | _ -> false

    member self.IsNumber =
        match self with
        | Num _ -> true | _ -> false

    member self.NumOf =
        match self with
        | Num num -> num | _ -> failwith "NumOf: Not a Num"

    member self.IsNegative =
        match self with
        | Num num | Prod (Num num, _) -> num < 0M
        | Neg e -> true | _ -> false

    member self.Negate =
        match self with
        | Num num -> Num (-num)
        | Neg e -> e
        | exp -> Neg exp



315

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

Listing 12-7 also shows the definition of some miscellaneous augmentations on the expression type, 
mostly related to visual layout and presentation. The StarNeeded member is used internally to determine 
whether the multiplication operator (the star symbol, or asterisk) is needed in the product of two 
expressions, e1 and e2. You may want to extend this simple rule: any product whose right side is a number 
requires the explicit operator, and all other cases don’t. Thus, expressions such as 2(x+1) and 2x are 
rendered without the asterisk.

The IsNumber member returns true if the expression at hand is numeric and is used in conjunction with 
NumOf, which returns this numeric component. Similarly, the IsNegative and Negate members determine 
whether you have an expression that starts with a negative sign, and they negate it on demand.

Parsing Algebraic Expressions
This sample uses a lexer and a parser generated by the F# tools fsyacc.exe and fslex.exe, available as part 
of the F# PowerPack. This chapter skips over the details of how the tools work; instead it assumes that you 
have these tools installed. Listings 12-8 and 12-9 show the code for the lexer and parser. You need to 
manually build the lexer (generating ExprLexer.fs) and parser (generating ExprParser.fs) from the 
Windows command line as follows:

C:\samples> fsyacc ExprParser.fsy --module ExprParser
C:\samples> fslex ExprLexer.fsl --unicode

Listing 12-8. ExprLexer.fsl: Tokenizing the Concrete Syntax for Algebraic Expressions

{
module ExprLexer

open System
open Microsoft.FSharp.Text.Lexing
open ExprParser

let lexeme = LexBuffer<_>.LexemeString

let special lexbuf = function
    | "+" -> PLUS    | "-" -> MINUS
    | "*" -> TIMES   | "/" -> DIV
    | "(" -> LPAREN  | ")" -> RPAREN  | "^" -> HAT
    | _   -> failwith "Invalid operator"

let id lexbuf = function
    | "sin" -> SIN   | "cos" -> COS
    | "e"   -> E     | id    -> ID id
}

let digit     = ['0'-'9']
let int       = digit+
let float     = int ('.' int)? (['e' 'E'] int)?
let alpha     = ['a'-'z' 'A'-'Z']
let id        = alpha+ (alpha | digit | ['_' '$'])*
let ws        = ' ' | '\t'



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

316

let nl        = '\n' | '\r' '\n'
let special   = '+' | '-' | '*' | '/' | '(' | ')' | '^'

rule main = parse
    | int        { INT     (Convert.ToInt32(lexeme lexbuf)) }
    | float      { FLOAT   (Convert.ToDouble(lexeme lexbuf)) }
    | id         { id      lexbuf (lexeme lexbuf) }
    | special    { special lexbuf (lexeme lexbuf) }
    | ws | nl    { main    lexbuf }
    | eof        { EOF }
    | _          { failwith (lexeme lexbuf) }

The parser has some syntactic sugar for polynomial terms, so it can parse 2x, 2x^3, or x^4 without 
requiring you to add an explicit multiplication after the coefficient.

Listing 12-9. ExprParser.fsy: Parsing the Concrete Syntax for Algebraic Expressions

%{
open System
open Symbolic.Expressions
%}

%token <int> INT
%token <float> FLOAT
%token <string> ID

%token EOF LPAREN RPAREN PLUS MINUS TIMES DIV HAT SIN COS E

%left ID
%left prec_negate
%left LPAREN
%left PLUS MINUS
%left TIMES DIV
%left HAT

%start expr
%type <Expr> expr
%%

expr:
    | exp EOF { $1 }

number:
    | INT                           { Convert.ToDecimal($1) }
    | FLOAT                         { Convert.ToDecimal($1) }
    | MINUS INT %prec prec_negate   { Convert.ToDecimal(-$2) }
    | MINUS FLOAT %prec prec_negate { Convert.ToDecimal(-$2) }



317

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

exp:
    | number                  { Num $1 }
    | ID                      { Var $1 }
    | exp PLUS exp            { Add [$1; $3] }
    | exp MINUS exp           { Sub ($1, [$3]) }
    | exp TIMES exp           { Prod ($1, $3) }
    | exp DIV exp             { Frac ($1, $3) }
    | SIN LPAREN exp RPAREN   { Sin $3 }
    | COS LPAREN exp RPAREN   { Cos $3 }
    | E HAT exp               { Exp $3 }
    | term                    { $1 }
    | exp HAT number          { Pow ($1, $3) }
    | LPAREN exp RPAREN       { $2 }
    | MINUS LPAREN exp RPAREN { Neg $3 }

term:
    | number ID               { Prod (Num $1, Var $2) }
    | number ID HAT number    { Prod (Num $1, Pow (Var $2, $4)) }
    | ID HAT number           { Prod (Num 1M, Pow (Var $1, $3)) }

Simplifying Algebraic Expressions
At the start of this chapter, you simplified expressions using local techniques, but you also saw the 
limitations of this approach. Listing 12-10 shows a more complete implementation of a separate function 
(Simplify) that performs some nonlocal simplifications as well. Both this function and the one for 
derivation shown in the subsequent section are placed in a separate file (ExprUtil.fs).

Simplify uses two helper functions (collect and negate). The former collects constants from products 
using a bottom-up strategy that reduces constant subproducts and factors out constants by bringing them 
outward (to the left). Recall that product terms are binary.

Listing 12-10. ExprUtils.fs: Simplifying Algebraic Expressions

module Symbolic.Expressions.Utils

open Symbolic.Expressions

/// A helper function to map/select across a list while threading state
/// through the computation
let selectFold f l s =
    let l,s' = List.fold
                  (fun (l',s') x ->
                       let x',s'' = f x s'
                       (List.rev x') @ l',s'')
                  ([],s) l
    List.rev l,s'

/// Collect constants
let rec collect = function
    | Prod (e1, e2) ->
        match collect e1, collect e2 with
        | Num num1, Num num2       -> Num (num1 * num2)



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

318

        | Num n1, Prod (Num n2, e)
        | Prod (Num n2, e), Num n1 -> Prod (Num (n1 * n2), e)
        | Num n, e | e, Num n      -> Prod (Num n, e)
        | Prod (Num n1, e1), Prod (Num n2, e2) ->
            Prod (Num (n1 * n2), Prod (e1, e2))
        | e1', e2'                 -> Prod (e1', e2')
    | Num _ | Var _ as e   -> e
    | Neg e                -> Neg (collect e)
    | Add exprs            -> Add (List.map collect exprs)
    | Sub (e1, exprs)      -> Sub (collect e1, List.map collect exprs)
    | Frac (e1, e2)        -> Frac (collect e1, collect e2)
    | Pow (e1, num)        -> Pow (collect e1, num)
    | Sin e                -> Sin (collect e)
    | Cos e                -> Cos (collect e)
    | Exp _ as e           -> e

/// Push negations through an expression
let rec negate = function
    | Num num           -> Num (-num)
    | Var v as exp      -> Neg exp
    | Neg e             -> e
    | Add exprs         -> Add (List.map negate exprs)
    | Sub _             -> failwith "unexpected Sub"
    | Prod (e1, e2)     -> Prod (negate e1, e2)
    | Frac (e1, e2)     -> Frac (negate e1, e2)
    | exp               -> Neg exp

/// Simplify an expression
let rec simp = function
    | Num num           -> Num num
    | Var v             -> Var v
    | Neg e             -> negate (simp e)
    | Add exprs ->
        let filterNums (e:Expr) n =
           if e.IsNumber
           then [], n + e.NumOf
           else [e], n
        let summands = function | Add es -> es | e -> [e]
        let exprs', num =
            selectFold (simp >> summands >> selectFold filterNums) exprs 0M
        match exprs' with
        | [Num _ as n] when num = 0M -> n
        | []                         -> Num num
        | [e] when num = 0M          -> e
        | _ when num = 0M            -> Add exprs'
        | _                          -> Add (exprs' @ [Num num])
    | Sub (e1, exprs) ->
         simp (Add (e1 :: List.map Neg exprs))
    | Prod (e1, e2) ->
        match simp e1, simp e2 with
        | Num num, _ | _, Num num when num = 0M -> Num 0M



319

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

        | Num num, e | e, Num num when num = 1M -> e
        | Num num1, Num num2                    -> Num (num1 * num2)
        | e1, e2                                -> Prod (e1, e2)
    | Frac (e1, e2) ->
        match simp e1, simp e2 with
        | Num num, _ when num = 0M  -> Num num
        | e1, Num num when num = 1M -> e1
        | Num (_  as num), Frac (Num (_ as num2), e) ->
             Prod (Frac (Num num, Num num2), e)
        | Num (_  as num), Frac (e, Num (_ as num2)) ->
             Frac (Prod (Num num, Num num2), e)
        | e1, e2                    -> Frac (e1, e2)
    | Pow (e, n) when n=1M -> simp e
    | Pow (e, n)           -> Pow (simp e, n)
    | Sin e                -> Sin (simp e)
    | Cos e                -> Cos (simp e)
    | Exp e                -> Exp (simp e)

let Simplify e = e |> simp |> simp |> collect

The main simplification algorithm works as follows:

Constants and variables are passed through verbatim. You use negate when 
simplifying a negation, which assumes the expression at hand no longer contains 
differences and that sums were flattened (see the next item in this list).

Sums are traversed and nested sums are flattened, at the same time all constants are 
collected and added up. This reduces the complexity of further simplification 
considerably.

Differences are converted to sums: for instance, A-B-C is converted to A+(-B)+(-C). 
Thus, the first element is preserved without negation.

When simplifying a product, you first simplify its factors, and then you remove 
identity operations (multiplying by zero or one) and reduce products of constants.

Fractions are handled similarly. Zero divided by anything is 0, anything divided by 1 
is itself, and multiline fractions can be collapsed if you find numeric denominators 
or numerators.

The rest of the match cases deal with simplifying subexpressions.

Symbolic Differentiation of Algebraic Expressions
Applying symbolic differentiation is a straightforward translation of the mathematical rules of 
differentiation into code. You could use local functions that act as constructors and perform local 
simplifications, but with the simplification function described earlier, this isn’t needed. Listing 12-11 
shows the implementation of symbolic differentiation for the Expr type. Note how beautifully and 
succinctly the code follows the math behind it: the essence of the symbolic processing is merely 20 lines of 
code!



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

320

Listing 12-11. ExprUtil.fs (continued): Symbolic Differentiation for Algebraic Expressions

let Differentiate v e =
    let rec diff v = function
        | Num num          -> Num 0M
        | Var v' when v'=v -> Num 1M
        | Var v'           -> Num 0M
        | Neg e            -> diff v (Prod ((Num -1M), e))
        | Add exprs        -> Add (List.map (diff v) exprs)
        | Sub (e1, exprs)  -> Sub (diff v e1, List.map (diff v) exprs)
        | Prod (e1, e2)    -> Add [Prod (diff v e1, e2); Prod (e1, diff v e2)]
        | Frac (e1, e2)    ->
            Frac (Sub (Prod (diff v e1, e2), [Prod (e1, diff v e2)]),
                  Pow (e2, 2M))
        | Pow (e1, num)    ->
            Prod (Prod (Num num, Pow (e1, num - 1M)), diff v e1)
        | Sin e            -> Prod (Cos e, diff v e)
        | Cos e            -> Neg (Prod (Sin e, diff v e))
        | Exp (Var v') as e when v'=v  -> e
        | Exp (Var v') as e when v'<>v -> Num 0M
        | Exp e            -> Prod (Exp e, diff v e) 
    diff v e

Rendering Expressions
Now that you have the basic machinery to easily parse, simplify, and differentiate expressions, you can 
start looking into how to visualize them to really enjoy the benefits of the application. The rendering 
engine (placed in VisualExpr.fs) has two main parts: converting expressions to VisualExpr values and 
then rendering them directly. Ideally, you should hide the representation of the VisualExpr (and its related 
VisualElement) type with a signature (not shown here) so that it isn’t possible to construct these values 
directly.

Before you get to the conversion and rendering functions, you need to do a bit of setup. To control 
how the different parts of an expression are rendered on the screen, you introduce the RenderOptions type 
containing the fonts and pen (which determines the color used to draw) that are applied during rendering. 
Listing 12-12 shows the code that defines the rendering options used in the remainder of this example.

Listing 12-12. VisualExpr.fs: Rendering Options for the Visual Symbolic Differentiation Application

namespace Symbolic.Expressions.Visual

open Symbolic.Expressions
open System.Drawing
open System.Drawing.Imaging

type RenderOptions =
    { NormalFont: Font;  SmallFont: Font;  IsSuper: bool;  Pen: Pen; }

    static member Default =
        {
            NormalFont = new Font("Courier New", 18.0f, FontStyle.Regular)
            SmallFont = new Font("Courier New", 12.0f, FontStyle.Regular)



321

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

            IsSuper = false
            Pen = new Pen(Color.Black, 1.0f)
        }

    member self.Brush =
        (new SolidBrush(Color.FromArgb(255, self.Pen.Color)) :> Brush)

Each algebraic expression is converted to a VisualExpr value as part of the rendering process. This 
ensures that you don’t have to deal with the variety of expression forms but only with a small set of simple 
shapes that can be rendered according to a few simple rules. These simpler building blocks are defined in 
the VisualElement type and shown in Listing 12-13. For instance, there are no sums or products; these and 
similar expressions are broken down into sequences of symbols (such as 1, x, and +). The two other visual 
elements are exponentiation and fractions, which are used to guide the display logic later during the 
rendering phase. Each visual element carries a size value that is calculated using a given set of rendering 
options.

Listing 12-13. VisualExpr.fs (continued): Visual Elements and Sizes for the Visual Symbolic Differentiation 
Application

type VisualElement =
    | Symbol   of string * ExprSize
    | Power    of VisualElement * VisualElement * ExprSize
    | Sequence of VisualElement list * ExprSize
    | Fraction of VisualElement * VisualElement * ExprSize

    member self.Size =
        match self with
        | Symbol (_, size) | Power (_, _, size)
        | Sequence (_, size) | Fraction (_, _, size) -> size

    member self.Height  = self.Size.Height
    member self.Width   = self.Size.Width
    member self.Midline = self.Size.Midline

and ExprSize =
    { Width: int;  Height: int;  Midline: int; }

    member self.CenterOnMidline size x y =
        x + (size.Width-self.Width)/2, y + (size.Midline-self.Midline)

    member self.Frac size opt =
        {
            Width = max self.Width size.Width
            Height = self.Height + size.Height + self.FracSepHeight opt
            Midline = self.Height + (self.FracSepHeight opt)/2
        }

    member self.FracSepHeight (opt: RenderOptions) =
        max (int (opt.Pen.Width * 5.0f)) 4

    member self.AddPower (e: VisualElement) =



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

322

        {
            Width = self.Width + e.Width
            Height = self.Height + e.Height
            Midline = self.Midline + e.Height
        }

    static member ExpandOne (size: ExprSize) (e: VisualElement) =
        {
            Width   = size.Width + e.Width
            Height  = max size.Height e.Height
            Midline = max size.Midline e.Midline
        }

    member self.Expand (exprs: VisualElement list) =
        List.fold ExprSize.ExpandOne self exprs

    static member Seq (exprs: VisualElement list) =
        List.fold ExprSize.ExpandOne ExprSize.Zero exprs

    static member Zero =
        { Width=0; Height=0; Midline=0; }

The size value encodes the dimensions (width and height in pixels) of the related visual expression 
and is managed through the ExprSize type, which provides various members to compute precise 
dimensions. Basically, this type handles the gory details of putting together small visuals to compose a 
large expression and manages how and where these small visuals should be placed. The main guideline is 
to align these visuals on a line (measured from the top of the expression in pixels and stored in the Midline 
field), as depicted in Figure 12-4.

The darker rectangles in this figure denote arbitrary expressions, whereas the lighter rectangles mark 
the dimensions of the parent expression aligned on the midline.



323

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

Converting to VisualExpr
Listing 12-14 shows the type VisualExpr that carries the main visual element and the rendering options that 
were used to produce it. This type also provides the method OfExpr to build a VisualExpr from an Expr.

Listing 12-14. VisualExpr.fs (continued): Visual Expressions for the Visual Symbolic Differentiation 
Application

type VisualExpr =
    { Expression : VisualElement;  RenderOptions: RenderOptions; }

    static member OfExpr (opt: RenderOptions) e =
        use bmp = new Bitmap(100, 100, PixelFormat.Format32bppArgb)
        use gra = Graphics.FromImage(bmp)
        let sizeOf (opt: RenderOptions) s =
            use sFormat = new StringFormat(StringFormat.GenericTypographic)
            let font = if opt.IsSuper then opt.SmallFont else opt.NormalFont
            let size = gra.MeasureString(s, font, PointF(0.0f, 0.0f), sFormat)
            let height = int size.Height

Figure 12-4. Expressions and their sizes



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

324

            {
                Width = int size.Width + 2
                Height = height
                Midline = height/2
            }
        let precPow = 70
        let precProd1, precProd2 = 30, 40
        let precAdd1, precAdd2 = 10, 11
        let precStart = 5
        let precNeg1, precNeg2 = 1, 20
        let sym opt s = Symbol (s, sizeOf opt s)

        let applyPrec opt pprec prec exprs (size: ExprSize) =
            if pprec > prec then
                sym opt "(" :: exprs @ [sym opt ")"],
                size.Expand [sym opt "("; sym opt ")"]
            else
                exprs, size

        let mkSequence opt pprec prec exprs =
            let size = ExprSize.Seq exprs
            let exprs, size = applyPrec opt pprec prec exprs size
            Sequence (exprs, size)

        let rec expFunc opt f par =
            let f' = sym opt f
            let exprs' = [sym opt "("; exp opt precStart par; sym opt ")"]
            Sequence (f' :: exprs', f'.Size.Expand exprs')

        and exp (opt: RenderOptions) prec = function
            | Num n ->
                let s = n.ToString() in Symbol (s, sizeOf opt s)
            | Var v ->
                Symbol (v, sizeOf opt v)
            | Neg e ->
                 let e' = exp opt precNeg1 e
                 let exprs, size = applyPrec opt prec precNeg1 [e'] e'.Size
                 let exprs' = [sym opt "-"] @ exprs
                 mkSequence opt prec precNeg2 exprs'
            | Add exprs ->
                 let exprs' =
                     [ for i,e in Seq.mapi (fun i x -> (i,x)) exprs do
                           let first = (i=0)
                           let e' = exp opt (if first then precAdd1 else precAdd2) e
                           if first || e.IsNegative
                           then yield! [e']
                           else yield! [sym opt "+"; e'] ]
                 mkSequence opt prec precAdd1 exprs'
            | Sub (e1, exprs) ->
                 let e1' = exp opt prec e1
                 let exprs' =



325

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

                     [ for e in exprs do
                           if e.IsNegative then
                              let e' = exp opt precAdd2 e.Negate
                              yield! [sym opt "+"; e']
                           else
                              let e' = exp opt precAdd2 e
                              yield! [sym opt "-"; e'] ]

                 mkSequence opt prec precAdd1 (e1'::exprs')
            | Prod (e1, e2) ->
                 let e1' = exp opt precProd1 e1
                 let e2' = exp opt precProd2 e2
                 let exprs' =
                     if Expr.StarNeeded e1 e2
                     then [e1'; sym opt "*"; e2']
                     else [e1'; e2']
                 mkSequence opt prec precProd1 exprs'
            | Pow (e1, e2) ->
                 let e1' = exp opt precPow e1
                 let e2' = exp { opt with IsSuper=true } precPow (Num e2)
                 Power (e1', e2', e1'.Size.AddPower e2')
            | Sin e ->
                 expFunc opt "sin" e
            | Cos e ->
                 expFunc opt "cos" e
            | Exp expo ->
                 let e' = sym opt "e"
                 let expo' = exp { opt with IsSuper=true } precPow expo
                 Power (e', expo', e'.Size.AddPower expo')

            | Frac (e1, e2) ->
                 let e1' = exp opt precStart e1
                 let e2' = exp opt precStart e2
                 Fraction (e1', e2', e1'.Size.Frac e2'.Size opt)
        let exp = exp opt precStart e
        { Expression=exp; RenderOptions=opt; }

The conversion implemented in Listing 12-14 is relatively straightforward. It uses various local helper 
functions to break each expression into smaller visual elements, carefully keeping track of the bounding-
box calculation. There are a number of things to consider: precedence is enforced, and expressions are 
parenthesized as necessary. For example, consider how you convert a product:

| Prod (e1, e2) ->
     let e1' = exp opt precProd1 e1
     let e2' = exp opt precProd2 e2
     let exprs' =
         if Expr.StarNeeded e1 e2
         then [e1'; sym opt "*"; e2']
         else [e1'; e2']
     mkSequence opt prec precProd1 exprs'



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

326

This code converts the two interior expressions and decides on a list of display symbols by first 
checking whether a multiplication symbol is required. The function mkSequence then calculates the size of 
this new list of expressions, applies precedence rules to determine whether parentheses are required, and 
produces a final visual element as a result.

Other cases are handled similarly; for sums, you iterate through the elements exprs in the sum using 
sequence expression notation. If you find a negative term, you omit the plus sign (so 1+(-2) is rendered as 
1-2). Differences are treated similarly, but here you change negative terms to positive, so 3-2-(-1) becomes 
3-2+1. When converting products, you omit the multiplication operator if you can.

Rendering
Listing 12-15 shows the code for rendering visual expressions. You may have noticed in the definition of 
the VisualElement type that the only directly drawable visual element is Symbol. The other constructors 
carry one or more visual elements that must be drawn recursively and according to a well-defined logic. 
The key observation in the rendering function in Listing 12-15 is that, when drawing each element, you 
pass in the x and y coordinates of the bounding box in which it’s to be drawn. You also pass in the size of 
the parent box in which the element is to be aligned (as guided by the midline property).

Listing 12-15. VisualExpr.fs (continued): Rendering Visual Expressions

type VisualExpr =
    ...
    member self.Render =
        let pt x y = PointF(float32 x, float32 y)
        let rec draw (gra: Graphics) opt x y psize = function
            | Symbol (s, size) ->
                let font =
                    if opt.IsSuper then opt.SmallFont else opt.NormalFont
                let x', y' = size.CenterOnMidline psize x y
                gra.DrawString(s, font, opt.Brush, pt x' y')
            | Power (e1, e2, size) ->
                let x', y' = size.CenterOnMidline psize x y
                draw gra opt x' (y'+e2.Height) e1.Size e1
                draw gra { opt with IsSuper=true } (x'+e1.Width) y' e2.Size e2
            | Sequence (exps, size) ->
                let x', y' = size.CenterOnMidline psize x y
                List.fold (fun (x, y) (e: VisualElement) ->
                     let psize' =
                         {
                             Width = e.Width
                             Height = psize.Height;
                             Midline =size.Midline
                         }
                     draw gra opt x y psize' e
                     x+e.Width, y) (x', y') exps |> ignore
            | Fraction (e1, e2, size) as e ->
                let psize1 =
                    { psize with Height=e1.Height; Midline=e1.Midline }
                let psize2 =
                    { psize with Height=e2.Height; Midline=e2.Midline }
                draw gra opt x y psize1 e1



327

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

                gra.DrawLine(self.RenderOptions.Pen, x, y+size.Midline,
                             x+psize.Width, y+size.Midline);
                draw gra opt x (y+e1.Height+size.FracSepHeight opt) psize2 e2
        let bmp = new Bitmap(self.Expression.Width, self.Expression.Height,
                             PixelFormat.Format32bppArgb)
        let gra = Graphics.FromImage(bmp)
        gra.FillRectangle(new SolidBrush(Color.White), 0, 0,
                          self.Expression.Width+1, self.Expression.Height+1)
        draw gra self.RenderOptions 0 0 self.Expression.Size self.Expression
        bmp

Building the User Interface
Listing 12-16 is the final piece: the UI client (Main.fs). It’s simple yet powerful. The main form contains an 
input field and a preview panel where the expressions are rendered on the fly as typed in. When the user 
presses the Enter key, a new MDI child window is created, and the original, simplified, derived, and final 
expressions are rendered on it. A bit of extra work is involved in creating the child windows to make them 
scrollable.

Listing 12-16. Main.fs: The User Interface Client for the Visual Symbolic Differentiation Application

module Symbolic.Expressions.UI

open Symbolic.Expressions
open Symbolic.Expressions.Visual
open System.Windows.Forms
open System.Drawing

let CreateScrollableChildWindow parent =
    let scroll = new ScrollableControl(Dock=DockStyle.Fill, AutoScroll=true)
    let form2 = new Form(MdiParent=parent, BackColor=Color.White)
    form2.Controls.Add scroll
    form2, scroll

let NewExpression parent s es =
    let form, scroll = CreateScrollableChildWindow parent
    let AddLabel (top, maxw) (parent: Control) s =
        let l = new Label(Text=s, AutoSize=true, Top=top)
        parent.Controls.Add l
        (top+l.Height), max maxw l.Width
    let AddPic (top, maxw) (parent: Control) (e: Expr) =
        let e' = VisualExpr.OfExpr RenderOptions.Default e
        let bmp = e'.Render
        let pic = new PictureBox(Image=bmp, Height=bmp.Height,
                                 Width=bmp.Width, Top=top)
        parent.Controls.Add pic
        (top+bmp.Height), max maxw bmp.Width
    let height, width = List.fold (fun top (lab, e) ->
        AddPic (AddLabel top scroll lab) scroll e) (0, 0) es
    form.Text <- s
    form.Height <- min 640 (height+40)
    form.Width <- min 480 (width+40)
    form.Show()



CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

328

let UpdatePreview (scroll: Control) e =
    let e' = VisualExpr.OfExpr RenderOptions.Default e
    let bmp = e'.Render
    let pic = new PictureBox(Image=bmp, Height=bmp.Height, Width=bmp.Width)
    scroll.Controls.Clear()
    scroll.Controls.Add pic

let NewExpressionError form s =
    let cform, scroll = CreateScrollableChildWindow form
    let label = new Label(Text=s, Font=new Font("Courier New", 10.f), AutoSize=true)
    scroll.Controls.Add label
    cform.Show()

exception SyntaxError

let Parse s =
    let lex = Lexing.LexBuffer<char>.FromString s
    try ExprParser.expr ExprLexer.main lex
    with _ -> raise SyntaxError

let NewStringExpression form s =
    try
        let e1 = Parse s
        let e2 = Utils.Simplify e1
        let e3 = Utils.Differentiate "x" e2
        let e4 = Utils.Simplify e3
        NewExpression form s ["Original:", e1; "Simplified:", e2;
                              "Derivative:", e3; "Simplified:", e4]
    with
      | SyntaxError ->
          let msg = Printf.sprintf "Syntax error in:\n%s" s
          NewExpressionError form msg
      | Failure msg ->
          NewExpressionError form msg

let ConstructMainForm () =
    let form   = new Form(Text="Symbolic Differentiation Example",
                          IsMdiContainer=true,
                          Visible=true, Height=600, Width=700)
    let label   = new Label(Text="Enter function=", Width=100, Height=20)
    let tb      = new TextBox(Width=150, Left=100)
    let panel   = new Panel(Dock=DockStyle.Top, Height=tb.Height+50)
    let preview = new Panel(Dock=DockStyle.Bottom, BackColor=Color.White,
                            Height=50, BorderStyle=BorderStyle.FixedSingle)
    panel.Controls.AddRange([|label; preview; tb |])
    form.Controls.Add(panel)
    tb.KeyUp.Add (fun arg ->
       if arg.KeyCode = Keys.Enter then
           NewStringExpression form tb.Text
           tb.Text <- ""
           tb.Focus() |> ignore
       else



329

CHAPTER 12 ■ SYMBOLIC PROGRAMMING WITH STRUCTURED DATA 

           try
               let e = Parse tb.Text
               UpdatePreview preview e
           with
           | _ -> ())
    form

let form = ConstructMainForm ()
NewStringExpression form "cos(sin(1/(x^2+1)))"
Application.Run(form)

To recap, in this example you’ve seen the following:

Two abstract syntax representations for different classes of algebraic expressions: 
one simple, and one much more realistic

How to implement simplification and symbolic differentiation routines on these 
representations of algebraic expressions

How to implement parsing and lexing for concrete representations of algebraic 
expressions

How to perform size estimation and visual layout for abstract syntax representations 
of algebraic expressions, here using Windows Forms

How to put this together into a final application

Summary
This chapter looked at two applications of language-oriented symbolic programming. The first was hardware 
modeling and verification using propositional logic and binary decision diagrams, where you saw how to use 
symbolic techniques to describe circuits as propositional logic formulae and then used brute-force and/or 
binary decision diagram techniques to analyze these for correctness. The second was algebraic symbolic 
differentiation and visualization, where you learned how to differentiate, simplify, and display algebraic 
expressions. These examples are only two of many in the large domain of symbolic computation problems, a 
domain where functional programming and F# truly excels.



331

■ ■ ■

CHAPTER 13

Integrating External Data  
and Services 

One of the major trends in modern computing is “the data deluge,” meaning the rapid rise in availability of 
massive quantities of digital information available for analysis, especially through reliable networked 
services and large-scale data storage systems.  Some of this data may be collected by an individual or an 
organization, some may be acquired from data providers, and some from free data sources. 

In this world, programmed services and applications can be viewed as components that consume, 
filter, transform and re-republish information within a larger connected and reactive system. Nearly all 
modern software components or applications incorporate one or more external information sources.  This 
may include static data in tables, static files copied into your application, data coming from relational 
databases, data coming from networked services (including the web or the local enterprise network), or 
data from the ambient context of sensors and devices. When the whole web is included, there are an 
overwhelming number of data sources which you might use, and hundreds more appearing every month!  
The digital world is exploding with information, almost beyond imagination.

For example, consider the data provided by the World Bank (http://api.worldbank.org), which 
includes thousands of data sets for hundreds of countries. From one perspective, this is a lot of data: it 
would take you a long time to learn and explore all this, and there are a lot of practical things you can do 
with it. However, from another perspective, the World Bank data is tiny: it is just one data source hidden in 
one remote corner of the Internet which you’ve probably never heard of until just now.  

Because the world of external data is so big, in this chapter we can’t hope to describe how to use every 
data source, or even every “kind” of data source. We also can’t cover the incredible range of things you 
might want to do with different data sources. Instead, this chapter introduces a selection of topics in data-
rich programming. Along the way you get to use and learn some important and innovative F# features 
related to this space.  

You first learn some simple and pragmatic techniques to work with external web 
data using HTTP REST requests, XML, and JSON.

You then look at how F# 3.0 allows for language integration of some schematized 
data sources through the type provider feature introduced in this version of the 
language. You learn how to use the F# built-in type providers to query OData REST 
services and SQL databases directly from F# code in a more immediate way.

You then learn how to author more advanced queries, including sorting, grouping, 
joins, and statistical aggregates. 



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

332

You then look at how to use the lower-level ADO.NET libraries for some data 
programming tasks for relational databases.

Along the way, remember that the role of F# is as a workhorse to help control the complexity of 
working with external data.  

Some Basic REST Requests
We begin our adventures in working with external information sources by looking at some simple 
examples of making HTTP REST requests to web-hosted resources.  You have already used the basic code 
to make an HTTP request in Chapters 2 and 3:

open System.IO
open System.Net

let http (url: string) = 
    let req = WebRequest.Create(url)
    use resp = req.GetResponse()
    use stream = resp.GetResponseStream()
    let reader = new StreamReader(stream)
    reader.ReadToEnd()

You have used this function to fetch web pages containing HTML, but it can also be used to fetch 
structured data in formats such as XML and JSON from web-hosted services. For example, one such 
service is the World Bank API mentioned in the introduction to this chapter. This service exposes a data 
space containing regions, countries and indicators, where the indicators are a time-series of time/value 
pairs. You can fetch the list of countries by using:

let worldBankCountriesXmlPage1 = http "http://api.worldbank.org/country"

This fetches the first page of the country list as XML, and the results will be like this:

val worldBankCountriesXmlPage1 : string =
  "<?xml version="1.0" encoding="utf-8"?>
<wb:countries page="1"+[25149 chars]

> worldBankCountriesXmlPage1;;

val it : string =
  "<?xml version="1.0" encoding="utf-8"?>
<wb:countries page="1" pages="5" per_page="50" total="246" xmlns:wb="http://www.worldbank.
org">
  <wb:country id="ABW">
    <wb:iso2Code>AW</wb:iso2Code>
    <wb:name>Aruba</wb:name>
    <wb:region id="LCN">Latin America &amp; Caribbean (all income levels)</wb:region>
    <wb:adminregion id="" />
    <wb:incomeLevel id="NOC">High income: nonOECD</wb:incomeLevel>
    <wb:lendingType id="LNX">Not classified</wb:lendingType>
    <wb:capitalCity>Oranjestad</wb:capitalCity>
    <wb:longitude>-70.0167</wb:longitude>
    <wb:latitude>12.5167</wb:latitude>



333

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

  </wb:country>
  <wb:country id="AFG">
...
  </wb:country>
...
</wb:countries>"

Getting Data in JSON Format
Web data sources typically support both XML and JSON result formats. For example, you can fetch the 
same data in JSON format as follows:

let worldBankCountriesJsonPage1 = http "http://api.worldbank.org/country?format=json"

The results will then look like this:

val worldBankCountriesJsonPage1 : string =
  "[{"page":1,"pages":5,"per_page":"50","total":246},[{"id":"ABW"+[17322 chars]

Parsing the XML or JSON Data 
Once we have the resulting XML or JSON data back from the service, we can parse it using techniques you 
have already seen from Chapters 8 and 9:

#r "System.Xml.Linq.dll"
open System.Xml.Linq

/// The schema tag for this particular blob of XML
let xmlSchemaUrl = "http://www.worldbank.org"

// General utilities for XML
let xattr s (el: XElement) = el.Attribute(XName.Get(s)).Value
let xelem s (el: XContainer) = el.Element(XName.Get(s, xmlSchemaUrl))
let xelems s (el: XContainer) = el.Elements(XName.Get(s, xmlSchemaUrl))
let xvalue (el: XElement) = el.Value

/// The results of parsing
type Country = { Id: string; Name: string; Region: string; }

/// Parse a page of countries from the WorldBank data source
let parseCountries xml = 
    let doc = XDocument.Parse xml
    [ for countryXml in doc |> xelem "countries" |> xelems "country" do
        let region = countryXml |> xelem "region" |> xvalue
        yield
            {
                Id = countryXml |> xattr "id"
                Name = countryXml |> xelem "name" |> xvalue
                Region = region
            }]



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

334

This extracts some of the fields from each of the <country> nodes in the returned XML. When we 
execute the XML parsing over the first page of input data, we get:

> parseCountries worldBankCountriesXmlPage1;;
val it : Country list =
  [{Id = "ABW";
    Name = "Aruba";
    Region = "Latin America & Caribbean (all income levels)";};
   ...
   {Id = "CYM";
    Name = "Cayman Islands";
    Region = "Latin America & Caribbean (all income levels)";}]

Parsing data in JSON format can be done in a similar way using a library such as NewtonSoft’s Json.
NET, from json.codeplex.com.

Handling Multiple Pages
Web-hosted services like the WorldBank API are “stateless” – they will essentially respond to identical 
requests with identical responses. Accessing services like this uses a technique known as REST, which 
stands for REpresentational State Transfer. This means that any “state” is passed back and forth between 
the client and the services as data.

One simple example of this works is how we collect multiple pages of data from the services. So far, we 
have only retrieved  the first page of countries. If we want to collect all the pages, we need to make multiple 
requests, where we give a page parameter. For example, we can get the second page as follows:

let worldBankCountriesXmlPage2 = http "http://api.worldbank.org/country?page=2"

Note that the “state” of the process of iterating through the collection is passed simply by using a 
different URL, one with “page=2” added. This is very typical of REST requests.

The total number of pages can be fetched by parsing the first page, which contains the total page 
count as an attribute. If using XML, we use the following:

let doc = XDocument.Parse worldBankCountriesXmlPage1
let totalPageCount = doc |> xelem "countries" |> xattr "pages" |> int

When executed, this reveals a total page count of 5:

val totalPageCount : int = 5

We can now put this together into a function that fetches all the pages through a sequence of requests, 
as follows:

let rec getCountryPages() = 
    let page1 = http "http://api.worldbank.org/country"
    let doc1 = XDocument.Parse page1
    let numPages = doc1 |> xelem "countries" |> xattr "pages" |> int
    let otherPages = 
        [ for i in 2 .. numPages -> 
              http ("http://api.worldbank.org/country?page=" + string i)]
    [ yield! parseCountries page1



335

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

      for otherPage in otherPages do 
          yield! parseCountries otherPage ]

When executed, this reveals a total country count of 246 at the time of writing:

> getCountryPages() |> Seq.length;;

val it : int = 246

As an alternative, you can often simply increase a REST parameter that indicates how many results to 
return per page. For example, in the case of the WorldBank API this is the per_page parameter, e.g. this 
URL:

http://api.worldbank.org/country?format=json&per_page=1000

This will return all the results in a single page which can then be parsed.  However, not all services 
allow arbitrarily high numbers of items per page so parsing multiple pages is still often necessary.

Getting Started with Type Providers and Queries
In the first section you performed some basic REST requests in F#. However, you will have noticed that 
working with external information in this way is somewhat tedious because you must manually construct 
REST API calls and manually parse the XML or JSON returned by the service.  This gets progressively 
harder as services become more complex, as services change, and as additional features like 
authentication are required. Further, it is very easy to make mistakes in all parts of this process, including 
parsing the XML or JSON.

In this section, we look at a unique F# language/tooling feature called type providers which is designed 
to make information sources directly available in the F# language in simpler, more intuitive, and more 
directly strongly-typed way. 

Example - Language Integrated OData
Our first example is accessing an internet data protocol using F# programming. We use “OData” (see www.
odata.org) as our example. Here is the code to access the data service:

#r "System.Data.Services.Client.dll"
#r "FSharp.Data.TypeProviders.dll"
open Microsoft.FSharp.Data.TypeProviders

type Northwind = 
    ODataService<"http://services.odata.org/Northwind/Northwind.svc/">

let db = Northwind.GetDataContext()

In this code, you first reference two libraries: the “runtime” library for OData services System.Data.
Services.Client, and the F# library for the F# 3.0 OData type provider FSharp.Data.TypeProviders.dll.  
You can now get data from the service as follows:

let first10Customers = 
    query { for c in db.Customers do 
            take 10



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

336

            select c }
    |> Seq.toList

When run, this gives the first 10 customers from the OData service:

> first10Customers;;
val it : Northwind.ServiceTypes.Customer list =
  [Customer {Address = "Obere Str. 57";
             City = "Berlin";
             CompanyName = "Alfreds Futterkiste";
             ContactName = "Maria Anders";
             ContactTitle = "Sales Representative";
             Country = "Germany";
             CustomerDemographics = seq [];
             CustomerID = "ALFKI";
             Fax = "030-0076545";
             Orders = seq [];
             Phone = "030-0074321";
             PostalCode = "12209";
             Region = null;};...]

To understand what’s going on, it’s helpful to add the following line before executing the code above:
service.DataContext.SendingRequest.Add (fun x -> printfn "requesting %A" x.Request.RequestUri)

After you add this, you will see that the output begins:

requesting http://services.odata.org/Northwind/Northwind.svc/Customers()?$top=10

As you can see, OData is a protocol for querying data sources over HTTP, and is ultimately 
implemented by REST requests. The code above accesses the data service at services.odata.org/
Northwind/Northwind.svc. Under the hood, an OData service request is a URL with embedded strings to 
represent queries. The response text is JSON or XML, which is automatically turned back into objects for 
you. 

What is a Type Provider?
The example above uses two things that you have not yet seen in this book: a use of a type provider, and a 
use of an F# query. The use of the type provider is here:

open Microsoft.FSharp.Data.TypeProviders

type Northwind =
    ODataService<"http://services.odata.org/Northwind/Northwind.svc/">

A type provider is a compile-time component that, given optional static parameters identifying an 
external information space, provides two things to the host F# compiler/tooling:

A component “signature” that acts as the programming interface to that information 
space, and which is computed on-demand as needed by the F# compiler. For F#, the 
component signature contains provided namespaces, types, methods, properties, 



337

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

events, attributes, and literals that give a .NET object-oriented characterization of 
the information space. 

An implementation of the component signature. This is given by either an actual 
.NET assembly that implements the component signature (the generative model for 
the provided types), or a pair of erasure functions giving representation types and 
representation expressions for the provided types and provided methods 
respectively (the erasure model for the provided types).

Put simply, type providers are about using a provider model for the “type import” logic of the host 
language compiler or tooling. Essentially, a type provider is an adapter component that reads schematized 
data and services and transforms them into types in the target programming language. This allows 
programmers to quickly leverage rich, schematized information sources without an explicit transcription 
process (be it code generation or a manually created ontology). The provided types can then be leveraged 
by not only the type-checker and runtime, but also by tools that rely on the type-checker, such as IDE 
auto-completion. Also, if the data source contains additional descriptive metadata (such as a description 
of various columns in a database), this can be transformed by the type provider into information that is 
visible to the programmer within the IDE (such as documentation contained in tooltips).

A type provider does not necessarily contain any types itself; rather, it is a component for generating 
descriptions of types, methods, and their implementations. A type provider is thus a form of compile-time 
meta-programming: a compiler plugin that augments the set of types that are known to the type-checker 
and compiler.  Importantly, a type provider can provide types and methods on-demand, i.e. lazily, as the 
information is required by the host tool such as the F# compiler. This allows the provided type space to be 
very large or even infinite. 

What is a Query?
The second new construct in the code above is a query, in particular this program text:

    query { for c in db.Customers do 
            take 10
            select c }

If you know C# you will recognize this as a way of writing LINQ queries. A LINQ query is simply a way 
of specifying a query of a data source using a set of operators such as select, where, take, and so on. In F#, 
the code inside query { … } is converted by a “LINQ query provider” into an actual request that is sent to 
the data provider—in this particular case, a REST request sent to the OData service. This translation relies 
on the F# compiler to insert quotations automatically, and using the underlying quotation representation 
to convert the inner F# expression to a LINQ query that can be iterated over. You’ve seen one example 
already of how this translation works, where the code above becomes:

requesting http://services.odata.org/Northwind/Northwind.svc/Customers()?$top=10

You can experiment with this particular implementation of query translation from F# queries to 
OData. For example, the simpler:

    query { for c in db.Customers do 
            select c }

uses the URL:

requesting http://services.odata.org/Northwind/Northwind.svc/Customers()



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

338

and this more complex query:

    query { for c in db.Customers do 
            where (c.ContactName.Contains "Maria")
            take 10
            select c }

yields this request:

requesting http://services.odata.org/Northwind/Northwind.svc/Customers()
?$filter=substringof('Maria',ContactName)&$top=10

You will learn more about queries and query translation later in this chapter.

QUERYING ODATA – NOT QUITE AS EASY AS IT LOOKS

This section has used the F# 3.0 support for the OData protocol as an example of integrating a remote data 
source into F# programming.  While OData gives a great “in-the-box” example of F# type providers, it turns 
out that querying OData is actually quite a bit harder than we’ve made it look in this section. This isn’t really 
anything to do with F#—it is mostly to do with the OData query implementation itself in the .NET Framework 
and because so far we’ve ignored some important issues like authentication. 

So, in the name of full disclosure, we state openly that querying OData with F# 3.0 (or C# 5.0) is actually full 
of a surprising number of subtleties. Here is a quick guide:

. Select an entity (e.g., a customer c) rather than a 
property of an entity (such as c.Name).  Selecting a property of an entity gives a 
cryptic error message about “Navigation properties.”

. Simple entities have properties which 
are all primitive types like integers, strings, dates, and GUIDs.

 If the data being returned 
contains further entities (e.g. a Customer contains a list of Orders), then things 
become surprisingly harder and you must “expand” those entities. If not, the 
corresponding data will appear as empty! You will see examples of how to do this 
later in this chapter. A quick example is:

         query { for c in db.Customers.Expand("Orders") do 

                 select c }

. When you expand some nested 
entities, these get placed in the reified graph of objects for the OData context. If you 
have already queried the data context, you will not see the expanded data. So, if you 
need to expand, make sure you haven’t already used the data context for other 
queries against that collection!

 Filters (where) can use a range of methods. For 
example, on strings you can use .StartsWith, .EndsWith, .Replace, 
.ToLower, .ToUpper, .Trim, .Substring, .Length and on DateTime values 
you can use .Year, .Month, .Day, .Hour, .Minute, .Second. 



339

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

Learn what you can use in queries. Queries can use from, where, sortBy, 
thenBy, select, skip and  take plus uses of  .Expand.  You can’t really use 
anything else in OData queries. Don’t try.

 OData service implementations usually only return 
the first 20 to 100 results of a query. To get the remaining results you need to use 
“pagination.” This is a common pattern for all service-oriented programming. You 
will see examples of doing OData pagination later in this chapter.

 OData services 
may need credentials, usually either using Basic or OAuth authentication. To set 
them, use the following for Basic:

     db.DataContext.SendingRequest.Add(fun e -> 

          e.RequestHeaders.["Authorization"] <- "Basic " + base64 encoding of 
"username:password")

and the following for OAuth:

     db.DataContext.SendingRequest.Add(fun e -> 

         e.RequestHeaders.["Authorization"] <- "OAuth " + securityToken)

 In Silverlight and 
Windows 8, the OData implementations only allow asynchronous requests, in order 
to avoid blocking the UI thread. If on a UI thread, you will need to use async 
programming in F# (see Chapter 11). If already on a background thread, you can 
make a synchronous request like this:

Async.FromBeginEnd(q.BeginExecute, q.EndExecute) |> Async.RunSynchronously

Paginated requests are a little harder; you will need a similarly modified version of the pagination code 
shown later in this chapter. 

Handling Pagination in OData
As mentioned in the side bar above, OData service implementations usually only return the first 20 to 100 
results of a query. To get the remaining results, you need to use “pagination.” This is a common pattern for 
all service-oriented programming, but is particularly tricky for F#.  Here is a function you can use to collect 
paginated results into a single sequence:

open System.Data.Services.Client
open System.Linq

let executePaginated (ctxt: DataServiceContext) (query: IQueryable<'T>) = 
    match query with 
    | :? DataServiceQuery<'T> as q ->
        seq { 
            let rec loop (cont: DataServiceQueryContinuation<'T>) = seq {
                if cont <> null then
                    let rsp = ctxt.Execute cont 
                    yield! rsp
                    yield! loop (rsp.GetContinuation())}
            let rsp = q.Execute() 



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

340

            yield! rsp
            let cont = (rsp :?> QueryOperationResponse<'T>).GetContinuation()
            yield! loop cont }
    | _ -> query.AsEnumerable()

You use it like this:

let allCustomersQuery = 
    query { for c in db.Customers do select c }
    |> executePaginated db.DataContext
    |> Seq.toList

Example - Language Integrated SQL
For our second example of working with data through a type provider, we use data drawn from a relational 
database and queried using SQL. The following sections show how to perform relational database queries 
using F# 3.0 queries. F# 3.0 uses F# quotation metaprogramming to represent SQL queries. These are then 
translated across to SQL and executed using the Microsoft LINQ libraries that are part of .NET Framework 
4.0 or higher. 

We assume you’re working with the Northwnd.mdf database, a common database used in many 
database samples. You can download this sample database as part of the F# Power Pack, or from many 
other sources on the Web.

The code to access the database is very simple and remarkably similar to that used to access OData:

#r "System.Data.Linq.dll"
#r "FSharp.Data.TypeProviders.dll"

open Microsoft.FSharp.Linq
open Microsoft.FSharp.Data.TypeProviders

type NorthwndDb = 
    SqlDataConnection<ConnectionString = 
                         @"AttachDBFileName  = 'C:\Scripts\northwnd.mdf';
                           Server='.\SQLEXPRESS';User Instance=true;Integrated Security=SSPI",
                      Pluralize=true>

let db = NorthwndDb.GetDataContext()

In this code, you first reference two libraries: the “runtime” library for SQL data access System.Data.
Linq, and the F# library for the F# 3.0 SQL type providers called FSharp.Data.TypeProviders.dll.  You then 
create an instance of a “data context” to access the database. You can now get data from the service as 
follows:

let customersSortedByCountry = 
    query { for c in db.Customers do 
            sortBy c.Country
            select (c.Country, c.CompanyName) }
    |> Seq.toList

When run, this gives the full list of customers from the database:



341

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

val customersSortedByCountry : (string * string) list =
  [("Argentina", "Cactus Comidas para llevar");
   ("Argentina", "Océano Atlántico Ltda."); ("Argentina", "Rancho grande");
   ...
   ("Venezuela", "LINO-Delicateses"); ("Venezuela", "HILARION-Abastos");
   ("Venezuela", "GROSELLA-Restaurante")]

To understand what’s going on, it’s helpful to add the following line before executing the code above:

db.DataContext.Log <- System.Console.Out

After you add this, you will see that the output begins:

SELECT [t0].[Country] AS [Item1], [t0].[ContactName] AS [Item2]
FROM [dbo].[Customers] AS [t0]
ORDER BY [t0].[Country]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 4.0.30319.17929

As you can see, the query has been converted into SQL text and sent to the relational database for 
execution. A slightly more complex query is shown below:

let selectedEmployees = 
    query { for emp in db.Employees do
            where (emp.BirthDate.Value.Year > 1960)
            where (emp.LastName.StartsWith "S")
            select (emp.FirstName, emp.LastName) 
            take 5 }
    |> Seq.toList

The results are as follows (only one employee is ultimately selected):

SELECT TOP (5) [t0].[FirstName] AS [Item1], [t0].[LastName] AS [Item2]
FROM [dbo].[Employees] AS [t0]
WHERE ([t0].[LastName] LIKE @p0) AND (DATEPART(Year, [t0].[BirthDate]) > @p1)
-- @p0: Input NVarChar (Size = 4000; Prec = 0; Scale = 0) [S%]
-- @p1: Input Int (Size = -1; Prec = 0; Scale = 0) [1960]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 4.0.30319.17929

val selectedEmployees : (string * string) list = [("Michael", "Suyama")]

More on Queries
In this section, you will learn how to perform a number of relational query operations in the F# query 
syntax.



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

342

Sorting
The sorting operations in queries are sortBy, sortByDescending, thenBy, thenByDescending, and their 
corresponding versions for nullable values such as sortByNullable. These are added to a query starting 
with one of the sortBy operations (for the first sorting key) and a sequence of thenBy operations (for 
secondary and subsequent sorting keys). Sorting is done in ascending order unless the “descending” 
variations are used. For example:

let customersSortedTwoColumns = 
    query { for c in db.Customers do 
            sortBy c.Country
            thenBy c.Region
            select (c.Country, c.Region, c.CompanyName) }
    |> Seq.toList

Giving:

val customersSortedTwoColumns : (string * string * string) list =
  [("Argentina", null, "Cactus Comidas para llevar");
   ("Argentina", null, "Océano Atlántico Ltda.");
   ("Argentina", null, "Rancho grande"); ("Austria", null, "Piccolo und mehr");
   ("Austria", null, "Ernst Handel"); ("Belgium", null, "Maison Dewey");
   ...
   ("Venezuela", "DF", "GROSELLA-Restaurante");
   ("Venezuela", "Lara", "LILA-Supermercado");
   ("Venezuela", "Nueva Esparta", "LINO-Delicateses");
   ("Venezuela", "Táchira", "HILARION-Abastos")]

Aggregation
Aggregation operations (sum, average, maximum, minimum) are performed by  using the query operators 
sumBy, sumByNullable, averageBy, averageByNullable, maxBy, maxByNullable, minBy or minByNullable. For 
example:

let totalOrderQuantity =
    query { for order in db.OrderDetails do
            sumBy (int order.Quantity) }

let customersAverageOrders = 
    query { for c in db.Customers do 
            averageBy (float c.Orders.Count) }

Giving:

val totalOrderQuantity : int = 51317
val customersAverageOrders : float = 9.120879121



343

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

Nullables
Data in SQL tables, OData services and other data sources may be missing values. When using these data 
sources via the usual type providers or code generators for F# (e.g. ODataService, SqlDataProvider and 
SqlEntityProvider), the potential for missing primitive values is represented using the .NET type System.
Nullable<_>.

Full techniques to handle nullable values are discussed in the MSDN documentation for F# queries. 
Here we show just some examples. For example, to compute the average price over the range of products 
on offer, you can use averageByNullable:

    let averagePriceOverProductRange =
        query { for p in db.Products do
                averageByNullable p.UnitPrice }

Giving:

val averagePriceOverProductRange : System.Nullable<decimal> = 28.8663M

Note that the result of the averaging is itself a nullable value. 
Working with nullable values can be slightly awkward in F#. Here are some techniques to use:

Very often, you will need to eliminate nullable values using either the .Value 
property, or the .GetValueOrDefault() method. You can also call conversion 
functions such int or float.

To create a nullable value, use the constructor for the System.Nullable type, e.g., 
System.Nullable(3).

To compare, add, subtract, multiply, or divide nullable values, use the special 
operators such as ?+? in Microsoft.FSharp.Linq.NullableOperators.

Inner Queries
It is very common to use one or more “inner” queries to collect information about an entity before 
selecting it. For example, consider the task of writing a query which iterates the customers, sums the 
number of orders (if any), and finds the average unit price of orders (if any) for that customer. Here is the 
query:

let totalOrderQuantity =
    query { for c in db.Customers do 
            let numOrders = 
                query { for o in c.Orders do 
                        for od in o.OrderDetails do 
                        sumByNullable (Nullable(int od.Quantity)) }
            let averagePrice = 
                query { for o in c.Orders do 
                        for od in o.OrderDetails do 
                        averageByNullable (Nullable(od.UnitPrice)) }
            select (c.ContactName, numOrders, averagePrice) }
    |> Seq.toList

Giving:



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

344

val totalOrderQuantity :
  (string * System.Nullable<int> * System.Nullable<decimal>) list =
  [("Maria Anders", 174, 26.7375M); ("Ana Trujillo", 63, 21.5050M);
   ("Antonio Moreno", 359, 21.7194M); ("Thomas Hardy", 650, 19.1766M);
   ...
   ("Zbyszek Piestrzeniewicz", 205, 20.6312M)]

Grouping
The previous example showed how to use inner queries to compute and return a number of statistical 
properties of an entity using a query. Very often, this is instead done over a group of entities. To group 
entities, you use the groupBy .. into … operator:

let productsGroupedByNameAndCountedTest1 =
    query { for p in db.Products do
            groupBy p.Category.CategoryName into group
            let sum = 
                query { for p in group do
                        sumBy (int p.UnitsInStock.Value) }
            select (group.Key, sum) }
    |> Seq.toList

Giving:

val productsGroupedByNameAndCountedTest1 : (string * int) list =
  [("Beverages", 559); ("Condiments", 507); ("Confections", 386);
   ("Dairy Products", 393); ("Grains/Cereals", 308); ("Meat/Poultry", 165);
   ("Produce", 100); ("Seafood", 701)]

Joins
You can write both normal SQL joins and “group” joins using F# queries. For example, a simple join is 
written as follows:

let innerJoinQuery = 
    query { for c in db.Categories do
            join p in db.Products on (c.CategoryID =? p.CategoryID) 
            select (p.ProductName, c.CategoryName) } //produces flat sequence
    |> Seq.toList

The operator =? is a nullable comparison operator, mentioned in the previous section, because 
p.CategoryID may be missing. This gives:

val innerJoinQuery : (string * string) list =
  [("Chai", "Beverages"); ("Chang", "Beverages");
   ("Aniseed Syrup", "Condiments");
   ...
   ("Lakkalikööri", "Beverages");
   ("Original Frankfurter grüne Soße", "Condiments")]



345

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

As it happens, many joins are actually implicit in F# queries over types provided by the usual type 
providers. For example, the above query could have been written:

let innerJoinQuery = 
    query { for p in db.Products do
            select (p.ProductName, p.CategoryName) }
    |> Seq.toList

Likewise, you can also write “group joins”, where the inner iteration results in an overall group of 
elements that satisfy the joining constraint.  For example:

let innerGroupJoinQueryWithAggregation =
    query { for c in db.Categories do
            groupJoin p in db.Products on (c.CategoryID =? p.CategoryID) into prodGroup
            let groupMax = query { for p in prodGroup do maxByNullable p.UnitsOnOrder }
            select (c.CategoryName, groupMax) }

    |> Seq.toList

This gives:

val innerGroupJoinQueryWithAggregation : (string * Nullable<int16>) list =
  [("Beverages", 40s); ("Condiments", 100s); ("Confections", 70s);
   ("Dairy Products", 70s); ("Grains/Cereals", 80s); ("Meat/Poultry", 0s);
   ("Produce", 20s); ("Seafood", 70s)]

More on Relational Databases and ADO.NET
So far in this chapter, you have seen how to perform simple “raw” HTTP web requests to an information 
service, and how to use the type provider and query mechanisms to access OData and SQL data in a more 
directly strongly typed, and clear way.

However, it is often necessary to access databases in a “raw” way as well. To do this, you use the ADO.
NET library which has been part of .NET since its first releases. Like web requests, this is a “lowest 
common denominator” way of doing information access from F# code.  While it is usually nicer to use the 
type provider mechanism where possible, this is not always possible for all databases, and is also not really 
possible for cases where you are creating tables dynamically. Further, some data access standards (e.g. 
ODBC, a common data connectivity standard developed in the late 1990s) will definitely require you to use 
lower level libraries that look a lot like ADO.NET. Note that you can also use the newer Entity Framework to 
work with databases on a higher conceptual level. However, in this current discussion, we are mostly 
concerned with low-level details such as programmatically creating tables, executing update and insert 
statements, and querying using plain SQL code.

First, however, we examine databases more generally and give a guide to your choices about which 
database to use in the first place. Databases provide many benefits. Some of the more important ones are 
listed here:

Data security: When you have centralized control of your data, you can erect a full 
security system around the data, implementing specific access rules for each type of 
access or parts of the database.

Sharing data: Any number of applications with the appropriate access rights can 
connect to your database and read the data stored within—without needing to 
worry about containing the logic to extract this data. As you will see shortly, 



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

346

applications use various query languages (most notably SQL) to communicate with 
databases.

A logical organization of data: You can write new applications that work with the 
same data without having to worry about how the data is physically represented and 
stored. On the basic level, this logical structure is provided by a set of entities (data 
tables) and their relationships.

Avoiding data redundancy: Having all requirements from each consuming 
application up front helps to identify a logical organization for your data that 
minimizes possible redundancy. For instance, you can use foreign keys instead of 
duplicating pieces of data. Data normalization is the process of systematically 
eliminating data redundancy, a large but essential topic that we don’t consider in 
this book.

Transactions: Reading from and writing to databases occurs atomically, and as a 
result, two concurrent transactions can never leave data in an inconsistent, 
inaccurate state. Isolation levels refer to specific measures taken to ensure 
transaction isolation by locking various parts of the database (fields, records, tables). 
Higher isolation levels increase locking overhead and can lead to a loss of 
parallelism by rendering concurrent transactions sequential; on the other hand, no 
isolation can lead to inconsistent data.

Maintaining data integrity: Databases make sure data is stored accurately. Having 
no redundancy is one way to maintain data integrity (if a piece of data is changed, 
it’s changed in the only place it occurs; thus, it remains accurate); on the other hand, 
data security and transaction isolation are needed to ensure that the data stored is 
modified in a controlled manner.

Table 13-1 shows some of the most common database engines, all of which can be used from F# and 
.NET.

Table 13-1. Common Databases

Name Type Description Available From
PostgreSQL Open source Open source database engine www.postgresql.org

SQLite Open source Small, embeddable, zero-configuration 
SQL database engine

www.sqlite.org

DB2 Commercial IBM’s database engine www-01.ibm.com/software/ 
data/db2/ad/dotnet.html

Firebird Open source Based on Borland Interbase www.firebirdsql.org

MySQL Open source Reliable and popular database www.mysql.com

Mimer SQL Commercial Reliable database engine www.mimer.com

Oracle Commercial One of the most popular enterprise 
database engines

www.oracle.com

SQL Server Commercial Microsoft’s main database engine www.microsoft.com/sql

SQL Server 
Express

Commercial Free and easy-to-use version of SQL 
Server

www.microsoft.com/express/
database

Sybase 
iAnywhere

Commercial Mobile database engine www.ianywhere.com



347

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

Applications communicate with relational databases using Structured Query Language (SQL). Each 
time you create tables, create relationships, insert new records, or update or delete existing ones, you are 
explicitly or implicitly issuing SQL statements to the database. The examples in this chapter use a dialect 
of Standard SQL called Transact-SQL (T-SQL), used by SQL Server and SQL Server Express. SQL has syntax 
to define the structure of a database schema (loosely speaking, a collection of data tables and their 
relations) and also syntax to manage the data within. These subsets of SQL are called Data Definition 
Language (DDL) and Data Manipulation Language (DML), respectively. 

ADO.NET is the underlying database-access machinery in the .NET Framework, and it provides full 
XML support, disconnected and typed datasets, scalability, and high performance. This section gives a 
brief overview of the ADO.NET fundamentals.

With ADO.NET, data is acquired through a connection to the database via a provider. This connection 
serves as a medium against which to execute a command; this can be used to fetch, update, insert, or 
delete data from the data store. Statements and queries are articulated as SQL text (CREATE, SELECT, UPDATE, 
INSERT, and DELETE statements) and are passed to the command object’s constructor. When you execute 
these statements, you obtain data (in the case of queries) or the number of affected rows (in the case of 
UPDATE, INSERT, and DELETE statements). The data returned can be processed via two main mechanisms: 
sequentially in a read-only fashion using a DataReader object or by loading it into an in-memory 
representation (a DataSet object) for further disconnected processing. DataSet objects store data in a set of 
table objects along with metadata that describes their relationships and constraints in a fully contained 
model.

Establishing Connections using ADO.NET
Before you can do any work with a database, you need to establish a connection to it. For instance, you can 
connect to a locally running instance of SQL Server Express using the following code:

open System.Data
open System.Data.SqlClient

let connString = @"Server='.\SQLEXPRESS';Integrated Security=SSPI"
let conn = new SqlConnection(connString)

The value connString is a connection string. Regardless of how you created your connection object, to 
execute any updates or queries on it, you need to open it first:

> conn.Open();;

If this command fails, then you may need to do one of the following:

Consult the latest SQL Server Express samples for alternative connection strings.

Add UserInstance='true' to the connection string. This starts the database engine 
as a user-level process.

Change the connection string if you have a different database engine installed and 
running (for instance, if you’re using SQL Server instead of SQL Server Express).

Connections established using the same connection string are pooled and reused depending on your 
database engine. Connections are often a limited resource and should generally be closed as soon as 
possible within your application.



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

348

Creating a Database using ADO.NET
Now that you’ve established a connection to the database engine, you can explicitly create a database from 
F# code by executing a SQL statement directly. For example, you can create a database called company as 
follows:

open System.Data
open System.Data.SqlClient

let execNonQuery conn s =
    let comm = new SqlCommand(s, conn, CommandTimeout = 10)
    comm.ExecuteNonQuery() |> ignore

execNonQuery conn "CREATE DATABASE company"

You use execNonQuery in the subsequent sections. This method takes a connection object and a SQL 
string and executes it as a SQL command, ignoring its result.

■ Note If you try to create the same database twice, you receive a runtime exception. However, if you intend to 
drop an existing database, you can do so by issuing a DROP DATABASE company SQL command. The DROP 
command can also be used for other database artifacts, including tables, views, and stored procedures.

Creating Tables using ADO.NET
You can execute a simple SQL command to create a table; all you need to do is specify its data fields and 
their types and whether null values are allowed. The following example creates an Employees table with a 
primary key EmpID and FirstName, LastName, and Birthday fields:

execNonQuery conn "CREATE TABLE Employees (
   EmpID int NOT NULL,
   FirstName varchar(50) NOT NULL,
   LastName varchar(50) NOT NULL,
   Birthday datetime,
   PRIMARY KEY (EmpID))"

You can now insert two new records as follows:

execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday)
   VALUES (1001, 'Joe', 'Smith', '02/14/1965')"

execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday)
   VALUES (1002, 'Mary', 'Jones', '09/15/1985')"

and retrieve two columns of what was inserted using a fresh connection and a data reader:

let query() =
    seq {
        use conn = new SqlConnection(connString)
        conn.Open()
        use comm = new SqlCommand("SELECT FirstName, Birthday FROM Employees", conn)
        use reader = comm.ExecuteReader()
        while reader.Read() do



349

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

            yield (reader.GetString 0, reader.GetDateTime 1)
    }

When you evaluate the query expression in F# Interactive, a connection to the database is created and 
opened, the command is built, and the reader is used to read successive elements:

> fsi.AddPrinter(fun (d: System.DateTime) -> d.ToString());;

> query();;

val it : seq<string * System.DateTime> =
    seq [("Joe", 14/02/1965 12:00:00AM); ("Mary", 15/09/1985 12:00:00AM)]

The definition of query uses sequence expressions that locally define new IDisposable objects such as 
conn, comm, and reader using declarations of the form use var = expr. These ensure that the locally defined 
connection, command, and reader objects are disposed after exhausting the entire sequence. See Chapters 
4, 8, and 9 for more details about sequence expressions of this kind.

F# sequences are on-demand (that is, lazy), and the definition of query doesn’t open a connection to 
the database. This is done when the sequence is first iterated; a connection is maintained until the 
sequence is exhausted.

Note that the command object’s ExecuteReader method returns a DataReader instance that is used to 
extract the typed data returned from the query. You can read from the resulting sequence in a 
straightforward manner using a sequence iterator. For instance, you can use a simple anonymous function 
to print data on the screen:

> query() |> Seq.iter (fun (fn, bday) -> printfn "%s has birthday %O" fn bday);;

Joe has birthday 14/02/1965 00:00:00
Mary has birthday 15/09/1985 00:00:00

The query brings the data from the database in-memory, although still as a lazy sequence. You can 
then use standard F# in-memory data transformations on the result:

> query()
  |> Seq.filter (fun (nm, bday) -> bday < System.DateTime.Parse("01/01/1985"))
  |> Seq.length;;

val it : int = 1

However, be aware that these additional transformations are happening in-memory and not in the 
database.

The command object has different methods for executing different queries. For instance, if you have a 
statement, you need to use the ExecuteNonQuery method (for UPDATE, INSERT, and DELETE statements, as 
previously in execNonQuery), which returns the number of rows affected (updated, inserted, or deleted), or 
the ExecuteScalar method, which returns the first column of the first row of the result, providing a fast and 
efficient way to extract a single value, such as the number of rows in a table or a result set.

In the previous command, you extracted fields from the result rows using GetXXX methods on the 
reader object. The particular methods have to match the types of the fields selected in the SQL query, and 



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

350

a mismatch results in a runtime InvalidCastException. For these and other reasons, DataReader tends to 
be suitable only in situations when the following items are true:

You need to read data only in a sequential order (as returned from the database). 
DataReader provides forward-only data access.

The field types of the result are known, and the query isn’t configurable.

You’re reading only and not writing data. DataReader provides read-only access.

Your use of the DataReader is localized. The data connection is open throughout the 
reader loop.

Database connections are precious resources, and you should always release them as soon as 
possible. In the previous case, you did this by using a locally defined connection. It’s also sufficient to 
implicitly close the reader by constructing it with the CloseConnection option that causes it to release and 
close the data connection upon closing the reader instance.

Common options include SchemaOnly, which you can use to extract field information only (without 
any data returned); SingleResult to extract a single value only (the same as using the ExecuteScalar 
method discussed earlier); SingleRow to extract a single row; and KeyInfo to extract additional columns 
(appended to the end of the selected ones) automatically that uniquely identify the rows returned.

Using Stored Procedures via ADO.NET
Stored procedures are defined and stored in your relational database and provide a number of benefits 
over literal SQL. First, they’re external to the application and thus provide a clear division of the data logic 
from the rest of the application. This enables you to make data-related modifications without having to 
change application code or having to redeploy the application. Second, they’re stored in the database in a 
prepared or compiled form and thus are executed more efficiently than literal SQL statements (although 
those can be prepared as well at a one-time cost, they’re still contained in application space, which is 
undesirable). Supplying arguments to stored procedures instantiates the compiled formula.

In Visual Studio, you can add stored procedures just like any other database artifacts using the Server 
Explorer window: right-click the Stored Procedures item in the appropriate database, and select Add New 
Stored Procedure. Doing so creates a stored procedure template that you can easily customize. 
Alternatively, you can add stored procedures programmatically using the CREATE PROCEDURE SQL 
command. Consider the following stored procedure that returns the first and last names of all employees 
whose last name matches the given pattern:

execNonQuery conn "
CREATE PROCEDURE dbo.GetEmployeesByLastName ( @Name nvarchar(50) ) AS
    SELECT Employees.FirstName, Employees.LastName
    FROM Employees
    WHERE Employees.LastName LIKE @Name"

You can wrap this stored procedure in a function as follows:

let GetEmployeesByLastName (name: string) =
    use comm = new SqlCommand("GetEmployeesByLastName", conn,
                              CommandType = CommandType.StoredProcedure)
    comm.Parameters.AddWithValue("@Name", name) |> ignore
    use adapter = new SqlDataAdapter(comm)
    let table = new DataTable()
    adapter.Fill(table) |> ignore
    table



351

CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

You can execute the stored procedure as follows to find employees with the last name Smith:

> for row in GetEmployeesByLastName("Smith").Rows do
     printfn "row = %O, %O" (row.Item "FirstName") (row.Item "LastName");;

row = Joe, Smith

Using WSDL Services
Since around 2000, a popular web service protocol has been WSDL. The use of this protocol is now 
declining, but it is still common to find useful WSDL web service implementations, particularly in 
enterprises. In this section, you learn how to access a WSDL service from F#.

WSDL web services can be easily consumed in F# in much the same way as OData web services by 
using the WsdlService type provider that comes with F#. For example, consider the weather service at 
http://www.webservicex.com/globalweather.asmx?wsdl. This can be accessed using the following 
code:

#r "System.ServiceModel.dll"
#r "FSharp.Data.TypeProviders.dll"

open Microsoft.FSharp.Data.TypeProviders

type Weather = WsdlService<"http://www.webservicex.com/globalweather.asmx?wsdl">

let ws = Weather.GetGlobalWeatherSoap();;

let weatherInCanberra = ws.GetWeather("Canberra", "Australia") 

In this case, the result is just XML giving the weather at the given location:

val weatherInCanberra : string =
  "<?xml version="1.0" encoding="utf-16"?>
<CurrentWeather>
  <Location>Canberra, Australia (YSCB) 35-18S 149-11E 580M</Location>
  <Time>Aug 14, 2012 - 12:00 PM EDT / 2012.08.14 1600 UTC</Time>
  <Wind> from the E (080 degrees) at 7 MPH (6 KT):0</Wind>
  <Visibility> greater than 7 mile(s):0</Visibility>
  <SkyConditions> partly cloudy</SkyConditions>
  <Temperature> 35 F (2 C)</Temperature>
  <Wind>Windchill: 28 F (-2 C):1</Wind>
  <DewPoint> 33 F (1 C)</DewPoint>
  <RelativeHumidity> 93%</RelativeHumidity>
  <Pressure> 30.00 in. Hg (1016 hPa)</Pressure>
  <Status>Success</Status>
</CurrentWeather>"

Often, WSDL web services return structured, strongly typed results, and no further XML parsing is 
required.



CHAPTER 13 ■ INTEGRATING EXTERNAL DATA AND SERVICES  

352

Summary
In this chapter, you learned about how the growing availability of data is changing programming, forcing 
programmers to incorporate more data and network access code into their applications. You learned both 
low-level and high-level techniques for accessing a range of web, database, and service technologies. Along 
the way, you learned the basics of two important F# features that are used for data access: F# queries and 
F# type providers. Together these give an elegant and direct way of integrating data into your programs. 
You also learned low-level techniques for REST requests and database access with ADO.NET. These are 
pragmatic techniques that allow you to do more, but less directly.

The next chapter continues on the theme of web programming by looking at a range of topics in 
delivering content via the Web, from delivering HTML directly to writing full web applications using 
WebSharper, the web application framework for F#.



353

■ ■ ■

CHAPTER 14

Building Smart Web Applications

Delivering content and applications via web browsers is one of the most important aspects of modern 
software development. This chapter examines how you can build web applications using F#. The topics 
covered are:

Serving static files and dynamic content by directly responding to HTTP requests

Techniques to build client-based web applications with WebSharper, the main F# 
web framework

A walkthrough of the main WebSharper features, including pagelets, sitelets, 
formlets, and flowlets

Using dynamic templates and sitelets to build WebSharper applications

Building sitelets that handle different HTTP requests

Using dependent formlets and flowlets to model user interface dependencies and 
wizard-like sequences of web forms

Defining resources and attaching them to different code units

A brief overview of developing WebSharper extensions to third-party JavaScript 
libraries

Defining WebSharper proxies to extend the JavaScript translation coverage to 
additional .NET types

Serving Web Content the Simple Way
When you point your browser at a web page or call a web service from your application, you’re effectively 
issuing one or more requests (commands) to a web (HTTP) server. HTTP commands are simple text-based 
instructions that are automatically generated by your web browser. For instance, when your browser goes 
to a particular URL, it:

Requests the page from the web server and waits for the response

Analyzes the contents of the page in the response for further content to be fetched 
(images, for example), and issues the appropriate requests if necessary

Displays the results, and executes any dynamic scripts and content contained in the 
page



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

354

A response can be a verbatim copy of a resource found on the web server (most often a static file such 
as an image, a style sheet, or a media file) or can be generated on the fly. This section shows how you can 
use F# to serve content directly.

Listing 14-1 shows a simple web server written directly in F#.

Listing 14-1. A Simple Web Server

open System.Net
open System.Net.Sockets
open System.IO
open System.Text.RegularExpressions
open System.Text

/// A table of MIME content types.
let mimeTypes =
    dict [".html", "text/html";
          ".htm",  "text/html";
          ".txt",  "text/plain";
          ".gif",  "image/gif";
          ".jpg",  "image/jpeg";
          ".png",  "image/png"]

/// Compute a MIME type from a file extension.
let getMimeType(ext) =
    if mimeTypes.ContainsKey(ext) then mimeTypes.[ext]
    else "binary/octet"

/// The pattern Regex1 uses a regular expression to match one element.
let (|Regex1|_|) (patt : string) (inp : string) =
    try Some(Regex.Match(inp, patt).Groups.Item(1).Captures.Item(0).Value)
    with _ -> None

/// The root for the data we serve
let root = @"c:\inetpub\wwwroot"

/// Handle a TCP connection for an HTTP GET request.
let handleRequest (client: TcpClient) (port: int) =
    async {
        use stream = client.GetStream()
        use out = new StreamWriter(stream)
        let sendHeaders (lines: seq<string>) =
            let printLine = fprintf out "%s\r\n"
            Seq.iter printLine lines
            // An empty line is required before content, if any.
            printLine ""
            out.Flush()
        let notFound () = sendHeaders ["HTTP/1.0 404 Not Found"]
        let inp = new StreamReader(stream)
        let request = inp.ReadLine()
        match request with
        // Requests to root are redirected to the start page.



355

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

        | "GET / HTTP/1.0" | "GET / HTTP/1.1" ->
            sendHeaders <|
                [
                    "HTTP/1.0 302 Found"
                    sprintf "Location: http://localhost:%d/iisstart.htm" port
                ]
        | Regex1 "GET /(.*?) HTTP/1\\.[01]$" fileName ->
            let fname = Path.Combine(root, fileName)
            let mimeType = getMimeType(Path.GetExtension(fname))
            if not <| File.Exists(fname) then notFound()
            else
                let content = File.ReadAllBytes fname
                sendHeaders <|
                    [
                        "HTTP/1.0 200 OK";
                        sprintf "Content-Length: %d" content.Length;
                        sprintf "Content-Type: %s" mimeType
                    ]
                stream.Write(content, 0, content.Length)
        | _ ->
            notFound()
    }

/// The server as an asynchronous process. We handle requests sequentially.
let server =
    let port = 8090
    async { 
        let socket = new TcpListener(IPAddress.Parse("127.0.0.1"), port)
        socket.Start()
        while true do
            use client = socket.AcceptTcpClient()
            do! handleRequest client port
    }

You can use this code as follows, where http is the function defined in Chapter 2 for requesting web 
pages and where you assume the directory c:\inetpub\wwwroot contains the file iisstart.htm:

> Async.Start server;;
val it : unit = ()

> http "http://localhost:8090";;
val it : string = "..."   // the text of the iisstart.htm file will be shown here

This HTTP request (you can also open the previous URL in a browser) ultimately sends the following 
text down the TCP socket connection:

GET iisstart.htm HTTP/1.1

When started, the server in Listing 14-1 attaches itself to a given port (8090) on the local machine 
(which has IP 127.0.0.1) and listens for incoming requests. These requests are line-based, so when one 



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

356

comes in, you read the full input line and attempt to parse a valid GET request using regular expression 
matching. Other commands and error recovery aren’t dealt with.

The server’s actions in response are simple: it locates the requested file relative to a root web directory, 
determines the MIME type from a fixed table, and sends the necessary response header and content of the 
file through the client TCP connection. When all this is done, the connection is disposed, and the session 
ends. The main loop of the server task is a busy waiting loop, so you busy wait for requests indefinitely and 
handle them one by one.

Listing 14-1 uses two techniques not directly related to web programming:

Regex1 is a simple and common active pattern for regular expression pattern 
matching. You learned about active patterns in Chapter 9. This example is 
particularly interesting because it also shows how to use a parameterized active 
pattern.

The value server is an asynchronous task, as is the handleRequest function. You 
learned about asynchronous tasks in Chapter 11. Many web servers handle multiple 
requests simultaneously, and high-performance web servers use asynchronous 
techniques extensively. In this example, the server task serves requests sequentially 
using a single thread, but you can just as well start a dedicated thread for the server 
using more explicit threading techniques from System.Threading.

While the above example may look simple, many common server-side applications are primarily TCP-
based, and you can use the pattern shown above to implement many of these. For example, the following 
encapsulates an arbitrary TCP server:

type AsyncTcpServer(addr, port, handleServerRequest) = 
    let socket = new TcpListener(addr, port)

    member x.Start() = async { do x.Run() } |> Async.Start

    member x.Run() = 
        socket.Start()
        while true do
            let client = socket.AcceptTcpClient()
            async {
                try do! handleServerRequest client with e -> ()
            }
            |> Async.Start

This class can now be instantiated and developed in many ways, including more interesting 
applications than simple HTTP servers. For example, the code below is a simulation of a “quote server” 
that serves “quotes” (represented here as a blob of bytes) to a TCP client every 1 second. Because serving 
each quote is very simple (simply writing a few bytes to the socket), you can serve many thousands of 
clients simultaneously using this technique.

module Quotes =
    let private quoteSize = 8
    let private quoteHeaderSize = 4
    let private quoteSeriesLength = 3

    module Server =
        let HandleRequest (client: TcpClient) =
            // Dummy header and quote
            let header = Array.init<byte> quoteSize (fun i -> 1uy)
            let quote = Array.init<byte> quoteSize (fun i -> byte(i % 256))
            async {



357

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

                use stream = client.GetStream()
                do! stream.AsyncWrite(header, 0, quoteHeaderSize) // Header
                for _ in [0 .. quoteSeriesLength] do
                    do! stream.AsyncWrite(quote, 0, quote.Length) 
                    // Mock an I/O wait for the next quote
                    do! Async.Sleep 1000
            }

        let Start () =
            let S = new AsyncTcpServer(IPAddress.Loopback,10003,HandleRequest)
            S.Start()

    module Client =
        let RequestQuote =
            async {
                let client = new TcpClient()
                client.Connect(IPAddress.Loopback, 10003)
                use stream = client.GetStream()
                let header = Array.create quoteHeaderSize 0uy
                let! read = stream.AsyncRead(header, 0, quoteHeaderSize)
                if read = 0 then return () else printfn "Header: %A" header
                while true do
                    let buffer = Array.create quoteSize 0uy
                    let! read = stream.AsyncRead(buffer, 0, quoteSize)
                    if read = 0 then return () else printfn "Quote: %A" buffer
            }
            |> Async.Start

Additionally, you should consider using secure sockets (HTTPS) for your application. Secure network 
programming is a vast topic, beyond the scope of this book, but the code below indicates the basic shape 
of an SSL server, built compositionally using a non-secure one, and indicates the .NET types you can use 
to implement authentication-related functionality:

open System.Net.Security
open System.Security.Authentication
open System.Security.Cryptography.X509Certificatestype

AsyncTcpServerSecure(addr, port, handleServerRequest) = 

    // Gets the first certificate with a friendly name of localhost.
    let getCertficate() =
        let store = new X509Store(StoreName.My, StoreLocation.LocalMachine)
        store.Open(OpenFlags.ReadOnly)
        let certs =
            store.Certificates.Find(
                findType = X509FindType.FindBySubjectName,
                findValue = Dns.GetHostName(),
                validOnly = true)
        seq {
        for c in certs do if c.FriendlyName = "localhost" then yield Some(c)
        yield None}
        |> Seq.head

    let handleServerRequestSecure (client : TcpClient) = 
        async {
            let cert = getCertficate()
            if cert.IsNone then printfn "No cert"; return ()
            let stream = client.GetStream()



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

358

            let sslStream = new SslStream(innerStream = stream, leaveInnerStreamOpen = true)
            try
                sslStream.AuthenticateAsServer(
                    serverCertificate = cert.Value,
                    clientCertificateRequired = false,
                    enabledSslProtocols = SslProtocols.Default,
                    checkCertificateRevocation = false)
            with _ -> printfn "Can't authenticate"; return()
            
            printfn "IsAuthenticated: %A" sslStream.IsAuthenticated
            if sslStream.IsAuthenticated then
                // In this example only the server is authenticated.
                printfn "IsEncrypted: %A" sslStream.IsEncrypted
                printfn "IsSigned: %A" sslStream.IsSigned

                // Indicates whether the current side of the connection 
                // is authenticated as a server.
                printfn "IsServer: %A" sslStream.IsServer

            return! handleRequestStream stream
        }

    let server = AsyncTcpServer(addr, port, handleServerRequestSecure)

    member x.Start() = server.Start()

TCP-based applications achieve excellent scaling, and cloud-computing solutions such as Azure allow 
you to host your TCP-based services on a load-balanced set of machines dedicated to serving requests 
under one common TCP address. The modern Web is built with server-side programs following the 
architectures similar to those laid out above.

Building Ajax Rich Client Applications
In recent years, a new class of rich-client web applications has emerged, leading to what is commonly 
called the Ajax development paradigm. This is a general term for any web application that incorporates 
substantial amounts of code executed on the client side of the application by running JavaScript in the 
web browser.

You can develop Ajax applications in at least three ways using F#:

You can manually write and serve additional JavaScript files as part of your web 
application. This isn’t hard, but you don’t benefit from existing frameworks.

You can use the Ajax support via ASP.NET and develop Ajax web applications with F# 
code-behind files or F# library code exposed via C# or VB code-behind.

You can use WebSharper (http://websharper.com) to write both client and server 
code in F#.

Developing Ajax applications with the first two techniques follows a fairly standard path mostly 
independent of F#. The remainder of this section gives a brief overview of some of the core WebSharper 
features, including sitelets, pagelets, formlets, and flowlets.

WebSharper enables rapid, client-based web application development with F# and provides a wealth 
of composable primitives to build web applications from small to large-scale. These represent an 
extremely powerful way of writing robust, efficient, integrated client/server applications in a single, type-



359

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

checked framework. In particular, WebSharper employs several advanced features of F#, the combination 
of which offers a unique programming experience for developing web applications:

Client-side and server-side code are marked with custom attributes and can be 
authored in a single F# project. Client-side code, called pagelets, is automatically 
translated to JavaScript using F# quotations and reflection and is served to the client 
on demand. (See Chapter 17 for details on F# quotations and reflection.)

The program runs initially as an ASP.NET-compatible server-side application, 
generating JavaScript code to populate and handle the interactions of the web user 
interface. WebSharper plays nicely with MVC (and includes project templates for it 
as well) and can easily be adopted to be used in conjunction with Web API as well.

Web forms can be expressed in an extraordinarily compact form as first-class, type-
safe values and are represented as formlets. They can be composed and enhanced 
with just a few lines of code, including adding validation and complex user 
interactions, and defining dependent formlets.

Sequences of web forms, flowlets, are first-class values, providing an elegant and 
concise way to express larger-than-page functionality, yet remaining in Ajax space.

The client-side code can use functionality from many .NET and F# libraries. The 
calls are mapped to corresponding JavaScript functionality through sophisticated 
techniques. You can also provide custom proxies to any .NET type, describing how 
to translate it to JavaScript.

The client side may make calls to any JavaScript technology via WebSharper stubs 
implemented for that technology. At the time of writing, WebSharper comes with a 
number of extensions to various JavaScript libraries, including jQuery, jQuery UI, 
Google Maps, Google Visualization, ExtJS, Sencha Touch, Yahoo UI, and jQuery 
Mobile, among others.

The client side may make asynchronous calls to the server using variations on the 
techniques described in Chapter 11. 

The resulting web applications are dramatically shorter and easier to maintain and 
extend, and can be readily deployed under IIS on the top of ASP.NET, or in any other 
ASP.NET-compatible web container.

Learning More from the WebSharper Documentation
While this section serves as a quick and somewhat thorough introduction to WebSharper and some of its 
features, you may want to consult the main WebSharper documentation for more details. This 
documentation is largely found in the main WebSharper PDF book, which sits in the /doc folder of your 
local WebSharper installation, or alternatively you can download it from http://websharper.com/
websharper.pdf.

In addition, you can read more about the core WebSharper features such as sitelets and formlets 
online at http://websharper.com/docs, and you can check out the samples on the main WebSharper page. 
These samples come with fully annotated descriptions, the code you can copy and paste into your own 
projects, and you can even try them live.



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

360

Getting Started with WebSharper
WebSharper is open source and available free of charge for open source projects. It’s the recommended 
way of developing Rich Internet Applications (RIAs) with F#. You can grab the latest version of WebSharper 
from http://websharper.com/downloads.

WebSharper installs as a set of tools, most notably the F# to JavaScript compiler, and various Visual 
Studio project templates to build WebSharper applications. These templates, shown in Figure 14-1, come 
in different flavors and enable you to build WebSharper applications based on traditional ASP.NET, ASP.
NET MVC, and WebSharper sitelets—and for different mobile platforms such as Android and Windows 
Phone. Some of these templates create single-project solutions, most notably offline sitelet projects such 
as the HTML Site project (see the section on offline vs. online sitelets later in this chapter). Other templates 
are multi-project and integrate onto standard ASP.NET web projects. For instance, the ASP.NET template 
creates two projects: an F# library project that contains WebSharper application code, and a web 
application project that exposes WebSharper site functionality via ASPX markup and includes the settings 
and post-processing hooks to make compiling, running, and deploying a pleasant experience. Finally, 
some templates come in two flavors; next to an empty application template you can find a matching 
sample application template as well. These make it easy to experiment with the different development 
approaches, such as using plain ASP.NET, MVC, or WebSharper sitelets.

Figure 14-1. WebSharper Project Templates in Visual Studio 2010

WebSharper Pagelets
Handling user input in ASP.NET applications involves declaring server-side controls that are rendered to 
HTML to take input from the end user, and defining various event handlers to handle that input. You can 



361

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

add validators by declaring further server-side controls and connecting them with the controls they’re to 
validate against. Similarly, the ASP.NET controls defined in ASPX markup are paired with their event 
handlers either by a predefined naming convention or by connecting them via strings in the markup.

These examples of loose coupling between the various ASP.NET components easily lead to problems 
when you need to code more complex web applications. Furthermore, the server-centric view requires 
that all components be rendered to code on the server side, which then executes to produce HTML with 
any submission/processing event delegated to the server again, leaving little opportunity to customize 
interaction on the client side.

WebSharper takes a fundamentally different approach and views web applications primarily from a 
client-based perspective. Client-side functionality in WebSharper applications are made up of pagelets: 
annotated F# code that is automatically translated to JavaScript to run on the client on demand. You can 
combine pagelets to form larger pagelets; and you can develop full web pages and even entire web sites as 
a single pagelet. Pagelets that create DOM nodes can be exposed as ASP.NET server controls and 
composed into ASPX markup seamlessly as you will see shortly.

Consider the following simple example:

namespace Website

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Html

[<JavaScript>]
let HelloWorld () =
    let welcome = P [Text "Welcome"]
    Div [
        welcome
        Input [Attr.Type "Button"; Attr.Value "Click me!"]
        |>! OnClick (fun e args ->
            welcome.Text <- "Hello, world!")
    ]

Here, HelloWorld defines a pagelet that returns a DOM node: a DIV tag with two child nodes. The first 
child node is a paragraph containing welcome text, and the second is an HTML button with “Click me!” as 
its title. The key thing to note here is the use of the [<JavaScript>] attribute, which defines a particular 
code element to be available in JavaScript and thus on the client side. The button’s click event handler is 
attached using OnClick, a shorthand function for Events.OnClick. Additional client-side HTML 
combinators are available in the IntelliFactory.WebSharper.Html namespace. These are not to be 
confused with their server-side HTML combinator equivalents in IntelliFactory.Html, as you will see 
shortly in the next sections describing WebSharper sitelets. Each combinator takes a sequence of DOM 
nodes or a sequence of attributes. If both are required, you can use the -< combinator, such as:

Div [Attr.Class "your-css-class"] -< [ … ]

Your pagelets can be embedded into ASP.NET markup directly, provided that you wrap them into ASP.
NET server-side controls:

type MyControl() =
    inherit Web.Control()

    [<JavaScript>]
    override this.Body = HelloWorld () :> _



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

362

Here, the IntelliFactory.WebSharper.Web.Control type you are inheriting from is a subclass of 
System.Web.UI.Control, and it includes a Body member that bootstraps your pagelet when it is embedded 
into ASP.NET markup or used in a WebSharper sitelet, as you will see in the sections below. Among others, 
this control type, along with the WebSharper script manager control, acts as a conduit between server and 
client-side code; it ensures that any client-side dependencies are correctly tracked and included (see the 
section later in this chapter on resource dependencies), and computes and injects the DOM structure into 
the containing page. Roughly speaking, it renders a “skeleton” DOM node into the output, which “comes 
alive” once its associated scripts and tracked dependencies start executing on the client.

To be able to add this WebSharper pagelet to your ASPX markup, your web.config file has to contain a 
controls declaration for your assembly that contains it. In the Visual Studio templates that come with 
WebSharper, the F# assembly that contains sitelet code (by default, called Website.dll) is preconfigured in 
web.config as follows:

<configuration>
  <system.web>
    <pages>
      <controls>
        <add tagPrefix="WebSharper"
             namespace="IntelliFactory.WebSharper.Web
             assembly="IntelliFactory.WebSharper.Web" />
        <add tagPrefix="ws"
             namespace="Website"
             assembly="Website" />
      </controls>
...

With these set up, you can embed your MyControl pagelet into your ASPX markup as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
  <head runat="server">
    <title>Your WebSharper Application</title>
    <WebSharper:ScriptManager runat="server" />
  </head>
  <body>
    <ws:MyControl runat="server"/>
  </body>
</html>

Note how you included the WebSharper script manager control in the <head> section as well. This 
server-side control tracks resource dependencies for all WebSharper pagelets contained in your ASPX page 
and injects these dependencies into the HTML content served back from the server. You can read more 
about WebSharper’s resource tracking and dependency handling later in this chapter.

Calling Server Code from the Client
While you can develop fully client-based (that is, all-JavaScript) applications with WebSharper, and indeed 
they are a very promising breed of applications, especially considering the opportunities in the mobile 
space, a more likely scenario is building client-server applications, where the client is actively using 
services or data obtained from the server either through pulling or asynchronous calls, or being pushed to 
using various reactive means. The common pattern in these applications is that once a page is served, it 
contains client-side code that implements application logic and makes occasional calls back to the server 



363

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

on demand. The general trend is to move as much functionality as possible to the client, yielding highly 
interactive, client-based applications that use clever client-side techniques and make occasional server 
calls only when they need to.

You can define server-side functionality, such as functions to fetch data from server files or databases 
as easily as you define client-side code. Server-side functions can be exposed as web services or defined to 
execute over RPC. RPC functions can be called from client-code seamlessly; the communication protocol 
is automatically inserted and is implemented by the WebSharper runtime as JavaScript code. The following 
skeleton code shows the necessary annotations:

module YourWebApplication =
    open IntelliFactory.WebSharper 
    
    module Server =

        [<Rpc>]
        let YourServerFunction (...) =
            ...

    module Client =

        [<JavaScript>]
        let YourClientFunction (...) =
            ...
            let data = Server.YourServerFunction (...)
            ...

One rule of thumb: be sure to add your client and server code into separate F# modules for better 
readability. Mixing the two in a single module is possible, but adds an extra constraint: all your client-side 
bindings and pagelets must be functions, e.g., you can’t have top-level client-side value bindings.

WebSharper Sitelets
So far, you have seen how you can serve dynamic, client-side functionality wrapped in ASP.NET server-side 
controls and embedded directly into ASPX markup. WebSharper also offers a fundamentally different way 
to construct web applications using sitelets. WebSharper sitelets enable you to serve content without 
requiring a containing ASPX page, and instead let you programmatically define entire web sites in F# in a 
type-safe, robust, and composable way. They also provide automatic resource tracking within pages, safe 
URLs (computed URLs that never go out of sync), a closed representation of the entry points to your web 
applications, and a whole host of other useful features.

For instance, the following defines a single-page sitelet:

namespace Website

module OnePageSite =
    open IntelliFactory.Html
    open IntelliFactory.WebSharper.Sitelets

    type Action = | MyPage

    module Pages =
        let MyPage =
            Content.PageContent <| fun ctx ->



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

364

                {
                    Page.Default with
                        Title = Some "My page"
                        Body =
                            [
                                H1 [Text "Hello world!"]
                            ]
                }

    let EntireSite = Sitelet.Content "/" Action.MyPage Pages.MyPage

    type Website() =
        interface IWebsite<Action> with
            member this.Sitelet = EntireSite
            member this.Actions = []

Above, first, you define an Action type that contains a union case for the single page in your 
application. This Action type is the key to understanding sitelets: it is the type that describes the interface 
to the outside world by providing a discriminated union for every “entry point” in your web application. A 
sitelet and all of its content (for example, Pages.MyPage above) then is parameterized over a given Action 
type. This is reflected in the type of EntireSite, which is Sitelet<Action>.

Note how you defined the content served back on various entry points. The above sitelet serves a 
single entry point: “/”, e.g., the root of the application, maps it to the Action.MyPage action, and serves the 
content Pages.MyPage as a result. Note that both the action and the response content can be parameterized to 
provide flexibility in handling various request parameters. See the sections below about defining content in 
different shapes, and about composing sitelets into larger, more complex ones.

Once you defined your sitelet value, you can formally declare it as a web application by marking your 
assembly with the Sitelets.Website attribute and giving the type of your sitelet to be served as a top-level 
application:

open IntelliFactory.WebSharper

[<assembly : Sitelets.Website(typeof<OnePageSite.Website>)>]
do ()

An assembly with the Sitelets.Website attribute is then processed by the sitelet handler configured 
in your application’s web.config file, provided that you started your project based on one of the standard 
WebSharper sitelet project templates.

Online vs. Offline Sitelets
You may often see references to offline sitelets, for instance in HTML Site projects and mobile web projects 
for Android or Windows Phone (see Chapter 15). An offline sitelet is a rendered form of a sitelet, containing 
all HTML and JavaScript code used by that sitelet. In short, you can take an offline sitelet and view it in a 
web browser without having to serve and generate the content by a web server.

The most fundamental examples of offline sitelets are the applications you can develop using the 
HTML Site project template. These applications consist of 100% client-side code without an active server 
component. They can make calls to web services or involve other forms of dynamism, but their content is 
rendered into pure HMTL and JavaScript when these applications are compiled.

Offline sitelets are useful from a number of perspectives. First, the offline sitelet-based applications 
you develop can be served by any web container, without having to pin yourself to an ASP.NET-compatible 



365

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

web server such as IIS. Second, they provide the vehicle to develop self-contained mobile applications, a 
topic you will learn about in Chapter 15.

Online sitelets, in contrast, involve an active server-side component that responds to client queries 
issued over RPC. These sitelets can also be rendered into HTML and JavaScript, and packed into native 
mobile applications; however, their active server-side must also be available for these applications to work 
properly.

Serving Content from WebSharper Sitelets
In the example above, you constructed an HTML response using Content.PageContent, one of the union cases 
of the IntelliFactory.WebSharper.Sitelets.Content<_> type, a type that provides an abstraction for the 
content of server responses. This case is appropriate when you need to construct an ordinary HTML response, 
such as a web page with standard headers and content you define. To help assemble such standard HTML 
responses, WebSharper provides the IntelliFactory.WebSharper.Sitelets.Page type. This type encapsulates 
the basic features of an HTML page in a record type and provides a Default member to give a default 
implementation: 

/// Represents HTML pages with embedded WebSharper controls.
type Page =
    {
      Doctype  : string option
      Title    : string option
      Renderer : string option -> string option -> Writer -> Writer -> HtmlTextWriter -> unit
      Head     : Element<unit> seq
      Body     : Element<Control> seq
    }

    static member Default =
        {
          Doctype = Some "<!DOCTYPE html>"
          Title = None
          Head = []
          Renderer = ...
          Body = []
        }

As in the example in the previous section, you can use Page.Default and override the fields you need to, 
most often the Title and Body of your page. The anonymous function passed to Content.PageContent takes 
a context parameter of type Context<Action>, where Action is the same action type that your sitelet and its 
response contents are parameterized over. You can use this context parameter to construct context-
sensitive markup, such as using information available from the request or via important functions such as 
Link or ResolveUrl. These and the other Context<_> fields are summarized in Table 14-1.

Table 14-1. IntelliFactory.WebSharper.Sitelets.Context<'Action> Record Fields

Field Type Description
ApplicationPath String The virtual application root path on the server

Link 'Action -> string Generates the URL for the given action

Json Core.Json.Provider The typed JSON provider for interacting with the 
client



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

366

Field Type Description
Metadata Core.Metadata.Info WebSharper metadata required for serializing 

pagelets

ResolveUrl string -> string Generates the URL respecting the application path

ResourceContext Core.Resources.Context Stores information about each page and its place in 
the site’s structure

Request Http.Request Provides access to the underlying request object and 
its various constituents.

Often times, you may need to construct non-HTML content for a response. For these situations, you 
can use Content.CustomContent, a Content constructor that takes a function returning an Http.Response 
value. This type is defined as a record type that provides all the necessary tools to cater to any kind of an 
HTTP response:

//// Represents HTTP responses
type Response =
    {
        Status    : Http.Status
        Headers   : Http.Header seq
        WriteBody : System.IO.Stream -> unit
    }

Here, Status is the HTTP status code returned (normally, you want to return Http.Status.Ok, but other 
often-used codes are available as well), Headers contains the HTTP headers returned with the response to 
instruct the requesting clients about treating the response in various ways, and WriteBody is the function 
responsible for writing the response from a System.IO.Stream value.
An example for returning content and triggering a Save As… dialog box with myfile.zip is:
 
Content.CustomContent <| fun ctx ->
    let cd = "attachment; filename=\"myfile.zip\""
    {
         Status = Http.Status.Ok
         Headers = [Http.Header.Custom "Content-Disposition" cd]
         WriteBody = ...
    }

Next to using the two Content constructors, PageContent and CustomContent, you can also return 
various standard HTTP error codes using shorthand functions in the IntelliFactory.WebSharper.
Sitelets.Content module; these are summarized in Table 14-2.

Table 14-2. HTTP Error Code Functions in IntelliFactory.WebSharper.Sitelets.Content

Function Type Description
Forbidden Content<_> The 403 Forbidden response

NotFound Content<_> The 404 Not Found response

ServerError Content<_> The 500 Server Error response

Unathorized Content<_> The 401 Unauthorized response



367

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

Using Dynamic Templates
Next to outputting all markup programmatically, WebSharper also provides templating facilities that 
enable you to externalize some or all of your markup into template files. These are typically easier to work 
with, as your design team can provide them separately or make stylistic changes on demand without 
affecting the code that is embedded into these templates.

As a historic note, WebSharper included static templating until version 2.4. Static templates were 
automatically translated to F# code by a Visual Studio add-in upon editing, and provided a type safe 
mechanism to instantiate templates programmatically. As of the current version of WebSharper, however, 
static templates are no longer supported; instead you should consider using dynamic templates as 
outlined below.

Dynamic templates plug in directly into the server-side sitelet content infrastructure, and generate 
values of Content<'T> similarly to Content.PageContent and Content.CustomContent. The main ingredients 
are templates defined with a set of content holes and Content.WithTemplate to fill these holes with actual 
content. Dynamic templates are created and instantiated at runtime, without static guarantees about their 
structure and content. This has the obvious disadvantage that templates may be incorrect and 
incompatible when filled with the content that your application intends to serve, but they have the 
flexibility to change markup dynamically, without requiring recompilation (as opposed to the now-
obsolete static templates), greatly reducing the time it takes to go through various design iterations.

To use dynamic templates, you first need to define a record type to hold the content your template will 
be instantiated with. For instance, the following defines a Placeholders type for two placeholders and a 
MainTemplate template (of type Content.Template<Placeholders>) defined over this placeholder type that 
serves a local MyTemplate.html file with two content holes “title” and “body” defined within (you will see 
shortly how) instantiated from an eventual placeholder value:

open System.IO
open IntelliFactory.WebSharper.Sitelets

module MySite =
    open IntelliFactory.WebSharper
    open IntelliFactory.Html

    // Your sitelet action type
    type Action =
        | Home

    module Skin =
        type Placeholders =
            {
                Title : string
                Body : list<Content.HtmlElement>
            }

        let MainTemplate =
            let path = Path.Combine(__SOURCE_DIRECTORY__, "MyTemplate.html")
            Content.Template<Placeholders>(path)
                .With("title", fun x -> x.Title)
                .With("body", fun x -> x.Body)

        let WithTemplate title body : Content<Action> =
            Content.WithTemplate MainTemplate <| fun context ->



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

368

                {
                    Title = title
                    Body = body context
                }

The last function, Skin.WithTemplate takes a value for a title and a list of server-side HTML elements 
representing the body of the page, and calls Content.WithTemplate to instantiate MainTemplate with them, 
returning a Content<Action> value representing the assembled content. You can use these content values 
to build sitelet pages as you saw in the earlier sections.

A quick look in the imaginary template.html file that you are serving reveals the main dynamic 
templating elements:

<!DOCTYPE html>
<html>
  <head>
    <title>${title}</title>
    <meta name="generator" content="websharper" data-replace="scripts" />
  </head>
  <body>
    <div data-hole="body"></div>
  </body>
</html>

Here, you can see the main placeholder variants that WebSharper dynamic templates support:

A <div> tag called "body"defined in data-hole mode. This mode causes the content 
of the placeholder to be added underneath/inside the annotated node. The content 
inserted must be a list of server-side HTML elements.

A <meta> tag in the <head> section of the document, using data-replace mode. This 
mode causes the content of the placeholder to be added in place of the annotated 
node, in other words, replacing it. Here, the special name "scripts" is used to 
instruct WebSharper to embed the tracked resources and dependencies of the page, 
if any. Content inserted into data-replace nodes must be a list of server-side HTML 
elements.

A string placeholder called "title", using the special syntax ${title}. As you may 
expect, content inserted into string placeholders must be strings.

As you see from the example, dynamic templates are also typed (albeit only weakly), and checking 
that inserted content is of the right type is done at the time the template is instantiated. Various other 
checks are performed at this time as well, such as checking for uninstantiated placeholders, resulting in a 
runtime error if things don’t match up. You will see examples using dynamic templates later in this chapter 
and in Chapter 15.

Embedding Client-Side Controls in Sitelet Pages
Client-side controls (pagelets) can be embedded into sitelet Content values directly, wrapped in a parent 
DOM node. Here is an example of embedding the Hello World control MyControl you saw earlier in this 
chapter into the dynamic template you defined in the previous section:

MySite.Skin.WithTemplate "Hello World" <| fun ctx ->
    [



369

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

        Div [new Website.MyControl()]
    ]

Formlets, as you will see shortly, can also be similarly embedded.

Constructing and Combining Sitelets
Building sitelets from smaller sitelets is a fundamental operation used in nearly all sitelet-based 
WebSharper applications. The most basic sitelet serves a response for a GET HTTP command at a given 
URL, for instance in the example above:

let EntireSite = Sitelet.Content "/" Action.MyPage Pages.MyPage

This constructs a sitelet over the Action type, which serves Pages.MyPage when the root path is 
requested. As you saw in the previous section, you have a number of alternatives for constructing 
responses, including basic HTML markup, non-HTML content, and various error codes.

Another important sitelet primitive is available for constructing protected sitelets, e.g., sitelets whose 
contents are protected until a requesting user logs in and possibly some further condition holds. Building 
upon our running example, you can update the Action type for your sitelet to introduce three more action 
cases: one for a protected page, and one for logging in and logging out. The Login case also takes an 
optional Action value that will be used to redirect the user after logging in:

module MySite =
    open IntelliFactory.Html
    open IntelliFactory.WebSharper.Sitelets

    type Action =
        | MyPage
        | Protected
        | Login of Action option
        | Logout

The contents you serve for these action cases are expanded as well; here you use a new helper function Utils.
SimpleContent to construct simple HTML content with Login/Logout facilities prefixed:

    module Pages =

        /// A helper function to create a hyperlink.
        let ( => ) title href = A [HRef href] -< [Text title]

        /// A helper function to create a 'fresh' URL with a random parameter
        /// in order to make sure that browsers don't show a cached version.
        let R url =
            url + "?d=" +
                System.Uri.EscapeUriString (System.DateTime.Now.ToString())

        module Utils =

            let SimpleContent title content =
                Content.PageContent <| fun ctx ->
                    { Page.Default with
                        Title = Some title
                        Body =



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

370

                          [
                            match UserSession.GetLoggedInUser() with
                            | None ->
                                yield "Login" => ctx.Link (Action.Login (Some Action.MyPage))
                            | Some user ->
                                yield "Log out ["+user+"]" => R (ctx.Link Action.Logout)
                          ] @ content ctx
                    }

        let MyPage =
            Utils.SimpleContent "My Page" <| fun ctx ->
                [
                    H1 [Text "Hello world!"]
                    "Protected content" => R (ctx.Link Action.Protected)
                ]

        let ProtectedPage =
            Utils.SimpleContent "Protected Page" <| fun ctx ->
                [
                    H1 [Text "This is protected content!"]
                    "Go back" => (ctx.Link Action.MyPage)
                ]

        let LoginPage action =
            Utils.SimpleContent "Login Page" <| fun ctx ->
                let redirectUrl =
                    match action with
                    | None ->
                        Action.MyPage
                    | Some action ->
                        action
                    |> ctx.Link
                    |> R
                [
                    H1 [Text "You have been logged in magically..."]
                    "Proceed further" => redirectUrl
                ]

Now you can build two sitelets, one for the non-protected and one for the protected parts of your application, 
and combine them to form the complete web application. For constructing the former, you can use the handy 
sitelet constructor Sitelet.Infer, which creates a sitelet from an Action to Content<Action> mapping, greatly 
reducing the effort necessary to define larger sitelets:

    let NonProtected =
        Sitelet.Infer <| function
            | Action.MyPage ->
                Pages.MyPage
            | Action.Login action->
                // Log in a user as "visitor" without requiring anything
                UserSession.LoginUser "visitor"
                Pages.LoginPage action



371

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

            | Action.Logout ->
                // Log out the "visitor" user and redirect to home
                UserSession.Logout ()
                Content.Redirect Action.MyPage
            | Action.Protected ->
                Content.ServerError

The price you pay for not having to stitch together single-response Sitelet.Content values is losing the ability 
to control the URL space for your resulting sitelet, e.g., observe how Sitelet.Infer does away with you having 
to specify what URLs are matched with content. Instead, Sitelet.Infer, as its name suggests, infers these 
URLs from the names of the corresponding Action cases, and creates unique URLs such as /MyPage, /Login/…, 
/Logout, and /Protected automatically. You can also manually override the URL (without any trailing slashes) 
for an Action case by annotating it with the CompiledName attribute as shown in the following snippet:

    type Action =
        | [<CompiledName "home">] MyPage
        | Protected
        | Login of Action option
        | Logout

This will cause the URL for MyPage to be /home. One of the many advantages of WebSharper sitelets is 
this ability to automatically manage URLs and use action values instead for referring to concrete entry 
points that may otherwise go out of sync as development progresses. Therefore, as a best practice, you 
should always use the Link member (see Table 14-1 above) on your WebSharper context to compute URLs 
instead of hardcoded string values.

Note that above, NonProtected needs to match all Action cases, even the protected one, for which you 
are returning a 500 server error response. This response would be raised if you don’t provide an alternate 
response earlier in the request serving pipeline. To set that alternate response up, you can define a 
protected sitelet for handling requests to the page that you want to protect (Pages.ProtectedPage):

    let Protected =
        let filter : Sitelet.Filter<Action> =
            {
                VerifyUser = fun _ -> true
                LoginRedirect = Some >> Action.Login
            }

        Sitelet.Protect filter <|
            Sitelet.Content "/protected" Action.Protected Pages.ProtectedPage

These lines define a new response available at /protected, serving the Action.Protected action with 
the content Pages.ProtectedPage. In addition, this response is protected with a Sitelet.Filter value 
defined over the same action space. This filter requires that the requesting user is logged in. In addition, 
you can impose further conditions by giving a user predicate in VerifyUser. In this example, no additional 
filtering is defined and we allow any logged in user to proceed. When the filter determines that the 
protected content can’t be served (e.g., there is no logged in user or the VerifyUser predicate fails), it 
redirects to the action specified by LoginRedirect, which maps the current protected action to the one 
where you want to redirect to for logging in (note the use of the forward composition operator >> to wrap 
this action into an option first). In our example, Action.Login takes an optional Action parameter, making 
it a suitable solution to divert to the login page with a return URL.

For the above to work, you need to combine the non-protected and the protected parts of your 
application by “summing” the corresponding sitelets, and making sure that Protected appears first so that 



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

372

no 500 server error response is raised by NonProtected when requesting the protected page. You can sum 
several sitelets using the <|> operator, or alternatively the Sitelet.Sum combinator:

    let EntireSite = Protected <|> NonProtected

Next to Sitelet.Content, Sitelet.Protected, <|> and Sitelet.Sum, there are a number of other useful 
sitelet combinators in the IntelliFactory.WebSharper.Sitelets namespace. These are summarized in 
Table 14-3.

Table 14-3. Sitelet Combinators in IntelliFactory.WebSharper.Sitelets

Function Type Description
Sitelet.Empty Sitelet<_> An empty sitelet, yielding 404 Not Found.

Sitelet.Protect Filter<'A> -> Sitelet<'A> -> 
Sitelet<'A>

Protects the given sitelet with the given filter.

Sitelet.Content string -> 'A -> Content<'A> -> 
Sitelet<'A>

Constructs a singleton sitelet that serves the 
given content for the given URL and action

Sitelet.Map ('A -> 'B) -> ('B -> 'A) -> 
Sitelet<'A> -> Sitelet<'B>

Maps a sitelet over to another action type.

Sitelet.Sum Sitelet<'A> seq -> Sitelet<'A> Combines several sitelets, with the leftmost 
taking precedence.

Sitelet.Shift string -> Sitelet<'A> -> Sitelet<'A> Shifts all sitelet URLs by the specified folder 
prefix.

Sitelet.Folder string -> Sitelets<'A> seq -> 
Sitelet<'A>

Serves the sum of the given sitelets under 
the specified “folder” prefix.

Sitelet.Infer ('A -> Content<'A>) -> Sitelet<'A> Constructs a sitelet with an inferred router 
and the given controller function.

Sitelet Routers and Controllers
WebSharper sitelets provide a powerful abstraction for representing web applications as F# values. They 
are based on two encapsulated concepts: routers and controllers. Routers are functions responsible for 
mapping incoming requests to sitelet actions and linking/resolving these actions back to URLs. Ideally, 
these should form a bijection between requests and actions, except in the cases of non-GET requests.

Controllers are functions mapping sitelet actions to actual content. As you saw in the earlier sections, 
you can assemble this content in various ways and provide for standard HTML or other server responses, 
and error codes.

You will see an example of defining routers and controllers manually in the next section. You can also 
consult the WebSharper documentation for more examples and other utilities that WebSharper provides to 
work with routers and controllers.

Constructing Sitelets for Handling Non-GET HTTP Commands
Often times, you may need to construct sitelets that respond to non-GET HTTP commands, for instance to 
implement REST interfaces. As you saw in the previous sections, Sitelet.Infer and Sitelet.Content 
create sitelets that respond to GET requests, and in turn they abstract away the details that would 
otherwise be necessary to extend their coverage to other HTTP commands. You can nonetheless tap into 
the underlying routers and controllers to implement coverage for non-GET scenarios.



373

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

In this section, you will walk through the steps required to develop a small application to manage a set 
of orders and implement a simple REST API to manage these orders. This application consists of two main 
pages: one for adding a new order, and one for listing all past orders. These are accessible via regular GET 
requests at /create and /orders, respectively. The rest of the functionality is exposed via POST/PUT/
DELETE requests, to create, update, and delete orders, respectively.

To get started, you may want to create an empty sitelet-based WebSharper solution. You will be 
updating the Main.fs and the Main.html files within this solution for this sample. In Main.fs, first, you 
create the Order type that represents orders. To keep things simple, your representation will cover an item 
name and ordered quantity only, although extending these fields to cover a realistic set of order attributes 
is straightforward.

namespace Website

type Order =
    {
        ItemName : string
        Quantity : int
    }
    static member Dummy() =
        { ItemName = "N/A"; Quantity = 0 }

Next, you implement a basic Orders store where orders are stored. This store provides an API to 
generate IDs (using a private mutable reference cell to keep track of the last ID assigned), save, update and 
delete orders, and find them by IDs. In a real-life application, you would want to save orders into a 
database or some other form of persistent storage.

module Orders =
    let private id = ref 0
    let Store = ref Map.empty

    let Save (id: int) (order: Order) =
        Store := (!Store).Add(id, order)

    let FindById (id: int) =
        if (!Store).ContainsKey id then
            Some <| (!Store).[id]
        else
            None

    let Delete (id: int) =
        if (!Store).ContainsKey id then
            Store := (!Store).Remove id

    let GetId () =
        id := !id + 1
        !id

You now can create a sitelet action type that enumerates the various entry points to your application, 
providing a conceptual mapping between the different functionalities and actions.

open IntelliFactory.WebSharper



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

374

type Action =
    | CreateOrderForm
    | CreateOrder of Order
    | DeleteOrder of int
    | GetOrder of int
    | ListOrders
    | UpdateOrder of int * Order

Here, CreateOrderForm and ListOrders correspond to the order creation and listing pages, whereas the 
other actions represent the REST API you are providing. Note that these actions carry strongly-typed Order 
values when they need to.

Your application will use dynamic templating based on the main.html file in the root of your web 
application project, and you will use the helper functions you saw in earlier sections already:

module Skin =
    open System.Web
    open IntelliFactory.Html
    open IntelliFactory.WebSharper.Sitelets

    let TemplateLoadFrequency = Content.Template.PerRequest

    type Page = { Body : list<Content.HtmlElement> }

    let MainTemplate =
        let path = HttpContext.Current.Server.MapPath("~/Main.html")
        Content.Template<Page>(path, TemplateLoadFrequency)
            .With("body", fun x -> x.Body)

    let WithTemplate body : Content<Action> =
        Content.WithTemplate MainTemplate <| fun context ->
            {
                Body = body context
            }

Note how the title placeholder was removed from the sample template to make things a tiny bit 
shorter. You should also modify your Main.html file accordingly:

<!DOCTYPE html>
<html>
  <head>
    <meta name="generator" content="websharper" data-replace="scripts" />
  </head>
  <body>
    <div data-hole="body" />
  </body>
</html>

To continue in Main.fs, you can build a simple formlet to gather the order information from the user. 
You will learn about WebSharper formlets in the next section, for now just observe the clarity and 
progressive enhancement you can apply in building this formlet.

module Client =
    open IntelliFactory.WebSharper.Formlet



375

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

    open IntelliFactory.WebSharper.Html

    [<JavaScript>]
    let OrderForm orderPostUrl =
        Formlet.Yield (fun title qty -> { ItemName = title; Quantity = qty })
        <*> (Controls.Input ""
            |> Validator.IsNotEmpty "Must enter a title"
            |> Enhance.WithTextLabel "Title")
        <*> (Controls.Input ""
            |> Validator.IsInt "Must enter a valid quantity"
            |> Formlet.Map int
            |> Enhance.WithTextLabel "Quantity")
        |> Enhance.WithSubmitAndResetButtons
        |> Enhance.WithErrorSummary "Errors"
        |> Enhance.WithFormContainer
        |> Enhance.WithJsonPost
            {
                Enhance.JsonPostConfiguration.EncodingType = None
                Enhance.JsonPostConfiguration.ParameterName = "order"
                Enhance.JsonPostConfiguration.PostUrl = Some orderPostUrl
            }

    type OrderFormControl(orderPostUrl: string) =
        inherit Web.Control()

        [<JavaScript>]
        override this.Body =
            Div [
                OrderForm(orderPostUrl)
            ] :> _

Here, the OrderForm function and the encapsulating OrderFormControl server control takes the URL to 
where your formlet will send a POST request with an Order record embedded in the request variables 
under the "order" parameter. This URL will be computed when you construct the various pages in your 
sitelet. First, let’s begin with the create order page:

module Pages =
    open IntelliFactory.Html

    let ( => ) text url =
        A [HRef url] -< [Text text]

    let Links (ctx: Context<Action>) =
        UL [
            LI ["Home" => ctx.Link Action.ListOrders]
            LI ["New"  => ctx.Link Action.CreateOrderForm]
        ]

    let CreateOrderFormPage =
        Skin.WithTemplate <| fun ctx ->
            [



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

376

                H1 [Text "Create order"]
                Links ctx
                HR []
                Div [
                    new Client.OrderFormControl(
                        Order.Dummy() |> Action.CreateOrder |> ctx.Link
                    )
                ]
            ]

This page displays a basic menu and the order creation form. The URL passed here for creating the 
order is computed using ctx.Link and a dummy order passed to the right action. The page that lists the 
stored orders is equally straightforward, creating a bullet list of the orders with a link to display/get each.

    let ListOrdersPage =
        Skin.WithTemplate <| fun ctx ->
            [
                H1 [Text "Orders"]
                Links ctx
                HR []
                UL <|
                    ((!Orders.Store)
                    |> Map.toList
                    |> Seq.map (fun (id, order) ->
                        LI [
                            A [HRef <| ctx.Link (Action.GetOrder id)] -< [
                                sprintf "#%d: %s [%d]" id order.ItemName order.Quantity
                                |> Text
                            ]
                        ]
                    ))
            ]

For retrieving a specific order, you can display it in HTML or serve it back in a more reusable format, 
say in JSON. Below is a function rendering JSON responses for a given order ID.

    let GetOrder id =
        if (!Orders.Store).ContainsKey id then
            Content.CustomContent <| fun ctx ->
                {
                    Http.Response.Status = Http.Status.Ok
                    Http.Response.Headers = [Http.Header.Custom "Content-type" "application/
json"]
                    Http.Response.WriteBody = fun stream ->
                        use writer = new System.IO.StreamWriter(stream)
                        let order = (!Orders.Store).[id]
                        let encoder = Web.Shared.Json.GetEncoder(typeof<Order>)
                        order
                        |> encoder.Encode
                        |> Web.Shared.Json.Pack
                        |> Core.Json.Stringify
                        |> writer.Write



377

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

                        writer.Close()
                }
        else
            Content.NotFound

With the necessary response content functions defined, you can now build your sitelet to represent 
the entire web application:

module MySite =
    open IntelliFactory.WebSharper.Sitelets
    open UrlHelpers

    let (|PATH|_|) (uri: System.Uri) = Some <| uri.LocalPath

    let MySitelet =
        Sitelet.Sum [
            Sitelet.Content "/create" Action.CreateOrderForm Pages.CreateOrderFormPage
            Sitelet.Content "/orders" Action.ListOrders Pages.ListOrdersPage
        ]
        <|>
        {
            Router = Sitelets.Router.New
                <| function
                    | POST (values, PATH @"/order") ->
                        try
                            let decoder = Web.Shared.Json.GetDecoder<Order>()
                            let order =
                                values
                                |> Map.ofList
                                |> fun map -> map.["order"]
                                |> Core.Json.Parse
                                |> decoder.Decode
                            Some <| Action.CreateOrder order
                        with
                        | _ ->
                            None
                    | GET (values, SPLIT_BY '/' ["order"; INT id]) ->
                        Some <| Action.GetOrder id
                    | PUT (values, SPLIT_BY '/' ["/order"; INT id]) ->
                        try
                            let decoder = Web.Shared.Json.GetDecoder<Order>()
                            let order =
                                values
                                |> Map.ofList
                                |> fun map -> map.["order"]
                                |> Core.Json.Parse
                                |> decoder.Decode
                            Some <| Action.UpdateOrder(id, order)
                        with
                        | _ ->
                            None



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

378

                    | DELETE (values, SPLIT_BY '/' ["/order"; INT id]) ->
                        Some <| Action.DeleteOrder id
                    | _ ->
                        None
                <| function
                    | Action.CreateOrder order ->
                        Some <| System.Uri(@"/order", System.UriKind.Relative)
                    | Action.DeleteOrder id
                    | Action.GetOrder id
                    | Action.UpdateOrder (id, _) ->
                        Some <| System.Uri(sprintf @"/order/%d" id, System.UriKind.Relative)
                    | _ ->
                        None

            Controller =
                {
                    Handle = function
                        | Action.CreateOrder order ->
                            Orders.Save (Orders.GetId()) order
                            Content.Redirect Action.ListOrders
                        | Action.DeleteOrder id ->
                            Orders.Delete id
                            Content.Redirect Action.ListOrders
                        | Action.GetOrder id ->
                            Pages.GetOrder id
                        | Action.UpdateOrder (id, order) ->
                            Orders.Save id order
                            Content.Redirect Action.ListOrders
                        | _ ->
                            failwith "unmatched"
                }
        }

    type MyWebsite() =
        interface IWebsite<Action> with
            member this.Sitelet = MySitelet

            member this.Actions = []The above code implements a router and controller manually. The 
router is created using Sitelets.Router.New and giving two functions to map from requests to actions and 
back. Note how you can use the various URL helpers from the Sitelets.UrlHelpers module to differentiate 
between the different HTTP commands and to parse out parts of the URLs in a type-safe manner. 
Consider, for instance, handling the GET request to an order, where id is an integer:

                    | GET (values, SPLIT_BY '/' ["order"; INT id]) ->
                        Some <| Action.GetOrder id

For the POST and PUT requests, next to the ID passed in the URL, we also expect a JSON 
representation of an Order value among the values passed in the request. This value is then extracted and 
converted to an Order instance using the built-in WebSharper JSON decoder.

The controller is less interesting; it simply maps actions to server responses. For instance, the 
CreateOrder action writes the given order into the store and redirects the user to the order listing page.

The final piece left is to mark this application as a website on the assembly:



379

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

[<assembly: Website(typeof<MySite.MyWebsite>)>]
do ()

Figure 14-2 shows the application in action: the create order and the list orders pages. When 
requesting a given order you get a JSON response, for instance:

{"$TYPES":[],"$DATA":{"$V":{"ItemName":"Windows Server 2012","Quantity":5}}}

This contains some additional fields embedded into the JSON representation that WebSharper uses to 
facilitate communication and type-safe conversation of values between the client and the server. You may 
also use another .NET JSON library to produce clean, neutral representations if you wish.

Figure 14-2. The Create Order and the List Orders Pages

WebSharper Formlets
Nearly all web pages need to take user input in one way or another. For example, the user may click buttons or 
links, or enter values in a web form. Furthermore, web forms typically impose various limitations for the values 
entered; for instance, many fields are required fields and must be supplied a value, or certain fields such as date 
fields require values in a specific format, or else, others expect values that contain alpha, numeric and/or special 
characters only, and the list goes on.

WebSharper formlets provide an elegant, type-safe, and robust way to build web forms and 
encapsulate the structural make-up, the validations involved, and the layout and other presentation 
details as a single F# value. They’re composable building blocks that can be nested, enhanced, and 
customized to an arbitrary complexity.

The IntelliFactory.WebSharper.Formlet namespace contains various formlet controls and 
enhancements that you can apply to them, along with important formlet combinators such as Formlet.
Run, which renders a formlet into a DOM node. A simple example is a text-box formlet that takes a string 
input from the user:



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

380

namespace Website

open IntelliFactory.WebSharper

module FormletSnippets =
    open IntelliFactory.WebSharper.Formlet
    open IntelliFactory.WebSharper.Html

    [<JavaScript>]
    let Snippet1 = Controls.Input "initial value"

You can test this and other formlets quickly by writing a short wrapper function that takes a render 
function that translates values to DOM nodes and a formlet that supplies those values:

    [<JavaScript>]
    let RunInBlock title f formlet =
        let output = Div []
        formlet
        |> Formlet.Run (fun res ->
            let elem = f res
            output -< [ elem ] |> ignore)
        |> fun form ->
            Div [Attr.Style "float:left;margin-right:20px;width:300px;min-height:200px;"] -< [
 
                H5 [Text title]
                Div [form]
                output
            ]

Another helper function takes simple string formlets and echoes what has been accepted by those 
formlets:

    [<JavaScript>]
    let RunSnippet title formlet =
        formlet
        |> RunInBlock title (fun s ->
            Div [
                P ["You entered: " + s |> Text]
            ])

RunSnippet returns a client-side Element value that you can wrap in an ASP.NET server control:

module Formlets =
    open FormletSnippets
    open IntelliFactory.WebSharper.Html

    type Snippet() = 
        inherit Web.Control()

        [<JavaScript>]
        override this.Body = RunSnippet "Snippet1" Snippet1 :> _



381

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

Adding this ASP.NET server control to an ASPX markup displays a text box to write text into and an 
empty echo message. Each time you press a key, an event is triggered, and the formlet enters an accepting 
state; subsequently, it displays a new echo message that is appended to the previous ones. Note that this 
formlet is in an accepting state even without typing anything into it.

To remove the initial empty echo message, that is to cause the formlet not to enter an accepting state 
initially, and impose further conditions for its acceptance, you can add various validators that “block” until 
a certain condition holds. For instance, you can use Validator.Is to inspect its current value and reject or 
accept based on any criteria you define. For instance, here is a basic input formlet, enhanced with a 
validator that doesn’t accept values with fewer than three characters:

    [<JavaScript>]
    let Snippet1a =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.Is (fun s -> s.Length > 3) "Enter a valid name")

This is a slightly more elaborate version of the input formlet, enhanced with a general validator and 
wrapped in a Formlet.Yield combinator. This function defines how the values collected in the formlet are 
combined and returned from the formlet and comes in handy for composing larger formlets that contain 
multiple input fields. The general form of Formlet.Yield looks like this:

Formlet.Yield (fun v1 ... vn -> <compose into a single return value>)
<*> formlet1
<*> ...
<*> formletn

Here, v1, …, vn correspond to the return values of formlet1, …, formletn, respectively. Note how these 
formlets are combined using the <*> formlet operator. Combining two formlets yields another formlet with 
the visuals of the combined formlets laid out vertically. You can learn about changing formlet layout later in 
this section.

Now that you are familiar with constructing basic formlets with validators and combining them to 
build larger formlets, let’s look at a few more snippets that apply progressive enhancement to your basic 
input formlet. Table 14-4 contains the most often used enhancements.

Table 14-4. Formlet Enhancement Functions in IntelliFactory.WebSharper.Formlet.Enhance

Function Type Description
WithCssClass string -> Formlet<'T> -> 

Formlet<'T>
Enhances the given formlet with a 
CSS class.

WithCustomForm 
Container

FormContainerConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
custom form container.

WithCustomResetButton FormButtonConfiguration -> 
Formlet<'T>

Enhances the given formlet with a 
custom reset button.

WithCustomSubmitAnd 
ResetButtons

FormButtonConfiguration -> 
FormButtonConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with 
custom submit and reset buttons.

WithCustomSubmitButton FormButtonConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
custom submit button.

WithCustomValidation 
Frame

ValidationFrameConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
custom validation frame.



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

382

Function Type Description
WithCustomValidation 
Icon

ValidationIconConfiguration 
-> Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
custom validation icon.

WithErrorFormlet (string list -> Formlet<'U>) -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
formlet for displaying error 
messages.

WithErrorSummary string -> Formlet<'T> -> Formlet<'T>Enhances the given formlet with an 
error summary that contains a list 
of error messages when in a failing 
state.

WithFormContainer Formlet<'T> -> Formlet<'T> Enhances the given formlet with a 
standard form container.

WithLabel (unit -> Html.Element) -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
label generated by the first 
argument.

WithLabelAbove Formlet<'T> -> Formlet<'T> Enhances the given formlet by 
displaying labels above 
components.

WithLabelAndInfo string -> string -> Formlet<'T> 
-> Formlet<'T>

Enhances the given formlet by a 
text label and an info tooltip.

WithLabelConfiguration Layout.LabelConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet by a 
custom label.

WithLabelLeft Formlet<'T> -> Formlet<'T> Enhances the given formlet by 
displaying labels on the left.

WithLegend string -> Formlet<'T> -> 
Formlet<'T>

Enhances the given formlet with a 
legend box.

WithResetButton Formlet<'T> -> Formlet<'T> Enhances the given formlet with a 
basic reset button.

WithResetFormlet Formlet<'T> -> Formlet<'U> -> 
Formlet<'T>

Enhances the first formlet with 
reset capabilities defined by the 
second.

WithResetAction (unit -> bool) -> Formlet<'T>  
-> Formlet<'T>

Adds a reset predicate that controls 
the resetting behavior of the 
containing formlet.

WithRowConfiguration Layout.FormRowConfiguration -> 
Formlet<'T> -> Formlet<'T>

Enhances the given formlet with a 
custom row configuration.

WithSubmitAndReset Formlet<'T> -> ((unit -> unit) 
-> Result<'T> -> Formlet<'U>) 
-> Formlet<'U>

Enhances the given formlet with 
the given submitting formlet and 
reset function.

WithSubmitAndReset 
Buttons

Formlet<'T> -> Formlet<'T> Enhances the given formlet with 
basic submit and reset buttons.

WithSubmitButton Formlet<'T> -> Formlet<'T> Enhances the given formlet with a 
basic submit button.

WithSubmitFormlet Formlet<'T> -> (Result<'T> -> 
Formlet<unit>) -> Formlet<'T>

Enhances the given formlet by 
applying a submitting formlet.

WithTextLabel string -> Formlet<'T> -> 
Formlet<'T>

Enhances the given formlet by a 
text label.



383

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

Function Type Description
WithValidationIcon Formlet<'T> -> Formlet<'T> Enhances the given formlet with a 

basic validation icon.

WithValidationFrame Formlet<'T> -> Formlet<'T> Enhances the given formlet with a 
standard validation frame.

CustomMany ManyConfiguration -> 
Formlet<'T> -> Formlet<list<'T>>

Creates a custom formlet for 
inputting a list of values using the 
given formlet.

Many Formlet<'T> -> Formlet<list<'T>> Creates a formlet for inputting a list 
of values using the given formlet.

WithJsonPost JsonPostConfiguration -> 
Formlet<'T> -> Html.Element

Wraps the given formlet in an 
Element, and submits the values 
entered in a POST to a given URL.

Many features of the WebSharper formlet library are driven by pure CSS, and the necessary CSS 
resources are automatically included in your page when you use formlet form containers by applying the 
Enhance.WithFormContainer function.  This applies a clean visual theme to your buttons and input fields, 
and lights up the validation and informational features. For instance, here is a basic input control wrapped 
in a form container with a validator that accepts any non-empty string (so it blocks on empty input):

    [<JavaScript>]
    let Snippet1b =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.IsNotEmpty "Enter a valid name"
             |> Enhance.WithFormContainer)

You can also cause this formlet not to accept until a submit button is pressed. In addition, you can 
supply a reset button that resets the formlet to its original state. This example adds both:

    [<JavaScript>]
    let Snippet1c =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.IsNotEmpty "Enter a valid name"
             |> Enhance.WithFormContainer
             |> Enhance.WithSubmitAndResetButtons)

The accepting status of this formlet and any validation error messages can be revealed to the user via 
a validation icon or an error summary enhancement. For these to work properly, your formlet needs to be 
in a form container. You can add a validation icon and/or a validation error summary as follows:

    [<JavaScript>]
    let Snippet1d =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.IsNotEmpty "Enter a valid name"
             |> Enhance.WithValidationIcon
             |> Enhance.WithErrorSummary "Errors"



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

384

             |> Enhance.WithSubmitAndResetButtons
             |> Enhance.WithFormContainer)

Adding a label for the input control is yet another enhancement:

    [<JavaScript>]
    let Snippet1e =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.IsNotEmpty "Enter a valid name"
             |> Enhance.WithValidationIcon
             |> Enhance.WithTextLabel "Name"
             |> Enhance.WithSubmitAndResetButtons
             |> Enhance.WithFormContainer)

And finally, you can add an information icon before the label:

    [<JavaScript>]
    let Snippet1f =
        Formlet.Yield (fun name -> name)
        <*> (Controls.Input ""
             |> Validator.IsNotEmpty "Enter a valid name"
             |> Enhance.WithValidationIcon
             |> Enhance.WithLabelAndInfo "Name" "Enter your name"
             |> Enhance.WithSubmitAndResetButtons
             |> Enhance.WithFormContainer)

You can quickly test these formlets side-by-side by defining ASP.NET server-side controls for each and 
embed them into your ASPX markup as you did before. You can also test them quickly by embedding them 
into a sitelet page. Assuming you have the above snippets in a Formlets module, you can add in the same 
module a new pagelet to display them all:

module Formlets =
    open FormletSnippets
    open IntelliFactory.WebSharper.Html

    type Snippet() = 
        inherit Web.Control()

        [<JavaScript>]
        override this.Body = RunSnippet "Snippet1" Snippet1 :> _

    type Snippets() = 
        inherit Web.Control()

        [<JavaScript>]
        override this.Body =
            Div [
                RunSnippet "Snippet1"  Snippet1
                RunSnippet "Snippet1a" Snippet1a
                RunSnippet "Snippet1b" Snippet1b
                RunSnippet "Snippet1c" Snippet1c



385

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

                RunSnippet "Snippet1d" Snippet1d
                RunSnippet "Snippet1e" Snippet1e
                RunSnippet "Snippet1f" Snippet1f
            ] :> _

Your sitelet can then serve this pagelet in a single-page, single-action sitelet under the root path:

module VariousFormletSnippets =
    open IntelliFactory.Html
    open IntelliFactory.WebSharper.Sitelets
    
    type Action = | Home

    module Pages =
        let SnippetsPage =
            Content.PageContent <| fun ctx ->
                { Page.Default with
                    Title = Some "Formlet snippets"
                    Body =
                        [
                            H1 [Text "Snippets"]
                            Div [new Formlets.Snippets()]
                        ]
                }

    let EntireSite =
        Sitelet.Content "/" Action.Home Pages.SnippetsPage

    type Website() =
        interface IWebsite<Action> with
            member this.Sitelet = EntireSite
            member this.Actions = []

[<assembly : Sitelets.Website(typeof<VariousFormletSnippets.Website>)>]
do ()

The formlets from this sitelet are shown in Figure 14-3. Although these examples contain a single 
input field, you can also create input formlets with multiple fields as shown in the following example:

    [<JavaScript>]
    let input (label : string) (err : string) = 
        Controls.Input ""
        |> Validator.IsNotEmpty err
        |> Enhance.WithValidationIcon
        |> Enhance.WithTextLabel label

    [<JavaScript>]
    let inputInt (label : string) (err : string) = 
        Controls.Input ""
        |> Validator.IsInt err
        |> Enhance.WithValidationIcon
        |> Enhance.WithTextLabel label



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

386

    [<JavaScript>]
    let Snippet2 : Formlet<string * int> =
        Formlet.Yield (fun name age -> name, age |> int)
        <*> input "Name" "Please enter your name"
        <*> inputInt "Age" "Please enter a valid age"
        |> Enhance.WithSubmitAndResetButtons
        |> Enhance.WithFormContainer

Note how this formlet returns a string-int pair for the name and age obtained from the user, in essence 
providing a type-safe and robust way to collect and handle the input values.

Figure 14-3. Various Formlet Snippets

Another useful formlet combinator is Enhance.Many. It gives you the ability to collect a list of values 
based on a formlet that collects a single value:

    [<JavaScript>]
    let Snippet3a =
        Formlet.Yield (fun name age -> name, age |> int)
        <*> input "Name" "Please enter your name"
        <*> inputInt "Age" "Please enter a valid age"



387

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

        |> Enhance.WithLegend "Person"
        |> Enhance.WithTextLabel "Person"
        |> Enhance.Many
        |> Enhance.WithLegend "People"
        |> Enhance.WithSubmitAndResetButtons
        |> Enhance.WithFormContainer

Dependent Formlets and Flowlets
Often, web forms need more elaborate considerations. For instance, part of a web form may depend on a 
value entered in another part. You can express these dependencies using dependent formlets, which you 
can create most conveniently using the Formlet.Do computation expression builder. As plain formlets, 
dependent formlets are also first-class values and further encode linear dependencies between the various 
form parts. Consider the following simple example in which the name and age are obtained one after the 
other, requiring that a name is entered before the input field for the age is displayed:

    [<JavaScript>]
    let Snippet4 =
        Formlet.Do {
            let! name = input "Name" "Please enter your name"
            let! age = inputInt "Age" "Please enter a valid age"
            return name, age |> int
        }
        |> Enhance.WithSubmitAndResetButtons
        |> Enhance.WithFormContainer

The IntelliFactory.WebSharper.Formlet namespace provides additional combinators you can use to 
express nonlinear dependencies and build complex user interface interactions and forms.

Similar to dependent formlets, flowlets provide a slightly different visual experience and enable you to 
serve various formlets as a sequence of steps, collecting and accumulating the composite result of the 
entire flowlet. The following example dresses up each primitive formlet step in a form container with reset 
and submit buttons:

    [<JavaScript>]
    let Snippet4b =
        Formlet.Do {
            let! name = input "Name" "Please enter your name"
                        |> Enhance.WithSubmitAndResetButtons
                        |> Enhance.WithFormContainer
            let! age =  inputInt "Age" "Please enter a valid age"
                        |> Enhance.WithSubmitAndResetButtons
                        |> Enhance.WithFormContainer
            return name, age |> int
        }
        |> Formlet.Flowlet

Automated Resource Tracking and Handling
Pagelets often need to define their own resource dependencies, such as style sheets, JavaScript code, and 
other artifacts that they need to work properly. These dependencies are automatically referenced and 
included by the WebSharper script manager when those pagelets are used in an ASPX or sitelet page. For 



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

388

instance, the formlet examples in the preceding section came with a dependency on the main formlet style 
sheet provided by WebSharper (along with additional skins), giving the appearance shown in Figure 14-3.

Resources can be defined and tagged on various parts of your code, most typically on functions or 
modules when binding various JavaScript libraries, and once those parts are referenced, the corresponding 
resources are included in the consuming page. From this automation point of view, resource annotations 
serve to define anchors to external artifacts using generated HTML markup, inserted into the <head> 
section of the containing page.

The most low-level implementation of a resource thus renders this HTML markup:

namespace Website

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Core

// Put "my.js" in the root of the web project.
type MyResource() =
    interface Resources.IResource with
        member this.Render ctx writer =
            writer.WriteLine "<script src='my.js' type='javascript'></script>"

You rarely need to use custom rendered resources. Instead, to define a resource pointing to a CSS or 
JavaScript file, you can simply use the BaseResource class. This class has two constructors: one that you can 
use to define a resource embedded into the assembly, and another that can address an external resource 
relative to an absolute base URL (in the first argument). An example for an embedded resource, here, be 
sure to mark my.js as an embedded resource in your solution:

[<assembly:System.Web.UI.WebResource("my.js", "text/javascript")>]
do ()

type MyEmbeddedResource() =
    inherit Resources.BaseResource("my.js")

Using the multi-argument constructor:

type MyExternalResource() =
    inherit Resources.BaseResource(@"http:\\your.net", "lib.js", "style.css")

The advantage of using Resources.BaseResource is that you can avoid having to render HTML in your 
resource declaration. Instead, Resources.BaseResource is smart enough to tell apart JavaScript and CSS 
artifacts, and outputs the right markup for each.

Once you have defined the resources you need, you can annotate them on any type (or module) or 
any static member using the Require attribute, specifying the type of the resource that is to be pinned to 
the given code unit.

    [<Require(typeof<MyExternalResource>)>]
    type Hello = ..

From this point, any use of the Hello type will trigger a dependency defined in MyExternalResource.

Using Third-Party JavaScript Libraries
One of WebSharper’s great strengths is its ability to use any JavaScript library in client-side F# code, freeing 
you from having to develop untyped JavaScript code as a separate code base. To talk to these JavaScript 
libraries in F#, you need a WebSharper extension for each library. At the time of writing, WebSharper comes 



389

CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

with a number of extensions to various JavaScript libraries, including jQuery, Google Maps and 
Visualization, Yahoo UI, jQuery UI, jQuery Mobile, and many others. Some of these come with the main 
WebSharper installer (for instance, jQuery and the HTML5 extensions), and some you have to download 
from the WebSharper site (http://websharper.com) separately.

You can also develop WebSharper extensions to your own or third-party JavaScript libraries. Many 
JavaScript libraries use loosely typed constructs, such as functions that take a variable number and type of 
arguments, and return objects with different structures. To bind these libraries, you often need to resort to 
a low-level, weakly-typed extension often referred to as a native extension, and build a derived, more 
strongly-typed and safer F# abstraction around it as second library.

WebSharper extensions are defined in F# using embedded domain-specific language syntax and are 
processed through the WebSharper Interface Generator (WIG) tool. These definitions are meant to be terse 
and compact, reiterating the underlying JavaScript API in F# using a set of convenient notations and 
operators.

You can quickly get started with a new extension by using the Extension project template that comes 
with the standard WebSharper installer. This creates a new F# project with a single source file Main.fs that 
contains two important pieces: first, a Definition module that uses the WIG syntax to define various types, 
interfaces, classes, and members that form an “assembly,” which is a code unit that represents a JavaScript 
library as a single F# value, and second, a Main module that triggers the generation of the extension from 
this “assembly” value. The generation of the extension involves outputting source code decorated with 
Inline attributes, and compiling it to a .NET assembly that contains the extension. You could also write the 
code that WIG generates by hand, but you would quickly start to appreciate the amount of effort WIG saves 
you by automating many of the abstraction chores and common JavaScript usage patterns.

The full WIG language definition is outside the scope of this chapter, and you should consult the 
WebSharper documentation for more details. You will see a short example of using WIG in Chapter 15 for 
describing a small portion of the Facebook API to be used in mobile web application.

Working with .NET Proxies
WebSharper enables you to use F# in your client-side coding and gives you nearly the entire F# language to 
develop client-side code, including powerful language features such as pattern matching, active patterns, 
discriminated unions and records, classes, interfaces, exceptions, and asynchronous computations, 
among others. This is coupled with the ability to use a large part of the F# core libraries and standard .NET 
namespaces in client-side code, without having to worry about how to map them to JavaScript. The 
mechanism to enable this seamless translation experience is proxying, a fundamental WebSharper 
concept that you should be familiar with, as you may need to add proxies yourself to your own or third-
party libraries to extend translation coverage.

WebSharper proxies provide a JavaScript interpretation for a .NET type. This proxy type is annotated 
with the Proxy attribute, giving the type of the underlying target .NET type for which the proxy is provided. 
Here is a small, partial example to proxy the standard F#/.NET int type:

open IntelliFactory.WebSharper

[<Proxy(typeof<System.Int32>)>]
type private Int32 =

    static member MaxValue with [<Inline "2147483647">]  get () = 0
    static member MinValue with [<Inline "-2147483648">] get () = 0

    [<Inline "parseInt($s)">]
    static member Parse(s: string) = X<int>



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS

390

Note how the three static members use the Inline attribute to express their counterparts in 
JavaScript, and these inline expressions will be evaluated and used in the translation of client-side code 
instead of invoking the right-hand side of each member. The above snippet also demonstrates a subtle 
point in how proxies (and JavaScript stubs as well) are defined, e.g., what you supply as the .NET 
implementation for each member. You can apply the following techniques in defining your JavaScript 
mapping for proxying a .NET type or stubbing JavaScript code:

You should never call proxies directly. Remember, they are only used in translating 
.NET types to JavaScript. Hence, you can leave their implementation empty (say, by 
constructing the default value of the return type) or yield an exception. For this, you 
can use the X<'T> construct as in the Parse member above. Yielding an exception is a 
preferred approach, so in case you accidentally call proxy members, you are notified 
runtime.

Since stubbed (that is, inlined) code is designed to be called, you need to take care 
how you call these stubbed functions and members. Calling from client code is the 
intended behavior; here, WebSharper will evaluate and use the attached inline 
expressions and ignore the .NET implementation. However, if you also want to make 
your stubbed functions available for server-side use (a rare, but useful device when 
used in a controlled fashion), you should attach a semantically correct .NET 
implementation.

Summary
In this chapter, you’ve seen how to use F# to perform a range of web programming tasks. You started by 
using sockets and TCP/IP to implement a web server and other TCP-based services directly, an example of 
a system or web network programming task. In the larger part of the chapter, you have looked at using 
WebSharper, the main F# web framework to develop client-based applications that incorporate significant 
client-side scripting, and authored them in pure F# code. You looked at WebSharper pagelets, learned how 
you can use them to embed client-side functionality into your pages, and learned about WebSharper 
sitelets to represent entire web applications as server-side F# values in a type-safe and composable 
manner. You also saw how to build user interfaces and web forms in a declarative fashion, employing 
progressive enhancement techniques and represent these client-side user interfaces as strongly-typed F# 
values that can be combined and nested to an arbitrary complexity. As well, you saw a number of powerful 
formlet combinators that yield a massive productivity factor when it comes to building more complex web 
forms, such as accepting a list of user inputs, expressing dependencies within form elements, and applying 
different visual rendering techniques and validation functions.

You also became familiar with WebSharper’s extensibility framework: how you can develop 
WebSharper extensions to any third-party JavaScript library, or proxies to extend the .NET to JavaScript 
translation coverage. With these techniques, you can leverage a massive paradigm shift towards building 
more client-oriented, reactive applications with less code, while enjoying more robustness and type safety.



391

■ ■ ■

CHAPTER 15

Building Mobile Web Applications

Mobile applications are changing the way people interact with software. With the abundance of mobile 
devices such as smart phones and tablets, developing mobile applications and delivering content to 
mobile devices requires learning new skills and technologies. This chapter examines how you can build 
mobile web and native applications in F# using WebSharper. The topics covered are:

Why web-based mobile applications are becoming increasingly important

How you can use feature detection and polyfilling libraries in your applications to 
work around mobile browser limitations and missing features

How you can serve mobile web content from your WebSharper applications

How you can develop WebSharper applications for iOS that use platform-specific 
markup to access unique features such as multi-touch events

How you can develop WebSharper applications that use the Facebook API, parts of 
which you bind manually using a WebSharper Extension project

How you can use WebSharper Mobile to create native Android and Windows Phone 
packages for your WebSharper applications

How you can integrate mobile formlets and Bing Maps in a WebSharper application

Web-based vs. Native Mobile Applications
Mobile applications are designed to run on mobile devices and to utilize their additional capabilities such 
as GPS positioning, camera, and touch screen; more technically, they rely on the executing mobile 
operating system to provide access to mobile capabilities found on the device. When mobile devices first 
appeared, various vendors produced operating systems for them, each providing a unique user experience 
and capabilities, and with that, a unique way to develop applications for these platforms.

Native applications are those designed to run specifically on a given platform (or even a specific 
hardware device), and depend on the exact capabilities that are provided on that platform by its execution 
environment. Typically, a native application needs heavy adaptation or even an entire rewrite in order to 
run on another platform. For instance, many iPhone or iPad applications are developed in Apple’s own 
programming language, using vendor-specific libraries and development environments. The same holds 
for native Android, Windows Phone, Symbian, and other applications.

To add to the diverse mobile operating system landscape, each platform comes with its own 
application store, giving end-users a one-stop shop for new applications and their updates. While the 



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

392

existence of application stores has resulted in a massive explosion in the number of mobile applications 
available and, with that, several mainstream mobile platforms solidifying, it has also played an important 
role in developers looking for cross-platform solutions to build their applications in order to reach a larger 
audience, and undoubtedly, to save on their efforts by avoiding to build several versions of the same 
application for different platforms.

One approach to cross-platform mobile development is utilizing the existing HTML4-based mobile 
browsers and providing mobile websites (you probably saw countless examples of these sitting at URLs 
like http://m.something.com) next to native mobile applications. These are web applications with reduced 
capabilities, compared to their mobile counterparts, due to their lack of web/HTML features that could 
provide similar user experience and functionality. Nonetheless, mobile websites played and continue to 
play an important role in providing content and applications on mobile devices, thus contributing to 
mobile device explosion. On one hand, mobile websites provide a clean and simple version of an 
application, therefore prompting the developers to consider the essential parts of their applications. On 
the other hand, mobile websites acted as a conduit to explore new and innovative uses of web applications 
coupled with the convenience of mobile devices.

Another parallel development is the appearance of various HTML5 standards. HTML5 is a large and 
constantly evolving set of standards, now covering important mobile features such as multi-touch, native-
strength audio, video and camera capabilities, efficient client-server communication via web sockets, and 
so on. HTML5 along with CSS3 now provide a standards-driven alternative to native mobile applications, 
and have proven not only viable, but also in many respects, superior to native application development.

In this chapter, you will be taking a short introduction into developing mobile web applications in F# 
using WebSharper, the F# web framework you saw in Chapter 14. You will learn about progressive 
enhancement, responsive web design, feature detection and polyfilling, various HTML and JavaScript 
features such as multi-touch events and mobile meta tags supported on different mobile browsers, 
developing WebSharper mobile web applications using these features, and finally, using WebSharper 
Mobile to package these applications into native Android or Windows Phone applications.

PROGRESSIVE ENHANCEMENT AND RESPONSIVE WEB DESIGN

One of the challenges of mobile web development (or ordinary web development for that matter) is 
accommodating the vast diversity of end-user devices that come with different capabilities to render content. 
In the past, one way to work with this added complexity was to detect certain devices or browsers and 
implicitly causing or even explicitly advising users to update to a newer version that better supports the 
features of the given application. This is a failed attempt to provide graceful degradation, a technique that 
starts with a feature-rich version customized to a particular browser technology and provides various 
fallback mechanisms for certain features when they are detected missing.

In today’s world, new techniques are emerging to tackle this problem in a fundamentally different, better 
way. For one, you can apply progressive enhancement, a strategy where you develop applications based on 
clean and rich semantic markup that is accessible to all devices, and add more sophisticated features as 
enhancements in layers that, where interpreted correctly, yield an improved user experience. These 
enhancements can be applied on the presentation layer using various CSS and styling elements, and on the 
behavioral layer using client-side scripting.

We have used the term progressive enhancement in a similar but slightly different context in Chapter 14, 
where you saw how you can apply incremental enhancements to formlets and their input controls. These 
enhancements concerned visual details such as labels, icons, and layout, and dynamic behaviors such as 
validation, and were applied incrementally to build progressively more enhanced formlets.

Responsive web design uses progressive enhancement to enable web applications to adapt to different 
screen resolution and plays an important role in developing modern mobile web applications. It relies on 



393

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

three fundamental building blocks: fluid grids, flexible images, and media queries. Fluid grids structure their 
content depending on the available screen size, and may shift cells in predictable ways to better adapt to the 
real estate available on the device. Flexible images resize on demand to keep the content in which they are 
embedded consistently formatted. Media queries provide conditional styling based on a CSS media type 
(such as handheld, print, projection, or tv) and an optional set of expressions that involve particular 
media features such as width or orientation. A handful of media query examples are shown in Table 15-1.

Table 15-1. Examples for Media Queries

Media Query Note
@media screen and (max-width: 640px) {...} Apply if the width of the viewing area is no 

more than 640 pixels.

@media screen and (min-width: 1024px) {...} Apply if the width of the viewing area is at 
least 1024 pixels.

@media screen and (max-device-width: 480px) {...} Apply if the width of the device is no more 
than 480 pixels.

@media screen and (min-device-width: 320px) {...} Apply if the width of the device is at least 
320 pixels.

@media (orientation: portrait) {...} Apply if the orientation of the device is 
portrait.

Feature Detection and Polyfilling in WebSharper
At first look, mobile web applications differ little from ordinary web applications. However, although 
HTML5 is spreading quickly to mobile browsers, there are still various differences that need to be dealt 
with on various platforms. Coming to the rescue, you should design your applications with running in 
different contexts in mind using feature detection, via a multitude of JavaScript libraries such as Modernizr 
(http://modernizr.com) or has.js. In conjunction with feature checking, you can also use what is often 
referred to as polyfilling, e.g., using JavaScript to fill in for missing browser features. Many of the polyfilling 
libraries exist to provide various HTML5 support such as canvas, video or audio on older browsers such as 
IE7 and IE8, that otherwise do not support HTML5.

It is impossible to do justice to the various available feature-checking and polyfilling libraries in one 
short chapter, nor are they set in stone, as there are new and better libraries appearing all the time. 
Instead, you can find a short list of libraries and the various features they relate to in Table 15-2.

Feature detection libraries provide an easy-to-use API to query for various browser features, often as a 
table lookup facility or a function call that identifies browser features with keys (usually as strings), and 
returning a Boolean value depending on whether the given feature is supported in the executing context or 
not. For instance, in has.js, you can check whether the end user’s browser supports HTML5/video with the 
following JavaScript snippet:

if(has("video")) {
    // Your enviroment supports HTML5 video
} else {
    // It doesn't, so you must use some kind of video polyfill
}

Modernizr also provides a convenient shorthand notation not only to check for various features, but 
also to polyfill them if they are absent. Consider the following Modernizr JavaScript snippet:



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

394

Modernizr.load({
  test: Modernizr.geolocation,
  yep : 'geo.js',
  nope: 'geo-polyfill.js'
});

This snippet defines a conditional loading of a script based on the result of a particular test function 
Modernizr.geolocation, which checks for geolocation support in the executing environment. Modernizr 
includes a large number of tests for various CSS, JavaScript, HTML5, and other features you can use in 
your applications to detect context support and fall back accordingly.

Table 15-2. Some Notable Polyfill Libraries Available

Name Library URL Type
AmplifyJS http://amplifyjs.com/ HTML5/LocalStorage

audio.js http://kolber.github.com/audiojs/ HTML5/Audio

excanvas http://code.google.com/p/explorercanvas/ HTML5/Canvas

Flashcanvas http://flashcanvas.net/ HTML5/Canvas

HTML-History-API https://github.com/devote/HTML5-History-API HTML5/History

MediaElement.JS http://mediaelementjs.com/ HTML5/Video+Audio

pdf.js https://github.com/mozilla/pdf.js PDF

Raphaël http://raphaeljs.com SVG/VML Graphics

Shumway https://github.com/mozilla/shumway Flash

Socket.IO http://socket.io HTML5/WebSockets

Video.js http://videojs.com HTML5/Video

To use JavaScript libraries like Modernizr or has.js in your WebSharper applications, you have several 
choices. First, you can define JavaScript inlines in your WebSharper code to “stub” certain functions and to 
instruct WebSharper to output your inlines for them at code generation time. For this to work correctly, 
you need to make sure that the module containing your inlined functions is properly annotated to require 
any JavaScript/CSS artifacts that belong to the library you are referencing. Here is an example to inline has.
js’s has(…) function you saw earlier and to make it available to your F# code as HasJs.Has:

open IntelliFactory.WebSharper

module MyResources =
    type HasJs() =
        inherit Resources.BaseResource("http://[put-URL-here]/has.js")

    module Features =
        type Video() =
            inherit Resources.BaseResource("http://[put-URL-here]/has.js")

        ...

[<Require(typeof<MyResources.HasJs>)>]
module HasJs =
    module Features =



395

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

        [<Require(typeOf<MyResources.Features.Video>)>]
        [<JavaScript>]
        let Video() = "video"
        ...

    [<Inline("has($s) ? $ifyes() : $ifno()")>]
    let Has (s: string) (ifyes: unit -> unit) (ifno: unit -> unit) =
        ()

With this JavaScript stub, your WebSharper code could use has.js to detect various browser features. 
For instance, the snippet you saw above could be phrased in WebSharper as:

do HasJs.Has (HasJs.Features.Video())
    <| fun () ->
        // Your enviroment supports HTML5 video
        ...
    <| fun () ->
       // It doesn't, so you must use some kind of video polyfill
       ...

In addition to manually stubbing out JavaScript functions with inlines, you can also create a new 
WebSharper extension for your JavaScript library at hand using the WebSharper Interface Generator tool 
you saw in Chapter 14. Extensions are an essential part of using WebSharper because they provide the 
bridge to the outside world and to any JavaScript library; and you may find the need to build WebSharper 
extensions from time to time, either to existing third-party JavaScript libraries or to libraries of your own. 
You will see an example of developing a WebSharper extension to a small part of the Facebook API later in 
this chapter.

Alternatively, you can check if a given WebSharper extension is already available on the WebSharper 
downloads page at http://websharper.com/downloads. WebSharper extensions are added regularly, so 
there is a good chance that someone has already done the work for you. At the time of writing, WebSharper 
has over two dozen extensions available, covering a good selection of mobile libraries, including jQuery 
Mobile (http://jquerymobile.com/), Sencha Touch (http://www.sencha.com/products/touch/), and Kendo 
UI (http://kendoui.com/), and many other JavaScript libraries you can use in your web or mobile web 
applications.

Mobile Capabilities, Touch Events, and Mobile Frameworks
One of key differentiators of mobile applications is the ability to use various touch events to control them. 
You will see later in this chapter how you can add handlers to these events using JavaScript libraries, such 
as jQuery Mobile, that provide access to vendor-specific JavaScript events in a unified way. There are a 
growing number of similar JavaScript libraries that aim to enable your applications to respond to touch 
events. For instance, hammer.js (http://eightmedia.github.com/hammer.js) and zepto.js (http://zeptojs.
com) both provide support for touch events. Table 15-3 summarizes the different kinds of touch events that 
emerged as “standard” on touch-based devices.

Table 15-3. Summary of Touch Events

Event Description
Tap Touching on a single point for a short period.

Double Tap Tapping on a single point twice within a time threshold.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

396

Event Description
Swipe Touching on a single point and moving horizontally or vertically.

Hold Touching on a single point for a longer period.

Transform Touching on at least two points and moving them in any direction.

Drag / Pan Touching on a single point and moving in any direction.

Beyond single and multi-touch events, mobile devices also provide a number of other capabilities to 
applications running on them. Some of these mobile capabilities are listed in Table 15-4. Mobile JavaScript 
libraries and frameworks, and technologies such as WebSharper Mobile (introduced later in this chapter) 
and PhoneGap (http://phonegap.com) provide access to some or all of these capabilities using JavaScript. 
More advanced capabilities, such as access to local storage, the file system on the device, its 
communication and networking capabilities, and any contacts databases stored on the device are also 
becoming available to JavaScript as these technologies mature.

Table 15-4. Some Mobile Capabilities Available in Mobile Devices

Capability Description
Accelerometer Providing information on the device’s acceleration

Audio/Media Playing sounds using the device’s speakerphone(s)

Camera Taking pictures using the device camera

Communication Enabling access to the device’s communication channels

Compass Providing directional/compass information

Geolocation Providing geolocation information using GPS or A-GPS

Vibration Responding by vibration

Storage Providing access to local storage

Touch and Multi Touch Responding to touch events, summarized in Table 15-3

As you will shortly see in this chapter, serving mobile content and developing mobile web applications 
that use various mobile capabilities doesn’t involve any magic and is actually quite fun to learn to do. To 
take this experience even further, a large number of JavaScript mobile web frameworks exist that not only 
enable you to use various mobile user interface widgets and capabilities, but also provide a sort of 
application framework (some basic, some nearly end-to-end) in which to develop your mobile web 
applications. Some of these frameworks are listed in Table 15-5.

Table 15-5. A Handful of JavaScript Mobile Web Application Frameworks

Framework URL
Appcelerator Titanium http://www.appcelerator.com/

DHTMLX Touch http://www.dhtmlx.com/touch/

iUI http://www.iui-js.org

jQuery Mobile http://jquerymobile.com/

Sencha Touch http://www.sencha.com/products/touch/

Sproutcore http://sproutcore.com/

wink http://www.winktoolkit.org/



397

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Serving Mobile Content 
So far in this chapter you saw how you can apply feature detection and polyfilling to accommodate 
different rendering environments, preparing your application to gracefully fall back on older devices and 
browsers. In this section, you will look at a couple fundamental details that you need to be aware of before 
you can start serving mobile web content, in particular, understanding how mobile browsers interpret 
your content differently than desktop browsers.

To start with, consider what happens when you view a basic web page with a header and some text in 
a desktop browser and compare it with the same page viewed in a mobile browser. You will find that the 
mobile browser will scale it like a web page. For instance, on Safari it will be scaled to a 980 pixels width, 
with the expectation that you want to surf pages like on a desktop. However, most mobile devices have 
fewer physical pixels and therefore the header and text in your test page will appear tiny, if at all visible.

You can fix this by embedding more information in your markup to let your mobile browser know that 
it is receiving content intended for mobile devices. For instance, to solve the scaling issue, you can emit an 
additional meta tag in the header of your page:

    <meta name="viewport" content="width=device-width, initial-scale=1"/>

This tells mobile browsers to set the default width of the page to the actual width of the device (likely 
to something fewer than 980 pixels) and not to scale the content. You can also set minimum-scale and 
maximum-scale to 1 to avoid the mobile browser zooming in and out, but many users might find this less 
usable.

The available options for viewport and some further iOS meta tags are listed in Table 15-6.

Table 15-6. Special Meta Tags Available in iOS/Safari

Meta tag key (name=”...”) Meta tag value (content=”...”) Description
apple-mobile-web-app-capable yes/no If yes, run application in full screen 

mode.

apply-mobile-web-app-status-bar-
style

default/black/black-
translucent

In full screen mode, specifies how the 
status bar is displayed.

format-detection telephone=no Disable making strings that look like 
phone numbers into dial links.

viewport width=... [980] 
height=... 
initial-scale=... 
maximum-scale=... [0.25] 
minimum-scale=... [5.0] 
user-scalable=... [yes]

Using comma as a separator, 
configure various viewport options. 
The defaults of each option are 
shown in brackets. 
You can use device-height and 
device-width to refer to the 
dimensions of the device.

Another way to fix the viewport is to apply a different document type, one that specifically targets 
mobile devices (such as XHTML Mobile Profile 1.0/1.2).  However, to use HTML5 features, your best bet 
remains using the plain HTML5 document type:

<!DOCTYPE html>

You can serve content with this document type and with the extra meta tags programmatically as you 
saw in Chapter 14, or you can embed them directly into your dynamic template file. You will use this latter 
approach for the examples in the remainder of this chapter.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

398

Building a Mobile Web Application for iOS Devices
For the examples that follow in this chapter, you will be using various WebSharper extensions, providing 
stubs to different JavaScript libraries. Some of these extensions you will develop yourself, and some you 
will download from the WebSharper website (http://websharper.com).

In this section, you are going to build a web application that uses specific iOS/Safari mobile browser 
features and its JavaScript support for multi touch events. Your application will work on other mobile 
browsers as well, but some features such as multi-touch events may be missing. To simplify your coding, 
we assume that no feature detection needs to be done; you can insert these on demand in your real life 
coding. As you’ll see, these mobile browser features provide for a user experience that is reasonably similar 
to native applications. Yet, the development effort and the ability to move a lot of the code to other 
platforms without changes makes mobile web applications much more attractive than their native 
counterparts.

The application you are going to be developing in this section is shown in Figure 15-1. It implements a 
basic image viewer application that preloads a large image and enables the user to rotate it, move it, and 
zoom it using multi-touch events.

Figure 15-1. The image viewer application running on iPad



399

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Fleshing Out the Application
The application is implemented using the HTML Site WebSharper template. You can use this template for 
a basic application that will implement an HTML site with pure HTML and JavaScript code. Go ahead and 
create a new solution based on this template. At this point, you should have the basic project references 
configured, and your project should contain three files: extra.files, Main.fs, and Main.html.

In this application, you will be using WebSharper Extensions for jQuery Mobile, available on the 
WebSharper download page (http://websharper.com/downloads). At the time of writing, WebSharper 
extensions install under %ProgramFiles%\IntelliFactory\WebSharper\Extensions. After installing this 
extension, find and add a library reference to  IntelliFactory.WebSharper.JQuery.Mobile.dll. At this 
point, you are all set to use this extension later in your application code.

A special configuration file used by offline WebSharper projects, extra.files is used to copy files that 
belong to sitelets from the containing F# project. This enables you to encapsulate external artifacts such as 
images and style sheet files inside a single F# project instead of having to manually manage them in a 
consuming project. Playing an important role in Android and Windows Phone WebSharper applications as 
well, extra.files instructs the packaging application to include any additional and necessary artifacts in 
target mobile packages.

In this example, you will only need a large image (say, containing more than 1000x1000 pixels) that 
will be preloaded into the application for manipulating its size, position, and dimensions. Assuming that 
you put it under an images folder as map.jpg in the HTML Site project, add it to extra.files as shown in 
Listing 15-1:

Listing 15-1. extra.files

images/map.jpg

Main.html is used as the dynamic site template for this application, and you can make a few changes 
to it to fit your needs. First, you can remove the title-related markup to keep the application to a minimum. 
Then you can add a meta tag to set the viewport as you saw in the previous section, and also introduce a 
few lines of styling. The resulting template is shown in Listing 15-2.

Listing 15-2. Main.html

<!DOCTYPE html>
<html>
  <head>
    <meta name="generator" content="websharper" data-replace="scripts" />
    <meta name="viewport" content="width=device-width, initial-scale=1"/>
    <style type="text/css"><![CDATA[
        *
        {
            margin: 0;
            padding: 0;
        }
        
        .main
        {
            position: absolute;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

400

            overflow: hidden;
        }
        
        .head
        {
            position: absolute;
            height: 30px;
            text-align: center;
            line-height: 30px;
            background-color: Black;
            color: White;
            z-index: 1;
            width: 100%;
        }
        
        .head > *
        {
            float: left;
            margin-right: 10px;
        }
        
        .pan-image
        {
            display: none;
        }
        
        .pan-canvas
        {
            position: absolute;
            top: 30px;
            left: 0;
        }
    ]]></style>
  </head>
  <body>
    <div data-hole="body"></div>
  </body>
</html>

Note in Listing 15-2 that you use the HTML5 document type, and that the style markup is contained in 
a CDATA block to avoid any XML parsing errors. WebSharper dynamic templates must be valid XML 
documents, and using CDATA blocks to embed text with special characters is a convenient way to get 
around any limitations you may encounter otherwise. And the last bit, your main content placeholder body 
is wrapped in a div node.

Now that you have your basic template and the extra.files configuration set up, the only piece left is 
the main application code itself. This is shown in Listing 15-3.

Listing 15-3. Main.fs

namespace MyNamespace



401

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

open System
open System.IO
open System.Web
open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Sitelets

module MySite =
   open IntelliFactory.Html

   type Action = | Index

   module Skin =
      type Page =
         {
             Body: Content.HtmlElement list
         }

      let MainTemplate =
         let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
         Content.Template<Page>(path)
            .With("body", fun x -> x.Body)

      let WithTemplate body : Content<Action> =
         Content.WithTemplate MainTemplate <| fun context ->
            {
                Body = body context
            }

   module Client =
      open IntelliFactory.WebSharper.Html
      open IntelliFactory.WebSharper.JQuery

      type State =
         {
            mutable x: float
            mutable y: float
            mutable scale: float
            mutable angle: float
         }

      type MyControl() =
         inherit IntelliFactory.WebSharper.Web.Control()

         [<JavaScript>]
         override this.Body =
            let main = Div [Attr.Class "main"]
            let head =
               Div [Attr.Class "head"] -< [
                  Text "WebSharper Image Viewer"
               ]
            main -< [



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

402

               head
               HTML5.Tags.Canvas [
                   Attr.Class "pan-canvas";Attr.Width "600";Attr.Height "600"
               ]
               |>! OnAfterRender (fun e ->
                  let canvas = As<Html5.CanvasElement> e.Body
                  let ctx = canvas.GetContext "2d"
                  Img [Attr.Src "images/map.jpg"; Attr.Class "pan-image"]
                  |> Events.OnLoad (fun img ->
                     let state = { x = 0.; y = 0.; scale = 1.; angle = 0. }
                     let delta = { x = 0.; y = 0.; scale = 1.; angle = 0. }
                     let redraw() =
                        // Reset the transformation matrix
                        // and clear the canvas.
                        ctx.SetTransform(1., 0., 0., 1., 0., 0.)
                        ctx.ClearRect(0., 0.,
                                      float canvas.Width, float canvas.Height)

                        // In order to have centered rotation and zoom, we
                        // must first put the center of the image at the
                        // origin of the coordinate system.
                        ctx.Translate(float canvas.Width / 2.,
                                      float canvas.Height / 2.)
                        ctx.Scale(state.scale * delta.scale,
                                  state.scale * delta.scale)
                        ctx.Rotate(state.angle + delta.angle)

                        // Then, when the rotation and zoom are done, we put
                        // the image back at the center of the screen, plus
                        // the (x, y) translation.
                        ctx.Translate(state.x+delta.x - float canvas.Width/2.,
                           state.y + delta.y - float canvas.Height / 2.)
                        ctx.DrawImage(img.Body, 0., 0.)
                     let settleDelta() =
                        state.x <- state.x + delta.x
                        state.y <- state.y + delta.y
                        state.angle <- state.angle + delta.angle
                        state.scale <- state.scale * delta.scale
                        delta.x <- 0.
                        delta.y <- 0.
                        delta.scale <- 1.
                        delta.angle <- 0.
                        redraw()
                     let panStartPosition = ref None
                        // Pan events
                     Mobile.Events.VMouseDown.On(JQuery.Of(e.Body), fun ev ->
                        panStartPosition:=Some(ev.Event.PageX, ev.Event.PageY)
                        ev.Event.PreventDefault())
                     Mobile.Events.VMouseMove.On(JQuery.Of(e.Body), fun ev ->
                        match !panStartPosition with
                        | None -> ()



403

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

                        | Some (sx, sy) ->
                           let dx = float(ev.Event.PageX - sx)
                           let dy = float(ev.Event.PageY - sy)
                           let angle = state.angle + delta.angle
                           let scale = state.scale * delta.scale
                           delta.x <- (dx * Math.Cos angle + dy * Math.Sin angle) / scale
                           delta.y <- (dy * Math.Cos angle - dx * Math.Sin angle) / scale
                           redraw()
                           ev.Event.PreventDefault())
                     Mobile.Events.VMouseUp.On(JQuery.Of("body"), fun ev ->
                        if (!panStartPosition).IsSome then
                           settleDelta()
                           panStartPosition := None
                           ev.Event.PreventDefault())
                     // iOS-only rotozoom events
                     e.Body.AddEventListener("gesturechange", (fun (ev: Dom.Event) ->
                        delta.scale <- ev?scale
                        delta.angle <- ev?rotation * System.Math.PI / 180.
                        redraw()
                        ev.PreventDefault()
                        ), false)
                     e.Body.AddEventListener("gestureend", (fun (ev: Dom.Event) ->
                        settleDelta()
                        ev.PreventDefault()
                        ), false)
                     redraw()
                   )
               )
             ] :> IPagelet

   let Index =
      Skin.WithTemplate <| fun ctx ->
         [
            Div [new Client.MyControl()]
         ]

   let MySitelet =
      Sitelet.Content "/index" Action.Index Index

type MyWebsite() =
    interface IWebsite<MySite.Action> with
        member this.Sitelet = MySite.MySitelet
        member this.Actions = [MySite.Action.Index]

[<assembly: Website(typeof<MyWebsite>)>]
do ()



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

404

Digging Deeper
The main application code above sets up basic dynamic templating based on Main.html in your project, 
and defines the main pagelet MyControl in the Client module, along with a single-page sitelet, MySitelet. 
These are then used to declare the sitelet as a website on the assembly. Note that you specified a singleton 
list of actions for the Actions member in the website declaration: this is used to instruct the offline sitelet 
generator tool to output the sitelet page that handles this action; in other words, to output the single 
HTML page in your application. This will yield an HTML file named after the single Action case, index.
html. Building the project in Visual Studio successfully will pop up a Windows Explorer window containing 
the generated files, and you can open index.html in a browser to see it in action.

To use it from an iOS device, you need to publish the application to a public URL and open that URL 
in your iPad’s or iPhone’s Safari browser. These devices support multi-touch events, so you should be able 
to rotate and scale the image you added to your application.

Now, let’s look at how the application works. The main client-side control Client.MyControl creates 
the following dynamic markup:

<div class="main">
    <div class="head">WebSharper Image Viewer</div>
    <canvas class="pan-canvas" width="600" height="600">
    </canvas>
</div>

When the <canvas> element is first created and rendered, the OnAfterRender event is fired. This event 
handler is the heart of your application and is attached using the |!> operator, which registers a callback 
function to the given event without returning the parent DOM node. First, it creates an <img> node and 
loads the image you added earlier to the project. Although this image is never added as an actual DOM 
node, creating it dynamically still causes the browser to construct it and to call its OnLoad event. This event 
then performs a number of steps:

Creates some bookkeeping for representing the visual state and the delta in between 
various touch events

Defines a redraw() function that draws the loaded image onto the <canvas> element 
respecting the current state and delta registers

Defines a settleDelta() function that propagates the current delta register into the 
state and initiates a redraw

Registers various event handlers

The general format for registering an event handler involves finding the event handler by name and 
registering a callback function to it taking the event argument and performing the actions you need.

In the above example, you take two different approaches for binding to various events. Recall that 
earlier you added a reference to WebSharper Extensions for jQuery Mobile to your project. You did this 
because jQuery Mobile provides a useful abstraction over single-touch events under what it calls virtual 
mouse events, making touch and mouse events uniform regardless of running on mobile or desktop 
browsers. These events can be addressed with the jQuery Mobile extensions in a type-safe manner:

        Mobile.Events.VMouseDown.On(JQuery.Of(e.Body), fun ev ->
            panStartPosition := Some (ev.Event.PageX, ev.Event.PageY)
            ev.PreventDefault())

The above call registers an event handler for jQuery Mobile’s VMouseDown event: the event that occurs 
when the user clicks down using the mouse or when a touch device is touched. The event handler is added 
to the canvas element (represented by e), and the callback function takes an event arguments parameter ev 



405

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

of type Mobile.VMouseEventArgs. This type contains various important virtual mouse-related members, 
such ClientX, ClientY, ScreenX, ScreenY, and an Event member to refer back to the underlying jQuery 
event object. This object carries, among others, the click/touch coordinates in PageX and PageY.

The various other events available in the IntelliFactory.WebSharper.Mobile.Events class are 
summarized in Table 15-7. Many of these events are key to mobile applications, providing interactions 
such as swiping, scrolling, and tapping on a mobile device, and responding to important events such as 
changes in the orientation of the device or updating the presentation layout.

Next to binding to events using jQuery Mobile, the second approach you saw in the example above 
involves binding to non-standard events, such as the multi touch events not available in the current 
version of WebSharper Extensions for jQuery Mobile, using the plain JavaScript event binding primitive 
AddEventListener. Consider the following snippet from the example:

        e.Body.AddEventListener("gesturechange", (fun (ev: Dom.Event) ->
            delta.scale <- ev?scale
            delta.angle <- ev?rotation * System.Math.PI / 180.
            redraw()
            ev.PreventDefault()
            ), false)

This registers an event handler for the gesturechange event, a non-standard event available in iOS/
Safari browsers. Here, the callback function takes a plain DOM event object that contains standard 
JavaScript functions to manipulate how the event is propagated (such as PreventDefault), where and 
when it was initiated, etc. It also contains in various browser implementations additional pieces of data 
that are tagged onto it for specific events. In the above snippet, scale and rotation are extracted using the 
dynamic access operator (?). This operator attempts to fetch from its first argument a field with a name 
given by an F# identifier following it: roughly the dynamic equivalent of the dot used for ordinary .NET 
member access. In our example, scale and rotation are known to be available in browsers that support 
the gesturechange event (most notably, iOS/Safari), but in general, you should provide for a fallback when 
the dynamic lookup fails.

Table 15-7. Mobile Events Provided by WebSharper Extensions for jQuery Mobile

Event Type Description
OrientationChange Mobile.Event< 

Mobile. 
OrientationChangeEvent>

Triggered when the orientation of the devices 
changes. [portrait | landscape]

ScrollStart Mobile.Event Triggered when scrolling starts.

ScrollStop Mobile.Event Triggered when scrolling stops.

Swipe Mobile.Event Triggered when a horizontal drag occurs within a 
specific duration.

SwipeLeft Mobile.Event Triggered when a swipe event occurs moving in the 
left direction.

SwipeRight Mobile.Event Triggered when a swipe event occurs moving in the 
right direction.

Tap Mobile.Event Triggered after a quick, complete touch event.

TapHold Mobile.Event Triggered after a held complete touch event.

UpdateLayout Mobile.Event Triggered when the application’s layout changes.

VClick Mobile.Event Triggered on a mouse click or a touch event.

VMouseCancel Mobile.Event Triggered when a virtual mouse event is cancelled.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

406

Event Type Description
VMouseDown Mobile.Event Triggered on a mouse or touch click down event.

VMouseMove Mobile.Event Triggered on a mouse or touch move event.

VMouseOut Mobile.Event Triggered on a mouse or touch out event.

VMouseOver Mobile.Event Triggered on a mouse or touch over event.

VMouseUp Mobile.Event Triggered on a mouse or touch up event.

Developing Social Networking Applications
In the previous section you saw how you can build an HTML5 mobile application that uses specific mobile 
browser features such as multi-touch events to enhance user experience. In this section, you are going to 
build another HTML5 mobile application that interfaces with the Facebook API (http://developers.
facebook.com) to retrieve a Facebook user’s status updates and to display them in a mobile application 
built with WebSharper Extensions for jQuery Mobile. The example demonstrates how you can build a 
WebSharper extension to the subset of the Facebook API you need, and how to use this extension to build 
an HTML5 application that is enhanced to run on mobile devices using the jQuery Mobile library and its 
corresponding WebSharper extension.

Figure 15-2. Displaying Facebook status messages



407

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

The application in this section is built as a multi-project solution in Visual Studio. You should start by 
creating a WebSharper Extension project, and later add a WebSharper HTML Site project to complete the 
application. As a first step, after you created your new Extension project, replace the contents of Main.fs 
with the code in Listing 15-4.

Listing 15-4. Main.fs – Defining a WebSharper Extension to a Part of Facebook API

namespace IntelliFactory.WebSharper.Facebook

module Definition =
    open IntelliFactory.WebSharper.InterfaceGenerator
    open IntelliFactory.WebSharper.Dom

    module Res =
        let FacebookAPI =
            Resource "FacebookAPI" "https://connect.facebook.net/en_US/all.js"

    let FlashHidingArgs =
        Class "FB.FlashHidingArgs"
        |+> Protocol [
                "state" =? T<string>
                "elem" =? T<Element>
            ]

    let InitOptions =
        Pattern.Config "FB.InitOptions" {
            Required = []
            Optional =
                [
                    "appId", T<string>
                    "cookie", T<bool>
                    "logging", T<bool>
                    "status", T<bool>
                    "xfbml", T<bool>
                    "channelUrl", T<string>
                    "authResponse", T<obj>
                    "frictionlessRequests", T<bool>
                    "hideFlashCallback", FlashHidingArgs ^-> T<unit>
                ]
        }

    let AuthResponse =
        Class "FB.AuthResponse"
        |+> Protocol [
                "accessToken" =? T<string>
                "expiresIn" =? T<string>
                "signedRequest" =? T<string>
                "userId" =? T<string>
            ]



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

408

    let UserStatus =
        Pattern.EnumStrings "FB.UserStatus"
            ["connected"; "not_authorized"; "unknown"]

    let LoginResponse =
        Class "FB.LoginResponse"
        |+> Protocol [
                "authResponse" =? AuthResponse
                "status" =? UserStatus
            ]

    let LoginOptions =
        Pattern.Config "FB.LoginOptions" {
            Optional =
                [
                    "scope", T<string>
                    "display", T<string>
                ]
            Required = []
        }

    let FB =
        Class "FB"
        |+> [
                "init" => !?InitOptions ^-> T<unit>
                "login" => (LoginResponse ^-> T<unit>) * !?LoginOptions ^-> T<unit>
                "logout" => (LoginResponse ^-> T<unit>) ^-> T<unit>
                "getLoginStatus" => (LoginResponse ^-> T<unit>) ^-> T<unit>
                "getAuthResponse" => T<unit> ^-> AuthResponse
                "api" => T<string>?url * !?T<string>?''method'' * !?T<obj>?options * (T<obj> ^-> 
T<unit>)?callback ^-> T<unit>
            ]
        |> Requires [Res.FacebookAPI]

    let Assembly =
        Assembly [
            Namespace "IntelliFactory.WebSharper.Facebook" [
                FlashHidingArgs
                InitOptions
                AuthResponse
                UserStatus
                LoginResponse
                LoginOptions
                FB
            ]
            Namespace "IntelliFactory.WebSharper.Facebook.Resources" [
                Res.FacebookAPI
            ]
        ]



409

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

module Main =
    open IntelliFactory.WebSharper.InterfaceGenerator

    do Compiler.Compile stdout Definition.Assembly

The various operators you see in this code listing are explained in more detail in the WebSharper 
documentation in the chapter that describes the WebSharper Interface Generator tool. For instance, given 
a class type defined via the Class function, |+> enhances it with new members. You can create a new 
member giving its name as a string, the => operator, and its type. In addition, you can also use the =?/=!/=@ 
operators to create a read-only/write-only/mutable property, or =% to create a field. Types are constructed 
using the types you created in code, using the T<…> operator to refer to existing .NET types, using the star 
(*) operator for tuple types, using the ^-> operator for function types, using the !? operator for optional 
parameters, and !+ operator for a variable number of arguments, among others.

The extension definition above covers a subset of the Facebook API. In particular, it deals with 
authenticating users, retrieving their login status, and provides a generic api function to retrieve various 
bits of information from the Facebook service. These functions are defined in a class called FB, inside the 
main IntelliFactory.WebSharper.Facebook namespace, along with the various configuration and helper 
types necessary. To make these functions work correctly at runtime, the FB class is enhanced to require the 
main Facebook API JavaScript file, defined as the resource Res.FacebookAPI, pointing to the Facebook 
domain. This resource will be automatically referenced and included in any sitelet page or ASPX markup 
that uses the functionality provided by the FB class. 

Configuring Your New Facebook Application
Before you can implement the main application code, you need to register your application with Facebook 
to receive an ID that you can use to query the Facebook API. To register your application, go to http://
developers.facebook.com/apps, sign in if you haven’t already, make sure your account is verified, and click 
the Create New App button on the top. In the popup in Figure 15-3, add the name of your application, 
select if you need optional hosting, and click Continue.

Figure 15-3. Creating a new Facebook application

In the next step, you need to enter some CAPTCHA validation, and then proceed onto setting up the 
application properties. By this point, your new Facebook application has been created and it has a unique 
ID and secret code pair as shown in Figure 15-4, and shortly you will need the former in your application 
code.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

410

But first, in the Basic Info panel, enter the URL of your new application: either the URL where you will 
be manually hosting your application files, or you can create and configure a hosting domain on Heroku if 
you have chosen to tick the Web Hosting option in the previous step. You can see an example setup in 
Figure 15-5, where you used Heroku to host your application files.

Figure 15-4. The unique identifiers of your Facebook application

Figure 15-5. Configuring the domains and the URL of your application

As a last configuration step, enter your application URL in the Website with Facebook Login option of 
the application integration section as shown in Figure 15-6.

Figure 15-6. Configuring your application

Defining the Main HTML Application
The main HTML application uses the same kind of dynamic templating that you saw in the previous 
section. The template markup in Main.html is shown in Listing 15-5.



411

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Listing 15-5. Main.html – Defining the Dynamic Template for the Facebook Application

<!DOCTYPE html>
<html>
  <head>
    <title>My Facebook Wall</title>
    <meta name="viewport" content="width=device-width, initial-scale=1" />
    <meta name="generator" content="websharper" data-replace="scripts" />
  </head>
  <body>
    <div data-replace="body" />
    <div data-role="page" id="dummy" />
  </body>
</html>

The templating functionality should look familiar to you already. The main application is placed in the 
Client module and is shown in Listing 15-6.

Listing 15-6. Main.fs– The Application Code

namespace IntelliFactory.Facebook.Application

open System
open System.IO
open IntelliFactory.WebSharper.Sitelets

module MySite =
   open IntelliFactory.WebSharper
   open IntelliFactory.Html

   type Action = | Index

   module Skin =

      type Page =
         {
             Body : Content.HtmlElement list
         }

      let MainTemplate =
         let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
         Content.Template<Page>(path)
            .With("body", fun x -> x.Body)

      let WithTemplate body : Content<Action> =
         Content.WithTemplate MainTemplate <| fun context ->
            {
                Body = body context
            }

   module Client =
      open IntelliFactory.WebSharper.Html



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

412

      open IntelliFactory.WebSharper.Facebook
      open IntelliFactory.WebSharper.JQuery
      open IntelliFactory.WebSharper.JQuery.Mobile

      type Control() =
         inherit IntelliFactory.WebSharper.Web.Control()

         [<JavaScript>]
         let (||?) (x: 'a) (y: 'a) = if As<bool> x then x else y

         [<JavaScript>]
         override this.Body =
            Mobile.Use()
            Mobile.Instance.DefaultPageTransition <- "slide"
            FB.Init(InitOptions(AppId="<<PUT-YOUR-APPID-HERE>>"))
            let btncStatus = Span [Text "Log in"]
            let btnGetPosts =
               A [
                  Text "Get latest wall posts"
                  Attr.HRef "#"; Attr.Style "display: none;"
               ]
            let updateStatus (resp: LoginResponse) =
               if resp.Status = UserStatus.Connected then
                  btncStatus.Text <- "Log out"
                  JQuery.Of(btnGetPosts.Body).Show().Ignore
               else
                  btncStatus.Text <- "Log in"
                  JQuery.Of(btnGetPosts.Body).Hide().Ignore
            let wallPage =
                Div [
                   Attr.Id "wall"; HTML5.Attr.Data "role" "page"
                   HTML5.Attr.Data "url" "#wall"
                ]
            let wall =
                UL [
                   HTML5.Attr.Data "role" "listview"
                   HTML5.Attr.Data "inset" "true"
                ]
            wallPage -< [
               Div [
                  HTML5.Attr.Data "role" "header"
                  HTML5.Attr.Data "position" "fixed"
               ] -< [
                  H1 [Text "My Facebook Wall"]
                  A [Attr.HRef "#"] -< [btncStatus]
                  |>! OnClick (fun el ev ->
                     FB.GetLoginStatus <| fun resp ->
                        if resp.Status = UserStatus.Connected then
                           FB.Logout updateStatus
                        else
                           FB.Login(



413

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

                              updateStatus,
                              LoginOptions(Scope = "read_stream"))
                  )
                  |>! OnAfterRender (fun _ -> FB.GetLoginStatus updateStatus)
                  btnGetPosts
                  |>! OnClick (fun el ev ->
                     Mobile.Instance.ShowPageLoadingMsg("a","Receiving posts")
                     FB.Api("/me/home", fun o ->
                        wall.Clear()
                        o?data |> Array.iter (fun x ->
                           let message = x?message ||? x?story ||? x?caption
                           LI [
                              yield H6 [Text message]
                              yield P [Text ("From: " + x?from?name)]
                              let numComments =
                                 if x?comments && x?comments?count > 0 then
                                    "See " + x?comments?count
                                 else
                                    "0"
                              yield P [Text (numComments + " comments")]
                              yield Img [Attr.Src (if x?picture then x?picture else "")]
                              if x?comments && x?comments?data then
                                 yield UL [
                                    yield! x?comments?data |> Array.map (fun comment ->
                                       LI [
                                          H6 [Text comment?message]
                                          P [Text comment?from?name]
                                       ]
                                    )
                                    yield LI [
                                       HTML5.Attr.Data "iconpos" "left";
                                       HTML5.Attr.Data "icon" "arrow-l"] -< [
                                          A [Attr.HRef "#"] -< [Text "Back"]
                                          |>! OnClick (fun _ _ ->
                                             Mobile.Instance.ChangePage(
                                                JQuery.Of(wallPage.Body),
                                                ChangePageConfig(
                                                   Reverse = true))
                                          )
                                       ]
                                    ]
                           ]
                           |> wall.Append
                           Mobile.Instance.HidePageLoadingMsg()
                        )
                        JQuery.Of(wall.Body) |> ListView.Refresh
                     )
                  )
               ]
               Div [HTML5.Attr.Data "role" "content"] -< [wall]
            ]



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

414

            |>! OnAfterRender (fun el ->
               JQuery.Of(el.Body)
               |> JQuery.Page
               |> Mobile.Instance.ChangePage
            ) :> IPagelet

   let Index =
      Skin.WithTemplate <| fun ctx ->
         [
             Div [new Client.Control()]
         ]

   let MySitelet =
      Sitelet.Content "/" Action.Index Index

type MyWebsite() =
   interface IWebsite<MySite.Action> with
      member this.Sitelet = MySite.MySitelet
      member this.Actions = [MySite.Action.Index]

[<assembly: Website(typeof<MyWebsite>)>]
do ()

The main client control creates the following skeleton markup:
<div id="wall" data-role="page" data-url="#wall">
   <div data-role="header" data-position="fixed">
      ...
   <div>
   <div data-role="content">
      <ul data-role="listview" data-inset="true">
         ...
      </ul>
   </div>
</div>

This markup represents a jQuery Mobile “page” with a header and a content panel, the latter with a list 
of items displayed. Pages are an essential user interface abstraction in jQuery Mobile, as they provide the 
basic building blocks of multi-page applications where control transfers from one page to another usually 
enhanced with some sort of visual effect such as sliding in and out, creating a native-like user experience.

In the example above, the header part of the main page contains a title and two buttons: one that 
reflects the user’s login status and displays Log in or Log out, accordingly, and another to fetch the user’s 
wall posts if the user is logged in. This piece of logic is implemented in the updateStatus function, which is 
called when the user logs in or signs out. Logging in and signing out is implemented using the FB.Login 
and FB.Logout functions, respectively. Logging in prompts the familiar Facebook login as a new page, and 
upon successfully authenticating with it, the popup is closed and control is returned to the requesting 
page. It is therefore important that your application sits on a public URL and that this URL is set up 
correctly with Facebook, so this redirection can successfully happen.

The main part of the application is in the Click event handler for btnGetPosts: the “Get latest wall 
posts” button. Since the call to the Facebook API to retrieve the user’s wall posts can take a few moments, a 
loading animation is shown using Mobile.Instance.ShowPageLoadingMsg. This animation is then turned off 
by the time control is transferred to handling the data returned from the Facebook service. This is 
initialized with an FB.Api call to /me/home, and registering a callback to display the data received. The data 



415

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

you get back from this call is highly dynamic in structure and may contain different pieces for the different 
types of wall posts. The following line is used to extract either the message, the story, or the caption (for 
picture posts) of the post:

       let message = x?message ||? x?story ||? x?caption

This bit uses the dynamic “OR” operator ||? you defined earlier in the Client module. This operator 
uses the fact that a dynamic lookup (using the standard ? operator) in a record for a non-existing field 
returns null, which can be checked against as a Boolean value. So the fragment above returns either the 
message, the story, or the caption fields – whichever is non-null first in the given order. You should refer to 
the Facebook API documentation for the various post types and the structure they adhere to in case you 
need to cater to further post types.

The code then returns an LI node for each wall post retrieved and these are then wrapped inside the 
main UL list view placeholder node. These LI nodes contain the extracted message text, the author of the 
post, the number of comments, and an optional image that might accompany the post. Any embedded 
comment data is shown as a nested list view with a Back button to return to the original post.

You should take a look at the Facebook API and incorporate new bits of it into your WebSharper 
extension, and in turn use these in your application to provide more features such as posting comments, 
enabling users to like posts, etc. These pieces of functionality are straightforward to add, and you are urged 
to try out more possibilities the Facebook API and a bit of WebSharper coding can enable.

WebSharper Mobile
In the previous sections you saw how you can build web applications that use specific mobile browser 
features and WebSharper mobile extensions to implement a native-like user experience on various mobile 
devices. These included the ability to use the entire device screen for your applications, adding them as 
icons to your iOS device, using multi-touch events and other gestures, etc. In this section, you are going to 
build native application packages using WebSharper Mobile, a set of extensions to WebSharper that 
provide mobile capabilities and native application containers for mobile web applications. These mobile 
features are shipped with the standard WebSharper installer.

The native mobile capabilities supported in WebSharper Mobile across different platforms are 
encapsulated in IntelliFactory.WebSharper.Mobile as a set of interfaces and helper types, and are given 
concrete implementations in the corresponding mobile namespaces such as IntelliFactory.WebSharper.
Android. At the time of writing, WebSharper Mobile supports creating native applications for Android and 
Windows Phone, and exposes WebSharper access to accelerometer and geo location data, camera 
functionality, and logging. These members are summarized in Tables 15-8, 15-9, 15-10, and 15-11.

Table 15-8. Members Related to Acceleration in IntelliFactory.WebSharper.Mobile.IAcceleration

Member Type Description
AccelerationChange IEvent< 

Mobile.Acceleration>
Allows subscription to acceleration 
updates

IsMeasuringAcceleration Bool Gets or sets the state of acceleration 
subscription

Table 15-9. Members Related to Locations in IntelliFactory.WebSharper.Mobile.IGeolocator

Member Type Description
GetLocation unit -> Async<Mobile.Location> Returns the current location of the device



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

416

Table 15-10. Members Related to Logging in IntelliFactory.WebSharper.Mobile.ILog

Member Type Description
Trace Mobile.Priority -> 

string -> string -> 
unit

Traces a message to the system log

Table 15-11. Members Related to Camera Support in IntelliFactory.WebSharper.Mobile.ICamera

Member Type Description
Location.Latitude Double Gets the latitude of the current location

TakePicture unit -> Async<Mobile.Jpeg> Uses the device camera, if available, to take a 
picture

The concrete platform implementations may also contain specific features beyond the core set of 
mobile functions. For instance, WebSharper, at the time of writing, provides experimental support to 
Bluetooth communication on Android devices. This API is listed in Table 15-12.

Table 15-12. Members in IntelliFactory.WebSharper.Android.Bluetooth 

Member Type Description
CancelDiscovery unit -> unit Cancels the Bluetooth discovery process

ConnectToDevice Bluetooth.Device * string -> 
Async<Bluetooth.Socket>

Connects to the given Bluetooth device 
asynchronously

Enable unit -> async<unit> Enables Bluetooth on the device

GetBondedDevices unit -> seq<Bluetooth.Device> Gets all paired Bluetooth devices

MakeDiscoverable int -> Async<unit> Makes the current device discoverable 
for a given number of seconds.

Serve string -> string -> (Bluetooth.
Connection -> Async<unit>) -> 
Bluetooth.Server

Starts a Bluetooth server with the given 
name and UUID

StartDiscovery unit -> unit Starts the Bluetooth device discovery 
process

Discovery IEvent<Bluetooth.Device> The Bluetooth device discovery event

IsDiscoverable bool Tests if the current Android device is 
discoverable via Bluetooth

IsDiscovering bool Tests if the Bluetooth device discovery 
process is active

IsEnabled bool Tests if Bluetooth is enabled on the 
current Android device

this.Get unit -> Bluetooth.Context option Gets a Bluetooth context, if present on 
the current platform

The easiest way to get started developing native mobile applications with WebSharper is by creating a 
WebSharper Android or Windows Phone Application project. These templates contain, beyond the basic 
offline sitelet library hooks and the basic WebSharper Mobile foundation, the Android and Windows Phone 
implementations of the WebSharper Mobile core capabilities and any platform-specific extensions, 
respectively.



417

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

Developing Android Applications with WebSharper
In this section, you will be developing a small native Android application that combines some of the 
WebSharper Mobile capabilities with specific extensions such as Formlets for jQuery Mobile and Bing 
Maps. In particular, Formlets for jQuery Mobile provides a formlet abstraction using the jQuery Mobile 
look and feel, giving you the ability to define type-safe, composable mobile user interfaces: an important 
building block to declaratively build native mobile applications with attractive user interfaces.

The application you will develop is shown in Figure 15-7, running on the Android emulator from the 
Android SDK. It constructs a simple login dialog using jQuery Mobile formlets, and proceeds onto a page 
with a Bing map showing your current location, updating regularly to reflect the user’s location as he or 
she may be moving around. Naturally, to see this application in action you should deploy it on an actual 
Android device; nonetheless, testing with the Android emulator is a good way to get going. Alternatively, 
you can also test device-neutral functionality in a plain browser such as Firefox or Chrome.

Figure 15-7. Your native Android application running in the Android emulator



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

418

Setting Up and Testing with Your Android Environment
To develop for Android, and before you get started with your application, you should make sure to have 
the following prerequisites installed and set up on your machine:

The Java Development Kit (JDK) 7, available from http://www.oracle.com/
technetwork/java/javase/downloads/jdk-7u4-downloads-1591156.html

The Android SDK, available from http://developer.android.com/sdk/index.html

Apache Ant, available from http://ant.apache.org/

Set JAVA_HOME to the path of your JDK installation, such as c:\Program Files\Java\
jdk1.7.0

Set ANDROID_SDK to the path of your Android SDK, such as c:\android-sdk

Set ANT_HOME to the path of your Ant installation, such as c:\tools\apache-ant-1.8.4

Add the values of %JAVA_HOME%, %ANDROID_SDK%, %ANDROID_SDK%\platform-tools, and 
%ANT_HOME% to your PATH

Figure 15-8 shows the Android SDK Manager, the tool you can use to manage your installed Android 
APIs and their associated libraries. This tool will also notify you if you have updates to any library, or when 
a new API version or revision is published. Android has evolved quickly, and up to date, still enjoys a strong 
momentum of updates, with consecutive API versions introducing new and enriched capabilities and a 
wider reach of mobile devices to run on. Android 3.X or above is an appropriate choice for tablets, so if you 

Figure 15-8. The Android SDK Manager



419

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

want to develop and test applications for Android tablets, choose and install an API 3.x or above. Older 
Android versions such as API 2.2 and API 2.3 are an appropriate choice for targeting smaller devices such 
as smart phones.

Once you have the appropriate Android APIs installed, you need to configure the Android virtual 
machines you want to target and test with.

This you can do by creating an Android Virtual Device using the Manage AVDs link in the Tools menu 
in the SDK Manager, or the separate AVD Manager tool installed with Android SDK. We recommend that 
you create an Android 2.3 and an Android 3.2 virtual device for the sample in this section, so you can test it 
on various formats such as smart phones and tablets.

Go ahead and click New… in the AVD Manager and create these new AVDs: an example configuration 
for Android 2.3 is shown in Figure 15-9. The Target dropdown is populated based on the APIs you have 
installed on your system. For each API, you can choose between various built-in skins that are available, or 
specify a custom resolution for your device. The Hardware section lists various properties for your device. 
Figure 15-9 contains a few properties that enable, among others, GPS support on the emulated device. You 
should consult the Android SDK documentation for a more in-depth treatment of communicating 
“hardcoded” settings such as your current location into your virtual devices, or interacting with them on 
the fly in various other ways.

A couple useful tools that you should be aware of while developing Android applications:

adb.exe (in %ANDROID_HOME%\platform-tools) – the Android Debug Bridge. This is the 
tool/server that enables you to interact with a physical Android device connected to 
your machine in USB debug mode, or with a running virtual device. Running it 
without parameters will display a long list of options and parameters that control 
different aspects of communicating with the connected Android device. A few 
important commands are:

o adb.exe install <apk-package> – installs the given .apk package. In general, 
this is the easiest and quickest way to install your WebSharper-generated .apk 
to your emulator or to your connected physical device.

o abd.exe uninstall <apk-package> – uninstalls the given .apk package. 
Alternatively, you can also uninstall a package in the emulator itself via 
Settings \ Applications.

o adb.exe kill-server – attempts to kill the Android Debug Bridge server and 
might be necessary if your device is not detected.

o adb.exe start-server – attempts to start the Android Debug Bridge server on 
a given port and might be necessary if your device is not detected.

telnet.exe (in %SystemRoot%\System32) – your old friend from the past, a client tool 
that enables you to communicate with the Android Debug Bridge using the Telnet 
communication protocol. Telnet can be installed via the system Control Panel, 
under Programs and Features, by turning on the Telnet feature. In general, you 
invoke it as telnet.exe localhost <port>, where <port> is the port number your 
Android Debug Bridge server is listening on. 
 
Once you have successfully connected to the Android bridge server, you can issue 
various commands. For instance, you can hardcode the GPS coordinates to the 
connected Android device with the following command: 
 
geo fix <long> <lat> 
 
Here, <lat> and <long> are the latitude and longitude values, respectively.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

420

Using the Android Application Visual Studio Template
Now that you are familiar with installing different Android APIs and setting up virtual devices running 
those APIs, you can get started on your native Android application. First, choose the Android Application 
template in Visual Studio and create your new project. This template provides the necessary tooling to 
distill a set of JavaScript files and other artifacts from your application, and to package them into a native 
Android application, a technique employed by other popular tools like PhoneGap (http://phonegap.com). 

Figure 15-9. Configuring an Android virtual device



421

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

PhoneGap provides packaging for several mobile platforms, including Android, Windows Phone, iOS, 
Blackberry, Bada, and others, and can be used in conjunction with WebSharper offline sitelets to package 
your WebSharper applications for any of these mobile platforms. You may want to use PhoneGap for 
packaging WebSharper applications for iOS, such as the ones you saw in earlier sections in this chapter, as 
iOS is not yet supported as a target native application format in WebSharper Mobile. Nonetheless, 
WebSharper Mobile provides a hassle-free packaging experience for Android and Windows Phone 
applications and is tightly coupled with WebSharper.

The Android Application template you used to create your application from contains an android 
folder with files that are related to packaging your final Android application. In particular, the .project file 
in the root of this folder contains the name of your Android package, set by default to DroidSite. You may 
want to rename this according to your needs later on.

Another important artifact in the android folder is ant.properties, a configuration file used in 
conjunction with building with ant. This file contains your signature settings for signing the resulting 
packages. By default, these settings are not configured and your application packages are unsigned. 
Therefore, before distributing your packages,  you should generate a key store using the keytool.exe tool 
in your JDK, and configure ant.properties accordingly.

Building via ant is the preferred way of building Android packages, as the msbuild script shipped with 
the Android Application WebSharper template will trigger ant as part of the build process to bundle the 
final Android package automatically. Your resulting Android package will be under android\bin, whereas 
the distilled HTML+JavaScript code along with any additional artifacts that were packaged will be copied 
under android\assets to make it easier to investigate them offline.

Implementing Your Native Android Application
Other than the android folder you saw in the previous section, your empty Android application project has 
the same two files you saw in previous sections: Main.fs for your application code, and Main.html for your 
dynamic template markup. The latter is shown in Listing 15-7, and it may look quite familiar to you since it 
contains a barebones mobile-aware markup you used in other examples in this chapter.

Listing 15-7. Main.html – Defining the Dynamic Template for the Android Application

<!DOCTYPE html>
<html>
  <head>
    <title>Your Android Application</title>
    <meta name="viewport" content="width=device-width, initial-scale=1" />
    <meta name="generator" content="websharper" data-replace="scripts" />
  </head>
  <body>
    <div data-hole="body" />
  </body>
</html>

The main application code is shown in Listing 15-8. The code uses the jQuery Mobile formlets 
extension (which depends on the jQuery Mobile extension) and the Bing Maps extension, so you need to 
download and install WebSharper Extensions for jQuery Mobile, Formlets for jQuery Mobile, and Bing 
Maps, respectively, from the WebSharper download site (http://websharper.com/downloads), and add 
references to IntelliFactory.WebSharper.JQuery.Mobile, IntelliFactory.WebSharper.Formlets.
JQueryMobile, IntelliFactory.WebSharper.Bing, and IntelliFactory.WebSharper.Bing.Rest from the 
folders you installed them into.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

422

Listing 15-8. Main.fs– Implementing your Android Application

namespace MyApplication

open IntelliFactory.WebSharper
open IntelliFactory.WebSharper.Sitelets

module MySite =
    type Action = | Home

    module Skin =
        open System.IO

        type Page =
            {
                Body : list<Content.HtmlElement>
            }

        let MainTemplate =
            let path = Path.Combine(__SOURCE_DIRECTORY__, "Main.html")
            Content.Template<Page>(path)
                .With("body", fun x -> x.Body)

        let WithTemplate body : Content<Action> =
            Content.WithTemplate MainTemplate <| fun context ->
                {
                    Body = body context
                }

    module Client =
        open IntelliFactory.WebSharper.Html
        open IntelliFactory.WebSharper.Bing
        open IntelliFactory.WebSharper.JQuery
        open IntelliFactory.WebSharper.JQuery.Mobile
        open IntelliFactory.WebSharper.Formlet
        open IntelliFactory.WebSharper.Formlets.JQueryMobile

        [<JavaScript>]
        let BingMapsKey = "<put-your-bing-maps-key-here>"

        [<JavaScript>]
        let ShowMap () =
            let screenWidth = JQuery.Of("body").Width()
            let MapOptions = Bing.MapViewOptions(
                                Credentials = BingMapsKey,
                                Width = screenWidth - 20,
                                Height = screenWidth - 40,
                                Zoom = 16)
            let label = Span []
            let setMap (map : Bing.Map) =
                let updateLocation() =



423

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

                    // Gets the current location
                    match Android.Context.Get() with
                    | Some ctx ->
                        if ctx.Geolocator.IsSome then
                            async {
                                let! loc = ctx.Geolocator.Value.GetLocation()
                                // Sets the label to be the address of
                                // the current location.
                                Rest.RequestLocationByPoint(
                                    BingMapsKey,
                                    loc.Latitude, loc.Longitude, ["Address"],
                                    fun result ->
                                        let locInfo = result.ResourceSets.[0].Resources.[0]
                                        label.Text <-
                                            "You are currently at " +
                                            JavaScript.Get "name" locInfo)
                                // Sets the map at the current location.
                                let loc =
                                    Bing.Location(loc.Latitude, loc.Longitude)
                                let pin = Bing.Pushpin loc
                                map.Entities.Clear()
                                map.Entities.Push pin
                                map.SetView(Bing.ViewOptions(Center = loc))
                            }
                            |> Async.Start
                        else
                            ()
                    | None ->
                        ()
                JavaScript.SetInterval updateLocation 1000 |> ignore
            let map =
                Div []
                |>! OnAfterRender (fun this ->
                    let map = Bing.Map(this.Body, MapOptions)
                    map.SetMapType(Bing.MapTypeId.Road)
                    setMap map)
            Div [
                label
                Br []
                map
            ]

        [<JavaScript>]
        let LoginSequence () =
            Formlet.Do {
                let! username, password =
                    Formlet.Yield (fun user pass -> user, pass)
                    <*> (Controls.TextField "" Enums.Theme.C
                        |> Enhance.WithTextLabel "Username"
                        |> Validator.IsNotEmpty "Username cannot be empty!")
                    <*> (Controls.Password "" Enums.Theme.C



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

424

                        |> Enhance.WithTextLabel "Password: "
                        |> Validator.IsRegexMatch "^[1-4]{4,}[5-9]$"
                                                  "The password is wrong!")
                    |> Enhance.WithSubmitButton "Log in" Enums.Theme.C
                do! Formlet.OfElement (fun _ ->
                    Div [
                        H3 [Text ("Welcome " + username + "!")]
                        ShowMap()
                    ])
            }
            |> Formlet.Flowlet

        type ApplicationControl() =
            inherit Web.Control()

            [<JavaScript>]
            override this.Body =
                Div [LoginSequence ()] :> _

    module Pages =
        open IntelliFactory.Html

        let Home =
            Skin.WithTemplate <| fun ctx ->
                [
                    Div [
                        HTML5.Data "role" "page"
                        Id "main"
                        HTML5.Data "url" "main"
                    ] -< [
                        new Client.ApplicationControl()
                    ]
                ]

    type MyWebsite() =
        interface IWebsite<Action> with
            member this.Sitelet =
                Sitelet.Content "/index" Action.Home Pages.Home
            member this.Actions = [ Action.Home ]

[<assembly: Website(typeof<MySite.MyWebsite>)>]
do ()

In order to be able to run your application, you need to configure your own Bing Maps key in Client.
BingMapsKey. To obtain such a key, you should consult the Bing Maps home page. This key enables you to 
make programmatic queries to the Bing Maps service, such calling the various REST APIs provided by 
WebSharper Extensions for Bing Maps.

The main part of the application is in the Client module. There are two distinct components: one for 
showing a map marked with the user’s current GPS location, and another for displaying a login form that 
“authenticates” the current user to see this map. The main “application” control, defined with the 



425

CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

ApplicationControl server control type, simply exposes this login formlet, which then in turn invokes the 
map if the user passed the authentication step.

The ShowMap() function creates a <div> node, with a label and the map component. The map itself is 
embedded in a nested <div> node, with an event handler firing once the corresponding DOM node has 
been inserted into and rendered in the document the user sees:

            let map =
                Div []
                |>! OnAfterRender (fun this ->
                    let map = Bing.Map(this.Body, MapOptions)
                    map.SetMapType(Bing.MapTypeId.Road)
                    setMap map)
            ...

This code creates a Bing Map control with the options defined in MapOptions, sets its map type to road 
map, and calls setMap on it. In turn, setMap defines an update function updateLocation and registers it to 
fire every second using the JavaScript.SetInterval function. The heart of the map functionality, 
updateLocation retrieves the GPS geo-locator object from the Android context (if either is missing, it does 
nothing – here, you may want to add some fallback logic yourself to make the application testable on plain 
non-mobile browsers, etc.), and uses this object to retrieve the device’s current GPS coordinates, then 
queries the Bing Maps service to map those to an actual street name, and displays that in the label 
component along with a pushpin on the map itself.

The formlet code is even more intuitive. Take a look at the partial snippet below:

            Formlet.Do {
                let! username, password =
                    Formlet.Yield (fun user pass -> user, pass)
                    <*> <... formlet-1 ...>
                    <*> <... formlet-2 ...>
                    |> Enhance.WithSubmitButton "Log in" Enums.Theme.C
                do! Formlet.OfElement (fun _ ->
                    Div [
                        H3 [Text ("Welcome " + username + "!")]
                        ShowMap()
                    ])
            }
            |> Formlet.Flowlet

Here, “formlet-1” and “formlet-2” declare two input boxes, enhanced with a label and a validator to 
input the user name and the password strings from the user. Note that these validators require that the 
user enters a non-empty user name, and a password that contains at least four digits between 1 and 4 
followed by a digit between 5 and 9, for instance, “12345”. These input boxes are then composed into a 
single formlet, returning a (username, password) tuple, and enhanced with a submit button. Here, all three 
functions Controls.TextField, Controls.Password, and Enhance.WithSubmitButton are from the 
IntelliFactory.WebSharper.Formlets.JQueryMobile namespace, and implement their functionality using 
jQuery Mobile look and feel.

The username/password formlet is enhanced as a flowlet; e.g., its individual formlet steps (marked 
with let!) are executed in a sequential wizard-style presentation, one following the other. In your formlet 
example above, once the user enters a username/password pair and successfully passes the validations 
after pressing the Submit button, control transfers to the do! block, which responds by welcoming the 
newly signed-in user and showing the Bing Map control defined in ShowMap.



CHAPTER 15 ■ BUILDING MOBILE WEB APPLICATIONS

426

Summary
This chapter gave you a short introduction to developing web and native mobile applications with 
WebSharper. You saw how a new breed of mobile applications is emerging, utilizing HTML5 and CSS3; how 
you can output this sort of mobile HTML5 markup from WebSharper sitelets; apply various feature 
detection and polyfilling libraries to get over missing browser features; and develop iOS mobile web 
applications that use easy-to-embed, Safari-specific markup instructions to mimic some of the features of 
native mobile applications, such as the ability to use the entire screen or adding web applications as icons 
to the desktop. In the latter half of the chapter, you also saw how you can develop WebSharper extensions 
to third-party JavaScript APIs and use these extensions in a mobile web application to display a user’s 
Facebook status updates with jQuery Mobile-based list views, giving an elegant mobile look to your 
application. And last, you saw how you can combine the expressiveness of WebSharper formlets with 
mobile UI controls to build declarative, composable, type-safe mobile user interfaces and apply them in 
an application that uses Bing Maps to show your location.

All in all, you learned that the functional concepts such as formlets and sitelets that WebSharper 
enables yield a powerful device that you can employ to develop mobile web applications, and together 
with WebSharper Mobile, package them into native application packages for Android and Windows Phone, 
or use third-party packaging technologies such as PhoneGap (http://phonegap.com) to cover alternate 
platforms. At this point, you have keen eyes on upcoming HTML5 support of various mobile features, and 
recognize that it is only a short time away until mobile browser features are unified in further HTML5 
standards to bring uniformity into developing for touch-based mobile devices.



427

■ ■ ■

CHAPTER 16

Visualization and Graphical  
User Interfaces

GUI applications revolve around events, and F# provides a natural way to process events with functions. 
Graphical interfaces are often developed using visual editors, in particular to build GUIs by assembling 
controls. Applications, however, often need drawing capabilities for displaying and manipulating data, 
which requires custom programming to augment available controls. This chapter discusses how to 
develop graphical applications with F# and why the functional traits of the language suit the event-driven 
programming paradigm typical of GUIs.

In this chapter, you use the Windows Forms library. The Windows Presentation Foundation (WPF) is 
the presentation framework for the Windows, Silverlight, and Windows Phone platforms; it’s discussed 
later in this chapter. You may wonder why it’s useful to know about the old-fashioned Windows Forms 
toolkit. The answer is twofold: on one hand, the framework structure is shaped after a consolidated model 
that dominated graphical programming for decades and is still used in many other frameworks for 
programming GUIs, such as GTK#, a managed library for writing applications based on the GTK toolkit.

Writing “Hello, World!” in a Click
It’s traditional to start with a “Hello, World!” application, so let’s honor that and begin with a simple 
program that provides a button to display the magic phrase when clicked:

open System.Windows.Forms

let form = new Form(Text = "Hello World WinForms")
let button = new Button(Text = "Click Me!", Dock = DockStyle.Fill)

button.Click.Add(fun _ -> MessageBox.Show("Hello, World!", "Hey!") |> ignore)
form.Controls.Add(button)
form.Show()

Even in its simplicity, the application captures many traits typical of GUI applications. After opening 
the namespace associated with Windows Forms, you create the form form that contains the button button, 
set the form and button captions by assigning their Text properties, and tell the button that it should fill 
the entire form.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

428

Most GUI programming is devoted to handling events through callbacks from the graphical interface. 
Events are described in Chapter 11. To display a message box containing the "Hello, World!" string, you 
have to configure the button so that when its Click event is fired, a function is called. In the example, you 
pass a function to the Add method for the button’s Click event, which adds an event handler to an event 
source. You then add the button to the form and call the form’s Show method to display it.

Note that this code should be executed using fsi.exe. It won’t run as a stand-alone application unless 
you add the following line at the end:
Application.Run(form)

This line relates to the event loop of a GUI application, and it’s required to handle events such as 
button clicks. Moreover, if you execute the compiled program, notice that the window uses the classic 
Windows look and feel rather than the more fashionable look and feels featured by Windows versions since 
Windows XP. This can be easily addressed by adding the following call to the EnableVisualStyles static 
method, right after the open statement:
Application.EnableVisualStyles()

If you use fsi.exe, both visual styles and the event loop are handled by F# Interactive.

Understanding the Anatomy of a Graphical Application
Graphical applications are built on the abstractions provided by the graphical environment hosting them. 
The application must interact with its environment and process input in an unstructured way. User input 
isn’t the only kind of input received from a windowing system. Window management often involves 
requests to or from the application itself, such as painting or erasing a form.

Windowing systems provide a common and abstract way to interact with a graphical application: the 
notion of an event. When an event occurs, the application receives a message in the message queue with 
information about the event.

The graphical application is responsible for delivering messages from the message queue to the 
control for which they’re meant. A set of functions provided by the API of the windowing system supports 
this. This activity of reading messages from the message queue and dispatching them is known as the event 
loop of the application. If the loop fails for any reason, the GUI components cease to work, the application 
hangs, and Windows may eventually inform you that the application isn’t responding.

It’s rare for an application to program the event loop explicitly. Programming toolkits encapsulate this 
functionality, because it’s basically always the same. The Run method of the Application class is 
responsible for handling the event loop, and it ensures that messages related to events are delivered to 
targets within the application.

GUI programs often involve multiple threads of execution. Chapter 11 discusses threading and 
concurrency in more detail; for this chapter, it’s important to remember that event dispatching is a single-
threaded activity, even if it may seem to be the opposite. The thread executing the event loop calls the 
functions and methods registered for handling the various events. In the “Hello, World!” example, for 
instance, you told the button to call back the function to show the message box when clicked.

AN EXPLICIT EVENT LOOP

A Windows Forms event loop can also be explicitly defined by the application using the Application.
DoEvents method; in this case, each invocation performs a step in event handling and returns the control to 
the caller. Some programs can benefit from this control, because they can interleave event processing and 
computation using a single thread. Computer games, for instance, tend to use this approach, because event-
based timers provided by the framework aren’t reliable for producing the frames of the game at the required 
pace. The following is a typical explicit event loop:



429

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

let form = new Form(Text = "Explicit Event Loop")
form.Show()
while form.Created do
    // Perform some task
    Application.DoEvents()

When events are handled explicitly, a program must call the DoEvents method frequently: if events aren’t 
processed, the graphical interface may become unresponsive, which provides the wrong feedback to the 
user.

Software reuse has always been a priority in the world of graphical applications, because of the many 
details involved in realizing even simple behaviors. It’s not surprising that programming techniques 
favoring software reuse have always flourished in this context. You can develop a GUI application without 
writing a single line of code by combining existing controls into a new interface.

Articulated frameworks, such as Windows Forms, provide a significant number of reusable controls so 
that you can develop entire applications without needing to use drawing facilities provided by the 
interface. For this reason, frameworks have started to support two kinds of customers: those composing 
interfaces with controls and those who need to develop new controls or explicitly use drawing primitives. 
The following sections explore the Windows Forms framework from both perspectives: the functional 
nature of F# is very effective for using controls, and the ability to define objects helps you to develop new 
ones.

Composing User Interfaces
A control is represented by an object inheriting, either directly or indirectly, from the Control class in the 
System.Windows.Forms namespace. Building interfaces using controls involves two tasks: placing controls 
into containers (that are themselves a particular type of control) such as panels or forms, and registering 
controls with event handlers to be notified of relevant events.

As an example, let’s develop a simple Web browser based on the Internet Explorer control, which is a 
control that allows wrapping the HTML renderer (the interior of an Internet Explorer window) into an 
application. This example shows how to develop the application interactively using fsi.exe. Start by 
opening the libraries required for using Windows Forms:

open System
open System.Drawing
open System.Windows.Forms

Then, enable the Windows visual styles, declaring through the custom attribute STAThread that the 
application adopts the single thread apartment model, which is a COM legacy often required for Windows 
Forms applications to interact with COM components:

[<STAThread>]
do Application.EnableVisualStyles()

You need this in the example because Internet Explorer is a COM component accessible through a .
NET wrapped type named WebBrowser in the System.Windows.Forms namespace, as are all the base controls 
offered by Windows Forms (assume that types are from this namespace unless otherwise specified).

Now you have to decide what the browser application should look like (see Figure 16-1). The bare 
minimum is a toolbar featuring the address bar and the classic Go button, a status bar with a progress bar 
shown during page loading, and the browser control in the middle of the form.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

430

Next, configure the elements, starting from the status bar, as shown in the following code. Add the 
progress bar to the status bar and configure both. The Dock property of the status bar is set to Bottom, 
meaning that the status bar should fill the bottom part of the form. The progress bar is resized, and then its 
Style property is set to Marquee, meaning that you don’t want to show any specific progress but just 
something moving during download:

let statusProgress =
    new ToolStripProgressBar(Size = new Size(200, 16),
                             Style = ProgressBarStyle.Marquee,
                             Visible = false)
let status = new StatusStrip(Dock = DockStyle.Bottom)
status.Items.Add(statusProgress) |> ignore

You can now set up the browser’s toolbar, as shown in the following code. The toolbar should be in the 
top area of the form, so set its Dock property to Top. First add a label, the text box for typing the URL, and 
the button. Then, stretch the address text box and associate an event handler with its KeyPress event. This 
way, you can catch the Enter key and start browsing the typed URL without having to wait for the Go 
button. Finally, configure the Go button by setting its label and associating an event handler with the Click 
event:

let toolbar = new ToolStrip(Dock = DockStyle.Top)
let address = new ToolStripTextBox(Size = new Size(400, 25))
let browser = new WebBrowser(Dock = DockStyle.Fill)
let go = new ToolStripButton(DisplayStyle = ToolStripItemDisplayStyle.Text,

Figure 16-1. A simple Web browser application



431

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

                             Text = "Go")
address.KeyPress.Add(fun arg ->
    if (arg.KeyChar = '\r') then browser.Url <- new Uri(address.Text))
go.Click.Add(fun arg -> browser.Url <- new Uri(address.Text))
toolbar.Items.Add(new ToolStripLabel("Address:")) |> ignore
toolbar.Items.Add(address) |> ignore
toolbar.Items.Add(go) |>ignore

Both event handlers set the Url property of the browser object, causing the WebBrowser control to load 
the given Uri. Notice how nicely and compactly F# lets you specify event handlers. This is possible because 
F# lets you use functions directly as arguments to Add.

You can now take care of the browser control and set its properties. Tell the browser to occupy all of 
the remaining area in the form left over after the toolbar and the status bar are docked, by setting the Dock 
property to Fill. Then subscribe to two events, Navigating and DocumentCompleted, in order to be notified 
by the browser when document loading starts and completes. When the browser begins fetching a URL, 
you show the progress bar in the status bar, setting its Visible property to true. After the document is 
loaded, hide the progress bar, and update the address bar so that if the user follows a link, the address 
shown remains consistent with the current document:

browser.Navigating.Add(fun args ->
    statusProgress.Visible <- true)
browser.DocumentCompleted.Add(fun args ->
    statusProgress.Visible <- false;
    address.Text <- browser.Url.AbsoluteUri)

You’re almost finished with the interface. You have to tell Windows Forms that the controls are 
contained in the form form. Then, configure the form by setting its caption with the Text property and its 
size with the Size property. You call PerformLayout to update the current layout of the form, and then you 
can call Show to display the browser:

let form = new Form(Text = "Web Browser", Size = new Size(800, 600))
form.Controls.Add(browser)
form.Controls.Add(toolbar)
form.Controls.Add(status)
form.PerformLayout()
form.Show()

To compile the application rather than execute it interactively, add the following at the end, as 
mentioned previously:

Application.Run(form)

WATCH THE APPLICATION GROW

You can see the form growing interactively using fsi.exe. Usually, applications first configure forms and 
controls and then call Show to present the user with a form that’s ready to use. It’s also useful to set the 
properties TopMost=true and Visible=true. The properties of a form can also be set after the form is 
visible, allowing you to see the effects of each operation on it. F# Interactive offers the unique opportunity to 
watch the form growing interactively; you can, for instance, build the interface of the simple Web browser by 
showing the form immediately and then proceed to add controls and set their properties. Thus, you can 
experiment with the various properties of controls and see how they affect the interface.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

432

What have you learned by developing this application? It’s clear that building interfaces based on 
controls requires a significant amount of code to configure controls by setting their properties. The form’s 
layout is also set by defining properties of controls, as you did in the browser. Moreover, an ever-increasing 
number of controls are available, and each provides a large number of properties. F# syntax supports this 
process by letting you set initial values for control properties within the call to the control constructor, and 
adding functions as event handlers, leading to very compact programs that are easier to understand.

CONTROL LAYOUT

The layout of controls, done either by hand or through a visual editor, defines how a form looks when it is 
opened. Users expect that the layout will adapt gracefully to form resizing. One simple approach to the 
problem is to forbid the resizing operation, as is done in many dialog boxes; a better solution is to define how 
controls must adapt their positions and sizes as the form changes size.

Windows Forms has two ways to indicate how a control should adapt when the size of its container changes. 
You can use the property Dock to dock the control to one of the four edges or to the center of the container 
(as shown in Figure 16-2). Docking to the edges constrains the control to be always attached to one of them, 
and either its width or its height should change in order to ensure that the whole edge is filled with it (as 
shown in Figure 16-2, horizontal edges have precedence over vertical ones). When docked to the middle, a 
control is resized to fill the area of the container left over or not occupied by the controls docked to the 
edges. Docking is a flexible way to define layouts that adapt to size changes of the user interface. If the five 
areas defined by this strategy aren’t enough, you can rely on logical containers such as panels: a panel 
represents a group of controls with a given layout. Using panels, you can nest layouts and use docking on a 
panel docked in the surrounding container.

An alternative to docking is anchoring. Through the property Anchor, you can dictate that the distance 
between an edge of the control and the corresponding edge of the container should be constant. This 
gives you finer control over how the component should be resized or moved. When a control is anchored 
only to a horizontal and vertical edge (for instance Top and Left), its size and offsets from the anchored 
edges don’t change.

Although docking and anchoring are useful for controlling how the control must be adapted to the interface, 
sometimes these strategies aren’t enough to address the needs of a complex layout. The WPF adopts a more 
articulated notion of extensible layout management based on the notion of a layout manager (a similar notion 
has always been present in Java AWT and in HTML).

Visual designers are graphical applications that allow you to design interfaces using a visual metaphor. 
Controls are dragged and dropped onto forms and then configured through a property window. Visual 
Studio provides a visual designer, although it isn’t available for all programming languages. The F# project 
system doesn’t feature visual design of GUIs within Visual Studio for Windows Forms or for WPF 
frameworks. Using the Visual Studio designer is still a useful way to explore controls and to play with their 
properties, however, and the generated C# fragments can be examined and used in F# code. To understand 
how the Visual Studio designer works, let’s design the same browser application in C#, as shown in Figure 
16-2. The Visual Studio designer generates, for the form Browser, a C# file named Browser.Designer.cs 
containing all the C# code required to set up the interface. If you look at that file, you can see that it 
contains mainly the assignments of control properties similar to those you manually used to prepare the 
browser form.



433

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Without a visual designer for F#, there are essentially four options for building graphical interfaces in 
the language:

Write the interface code by hand, as you did for the browser sample.

Develop a visual designer that outputs F# code (although it’s a hard job), and use it.

Use the C# visual designer, and then convert the assignments in file.Designer.cs 
into F#.

Exploit the interoperability of the .NET platform by designing the interface with the 
designer, generating C# or another supported language and using the F# code as a 
library.

Leverage on existing designers and .NET interoperatibility suits many graphical applications 
scenarios, allowing programmers to exploit the F# data-processing expressivity and power to fuel the UI 
created using productivity tools. You can easily define simple interfaces with F# code, however, and the 
rest of this chapter shows you how to do so. You now focus on the more important part of designing 
graphical applications: drawing and control development.

Drawing Applications
So far, you’ve developed graphical applications based on the composition of predeveloped graphical 
controls, but what do you do if no graphical control suits your needs? You need to learn how to draw using 
the drawing primitives provided by the graphical system.

To understand how drawing works, you need to review the model behind the rendering process of a 
graphical application. This model really distinguishes Windows Forms from WPF; later, this chapter 

Figure 16-2. The Visual Studio form designer 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

434

reviews the traditional paint-based model that still dominates the presentation systems panorama. You 
know already that the event-driven programming paradigm best suits graphical applications; so far, you’ve 
associated event handlers with user actions, but events are used by the graphical system as a general 
mechanism to communicate with the graphical application.

An application uses resources provided by the graphical system, and these resources are mostly 
windows. A window is a rectangular area on the screen, not necessarily a top-level window with buttons, a 
title bar, and all the amenities you usually associate with it. Windows can be nested, and they are the unit 
of traditional windowing systems. Windows can contain other windows, and the windowing system is 
responsible for ensuring that events are routed to the callbacks registered for handling the events for each 
window.

Windows are allowed to draw in their own client areas, and the drawing is performed through the 
device context, an object provided by the graphical system and used to perform the graphic primitives to 
draw the content. The graphic primitives issued to the graphics system aren’t retained by it; therefore, 
when the window is covered for some reason, the portion that becomes hidden must be repainted when 
it’s uncovered. Because the information required to redraw the hidden portion is held by the application 
owning the window, the graphical system sends a paint message to the window.

To better understand the drawing model, consider a simple graphical application that shows how to 
draw a curved line using the Bézier curve and canonical splines, given four control points. Start by opening 
your namespaces and telling Windows Forms that your form can use the current Windows look rather than 
the classic Windows 95 style; also, set a global flag to tell standard controls to use the new GDI+ text-
rendering primitives rather than those of the traditional GDI (this code is omitted from now on, but 
remember to use it later; also, remember that this must be done before windows are created—otherwise, 
an exception is thrown):

open System
open System.Drawing
open System.Windows.Forms

Application.EnableVisualStyles()
Application.SetCompatibleTextRenderingDefault(false)

Next, create the form and define the initial values of the control points. The movingPoint variable 
keeps track of the point the user is dragging, to adjust the curve:

let form = new Form(Text = "Curves")
let cpt = [|Point(20, 60); Point(40, 50); Point(130, 60); Point(200, 200)|]
let mutable movingPoint = -1

Let’s introduce three menus to configure the application. They’re used to check features to be drawn:

let newMenu (s : string) = new ToolStripMenuItem(s,Checked = true,CheckOnClick = true)
let menuBezier = newMenu "Show &Bézier"
let menuCanonical = newMenu "Show &Canonical spline"
let menuControlPoints = newMenu "Show control &points"

Use a scrollbar to define different values for the tension parameter of the canonical spline curve:

let scrollbar = new VScrollBar(Dock = DockStyle.Right, LargeChange = 2, Maximum = 10)

Control points are drawn if required, and an ellipse is used to mark each of them. The function 
receives the device context in the form of a Graphics object; draw the ellipse by invoking the DrawEllipse 
primitive on it. Use a Pen to draw the ellipse—in this case, a red pen:

let drawPoint (g : Graphics) (p : Point) =
    g.DrawEllipse(Pens.Red, p.X - 2, p.Y - 2, 4, 4)



435

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

BRUSHES AND PENS

Windows Forms uses two kinds of objects to define colored primitives: brushes and pens. A brush is used to 
fill an area with a given pattern. A number of different patterns are available; solid colors are provided by the 
SolidBrush class, hatched patterns are provided by HatchBrush, gradients are provided by 
LinearGradientBrush and PathGradientBrush, and textured gradients are provided by 
TextureBrush. The Brushes class provides a number of static brush objects describing solid colors.

Pens are brushes with a contour. The line drawn by a pen has a filling (the brush part) but also a width and 
different styles (dashed or not, with different caps at the beginning and at the end). The Pens class provides 
a number of static pen objects with the basic solid colors.

Both pen and brush objects contain resources of the graphical system; it’s important to dispose of them as 
soon as they aren’t required anymore. A use binding or the using function discussed in Chapters 4 and 8 
helps ensure that you don’t forget to call the Dispose method that all these objects provide from the 
IDisposable interface that otherwise should be called explicitly.

You’re now ready to define the function responsible for drawing in your window. You can’t assume 
anything about the current state of the window; thus, the paint function always draws the visible 
primitives1 depending on the state of menu entries:

let paint (g : Graphics) =
    if (menuBezier.Checked) then
        g.DrawLine(Pens.Red, cpt.[0], cpt.[1])
        g.DrawLine(Pens.Red, cpt.[2], cpt.[3])
        g.DrawBeziers(Pens.Black, cpt)
    if (menuCanonical.Checked) then
        g.DrawCurve(Pens.Blue, cpt, float32 scrollbar.Value)
    if (menuControlPoints.Checked) then
        for i = 0 to cpt.Length - 1 do
            drawPoint g cpt.[i]

Figure 16-3 shows the result of the drawing all the elements. The Bézier curve, widely used in image-
processing and vector applications, uses the four control points to define the start and end points of the 
curve and the two segments tangent to the curve at its ends. The cubic parametric curve is calculated from 
these points and produces the lines shown in Figure 16-3. The canonical spline, on the other hand, is a 
curve that traverses all the control points; the tension parameter controls how curvy the curve is.

You now want to allow users to move control points by dragging and dropping. You’re interested in 
mouse events—in particular, when the mouse button is pressed, when it moves, and when the button is 
released. Thanks to the well-defined model for rendering the application, you can update the state of your 
variables and ask the graphical system to issue a paint message that causes the window to receive a paint 
message and update the current frame.

1If primitives fall out of the area allowed for drawing, they’re clipped in part or entirely.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

436

BACKGROUND PAINTING

In the Curves application, you draw assuming that the window is clean—but who is responsible for clearing 
the previous drawing in the window? Windows Forms calls the OnPaintBackground method before calling 
the paint handler, and this method by default clears the area with the color returned by the BackColor 
property. When the function responsible for painting draws the area entirely, painting the background could 
be useless and even problematic: the quick repaint may flicker because the eye can perceive the background 
as clear and then the drawing of the current frame. You can use the SetStyle method of the Form class to 
configure the application to do all the paint operations in the handler of the paint event, and you can override 
OnPaintBackground to an empty method to avoid this effect.

You define a helper function to define a circular area around a point that is sensible to your 
interaction. This is required in order to not require the user to pick the exact pixel corresponding to the 
control point:

let isClose (p : Point) (l : Point) =
    let dx = p.X - l.X
    let dy = p.Y - l.Y
    (dx * dx + dy * dy) < 6

When the mouse button is pressed, you check whether the click is over any control point. In this case, 
you store its index in the movingPoint variable; otherwise, the event is ignored:

Figure 16-3. Output of the Curves application



437

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

let mouseDown (p : Point) =
    try
      let idx = cpt |> Array.findIndex (isClose p)
      movingPoint <- idx
    with _ -> ()

When the mouse moves over the client area of the window, the mouse move event is generated. If the 
movingPoint member has a value other than –1, you have to update the corresponding control point with 
the current position of the mouse defined by the variable p:

let mouseMove (p : Point) =
    if (movingPoint <> -1) then
        cpt.[movingPoint] <- p
        form.Invalidate()

Next, define for the window a File menu and a Settings submenu. The first features the classic Exit 
option, and the second shows the three checked menu items that control what the paint method should 
draw. You define menus by composing objects that correspond to the various menu entries. You also define 
the event handlers associated with each menu item. When Exit is clicked, the form is disposed. In all the 
other cases, you rely on the menu item’s ability to change its checked state, and you invalidate the form 
content to force the redraw of the window:

let setupMenu () =
    let menu = new MenuStrip()
    let fileMenuItem = new ToolStripMenuItem("&File")
    let settMenuItem = new ToolStripMenuItem("&Settings")
    let exitMenuItem = new ToolStripMenuItem("&Exit")
    menu.Items.Add(fileMenuItem) |> ignore
    menu.Items.Add(settMenuItem) |> ignore
    fileMenuItem.DropDownItems.Add(exitMenuItem) |> ignore
    settMenuItem.DropDownItems.Add(menuBezier) |> ignore
    settMenuItem.DropDownItems.Add(menuCanonical) |> ignore
    settMenuItem.DropDownItems.Add(menuControlPoints) |> ignore
    exitMenuItem.Click.Add(fun _ -> form.Close ())
    menuBezier.Click.Add(fun _ -> form.Invalidate())
    menuCanonical.Click.Add(fun _ -> form.Invalidate())
    menuControlPoints.Click.Add(fun _ -> form.Invalidate())
    menu

You’re now ready to use the functions you defined to configure the controls. Set up the scrollbar and 
register the controls in the form and the event handlers for the various events. Finally, start the 
application’s event loop and play with it:

scrollbar.ValueChanged.Add(fun _ -> form.Invalidate())
form.Controls.Add(scrollbar)
form.MainMenuStrip <- setupMenu()
form.Controls.Add(form.MainMenuStrip)
form.Paint.Add(fun e -> paint(e.Graphics))
form.MouseDown.Add(fun e -> mouseDown(e.Location))
form.MouseMove.Add(fun e -> mouseMove(e.Location))
form.MouseUp.Add(fun e -> movingPoint <- -1)
form.Show()

If you’re not using F# Interactive, don’t forget to add:



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

438

[<STAThread>]
do Application.Run(form)

Writing Your Own Controls
The Curves example from the previous section draws inside a form by handling events. This is a rare way to 
draw things in graphical applications, because the resulting code is scarcely reusable, and drawing on the 
surface of a form raises issues when additional controls have to be placed in its client area.

User controls are the abstraction provided by the Windows Forms framework to program custom 
controls. If delegation is used to handle events generated from controls, inheritance and method 
overriding are the tools used to handle them in controls.

Developing a Custom Control
To make this discussion concrete, consider a control that implements a simple button. You can use the 
control from C# inside the Visual Studio designer like the native button, as shown in Figure 16-4.

Figure 16-4. The F# button control used in a C# application and the Visual Studio designer

You start your control by inheriting from the UserControl class:2

namespace ExpertFSharp3.UserControls

open System
open System.Drawing
open System.Windows.Forms

2Note that this example hasn’t been designed to be entered using F# Interactive.



439

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

open System.ComponentModel

type OwnerDrawButton() =
        inherit UserControl()

You then define the state of the control in terms of the class’s fields:

        let mutable text = ""
        let mutable pressed = false

The text field contains the button’s label. As with the movingPoint variable in the Curves example, the 
pressed field is responsible for remembering whether the button is currently pressed, allowing the paint 
handler to behave appropriately. You override the OnPaint method to handle the paint event. You allocate 
the pens and the brush required to draw and invert the role of the border colors in order to achieve the 
raised effect when the button isn’t pressed and the depressed look otherwise. You also measure the size of 
the label string, because you’re interested in drawing the string in the center of the button. You can then 
draw the lines on the borders, playing with colors to obtain a 3D effect. The pens and brushes are disposed 
of at the end of the function:

        override x.OnPaint (e : PaintEventArgs) =
            let g = e.Graphics
            use pll = new Pen(SystemColors.ControlLightLight)
            use pl = new Pen(SystemColors.ControlLight)
            use pd = new Pen(SystemColors.ControlDark)
            use pdd = new Pen(SystemColors.ControlDarkDark)
            use bfg = new SolidBrush(x.ForeColor)
            let szf = g.MeasureString(text, x.Font)
            let spt = PointF((float32(x.Width) - szf.Width) / 2.0f,
                             (float32(x.Height) - szf.Height) / 2.0f)
            let ptt, pt, pb, pbb = 
                if pressed then pdd, pd, pl, pll 
                else pll, pl, pd, pdd

            g.Clear(SystemColors.Control)
            g.DrawLine(ptt, 0, 0, x.Width - 1, 0)
            g.DrawLine(ptt, 0, 0, 0, x.Height - 1)
            g.DrawLine(pt, 1, 1, x.Width - 2, 1)
            g.DrawLine(pt, 1, 1, 1, x.Height - 2)
            g.DrawLine(pbb, 0, x.Height - 1, x.Width - 1, x.Height - 1)
            g.DrawLine(pbb, x.Width - 1, 0, x.Width - 1, x.Height - 1)
            g.DrawLine(pb, 1, x.Height - 2, x.Width - 2, x.Height - 2)
            g.DrawLine(pb, x.Width - 2, 1, x.Width - 2, x.Height - 2)
            g.DrawString(text, x.Font, bfg, spt)

Note the use of the colors defined in the SystemColors class: you use the system definition of colors so 
that the button uses the colors set by the user as display settings. Configuration is an important aspect of a 
user control, because it’s normally performed through a visual editor, such as Visual Studio. Well-defined 
controls are those that can be highly customized without having to extend the control programmatically 
or, even worse, to change its source code.

Now that you’ve defined the drawing procedure, you can define the behavior of the control by 
handling mouse events. You restrict the implementation to mouse events, although a key event handler 
should be provided in order to react to a press of the Enter key:



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

440

        override x.OnMouseUp (e : MouseEventArgs) =
            pressed <- false
            x.Invalidate()

        override x.OnMouseDown (e : MouseEventArgs) =
            pressed <- true
            x.Invalidate()

The OnMouseDown event sets the pressed member and asks the control to repaint by invalidating its 
content. When the mouse is released, the OnMouseUp is called, and you reset the flag and ask for repaint.

Controls are usually configured through the assignment of properties. If you annotate a property with 
an attribute of type Category and one of type Browsable, the property is displayed by Visual Studio in the 
control property box. To show this, you define the Text property, which exposes the button’s label to users 
of the control:

        [<Category("Behavior")>]
        [<Browsable(true)>]
        override x.Text
            with get() = text
            and  set(t : string) = text <- t; x.Invalidate()

You’re now ready to test your new control by writing a few lines of F# code as:

let form = new Form(Visible = true)
let c = new OwnerDrawButton(Text = "Hello button")

c.Click.Add(fun _ -> MessageBox.Show("Clicked!") |> ignore)
form.Controls.Add(c)

To see your control at work in the Visual Studio designer, you must create a Windows Forms 
application C# project. With the default form created by the application wizard opened, right-click the 
Toolbox window and select the Choose Items option; then, browse for the OwnerDrawButton.dll file 
obtained by compiling the F# control. Now you can visually drag your F# control into the form and 
configure its properties using the Properties window.

VSLAB VIEWLETS

VSLab is an add-in for Visual Studio, available at http://vslab.codeplex.com, which allows displaying 
graphical information inside Visual Studio toolwindows controlled by the F# interactive session. VSLab is built 
around a notion of viewlet, a control capable of showing as a Visual Studio toolwindow, and it can be 
programmed like a Windows Forms user control. In fact, the base class for Viewlet class is UserControl; 
thus, it is possible to program viewlets in the same way as discussed in this chapter with the only limitation 
being that a viewlet cannot contain other controls. To overcome this limitation, a lightweight controls library 
has been developed so that standard controls are available to some extent.

Custom controls are seen as black-box objects by the applications that host them. Several hacks are 
possible to handle the behavior of controls from outside (subclassing is often used on Windows), but none 
of them are really satisfactory. Later, this chapter discusses how this constraint is overcome by the 
retention-based rendering process feature in WPF.



441

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Anatomy of a Control
As illustrated by the OwnerDrawButton control example, the structure of a graphic control tends to assume 
the form of a finite state automaton. Events received by the control make the automaton change its 
internal state, usually causing an update of its actual display.

A well-known model that describes this structure is the Model-View-Controller design pattern. As 
shown in Figure 16-5, the model organizes a graphical element (either an application or a single control) 
into three parts: the model, the view, and the controller.

Figure 16-5. The structure of the Model-View-Controller design pattern

The model constitutes the internal representation of the information displayed by the control. A word 
processor, for instance, stores a document in memory as part of the model, even though the entire text 
doesn’t fit the current visible area. In your simple button, the model is defined by the pressed and text 
values.

When the model changes, the view must be updated, and a rendering of the information kept in 
memory should be performed. Usually, the paint method corresponds to the view portion of the control. 
Event handlers triggered by the user form the controller of the control. The controller defines how these 
elements affect the model.

The Model-View-Controller pattern isn’t the only model developed to describe graphical interfaces. It 
captures the intrinsic nature of the problem, however, providing a good framework for classifying the 
elements of an interface or a control. The rest of this chapter refers to this pattern to indicate the various 
elements of the applications you learn how to develop.

Displaying Samples from Sensors
Now that you have reviewed the essential concepts behind programming graphical interfaces, you’re ready 
to work on some applications. They’re full of details typical of real graphical applications. This section 
presents a graphic control whose purpose is to plot samples acquired over time—for instance, from a 
sensor. The control has been designed to be reusable and highly configurable, providing a rich set of 
properties that can be set even at runtime by the application hosting it, as shown in Figure 16-6.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

442

The basic function of the control is to receive and store samples labeled with time. If c is the variable 
that refers to an instance of the control, the application feeds data through an AddSample method that adds 
a new sample to the data set, causing the control to update the displayed chart:

c.AddSample(t, v)

The next section shows how to define the control and the AddSample method.
Despite the simple interface provided by GraphControl to update the data set, the control isn’t easy to 

implement, because it must hold a large number of samples and provide a means to navigate through a 
view that doesn’t fit all the samples. Another area important to controls is configuration: users of the 
control want to customize its appearance to fit the needs of their application. To support these needs, you 
must adopt the coding conventions required to integrate the control in the Windows Forms framework so 
that it integrates with all the tools used to design applications.

USING FSHARPCHART

GraphControl implements a micro subset of the System.Windows.Forms.DataVisualization library 
included with the .NET Framework 4.0 and used as the basis for FSharpChart. This excerpt shows an 
output similar to the test program used for the GraphControl:

let timer = new Timer(Interval = 200)

let rnd = new Random()
let time = ref 0
let data = timer.Tick |> Observable.map(fun _ ->

Figure 16-6. The GraphControl used in a test application that lets the user to change its appearance at 
runtime



443

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

    incr time
    let v = 48.0 + 2.0 * rnd.NextDouble()
    (!time, v))

FSharpChart.Line(data, MaxPoints = 20)

The use of Observable allows transforming the timer tick into a source of values that cause the update of 
the line chart. It is not obvious to configure FSharpChart to behave exactly as GraphControl, because of the 
many assumptions the control makes about input format and data flow.

Building the GraphControl: The Model
According to the Model-View-Controller paradigm, you first define the control’s model, which should 
contain all the information needed to draw the control when required. You first define the type of a sample:

type Sample = {Time : int64; Value : float32}

Samples are pairs (t, v), with t being the time at which the sample v has been read. Samples are 
collected in a data structure named DataSamples, whose purpose is to provide a uniform view of data; the 
class definition is reported in Listing 16-1. Assume that the data set is always small enough to stay in 
memory; this limitation can be overcome in the future by changing this class. Samples are collected into a 
ResizeArray and kept in the field named data. Also, use a form of run-length-encoding (RLE) compression 
to optimize memory usage, and use linear interpolation to make data appear continuous in order to 
simplify the implementation of the zoom feature. Because not all the samples are recorded, the count field 
is used to keep track of the number of added samples.

The AddSample method is used to add a new sample to the data set. It assumes that data come sorted 
with respect to time; if a sample preceding the last added is detected, it’s discarded. The Last property 
returns the last-added sample; you may have discarded it because it’s equal to the previous, so rebuild the 
sample using the lastTime field that records the time value of the last sample added.

Interpolation is done by the GetValue method, which, given a time value, calculates the corresponding 
value. The list of samples is searched using a binary search. If a sample matches the given time, it’s 
returned; otherwise, the interpolation is performed.

The last operation implemented by DataSamples is FindMinMax, a method that computes the minimum 
and maximum values of the data in a given interval. You can initialize the values for minimum and 
maximum, as well as a stride to use to do the search. The stride is useful in conjunction with zoom, 
because the number of samples that can be displayed is finite, and the rendering procedure must 
subsample when zooming out.

Listing 16-1. The DataSamples class definition

open System

type Sample = {Time : int64; Value : float32}

type DataSamples() =
    let data = new ResizeArray<Sample>()
    let mutable count = 0
    let mutable lastTime = 0L

    member x.Last = {Time = lastTime; Value = data.[data.Count - 1].Value}



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

444

    member x.AddSample(t, v) =
        let s = {Time = t; Value = v}
        let last = if (data.Count = 0) then s else x.Last

        count <- count + 1
        lastTime <- max last.Time s.Time
        if data.Count = 0 then data.Add(s)

        elif last.Time < s.Time && last.Value <> s.Value then
            if data.[data.Count - 1].Time <> last.Time then data.Add(last)
            data.Add(s)

    member x.Count = count

    // The model is continuous: missing samples are obtained by interpolation
    member x.GetValue(time : int64) =

        // Find the relevant point via a binary search
        let rec search (lo, hi) =
            let mid = (lo + hi) / 2
            if hi - lo <= 1 then (lo, hi)
            elif data.[mid].Time = time then (mid, mid)
            elif data.[mid].Time < time then search (mid, hi)
            else search (lo, mid)

        if (data.Count = 0) then failwith "No data samples"

        if (lastTime < time) then failwith "Wrong time!"

        let lo, hi = search (0, data.Count - 1)

        if (data.[lo].Time = time || hi = lo) then data.[lo].Value
        elif (data.[hi].Time = time) then data.[hi].Value
        else
            // interpolate
            let p = if data.[hi].Time < time then hi else lo
            let next = data.[min (p+1) (data.Count-1)]
            let curr = data.[p]
            let spant = next.Time - curr.Time
            let spanv = next.Value - curr.Value
            curr.Value + float32(time-curr.Time) *(spanv / float32 spant)

    // This method finds the minimum and the maximum values given
    // a sampling frequency and an interval of time
    member x.FindMinMax(sampleFreq : int64, start : int64, finish : int64,
                        minval : float32, maxval : float32) =

        if (data.Count = 0) then (minval, maxval) else
        let start = max start 0L
        let finish = min finish lastTime



445

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

        let minv, maxv =
            seq {start .. sampleFreq .. finish}
            |> Seq.map x.GetValue
            |> Seq.fold (fun (minv, maxv) v -> (min v minv, max v maxv))
                        (minval, maxval)

        if (minv = maxv) then
            let delta = if (minv = 0.0f) then 0.01f else 0.01f * abs minv
            (minv - delta, maxv + delta)
        else (minv, maxv)

Building the GraphControl: Style Properties and Controller
Listing 16-2 shows the code for the GraphControl class except for the OnPaint drawing method, which is 
shown in the next section. This control exhibits the typical structure of a graphic control; it features a large 
number of constants and fields that serve configuration purposes. The class inherits from UserControl, which 
is the base class of Windows Forms controls, and it contains a field named data of type DataSamples that 
represents the data shown by the control. The appearance is controlled through properties, fields, and 
constant values; for instance, the axis color is controlled by the pattern:

let mutable axisColor:Color = Color.White
[<Category("Graph Style"); Browsable(true)>]
member x.AxisColor
    with get() = x.axisColor
    and set(v:Color) = x.axisColor <- v; x.Invalidate()

The AxisColor property lets the control’s host change the color of the axis color displayed by the control, 
because properties are part of the controller of the control; thus, when the setter is invoked, you call the 
Invalidate method to ensure that a paint message is sent to the control so that the view is updated. Note that 
a fully fledged control might read defaults from a store of user-specific configuration properties.

Listing 16-2. The GraphControl class

open System
open System.Drawing
open System.Drawing.Drawing2D
open System.Windows.Forms
open System.ComponentModel

type GraphControl() as x  =
    inherit UserControl()

    let data = new DataSamples()
    let mutable minVisibleValue = Single.MaxValue
    let mutable maxVisibleValue = Single.MinValue
    let mutable absMax = Single.MinValue
    let mutable absMin = Single.MaxValue
    let mutable lastMin = minVisibleValue
    let mutable lastMax = maxVisibleValue
    let mutable axisColor = Color.White
    let mutable beginColor = Color.Red



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

446

    let mutable verticalLabelFormat = "{0:F2}"
    let mutable startTime = 0L
    let mutable visibleSamples = 10
    let mutable initView = startTime - int64(visibleSamples)
    let mutable verticalLines = 0
    let mutable timeScale = 10000000 // In 100-nanoseconds
    let mutable timeFormat = "{0:T}"

    let rightBottomMargin = Size(10, 10)
    let leftTopMargin = Size(10, 10)

    do
        x.SetStyle(ControlStyles.AllPaintingInWmPaint, true)
        x.SetStyle(ControlStyles.OptimizedDoubleBuffer, true)
        base.BackColor <- Color.DarkBlue

    [<Category("Graph Style"); Browsable(true)>]
    member x.AxisColor
        with get() = axisColor
        and set(v : Color) = axisColor <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.BeginColor
        with get() = beginColor
        and set(v : Color) = beginColor <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.MinVisibleValue
        with get() = minVisibleValue
        and set(v : float32) = 
            minVisibleValue <- v; lastMin <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.MaxVisibleValue
        with get() = maxVisibleValue
        and set(v : float32) = 
            maxVisibleValue <- v; lastMax <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.VerticalLines
        with get() = verticalLines
        and set(v : int) = verticalLines <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.GraphBackColor
        with get() = x.BackColor
        and set(v : Color) = x.BackColor <- v

    [<Category("Graph Style"); Browsable(true)>]
    member x.LineColor
        with get() = x.ForeColor



447

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

        and set(v : Color) = x.ForeColor <- v

    [<Category("Graph Style"); Browsable(true)>]
    member x.VerticalLabelFormat
        with get() = verticalLabelFormat
        and set(v : string) = verticalLabelFormat <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.StartTime
        with get() = startTime
        and set(v : int64) = startTime <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.Title
        with get() = x.Text
        and set(v : string) = x.Text <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.VisibleSamples
        with get() = visibleSamples
        and set(v : int) =
            visibleSamples <- v;
            initView <- startTime - int64(visibleSamples);
            x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.TimeScale
        with get() = timeScale
        and set(v : int) = timeScale <- v; x.Invalidate()

    [<Category("Graph Style"); Browsable(true)>]
    member x.TimeFormat
        with get() = timeFormat
        and set(v : string) = timeFormat <- v; x.Invalidate()

   // ... Further portions of this class shown further below

Listing 16-3 includes the remaining portions of the GraphControl class corresponding to the controller 
part of the Model-View-Controller paradigm. Samples are added through the AddSample method 
(AddSampleData generates random samples to display inside the control). This method adds the sample to 
the inner DataSamples object and updates the values of two fields meant to store the minimum and 
maximum values recorded for samples; both of these values are used in the display process. Because the 
model of the control changes, you need to update the view, and you invalidate the control as you did for 
properties.

OVERRIDING VS. DELEGATION

Event handling can be performed by both subscribing delegates and overriding methods. The former 
approach is more typical of applications; the latter is more common in control development. Method 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

448

overriding guarantees more control over event handling, because it allows a complete redefinition of the 
inherited behavior, whereas with delegation, you can only add behavior.

When an overridden method starts with a call to the method to be overridden in the base class, it’s 
functionally equivalent to using delegation rather than method overriding. It’s traditional, however, to use 
method overriding in the case of control development, in order to have a uniform notation for event handling.

Be careful during method overriding, because if the call to the overridden method is omitted, the 
corresponding delegate event isn’t fired: delegate events are invoked by the event handlers of the base 
classes.

Let’s look at how to handle the mouse-move events and the use of the mouse wheel. When the wheel 
of the mouse is scrolled, the control adjusts the scale factor to zoom in or out of the current view. To 
understand how this method works, you need to know how to decide which portion of the data is made 
available through the view of the control. You use two fields: initView and visibleSamples. Because you 
can’t assume that all the samples fit in the control’s display, the former indicates the time (in the time scale 
of the samples) corresponding to the leftmost visible value, and the latter indicates the number of time 
units in the unit scale of samples that should be visible. Zooming is performed by changing the density of 
time units to be displayed inside the viewport.

The last method in Listing 16-3 is GetTime: it converts the time unit of samples in microseconds using 
a scale factor that is one of the configuration properties made available by the control.

Listing 16-3. Extract of the controller of the GraphControl class

    override x.OnMouseWheel (e : MouseEventArgs) =
        base.OnMouseWheel(e)
        x.Zoom(e.Delta)

    override x.OnSizeChanged (e : EventArgs) =
        base.OnSizeChanged(e)
        x.Invalidate()

    member x.Zoom (amount : int) =
        let newVisibleSamples = max 5 (visibleSamples + amount)
        if (initView - startTime < 0L) then
            let e = initView + int64(visibleSamples)
            initView <- startTime - int64(newVisibleSamples) + e
            visibleSamples <- newVisibleSamples
            x.Invalidate()

    member x.AddSample (time : int64, value : float32) =
        if (value < absMin) then absMin <- value
        if (value > absMax) then absMax <- value
        if (data.Count > 0) then
            initView <- initView + time - data.Last.Time
        data.AddSample(time, value)
        x.Invalidate()

    member x.GetTime (time : int64) =
        DateTime(max 0L time * int64(timeScale))



449

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Building the GraphControl: The View
The view of the GraphControl is entirely contained within the OnPaint method, which is invoked when the 
GUI needs to repaint the content of the control or when an invocation of the Invalidate method occurs. 
Listing 16-4 shows the full code for this method. Programming graphical controls can get complicated, and 
often the code is factorized further using functions.

The OnPaint method begins computing some information, such as the rectangles containing the string 
with the values to be displayed. The dimension of a string depends on the font used for display and the 
particular device context used to render it. You rely on the MeasureString method of the Graphics object you 
received from the GUI. You compute the plotBox rectangle, which represents the area where you draw the 
data; it’s obtained by removing from the dimension of the control that the margins specified in the 
configuration and the space required by the labels, if visible. Later, set an appropriate coordinate system on 
the device context so that the drawing primitives render in this new system:

g.TranslateTransform(float32(plotBox.Left), float32(x.Height - plotBox.Top))
g.ScaleTransform(1.0f, -1.0f)

You translate the origin of the coordinate system in the lower-left vertex of the margins rectangle. You 
also flip the y axis by setting a scale transform that inverts the direction, multiplying y coordinates by –1.0f; in 
this way, you obtain a coordinate system oriented as in mathematics. Coordinate transformation is 
supported by Windows Forms on the Graphics object: all the coordinates specified in the drawing primitives 
are affected by a transformation matrix stored in the device context. Once set, a transformation of the library 
takes care of the calculations necessary to rotate, translate, and scale all the objects.

After clearing the background using the Background color property, you draw the various lines, such as 
the axes and the labels, depending on the configuration settings specified by setting the control’s 
properties. This is the typical structure of a paint method, in which the model is tested to decide what 
should be drawn and the style to be used.

The drawing of the data samples is controlled by the timePerUnit and pixelsPerUnit variables, and 
then the inner recursive function drawSamples selects the visible samples and uses the DataSamples object 
to compute results. You rely on the ability of the DataSamples class to interpolate data and to not have to 
deal with discrete samples.

The core business of the paint method is often simple (having paid attention when you defined the 
model and the controller of the control); it quickly becomes entangled in testing all the configuration 
properties to determine how the control should be rendered.

Listing 16-4. Drawing the control

    override x.OnPaint (e : PaintEventArgs) =
        let g = e.Graphics

        // A helper function to size up strings
        let msrstr s = g.MeasureString(s, x.Font)

        // Work out the size of the box to show the values
        let valBox =
            let minbox = msrstr (String.Format(verticalLabelFormat, lastMin))
            let maxbox = msrstr (String.Format(verticalLabelFormat, lastMax))
            let vbw = max minbox.Width maxbox.Width
            let vbh = max minbox.Height maxbox.Height
            SizeF(vbw, vbh)

        // Work out the size of the box to show the times



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

450

        let timeBox =
            let lasttime = x.GetTime(initView + int64(visibleSamples))
            let timelbl = String.Format(timeFormat, lasttime)
            msrstr timelbl

        // Work out the plot area for the graph
        let plotBox =
            let ltm = leftTopMargin
            let rbm = rightBottomMargin

            let ltm, rbm =
                let ltm = Size(width = max ltm.Width (int(valBox.Width) + 5),
                               height = max ltm.Height (int(valBox.Height / 2.0f) + 2))
                let rbm = Size(width = rightBottomMargin.Width,
                               height = max rbm.Height (int(timeBox.Height) + 5))
                ltm, rbm

            // Since we invert y axis use Top instead of Bottom and vice versa
            Rectangle(ltm.Width, rbm.Height,
                      x.Width - ltm.Width - rbm.Width,
                      x.Height - ltm.Height - rbm.Height)
        // The time interval per visible sample
        let timePerUnit =
            let samplew = float32(visibleSamples) / float32(plotBox.Width)
            max 1.0f samplew

        // The pixel interval per visible sample
        let pixelsPerUnit =
            let pixelspan = float32(plotBox.Width) / float32(visibleSamples)
            max 1.0f pixelspan

        // Compute the range we need to plot
        let (lo, hi) = data.FindMinMax(int64(timePerUnit),
                                       initView,
                                       initView + int64(visibleSamples),
                                       minVisibleValue,
                                       maxVisibleValue)

        // Save the range to help with computing sizes next time around
        lastMin <- lo; lastMax <- hi

        // We use these graphical resources during plotting
        use linePen = new Pen(x.ForeColor)
        use axisPen = new Pen(axisColor)
        use beginPen = new Pen(beginColor)
        use gridPen = new Pen(Color.FromArgb(127, axisColor),
                              DashStyle = DashStyle.Dash)
        use fontColor = new SolidBrush(axisColor)

        // Draw the title
        if (x.Text <> null && x.Text <> String.Empty) then



451

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

            let sz = msrstr x.Text
            let mw = (float32(plotBox.Width) - sz.Width) / 2.0f
            let tm = float32(plotBox.Bottom - plotBox.Height)

            let p = PointF(float32(plotBox.Left) + mw, tm)
            g.DrawString(x.Text, x.Font, new SolidBrush(x.ForeColor), p)

        // Draw the labels
        let nly = int((float32(plotBox.Height) / valBox.Height) / 3.0f)
        let nlx = int((float32(plotBox.Width) / timeBox.Width) / 3.0f)
        let pxly = plotBox.Height / max nly 1
        let pxlx = plotBox.Width / max nlx 1
        let dvy = (hi - lo) / float32(nly)
        let dvx = float32(visibleSamples) / float32(nlx)
        let drawString (s : string) (xp : float32) (yp : float32) =
            g.DrawString(s, x.Font, fontColor, xp, yp)

        // Draw the value (y) labels
        for i = 0 to nly do
            let liney = i * pxly + int(valBox.Height / 2.0f) + 2
            let lblfmt = verticalLabelFormat
            let posy = float32(x.Height - plotBox.Top - i * pxly)
            let label = String.Format(lblfmt, float32(i) * dvy + lo)
            drawString label (float32(plotBox.Left) - valBox.Width)
                             (posy - valBox.Height / 2.0f)

            if (i = 0 || ((i > 0) && (i < nly))) then
                g.DrawLine(gridPen, plotBox.Left, liney, plotBox.Right, liney)

        // Draw the time (x) labels
        for i = 0 to nlx do
            let linex = i * pxlx + int(timeBox.Width / 2.0f) + 2
            let time = int64(float32(i) * dvx + float32(initView))
            let label = String.Format(timeFormat, x.GetTime(time))

            if (time > 0L) then
                drawString label
                    (float32(plotBox.Left + i * pxlx) + timeBox.Width / 2.0f)
                    (float32(x.Height - plotBox.Top + 2))

        // Set a transform on the graphics state to make drawing in the
        // plotBox simpler
        g.TranslateTransform(float32(plotBox.Left),
                              float32(x.Height - plotBox.Top));
        g.ScaleTransform(1.0f, -1.0f);

        // Draw the plotBox of the plot area
        g.DrawLine(axisPen, 0, 0, 0, plotBox.Height)
        g.DrawLine(axisPen, 0, 0, plotBox.Width, 0)
        g.DrawLine(axisPen, plotBox.Width, 0, plotBox.Width, plotBox.Height)
        g.DrawLine(axisPen, 0, plotBox.Height, plotBox.Width, plotBox.Height)



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

452

        // Draw the vertical lines in the plotBox
        let px = plotBox.Width / (verticalLines + 1)
        for i = 1 to verticalLines do
            g.DrawLine(gridPen, i * px, 0, i * px, plotBox.Height)

        // Draw the 'begin' marker that shows where data begins
        if (initView - startTime <= 0L) then
            let off = float32(Math.Abs(x.StartTime - initView))
            let sx = int((off / timePerUnit) * pixelsPerUnit)
            g.DrawLine(beginPen, sx, 0, sx, plotBox.Height)

        // Draw the 'zero' horizontal line if it's visible
        if (hi <> lo && lo < 0.0f) then
            let sy = int((float32(plotBox.Height) / (hi - lo)) * (0.0f - lo))
            g.DrawLine(axisPen, 0, sy, plotBox.Width, sy)

        // Draw the visible data samples
        let rec drawSamples i pos =
            if (i < (float32(plotBox.Width) / pixelsPerUnit) &&
                pos <= (initView + int64 visibleSamples - int64 timePerUnit))
            then

                if (pos >= 0L) then
                    let dh = float32(plotBox.Height) / (hi - lo)
                    let sx = int(pixelsPerUnit * i)
                    let dx = int(pixelsPerUnit * (i + 1.0f))
                    let sy = int(dh * (data.GetValue(pos) - lo))
                    let dy = int(dh * (data.GetValue(pos + int64 timePerUnit)
                              - lo))
                    g.DrawLine(linePen, sx, sy, dx, dy);

                drawSamples (i + 1.0f) (pos + int64 timePerUnit)

        drawSamples 0.0f initView

DOUBLE BUFFERING

Flickering is a very annoying phenomenon of graphical applications. It happens when two updates of a 
graphical element are interleaved by a refresh of its background. The graphic adapter sends the video signal 
to the display, reading bytes from video memory at a given frequency that is different than the update 
frequency of the paint message.

Flickering happens during animations when a pixel is cleared with the background color and then with the 
desired one. The graphic adapter may display the pixel before the update, making it blink. A standard 
technique for avoiding this phenomenon is known as double buffering: it consists of performing the drawing 
primitives into a bitmap offscreen; then, when the entire drawing is finished, the bitmap is drawn.

You can easily implement double buffering explicitly, although modern frameworks provide support for it. The 
example uses the SetStyle method inherited from UserControl to enable implicit support for double 
buffering. If you comment out the two invocations to that method, you see flickering in action.



453

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Putting It Together
The following code uses the control that defines the application shown in Figure 16-6:

let form = new Form(Text = "Chart test", Size = Size(800, 600), Visible = true, TopMost = true)
let graph = new GraphControl(VisibleSamples = 60, Dock = DockStyle.Fill)
let properties = new PropertyGrid(Dock = DockStyle.Fill)
let timer = new Timer(Interval = 200)
let container = new SplitContainer(Dock = DockStyle.Fill, SplitterDistance = 350)

// We use a split container to divide the area into two parts
container.Panel1.Controls.Add(graph)
container.Panel2.Controls.Add(properties)

// Configure the property grid to display only properties in the
// category "Graph Style"
properties.SelectedObject <- graph
let graphStyleCat = (CategoryAttribute("Graph Style") :> Attribute)
properties.BrowsableAttributes <- AttributeCollection([|graphStyleCat|])
form.Controls.Add(container)
let rnd = new Random()
let time = ref 0
// A timer is used to simulate incoming data
timer.Tick.Add(fun _ ->
    incr time
    let v = 48.0 + 2.0 * rnd.NextDouble()
    graph.AddSample(int64(!time), float32(v)))
timer.Start()
form.Disposed.Add(fun _ -> timer.Stop())

The form uses a SplitContainer control to define two areas, one for GraphControl and the other for a 
PropertyGrid control. A timer object is used to add samples periodically, and you use the AddSample 
method to add random samples to the control.

THE PROPERTYGRID CONTROL

PropertyGrid is a graphic control that lets you inspect object properties at runtime and change them, as 
shown in the right side of the window in Figure 16-6. You set the SelectedObject property to indicate the 
control to display, in this case the GraphControl.

PropertyGrid uses the reflection abilities of the Common Language Runtime to dynamically inspect the 
object and generate the visual grid. By default, the control displays the properties of the given object annotated 
using the BrowsableAttribute custom attribute. You set the BrowsableAttributes property to indicate 
that you’re interested in displaying only the properties annotated as [<Category("Graph Style")>].

Not all types can be edited from the PropertyGrid, although the control can deal with many. A property of 
type Color, for instance, causes the grid to display the preview of the color and lets you define the value 
several ways, including the Color Chooser dialog box.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

454

Creating a Mandelbrot Viewer
Fractals are one of the diamonds of mathematics. They show the beauty of mathematical structures 
visually, which allows nonexperts to see something that is often hidden by formulas that few really 
appreciate. The Mandelbrot set is one of the most famous fractals. This section shows how to develop an 
application to browse this set. The result is shown in Figure 16-7.

This application adopts the delegation programming style, subscribing to events rather than using 
inheritance to override the behavior of a component. This allows you to develop the application 
interactively using fsi.exe. This is a good example of how effectively you can use F# to develop an 
application interactively while retaining the performance of a compiled language, which is extremely 
important in such CPU-intensive tasks as computing the points of the Mandelbrot set.

Figure 16-7. The Mandelbrot viewer in action

Computing Mandelbrot
First, you need to be familiar with the math required to generate the Mandelbrot set. The set is defined 
over the set of complex numbers, which is an extension of the real numbers, allowing computation of 
square roots over negative numbers. A complex number has the following form, where a and b are real 
numbers and i is the imaginary unit (by definition, i2 = –1):

c = a + bi

Using standard algebraic calculations, you can define the sum and product of these numbers:

c1 + c2 = (a1 + a2) + (b1 + b2) i



455

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Because you have two components in the definition of the number, you can graphically represent 
complex numbers using a plane.

This Mandelbrot viewer shows a portion of the complex plane in which each point in the plane is 
colored according to a relation that defines the Mandelbrot set. The relation is based on the iterative 
definition:

A complex number belongs to the Mandelbrot set if z
n
 converges for n. You can test each number c in 

the complex plane and decide whether the number belongs to the Mandelbrot set. Because it’s not 
practical to perform an infinite computation to test each number of the complex plane, there is an 
approximation of the test based on a theorem that if the distance of z

i
 from the origin passes 2, then the 

sequence will diverge, and the corresponding z
0
 won’t belong to the set.

The code to compute membership of the Mandelbrot set is:

open System.Numerics

let sqrMod (x : Complex) = x.Real * x.Real + x.Imaginary * x.Imaginary
let rec mandel maxit (z : Complex) (c : Complex) count =
    if (sqrMod(z) < 4.0) &&  (count < maxit) then
        mandel maxit ((z * z) + c) c (count + 1)
    else count

You can create a simple visual representation of the Mandelbrot set by coloring all the points 
belonging to the set. In this way, you obtain the black portion of Figure 16-7. How can you obtain the 
richness of color? The trick is to color points depending on how fast the sequence reaches the distance of 2 
from the origin. You use 250 colors and map the [0, maxit] interval to the [0, 250] discrete color interval.

Setting Colors
In order for the Mandelbrot viewer application to have appealing coloring, you need to produce some 
form of continuity in the color variation in the chosen range. Use an array of colors to store these values, 
but you need a procedure to fill this array so that colors change continuously.

Colors in the Red Green Blue (RGB) space used in graphics libraries are known to define a color space 
that isn’t perceived as continuous by human vision. A color space known to be more effective in this 
respect is the Hue Saturation Value (HSV), in which a color is defined in terms of hue, color saturation, and 
the value of luminance (see Figure 16-8). This model was inspired by the method used by painters to create 
colors in oil painting.

Figure 16-8 shows a typical geometric representation of the two color spaces. In the RGB color model, 
the three axes represent the three base colors varying from black to the full color; in the HSV space, the 
angle is used to indicate the hue, the distance from the axis of the cone represents the saturation, and the 
value corresponds to the height of the point inside the cone.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

456

You can define a conversion from RGB color space to HSV, and vice versa. Listing 16-5 shows the F# 
functions performing the conversions between the two models. These functions assume the three 
components R, G, and B are in the interval [0, 1] rather than integers between 0 and 255.

Listing 16-5. Conversion from RGB to HSV, and vice versa

let RGBtoHSV (r, g, b) =
    let (m : float) = min r (min g b)
    let (M : float) = max r (max g b)
    let delta = M - m
    let posh (h : float) = if h < 0.0 then h + 360.0 else h
    let deltaf (f : float) (s : float) = (f - s) / delta
    if M = 0.0 then (-1.0, 0.0, M) else
        let s = (M - m) / M
        if r = M then (posh(60.0 * (deltaf g b)), s, M)
        elif g = M then (posh(60.0 * (2.0 + (deltaf b r))), s, M)
        else (posh(60.0 * (4.0 + (deltaf r g))), s, M)

let HSVtoRGB (h, s, v) =
    if s = 0.0 then (v, v, v) else
    let hs = h / 60.0
    let i = floor (hs)
    let f = hs - i
    let p = v * ( 1.0 - s )
    let q = v * ( 1.0 - s * f )
    let t = v * ( 1.0 - s * ( 1.0 - f ))
    match int i with
      | 0 -> (v, t, p)
      | 1 -> (q, v, p)
      | 2 -> (p, v, t)
      | 3 -> (p, q, v)
      | 4 -> (t, p, v)
      | _ -> (v, p, q)

To let users choose the coloring of the set, you create an array of 10 functions, given an integer 
between 0 and 250, for a corresponding color. The default color function is based on the HSV color model; 

Figure 16-8. The RGB (left) and HSV (right) color spaces and their geometric representation



457

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

it uses the input parameter to set the hue of the color, leaving the saturation and luminance at the 
maximum values. The other functions use the RGB color space, following directions in the color cube. You 
use the createPalette function to generate the color palette that is used while drawing fractal points; the 
palette mutable variable holds this palette. Listing 16-6 shows the code that deals with colors. The 
pickColor function is responsible for mapping the iteration it, at which the computation of the 
Mandelbrot set terminates given the maximum number of iterations allowed, maxit.

Listing 16-6. Color-palette definition

let makeColor (r, g, b) =
    let f x = int32(x * 255.0)
    Color.FromArgb(f(r), f(g), f(b))

let defaultColor i = makeColor(HSVtoRGB(360.0 * (float i / 250.0), 1.0, 1.0))

let coloring =
    [|
        defaultColor;
        (fun i -> Color.FromArgb(i, i, i));
        (fun i -> Color.FromArgb(i, 0, 0));
        (fun i -> Color.FromArgb(0, i, 0));
        (fun i -> Color.FromArgb(0, 0, i));
        (fun i -> Color.FromArgb(i, i, 0));
        (fun i -> Color.FromArgb(i, 250 - i, 0));
        (fun i -> Color.FromArgb(250 - i, i, i));
        (fun i -> if i % 2 = 0 then Color.White else Color.Black);
        (fun i -> Color.FromArgb(250 - i, 250 - i, 250 - i))
    |]

let createPalette c =
    Array.init 253 (function
        | 250 -> Color.Black
        | 251 -> Color.White
        | 252 -> Color.LightGray
        | i ->   c i)

let mutable palette = createPalette coloring.[0]

let pickColor maxit it =
    palette.[int(250.0 * float it / float maxit)]

Creating the Visualization Application
You’re now ready to implement the graphical application. The basic idea is to map a rectangle of the 
complex plane in the client area of your form. Each point of your window corresponds to a complex 
number and is colored according to the value computed by the mandel function.

A typical value for maxit is 150 for the initial rendering of the Mandelbrot set, although it should be 
incremented when zooming into the fractal. The total computation required to generate an entire image is 
significant; therefore, you can’t rely on the main thread to perform the computation of the various points. It’s 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

458

important to recall that event handlers are invoked by the graphical interface’s thread, and if this thread is used 
to perform heavy computations, the application windows won’t respond to other events.

You introduce a thread responsible for performing the computations required by the Mandelbrot set 
so that the GUI thread can continue to handle events. (Chapter 11 discusses threads in more detail.) Here, 
you use shared memory to communicate the results between the threads by using a bitmap image in 
memory, referenced by the bitmap variable, which is updated by the thread performing the computation 
task and read by the GUI thread when the form must be painted. The bitmap is convenient, because you 
need a matrix of points to be colored, and the device context is designed to avoid pixel coloring to be 
device independent (it doesn’t provide a SetColor(x, y) operation). To avoid race conditions, use the lock 
function to guarantee exclusive access to the bitmap shared between the two threads. Chapter 11 looks at 
this in more detail. The thread responsible for the set computation executes the function:

// t=top, l=left, r=right, b=bottom, bm=bitmap, p=pixel, w=width, h=height
let run filler (form : #Form) (bitmap : Bitmap) (tlx, tly) (brx, bry) =
    let dx = (brx - tlx) / float bmpw
    let dy = (tly - bry) / float bmph
    let maxit = iterations (tlx, tly) (brx, bry)
    let x = 0
    let y = 0
    let transform x y = new Complex(tlx + (float x)* dx, tly - (float y) * dy)
    form.Invoke(new MethodInvoker(fun () ->
        form.Text <- sprintf "Mandelbrot set [it: %d] (%f, %f) -> (%f, %f)"
                     maxit tlx tly brx bry
    )) |> ignore
    filler maxit transform
    timer.Enabled <- false

Use dx and dy variables to map the x and y coordinates of the bitmap into the complex plane. Then 
invoke the filler function responsible for performing the calculation. There are different possible filling 
strategies to compute the colors of the set; the straightforward approach is left to right and top to bottom, 
implemented by the linearFill function:

let linearFill (bw : int) (bh : int) maxit map =
    for y = 0 to bh - 1 do
        for x = 0 to bw - 1 do
            let c = mandel maxit Complex.Zero (map x y) 0
            lock bitmap (fun () -> bitmap.SetPixel(x, y, pickColor maxit c))

Another typical filling strategy is to gradually refine the set by computing points in blocks and filling 
the blocks of the appropriate color; then, the missing points are computed by refining the block size. Using 
this strategy, you can provide a quick preview of the fractal without having to wait for the entire 
computation. The blockFill function implements this strategy:

let blockFill (bw : int) (bh : int) maxit map =
    let rec fillBlock first sz x y =
        if x < bw then
            let c = mandel maxit Complex.Zero (map x y) 0
            lock bitmap (fun () ->
                let g = Graphics.FromImage(bitmap)
                g.FillRectangle(new SolidBrush(pickColor maxit c), 
                                x, y, sz, sz)
                g.Dispose())
            fillBlock first sz 



459

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

                      (if first || ((y / sz) % 2 = 1) then x + sz 
                                                      else x + 2 * sz) y
        elif y < bh then
            fillBlock first sz 
                      (if first || ((y / sz) % 2 = 0) then 0 else sz) (y + sz)
        elif sz > 1 then
            fillBlock false (sz / 2) (sz / 2) 0

    fillBlock true 64 0 0

The variable fillFun is used to store the current filling function:

let mutable fillFun = blockFill

You clear the bitmap by obtaining a device context to the bitmap and clearing it. The global variable 
bitmap is used to access the image from the code; this is an effective choice to speed up the development 
of the application. This technique can be a problem from a software engineering standpoint, however, 
because the program is less modular, and the mutable state isn’t encapsulated:

let clearOffScreen (b : Bitmap) =
    use g = Graphics.FromImage(b)
    g.Clear(Color.White)

let mutable bitmap = new Bitmap(form.Width, form.Height)
let mutable bmpw = form.Width
let mutable bmph = form.Height

To refresh the application form while the fractal computation is ongoing, use a timer that triggers a 
refresh of the form every tenth of a second (the fully qualified name for the Timer class is needed to 
disambiguate between System.Threading.Timer and System.Windows.Forms.Timer). The paint function 
draws the bitmap that is updated by the worker thread:

let paint (g : Graphics) =
    lock bitmap (fun () -> g.DrawImage(bitmap, 0, 0))
    g.DrawRectangle(Pens.Black, rect)
    g.FillRectangle(new SolidBrush(Color.FromArgb(128, Color.White)), rect)

let timer = new System.Windows.Forms.Timer(Interval = 100)
timer.Tick.Add(fun _ -> form.Invalidate() )

let stopWorker () =
    if worker <> Thread.CurrentThread then
        worker.Abort()
        worker <- Thread.CurrentThread

The drawMandel function is responsible for starting the rendering process:

let drawMandel () =
    let bf = fillFun bmpw bmph
    stopWorker()
    timer.Enabled <- true
    worker <- new Thread(fun () -> run bf form bitmap tl br)
    worker.IsBackground <- true
    worker.Priority <- ThreadPriority.Lowest
    worker.Start()



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

460

Creating the Application Plumbing
Now that you’ve defined the architecture of the application, you can define the graphical aspects, the form, 
and the menus, as well as how users interact with the application. The code is similar to the previous 
applications, as shown in Listing 16-7. Note two aspects: the rect variable contains the current selection, and 
it’s drawn as a rectangle filled with transparent white; the application uses the clipboard to store and retrieve 
the coordinates of a particular fractal view or save the current state of the drawn bitmap. When Ctrl+C is 
pressed, a small XML document similar to the following is saved to the clipboard:

<Mandel iter="1000">
  <topleft>
    <re>-7.47421339220139e-001</re>
    <im>1.64667039391667e-001</im>
  </topleft>
  <bottomright>
    <re>-7.47082959511805e-001</re>
    <im>1.64413254610417e-001</im>
  </bottomright>
</Mandel>

The saved parameters are the most compact representation of the current view, and they are loaded 
back if Ctrl+V is pressed; this way, you can save the state of navigation. You save and read text from the 
clipboard using the Clipboard class’s SetText and GetText methods. When the Ctrl+Shift+C key sequence is 
pressed, the current bitmap is copied to the clipboard using the SetDataObject method; the bitmap can be 
pasted in any program capable of pasting images.

The selection rectangle is updated by the mouse event handlers. You obtain the zoom facility by 
setting the bounds of the complex plane defined by the variables tl and br.

Listing 16-7. Setup of the application form and event handling

type CanvasForm() as x =
    inherit Form()
    do x.SetStyle(ControlStyles.OptimizedDoubleBuffer, true)
    override x.OnPaintBackground(args) = ()

// Creates the Form
let form = new CanvasForm(Width = 800, Height = 600,Text = "Mandelbrot set")
let timer = new Timer(Interval = 100)
timer.Tick.Add(fun _ -> form.Invalidate() )

let mutable worker = Thread.CurrentThread
let mutable bitmap = new Bitmap(form.Width, form.Height)
let mutable bmpw = form.Width
let mutable bmph = form.Height
let mutable rect = Rectangle.Empty
let mutable tl = (-3.0, 2.0)
let mutable br = (2.0, -2.0)

let mutable menuIterations = 150

let iterations (tlx, tly) (brx, bry) =
    menuIterations



461

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

let RGBtoHSV (r, g, b) = ...
let HSVtoRGB (h, s, v) = ...
let makeColor (r, g, b) = ...
let defaultColor i = ...
let coloring = ...
let createPalette c = ...
let mutable palette = createPalette coloring.[0]
let pickColor maxit it = ...
let sqrMod (x : Complex) = ...
let run filler (form : #Form) (bitmap : Bitmap) (tlx, tly) (brx, bry) = ...
let linearFill (bw : int) (bh : int) maxit map = ...
let blockFill (bw : int) (bh : int) maxit map = ...
let mutable fillFun = blockFill
let clearOffScreen (b : Bitmap) = ...
let paint (g : Graphics) = ...
let stopWorker () = ... 
let drawMandel () = ...

let mutable startsel = Point.Empty

let setCoord (tlx : float, tly : float) (brx : float, bry : float)  =
    let dx = (brx - tlx) / float bmpw
    let dy = (tly - bry) / float bmph
    let mapx x = tlx + float x * dx
    let mapy y = tly - float y * dy
    tl <- (mapx rect.Left, mapy rect.Top)
    br <- (mapx rect.Right, mapy rect.Bottom)

let ensureAspectRatio (tlx : float, tly : float) (brx : float, bry : float) =
    let ratio = (float bmpw / float bmph)
    let w, h = abs(brx - tlx), abs(tly - bry)
    if ratio * h > w then
        br <- (tlx + h * ratio, bry)
    else
        br <- (brx, tly - w / ratio)

let updateView () =
    if rect <> Rectangle.Empty then setCoord tl br
    ensureAspectRatio tl br
    rect <- Rectangle.Empty
    stopWorker()
    clearOffScreen bitmap
    drawMandel()

let click (arg : MouseEventArgs) =
    if rect.Contains(arg.Location) then
        updateView()
    else
        form.Invalidate()
        rect <- Rectangle.Empty
        startsel <- arg.Location



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

462

let mouseMove (arg : MouseEventArgs) =
    if arg.Button = MouseButtons.Left then
        let tlx = min startsel.X arg.X
        let tly = min startsel.Y arg.Y
        let brx = max startsel.X arg.X
        let bry = max startsel.Y arg.Y
        rect <- new Rectangle(tlx, tly, brx - tlx, bry - tly)
        form.Invalidate()

let resize () =
    if bmpw <> form.ClientSize.Width ||
       bmph <> form.ClientSize.Height then
         stopWorker()
         rect <- form.ClientRectangle
         bitmap <- new Bitmap(form.ClientSize.Width, form.ClientSize.Height)
         bmpw <- form.ClientSize.Width
         bmph <- form.ClientSize.Height

         updateView()

let zoom amount (tlx, tly) (brx, bry) =
    let w, h = abs(brx - tlx), abs(tly - bry)
    let nw, nh = amount * w, amount * h
    tl <- (tlx + (w - nw) / 2., tly - (h - nh) / 2.)
    br <- (brx - (w - nw) / 2., bry + (h - nh) / 2.)
    rect <- Rectangle.Empty
    updateView()

let selectDropDownItem (l : ToolStripMenuItem) (o : ToolStripMenuItem) =
    for el in l.DropDownItems do
      let item = (el :?> ToolStripMenuItem)
      item.Checked <- (o = item)

let setFillMode (p : ToolStripMenuItem) (m : ToolStripMenuItem) filler _ =
    if (not m.Checked) then
        selectDropDownItem p m
        fillFun <- filler
        drawMandel()

let setupMenu () =
  let m = new MenuStrip()
  let f = new ToolStripMenuItem("&File")
  let c = new ToolStripMenuItem("&Settings")
  let e = new ToolStripMenuItem("&Edit")
  let ext = new ToolStripMenuItem("E&xit")
  let cols = new ToolStripComboBox("ColorScheme")
  let its = new ToolStripComboBox("Iterations")
  let copybmp = new ToolStripMenuItem("Copy &bitmap")
  let copy = new ToolStripMenuItem("&Copy")
  let paste = new ToolStripMenuItem("&Paste")
  let zoomin = new ToolStripMenuItem("Zoom &In")



463

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

  let zoomout = new ToolStripMenuItem("Zoom &Out")
  let fillMode = new ToolStripMenuItem("Fill mode")
  let fillModeLinear = new ToolStripMenuItem("Line")
  let fillModeBlock = new ToolStripMenuItem("Block")

  let itchg = fun _ ->
    menuIterations <- System.Int32.Parse(its.Text)
    stopWorker()
    drawMandel()
    c.HideDropDown()
  ext.Click.Add(fun _ -> form.Dispose()) |> ignore

  copybmp.Click.Add(fun _ -> Clipboard.SetDataObject(bitmap))|> ignore
  copybmp.ShortcutKeyDisplayString <- "Ctrl+Shift+C"
  copybmp.ShortcutKeys <- Keys.Control ||| Keys.Shift ||| Keys.C

  copy.Click.Add(fun _ ->
      let maxit = (iterations tl br)
      let tlx, tly = tl
      let brx, bry = br
      Clipboard.SetText(sprintf "<Mandel iter=\"%d\"><topleft><re>%.14e</re><im>%.14e</im></
topleft><bottomright><re>%.14e</re><im>%.14e</im></bottomright></Mandel>" maxit tlx tly brx bry)
  ) |> ignore
  copy.ShortcutKeyDisplayString <- "Ctrl+C"
  copy.ShortcutKeys <- Keys.Control ||| Keys.C

  paste.Click.Add(fun _ ->
      if Clipboard.ContainsText() then
        let doc = new XmlDocument()
        try
          doc.LoadXml(Clipboard.GetText())
          menuIterations <- 
              int (doc.SelectSingleNode("/Mandel").Attributes.["iter"].Value)
          tl <- (float (doc.SelectSingleNode("//topleft/re").InnerText), 
                 float (doc.SelectSingleNode("//topleft/im").InnerText))
          br <- (float (doc.SelectSingleNode("//bottomright/re").InnerText),
                 float (doc.SelectSingleNode("//bottomright/im").InnerText))
          rect <- Rectangle.Empty
          updateView()
        with _ -> ()
  ) |> ignore
  paste.ShortcutKeyDisplayString <- "Ctrl+V"
  paste.ShortcutKeys <- Keys.Control ||| Keys.V

  zoomin.Click.Add(fun _ -> zoom 0.9 tl br) |> ignore
  zoomin.ShortcutKeyDisplayString <- "Ctrl+T"
  zoomin.ShortcutKeys <- Keys.Control ||| Keys.T
  zoomout.Click.Add(fun _ -> zoom 1.25 tl br) |> ignore
  zoomout.ShortcutKeyDisplayString <- "Ctrl+W"
  zoomout.ShortcutKeys <- Keys.Control ||| Keys.W



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

464

  for x in [f; e; c] do m.Items.Add(x) |> ignore
  f.DropDownItems.Add(ext) |> ignore
  let tsi x = (x :> ToolStripItem)
  for x in [tsi cols; tsi its; tsi fillMode] do c.DropDownItems.Add(x) 
      |> ignore
  for x in [tsi copy; tsi paste; tsi copybmp; tsi zoomin; tsi zoomout] do 
      e.DropDownItems.Add(x) |> ignore
  for x in ["HSL Color"; "Gray"; "Red"; "Green"] do cols.Items.Add(x) 
      |> ignore
  fillMode.DropDownItems.Add(fillModeLinear) |> ignore
  fillMode.DropDownItems.Add(fillModeBlock) |> ignore
  cols.SelectedIndex <- 0
  cols.DropDownStyle <- ComboBoxStyle.DropDownList

  cols.SelectedIndexChanged.Add(fun _ ->
    palette <- createPalette coloring.[cols.SelectedIndex]
    stopWorker()
    drawMandel()
    c.HideDropDown()
  )
  its.Text <- string menuIterations
  its.DropDownStyle <- ComboBoxStyle.DropDown
  for x in ["150"; "250"; "500"; "1000"] do its.Items.Add(x) |> ignore
  its.LostFocus.Add(itchg)
  its.SelectedIndexChanged.Add(itchg)
  fillModeBlock.Checked <- true
  fillModeLinear.Click.Add(setFillMode fillMode fillModeLinear linearFill)
  fillModeBlock.Click.Add(setFillMode fillMode fillModeBlock blockFill)
  m

clearOffScreen bitmap
form.MainMenuStrip <- setupMenu()
form.Controls.Add(form.MainMenuStrip)
form.MainMenuStrip.RenderMode <- ToolStripRenderMode.System
form.Paint.Add(fun arg ->  paint arg.Graphics)
form.MouseDown.Add(click)
form.MouseMove.Add(mouseMove)
form.ResizeEnd.Add(fun _ -> resize())
form.Show()

Application.DoEvents()

drawMandel()

[<STAThread>]
do Application.Run(form)

Use the program’s last statement only if the application is compiled; with fsi.exe, it must be omitted. 
As already noted, the plumbing code is dominated by setting up menus and configuring the application 
form; the rest contains the event handlers that are registered with the various controls.



465

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

Windows Presentation Foundation
Microsoft introduced a new presentation framework called Windows Presentation Foundation (WPF) for 
programming graphical applications on the Windows platform with Windows Vista. It’s not merely a new 
framework, such as Windows Forms; rather than another layer on top of the traditional Win32 presentation 
system, it’s a complete new rendering system that coexists with the traditional one. More recently, 
Windows 8 introduced a new UI framework, the foundation and architecture of which has its roots in WPF 
and requires a compiler to output a new binary format called winmd.

■ Note: WPF is a .NET framework and thus accessible to F# applications. In Visual Studio, the tight integration 
with XAML markup language used by WPF isn’t supported by the F# project system, and you should instead add your 
XAML files to your Visual Studio solution. You can also use F# to develop Silverlight code, because Silverlight is a 
Web plug-in featuring a subset of WPF capabilities. It is possible, however, to use the XAML type provider available in 
the FSharpx.TypeProviders package, obtainable with NuGet, to access XAML defined objects within F# source 
code. With this clever type provider, it is possible to use any XAML visual designer, including Blend and Visual Studio, 
and bind to XAML elements F# code in a way similar to what happens to WPF applications developed using C#. Also, 
note that the F# compiler is not able to generate winmd format yet, though F# assemblies can be used from C# 
Windows 8 UI projects.

At first sight, a WPF application doesn’t differ much from a Windows Forms application. Here are few 
lines of code to open a window from F# Interactive:

#r "WindowsBase"
#r "PresentationCore"
#r "PresentationFramework"
#r "System.Xaml"

open System.Windows
open System.Windows.Controls

let w = new Window()

let b = new Button(Content = "Hello from WPF!")
b.Click.Add(fun _ -> w.Close())

w.Content <- b
w.Show()

The application has an event loop (see the sidebar “WPF Event Loop”) hosted by F# Interactive. With a 
few (very important) differences, you’ve created a window hosting a huge button that closes it when 
clicked.

WPF EVENT LOOP

WPF applications have an event loop, because events are still one of the foundations of this new presentation 
system; this event loop, however, differs from that used by Windows Forms applications. It’s started through 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

466

an instance of the System.Windows.Application class (note that in Windows Forms, the System.
Windows.Forms.Application class is used as a singleton without the need to create instances).

To run the button example as a stand-alone application, add the same references to the F# project. Instead 
of the w.Show() method invocation, you can add the following lines:

let a = new Application()

[<STAThread>]
do a.Run(w) |> ignore

F# Interactive can host both Windows Forms and WPF event loops, so you can create windows using both 
frameworks, even at the same time. F# Interactive, however, uses Windows Forms by default. There is a 
script called load_wpf.fsx in the F# Power Pack that you must load into an F# interactive session and start 
with a Windows Forms event loop, in order to enable full WPF support. You must also explicitly refer to WPF 
assemblies before creating WPF objects.

It’s reassuring that events are still there, even within a framework based on a different programming 
paradigm. Moreover, you still create user interfaces by composing graphical controls and attaching to their 
event handlers. The button is the only control hosted by the window! You don’t access a Controls property of 
the window to add the button to a list of children controls. Instead, you set all the window content with a 
button, resulting in a huge button that occupies the window’s entire client area.

WPF’s layout model is completely different from what you’ve grown accustomed to using Windows 
Forms: objects are positioned by the container and don’t have Top and Left properties to explicitly set a 
control position.

Layout is only one of many aspects of WPF that diverge from the traditional structure of graphic 
toolkits; this section introduces the most relevant. Look for more information about the framework in 
dedicated publications. The most important changes introduced by WPF are:

Retention-based, device-independent rendering

XML-based composition language

Dependency properties and animations

When GUIs Meet the Web
The long-established model of GUI toolkits has its roots in a world very different from today’s. Several 
assumptions made by these programming models are still true, but others no longer hold. This is an important 
point that you must always consider when working with WPF after any other graphical toolkit.

One of the authors was introduced to graphical programming during the 1980s, using Turbo Pascal, 
and was surprised that drawing primitives weren’t retained by the system like console characters. The 
situation, however, was better than it had been a few years before, on a MS-DOS PC with graphics: the 
screen buffer was owned by a single application, so redrawing was needed to remove a primitive and 
restore its background. With windowing systems, the user experience improved significantly for the user, 
but the situation worsened for the application programmer: the application’s main control must be 
delegated to the graphical toolkit, and everything becomes an event. Events significantly optimize 
resource usage, because applications are notified only when needed so that a user can execute multiple 
applications simultaneously, but events are also used to optimize drawing resources through the paint 
architecture discussed previously. As you’ve seen, the GUI system sends the paint message to a window 
whenever its content needs to be updated; therefore, primitives aren’t retained by the windowing system. 
It’s up to you to issue them as necessary.



467

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

In essence, the familiar paint-event-based paradigm you’re used to exists because of the need to save 
memory when it’s scarce; this is a form of Kolmogorov-style compression, in which a program generates 
information instead of storing it. As illustrated by Web browsers, today’s computers have enough memory 
to change this underlying assumption and revise the original decision of who is responsible for retaining 
graphics primitives. With WPF, Microsoft decided to radically change the toolkit model and define a 
foundation based on the notion of graphics-primitive retention.

This example shows how a typical drawing is performed by a WPF application:

#r "WindowsBase"
#r "PresentationCore"
#r "PresentationFramework"

open System.Windows
open System.Windows.Controls
open System.Windows.Shapes
open System.Windows.Media

let c = new Canvas()
let w = new Window(Topmost = true, Content = c)
w.Show()

let r = new Rectangle(Width = 100., Height = 100.,
                      RadiusX = 5., RadiusY = 5.,
                      Stroke = Brushes.Black)
c.Children.Add(r)

let e = new Ellipse(Width = 150., Height = 150.,
                    Stroke = Brushes.Black)
c.Children.Add(e)
Canvas.SetLeft(e, 100.)
Canvas.SetTop(e, 100.)

e.MouseLeftButtonUp.Add(fun _ ->
    e.Fill <-
        if e.Fill = (Brushes.Yellow :> Brush) then Brushes.Red
        else Brushes.Yellow)

At first, this example doesn’t differ much from the one showing a button in a window: you create a 
Canvas object, which is a container for multiple UI elements, and add two graphic objects. In the Windows 
Form world, you’d think of two graphic controls used for drawing, although they wouldn’t blend, because 
each traditional window is opaque. In fact, these two graphics primitives are represented by two objects 
and are retained by the presentation system; pick correlation and event dispatching are guaranteed by the 
graphical toolkit. 

Note that the ellipse is an outline, so the click event is raised only by clicking the outline; when the fill 
brush is specified, you can change the fill color by clicking inside the ellipse. Another relevant aspect is the 
positioning of an element: there is no Left or Top property, because it’s the responsibility of the container 
(in this case, the canvas) to lay out contained objects.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

468

Drawing
An application can draw any shape by adding graphics primitives to a WPF window’s visual tree. Because 
the system retains these primitives, you don’t need to implement an event handler for the paint message: 
it’s up to the graphical toolkit to render the tree in the appropriate way whenever needed. Problems such 
as visible primitives and efficient drawing fade away quickly and are dealt with by the system; 
nevertheless, you’re still responsible for using the visual tree.

Because graphics primitives are organized in a tree structure, it’s natural to use an XML-based language 
to initialize this tree with the window’s initial state. WPF introduced the XAML language for this purpose; it 
recalls HTML, though it was designed for defining rich UIs instead of hypertext. The drawing example shown 
in the previous section can be expressed using the XAML markup in Listing 16-8.

Listing 16-8. Example of a window definition using XAML.

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="MainWindow" Height="350" Width="525">
    <Canvas>
        <Rectangle Width="100" Height="100" Stroke="Black" 
                   RadiusX="5" RadiusY="10"/>
        <Ellipse Name="Circle"
                 Canvas.Left="100" Canvas.Top="100" 
                 Width="150" Height="150" Stroke="Black"/>
    </Canvas>
</Window>

The markup syntax is a wonderful tool for compacting several programming-language statements 
into a single line, because properties can be set as attributes. XAML adopts a well-defined bridge between 
the XML elements and the corresponding .NET classes and objects. Tag names are mapped onto classes 
and implicitly define instances, attributes are used to assign objects’ properties, and attributes containing 
a dot are interpreted as static properties (for example, Canvas.Left and Canvas.Top). Each node may have a 
name, which is useful for retrieving a reference to the node; in this case, the ellipse element is named 
Circle.

LOADING XAML INTO F# APPLICATIONS

At the time of writing, the F# project system in Visual Studio 2010 doesn’t include full XAML support. This 
means there is no WPF Visual Studio Wizard for the F# language. For C#, the compilation process for WPF 
applications involves a precompilation of XAML files in C# source files and an optimized representation of 
XAML called Binary XAML (BAML). The source-code generation has the goal of making it easier to interact 
with graphical objects defined within the XAML file using a mechanism successfully employed for ASP.NET 
files: code behind. Using the special attribute x:Class, you can indicate a class in which to inject the 
definition of graphical elements of the XAML file, so that C# methods can be referred to through XML 
attributes (to indicate event handlers) and XAML objects are exposed as fields. It’s possible, however, to load 
XAML at runtime, letting F# applications benefit from the ability to use XAML UI definitions instead of having 
to manipulate WPF objects explicitly. The following is a simple example of a function that loads XAML markup 
from a file and, assuming it contains the definition of a window, converts the reference into an instance of 
the Window class:

#r "WindowsBase"
#r "PresentationCore"
#r "PresentationFramework"



469

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

#r "System.Xaml"

open System.Windows
open System.Windows.Controls
open System.Windows.Markup
open System.Windows.Media
open System.Xml

let loadXamlWindow (filename : string) =
    let reader = XmlReader.Create(filename)
    XamlReader.Load(reader) :?> Window

System.Environment.CurrentDirectory <- __SOURCE_DIRECTORY__
let wnd = loadXamlWindow("window.xaml")
wnd.Show()

You can use a WYSIWYG editor for XAML to visually author UIs. To load it in an F# application, ensure that the 
x:Class attribute is removed; otherwise, the Load method will raise an exception. Don’t associate event 
handlers through the UI: they should be explicitly associated inside the F# code.

Using these functions, you can load any XAML fragment. In F#, the most common case is to load the 
definition of a window. It’s also possible to parse XAML code embedded in strings: for instance, in the 
resources embedded in the application or embedded as a string within the program. The rest of this chapter 
refers to this function without including its definition.

Using the FSharpx type provider for XAML you can also load the Window.xaml code as: 
// The full Nuget package path is not shown and will vary with your installation
#r @"...\packages\...\Fsharpx.Core.dll"
#r @"...\packages\...\Fsharpx.TypeProviders.dll"

open FSharpx

type MainWindow = XAML<"window.xaml">

let mainwnd = new MainWindow()
let wnd = mainwnd.Root
wnd.Show()

The type provider here is generating, at compile time, a set of types representing part of the visual tree 
defined in the XAML file. The main difference is that many type checks are anticipated at compile time, 
avoiding runtime type-cast exceptions. This use of type providers avoids source-code generation typical of 
C# WPF code-generation integration and offering a set of features similar to those available for C#.

XAML has been rightly touted as separating the world of business logic from that of UI design, offering 
direct control to graphic designers through XAML and allowing programmers to rely on names to 
instrument graphical controls. XAML and the names of graphical elements are the contract between 
programmers and designers, allowing for concurrent work on GUI-application development. This 
approach has proven successful for the Web and shows that hardware is powerful enough to shift toward a 
more programmer-friendly paradigm.

XAML can be generated and manipulated from a number of graphical editors, including Visual 
Studio and Microsoft Expression Blend. Even though full support isn’t yet available for developing WPF 
applications using F#, it’s easy to load XAML-based UIs into F# applications; this largely addresses the 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

470

lack of graphical environments for developing GUIs (see the sidebar “Loading XAML into F# 
Applications”). Assuming that the XAML in Listing 16-8 is saved in a file named window.xaml, you can 
use it from F# (assuming the appropriate references and the loadXamlWindow function are defined) as:

let w = loadXamlWindow("window.xaml")
w.Show()

let e = w.FindName("Circle") :?> Ellipse

e.MouseLeftButtonUp.Add(fun _ ->
    e.Fill <- 
        if e.Fill = (Brushes.Yellow :> Brush) then Brushes.Red
        else Brushes.Yellow)

You use the FindName method to find a reference to the ellipse object; this is how you can refer from F# 
code to elements defined in the XAML markup, unless you use the XAML type provider, in which case you 
simply access the Circle property on the type generated by the provider. Because you can define 
animations in markup and connect to user actions (for example, sliding or collapsing menus can be 
defined entirely in XAML), the number of statements needed to connect the F# state to the visual tree is 
small—drastically smaller than the amount of code needed to do GUIs in Windows Forms. Sometimes it 
may be useful to navigate the entire visual tree in which WPF stores the graphics primitives; the 
VisualTreeHelper class features navigation methods useful for doing this.

Drawing primitives refer to the coordinates of some coordinate space. Traditionally, computer programs 
relied on pixels, even though Win32 API supported different coordinate systems from the beginning. WPF 
features vector graphics, supporting affine transformations of the coordinate system (translation, rotation, 
scaling, and skew); the use of a pixel-based system seemed obsolete in a world in which the dots per inch 
(dpi) of display devices changes significantly. The adopted unit is 1/96th of an inch (in honor of the traditional 
monitor resolution), whatever the target display device, including printers.

You can apply transformations to any subtree of the visual tree, transforming all the primitives, 
including those issued by contained controls. 

Let’s consider the XAML example shown in Listing 16-9. It uses a container that stacks graphical 
elements horizontally to lay out three elements: a block of text, a text box, and a line. Nodes may also have 
explicit names, such as the TextBox node here. The application’s output is shown in Figure 16-9, where the 
elements are rotated according to the indicated transformations: the container is laid out rotated 45 
degrees counterclockwise, and the text box is rotated 90 degrees clockwise.

Listing 16-9. XAML defining the composition of transformed elements

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="MainWindow" Height="350" Width="525">
    <Canvas>
            <StackPanel Orientation="Horizontal" VerticalAlignment="Center">
                <StackPanel.LayoutTransform>
                    <RotateTransform Angle="-45"/>
                </StackPanel.LayoutTransform>
                <TextBlock>This is a test</TextBlock>
                <TextBox Name="Input">
                    <TextBox.LayoutTransform>
                        <RotateTransform Angle="90"/>
                    </TextBox.LayoutTransform>
                        Input here



471

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

                </TextBox>
                <Line X1="0" X2="50" Y1="0" Y2="50" Stroke="Black"/>
            </StackPanel>
    </Canvas>
</Window>

Figure 16-9. F# application demonstrating the XAML

Transformations are implemented using matrices, as already discussed for Windows Forms; you can 
use them to obtain nontrivial transformations of the coordinate space. These transformations affect the 
subtree rooted in the node to which they’re applied and can be programmatically accessed through the 
LayoutTransform and RenderTransform properties. The former affects the layout computation, and the 
latter affects the final rendering, possibly overflowing the container node.

Drawing involves brushes and pens, which are similar to their Windows Forms counterparts.

Controls
The ability to instantiate and use existing controls is one of the pillars of user interfaces. In the earlier 
discussion of the difference between writing components and combining them, it was evident that a 
control in a traditional framework is opaque: the container allocates a rectangle and delegates event 
handling and drawing to the window procedure coordinated by the event loop.

In WPF, things are less clear-cut, which opens new horizons to graphical developers who appreciate 
the visual tree and the different role played by controls. To appreciate the extent of this statement, let’s 
modify the example from Listing 16-9 by enclosing the StackPanel element in a Button element (add a 
<Button> tag immediately after <Canvas> and </Button> immediately before </Canvas>). The resulting 
window looks like the one shown in Figure 16-10: you’ve nested two controls, which is an almost 
impossible task in traditional graphical toolkits.

The designers of the WPF framework must have considered problems that never came up with 
traditional toolkits, given the system’s ability to retain graphics primitives in the form of a tree. You can 
think of a button as a background shaped like a button, with the label in the middle; it can be defined as a 
subtree of the primitives needed to draw its borders and a placeholder in the middle to insert the label. In 
an opaque system, the content could be another rectangle but nothing more; in a retention-based system, 
you can replace the label node in the tree with an arbitrary, complicated subtree.



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

472

You can display the visual tree of any WPF element using the static methods of the VisualTreeHelper 
class. The following F# function prints to the console (or in the F# Interactive tool window) the visual tree 
associated with a WPF element:

let ShowVisualTree(obj : DependencyObject) =
    let rec browse indentlvl node =
        let indent n = for i = 0 to (n - 1) do printf "  "
        let n = VisualTreeHelper.GetChildrenCount(node)
    
        indent indentlvl 
        printfn "<%s%s>" (node.GetType().Name) (if n = 0 then "/" else "")
        for i = 0 to (n - 1) do
            browse (indentlvl + 1) (VisualTreeHelper.GetChild(node, i))
        if n > 0 then
            indent indentlvl
            printfn "</%s>" (node.GetType().Name)

    browse 0 obj

■ Note: WPF also defines the logical tree, which is a simplified version of the visual tree that hides formatting 
nodes. The logical tree makes it easier to find relevant controls without having to deal with unneeded nodes. Logical 
tree is not available on lighter versions of WPF, such as Silverlight.

The function implements a recursive visit to the visual tree rooted in the given element. If you pass the 
instance returned by loadXamlWindow, you get an idea of how many primitives are issued by the various 
controls you’re using in the window. If you pass the instance of a button, perhaps found using the FindName 
method as you did earlier, you obtain output similar to:

<Button>
  <ButtonChrome>
    <ContentPresenter>
      <TextBlock/>

Figure 16-10. Nested controls in WPF



473

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

    </ContentPresenter>
  </ButtonChrome>
</Button>

ContentPresenter is the root of the subtree dedicated to the button content; the rest defines the 
graphics primitives surrounding the node. The ButtonChrome node refers to a class used to implement a 
specific theme; it’s even possible to change the definition of the button without affecting its logic or its 
content. You can find more information about this ability of WPF in textbooks or online.

EVENTS AND WPF

What are the consequences of a model in which controls are no longer black boxes? The most important is 
the notion of pick correlation: in the example, if you click the text block or line, you get the container button 
that has been pressed, but if the click is directed to the text box, the button doesn’t receive it. Event routing 
in WPF is more complicated than in other toolkits, because events are tunneled to tree nodes from the root 
toward the control and then bubbled up backward. In this way, the button may know that it’s clicked in the 
first phase but may ignore the click event in the second phase. In addition, transparency may cause the 
same event to be triggered to more than one control at the same time. All these possibilities require further 
study of WPF that is beyond the scope of this book.

The type expected by the ShowVisualTree function is DependencyObject, which returns to the notion of 
dependency—a pervasive concept deeply entrenched within the framework. Dependency is a relation among 
two or more elements; in its asymmetry, it expresses something whose nature depends on something else. 
Dependency properties are a programming pattern used across WPF to define properties that you can listen to 
for change. If w is a Window object obtained from parsing the XAML contained in Listing 16-9, you can read and 
set the Text property of the TextBox object from F# as: 

let t = w.FindName("Input") :?> TextBox
MessageBox.Show(sprintf "Input value is %s " t.Text) |> ignore
t.Text <- "Hello"
MessageBox.Show(sprintf "Input value now is %s " t.Text) |> ignore

The Text property behaves as a standard property, and you can use it programmatically as you’re used 
to doing with all properties. Text is a dependency property, and any observer in the code can listen for 
changes. You can detect its change as:

open System.ComponentModel

let desc = 
    DependencyPropertyDescriptor.FromProperty(TextBox.TextProperty, typeof<TextBox>)
desc.AddValueChanged(t, fun _ _ -> MessageBox.Show("Text changed!") |> ignore)

You use the conventions used by TextBox implementers to access the descriptor of the Text 
dependency property called TextProperty and rely on appropriate data structures to register your callback. 
Whenever the text-box value changes, a message box is displayed.

Implementing a dependency property is easy: in the class, you define a static field describing the 
property; then, the property must be registered in a global structure hosted by the DependencyProperty 
class. You then add a standard .NET property using the GetValue and SetValue methods—inherited from 
the DependencyObject class, which must be an ancestor of the class defining the property—hiding the 
implementation details. Supported callbacks are registered to inform the framework about the observable 
events on the property (such as the property-value change). 



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

474

At first, this may seem unnecessarily verbose: why is it useful to be able to observe when a property 
changes its value? The answer lies in WPF’s ability to support the animation of virtually any element 
property and the fact that dependency properties are the building blocks of the animation engine. 
Animations often correlate properties of different visual objects. For instance, think of an object and its 
shadow: whenever the object’s position changes, its shadow must follow. Dependency properties provide a 
pervasive infrastructure to propagate property changes across visual tree nodes in a consistent way. To 
exemplify this idea, let’s change Listing 16-9 again by replacing the TextBox element definition with:

<TextBlock Text="{Binding Path=Text, ElementName=Input}"></TextBlock>

The expression in curly braces is a data-binding expression, which is an expression evaluated by WPF 
engine to set the Text property of the TextBlock node. If you run the example, the text block updates its 
content when the text box changes its value. WPF defines several forms of data binding to declare how 
dependency properties must be updated without explicit coding; you can define several automatic actions 
using these mechanisms.

In WPF, controls are a way to instantiate subtrees and attach predefined behaviors to nodes and properties. 
They’re less opaque in WPF than before; nevertheless, if a change in the visual tree disrupts the assumptions 
made by a control’s logic, a control may fail. For this reason, controls in WPF offer placeholders for inserting 
content, as you’ve seen with buttons, as well as a means to change the control’s appearance while preserving the 
essential traits of the visual subtree that make its inner code work.

Bitmaps and Images
Vector graphics, after being abandoned in favor of raster graphics, have again become popular, because 
they let you define graphics that can be scaled without the annoying pixelated effects typical of raster 
graphics. Vector primitives are exact, and the rendering engine can compute the value of any number of 
pixels affected by the primitive. If you zoom a line, you can compute all the pixels of the line without any 
loss in detail. If the line is contained in a bitmap, this isn’t possible: the zoomed line contains artifacts 
introduced by the algorithm that resized the image.

It’s impossible to imagine a user interface without images. What, however, does it means to work with 
pixels in a world of abstract coordinates where points are considered sizeless entities, as in geometry? An 
image’s size is defined in the application space, and WPF is responsible for the rastering process and for 
generating enough pixels at a given resolution. A 100×100 image at 96dpi uses the same number of pixels 
on a standard monitor, or more pixels if the device has a higher dpi resolution. This concept isn’t 
unfamiliar: in the Mandelbrot example, you used a bitmap to set pixel colors, because of the lack of a 
SetPixel method on the Graphics object representing the device context for drawing. WPF, however, 
defines its own set of classes to deal with images, featuring a slightly different set of properties and 
capabilities.

To exemplify the use of images with WPF, let’s consider a simple but useful application: a batch-size 
conversion for JPEG images. The application is a command-line tool that converts a directory containing 
hi-res pictures into a mirrored version containing resized versions of the same pictures for a specific 
resolution. With this tool, it’s easy to convert thousands of photos into versions suitable for a photo frame, 
thus saving space. The conversion process preserves JPEG metadata information such as tags, which may 
be useful after conversion.

The two main functions are shown in Listing 16-10. transformFile is responsible for transforming a single 
JPEG image and saving it into a new file; transformDir performs a recursive visit to a directory tree and builds a 
mirror tree in the destination directory, relying on the first function to convert the image files.

The image transformation relies on JpegBitmapDecoder and JpegBitmapEncoder, two classes dealing 
with the JPEG format. These classes support a streaming model for decoding and encoding images, so you 
read information about the first frame (an image may contain more than a single frame) to ensure that all 
the metadata is read from the source image. The desired output size is passed in the form of a screen 



475

CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

resolution through the width and height arguments, and a best-fit policy is used to define the size of an 
in-memory bitmap instance of the class BitmapImage. The image resize is performed by asking the in-
memory image to load data from the source file and fit the desired size; this way, you avoid allocating the 
full image in memory and performing the resize operation while reading pixels from disk. You then use the 
encoder to save the image, with the desired quality, in the new file, along with the metadata and the 
creation-time and change-time information.

Listing 16-10. A function to resize all the images in a directory

open System
open System.IO
open System.Windows.Media.Imaging

let transformFile quality width height srcFileName outFileName =
    let dec = new JpegBitmapDecoder(
                Uri(srcFileName),
                BitmapCreateOptions.PreservePixelFormat,
                BitmapCacheOption.Default)
    let w = dec.Frames.[0].Width
    let h = dec.Frames.[0].Height

    let b = new BitmapImage()
    b.BeginInit()
    b.UriSource <- new Uri(srcFileName)
    if width > 0 then
        if w >= h then b.DecodePixelWidth <- width
        else b.DecodePixelHeight <- height
    b.EndInit()

    let metadata = dec.Frames.[0].Metadata

    let enc = new JpegBitmapEncoder()
    enc.Frames.Add(BitmapFrame.Create(b, null, 
                                      metadata :?> BitmapMetadata, null))
    let fs = new FileStream(outFileName, FileMode.OpenOrCreate)
    enc.QualityLevel <- quality
    enc.Save(fs)
    fs.Close()
    let fin = new FileInfo(srcFileName)
    let fout = new FileInfo(outFileName)
    fout.CreationTime <- fin.CreationTime
    fout.LastWriteTime <- fin.LastWriteTime

let transformDir quality width height src dest =
    let rec visit (dirIn : DirectoryInfo) (dirOut : DirectoryInfo) =
        for f in dirIn.EnumerateFiles() do
            if f.Extension.ToUpper() = ".JPG" then
                printfn "Processing file %s..." f.FullName
                transformFile 
                    quality width height f.FullName 
                    (dirOut.FullName + "\\" + f.Name)



CHAPTER 16 ■ VISUALIZATION AND GRAPHICAL USER INTERFACES 

476

        for d in dirIn.EnumerateDirectories() do
            visit d (dirOut.CreateSubdirectory(d.Name))

    let dirIn = new DirectoryInfo(src)
    let dirOut = 
        if not(Directory.Exists(dest)) then Directory.CreateDirectory dest 
        else new DirectoryInfo(dest)
    visit dirIn dirOut

Start the transformation process by invoking the transformDir function with the JPEG compression 
quality, the target screen size, and the input and output folders. The following lines assume that you’re 
converting summer photos for a frame supporting 1024×768 resolution:

let dn = @"C:\Users\SomeUser\Pictures\Summer 2010"
let dno = @"e:\Summer PhotoFrame 2010"

transformDir 75 1027 768 dn dno

Bitmap manipulation can be very tricky using WPF, and some tasks are more difficult than they are using 
Windows Forms. In particular, it’s easy to obtain a device context to a bitmap and draw using GDI functions. 
You can raster WPF primitives into a bitmap, but many programmers prefer to refer to both libraries and to 
convert images from one framework to the other, in an attempt to benefit from both worlds.

Final Considerations
WPF isn’t just another framework built on top of the traditional Win32 and GDI rastering engine: it’s a new 
presentation system designed with a different programming paradigm in mind. This section introduced 
some important ideas behind this new presentation system and how you can use it from F# applications. 
The content is far from exhaustive, and several topics have been left out or only mentioned in an attempt 
to convey the core ideas as a starting point for further investigation. The literature about WPF is very rich, 
and we encourage you to read more specific material.

Summary
Event-driven programming is the dominant paradigm of graphical applications. Although object-oriented 
programming is used to build the infrastructure for graphical frameworks, events are naturally expressed 
in terms of calling back a given function. F# is effective in GUI programming, because it supports both 
paradigms and provides access to full-featured frameworks, such as Windows Forms.

This chapter covered the basics of GUI programming. It introduced controls and applications, 
including details typical of real-world applications. The presentation was based on the Windows Forms 
framework, but many of the ideas discussed can be easily transposed to other graphical frameworks: the 
fundamental structure of this class of applications is mostly unchanged. Finally, we introduced WPF and 
discussed differences between it and Windows Forms.



477

■ ■ ■

CHAPTER 17

Language-Oriented Programming: 
Advanced Techniques

Chapters 3 to 6 covered three well-known programming paradigms in F#: functional, imperative, and 
object programming. Throughout this book, however, you have in many ways been exploring what is 
essentially a fourth programming paradigm: language-oriented programming. In this chapter, you will 
focus on advanced aspects of language-oriented programming through language-integrated, domain-
specific languages and meta-programming. 

The word language can have a number of meanings in this context. For example, take the simple 
language of arithmetic expressions and algebra that you learned in high school mathematics, made up of 
named variables, such as x and y, and composite expressions, such as x+y, xy, –x, and x2. For the purposes 
of this chapter, this language can have a number of manifestations:

One or more concrete representations: for example, using an ASCII text format or an 
XML representation of arithmetic expressions.

One or more abstract representations: for example, as F# types and values 
representing the normalized form of an arithmetic expression tree.

One or more computational representations, either by functions that compute the 
values of arithmetic expressions or via other engines that perform analysis, 
interpretation, compilation, execution, or transformation on language fragments. 
These can be implemented in F#, in another .NET language, or in external 
engines.

The language-oriented programming techniques covered in this book (including some in this chapter) 
are: 

Manipulating unstructured text and binary representations of languages, including 
writing parsers and lexers (Chapter 8)

Manipulating semi-structured language representations, such as XML (Chapter 8)

Using F# functions, types, and active patterns for abstract and symbolic 
representations of languages (Chapters 3, 9 and 12)

Using F# sequence expressions, asynchronous expressions, and, more generally, F# 
computation expressions for tightly language-integrated representations of some 
languages (Chapters 9, 11, and 13, and this chapter)



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

478

Using the F# “dynamic” operators to give a slightly improved syntax for accessing 
information stored using dynamic (untyped) representation techniques (this 
chapter)

Using F# reflection and quotations to represent languages via meta-programming  
(this chapter)

As you can see, language-oriented programming isn’t a single technique; sometimes you work with 
fully concrete representations (for example, reading bits from disk) and sometimes with fully 
computational representations (for example, defining and using functions that compute the value of 
arithmetic expressions). Most often, you work somewhere in between (for example, manipulating abstract 
syntax trees). These tasks require different techniques, and there are trade-offs among choosing to work 
with different kinds of representations. For example, if you’re generating human-readable formulae, then 
you may need to store more concrete information; but if you’re interested just in evaluating arithmetic 
expressions, then a purely computational encoding may be more effective. You see some of those trade-
offs in the different techniques described above.

■ Note: The term language-oriented programming was originally applied to F# by Robert Pickering in the Apress 
book Beginning F#, and it really captures a key facet of F# programming. Thanks, Robert!

Computation Expressions
Chapter 3 introduced a useful notation for generating sequences of data, called sequence expressions. For 
example:

> seq { for i in 0 .. 3 -> (i, i * i) };;

val it : seq<int * int> = seq [(0, 0); (1, 1); (2, 4); (3, 9)]

Sequence expressions are used extensively throughout this book. For example, Chapter 9 uses 
sequence expressions for a range of sequence-programming tasks. 

Likewise, Chapter 11 introduced a useful notation for generating individual results asynchronously, 
meaning that the result of a computation is eventually delivered to a continuation, a form of future, task, 
or promise. Asynchronous computations can also represent actions that do not “block” .NET threads when 
waiting for I/O. For example, consider the body of an agent from Chapter 11, which asynchronously waits 
for a message and then recursively loops—this is a form of asynchyronous state machine.

        let rec loop n =
            async { printfn "n = %d, waiting..." n
                    let! msg = inbox.Receive()
                    return! loop (n + msg) }

 It turns out that both sequence expressions and asynchronous expressions are just two instances of a 
more general construct called computation expressions. These are also sometimes called workflows, 
although they bear only a passing similarity to the workflows used to model business processes. The 
general form of a computation expression is builder { comp-expr }. Table 17-1 shows the primary 
constructs that can be used within the braces of a computation expression and how these constructs are 
de-sugared by the F# compiler given a computation expression builder builder.

The three most important applications of computation expressions in F# programming are:



479

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

General-purpose programming with sequences, lists, and arrays

Parallel, asynchronous, and concurrent programming using asynchronous 
workflows, discussed in detail in Chapter 11

Database queries, by quoting a workflow and translating it to SQL via the .NET LINQ 
libraries, a technique demonstrated in Chapter 13

This section covers briefly how computation expressions work through some simple examples.

Table 17-1. Main constructs in computation expressions and their ee-sugaring

Construct De-sugared Form
let pat = expr in cexpr let pat = expr in "cexpr"

let! pat = expr in cexpr b.Bind (expr, (fun pat -> "cexpr"))

use val = expr in cexpr b.Using(expr,  (fun val -> "cexpr"))

use! val = expr in cexpr b.Bind (expr, (fun x -> "use val = expr in cexpr"))

do expr in cexpr expr; b.Delay (fun () -> "cexpr"))

do! expr in cexpr b.Bind (expr, (fun () -> "cexpr"))

for pat in expr do cexpr b.For (expr, (fun pat -> "cexpr"))

while expr do cexpr b.While ((fun () -> expr), b.Delay (fun () -> "cexpr"))

try cexpr1 with val -> expr2 b.TryWith(b.Delay(fun () -> "cexpr1"), 
          (fun val -> "cexpr2"))

try cexpr finally expr b.TryFinally(b.Delay(fun () -> "cexpr"), 
             (fun () -> expr))

if expr then cexpr1 else cexpr2 if expr then "cexpr1" else "cexpr2"

if expr then cexpr if expr then "cexpr" else b.Zero()

cexpr1; cexpr2 v.Combine ("cexpr1", b.Delay(fun () -> "cexpr2"))

yield expr b.Yield expr

yield! expr b.YieldFrom expr

return expr b.Return expr

return! expr b.ReturnFrom expr

■ Note: If you’ve never seen F# workflows or Haskell monads before, you might find that workflows take a bit of 
getting used to. They give you a way to write computations that may behave and execute quite differently than 
normal programs do.

F# WORKFLOWS AND HASKELL MONADS

Computation expressions are the F# equivalent of monadic syntax in the programming language Haskell. 
Monads are a powerful and expressive design pattern; they are characterized by a generic type M<'T> 
combined with at least two operations:



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

480

bind : M<'T> -> ('T ->  M<'U>) -> M<'U>
return : 'T -> M<'T>

These correspond to the primitives let! and return in the F# computation-expression syntax. Several 
other elements of the computation-expression syntax can be implemented in terms of these primitives, but 
the F# de-sugaring process leaves this up to the implementer of the workflow, because sometimes, derived 
operations can have more efficient implementations. Well-behaved monads should satisfy three important 
rules, called the monad laws.

F# uses the terms computation expression and workflow for four reasons:

When the designers of F# talked with the designers of Haskell about this, they agreed 
that the word monad is obscure and sounds a little daunting and that using other names 
might be wise. 

There are some technical differences: for example, some F# workflows can be combined 
with imperative programming, utilizing the fact that workflows can have side effects that 
aren’t tracked by the F# type system. In Haskell, all side-effecting operations must be 
lifted into the corresponding monad. The Haskell approach has some important 
advantages: you can know for sure what side effects a function can have by looking at 
its type. It also, however, makes it more difficult to use external libraries from within a 
computation expression. 

F# workflows can be reified using F# quotations, providing a way to execute the 
workflow by alternative means—for example, by translation to SQL. This gives them a 
different role in practice, because they can be used to model both concrete languages 
and computational languages. 

F# workflows can also be used to embed computations that generate multiple results 
(called monoids), such as sequence expressions (also known as comprehension syntax). 
These generally use yield and yield! instead of return and return! and often 
have no let!.

An Example: Success/Failure Workflows
Perhaps the simplest kind of workflow is one in which failure of a computation is made explicit: for example, 
in which each step of the workflow may either succeed, by returning a result Some(v), or fail, by returning the 
value None. You can model such a workflow using functions of type unit -> 'T option—that is, functions that 
may or may not compute a result. In this section, assume that these functions are pure and terminating: they 
have no side effects, raise no exceptions, and always terminate.

Whenever you define a new kind of workflow, it’s useful to give a name to the type of values/objects 
generated by that workflow. In this case, let’s call them Attempt objects:

type Attempt<'T> = (unit -> 'T option)

Of course, you can use regular functional programming to start to build Attempt<'T> objects:

let succeed x = (fun () -> Some(x)) : Attempt<'T>
let fail = (fun () -> None) : Attempt<'T>
let runAttempt (a : Attempt<'T>) = a()

These conform to the types:



481

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

val succeed : x:'T -> Attempt<'T>
val fail : Attempt<'T>
val runAttempt : a:Attempt<'T> -> 'T option

Using only normal F# expressions to build Attempt values can be a little tedious and lead to a 
proliferation of many different functions that stitch together Attempt values in straightforward ways. 
Luckily, as you’ve seen with sequence expressions, F# comes with predefined syntax for building objects 
such as Attempt values. You can use this syntax with a new type by defining a builder object that helps 
stitch together the fragments that make up the computation expression. Here’s an example of the signature 
of an object you have to define in order to use workflow syntax with a new type (note that this is a type 
signature for an object, not actual code—we show how to define the AttemptBuilder type and its members 
later in this section):

type AttemptBuilder =
    member Bind : p:Attempt<'T> * ('T -> Attempt<'U>) -> Attempt<'U>
    member Delay : f:(unit -> Attempt<'T>) -> Attempt<'T>
    member Return : x:'T -> Attempt<'T>
    member ReturnFrom : x:Attempt<'T> -> Attempt<'T>

Typically, there is one global instance of each such builder object. For example:

let attempt = new AttemptBuilder()

val attempt : AttemptBuilder

First, let’s see how you can use the F# syntax for workflows to build Attempt objects. You can build 
Attempt values that always succeed:

> let alwaysOne = attempt { return 1 };;

val alwaysOne : Attempt<int>

> let alwaysPair = attempt { return (1,"two") };;

val alwaysPair : Attempt<int * string>

> runAttempt alwaysOne;;

val it : int option = Some 1

> runAttempt alwaysPair;;

val it : (int * string) option = Some (1, "two") 

Note that Attempt values such as alwaysOne are just functions; to run an Attempt value, just apply it. These 
correspond to uses of the succeed function, as you will see shortly.

You can also build more interesting Attempt values that check a condition and return different Attempt 
values on each branch, as shown in this example:



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

482

> let failIfBig n = attempt {if n > 1000 then return! fail else return n};;

val failIfBig : n:int -> Attempt<int>

> runAttempt (failIfBig 999);;

val it : int option = Some 999

> runAttempt (failIfBig 1001);;

val it : int option = None

Here, one branch uses return! to return the result of running another Attempt value, and the other uses 
return to give a single result. These correspond to yield! and yield in sequence expressions.

Next, you can build Attempt values that sequence together two Attempt values by running one, getting 
its result, binding it to a variable, and running the second. You do this by using the syntax form let! pat = 
expr, which is unique to computation expressions:

> let failIfEitherBig (inp1, inp2) = attempt {
        let! n1 = failIfBig inp1
        let! n2 = failIfBig inp2
        return (n1, n2)};;

val failIfEitherBig : inp1:int * inp2:int -> Attempt<int * int>

> runAttempt (failIfEitherBig (999, 998));;

val it : (int * int) option = Some (999, 998)

runAttempt (failIfEitherBig (1003, 998));;

val it : (int * int) option = None

> runAttempt (failIfEitherBig (999, 1001));;

val it : (int * int) option = None

Let’s look at this more closely. First, what does the first let! do? It runs the Attempt value failIfBig 
inp1, and if this returns None, the whole computation returns None. If the computation on the right delivers 
a value (that is, returns Some), then it binds the result to the variable n1 and continues. Note the following 
for the expression let! n1 = failIfBig inp1:

The expression on the right (failIfBig inp1) has type Attempt<int>.

The variable on the left (n1) is of type int.

This is somewhat similar to a sequence of normal let binding, but let! also controls whether the rest 
of the computation is executed. In the case of the Attempt type, it executes the rest of the computation only 
when it receives a Some value. Otherwise, it returns None, and the rest of the code is never executed.

You can use normal let bindings in computation expressions. For example:



483

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

let sumIfBothSmall (inp1, inp2) = 
    attempt { let! n1 = failIfBig inp1
              let! n2 = failIfBig inp2
              let sum = n1 + n2
              return sum}

In this case, the let binding executes exactly as you would expect; it takes the expression n1+n2 and 
binds its result to the value sum. To summarize, you’ve seen that computation expressions let you: 

Use an expression-like syntax to build Attempt computations

Sequence these computations together using the let! construct

Return results from these computations using return and return!

Compute intermediate results using let

Workflows let you do a good deal more than this, as you will see in the sections that follow.

Defining a Workflow Builder
Listing 17-1 shows the implementation of the workflow builder for Attempt workflows; this is the simplest 
definition for AttemptBuilder.

Listing 17-1. Defining a workflow builder

let succeed x = (fun () -> Some(x))
let fail = (fun () -> None)
let runAttempt (a : Attempt<'T>) = a()
let bind p rest = match runAttempt p with None -> fail | Some r -> (rest r)
let delay f = (fun () -> runAttempt (f()))
let combine p1 p2 = (fun () -> match p1() with None -> p2() | res -> res)

type AttemptBuilder() =

    /// Used to de-sugar uses of 'let!' inside computation expressions.
    member b.Bind(p, rest) = bind p rest

    /// Delays the construction of an attempt until just before it is executed
    member b.Delay(f) = delay f

    /// Used to de-sugar uses of 'return' inside computation expressions.
    member b.Return(x) = succeed x

    /// Used to de-sugar uses of 'return!' inside computation expressions.
    member b.ReturnFrom(x : Attempt<'T>) = x

    /// Used to de-sugar uses of 'c1; c2' inside computation expressions.
    member b.Combine(p1 : Attempt<'T>, p2 : Attempt<'T>) = combine p1 p2

    /// Used to de-sugar uses of 'if .. then ..' inside computation expressions when
    /// the 'else' branch is empty
    member b.Zero() = fail

let attempt = new AttemptBuilder()



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

484

The inferred types here are:

type AttemptBuilder =
  class
    new : unit -> AttemptBuilder
    member Bind : p:Attempt<'T> * rest:('T -> Attempt<'U>) -> Attempt<'U>
    member Combine : p1:Attempt<'T> * p2:Attempt<'T> -> Attempt<'T>
    member Delay : f:(unit -> Attempt<'T>) -> Attempt<'T>
    member Return : x:'T -> Attempt<'T>
    member ReturnFrom : x:Attempt<'T> -> Attempt<'T>
    member Zero : unit -> Attempt<'T>
  end

val attempt : AttemptBuilder

F# implements workflows by de-sugaring computation expressions using a builder. For example, 
given the previous AttemptBuilder, the workflow

attempt { let! n1 = failIfBig inp1
          let! n2 = failIfBig inp2
          let sum = n1 + n2
          return sum} 
de-sugars to
attempt.Bind(failIfBig inp1, (fun n1 ->
    attempt.Bind(failIfBig inp2, (fun n2 ->
        let sum = n1 + n2
        attempt.Return sum))))

One purpose of the F# workflow syntax is to make sure you don’t have to write this sort of thing by hand. The 
de-sugaring of the workflow syntax is implemented by the F# compiler. Table 17-2 shows some of the 
typical signatures that a workflow builder needs to implement.

Table 17-2. Some typical Workflow-builder members as required by the F# compiler

Member Description
member Bind : M<'T> * ('T -> M<'U>) -> M<'U> Used to de-sugar let! and do! within computation 

expressions.

member Return : 'T -> M<'T> Used to de-sugar return within computation 
expressions.

member ReturnFrom : M<'T> -> M<'T> Used to de-sugar return! within computation 
expressions.

member Delay : (unit -> M<'T>) -> M<'T> Used to ensure that side effects within a 
computation expression are performed when 
expected.

member For : seq<'T> * ('T -> M<'U>) -> M<'U> Used to de-sugar for ... do ... within 
computation expressions. M<'U> can optionally be 
M<unit>.

member While : (unit -> bool) * M<'T> -> M<'T> Used to de-sugar while ... do ... within 
computation expressions. M<'T> may optionally be 
M<unit>.



485

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

Member Description
member Using : 'T * ('T -> M<'T>) -> M<'T> when 
'T :> IDisposable

Used to de-sugar use bindings within computation 
expressions.

member Combine : M<'T> * M<'T> -> M<'T> Used to de-sugar sequencing within computation 
expressions. The first M<'T> may optionally be 
M<unit>.

member Zero : unit -> M<'T> Used to de-sugar empty else branches of if/then 
constructs within computation expressions.

Most of the elements of a workflow builder are usually implemented in terms of simpler primitives. 
For example, assume you’re defining a workflow builder for some type M<'T> and you already have 
implementations of functions bindM and returnM with the types:

val bindM : M<'T> -> ('T -> M<'U>) -> M<'U>
val returnM : 'T -> M<'T>

You can implement Delay using the functions:

let delayM f = bindM (returnM ()) f

You can now define an overall builder in terms of all four functions:

type MBuilder() =
    member b.Return(x) = returnM x
    member b.Bind(v, f) = bindM v f
    member b.Delay(f) = delayM f

Let and Delay may also have more efficient direct implementations, however, which is why F# doesn’t 
insert the previous implementations automatically.

Workflows and Untamed Side Effects
It’s possible, and in some cases even common, to define workflows that cause side effects. For example, 
you can use printfn in the middle of an Attempt workflow:

let sumIfBothSmall (inp1, inp2) = 
    attempt { let! n1 = failIfBig inp1
              printfn "Hey, n1 was small!"
              let! n2 = failIfBig inp2
              printfn "n2 was also small!"
              let sum = n1 + n2
              return sum }

Here’s what happens when you call this function:

> runAttempt(sumIfBothSmall (999, 999));;

Hey, n1 was small!
n2 was also small!
val it : int option = Some 1998



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

486

> runAttempt(sumIfBothSmall (999, 999));;

Hey, n1 was small!

val it : int option = None

Side effects in workflows must be used with care, particularly because workflows are typically used to 
construct delayed or on-demand computations. In the previous example, printing is a fairly benign side 
effect. More significant side effects, such as mutable state, can also be sensibly combined with some kinds 
of workflows, but be sure you understand how the side effect will interact with the particular kind of 
workflow you’re using. This example allocates a piece of mutable state that is local to the Attempt workflow, 
and this is used to accumulate the sum:

let sumIfBothSmall (inp1, inp2) = 
    attempt { let sum = ref 0
              let! n1 = failIfBig inp1
              sum := sum.Value + n1
              let! n2 = failIfBig inp2
              sum := sum.Value + n2
              return sum.Value}

We leave it as an exercise for you to examine the de-sugaring of this workflow to see that the mutable 
reference is indeed local, in the sense that it doesn’t escape the overall computation and that different 
executions of the same workflow use different reference cells.

As mentioned, workflows are nearly always delayed computations. As you saw in Chapter 4, delayed 
computations and side effects can interact. For this reason, the de-sugaring of workflow syntax inserts a 
Delay operation around the entire workflow. This 

let printThenSeven = attempt { printf "starting..."; return 3 + 4 } 
de-sugars to
let printThenSeven = attempt.Delay(fun () -> printf "starting..."; attempt.Return(3 + 4)) 

This means that “starting . . .” is printed each time the printThenSeven attempt object is executed.

Computation Expressions with Custom Query Operators
F# 3.0 includes a set of extensions to computation expressions that allow builders to define additional 
“custom operators” associated with a computation-expression builder. This is particularly used to define 
query-like languages that progressively add constraints, sorting, and other declarations to a query. For 
example, we can change the “Attempt” builder above to use a custom query operator “condition” (to 
replace if/then):

type Attempt<'T> = (unit -> 'T option)
let succeed x = (fun () -> Some(x))
let fail = (fun () -> None)
let runAttempt (a : Attempt<'T>) = a()
let bind p rest = match runAttempt p with None -> fail | Some r -> (rest r)
let delay f = (fun () -> runAttempt (f()))
let condition p guard = (fun () -> 
    match p() with 
    | Some x when guard x -> Some x 



487

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

    | _ -> None)

type AttemptBuilder() =
    member b.Return(x) = succeed x
    member b.Bind(p, rest) = bind p rest
    member b.Delay(f) = delay f

    [<CustomOperation("condition",MaintainsVariableSpaceUsingBind = true)>]
    member x.Condition(p, [<ProjectionParameter>] b) = condition p b

let attempt = new AttemptBuilder()

Note that customer operations are declared using the CustomOperation attribute. Loosely speaking, a 
custom operation gets to operate on the “whole” computation—any values already declared in the 
computation expression are packaged up into a tuple, the operation is applied, and the values are then 
unpackaged. The technique used to package/unpackage is either “return/let!” 
(MaintainsVariableSpaceUsingBind is true), or “yield/for” (MaintainsVariableSpaceUsingBind is false). 
Parameters to custom operations can access the variables defined in the computation expression through 
the ProjectionParameter attribute.

For example, a workflow to generate a pair of random numbers in the unit circle is:

let randomNumberInCircle = 
    attempt { let x, y = rand(), rand()
              condition (x * x + y * y < 1.0)
              return (x, y) }

Note that this is simply an alternative to an if/then expression. For F# 3.0, you must use either “control 
flow” operators, such as if/then/else, or “custom” operators, such as condition, in your own computation 
expressions. Attempts to combine these are unlikely to be satisfying.

Custom operators are very rarely defined in F# 3.0 programming and are primarily for use with F# 3.0 
query expressions, used in Chapter 13.

Example: Probabilistic Workflows
Workflows provide a fascinating way to embed a range of nontrivial, nonstandard computations into F#. 
To give you a feel for this, this section defines a probabilistic workflow. That is, instead of writing 
expressions to compute, say, integers, you instead write expressions that compute distributions of integers. 
This case study is based on a paper by Ramsey and Pfeffer from 2002.

For the purposes of this section, you’re interested in distributions over discrete domains characterized 
by three things:

You want to be able to sample from a distribution (for example, sample an integer or 
a coin flip).

You want to compute the support of a distribution: that is, a set of values in which all 
elements outside the set have zero chance of being sampled.

You want to compute the expectation of a function over the distribution. For 
example, you can compute the probability of selecting element A by evaluating the 
expectation of the function (fun x -> if x = A then 1.0 else 0.0).



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

488

You can model this notion of a distribution with abstract objects. Listing 17-2 shows the definition of a 
type of distribution values and an implementation of the basic primitives always and coinFlip, which help 
build distributions.

Listing 17-2. Implementing probabilistic modeling using computation expressions

type Distribution<'T when 'T : comparison> =
    abstract Sample : 'T
    abstract Support : Set<'T>
    abstract Expectation: ('T -> float) -> float

let always x =
    { new Distribution<'T> with
          member d.Sample = x
          member d.Support = Set.singleton x
          member d.Expectation(H) = H(x) }

let rnd = System.Random()

let coinFlip (p : float) (d1 : Distribution<'T>) (d2 : Distribution<'T>) =
    if p < 0.0 || p > 1.0 then failwith "invalid probability in coinFlip"
    { new Distribution<'T> with
          member d.Sample =
              if rnd.NextDouble() < p then d1.Sample else d2.Sample
          member d.Support = Set.union d1.Support d2.Support
          member d.Expectation(H) =
             p * d1.Expectation(H) + (1.0 - p) * d2.Expectation(H) }

The types of these primitives are:

type Distribution<'T when 'T : comparison> =
  interface
    abstract member Expectation : ('T -> float) -> float
    abstract member Sample : 'T
    abstract member Support : Set<'T>
  end

val always : x:'T -> Distribution<'T> when 'T : comparison
val coinFlip :
  p:float -> d1:Distribution<'T> -> d2:Distribution<'T> -> Distribution<'T>
    when 'T : comparison

The simplest distribution is always x; this is a distribution that always samples to the same value. Its 
expectation and support are easy to calculate. The expectation of a function H is just H applied to the value, 
and the support is a set containing the single value x. The next distribution defined is coinFlip, which is a 
distribution that models the ability to choose between two outcomes.

Listing 17-3 shows how you can define a workflow builder for distribution objects.

Listing 17-3. Defining a builder for probabilistic modeling using computation expressions

let bind (dist : Distribution<'T>) (k : 'T -> Distribution<'U>) =
    { new Distribution<'U> with



489

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

         member d.Sample = 
             (k dist.Sample).Sample
         member d.Support =
             Set.unionMany (dist.Support |> Set.map (fun d -> (k d).Support))
         member d.Expectation H = 
             dist.Expectation(fun x -> (k x).Expectation H) }

type DistributionBuilder() =
    member x.Delay f = bind (always ()) f
    member x.Bind(d, f) = bind d f
    member x.Return v = always v
    member x.ReturnFrom vs = vs

let dist = new DistributionBuilder()

The types of these primitives are:

val bind :
  dist:Distribution<'T> -> k:('T -> Distribution<'U>) -> Distribution<'U>
    when 'T : comparison and 'U : comparison val dist: DistributionBuilder

Listing 17-4 shows the all-important bind primitive; it combines two distributions, using the sample 
from the first to guide the sample from the second. The support and expectation are calculated by taking 
the support from the first and splaying it over the support of the second. The expectation is computed by 
using the first distribution to compute the expectation of a function derived from the second. These are 
standard results in probability theory, and they are the basic machinery you need to get going with some 
interesting modeling.

Before you begin using workflow syntax, you define two derived functions to compute distributions. 
Listing 17-4 shows the additional derived operations for distribution objects that you use later in this 
example.

Listing 17-4. Defining the derived operations for probabilistic modeling using computation expressions

let weightedCases (inp : ('T * float) list) =
    let rec coinFlips w l =
        match l with
        | [] -> failwith "no coinFlips"
        | [(d, _)] -> always d
        | (d, p) :: rest -> coinFlip (p / (1.0 - w)) (always d) (coinFlips (w + p) rest)
    coinFlips 0.0 inp

let countedCases inp =
    let total = Seq.sumBy (fun (_, v) -> v) inp
    weightedCases (inp |> List.map (fun (x, v) -> (x, float v / float total)))

The two functions weightedCases and countedCases build distributions from the weighted selection of 
a finite number of cases. The types are:

val weightedCases :
  inp:('T * float) list -> Distribution<'T> when 'T : comparison
val countedCases :
  inp:('a * int) list -> Distribution<'a> when 'a : comparison

For example, here is the distribution of outcomes on a fair European roulette wheel:



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

490

type Outcome = Even | Odd | Zero
let roulette = countedCases [ Even,18; Odd,18; Zero,1]

You can now use sampling to draw from this distribution:

> roulette.Sample;;
val it : Outcome = Even

> roulette.Sample;;
val it : Outcome = Odd

You can compute the expected payout of a $5 bet on Even, where you would get a $10 return:

> roulette.Expectation (function Even -> 10.0 | Odd -> 0.0 | Zero -> 0.0);; 

val it : float = 4.864864865

Now, let’s model another scenario. Let’s say you have a traffic light with the following probability 
distribution for showing red/yellow/green:

type Light =
    | Red
    | Green
    | Yellow

let trafficLightD = weightedCases [Red, 0.50; Yellow, 0.10; Green, 0.40]

Drivers are defined by their behavior with respect to a traffic light. For example, a cautious driver is 
highly likely to brake on a yellow light and always stops on a red:

type Action = Stop | Drive

let cautiousDriver light = 
    dist { match light with
           | Red -> return Stop
           | Yellow -> return! weightedCases [Stop, 0.9; Drive, 0.1]
           | Green -> return Drive}

An aggressive driver is unlikely to brake on yellow and may even go through a red light:

let aggressiveDriver light = 
    dist { match light with
           | Red -> return! weightedCases [Stop, 0.9; Drive, 0.1]
           | Yellow -> return! weightedCases [Stop, 0.1; Drive, 0.9]
           | Green -> return Drive} 

This gives the value of the light showing in the other direction:

let otherLight light =
    match light with
    | Red -> Green
    | Yellow -> Red
    | Green -> Red 



491

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

You can now model the probability of a crash between two drivers given a traffic light. Assume there is 
a 10 percent chance that two drivers going through the intersection will avoid a crash:

type CrashResult = Crash | NoCrash

// Where the suffix D means distribution
let crash (driverOneD, driverTwoD, lightD) = 
    dist { // Sample from the traffic light
           let! light = lightD

           // Sample the first driver's behavior given the traffic light
           let! driverOne = driverOneD light

           // Sample the second driver's behavior given the traffic light
           let! driverTwo = driverTwoD (otherLight light)

           // Work out the probability of a crash
           match driverOne, driverTwo with
           | Drive, Drive -> return! weightedCases [Crash, 0.9; NoCrash, 0.1]
           | _ -> return NoCrash}

You can now instantiate the model to a cautious/aggressive driver pair, sample the overall model, and 
compute the overall expectation of a crash as approximately 3.7 percent:

> let model = crash (cautiousDriver, aggressiveDriver, trafficLightD);;

val model : Distribution<CrashResult>

> model.Sample;;

val it : CrashResult = NoCrash
...
> model.Sample;;

val it : CrashResult = Crash

> model.Expectation (function Crash -> 1.0 | NoCrash -> 0.0);;

val it : float = 0.0369

■ Note: This section showed how to define a simplistic embedded computational probabilistic modeling 
language. There are many more efficient and sophisticated techniques to apply to the description, evaluation, and 
analysis of probabilistic models than those shown here, and you can make the implementation of the primitives 
shown here more efficient by being more careful about the underlying computational representations.



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

492

Combining Workflows and Resources
In some situations, workflows can sensibly make use of transient resources, such as files. The tricky thing 
is that you still want to be careful about closing and disposing of resources when the workflow is complete 
or when it’s no longer being used. For this reason, the workflow type must be carefully designed to 
correctly dispose of resources halfway through a computation, if necessary. This is useful, for example, in 
sequence expressions, such as this one that opens a file and reads lines on demand:

let linesOfFile(fileName) = 
    seq { use textReader = System.IO.File.OpenText(fileName)
          while not textReader.EndOfStream do
              yield textReader.ReadLine()} 

Chapter 4 discussed the construct use pat = expr. As shown in Table 17-2, you can also use this 
construct within workflows. In this case, the use pat = expr construct de-sugars into a call to seq.Using. 
In the case of sequence expressions, this function is carefully implemented to ensure that textReader is 
kept open for the duration of the process of reading from the file. Furthermore, the Dispose function on 
each generated IEnumerator object for a sequence calls the textReader.Dispose() method. This ensures 
that the file is closed even if you enumerate only half of the lines in the file. Workflows thus allow you to 
scope the lifetime of a resource over a delayed computation.

Recursive Workflow Expressions
Like functions, workflow expressions can be defined recursively. Many of the best examples are generative 
sequences. For example:

let rnd = System.Random()

let rec randomWalk k = 
    seq { yield k
          yield! randomWalk (k + rnd.NextDouble() - 0.5) }

> randomWalk 10.0;;

val it : seq<float> = seq [10.0; 10.44456912; 10.52486359; 10.07400056; ...]

> randomWalk 10.0;;

val it : seq<float> = seq [10.0; 10.03566833; 10.12441613; 9.922847582; ...]

Using F# Reflection
The final topics in this chapter are F# quotations, which provide a way to get at a representation of F# 
expressions as abstract syntax trees, and reflection, which lets you get at representations of assemblies, 
type definitions, and member signatures. Let’s look at reflection first.



493

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

Reflecting on Types
One of the simplest uses of reflection is to access the representation of types and generic type variables 
using the typeof operator. For example, typeof<int> and typeof<'T> are both expressions that generate 
values of type System.Type. Given a System.Type value, you can use the .NET APIs to access the System.
Reflection.Assembly value that represents the .NET assembly that contains the definition of the type (.NET 
assemblies are described in Chapter 19). You can also access other types in the System.Reflection 
namespace, such as MethodInfo, PropertyInfo, MemberInfo, and ConstructorInfo. The following example 
examines the names associated with some common types:

> let intType = typeof<int>;;

val intType : System.Type = System.Int32 

> intType.FullName;;

val it : string = "System.Int32"

> intType.AssemblyQualifiedName;;

val it : string =
  "System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

> let intListType = typeof<int list>;;

val intListType : System.Type =
  Microsoft.FSharp.Collections.FSharpList'1[System.Int32]

> intListType.FullName;;

val it : string =
  "Microsoft.FSharp.Collections.FSharpList'1[[System.Int32, mscorlib, Version=4.0.0.0, 
Culture=neutral, PublicKeyToken=b77a5c561934e089]]"

Schema Compilation by Reflecting on Types
The F# library includes the namespace Microsoft.FSharp.Reflection, which contains types and functions 
that extend the functionality of the System.Reflection namespace of .NET. 

You can use the combination of .NET and F# reflection to provide generic implementations of 
language-related transformations. This section gives one example of this powerful technique. Listing 17-5 
shows the definition of a generic schema reader compiler, in which a data schema is described using F# 
types and the schema compiler helps convert untyped data from comma-separated value text files into 
this data schema.

Listing 17-5. Using Types and Attributes to Guide Dynamic Schema Compilation

open System
open System.IO
open System.Globalization
open Microsoft.FSharp.Reflection



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

494

/// An attribute to be added to fields of a schema record type to indicate the
/// column used in the data format for the schema.
type ColumnAttribute(col : int) =
    inherit Attribute()
    member x.Column = col

/// SchemaReader builds an object that automatically transforms lines of text
/// files in comma-separated form into instances of the given type 'Schema.
/// 'Schema must be an F# record type where each field is attributed with a
/// ColumnAttribute attribute, indicating which column of the data the record
/// field is drawn from. This simple version of the reader understands
/// integer, string and DateTime values in the CSV format.
type SchemaReader<'Schema>() =

    // Grab the object for the type that describes the schema
    let schemaType = typeof<'Schema>

    // Grab the fields from that type
    let fields = FSharpType.GetRecordFields(schemaType) 

    // For each field find the ColumnAttribute and compute a function
    // to build a value for the field
    let schema =
        fields |> Array.mapi (fun fldIdx fld ->
            let fieldInfo = schemaType.GetProperty(fld.Name)
            let fieldConverter =
                match fld.PropertyType with
                | ty when ty = typeof<string> -> (fun (s : string) -> box s)
                | ty when ty = typeof<int> -> (System.Int32.Parse >> box)
                | ty when ty = typeof<DateTime> ->
                    (fun s -> box (DateTime.Parse(s, CultureInfo.InvariantCulture)))
                | ty -> failwithf "Unknown primitive type %A" ty

            let attrib =
                match fieldInfo.GetCustomAttributes(typeof<ColumnAttribute>, false) with
                | [|(:? ColumnAttribute as attrib)|] -> attrib
                | _ -> failwithf "No column attribute found on field %s" fld.Name
            (fldIdx, fld.Name, attrib.Column, fieldConverter))

    // Compute the permutation defined by the ColumnAttribute indexes
    let columnToFldIdxPermutation c =
        schema |> Array.pick (fun (fldIdx, _, colIdx,_) ->
            if colIdx = c then Some fldIdx else None)

    // Drop the parts of the schema we don't need
    let schema =
        schema |> Array.map (fun (_, fldName, _, fldConv) -> (fldName, fldConv))

    // Compute a function to build instances of the schema type. This uses an
    // F# library function.
    let objectBuilder = FSharpValue.PreComputeRecordConstructor(schemaType)



495

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

    // OK, now we're ready to implement a line reader
    member reader.ReadLine(textReader : TextReader) =
        let line = textReader.ReadLine()
        let words = line.Split([|','|]) |> Array.map(fun s -> s.Trim())
        if words.Length <> schema.Length then
            failwith "unexpected number of columns in line %s" line
        let words = words |> Array.permute columnToFldIdxPermutation

        let convertColumn colText (fieldName, fieldConverter) =
           try fieldConverter colText
           with e ->
               failwithf "error converting '%s' to field '%s'" colText fieldName

        let obj = objectBuilder (Array.map2 convertColumn words schema)

        // OK, now we know we've dynamically built an object of the right type
        unbox<'Schema>(obj)

    /// This reads an entire file
    member reader.ReadFile(file) = 
        seq { use textReader = File.OpenText(file)
              while not textReader.EndOfStream do
                  yield reader.ReadLine(textReader)} 

The type of the SchemaReader is simple:

type SchemaReader<'Schema> =
  class
    new : unit -> SchemaReader<'Schema>
    member ReadFile : file:string -> seq<'Schema>
    member ReadLine : textReader:System.IO.TextReader -> 'Schema
  end

First, see how the SchemaReader is used in practice. Let’s say you have a text file containing lines such 
as:

Steve, 12 March 2010, Cheddar
Sally, 18 Feb 2010, Brie
...

It’s reasonable to want to convert this data to a typed data representation. You can do this by defining an 
appropriate record type along with enough information to indicate how the data in the file map into this 
type. This information is expressed using custom attributes, which are a way to add extra meta-information 
to assembly, type, member, property, and parameter definitions. Each custom attribute is specified as an 
instance of a typed object, here ColumnAttribute, defined in Listing 17-5. The suffix Attribute is required 
when defining custom attributed but can be dropped when using them:

type CheeseClub =
    { [<Column(0)>] Name : string
      [<Column(2)>] FavouriteCheese : string
      [<Column(1)>] LastAttendance : System.DateTime } 



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

496

You can now instantiate the SchemaReader type and use it to read the data from the file into this typed 
format:

> let reader = new SchemaReader<CheeseClub>();;

val reader : SchemaReader<CheeseClub>

> fsi.AddPrinter(fun (c : System.DateTime) -> c.ToString());; 
> System.IO.File.WriteAllLines("data.txt",
    [|"Steve, 12 March 2010, Cheddar"; "Sally, 18 Feb 2010, Brie"|]);; 

> reader.ReadFile("data.txt");;

val it : seq<CheeseClub>
 = seq
    [{Name = "Steve";
      FavouriteCheese = "Cheddar";
      LastAttendance = 12/03/2010 00:00:00;};
     {Name = "Sally";
      FavouriteCheese = "Brie";
      LastAttendance = 18/02/2010 00:00:00;}]

There is something somewhat magical about this; you’ve built a layer that automatically does the 
impedance matching between the untyped world of a text-file format into the typed world of F# 
programming. Amazingly, the SchemaReader type itself is only about 50 lines of code. The comments in Listing 
17-5 show the basic steps being performed. The essential features of this technique are:

1. The schema information is passed to the SchemaReader as a type variable. The 
SchemaReader then uses the typeof operator to extract a System.Type 
representation of the schema type.

2. The information needed to drive the transformation process comes from custom 
attributes. Extra information can also be supplied to the constructor of the 
SchemaReader type if necessary.

3. The let bindings of the SchemaReader type are effectively a form of 
precomputation (they can also be seen as a form of compilation). They 
precompute as much information as possible given the schema. For example, 
the section analyzes the fields of the schema type and computes functions for 
creating objects of the field types. It also computes the permutation from the text 
file columns to the record fields.

4. The data objects are ultimately constructed using reflection functions, in this case 
a function computed by Microsoft.FSharp.Reflection.Value. 
GetRecordConstructor or primitive values parsed using System.Int32.Parse and 
similar functions. This and other functions for creating F# objects dynamically are 
in the Microsoft.FSharp.Reflection library. Other functions for creating other .NET 
objects dynamically are in the System.Reflection library.

5. The member bindings of SchemaReader interpret the residue of the 
precomputation stage, in this case using the information and computed 
functions to process the results of splitting the text of a line.



497

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

This technique has many potential applications and has been used for CSV file reading, building F#-
centric serializers/deserializers, and building generic strongly typed database schema access.

Using the F# Dynamic Reflection Operators
F# lets you define two special operators, (?) and (?<-), to perform dynamic lookups of objects. These are 
conceptually very simple operators, but they add interesting new opportunities for interoperability 
between dynamic data and static data in F# programming.

These operators implicitly translate their second argument to a string, if it’s a simple identifier. That is, 
a use of these operators is translated as:

   expr ? nm            à   (?) expr "nm"
   expr1 ? nm <- expr2  à   (?<-) expr1 "nm" expr2

This means that the operators can be used to simulate a dynamic lookup of a property or a method on an 
object. This dynamic lookup can use any dynamic/reflective technique available to you. One such 
technique is to use .NET reflection to look up and/or set the properties of an object:

open System.Reflection

let (?) (obj : obj) (nm : string) : 'T = 
    obj.GetType().InvokeMember(nm, BindingFlags.GetProperty, null, obj, [||]) 
    |> unbox<'T>

let (?<-) (obj : obj) (nm : string) (v : obj) : unit = 
    obj.GetType().InvokeMember(nm, BindingFlags.SetProperty, null, obj, [|v|]) 
    |> ignore

Now, you can use the operators to dynamically query data:

type Record1 = {Length : int; mutable Values : int list}

let obj1 = box [1; 2; 3]
let obj2 = box {Length = 4; Values = [3; 4; 5; 7]}

let n1 : int = obj1?Length 
let n2 : int = obj2?Length
let valuesOld : int list = obj2?Values

Here, both obj1 and obj2 have type obj, but you can do dynamic lookups of the properties Length and 
Values using the ? operator. Of course, these uses aren’t strongly statically typed—this is why you need the 
type annotations : int and : int list to indicate the return type of the operation. Given the earlier 
definition of the (?<-) operator, you can also set a property dynamically::

obj2?Values <- [7; 8; 9]
let valuesNew : int list = obj2?Values

Using the (?) and (?<-) operators obviously comes with strong drawbacks: you lose considerable type 
safety, and performance may be affected by the use of dynamic techniques. Their use is recommended 
only when you’re consistently interoperating with weakly typed objects, or when you continually find 
yourself doing string-based lookup of elements of an object. 



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

498

Using F# Quotations
The other side to reflective meta-programming in F# is quotations. These allow you to reflect over 
expressions in much the same way that you’ve reflected over types in the previous section. It’s simple to get 
going with F# quotations; you open the appropriate modules and surround an expression with <@ . . . @> 
symbols:

> open Microsoft.FSharp.Quotations;;

> let oneExpr = <@ 1 @>;;

val oneExpr : Expr<int> = Value (1)

> let plusExpr = <@ 1 + 1 @>;;

val plusExpr : Expr<int> = Call (None, op_Addition, [Value (1), Value (1)])

You can see here that the act of quoting an expression gives you back the expression as data. Those 
familiar with Lisp or Scheme know a sophisticated version of this in the form of Lisp quotations, and those 
familiar with C# 3.0 will find it familiar, because C# uses similar mechanisms for its lambda expressions. F# 
quotations are distinctive partly because they’re typed (like C# lambda expressions) and because the 
functional, expression-based nature of F# means that so much of the language can be quoted and 
manipulated relatively easily.

Chapter 13 uses F# queries that implicitly convert F# quotations to SQL via the .NET LINQ library. 
Perhaps the most important application is in Chapter 14, where quotations are converted to JavaScript 
when using WebSharper. This may be implemented by a function with a type such as 

val CompileToJavaScript : Expr<'T> -> string

WHAT ARE F# QUOTATIONS FOR?

The primary rationale for F# quotations is to allow fragments of F# syntax to be executed by alternative 
means: for example, as an SQL query via LINQ or by running on another device, such as a GPU or as 
JavaScript in a client-side Web browser. F# aims to leverage heavy-hitting external components that map 
subsets of functional programs to other execution machinery. Another example use involves executing a 
subset of F# array code by dynamic generation of Fortran code and invoking a high-performance vectorizing 
Fortran compiler. The generated DLL is loaded and invoked dynamically.

This effectively means that you can convert from a computational representation of a language (for example, 
regular F# functions and F# workflow expressions) to an abstract syntax representation of the same 
language. This is a powerful technique, because it lets you design using a computational model of the 
language (for example, sampling from a distribution or running queries against local data) and then switch to 
a more concrete abstract syntax representation of the same programs in order to analyze, execute, print, or 
compile those programs in other ways.



499

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

Example: Using F# Quotations for Error Estimation
Listing 17-6 shows a prototypical use of quotations, in this case to perform error estimation on F# 
arithmetic expressions.

Listing 17-6. Error analysis on F# expressions implemented with F# quotations

open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Patterns
open Microsoft.FSharp.Quotations.DerivedPatterns

type Error = Err of float

let rec errorEstimateAux (e : Expr) (env : Map<Var, _>) =
    match e with
    | SpecificCall <@@ (+) @@> (tyargs, _, [xt; yt]) ->
        let x, Err(xerr) = errorEstimateAux xt env
        let y, Err(yerr) = errorEstimateAux yt env
        (x + y, Err(xerr + yerr))

    | SpecificCall <@@ (-) @@> (tyargs, _, [xt; yt]) ->
        let x, Err(xerr) = errorEstimateAux xt env
        let y, Err(yerr) = errorEstimateAux yt env
        (x - y, Err(xerr + yerr))

    | SpecificCall <@@ ( * ) @@> (tyargs, _, [xt; yt]) ->
        let x, Err(xerr) = errorEstimateAux xt env
        let y, Err(yerr) = errorEstimateAux yt env
        (x * y, Err(xerr * abs(y) + yerr * abs(x) + xerr * yerr))

    | SpecificCall <@@ abs @@> (tyargs, _, [xt]) ->
        let x, Err(xerr) = errorEstimateAux xt env
        (abs(x), Err(xerr))

    | Let(var, vet, bodyt) ->
        let varv, verr = errorEstimateAux vet env
        errorEstimateAux bodyt (env.Add(var, (varv, verr)))

    | Call(None, MethodWithReflectedDefinition(Lambda(v, body)), [arg]) ->
        errorEstimateAux (Expr.Let(v, arg, body)) env

    | Var(x) -> env.[x]

    | Double(n) -> (n, Err(0.0))

    | _ -> failwithf "unrecognized term: %A" e

let rec errorEstimateRaw (t : Expr) =
    match t with
    | Lambda(x, t) ->
        (fun xv -> errorEstimateAux t (Map.ofSeq [(x, xv)]))



CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

500

    | PropertyGet(None, PropertyGetterWithReflectedDefinition(body), []) ->
        errorEstimateRaw body
    | _ -> failwithf "unrecognized term: %A - expected a lambda" t

let errorEstimate (t : Expr<float -> float>) = errorEstimateRaw t

The inferred types of the functions are:

type Error = | Err of float
val errorEstimateAux : e:Expr -> env:Map<Var,(float * Error)> -> float * Error
val errorEstimateRaw : t:Expr -> (float * Error -> float * Error)
val errorEstimate :
  t:Expr<(float -> float)> -> (float * Error -> float * Error)

That is, errorEstimate is a function that takes an expression for a float -> float function and returns a 
function value of type float * Error -> float * Error. 

Let’s see it in action. First, define the function err and a pretty-printer for float * Error pairs, here 
using the Unicode symbol for error bounds on a value:

> let err x = Err x;;

val err : x:float -> Error

> fsi.AddPrinter (fun (x : float, Err v) -> sprintf "%g±%g" x v);;
> errorEstimate <@ fun x -> x + 2.0 * x + 3.0 * x * x @> (1.0, err 0.1);;

val it : float * Error = 6±0.93

> errorEstimate <@ fun x -> let y = x + x in y * y + 2.0 @> (1.0, err 0.1);;

val it : float * Error = 6±0.84

The key aspects of the implementation of errorEstimate are:

The errorEstimate function converts the input expression to a raw expression, 
which is an untyped abstract syntax representation of the expression designed for 
further processing. It then calls errorEstimateRaw. Traversals are generally much 
easier to perform using raw terms.

The errorEstimateRaw function then checks that the expression given is a lambda 
expression, using the active pattern Lambda provided by the Microsoft.FSharp.
Quotations.Patterns module.

The errorEstimateRaw function then calls the auxiliary function errorEstimateAux. 
This function keeps track of a mapping from variables to value/error estimate pairs. 
It recursively analyzes the expression looking for +, -, * and abs operations. These 
are all overloaded operators and hence are called generic functions in F# 
terminology, so the function uses the active pattern SpecificCall to detect 
applications of these operators. At each point, it performs the appropriate error 
estimation.



501

CHAPTER 17 ■ LANGUAGE-ORIENTED PROGRAMMING: ADVANCED TECHNIQUES

For variables, the environment map env is consulted. For constants, the error is zero.

Two additional cases are covered in errorEstimateAux and errorEstimateRaw. The 
Let pattern allows you to include expressions of the form let x = e1 in e2 in the 
subset accepted by the quotation analyzer. The MethodWithReflectedDefinition case 
allows you to perform analyses on some function calls, as you will see next.

Resolving Reflected Definitions
One problem with meta-programming with explicit <@ ... @> quotation marks alone is that you can’t 
analyze very large programs, because the entire expression to be analyzed must be delimited by these 
markers. This is solved in F# by allowing you to tag top-level member and let bindings as reflected. This 
ensures that their definitions are persisted to a table attached to their compiled DLL or EXE. These functions 
can also be executed as normal F# code. For example, here is a function whose definition is persisted:

[<ReflectedDefinition>]
let poly x = x + 2.0 * x + 3.0 * (x * x)

You can retrieve definitions such as this using the MethodWithReflectedDefinition and 
PropertyGetterWithReflectedDefinition active patterns, as shown in Listing 17-6. You can now use this 
function in a regular <@ ... @> quotation and thus analyze it for errors:

> errorEstimate <@ poly @> (3.0, err 0.1);;

val it : float * Error = 36±2.13
> errorEstimate <@ poly @> (30271.3, err 0.0001);;

val it : float * Error = 2.74915e+09±18.1631

Summary
This chapter covered key topics in a programming paradigm, language-oriented programming, that is 
central to F#. In previous chapters, you saw some techniques for traversing abstract syntax trees. These 
language-representation techniques give you powerful ways to manipulate concrete and abstract syntax 
fragments.

In this chapter, you saw two language-representation techniques that are more tightly coupled to F#: 
F# computation expressions, which are useful for embedded computational languages involving 
sequencing, and F# quotations, which let you give an alternative meaning to existing F# program 
fragments. Along the way, the chapter touched on reflection and its use in mediating between typed and 
untyped representations. 

In the next chapter, you’ll look at some of the interoperability mechanisms that come with the .NET 
implementation of F#.



503

■ ■ ■

CHAPTER 18

Libraries and Interoperating  
with Other Languages

Programming in different languages is like composing pieces in different keys, particularly 
if you work at the keyboard. If you have learned or written pieces in many keys, each key 
will have its own special emotional aura. Also, certain kinds of figurations “lie in the 
hand” in one key but are awkward in another. So you are channeled by your choice of key. 
In some ways, even enharmonic keys, such as C-sharp and D-flat, are quite distinct in 
feeling. This shows how a notational system can play a significant role in shaping the 
final product.

Gödel, Escher, Bach: an eternal golden braid, Hofstadter, 1980, Chapter X

Software integration and reuse is becoming one of the most relevant activities in software development. 
This chapter discusses how F# programs can interoperate with the outside world, accessing code available 
from both .NET and other languages.

Types, memory and interoperability
F# programs need to call libraries, even for the very basic tasks, such as printing or accessing files, and 
these libraries come in binary form as part of the Common Language Runtime (CLR), the piece of software 
responsible for running programs after compilation. Libraries can be, and have been, written using 
different programming languages, leveraging on the fact that the output of the compilation has a common 
format that the CLR uses for executing their code. Even considering just the core libraries, such as 
mscorlib.dll (containing essential types such as System.String, the underlying type for the F# type 
string), most of the code has been written using C#.

You need to understand language interoperability, at least to some extent, to be a proficient F# 
programmer. There are four levels of interoperability to consider:

F# library

Non-F# .NET library

COM library

Binary DLL library



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

504

If a library has been compiled using the F# compiler and it is meant to be used from F#, everything 
feels like F#—types, modules, and functions are available as in F# source form, except for scope 
restrictions introduced by visibility clauses, such as private. The F# compiler, unless told otherwise, 
generates additional information into the binary files meant to be used when compiling other F# source 
files that depend on them.

■ Note: For more information about designing F# libraries to be used from other .NET languages, see the F# 
component design guidelines, available at http://tinyurl.com/fs-component-design-guidelines

In all the other cases, the problem is essentially the same: how to represent types defined in a library 
within F# so that their values can be safely accessed from the program. Sometimes a value can be accessed 
as is, accessing the single in-memory copy from F# generated code; otherwise, some form of marshalling 
is needed to convert a value from the library representation to one accessible from F#. Although simple in 
theory, sharing types and their values among different runtimes of programming languages results in 
many subtle issues in practice, with increasing complexity depending how close their runtime support is. 
Even a relatively simple type, such as the .NET string, has a memory representation very different from C.

.NET libraries compiled with languages other than F# and designed to be consumed from many .NET 
languages (i.e., designed according to the Common Language Specification, http://tinyurl.com/dotnetCLS, 
to define a subset of the .NET type system that can be safely shared among different programming 
languages) are easy accessible from F# programs in the form of a set of classes that can be instantiated and 
whose methods can be invoked. F# specific types, such as tuples or discriminated unions, are usually 
unavailable as type of method arguments; thus, you need some form of marshalling to convert F# types 
into simpler .NET types. Apart from these small issues, using these libraries is seamless, because the 
runtime is shared and the .NET binary format contains meta-information, such as the type structure, that 
can be used by compilers to spare many details related to interoperability.

COM components have been constituents of the Windows operating system and are still widely used 
for integrating binary components. Notorious ActiveX controls are, in fact, a kind of COM component 
capable of displaying a UI inside a host application. The CLR itself is exposed as a COM component, and it 
tightly couples with the COM infrastructure. The COM type system and memory management are less rich 
and safe than .NET, but type libraries and IDispatch interface approximate .NET reflection, and the CLR 
usually can wrap COM components as .NET types. COM is still underlying in some form to the newest 
WinRT API released by Microsoft for programming Windows 8-style applications.

C has been de facto standard for language interoperability for many years. CLR is capable of 
interoperating with C binary interfaces at the cost of manually annotating .NET types and, sometime, 
taking care explicitly of marshalling and memory handling.

This chapter explores the various levels of interoperability, giving an overview of the .NET libraries in 
the first place. An overview of the COM components is also given, with the goal of enabling F# 
programmers to consume these software units. Finally, the platform invoke API is introduced, showing 
how to link binary libraries and interacting with C code; this interface is part of the .NET ECMA standard 
and it is available on different CLR implementations, including Mono, the open-source implementation 
running on MacOS X and Linux.

Libraries: A High-Level Overview
One way to get a quick overview of the .NET Framework and the F# library is to look at the primary DLLs 
and namespaces contained in them. Recall from Chapters 2 and 7 that DLLs correspond to the physical 
organization of libraries, and that namespaces and types give the logical organization of a naming 



505

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

hierarchy. Let’s look at the physical organization first. The types and functions covered in this chapter are 
drawn from the DLLs in Table 18-1.

Table 18-1. DLLs containing the library constructs referred to in this chapter

DLL Name Notes
mscorlib.dll Minimal system constructs, including the types in the System namespace.

System.dll Additional commonly used constructs in namespaces, such as System 
and System.Text.

System.Xml.dll See the corresponding namespace in Table 18-2.

System.Data.dll See the corresponding namespace in Table 18-2.

System.Drawing.dll See the corresponding namespace in Table 18-2.

System.Web.dll See the corresponding namespace in Table 18-2.

System.Windows.Forms.dll See the corresponding namespace in Table 18-2.

System.Core.dll The foundation types for LINQ and some other useful types. From .NET 
3.5 onward.

DLL Name Notes

WindowsBase.dll Core functionality for Windows Presentation Foundation.

PresentationCore.dll Core functionality for Windows Presentation Foundation.

PresentationFramework.dll Core functionality for Windows Presentation Foundation.

FSharp.Core.dll Minimal constructs for F# assemblies.

To reference additional DLLs, you can embed a reference directly into your source code in F# scripting 
files that use .fsx extension. For example:

#I @"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5";;
#r "System.Core.dll";;

The first line specifies an include path, the equivalent of the -I command-line option for the F# 
compiler. The second line specifies a DLL reference, the equivalent of the -r command-line option. 
Chapter 7 described these. If you’re using Visual Studio, you can adjust the project property settings for 
your project.

■ Note: Hundreds of high-quality frameworks and libraries are available for .NET, and more are appearing all the 
time. For space reasons, this chapter covers only the .NET libraries and frameworks listed in Table 18-1. “Some 
Other .NET Libraries” lists some libraries you may find interesting.

Namespaces from the .NET Framework
Table 18-2 shows the primary namespaces in .NET Framework DLLs from Table 18-1. In some cases, parts 
of these libraries are covered elsewhere in this book; the table notes these cases. For example, Chapter 4 
introduced portions of the .NET I/O library from the System.IO namespace.



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

506

Table 18-2. Namespaces in the DLLs from Table 18-1, with MSDN descriptions

Namespace Description
System Types and methods that define commonly used value and reference 

data types, events and event handlers, interfaces, attributes, and 
processing exceptions, supporting data-type conversions, 
mathematics, application environment management, and runtime 
supervision of managed and unmanaged applications. See Chapter 3 
for many of the basic types in this namespace.

System.CodeDom Types that can be used to represent the elements and structure of a 
source-code document. Not covered in this book.

Namespace Description

System.Collections Types that define various nongeneric collections of objects, such as 
lists, queues, and bit arrays. Partially covered in “Using Further F# and 
.NET Data Structures” later in this chapter.

System.Collections.Generic Types that define generic collections. See Chapter 4 and “Using Further 
F# and .NET Data Structures” later in this chapter.

System.ComponentModel Types that are used to implement the runtime and design-time 
behavior of components and controls. See Chapter 16.

System.Configuration Types that provide the programming model for handling configuration 
data.

System.Data Types that represent the ADO.NET database access architecture. See 
Chapter 13.

System.Diagnostics Types that allow you to interact with system processes, event logs, and 
performance counters. See Chapter 19.

System.Drawing Types that allow access to GDI+ basic graphics functionality. More 
advanced functionality is provided in the System.Drawing.Drawing2D, 
System.Drawing.Imaging, and System.Drawing.Text namespaces. See 
Chapter 16.

System.Globalization Types that define culture-related information, including the language, 
the country/region, the calendars in use, the format patterns for dates, 
the currency, the numbers, and the sort order for strings. Not covered 
in this book.

System.IO Types that allow reading and writing files and data streams, as well as 
types that provide basic file and directory support. See Chapter 4 for a 
basic overview.

System.Media Types for playing and accessing sounds and other media formats. Not 
covered in this book. .NET 3.0 and later.

System.Net Types to programmatically access many of the protocols used on 
modern networks. See Chapters 2 and 14 for examples and a basic 
overview.

System.Reflection Types that retrieve information about assemblies, modules, members, 
parameters, and other entities in managed code. See Chapter 17 for a 
brief overview.

System.Reflection.Emit Types for generating .NET code dynamically at runtime.

System.Resources Types that let you create, store, and manage various culture-specific 
resources used in an application. See Chapter 7 for a brief overview.



507

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

Namespace Description
System.Security Types to interface with the underlying structure of the CLR security 

system, including base classes for permissions. Not covered in this 
book.

System.Text Types representing ASCII, Unicode, UTF-8, and other character 
encodings. Also abstract types for converting blocks of characters to 
and from blocks of bytes. See Chapter 3 and “Using Regular 
Expressions and Formatting” later in this chapter.

System.Threading Types for creating and synchronizing threads and, in .NET 4.0, tasks. 
Also parallel operations and some functionality related to cancellation. 
See Chapter 11.

System.Web Types that enable Web applications. See Chapter 14.

System.Windows.Forms Types for creating windowed applications. See Chapter 16.

System.Xml Types that implement standards-based support for processing XML. 
See Chapter 8.

Microsoft.Win32 Types that wrap Win32 API common dialog boxes and components. 
Not covered in this book.

Namespaces from the F# Libraries
Table 18-3 shows the primary namespaces in F# library DLLs from Table 18-1. The following are opened by 
default in F# code:

Microsoft.FSharp.Core
Microsoft.FSharp.Collections
Microsoft.FSharp.Control
Microsoft.FSharp.Text

Table 18-3. Namespaces in the DLLs from Table 18-1

Namespace Description
Microsoft.FSharp.Core Provides primitive constructs related to the F# language, such as tuples. 

See Chapter 3.

Microsoft.FSharp.Collections Provides functional programming collections, such as sets and maps 
implemented using binary trees. See Chapter 3 and “Using Further F# 
and .NET Data Structures” later in this chapter.

Namespace Description

Microsoft.FSharp.Control Provides functional programming control structures, including 
asynchronous and lazy programming. Chapter 11 covers programming 
with the IEvent<'T> type and the IEvent module, as well as the 
Async<'T> type.

Microsoft.FSharp.Text Provides types for structured and printf-style textual formatting of 
data. See Chapter 4 for an introduction to printf formatting.

Microsoft.FSharp.Reflection Provides extensions to the System.Reflection functionality that deal 
particularly with F# record and discriminated union values. See Chapter 
17 for a brief introduction, and see “Further Libraries for Reflective 
Techniques” section later in this chapter for more details.

Microsoft.FSharp.Quotations Provides access to F# expressions as abstract syntax trees. See Chapter 
17.



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

508

Using the System Types
Table 18-4 shows some of the most useful core types from the System namespace. These types are 
particularly useful because of the care and attention taken crafting them and the functionality they 
provide.

Table 18-4. Useful core types from the System Namespace

Function Description
System.DateTime A type representing a date and time

System.DayOfWeek An enumeration type representing a day of the week

System.Decimal A numeric type suitable for financial calculations requiring large numbers of 
significant integral and fractional digits and no round-off errors

System.Guid A type representing a 128-bit globally unique ID

System.Nullable<'T> A type with an underlying value type 'T but that can be assigned null like a 
reference type

System.TimeSpan A type representing a time interval

System.Uri A type representing a uniform resource identifier (URI), such as an Internet URL

Many .NET types are used to hold static functions, such as those for converting data from one format 
to another. Types such as System.Random play a similar role via objects with a small amount of state. Table 
18-5 shows some of the most useful of these types.

Table 18-5. Useful services from the System Namespace

Function Description
System.BitConverter Contains functions to convert numeric representations to and from bit 

representations

System.Convert Contains functions to convert between various numeric representations

System.Math Contains constants and static methods for trigonometric, logarithmic, and 
other common mathematical functions

System.Random Provides objects to act as random-number generators

System.StringComparer Provides objects implementing various types of comparisons on strings 
(case insensitive, and so on)

Using Further F# and .NET Data Structures
As you saw in Chapter 2, F# comes with a useful implementation of some functional programming data 
structures. Recall that functional data structures are persistent: you can’t mutate them, and if you add an 
element or otherwise modify the collection, you generate a new collection value, perhaps sharing some 
internal nodes but from the outside appearing to be a new value.

Table 18-6 summarizes the most important persistent functional data structures that are included in 
FSharp.Core.dll. It’s likely that additional functional data structures will be added in future F# releases.



509

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

Table 18-6. The F# Functional Data Structures from Microsoft.FSharp.Collections

Type Description
List<'T> Immutable lists implemented using linked lists

Set<'T> Immutable sets implemented using trees

Map<'Key,'Value> Immutable maps (dictionaries) implemented using trees

LazyList<'T> Lists generated on demand, with each element computed only once

System.Collections.Generic and Other .NET Collections
Table 18-7 summarizes the imperative collections available in the System.Collections.Generic 
namespace.

Table 18-7. The .NET and F# imperative data structures from System.Collections.Generic

Type Description
List<'T> Mutable, resizable integer-indexed arrays, usually called 

ResizeArray<'T> in F#.

SortedList<'T> Mutable, resizable lists implemented using sorted arrays.

Dictionary<'Key,'Value> Mutable, resizable dictionaries implemented using hash tables.

SortedDictionary<'Key,'Value> Mutable, resizable dictionaries implemented using sorted arrays.

Queue<'T> Mutable, first-in, first-out queues of unbounded size.

Type Description

Stack<'T> Mutable, first-in, last-out stacks of unbounded size.

HashSet<'T> Mutable, resizable sets implemented using hash tables. New in .NET 
3.5. The F# library also defines a Microsoft.FSharp.Collections.
HashSet type usable in conjunction with earlier versions of .NET.

SOME OTHER COLLECTION LIBRARIES

Two additional libraries of .NET collections deserve particular attention. The first is PowerCollections, 
currently provided by Wintellect. It provides additional generic types, such as Bag<'T>, 
MultiDictionary<'Key,'Value>, OrderedDictionary<'Key,'Value>, 
OrderedMultiDictionary<'T>, and OrderedSet<'T>. The second is the C5 collection library, provided 
by ITU in Denmark. It includes implementations of some persistent/functional data structures, such as 
persistent trees, that may be of particular interest for use from F#. 

Supervising and Isolating Execution
The .NET System namespace includes a number of useful types that provide functionality related to the 
execution of running programs in the .NET Common Language Runtime. Table 18-8 summarizes them.



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

510

Table 18-8. Types related to runtime supervision of applications

Function Description
System.Runtime Contains advanced types that support compilation and native interoperability

System.Environment Provides information about, and the means to manipulate, the current 
environment and platform.

System.GC Controls the system garbage collector. Garbage collection is discussed in more 
detail later in this chapter.

Function Description

System.WeakReference Represents a weak reference, which references an object while still allowing 
that object to be reclaimed by garbage collection.

System.AppDomain Represents an application domain, which is a software-isolated environment in 
which applications execute. Application domains can hold code generated at 
runtime and can be unloaded.

Further Libraries for Reflective Techniques
As discussed in Chapter 17, .NET and F# programming frequently use reflective techniques to analyze the 
types of objects, create objects at runtime, and use type information to drive generic functions in general 
ways. For example, in Chapter 17, you saw an example of a technique called schema compilation, which 
was based on .NET attributes, F# data types, and a compiler to take these and use reflective techniques to 
generate an efficient text-file reader and translator. The combination of reflective techniques and .NET 
generics allows programs to operate at the boundary between statically typed code and dynamically typed 
data.

Using General Types
There are a number of facets to reflective programming with .NET. In one simple kind of reflective 
programming, a range of data structures are accessed in a general way. For example, .NET includes a type 
System.Array that is a parent type of all array types. The existence of this type allows you to write code that 
is generic over all array types, even one-dimensional and multidimensional arrays. This is occasionally 
useful, such as when you’re writing a generic array printer.

Table 18-9 summarizes the primary general types defined in the .NET Framework.

Table 18-9. General types in the .NET Framework

Function Description
System.Array General type of all array values.

System.Delegate General type of all delegates.

System.Enum General type of all enum values.

System.Exception General type of all exception values.

System.Collections.IEnumerable General type of all sequence values. This is the nongeneric version 
of the F# type seq<'T>, and all sequence and collection values are 
compatible with this type.

System.IComparable General type of all comparable types.



511

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

Function Description
System.IDisposable General type of all explicitly reclaimable resources.

System.IFormattable General type of all types supporting .NET formatting.

System.Object General type of all values.

System.Type Runtime representation of .NET types.

System.ValueType General type of all value types.

Using Microsoft.FSharp.Reflection
In Chapter 17, the schema compiler used functions from the Microsoft.FSharp.Reflection namespace. 
This namespace is a relatively thin extension of the System.Reflection namespace. It offers an interesting 
set of techniques for creating and analyzing F# values and types in ways that are somewhat simpler than 
those offered by the System.Reflection namespace. These operations are also designed to be used in 
precompilation phases to amortize costs associated with reflective programming.

Table 18-10 summarizes the two types in this namespace

Table 18-10. Some operations in the Microsoft.FSharp.Reflection namespace

Class and Static Members Description
Microsoft.FSharp.Reflection.FSharpType Operations to analyze F# types

Microsoft.FSharp.Reflection.FSharpValue Operations to analyze F# values

Some Other .NET Types You May Encounter
When .NET was first designed, the .NET type system didn’t include generics or a general notion of a 
function type as used by F#. Instead of functions, .NET uses delegates, which you can think of as named 
function types (that is, each kind of function type is given a different name).

This means that you often encounter delegate types when using .NET libraries from F#. Since .NET 
2.0, some of these are even generic, giving an approximation of the simple and unified view of function 
types used by F#. Every .NET delegate type has a corresponding F# function type. For example, the F# 
function type for the .NET delegate type System.Windows.Forms.PaintEventHandler is obj -> System.
Windows.Forms.PaintEventArgs -> unit. You can figure out this type by looking at the signature for the 
Invoke method of the given delegate type.

.NET also comes with definitions for some generic delegate types. F# tends to use function types 
instead of these, so you don’t see them often in your coding. However, Table 18-11 shows these delegate 
types just in case you meet them.

Table 18-11. Delegate types encountered occasionally in F# coding

Function F# Function Type Description
System.Action<'T> 'T -> unit Used for imperative actions.

System.AsyncCallback System.IAsyncResult -> unit Used for callbacks when asynchronous 
actions complete.

System.Converter<'T,'U> 'T -> 'U Used to convert between values.

System.Comparison<'T> 'T -> 'T -> int Used to compare values.



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

512

Function F# Function Type Description
System.EventHandler<'T> obj -> 'T -> unit Used as a generic event-handler type.

System.Func<'T,'U> 'T -> 'U A .NET 3.5 LINQ function delegate. 
Further arity-overloaded types exist 
accepting additional arguments: for 
example, System.Func<'T,'U,'V>, 
System.Func<'T,'U,'V,'W>.

System.Predicate<'T> 'T -> bool Used to test a condition.

Under the Hood: Interoperating with C# and  
other .NET Languages
Libraries and binary components provide a common way to reuse software; even the simplest C program is 
linked to the standard C runtime to benefit from core functions, such as memory management and I/O. 
Modern programs depend on a large number of libraries that are shipped in binary form, and only some of 
them are written in the same language as the program. Libraries can be linked statically during compilation 
into the executable, or they can be loaded dynamically during program execution. Dynamic linking has 
become significantly common to help share code (dynamic libraries can be linked by different programs and 
shared among them) and adapt program behavior while executing.

Interoperability among binaries compiled by different compilers, even of the same language, can be a 
nightmare. One of the goals of the .NET initiative was to ease this issue by introducing the Common 
Language Runtime (CLR), which is targeted by different compilers and different languages to help 
interoperability among software developed in those languages.

The Common Language Runtime
The CLR is a runtime designed to run programs compiled for the .NET platform; in addition to Microsoft.
NET, CLR has been implemented by the open source project Mono. The binary format of these programs 
differs from the traditional one adopted by executables; Microsoft terminology uses managed for the first 
class of programs and unmanaged otherwise (see Figure 18-1).

Figure 18-1. Compilation scheme for managed and unmanaged code



513

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

A DEEPER LOOK INSIDE .NET EXECUTABLES

Programs for the .NET platform are distributed in a form that is executed by the CLR. Binaries are expressed 
in an intermediate language that is compiled incrementally by the Just-In-Time (JIT) compiler during 
program execution. A .NET assembly, in the form of a .dll or an .exe file, contains the definition of a set of 
types and the definition of the method bodies, and the additional data describing the structure of the code in 
the intermediate language form are known as metadata. The intermediate language is used to define method 
bodies based on a stack-based machine, with operations performed by loading values on a stack of 
operands and then invoking methods or operators.

Consider the following simple F# program in the Program.fs source file:

open System

let i = 2g

Console.WriteLine("Input a number:")

let v = Int32.Parse(Console.ReadLine())

Console.WriteLine(i * v)

The F# compiler generates an executable that can be disassembled using the ildasm.exe tool distributed 
with the .NET Framework. The following screenshot shows the structure of the generated assembly. Because 
everything in the CLR is defined in terms of types, the F# compiler must introduce the class 
$Program$Main in the <StartupCode$applicationname> namespace. In this class, the definition of 
the main@ static method is the entry point for the execution of the program. This method contains the 
intermediate language corresponding to the example F# program. The F# compiler generates several 
elements that aren’t defined in the program, whose goal is to preserve the semantics of the F# program in 
the intermediate language.

If you open the main@ method, you find the following code, which is annotated here with the corresponding 
F# statements:



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

514

.method public static void  main@() cil managed
{
  .entrypoint
  // Code size       38 (0x26)
  .maxstack  4

   // Console.WriteLine("Input a number:")
  IL_0000:  ldstr      "Input a number:"
  IL_0005:  call       void [mscorlib]System.Console::WriteLine(string)

  // let v = Int32.Parse(Console.ReadLine())
  IL_000a:  call       string [mscorlib]System.Console::ReadLine()
  IL_000f:  call       int32 [mscorlib]System.Int32::Parse(string)
  IL_0014:  stsfld     int32 '<StartupCode$ConsoleApplication1>'.$Program::v@4

  // Console.WriteLine(i * v) // Note that i is constant and its value has been inlined
  IL_0019:  ldc.i4.2
  IL_001a:  call       int32 Program::get_v()
  IL_001f:  mul
  IL_0020:  call       void [mscorlib]System.Console::WriteLine(int32)

// Exits
  IL_0025:  ret
} // end of method $Program$Main::main@

The ldxxx instructions are used to load values onto the operand stack of the abstract machine, and the 
stxxx instructions store values from that stack in locations (locals, arguments, or class fields). In this 
example, a static field is used for v, and the value of i is inlined using the ldc instruction. For method 
invocations, arguments are loaded on the stack, and a call operation is used to invoke the method.

The JIT compiler is responsible for generating the binary code that runs on the actual processor. The code 
generated by the JIT interacts with all the elements of the runtime, including external code loaded 
dynamically in the form of DLLs or COM components.

Because the F# compiler targets the CLR, its output is managed code, allowing compiled programs to 
interact directly with other programming languages targeting the .NET platform. Chapter 16 showed how 
to exploit this form of interoperability, demonstrating how to develop a graphic control in F# and use it in 
a C# application.

Memory Management at Runtime
Interoperability of F# programs with unmanaged code requires an understanding of the structure of the 
most important elements of a programming language’s runtime. In particular, consider how program 
memory is organized at runtime. Memory used by a program is generally classified in three classes 
depending on the way it’s handled:

Static memory: Allocated for the entire lifetime of the program

Automatic memory: Allocated and freed automatically when functions or methods 
are executed



515

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

Dynamic memory: Explicitly allocated by the program, and freed explicitly or by an 
automatic program called the garbage collector

As a rule of thumb, top-level variables and static fields belong to the first class, function arguments 
and local variables belong to the second class, and memory explicitly allocated using the new operator 
belongs to the last class. The code generated by the JIT compiler uses different data structures to manage 
memory and automatically interacts with the operating system to request and release memory during 
program execution.

Each execution thread has a stack where local variables and arguments are allocated when a function 
or method is invoked (see Figure 18-2). A stack is used, because it naturally follows the execution flow of 
method and function calls. The topmost record contains data about the currently executing function; 
below that is the record of the caller of the function, which sits on top of another record of its caller, and so 
on. These activation records are memory blocks used to hold the memory required during the execution of 
the function and are naturally freed at the end of its execution by popping the record off the stack. The 
stack data structure is used to implement the automatic memory of the program, and because different 
threads execute different functions at the same time, a separate stack is assigned to each of them.

Figure 18-2. Memory organization of a running CLR program

Dynamic memory is allocated in the heap, which is a data structure where data resides for an amount 
of time not directly related to the events of program execution. The memory is explicitly allocated by the 
program, and it’s deallocated either explicitly or automatically, depending on the strategy adopted by the 
runtime to manage the heap. In the CLR, the heap is managed by a garbage collector, which is a program 
that tracks memory usage and reclaims memory that is no longer used by the program. Data in the heap is 
always referenced from the stack—or other known areas, such as static memory—either directly or 
indirectly. The garbage collector can deduce the memory potentially reachable by program execution in 
the future, and the remaining memory can be collected. During garbage collection, the running program 
may be suspended, because the collector may need to manipulate objects needed by its execution. In 
particular, a garbage collector may adopt a strategy called copy collection that can move objects in 
memory; during this process, the references may be inconsistent. To avoid dangling references, the 
memory model adopted by the CLR requires that methods access the heap through object references 
stored on the stack; objects in the heap are forbidden to reference data on the stack.

Data structures are the essential tool provided by programming languages to group values. A data 
structure is rendered as a contiguous area of memory in which the constituents are available at a given offset 
from the beginning of the memory. The actual layout of an object is determined by the compiler (or by the 
interpreter for interpreted languages) and is usually irrelevant to the program because the programming 



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

516

language provides operators to access fields without having to explicitly access the memory. System 
programming, however, often requires explicit manipulation of memory, and programming languages such 
as C let you control the in-memory layout of data structures. The C specification, for instance, defines that 
fields of a structure are laid out sequentially, although the compiler is allowed to insert extra space between 
them. Padding is used to align fields at word boundaries of the particular architecture in order to optimize 
the access to the fields of the structure. Thus, the same data structure in a program may lead to different 
memory layouts depending on the strategy of the compiler or the runtime, even in a language such as C , in 
which field ordering is well defined. By default, the CLR lays out structures in memory without any 
constraint, which gives you the freedom of optimizing memory usage on a particular architecture, although it 
may introduce interoperability issues if a portion of memory must be shared among the runtimes of different 
languages.1

Interoperability among different programming languages revolves mostly around memory layouts, 
because the execution of a compiled routine is a jump to a memory address. But routines access memory 
explicitly, expecting that data are organized in a certain way. The rest of this chapter discusses the 
mechanisms used by the CLR to interoperate with external code in the form of DLLs or COM components.

COM Interoperability
Component Object Model (COM) is a technology that Microsoft introduced in the 1990s to support 
interoperability among different programs that were possibly developed by different vendors. The Object 
Linking and Embedding (OLE) technology that lets you embed arbitrary content in a Microsoft Word 
document, for instance, relies on this infrastructure. COM is a binary standard that allows code written in 
different languages to interoperate, assuming that the programming language supports this infrastructure. 
Most of the Windows operating system and its applications are based on COM components.

The CLR was initially conceived of as an essential tool to develop COM components, because COM 
was the key technology at the end of 1990s. It’s no surprise that the Microsoft implementation of CLR 
interoperates easily and efficiently with the COM infrastructure.

This section briefly reviews how COM components can be consumed from F# (and vice versa) and 
how F# components can be exposed as COM components.

Calling COM Components from F#
COM components can be easily consumed from F# programs, and the opposite is also possible, by 
exposing .NET objects as COM components. The following example is based on the Windows Scripting 
Host and uses F# and fsi.exe:

> open System;;
> let o = Activator.CreateInstance(Type.GetTypeFromProgID("Word.Application"));;
val o : obj

> let t = o.GetType();;
val t : Type = Microsoft.Office.Interop.Word.ApplicationClass

> t.GetProperty("Visible").SetValue(o, (true :> Object), null);;
val it : unit = ()

1Languages targeting .NET aren’t affected by these interoperability issues because they share the same CLR 
runtime.



517

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

> let m = t.GetMethod("Quit");;
val m : Reflection.MethodInfo =
  Void Quit(System.Object ByRef, System.Object ByRef, System.Object ByRef)

> m.GetParameters().Length;;
val it : int = 3

> m.GetParameters();;
val it : Reflection.ParameterInfo [] =
  [|System.Object& SaveChanges
      {Attributes = In, Optional, HasFieldMarshal;
       CustomAttributes = seq
                            [[System.Runtime.InteropServices.InAttribute()];
                             [System.Runtime.InteropServices.OptionalAttribute()];
                             [System.Runtime.InteropServices.MarshalAsAttribute((System.
Runtime.InteropServices.UnmanagedType)27, ArraySubType = 0, SizeParamIndex = 0, SizeConst = 0, 
IidParameterIndex = 0, SafeArraySubType = 0)]];
       DefaultValue = System.Reflection.Missing;
       HasDefaultValue = false;
       IsIn = true;
       IsLcid = false;
       IsOptional = true;
       IsOut = false;
       IsRetval = false;
       Member = Void Quit(System.Object ByRef, System.Object ByRef, System.Object ByRef);
       MetadataToken = 134223584;
       Name = "SaveChanges";
       ParameterType = System.Object&;
       Position = 0;
       RawDefaultValue = System.Reflection.Missing;};
    ... more ... |]

> m.Invoke(o, [|null; null; null|]);;

val it : obj = null Because F# imposes type inference, you can’t use the simple syntax provided by an 
interpreter. The compiler should know in advance the number and type of arguments of a method and the 
methods exposed by an object. Remember that even though fsi.exe allows you to interactively execute F# 
statements, it’s still subject to the constraints of a compiled language. Because you’re creating an instance 
of a COM component dynamically in this example, the compiler doesn’t know anything about this 
component, so it can be typed as System.Object. To obtain the same behavior as an interpreted language, 
you must resort to .NET runtime’s reflection support. Using the GetType method, you can obtain an object 
describing the type of the object o. Then, you can obtain a PropertyInfo object describing the Visible 
property, and you can invoke the SetValue method on it to show the Word main window. The SetValue 
method is generic; therefore, you have to cast the Boolean value to System.Object to comply with the 
method signature.

In a similar way, you can obtain an instance of the MethodInfo class describing the Quit method. 
Because a method has a signature, you ask for the parameters; there are three of them, and they’re 
optional. You can invoke the Quit method by calling the Invoke method and passing the object target of the 
invocation and an array of arguments that you set to null, because arguments are optional. 



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

518

■ Note: Although COM technology is still widely used for obtaining so-called automation, .NET is quietly entering 
the picture, and several COM components are implemented using the CLR. Whenever a reference to mscoree.dll 
appears in the InprocServer32 registry key, the .NET runtime is used to deliver the COM services using the 
specified assembly. Through COM interfaces, native and .NET components can be composed seamlessly, leading to 
very complex interactions between managed and unmanaged worlds. Microsoft Word 2010, for instance, returns a 
.NET object instead of a COM wrapper, which provides access to Word services without the need for explicit use of 
reflection.

How can the runtime interact with COM components? The basic approach is based on the COM 
callable wrapper (CCW) and the runtime callable wrapper (RCW), as shown in Figure 18-3. The former is a 
chunk of memory dynamically generated with a layout compatible with the one expected from COM 
components, so that external programs—even legacy Visual Basic 6 applications—can access services 
implemented as managed components. The latter is more common and creates a .NET type dealing with 
the COM component, taking care of all the interoperability issues. It’s worth noting that although the CCW 
can always be generated, because the .NET runtime has full knowledge about assemblies, the opposite 
isn’t always possible. Without IDispatch or type libraries, there is no description of a COM component at 
runtime. Moreover, if a component uses custom marshalling, it can’t be wrapped by an RCW. Fortunately, 
for the majority of COM components, it’s possible to generate an RCW.

Figure 18-3. The wrappers generated by the CLR to interact with COM components

Programming patterns based on event-driven programming are widely adopted, and COM components 
have a programming pattern to implement callbacks based on the notion of a sink. The programming 
pattern is based on the delegate event model, and the sink is where a listener can register a COM interface 
that should be invoked by a component to notify an event. The Internet Explorer Web Browser COM 
component (implemented by shdocvw.dll), for instance, provides a number of events to notify its host about 
various events, such as loading a page or clicking a hyperlink. The RCW generated by the runtime exposes 
these events in the form of delegates and takes care of handling all the details required to perform the 
communication between managed and unmanaged code.

Although COM components can be accessed dynamically using .NET reflection, explicitly relying on 
the ability of the CLR to generate CCW and RCW, it’s desirable to use a less verbose approach to COM 
interoperability. The .NET runtime ships with tools that allow you to generate RCW and CCW wrappers 
offline, which lets you use COM components as .NET classes and vice versa. These tools are:



519

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

tlbimp.exe: This is a tool for generating an RCW of a COM component given its type 
library.

aximp.exe: This is similar to tlbimp.exe and supports the generation of “ActiveX” 
COM components2 that have graphical interfaces and that can be integrated with 
Windows Forms.

tlbexp.exe: This generates a COM type library describing a .NET assembly. The CLR 
is loaded as a COM component and generates the appropriate CCW to make .NET 
types accessible as COM components.

regasm.exe: This is similar to tlbexp.exe. It also performs the registration of the 
assembly as a COM component.

To better understand how COM components can be accessed from your F# programs and vice versa, let’s 
consider two examples. In the first, you wrap the widely used Flash Player into a form interactively; in the 
second, you see how an F# object type can be consumed as if it were a COM component.

The Flash Player you’re accustomed to using in everyday browsing is a COM control that is loaded by 
Internet Explorer using an OBJECT element in the HTML page (it’s also a plug-in for other browsers, but 
here you’re interested in the COM component). By using a search engine, you can easily find that an HTML 
element similar to the following is used to embed the player in Internet Explorer:

<OBJECT
    classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
    codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
    title="My movie" width="640" height="480">
    <param name="movie" value="MyMovie.swf" />
    <param name="quality" value="high" />
</OBJECT>

From this tag, you know that the CLSID of the Flash Player COM component is the one specified with 
the classid attribute of the OBJECT element. You can now look in the Windows registry under HKEY_
CLASSES_ROOT\CLSID for the subkey corresponding to the CLSID of the Flash COM control. If you look at the 
subkeys, you notice that the ProgID of the component is ShockwaveFlash.ShockwaveFlash, and 
InprocServer32 indicates that its location is C:\Windows\system32\Macromed\Flash\Flash10d.ocx. You can 
also find the GUID relative to the component type library—which, when investigated, shows that the type 
library is contained in the same OCX file.

■ Note: With a 64-bit version of Windows and the 32-bit version of the Flash Player, you should look for the key 
CLSID under HKEY_CLASSES_ROOT\Wow6432Node, which is where the 32-bit component’s information is stored. 
In general, all references to the 32-bit code are stored separately from the 64-bit information. The loader tricks old 
32-bit code into seeing different portions of the registry. In addition, executable files are stored under %WinDir%\
SysWow64 instead of %WinDir%\system32. Moreover, to wrap 32- or 64-bit components, you need the 
corresponding version of the .NET tool.

2ActiveX components are COM components implementing a well-defined set of interfaces. They have a 
graphical interface. Internet Explorer is well known for loading these components, but ActiveX can be 
loaded by any application using the COM infrastructure.



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

520

Because Flash Player is a COM control with a GUI, you can rely on aximp.exe rather than just tlbimp.
exe to generate the RCW for the COM component (for 64-bit systems, use c:\Windows\SysWOW64 instead 
of c:\Windows\System32 and link the .ocx file contained in the Flash directory):

C:\> aximp c:\Windows\System32\Macromed\Flash\Flash32_11_3_370_17810d.ocx
Generated Assembly: C:\ShockwaveFlashObjects.dll
Generated Assembly: C:\AxShockwaveFlashObjects.dll

If you use ildasm.exe to analyze the structure of the generated assemblies, notice that the wrapper 
of the COM component is contained in ShockwaveFlashObjects.dll and is generated by the tlbimp.exe 
tool. The second assembly contains a Windows Forms host for COMM components and is configured to 
host the COM component, exposing the GUI features in terms of the elements of the Windows Forms 
framework.

You can test the Flash Player embedded in an interactive F# session:

#I @"c:\";;
--> Added 'c:\ ' to library include path

#r "AxShockwaveFlashObjects.dll";;
--> Referenced 'c:\AxShockwaveFlashObjects.dll'

> open AxShockwaveFlashObjects;;
> open System.Windows.Forms;;

> let f = new Form();;
val f : Form = System.Windows.Forms.Form, Text: 

> let flash = new AxShockwaveFlash();;
val flash : AxShockwaveFlash = AxShockwaveFlashObjects.AxShockwaveFlash

> f.Show();;
> flash.Dock <- DockStyle.Fill;;
> f.Controls.Add(flash);;
> flash.LoadMovie(0, "http://laptop.org/img/meshDemo18.swf");;

First add to the include path of the fsi.exe directory containing the assemblies generated by aximp.exe 
using the #I directive, and then reference the AxShockwaveFlashObjects.dll assembly using the #r directive. 
The namespace AxShockwaveFlashObjects containing the AxShockwaveFlash class is opened; this is the 
managed class wrapping the COM control. You create an instance of the Flash Player that is now exposed as a 
Windows Forms control; then  set the Dock property to DockStyle.Fill to let the control occupy the entire 
area of the form. Finally, add the control to the form. 

When you’re typing the commands into F# Interactive, it’s possible to test the content of the form. 
When it first appears, a right-click on the client area is ignored. After the COM control is added to the form, 
the right-click displays the context menu of the Flash Player. You can now programmatically control the 
player by setting the properties and invoking its methods; the generated wrapper takes care of all the 
communications with the COM component.



521

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

The Running Object Table
Sometimes you need to obtain a reference to an out-of-process COM object that is already running. This is 
useful when you want to automate some task of an already-started application or reuse an object model 
without needing to start a process more than once. The easiest way to achieve this is through the 
GetActiveObject method featured by the Marshal class: 

#r "EnvDTE80"
open System.Runtime.InteropServices

let appObj = Marshal.GetActiveObject("VisualStudio.DTE.11.0") :?> EnvDTE80.DTE2
printfn "%s" appObj.ActiveDocument.FullName. 

In this example, you obtain a reference to one of the most important interfaces of Visual Studio’s COM 
automation model. An interesting experiment is printing the name of the active document open in the 
editor and trying to run different instances of Visual Studio, opening different documents. The COM 
infrastructure connects to one instance of the COM server without being able to specify a particular one. 

You can find a specific instance by accessing a system-wide data structure called the Running Object 
Table (ROT), which provides a list of running COM servers. Because the name of a running server must be 
unique within the ROT, many servers mangle the PID with the COM ProgID, so it’s possible to connect to a 
given instance. This is the case for Visual Studio. The following F# function connects to a specific Visual 
Studio instance: 

#r "EnvDTE"

open System.Runtime.InteropServices
open System.Runtime.InteropServices.ComTypes

[<DllImport("ole32.dll")>]
extern int internal GetRunningObjectTable(uint32 reserved, IRunningObjectTable& pprot)

[<DllImport("ole32.dll")>]
extern int internal CreateBindCtx(uint32 reserved, IBindCtx& pctx)

let FetchVSDTE (pid : int) =
    let mutable prot : IRunningObjectTable = null 
    let mutable pmonkenum : IEnumMoniker = null
    let (monikers : IMoniker[]) =  Array.create 1 null
    let pfeteched = System.IntPtr.Zero
    let mutable (ret  :obj) = null
    let endpid = sprintf ":%d" pid
  
    try
        if (GetRunningObjectTable(0u, &prot) <> 0) || (prot = null) then 
            failwith "Error opening the ROT"
        prot.EnumRunning(&pmonkenum)
        pmonkenum.Reset()
        while pmonkenum.Next(1, monikers, pfeteched) = 0 do
            let mutable (insname : string) = null
            let mutable (pctx : IBindCtx) = null
            CreateBindCtx(0u, &pctx) |> ignore
            (monikers.[0]).GetDisplayName(pctx, null, &insname);



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

522

            Marshal.ReleaseComObject(pctx) |> ignore
            if insname.StartsWith("!VisualStudio.DTE") && insname.EndsWith(endpid) then
                prot.GetObject(monikers.[0], &ret) |> ignore
    finally
        if prot <> null then Marshal.ReleaseComObject(prot) |> ignore
        if pmonkenum <> null then Marshal.ReleaseComObject(pmonkenum) |> ignore
    (ret :?> EnvDTE.DTE)

You use two PInvoke declarations to import functions from the ole.dll COM library in which the ROT 
is defined. After you get a reference to the table, you perform an enumeration of its elements, retrieving 
the display name and looking for any Visual Studio DTE with a specific PID at its end. The GetObject 
method is used to finally connect to the desired interface. 

This example shows the flexible control .NET and F# can provide over COM infrastructure. The ability 
to access specific COM object instances is widely used on the server side to implement services made 
available through Web pages. 

Interoperating with C and C++ with PInvoke
Through the CLI, F# implements a standard mechanism for interoperating with C and C++ code that is 
called “Platform Invoke”, normally known as “PInvoke”. This is a core feature of the standard available on 
all CLI implementations, including Mono.

The basic model underlying PInvoke is based on loading DLLs into the program, which allows 
managed code to invoke functions exported from C and C++. DLLs don’t provide information other than 
the entry point location of a function; this isn’t enough to perform the invocation unless additional 
information is made available to the runtime.

The invocation of a function requires:

The address of the code in memory

The calling convention, which is how parameters, return values, and other 
information are passed through the stack to the function

Marshalling of values and pointers so that the different runtime support can operate 
consistently on the same values

You obtain the address of the entry point using a system call that returns the pointer to the function 
given a string. You must provide the remaining information to instruct the CLR about how the function 
pointer should be used. 

CALLING CONVENTIONS

Function and method calls (a method call is similar to a function call but with an additional pointer referring 
to the object passed to the method) are performed by using a shared stack between the caller and the callee. 
An activation record is pushed onto the stack when the function is called, and memory is allocated for 
arguments, the return value, and local variables. Additional information—such as information about 
exception handling and the return address when the execution of the function terminates— is also stored in 
the activation record,

The physical structure of the activation record is established by the compiler (or by the JIT in the case of the 
CLR), and this knowledge must be shared between the caller and the called function. When the binary code 



523

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

is generated by a compiler, this isn’t an issue, but when code generated by different compilers must interact, 
it may become a significant issue. Although each compiler may adopt a different convention, the need to 
perform system calls requires that the calling convention adopted by the operating system is implemented, 
and it’s often used to interact with different runtimes. Another popular approach is to support the calling 
convention adopted by C compilers, because it’s widely used and has become a fairly universal language for 
interoperability. Note that although many operating systems are implemented in C, the libraries providing 
system calls may adopt different calling conventions. This is the case with Microsoft Windows: the operating 
system adopts the stdcall calling convention rather than cdecl, which is the C calling convention.

A significant dimension in the arena of possible calling conventions is the responsibility for removing the 
activation record from the thread stack. At first glance, it may seem obvious that before returning, the called 
function resets the stack pointer to the previous state. This isn’t the case for programming languages such 
as C that allow functions with a variable number of arguments, such as printf. When variable arguments 
are allowed, the caller knows the exact size of the activation record; therefore, it’s the caller’s responsibility 
to free the stack at the end of the function call. Apart from being consistent with the chosen convention, 
there may seem to be little difference between the two choices, but if the caller is responsible for cleaning 
the stack, each function invocation requires more instructions, which leads to larger executables. For this 
reason, Windows uses the stdcall calling convention instead of the C calling convention. It’s important to 
notice that the CLR uses an array of objects to pass a variable number of arguments, which is very different 
from the variable arguments of C: the method receives a single pointer to the array that resides in the heap.

It’s important to note that if the memory layout of the activation record is compatible, as it is in Windows, 
using the cdecl convention instead of the stdcall convention leads to a subtle memory leak. If the runtime 
assumes the stdcall convention (which is the default), and the callee assumes the cdecl convention, the 
arguments pushed on the stack aren’t freed, and at each invocation, the height of the stack grows until a 
stack overflow happens.

The CLR supports a number of calling conventions. The two most important are stdcall and cdecl. Other 
implementations of the runtime may provide additional conventions to the user. In the PInvoke design, 
nothing restricts the supported conventions to these two (and in fact the runtime uses the fcall convention to 
invoke services provided by the runtime from managed code).

The additional information required to perform the function call is provided by custom attributes that 
are used to decorate a function prototype and inform the runtime about the signature of the exported 
function.

Getting Started with PInvoke
This section starts with a simple example of a DLL developed using C++, to which you add code during 
your experiments using PInvoke. The CInteropDLL.h header file declares a macro defining the decorations 
associated with each exported function:

#define CINTEROPDLL_API __declspec(dllexport)
extern "C" {
void CINTEROPDLL_API HelloWorld();
}

The __declspec directive is specific to the Microsoft Visual C++ compiler. Other compilers may 
provide different ways to indicate the functions that must be exported when compiling a DLL.

The first function is HelloWorld; its definition is as expected:



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

524

void CINTEROPDLL_API HelloWorld()
{
    printf("Hello C world invoked by F#!\n");
}

Say you now want to invoke the HelloWorld function from an F# program. You have to define the 
prototype of the function and inform the runtime how to access the DLL and the other information 
needed to perform the invocation. The program performing the invocation is:

open System.Runtime.InteropServices

module CInterop =
    [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
    extern void HelloWorld()

CInterop.HelloWorld()

The extern keyword informs the compiler that the function definition is external to the program and 
must be accessed through the PInvoke interface. A C-style prototype definition follows the keyword, and 
the whole declaration is annotated with a custom attribute defined in the System.Runtime.
InteropServices namespace. The F# compiler adopts C-style syntax for extern prototypes, including 
argument types (as you see later), because C headers and prototypes are widely used; this choice helps in 
the PInvoke definition. The DllImport custom attribute provides the information needed to perform the 
invocation. The first argument is the name of the DLL containing the function; the remaining option 
specifies the calling convention chosen to make the call. Because you don’t specify otherwise, the runtime 
assumes that the name of the F# function is the same as the name of the entry point in the DLL. You can 
override this behavior using the EntryPoint parameter in the DllImport attribute.

It’s important to note the declarative approach of the PInvoke interface. No code is involved in 
accessing external functions. The runtime interprets metadata in order to automatically interoperate with 
native code contained in a DLL. This is a different approach from the one adopted by different virtual 
machines, such as the Java virtual machine. The Java Native Interface (JNI) requires that you define a layer 
of code using types of the virtual machine and invoke the native code.

PInvoke requires high privileges in order to execute native code, because the activation record of the 
native function is allocated on the same stack that contains the activation records of managed functions 
and methods. Moreover, as discussed shortly, it’s also possible to have the native code invoking a delegate 
marshalled as a function pointer, allowing stacks with native and managed activation records to be 
interleaved.

The HelloWorld function is a simple case, because the function doesn’t have input arguments and 
doesn’t return any value. Consider this function with input arguments and a return value:

int CINTEROPDLL_API Sum(int i, int j)
{
    return i + j;
}

Invoking the Sum function requires integer values to be marshalled to the native code and the value 
returned to managed code. Simple types, such as integers, are easy to marshal, because they’re usually 
passed by value and use types of the underlying architecture. The F# program using the Sum function is:

module CInterop =
    [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
    extern int Sum(int i, int j)

printf "Sum(1, 1) = %d\n" (CInterop.Sum(1, 1));



525

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

Parameter passing assumes the same semantics of the CLR, and parameters are passed by value for 
value types and by the value of the reference for reference types. Again, you use the custom attribute to 
specify the calling convention for the invocation.

Mapping C Data Structures to F# Code
Let’s first cover what happens when structured data are marshalled by the CLR in the case of nontrivial 
argument types. Here, you see the SumC function responsible for adding two complex numbers defined by 
the Complex C data structure:

typedef struct _Complex {
    double re;
    double im;
} Complex;

Complex CINTEROPDLL_API SumC(Complex c1, Complex c2)
{
    Complex ret;
    ret.re = c1.re + c2.re;
    ret.im = c1.im + c2.im;
    return ret;
}

To invoke this function from F#, you must define a data structure in F# corresponding to the Complex C 
structure. If the memory layout of an instance of the F# structure is the same as that of the corresponding 
C structure, values can be shared between the two languages. How can you control the memory layout of a 
managed data structure? Fortunately, the PInvoke specification helps with custom attributes that let you 
specify the memory layout of data structures. The StructLayout custom attribute indicates the strategy 
adopted by the runtime to lay out fields of the data structure. By default, the runtime adopts its own 
strategy in an attempt to optimize the size of the structure, keeping fields aligned to the machine world in 
order to ensure fast access to the structure’s fields. The C standard ensures that fields are laid out in 
memory sequentially in the order they appear in the structure definition; other languages may use 
different strategies. Using an appropriate argument, you can indicate that a C-like sequential layout 
strategy should be adopted. It’s also possible to provide an explicit layout for the structure, indicating the 
offset in memory for each field of the structure. This example uses the sequential layout for the Complex 
value type:

module CInterop =
    [<Struct; StructLayout(LayoutKind.Sequential)>]
    type Complex =
        val mutable re : double
        val mutable im : double

        new(r, i) = {re = r; im = i}

    [<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
    extern Complex SumC(Complex c1, Complex c2)

let c1 = CInterop.Complex(1.0, 0.0)
let c2 = CInterop.Complex(0.0, 1.0)



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

526

let mutable c3 = CInterop.SumC(c1, c2)
printf "c3 = SumC(c1, c2) = %f + %fi\n" c3.re c3.im

The SumC prototype refers to the F# Complex value type. But because the layout of the structure in 
memory is the same as the corresponding C structure, the runtime passes the bits that are consistent with 
those expected by the C code.

Marshalling Parameters to and from C
A critical aspect of dealing with PInvoke is ensuring that values are marshalled correctly between managed 
and native code, and vice versa. A structure’s memory layout doesn’t depend only on the order of the fields. 
Compilers often introduce padding to align fields to memory addresses so that access to fields requires 
fewer memory operations, because CPUs load data into registers with the same strategy. Padding may 
speed up access to the data structure, but it introduces inefficiencies in memory usage: there may be gaps 
in the structures, leading to allocated but unused memory. 

Consider, for instance, the C structure: 

struct Foo {
    int i;
    char c;
    short s;
};

Depending on the compiler decision, it may occupy from 8 to 12 bytes on a 32-bit architecture. The 
most compact version of the structure uses the first 4 bytes for i, a single byte for c, and 2 more bytes for s. 
If the compiler aligns fields to addresses that are multiples of 4, then the integer i occupies the first slot, 4 
more bytes are allocated for c (although only one is used), and the same happens for s. 

Padding is a common practice in C programs; because it may affect performance and memory usage, 
directives instruct the compiler about padding. It’s possible to have data structures with different padding 
strategies running within the same program. 

The first step you face when using PInvoke to access native code is finding the definition of data 
structures, including information about padding. Then, you can annotate F# structures to have the same 
layout as the native ones, and the CLR can automate the marshalling of data. You can pass parameters by 
reference; thus, the C code may access the memory managed by the runtime, and errors in memory layout 
may result in corrupted memory. For this reason, keep PInvoke code to a minimum and verify it accurately 
to ensure that the execution state of the virtual machine is preserved. The declarative nature of the 
interface is a great help in this respect, because you must check declarations and not interop code. 

Not all the values are marshalled as is to native code; some may require additional work from the 
runtime. Strings, for instance, have different memory representations between native and managed code. 
C strings are arrays of bytes that are null terminated, whereas runtime strings are .NET objects with a 
different layout. Also, function pointers are mediated by the runtime: the calling convention adopted by 
the CLR isn’t compatible with external conventions, so code stubs are generated that can be called by 
native code from managed code, and vice versa. 

In the SumC example, arguments are passed by value, but native code often requires data structures to 
be passed by reference to avoid the cost of copying the entire structure and passing only a pointer to the 
native data. The ZeroC function resets a complex number whose pointer is passed as an argument: 

void CINTEROPDLL_API ZeroC(Complex* c)
{
    c->re = 0;
    c->im = 0;
}



527

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

The F# declaration for the function is the same as the C prototype:

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void ZeroC(Complex* c)

Now you need a way to obtain a pointer given a value of type Complex in F#. You can use the && 
operator to indicate a pass by reference; this results in passing the pointer to the structure expected by the 
C function:

let mutable c4 = CInterop.SumC(c1, c2)
printf "c4 = SumC(c1, c2) = %f + %fi\n" c4.re c4.im

CInterop.ZeroC(&&c4)
printf "c4 = %f + %fi\n" c4.re c4.im

In C and C++, the notion of objects (or struct instances) and the classes of memory are orthogonal: an 
object can be allocated on the stack or on the heap and share the same declaration. In .NET, this isn’t the 
case; objects are instances of classes and are allocated on the heap, and value types are stored in the stack 
or wrapped into objects in the heap.

Can you pass objects to native functions through PInvoke? The main issue with objects is that the 
heap is managed by the garbage collector, and one possible strategy for garbage collection is copy 
collection (a technique that moves objects in the heap when a collection occurs). Thus, the base address in 
memory of an object may change over time, which can be a serious problem if the pointer to the object 
has been marshalled to a native function through a PInvoke invocation. The CLR provides an operation 
called pinning that prevents an object from moving during garbage collection. Pinned pointers are 
assigned to local variables, and pinning is released when the function performing the pinning exits. It’s 
important to understand the scope of pinning: if the native code stores the pointer somewhere before 
returning, the pointer may become invalid but still usable from native code.

Now, let’s define an object type for Complex and marshal F# objects to a C function. The goal is to 
marshal the F# object to the ZeroC function. In this case, you can’t use the pass-by-reference operator, and 
you must define everything so that the type checker is happy. You can define another function that refers 
to ZeroC but with a different signature involving ObjComplex, which is an object type similar to the Complex 
value type. The EntryPoint parameter maps the F# function onto the same ZeroC C function, although in 
this case, the argument is of type ObjComplex rather than Complex:

module CInterop =
    [<StructLayout(LayoutKind.Sequential)>]
    type ObjComplex =
        val mutable re : double
        val mutable im : double

        new() = {re = 0.0; im = 0.0}
        new(r : double, i : double) = {re = r; im = i}

     [<DllImport("CInteropDLL", EntryPoint = "ZeroC",
                 CallingConvention = CallingConvention.Cdecl)>]
    extern void ObjZeroC(ObjComplex c)

let oc = CInterop.ObjComplex(2.0, 1.0)
printf "oc = %f + %fi\n" oc.re oc.im
CInterop.ObjZeroC(oc)
printf "oc = %f + %fi\n" oc.re oc.im



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

528

In this case, the object reference is marshalled as a pointer to the C code, and you don’t need the && 
operator in order to call the function. The object is pinned to ensure that it doesn’t move during the 
function call.

Marshalling Strings to and from C
PInvoke defines the default behavior for mapping common types used by the Win32 API. Table 18-12 
shows the default conversions. Most of the mappings are natural, but note that there are several entries for 
strings. This is because strings are represented in different ways in programming language runtimes.

Table 18-12. Default mapping for types of the Win32 API listed in Wtypes.h

Unmanaged Type 
in Wtypes.h

Unmanaged  
C Type Managed Class Description

HANDLE void* System.IntPtr 32 bits on 32-bit Windows 
operating systems, 64 bits on 64-bit 
Windows operating systems

BYTE unsigned char System.Byte 8 bits

SHORT short System.Int16 16 bits

WORD unsigned short System.UInt16 16 bits

INT int System.Int32 32 bits

UINT unsigned int System.UInt32 32 bits

LONG long System.Int32 32 bits

BOOL long System.Int32 32 bits

DWORD unsigned long System.UInt32 32 bits

ULONG unsigned long System.UInt32 32 bits

CHAR char System.Char Decorate with ANSI

LPSTR char* System.String or System.Text.
StringBuilder

Decorate with ANSI

LPCSTR const char* System.String or System.Text.
StringBuilder

Decorate with ANSI

LPWSTR wchar_t* System.String or System.Text.
StringBuilder

Decorate with Unicode

LPCWSTR const wchar_t* System.String or System.Text.
StringBuilder

Decorate with Unicode

FLOAT Float System.Single 32 bits

DOUBLE Double System.Double 64 bits

To see how strings are marshalled, start with a simple C function that echoes a string on the console:

void CINTEROPDLL_API echo(char* str)
{
    puts(str);
}

The corresponding F# PInvoke prototype is:



529

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void echo(string s)

What happens when the F# function echo is invoked? The managed string is represented by an array of 
Unicode characters described by an object in the heap; the C function expects a pointer to an array of 
single-byte ANSI characters that are null terminated. The runtime is responsible for performing the 
conversion between the two formats, and it’s performed by default when mapping a .NET string to an 
ANSI C string.

It’s common to pass strings that are modified by C functions, yet .NET strings are immutable. For this 
reason, it’s also possible to use a System.Text.StringBuilder object instead of a string. Instances of this 
class represent mutable strings and have an associated buffer containing the characters of the string. You 
can write a C function in the DLL that fills a string buffer given the size of the buffer:

void CINTEROPDLL_API sayhello(char* str, int sz)
{
    static char* data = "Hello from C code!";
    int len = min(sz, strlen(data));
    strncpy(str, data, len);
    str[len] = 0;
}

Because the function writes into the string buffer passed as an argument, use a StringBuilder rather 
than a string to ensure that the buffer has the appropriate room for the function to write. You can use the 
F# PInvoke prototype:

open System.Text
[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void sayhello(StringBuilder sb, int sz)

Because you have to indicate the size of the buffer, you can use a constructor of the StringBuilder 
class that allows you to do so:

let sb = new StringBuilder(50)
sayhello(sb, 50)
printf "%s\n" (sb.ToString())

You’ve used ANSI C strings so far, but this isn’t the only type of string. Wide-character strings are 
becoming widely adopted and use 2 bytes to represent a single character; following the C tradition, the 
string is terminated by a null character. Consider a wide-character version of the sayhello function:

void CINTEROPDLL_API sayhellow(wchar_t* str, int sz)
{
    static wchar_t* data = L"Hello from C code Wide!";
    int len = min(sz, wcslen(data));
    wcsncpy(str, data, len);
    str[len] = 0;
}

How can you instruct the runtime that the StringBuilder should be marshalled as a wide-character 
string rather than an ANSI string? The declarative nature of PInvoke helps by providing a custom attribute 
to annotate function parameters of the prototype and to inform the CLR about the marshalling strategy to 
be adopted. The sayhello function is declared in F# as:

open System.Text
[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

530

extern void sayhellow([<MarshalAs(UnmanagedType.LPWStr)>]StringBuilder sb, int sz)

In this case, the MarshalAs attribute indicates that the string should be marshalled as LPWSTR rather 
than LPSTR.

Passing Function Pointers to C
Another important data type that often should be passed to native code is a function pointer. Function 
pointers, which are widely used to implement callbacks, provide a simple form of functional 
programming; think, for instance, of a sort function that receives as input the pointer to the comparison 
function. Graphical toolkits have widely used this data type to implement event-driven programming, and 
they often have to pass a function that is invoked by another one.

PInvoke can marshal delegates as function pointers; again, the runtime is responsible for generating a 
suitable function pointer callable from native code. When the marshalled function pointer is invoked, a 
stub is called, and the activation record on the stack is rearranged to be compatible with the calling 
convention of the runtime. Then, the delegate function is invoked.

Although in principle the generated stub is responsible for implementing the calling convention 
adopted by the native code receiving the function pointer, the CLR supports only the stdcall calling 
convention for marshalling function pointers. Thus, the native code should adopt this calling convention 
when invoking the pointer. This restriction may cause problems, but in general, on the Windows platform, 
the stdcall calling convention is widely used.

The following C function uses a function pointer to apply a function to an array of integers:

typedef int (_stdcall *TRANSFORM_CALLBACK)(int);

void CINTEROPDLL_API transformArray(int* data, int count, TRANSFORM_CALLBACK fn)
{
    int i;
    for (i = 0; i < count; i++)
        data[i] = fn(data[i]);
}

The TRANSFORM_CALLBACK type definition defines the prototype of the function pointer you’re interested 
in here: a function takes an integer as the input argument and returns an integer as a result. The CALLBACK 
macro is specific to the Microsoft Visual C++ compiler and expands to __stdcall in order to indicate that 
the function pointer, when invoked, should adopt the stdcall calling convention instead of the cdecl 
calling convention.

The transformArray function takes as input an array of integers with its length and the function to 
apply to its elements. You now have to define the F# prototype for this function by introducing a delegate 
type with the same signature as TRANSFORM_CALLBACK:

type Callback = delegate of int -> int

[<DllImport("CInteropDLL", CallingConvention = CallingConvention.Cdecl)>]
extern void transformArray(int[] data, int count, Callback transform)

Now you can increment all the elements of an array by using the C function:

let anyToString any = sprintf "%A" any
let data = [|1; 2; 3|]
printf "%s\n" (String.Join("; ", (Array.map anyToString data)))



531

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

transformArray(data, data.Length, new Callback(fun x -> x + 1))
printf "%s\n" (String.Join("; ", (Array.map anyToString data)))

PInvoke declarations are concise, but for data types such as function pointers, parameter passing can 
be expensive. In general, libraries assume that crossing the language boundary causes a loss of efficiency 
and callbacks are invoked at a price different from ordinary functions. In this respect, the example 
represents a situation in which the overhead of PInvoke is significant: a single call to transformArray 
causes a number of callbacks without performing any real computation into the native code.

PInvoke Memory Mapping
As a more complicated example of PInvoke usage, this section shows you how to benefit from memory 
mapping into F# programs. Memory mapping is a popular technique that allows a program to see a file (or 
a portion of a file) as if it were in memory. This provides an efficient way to access files, because the 
operating system uses the machinery of virtual memory to access files and significantly speed up data 
access on files. After proper initialization, which is covered in a moment, the program obtains a pointer 
into the memory, and access to that portion of memory appears the same as accessing data stored into the 
file. 

You can use memory mapping to both read and write files. Every access performed to memory is 
reflected in the corresponding position in the file.

This is a typical sequence of system calls in order to map a file into memory:

1. A call to the CreateFile system call to open the file and obtain a handle to the 
file.

2. A call to the CreateFileMapping system call to create a mapped file object.

3. One or more calls to MapViewOfFile and UnmapViewOfFile to map and release 
portions of a file into memory. In a typical usage, the whole file is mapped at 
once in memory.

4. A call to CloseHandle to release the file.

The PInvoke interface to the required functions involves simple type mappings, as is usual for Win32 
API functions. All the functions are in kernel32.dll, and the signature can be found in the Windows SDK. 
Listing 18-1 contains the definition of the F# wrapper for memory mapping.

The SetLastError parameter informs the runtime that the called function uses the Windows 
mechanism for error reporting and that the GetLastError function can be read in case of error; otherwise, 
the CLR ignores such a value. The CharSet parameter indicates the character set assumed, and it’s used to 
distinguish between ANSI and Unicode characters; with Auto, you delegate the runtime to decide the 
appropriate version.

You can define the generic class MemMap that uses the functions to map a given file into memory. The 
goal of the class is to provide access to memory mapping in a system in which memory isn’t directly 
accessible, because the runtime is responsible for its management. A natural programming abstraction to 
expose the memory to F# code is to provide an array-like interface in which the memory is seen as a 
homogeneous array of values.

Listing 18-1. Exposing memory mapping in F#

module MMap =
    open System
    open System.IO
    open System.Runtime.InteropServices



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

532

    open Microsoft.FSharp.NativeInterop
    open Printf

    type HANDLE = nativeint
    type ADDR = nativeint

    [<DllImport("kernel32", SetLastError = true)>]
    extern bool CloseHandle(HANDLE handler)

    [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
    extern HANDLE CreateFile(string lpFileName,
                             int dwDesiredAccess,
                             int dwShareMode,
                             HANDLE lpSecurityAttributes,
                             int dwCreationDisposition,
                             int dwFlagsAndAttributes,
                             HANDLE hTemplateFile)

    [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
    extern HANDLE CreateFileMapping(HANDLE hFile,
                                    HANDLE lpAttributes,
                                    int flProtect,
                                    int dwMaximumSizeLow,
                                    int dwMaximumSizeHigh,
                                    string lpName)

    [<DllImport("kernel32", SetLastError = true)>]
    extern ADDR MapViewOfFile(HANDLE hFileMappingObject,
                              int dwDesiredAccess,
                              int dwFileOffsetHigh,
                              int dwFileOffsetLow,
                              int dwNumBytesToMap)

    [<DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)>]
    extern HANDLE OpenFileMapping(int dwDesiredAccess,
                                  bool bInheritHandle,
                                  string lpName)

    [<DllImport("kernel32", SetLastError = true)>]
    extern bool UnmapViewOfFile(ADDR lpBaseAddress)

    let INVALID_HANDLE = new IntPtr(-1)
    let MAP_READ = 0x0004
    let GENERIC_READ = 0x80000000
    let NULL_HANDLE = IntPtr.Zero
    let FILE_SHARE_NONE = 0x0000
    let FILE_SHARE_READ = 0x0001
    let FILE_SHARE_WRITE = 0x0002
    let FILE_SHARE_READ_WRITE = 0x0003
    let CREATE_ALWAYS = 0x0002
    let OPEN_EXISTING = 0x0003



533

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

    let OPEN_ALWAYS = 0x0004
    let READONLY = 0x00000002

    type MemMap<'T when 'T : unmanaged> (fileName) =

        let ok =
            match typeof<'T> with
            | ty when ty = typeof<int> -> true
            | ty when ty = typeof<int32> -> true
            | ty when ty = typeof<byte> -> true
            | ty when ty = typeof<sbyte> -> true
            | ty when ty = typeof<int16> -> true
            | ty when ty = typeof<uint16> -> true
            | ty when ty = typeof<int64> -> true
            | ty when ty = typeof<uint64> -> true
            | _ -> false

        do if not ok then failwithf "the type %s is not a basic blittable type" ((typeof<'T>).
ToString())
        let hFile =
            CreateFile (fileName,
                        GENERIC_READ,
                        FILE_SHARE_READ_WRITE,
                        IntPtr.Zero, OPEN_EXISTING, 0, IntPtr.Zero  )
        do if (hFile.Equals(INVALID_HANDLE)) then
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());
        let hMap = CreateFileMapping (hFile, IntPtr.Zero, READONLY, 0, 0, null)
        do CloseHandle(hFile) |> ignore
        do if hMap.Equals(NULL_HANDLE) then
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());

        let start = MapViewOfFile (hMap, MAP_READ, 0, 0 ,0)

        do if (start.Equals(IntPtr.Zero)) then
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error())

        member m.AddressOf(i : int) : 'T nativeptr =
            NativePtr.ofNativeInt(start + (nativeint i))

        member m.GetBaseAddress (i : int) : int -> 'T =
            NativePtr.get (m.AddressOf(i))

        member m.Item with get(i : int) : 'T = m.GetBaseAddress 0 i

        member m.Close() =
           UnmapViewOfFile(start) |> ignore;
           CloseHandle(hMap) |> ignore

        interface IDisposable with
            member m.Dispose() = m.Close()



CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

534

The class exposes two properties: Item and Element. The former returns a function that allows access 
to data in the mapped file at a given offset using a function; the latter allows access to the mapped file at a 
given offset from the origin.

This example uses the MemMap class to read the first byte of a file:

let mm = new MMap.MemMap<byte>("somefile.txt")

printf "%A\n" (mm.[0])

mm.Close()

Memory mapping provides good examples of how easy it can be to expose native functionalities into the 
.NET runtime and how F# can be effective in this task. It’s also a good example of the right way to use PInvoke 
to avoid calling PInvoked functions directly and build wrappers that encapsulate them. Verifiable code is one 
of the greatest benefits provided by virtual machines, and PInvoke signatures often lead to nonverifiable code 
that requires high execution privileges and risks corrupting the runtime’s memory.

A good approach to reducing the amount of potentially unsafe code is to define assemblies that are 
responsible for accessing native code with PInvoke and that expose functionalities in a .NET verifiable 
approach. This way, the code that should be trusted by the user is smaller, and programs can have all the 
benefits provided by verified code.

Wrapper Generation and Limits of PInvoke
PInvoke is a flexible and customizable interface, and it’s expressive enough to define prototypes for most 
libraries available. In some situations, however, it can be difficult to map directly the native interface into 
the corresponding signature. A significant example is function pointers embedded into structures, which 
are typical C programming patterns that approximate object-oriented programming. Here, the structure 
contains a number of pointers to functions that can be used as methods; but you must take care to pass 
the pointer to the structure as the first argument to simulate the this parameter. Oracle’s Berkeley 
Database (BDB) is a popular database library that adopts this programming pattern. The core structure 
describing an open database is:

struct __db {
        /* ... */
        DB_ENV *dbenv;              /* Backing environment. */
        DBTYPE type;               /* DB access method type. */
        /* ... */
        int  (*close) __P((DB *, u_int32_t));
        int  (*cursor) __P((DB *, DB_TXN *, DBC **, u_int32_t));
        int  (*del) __P((DB *, DB_TXN *, DBT *, u_int32_t));
        // ...
}

The System.Runtime.InteropServices.Marshal class features the GetFunctionPointerForDelegate for 
obtaining a pointer to a function that invokes a given delegate. The caller of the function must guarantee that 
the delegate object will remain alive for the lifetime of the structure, because stubs generated by the runtime 
aren’t moved by the garbage collector but can still be collected. Furthermore, callbacks must adopt the stdcall 
calling convention: if this isn’t the case, the PInvoke interface can’t interact with the library.

When PInvoke’s expressivity isn’t enough for wrapping a function call, you can still write an adapter 
library in a native language such as C. This is the approach followed by the BDB# library, in which an 
intermediate layer of code has been developed to make the interface to the library compatible with 



535

CHAPTER 18 ■ LIBRARIES AND INTEROPERATING WITH OTHER LANGUAGES 

PInvoke. The trick has been, in this case, to define a function for each database function, taking as input 
the pointer to the structure and performing the appropriate call:

DB *db;
// BDB call
db->close(db, 0);
// Wrapper call
db_close(db, 0);

The problem with wrappers is that they must be maintained manually when the signatures of the 
original library change. The intermediate adapter makes it more difficult to maintain the code’s overall 
interoperability.

Many libraries have a linear interface that can be easily wrapped using PInvoke, and, of course, 
wrapper generators have been developed. At the moment, there are no wrapper generators for F#, but the 
C-like syntax for PInvoke declarations makes it easy to translate C# wrappers into F# code. An example of 
such a tool is SWIG, which is a multilanguage wrapper generator that reads C header files and generates 
interop code for a large number of programming languages, such as C#.

Summary
In this chapter, you saw how F# can interoperate with native code in the form of COM components and 
the standard Platform Invoke interface defined by the ECMA and ISO standards. Neither mechanism is 
dependent on F#, but the language exposes the appropriate abstractions built into the runtime. You 
studied how to consume COM components from F# programs and vice versa, and how to access DLLs 
through PInvoke.



537

■ ■ ■

CHAPTER 19

Packaging, Debugging and  
Testing F# Code

Successful programming must involve a healthy marriage of good code with good software engineering 
techniques and practice. Sometimes these overlap: functional programming is a good software-engineering 
technique: among other benefits, anecdotal evidence indicates that functional programming frequently 
leads to a substantially reduced bug rate for good programmers. This is primarily because programs built 
using functional techniques tend to be highly compositional, building correct programs out of correct 
building blocks. The functional-programming style avoids or substantially reduces the use of side effects 
in the program, one property that makes programs more compositional. Debugging and testing are still 
essential activities to ensure that a program is as close as possible to its specifications, however. Bugs and 
misbehaviors are facts of life, and F# programmers must learn techniques to find and remove them. Often, 
these techniques are not inherently “functional “or even particularly “code” related, but they are still 
critical to the process of writing robust, maintainable, and successful software components.

You also need to learn many pragmatics of building and packaging F# code. As a result, this chapter 
turns to the pragmatics of packaging, debugging, and testing F# code. 

Packaging Your Code 
To begin your exploration of ways to package F# code, let’s first talk about the sorts of things you may be 
building with F#.

Mixing Scripting and Compiled Code
Small programs are often used both as interactive scripts and as small compiled applications. Here are 
some useful facts to know about scripting with F# and F# Interactive:

F# scripts use the extension .fsx.

A script file can contain #r directives. These reference a library or a type provider.

A script file can contain #load directives. This is as if the files had been compiled 
using the command-line compiler and included in the same assembly as the 
referencing script.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

538

A script that is referenced via a #load can itself contain further #load and #r 
references. This means that a script can act like a “little library.” If the same root file 
transitively references the same script more than once via #load, the file acts as if it 
is logically only referenced once.

You can access command-line arguments from within scripts by using the 
expression fsi.CommandLineArgs. Within compiled code, use System.Environment.
GetCommandLineArgs. Within code used in both modes, use conditional compilation 
to switch between these, as shown in the next coding example.

You can run a script on startup by using the --exec command-line option for fsi.
exe or by giving a single file name on the command line. You can find other 
command-line options by using fsi.exe --help.

Conditional compilation is a particularly useful feature for scripts—especially the predefined 
conditional compilation symbols COMPILED and INTERACTIVE. The former is set whenever you compile code 
using the command-line compiler, fsc.exe, and the latter is set whenever you load code interactively 
using F# Interactive. A common use for these flags is to start the GUI event loop for a Windows Forms or 
other graphical application, such as using System.Windows.Forms.Application.Run. F# Interactive starts an 
event loop automatically, so you require a call to this function in the compiled code only:

open System.Windows.Forms

let form = new Form(Width = 400, Height = 300,
                    Visible = true, Text = "F# Forms Sample")
#if COMPILED
// Run the main code
System.Windows.Forms.Application.Run(form)
#endif

■ Note: You can specify additional conditional compilation directives by using the --define command-line 
compiler option.

Choosing Optimization Settings
The F# compiler comes with a simple choice of optimization levels. You nearly always want to compile 
your final code using --optimize, which applies maximum optimizations to your code. This is also the 
default optimization setting when using fsc.exe or fsi.exe directly, but it is not the default for compiled 
code using Visual Studio’s “Debug” mode.

The F# compiler is a cross-module, cross-assembly optimizing compiler, and it attaches optimization 
information to each assembly you create when using optimization. This information may contain some 
code fragments of your assembly, which may be inlined into later assemblies by the optimizing compiler. 
In some situations, you may not want this information included in your assembly. For example, you may 
expect to independently version assemblies, and in this case, you may want to ensure that code is never 
duplicated from one assembly to another during compilation. In this case, you can use the 
--nooptimizationdata switch to prevent optimization data being recorded with the assemblies  that you 
create. 



539

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

Generating Documentation
In Chapter 2, you saw that comments beginning with /// are XML documentation comments, which are 
used by interactive tools such as Visual Studio. They can also be collected to generate either HTML or XML 
documentation. You generate HTML documentation using an auxiliary tool, such as FsHtmlDoc, which is 
available in the F# Power Pack.

You can also generate a simple XML documentation file using the --doc command-line option. You 
must name the output file. For example, using fsc -a --doc:whales.xml whales.fs for the code in Listing 
7-11 in Chapter 7 generates the file whales.xml containing:

<?xml version="1.0" encoding="utf-8"?>
<doc>
    <assembly><name>whales</name></assembly>
    <members>
      <member name="T:Whales.Fictional.WhaleKind">
        <summary> The three kinds of whales we cover in this release</summary>
      </member>
      <member name="P:Whales.Fictional.bluey">
      <summary> The backup whale</summary>
      </member>
      <member name="P:Whales.Fictional.moby">
       <summary>The main whale</summary>
      </member>

      <member name="P:Whales.Fictional.orca">
       <summary> This whale is for experimental use only</summary>
      </member>
      <member name="P:Whales.Fictional.whales">
       <summary> The collected whales</summary>
      </member>
      <member name="T:Whales.Fictional">
      </member>
    </members>
</doc>

Building Shared Libraries 
You usually need to share libraries among multiple applications. You can do this by using any of these 
techniques:

Including the same library source file in multiple projects and/or compilations

Duplicating the DLL for the library into each application directory

Creating a library and sharing it using a package-sharing tool such as NuGET

Creating a strong name-shared library and installing it on the target machine

This section covers the last option in more detail. A strong name-shared library has the characteristics:

It’s a DLL.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

540

You install it in the .NET global-assembly cache (GAC) on the target machine.

You give it a strong name by using --keyfile. This corresponds to project-signing 
options in the MonoDevelop and Visual Studio settings.

You package all of its supporting data files using --linkresource. This corresponds 
to “EmbeddedResource” in the MonoDevelop and Visual Studio settings.

You (optionally) give it a version number using an AssemblyVersion attribute in your 
code.

You ensure that all of its dependencies are shared libraries.

The usual place to install shared libraries is the .NET GAC. The GAC is a collection of assemblies 
installed on the machine and available for use by any application that has sufficient privileges. Most 
libraries used in this book, such as System.Windows.Forms.dll, are installed in the GAC when you install 
the .NET Framework on a machine.

The remaining requirements are easy to satisfy and are conditions that must hold before you install 
something in the GAC. For example, assemblies must have strong names. All assemblies have names; for 
example, the assembly whales.dll (which you compiled in the earlier “Compiling DLLs” section using fsc 
-a whales.fs) has the name whales. An assembly with a strong name includes a hash using a 
cryptographic public/private key pair. This means that only people who have access to the private key can 
create a strong-named assembly that matches the public key. Users of the DLL can verify that the contents 
of the DLL were generated by someone holding the private key. A strong name looks something like:

mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

It’s easy to create a strong-named assembly: generate a public/private key pair using the sn.exe tool 
that comes with the .NET Framework SDK, and give that as your keyfile argument. You can install libraries 
into the GAC using the .NET Framework SDK utility gacutil.exe. This command-line session shows how 
to do this for the code shown in Listing 7-11, again in Chapter 7:

C:\Users\dsyme\Desktop> sn.exe -k whales.snk

Microsoft (R) .NET Framework Strong Name Utility  Version 4.0.30319.17929
Copyright (c) Microsoft Corporation.  All rights reserved.

Key pair written to whales.snk

C:\Users\dsyme\Desktop> fsc -a --keyfile:whales.snk whales.fs
Microsoft (R) F# Compiler version 11.0.50727.1
Copyright (c) Microsoft Corporation. All Rights Reserved.

C:\Users\dsyme\Desktop> gacutil /i whales.dll
Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.17929
Copyright (c) Microsoft Corporation.  All rights reserved.

Assembly successfully added to the cache

Installer generators, such as WiX, also include directives to install libraries into the GAC. Installer 
generators are discussed later in this chapter.



541

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

■ Note: If you’re planning to write libraries for use by the rest of the world, we recommend that you take the time 
to read the .NET library design guidelines, document them using XML and HTML docs, and learn how to version your 
libraries. Chapter 20 takes a deeper look at guidelines for library design.

Using Static Linking
Sometimes, applications use a DLL as a library, but when it comes to deploying the application on a Web 
site or as installed software, it may be easier to bundle that DLL as part of the application. You can do this 
in two ways: by placing the DLL alongside the EXE for the application or by statically linking the DLL when 
you create the EXE. You select the DLL by using the --staticlink compiler option with the assembly name 
of the DLL.

You can also bundle the F# libraries into your application to give a zero-dependency application. You 
statically link all DLLs that depend on the F# libraries by using the --standalone compiler option.

Static linking can cause problems in some situations and should be used only for a final EXE or a DLL 
used as an application plug-in.

Packaging Different Kinds of Code
Table 19-1 lists some of the kinds of software implemented with F#. These tend to be organized in slightly 
different ways and tend to use encapsulation to varying degrees. For example, encapsulation is used 
heavily in frameworks but not when you’re writing 100-line scripts.

Table 19-1. Some kinds of software built using F#

Software Entity Description
Script A program or set of program fragments, usually in a single file and fewer than 

1,000 lines, usually with an .fsx extension, run through F# Interactive. 
Sometimes also compiled. Organized using functions and occasional type 
definitions. Freely uses static global state. Usually has no signature file or 
accessibility annotations.

Application An EXE or a web application DLL, perhaps with some supporting DLLs. 
Organized using namespaces, modules, functions, and some abstract types. 
Often uses some static global state. Some internal files and data structures may 
have signatures, but often these aren’t needed.

Application extension  
(plug-in or add-on)

A component that extends an application, often compiled as a DLL containing 
types along with an accompanying XML file that describes the plug-in to the 
application. The host application loads the DLLs using .NET reflection. Generally 
has no static state because this lets the application instantiate multiple instances 
of the plug-in. Example: the DLL plug-ins for Visual Studio, MonoDevelop.  

Type Provider A specific application extension that extends the resolution logic of the F# 
compiler, F# Interactive, and the F# editing tools.

Framework A collection of related type definitions, functions, and algorithms organized 
according to established .NET and F# library-design guidelines. Usually 
compiled as a DLL, strong-name signed, installed into the GAC on the target 
machine, and versioned as an independent entity. Generally has no static state 
except where it mediates essential state on the host computer or operating 
system.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

542

Software Entity Description
Framework extension A component that extends a framework, usually by defining types that 

implement particular interfaces. Organized in an appropriate namespace as a 
simple set of classes and functions that generate objects that implement the 
interfaces defined in a framework. Generally has no static state. Example: the 
Firebird.NET API, which provides implementations of the ADO.NET Data Access 
framework interfaces to enable access to Firebird databases.

Using Data and Configuration Settings
So far, this book has focused on code. In reality, almost every program comes with additional data 
resources that form an intrinsic part of the application. Common examples of the latter include the 
resource strings, sounds, fonts, and images for GUI applications. Applications typically select among 
different data resources based on language or culture settings. Often, programs also access additional 
parameters, such as environment variables derived from the execution context or registry settings 
recording user-configuration options. It can be useful to understand the idioms used by .NET to make 
managing data and configuration settings more uniform. Table 19-2 shows some terminology used for 
data resources.

Table 19-2. Application data: Terminology

Terminology Meaning Example
Static application data A data resource whose name/location is 

always known, whose value doesn’t  
change during execution, and that your 
application can generally assume always 
exists.

The PATH environment variable or a 
data file distributed with your 
application.

Strongly typed data Data accessed as a named, typed .NET 
value through code written by you or 
generated by a tool you’re using. The  
code hides the complexity of locating  
and decoding the resource.

An icon data resource decoded to a 
System.Drawing.Icon value. The 
ResGen.exe tool can generate strongly 
typed APIs for common Windows 
resources, such as bitmaps and icons.

GUI resource A string, a font, an icon, a bitmap, an 
image, a sound, or another binary 
resource that is attached to a Windows 
application or DLL using the Win32 .res 
format or .NET managed .resx format. 
Often dependent on language/culture 
settings.

A bitmap added as a resource to a 
Windows Forms application or to an 
error message from a compiler.

You may need to access many different kinds of data resources and application settings. Table 19-3 
summarizes the most common ones.



543

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

Table 19-3. Commonly used data and configuration settings

Data Resource Notes
Source directory The source directory containing the source file(s) at time of compilation. Often 

used to access further resources in F# Interactive scripts or for error reporting in 
compiled applications. Accessed using the __SOURCE_DIRECTORY__ predefined 
identifier.

Command arguments Arguments passed to the invocation of the program. Accessed using System.
Environment.GetCommandLineArgs and fsi.CommandLineArgs when running in F# 
Interactive.

Installation location Where a program EXE or DLL is installed. Accessed by using System.Windows. 
Forms.Application.StartupPath or by reading the Assembly.Location of any of 
the types defined in your assembly. For F# Interactive scripts, the installation 
location is usually the same as the source directory.

User directories Paths to common logical directories, such as Program Files, My Documents, and 
Application Data. Accessed using System.Environment.GetFolderPath.

Environment variables User- or machine-wide settings, such as PATH and COMPUTERNAME. Accessed using 
System.Environment.GetEnvironmentVariable.

Registry settings User- or machine-wide settings used to hold the vast majority of settings on a 
Windows machine. Accessed using Microsoft.Win32.Registry.GetValue and 
related types and methods.

Configuration settings Database connection strings and other configuration settings, often used for 
Web applications. If an application is called MyApp.exe, this is usually stored in a 
file such as MyApp.exe.config alongside the executable; web applications use a 
Web.Config file. Accessed using System.Configuration.ConfigurationManager.

Isolated storage A special storage area accessible only to an installed application and that looks 
just like disk storage.

Fonts, colors, icons, and 
so on

Specifications of Windows-related resources. Often taken from predefined 
system fonts and colors using the functions in System.Drawing: for example, 
Color.MidnightBlue or new Font(FontFamily.GenericMonospace, 8.0f). Can be 
added as a binary resource to an assembly and accessed using System.
Resources.ResourceManager.

You can author GUI data resources, such as fonts, images, strings, and colors, by creating a.resx file 
using a tool such as Visual Studio. You then compile them to binary resources by using the resgen.exe tool 
that is part of the .NET Framework SDK. Most development environments have tools for designing and 
creating these resources. Often, the .NET Framework contains a canonical type, such as System.Drawing.
Color, for any particular kind of resource; avoid writing needless duplicate types to represent them.

Sometimes it’s a good idea to make sure a data resource is officially part of an assembly. For example, 
this is required if the assembly will be installed into the GAC. You can embed resources in applications (or 
associate them with a DLL) by using the --resource compiler option. 

Debugging Your Code
Programming systems such as .NET support debugging as a primary activity through tools to help you 
inspect programs for possible errors. The debugger is one of the most important of these tools, and it 



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

544

allows you to inspect the program state during execution. You can execute the program stepwise and 
analyze its state during execution.

DEBUGGABLE PROGRAMS

The debugger requires support from debugged programs in order to work properly. For interpreted 
languages, the interpreter supervises program execution, and the debugger must interact with it. Compiled 
languages, on the other hand, must include this support during compilation so that the debugger can 
properly interact with the running program.

The CLR provides support for program debugging, and compiled programs provide information to the 
debugger via a file with a.pdb file extension, which is the program-debugging database. Because the 
compilation process maps high-level programming constructs into equivalent ones in a less expressive 
language (in this case, the intermediate language), some information gets lost during this process even if the 
semantics of the program are preserved. For example, in the intermediate language, the names of local 
variables are referred to as indexes into an array rather than names. A database is used to preserve the 
information about the correspondence between the program instructions and the intermediate language 
instructions. The debugging infrastructure uses it to create the illusion that the program is interpreted at the 
language level, showing the current line of execution in the source code rather than the one in the 
compiled—and actually running—program. The database retains correspondence among intermediate-
language instructions (and those that have been used to generate them) and other important information, 
such as local variable names, that is lost during compilation. The program database is language independent, 
so the debugger tool can be shared among programming languages, and you can analyze the program 
execution even when a program has been developed with different languages. It’s also possible to step 
through unmanaged code from managed code, and vice versa.

Debugging without the .pdb file is possible, although the debugger is incapable of showing the source code; 
instead, the intermediate code or the machine code is shown to the user.

Let’s start with the following simple function, which is in principle meant to return true if the input 
string is a palindrome and false otherwise:

let isPalindrome (str : string) =
    let rec check(s : int, e : int) =
        if s = e then true
        elif str.[s] <> str.[e] then false
        else check(s + 1, e - 1)

    check(0, str.Length - 1)

The function appears correct at first sight. It works only for strings with an odd number of characters 
and strings with an even length that aren’t palindromes, however. In particular, the program raises an 
exception with the "abba" string as input.

Let’s see how to use the Visual Studio debugger to figure out the problem with this simple function. 
The algorithm recursively tests the characters of the string pairwise at the beginning and at the end of the 
string, because a string is a palindrome if the first and last characters are equal and the substring obtained 
by removing them is a palindrome too. The s and e variables define the boundaries of the string to be 
tested and initially refer to the first and last characters of the input string. Recursion terminates when the 
outermost characters of the string to be tested differ or when you’ve tested the whole string and the 
indexes collide.



545

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

Figure 19-1 shows the debugging session of the simple program. You set a breakpoint at the instruction 
that prints the result of the isPalindrome function for the "abba" string by clicking where the red circle is 
shown, which indicates the location of the breakpoint. When you start the program in debug mode, its 
execution stops at the breakpoint, and you can step through the statements. The current instruction is 
indicated by the yellow arrow, and the current statement is highlighted, as shown in Figure 19-1.

Figure 19-1. The Visual Studio debugger

You can access the state of the program through a number of windows that show different aspects of 
the running program and that are usually docked at the bottom of the debugging window. For instance, 
you can inspect the state of the local variables of the current method (the Locals window shows the local 
variables and arguments, e and s in this example) or the state of the call stack to see the sequence of 
method calls (the Call Stack window). The Watch view lets you write variable names and simple 
expressions and watch them change during execution. You can also evaluate expressions in the Immediate 
window and invoke methods, as shown in Figure 19-1, where the simple expressions e and s are used. 
More views are available through the Debug menu, including the state of executing threads and the 
memory.

This simple example examines why isPalindrome misbehaves for an input string of even length. As 
shown in Figure 19-1, the Watch window is used to monitor the s and e variables intended to define the 
bounds of the substring that has yet to be checked; in this case, the two indexes cross without ever 
becoming equal, which is the criterion used to successfully stop the recursion. This happens when s has 
value 2 and e has value 1 in the example. The symptom of the function misbehavior is that an exception is 
thrown; this is frequently where debugging starts. In this example, the exception is thrown a few steps 
forward, when e gets value -1, which is an invalid index for accessing a character in a string. If you used 



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

546

str[e] as the watch expression or in the Immediate window, the problem would be evident. In more 
complicated situations, the ability to inspect the application state when the exception is raised makes it 
possible to determine what conditions to break on and where to set breakpoints before a bug occurs. Now 
that you’ve found the bug, you can fix it by extending the test from s = e to s >= e to ensure that even if 
the end index becomes smaller than the starting index, you deal with the situation appropriately.

■ Note: In Visual Studio and other Microsoft .NET debugging tools, debugger expressions follow the C# syntax, 
and arrays don’t require the dot before the square braces. The most noticeable difference between C# and F# 
expression syntax is that access to arrays uses [] rather than .[] and the equality operator is == rather than =.

Using More Features of the Visual Studio Debugger
This section focuses on relevant aspects of the debugging facilities that the CLR provides to managed 
applications via tools such as the Visual Studio debugger.

Consider the notion of a breakpoint—an essential tool to mark a statement in a program where you 
want to suspend execution and inspect the program state. Often, a bug appears only under very specific 
conditions. Trivial bugs, such as the one discussed earlier, are the easiest to track and the first to be fixed in 
a program. It can be difficult or even impossible to selectively suspend program execution at a statement 
only when certain conditions are met. Many programmers introduce an if statement with a dummy 
statement for the body and set the breakpoint to the statement to suspend the program under the defined 
condition. This requires a recompilation of the program and a change to the source code, which may lead 
to further problems, particularly when several points of the program must be kept under control. A more 
effective strategy is to use conditional breakpoints, a powerful tool offered by the debugger. When you 
right-click a breakpoint in the editor window or in the Breakpoints window (accessible through the Debug 
menu), a number of additional options become available.

For each breakpoint you can indicate:

A condition: An expression that must be satisfied by the program state in order to 
suspend program execution

A hit count: The number of times the breakpoint should be hit before suspending 
execution

A filter: A mechanism to filter the machine, process, and thread to select the set of 
threads that will be suspended when the breakpoint is hit

An action: Something to be executed when the breakpoint is hit

Breakpoint conditions and hit counts are the most frequently used options. A hit count is useful when 
a bug appears only after a significant period of execution. For instance, when you’re debugging a search 
engine, a bug may occur only after indexing gigabytes of data; the number of hits of the breakpoint can be 
determined.1 Conditional expressions are more useful when it’s difficult to reproduce the exact 
circumstances that trigger a bug and when the number of times the breakpoint is hit is variable. For 
expressions entered in the Immediate window, conditional expressions are expressed as in C#; this is true 

1One of the authors became a fan of this approach when a program he was writing crashed only after 
crunching 2GB of input data. The ability to stop the program immediately before the crash made it 
possible to find a particular input sequence that was unexpected. It would have been very difficult to find 
this bug by printing the state of the application.



547

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

for all languages, because the debugger infrastructure within the CLR is designed to deal with compiled 
programs and ignores the source language.

Sometimes you need to debug a running program that has been started without the debugger; a 
typical situation is one in which you’re debugging a service started through the Service snap-in of the 
Management Console or debugging a Web application live that is executed by IIS rather than by the Web 
server used for development by Visual Studio. In these situations, you can attach the debugger to a 
running process by selecting Tools  Attach to Process and selecting the process to debug. There are 
standard processes that are generally known to programmers: w3p.exe is used by IIS to run application 
pools where ASP.NET applications run, and the svchost.exe process generally hosts Windows services. 
Sometimes, however, it can be difficult to find out which process is running the code to debug, because 
several of these generic process hosts run applications.

Debugging a program significantly slows down its execution speed because the debugger 
infrastructure injects code to monitor program execution. Conditional breakpoints tend to worsen the 
situation, because every time the breakpoint is hit, the condition must be tested before standard execution 
resumes.

The CLR debugging infrastructure operates at the level of compiled assemblies. This has several 
implications. The objects and types that are visible to the debugger are those generated by the compiler 
and aren’t always explicitly defined by you in the source code. The program database information tends to 
preserve the mapping between the source and the compiled program, but sometimes, the underlying 
structure surfaces to the user. On the other hand, you can debug programs written in different 
programming languages, even when managed and unmanaged code must interoperate.

■ Note: One tricky problem with F# programs is debugging tail calls. (Chapter 8 described tail calls.) In particular, 
when a tail call is executed, the calling stack frame is removed prior to the call. This means that the calls shown in 
the Visual Studio call stack window may not be complete. Entries may be missing that should, logically speaking, be 
present, according to the strict call sequence that caused a program to arrive at a particular point. Likewise, the 
debugger commands step-into and step-out can behave a little unusually when stepping into a tail call. This 
behavior may be absent for programs compiled for debugging because many optimizations are disabled, but it 
appears when you’re debugging a program compiled for release.

Figure 19-2 shows a debugging session for the program discussed in Chapter 18; you’ve stepped into 
the HelloWorld method, which is a C function accessed through the PInvoke interface as witnessed by the 
Call Stack window. To enable cross-language debugging, indicate in the project options’ Debug section 
that the debugging scope is the whole program rather than the current project.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

548

Instrumenting Your Program with the  
System.Diagnostics Namespace
A managed application can programmatically access the debugging services of the CLR through the types 
contained in the System.Diagnostics namespace. Several types in the namespace encompass aspects of 
the runtime, including stack tracing, communicating with the debugger, accessing performance counters 
to read statistics about the computer state (memory and CPU usage are typically available using them), 
and handling operating system processes.

This section focuses on the classes related to debugging and the debugger. You can interact with the 
debugging infrastructure in three primary ways:

The Debug class programmatically asserts conditions in the program and outputs 
debugging and tracing information to debuggers and other listeners.

The Debugger class interacts with the debugger, checks whether it’s attached, and 
triggers breaks explicitly from the program.

The debugging attributes are a set of custom attributes that you can use to annotate 
the program to control its behavior (see Chapters 9 and 10 for more information 
about custom attributes).

The Debug class provides a way to output diagnostic messages without assuming that the program has 
been compiled as a console application; the debug output is collected by one or more listeners that receive 
the output notifications and do something with them. Each listener is an instance of a class inherited from 
the TraceListener class and typically sends the output to the console or to a file, or notifies the user with a 

Figure 19-2. Cross-language debugging with the Visual Studio debugger



549

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

dialog box (you can find more information about how to write a listener in the class library documentation). 
The following example instruments the isPalindrome function with tracing statements:

open System.Diagnostics

let isPalindrome (str : string) =
    let rec check(s : int, e : int) =
        Debug.WriteLine("check call")
        Debug.WriteLineIf((s = 0), "check: First call")
        Debug.Assert((s >= 0 || s < str.Length), sprintf "s is out of bounds: %d" s)
        Debug.Assert((e >= 0 || e < str.Length), sprintf "e is out of bounds: %d" e)
        if s = e || s = e + 1 then true
        else if str.[s] <> str.[e] then false
        else check(s + 1, e - 1)
    check(0, str.Length - 1)

The WriteXXX methods of the Debug class output data of a running program are a sophisticated version 
of the printf debugging approach, where the program is enriched with print statements that output useful 
information about its current state. In this case, however, you can redirect all the messages to different 
media rather than just print them to the console. You can also conditionally output messages to reduce the 
number of messages sent to the debug output. The example outputs a message each time the check 
method is invoked and uses the conditional output to mark the first invocation.

■ Note: By default, the diagnostic output isn’t sent to the console on Windows. When a program is executed in 
debugging mode in Visual Studio, the output is sent to the Output window. Otherwise, you need a tool such as 
DebugView, available on Microsoft TechNet. F# Interactive doesn’t output any debug assertions being compiled for 
release.

Assertions are a well-known mechanism to assert conditions about the state of a running program, 
ensuring that at a given point in the program, certain preconditions must hold. For instance, assertions are 
often used to ensure that the content of an option-valued variable isn’t None at some point in the program. 
During testing, ensure that if this precondition isn’t satisfied, program execution is suspended as soon as 
possible. This avoids tracing back from the point where the undefined value of the variable would lead to 
an exception. The Assert method lets you specify a Boolean condition that must hold; otherwise, the given 
message is displayed, prompting the user with the failed assertion.

Both debug output and assertions are statements that typically are useful during program development, 
but when a release is made, these calls introduce unnecessary overhead. Often, the program compiled with 
these extra checks is called the checked version of the program. The .NET Framework designers devised a 
general mechanism to strip out the calls to methods under a particular condition with the help of the 
compiler. The ConditionalAttribute custom attribute is used to label methods whose calls are included in 
the program only if a given compilation symbol is defined; for the methods in the Debug type, it’s the DEBUG 
symbol. The F# compiler supports this mechanism, making it possible to use these tools to instrument the F# 
program in a way that is supported by the .NET infrastructure.

The Debugger type lets you check whether the program is attached to a debugger and to trigger a break 
if required. You can also programmatically launch the debugger using this type and send log messages to 
it. This type is used less often than the Debug type, but it may be useful if a bug arises only when there is no 
attached debugger. In this case, you can programmatically start the debugging process when needed.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

550

Another mechanism that lets you control the interaction between a program and the debugger is 
based on a set of custom attributes in the System.Diagnostics namespace. Table 19-4 shows the attributes 
that control in part the behavior of the debugger.

Table 19-4. Attributes controlling program behavior under debug

Attribute Description
DebuggerBrowsableAttribute Determines whether and how a member is displayed in the Debug 

window.

DebuggerDisplayAttribute Indicates how a type or field should be displayed in the Debug 
window.

DebuggerHiddenAttribute The debugger may interpret this attribute and forbid interaction 
with the member annotated by it.

DebuggerNonUserCodeAttribute Marks code that isn’t user written (for instance, designer-
generated code) and that can be skipped to avoid complicating 
the debugging experience.

DebuggerStepperBoundaryAttribute Locally overrides the use of DebuggerNonUserCodeAttribute.

DebuggerStepThroughAttribute The debugger may interpret this attribute and disallow stepping 
into the target method.

DebuggerTypeProxyAttribute Indicates a type that is responsible for defining how a type is 
displayed in the Debug window. It may affect debugging 
performance and should be used only when it’s really necessary to 
radically change how a type is displayed.

DebuggerVisualizerAttribute Indicates for a type the type that defines how to render it while 
debugging.

These attributes allow you to control two aspects of debugging: how data are visualized by the 
debugger and how the debugger should behave with respect to the visibility of members.

The ability to control how types are displayed by the debugger can help you produce customized 
views of data that may significantly help you inspect the program state in an aggregate view. The easiest 
way is to use DebuggerDisplayAttribute, which supports customizing the text associated with a value in 
the Debug window; an object of that type can still be inspected in every field. Consider the simple 
example:

open System

[<DebuggerDisplay("{re}+{im}i")>]
type MyComplex= {re : double; im : double}

let c = {re = 0.0; im = 0.0}
Console.WriteLine("{0}+{1}i", c.re, c.im)

Here, you introduce a record named MyComplex with the classic definition of a complex number. The 
DebuggerDisplayAttribute attribute is used to annotate the type so that the debugger displays its instances 
using the mathematical notation rather than just displaying the type name. The syntax allowed assumes 
that curly braces are used to indicate the name of a property whose value should be inserted in the format 
string. Figure 19-3 shows the result in the Visual Studio debugger: on the left is how the debugger window 
appears when MyComplex is without the DebuggerDisplay annotation; on the right, the custom string 
appears, with the properties in the string in curly braces. As you can see, the difference is in the value field, 



551

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

and the structure can still be inspected. You can use a custom visualizer to fully customize the appearance 
of the data in the debugger, but it may affect debugging performance.

Figure 19-3. The MyComplex type shown by the debugger without and with DebuggerDisplay

Figure 19-3 is also interesting because it shows how the debugger displays information from the 
compiled program. In this case, the association between the name c and the runtime local variable has 
been lost, and the record appears because it has been compiled by the compiler as a pair of fields and 
public properties.

The rest of the namespace contains classes to interact with the runtime: the event-logging 
infrastructure, process, and thread management; and the representation of a thread’s stack. Stack 
manipulation can be useful if you need to know the call sequence that leads to executing a particular 
method. The StackTrace type exposes a list of StackFrame objects that provide information about each 
method call on the stack.

Debugging Concurrent and Graphical Applications
Although a debugger is a fundamental tool for inspecting applications, it isn’t the Holy Grail, and it must 
be used carefully: the process interferes with an application’s normal execution. The most relevant impact 
of the debugging process on a running program is the influence on execution timing, and graphical and 
concurrent programs are much more prevalent these days. Sometimes, a bug disappears while the 
debugger is being used, because of these changes in execution timing.

Debugging and testing concurrent applications can be particularly difficult, because using a debugger 
is guaranteed to alter execution timing. There is no general rule for debugging concurrent applications, 
but this section briefly discusses how you can use the debugger in these cases. Consider this simple 
example of a multithreaded application:

open System
open System.Threading

let t1 = Thread(fun () -> while true do printf "Thread 1\n")
let t2 = Thread(fun () -> while true do printf "Thread 2\n")

t1.Start(); t2.Start()

■ Note: If you run this example in F# Interactive, you must abort the thread explicitly by calling the Abort 
method, right-clicking the F# Interactive window, and choosing Cancel Evaluation. If it doesn’t resume, you may have 
to kill the fsi.exe process that is using the CPU most. This is a common solution when a computation gets out of 
control during interactive sessions.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

552

Threads t1 and t2 access the console, which is a shared resource; when you run the program without 
a debugger attached, the string printed by the two threads appears interleaved on the console. If you set a 
breakpoint on the two printf statements and start a debugging session, stepping automatically moves 
from one thread to the other; the output of the program is completely different from that obtained without 
debugging. This is true also if you disable the breakpoints. The output is even more unbalanced if you set 
the breakpoint in only one of the two threads.

Chapter 11 discussed shared-memory multithreaded applications. In such applications, shared 
objects accessed by different threads are critical resources that may be viewed in the debugger. If the 
debug of a single thread fails, setting breakpoints in different threads may help you study the dynamic of 
the application, even if the full interaction of the threads can’t be fully simulated. If this approach fails, it 
may be useful to introduce tests inside the application and use the Debugger type only when a given 
condition occurs. Channel-based message-passing applications are generally easier to debug than those 
that rely on shared memory, because you can monitor the communication end points using breakpoints 
or logging messages. Although careful use of the debugger may help when you’re debugging concurrent 
applications, sometimes, external observation is enough to influence a running program. In these cases, 
tracing through debug output becomes a viable alternative; large systems have different levels of traces to 
monitor program execution.

Graphical applications also present issues when you’re debugging. As discussed in Chapter 16, a GUI 
application’s event loop is handled by a single thread; if this is blocked, the application’s GUI ceases 
working while it’s suspended in the debugger. Consider the simple application:

open System
open System.Windows.Forms

let f = new Form(Text = "Hello world")
let b = new Button(Text = "Click me!", Dock = DockStyle.Fill)

b.Click.Add(fun _ ->
    b.Text <- "Click me again"
    MessageBox.Show("Hello world") |> ignore)

f.Controls.Add(b)
f.Show()
Application.Run(f)

If you set a breakpoint at the MessageBox statement and debug the application, when the button is 
clicked, the debugger suspends execution, and the form stops responding. The text of the button doesn’t 
change until execution resumes, because the thread suspended by the debugger is responsible for 
handling GUI events, including the paint event that refreshes the button’s content and updates the button 
label.

More specifically, event handlers can affect the appearance of a form in two ways: by setting 
properties of graphical controls and by explicitly drawing using a Graphics object. In the first case, the 
change isn’t noticed until execution resumes; the property change usually asks for a refresh of the control’s 
appearance, which eventually results in a paint event that must be processed by the thread that is 
suspended in the debugger. In the second case, updates are immediately visible when a statement 
involving drawing primitives is executed (unless double buffering has been enabled on the window).

For example, consider this program, which displays a window with a number of vertical lines:

open System
open System.Windows.Forms
open System.Drawing



553

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

let f = new Form(Text = "Hello world")

f.Paint.Add(fun args ->
    let g = args.Graphics

    for i = 0 to f.Width / 10 do
        g.DrawLine(Pens.Black, i * 10, 0, i * 10, f.Height))

f.Show()
Application.Run(f)

Set a breakpoint at the DrawLine statement and start debugging the application, moving the debugger 
window in order to make the application form visible. If you continue the execution one statement at a 
time, you can see the lines appear on the form. In this case, the interaction with the graphical system 
doesn’t trigger an event but interacts directly with the Graphics object by emitting graphic primitives that 
are rendered immediately.

This discussion of debugging graphical applications uses examples based on Windows Forms. The 
same considerations apply to all event systems in which a thread is responsible for event notification. For 
graphical systems such as WPF, based on the retention of graphic primitives, things work slightly 
differently, but there are analogous considerations.

Debugging and Testing with F# Interactive
Functional programming languages have traditionally addressed many debugging and testing issues 
through their ability to interactively evaluate program statements and print the values of variables, 
inspecting the program state interactively. F# Interactive allows you to execute code fragments and quickly 
test them; you can also inspect the state of the fsi script by querying values from the top level.

Development and testing using F# Interactive can effectively reduce development time, because you 
can evaluate code fragments more than once without having to recompile the entire system. The Visual 
Studio project system for F# makes this process even more productive, because code is edited in the 
development environment with type checking and IntelliSense; you can send code to F# Interactive by 
selecting it and pressing the Alt+Enter shortcut. In this scenario, the isPalindrome function from the 
previous section could have been developed incrementally and tested by invoking it with a test-input 
argument. After you found and fixed the issue, you could evaluate the function definition again and test it 
for further bugs.

During software development, it’s common practice to write simple programs to test specific features 
(the “Unit Testing” section discusses this topic more extensively). With F# Interactive, you can define tests 
as functions stored in a file and selectively evaluate them in Visual Studio. This approach can be useful in 
developing and defining new tests, but you can use more specific tools to run tests in a more systematic 
way.

Controlling F# Interactive
As you saw in Chapter 9, programs run in F# Interactive have access to an object called fsi that lets you 
control some aspects of the interactive execution. It’s contained in the assembly FSharp.Interactive.
Settings.dll, which is automatically referenced in files ending with .fsx and in F# Interactive sessions.

Table 19-5 shows some of the methods supported by this object.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

554

Table 19-5. Members of the fsi object

Member Type Description
fsi.FloatingPointFormat string Gets or sets the format used for floating-point 

numbers, based on .NET Formatting specifications

fsi.FormatProvider System.IFormat 
Provider

Gets or sets the cultural format used for numbers, 
based on .NET Formatting specifications

fsi.PrintWidth int Gets or sets the print width used for formatted text 
output

fsi.PrintDepth int Gets or sets the depth of output for tree-structured 
data

fsi.PrintLength int Gets or sets the length of output for lists and other 
linear data structures

fsi.ShowProperties bool Gets or sets a flag indicating whether properties 
should be printed for displayed values

fsi.ShowDeclarationValues bool Gets or sets a flag indicating whether declaration 
values should be printed

fsi.ShowIEnumerable bool Gets or sets a flag indicating whether sequences 
should be printed in the output of the interactive 
session

fsi.AddPrinter ('a -> string) -> 
unit

Adds a printer for values compatible with the specific 
type 'a

fsi.AddPrintTransformer ('a -> obj) -> 
unit

Adds a printer that shows any values compatible with 
the specific type 'a as if they were values returned by 
the given function

fsi.CommandLineArgs string[] Gets the command-line arguments after ignoring the 
arguments relevant to the interactive environment 
and replacing the first argument with the name of the 
last script file

Some Common F# Interactive Directives
Table 19-6 shows several common directives accepted by F# Interactive, some of which correspond to 
options for the F# command-line compiler.

Table 19-6. Some commonly used F# Interactive directives

Directive Description
#r path References a DLL. The DLL is loaded dynamically when first required.

#I path Adds the given search path to that used to resolve referenced DLLs.

#load file ... file Loads the given file(s) as if it had been compiled by the F# command-line 
compiler.

#time Toggles timing information on/off.

#quit Exits F# Interactive.



555

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

Understanding How F# Interactive Compiles Code
Although F# Interactive is reminiscent of the read-eval-print loops of interpreted languages, it’s 
substantially different, because it compiles code rather than interprets it. Whenever a code fragment is 
typed at the top level, it’s compiled on the fly as part of a dynamic assembly and evaluated for side effects. 
This is particularly important for types, because you can create new ones at the top level, and their 
dependencies may be tricky to understand fully. 

Let’s start with an example of a nontrivial use of F# Interactive that shows these intricacies. You define 
the class APoint, which represents points using an angle and a radius:

type APoint(angle, radius) =
    member x.Angle = angle
    member x.Radius = radius
    new() = APoint(angle = 0.0, radius = 0.0)

If you create an instance of the class using F# Interactive, you can inspect the actual type by using the 
GetType method. The output is:

> let p = APoint();;
val p : APoint

> p.GetType();;
val it : System.Type =
  FSI_0004+APoint
    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null;
     AssemblyQualifiedName = "FSI_0004+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ...}

Now, suppose you want to extend the APoint class with an additional member that stretches the point 
radius a given amount; it’s natural to type the new definition of the class into the top level and evaluate it. 
F# Interactive doesn’t complain about the redefinition of the type:

type APoint(angle, radius) =
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch (k : double) = APoint(angle = x.Angle, radius = x.Radius + k)
    new() = APoint(angle = 0.0, radius = 0.0)

Because you’ve redefined the structure of APoint, you may be tempted to invoke the stretch method 
on it, but doing so results in an error:

> p.Stretch(22.0);;
error FS0039: The field, constructor or member 'Stretch' is not defined

To understand what’s happening, create a new instance p2 of the class APoint and ask for the type:

> let p2 = APoint();;
val p2 : APoint

> p2.GetType();;
val it : System.Type =
  FSI_0007+APoint



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

556

    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null;
     AssemblyQualifiedName = "FSI_0007+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ...}

As you can see, the name of p2’s type is FSI_0005+APoint, whereas p’s type is FSI_0002+APoint. Under 
the hood, F# Interactive compiles types into different modules to ensure that types can be redefined; it 
also ensures that the most recent definition of a type is used. The older definitions are still available, and 
their instances aren’t affected by the type redefinition.

Understanding the inner mechanisms of F# Interactive is useful when you use it to test F# programs, 
because interactive evaluation isn’t always equivalent to running code compiled using the command-line 
compiler. On the other hand, the compiled nature of the system guarantees that the code executed by F# 
Interactive performs as well as compiled code.

F# Interactive and Visual Studio
The relation between Visual Studio and F# Interactive is different from typical Visual Studio add-ins. It’s 
useful to understand, because the state of an F# Interactive session is separate from the Visual Studio state 
and can affect the process of testing and debugging in many subtle ways. You can also manage external 
resources through .NET and COM interfaces, including automating Visual Studio tasks, but accessing its 
interfaces is less easy than it may appear at first.

F# Interactive is a Visual Studio tool window2 that lets you interact with an fsi.exe process like a 
standard console. You communicate with the fsi.exe process using standard streams. This design choice 
ensures that a code mistake that causes the F# Interactive to hang doesn’t affect the Visual Studio editor 
that contains the data. You can restart F# Interactive from the tool window and obtain a fresh new instance 
without having to restart Visual Studio.

Restarting F# Interactive during testing and debugging ensures a clean environment. Consider, for 
example, a class whose instances open the same file. During a test, the file may be locked by an instance 
and become inaccessible due to variable redefinition; at some point, the garbage collector runs the 
finalizer and may close the file, slowing the iterative process of testing with F# Interactive. Sometimes, 
redefinition causes problems too: a class definition may be evaluated before you make additional changes, 
and the interface may then behave differently than the one in the program editor; you may continue to 
evaluate code that refers to the older version. In these cases, restarting F# Interactive is an option, and it 
returns you to a clean state.

Using Visual Studio automation, you can use F# Interactive to access objects exposing functionalities of 
the programming environment. The DTE and the DTE2 interfaces are the entry points to the entire Visual 
Studio object model. For instance, you can print the full path of the active document window:

#r @"EnvDTE.dll"
#r @"EnvDTE80.dll"
open System.Runtime.InteropServices
let appObj = Marshal.GetActiveObject("VisualStudio.DTE") :?> EnvDTE80.DTE2
printfn "%s" (appObj.ActiveDocument.FullName)

You use the GetActiveObject method to obtain a reference to the Visual Studio object model, and then 
you use the .NET assembly containing the interface generated from the COM types to access the object 
model. In this example, you connect to a running instance of Visual Studio (usually the first one started), 
not necessarily the same one associated with the F# Interactive executing the code. To attach to a specific 
instance of Visual Studio, you need to access the COM Running Object Table and associate it with the 
desired instance.

2Tool windows in Visual Studio are dockable, like the Solution Explorer window.



557

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

Using Visual Studio automation, you can automate several tasks during testing and debugging, 
including building temporary configurations within Visual Studio for testing purposes. Manipulation of 
Visual Studio elements isn’t restricted to F# projects, but it can affect any area also affected by the macro 
system.

Testing Your Code
Anecdotal evidence indicates that functional programming frequently leads to a substantially reduced bug 
rate for good programmers. This is primarily because programs built using functional techniques tend to 
be highly compositional, building correct programs out of correct building blocks. The functional 
programming style avoids or substantially reduces the use of side effects in the program, one property that 
makes programs more compositional. Debugging and testing, however, are still essential activities to 
ensure that a program is as close as possible to its specifications. Bugs and misbehaviors are facts of life, 
and F# programmers must learn techniques to find and remove them.

As a result, software testing is important when you’re developing large systems. Tests are initially 
carried out by writing small programs and interactively running them, but a larger infrastructure quickly 
becomes necessary as a system grows and as new functionalities must preserve the existing ones. This 
chapter discusses how you can perform testing with F# using F# Interactive, using the debugging 
facilities provided by Visual Studio and the .NET infrastructure, and using the NUnit framework for unit 
testing.

A widely adopted debugging technique is the “do-it-yourself-by-augmenting-your-program-with-
printf” approach. This technique suffers from several problems, however; although it’s useful, it shouldn’t 
be the only technique you’re prepared to apply to the complexities associated with program testing and 
debugging.

You can use several strategies to test programs and ensure that they behave as expected. The testing 
theory developed by software engineering has introduced several techniques used every day in software 
development. This chapter focuses on three aspects of program debugging and testing with F#:

Using the Visual Studio debugger and the .NET debugging framework

Using F# Interactive for testing and debugging

Doing unit testing using NUnit, a freely available framework for unit testing

Alternative tools for debugging and unit testing are available; these include the .NET debugger that 
ships with the .NET Framework and the testing framework included in some Visual Studio flavors. The 
concepts behind these tools are similar to those presented here, and the techniques discussed in this 
chapter can be easily adapted when using them. All these techniques and tools are very helpful, but 
remember that these are just tools, and you must use them in the appropriate way.

Software testing is an important task in software development; its goal is to ensure that a program or a 
library behaves according to the system specifications. It’s a significant area of software-engineering 
research, and tools have been developed to support increasing efforts in software verification. Among a 
large number of testing strategies, unit testing has rapidly become popular because of the software tools 
used to support this strategy. The core idea behind this approach involves writing small programs to test 
single features of a system during development. When bugs are found, new unit tests are added to ensure 
that a particular bug doesn’t occur again. Recently, it’s been proposed that testing should drive software 
development, because tests can be used to check new code and later to conduct regression tests, ensuring 
that new features don’t affect existing ones.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

558

FSCHECK

Unit testing is not the only strategy for testing; other automatic testing approaches have been investigated 
and have led to tools implementing them. One of these is FsCheck, available on Codeplex (at http://
fscheck.codeplex.com), which is a port of Haskell QuickCheck to F# that works with .NET languages 
such as C#, VB.NET, and, of course, F#. The approach focuses on property verification: a statement in the 
form of function is checked to find if potential inputs may falsify it.

To give an idea of uses of this tool, we introduce a very simple example taken from the quick start. The 
property states the simple fact that twice reversing of a list is the list itself:

let revPropertyCheck (xs:list<int>) = List.rev(List.rev xs) = xs

Using the Check.Quick function with the revPropertyCheck, FsCheck generates 100 tests and verifies that 
the property holds for all of them. If, for instance, we change the revPropertyCheck function with a test 
checking, if the reversed list is equal to itself, we get the output:

> Check.Quick revPropertyCheck;;
Falsifiable, after 2 tests (2 shrinks) (StdGen (1809913113,295281725)):
[0; 1]

FsCheck generates inputs for veryfiying properties using strategies depending on involved types, and it 
features the ability to run multiple tests at once and control the number of cases to be generated and tested. 
With unit tests, the test cases are under control of the unit-test developer; with FsCheck, test cases are 
generated by the framework with pros and cons: tests may leave particular cases unchecked (this is also 
holds for programmer-developed unit tests), and the way properties are specified is more declarative, 
indicating that some property must hold rather testing for specific cases. Combining the two approaches 
may increase significantly the coverage and effectiveness of tests.

This section discusses how you can develop unit tests in F# using the freely available NUnit tool (www.
nunit.com). The tool was inspired by JUnit, a unit-testing suite for the Java programming language, but the 
programming interface has been redesigned to take advantage of the extensible metadata that the CLR 
provides by means of custom attributes.

Let’s start with an example and develop a very simple test suite for the isPalindrome function. The first 
choice you face is whether tests should be embedded in the application. If you create tests as a separated 
application, you can invoke only the public interface of your software; features internal to the software 
can’t be tested directly. On the other hand, if you embed unit tests in the program, you introduce a 
dependency from the nunit.framework.dll assembly, and the unit tests are available at runtime even 
where they aren’t needed. Because the NUnit approach is based on custom attributes, performance isn’t 
affected in either case. If you use tests during program development, it’s more convenient to define them 
inside the program; in this case, conditional compilation may help to include them only in checked builds.

Listing 19-1 shows a test fixture for the isPalindrome function—that is, a set of unit tests. Test fixtures 
are represented by a class annotated with the TestFixture custom attribute; tests are instance methods 
with the signature unit -> unit and annotated with the Test custom attribute. Inside a test case, you use 
methods of the Assert class to test conditions that must be satisfied during the test. If one of these fails, 
the entire test is considered a failure, and it’s reported to the user by the tool that coordinates test 
execution.

Listing 19-1. A test fixture for the isPalindrome function

open System
open NUnit.Framework
open IsPalindrome



559

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

[<TestFixture>]
type Test() =

    let posTests(strings) =
        for s in strings do
            Assert.That(isPalindrome s, Is.True,
                          sprintf "isPalindrome(\"%s\") must return true" s)

    let negTests(strings) =
        for s in strings do
            Assert.That(isPalindrome s, Is.False,
                           sprintf "isPalindrome(\"%s\") must return false" s)

    [<Test>]
    member x.EmptyString () =
        Assert.That(isPalindrome(""), Is.True,
                      "isPalindrome must return true on an empty string")

    [<Test>]
    member x.SingleChar () = posTests ["a"]

    [<Test>]
    member x.EvenPalindrome () = posTests ["aa"; "abba"; "abaaba"]

    [<Test>]
    member x.OddPalindrome () = posTests ["aba"; "abbba"; "abababa"]

    [<Test>]
    member x.WrongString () = negTests ["as"; "F# is wonderful"; "Nice"]

Test units are methods that invoke objects of the program and test return values to be sure their 
behavior conforms to the specification. This example also introduces the posTests and negTests functions 
used in several tests. 

Developing unit tests is a matter of defining types containing the tests. Although you can write a single 
test for a program, it’s a good idea to have many small tests that check various features and different 
inputs. In this case, you introduce five tests: one for each significant input to the function. You could 
develop a single test containing all the code used for the individual tests, but, as you see shortly, doing so 
would reduce the test suite’s ability to spot problems in the program. In general, the choice of the test 
suite’s granularity for a program is up to you; it’s a matter of finding a reasonable tradeoff between having a 
large number of unit tests checking very specific conditions and having a small number of unit tests 
checking broader areas of the program.

To compile the project, you must reference the nunit.framework.dll assembly. After the program has 
been compiled, you can start NUnit and open the executable.

As shown in Figure 19-4, the assembly containing the unit tests is inspected using the CLR’s reflection 
capabilities, classes annotated with the TestFixture attribute are identified by NUnit, and searched-for 
methods are annotated with the Test attribute. Initially, all the fixtures and the tests are marked with gray 
dots. When you run tests, the dot is colored green or red depending on the outcome of the particular test.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

560

If you reintroduce the original bug in the isPalindrome function and run NUnit again, EmptyString 
and EvenPalindrome fail, the corresponding dots are marked red, and the Errors and Failures tabs contain 
details about the test failure. This is the main benefit of having a large number of small unit tests: tools can 
run them automatically to identify problems in a program as well as the area potentially involved in the 
problem. Even in this simple example, a single test for the entire function would indicate the problem with 
the function, although it would fail to spot the kind of input responsible for the issue.

Like every other piece of software, unit tests must be maintained, documented, and updated to follow 
the evolution of the software for which they’re designed. The number of test cases, organized in fixtures, 
tends to grow with the system during development, and a large system may have thousands of these tests. 
Tools such as NUnit have features to control tests, and they allow you to run subsets of the entire set of test 
cases for a system. Test fixtures are a form of grouping: a test suite may contain different test fixtures that 
may group test cases for different aspects to be tested.

NUnit features a number of additional attributes to support the documentation and classification of 
test cases and test fixtures. The Description attribute lets you associate a description with annotated test 
fixtures and test cases. You can use the Category and Culture attributes to associate a category and a 
culture string with test fixtures and test cases; in addition, to provide more information about tests, NUnit 
lets you filter tests to be run using the content of the attributes. The ability to select the tests that must be 
run is important, because running all tests for a system may require a significant amount of time. Other 
mechanisms to control the execution of tests are offered by the Ignore and Explicit attributes; you can 
use the former to disable a test fixture for a period without having to remove all the annotations, and the 
latter indicates that a test case or a fixture should only be run explicitly.

Another important aspect of testing nontrivial software is the test fixture’s life cycle. Test cases are 
instance methods of a class; and with a simple experiment, you can easily find that NUnit creates an 
instance of the class and runs all the tests it contains. To verify this, it’s enough to define a counter field in 
the class annotated as a fixture and update its value every time a test is run; the value of the counter is 

Figure 19-4. Test unit of isPalindrome executed in NUnit



561

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

incremented for each test in the suite. Although you may rely on the standard life cycle of the class, NUnit 
provides additional annotations to indicate the code that must be run to set up a fixture and the 
corresponding code to free the resources at the end of the test. You can also define a pair of methods that 
are run before and after each test case. The TestFixtureSetUp and TestFixtureTearDown attributes 
annotate methods to set up and free a fixture; SetUp and TearDown are the attributes for the corresponding 
test cases.

Listing 19-2 shows a test fixture for the isPalindrome function that includes most of the attributes 
discussed and one test case.3 You mark the category of this test case as a “special case.” You also include a 
description for each test case and the methods invoked before and after the fixture and single-test cases 
are run. NUnit’s graphical interface includes a tab that reports the output sent to the console; when tests 
run, the output shows the invocation sequence of the setup and teardown methods.

Listing 19-2. A Refined Test Fixture for the isPalindrome Function

open System
open NUnit.Framework

[<TestFixture;
  Description("Test fixture for the isPalindrome function")>]
type Test() =
    [<TestFixtureSetUp>]
    member x.InitTestFixture () =
        printfn "Before running Fixture"

    [<TestFixtureTearDown>]
    member x.DoneTestFixture () =
        printfn "After running Fixture"

    [<SetUp>]
    member x.InitTest () =
        printfn "Before running test"

    [<TearDown>]
    member x.DoneTest () =
        Console.WriteLine("After running test")

    [<Test;
      Category("Special case");
      Description("An empty string is palindrome")>]
    member x.EmptyString () =
        Assert.That(isPalindrome(""), Is.True,
                      "isPalindrome must return true on an empty string")

The ability to set up resources for test cases may introduce problems during unit testing. In particular, 
you must treat the setup and teardown methods of test fixtures carefully, because the state shared by 
different test cases may affect the way they execute. Suppose, for instance, that a file is open during the 
setup of a fixture. This may save time, because the file is opened only once and not for each test case. If a 
test case fails and the file is closed, subsequent tests may fail, because they assume that the file has been 
opened during the fixture’s setup. Nevertheless, in some situations, preloading resources only once for a 
fixture may save significant time.

3To run the example, you must include the definition of the isPalindrome function.



CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

562

NUnit comes with two versions of the tool: one displaying the graphical interface shown in Figure  
19-4, and a console version that prints results to the console. Both versions are useful: the windowed 
application is handy to produce reports about tests and interactively control test processing, and the 
console version can be used to include the test process in a chain of commands invoked via scripts. Also, 
other programs can read the tool’s output to automate tasks after unit tests. Many command-line 
arguments are available in the console version to specify all the options available, including test filtering 
based on categories.

When a unit test fails, you must set up a debugging session to check the application state and the 
reason for the failure. You can debug tests with the Visual Studio debugger by configuring the Debug tab in 
the project properties in a similar way, as shown in Figure 19-5. After it’s configured, you can set 
breakpoints in the code and start the debugging session, attach the debugger to nunit-agent.exe process, 
and start the tests. This is important when code development is driven by tests, because new features can 
be implemented alongside test cases. It’s a good way to capitalize on the small test programs that 
developers frequently write: these small programs become test cases and can be collected without having 
to develop a new test program each time.

The example shown in Figure 19-5 passes a single argument to nunit-console.exe, the assembly 
containing the tests to be executed. You can also specify an additional argument to filter the tests that 

Figure 19-5. Configuring an F# project for debugging NUnit test fixtures



563

CHAPTER 19 ■ PACKAGING, DEBUGGING AND TESTING F# CODE 

must be run. In this example, if you set a breakpoint in one of the test cases annotated explicitly, the 
debugger doesn’t stop, because by default, these tests are skipped.

■ Note: This section shows how you can use NUnit to define test cases using F#. NUnit isn’t the only tool for unit 
testing that’s available for .NET, however. For example, Visual Studio includes powerful unit-testing tools. 

Summary
This chapter introduced techniques and tools you can use to package, debug, and test F# programs, and it 
also gave an overview of some of the libraries available for use with F# code. Many, many other libraries 
are available for .NET, and we couldn’t possibly cover them in a single book. Many design patterns that 
you’ve seen here recur in those libraries; after you get to know the libraries discussed here, you’ll find that 
other libraries are easy to use.

The final chapter covers another set of software engineering issues for F# code: library design in the 
context of F# and .NET.



565

■ ■ ■

CHAPTER 20

Designing F# Libraries

This book deals with F#, a language situated in the context of .NET-based software construction and 
engineering. As an expert F# programmer, you need more than knowledge of the F# language; you also need 
to use a range of software-engineering tools and methodologies wisely to build software that is truly valuable 
for the situation for which it’s deployed. The previous chapter touched on some important tools. This final 
chapter looks at some of the methodological issues related to F# library design, including:

Designing vanilla .NET libraries that minimize the use of F#-specific constructs, 
according to existing .NET design conventions

Elements of functional programming design methodology, which offers important 
and deep insights into programming, but doesn’t address several important aspects 
of the library or component design problems

Specific suggestions for designing .NET and F# libraries, including naming 
conventions, how to design types and modules, and guidelines for using exceptions

F# is often seen as a functional language, but as this book emphasizes, it’s really a multiparadigm 
language. The OO, functional, imperative, and language-manipulation paradigms are all well supported. 
That is, F# is a function-oriented language, so many of the defaults are set up to encourage functional 
programming, but programming in the other paradigms is effective and efficient, and a combination is 
often best of all. Nonetheless, a multiparadigm language brings challenges for library designs and coding 
conventions. 

It’s a common misconception that the functional and OO programming methodologies compete; in 
fact, they’re largely orthogonal. It’s important to note, however, that functional programming doesn’t 
directly solve many of the practical and prosaic issues associated with library design—for solutions to 
these problems, you must look elsewhere. In the context of .NET programming, this means turning first to 
the .NET Library Design Guidelines, published online by Microsoft and as a book by Addison-Wesley. 

In the official documents, the .NET library design is described in terms of conventions and guidelines 
for the use of the following constructs in public framework libraries:

Assemblies, namespaces, and types (see Chapters 6 and 7 of this book)

Classes and objects, containing properties, methods, and events (see Chapter 6)

Interfaces (in other words, object interface types; see Chapter 6)

.NET delegate types (mentioned briefly in Chapters 5 and 6)



CHAPTER 20 ■ DESIGNING F# LIBRARIES

566

Enumerations (that is, enums from languages such as C#, mentioned briefly in 
Chapter 6)

Constants (that is, constant literals from languages such as C#)

Type parameters (that is, generic parameters; see Chapter 5)

From the perspective of F# programming, you must also consider the following constructs:

Discriminated union types and their tags (Chapters 3 and 9)

Record types and their fields (Chapter 3)

Type abbreviations (Chapter 3)

Values and functions declared using let and let rec (Chapter 3)

Modules (Chapter 6)

Named arguments (Chapter 6)

Optional arguments (Chapter 6)

Framework library design is always nontrivial and often underestimated. F# framework and library 
design methodology is inevitably strongly rooted in the context of .NET OO programming. This chapter 
gives our opinions about how you can approach library design in the context of F# programming. These 
opinions are neither proscriptive nor official. More official guidelines may be developed by the F# team 
and community at some future point, although ultimately the final choices lie with F# programmers and 
software architects.

■ Note: Some F# programmers choose to use library and coding conventions much more closely associated with 
OCaml, Python, or a particular application domain, such as hardware verification. For example, OCaml coding uses 
underscores in names extensively, a practice avoided by the .NET Framework guidelines but used in places by the F# 
library. Some also choose to adjust coding conventions to their personal or team tastes.

Designing Vanilla .NET Libraries
One way to approach library design with F# is to design libraries according to the .NET Library Design 
Guidelines. This implicitly can mean avoiding or minimizing the use of F#-specific or F#-related 
constructs in the public API. We call these libraries vanilla .NET libraries, as opposed to libraries that use 
F# constructs without restriction and are mostly intended for use by F# applications. 

Designing vanilla .NET libraries means adopting the following rules:

Apply the .NET Library Design Guidelines to the public API of your code. Your 
internal implementation can use any techniques you want.

Restrict the constructs you use in your public APIs to those that are most easily used 
and recognized by .NET programmers. This means avoiding the use of some F# 
idioms in the public API.

Use the Microsoft FxCop quality-assurance tool to check the public interface of your 
assembly for compliance. Use FxCop exemptions where you deem necessary.

At the time of writing, here are some specific recommendations from the authors of this book:



567

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Avoid using F# list types 'T list in vanilla .NET APIs. Use seq<'T> (i.e. 
IEnumerable<'T>) or arrays instead of lists.

Avoid using F# function types in vanilla .NET APIs. F# function values tend to be a 
little difficult to create from other .NET languages. Instead, consider using .NET 
delegate types, such as the overloaded System.Func<...> types available from .NET 
3.5 onward.

Avoid using F#-specific language constructs, such as discriminated unions and 
optional arguments, in vanilla .NET APIs.

For example, consider the code in Listing 20-1, which shows some F# code that you intend to adjust to 
be suitable for use as part of a .NET API.

Listing 20-1. An F# Type Prior to Adjustment for Use as Part of a Vanilla .NET API

namespace global

open System

type APoint(angle, radius) = 
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch(l) = APoint(angle = x.Angle, radius = x.Radius * l)
    member x.Warp(f) = APoint(angle = f(x.Angle), radius = x.Radius)

    static member Circle(n) = 
        [ for i in 1..n -> APoint(angle = 2.0 * Math.PI / float(n), radius = 1.0) ]

    new() = APoint(angle = 0.0, radius = 0.0)

The inferred F# type of this class is:

type APoint =
    class
        new : unit -> APoint
        new : angle:float * radius:float -> APoint
        member Stretch : l:float -> APoint
        member Warp : f:(float -> float) -> APoint
        member Angle : float
        member Radius : float
        static member Circle : n:int -> APoint list
    end

Let’s look at how this F# type appears to a programmer using C# or another .NET library. The 
approximate C# signature is:

// C# signature for the unadjusted APoint class of Listing 20-1

[Serializable]
public class APoint



CHAPTER 20 ■ DESIGNING F# LIBRARIES

568

{
    public APoint();
    public APoint(double angle, double radius);

    public double Angle { get; }
    public double Radius { get; }

    public static Microsoft.FSharp.Collections.FSharpList<APoint> Circle(int n);
    public APoint Stretch(double l);
    public APoint Warp(Microsoft.FSharp.Core.FSharpFunc<double, double> f);
}

There are some important points to notice about how F# has chosen to represent constructs here. For 
example:

Metadata, such as argument names, has been preserved.

F# methods that take tupled arguments become C# methods that take multiple 
arguments. 

Functions and lists become references to corresponding types in the F# library.

The full rules for how F# types, modules, and members are represented in the .NET Common 
Intermediary Language are explained in the F# language reference on the F# web site.

To make a .NET component, place it in a file component.fs and compile this code into a strong-name 
signed DLL using the techniques from Chapter 7:

C:\fsharp> sn -k component.snk
C:\fsharp> fsc --target:library --keyfile:component.snk  component.fs  

Figure 20-1 shows the results of applying the Microsoft FxCop tool to check this assembly for 
compliance with the .NET Framework Design Guidelines. This reveals a number of problems with the 
assembly. For example, the .NET Framework Design Guidelines require:

Types must be placed in namespaces.

Public identifiers must be spelled correctly.

Additional attributes must be added to assemblies related to .NET Security and 
Common Language Specification (CLS) compliance.



569

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Listing 20-2 shows how to adjust this code to take these things into account.

Listing 20-2. An F# Type After Adjustment for Use As Part of a Vanilla.NET API

namespace ExpertFSharp.Types

open System

module AssemblyAttributes = 
    [<assembly : System.Runtime.InteropServices.ComVisible(false);
      assembly : System.CLSCompliant(true)>]
    do()

type RadialPoint(angle, radius) = 
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch(factor) = RadialPoint(angle = x.Angle, radius = x.Radius * factor)
    member x.Warp(transform : Converter<_, _>) = 
        RadialPoint(angle = transform.Invoke(x.Angle), radius = x.Radius)
    static member Circle(count) = 

Figure 20-1. Running FxCop on the code from Listing 20-1



CHAPTER 20 ■ DESIGNING F# LIBRARIES

570

        seq { for i in 1..count ->
                RadialPoint(angle = 2.0 * Math.PI / float(count), radius = 1.0)}
    new() = RadialPoint(angle = 0.0, radius = 0.0)

The inferred F# type of the code in Listing 20-2 is:

type RadialPoint =
  class
    new : unit -> RadialPoint
    new : angle:float * radius:float -> RadialPoint
    member Stretch : factor:float -> RadialPoint
    member Warp : transform:System.Converter<float,float> -> RadialPoint
    member Angle : float
    member Radius : float
    static member Circle : count:int -> seq<RadialPoint>
  end

The C# signature is now:

// C# signature for the unadjusted RadialPoint class of Listing 20-2
[Serializable]
public class RadialPoint
{
    public RadialPoint();
    public RadialPoint(double angle, double radius);

    public double Angle { get; }
    public double Radius { get; }

    public static IEnumerable<RadialPoint> Circle(int count);
    public RadialPoint Stretch(double factor);
    public RadialPoint Warp(Converter<double, double> transform);
}

The fixes you make to prepare this type for use as part of a vanilla .NET library are:

Add several attributes as directed by the FxCop tool. You can find the meaning of 
these attributes in the MSDN documentation referenced by the FxCop warning 
messages.

Adjust several names: APoint, n, l, and f to become RadialPoint, count, factor, and 
transform, respectively.

Use a return type of seq<RadialPoint> instead of RadialPoint list by changing a list 
construction using [ ... ] to a sequence construction using  
seq { ... }. An alternative option would be to use an explicit upcast ([ ... ] :> 
seq<_>).

Use the .NET delegate type System.Converter instead of an F# function type. 



571

CHAPTER 20 ■ DESIGNING F# LIBRARIES

After applying these, the last remaining FxCop warning tells you that namespaces with two to three 
types aren’t recommended.

The last two previous points aren’t essential, but, as mentioned, delegate types and sequence types 
tend to be easier for C# programmers to use than F# function and list types (F# function types aren’t 
compiled to .NET delegate types, partly for performance reasons). Note that you can use FxCop 
exemptions to opt out of any of the FxCop rules, either by adding an exemption entry to FxCop itself or by 
attaching attributes to your source code. 

■ Tip: If you’re designing libraries for use from any .NET language, there’s no substitute for actually doing some 
experimental C# and Visual Basic programming to ensure that uses of your libraries look good from these languages. 
You can also use tools such as .NET Reflector and the Visual Studio Object Browser to ensure that libraries and their 
documentation appear as expected to developers. If necessary, enlist the help of a C# programmer and ask her what 
she thinks. 

Understanding Functional Design Methodology
So far, this chapter has looked at how to do vanilla .NET library design with F#. Frequently, however, F# 
programmers design libraries that are free to make more sophisticated use of F#, and they more or less 
assume that client users are using F# as well. To make the best use of F# in this situation, it’s helpful to use 
functional programming design techniques as part of the library design process. For this reason, this section 
covers what functional programming brings to the table with regard to design methodology. 

Understanding Where Functional Programming Comes From
Let’s recap the origins of the major programming paradigms from a design perspective:

Procedural programming arises from the fundamentally imperative nature of 
processing devices: microprocessors are state machines that manipulate data using 
side effects. 

Object-oriented programming arises from the need to encapsulate and reuse large 
objects and associated behaviors, such as those used for GUI applications. 

Functional programming differs in that it arises from one view of the mathematics of 
computation. That is, functional programming, in its purest form, is a way of 
describing computations using constructs that have useful mathematical 
properties, independent of their implementations. 

For example, the functional programming design methodology places great importance on constructs 
that are compositional. For example, in F#, you can map a function over a list of lists as:

let map2 f inp = List.map (List.map f) inp

This is a simple example of the inherent compositionality of generic functions: the expression List.
map f produces a new function that can in turn be used as the argument to List.map. Understanding 
compositionality is the key to understanding much of what goes by the name of functional programming. 
For example, functional programmers aren’t interested in a lack of side effects just for the sake of it—



CHAPTER 20 ■ DESIGNING F# LIBRARIES

572

instead, they like programs that don’t use side effects, because such programs tend to be more 
compositional than those that do. 

Functional programming often goes further by emphasizing transformations that preserve behavior. 
For example, you expect to be able to make the following refactorings to your code regardless of the 
function f or of the values inp, x, or rest:

List.hd (x :: rest)   x 

List.concat (List.map (List.filter f) inp)    List.filter f (List.concat inp) 

Equations such as these can be a source of useful documentation and test cases, and in some 
situations, they can even be used to specify entire programs. Furthermore, good programmers routinely 
manipulate and optimize programs in ways that effectively assume these transformations are valid. If 
these transformations are not valid, it’s easy to accidentally insert bugs when you’re working with code. 
That said, many important transformation equations aren’t guaranteed to always be valid—they typically 
hold only if additional assumptions are made. As in the first example, the expression rest shouldn’t have 
side effects. 

Transformational reasoning works well for some kinds of code and badly for others. Table 20-1 lists 
some of the F# and .NET constructs that are highly compositional and for which transformational 
reasoning tends to work well in practice.

Table 20-1. Some Compositional F# Library Constructs Amenable to Equational Reasoning

Constructs Examples Explanation
Base types int, float Code using immutable basic types is often relatively 

easy to reason about. There are some exceptions to the 
rule: the presence of NaN values and approximations 
in floating-point operations can make it difficult to 
reason about floating-point code.

Collections Set<'T>, Map<'Key,'Value> Immutable collection types are highly amenable to 
equational reasoning. For example, you expect 
equations such as Set.union Set.empty x = x  
to hold.

Control types Lazy<'T>, Async<'T> Control constructs are often highly compositional and 
have operators that allow you to combine them in 
interesting ways. For example, you expect equations 
such as (lazy x).Force() = x to hold.

Data abstractions seq<'T> F# sequences aren’t pure values, because they may 
access data stores using major side effects, such as 
network I/O. In practice, uses of sequences tend to be 
very amenable to equational reasoning. This assumes 
that the side effects for each iteration of the sequence 
are isolated and independent.

Understanding Functional Design Methodology
Functional design methodology is rooted in compositionality and reasoning. In practice, it’s largely about 
these steps:



573

CHAPTER 20 ■ DESIGNING F# LIBRARIES

1. Deciding what values you’re interested in representing. These values may range 
from simple integers to more sophisticated objects, such as expression trees, 
from Chapter 9, or the asynchronous tasks from Chapter 13.

2. Deciding what operations are required to build these values, extracting 
information from them, and combining them and transforming them.

3. Deciding what equations and other algebraic properties should hold between 
these values, and assessing whether these properties hold for the 
implementation.

Steps 1 and 2 explain why functional programmers often prefer to define operations separately from 
types. As a result, functional programmers often find OO programming strange, because it emphasizes 
operations on single values, whereas functional programming emphasizes operations that combine values. 
This carries over to library implementation in functional programming, in which you often see types 
defined first and then modules containing operations on those types. 

Because of this, one pattern that is common in the F# library is:

The type is defined first.

Then, a module defines the functions to work over the type.

Finally, a with augmentation adds the most common functions as members. 
Chapter 6 describes augmentations.

One simple example of functional programming methodology in this book appears in Chapter 12, 
where you saw how a representation for propositional logic is defined using a type:

type Var = string

type Prop = 
    | And of Prop * Prop
    | Var of Var
    | Not of Prop
    | Exists of Var * Prop
    | False 

Operations were then defined to combine and analyze values of type Prop. It wouldn’t make sense to 
define all of these operations as intrinsic to the Prop type, an approach often taken in OO design. In that 
same chapter, you saw another representation of propositional logic formulae where two logically 
identical formulae were normalized to the same representations. This is an example of step 3 of the 
functional design methodology: the process of designing a type involves specifying the equations that 
should hold for values of that type.

You’ve seen many examples in this book of how OO programming and functional programming can 
work well together. For example, F# objects are often immutable, but use OO features to group together 
some functionality working on the same data. Also, F# object interface types are often used as a 
convenient notation for collections of functions.

However, some tensions exist between functional programming and OO design methodology. For 
example, when you define operations independently of data (that is, the functional style), it’s simple to add 
a new operation, but modifying the type is more difficult. In OO programming using abstract and virtual 
methods, it’s easy to add a new inherited type, but adding new operations (that is, new virtual methods) is 
difficult. 

Similarly, functional programming emphasizes simple but compositional types: for example, functions 
and tuples. OO programming tends to involve creating many (often large and complex) types with 



CHAPTER 20 ■ DESIGNING F# LIBRARIES

574

considerable amounts of additional metadata. These are often less compositional, but sometimes, more 
self-documenting.

Finally, although functional programming doesn’t provide a complete software design methodology, 
it’s beautiful and powerful when it works, creating constructs that can be wielded with amazing 
expressivity and a low bug rate. However, not all constructs in software design are amenable to 
compositional descriptions and implementations, and an over-reliance on pure programming can leave 
you bewildered and abandoned when the paradigm doesn’t offer useful solutions that scale in practice. 
This is the primary reason why F# is a multiparadigm language: to ensure that functional techniques can 
be combined with other techniques where appropriate. 

■ Note Some functional languages such as Haskell place strong emphasis on equational reasoning principles. In 
F#, equational reasoning is slightly less important; however, it still forms an essential part of understanding what 
functional programming brings to the arena of design methodology. 

Applying the .NET Library Design Guidelines to F#
This section presents some additional recommendations for applying the .NET Library Design Guidelines 
to F# programming. We do this by making a series of recommendations that can be read as extensions to 
these guidelines.

Recommendation: Use the .NET Naming and Capitalization 
Conventions Where Possible 
Table 20-2 summarizes the .NET guidelines for naming and capitalization in code. We’ve added our own 
recommendations for how these should be adjusted for some F# constructs. This table refers to the 
following categories of names:

PascalCase: LeftButton and TopRight, for example

camelCase: leftButton and topRight, for example

Verb: A verb or verb phrase; performAction or SetValue, for example

Noun: A noun or noun phrase; cost or ValueAfterDepreciation, for example

Adjective: An adjective or adjectival phrase; Comparable or Disposable, for example

In general, the .NET guidelines strongly discourage the use of abbreviations (for example, “use 
OnButtonClick rather than OnBtnClick”). Common abbreviations such as Async for Asynchronous are 
tolerated. This guideline has historically been broken by functional programming; for example, List.iter 
uses an abbreviation for iterate. For this reason, using abbreviations tends to be tolerated to a greater 
degree in F# programming, although we discourage using additional abbreviations beyond those found in 
existing F# libraries. 

Acronyms such as XML aren’t abbreviations and are widely used in .NET libraries, although in 
uncapitalized form (Xml). Only well-known, widely recognized acronyms should be used.

The .NET guidelines say that casing can’t be used to avoid name collisions and that you must assume 
some client languages are case insensitive. For example, Visual Basic is case insensitive.



575

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Table 20-2. Conventions Associated with Public Constructs in .NET Frameworks and Author-Recommended 
Extensions for F# Constructs

Construct Case Part Examples Notes
Concrete 
types

PascalCase Noun/ 
adjective

List, DoubleComplex Concrete types are structs, classes, 
enumerations, delegates, records, 
and unions. Type names are 
traditionally lowercase in OCaml, 
and F# code has generally followed 
this pattern. However, as F# matures 
as a language, it’s moving much 
more to follow standardized .NET 
idioms.

DLLs PascalCase Microsoft.FSharp. 
Core.dll

<Company>. 
<Component>.dll

Union tags PascalCase Noun Some, Add, Success Don’t use a prefix in public APIs. 
Optionally use a prefix when 
internal, such as type Teams = 
TAlpha | TBeta | TDelta.

Event PascalCase Verb ValueChanged

Exceptions PascalCase WebException

Field PascalCase Noun CurrentName

Interface 
types

PascalCase Noun/ 
adjective

IDisposable

Method PascalCase Verb ToString

Namespace PascalCase Microsoft.FSharp. 
Core

Generally use <Organization>.<Tech
nology>[.<Subnamespace>], but 
drop the organization if the 
technology is independent of 
organization.

Parameters camelCase Noun typeName, transform, range

let values 
(internal)

camelCase Noun/ 
verb

getValue, myTable

let values 
(external)

camelCase or 
PascalCase

Noun List.map, Dates. 
Today

let-bound values are often public 
when following traditional 
functional design patterns. 
However, generally use PascalCase 
when the identifier can be used 
from other .NET languages.

Property PascalCase Noun/ 
adjective

IsEndOfFile, BackColor Boolean properties generally use Is 
and Can and should be affirmative, 
as in IsEndOfFile, not 
IsNotEndOfFile.

Type 
parameters

Any Noun/ 
adjective

'T, 't, 'Key, 'Value



CHAPTER 20 ■ DESIGNING F# LIBRARIES

576

We generally recommend using lowercase for variable names, unless you’re designing a library:

ü let x = 1
ü let now = System.DateTime.Now

We recommend using lowercase for all variable names bound in pattern matches, function 
definitions, and anonymous inner functions. Functions may also use uppercase:

û let add I J = I + J
ü let add i j = i + j

Use uppercase when the natural convention is to do so, as in the case of matrices, proper nouns, and 
common abbreviations such as I for the identity function:

ü let f (A: matrix) (B: matrix) = A + B
ü let Monday = 1
ü let I x = x

We recommend using camelCase for other values, including:

Ad hoc functions in scripts 

Values making up the internal implementation of a module

Locally bound values in functions

ü let emailMyBossTheLatestResults = ...
ü let doSomething () = 
       let firstResult = ... 
       let secondResult = ... 

Recommendation: Avoid Using Underscores in Names 
In some older F# code, you see the frequent use of underscores to qualify some names. For example:

Suffixes such as _left and _right

Prefix verbs such as add_, remove_, try_, and is_, do_

Prefix connectives such as to_, of_, from_, and for_

We recommend avoiding this style because it clashes with .NET naming conventions. 

■ Note No rules are hard and fast. Some F# programmers ignore this advice and use underscores heavily, partly 
because functional programmers often dislike extensive capitalization. Furthermore, OCaml code uses underscores 
everywhere. But be aware that the style is often disliked by others who have a choice about whether to use it. It has 
the advantage that abbreviations can be used in identifiers without them being run together.



577

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Recommendation: Follow the .NET Guidelines for Exceptions
The .NET Framework Design Guidelines give good advice about the use of exceptions in the context of all .
NET programming. Some of these guidelines are as follows:

Don’t return error codes. Exceptions are the main way of reporting errors in 
frameworks.

Don’t use exceptions for normal flow of control. Although this technique is often 
used in languages such as OCaml, it’s bug-prone and slow on .NET. Instead, consider 
returning a None option value to indicate failure.

Document all exceptions thrown by your code when a function is used incorrectly.

Where possible, throw existing exceptions in the System namespaces.

Use invalidOp and invalidArg to throw exceptions where possible

■ Note Other exception-related topics covered by the .NET guidelines include advice on designing custom 
exceptions, wrapping exceptions, choosing exception messages, and special exceptions to avoid throwing 
(OutOfMemoryException, ExecutionEngineException, COMException, SEHException, 
StackOverflowException, NullReferenceException, AccessViolationException, and 
InvalidCastException).

Recommendation: Consider Using Option Values for  
Return Types Instead of Raising Exceptions
The .NET approach to exceptions is that they should be exceptional. That is, they should occur relatively 
infrequently. However, some operations (for example, searching a table) may fail frequently. F# option 
values are an excellent way to represent the return types of these operations.

Recommendation: Follow the .NET Guidelines for Value Types
The .NET guidelines give good guidance about when to use .NET value types (that is, structs, introduced in 
Chapter 6). In particular, they recommend using a struct in a public API only when the following are all 
true:

A type logically represents a single value similar to a primitive type.

It has an instance size smaller than 16 bytes.

It’s immutable.

It won’t have to be boxed frequently (that is, converted to/from the type System.
Object).

Some programmers are much stricter and almost never use structs in public APIs. 



CHAPTER 20 ■ DESIGNING F# LIBRARIES

578

Recommendation: Consider Using Explicit Signature Files  
for Your Framework
Chapter 7 describes explicit signature files. Using explicit signatures files for framework code ensures that 
you know the full public surface of your API and can cleanly separate public documentation from internal 
implementation details.

Recommendation: Consider Avoiding the Use of Implementation 
Inheritance for Extensibility
Chapter 6 describes implementation inheritance. In general, the .NET guidelines are agnostic with regard 
to the use of implementation inheritance. In F#, implementation inheritance is used more rarely than in 
other .NET languages. The main rationale for this is given in Chapter 6, which also presents many 
alternative techniques for designing and implementing OO types using F#. However, implementation 
inheritance is used heavily in GUI frameworks.

■ Note Other OO extensibility topics discussed in the .NET guidelines include events and callbacks, virtual 
members, abstract types and inheritance, and limiting extensibility by sealing classes.

Recommendation: Use Properties and Methods for Attributes  
and Operations Essential to a Type 
Here’s an example:

ü type HardwareDevice with 
      ...
      member ID: string
      member SupportedProtocols: seq<Protocol>

Consider using methods for the intrinsic operations essential to a type:

ü type HashTable<'Key,'Value> with
      ...
      member Add           : 'Key * 'Value -> unit
      member ContainsKey   : 'Key -> bool
      member ContainsValue : 'Value -> bool

Consider using static methods to hold a Create function instead of revealing object constructors: 

ü type HashTable<'Key,'Value> with
       static member Create : IHashProvider<'Key> -> HashTable<'Key,'Value> 



579

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Recommendation: Avoid Revealing Concrete Data Representations 
Such as Records 
Where possible, avoid revealing concrete representations such as records, fields, and implementation 
inheritance hierarchies in framework APIs. 

The rationale is that one of the overriding aims of library design is to avoid revealing concrete 
representations of objects, for the obvious reason that you may want to change the implementation later.  
For example, the concrete representation of System.DateTime values isn’t revealed by the external, public 
API of the .NET library design. At runtime, the Common Language Runtime knows the committed 
implementation that will be used throughout execution. However, compiled code doesn’t pick up 
dependencies on the concrete representation. 

Recommendation: Use Active Patterns to Hide  
the Implementations of Discriminated Unions
Where possible, avoid using large discriminated unions in framework APIs, especially if you expect there is 
a chance that the representation of information in the discriminated union will undergo revision and 
change. For frameworks, you should typically hide the type or use active patterns to reveal the ability to 
pattern match over language constructs. Chapter 9 describes active patterns.

This doesn’t apply to the use of discriminated unions internal to an assembly or to an application. 
Likewise, it doesn’t apply if the only likely future change is the addition of further cases, and you’re willing 
to require that client code be revised for these cases. Finally, active patterns can incur a performance 
overhead, and this should be measured and tested, although their benefits frequently outweigh this cost.

■ Note Using large, volatile discriminated unions freely in APIs encourages people to use pattern-matching 
against these discriminated union values. This is appropriate for unions that don’t change. However, if you reveal 
discriminated unions indiscriminately, you may find it very hard to version your library without breaking user code.

Recommendation: Use Object Interface Types  
Instead of Tuples or Records of Functions
In Chapter 5, you saw various ways to represent a dictionary of operations explicitly, such as using tuples of 
functions or records of functions. In general, we recommend that you use object interface types for this 
purpose, because the syntax associated with implementing them is generally more convenient.

Recommendation: Understand When Currying Is Useful  
in Functional Programming APIs
Currying is the name used when functions take arguments in the iterated form—that is, when the 
functions can be partially applied. For example, the following function is curried:

let f x y z = x + y + z

This isn’t curried:



CHAPTER 20 ■ DESIGNING F# LIBRARIES

580

let f (x, y, z) = x + y + z

Here are some of our guidelines for when to use currying and when not to use it:

Use currying freely for rapid prototyping and scripting. Saving keystrokes can be 
very useful in these situations.

Use currying when partial application of the function is highly likely to give a useful 
residual function (see Chapter 3).

Use currying when partial application of the function is necessary to permit useful 
precomputation (see Chapter 8). 

Avoid using currying in vanilla .NET APIs or APIs to be used from other .NET 
languages.

When using currying, place arguments in order from the least varying to the most varying. Doing so 
makes partial application of the function more useful and leads to more compact code. For example, List.
map is curried with the function argument first because a typical program usually applies List.map to a 
handful of known function values but many different concrete list values. Likewise, you saw in Chapters 8 
and 9 how recursive functions can be used to traverse tree structures. These traversals often carry an 
environment. The environment changes relatively rarely—only when you traverse the subtrees of 
structures that bind variables. For this reason, the environment is the first argument. 

When you use currying, consider the importance of the pipelining operator; for example, place 
function arguments first and object arguments last.

F# also uses currying for let-bound binary operators and combinators:

ü let divmod n m = ...
ü let map f x = ...
ü let fold f z x = ...

However, see Chapters 6 and 8 for how to define operators as static members in types, which aren’t 
curried.

Recommendation: Use Tuples for Return Values, Arguments,  
and Intermediate Values 
Here is an example of using a tuple in a return type:

ü val divmod : n:int -> m:int -> int * int

Some Recommended Coding Idioms
This section looks at a small number of recommendations for writing implementation code, as opposed to 
library designs. We don’t give many recommendations on formatting, because formatting code is relatively 
simple for #light indentation-aware code. We do make a couple of formatting recommendations that 
early readers of this book asked about.



581

CHAPTER 20 ■ DESIGNING F# LIBRARIES

Recommendation: Use the Standard Operators
The following operators are defined in the F# standard library and should be used wherever possible 
instead of defining equivalents. Using these operators tends to make code much easier to read, so we 
strongly recommend it. This is spelled out explicitly because other languages similar to F# don’t support all 
of these operators, and thus some F# programmers aren’t aware that these operators exist: 

f >> g   -- forward composition
g << f   -- reverse composition
x |> f   -- forward pipeline 
f <| x   -- reverse pipeline 

x |> ignore   -- throwing away a value

x + y    -- overloaded addition (including string concatenation) 
x - y    -- overloaded subtraction 
x * y    -- overloaded multiplication 
x / y    -- overloaded division 
x % y    -- overloaded modulus 

x <<< y  -- bitwise left shift 
x >>> y  -- bitwise right shift 
x ||| y  -- bitwise or, also for working with enumeration flags 
x &&& y  -- bitwise and, also for working with enumeration flags
x ^^^ y  -- bitwise exclusive or, also for working with enumeration flags

x && y   -- lazy/short-circuit and
x || y   -- lazy/short-circuit or 

Recommendation: Place the Pipeline Operator |>  
at the Start of a Line
People often ask how to format pipelines. We recommend this style:

let methods = 
    System.AppDomain.CurrentDomain.GetAssemblies()
    |> List.ofArray 
    |> List.map (fun assem -> assem.GetTypes()) 
    |> Array.concat

Recommendation: Format Object Expressions Using  
the member Syntax
People often ask how to format object expressions. We recommend this style:

open System

[<AbstractClass>]



CHAPTER 20 ■ DESIGNING F# LIBRARIES

582

type Organization() =
    abstract member Chief : string
    abstract member Underlings : string list

let thePlayers = {
    new Organization() with
        member x.Chief = "Peter Quince" 
        member x.Underlings = 
            ["Francis Flute"; "Robin Starveling"; "Tom Snout"; "Snug"; "Nick Bottom"] 
    interface IDisposable with
        member x.Dispose() = ()}

■ Note The discussion of F# design and engineering issues in Chapters 18 and 19 is necessarily limited. In 
particular, we haven’t covered topics such as aspect-oriented programming, design and modeling methodologies, 
software quality assurance, or software metrics, all of which are outside the scope of this book. 

Summary
This chapter covered some of the rules you may apply to library design in F#, particularly taking into 
account the idioms and traditions of .NET. It also considered some of the elements of the functional 
programming design methodology, which offers many important and deep insights. Finally, we gave some 
specific suggestions for use when you’re designing .NET and F# libraries. 

That concludes our tour of F#. We hope you enjoy a long and productive career working with the 
language.



583

■ ■ ■

Index

■ A
Abstract keyword, 127
Abstract members, 135
Abstract syntax implementations, 214–216
Abstract syntax representations

caching properties, 208
flatten, 204–205
mapping transformation, 205–206
memoizing construction, 208–210
pros and cons, 204
syntax type design, 204
using on-demand computation, 206–207

Abstract syntax trees (ASTs), 178
drawing namespace, 178
extractScenes, 179–180
inferred types, 179
XML conversion, 178–179

Accumulating and rewriting transformations, 205
Accumulating functions, 47
Accumulating parameter, 224
Action.Login, 371
Activation records, 515
Active patterns, 174

converting same data to many views, 211–213
hiding abstract syntax implementations, 214–

216
matching on .NET object types, 213–214
.NET Library Design Guidelines and, 579
partial and parameterized active patterns, 214

adb.exe, 419
ADO.NET, 347–351
agent.Post(message), 286
agent.Receive(?timeout), 286
Agents. See MailboxProcessor

agent.Scan(scanner, ?timeout), 286
agent.TryReceive(?timeout), 286
agent.TryScan(scanner, ?timeout), 286
Aggregate operators, 191–192
Anchoring control, 432
Application store, 391–392
Arithmetic expressions, error estimation , 499–501
Arithmetic operators, 234
Array2D module, 59
ASCII character encoding, 175
AsyncAccept, 279
AsyncAcquire method, 290
Async.AwaitTask(task), 278, 280
Async.Catch combinator, 281
AsyncExecuteReader, 279
AsyncExecuteXmlReader, 279
Async.FromBeginEnd(beginAction, endAction), 278
Async.FromContinuations(callback), 278
AsyncGetResponse, 279
Asynchronous and parallel computations

Async type methods, 278–279
cancellation checking, 274
common constructs used, 274, 275
common I/O operations, 279
exception propagation, 273–274
exceptions and cancellation, 280–281
fetching multiple Web pages, 270–272
fork-join parallel operator implementation, 281
in CPU parallelism, 282
parallel file processing

asynchronous image processor, 276–278
primitives and combinators, 278
synchronous image processor, 275–276

resource lifetime management, 274
thread hopping, 272–273



■ INDEX

584

Asynchronous and parallel computations (cont.)
using tasks, 280

Asynchronous programs, 258
Asynchronous Web crawling, 287–290
Async.Parallel(computations), 278
AsyncRead, 279
AsyncReceive, 279
Async.RunSynchronously(async), 278
AsyncSend, 279
Async.StartAsTask(computation), 280
Async.Start(async), 278
Async.StartChild(async), 279
Async.StartImmediate(async), 279
AsyncWrite, 279
AsynExecuteNonQuery, 279
Attribute types

custom attributes and, 495, 496
.NET types, 100

Automatic generalization, 45
Automatic memory, 514
AxisColor property, 445
AxShockwaveFlashObjects, 520

■ B
Background Workers

building iterative worker, 264–267
GUI connection, 268–270
primary object members, 262, 263
raising GUI-thread events, 267–268
simple use of, 262–263
two-faced object, 263

Berkeley Database (BDB), 534
bigint type, 234
Binary comparison operators, 27
Binary data, 176
Binary decision diagrams (BDD), 296

circuit verification, 307
Equiv, 306
implementation, 304–306
language representation techniques, 304
logical rules, 306
mkAnd operation, 306
pretty-printer installation, 306–307
Prop representation, 306, 307
ToString member, 306

Binary operators, 46
BinaryReader, 68
Binary serialization, 92–94
BinaryWriter, 67
Binary XAML (BXAML), 468

Bitwise operations, 236–237
Boolean-valued expression, 28
Bool type, 233
Bottom-up rewriting, 205
box function, 91–92

binary serialization, 92, 93
.NET types, 99

builder, for workflows, 478, 483–485, 488
byte

literal byte arrays and, 164
operator, 235

■ C
C5 collection library, 509
Callbacks model, 46
Cancellation checking, 274
CAPTCHA validation, 409
Case insensitivity, 173, 574
Close operation, 68
Closure, 43
Code

implementation code and, 580
signature

command-line compiler, 154
design, 156
explicit signature type, 155
file vector.fs, 155
.fsi file extension, 155
inferred type, 154, 155
type-inference process, 156

Code encapsulation and organization
accessibility annotation

checkVisitor function, 150
code restriction, 150
F# code, 151
GlobalClock module, 151
internal state, 151
property setters, 152
table protection, 150

code reusage
code compilation, 159
DLLs, 159
executable programs, 159
file dolphins.fs, 160
file whales.fs, 160
file whalewatcher.fs, 161
F# programming progress, 158
reusable components, 159
sharing and packaging mechanism, 161–162

encapsulation boundaries, 147



585

 ■ INDEX

local definiton
count state, 148
inferred types, 149
IPeekPoke, 148
IStatistic type, 149
let bindings, 148, 149
mutable state count, 149
variable count, 149

namespace and modules
attribute addition, 156
AutoOpen attribute, 158
client code prevention, 156
container types, 152, 153
definition, 154
explicit initial module declaration, 157
F# code fragments, 157
qualified names, 152
signature (see Code signature)
Vector2D, 153

.NET assembly, 147
packaging code, 147

Coercion operator, 101
collectLinks function, 289
COM callable wrapper (CCW), 518
Common Intermediary Language (CIL), 568
Common Language Runtime (CLR), 503, 512–514
Comparison operators, 89, 235
CompiledName attribute, 371
Component Object Model (COM)

characteristics, 516
Flash Player, 519–520
F# program

compiler, 517
F# and fsi.exe, 516–517
GetType method, 517
Quit method, 517
SetValue method, 517

.NET classes, 518

.NET components, 518
COM callable wrapper, 518
programming pattern, 518
runtime callable wrapper, 518

running object table
Marshal class, 521
Visual Studio, 521, 522

Composite formatting, 167
Compositional constructs, 571
Computation expressions. See Workflows
Computations

delayed, 486
precomputation and, 496

Compute bound application, 275
Concrete language format

ASTs
drawing namespace, 178
extractScenes, 179–180
inferred types, 179
XML conversion, 178–179

System.XML namespace
data sharing, 176
hierarchical structure, 176
interactive function, 177
sample fragment, 176
types and members, 177

Concrete representations, .NET Library Design 
Guidelines and, 579

Concurrency objects, 136
Concurrent programs, 258
&& conditionals operator, 28
|| conditionals operator, 28
Connection strings, databases and, 347
Console.In, 103
Construction sequences, 116
Constructors, 116, 124

Explicit constructors and, 117
functions, 20

Content constructors, 366
Content.CustomContent, 367
Content.PageContent, 367
Continuation passing, 226–228
Conversion operators, 26, 235
convertToFloatAndAdd, 98
Copy collection, 515
Counting functions, 46
CPU parallelism, 282
Create method, 121
CreateText function, 67
Cross-platform solutions, 392
Currying, 579
Custom attributes, 495, 496
CustomContent, 366
Custom Control, 438–440
CustomEquality and CustomComparison, 218

■ D
Databases

advantages of, 345
closing connections and, 350
creating, 348
database engine and, 346, 347

DataContract serialization, 93



■ INDEX

586

Data Definition Language (DDL), 347
Data Manipulation Language (DML), 347
Data structures

concrete, 38
delayed, 50
foundational, 30
F# program, 14
hash function, 91
immutable, 9, 31–33, 54
mutable, 32, 33, 54, 62–63, 76–77
options, 33

Decimal type, 234
defaultArg functions, 121
Default keyword, 135
Delayed computations, 46, 78–79, 486
Delayed data structures, 50
Delegates, 100, 144
Delegation, 133
DependencyObject, 473
Deserialize function, 93
dictionariesENDRG, 62
Dictionary

hash-table structure, 60
key types, 60
KeyValuePair, 61
TryGetValue method, 61–62
with compound keys, 62

Discriminated unions
as records, 86
discriminator, 84
.NET Library Design Guidelines and, 579
nonextensible modules, 86
pattern matching, 84–85
recursive functions, 85
recursive references, 85
size function, 86
sizeOfTree, 85
‘T option type, 85
tree-like data structures, 85

Discriminator, 84
Dispose operation, 68
DivideByZeroException, 234
<div> tag, 368
DllImport custom attribute, 524
Docking control, 432
do expr constructs, 275
do! expr constructs, 275
Dot (.) notation, 83
Double buffering, 452
Downcast operator, 101–102
Drawing namespace, 178

Dynamic Link Libraries (DLLs), 159
Dynamic lookups, 497
Dynamic memory, 515

■ E
emptyLists generics, 108
Encoding/decoding

binary data , 176
unicode strings, 175

Enums, 145
Enum types, 100
Equality, hashing, and comparison

asserting using attributes, 218
constraints, 217, 218
customizing on a type, 219–220
generic collection types, 221
generic operations, 217
ordered comparison, 218
suppressing on a type, 220

Equational reasoning, 572, 574
Error estimation, via quotations, 499
Euclid’s algorithm, 94, 97
Events, 151

as first-class values, 260
creating and publishing, 260–262
creating WinForms, 259
from .NET libraries, 259–260

Exception propagation, 273–274
Exception-related language and library constructs, 

66
Exception types, 100
Exhaustive patterns, 35
Explicit arguments, 107–108
Explicit constructors, 117
Explicit factoring, 97
Extern keyword, 524
Extreme Optimization library, 245

■ F
F#, 295, 296

background of, 2
web site for, 6

Facebook
Class function, 409
configuration, 409–410
FB class, 409
IntelliFactory.WebSharper.Facebook 

namespace, 409
Main.fs, 407–409
main HTML application



587

 ■ INDEX

Boolean value, 415
Click event handler, 414
FB.Login and FB.Logout functions, 414
LI node, 415
Main.fs, 411–414
Main.html, 410–411
Mobile.Instance.ShowPageLoadingMsg, 414
updateStatus function, 414

Res.FacebookAPI resource, 409
status messages, 406
Visual Studio, 407
WebSharper documentation, 409

F# and .NET libraries
binary format, 504
C5 collection library, 509
COM components, 504
data structures, 508

Microsoft.FSharp.Collections, 508
System.Collections.Generic namespace, 509

DLLs, library constructs, 505
F# compiler, 504
interoperability, 512

COM (see Component Object Model (COM))
Common Language Runtime, 512–514
memory management, 514–516
types, 503

namespaces and, 507
.NET delegate type, 511
PowerCollections, 509
reflective techniques

general types, 510–511
Microsoft.FSharp.Reflection, 511
schema compilation, 510

F# code
debugging

“abba” string, 544, 545
assertions, 549
attributes controlling program, 550
classes, 548
concurrent and graphical applications, 551–

553
ConditionalAttribute, 549
debuggable programs, 544
DebuggerDisplayAttribute, 550
isPalindrome function, 549
menu, 545
MyComplex record, 550, 551
palindrome string, 544
program state inspection, 544
recursion, 544
System.Diagnostics namespace, 548–551

Visual Studio debugger (see Visual Studio 
debugger)

Watch view, 545
window, 545
WriteXXX methods, 549

packaging
application data, 542
command-line compiler, 538
conditional compilation, 538
data and configuration settings, 543
interactive scripts, 537–538
optimization settings, 538
shared libraries, 539–541
software entity, 541–542
static linking, 541
XML documentation, 539

testing
Category and Culture attributes, 560
fixtures, 561
FsCheck, 558
goal, 557
Ignore and Explicit attributes, 560
.NET debugger, 557
nunit-console.exe, 562
NUnit tool, 558–562
posTests and negTests functions, 559
setup and teardown methods, 561
test fixture, isPalindrome function, 558, 561
TestFixtureSetUp and TestFixtureTearDown 

attributes, 561
test suite, isPalindrome function, 558
unit tests, 559, 560

F# command-line compiler (fsc.exe), 154
F# compiler, 11, 12
File handling technique, 136
File.OpenText, 103
FindMinMax method, 443
FindName method, 470
F# Interactive, 7, 465

Alt+Enter shortcut, 553
compiles code, 555
data structures, 14
development and testing, 553
directives, 554
double semicolons (;;), 12
F# code, 11, 12
fsi.exe, 8
fsi object, 554
.NET Framework, 19
scripting, 537
showWordCount function, 8



■ INDEX

588

F# Interactive (cont.)
splitAtSpaces function, 8, 11
val keyword, 8
Visual Studio, 8, 556
wordCount function, 8

Firebird database engine, 346
First-in/first-out (FIFO) collection, 63
Flexible type constraint, 104
F# libraries, 119

design compliance checks and, 568
functional programming design techniques, 571
.NET Library Design Guidelines and, 565, 568
vanilla .NET libraries, 566

Flickering, 452
FLinq, 340
float32 type, 234
Floating constraints, 109
Float operator, 235
Flowlets, 359, 387
F# operators

dynamic reflection operators, 497
quotations

error estimation, 499–501
need for, 498
resolving reflected definitions, 501

Form, 20–21
Format static method, 167
Formatting dates, 168
Formlets, 359

Android applications, 425
ASP.NET server control, 380–381
ASP.NET server-side controls, 384
dependent, 387
Enhance.Many, 386–387
Enhance.WithFormContainer function, 383
Formlet.Yield combinator, 381
helper function, 380
input field, 385
IntelliFactory.WebSharper.Formlet.Enhance, 

381–383
IntelliFactory.WebSharper.Formlet namespace, 

379–380
library features, 383
RunSnippet, 380
sitelet, 385
snippets, 384, 386
string-int pair, 386
text-box formlet, 379
validation error, 383
Validator.Is, 381
wrapper and render function, 380

Forward pipe (|>) operator, 581
F# PowerPack, 313
F# program

calling functions, 11
code documentation, 9
data structures, 14
F# Interactive (see F# Interactive)
imperative code, 17–18
let keyword, 9
Lightweight Syntax, 11–12
object-oriented libraries (see Object-oriented 

libraries)
properties and dot-notation, 14–15
scope, 12–14
string analysis, duplicate words, 7
tuples

arbitrary number, 16
fst and snd functions, 16
inferred types and computed values, 16
patterns, 16
showResults function, 17
showWordCount function, 17
type-checking error, 16–17
values and objects, 17
wordCount function, 15

types, 10–11
values and immutability, 9

F# quotations, 498
.fsi file extension, 155
Functional programming

conditionals, 28
currying and, 579
F# library design techniques, 571
function values. (see Function values)
and imperative programming, 49

memoization (see Memoization)
precomputation (see Precomputation)

lists (see Lists)
multiparadigm languages and, 565
numbers

arithmetic comparisons, 27
arithmetic conversions, 26
arithmetic operators, 26
binary operator, 26
overloaded operator, 26
type annotation, 26
types and literals, 25

options, 33
pattern matching (see Pattern matching)
recursive functions

alternatives, 29



589

 ■ INDEX

control, 29
factorial coding, 29
HTML fetching, 29
List.length, 29
mutually, 30
nonrecursive implementation, 30
tail recursive, 30
well-founded, 30

strings, 27
types

definitions (see Type definitions)
generics (see Generics)
.NET types (see .NET types)
subtyping (see Subtyping)
type-inference (see Type inference)

with side effects
imperative programming and laziness, 78
mutable data structures seperation, 76
pure and side-effecting computations 

seperation, 76
recursion, 76
weak vs. strong side effects, 77

Functions
currying, 579
generic, 500

Function values
abstract control, 44
accumulators model, 47
actions model, 46
aggregate operators

Array.filter and List.map, 39
design pattern, 40
getStats function, 40
iteration, 44
pipeline operations, 40

anonymous, 39
binary operators model, 46
callbacks model, 46
concrete data structure, 38
counting functions model, 46
delayed computations model, 46
forward composition operator, 41
function fetch, 38
generators model, 46
input lists, 38
key functions model, 46
List.map, 38
literal list of URLs, 38
local functions, 42
object methods as first-class functions, 45
orderings model, 46

output lists, 38
partial application, 42
predicates model, 46
remap function, 45
sinks model, 46
statistical functions model, 46
transformations model, 46

FxCop, 566

■ G
Garbage collection, 136, 515
g command-line flag, 161
Generators, 46
Generic algorithms

explicit arguments, 94
function parameters

concrete record type, 95
dictionaries of operations, 96
explicit factoring by functions, 97
hcfGeneric type, 96, 97
IDisposable interface, 97
implicit factoring by hierarchy, 97
object interface types, 96
type classes, 97

inlining, 97
Generic functions, 38, 500
Generic operators, 119
Generics

algorithms (see Generic algorithms)
F# list types, 87
functions

automatic generalization, 88
binary serialization, 92
boxing and unboxing, 91
dummy arguments, 108
generic comparison, 89
hashing, 90
pretty-printing, 91

List.map, 87
Generics

overloaded operators, 109
Set type, 87
type abbreviations, 87
type annotation, 88
type parameters, 88
type variables, 87, 88

GenericZero function, 98
getFirst, 88
GetResponse method, 22



■ INDEX

590

GraphControl
AddSample method, 442, 443
configuration, 442
DataSamples class definition, 443
FindMinMax method, 443
FSharpChart, 442
Model-View-Controller paradigm, 443
plot samples, 441
PropertyGrid, 453
SplitContainer control, 453
style properties and controller

AxisColor property, 445
Model-View-Controller paradigm, 447
mouse-move events, 448
OnPaint drawing method, 445, 448
overridden vs delegation, 448

test application, 442
view

Background color property, 449
double buffering, 452
drawing, 449
OnPaint method, 449
paint method, 449

Graphics objects, 136
GUI

BackgroundWorker connection, 268
thread events code, 267

■ H
Hardware design, 296
Hash function, 90
Haskell programming language and monads, 2, 479
hcfGeneric function, 98, 99
Heap allocated memory, 136
Hello World (sample) function, 523
Highest common factor (HCF), 94
HTML5 standards, 392
Hue saturation value (HSV), 455

■ I
I command-line flag, 161
i command-line option, 154
IComparable interface, 130
IDisposable interface, 68, 97, 130
IEnumerable interface, 129
IEnumerator interface, 130
IEvent interface, 130
if/then/elif/else construct, 28
Immutability, 9, 27
Immutable data structures, 9, 32, 54

Immutable lists, 85
Immutable values, 9
Imperative programming, 33

arrays andENDRG, 60
arrays

generation and slices, 58
module, 57
.NET types, 58
one-dimensional, 56
primitive types, 58
reference types, 58
two-dimensional, 59
value types, 58

dictionaries andENDRG, 62
exceptions

catching, 64
categories, 64
failwith function, 63
function types, 63
GetResponse method, 63
new types, 65
System.Net.WebException, 63
try ... finally ... construct, 65
values, 63

and laziness, 78
for loops, 50
vs. functional programming, 49
and functional programming

memoization (see Memoization)
precomputation (see Precomputation)
with side effects, 75

I/O techniques
abstractions, 68
file-processing, 67
.NET I/O via streams, 67
ReadLines function, 67
System.Console, 69
WriteAllLines function, 66

loops, 50
mutable locals, 56
mutable records. (see Mutable records)
.NET collections

dictionaries (see Dictionary)
other mutable data structures, 62
resizeable arrays, 59

sequence loops, 51
while loops, 51

Implementation, 304
code, 580
inheritance, 134

delegation and, 133



591

 ■ INDEX

.NET Library Design Guidelines and, 578, 
579

Implicitarguments, 107
constructors, 116
factoring, 97

Indexer properties, 21, 118, 124
Inferred type parameters, 88
Inferred types, 115

Infixfunction, 119
operators, 26, 171

Inherit keyword, 130
Instance members, 15, 23
Integrating external data/services

language integrated OData
example, 335
handling pagination in OData, 339
query, 337
type provider, 336

language integrated SQL, 340
relational databases and ADO.NET

advantages of, 345
connecting to, 347
creating tables, 348
database engine and, 346
using stored procedures, 350

relational query operations
aggregation, 342
grouping, 344
inner queries, 343
joins, 344
nullables, 343
sorting, 342

REST requests
handling multiple pages, 334
JSON Format, 333
parsing XML/JSON data, 333

using WSDL services, 351
IntelliFactory.WebSharper.Android, 415
IntelliFactory.WebSharper.Android.Bluetooth, 416
IntelliFactory.WebSharper.Formlet namespace, 387
IntelliFactory.WebSharper.Formlets.JQueryMobile 

namespace, 425
IntelliFactory.WebSharper.Mobile, 415
IntelliFactory.WebSharper.Mobile.IAcceleration, 

415
IntelliFactory.WebSharper.Mobile.ICamera, 416
IntelliFactory.WebSharper.Mobile.IGeolocator, 415
IntelliFactory.WebSharper.Mobile.ILog, 416
IntelliFactory.WebSharper.Sitelets, 372
IntelliFactory.WebSharper.Sitelets.Content module, 

366

IntelliFactory.WebSharper.Web.Control, 362
Interface inheritance, 130
Interfaces

concrete types, 129
definition, 126, 127
ENDRG, 135
hierarchies of, 130
implementing, 127, 129
from .NET libraries, 129
partial implementations for, 131, 135

Internal accessibility annotation, 150, 152
Internal message protocols, 286
Internet Explorer Web Browser COM component, 

518
InteropServices namespace, 524
int operator, 235
int type, 234
I/O bound application, 275
iOS devices

AddEventListener, 405
<canvas> element, 404
CDATA block, 400
Client.MyControl, 404
extra.files, 399
gesturechange event, 405
image viewer application, 398
index.html, 404
IntelliFactory.WebSharper.Mobile.Events class, 

405
jQuery Mobile extensions, 404
Main.fs, 400
Main.html, 399
mobile events and features, 405
MyControl, 404
MySitelet, 404
OnAfterRender event, 404
OnLoad event, 404
scale and rotation, 405
virtual mouse events, 404
VMouseDown event, 404

Item property, 118, 124
Iterative worker, 264
ITextOutputSink, 131

■ J
Java Native Interface (JNI), 524
JavaScript.SetInterval function, 425
JpegBitmapDecoder, 474
JpegBitmapEncoder, 474
JSON format, 333



■ INDEX

592

Just-In-Time (JIT) compiler, 513

■ K
Key functions, 46

■ L
Lambda expressions and F# quotations, 498
Language integrated OData

 example, 335
 handling pagination in OData, 339
 query, 337
 type provider, 336

Language integrated SQL, 340
Language-oriented programming

quotations and, 498
reflection and, 492
workflows and, 478
relational databases and, 347

Last-in/first-out (LIFO) collection, 62
Lazy lists, 182
Lazy sequences, 192, 349
Leaf rewriting (mapping), 205
Left-to-right, leftmost derivation (LL parsers), 183
Let bindings

resolving definitions for, 501
workflows and, 482

let pat = expr constructs, 275
let! pat = expr constructs, 275
Lexers, language oriented programming, 477
Line-based input processing, 169
LINQ (Language Integrated Query), ToSql queries, 

340
Lists

and arrays, 195
cons operator, 31
foundational data structures, 30
function values, 32
input, 38
language constructs and operators, 30
List.map, 38
literal, 38
module, 31
@ operations, 31
output, 38
primes type and value, 31
processing, 223
values, 30
vs. resizable arrays, 59

Literal byte arrays, 164
loadXamlWindow, 472

Local functions, 42
Local variable, 9
Lock function, 292
LoginRedirect, 371

■ M
MailboxProcessor

asynchronous web crawling, 287
implementing counter, 283
member types, 286
object wrapping, 284, 285, 286
scanning mailboxes, 286
state machines, 284

Mandelbrot Viewer creation
application plumbing, 460
computing Mandelbrot, 454
delegation programming style, 454
fractals, 454
setting colors, 455
visualization application, 457

Map and filter operations, 196
mapFirst function, 107
Markup syntax, 468
Marshal class, 521
MatchCollection, 51
MatchFailureException, 36
Measure attribute, 250
membersENDRG, 114
Memoization

and caching, 75
fibFast function, 72, 74
fibNotFast function, 73
function, 72
lazy values, 74
lookaside table, 71
lookup and a discard method, 73
mutable internal tables, 74
service, 73
well-known Fibonacci function, 71

Memory model, 292
Message passing concurrency, 282
Message processing and state machines, 284
Metadata, 513
<meta> tag, 368
Method overloading, 121

Methods, .NET Library Design Guidelines and, 
21, 578

Microsoft
FxCop, 566

Microsoft.FSharp.Reflection namespace, 511



593

 ■ INDEX

Mimer SQL, 346
Mobile.VMouseEventArgs, 405
Mobile web applications

Android Applications (see WebSharper, Android 
applications)

feature detection and polyfilling
Boolean value, 393
HasJs.Has, 394
HTML5 support, 393
JavaScript snippet, 393
libraries, 394
Modernizr, 393
WebSharper, 395

iOS devices.  (see iOS devices)
mobile capabilities, 396
mobile frameworks, 396
serving mobile content, 397
social networking (see Facebook)
touch events, 395
vs. native mobile applications, 391
WebSharper mobile, 415

Model-View-Controller design pattern, 441
Monads, 479
Monoids, 480
Multiparadigm languages, 565, 574
Mutable data structures, 33, 54, 62, 76
MutablePair class, 293
Mutable records

aliasing, 54
event counter, 52
hidden mutable data, 55
long page counter, 52
mutable values, 52
mutation and identity, 55
<- operator, 52
reference cells, 53

Mutable reference cells, 53
Mutable state, 122
Mutually recursive functions, 30
MyExternalResource, 388
MySQL, 346

■ N
Named arguments, 120
Naming conventions, 576

interfaces and, 126
object interface types and, 130
per .NET Library Design Guidelines, 574

Nativeint type, 234
Negation normal form (NNF), 215

N escape character, 165
.NET asynchronous operations, 279
.NET CLR, 258
.NET collections, 91
.NET event handlers, 259
NET interoperability, 193
NET libraries

vanilla, 566
.NET libraries. See  F# and .NET libraries

binary serialization, 92
imperative code, 18
object-oriented libraries, 18
text.Split, 19
XML, 23

NET Library Design Guidelines, 565
applying to F# programming, 574
checking for compliance with, 568

.NET methods, 45, 51

.NET proxies, 389

.NET shared-memory concurrency primitives, 294

.NET thread pool, 273
NET ToString() method, 91
.NET types

attribute types, 100
delegate types, 100
enum types, 100
exception types, 100
reference types, 99
value types, 99

Network connections, 136
NoComparison and NoEquality, 218
Nonexhaustive matches, 36
Non-numeric types, 25, 233
Northwnd sample database, 340
Not a Number (NaN) values, 235
Null values, 145
numDups, 8
Numeric data, 231

built-in aggregation operators
advantage, 239
complex relationship, 241
computation, 237
counting and categorization, 239
KMeans culstering algorithm, 242
numeric code writing, 240
Seq.maxBy operator, 238
Seq.minBy operator, 239
Seq.sumBy operator, 238
unitized/generic code, 241

charting with FSharpChart, 231, 232, 233
.NET math library



■ INDEX

594

Numeric data, .NET math lilbrary (cont.)
and frameworks, 245characteristics, 244
eigenvalues and eigenvectors of matrix, 250
histograms and distributions, 246
inverse matrix, 249
matrices and vectors, 248
matrix decomposition, 249
statistical function, 245

types and literals
arithmetic conversion, 235
arithmetic operators, 234
bitwise operations, 236
bool and unit, 233, 234
checked arithmetic, 234
comparison operators, 235
overloaded Math functions, 236

units of measure
annotations, 250, 251
applications, 250
apply and removal of units, 254
attribute, 250
computation, 250
data sequence, 253
generic algorithm, 251
KMeans algorithm, 255
limitations, 254
linear function, 252
numerical-integration techniques, 251
parameters, 253
variance function, 252
vector type, 253, 254

Numeric types, 25, 26
numWords, 8

■ O
Object expressions, formatting, 581
Object identity, 9
Object interface types, design guidelines, , 96, 579
object interface types. See Interfaces , 126
Object Linking and Embedding (OLE) technology, 

516
Object-oriented libraries

fetching Web Page, 22
.NET libraries, 18
new keyword, setting properties, 20
open keyword, namespaces and modules, 19

Object-oriented (OO) programming, 225
functional programming and, 565
library design and, 571, 573
.NET Library Design Guidelines and, 578

Object programming
classes

construction sequence, 116
constructors, 116
explicit constructors, 117 generic 

instantiation, 117
inferred type, 115
length precomputation, 114, 115
Scale method, 116
static bindings, 117
symmetry, 114

cleanup resource
IDisposable, 136
lexical scope, 135
operating-system resources, 135

F# object and .NET types
delegates, 144
delimitation, 143
enums, 145
null values, 145
structs, 144

modules extension
code organization, 143

mutable state
auto-property, 125
complexity, 124
currDX and currDY, 123
definition, 122
indexer property, 124
inferred signature type, 123, 124
optional property settings, 124, 125
Vector2D type, 122

notational convenience
dot notation, 117
indexers property, 118
method overloading, 121, 122
named arguments, 120, 121
optional arguments, 120, 121
overloaded properties, 118, 119

object interface types
abstract types, 126
concrete types, 129
definition, 127
hierarchies of, 130, 131
implementation variations, 126
IShape, 126, 127
from .NET libraries, 129, 130
object expression, 127, 128
objects and members, general rules, 114

partial implementation
abstract members, 133



595

 ■ INDEX

concrete types, 133
creation, 131
delegation, 133, 134
function parameter, 131, 132
implementation inheritance, 134
object expression, 131, 132

objects, 135
Observables, 290
OCaml

library design and, 566
underscore (_) and, 576

OCaml programming language, 2
O command-line flag, 161
Offline sitelets, 364
On-demand computation, 206
Online sitelets, 365
OnPaintBackground method, 436
OpenText function, 68
Operator overloading, 235
Operators, 290

infix, 171
recommendations for using, 581

Optional arguments, 120
Optional property settings, 124
Option values, .NET Library Design Guidelines and, 

577
Oracle database engine, 346
Out parameter, 61
Outscope values, 13
Override keyword, 135
Overriding methods, 447

■ P
Packaging code, abbreviations, 153
Padding, 516, 526
PageContent, 366
Pagelets, 359, 360
Pages.ProtectedPage, 371
Parallel programs, 258

Parser combinators, language-oriented 
programming and, 477, 186

Partial and parameterized active patterns, 214
Pattern matching, 21, 28, 286

form patterns, 37
guarding rules and combining patterns, 36
inferred type function, 34
isLikelySecretAgent, 34
keyword, 34

list values, 34
match ... with ... construct, 34
option, 33, 35
primes, 35
rule, 34
strings and integers, 34
structured values, 35
subtyping, 102
tuple, 34

Performance guidelines  (see Guidelines)
Persistent data structure.  (see Imutable data 

structures)
Pickering, Robert, 478
Pinning, 527
Pipeline operations, 40, 581
Pipelining, 193
Placeholders, 367
Platform Invoke

calling conventions
activation record, 522
fcall convention, 523
memory leak, 523
stdcall and cdecl convention, 523
thread stack, 523

C data structures mapping
definition, 525
StructLayout custom attribute, 525
SumC prototype, 526

definition, 522
DllImport custom attribute, 524
execute native code, 524
extern keyword, 524
function pointers, 530
functions, 522
Hello World (sample) function, 523, 524
interopServices namespace, 524
Java Native Interface, 524
marshalling parameters

function pointers, 526
native code, 526
native functions, 527
padding, 526
strings, 526
ZeroC function, 526, 527

marshalling strings
ANSI C strings, 529
C function, 528
default conversions, 528
F# PInvoke prototype, 529
sayhello function, 529
string buffer, 529



■ INDEX

596

Platform Invoke, marshalling strings (cont.)
System.Text.StringBuilder object, 529

memory mapping, 531, 533, 534
parameter passing, 525
Sum function, 524
wrapper generation limitations, 534, 535

Polymorphism, 128
PostAndReply, 286
PostgreSQL, 346
PowerCollections library, 509
precomputation, 496
Precomputation

and objects, 70
and partial application, 69

Primary constructors, 116, 124
Printf module and function, 17, 165
Private accessibility annotation, 150
probabilistic workflows, 487
Procedural programming, library design and, 571
Progressive enhancement, 392
rProperties, design duidelines
PropertyGrid, 453
Propositional logic

AndL function, 301
arrays of propositions, 301
BDD

circuit verification, 307
Equiv, 306
language representation techniques, 304
logical rules, 306
mkAnd operation, 306
pretty-printer installation, 306
Prop representation, 306, 307
ToString member, 306

circuit components, code, 300
circuits property, checking, 303
formulae evaluation, 298
halfAdder, propositional formula, 302
hardware circuits, 300
minimalistic representation, 297
N-bit adder, 301
primitive propositions, 297
Prop formula, 297
QBF, 296
truth tables, 299
twoBitAdder, 302

Public accessibility annotation, 150, 151, 152

■ Q
Qualified names, 152

Quantified Boolean formulae (QBF), 296
Queries. See  also Relational query operations
Query, definition, 337
Quotations

example of, 499
rationale for using, 498

■ R
RandomTicker, 260
Range expressions, 190
r command-line flag, 161
Reactive programs, 258
ReadAllLines function, 67
ReadAllText function, 67
ReaderWriterLock, 293
readValue function, 92
Records

cloning, 84
discriminated unions, 86
F# Interactive, 83
heterogeneous results, 82
labels, 82
.NET Library Design Guidelines and, 579
non-unique field names, 83
stats, 82
type annotation, 82
type.field syntax, 82

Records, relational databases and, 348
Recursive functions

alternatives, 29
control, 29
discriminated unions, 85
factorial coding, 29
HTML fetching, 29
List.length, 29
mutually, 30
nonrecursive implementation, 30
tail recursive, 30
well-founded, 30

Recursive workflow expressions, 492
redraw() function, 404
Reference types, 99
Reflection

types and, 493
library, 496

reflection, 492
Regular expressions, 163
Relational databases and language
Relational databases and ADO.NET

advantages of, 345



597

 ■ INDEX

connecting to \r  conn, 347
creating, 348
creating tables, 348
database engine and, 346
using stored procedures, 350

Relational query operations
aggregation, 342
grouping, 344
inner queries, 343
joins, 344
nullables, 343
sorting, 342

RequestGate, 289
Require attribute, 388
R escape character, 165
Resgen.exe tool, 543
ResizeArray module, 60
Resource lifetime management, 274
Resources, combine with workflows
Resources.BaseResource, 388
Resources for further reading, mreasure, 255
Responsive web design, 392REST requests

handling multiple pages, 334
JSON Format, 333
parsing XML/JSON data, 333

return expr constructs, 275
return! expr constructs, 275
RichTextBox control, 21
Runtime callable wrapper (RCW), 518
Runtime type, 101

■ S
Samples

error estimation, quotations and, 499
workflows, 480

sbyte operator, 235
sbyte type, 233
Schemas, type reflection, 493
Scope, 12
Sequence expressions and workflows, 478
Sequences

aggregate operators, 191
compatible types, 192
expressions, 58, 60, 349
finding elements and indexes, 199
folding sequences, 201
grouping and indexing, 200
iteration, 191
lazy sequences, 192
map and filter operations, 196

selecting multiple elements, 198
truncate and sort operations, 197
using range expressions, 190
using sequence expressions

additional logic, 194
cleaning up, 202
computation expressions, 194
expressing operations, 203
generating lists and arrays, 195

Serialize function, 93
Serializer, 93, 94
Server-side functionality, 363
Set.ofList function, 14
setTextOfControl function, 103
settleDelta() function, 404
Shared-memory concurrency, 282

concurrency primitives, 294
explicit thread creation, 291
race conditions and .NET memory model, 291
using locks, 292
using ReaderWriterLock, 293

showResults function, 17
ShowVisualTree function, 473
showWordCount function, 17
Side effects and workflows, 485
Signature types/signature files, and guidelines, 578
Silverlight, 465
Sinks, 46
Sitelet.Filter value, 371
Sitelet.Infer constructor, 370
Sitelets

Action.MyPage action, 364
Action type, 364
client-side controls, 368
construction, 369
dynamic templates, 367
non-GET HTTP commands

basic menu and order creation form, 376
conceptual mapping, 373
Create Order and List Orders pages, 379
CreateOrderForm, 374
formlet, 374
helper functions, 374
JSON representation, 378, 379
ListOrders, 374
Main.fs file, 373, 374
Main.html file, 373, 374
order attributes, 373
order storage, 373
POST and PUT requests, 378
response content functions, 377



■ INDEX

598

Sitelets, non-GET HTTP commands (cont.)
specific order retrieval, 376

online vs. offline, 364
routers and controllers, 372
serving content, 365
single-page sitelet, 363
Sitelets.Website attribute, 364

Sitelet.Sum combinator, 372
Slice notation, 58
Smart web applications

Ajax rich client applications
development methods, 358
WebSharper (see WebSharper)

web server
arbitrary TCP server, 356
asynchronous task, 356
cloud-computing solutions, 358
coding in F#, 354
GET request, 356
HTTP commands, 353
quote server, 356
Regex1, 356
scaling, 358
SSL server, 357
TCP socket connection, 355

splitAtSpaces function, 11
SplitContainer control, 453
sprintf function, 165
SQLite, 346
SQL Server Express, 346, 347
Stack- and heap-allocated memory, 222
Stack, resources, 136
Static members, 15, 23
Static memory, 514
Statistical functions, 46
stdcall calling convention, 530
stored procedures, 350
Stream, 69
StreamReader, 68, 78
StreamWriter, 67
StringBuilder, 67
String placeholder, 368
StringReader, 68
Strings

formatting, 163, 167
parsing, 170
printfn function and, 165
regular expressions and, 171
sprintf function and, 165
unicode encoding/decoding and, 175

StringWriter, 67

StructLayout custom attribute, 525
Structs, 144
Structural comparison, 89
StructuralEquality and StructuralComparison, 218
Structural formatting, 167
Structural hashing, 62
Structured data

active patterns (see Active patterns)
equality, hashing, and comparison. (see 

Equality, hashing, and comparison)
Structured Query Language (SQL), 347
Subarrays, 58
Submodules, 153
Subtyping

automatic upcasting, 102
dynamic casting, 101
flexible types, 104
.NET types, 99
pattern matching, 102
static casting, 101

SWIG wrapper generator, 535
Sybase iAnywhere, 346
Symbolic differentiation

algebraic expression
abstract syntax representation, 313, 314
ExprUtil.fs, 313, 320
main Expr type, 313
parsing, 315
simplifications, 317
StarNeeded member, 315
VisualExpr.fs, 313
Visual Studio 2012, 313

expression rendering
code, 326
expressions and sizes, 323
rendering options, 320
RenderOptions type, 320
visual elements and sizes, 321
VisualExpr, 323

local simplifications, 312
simple algebraic expressions modeling, 310
user interface client, 327
visual application, 310

Symbolic programming. See  Propositional logic
Synchronization context, 268
Syntax member, object expressions and, 581
Syntax trees, 228
System namespace

core types, 508
supervising and program execution, 509
useful services, 508



599

 ■ INDEX

System.Net library, 22
System.Net.WebRequest, 22
System.Object.ReferenceEquals function, 55
System.Reflection namespace, 493
System.Text.RegularExpressions, 171
System.Text.RegularExpressions.Regex.Matches, 51
System.Threading.AutoResetEvent, 294
System.Threading.Interlocked, 294
System.Threading.ManualResetEvent, 294
System.Threading.Mutex, 294
System.Threading.Semaphore, 294
System.Threading.WaitHandle, 294
System.Windows.Forms.Form, 20

■ T
Tables, relational databases and, 348
Tail calls and recursive programming

and list processing, 223
object-oriented programming, 225
processing syntax trees, 228
processing unbalanced trees, 226
simple tail-recursive function, 222, 223
stack- and heap-allocated memory, 222
using continuations, 227

telnet.exe, 419
Text label, 20
TextOutputSink object, 133
TextReader, 68
text.Split, 19
Textual data

binary parsing and formatting
advantages, 184, 185
combinator-based pickling, 186
data aggregation, 185
data reliability, 183
marshalling, 183
picklers and unpicklers, 183
primitive read/write functions, 184

concrete type.  (see Concrete language format)
data format

ASCII characters, 164
building strings, 163
code, printf style, 166
escape characters, nonverbatim strings, 165
 generic  structural formatting, 167
.NET formatting, 167
%O/%A pattern, 166
printfn and sprintf functions, 165
printfn module, 165
string and character laterals, 164

triple-quote string laterals, 164
parsing strings

basic value, 168
encoding and decoding. See  Encoding/

decoding
line-based input processing, 169, 170
regular expressions, 170
System.Text.RegularExpressions, 171, 172, 

173, 174
recursive descent parsing

information extraction, 180
lazy lists generation, 182
LL parsers, 183
polynomials, 182
symbolic differentiation, 180
tokenizer for polynomials, 181

TextureBrush, 435
TextWriter, 68, 69
Thread hopping, 272
Threads, 258
Top-down rewriting, 205
Top-level members, resolving, 501
TopMost label, 20
Transact-SQL (T-SQL), 347
Transformations, 572
TRANSFORM_CALLBACK type, 530
Transformers model, 46
Truncate and sort operations, 197
TryGetValue method, 61
T-SQL (Transact-SQL), 347
Tuples

arbitrary number, 16
fst and snd functions, 16
hash fucniton, 91
inferred types and computed values, 16
.NET Library Design Guidelines and, 580
patterns, 16
showResults function, 17
showWordCount function, 17
type-checking error, 16
values and objects, 17
wordCount function, 15

Two-dimensional arrays, 59
Type abbreviations, 81, 153
Type annotations, 15, 88, 105
Type classes, 97
Type constraint, 92, 105
Type constructors, 10



■ INDEX

600

Type definitions
discriminated unions (see Discriminated 

Unions)
multiple types, 87
record (see Records)
type abbreviations, 81

Type function, 108
Type inference, 10, 11, 41, 45, 193

explicit factoring, 97
generic functions, 88
subtyping, 100
troubleshooting

generic overloaded operators, 109
type annotations, 105
value restriction.  (see Value restriction)
visual editing environment, 105

type classes, 97
Type of operator, 493
Type parameters, 38, 92
Type PingPong, 106
Type provider, 336
Types

language-oriented programming and, 477, 478
.NET Library Design Guidelines and, 578
partially implemented, 135
reflection and, 493

Type signatures, 89, 90
Type StreamReader, 103
Type-test patterns, 64, 102
Type TextReader, 103
Type TimeSpan, 44
Type variable, 45

■ U
uint16 operator, 235
uint16 type, 233
uint32 operator, 235
uint32type, 234
uint64 operator, 235
uint64 type, 234
Unativeint type, 234
Unbox function, 92

binary serialization, 92, 93
dynamic casting, 101
.NET types, 99

Underscore (_), 576
Ungeneralized type variables, 106
UNNNNNNNN escape character, 165
Upcast operator, 101
urlCollector, 289

use pat = expr constructs, 275
UserControl class, 438
Utils.SimpleContent function, 369

■ V
Value restriction

automatic generalization, 106
definition, 106
empty lists, 106
explicit type arguments, 108
generic functions

dummy arguments, 108
explicit arguments, 107

nongeneric constrain values, 107
Values, 21

types, 99
.NET Library Design Guidelines and, 577

vanilla .NET libraries, 566
Verbatim strings, 164, 172
VerifyUser, 371
Visible label, 20
Visualization and Graphical User Interfaces

control
anatomy of, 441
docking and anchoring, 432
Dock property, 430
fsi.exe., 431
layout, 432
placing controls, 429
registering controls, 429
single thread apartment model, 429
STAThread, 429
status bar, 430
Visual designers, 432
Web browser application, 430
WebBrowser control, 431
Windows Forms, 431

creation  (see Mandelbrot Viewer creation)
drawing applications

Bézier curve, 434
brushes and pens, 435
canonical splines, 434
control point, 436
curves application, 436
movingPoint variable, 436
OnPaintBackground method, 436
paint-based model, 434
window, 434

graphical applications, 428
Hello, World! application, 427



601

 ■ INDEX

sensor samples. See  GraphControl
WPF  (see Windows Presentation Foundation 

(WPF))
Visual Studio, 23, 350
Visual Studio debugger

debugging session, 545
features, 546

Visual Studio’s COM automation model, 521
VSLab Viewlets, 440

■ W
WebRequest object, 22
WebSharper

Android applications
Android emulator, 417
ApplicationControl server control, 425
Client.BingMapsKey, 424
Client module, 424
Controls.Password function, 425
Controls.TextField function, 425
device configuration, 420
Enhance.WithSubmitButton function, 425
formlet code, 425
formlets, 417
installation and set up, 418
Main.fs, 422
Main.html, 421
MapOptions, 425
SDK documentation, 419
SDK Manager, 418, 419
setMap, 425
ShowMap() function, 425
tools, 419
updateLocation, 425
Visual Studio template, 420

ASP.NET-compatible server-side application, 
359

automated resource tracking and handling, 387
documentation, 359
feature detection and polyfilling, 395
flowlets, 359, 387
formlets  (seeFormlets)
mobile, 415
.NET proxies, 389
pagelets, 359, 360
Rich Internet Applications (RIAs), 360
server code, 362
sitelets (see Sitelets)
third-party JavaScript libraries, 388
Visual Studio 2010, 360

WebSharper script manager control, 362
Well-founded recursion, 30
Whitespace, regular expression and, 172
Wildcard patterns, 34, 36
Windows Forms

articulated frameworks, 429
brushes and pens, 435
COM components, 429
coordinate transformation, 449
DataSamples, 445
event loop, 428
F# Interactive, 466
fsi.exe, 429
OnPaintBackground method, 436
System.Windows.Application class, 466
User controls, 438
VSLab, 440
WPF’s layout model, 466

Windows Presentation Foundation (WPF)
bitmaps and images, 474
controls

ButtonChrome node, 473
data-binding expression, 474
DependencyProperty class, 473
FindName method, 472
loadXamlWindow, 472
logical tree, 472
nested controls, 472
opaque, 471
ShowVisualTree function, 473
TextBox implementers, 473
Text property, 473
visual tree, 472

definition, 465
dependency properties and animations, 466
drawing

application, 467
markup syntax, 468
window’s visual tree, 468
XAML  (see XAML)

event loop, 465
FSharpx.TypeProviders package, 465
layout model, 466
.NET framework, 465
paint-event-based paradigm, 467
retention-based, device-independent 

rendering, 466
Silverlight, 465
toolkit model, 467
Turbo Pascal, 466
Win32 and GDI rastering engine, 476



■ INDEX

602

Windows Presentation Foundation (cont.)
window from F# Interactive, 465
XML-based composition language, 466

Window.xaml code, 469
wordCount function

calling functions, 11
code documentation, 9
F# Interactive, 8
Length and Count, 14
let keyword, 9
lightweight syntax, 11, 12
scope, 12
tuple, 15
type, 10

workflows
examples of, 480

workflows (computation expressions), 194
builder for, 478, 483, 488
combining with resources, 492
constructs, 479
how they work, 478
key uses of, 478
probabilisticBEGINRG, 487
probabilisticENDRG, 491
recursive workflow expressions and, 492
resources cleanup and , 492
side effects and, 485
success/failure and, 480
terminology and, 480
with custom query operators, 486

workflowsENDRG, 492
writeCharFunction parameter, 131
WriteLine functions, 167
writeValue function, 92
WSDL services, 351

■ X, Y
XAML

ASP.NET files, 468
BAML, 468
Blend and Visual Studio, 465
business logic, 469
coordinate system, 470
C# source files, 468
FindName method, 470
F# project system, 468
FSharpx type, 469
F# source code, 465
graphical elements, 469
Microsoft Expression Blend, 469
source-code generation, 468
transformed elements composition, 470
Visual Studio, 469
visual tree, 469
Window class, 468
window definition, 468
WYSIWYG editor, 469

XML, 23
language-oriented programming and, 477

XmlAttribute type, 177
XmlDocument type, 177
Xml namespace, 176
XmlNode type, 177
XmlReader type, 177
XmlWriter type, 177
XPath, 180

■ Z
zeroCreate function, 146


	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	CHAPTER 1 Introduction
	The Genesis of F#
	About This Book
	Who This Book Is For

	CHAPTER 2 Your First F# Program – Getting Started With F#
	Creating Your First F# Program
	Documenting Code
	Using let
	Understanding Types
	Calling Functions
	Lightweight Syntax
	Understanding Scope
	Using Data Structures
	Using Properties and the Dot-Notation
	Using Tuples
	Using Imperative Code
	Using open to Access Namespaces and Modules
	Using new and Setting Properties
	Fetching a Web Page

	Using Object-Oriented Libraries from F#
	Using open to Access Namespaces and Modules
	Using new and Setting Properties
	Fetching a Web Page

	Summary

	CHAPTER 3 Introducing Functional Programming
	Starting with Numbers and Strings
	Some Simple Types and Literals
	Arithmetic Conversions
	Arithmetic Comparisons
	Simple Strings

	Working with Conditionals: && and ||
	Defining Recursive Functions
	Lists
	Options
	Getting Started with Pattern Matching
	Matching on Structured Values
	Guarding Rules and Combining Patterns
	Further Ways of Forming Patterns

	Introducing Function Values
	Using Anonymous Function Values
	Computing with Aggregate Operators
	Composing Functions with >>
	Building Functions with Partial Application
	Using Local Functions
	Iterating with Aggregate Operators
	Abstracting Control with Functions
	Using Object Methods as First-Class Functions
	Some Common Uses of Function Values

	Summary

	CHAPTER 4 Introducing Imperative Programming
	About Functional and Imperative Programming
	Imperative Looping and Iterating
	Simple for Loops
	Simple While Loops
	More Iteration Loops over Sequences

	Using Mutable Records
	Mutable Reference Cells
	Avoiding Aliasing
	Hiding Mutable Data

	Using Mutable Locals
	Working with Arrays
	Generating and Slicing Arrays
	Two-Dimensional Arrays

	Introducing the Imperative .NET Collections
	Using Resizeable Arrays
	Using Dictionaries
	Using Dictionary’s TryGetValue
	Using Dictionaries with Compound Keys
	Some Other Mutable Data Structures

	Exceptions and Controlling Them
	Catching Exceptions
	Using try . . . finally
	Defining New Exception Types

	Having an Effect: Basic I/O
	.NET I/O via Streams
	Some Other I/O-Related Types
	Using System.Console

	Combining Functional and Imperative:Efficient Precomputation and Caching
	Precomputation and Partial Application
	Precomputation and Objects
	Memoizing Computations
	Lazy Values
	Other Variations on Caching and Memoization

	Combining Functional and Imperative:Functional Programming with Side Effects
	Consider Replacing Mutable Locals and Loops with Recursion
	Separating Pure Computation from Side-Effecting Computations
	Separating Mutable Data Structures
	Not All Side Effects Are Equal
	Avoid Combining Imperative Programming and Laziness

	Summary

	CHAPTER 5 Understanding Types in Functional Programming
	Exploring Some Simple Type Definitions
	Defining Type Abbreviations
	Defining Record Types
	Handling Non-Unique Record Field Names
	Cloning Records
	Defining Discriminated Unions
	Using Discriminated Unions as Records
	Defining Multiple Types Simultaneously

	Understanding Generics
	Writing Generic Functions
	Some Important Generic Functions
	Generic Comparison
	Generic Hashing
	Generic Pretty-Printing
	Generic Boxing and Unboxing
	Generic Binary Serialization via the .NET Libraries

	Making Things Generic
	Generic Algorithms through Explicit Arguments
	Generic Algorithms through Function Parameters
	Generic Algorithms through Inlining

	More on Different Kinds of Types
	Reference Types and Value Types
	Other Flavors of .NET Types

	Understanding Subtyping
	Casting Up Statically
	Casting Down Dynamically
	Performing Type Tests via Pattern Matching
	Knowing When Upcasts Are Applied Automatically
	Flexible Types

	Troubleshooting Type-Inference Problems
	Using a Visual Editing Environment
	Using Type Annotations
	Understanding the Value Restriction
	Working Around the Value Restriction
	Technique 1: Constrain Values to Be Nongeneric
	Technique 2: Ensure Generic Functions Have Explicit Arguments
	Technique 3: Add Dummy Arguments to Generic Functions When Necessary
	Technique 4: Add Explicit Type Arguments When Necessary
	Understanding Generic Overloaded Operators

	Summary

	CHAPTER 6 Programming with Objects
	Getting Started with Objects and Members
	Using Classes
	Adding Further Object Notation to Your Types
	Working with Indexer Properties
	Adding Overloaded Operators
	Using Named and Optional Arguments
	Adding Method Overloading

	Defining Object Types with Mutable State
	Using Optional Property Settings
	Declaring Auto-Properties

	Getting Started with Object Interface Types
	Defining New Object Interface Types
	Implementing Object Interface Types Using Object Expressions
	Implementing Object Interface Types Using Concrete Types
	Using Common Object Interface Types from the .NET Libraries
	Understanding Hierarchies of Object Interface Types

	More Techniques to Implement Objects
	Combining Object Expressions and Function Parameters
	Defining Partially Implemented Class Types
	Using Partially Implemented Types via Delegation
	Using Partially Implemented Types via Implementation Inheritance

	Combining Functional and Objects: Cleaning Up Resources
	Resources and IDisposable
	Managing Resources with More Complex Lifetimes
	Cleaning Up Internal Objects
	Cleaning Up Unmanaged Objects

	Extending Existing Types and Modules
	Working with F# Objects and .NET Types
	Structs
	Delegates
	Enums
	Working with null Values

	Summary

	CHAPTER 7 Encapsulating and OrganizingYour Code
	Hiding Things
	Hiding Things with Local Definitions
	Hiding Things with Accessibility Annotations

	Organizing Code with Namespaces and Modules
	Putting Your Code in a Module
	Putting Your Modules and Types in Namespaces
	Hiding Things with Signatures
	Designing with Signatures
	When Are Signature Types Checked?
	Defining a Module with the Same Name as a Type
	Preventing Client Code from Opening a Module
	Using Files as Modules
	Automatically Opening Modules

	Reusing Your Code
	Using Files as Small Reusable Components
	Creating Assemblies, DLLs, and EXEs
	Creating and Sharing Packages

	Summary

	CHAPTER 8 Working with Textual Data
	Building Strings and Formatting Data
	Building Strings
	More about String Literals
	Using printf and Friends
	Generic Structural Formatting
	Formatting Strings Using .NET Formatting

	Parsing Strings and Textual Data
	Parsing Basic Values
	Processing Line-Based Input
	Using Regular Expressions to Parse Lines
	More on Matching with System.Text.RegularExpressions
	Encoding and Decoding Unicode Strings
	Encoding and Decoding Binary Data

	Using XML as a Concrete Language Format
	Using the System.Xml Namespace
	From Concrete XML to Abstract Syntax

	Some Recursive Descent Parsing
	A Simple Tokenizer
	Recursive-Descent Parsing

	Binary Parsing and Formatting
	Summary

	CHAPTER 9 Working with Sequencesand Structured Data
	Getting Started with Sequences
	Iterating a Sequence
	Transforming Sequences with Aggregate Operators
	Which Types Can Be Used as Sequences?
	Using Lazy Sequences from External Sources
	Using Sequence Expressions
	Enriching Sequence Expressions with Additional Logic
	Generating Lists and Arrays Using Sequence Expressions

	More on Working with Sequences
	Using Other Sequence Operators: Truncate and Sort
	Selecting Multiple Elements From Sequences
	Finding Elements and Indexes in Sequences
	Grouping and Indexing Sequences
	Folding Sequences
	Cleaning Up in Sequence Expressions
	Expressing Some Operations Using Sequence Expressions

	Structure Beyond Sequences: Working with Trees
	Example: Abstract Syntax Representations
	Transforming Abstract Syntax Representations
	Using On-Demand Computation with Abstract Syntax Trees
	Caching Properties in Abstract Syntax Trees
	Memoizing Construction of Syntax Tree Nodes

	Active Patterns: Views for Structured Data
	Converting the Same Data to Many Views
	Matching on .NET Object Types
	Defining Partial and Parameterized Active Patterns
	Hiding Abstract Syntax Implementations with Active Patterns

	Equality, Hashing, and Comparison for New Structured Data Types
	Equality, Hashing, and Comparison
	Asserting Equality, Hashing, and Comparison Using Attributes
	Fully Customizing Equality, Hashing, and Comparison on a Type
	Suppressing Equality, Hashing, and Comparison on a Type
	Customizing Generic Collection Types

	Tail Calls and Recursive Programming
	Tail Recursion and List Processing
	Tail Recursion and Object-Oriented Programming
	Tail Recursion and Processing Unbalanced Trees
	Using Continuations to Avoid Stack Overflows
	Another Example: Processing Syntax Trees

	Summary

	CHAPTER 10 Numeric Programming and Charting
	Basic Charting with FSharpChart
	Basic Numeric Types and Literals
	Arithmetic Operators
	Checked Arithmetic
	Arithmetic Conversions
	Arithmetic Comparisons
	Overloaded Math Functions
	Bitwise Operations

	Sequences, Statistics and Numeric Code
	Summing, Averaging, Maximizing and Minimizing Sequences
	Counting and Categorizing
	Writing Fresh Numeric Code
	Making Numeric Code Generic
	Example: KMeans

	Statistics, Linear Algebra and Distributions with Math.NET
	Basic Statistical Functions in Math.NET Numerics
	Using Histograms and Distributions from Math.NET Numerics
	Matrix Inverses, Decompositions and Eigenvalues

	Units of Measure
	Adding Units to a Numeric Algorithms
	Adding Units to a Type Definition
	Applying and Removing Units
	Some Limitations of Units of Measure

	Summary

	CHAPTER 11 Reactive, Asynchronous, andParallel Programming
	Introducing Some Terminology
	Events
	Events as First-Class Values
	Creating and Publishing Events

	Using and Designing Background Workers
	Building a Simpler Iterative Worker
	Raising Additional Events from Background Workers
	Connecting a Background Worker to a GUI

	Introducing Asynchronous and Parallel Computations
	Fetching Multiple Web Pages in Parallel, Asynchronously
	Understanding Thread Hopping
	Under the Hood: What Are Asynchronous Computations?
	Parallel File Processing Using Asynchronous Workflows
	Running Asynchronous Computations
	Common I/O Operations in Asynchronous Workflows
	Using Tasks with Asynchronous Programming
	Understanding Exceptions and Cancellation
	Under the Hood: Implementing Async.Parallel
	Using async for CPU Parallelism with Fixed Tasks

	Agents
	Introducing Agents
	Creating Objects That React to Messages
	Scanning Mailboxes for Relevant Messages
	Example: Asynchronous Web Crawling

	Observables
	Using Shared-Memory Concurrency
	Creating Threads Explicitly
	Shared Memory, Race Conditions, and the .NET Memory Model
	Using Locks to Avoid Race Conditions
	Using ReaderWriterLock
	Some Other Concurrency Primitives

	Summary

	CHAPTER 12 Symbolic Programming with Structured Data
	Verifying Circuits with Propositional Logic
	Representing Propositional Logic
	Evaluating Propositional Logic Naively
	From Circuits to Propositional Logic
	Checking Simple Properties of Circuits
	Representing Propositional Formulae Efficiently Using BDDs
	Circuit Verification with BDDs

	Symbolic Differentiation and Expression Rendering
	Modeling Simple Algebraic Expressions
	Implementing Local Simplifications
	A Richer Language of Algebraic Expressions
	Parsing Algebraic Expressions
	Simplifying Algebraic Expressions
	Symbolic Differentiation of Algebraic Expressions
	Rendering Expressions
	Converting to VisualExpr
	Rendering
	Building the User Interface

	Summary

	CHAPTER 13 Integrating External Data and Services
	Some Basic REST Requests
	Getting Data in JSON Format
	Parsing the XML or JSON Data
	Handling Multiple Pages

	Getting Started with Type Providers and Queries
	Example - Language Integrated OData
	What is a Type Provider?
	What is a Query?
	Handling Pagination in OData
	Example - Language Integrated SQL

	More on Queries
	Sorting
	Aggregation
	Nullables
	Inner Queries
	Grouping
	Joins

	More on Relational Databases and ADO.NET
	Establishing Connections using ADO.NET
	Creating a Database using ADO.NET
	Creating Tables using ADO.NET
	Using Stored Procedures via ADO.NET

	Using WSDL Services
	Summary

	CHAPTER 14 Building Smart Web Applications
	Serving Web Content the Simple Way
	Building Ajax Rich Client Applications
	Learning More from the WebSharper Documentation
	Getting Started with WebSharper
	WebSharper Pagelets
	Calling Server Code from the Client
	WebSharper Sitelets
	Online vs. Offline Sitelets
	Serving Content from WebSharper Sitelets
	Using Dynamic Templates
	Embedding Client-Side Controls in Sitelet Pages
	Constructing and Combining Sitelets
	Sitelet Routers and Controllers
	Constructing Sitelets for Handling Non-GET HTTP Commands
	WebSharper Formlets
	Dependent Formlets and Flowlets
	Automated Resource Tracking and Handling
	Using Third-Party JavaScript Libraries
	Working with .NET Proxies

	Summary

	CHAPTER 15 Building Mobile Web Applications
	Web-based vs. Native Mobile Applications
	Feature Detection and Polyfilling in WebSharper
	Mobile Capabilities, Touch Events, and Mobile Frameworks
	Serving Mobile Content
	Building a Mobile Web Application for iOS Devices
	Fleshing Out the Application
	Digging Deeper

	Developing Social Networking Applications
	Configuring Your New Facebook Application
	Defining the Main HTML Application

	WebSharper Mobile
	Developing Android Applications with WebSharper
	Setting Up and Testing with Your Android Environment
	Using the Android Application Visual Studio Template
	Implementing Your Native Android Application

	Summary

	CHAPTER 16 Visualization and Graphical User Interfaces
	Writing “Hello, World!” in a Click
	Understanding the Anatomy of a Graphical Application
	Composing User Interfaces
	Drawing Applications
	Writing Your Own Controls
	Developing a Custom Control
	Anatomy of a Control

	Displaying Samples from Sensors
	Building the GraphControl: The Model
	Building the GraphControl: Style Properties and Controller
	Building the GraphControl: The View
	Putting It Together

	Creating a Mandelbrot Viewer
	Computing Mandelbrot
	Setting Colors
	Creating the Visualization Application
	Creating the Application Plumbing

	Windows Presentation Foundation
	When GUIs Meet the Web
	Drawing
	Controls
	Bitmaps and Images
	Final Considerations

	Summary

	CHAPTER 17 Language-Oriented Programming: Advanced Techniques
	Computation Expressions
	An Example: Success/Failure Workflows
	Defining a Workflow Builder
	Workflows and Untamed Side Effects
	Computation Expressions with Custom Query Operators
	Example: Probabilistic Workflows
	Combining Workflows and Resources
	Recursive Workflow Expressions

	Using F# Reflection
	Reflecting on Types
	Schema Compilation by Reflecting on Types
	Using the F# Dynamic Reflection Operators

	Using F# Quotations
	Example: Using F# Quotations for Error Estimation
	Resolving Reflected Definitions

	Summary

	CHAPTER 18 Libraries and Interoperating with Other Languages
	Types, memory and interoperability
	Libraries: A High-Level Overview
	Namespaces from the .NET Framework
	Namespaces from the F# Libraries

	Using the System Types
	Using Further F# and .NET Data Structures
	System.Collections.Generic and Other .NET Collections

	Supervising and Isolating Execution
	Further Libraries for Reflective Techniques
	Using General Types
	Using Microsoft.FSharp.Reflection

	Some Other .NET Types You May Encounter
	Under the Hood: Interoperating with C# and other .NET Languages
	The Common Language Runtime
	Memory Management at Runtime

	COM Interoperability
	Calling COM Components from F#
	The Running Object Table

	Interoperating with C and C++ with PInvoke
	Getting Started with PInvoke
	Mapping C Data Structures to F# Code
	Marshalling Parameters to and from C
	Marshalling Strings to and from C
	Passing Function Pointers to C
	PInvoke Memory Mapping
	Wrapper Generation and Limits of PInvoke

	Summary

	CHAPTER 19 Packaging, Debugging and Testing F# Code
	Packaging Your Code
	Mixing Scripting and Compiled Code
	Choosing Optimization Settings
	Generating Documentation
	Building Shared Libraries
	Using Static Linking
	Packaging Different Kinds of Code
	Using Data and Configuration Settings

	Debugging Your Code
	Using More Features of the Visual Studio Debugger
	Instrumenting Your Program with the System.Diagnostics Namespace
	Debugging Concurrent and Graphical Applications

	Debugging and Testing with F# Interactive
	Controlling F# Interactive
	Some Common F# Interactive Directives
	Understanding How F# Interactive Compiles Code
	F# Interactive and Visual Studio

	Testing Your Code
	Summary

	CHAPTER 20 Designing F# Libraries
	Designing Vanilla .NET Libraries
	Understanding Functional Design Methodology
	Understanding Where Functional Programming Comes From
	Understanding Functional Design Methodology

	Applying the .NET Library Design Guidelines to F#
	Recommendation: Use the .NET Naming and Capitalization Conventions Where Possible
	Recommendation: Avoid Using Underscores in Names
	Recommendation: Follow the .NET Guidelines for Exceptions
	Recommendation: Consider Using Option Values for Return Types Instead of Raising Exceptions
	Recommendation: Follow the .NET Guidelines for Value Types
	Recommendation: Consider Using Explicit Signature Files for Your Framework
	Recommendation: Consider Avoiding the Use of Implementation Inheritance for Extensibility
	Recommendation: Use Properties and Methods for Attributes and Operations Essential to a Type
	Recommendation: Avoid Revealing Concrete Data Representations Such as Records
	Recommendation: Use Active Patterns to Hide the Implementations of Discriminated Unions
	Recommendation: Use Object Interface Types Instead of Tuples or Records of Functions
	Recommendation: Understand When Currying Is Useful in Functional Programming APIs
	Recommendation: Use Tuples for Return Values, Arguments, and Intermediate Values

	Some Recommended Coding Idioms
	Recommendation: Use the Standard Operators
	Recommendation: Place the Pipeline Operator |> at the Start of a Line
	Recommendation: Format Object Expressions Using the member Syntax

	Summary

	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




