

� � �

Ultra-Fast ASP.NET 4.5
Build Ultra-Fast and Ultra-Scalable Web Sites

Using ASP.NET 4.5 and SQl Server 2012

Richard Kiessig

ii

Ultra-Fast ASP.NET 4.5

Copyright © 2012 by Richard Kiessig

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, transmission or information storage and retrieval,
electronic adaptation, adaptation to computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis, or material supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under
the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4338-0

ISBN 978-1-4302-4339-7 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewer: Fabio Claudio Ferracchiati and Eric Lawrence
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt
Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Chandra Clarke
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 100l3. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at http://www.apress.com/info/bulksales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www.apress.com. For detailed information about how to locate your book's source code, go to www.apress.com/source
code.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Contents at a Glance

About the Author ..•••••••••••••••••••••••••. xviii

About the Technical Reviewers ••• xix

Introduction •• xx

Chapter 1: Principles and Method ••...... 1

Chapter 2: Client Performance ••.... 13

Chapter 3: Caching ••• 61

Chapter 4: liS 7.5 •• 123

Chapter 5: ASP .NET Threads and Sessions ... 159

Chapter 6: Using ASP .NET to Implement and Manage Optimization Techniques 199

Chapter 7: Managing ASP.NET Application Policies ... 227

Chapter 8: SQL Server Relational Database .. 259

Chapter 9: SQL Server Analysis Services •• 337

Chapter 10: Infrastructure and Operations ... 371

Chapter 11: Putting It All Together ••• 399

Glossary •• 421

Index ••• 425

iii

�

�

�

�

�

Contents

About the Author .. xviii

About the Technical Reviewers ... xix

Introduction .. xx

Chapter 1: Principles and Method .. 1

The Difference Between Performance and Scalability .. 2

Why Ultra-fast and Ultra-scalable? ... 2

Optimization ... 3

Process ... 4

The Full Experience .. 5

End-to-End Web Page Processing ... 5

Overview of Principles ... 8

Performance Principles .. 8

Secondary Techniques ... 9

Environment and Tools Used in This Book ... 1 0

Software Tools and Versions .. 10

Terminology .. 12

Typographic Conventions ... 12

Author's Web Site ... 12

Summary ... 12

Chapter 2: Client Performance .. 13

Browser Page Processing .. 14

iv

� CONTENTS

Network Connections and the Initial HTTP Request ... 14

Page Parsing and New Resource Requests .. 16

Page Resource Order and Reordering .. 17

Browser Caching ... 18

Network Optimizations .. 19

JavaScript Grouping and Placement. ... 21

Avoiding document.writeO ... 21

Reordering Script That You Can't Modify .. 22

Requesting Images and Other Objects After the Page Loads ... 24

Script Defer and Async ... 24

Downloading Less .. 25

Reduce the Number of Resources per Page ... 25

Minify Your HTML, CSS, and JavaScript ... 26

Maximize Compressibility ... 27

Image Optimization ... 27

Web Site Icon File ... 32

General HTML, CSS, and JavaScript Optimization .. 32

Using JavaScript to Gate Page Requests ... 37

Submit Buttons ... 37

Links ... 38

Using JavaScript to Reduce HTML Size ... 39

Generate Repetitive HTML .. 39

Add Repetitive Text to Your Tags .. 40

Uploading Less .. 41

Optimizing CSS .. 42

Using Image Sprites and Clustering .. 46

Leveraging Dynamic HTML and JavaScript (Ajax) ... 49

v

�

� CONTENTS

Improving Layout and Rendering Speed .. 51

Precaching ... 53

Precaching Images ... 53

Precaching CSS and JavaScript ... 54

Using CSS Layout Without Tables .. 55

Optimizing JavaScript Performance .. 58

Summary ... 59

Chapter 3: Caching ... 61

Caching at All Tiers .. 62

Browser Cache .. 63

Caching Static Content ... 63

Caching Dynamic Content .. 66

ViewState ... 67

How ViewState Works .. 68

Avoiding ViewState Misuse .. 70

Using ViewState as a Form of Caching ... 70

Protecting ViewState Data Integrity .. 71

Cookies and Web Storage .. 76

Setting Session Cookies ... 77

Multiple NameNalue Pairs in a Single Cookie .. 77

Cookie Properties ... 78

Web Storage ... 87

Silverlight Isolated Storage .. 87

Sample Application: "Welcome Back" ... 88

Deploying and Updating Silverlight Applications .. 93

Proxy Cache ... 94

Using the Cache-Control HTTP Header ... 94

vi

�

� CONTENTS

Managing Different Versions of the Same Content.. 96

Web Server Cache . .. 96

Windows Kemel Cache ... 96

liS Output Caching .. 102

ASP.N ET Output Caching 103

ASP.N ET Object Caching ... 113

Caching in Sal Server ... 118

Distributed Caching ... 119

Cache Expiration Times 120

Dynamic Content .. 120

Static Content ... 120

Summary ... 121

Chapter 4: liS 7.5 .. 123

Application Pools and Web Gardens .. 123

AppPool Recycling .. 125

Multiple AppPools ... 125

Web Gardens .. 125

Request-Processing Pipeline ... 126

Windows System Resource Manager .. 127

Common HTIP Issues .. 132

HTIP Redirects 134

HTIP Headers ... 135

Compression .. 138

Enabling Compression .. 139

Setting Compression Options 140

Using web.config to Configure Compression .. 141

Caching Compressed Content 142

vii

�

� CONTENTS

Programmatically Enabling Compression ... 142

HTTP Keep-Alives .. 142

Reducing the Length of Your URLs .. 143

Virtual Directories ... 143

URL Rewriting ... 144

Managing Traffic and Bandwidth ... 147

Using robots.txt .. 148

Site Maps .. 149

Bandwidth Throttling .. 150

Failed Request Tracing .. 153

Miscellaneous liS Performance Tuning ... 157

Summary ... 157

Chapter 5: ASP .NET Threads and Sessions ... 159

Threads Affect Scalability .. 159

ASP.NET Page Life Cycle ... 161

Application Thread Pool ... 164

Synchronous Page .. 164

Asynchronous Page Using the Asynchronous Programming Model ... 165

Asynchronous Page Using the Task-Based Asynchronous Pattern ... 166

Asynchronous VS. Synchronous Load Tests ... 167

Improving the Scalability of Existing Synchronous Pages .. 170

Executing Multiple Async Tasks from a Single Page .. 170

Handling Timeouts .. 172

Asynchronous Web Services .. 174

Asynchronous File 110 ... 176

Asynchronous Web Requests ... 178

Background Worker Threads ... 179

viii

�

� CONTENTS

Background Thread for Logging ... 180

Task Serialization ... 185

Locking Guidelines and Using ReaderWriterLockSlim ... 185

Session State ... 186

Session IDs ... 187

InProc Mode .. 188

Using StateServer ... 188

Using SQL Server .. 188

Selectively Enabling Session State and Using ReadOnly Mode .. 190

Scaling Session State Support ... 191

Fine-Tuning .. 196

Full-Custom Session State ... 196

Session Serialization .. 197

Alternatives to Session State ... 198

Summary ... 198

Chapter 6: Using ASP .NET to Implement and Manage Optimization Techniques 199

Master Pages ... 199

Nested Master Pages ... 201

Dynamic Master Pages ... 202

Referencing the Master Page ... 202

User Controls ... 203

Example: Image Handling ... 203

Placing Controls in an Assembly .. 205

Templated Controls .. 206

Themes .. 208

Static Files .. 208

Skins ... 209

Setting Themes Dynamically .. 209

ix

�

� CONTENTS

Themable Properties .. 210

Example: Theme and Skin .. 210

Precaching Themed Images ... 211

Bundling and Minification .. 212

Caching Browser-Specific Pages .. 212

Control Adapters .. 213

Example: Enforcing Lowercase URLs for Images ... 214

Example: Removing IDs from Panel, Hyperlink and Label Controls .. 215

Browser Providers ... 217

Dynamically Generating JavaScript and CSS .. 219

Example: Dynamic JavaScript .. 219

Using JavaScript to Access Markup Generated by Controls ... 220

Multiple Domains for Static Files ... 220

Image Resizing .. 222

Summary ... 224

Chapter 7: Managing ASP .NET Application Policies ... 227

Custom HttpModules ... 227

Requirements for the Example HttpModule .. 228

InitO Method ... 229

PreRequestHandlerExecute Event Handler ... 230

BeginAuthenticateRequest Event Handler .. 230

EndAuthenticateRequest Event Handler ... 232

End Request Event Handler ... 233

Database Table and Stored Procedure ... 234

Registering the HttpModule in web.config ... 235

Custom HttpHandlers ... 236

Beginning the Request ... 236

x

�

�CONTENTS

Ending the Request .. 237

Page Base Class .. 238

Page Adapters ... 240

Example: PageStatePersister ... 240

URl Rewriting .. 242

URl Routing ... 243

Tag Transforms .. 245

Redirects .. 246

Conventional Redirects ... 246

Permanent Redirects .. 247

Using Server.TransferQ ... 247

Early Response Flush ... 248

Example .. 248

Packet Trace ... 250

Chunked Encoding .. 252

Whitespace Filtering .. 253

Other Ways to Avoid Unnecessary Work .. 255

Check Page.lsPostBack .. 255

Identify a Page Refresh .. 255

Avoid Redirects After a Postback ... 256

Check Response.lsClientConnected ... 256

Disable Debug Mode ... 257

Batch Compilation .. 258

Summary ... 258

Chapter 8: SQL Server Relational Database .. 259

How Sal ServerManages Memory .. 260

Memory Organization ... 260

xi

� CONTENTS

Reads and Writes 260

Performance Impact ... 261

Stored Procedures ... 261

Command Batching ... 263

Using SqlDataAdapter 263

Building Parameterized Command Strings ... 267

Transactions .. 268

Multiple Result Sets ... 273

Using SqlDataReader.NextResultO ... 274

Using SqlDataAdapter and a DataSet ... 275

Data Precaching .. 276

Approach 276

Precaching Forms-Based Data ... 277

Precaching Page-at-a-Time Data ... 277

Data Access l ayer ... 278

Ouery and Schema Optimization ... 280

Clustered and Nonclustered Indexes .. 280

Miscellaneous Ouery Optimization Guidelines ... 289

Data Paging ... 289

Common Table Expressions ... 290

OFFSET 290

Detailed Example of Data Paging 291

UNO t o SOL, Entity Framework and other ORMs ... 296

XMl Columns ... 297

XML Schema ... 298

Creating the Example Table 299

Basic XML Queries .. 300

xii

� CONTENTS

Modifying the XML Data ... 300

XML Indexes ... 301

Miscellaneous XML Query Tips ... 302

Data Partitioning .. 302

Partition Function ... 303

Partition Scheme .. 303

Generating Test Data .. 304

Adding an Index and Configuring Lock Escalation .. 305

Archiving Old Data .. 306

Summary .. 306

Full-Text Search .. 306

Creating the Full-Text Catalog and Index ... 307

Full-Text Queries .. 308

Obtaining Search Rank Details ... 309

Full-Text Search Syntax Summary ... 309

Service Broker ... 31 0

Enabling and Configuring Service Broker ... 311

Stored Procedure to Send Messages ... 311

Stored Procedure to Receive Messages ... 312

Testing the Example ... 313

Avoiding Poisoned Messages ... 313

Table-based FIFO Queues ... 314

Sending E-mail via Service Broker .. 314

Creating a Background Worker Thread .. 315

Reading and Processing Messages .. 316

Web Form to Queue a Message to Send an E-mail .. 319

Results .. 321

Data Change Notifications ... 322

xiii

�

� CONTENTS

Query Restrictions .. 322

Example: A Simple Configuration System .. 324

Resource Governor .. 326

Configuration .. 327

Testing .. 329

Scaling Up vs. Scaling Out ... 330

Scaling Up .. 330

Scaling Out ... 331

Identifying System Bottlenecks .. 332

High Availability ... 333

Miscellaneous Performance Tips ... 335

Summary ... 336

Chapter 9: SQL Server Analysis Services .. 337

Analysis Services Overview ... 337

Example MDDB .. 339

RDBMS Schema .. 339

Data Source View ... 341

Cube ... 344

Time Dimension .. 344

Items and Users Dimensions .. 346

Calculated Member .. 347

Deploy and Test .. 348

Example MDX Queries ... 349

ADOMD.NET ... 355

Example with a Single-Cell Result. ... 356

Displaying a Multiple-Row Result Using a GridView ... 358

Updating Your Cube with SSIS ... 360

xiv

�

�CONTENTS

Proactive Caching .. 363

Data Storage Options .. 363

Caching Modes ... 364

Using a Staging Database .. 367

Summary ... 369

Chapter 10: Infrastructure and Operations ... 371

Instrumentation ... 371

Capacity Planning .. 377

Disk Subsystems ... 377

Random vs. Sequential II0s per Second .. 378

NTFS Fragmentation ... 379

Disk Partition Design .. 381

RAID Options ... 382

Storage Array Networks ... 385

Controller Cache ... 385

Solid State Disks ... 385

Disk Array Benchmarks .. 386

Network Design ... 387

Jumbo Frames .. 388

Link Aggregation .. 389

Firewalls and Routers .. 390

Windows Firewall and Antivirus Software .. 391

Using Your Router as an Alternative to a Hardware Firewall .. 391

Load Balancers .. 391

DNS .. 392

Staging Environments .. 393

Deployment. ... 393

xv

�

� CONTENTS

Data Tier Upgrades ... 394

Improving Deployment Speed .. 395

Page Compilation .. 395

Cache Warm-Up .. 395

Server Monitoring .. 396

Summary ... 397

Chapter 11: Putting It All Together ... 399

Where to Start .. 399

Development Process .. 400

Organization ... 401

Project Phases and Milestones ... 401

Coding .. 402

Testing .. 403

Bug Tracking .. 403

User Feedback .. 403

The Ultra-Fast Spin .. 404

League ... 406

Tools .. 407

Architecture ... 408

Checklists .. 409

Principles and Method (Chapter 1) ... 409

Client Performance (Chapter 2) .. 409

Caching (Chapter 3) .. 412

liS 7.5 (Chapter 5) ... 413

ASP.NET Threads and Sessions (Chapter 5) ... 414

Using ASP.NET to Implement and Manage Optimization Techniques (Chapter 6) 414

Managing ASP.NET Application Policies (Chapter 7) .. 415

xvi

�

�

�

CONTENTS

sal Server Relational Database (Chapter 8) .. 416

Sal Server Analysis Services (Chapter 9) .. 418

Infrastructure and Operations (Chapter 10) .. 418

Summary ... 420

Glossary .. 421

Index ... 425

xvii

xviii

About the Author

D I first started writing software and using the Internet (or ARPAnet as it was
known back then) in my teens back in the mid -1970' s - nearly 40 years ago. I
love high-tech, and I'm passionate about my work.

After graduating from UC Santa Barbara in 1979, I went to work at the
Rand Corporation, where I continued my involvement with Unix, C, and the
Internet. During the 1980s, I moved back to Silicon Valley, where I specialized
in low-level operating systems (OS) work, performance tuning, and network
oriented applications. I managed a group that did one ofthe first ports of Unix
to a microprocessor, and developed a high-performance XNS-based network
stack. I also wrote several 3-D scientific animation systems and a gate array
placement package.

In the early 1990s, I began working with real-time systems. I wrote a
custom real-time OS that was used in the US Navy's F-18 aircraft. I developed real-time applications
that were used in spacecraft and associated ground support systems, including a system called the
Stellar Compass that measures vehicle attitude using digital images of stars. That software has flown to
the Moon, to Mars three times, and to a comet and back. I was also the principal architect and designer
of the ground system and various flight software components for one of the world's first commercial
imaging satellites.

I was very enthusiastic about managed languages when I first heard about them, and about Java
in particular. One of the first large-scale things I developed with Java was an audio conferencing system.
I helped architect and build several large-scale Java-based data-intensive web sites and web
applications, including one that was designed to be deployed to and used by 20 million set-top boxes to
provide the Internet over TV. My last Java-based project was building a document-management
oriented filesystem; I am the primary inventor of several related patents.

I went to work for Microsoft in late 1999. My first project there was to develop a comprehensive
architecture to deliver MSN content via TV-oriented middleware platforms such as WebTV using C#,
ASP.NET, and SQL Server. A few years later, after completing development of the initial system, I moved
to the Microsoft Technology Center, where I began working with and advising some of Microsoft's
largest customers regarding the .NET and SQL Server-oriented aspects of their system architectures.

Recurring themes in my career have been a focus on performance and reliability. The software
development process is another long-time interest of mine, because I've seen first-hand how much of
an impact it can have on the success or failure of a project.

In December 2006, my family and I left the intensity of Silicon Valley and moved to beautiful New
Zealand, where we currently live. My hobbies include ham radio (caUsign ZL2HAM) , tracking asteroids,
and photography.

About the Technical Reviewers

D Eric Lawrence is best known as the developer of the Fiddler web debugging
platform, used by security and web professionals worldwide. A frequent speaker at
developer and security conferences, he is a Program Manager Lead on Microsoft's
Internet Explorer team, and has worked on networking, extensibility, and security
features for IE versions 7 to 10. In addition to Fiddler, Eric develops and maintains
the freeware tools at http://bayden . com/, and his IEInternais blog can be found at
http://blogs.msdn.com/b/IElnternals/.

D Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (www. brainforce. com) in its Italian branch (www. brainforce . it).
He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for
.NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten
years, he's written articles for Italian and international magazines and coauthored more than ten books
on a variety of computer topics.

xix

xx

Introduction

The time that I spent working at Microsoft was an unexpectedly transforming experience. The first half
of my career regularly put me and the companies I worked with in competition with Microsoft, and I was
often surrounded by anti-Microsoft stories and propaganda. However, when I heard about .NET, I
decided I wanted to know more and that the best way to do that was to learn at the source.

As I got into the technology and the company, what I found was more than a little surprising. The
.NET Framework, the C# language, ASP.NET, and SQL Server are sophisticated and technically beautiful
achievements. After working with Java for several years, which also has a definite elegance, it was
refreshing and empowering to use a well-integrated platform, where everything (mostly) worked
together searnlessly. At a technical level, I found that I usually agreed with the decisions and tradeoffs
the platform developers made, and that the resulting system helped to substantially improve my
productivity as a developer, as well as the quality of the resulting software. I also found the Microsoft
engineering teams to be wonderfully bright, creative, and-perhaps most surprising of all to me as a
former outsider-sincerely interested in solving customer problems.

My enthusiasm for the technology helped carry me into a customer-facing position as a solutions
architect at the Microsoft Technology Center in Silicon Valley. Being exposed in-depth to customer
issues was another eye-opening experience. First, I could see first-hand the remarkably positive impact
of Microsoft technologies on many people and companies. Second, I could also see the intense
frustration and poor results that some people were having. This book is, in part, a response to some of
those frustrations.

My perspective is that ASP.NET and SQL Server have tremendous potential. However, key aspects
of the technologies are not obvious. I've talked with (and interviewed) many developers and managers
who sense the potential but who have had extreme difficulty when it comes to the implementation.
Unfortunately, realizing the technology's full potential requires more up-front effort than some
alternative approaches; it's a rich environment, and to appreciate it fully requires a certain perspective.
One of my goals for this book is to help remove some of the fog that may be masking the end-to-end
vision of the technology and to help you see the beauty and the full potential of ASP.NET and SQL
Server.

Another reason I wrote this book is that I am frustrated constantly by how slow some sites are,
and I'm hoping you will be able to use the information here to help change that. The Web has amazing
possibilities, well beyond even the fantastic level it's reached already-but they can be realized only if
performance is good. Slow sites are a tum-off for everyone.

My Internet connection today uses an 11 Mbps DSL line, and each of the twelve hyperthreaded
cores in my desktop CPU runs at nearly 3GHz; that's nearly four times the network bandwidth and three
times the number of CPU cores I had when I wrote the first edition of this book just a couple of years
ago. It's astonishingly fast. Yet even with that much network and CPU speed, many web pages still take a
long time to load-sometimes a minute or more-and my local network and CPU are almost idle during
that time. As software professionals, that should concern us. I find it almost embarrassing. I want to be
proud of not just my own work but also the work of my profession as a whole. Let's make our sites not
just fast, but ultra-fast.

� INTRODUCTION

Who Th is Book Is For
The fIrst two and last two chapters in this book provide information that will be useful to all web
developers, regardless of which underlying technology you use. The middle seven chapters will interest
intermediate to advanced architects and developers who are designing, building or maintaining web
sites using ASP.NET and SQL Server. Experienced web developers who have recently moved from Java or
PHP to .NET will also fInd lots of valuable and interesting information here.

This book will be useful for nondevelopers who have a technical interest in what makes a web site
fast. In particular, if you're involved with web site operations, security, testing, or management, you will
discover many of the principles and issues that your development teams should be addressing, along
with demonstrations that help drive the points home.

ASP.NET MVC, Windows Azure, and Sal Azure
Although I focus in this book on ASP.NET web forms, IIS, and SQL Server on the server side, you can
apply many of the same fundamental architectural principles to the ASP.NET MVC, Windows Azure, and
SQLAzure platforms. Although ASP.NET MVC has grown substantially since its introduction, Microsoft
originally built it on top of web forms, so the foundation of both systems is the same. Windows Azure for
web applications uses IIS running in virtual machines, and SQL Azure is a slightly trimmed-down,
multi-tenant version of SQL Server. Once you understand the key principles, you will be able to apply
them regardless of the platform or language.

Contacting the Author
You can reach me at rick@12titans.net. Please visit my web site atwww.12titans.net.

I would love to hear about your experiences with the ultra-fast approach.
Techniques to improve performance and scalability are constantly evolving, along with the

underlying technology. I am very interested in hearing about any techniques I haven't covered here that
you fInd to be effective.

Please let me know if you find any errors in the text or the code samples, or tweaks that can make
them even better.

Acknowledgments
For the fIrst edition I would like to thank Ewan Buckingham for his early support and encouragement;
Matthew Moodie for help with overall structure and flow; Simon Taylor and Phil de J oux for technical
reviews; Anita Castro for project management; and Kim Wimpsett for copyediting.

For the current edition, 1'd like to thank Matthew Moodie again as lead editor; Fabio Ferracchiati
and Eric Lawrence for technical reviews; Adam Heath for project management; and Chandra Clark for
copyediting.

xxi

CHAPTER 1

Principles and Method

Modern large-scale web sites are amazingly complex feats of engineering. Partly as a result of this, many
sites run into significant performance and scalability problems as they grow. In fact, it's not unusual for
large sites to be reengineered almost from scratch at some point in order to handle their growth.
Fortunately, consistently following a few basic principles can make sites faster while they're still small,
while minimizing the problems you will encounter as they grow.

This book will explore those principles and show how and why you should apply them.
I'm basing the ideas presented here on my work developing network-oriented software over the past

30+ years. I started working with the Internet in 1974 and with Unix and C in 1979 and later moved to
c++ and then Java and C#. I learned about ASP.NET and SQL Server in depth while working at Microsoft,
where I helped architect and develop a large-scale web site for MSN TV. I polished that knowledge over
the next few years while I was an architect at the Microsoft Technology Center (MTC) in Silicon Valley.
During that time, I helped run two- to three-day architectural design sessions once or twice each week
for some of Microsoft's largest and most sophisticated customers. Other MTC architects and I would
work to first understand customer issues and problems and then help architect solutions that would
address them.

It didn't take long before I discovered that a lot of people had the same questions, many of which
were focused around performance and scalability. For example:

• "How can we make our HTML display faster?" (Chapter 2)

• "What's the best way to do caching?" (Chapter 3)

• "How can we use IIS to make our site faster?" (Chapter 4)

• "How should we handle session state?" (Chapter 5)

• "How can we improve our ASP.NET code?" (Chapters 5 to 7)

• "Why is our database slow?" (Chapters 8 and 9)

• "How can we optimize our infrastructure and operations?" (Chapter 10)

• "How do we put the pieces together?" (Chapter 11)

One of the themes of this book is to present high -impact solutions to questions like these.

1

�CHAPTER 1 PRINCIPLES AND METHOD

2

One aspect of the approach I've taken is to look at a web site not just as an application running on a
remote server but rather as a distributed collection of components that need to work well together as a
system.

In this chapter, I'll start with a description of performance and scalability, along with what I mean
by ultra-fast and ultra-scalable. Then I'll present a high -level overview of the end -to-end process that's
involved in generating a web page, and I'll describe the core principles upon which I base this approach
to performance. I'll conclude with a description of the environment and tools that I used in developing
the examples that I present later in the book.

The Difference Between Performance and Scalability
Whenever someone tells me that they want their system to be fast, the first question I ask is, "What do
you mean by fast?" A typical answer might be "It needs to support thousands of users." A site can be slow
and still support thousands of users.

Scalability and performance are distinctly different. In the context of this book, when I talk about
improving a site's performance, what I mean is decreasing the time it takes for a particular page to load
or for a particular user-visible action to complete. What a single user sees while sitting at their computer
is "performance."

Scalability, on the other hand, has to do with how many users a site can support. A scalable site is
one that can easily support additional users by adding more hardware and network bandwidth (no
significant software changes), with little or no difference in overall performance. If adding more users
causes the site to slow down significantly and adding more hardware or bandwidth won't solve the
problem, then the site has reached its scalability threshold. One of the goals in designing for scalability is
to increase that threshold; it will never go away.

Why Ultra-fast and Ultra-scalable?
Speed and scalability should apply to more than just your web servers. Many aspects of web
development can and should be fast and scalable. All of your code should be fast, whether it runs at the
client, in the web tier, or in the data tier. All of your pages should be fast, not just a few of them. On the
development side, being fast means being agile: fast changes and fixes, and deployments.

A definite synergy happens when you apply speed and scalability deeply in a project. Not only will
your customers and users be happier, but engineers too will be happier and will feel more challenged.
Surprisingly, less hardware is often required, and quality assurance and operations teams can often be
smaller. That's what I mean by ultra-fast and ultra-scalable (which I will often refer to as just ultra-fast
for short, even though scalability is always implied).

The ultra-fast approach is very different from an impulsive, "do-it-now" type of programming. The
architectural problems that inevitably arise when you don't approach development in a methodical way
tend to significantly offset whatever short-term benefits you might realize from taking shortcuts. Most
large-scale software development projects are marathons, not sprints; advance planning and
preparation pay huge long-term benefits.

I've summarized the goals of the ultra-fast and ultra -scalable approach in Table 1-1.

�CHAPTER 1 PRINCIPLES AND METHOD

Table 1-1. Goals of the Ultra-fast and Ultra-scalable Approach

Component

Pages

Tiers

Agility

Ultra-fast and Ultra-scalable Goals

Every page is scalable and fast under load.

All tiers are scalable and fast under load.

You can respond quickly to changing business needs, and you can readily maintain
performance and scalability in the event of changes.

Maintainability You can quickly find and fix performance-related bugs.

Operations

Hardware

You can quickly deploy and grow your sites. Capacity planning is straightforward and
reliable.

Your servers are well utilized under load; fewer machines are required.

Building a fast and scalable web site has some high-level similarities to building a race car. You need
to engineer and design the core performance aspects from the beginning in order for them to be
effective. In racing, you need to decide what class or league you want to race in. Is it going to be Formula
One, stock car, rallying, dragster, or maybe just kart? If you build a car for kart, not only will you be
unable to compete in Formula One, but you will have to throw the whole design away and start again if
you decide you want to change to a new class. With web sites, building a site for just yourself and a few
friends is of course completely different from building eBay or Yahoo. A design that works for one would
be completely inappropriate for the other.

A top-end race car doesn't just go fast. You can also do things like change its wheels quickly, fIll it
with fuel quickly, and even quickly swap out the engine for a new one. In that way, race cars are fast in
multiple dimensions. Your web site should also be fast in multiple dimensions.

In the same way that it's a bad idea to design a race car to go fast without considering safety, it is
also not a good idea to design a high -performance web site without keeping security in mind. In the
chapters that follow, I will therefore make an occasional brief diversion into security in areas where there
is significant overlap with performance, such as with cookies in Chapter 3.

Optimization
As many industry experts have rightly pointed out, optimization can be a deadly trap and time-waster.
The key to building high-performance web sites is engineering them so that optimization is not required
to get decent results. However, as with racing, if you want to compete with the best, then you need to
integrate measuring, adjusting, tuning, tweaking, and innovating into your development process.
There's always something you can do better, provided you have the time, money, and motivation to
do so.

The real trick is knowing where to look for performance and scalability problems and what kinds of
changes are likely to have the biggest impact. Comparing the weight of wheel lugs to one another is
probably a waste of time, but getting the fuel mixture just right can win the race. Improving the
efficiency of an infrequently called function won't improve the scalability of your site; switching to using
asynchronous pages will.

3

�CHAPTER 1 PRINCIPLES AND METHOD

4

I don't mean that small things aren't important. In fact, many small problems can quickly add up to
be a big problem. However, when you're prioritizing tasks and allocating time to them, be sure to focus
on the high-impact tasks first. Putting a high polish on a race car is nice and might help it go a little
faster, but if the transmission is no good, you should focus your efforts there first. Polishing some
internal API just how you want it might be nice, but eliminating round -trips should be a much higher
priority.

Process
Ultra-fast is a state of mind-a process. It begins with the architecture and the design, and it flows into
all aspects of the system, from development to testing to deployment, maintenance, upgrades, and
optimization. However, as with building a race car or any other complex project, there is usually a sense
of urgency and a desire to get something done quickly that's "good enough." Understanding where the
big impact points are is a critical part of being able to do that effectively, while still meeting your
business goals. The approach I've taken in this book is to focus on the things you should do, rather than
to explore everything that you could do. The goal is to help you focus on high -impact areas and to avoid
getting lost in the weeds in the process.

I've worked with many software teams that have had difficulty getting management approval to
work on performance. Often these same teams run into performance crises, and those crises sometimes
lead to redesigning their sites from scratch. Management tends to focus inevitably on features, as long as
performance is "good enough." The problem is that performance is only good enough until it isn't-and
that's when a crisis happens. In my experience, you can often avoid this slippery slope by not selling
performance to management as a feature. It's nota feature, any more than security or quality are
features. Performance and the other aspects of the ultra-fast approach are an integral part of the
application; they permeate every feature. If you're building a race car, making it go fast isn't an extra
feature that you can add at the end; it is part of the architecture, and you build it into every component
and every procedure.

There's no magic here. These are the keys to making this work:

• Developing a deep understanding of the full end -to-end system

• Building a solid architecture

• Focusing effort on high -impact areas, and knowing what's safe to ignore or defer

• Understanding that a little extra up-front effort will have big benefits in the long
term

• Using the right software development process and tools

You might have heard about something called the "eight-second rule for web performance. It's a
human -factors-derived guideline that says if a page takes longer than eight seconds to load, there's a
good chance users won't wait and will click away to another page or site. Rather than focusing on rules
like that, this book takes a completely different approach. Instead of targeting artificial performance
metrics, the idea is to focus first on the architecture. That puts you in the right league. Then, build your
site using a set of well-grounded guidelines. With the foundation in place, you shouldn't need to spend a
lot of effort on optimization. The idea is to set your sights high from the beginning by applying some
high -end design techniques. You want to avoid building a racer for kart and then have to throw it away
when your key competitors move up to Formula One before you do.

�CHAPTER 1 PRINCIPLES AND METHOD

The Full Experience
Performance should encompass the full user experience. For example, the time to load the full page is
only one aspect of the overall user experience; perceived performance is even more important. If the
useful content appears "instantly" and then some ads show up ten seconds later, most users won't
complain, and many won't even notice. However, if you display the page in the opposite order, with the
slow ads first and the content afterward, you might risk losing many of your users, even though the total
page load time is the same.

Web sites that one person builds and maintains can benefit from this approach as much as larger
web sites can (imagine a kart racer with some Formula One parts). A fast site will attract more traffic and
more return visitors than a slow one. You might be able to get along with a smaller server or a less
expensive hosting plan. Your users might visit more pages.

As an example of what's possible with ASP.NET and SQL Server when you focus on architecture and
performance, one software developer by himself built the site pof. com, and in 2009, it was one of the
highest-traffic sites in Canada. The site serves more than 45 million visitors per month, with 1.2 billion
page views per month, or 500 to 600 pages per second. Yet it only uses three load-balanced web servers,
with dual quad -core CPU s and 8GB RAM, plus a few database servers, along with a content distribution
network (CDN). The CPUs on the web servers average 30 percent busy. I don't know many details about
the internals of that site, but after looking at the HTML it generates, I'm confident that you could use the
techniques I'm providing in this book to produce a comparable site that's even faster.

Unfortunately, there's no free lunch: building an ultra-fast site does take more thought and
planning than a quick-and-dirty approach. It also takes more development effort, although usually only
in the beginning. Over the long run, maintenance and development costs can actually be significantly
less, and you should be able to avoid any costly ground-up rewrites. In the end, I hope you'll agree that
the benefits are worth the effort.

End-to-End Web Page Processing
A common way to think about the Web is that there is a browser on one end of a network connection
and a web server with a database on the other end, as in Figure 1-1.

Web Browser

1~lintemet
V

Web SelVer

Database

Figure 1-1. Simplified web architecture model

The simplified model is easy to explain and understand, and it works fme up to a point. However,
quite a few other components are actually involved, and many of them can have an impact on
performance and scalability. Figure 1-2 shows some of them for web sites based on ASP.NET and
SQLServer.

5

�CHAPTER 1 PRINCIPLES AND METHOD

6

Figure 1-2. Web architecture components that can impact performance

All of the components in Figure 1-2 can introduce delay into the time it takes to load a page, but that
delay is manageable to some degree. Additional infrastructure-oriented components such as routers,
load balancers, and firewalls aren't included because the delay they introduce is generally not very
manageable from a software architecture perspective.

�CHAPTER 1 PRINCIPLES AND METHOD

In the following list, I've summarized the process ofloading a web page. Each of these steps offers
opportunities for optimization that I'll discuss in detail later in the book:

1. First, the browser looks in its local cache to see whether it already has a copy of
the page. See Chapter 2.

2. If the page isn't in the local cache, then the browser looks up the IP address of
the web or proxy server using DNS. The browser and the operating system
have each have separate DNS caches to store the results of previous queries. If
the address isn't already known or if the cache entry has timed out, then a
nearby DNS server is usually consulted next (it's often in a local router, for
example). See Chapter 10.

3. Next, the browser opens a network connectionto the web or proxy server.
Proxy servers can be either visible or transparent. A visible proxy is one that the
user's browser or operating system is aware of. They are sometimes used at
large companies, for example, to help improve web performance for their
employees or sometimes for security or filtering purposes. A transparent proxy
intercepts all outgoing TCP connections on port 80 (HTTP), regardless of local
client settings. If the local proxy doesn't have the desired content, then the
HTTP request is forwarded to the target web server. See Chapters 2 and 3.

4. Some ISPs also use proxies to help improve performance for their customers
and to reduce the bandwidth they use. As with the local proxy, if the content
isn't available in the ISP proxy cache, then the request is forwarded along. See
Chapter 3.

5. The next stop is a web server at the destination site. A large site will have a
number ofload-balanced web servers, any of which will be able to accept and
process incoming requests. Each machine will have its own local disk and
separate caches at the operating system driver level (http. sys), in Internet
Information Services (lIS), and in ASP.NET. See Chapters 3 through 7.

6. If the requested page needs data from the database, then the web server will
open a connection to one or more database servers. It can then issue queries
for the data it needs. The data might reside in RAM cache in the database, or it
might need to be read in from disk. See Chapters 8 and 9.

7. When the web server has the data it needs, it dynamically creates the
requested page and sends it back to the user. If the results have appropriate
HTTP response headers, they can be cached in multiple locations. See
Chapters 3 and 4.

8. When the response arrives at the client, the browser parses it and renders it to
the screen. See Chapter 2.

7

�CHAPTER 1 PRINCIPLES AND METHOD

8

Overview of Principles
The first and most important rule of building a high -performance site is that performance starts with the
application itself. If you have a page with a loop counting to a gazillion, for example, nothing I'm
describing will help.

Performance Principles
With the assumption of a sound implementation, the following are some high-impact core architectural
principles for performance and scalability:

• Focus on perceived performance. Users are happier if they quickly see a response
after they click. It's even better if what they see first is the information they're
most interested in. See Chapter 2.

• Reduce round trips. Every round trip is expensive, whether it's between the client
and the web server or between the web server and the database. "Chattiness" is
one of the most common killers of good site performance. You can eliminate these
types of round trips by caching, combining requests (batching), combining source
fIles or data, combining responses (multiple result sets), working with sets of data,
and other similar techniques. See Chapters 2 through 8.

• Cache at all tiers. Caching is important at most steps of the page request process.
You should leverage the browser's cache, cookies, on-page data (hidden fields or
ViewS tate) , proxies, the Windows kernel cache (http.sys), the IIS cache, the
ASP.NET application cache, page and fragment output caching, the ASP. NET
cache object, server-side per-request caching, database dependency caching,
distributed caching, and caching in RAM at the database. See Chapters 3 and 8.

• Minimize blocking calls. ASP.NET provides only a limited number of worker
threads for processing web page requests. If they are all blocked because they are
waiting for completion oflong-running tasks, the runtime will queue up new
incoming HTTP requests instead of executing them right away, and your web
server throughput will decline dramatically. You could have a long queue of
requests waiting to be processed, even though your server's CPU utilization was
very low. Minimizing the amount of time that worker threads are blocked is a
cornerstone of building a scalable site. You can do this using features such as
asynchronous pages, async HttpModules, async liD, async database requests,
background worker threads, and Service Broker. Maximizing asynchronous
activity in the browser is a key aspect of reducing browser page load times because
it allows the browser to do multiple things at the same time. See Chapters 2 and
Chapters 5 through 8.

�CHAPTER 1 PRINCIPLES AND METHOD

• Optimize disk 110 management. Disks are physical devices; they have platters
that spin and read/write heads that move back and forth. Rotation and head
movement (disk seeks) take time. Disks work much faster when you manage I/O
to avoid excessive seeks. The difference in performance between sequential I/O
and random I/ 0 can easily be 40 to 1 or more. This is particularly important on
database servers, where the database log is written sequentially. Proper hardware
selection and configuration plays a big role here, too, including choosing the type
and number of drives, using the best RAID level, using the right number oflogical
drives or LUNs, and so on. Solid State Disks (SSDs) have no moving parts, and can
be much faster for certain I/O patterns. See Chapters 8 and 10.

Secondary Techniques
You can often apply a number of secondary techniques easily and quickly that will help improve system
level performance and scalability. As with most of the techniques described here, it's easier to apply
them effectively when you design them into your web site from the beginning. As with security and
quality requirements, the later in the development process that you address performance and scalability
requirements, the more difficult the problems tend to be. I've summarized a few examples of these
techniques in the following list:

• Understand behavior. By understanding the way that the browser loads a web
page, you can optimize HTML and HTTP to reduce download time and improve
both total rendering speed and perceived speed. See Chapter 2.

• Avoid full page loads by using Ajax and plain IavaScript. You can use client -side
field validation and other types of request gating with J avaScript to completely
avoid some page requests. You can use Ajax to request small amounts of data that
can be dynamically inserted into the page or into a rich user interface. See
Chapter 2.

• Avoid synchronous database writes on every request. Heavy database writes are a
common cause of scalability problems. Incorrect use of session state is a frequent
source of problems in this area, since it has to be both read and written (and
deserialized and reserialized) with every request. You may be able to use cookies
to reduce or eliminate the need for server-side session state storage. See Chapters
5 and 8.

• Monitoring and instrumentation. As your site grows in terms of both content and
users, instrumentation can provide valuable insights into performance and
scalability issues, while also helping to improve agility and maintainability. You
can time off-box calls and compare the results against performance thresholds.
You can use Windows performance counters to expose those measurements to a
rich set of tools. Centralized monitoring can provide trend analysis to support
capacity planning and to help identify problems early. See Chapter 10.

9

�CHAPTER 1 PRINCIPLES AND METHOD

10

• Understand how SQL Server manages memory. For example, when aT -SQL
command modifies a database, the server does a synchronous (and sequential)
write to the database log. Only after the write has finished will the server return to
the requestor. The modified data pages are still in memory. They will stay there
until SQL Server needs the memory for other requests; they will be written to the
data fIle by the background lazy writer thread. This means that SQL Server can
process subsequent read requests for the same data quickly from cache. It also
means that the speed of the log disk has a direct impact on your database's write
throughput. See Chapter 8.

• Effective use of partitioning at the data tier. One of the keys to addressing
database scalability is to partition your data. You might replicate read-only data to
a group of load -balanced servers running SQL Express, or you might partition
writable data among several severs based on a particular key. You might split up
data in a single large table into multiple partitions to avoid performance problems
when the data is pruned or archived. See Chapter 8.

I will discuss these and other similar techniques at length in the chapters ahead.
What this book is not about is low-level code optimization; my focus here is mostly on the high

impact aspects of your application architecture and development process.

Environment and Tools Used in This Book
Although cross-browser compatibility is important, in keeping with the point I made earlier about
focusing on the high-impact aspects of your system, I've found that focusing development and tuning
efforts on the browsers that comprise the top 90 percent or so in use will bring most of the rest for free.
You should be able to manage whatever quirkiness might be left afterward on an exception basis, unless
you're building a site specifically oriented toward one of the minority browsers.

I also don't consider the case of browsers without JavaScript or cookies enabled to be realistic
anymore. Without those features, the Web becomes a fairly barren place, so I think of them as being a
given for real users; search engines and other bots are an entirely different story, of course.

As of April 20 12, the most popular browsers according to Net Applications were Internet Explorer
with 54 percent, Firefox with 21 percent, and Chrome with 19 percent. The remaining 6 percent was split
between Safari, Opera, and others.

Software Tools and Versions
The specific tools that I've used for the code examples and figures are listed in Table 1-2, including a
rough indication of cost. A single $ indicates a price under US$lOO, $$ is between $100 and $1,000, and
$$$ is more than $1,000.

Table 1-2. Software Tools and Versions

Software Version Cost

Adobe Photoshop CS5 $$

Contig 1.6 Free download

�CHAPTER 1 PRINCIPLES AND METHOD

Software Version Cost

Expression Web 4.0.1303.0 SP2 $$

Fiddler Web Debugger 2.3.9 Free download

Firebug 1.10 Free download (Firefox plug -in)

Firefox 11.0 Free download

Internet Explorer 8and9 Free download

Log Parser 2.2 Free download

.NET Framework 4.5 Free download

Office 2010 Ultimate $$

Silverlight 5 Free download

SQLServer 2012 RCO Developer, $

Standard and Enterprise $$$

SQL Server Data Tools April 2012 Free download (VS plug-in)

SQL Server Feature Pack October 2008 Free download

System Center Operations Manager 2012 RC $$

Visual Studio 2010 Premium SPl, $$$

11 Developer Preview & Beta

Windows Server 2008R2 Standard $$

Windows 7 Professional x64 $$

Wireshark 1.6.4 Free download

YSlow 3.0.4 Free download (Firefoxplug-in)

Most of the code that I discuss and demonstrate will also work in Visual Studio Web Express, which
is a free download.

11

�CHAPTER 1 PRINCIPLES AND METHOD

12

Terminology
See the glossary for definitions of business intelligence (BI) -specific terminology.

Typographic Conventions
I am using the following typographic conventions:

• Italics: Term definitions and emphasis

• Bold: Text as you would see it on the screen

• Monospace: Code, URLs, file names, and other text as you would type it

Author's Web Site
My web site at http://www.12titans.net!has online versions of many of the web pages used as samples
or demonstrations, along with code downloads and links to related resources.

Summary
In this chapter, I covered the following:

• Performance relates to how quickly something happens from your end user's
perspective, while scalability involves how many users your site can support and
how easily it can support more.

• Ultra-fast and Ultra-scalable include more than just the performance of your web
server. You should apply speed and scalability principles at all tiers in your
architecture. In addition, your development process should be agile, with the
ability to change and deploy quickly.

• Processing a request for a web page involves a number of discrete steps, many of
which present opportunities for performance improvements.

• You should apply several key performance and scalability principles throughout
your site: focus on perceived performance, reduce round trips, cache at all tiers,
minimize blocking calls, and optimize disk I/O management.

In the next chapter, I'll cover the client -side processing of a web page, including how you can
improve the performance of your site by structuring your content so that a browser can download and
display it quickly

CHAPTER 2

Client Performance

The process of displaying a web page involves distributed computing. A browser on the client PC
requests and parses the HTML, J avaScript, CSS, images, and other objects on a page, while one or more
servers generate and deliver dynamic and static content. Building a fast system therefore requires a
capacity for speed in both the browser and the server, as well as in the network and other components in
between. One way to think about this is by viewing the server as really sending one or more programs to
the browser in the form of HTML (which is after all, Hypertext Markup Language) and J avaScript. The
browser then has to parse and execute those programs and render the results to the screen.

For existing sites, I've found that larger user-visible performance improvements can often be
obtained by optimizing the output of your web site so that it runs faster on the client rather than by
making your server-side code run faster. It is therefore a good place to start on the road to building an
ultra-fast site.

Particularly on the browser side of the performance equation, many small improvements can
quickly add up to a large one. Slow sites are often the result of the "death by 1,000 cuts" syndrome. A few
extra characters here or there don't matter. However, many small transgressions can quickly add up to
make the difference between a slow site and a fast one, or between a fast site and an ultra-fast one.
Another way to think about this is that it's often alot easier to save a handful of bytes in 100 places than
100 bytes in a handful of places.

Imagine building a house. A little neglect here or there won't compromise the quality of the final
product. However, if the attitude becomes pervasive, it doesn't take long before the whole structure
suffers as a result. In fact, at some point, repairs are impossible, and you have to tear down the house
and build again from scratch to get it right. A similar thing happens with many aspects of software,
including performance and scalability.

In this chapter, I will cover the following:

• Browser page processing

• Browser caching

• Network optimizations

•]avaScript grouping and placement

• Downloading less

13

�CHAPTER 2 CLIENT PERFORMANCE

14

• Using JavaScript to gate page requests

• Using JavaScript to reduce HTML size

• Uploading less

• Optimizing CSS

• Using image sprites and clustering

• Leveraging dynamic HTML and J avaScript (Ajax)

• Improving layout and rendering speed

• Pre caching

• Using CSS layout without tables

• Optimizing J avaScript performance

The example files for this chapter are available online at www.12titans.net and in the download
that's available from www.apress.com.

Browser Page Processing
When a browser loads a page, it's not performing a batch process. Users don't close their eyes after they
enter a URL and open them again when the browser has finished loading the page. Browsers do what
they can to overlap activity on multiple network connections with page parsing and rendering to the
screen. The steps that browsers follow are often extremely visible to users and can have a significant
impact on both perceived performance and total page load time.

Network Connections and the Initial HTTP Request
To retrieve a web page, browsers start with a URL. The browser determines the IP address of the server
using DNS. Then, using HTTP over TCP, the browser connects to the server and requests the content
associated with the URL. The browser parses the response and renders it to the screen in parallel with
the ongoing network activity, queuing and requesting content from other URLs in parallel as it goes.

Rather than getting too sidetracked with the variations from one browser to another, my focus here
will mostly be on Internet Explorer 9 (IE9, or just IE). Other browsers work similarly, although there are
definite differences from one implementation to another. With Firefox, users can set parameters that
change some of the details of how it processes pages, so the page load experience may not be 100
percent identical from one user to another, even when they're using the same browser.

Figure 2-1 shows the TCP networking aspect of connecting to a remote server and requesting a URL
with HTTP.

�CHAPTER 2 CLIENT PERFORMANCE

Time

From lIhe TD lIhe
client PC client PC

Op'en
Connection
(TCP SYN)

SYIN ACK

ACK

HTTPGET

ACK

CD
HrTTP

Response #1

ACK#1

r-------,
I HIlTP I
I Resp,onse IN I
I I L _______ ..1

r------'-,
ACKIN

L _______ ..1

Figure 2-1. Typical TCP protocol exchange when requesting a web page, with each box representing a

packet

The client browser asks the server to open a connection by sending a TCP SYN packet. The server
responds by acknowledging the SYN using a SYN ACK, and the client responds with an ACK. After this
three-way handshake, the connection is open.

The browser then sends an HTTP GET, which includes the requested URL, cookies, and other details.
Upon receipt, the server ACKs that packet, and during the time marked as A in Figure 2-1, it generates its
response to the client's request.

The server then sends the response in one or more packets, and the client sends one or more ACKs.
How often the ACKs are required is determined by the size of the TCP "window," which is a big factor in
achievable network speeds.

15

�CHAPTER 2 CLIENT PERFORMANCE

16

You can see that the response to the browser's request doesn't arrive all at once. There are gaps of
time between when the client sends a packet and when the server responds, as well as in between
successive packets.

Horizontal zones, such as area A in Figure 2-1 where there are no boxes containing packets, indicate
that the network is idle during those times. Downloading multiple resources over parallel connections
can help minimize that idle time and thereby minimize total page load time.

The maximum packet size varies from 500 to 1,500 bytes, depending on the network maximum
transmission unit (MTU). The first data packet from the server includes the HTTP response header,
usually along with some HTML, depending on the size of the header. Because of the way that the TCP
network protocol works (a feature called slow start), there can be a relatively long delay between the time
when the first data packet arrives and when the next one does, while the network connection ramps up
to full speed.

The SYN and SYN ACK packets, along with TCP slow-start, combine to make opening a network
connection a relatively time-consuming process. This is therefore something that we would like to avoid
doing too much.

Page Parsing and New Resource Requests
While IE is waiting for the next packet of data, it parses what it already has and looks for any resource
URLs that it might be able to download in parallel. It will open as many as six connections to each server.

The timeline shown here (captured using IE's F12 developer tools) illustrates how IE handles a page
where an dmg> tag is located after of a bunch of text (see fileDl. htm).

The horizontal axis is time, and each row corresponds to a different request made by the browser.
The fust row shows the time taken to read the HTML page. The section on the left of the horizontal bar is
the time from when IE initially created the request to when it sends the request. The middle section is
the time taken to open a TCP connection (if required), send the initial HTTP GET request, and receive the
first packet of the HTTP response. The section on the right is the time taken for the rest of the response
to arrive.

The second row shows the retrieval of the image. Since the image is small, all of the image data is
included with the HTTP response headers in the same packet.

The next timeline shows what happens when the dmg> tag is located close to the beginning of the
fIle so that it's in the first packet of data received by IE (see fileD2. htm):

The fust row is roughly the same. However, the request for the image starts shortly after the first
packet of HTML arrives. As a result, it takes less total time to retrieve the page and the image. (The
vertical bar is the point at which IE raised the document ready event).

To leverage this aspect of how IE processes a page, you should put one or more requests for objects
near the top of your HTML.

�

�CHAPTER 2 CLIENT PERFORMANCE

Page Resource Order and Reordering
IE retrieves all resources requested in the <head> section of the HTML before it starts rendering the
<body>. Since the <head> section can't contain any tags that will cause the browser to draw content on
the screen, users will see nothing until it has downloaded all resources in the <head> section.

While IE is blocked waiting on resources for the <head> section, it uses a feature called lookahead to
download resources from the <body> section in parallel. However, lookahead has limitations, so in
general, if you place the requests in the <body> section instead when possible, you can help the browser
optimize the downloading of resources in parallel.

Note The HTML specification calls for dink> and <style> tags (for CSS) to be in the <head> section, although

current browsers don't enforce that limitation.

As HTML parsing continues, resources that the page references, including images, are generally
queued for retrieval in the order IE encounters them. IEg will request an image near the top of the file
before other resources from the same domain (IE8 may queue JavaScript resources before images due to
lookahead). You may be able to improve the (apparent) performance of a page by managing object
download order, either by rearranging your HTML or using out-of-order loading. For example, if you
have a large image banner or logo at the top of your page, although it may be important for site
aesthetics or branding, it may not be the first thing that users want to see. However, if it's at the top of
the HTML, it will be the first thing downloaded by the browser.

You can use JavaScript and CSS to achieve out-of-order object loading. For example, you can reserve
the space on the page with an dmg> tag and request the image associated with that tag earlier or later in
the file using script. That way, you can call the script according to when users should see the image.
Here's an example oflate loading:

dmg id="myimg" width="so" height="SO" I>

<script type="text/javascript">
document . getElementByld("myimg"). src "myimage.jpg";
</script>

Or, usingjQuery:

dmg id="myimg" width="so" height="So" I>

<script type="text/javascript">
$("#myimg").attr("src", "myimage.jpg");
</script>

The dmg> tag only has the width, the height, and an !D. Script later in the file then sets the src
attribute, which will cause the browser to queue the download.

17

�

�

CHAPTER 2 CLIENT PERFORMANCE

18

Note As a best practice, you should always specify the width and height for your images, using either

properties or CSS. Doing so helps minimize the time taken by the browser to layout the page, as it does not have

to reflow the content after determining the image's true size.

For early loading:

<script type="text/javascript">
var myimg new Image()j
myimg.src = "myimage.jpg"j
</script>

Allocate an Image object, and set its src attribute to the desired fIlename. This will cause the browser
to queue the image for downloading. Then, in the dmg> tag, just use the same filename again. Since the
browser should cache the image, it will be downloaded only once.

You should use late loading for images that the user wouldn't consider important or that are below
the fold, where they won't be seen right away. You should use early loading for images that are
important to the user and that are above the fold.

Browser Caching
All components of URLs except the hostname are case-sensitive. Since the Windows filesystem and lIS
URL handling are not (unlike Unix/Linux with Apache), this can result in the browser downloading the
same object more than once if you don't use a consistent case for URLs that refer to the same object.
Browsers canonicalize URIs (removing" .. ") and then use a direct string comparison to determine
whether two URIs refer to the same object. For example, the following code would cause the browser to
download the same image twice:

One approach to addressing this issue is to adopt a policy of always having your URLs entirely in
lowercase.

For dynamic content, it might also make sense to check for mixed-case incoming URLs in an
ASP.NET HttpModule, so that you can detect and compensate for any markup or external sites that
reference or generate such URLs. To determine if this is an issue for your site, you could increment a
performance counter to provide an indication of how often the server encounters such URLs, or you
could write the URL and its referrer to a log, or examine the lIS logs. I cover HttpModules in Chapter 7.

The browser cache associates a particular URL with some content, so for best performance you
should always reference identical content using identical URLs. If you are running several sites, you can
improve performance by using a shared domain for common static content. For example, if you're
running both www.12titans.net and www.apress.com and there's a good chance that visitors to one site
will also visit the other, then you might want to have a third domain or subdomain (or a CDN), such as
static .12ti tans. net, that both sites can use for common static content.

If several developers are working on the site, they should take care to share and reuse content,
rather than duplicating it on a page-by-page, developer-by-developer, or even project-by-project basis.
Make sure that your site doesn't have multiple copies of the same fIle.

�

�CHAPTER 2 CLIENT PERFORMANCE

A similar strategy also applies to your domain name. If you have several different domains that refer
to the same site, you can improve client-side caching if you reference them consistently and help users
do the same. For example, you might instead redirect all references from domains like 12ti tans. net and
www.12titans.com to www.12titans. net, rather than serving identical content from all three domains.
Otherwise, a user who visited the site first with one domain name and then with another would need to
download all cacheable content twice instead of only once. Keep in mind that you can't control how
others link to your site. You might be consistent on your site about using www, but another site could link
to you without it.

Merging identical domains also helps with search engine optimization. It's possible that search
engines will exclude or otherwise penalize your site if they see many copies of identical content.

Network Optimizations
When IE doesn't fmd images and other resources in its cache, it places requests to retrieve them in
queues that it services with a maximum of six connections per domain.

Note Browsers don't look at the IP address of a domain when determining whether to open a new connection;

they do a direct string comparison of the domain names (ignoring case).

Consider the following HTML (see file03 . htm):

dmg src="qlo.gif" height="16" width="16" I>

There are ten images, all loaded from the same domain as the page (the "host" domain). Here's a
timeline that shows how IE loads the page:

19

�CHAPTER 2 CLIENT PERFORMANCE

20

The fust row shows the time to open the connection and read the HTML. The next row shows the
first image being requested, which uses the same connection as the first request. The third row shows IE
starting the request for the second image at the same time as the first, which requires a new connection.
The requests for the next four images start after a short delay, but are active at the same time as the first
two images, indicating that they are using their own connections.

If the server permits, IE keeps those connections open after the requests complete. After each
request completes, IE starts a new request; the beginning of the active part of each row corresponds to
the end of an earlier row.

Let's change the HTML to request five images from each of two different domains (see file04. htm):

Here's the resulting timeline:

Timings ...

�CHAPTER 2 CLIENT PERFORMANCE

The sequence of events is the same for the HTML and the first few images. However, now IE
requests all of the other images at the same time. This page loads in about half to a third of the time as
the original.

You can take advantage of parallel object downloads by strategically (and consistently) using several
different domains or sub domains for your static content. Because it takes a little while to open a new
TCP connection and the browser limits the maximum number of simultaneous connections, a good rule
of thumb is to load your static content from two or three domains. You might want to have several
domain aliases for your site. That allows you to optimize download parallelism by simply adjusting the
domain names in your pages, without having to manage which content is in which domain. Consider
automating the process of assigning static files to particular domains using an ASP.NET control adapter
(see Chapter 7)-just be sure to use a consistent domain for each resource, to avoid unwanted cache
misses.

JavaScript Grouping and Placement
To reduce round-trips, you should have as few script files as possible. You can arrange this by doing one
or more of the following:

• Combine them together statically (such as with an editor)

• Combine them together dynamically, either:

• As a compile post-processing step or

• Programmatically (on-demand) when the browser requests the script. The
.NET Framework supports automated bundling, which I cover in
Chapter 6.

Mid-document script includes can cause the browser to delay rendering the page until after the
script file arrives. From a performance perspective, it's better to place your includes at the end of your
HTML when you can. A common reason for using mid-document script includes is to insert HTML into
the page using document.writeO.

• Instead of document.write(), use innerHTML or direct DOM manipulation, which
you can do late in the HTML

• If you can't avoid document.writeO (such as with scripts from third-parties), then
instead of using multiple <script> files, either:

• Wrap the script with absolute positioning and run it late in the file, or

• Run the script in a hidden <div>, and then move the contents of the <div>
into its desired location by manipulating the DOM using J avaScript

Avoiding document.writeO
Here's some script that does an inline document.write() (see imgl.js):

document .write(' dmg src="q1.gif" height="16" width="16" 1>');

21

�CHAPTER 2 CLIENT PERFORMANCE

22

The pattern to avoid is the one that includes the script in the middle of your HTML (see file06. htm):

<div>
<script type="text/javascript" src="img1.js"></script>
</div>

One alternative is to set a variable to a string containing the HTML that you want to insert on the
page (see img2.js):

var qimg = '';

Include the script fIle at the end of the HTML (see file07 . htm):

<style type="textlcss">
#exd{height:16px;width:16px}
</style>
<div id="exd">
</div>
<script type="text/javascript" src="img2.js"></script>
<script type="text/javascript">
document.getElementById('exd').innerHTML = qimg;
</script>

Add the new HTML to the DOM using the innerHTML property of a containing <div>. Assign the <div>
tag a width and height to match the image to avoid HTML page re-Iayouts when its contents are updated
(done in the example using CSS).

Here's another approach (see img3 . j s):

function putimg(qdiv) {

}

var myim = new Image(16, 16);
myim.src = "q1.gif";
qdiv.appendChild(myim);

The script is included at the end of file08. htm:

<style type="textlcss">
#exd{height: 16px;width: 16px}
</style>
<div id="exd">
</div>
<script type="textljavascript" src="img3.js"></script>
<script type="text/javascript">
putimg(document.getElementById('exd'));
</script>

This time, use a function to create an Image object and append it as a child of the DOM node of the
<div>.

Reordering Script That You Can't Modify
Let's say that you have an image at the top of your page that's inserted by a script you don't have control
over, followed by some text (see file09. htm):

�

�CHAPTER 2 CLIENT PERFORMANCE

<div>
<script type="text/javascript" src="imgl.js"></script>
</div>
<div>
Lorem Ipsum
</div>

To move the script to the end ofthe HTML, you can assign absolute positions to both of the <div>
tags and then reverse their order (see filelO. htm):

<style type="text/css">
.content,.banner{position:absolutej left:10px}
.content{top:40px}
.banner{top:10px}
</style>
<div class="content">
Lorem Ipsum
</div>
<div class="banner">
<script type="text/javascript" src="imgl.js"></script>
</div>

Alternatively, you can call the script in a hidden <div> and then move that DOM node into position
(see filell. htm):

<style type="text/css">
.temp{display:none}
#banner{height:20pXjwidth:16px}
</style>
<div id="banner">
</div>
<div>
Lorem ipsum
</div>
<div class="temp">
<div id="mystuff">
<script type="text/javascript" src="imgl.js"></script>
</div>
</div>
<script type="text/javascript">
var ba = document.getElementByld('banner')j
var ms = document.getElementByld('mystuff')j
if «ba != nUll) && (ms != nUll))

ba.appendChild(ms)j
</script>

Note ba. appendChild(ms) removes the argument node (ms) from its parent before appending it as a child of
the source (ba).

23

�

�

CHAPTER 2 CLIENT PERFORMANCE

24

Requesting Images and Other Objects Mter the Page Loads
You can combine use of the page on load handler with the late image load technique to make very late
requests, after everything else on the page has downloaded. Rollover images are an example, since they
don't need to be displayed when the page is initially rendered, but if they are eventually used, the user
experience will be much better if they are already in the browser's cache (image sprites or transparency
variations are generally a better solutions for rollover images; see the sections "Image Sprites and
Clustering" and "Use Transparency as an Alternative to Rollover Images" for details). Large, low-priority
images, or images that are below the fold are other candidates for late loading.

Here's an example (see file12. htm):

<body onload="lateimageO">
dmg id="slow" height="16" width="16" I>
<div>
Lorem ipsum
</div>
<script type="text/javascript">
function lateimage() {

document.getElementByld(, slow') .src = "big.jpg" j
}
</script>

An dmg> tag with an id, height, and width, but without src, is a placeholder for the image. Then the
<body> onload handler sets the src of the dmg> tag to be the path to the image, which causes the browser
to load the image.

Note Although it was fixed in lEg, don't be tempted to use an empty string for the src tag. Doing so can cause
older browsers to issue a GET request for the current folder's default document, as though you set src=" . I"

Using jQuery to do the same thing makes it easy to avoid changing the <body> tag:

<body>
dmg id="slow" height="16" width="16" I>
<div>
Lorem ipsum
</div>
<script type="text/javascript">
$(window).load(function () {

$('#slow').attr('src', 'big.jpg')j
})j
</script>

Script Defer and Async
Using <script defer> can sometimes help improve the performance of a page by delaying the point at
which the browser parses and executes the associated script until after the page has loaded.
Unfortunately, it's often not a very practical option.

�CHAPTER 2 CLIENT PERFORMANCE

One issue in versions of IE before IEIO is that there are bugs that may result in the browser deferring
the script forever. Another issue is that since other scripts on the page execute as the page loads, it might
not be able to access any script in the deferred fIle when you need it. A further complication is that
deferred scripts can't call document. wri te() since they are run after the page load is complete.

HTML5 introduced <script asyne>. It's like defer, except the browser executes the script as soon as
the download completes, rather than after the page loads. Scripts marked async may execute out of
order, whereas deferred scripts always execute in order. Although IElO, Firefox, Chrome and Safari
support async, it's not available in IEg (or earlier versions ofIE).

Downloading Less
Every byte of content consumes resources. The server statically or dynamically generates each byte and
sends it over the network to the browser, which then has to process everything it receives. Assuming no
changes in the core logic that creates the page, every byte you save will reduce the time it takes the
browser to download and display the resulting page. The following sections describe several techniques
to accomplish this.

Reduce the Number of Resources per Page
Eliminate "spacer" GIFs, and use CSS instead. Since today's browsers have good CSS support, there
should no longer be a reason to use spacers, yet it's surprising how prevalent they are. Using margin and
padding should serve the same purpose.

You should replace "text images" (images with words on them) with CSS and text. The result will be
much smaller and easier to maintain (you won't need graphics programs to make changes). You can
more easily support localization that way, too. Apply background gradients using CSS for browser that
support it, or use background images.

For example, consider the following HTML, which overlays an image with a transparent background
onto a gradient (see file13. htm):

<style type="textlcss">
.hdr{border:lpx solid #OOOjheight:40pxjbackground:url(top-grad.gif)}
.logo{height:40PXjwidth:250pxjfloat:left}
</style>
<div class="hdr">
dmg class="logo" src="logo.png" I>
</div>

The result looks like this:

You can achieve the same result on client machines that have the Lucida Handwriting font installed
by using the following code instead (see file14. htm):

<style type="textlcss">
.hdr{border:lpx solid #OOOjheight:40pxjbackground:url(top-grad.gif)}
.txtlogo{font-family:lucida handwriting,cursivej

font-size:3 2pxjcolor:#fffjpadding:3px}
.txtlogo span{color:yellow}
</style>

25

�CHAPTER 2 CLIENT PERFORMANCE

26

<div class="hdr">
12 Titans
</div>

The. txtlogo span CSS selector says to apply color: yellow for tags that follow a txtlogo class
assignment. That way, you can avoid specifying a separate class or ID on the tag.

Although I'm still using the gradient image, I've replaced the logo image with text plus CSS
formatting, which saves a round-trip. On machines that don't have the right font, the browser will use
the standard cursive font as a fallback.

In cases where the exact look of the text is important, such as for branding reasons, you can replace
or overlay the text with an image in the page on load handler (see file15. htm):

<body onload="getlogo()">
<style type="textlcss">
.hdr{border:lpx solid #000jheight:40pxjbackground:url(top-grad.gif)}
#txtlogo{font-family:lucida handwriting,cursivej

font-size:32pXjcolor:#fffjpadding:3px}
#txtlogo span{color:yellow}
</style>
<div class="hdr">
12 Titanx
</div>
<script type="text/javascript">
var limgj
function getlogo() {

}

limg = new Image(250, 40)j
limg.onload = gotlogoj
limg.src = "logo.png"j

function gotlogo() {

}

var logo = document.getElementById("txtlogo")j
logo. parentNode. replaceChild(limg, logo)j

</script>

The page onload handler creates a new Image object and sets the onload handler for the image to the
gotlogoO function. After the browser loads the image, gotlogoO uses it to replace the tag
containing the text. I've changed the last letter of the text so that you can more easily see when the image
loads in case you have the Lucida Handwriting font installed. Of course, the larger the image is and the
more objects there are on the page, the more noticeable the performance benefit.

Minify Your HTML, CSS, and JavaScript
Minimize the size of your HTML, CSS, and J avaScript by removing extra spaces, tabs, newlines, and
comments. I'm always surprised when I view the source HTML for a site and see lots of comments. The
browser can't use them, so they shouldn't be there. One way to avoid sending comments in your. aspx
fIles to clients is to enclose them in an ASP.NET comment block. Here's an example:

<%-- this is a comment that won't be sent to the browser --%>

For static fIles, you can remove comments as a post-compile step or as part of the installation and
deployment process.

�CHAPTER 2 CLIENT PERFORMANCE

The .NET Framework has some automated support for CSS and J avaScript minification, which I
cover in Chapter 6.

Maximize Compressibility
Since lowercase appears more frequently than uppercase, it sometimes compresses better, depending
on the compression algorithm being used (the bit patterns oflowercase letters can help too). You should
therefore prefer lowercase in your text files to maximize their compressibility.

For example, in your HTML, dmg src="myimage.jpg" h is better than <lMG SRC="myimage. JPG" h.
In addition to improving server-side compression, this also helps in cases where a user accesses
otherwise uncompressed content (including HTTP headers) over dial-up with a modem that has
compression enabled, as most of them do.

I cover server-side compression in Chapter 4.

Image Optimization
Images often consume a larger fraction of total site bandwidth than HTML does. Aggressively managing
the size of your images is important for the same reasons as optimizing HTML size: every byte you can
save is a byte that the browser doesn't have to download and process.

Minimize the Number of Images on Your Pages
The fIrst step in image optimization should be to think about whether you need the image at all. I
personally prefer the Zen aesthetic of simple, uncluttered sites that avoid a large number of images.
Reducing the number of images can have a big impact on site performance, since it also eliminates the
associated round-trips.

As an alternative to images, consider using CSS to define backgrounds or section dividers. Varying
border thickness and color can sometimes be used to good effect.

After you've eliminated as many images as you can, the next step is to make the remaining ones as
small as you can.

I am not suggesting that your site needs to look bad and have no images or only a few tiny ones in
order to achieve good performance. Rather, the idea is to look carefully at what your requirements really
are and create your images in line with those requirements. Do you really need 50 or more images on
your home page? Do you really need an 800 x 600-pixel background? Do you really need top image
quality for your tiny thumbnails?

Use Transparency as an Alternative to Rollover Images
Varying object opacity using CSS is another option. You can use transparency stylistically or as an
alternative to a separate rollover image. For example, the following CSS works on all modern browsers
(see file16. htm):

<style type="textlcss">
.hov:hover img{-ms-filter:"progid:DXlmageTransform.Microsoft.Alpha(Opacity=60)"j

filter:alpha(opacity=60)jopacity:O.6}
<fstyle>

<fa>

27

�CHAPTER 2 CLIENT PERFORMANCE

28

When you mouse over the image, the: hover style will alter its opacity.

Optimize Background Images
For background images, be sure to take advantage of the browser's ability to duplicate a single image
through tiling. The background gradient image used earlier in file14. htm is I-pixel wide and the height
of the containing <div>. The browser then copies it as needed to tile the background.

For IElO and other browsers that support CSS3, you can use CSS to create a background gradient.
Here's an example (see file17 . htm):

<style type="textlcss">
.hdr{border:lpx solid #000jheight:40pxjbackground-color:#0052Cej
background-image: -webkit-gradient(linear, 0% 0%, 0% 100%, from(#3F8afa), to(#0154ce»j
background-image: -webkit-linear-gradient(top, #3F8afa, #0154ce)j
background-image: -moz-linear-gradient(top, #3F8afa, #0154ce)j
background-image: -ms-linear-gradient(top, #3F8afa, #0154ce)j
background-image: -o-linear-gradient(top, #3F8afa, #0154ce)j }
.txtlogo{font-family:lucida handwriting,cursivejfont-size:32pxj
color:#fffjpadding:3px}
.txtlogo span{color:yellow}
</style>
<div class="hdr">
12 Titans
</div>

The result is very close to file13. htm shown earlier, but it requires no images now instead of two. It
will fall back to a solid color for older browsers.

Inline Image Encoding
You can use inline image encoding to save a round trip. Most current browsers support this approach,
using the data URI scheme.

IE? and older versions of IE do not support inline images. IEB has partial support:

• Maximum size of 32KB

• <object> (images only)

• dink>

• dmg sro

• <input type=image>

• CSS declarations that accept a URL

IEg and later don't have the size limitation, and allow you to use inline images in most places where
you would otherwise reference a regular image URL.

The data URI specifies both the image type and the encoding. You will normally use base-64
encoding. For example, for the top-grad. gif file used above:

�CHAPTER 2 CLIENT PERFORMANCE

#hdr{border:lpx solid #OOOjheight:40pXj
background: url(data: image/gifj base64, ROIGODlhAQAoANUAAAAAA PlllwFUzgNVOANVzwVXOQZyogdyogha
OwpblQxdlglelw9g2BFh2RJj2xVk3BZm3Rho3hpp4Bxr4hst4x9USCFwSSRxSyVz6Cd16S126it47C1S7S987jF97
zOA8jJ+8TWB8zaD9DiE9TqF9zqG9zyH+D2I+D6J+T+K+vlllwAA
AAACHSBAEAACoALAAAAAABACgAAAYlwBTqZCqRRqLQB+TpcDa
aDOZiqVAmkgjk4WgwFooE4mAoDAiCIAA7)

The original image was 264 bytes, and the encoded version is 374 bytes.
The encoded data must not contain new lines. There are several sites online you can use to do the

encoding for you, such as dataur 1. net. In some cases, you may also choose to do the encoding at run
time-that can simplify development and maintenance in some cases, since encoded images don't have
names.

With base-64 encoding, images will be about 40 percent larger than the original, so there's a tradeoff
between the network and data overhead of an HTTP request/response and that additional size.

This approach is most effective with smallish images, when the browser can cache the containing
fIle, such as with CSS or J avaScript includes. It's less appealing for large images, or when you need to use
the same image many times in your application-from both a data size and maintenance perspective.

Choose the Right Image Format
Images with only a few colors or that require consistent and smooth gradients or sharp edges should use
a lossless format. In those cases, you should in general prefer PNG to GIF. PNG files tend to be smaller,
and the format supports alpha channels for variable transparency (blending) as well as gamma
correction and progressive display (interlacing), which the other lossless formats do not support.

For larger PNG files, encoding them with progressive display is desirable, in keeping with our
principle for focusing on perceived performance. A page doesn't feel as slow when the browser
progressively renders large images.

Although PNGs tend to be smaller than GIFs, that isn't always the case. It's worthwhile to compare
the sizes when making a choice. Notice in the previous examples that the small background gradient
image I used was a GIF, for example, since it was smaller than the equivalent PNG.

In addition, IE6 unfortunately does not support PNG alpha channels, although IE7 + and Firefox do.
Therefore, if you're using transparency, as with the logo image in the filelS. htm example shown earlier,
and if support for IE6 is important, then GIFs are the right choice there too, although GIFs can only do
100 percent transparency and not alpha blending.

Use the minimum bit depth that you really need. An 8-bit image will be roughly one-third the size of
a 24-bit image. The fewer colors your image needs, the lower the bit depth can be. Sometimes you can
apply dithering that will make a lower-bit depth image more acceptable than it would be otherwise.

Most photographs should be JPG fIles.

Optimize Image Compression and Dimensions
Check to see whether you can increase the level of compression for JPG files. Higher-compression ratios
result in a loss of quality, particularly for edge definition. In fact, some image-editing software, including
Adobe Photoshop, refers to the degree of image compression as quality. With many images, though, the
difference in quality isn't very noticeable for small to moderate changes in compression, and the
resulting decrease in fIle size can be considerable. If higher levels of compression won't work for all
images, perhaps they will for some, such as small thumbnails. In keeping with one of the themes of this
chapter, even small changes are worthwhile.

29

�CHAPTER 2 CLIENT PERFORMANCE

30

If the image has an empty border area or other unnecessary details, you should crop it as much as
you can without sacrificing useful content. Use CSS instead for borders and margins.

Some very good tools are available to help simplify image optimization. For example, Adobe
Photoshop has a Save for Web feature that makes it easy to compare several different approaches. The
control panel for optimizing images is shown in Figure 2-2, in JPG mode.

Figure 2-2. Adobe Photoshop CS5's Save for Web control panel for optimizing images

�CHAPTER 2 CLIENT PERFORMANCE

You can change the quality setting to adjust the amount of compression, enable or disable
progressive rendering, apply a blur to the image to help reduce artifacts, and resize the image.
Photoshop shows the impact of the changes in either two or four images to the left of the control panel,
including how large the image is, so you can readily compare them to one another and to the original.
You can also select and evaluate formats other than JPG, including GIF and PNG.

To further reduce the size of your images, don't check the Embed Color Profile box, and select
Metadata: None. Metadata alone can be many kilobytes, depending on where the image originated.

When to Use Image Slicing
Image slicing takes a large image and splits it up into multiple smaller images. You might use this
approach to make it possible to apply links or script or CSS to just part of the image, rather than to the
whole thing. However, the resulting multiple round-trips can have a significant performance impact,
particularly when the images are relatively small. Even though the first image arrives before the full one
would have, the round-trip overhead can give the page a slow feeling.

For large images, though, slices can improve perceived performance. If you spread them among
multiple domains, the resulting overlap of network accesses can also reduce total page load time.
Therefore, we sometimes have a choice between two of our guiding principles: improving perceived
performance and reducing round-trips. In general, you should prefer perceived performance; that's
what really counts in the end.

A reasonable rule of thumb for deciding whether perceived performance would benefit from slicing
is to watch a page load with a network speed similar to what your users will see. If a single image takes
more than a few seconds, ifit feels much slower than the rest of the page, or if it's something that your
users will be waiting for, then you might consider slicing it. You should not slice images that take less
than about a second that users won't care about or that are loaded below the fold where they can't even
be seen. In fact, those images are candidates to be combined together using image sprites or clustering,
as described later in this chapter.

You can use Photoshop to slice your images, with the slicing tool in the default toolbar. Simply use
the tool to draw a rectangle around each area that you'd like to have as a separate slice. Then, in Save for
Web, when you save the result, each slice will be saved as a separate image. Each slice can have a
different format or a different level of optimization.

Since slicing is often used for menus, don't forget that CSS-based text is a much better alternative, as
I described earlier.

Client-Side Image Maps
In cases where adding multiple links to a large image is your main motivation for slicing, you should use
client-side image maps instead. Here's an example (see map1.htm):

dmg src="big.jpg" height="So" width="200" usemap="#mymap" I>
<map name="mymap">

<area shape="rect" coords="o,o,So,So" href="one.aspx" title="One" I>
<area shape="rect" coords="SO,O,100,SO" href="two.aspx" title="Two" I>
<area shape="circ" coords="150,25,25" href="three.aspx" title="Three" I>

</map>

The image will have three zones: two rectangular in shape and one circular. Hovering over the zones
will show the corresponding title string as a tooltip, as well as the destination URL in the browser's
status bar. Clicking the zone will cause the browser to navigate to the destination URL, just like with an
<a> tag.

31

�CHAPTER 2 CLIENT PERFORMANCE

32

Specify Image Size Attributes
You should specify an image's native size or larger in the dmg> tag's height and width attributes.
If you would like the image to be displayed at a smaller size, then it's better to resize the image on the
server and avoid downloading the extra bits. In addition, the resizing algorithms used by an application
like Photoshop will generally result in a much better-looking image than whatever the browser happens
to do.

Enlarging an image by specifying a larger-than-actual size is generally not useful and requires the
browser to do extra work that could otherwise be avoided. If you need a little extra fIller, try using a larger
border or a CSS-based background color.

You can also resize images dynamically on the server. See Chapter 6 for details.

Web Site Icon File
When the browser finishes loading the first page it sees from your site, it will request Ifavicon. ico. If the
fIle is present, the browser will display it somewhere associated with the site, such as in the address bar,
to the left of your URLs (as with IE and Firefox). You should make sure that the file is present on your
site. If it's not there, the browser will re-request it every so often, resulting in round -trips and "fIle not
found" errors that you could avoid by returning the fIle. The fIle must be a 16 x 16-pixel image in ICO
format (which is not the same as JPG, GIF, or PNG).

You can specify an alternate name for the icon fIle with a dink> tag in your HTML. Here's an
example:

dink rel="shortcut icon" href="/myicon.ico" type="image/x-icon" I>

However, since this approach requires adding extra text to all your pages, you should avoid it if you
can.

Most static content can be versioned by changing the name of the fIles (or the folders they're in).
Since you should keep the name favicon. ico, you should also rely on the content expiring from the
browser cache in the event you want to update the icon. That means unlike with normal images and
static content, favicon. ico should be marked with a relatively near-term cache expiration date, perhaps
a month or so.

General HTML, CSS, and JavaScript Optimization
Here are a few general things you can do to clean up your pages:

• Check for and remove redundant tags. For example, if you have two tags
right next to each other, you can merge them.

• Remove <meta refresh> tags. Automatic page updates might at first seem
appealing in some cases, but think about the situation where a user walks away
from their PC or goes to another tab in their browser. If the updates continue, as
they would with <meta refresh>, you are just wasting client and server resources.
In addition, <meta refresh> can cause performance problems because it will
conditionally revalidate resources when it navigates to the target URL (similar to,
but not exactly the same as if you had hit the browser's refresh button).

• Remove unused, empty content tags, such as .

• Remove extraneous tags from automated content generators.

�CHAPTER 2 CLIENT PERFORMANCE

• Minimize the length of your alt and title text.

• Remove comments and extra whitespace.

• Remove unused CSS.

• Where it's legal syntax, use self-closing tags, such as dmg I>, instead of
dmg>. They aren't legal with <script> or d frame>.

• Remove unused JavaScript. When you're using JavaScript libraries, it's particularly
easy to accumulate a large number of functions that are never used.

Using an HTML Optimizer
Microsoft's Expression Web has a very handy Optimize HTML command, as in Figure 2-3. It can also
remove unused CSS classes.

Figure 2-3. The Optimize HTML menu for single files in Expression Web

You can optimize an entire web site as part of the publishing process, as in Figure 2-4.

33

�CHAPTER 2 CLIENT PERFORMANCE

34

Figure 2-4. Optimize HTML while publishing your web site from Expression Web

Avoid Optimization Techniques That Violate the HTML Standards
You may hear about optimization techniques that can reduce the size of your HTML by violating various
aspects of the HTML standards. I don't recommend using them, for several reasons:

• Some tools can help find different types of bugs in your HTML, or identify
accessibility issues, and so on. The HTML parsers used by those tools are not
always as "friendly" as the parsers used by browsers, so HTML that violates the
standard has a higher probability of not being properly understood.

• You might want to store your content in a database or use a local search engine of
some kind. The more standardized your markup is, the better the odds are that it
will integrate with those applications quickly, smoothly, and effectively.

• There are many obscure browser bugs in the handling of nonstandard HTML. It's
difficult to expect one browser to behave the same as others when it comes to
bugs.

• In addition to being "browser-friendly," you should also want your site to be
search-engine friendly. The parsers used by a large search engine like Google
might understand your nonstandard code, but other search engines might not.
The situation might be compounded if you use a <! DOCTYPE> that declares
conformance with a particular version of the standard, and then you violate that
standard.

�CHAPTER 2 CLIENT PERFORMANCE

In fact, it's a good practice to run your pages through an HTML validation service periodically, such
as the one offered byW3C at http://validator .w3 .org/.

Eliminating CSS Round-Trips for the First Page View
Client -side caching of CSS fIles will reduce the load time for a page the second time a user sees it (known
as PLT2), since the browser won't need to request the cached content again from the server. However,
since requesting a file requires around-trip and since that round -trip increases the time to load the page
the first time a user sees it (PLT1), it is sometimes worth considering an optimization that can help
mitigate the increase to PLTl while not sacrificing PLT2. The algorithm works as follows:

• The first time the browser requests a particular page, include the CSS inside the
HTML using a <style> tag instead of using dink>.

• In the page on load handler, dynamically insert a dink> tag into the DOM that
references the CSS fIle. That will cause the browser to request the file from the
server, but it won't slow down the rendering of the page.

• Set a cookie in the HTTP response headers for the CSS fIle. The response should be
marked with a far-future cache expiration date, and it should be publically
cacheable so that it can be stored in proxies (even though some proxies won't
cache responses that include Set-Cookie).

• For the second and subsequent requests of pages that use the CSS fIle, which you
can identify because the cookie is set, generate a dink> tag on the page instead of
embedding the CSS. The CSS file will be loaded from the browser's cache, so an
extra round-trip won't be required.

• Here's an example of how to load a CSS file from the page onload handler (see
file19. htm):

<body onload="getcss()">
<style type="textlcss">
.hdr{border:lpx solid #OOOjheight:40pxjbackground:url(images/top-grad.gif)}
.logo{height:40PXjwidth:250pxjfloat:left}
</style>
<div class="hdr">
dmg class="logo" src="logo.png" I>
</div>
<script type="text/javascript">
function getcss() {

}

var h = document.getElementsByTagName('head')j
var I = document.createElement('link')j
l.type = 'text/css' j
l.rel = 'stylesheet'j
l.href = 'css/file19.css' j
h[o].appendChild(l)j

</script>
</body>

35

�CHAPTER 2 CLIENT PERFORMANCE

36

With the embedded <style> section, the browser will render the page correctly before the CSS
include file is loaded.

The CSS file contains the same information as in the <style> tag, except the path to the referenced
image is relative to the folder containing the CSS, rather than relative to the folder containing the HTML:

.hdr{border:lpx solid #000jheight:40pxjbackground:url(.. /images/top-grad.gif)}

.logo{height:40PXjwidth:250pxjfloat:left}

You can manage path name differences either by applying regular expressions when you merge the
files (and caching the results), by using dynamically generated CSS. You can use root-relative paths
(which are the same in both cases), but I've found they often cause problems during development, when
application or virtual folder prefIxes can come and go. You may also put the CSS in the same folder as
the markup, but then the browser will send any cookies you set for the markup with requests for the CSS
as well.

You can set the cookie for the CSS file using a Set-Cookie HTTP header that you confIgure from IIS
Manager. First, select the file in the Content View, then switch to Features View, double-click HTTP
Response Headers, and select Add from the panel on the right. See Figure 2-5.

Figure 2-5. Using the Add Custom HTTP Response Header in IIS Manager to set a cookie

In this case, I'm setting a cookie called C to a value of A, with a far-future expiration date. The path is
set to the folder containing the HTML content (/samples/ch02) so that the cookie is uploaded to the
server only for requests to that path, saving bandwidth.

Alternatively, you can accomplish the same thing by creating a new web. con fig file in the same
folder as the CSS file (the IIS Manager GUI creates this same file):

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<location path="file19.css">
<system.webServer>

<httpProtocol>
<customHeaders>

<add name="Set-Cookie"
value="C=Ajexpires=Sat, 01-Jan-2050 00:00:00 GMTjpath=/samples/ch02/" I>

</customHeaders>
</httpProtocol>

�CHAPTER 2 CLIENT PERFORMANCE

</system.webServer>
</location>

</configuration>

This approach is particularly useful for the pages that users see when they first come to your site,
where PL Tl is especially important, such as the home page. The disadvantages are that extra work is
required on the cache management side, since there would be different versions of the page depending
on whether the cookie is set, and that every page after the first one will have the cookie included with it.
However, since many of the page views on an average site tend to originate from browsers that have
empty caches and since the cookie is very small, it can be a reasonable trade-off.

In some cases, it might be advisable to always generate the CSS inline and cause the include fIle to
be loaded with script on the entry page, rather than doing so dynamically or using the cookie approach.
This would allow you to mark the page as publically cache able so that it can be cached by proxies and
http.sys, and the home page would always have a fast PLTl.

Using JavaScript to Gate Page Requests
You shouldn't allow users to submit a web form until they have completed all required fields. You should
also validate fields on the client before submitting the form. In addition to reducing the load on the
server by preventing invalid submits, this approach has the advantage of providing more immediate user
feedback, which improves perceived performance.

You can use a similar approach with links. For example, you might want to wait a few seconds after a
page loads before enabling a link that refreshes the current page (use this approach with care, though,
since users dislike pages that are visibly complete but are not interactive).

Submit Buttons
Here's an example that doesn't enable the submit button until the entered text is at least three
characters long (see file23. htm):

dorm>
<input id="par" name="par" width="150" onkeyup="check(this)" I>
<input id="sub" type="submit" value="OK" I>
<!form>
<script type="text/javascript">
var s = document.getElementByld('sub');
s.disabled = true;
function check(v) {

s.disabled = v.value.length < 3;
}
</script>

It's important to revalidate data on the server since it is possible for hackers to bypass the script
checks on the page. In fact, it's a good idea to log requests where invalid fields are detected on the server
that should have been prevented by client -side script. In addition to being an indication of potential
bugs in client or server code, they could also be indications of a security threat.

J avaScript can also be used to avoid submitting a form if the selected parameters are the same as the
ones that were used to generate the page. For example, you can prevent users from re-requesting a page
if a selected sort key on a table is the same as the current one or if they are requesting the same page
again (unless the content might have changed).

37

�CHAPTER 2 CLIENT PERFORMANCE

38

Links
Here's an example that waits five seconds before enabling a Refresh link (see file20. htm):

<script type="text/javascript">
var r = document.getElementByld("ref")j
r.style.color = "gray"j
r.style.textDecoration = "underline"j
var sec = 5j
enableLinkO j
function enableLink() {

if (sec > 0) {

}

r.innerHTML = "Refresh available in " + sec + " seconds"j
setTimeout("enableLink()", 1000)j

} else {

}

r.innerHTML = "Refresh"j
r.style.color = "black"j
r.href = r.dhrefj

sec--j

</script>

You temporarily store the destination URL in a new property called dhref, and use setTimeout 0 to
have the JavaScript runtime call you back once a second to provide user feedback. Without some user
feedback, a disabled link on its own might be confusing. The first parameter to setTimeout () is the
function name to call, and the second is the time interval in milliseconds. Mter five seconds, you activate
the link by setting the href property from the temporary dhref. This approach also helps prevent the
cursor from changing to indicate that it's on a valid link when you hover over the text.

You also want to prevent the link from being disabled again if the user hits the back button in their
browser to come back to this page from another one. You therefore need to record some state
information on the client by either using web storage (preferred; see Chapter 3 for details) or by setting a
cookie from script. If you use a cookie, you should configure it to expire quickly, probably after just a few
minutes. It should have a path set on it, so that it's only attached to the minimum number ofURLs
possible. The script could then check for the presence of the cookie or an entry in web storage. If it's
there, then the link can be enabled immediately.

You can also disable a link after a user clicks it, to prevent them from clicking twice. Here's an
example that disables the link after a click, and then waits three seconds before navigating to the
destination page, to give you a chance to see the disabled link (see file21. htm):

Go somewhere
<script type="text/javascript">
var Vj
function disableMe(val) {

v = valj

}

v.style.color = "gray"j
v.style.textDecoration = "underline"j
v.dhref = v.hrefj
v.removeAttribute("href")j
setTimeout("go50meO", 3000)j

�CHAPTER 2 CLIENT PERFORMANCE

function goSome() {
window.location.href = v.dhrefj

}
</script>

Since you start with a valid link in the <a> tag, when the user clicks, you move the destination URL
from the href property to dhref and change the color and textDecoration style of the link text.
Removing the href property prevents the browser from changing the cursor to indicate that the text is a
valid link. Then you use setTimeoutO to call a function after three seconds that will cause the browser to
go to the new page.

Using JavaScript to Reduce HTML Size
You can generate frequently repeating HTML on the client and thereby decrease the size of the
downloaded text. A secondary benefit is that it can effectively remove keywords from the page that you
would rather not have indexed by search engines.

Generate Repetitive HTML
For example, if you have a drop-down box with a list of all the countries in the world or with all of the
states in the United States, the JavaScript to generate them will be much smaller than the pure HTML
would be.

Consider this XHTML:

<select>
<option value='AF'>Afghanistan</option>
<option value='AL'>Albania</option>
<option value='DZ'>Algeria</option>
<option value='US' selected>United States</option>
</select>

To create the same thing using JavaScript, put the following code in an include file (see file24.js):

var countryList = "AF,Afghanistan,AL,Albania,DZ,Algeria,US,United States"j
function DisplayCountries(selected) {

}

var countries = countryList.split(",")j
var count = countries.lengthj
var i = OJ
document.write('<select>')j
while(i < count) {

}

document.write('<option value="')j
document.write(countries[i])j
document.write('''')j
document.write(countries[i] == selected? 'selected' "")j
document.write(">")j
document.write(countries[i+l])j
document.write('</option>')j
i=i+2j

document.write('</select>')j

39

�

�

�

CHAPTER 2 CLIENT PERFORMANCE

40

Then include the file and call the function from where you want the option list to appear in your
HTML (see file24.htm):

<script type="text/javascript" src="file24.js"></script>
<script type="text/javascript">
DisplayCountries("US");
</script>

Of course, in a real application, the list of countries would be much longer. If the drop-down menu
is used on multiple pages or on pages that can't be cached, putting the]avaScript to generate it in an
include fIle helps further because the script fIle can be cached. For a long list of items, the script will be
shorter than the HTML, so if you're already loading another script file into which you can place the code,
both PL Tl and PLT2 will be decreased.

Note Using script to generate HTML will result in the related text not being accessible to search engines. That
can be a good thing, as mentioned earlier, in the event that you have text on your page that isn't relevant to your
content. However, if it hides important content, keywords, or links, the trade-off for performance probably isn't
worth it.

Add Repetitive Text to Your Tags
Another way to make your HTML shorter with script is to use it to add, append, or prepend repetitive
text to your tags. Sometimes this can improve search engine friendliness, too.

For example, let's say that you have along query string parameter that you'd like to attach to a
bunch of links on your page, such as a tracking ID of some kind. Rather than attaching it in the HTML
directly, where it increases the length of the fIle and possibly confuses search engines, you can do it by
manipulating the DOM. That way, search engines would see the bare URL, but users would see one that
was properly tailored for them.

For example (see file2S. htm):

My Link
<script type="text/javascript">
var 1 = document.getElementByld('lk');
l.href += "?trk=9028310983019283092319380023744793939";
</script>

You can also use this approach to generate URLs that have common prefIxes, rather than hard
coding them in your HTML.

Caution Using this approach to create or modify resource URLs that are requested when the page first loads
can break or confuse the browser's lookahead downloader, resulting in slower performance.

�CHAPTER 2 CLIENT PERFORMANCE

Uploading Less
For every HTTPrequest, the browser sends a bunch of information to the server. Here's an example
request for http://www.apress.com/using lE9 on my desktop pc:

GET http://www.apress.com/HTTP/1.1
Accept: text/html, application/xhtml+xml, *1*
Accept-Language: en-US
User-Agent: Mozilla/S.O (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/S.O)
Accept-Encoding: gzip, deflate
Connection: Keep-Alive
Host: www.apress.com
Cookie: __ utma=263S0701.1476874901.1296991670.1296991670.130S244143.2

You can tell a few things about my machine from these headers. The User-Agent string tells you
which browser I'm using (MSIE 9.0), which operating system I'm using (Windows NT 6.1, otherwise
known as Windows 7), and that I'm using a 64-bit operating system (WOW64). One cookie is also included.

Similar information is sent to the server with every request on a page, including every image,
]avaScript fIle, and CSS fIle. That process takes time. For this example, there are about 325 bytes sent. A
DSL connection with a 128Kbps uplink can upload text at about 10.2KB/sec. That's about 32ms per
requested object. For a page with 16 objects on it, that would be about 512ms, or close to a half-second
just for the browser to send the HTTP requests. A typical 56Kbps dial-up connection might actually
connect at 44Kbps, which would be about 3.5KB/sec throughput, or 1.5 seconds just to send the HTTP
requests.

These numbers are useful for two reasons. First, they add to the importance of reducing the number
of HTTP requests that the browser needs to make per page. Even if the responses have nothing in them,
the time to send the requests can, by itself, make a big difference in performance. Second, they help
emphasize that reducing the amount of data uploaded is important. Unfortunately, working from the
server side, you don't have a way to alter things like the client's User-Agent string, or most of the other
headers. The two that you do have control over, though, are cookies and the URL.

When the server asks the browser to set a cookie, it does so by sending a Set-Cookie header in the
HTTPresponse. Here's an example:

Set-Cookie: ads=TW.Ads.8cbS307a6a4sc34;
expires=Tue, 03-Feb-2009 12:41:30 GMT;
path=/pages; HttpOnly

The header includes the name=value pair for the cookie, along with an optional expiration time, path,
domain name, and property keywords such as HttpOnly. Modern browsers accept a maximum of 50
cookies per domain, each of which can be at most 10KB long.

The cookie in the HTTP response shown earlier is 61 bytes long. If it was 9KB, which is well within
the limits of the standard, the total upload time per request would increase by a factor of 28, to about
900ms per request, or an astounding 14 seconds for a page that references 16 objects.

Most objects on a page, and in particular nearly all static objects, rarely need cookies. Cookies are
generally used to store some state information, such as who you are (either by name or by session),
credentials showing that you have previously logged on, and so on. The server can then examine the
cookie as part of processing the request, and take some action based on what it fmds. Perhaps the page
is rendered differently, or it might direct you to a different page if a certain cookie is missing. Those types
of actions are usually taken only for dynamic content.

Static content usually does not involve any programmatic decision making (except perhaps for
authorization); the server is presented with the URL, and the content is delivered. Since the server
doesn't usually look at cookies that are associated with static content, you should be careful not to

41

�

�

CHAPTER 2 CLIENT PERFORMANCE

42

associate cookies with those files, to save the client from having to send them back. One exception is
when receiving a particular static file should trigger a later action by the server on the dynamic side, such
as with the CSS example earlier.

One way you can decrease the time that browsers spend uploading cookies is by using the cookie
path property. The path tells the browser to send that cookie only when the first part of the requested
URL starts with the path string, which is case-sensitive. In the earlier example, the browser will send the
cookie back to the server only when the URL starts with /pages, which includes both /pages/page. aspx
and /pagesmore/stuff .aspx. If it's not explicitly set, the default cookie path is the root, which means that
the cookie will be attached to all URLs in the domain of the site that set it.

With the earlier HTTP request example, if you eliminated cookies from the 16 static objects on the
page, that would reduce upload time by about 69 / 325 = 21%.

I recommend putting all of your dynamic content under a single top-level folder, such as /pages.
Static content should be placed in a separate folder, such as /static. With that layout, cookie paths can
be set either on /pages/ or on specific subfolders.

Another approach to avoiding this problem is to put your static content into one or more different
subdomains. You might have sl.12ti tans. net, 52 .12ti tans. net, and www.12titans.net. for example.
That would allow you to set cookies at the root of your main site (even accidentally) without causing an
adverse impact on the performance of static files. In the "Network Optimizations" section earlier in this
chapter, I covered using separate subdomains to help improve download performance through the use
of multiple simultaneous network connections.

You should keep cookie names and their associated values as short as possible. There's no need to
use a long name for a cookie when one or two letters will work just fine. I suggest using two character
names in most cases. Cookie values should be abbreviated, encoded, and possibly compressed to keep
them short.

Note When HTTP compression is enabled, only the body of the response is compressed, not the headers, which
includes cookies. If cookies are long enough to benefit from compression, you will need to do it programmatically.

You can also merge multiple cookies into one, perhaps using a comma character as a field separator
or the ASP.NET dictionary cookie mechanism (see Chapter 3). Minimizing the number of cookies is also
important because browsers allow only up to 50 cookies per domain. If you create too many cookies, the
browser will silently drop older cookies.

Optimizing CSS
In your HTML, one of the first and easiest CSS optimizations is to replace any sty Ie properties with CSS
classes or ID tags. For example, instead of this:

<div style="display:none; width:250px; z-index:looo;
background-color:red; border:3px solid #(63; padding:o">

assign the style information to a class, and put it in a CSS file:

.info { display:none; width:250px; z-index:looo; background-color:red;
border:3px solid #(63; padding:o }

Then remove the style property from the <div> and replace it with the new class:

�CHAPTER 2 CLIENT PERFORMANCE

<div class="info")

Even though that doesn't reduce the total amount of text, there are several advantages of moving
the style information into a static include file:

• It makes it easier to change the style of your pages consistently on a site-wide
basis.

• It simplifies the process of dynamically switching to a different style, perhaps
using ASP.NET themes.

• It helps facilitate parallel development, where a web designer might work only
with the CSS to establish the look of the pages, while a programmer works on the
associated HTML at the same time.

• The CSS include file can be cached on the client so that when it's requested for
other pages on your site, it doesn't have to be downloaded again.

While you're factoring the style information out of your HTML, be sure to watch for duplicates.
You can share common elements of each class by listing more than one class name before the

definition, separated by commas. For example, instead ofthis:

.one { background-color:red; border:3px solid #(63; padding:O }

.two { background-color:red; border:3px solid #(63; padding:o; color:white }

do this:

.one,.two { background-color:red; border:3px solid #(63; padding:o }

.two { color:white }

You list the common background-color, border, and padding values once and attach them to both
classes. List the color property separately that's unique to the two class.

Some CSS properties can be inherited from parent tags by child tags. You should set inherited page
wide defaults on the body selector so that they don't have to be duplicated for every style. This is
particularly useful for things like fonts and color properties.

Although many CSS properties are inherited, not all of them are. The following CSS properties can
be inherited:

• background and related properties (only in CSS 2+)

• color

• font and related properties

• letter-spacing

• line-height

• list-style and related properties

• text-align

• text-indent

• text-transform

• visibility

43

�CHAPTER 2 CLIENT PERFORMANCE

44

• white-space

• word-spacing

The following properties don't inherit:

• border and related properties

• display

• float

• clear

• height

• width

• margin and related properties

• min and max-height and width

• outline

• overflow

• padding and related properties

• text-decoration

• vertical-align

• z-index

As an example of inheritance, don't do this:

h1 {color: blue}
h1.name {color: blue; font-style: italic}

Do this instead:

h1 {color: blue}
h1.name {font-style: italic}

The color attribute is inherited by h1. name from the h1 entry.
Here are a few more easy optimizations:

• When you specify zero pixels, the px unit specifier isn't required.

• Whitespace is not required before or after braces, colons, or semicolons in a CSS
rule.

• When specifying the same value for the top, right, bottom, and left margins or
padding, you only need to list the value once, not four times.

• Use three-digit hex color codes instead of the six -digit version when you can. A
three-digit code is equivalent to a six-digit that has each digit twice. For example,
#Oa9 is the same as #OOaa99.

�CHAPTER 2 CLIENT PERFORMANCE

• Use hex color codes instead of their rgb 0 equivalents.

• Use the text version of color names instead of the numeric version, when they're
the same length or shorter. The following standard colors have three-digit
equivalents that are shorter than their names: black (#000), fuchsia (#fof), white
(#fff), and yellow (#ffo). If the color name has four or fewer characters, you
should always use it. You should only use color names with between five and
seven characters if they don't have a three-digit hex code.

• Use CSS shorthand when possible. For example, instead of using four different
values for margin -top, margin -right, margin -bottom, and margin -left, you can list
them in a single margin style.

• A semicolon is not required at the end of a CSS property list. It is only needed in
between properties.

• To demonstrate several of these suggestions, consider this CSS:

body
{

}

margin-top: opx;
margin-right: lpX;
margin-bottom: 2px;
margin-left: 3px;
position: absolute;
top: opx;
left: opx;
right: opx;
bottom: opx;
background-color: #ooffff;

table
{

}
tr
{

}
td
{

}

padding: opx opx opx opx;
margin: opx opx opx opx;
border-collapse: collapse;

padding: opx opx opx opx;
margin: opx opx opx opx;

padding: opx opx opx opx;
margin: opx opx opx opx;

This can be optimized into the following, which is exactly equivalent:

body{margin:O lpx 2px 3px;background-color:#off}
table{border-collapse:collapse}
table,tr,td{padding:o;margin:o}

45

��

�CHAPTER 2 CLIENT PERFORMANCE

46

The fact that styles can cascade (as in Cascading Style Sheets) can also be used to make your CSS
smaller.

If you wanted to set the padding for td elements to be 2px, one approach would be as follows:

table,tr{padding:Ojmargin:O}
td{padding:2pXjmargin:o}

However, you can shorten the CSS by allowing the format to cascade from one selector to another:

table,tr,td{padding:Ojmargin:O}
td{padding:2px}

The fIrst td setting of padding: 0 is overridden by the next line, which sets it to 2px.

Using Image Sprites and Clustering
One way to reduce the number of round -trips required to retrieve images on a page is to combine
multiple images into a single fIle and then use CSS to display them individually. The resulting file usually
loads faster since it avoids round-trips and the associated upload overhead; the smaller the fIles are, the
larger the improvement. One way to do this is by using a technique called image sprites.

The fIrst step in implementing sprites is to combine your images into a single file. You can do this in
an image editor, or you can use an online generator (search the Web for CSS sprite generator to see
several possibilities). If the images are close to the same size, one way to arrange them is in a single
column, with all the left edges on the left side. As you're making the fIle, record the X and Y coordinates
of the upper-left corner of each embedded image, along with its size. You might need a more complex
layout might if there is a large variation in images sizes. You should arrange them so that the amount of
empty space in the aggregated image is minimized in order to help minimize the fInal size of the fIle. See
Figure 2-6 for an example.

Note In IE, square images require less memory than an equal number of pixels arranged as a thin rectangle.
The difference in memory use between an image thousands of pixels tall and a few dozen pixels wide and a
square version can be multiple megabytes.

�CHAPTER 2 CLIENT PERFORMANCE

Figure 2-6. Sample image sprite

The next step is to create the CSS to display the desired image. The first style you need is one that
sets the background to the new composite image and sets the image size as a clipping rectangle. In the
example, all of the images are 56 x 56 pixels in size, so the height and width CSS properties are set
accordingly, and anything beyond that size will be clipped:

.sp { background : url(csg.png); height :S6px; width :S6px; display : block}

The display : block property is needed for Firefox in order for it to accept a height and width on
nonblock elements such as an <a> tag.

Next, create one selector for each image that specifies how the background image should be
positioned inside the clipping rectangle. In the example, the images are all on the left side, so their X
offsets are zero. Images are normally aligned so that their upper-left corner is in the upper-left of the
target location. You can move the image up within the clipping rectangle defmed above by specifying a
negative Y coordinate. The clipping rectangle will hide the rest of the image.

In the example, the images are separated by 1 pixel. To display the first image, we need to move the
composite up by 1 pixel. The image is 56 pixels tall, and there's another 1 pixel between it and the next
image, so to see the next one, you need to move the composite up by 58 pixels, and so on for the rest of
the images. See Figure 2-7.

Image Origin (0, 0)

r
I~ _I CBoo'" Rectangle

r+x

+Y

Figure 2-7. Move the image up within the clipping rectangle by applying a negative offset.

47

�CHAPTER 2 CLIENT PERFORMANCE

48

In addition to the X and Y offsets, give each image a : hover selector if it should be displayed when
the mouse hovers over the original. This has the added advantage of replacing any JavaScript that might
have otherwise been used for the same purpose. float: left is included for Firefox in order to get the
block elements to line up horizontally instead of vertically. Here's the resulting CSS for the example:

:hover.sprite-left { background-position: 0 -lpx }
.sprite-notes { background-position: 0 -S8px }
:hover.sprite-right { background-position: 0 -llSpx }
.sprite-right { float:left; background-position : 0 -172px }
.sprite-left { float:left; background-position: 0 -229px }
.sprite-notes-p { background-position: 0 -286px }

Finally, you can apply the CSS to your HTML. The class that assigns the background image and sets
the size ofthe clipping rectangle should be set first, followed by the class that properly positions the
image within that rectangle. The classes will work with several different HTML tags, including ,
<div>, and <a>. Ironically, one of the tags they should not be used on is , since the CSS doesn't
replace the image src property. Here are a few examples:

<div class="sp sprite-notes-p"></div>

Notice that the sp class is applied first , followed by a space and the other class. This is a general
technique that you can use to apply one class and then another. The resulting page is shown in Figure
2-8 (also see file26. htm):

Figure 2-8. Web page with CSS sprite images

When you hover over the left and right arrows, the images will be replaced, as per the: hover
directive.

CSS images are loaded from paths relative to the CSS fIle. If your CSS is in an include fIle that's
located in an ASP.NET theme, there may be cases where using an < img> tag is preferable so that the
images can be more easily managed outside the theme system. In that event, you can use a slightly
different technique, where an outer <di v> sets the size of the clipping rectangle, and CSS on the < img> tag
is used to position the image, but this time using relative positioning. Here's an example (see
file27 .htm):

<style>
.clu { position:relative; height:S6px; width:S6px; overflow:hidden }
.clu-notes { position :relative; top:-S8px }
</style>
<div class="clu">

</div>

�CHAPTER 2 CLIENT PERFORMANCE

Although this approach still uses composite images, r call it image clustering to differentiate it from
the other technique.

Leveraging Dynamic HTML and JavaScript (Ajax)
You can make some types of page changes entirely on the client to avoid a server round-trip. For
example:

• Show and hide parts of the page. For example, you can set the CSS property
display: none with script.

• Show the current time using script, rather than setting it on the server. If the
current time is the only thing on a page that changes regularly, using script might
also allow you to cache the page longer than you could otherwise.

• Apply user-configured ur customizations. You can use script to set or change
fonts and colors, for example, or to position content blocks.

• Leverage event-based actions, such as timers, mouse movement, key presses, and
so on. For example, you can allow a large image to be dragged within a clipping
window, rather than panning it on the server.

Normally, when you click a link or a button to go to a new page, the browser does either an HTTP GET or
POST, and the server responds with an entirely new page. This is also true for ASP.NET postbacks, which
are just a specialized form of POST.

It's possible to submit a request to the server without leaving the current page and without causing
the response to be loaded as a new page. This technique is called Ajax, short for Asynchronous]avaScript
and XML, although the name is actually a misnomer, since the core mechanism has nothing to do with
XML, and it doesn't have to be asynchronous. Ajax has the following high-level features:

• It can retrieve arbitrary text from the server without requiring the page to reload.

• It facilitates fast partial-page updates or refreshes.

• It supports synchronous and asynchronous requests.

• It is supported on all modern browsers.

You might use Ajax to retrieve HTML fragments from the server and insert them directly into the
page. You can also parse text that the server returns and use the results to update the page, or the server
can generate]avaScript that the browser executes.

The enabling technology behind Ajax is the XmlHttpRequest object, which allows you to submit an
HTTP request and receive the response without leaving the page.

Here's an example that builds on the earlier image sprite code (see file28. htm):

<title>Chapter 2: File 28</title>
<style type="textlcss">
.sp { background:url(csg.png); height:S6px; width:S6px; display:block }
.sprite-right { position:absolute; top:l0; left:l0; background-position:O -172px }
</style>
</head>
<body>

<script type="text/javascript">

49

�CHAPTER 2 CLIENT PERFORMANCE

50

var req = null;
var im = null;
function move(obj) {

}

im = obj;
req = getreq 0 ;
if (req != nUll) {

}

try {
req.onreadystatechange = done;
req.open("GET", "ajaxl.aspx", true);
req.send(null);

} catch (e) {
return null;

}

function getreq() {

}

if (window.XMLHttpRequest) {
req = new XMLHttpRequest();

} else if (window.ActiveXObject) {
req = new ActiveXObject("Microsoft.XMLHTTP");

}
return req;

function donee) {

}

if «req.readyState == 4) && (req.status == 200)) {
var resp = req.responseText.split(":");
im.style.top = resp[o] + "px";
im.style.left = resp[l] + "px";

}

</script>

Each time you click the image, you use the XmlHttpRequest control to request the ajaxl. aspx page,
which returns a pair of random numbers separated by a colon. The response is parsed with script and
used to move the image to a random location on the screen.

The HTML is mostly the same as before; there's an <a> tag with a CSS class that assigns a
background image and position, along with an appropriate size. The function move () is called when you
click the image.

1. First, moveO calls getreqO to get a reference to an XmlHttpRequest object in a
browser-independent way.

2. Next, it sets onreadystatechange on the returned XmlHttpRequest object to the
function that should be called when the request returns or fails.

3. Then it calls open 0 to set the parameters for a request to the server to GET
ajaxl.aspx. The third parameter is set to true to indicate that the call should
be made asynchronously (synchronous Ajax requests block the UI thread and
can potentially cause the browser to hang).

4. Then send () is called to start the request.

5. After sendO returns, the doneO function is called:

�CHAPTER 2 CLIENT PERFORMANCE

a. The readyState property indicates the state of the call, and a value of 4 means
that it completed successfully.

b. The status field is the HTTP status code, where 200 means that the request was
processed successfully, 404 would be Not Found, and so on.

c. The body of the response is located in the XmlHttpRequest object's
responseText property, which you split into two fields with the string split
function.

d. The resulting values are parsed as integers and then used to set the absolute
position top and left style properties of the <a> tag.

The server code for ajax1. aspx generates two random integers between 0 and 500 (see ajax1. aspx):

<script runat="server" language="C#">
Random random = new Random();
</script>
<%= random.Next(soo) %>:<%= random.Next(soo) %>
<% Response.Cache. SetCacheability(HttpCacheability. NoCach e); %>

The response is marked not cacheable to ensure that the client receives a different pair of values for
each request.

There are times when a lightweight do-it -yourself approach as I've demonstrated here is
appropriate, but most projects would benefit from adopting a library to help simplify and streamline
your code. I happen to like jQuery, although it's only one option. The downside of frameworks is that
they can be relatively large, which will increase page load time on first access. However, if you are using
them for some other purpose, then they should already be cached on the client.

Here's an implementation of the client -side code using jQuery (see file29. htm):

<script type="text/javascript" src="jquery-l.7.1.min.js"></script>
<script type="text/javascript">
function move() {

}

$.ajax('ajaxl.aspx')
.done(function (data) {

});

var resp = data.split(":");
var tf = parselnt(resp[o]);
var If = parselnt(resp[l]);
$('#im').css('top', tf + "px")

.css('left', If + "px");

</script>

Improving Layout and Rendering Speed
The browser can't complete the layout for <table> tags until it knows the sizes of all resources contained
in the table. For example, if you have an image in a <table> and don't specify its size in the dmg> tag,
then the browser has to retrieve the image before it can complete the layout and begin rendering. If you
include the size, then the browser can finish computing the table's layout and begin rendering while it's
still waiting for the image to load.

51

�CHAPTER 2 CLIENT PERFORMANCE

52

Using the <col> tag with a width property can also reduce the time it takes to layout and render a
table, particularly for large or complex tables. Here's an example:

<table>
<col width="400" I>
<col width="300" I>
<tr>
<td>
This column will be 400 pixels wide
<ltd>
<td>
This one will be 300 pixels wide
</tr>
</table>

You can also associate a CSS class with a <col> tag. All major browsers support the <col> tag.
Be sure to include a <! DOCTYPE> tag as the first line of your HTML. <! DOCTYPE> tells the browser

which "dialect" ofHTML you're using on the page, such as whether it's old-and-quirky HTML, new
HTML5, or something in between. Knowing that information helps the browser render the page more
quickly, because it enables the browser's lookahead parser to avoid restarts.

One option is the in-between variety, also known as Transitional, which is what Visual Studio sets
by default when you create a new. aspx page. It allows deprecated HTML elements like , although
framesets are not allowed:

<!DOCTYPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"
"http://www.W3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

The Strict <! DOCTYPE> doesn't allow deprecated elements such as :

< ! DOCTYPE html PUBLIC "- I IW3C/ IDTD XHTML 1. 0 Stricti lEN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

Both Transitional and Strict require your markup to be well formed XML, so remember to close all
your tags and to use quotes on attributes, such as:

dmg src="myimage.jpg" I>

Since "bare" ampersands are illegal in XML, you should escape them in URLs with &. Here's an
example:

My page

If you're only targeting current browsers, HTML5 is another option:

<!DOCTYPE html>

This is also nice since it's much shorter.
For static HTML, you should specify the character set you're using. One approach is to use a <meta

charset> tag. If you don't specify the character set explicitly, the browser tries to guess it. Not only do
you risk having the browser guess incorrectly, but the process of guessing also takes time.

Here's how to specify UTF-8 encoding with a <meta> tag:

<meta http-equiv="Content-type" content="textlhtml; charset=utf-8">

Be sure to include the tag early in your HTML, before <title>.

�CHAPTER 2 CLIENT PERFORMANCE

As a shorter and much more reliable alternative, you can also specify the character set for your page
using the Content-Type HTTP header. For dynamic pages, the ASP.NET runtime adds this header to the
response for you automatically by default:

Content-Type: text/htmlj charset=utf-8

Precaching
In cases where you can anticipate the next page on your site that a user is likely to visit, you can use
]avaScript to precache objects used by that page. When the user goes there, the page will load more
quickly, since some of the objects it uses will already be in cache on the client. The user shouldn't notice
precaching, since it happens after the current page finishes loading, when the network would have been
idle otherwise.

Using Fiddler can be very useful here to help you figure out the objects used by the most common
destination pages after the current one.

You can also use precaching to load objects that users frequently access on your site from a page
other than the current one. This can improve performance even when users don't show a clear pattern
of which page they go to next. Processing IIS log fIles with a tool such as logparser can help you identify
frequently referenced objects (see Chapter 4).

PrecachingIrnages
One approach is to pre cache images using the page's onload handler. For example:

<body onload="preload()">

<script type="text/javascript">
function preload() {

}

var pre = new Image(o,o)j
pre. src = "http://S1.12titans . netlstatic/next1. jpg" j
var prx = new Image(o,o)j
prx.src "http://s2.12titans.netistatic/next2.jpg"j

</script>
</body>

The on load handler creates a new Image object and then sets its src property. That will cause the
image to be downloaded and cached so that it is available immediately on any following page that might
need it. The zero width and height specified in the constructor minimizes the work the browser has to do
after it finishes retrieving the image. Images that you request in this way are placed into the same queue
that the browser uses when loading the rest of page, so the same rules apply: multiple images should be
spread across multiple domains so that they can be requested and downloaded in parallel.

You can do the same thing using jQuery, without explicitly setting the on load handler in the <body>
tag:

<body>

<script type="text/javascript" src="jquery-l.7.1.min.js"></script>
<script type="text/javascript">
$(window).load(function() {

var pre = new Image(o,o)j
pre. src = "http://s1.12titans . netlstatic/nextl. jpg" j

53

�CHAPTER 2 CLIENT PERFORMANCE

54

var prx = new Image(o,o);
prx.src ''http://S2.12titans.netlstatic/next2.jpg'';

});
</script>
</body>

Use the page load handler for precaching, rather than the document ready event, to avoid delaying
the download of resources that the current page needs.

When deciding which images to precache, you should take into account what will be most helpful to
users. Good choices might include things like a composite sprite image or images that are needed for
navigation. Images above the fold are generally more important than those below the fold, since the
latter can't even be seen when the page first loads.

Precaching CSS and J avaScript
You can also pre cache CSS and J avaScript. Precaching script can have a bigger impact than images
because of the negative effects that loading them can have on page performance.

In case you might be tempted, it's not possible to use an Image object to precache CSS or JavaScript.
The fIle will be downloaded if you set it as the src property. However, because the MIME type of the
response is not an image, IE simply discards the result.

One solution is to use Ajax. However, this approach is not ideal because it doesn't allow content to
be downloaded from domains other than the one associated with the containing page. Building on the
earlier example:

<body onload="preload()">

<script type="text/javascript">
function preload()
{

}

var req = getreq();
if (req != nUll) {

}

req.open("GET", "/static/next.js", true);
req.send(null);

var rex = getreq();
if (rex != nUll) {

}

rex.open("GET", "/static/next.css", true);
rex. send(null);

</script>
</body>

Notice that the third parameter to the open () function is true. This means that the request is made
asynchronously, so the browser doesn't wait for the first request to finish before it starts the second one,
subject to limits on the maximum number of simultaneous connections. Even more importantly, it also
prevents blocking (and possibly hanging) the UI thread.

However, if your scripts and CSS reside on several different domains, as I'm advocating, then a
different approach is required. You can dynamically create <script> elements. Unfortunately, this has
the side effect that the script is parsed and executed, so you need to be careful only to reference code
that doesn't cause any undesirable side effects. Here's an example:

�CHAPTER 2 CLIENT PERFORMANCE

<body onload="preload()">

<script type="text/javascript">
function preload() {

var scr = document.createElement("script")j
scr. src = "http://S1.12titans . net/ch02/next. js" j

}
</script>
</body>

Note that the <script> element does not have to be inserted into the DOM; the fIle will still be
downloaded and placed in the browser's cache.

You can use a similar technique for CSS:

<body onload="preload()">

<script type="text/javascript">
function preload() {

}

var Ink = document.createElement("link")j
lnk.rel = "stylesheet"j
Ink. type = "text/css"j
lnk.href = "http://Sl.12titans.net/ch02/next.css"j
document.getElementsByTagName('head')[o].appendChild(1nk)j

</script>
</body>

However, unlike with <script>, the dynamic dink> tag does need to be added to the DOM in order
for the fIle to be downloaded. Unfortunately, the result is that the CSS in the downloaded fIle will be
applied to the current page, so it's important to make sure it doesn't cause any problems (such as
conflicting selectors) before using this technique.

Using CSS Layout Without Tables
There's along-standing debate among web designers about the desirability of using CSS instead of
tables for layout. Those in favor of that approach cite things like "purity of semantics" and "separation of
concern" between content and style. Those opposed believe that using tables is easier to learn and
implement. My recommendation is somewhere in between. I generally prefer CSS, but I also think there
are times when tables can be a perfectly good solution.

From a performance perspective, CSS-based layouts tend to be much faster than their table-based
equivalents. Equally important, though, is that when you use CSS, you can place content in your HTML
in the order of importance to your users. Since the browser renders content in the order it's
encountered, you can make it so that users will see the most important content first, regardless of its
location on the screen, which also improves perceived performance.

An additional benefit is that because one of the algorithms used by search engines ranks pages by
how far away keywords are from the beginning of a fIle, moving your main content closer to the
beginning can help improve the rank of your page. In addition, pages designed this way often look better
on a wider range of devices, such as small-screen mobiles.

The area where this has the most impact is for the high -level arrangement of sections on a page; it's
definitely worth the effort to avoid enclosing most of your page in a single large table. With a typical page
that has a large navigation column on the left side of the page, if you use a table for the layout, that

55

�CHAPTER 2 CLIENT PERFORMANCE

56

column will come first in the HTML, before your main content. By using CSS, you can avoid that
requirement and have your content first instead.

There are CSS frameworks available that can simplify this process, such as the 960 Grid System,
Blueprint CSS (and their fluid versions), or Twitter Bootstrap (my current personal favorite). However,
they can be a bit bulky.

If you prefer to do it yourself, the most powerful approach starts with absolute positioning. One
downside is that the resulting layout may end up not being flexible in some ways. For example, the size
of a top header section might be fIxed, so extra -long text might not fIt without some additional coding.
Moving things around on the page can also be a little complicated, because adjusting the position of one
item doesn't automatically change the position of others. However, the idea here is to set this up as a
template (probably using an ASP.NET master page, as I discuss in Chapter 6) so that it has to be done
only once or a small number of times for your site, and not for every page.

Here are the key concepts for doing tableless layout using CSS with absolute positioning:

• <div> is your friend.

• You can apply absolute positioning to as few as one or two edges. The other
boundaries of the <div> can be set using width or margin.

• You can position edges using either percentages or pixels.

• You can specify widths as either percentages or pixels.

One disadvantage of using absolute positioning for a multicolumn page layout is that it's
challenging to position a footer properly. Since there isn't a single container around all the columns,
footers require some tricks that are beyond this book's scope. However, this issue is well addressed in
CSS frameworks, such as those mentioned earlier.

Here's the CSS for an example layout:

<style type="text/css">
.hdr,.lft,.rgt,.ctr{position:absolutejtop:90pxjborder:lpX solid #OOOjpadding:l0px}
.hdr {
top: 10pXj
left: 10pXj
right: 10pXj
height: 55px
}
.1ft {
left: 10pXj
width: 120px
}
.rgt {
right: 10pXj
width: 160px
}
.ctr {
left: 155pXj
right: 195pXj
padding: lem
}
hl,h2{margin:O}
</style>

�CHAPTER 2 CLIENT PERFORMANCE

You can use separate classes for the header (hdr), left (1ft), right (rgt), and center (ctr) content
areas. All of the classes have absolute positioning set, along with a default position of 90 pixels from the
top of the page, a I-pixel-wide black margin and 10 pixels of padding. Each class then sets its specific
location with offsets relative to the edges of the page, using the left or right properties. The hdr class
also overrides the top property, and the ctr class overrides padding. The margin for the <hi> and <h2> tags
is set to zero to make the page look more consistent across browsers.

Notice that the rgt and 1ft columns have their width determined explicitly, using the width
property. However, the ctr column binds its left and right edges to the edges of the page using absolute
positioning. The result is that if the page is resized, the size of that column will also change. This is
sometimes called a liquid layout.

The position of the outer edges of the two outer columns is straightforward: place the <div> a certain
distance from the respective edge and assign it a width.

The exact location of the upper edge and both edges of the center area takes a little math. The total
width of a <div> is determined by adding the content width (the value of the width property) to the left
and right padding and to the width of the left and right margins and borders. Using the left side as an
example: 10 (position from left side of the page) + 120 (content width) + 10 (left padding) + 10 (right
padding) + 0 (left and right margins) + 1 (left border) + 1 (right border) = 152. In the example, I've
specified a 3-pixel space between the each area of the page so that the borders can be clearly seen, which
puts the left offset of the center area at 152 + 3 = 155 pixels. The same process is repeated for the other
areas.

With the CSS in place, the HTML consists of wrapping the four sections of the page in separate <div>
tags and attaching the appropriate class to each:

<body>
<div class="hdr">
<hl>Page Header</hl>
</div>
<div class="ctr">
<h2>Heading</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Donec vehicula. Praesent sed erato Integer suscipit pede
laoreet tortor. Aenean pulvinar, lectus malesuada ullamcorper
sollicitudin, lectus orci vehicula augue, vel ultricies eros
urna eget nulla. Suspendisse ac nisl.</p>
</div>
<div class="lft">
<p>Aenean tempus ultrices turpis. Aenean mollis.
Ut vestibulum suscipit pede. Vestibulum commodo odio
eget arcu.</p>
</div>
<div class="rgt">
<p>Suspendisse imperdiet ligula imperdiet purus. Suspendisse
potenti. Aliquam id diam id lorem tristique malesuada.</p>
</div>
</body>

Notice that the center (main) content comes before the left and right columns, which was one of our
goals. See Figure 2-9.

57

�CHAPTER 2 CLIENT PERFORMANCE

58

i Page Header

Aenean tempus
Heading

Suspendisse
ul triees turpis. imperdiet ligula
Aenean mollis. imperdiet puros.
Ut vestibulum Loren!. ipsum dolor sit amet, Suspendisse
suseipit pede. eonsee1etlll' ampiseing elit. Donee parenti. AHquam. id
Vestibulum vehlenla. Praesent sed erato Integer diam id loren!.
eommodo odio suscipit pede laoreet tortar. Aenean tristique malesuada.
eget areu. pulvinar, teebJs malesuada.

ullameorper soUicitudin, leetus orci
vehlcnla augue. vel ultricies eros urna
eget ou1la. Suspeodisse ae nisI.

Figure 2-9. Three-column tableless layout using CSS with absolute positioning

Optimizing JavaScript Performance
Since the JavaScript referenced by a page needs to be parsed and executed by the browser, you should
take care to make sure that it performs well. In addition to the techniques that you might apply to a
compiled language, a few performance guidelines are specific to J avaScript:

• You should use temporary variables when accessing the same multi-level "dotted"
objects more than once, such as in loops (each "dot" takes time to process).

• The innerHTML property is very powerful and a useful way to dynamically modify
your page, particularly as part ofleveraging Ajax. However, you can use the much
faster textContent property instead when the content contains only text and no
HTML.

• In the event that a number of strings will eventually be written into the page with
document. write 0, it's more efficient to write them individually rather than
concatenating them together first. For example, don't do this:

var str = "The value for" + myname + " is this: " + myvalue;
document.write(str);

Do this instead:

document.write("The value for ");
document.write(myname);
document.write(" is this: ");
document.write(myvalue);

�CHAPTER 2 CLIENT PERFORMANCE

Summary
In this chapter, I covered the following:

• The steps that the browser follows when requesting and processing a page, and
how you can use that information to optimize your HTML for faster load times.

• Why you should include a few resource URLs in the first 500 bytes or so of your
page.

• Using early and late loading to request images according to their priority to the
user instead of their position on the screen.

• Using consistent case for your URLs and consistent names for your fIles to avoid
having clients download the same files more than once, even when they're
cacheable.

• Assigning your static fIles to multiple domains to help the browser download them
in parallel.

• Placing <script> includes late in your HTML or preceding them with one or more
images to help increase network parallelism.

• Minimizing the number of script files in your project by combining them and by
avoiding the need for document. write ().

• Using absolute positioning or DOM manipulation to reorder scripts that you can't
modify.

• Using the page onload handler to load large, low-priority images, or images that
are below the fold or that might not be used (such as rollover images).

• Using CSS to replace text images.

• Using lowercase URLs, tag names, property names, and so on, to help maximize
the compressibility of your HTML.

• How to reduce the number and size of the images you need through careful
requirements analysis.

• Using transparency as an alternative to rollover images.

• Using inline image encoding (data URI scheme).

• Optimizing the size of your images with careful cropping and correct choice of the
image format, quality level, bit depth, and dimensions.

• Using image slicing to improve perceived performance when you're loading large
images.

• Using client-side image maps instead of multiple images or slicing.

• Why you should specify the size of images in your dmg> tags, using the native
image size or larger.

59

�CHAPTER 2 CLIENT PERFORMANCE

60

• Including a web site icon file in your project and specifying a near-term cache
expiration date for it.

• Applying general HTML, CSS, and JavaScript optimizations such as removing
redundant tags and using self-closing tags.

• Using the Optimize HTML feature in Expression Web.

• Avoiding optimization techniques that violate the HTML standards.

• Eliminating CSS round-trips for the first page view.

• Using JavaScript to gate page requests by strategically disabling buttons and links.

• Using JavaScript to reduce HTML size by generating repetitive HTML or by adding
frequently repeating text to tag properties.

• Minimizing the amount of data that clients have to upload when they are
requesting objects on a page.

• Reducing the bandwidth and time consumed by cookies by using the path
property, by not associating cookies with static files, and by using short or
encoded names and values.

• Replacing CSS sty Ie properties with classes, IDs, or other selectors in a separate
(cacheable) CSS file.

• Merging duplicate CSS styles and common elements and minimizing the size of
your CSS with property inheritance, shorthand, cascading, and other
optimizations.

• Using image sprites and clustering to reduce round-trips.

• Using dynamic HTML and J avaScript to make certain types of page changes
entirely on the client.

• Using Ajax for partial-page updates.

• Improving page layout and rendering speed.

• Using precaching to help the next page that the user is likely to see load quickly.

• Using tableless layout to help optimize the order of content in your HTML so that
users see what's important to them right away when the page starts to render.

• Improving the performance of your JavaScript.

CHAPTER 3

Caching

Caching is an important cornerstone of high -performance web sites. You can use it to accomplish the
following:

• Reduce round-trips: Content cached at the client or in proxies can eliminate web
server round-trips. Content cached at the web server can eliminate database
round -trips.

• Move content closer to clients: The farther away from clients content is located, the
longer it takes to retrieve that content.

• Avoid time-consuming processes of regenerating reusable content: For content that
takes a lot of time or resources to generate, system performance and scalability are
improved if you can generate content once and then reuse it many times.

• Optimize state management: Caching state information at the client is more
scalable than storing it in a central location (within certain bounds, as discussed
later).

In this chapter, I'll cover how and when to use caching in all tiers of your application:

• Browser cache

• ViewState

• Cookies and web storage

• Silverlight isolated storage

• Proxy cache

• Web server cache

• SQL Server caching

• Distributed caching

• Cache expiration times

61

�CHAPTER 3 CACHING

62

Caching at Aliliers
As discussed in Chapter 1, the end-to-end system called a web application contains a number oflayers,
or tiers, where caching is possible. See Figure 3-1.

Web Browser

File'S II '.Ilewstate II CoDkies III Sllverligltl II Web Storage I
: Local Proxy ~
------------------------~ ------------------------,
: ISP Proxy I

Web Server

http.sys

liS Output Cache

ASP.NET Output cache

ASP .NET 0 bject cache III ASP.NET Request Cache

Disk C<lnlrolier Cache

Di sk Dlrive Cache

SQl Server

IDatabase Disk Array

Figure 3-1. Caching options that are available to web applications

You should treat boxes at the same horizontal level in the figure as mutually exclusive content
stores. Their relative vertical location gives a rough sense of how far away they are from each other, in
terms of access time. For example, you wouldn't normally store the same data in both the ASP. NET
object cache and in the ASP.NET request cache, or in both cookies and ViewState, and the browser can
retrieve content cached by http.sys faster than content from SQL Server.

Although you can (and should) cache certain resources in multiple tiers, some types of data should
be stored only in a single location. For example, state information stored in a cookie might be stored
only there, or a pre-calculated result might exist only in the ASP.NET object cache.

You should consider caching in all tiers, though, and take relative content uniqueness and access
frequency into account when deciding whether to cache content in a particular tier. For example,
content that is unique per user is generally not a good candidate to cache at the web server tier, since it
is relatively unlikely to be reused, particularly in an environment with a large number of load -balanced
servers. However, it might be perfectly acceptable to have the user's browser cache it.

�CHAPTER 3 CACHING

You can configure caching in four different ways:

• Using [IS Manager (a CU[front -end to the underlying XML configuration files)

• Bydirectly editing an XML configuration file

• Declaratively, in an ASP.NET page or control

• Programmatically, in code-behind or in an HttpModule

[will describe each approach in the following sections.

Browser Cache
Files that the browser retrieves from the server should be stored in the browser's cache as long as
possible to help minimize server round-trips. [f a page and all the resources it requires are in the
browser's cache, no server round-trips at all are required; the browser can render the page llsing only the
cached content. Since that presents no load on the network or the server, it is obviollsly very good for
scalability!

Caching Static Content
Every object stored in the browser cache includes an expiration time, beyond which the browser
considers the content sraleor invalid. You can manage those expiration times with the Cache-Control:
max-age HTTPheader. The Expires header performed the same function with HTTP 1.0, but Cache
Control overrides Expires when both arc present. I prefer to use only Cache-Control when possible,
thereby avoiding the confusion that might arise when you have two headers that specify the same thing.

If you set neither the Expires nor Cache-Control: max-age HTTPheaders, then the browser lIses
heuristics to determine how to handle caching. For example, if an object has a last-Modified header.
then IE9 will set the content's expiration time to the current time plus 10% of the difference between the
current time and the last-Modified time.

After content expires, the browser doesn't delete it from the cache immediately. Instead, it's
marked srale.

Avoiding Conditional GETs
After content becomes stale, the next lime it's referenced, the browser does a conditional GET (only once
per page). asking the server to confirm that it hasn't changed since the last time it was retrieved. Here's
what a conditional GET request looks like:

GET /check.png HTTP/l.l
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip , deflate
If-~ified-5ince: Sat, 10 Jan 2012 10:52:45 GMT
If-None-Natch: "8ofc5Zfa8bbzc81:0n
User-Agent: Mozilla/s .O (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/S .o)
Host: www.12titans.net
Connection: Keep-Alive

63

�CHAPTER 3 CACHING

64

The browser has included If-Modified-Since and If-None-Match headers to ask the web server
whether the content has changed (a different Last-Modified date or ETag) since the last time the browser
requested it.

Here's the response:

HTTP/l.l 304 Not Modified
Cache-Control: max-age=l
Last-Modified: Sat, 10 Jan 2012 10:52:45 GMT
Accept-Ranges: bytes
ETag: "80fc52fa8bb2c81:0"
Server: Microsoft-IIS/7.5
Date: Mon, 16 Mar 2012 04:07:01 GMT

IIS responds with 304 Not Modified, indicating that the content hasn't changed. It also includes
headers with the current values of Cache-Control, Last-Modified, and ETag.

Even though the responses to conditional GETs are short, the time it takes for the round-trips alone
can have a big effect on performance. Until the interval that you specify with Cache-Control: max
agepasses, the content will remain active in the cache, and the browser won't make those extra server
round -trips.

Setting Cache-Control: max-age
You can set Cache-Control: max-age for static content using IIS Manager. First, select HTTP Response
Headers. Then click Set Common Headers on the upper right, and select Expire Web content, as in
Figure 3-2.

Figure 3-2. Set a far-future expiration time for static content using IIS Manager.

The HTTP 1.1 standard recommends one year into the future as the maximum expiration time. You
should use that as the default for all static content on your site, as in Figure 3-2. Since max-age is
specified in seconds, that setting will result in the following HTTP header:

Cache-Control: max-age=31536000

�CHAPTER 3 CACHING

You can also apply this setting in web .config, as follows:

<configuration>

<system.webServer>

<staticContent>
<clientCache cacheControlMode" ""UseMaxAge" cacheCont rolMaxAge"""365 . 00: 00: 00"" />

</staticContent>
</system .webServer>

</configuration>

Once you've established a site-wide default, you can then set shorter expiration times for specific
static files or folders if needed.

Disabling Browser Caching for Static Content
You can partially disable browser cach ing for a particular static file or folder by selecting it first in the
left-hand panel in [IS Manager, then bringing up the same dialog box shown in Figure 3-2, and finally
selecting Expire Web Content and Immediately. Th is results in the following HTTPheader:

Cache·Control: no-cache

You can do the same thing in web,config. For example, for a file called image.jpg in the top-level
folder of you r site, you'd have the following:

<configuration>

<location path,,""image.jpg"">
<system .webServer>

<staticContenb
<clientCache cacheControlMode,,""DisableCache"" /)

</staticContent>
</system.webServer>

</location>
</configuration>

As implied by the name of the <staticContent> XML element, this approach works only for static
content. You will need to set client cache expiration times for dynamic content declaratively in your
.aspx files or set them programmatically.

[n spite of its name, Cache-Control : no-cache may not completely disable caching by the browser.
According to the HTTPstandard, that header requires the client to revalidate the response before
reusing it, unless the reuse is the result of back or fonvard navigation. To disable caching fully, use
Cache-Control : no- s tore, which you can set for static files using the approach in Figure 2·6.

[E9 and earlier implement no-cache as no -st ore, However, [EIO and most other browsers
implement the behavior as defined in the HTTP standard.

6S

�

�

�

CHAPTER 3 CACHING

66

Caching Dynamic Content
As an initial rule of thumb, dynamic content should have an expiration time of between 1 and 30 days.
An example of doing that declaratively is to place an OutputCache directive at the top of your . aspx page
(see dyn-client. aspx):

<%@ Page . . . %>
<%@ OutputCache Duration="86400" Location="Client" VaryByParam="None" %>

That tells the runtime to generate HTTP headers that ask the browser to cache the page for 86,400
seconds (one day). You must include VaryByParam, or the parser will generate an error. A value of None
means that multiple versions of the page do not need to be cached independently. The resulting HTTP
headers are as follows:

Cache-Control: private, max-age=86400
Expires: Tue, 17 Mar 2012 01:34:17 GMT

Cache-Control: private prevents shared proxies from caching the response.

Note In this example, the page will not be cached on the server.

You can generate the same headers programmatically, either from code-behind or from an
HttpModule. Here's an example (see dyn-client2 .aspx):

TimeSpan ds = new TimeSpan(l, 0, 0, o)j
this.Response.Cache.SetExpires(DateTime.UtcNow + dS)j
this.Response.Cache.SetMaxAge(ds)j

Cache-Control: private is the default and does not need to be set explicitly.
If your content changes more often than once per day, even short client-side expiration times (1 to

10 minutes) can be useful to prevent extra round-trips in some cases.

Note lEg improved forward/back navigation so that content without an explicit expiration time doesn't require

revalidation. IE10 and most other browsers reuse even no-cache resources properly in forward/back navigation.

Using Cache Profiles
When you're using OutputCache directives, it's also a good idea to use centralized cache profiles to help
ensure consistency and to minimize the effort needed to make subsequent changes. The fIrst step is to
define a cache profIle in your web. config fIle. For example, define a profile called Cache1Day to
encapsulate the parameters to allow client-side caching for one day:

<system.web>
<caching>

<outputCacheSettings>

�CHAPTER 3 CACHING

<outputCacheProfiles>
<add name=ICache1Day" duration=186400"

location=IClient" varyByParam=lnone" I>
<loutputCacheProfiles>

<loutputCacheSettings>
</caching>

</system.web>

To use the profile, just reference it from the OutputCache directive (see dyn-client3. aspx):

<%@ OutputCache CacheProfile="Cache1Day" %>

Disabling Caching
You should disable browser caching of dynamic content only in cases where data must always be the
absolute latest, where it can change in response to the user's state (such as whether they are logged on),
or where the page contains sensitive data that should not be stored on the browser.

To disable caching declaratively, set the Location property to None in the OutputCache directive:

<%@ OutputCache Location="None" %>

Here's the equivalent code (see dyn-disable.aspx):

this.Response.Cache.SetCacheability(HttpCacheability.NoCache);

HttpCacheability.NoCachewill disable caching fully on the server, but only partially on the client
(content can still be cached for forward I back navigation). The resulting HTTP headers are as follows:

Cache-Control: no-cache
Pragma: no-cache
Expires: -1

The runtime includes the Pragma and Expires headers even though they aren't needed in HTTP 1.1
and are therefore redundant in most cases. You can eliminate the Expires header as follows (see dyn
disable2. aspx):

this.Response.Cache.SetAllowResponselnBrowserHistory(true);

The Expires: -1 header is supposed to prevent the page from being placed on the browser's
history list so that you can't use the browser's Back button to navigate to it again. However, in my testing
with IE, it doesn't work that way; the page is always present in the history list. Perhaps it has some effect
in other browsers.

To disable browser caching fully, including forward I back navigation, set Cache-Control: no- store
programmatically:

this.Response.AppendHeader("Cache-Control", "no-store");

ViewState
ViewState is a collection of information generated by controls on an .aspx page that's used by the
controls to restore their state during a postback. State in this context can include the values of control
properties, results of data binding, or input from users. The specifics vary by control.

67

�CHAPTER 3 CACHING

68

Consider the case where you click on a button on a page, and the click handler enables some new
output in the response. If you then click on another button to perform a different function, you want the
new output you previously enabled to be there for subsequent views. The runtime transparently uses
ViewS tate to track the state change. The next time you click a button from the same page, the runtime
restores the previous control properties, to put the page quickly back in the same state it was in at the
end of the previous request.

The downside of ViewS tate is that it can become large and introduce performance issues if you
don't take steps to manage it.

As I mentioned in Chapter 1, there are a few places where technologies that help improve
performance interact strongly with security. Viewstate is one example.

The runtime restores posted form values during an ASP.NET postback, but the mechanism doesn't
use Viewstate. For example, let's say you have a page that contains a DropDownlist with Viewstate
disabled. If the user selects a value from the list and then submits the form, the runtime will restore the
submitted value on the page that it generates for the response.

How ViewState Works
1. When a user requests a page, before the page life cycle begins, the runtime

creates all of the controls for the page, assigns their declarative properties, and
adds them to a control tree, with the page at the root of the tree.

2. Next, the PreInit event on the page fires, followed by the Init event on all
controls, from the bottom of the control tree up, so the page's In it event fires
last.

3. Right after the Ini t event fires for each control, the control enables Viewstate
tracking. Before that point, the control will not remember changes to its
properties across postbacks. Afterwards, whenever you change the value of a
property, the control records that change in Viewstate, so the runtime can
restore the property value during postbacks.

4. By the time the In it event fires for your page, all of your controls already have
Viewstate tracking enabled, so any changes you make to control properties
from that point forward will be stored in the generated page (for controls that
have Viewstate enabled).

5. Next, the runtime fires the InitComplete event for the page. After that, if the
page is a postback, the runtime uses incoming ViewS tate data to restore the
value of any control properties that you modified when you created the old
page.

6. Next, the runtime fires the Preload event for the page, followed by the load
event for the page and then for all child controls (Preload is not available for
controls).

7. Later in the page life cycle, the runtime fires the savestateComplete event after
it has saved Viewstate and Controlstate for the page and all controls.

8. As part of the page-rendering process, the runtime serializes Viewstate and
Controlstate, encodes them in base-64, and stores them together as a single
hidden <input> field on the page called _ VIEWsTATE. To be serialized, objects

�

�CHAPTER 3 CACHING

stored in ViewState must be marked with the [Serializable] attribute or have
a custom TypeConverter.

You can read and write ViewState only after the Init event and before PreRender.
ControlState is similar to ViewState, in that it also contains page-specific, control-specific state

information. However, unlike with ViewS tate, you can't easily disable ControlS tate. It contains
information that is required in order for a control to perform certain basic functions. I will walk through
an example of using ControlState in Chapter 8, and demonstrate one way to disable it in Chapter 7.

Consider the following ASP.NET markup:

<form id="forml" runat="server">
</form>

From that, the runtime generates the following HTML:

<form name="forml" method="post" action="viewstate1.aspx" id="forml">
<div>
<input type="hidden" name="_VIEWSTATE" id="_VIEWSTATE"

value=" h,lEPDIId.ILL TE2MTY20DcyMjlkZExMO:il44ebB6mDGliIIOgfzmhu/Urop" I>
</div>
</form>

You can see the <input> tag containing the _VIEWSTATE field.

Note The presence of the _VIEWSTATE hidden field in an HTTP POST is how ASP.NET determines the value of
Page. IsPostBack.

The browser sends the hidden field back to the server when you submit the <form>, as it does with all
<input> fields, and the page life cycle starts again.

To summarize what this means regarding managing ViewState:

• Whenever you programmatically set a control property, keep in mind that the
runtime may encode that value into ViewState.

• When you set control properties declaratively, they aren't encoded in ViewState.

• You may be able to set some control properties in the page Prelnit event handler
without triggering additional ViewState, but take care that the values aren't
subsequently overwritten by an ASP.NET theme or by incoming ViewState.

• For custom controls, you can set properties in the Ini t event handler and avoid
having the runtime encode them in ViewS tate. However, this only works for
properties of the control itself, not for child controls.

• Control properties you set in the SaveStateComplete event handler may affect the
rendering of the page, but the runtime will not encode the changes in ViewState.

69

�CHAPTER 3 CACHING

70

Avoiding ViewS tate Misuse
ViewS tate does not contain or re-create custom controls on the page, or restore posted values to
controls. You should not use it for session data, since it's specific to a page, not a session.

You can't use ViewState for server-only objects, such as database connections. It's not valid after
you do a server -side redirect with Server. Tra n s fer 0 .

Avoid using ViewState for static data or data that you can create quickly. Keep in mind that anything
you store in ViewState will be encoded and sent to the user and back over a potentially slow network
connection.

UsingViewState as a Form of Caching
ViewS tate can be useful from a caching perspective because it allows you to store information that is
associated only with a particular page as part of the page itself.

For example, let's say you have a page that displays a list of strings, along with a link that allows the
user to alternate between sorting the list either ascending or descending. How do you keep track of that?
One way would be with a query string. Although that's appropriate in some circumstances, it means that
search engines would see multiple versions of the page, which might not be desirable. It also exposes a
string in the URL that hackers could change and that you would therefore need to write additional code
to validate.

You could use session state, but in a multi -server environment, that may require a database
round-trip.

As an alternative, you can store the current sort order in ViewState so that it's cached on the page.
Here's an example (see view.aspx):

private const string SortStateKey = "SO";
private const string SortAscending = "a";
public bool IsSortAscending { get; set; }

protected void Page_Load(object sender, EventArgs e)
{

}

if (IsPostBack)
{

}
else
{

}

string prevSort = (string)this.ViewState[SortStateKey];
this.IsSortAscending = prevSort == SortAscending;

this.ViewState[SortStateKey] = SortAscending;
this.IsSortAscending = true;

If the current page request is not a postback, you store a value into the ViewState object to indicate
that the default sort order is ascending. If the request is a postback, you retrieve the previously stored
value. Elsewhere in the code, when the user clicks a link or a button to alternate between ascending and
descending sort order, you could use this information to determine which sort order to use and then
change the value to indicate that you should do the opposite next time.

�CHAPTER 3 CACHING

Protecting ViewState Data Integrity
Since Viewstate contains a collection of serialized objects that the runtime reconstitutes on the server, it
presents the possibility of abuse, including hacking and denial-of-service attacks. To prevent tampering
and help ensure data integrity, the runtime can generate a message authentication code (MAC). The
runtime can also encrypt the field in the event you need to use it to store sensitive data.

In an environment with multiple web servers, be sure to configure an explicit validation Key in
web. config, and set it the same on all servers. Otherwise, with the default keys that are automatically
generated, Viewstate generated on one server will not be valid if it's presented to other servers, since the
MACs would be different. Even in single-server environments, it's a good practice to set a specific
validation Key. That helps avoid surprises down the road, including things such as inadvertently
invalidating form -containing web pages that are cached by search engines in the event you move to a
new server or reload the operating system. Here are the relevant settings in web. con fig:

<system.web>

<pages enableViewstateMac="true">

</pages>
<machineKey

validationKey="50B3847462938741422FF158A5B42DOE8DB8CB5CDA174257" I>
</system.web>

The validation Key is an arbitrary hex string, between 40 and 128 characters long.
You should generally not require site-wide encryption of ViewS tate. If you need to store sensitive

information in ViewS tate, you can encrypt it separately. If you need to protect the structure of the
objects, then you can write a custom serializer, or you can serialize into memory first and encrypt the
result.

Other Uses of ViewState
You can use Viewstate to help prevent cross-site requestforgery (CSRF) attacks. The way those attacks
usually work is that an attacker creates either HTML that includes a form and a link, which, when
clicked, submits the form to the server being attacked, or JavaScript that does the same thing. The form
or script might do something like register a new user that the attacker will subsequently use to spam the
target site. Attackers might send the HTML or J avaScript to third parties using e-mail, along with socially
engineered link text, such as "click here to claim your prize."

The technique can take advantage of a user's ambient authority, since requests will include a user's
session or login cookies. Attackers can also use CSRF for things like generating spam accounts or
comments, which don't require cookies.

One way to use ViewS tate to prevent CSRF attacks is to set the ViewstateUserKey property on a Page.
That value is stored in Viewstate when the runtime initially renders the page. Then, during a postback,
the runtime checks the stored field to make sure that it's equal to the current ViewstateUserKey. If it isn't,
then the runtime throws an exception, and the page is aborted. Ideally, you should choose
ViewstateUserKey so that it is unique per user. Here's an example that sets an authenticated user's name
as the key (see view2. aspx):

protected void Page_Init(object sender, EventArgs e)
{

this.ViewstateUserKey =
this.User.ldentity.IsAuthenticated ? this.User.ldentity.Name "default";

71

�

�

CHAPTER 3 CACHING

72

}

The result is that the VI EWSTATE hidden field will be different for each different authenticated user,
and users who cause their form to be submitted by another user will receive an error. That prevents
attackers from copying the hidden field from one form and using it in a CSRF attack.

Note ViewStateUserKey must be set in Page_InitO, which is before ViewState is restored.

If you're using sessions, a session ID is another candidate for ViewStateUserKey, although you
should be aware that with the standard implementation, the runtime doesn't send a session cookie to
the browser until you save something in the Session object. Session IDs won't be repeatable until the
cookie is set.

IP addresses are another candidate (perhaps as a fallback for anonymous users), but it's possible for
a user's IP address to change in mid-session, due to things like having their request routed through a
different proxy, by moving their laptop from one location to another, or a change due to DHCP. A unique
per-client cookie is probably more reliable.

Minimizing ViewState Size
Some controls, such as GridView, can easily generate many kilobytes of ViewS tate. Since the browser
sends ViewS tate back to the server as part of an HTTP POST, it can adversely affect page load times if it
gets too large. See Figure 3-3 for a graph of upload times for various data sizes and uplink speeds.

Figure 3-3. Upload times based on data size and upload speed

You can see the size of the ViewState generated by each control on your page by enabling tracing
(set Trace to true in the Page directive). Look in the Control Tree section to see the IDs for each control
and the size of their rendered content, ViewState and ControlState.

�

�CHAPTER 3 CACHING

Keep in mind that it is sometimes faster to refetch data from the database for controls such as
GridView than to have it sent to the client and back to the server again as Viewstate. From Figure 3-3, you
can see that just 4KB of Viewstate would take around 300ms to send over a DSL connection with a
128Kbps uplink. You can retrieve alot of data from SQL Server in 300ms, particularly ifit's still in SQL
Server's RAM cache.

In order to determine whether to enable ViewS tate for a page or control, the runtime looks at the
values of two properties, EnableViewstate and ViewstateMode.

• If EnableViewstate is false, then Viewstate is always disabled for that page or
control.

• If EnableViewstate is true, then the runtime looks at ViewstateMode. If it's set to
Inherit (the default for controls), then if the control's parent has ViewstateMode
set to Disabled, then Viewstate is disabled for the control. If the control's parent
has ViewstateMode set to Enabled (the default for a page), then Viewstate is
enabled for the control. Viewstate will also be enabled for the control if it has
ViewstateMode set to Enabled.

Because of the potentially large upload times, you should disable Viewstate by default, on a per
page basis, by setting ViewstateMode to Disabled in the Page directive (see view3. aspx):

<%@ Page Language="C#" ViewstateMode="Disabled" AutoEventWireup="true"
CodeFile="view3.aspx.cs" Inherits="view3" %>

The equivalent code is:

this.ViewstateMode = ViewstateMode.Disabled;

You can set this in a Visual Studio page template or in a page base class.
You can disable Viewstate for your entire application in web. con fig:

<system.web>

<pages enableVieNState="false")

</pages>
</system.web>

Unfortunately, you can't override that setting in web. con fig at the page level, so you can't selectively
turn it back on when you need it. Therefore, disabling it on a per-page basis is more flexible.

Tip You should enable Viewstate only in pages that post back to the server; pages that don't post back never
need Viewstate.

Many ASP.NET controls rely on Viewstate to implement various features. You may also need
ViewS tate to re-establish control property values for use in later postbacks that you change during things
like click event handlers. When you need it, after disabling it at the page level, you should enable it for
those controls only, by setting ViewstateMode to Enabled:

<asp:GridView ID="mygrid" runat="server" ViewstateMode="Enabled" I>

73

�CHAPTER 3 CACHING

74

You may see some data in the _VIEWSTATE field even after you've disabled ViewState for the page.
The remaining data is ControlState. If it gets too large, you may want to use a different control, or
consider overriding the class or using a control adapter to modify its behavior (see Chapter 7).

Using a Custom Template in Visual Studio
You can create a custom template in Visual Studio that disables ViewState by default so that you don't
have to remember to apply it for every new page or set it in your base class. To create a template, follow
these steps:

1. Create a page with the settings and content the way you would like to have
them, including the code-behind fIle. Then select File> Export Template,
which will start the Export Template Wizard, as in Figure 3-4.

Figure 3-4. The Export Template Wizard in Visual Studio

2. Select Item Template, set the project from which you would like to create the
template, and set the appropriate language category.

�

�CHAPTER 3 CACHING

3. Click Next, and select the page that you created earlier. Visual Studio only
shows the .aspx fIle; the code-behind will also be included.

4. Click Next, and select any Item References that should be associated with the
template. For basic settings as I'm describing here, no additional references
are needed.

5. Click Next again, and enter a name and description for the template.

6. Click Finish, and Visual Studio will create and import the template.

To use the template, select it when you add a new item to your project. Notice that Visual Studio will
automatically set some values in the . aspx fIle, such as CodeFile and Inherits, along with corresponding
values in the code-behind, when you create a new item from the template.

Minimizing Serialization Overhead
In addition to latency that's introduced because of the time it takes to upload Viewstate, serialization
overhead is another performance-related concern. ASP.NET uses an optimized serializer for Viewstate
called Los Formatter, where Los stands for "limited object serialization." It works best with the following
types: String, Array, Hashtable, ArrayList, Pair, Triple, int,andBoolean.

If you use types other than those, consider writing a custom TypeConverter to minimize serialization
overhead. If the object is not one of the "limited object" types, Los Formatter will first try to serialize it
with a TypeConverter. If that fails, then it will fall back to using a BinaryFormatter, which can be very
slow and can generate a much larger result.

Tip Rather than placing a custom object in Viewstate, consider using a collection of objects grouped using the
basic types that Los Formatter is optimized to handle.

Storing ViewState on the Server
In spite of my earlier recommendations, you may run into cases where you need Viewstate, but it's so
large that it significantly impairs the performance of your page. You might also need to support certain
types of browsers that run over very slow connections, such as mobile devices. In those cases, you may
choose to store ViewS tate on the server side.

To do that, override the LoadPagestateFromPersistenceMedium and
savePagestateToPersistenceMedium methods in the Page class. To demonstrate the concept, consider
the following example (see view4. aspx):

public const string ViewKeyName = "_viewkey";

protected override void savePagestateToPersistenceMedium(object state)
{

}

string key = Guid.NewGuid().Tostring();
this.Clientscript.RegisterHiddenField(ViewKeyName, key);
this.Cache[key] = state;

75

�

�

CHAPTER 3 CACHING

76

protected override object LoadPageStateFromPersistenceMedium()
{

}

string key = this.Request[ViewKeyName]j
if (key == nUll)

throw new InvalidOperationException("Invalid ViewState Key")j
object state = this.Cache[key]j
if (state == nUll)

throw new InvalidOperationException("ViewState too old")j
return statej

The first method creates a new Gum as a key and includes it in the page as a hidden field. You then
store the ViewState object in server-side Cache using that key. Note that this would work only on a site
with a single IIS worker process. If IIS had to restart, all ViewS tate would be lost. In a production
environment, it should be stored in a database or some similar "persistence medium," as the name of
the methods imply.

The second method retrieves the GUm key from the hidden field and then uses it to retrieve the
ViewS tate from the Cache.

To support low-speed devices in a generalized way, you could make both methods conditional on
browser type or ViewS tate size, and so on, and include them in a common base class.

Cookies and Web Storage
Cookies are name/value pairs of strings that are stored on the client. Cookies are set when the browser
receives a Set-Cookie HTTP header in a response from the server. Browsers send the cookie back to the
server later if the requested URL matches the path and domain restrictions associated with the cookie
when it was first set and if the cookie hasn't expired. I covered some of the limitations and guidelines
surrounding cookies in Chapter 2.

Tip Cookies should be used to cache state information and other data that is specific to a particular user and
that is needed across multiple pages.

Typical uses of cookies include user preferences, shopping cart, advertising history, last-visit date,
authentication, and so on. As with ViewState and query strings, you can't use cookies to store server-side
state such as database connections.

Although cookies can be a useful caching mechanism, they can quickly become a performance
problem if you don't manage them carefully. If you set cookies with the default path property, they will
be attached to both your pages and your static fIles, and the browser will send them with every HTTP
request it makes to your site. If a page contains 20 different static fIles, the browser can end up sending
the cookies to the server 21 different times (including for the page itself). When cookies are present in
HTTP requests, it may also impair an intermediate proxy's ability to cache your content.

You can set cookies either by setting HTTP headers from ASP.NET, by using J avaScript on the client,
from Silverlight, or through configuration settings in IIS. They can be set in the response from a standard
. aspx page, from an . asmx web service, or even with static content such as an image. You can also set

�CHAPTER 3 CACHING

them from some WCF services, although the approach is somewhat convoluted since WCF is designed to
be protocol independent and cookies are a feature of HTTP.

Cookies are another area where security and performance concerns overlap to some extent. Since
the information in cookies is visible to users, they are unfortunately subject to abuse. A fast architecture
isn't useful if it's not secure, and in spite oftheir benefits from a caching perspective, incorrect use of
cookies is a good way to expose your site to a variety of auacks. To help mitigate those concerns, [will
cover a few issues related to cookies and security in this section.

Data that might be used to hack into your site or content Ihat is so large that it will cause
performance problems should not be stored in cookies; it should be kept on the server side instead and
referenced indirectly with a unique key. That is one capability of session state, which I will cover in detail
in Chapter 5.

Setting Session Cookies
Here's an example that sets a cookie programmatically from an .aspx page (see cookiel .aspx):

HttpCookie cookie" new HttpCookie{"name");
cookie . Value " "value";
this.Response.AppendCookie(cookie);

This will create a session cookie, since you didn't sel an expiration time. A session in this context
means that the cookie lasts only as long as the browser is running. If the user closes the browser or
reboots their machine, all session cookies are dropped.

Here's the resulting HTTPresponseheader:

Set-Cookie : name"value; path,,;

To create a session cookie from JavaScript, you can lise this function:

function SetCookie(name, value) {
document. cookie " escape(name) + ',,' + escape(value);

)

To create a session cookie from Silverlight, use this:

public void Set Cookie(string name, string value) {
HtmIPage .Document.Cookies " name + ",," + value;

)

See Figure 2-6 for an example of the configuration·based approach to setting cookies.

Multiple NamelValue Pairs in a Single Cookie
In addition to the single name/value per cookie approach, ASP.NET also provides a mechanism to store
multiple name/value pairs in a single cookie, called a dictionary cookie. This can be Llseful to help work
around the browser's limitation of no more than 50 cookies per domain, as described in Chapter 2. It is
also more efficient than setting many cookies that all have the same properties. Here's an example (see
cookie2.aspx):

HttpCookie cookie" new HttpCookie{"name");
cookie . Values ["Vl"] " "value1";
cookie,Values["v2"] :: "value2";
this ,Response.AppendCookie(cookie);

77

�CHAPTER 3 CACHING

78

That results in a single cookie in the HTTP response header:

Set-Cookie: name=v1=value1&v2=value2; path=/

Cookie Properties
In addition to name/value pairs, the Set-Cookie HTTP header supports several properties that influence
the way the browser handles cookies.

Expires
The expires property contains a date that tells the browser how long it should store the cookie. Setting
the expires property makes a cookie become persistent so that the browser can save it across sessions.
When the expiration date passes, the browser will delete the cookie and no longer send it to the server.

Here's an example that sets expires to one year in the future from an . aspx page (see cookie3. aspx):

HttpCookie cookie = new HttpCookie("name");
cookie. Value = "value";
cookie. Expires = DateTime.NON.AddYears(1);
this.Response.AppendCookie(cookie);

Here's the resulting HTTP response header:

Set-Cookie: name=value; expires=Sun, 23-Dec-2012 11:20:37 GMT; path=/

From J avaScript, a semicolon precedes properties, as in the HTTP header. The following function
accepts an expiration time as minutes in the future:

function SetCookie(name, value, minutes) {
var exp = new Date«new Date()).getTime() + minutes*60000);
document. cookie = escape(name) + '=' + escape(value) + '; expires=' + exp.toGMTString();

}

Notice that you specify the expiration time as GMT.
Silverlight is similar, since you're just setting the same JavaScript property:

public void SetCookie(string name, string value, double minutes) {
DateTime expires = DateTime.UtcNow.AddMinutes(minutes);
HtmlPage.Document.Cookies = name + "=" + value +

"; expires =" + expires.ToString("R");
}

To delete a cookie, set an expires date in the past, with the original cookie name, path, and domain.

Path
The path property is a case-sensitive string, with which the path name of a URL must start in order for
the browser to send the cookie to the server. The path is not limited to being a folder name. The URL that
sets path must begin with the specified path property in order for the property setting to be accepted.

For example, valid path settings for http://WWW.12titans.net/ch03/page1.aspx include /ch, /ch03,
/ch03/, and /ch03/page1. If your intent is to specify a folder name as the path, then the path should end

�

�CHAPTER 3 CACHING

with a slash. If you tried to specify a path of /ch04/ from that page, the browser wouldn't accept it, since
the URL doesn't start with that string.

Caution Browsers can store multiple cookies with the same name at different paths in the same domain or

overlapping domains (such as 12titans.net and www.12titans.net).ltis therefore possible for the server to receive

more than one cookie with the same name. Disambiguation isn't always easy (or even possible), since cookie

properties such as path and domain are not sent back to the server along with the nameivalue pairs.

To minimize the bandwidth that your cookies use, and the latency they introduce, you should set
them so the browser uploads them only once per page. You should avoid sending cookies with static
content, where the server will probably never even look at them. You can also limit how often the
browser sends cookies to the server by partitioning your pages by folder name or fIle name prefIx, based
on which cookies they need.

The default path is /, which means the browser will send the cookie to the server for all URLs from
that domain, including static content, since all URL path names start with a slash. You should set a more
restrictive path on all your cookies, even if it means you need to reorganize the hierarchy of the fIles in
your web site in order to do so.

Here's an example that sets the path from an .aspx page (see cookie4.aspx):

HttpCookie cookie = new HttpCookie("name");
cookie. Value = "value";
cookie. Path = "/eh03!";
this.Response.AppendCookie(cookie);

Here's the resulting HTTP response header:

Set-Cookie: name=value; path=/ch03/

Here's an example from J avaScript:

function SetCookie(name, value, path) {
document. cookie = escape(name) + ' , + escape(value) + '. path=' + path;

}

Here's an example from Silverlight:

public void SetCookie(string name, string value, string path) {
HtmlPage.Document.Cookies = String.Format("{o}={l}; path={2}", name, value, path);

}

Domain
You can use the domain property to change which domains should be associated with a cookie.

If you don't set the domain property, IE will send the cookie to both the current domain and any
subdomains. For example, if you set a cookie from a page on 12titans.net, IE will send it with requests to
www.12titans.net.page.sub.12titans.net. and so on. Without a doma in property, most other browsers will
only send the cookie to the current domain. This difference can be a source of bugs for cross-domain
cookies.

79

�CHAPTER 3 CACHING

80

The value of the domain property is compared to the domain of the URL being requested, using an
EndsWith (tail) type match. Note that the browser bases the comparison strictly on the strings, ignoring
case; the IP addresses of the servers don't matter.

The doma in property must match the domain of the page that sets it. For example, if you set it to
12titans.net from a page on www.12titans.net (or the other way around), the browser will ignore the
cookie.

Here's an example that sets domain programmatically (see cookieS .aspx):

HttpCookie cookie = new HttpCookie("name")j
cookie. Value = "value"j
cookie.Domain = "1ztitans.net";
this. Response.AppendCookie(cookie) j

Here's the resulting HTTP response header:

Set-Cookie: name=valuej domain=12titans.netj path=/

From JavaScript, it's similar to the path property:

function SetCookie(name, value, dom) {
document. cookie = escape(name) + '=' + escape(value) + 'j domain=' + domj

}

From Silverlight, it looks like this:

public void SetCookie(string name, string value, string dom) {
HtmlPage.Document.Cookies = name + "=" + value + "j domain=" + domj

}

HttpOnly
The HttpOnly property tells the browser not to make the cookie visible to JavaScript. You should set it by
default to help reduce your application's attack surface, including the risk of things such as script-based
session hijacking. You should disable HttpOnly only when you have script that explicitly needs access to
a particular cookie.

Here's an example that sets HttpOnly programmatically (see cookie6. aspx):

HttpCookie cookie = new HttpCookie("name")j
cookie. Value = "value"j
cookie.HttpOnly = true;
this. Response.AppendCookie(cookie) j

Here's the resulting HTTP response header:

Set-Cookie: name=valuej path=/j HttpOnly

Since its purpose is to restrict script access, HttpOnly cannot be set from JavaScript or Silverlight.

Secure
If the data in a cookie contains sensitive information or if it might be subject to abuse by a third party,
then you should generally send it over SSL-protected connections only. Those cookies should also be

�CHAPTER 3 CACHING

marked with the secure property, which prevents the browser from sending them to the server unless
the connection uses SSL.

Here's an example that sets secure programmatically (see cookie7 .aspx):

HttpCookie cookie = new HttpCookie("name")j
cookie. Value = "value"j
cookie. Secure = true;
this.Response.AppendCookie(cookie)j

Here's the resulting HTTP response header:

Set-Cookie: name=valuej path=/j secure

This is how to do it from J avaScript:

function SetCookie(name, value) {
document. cookie = name + '=' + escape(value) + 'j secure' j

}

This is how to do it from Silverlight:

public void SetCookie(string name, string value) {
HtmlPage.Document.Cookies = name + "=" + value + "j secure"j

}

Reading Cookies
When the browser sends cookies to the server or when you use script or Silverlight to read them on the
client, the only thing they contain is the name/value pair. Any properties that were originally set on
them are not visible.

Here's an example of reading cookie values programmatically (see cookie8. aspx):

HttpCookie cookie = this.Request.Cookies["name"]j
if (cookie != nUll)
{

string value = cookie.Valuej
}

J avaScript only provides a way to get all cookies and values. You need a little extra code to extract
the particular one of interest:

function getcookie(name) {

}

var allcookies = document.cookiej
var start = allcookies.indexOf(escape(name) + '=')j
if (start == -1)

return nullj
start += name.length + 1j
var end = allcookies.indexOf('j', start)j
if (end == -1)

end = allcookies.lengthj
var cookieval = allcookies.substring(start, end)j
return unescape(cookieval)j

81

�CHAPTER 3 CACHING

82

In document. cookie, an equals sign separates namelvalue pairs, and one cookie is separated from
another with a semicolon. Since names and values are returned together, you may need more
sophisticated parsing in some cases.

Similarly, here's how to read cookies from Silverlight:

private static string GetCookie(string name)
{

}

string allcookies = HtmIPage.Document.Cookies;
int start = allcookies.IndexOf(name + "=", StringComparison.OrdinalIgnoreCase);
if (start == -1)

return null;
start += name. Length + 1;
int end = allcookies.IndexOf(';', start);
if (end == -1)

end = allcookies.Length;
string cookieval = allcookies.Substring(start, end - start);
return cookieval;

Storing Binary Data in Cookies
Since cookies are intended to hold strings only, if you want to store binary data in a cookie, it will need to
be encoded. One way to do that is with base-64 encoding. Base-64 takes a sequence of 8-bits-per-byte
binary data and encodes it as a string with 6-bits-per-character (6 bits is 64 values, which is why it's
called base-64). The 64 values consist of the 52 charactersA-Z and a-z, plus 0-9, I, and +. The =
character is used for padding at the end of the string, if needed.

As an example of how to store binary data in a cookie, let's look at encrypted cookies.
IfSSL isn't practical or desirable or if you need to protect certain cookies from your users as well as

from others, you can encrypt them using symmetric encryption. Since the results of encryption are
binary, you can encode them using base-64.

Here's a class to handle the encryption (see AppJode\Secure.cs):

using System.IO;
using System.Security.Cryptography;
using System. Text;

public class Secure
{

private const string minSalt = "&B6yhj$,";

private static RijndaelManaged Cryptor(string keySeed, string saltString)
{

byte[] salt = UTF8Encoding.UTF8.GetBytes(saltString + minSalt);
Rfc2898DeriveBytes derived Bytes =

new Rfc2898DeriveBytes(keySeed, salt, 1000);
RijndaelManaged cryptor = new RijndaeIManaged();

II
II KeySize must be set before the Key
II
cryptor.KeySize = 128;

�CHAPTER 3 CACHING

}

cryptor.Key = derivedBytes.GetBytes(16);
cryptor.IV = derivedBytes.GetBytes(16);
return cryptor;

This method returns a RijndaelManaged object that you can use to do encryption or decryption. It
takes a keySeed as an argument that it uses to generate a strong password, along with a salt string. The
salt helps ensure that when you encrypt two strings with the same keySeed, they don't generate the same
ciphertext. You add some arbitrary (and fixed) text to the end of the given salt, to make sure it's at least 8
characters long.

}

public static string EncryptToBase64(string clearText,

{

}

string keySeed, string salt)

using (MemoryStream ms = new MemoryStream(»
{

}

using (ICryptoTransform encryptor =
Cryptor(keySeed, salt).CreateEncryptor(»

{

}

using (CryptoStream encrypt =

{

}

new CryptoStream(ms, encryptor, CryptoStreamMode.Write»

byte[] data = new UTF8Encoding(false).GetBytes(clearText);
encrypt.Write(data, 0, data. Length);
encrypt.Close();
return Convert.ToBase64String(ms.ToArray(»;

This method encrypts a string and encodes the result in base-64.

public static string DecryptFromBase64(string cipherText,

{

}

string keySeed, string salt)

byte[] data = Convert.FromBase64String(cipherText);
using (MemoryStream ms = new MemoryStream(»
{

}

using (ICryptoTransform decryptor =
Cryptor(keySeed, salt).CreateDecryptor(»

{

}

using (CryptoStream decrypt =

{

}

new CryptoStream(ms, decryptor, CryptoStreamMode.Write»

decrypt.Write(data, 0, data. Length);
decrypt.FlushFinalBlock();
return new UTF8Encoding(false).GetString(ms.ToArray(»;

83

�CHAPTER 3 CACHING

84

This method decodes the base-64 ciphertext and decrypts the result.
You can use that class to protect some secret text in a cookie. Use the requesting host's IP address as

salt so that two users won't see the same ciphertext for the same secret (see encrypt. aspx):

HttpCookie cookie = new HttpCookie("name");
cookie. Value = Secure.EncryptToBase64("my secret text",

"password", this.Request.UserHostAddress);
this.Response.AppendCookie(cookie);

Looking at the HTTP headers with Fiddler, you can see the encrypted cookie:

Set-Cookie: name=FxlTlc8mG/7HFnkLDoS7ng==; path=/

You can recover the secret from the encrypted cookie by providing the same password and salt that
you used to encrypt it (see decrypt.aspx):

HttpCookie cookie = this.Request.Cookies["name"];
if (cookie != nUll)
{

string secret = Secure.DecryptFromBase64(cookie.Value,
"password", this.Request.UserHostAddress);

this.SecretLabel.Text = secret;
}

The results of compressing text using GzipStream can be similarly processed and encoded. However,
GzipStream is not suitable for use with short strings, since it generates header information that can make
the length of the output longer than the input. DeflateStream uses shorter headers.

Using a Compact Privacy Policy
Although most browsers readily accept cookies, Safari and IE6 and later make it possible for users to
selectively accept them using "privacy" settings.

First-party cookies are set from pages that are in the same domain as the top-level page (the one in
the address bar). Cookies set from all other domains are considered third-party. The default privacy
setting in IE6 and later is Medium, which blocks third-party cookies that don't have a compact privacy
policy.

The Medium privacy setting also blocks third-party cookies and restricts first-party cookies that
include information that can be used to contact you without your explicit consent. The browser figures
that out based on a compact privacy policy that the site provides.

You can see the privacy setting in IE by selecting Tools> Internet Options. Then click the Privacy
tab. See Figure 3-5.

�CHAPTER 3 CACHING

Internet Options

General I Sea.flty Privacy Content Cornedioos Pf~ams Advaoced ,,-
Select a ~ttn;J for !he Internet zone.

location

Medium

- BIoOO thi'di>.!J(ty cookies that do not have a c~
privacy policy
- BIoOO thi'di>.!J(ty cookie5 that save ~formation that c.an
be used to contact you without yOU' eKPkit consent
- Restricts tirst1l«tv cookies that save ~formation that
tan be used to con!¥! you without YQI.I' fllpkit ~t

0.'."

Irl Never lIIow websites to request yOU'
LJ physic.!llocation Clear Sites I
Pop",,,,,,,,

[ij T(r(l on Pop1.lp Blocker

!nPrivate

0 Dis.!1b1e toobars and extensions when inPrivate Browsing starts

OK I I ""'" II ",",

Figllre3-S. Defaliit privacyoptiolls ill IE9

The default sen ings aren't a problem for sites with all of their co ntent in a single domain. However,
as I've shown in Chapter 2, there are good reasons why your site might perform better if you split it
across multiple domains. [[you mix domains on a single page, [E can block cookies unless you have a
compact privacy policy. The Medium selling can also be a problem if other sites reference your pages in
frames or if you use frames (including <iframe>s) with some content from one domain and other content
from a different domain.

[fusers select the High privacy selling, then IE blocks even first-party cookies unless your site has a
compact privacy policy. lfyou're using cookie-based sessions o r authorization cookies, those users may
not be able 10 register or log in 10 your site. For these reasons, it's a good idea 10 include a compact
privacy policy, at least whenever you set a cookie.

Compact privacy policies are encoded in an HTTPheaderthatissent to the browser along with the
res t oftbe response to a web request. The process of creating one normally involves filling out a lengthy
questionnaire, since YOll are making a legal statement about your site's privacy practices. Several sites

85

�CHAPTER 3 CACHING

86

online can help you create one that's appropriate for your site, although they often charge a fee. Free
software is also available that can help you. As an example only, here's a simple one:

P3P: CP="NID DSP CAO COR"

With that HTTPheaderinplace, IE would accept both first-party and third-party cookies from your
site. See Table 3-1 for the meaning of the values.

Table 3-1. Meaning of the Values in the Example Compact Privacy Policy

Value Meaning

P3P The name of the HTTP header for privacy information. P3P stands for The Platform for Privacy
Preferences.

CP= Indicates that the quoted string that follows is a compact policy.

NID The information collected is not personally identifiable.

DSP The policy contains at least one dispute-resolution mechanism.

CAO Access is available to contact and other information.

COR Violations of this policy will be corrected.

You can set the header from IIS using the same procedure shown in Figure 2-6 or declaratively in
web. con fig as shown after the figure.

Here's an example that sets the header programmatically (see p3p. aspx):

this.Response.AddHeader("P3P", "CP=\"NID DSP CAO COR\'''');

Managing Cookies
To help simplify the management of cookies, including site-wide consistency, it's a good idea to
centralize cookie handling into a common library. The functions of the library might include the
following:

• Enforcing the browser's limits of 50 cookies per domain and no more than 10KB
per cookie

• Enforcing project -specific policies for maximum cookie length and cookie naming

• Setting cookie expiration times based on the type of data they contain, rather than
hard-coding time intervals into your pages

• Setting the HttpOnly cookie property by default

• Requiring the path property always to be set and not allowing it to be set to the
root path

• Consistent serialization, encryption, compression, and encoding

• Automatic rollover from cookies to database storage for objects that are too long
or for certain browser types, such as slow mobile devices

�CHAPTER 3 CACHING

• Increment a custom Windows performance counter if the total cookie size or
count exceeds certain thresholds (see Chapter 10 for information about
performance counters)

An HttpModule can help enforce cookie policies. I describe HttpModules in detail in Chapter 7.

Web Storage
One alternative to cookies in scenarios where you would like to cache data on the client is to use web
storage (sometimes known as DOM storage). Browsers starting from IE 8, Firefox 3.5, Safari 4, Chrome 4,
and Opera 10.50 all support web storage. The benefit of using web storage over cookies is that the
browser doesn't have to round-trip the data from the client to the server with every request.

There are two types of web storage: per-domain ("local") and per-session.

• Local storage is available to all pages from the same domain.

• Per-session storage is per-page and per-window, and is released when you close
the window.

You have 5MB (Firefox, Chrome, and Opera) or 10MB (IE) of space. Although you can only store
strings, you can encode and store binary or more complex objects using ISON.

To use session storage (see store1. aspx and store2. aspx):

sessionStorage.setltem('key', 'value');
var item = sessionStorage.getltem('key');

The code is similar for local storage:

localStorage.setltem('key', 'value');
var item = localStorage.getltem('key');

Silverlight Isolated Storage
Silverlight applications can cache data on the user's disk using isolated storage. The default amount of
space that's available is 1MB per application, although the app can ask the user for a larger quota if
needed.

Silverlight provides two different containers for isolated storage.

• The first is per-application; each app has a different storage area assigned to it,
based on the URL of the .xap file that contains the app.

• The second is site-specific; each fully qualified domain has a separate storage
area. Applications running from the same domain can access the same site storage
area for common data, or use the application storage for data that's unique to the
app.

For example, http://www.12titans.netiClientBin/appOne.xap and
http://www.12titans.netiClientBin/appTwo . xap can access the same site-specific isolated storage area,
but not the same application-specific area. The app at http://S1.12titans . netiClientBin/appOne .xap
would use different storage areas at both the site and application level from either of the other two apps,
since it's using a different domain.

Isolated storage is a good place to keep user-specific information that you need when rendering
certain pages-particularly information that's primarily needed on the client side. You can also use it as

87

�CHAPTER 3 CACHING

88

an alternative to cookies, perhaps by sending stored values back to the server as arguments in web
services (WCF) calls.

As an example, you might want to store user preferences in isolated storage, such as the preferred
position and size of web parts on a page, preferred colors or fonts, and so on.

Sample Application: "Welcome Back"
Imagine that you want to have every page on your site say "Welcome back, UserName" after users log
on. If the text was placed on the page by the server, that would mean every page would be unique per
user and therefore could not be placed in the high-performance output cache. If you used Ajax alone to
ask the server for the user's name on every page, that would require an additional round trip.

By using Silverlight or web storage to store the welcome string on the client, the HTML and the
script on the page would then be identical for every user, so they could be stored in the output cache on
the server.

Let's write a sample application that uses isolated storage from Silverlight to address this issue.
For this example, you will build two small Silverlight applications. The first one will allow a user to

"login," and will store the user's name in isolated storage. The second one will retrieve the user's name
from isolated storage and make it available to]avaScript on the page.

In a production version of this code, the app could log the user in and obtain the string to display by
calling a WCF service once and storing the result in isolated storage so that it will be accessible from one
page to the next. For a web storage approach, you could do something similar using Ajax.

XAML Markup
Start by adding a Silverlight application to your project. Right -click on your solution and select Add>
New Project to open the Add New Project dialog box. Select Visual C# and Silverlight on the left and
then SilverlightApplication on the right. Call the project Welcome, and click OK.

Open MainPage.xaml, and edit it as follows:

<UserControl x:Class="Welcome.MainPage"
xmlns=''http://schemas.microsoft.com/winfxI2006/xaml/presentation"
xmlns:x=''http://schemas.microsoft.com/winfx/2006/xaml''
xmlns:d="http://schemas.microsoft.com/expression/blendI2O08"
xmlns:mc=''http://schemas.openxmlformats.org/markup-compatibilityl2006"
mc:Ignorable="d" d:DesignWidth="300" d:DesignHeight="120"
Width="300" Height="120">
<StackPanel Orientation="Vertical">

<Border CornerRadius="6" Background="#ffdedede" Margin="0,0,4,0">
<TextBlock x:Name="info" Foreground="#ff14517b" Margin="7,2,0,1"

FontSize="20">Please Login</TextBlock>
</Border>
<TextBox x:Name="UserName" Margin="0,5,3,0" FontSize="20" I>
<Button x:Name="LoginButton" Content="Login" Margin="0,5,3,0"

Click="LoginButton_Click" FontSize="20" I>
</StackPanel>

</UserControl>

You now have three controls arranged in a vertical <StackPanel>. The top one is a <Border> control
with rounded corners that contains a <TextBlock> with the initial message Please Login. The middle
control is a <TextBox> to allow the user to enter their name. The bottom control is a <Button with the

�CHAPTER 3 CACHING

label Login. It has a Click handler assigned that's called LoginButton _Click. All three objects have x: Name
attributes so that they can be referenced from the code-behind.

See Figure 3-6 for the resulting ur.

Figure 3-6. User interface for the sample Silverlight application

Using Isolated Storage
Next, open MainPage.xaml.cs, and edit it as follows:

using System;
using System.IO.IsolatedStorage;
using System. Windows;
using System.Windows.Browser;
using System.Windows.Controls;

names pace Welcome
{

public partial class MainPage UserControl
{

public MainPage()
{

}

this. Loaded += new RoutedEventHandler(Page_Loaded);
InitializeComponent();

private void Page_Loaded(object sender, RoutedEventArgs e)
{

}

string name = null;
IsolatedStorageSettings.SiteSettings.TryGetValue(WelcomeKey, out name);
UpdateUI(name);

The constructor assigns the Page_Loaded () method as a handler for the application's Load event.
Page_Loaded 0 uses Si teSettings to get the value that may have been previously associated with the

Welcome Key string. The Si teSettings object implements what amounts to an on -disk hash table that's
available to all applications from the same domain. SiteSettings objects are unique for each domain
(based on the domain ofthe Silverlight application, not the domain of the containing page). The
ApplicationSettings object performs a similar function, except the associated storage and settings are
specific to a URL instead of a domain.

Page_LoadedO then calls UpdateUIO.

private void UpdateUI(string name)
{

bool show;
if (String.IsNullOrEmpty(name))

89

�CHAPTER 3 CACHING

90

}

{

}
else
{

}

this.Message.Text = "Please Login";
this.UserName.Visibility = Visibility.Visible;
this.LoginButton.Content = "Login";
show = false;

this.Message.Text = "Welcome back, " + name;
this.UserName.Visibility = Visibility. Collapsed;
this.LoginButton.Content = "Logout";
show = true;

HtmlElement div = HtmlPage.Document.GetElementByld("message");
if (div != nUll)
{

div.SetStyleAttribute("display", show? "block" : "none");
}

If the stored string is not present, the user is not logged in, so UpdateUI () sets the text on the
<TextBlock> control to say Please Login, makes the <TextBox> visible, and sets the text on the <Button>
to say Login. If the stored string is present, the user is already logged in, so the code updates the
<TextBlock> control with a "Welcome back" message, hides the <TextBox> control, and changes the text
on the <Button> to Logout.

After completing the Silverlight user control updates, the code looks for an HTML element in the
page DOM with the ID of "message." If it's there, the code sets the element's CSS display attribute to
either block or none, depending on whether the user is logged in or not. You will use this to show or hide
a link on the login page.

private void LoginButton_Click(object sender, RoutedEventArgs e)
{

string name = null;
if (this.UserName.Visibility == Visibility. Collapsed)
{

}
else
{

}

II
II Logout
II
IsolatedStorageSettings. SiteSettings. Remove (WelcomeKey);

name = this.UserName.Text;
if (!String.IsNullOrEmpty(name))
{

}

II
II Login
II
IsolatedStorageSettings.SiteSettings[WelcomeKey] name;

IsolatedStorageSettings.SiteSettings.Save();

�CHAPTER 3 CACHING

UpdateUI(name)j
}

}
}

As you specified in the XAML, LoginButton_Click() is called when a user clicks the <Button>. If the
UserName <TextBox> isn't visible, then the user is already logged in, and by clicking the button they want
to be logged out. In that case, clear the Welcome Key setting from Si teSettings in isolated storage to log
the user out. Otherwise, store the user's name from the <TextBox> control in isolated storage. Either way,
flush the changes to disk by calling SiteSettings. Sayee), and call UpdateUI() to have the UI reflect the
new state. If you don't call Sayee) explicitly, it will be called for you by the runtime when the application
exits or when the user navigates to a new page.

Both Si teSettings and ApplicationSettings can store any serializable object, not just strings as in
the example.

HTML and the User's Experience
In the HTML that Visual Studio autogenerates to host the Silverlight control into a web page, add the
following HTML right before the <div> that contains the <object> tag:

<div id="message" style="display:none">
Go to content<fa>
<fdiv>

This is the <div> block containing a link that the Silverlight code will show or hide, depending on
whether a user is logged in or not. When the link is visible, the user can click on it to go to a "content"
page, which is the second half of this example.

Here's the main part of the auto-generated HTML:

<div id="silverlightControlHost">
<object data="data:applicationfx-silverlight-2," type="applicationfx-silverlight-2"

width="100%" height="100%">
<param name="source" value="ClientBinfWelcome.xap"f>
<param name="onError" value="onSilverlightError" f>
<param name="background" value="white" f>
<param name="minRuntimeVersion" value="S.0.60401.0" I>
<param name="autoUpgrade" value="true" f>
<a href="http://go.microsoft.comlfwlinkI?LinkID=1491S6&v=S.0.60401.0" style="text

decoration: none">
dmg src=''http://go.microsoft.com/fwlinkI?Linkld=161376'' alt="Get Microsoft

Silverlight" style="border-style:none"1>
<fa>

<fobject>
dframe id="_sl_historyFrame"

style="visibility:hiddenjheight:opxjwidth:opxjborder:opx">
<fiframe>
<fdiv>

The fmal application (.xap) fIle in this case was 4.4KB, which is about the size of a small image.

91

�CHAPTER 3 CACHING

92

What you see after the app first loads is that when you enter your name and click the Login button,
the welcome message is displayed, the button changes to say Logout, and a link appears that says Go to
content.

Uyou refresh the page, or close the browser and open the page again, the app remembers your
name and displays the welcome message. Uyou click the Logout button, the welcome message goes
away, and you have another opportunity to log in.

Sharing Isolated Storage With a Second Application
For the second half of the example, create a second Silverlight application, and call it Content. The
default XAML will be fine, since we won't need a user interface this time.

Edit MainPage .xaml. cs as follows:

using System;
using System.IO.IsolatedStorage;
using System.Windows.Browser;
using System.Windows.Controls;

names pace Content
{

}

public partial class MainPage UserControl
{

}

public MainPage()
{

}

HtmlPage.RegisterScriptableObject("Page", this);
InitializeComponent();

[ScriptableMember]
public string WelcomeMessage()
{

}

string name = null;
IsolatedStorageSettings.SiteSettings.TryGetValue("welcome", out name);
if (!String.IsNullOrEmpty(name))
{

}
else
{

}

return String.Format(
"Welcome back, {o}<div>Logout</div>",
HttpUtility.HtmlEncode(name));

return "Login";

The constructor calls RegisterScriptableObjectO, which will expose to]avaScript public methods
in the class with the [ScriptableMember] attribute, such as WelcomeMessageO.

The WelcomeMessageO method retrieves the user name from site-level isolated storage that may have
been stored there by the Welcome application. Uyou had used application-level isolated storage in the

�CHAPTER 3 CACHING

other application, those settings would not be visible here, since this application uses a different URL,
even though it's in the same domain.

If the user name is present, it returns some HTML with a welcome message and a link back to the
welcome page that says Logout. If it's not there, the returned HTML is a link back to the welcome page
that says Login.

In the auto-generated HTML, add the following before the <div> that contains the <object> tag:

<div id="message"></div>
<h2>This is my content</h2>

The <div> is where you will put the welcome message and the link back to the welcome page.
Next, add a parameter for the app that specifies the name of a J avaScript function to call when the

application has finished loading:

<param name="onLoad" value="setMessage" I>

Finally, at the end of the file, just before </body>, add the on Load handler:

<script type="text/javascript">
function setMessage(sender) {

}

var msg = document.getElementByld("message");
if (msg != nUll) {

}

try {
msg.innerHTML sender.getHost().content.Page.WelcomeMessage();

} catch (e) {
msg.innerHTML "Error";

}

</script>

The script looks for a DOM element with the "message" ID, and sets its innerHTML property to the
value of the WelcomeMessageO method from the Silverlight application.

The result is that after you login on the welcome page, the welcome app writes your user name to
isolated storage. You can then click on the link to see the content page, which will show a welcome
message with your stored user name, along with a link back to the welcome page.

Deploying and Updating Silverlight Applications
Silverlight applications are compiled into a .xap file, which is a renamed. zip file that contains the
application DLLs and resources and a manifest file. From the server's perspective, a . xap is just a static
file, so any web server or CDN can host it, not just IIS. You just need to configure the web server to return
the correct MIME type, which is application/x-silverlight-app.

Since Silverlight applications are associated with client -side isolated storage based on their URL,
. xa p files that use application -level isolated storage should be marked with a relatively near -term cache
expiration time, such as a day or a week, to make them easier to update. With a far-future expiration
time, in order to maintain high-performance server-side caching (no query strings), the URL would have
to be changed when a new version is released, which would mean that the new version wouldn't have
access to the old version's application-specific isolated storage.

93

�CHAPTER 3 CACHING

94

Proxy Cache
Proxy caches, also known as web proxies or web caches, are a combined client and server that act as an
intermediate between users and web servers. When a client browser issues an HTTP request through a
proxy, the response can come directly from content cached in the proxy, or the proxy can obtain a
response from the target server first and then forward it to the client, possibly caching it in the process.

Proxies can be located at the same premises as a user's computer, such as in a corporate
environment, or at an ISP. In the former case, the proxies are usually visible, while in the latter they are
usually invisible. A visible proxy is one that the browser knows about and to which it explicitly sends
HTTP requests. An invisible proxy is one that the browser doesn't know about and that transparently
intercepts all TCP connections to port 80 (HTTP), regardless of the destination IP address.

From a performance perspective, proxies can be helpful because they can cache content close to
users. When content is present in the proxy, it generally results in higher-bandwidth delivery and less
latency than delivering it from the source web server. If the content is not in the proxy, then latency
increases, since the proxy will have to forward the HTTP request to the web server.

Other factors that often motivate the installation of a proxy include reducing bandwidth
consumption and the ability to apply various types of filtering and logging.

You should engineer your web site so that proxies can cache your content as much as possible. The
caching helps your site in ways that are similar to how it helps your users: improved performance (by
offloading your site) and a reduction in bandwidth use.

Proxies determine which content to cache primarily by evaluating the HTTP response headers. The
HTTP 1.1 standard provides some guidelines about caching, but most proxies also implement a number
of heuristics in their decision process. You can help to remove ambiguity by setting HTTP headers that
clearly indicate your intentions.

Proxies will not cache responses to SSL requests, or requests that use an HTTP PUT, DELETE, or TRACE.
Proxies will not cache temporary redirect responses (such as 302 Found) or responses to POST requests
unless the response HTTP headers explicitly indicate that they should be.

Although there are still a small number of proxies that support only HTTP 1.0, in my experience they
tend to be private proxies, rather than public ones. The other main source of HTTP 1.0 requests is likely
to be from uncommon spiders or other low-volume corner cases. If I were building a large web site
today, unless there was a specific requirement to support it, I would probably just block all HTTP 1.0
requests, due to site-performance issues (such as lack of keepali ve), potential security issues, and
differences in caching semantics. Blocking it would also eliminate the extra testing it would otherwise
take to ensure things were working correctly (low reward for the effort involved). For example:

if (context.Request.ServerVariables[nSERVER_PROTOCOLn] == nHTTP/l.On)
{

throw new HttpException(505, nHTTP/LO not supported; use HTTP/Lln);
}

U sing the Cache-Control HTTP Header
The main HTTP header that controls caching in proxies is Cache-Control. When set to private, a shared
proxy must not cache the response. When set to public, a shared proxy can cache the response, although
it's not required to.

The ASP. NET runtime marks all dynamic content with Cache-Control: private by default so that
proxies won't cache it. You should override that setting for dynamic content that is the same for all users
by marking it with Cache-Control: public. The following example configures the Cache-Control header
to tell both proxies and browsers that they can cache the page for 60 seconds, while not caching on the
server (see proxyL aspx):

�

�CHAPTER 3 CACHING

<%@ Page . . . %>
<%@ OutputCache Duration="60" Location="Downstream" VaryByParam="None" %>

A Location setting of Any (the default) is similar, except it doesn't disable server caching. You can use
Downstream caching for pages that users other than the original requestor aren't likely to access in the
near future (to avoid polluting the server's cache).

That's equivalent to the following code (see proxy2. aspx):

TimeSpan maxAge = TimeSpan.FromSeconds(60.0);
this.Response.Cache.SetMaxAge(maxAge);
this.Response.Cache.SetExpires(DateTime.UtcNow + maxAge);
this.Response.Cache.SetLastModified(DateTime.UtcNow);
this.Response.Cache.SetCacheability(HttpCacheability.Public);
this.Response.Cache.SetNoServerCaching();

Note Calling SetCacheability(HttpCacheability. Public) enables server-side output caching in addition to
client and proxy caching. SetNoServerCachingO disables caching on the server without affecting client and
proxy caching.

Cassini, one of the development web servers that's integrated with Visual Studio, always forces the Cache

Control header to be set to private. liS Express does not exhibit that behavior.

Using Cookies and Authentication with Proxies
Be careful when setting cookies on public pages, including session cookies. Even if the content of the
page is the same for all users, the cookies may not be. Along with the content itself, proxies also cache
the HTTPheaders of the response, which can include Set-Cookie. Although some proxies won't cache
responses that include cookies, others will, particularly if the response also includes Cache-Control:
public. This means that if you mark a response with Cache-Control: public that includes a user-specific
cookie, it can result in a security vulnerability since the proxy could deliver the cached cookie to a user
other than the one you intended.

Because of this restriction, you should think twice about setting cookies on heavily referenced
pages, such as your home page, since that could prevent those pages from being cacheable in proxies. In
fact, ASP.NET will disable all output caching if you set a cookie, to avoid accidentally sending one user's
cookies to another user. This is another reason to set cookies only when you actually need them.

For example, you should avoid immediately setting a session cookie for every page. If you're using
the built-in session mechanism, ASP.NETwon't set a cookie as long as you don't store anything in the
Session object.

The runtime will also force Cache-Control: private for pages that require authentication to prevent
the accidental caching of private content on public proxies.

95

�CHAPTER 3 CACHING

96

Static Content
If you've assigned an expiration date to your static fIles as suggested in Chapter 2, the resulting headers
generally allow proxies to cache them without taking any additional actions.

However, there are enough corner cases that it's a good idea to mark your static content explicitly
with Cache-Control: public. For example, without that header, some proxies won't cache responses if
the request includes cookies or if the URL includes a query string. You can configure IIS to generate the
header for static content using the approach in Figure 2-6.

Proxies won't cache content that clients can't cache, so you can prevent caching on both proxies
and clients by setting Cache-Control: no-cache, as described in the section on browser caching earlier in
this chapter.

Managing Different Versions of the Same Content
You can direct proxies to store several different versions of the same content if the differences can be
identified based on the HTTP request headers. For example, the Accept -Language header specifies the
user's language preferences. To inform proxies that they should cache a different version of the content
for different language preferences, you set an entry in VaryByHeaders

this.Response.Cache.VaryByHeaders["Accept-Language"] = true;

That will set the Vary HTTP header to Accept- Language.
You can do the same thing declaratively (see proxy3. aspxJ:

<%@ OutputCache Duration="60" VaryByParam="None" VaryByHeader="Accept-Language" %>

IEg doesn't cache responses with a Vary header (except Vary: Accept- Encoding, Vary: Host and
Vary: User-Agent), so using them can have an adverse effect on client performance. For that reason,
consider using URL routing instead, if possible, to identify alternate content. Otherwise, when
evaluating a request that contains Vary, IE can make a conditional request, but only if the request also
contains an ETag header.

Using Vary: * by setting VaryByHeaders ["*"] to true is a special case, which says that proxies must
consider responses different regardless of the request headers. Using Vary: * or Vary: Cookie are useful
defense-in-depth techniques with responses that shouldn't be cached to help avoid accidentally storing
user-specific content on proxies. Defense-in-depth is a strategy of protecting against attacks or
vulnerabilities using multiple different techniques, in a layered way.

Vary headers are set automatically by the runtime in certain cases. For example, when compression
is enabled, Vary: Accept-Encoding is set, and when SetVaryByCustomO is enabled, Vary: * is set.

Web Server Cache
Web servers can cache content in a number of different ways to help improve performance. The server
can cache an entire HTTP response in the kernel, in IIS, or in the ASP.NET output cache. It can also
cache parts of a response in the form of generated HTML fragments, as well as objects that the server
uses to create the page, such as the results of database queries.

Windows Kernel Cache
Windows includes a kernel-mode HTTP driver called http.sys. Since HTTP is a networking protocol, the
benefits of putting support for HTTP in the kernel are similar to those for putting TCP support there,
including higher performance and increased flexibility.

�

�CHAPTER 3 CACHING

Doing low-level protocol processing in the kernel makes it possible for multiple processes to bind to
port 80, each receiving requests for a particular host-something that's not readily done with the regular
TCP sockets-based mechanism. http. sys also handles request queuing and caching without the context
switch overhead that would be involved with user-mode code.

The driver can return cached responses directly to clients, entirely bypassing user mode. That
avoids several kernel/user context switches, which reduces latency and improves throughput.

Kernel HTTP caching is enabled by default for static fIles and is disabled by default for dynamic files.

Limitations
http.sys will cache responses only under certain limited conditions. The conditions that you're most
likely to encounter that will prevent it from caching a response include the following:

• The request contains a query string.

• The requested fIle is accessed as a default document. For example, if defaul t. htm
is the default document in the top-level folder, then http.sys will not cache it if
the incoming URLis http://www.12titans.net!. However, http.sys can cache the
document when you access it using http://www.12titans.net!default.htm.

• Dynamic compression is enabled and is used for the response.

You're less likely to encounter the other conditions:

• The request is not anonymous.

• The request requires authentication (for example, the request contains an
Authorization header).

• The web site is configured to use a footer.

• The static file is a Universal Naming Convention (UN C) fIle, and the
DoDirMoni toringForUnc registry key is not enabled (UNC fIles are those that start
with \ \hostname\ instead of a drive letter).

Note You can use the DoDirMonitoringForUnc registry property (a DWORD value) to switch the static file
cache for UNC files back to a change notification cache. This is set at
HKLM\System\CurrentControlSet\Services\Inetinfo\Parameters. The default value is 0, or not enabled. You
can set it to 1 to enable caching of UNC static content based on change notification.

• The cache is disabled for the requested fIle or folder.

• The request has an entity body.

• Certificate mapping is enabled for the URL.

• Custom logging is enabled for the web site.

97

�CHAPTER 3 CACHING

98

• The request HTTP version is not 1.1 or 1.0.

• The request contains a Translate: f header.

• An Expect header that does not contain exactly "100 continue" is present.

• The request contains either an If-Range header or a Range header.

• The total response size is larger than the configured per-response maximum size.
The maximum is controlled by the UriMaxUriBytes registry key. The default value
is 256KB.

• The response header size (which includes cookies) is larger than the configured
per-response maximum header size. The default value is lKB.

• The cache is full. The default size is proportional to the physical memory in the
computer.

• The response is zero length.

Enabling Kernel Caching for Dynamic Content
You can enable http.sys caching of dynamic content declaratively, by using an OutputCache directive at
the top of your . aspx file. Here's an example (see kernel1. aspx):

<%@ OutputCache Duration="86400" VaryByParam="None" %>

That will also enable ASP.NET output caching. The runtime will expire the cache entry for the page
after 86,400 seconds (1 day).

In this case, you are telling the system to expire the cache at a fixed time in future. In order to
implement that correctly, http. sys would have to adjust the Cache -Control: max-age parameter
steadily downward, to reflect the time remaining before the cache should expire. However, the driver
doesn't have that feature, so instead, the .NET runtime will disable the max-age parameter when
http.sys can cache the page.

You can do the same thing entirely programmatically as follows (see kerne12. aspx):

TimeSpan age = TimeSpan.FromDays(l.o);
this.Response.Cache.SetMaxAge(age);
this.Response.Cache.SetExpires(DateTime.UtcNow + age);
this.Response.Cache.SetLastModified(DateTime.UtcNow);
this.Response.Cache.SetCacheability(HttpCacheability.Public);
this.Response.Cache.SetSlidingExpiration(true);

To work around the issue of max-age being disabled, you can enable sliding expiration mode, so the
cache expires one day from when each request is made, rather than at a fixed time. However, that call
also changes other aspects of caching behavior (such as how the runtime responds to page refreshes), so
I suggest testing it carefully before using it.

Once http.sys caches a response, it is occupying kernel memory, which is a relatively scarce
resource. To help optimize the use of that memory, if no clients request a cached item again within the
next 120 seconds, http.sys will remove the cache entry. You can adjust the cache timeout period with
the following registry entry (a DWORD that determines the frequency of the cache scavenger, in seconds):

HKLM\System\CurrentControlSet\Services\Http\Parameters\UriScavengerPeriod

�

�CHAPTER 3 CACHING

You can use a longer timeout if the traffic on your site tends to arrive in bursts, with significant gaps
between them. As an example, on one of the sites I manage, I set the scavenger period to 43200 seconds
(12 hours).

You can enable http.sys caching for all dynamic files with a particular file extension in a certain
folder by using IIS Manager. You could do this instead of modifying the files to have explicit OutputCache
directives, or for dynamic files other than. aspx, such as PHP.

After navigating to the folder or file in your web site that you want to cache, double-click Output
Caching in the Features View. Then click Add on the right-hand panel to bring up the Add Cache Rule
dialog. Enter the File name extension of the type of file that you want to cache in http. sys, check the
Kernel-mode caching checkbox, and click OK. See Figure 3-7.

Note With this approach, Cache-Control: public is not set, so the content would not be cacheable on shared
proxies.

Figure 3-7. Enabling kernel-mode cachingfor dynamic files

99

�CHAPTER 3 CACHING

100

Something else to be aware of when using the GUI is that it places the configuration setting in the
IIS configuration fIle applicationHost. config, which is located in C: \Windows \System32\inetsrv\config.
That makes it a little more work to manage for xcopy-based deployments and source code management
compared to settings in web. con fig.

You can also edit application Host. config directly, instead of using the GUI. Here's an example:

<configuration>

<location path="Samples/ch03">
<system.webServer>

<caching>
<profiles>

<add extension=".aspx" policy="DontCache"
kernelCachePolicy="CacheUntilChange" I>

</profiles>
</caching>

</system.webServer>
</location>

</configuration>

Performance Comparison
To get a feeling for the performance difference when using http.sys compared to not using any output
caching, let's run a quick test:

1. First, download and install the free IIS 6.0 Resource Kit Tools from Microsoft
(the tools work with IIS 7 and 7.5 too): http://www.microsoft.com/downloads/
details.aspx?FamilyID=56FC92EE-A71A-4C73-B628-
ADE629C89499&displaylang=en.

2. Next, add a blank web form to your web site project in pages/default.aspx,
and configure the site to be accessible from IIS, using localhost. Don't use the
Cassini web server that's integrated with Visual Studio, and don't include the
OutputCache directive for the first test.

3. From the Windows Start menu, open lIS Resources> WCAT Controller>
WCAT Controller, to bring up a command window that's ready to use the
Windows Capacity Analysis Tool. Use Notepad to create two configuration files
in that folder. Call the first one 51. cfg:

SET Server = "localhost"
SET Port = 80
SET Verb = "GET"
SET KeepAlive = true

NEW TRANSACTION
classld = 1
Weight = 100
NEW REQUEST HTTP
URL = ''http://localhost/pages/default.aspx''

�

�CHAPTER 3 CACHING

4. This fIle tells the controller which pages you want to read and how you want to
read them. In this case, you're reading http://localhost/pages/defaul t. aspx
using HTTP GET, with KeepAlive enabled (later, you might try disabling
KeepAli ve to see how amazingly expensive it is to open a new connection for
each request).

5. Next, create a test configuration fIle called c1.cfg:

Warmuptime 35
Duration 305
CooldownTime Os
NumClientMachines 2
NumClientThreads 10

6. This specifies the Warmuptime, Duration, and CooldownTime for the test (in
seconds), as well as how many client machines there will be and how many
threads to use for each client.

7. Before running the test, bring up two windows for the WCAT Client (under IIS
Resources in the Start menu). From one of those windows, run the following
command to see the fIles that are currently present in the http.sys cache:

netsh http show cachestate

8. Uyou don't have any other web activity on your machine, it should report that
there are no cache entries.

Note For the test results to be comparable, you need to make sure that CPU use during the test is close to 100
percent. On my test machine (with four CPU cores), I found that this required two clients. You should verify that it
works for you as well, using Task Manager while the test is running.

9. Start the controller from its window:

wcctl -a localhost -c c1.cfg -5 sl.cfg

10. Then start both clients, one from each of the two other windows:

wcclient localhost

11. After you start the second client, the test will begin. As soon as it completes,
run the netsh command again. It should still show that the http.sys cache is
empty.

12. Check the results from the controller to make sure there were no errors. For
this test, you're most interested in how many requests per second you can get.
Here are the results of the test on my machine, as reported at the 20-second
point:

101

�CHAPTER 3 CACHING

102

Total Requests 54135 (2753/Sec)

13. Now edit the .aspx file to include the following OutputCache directive:

<%@ OutputCache Duration="86400" VaryByParam="None" %>

14. That will enable http.sys caching and ASP.NET output caching, as described
earlier.

15. Refresh the page, so the runtime compiles it.

16. Repeat the test as shown earlier. The test configuration fIles don't need to be
changed. This time, the result of the second netsh command should show that
the. aspx file is in the cache:

URL: http://localhost:80/pages/default.aspx
Status code: 200
HTTP verb: GET
Cache policy type: Time to live
Cache entry Time to Live (secs): 86359
Creation time: 2009.3.29:7.44.26:0
Request queue name: Sample
Headers length: 215
Content length: 2247
Hit count: 170778
Force disconnect after serving: FALSE

17. The test results show a considerable improvement:

Total Requests 99746 (5064/Sec)

In this case, you can process about 84 percent more requests per second with http. sys caching than
without.

lIS Output Caching
The next caching layer below http.sys is in the user-mode lIS process. lIS output caching is
implemented in the HttpCacheModule (along with support for http. sys caching).

The biggest practical difference between lIS output caching and http. sys is that lIS can vary the
cache output based on query strings or HTTP headers. If a query string is present in a URL, http. sys
won't cache it.

You can demonstrate this by changing the S1.cfg fIle shown earlier to include a query string, while
leaving the OutputCache directive in place. After running the test, netsh will show that the page is not in
the http. sys cache.

You won't need to explicitly enable or configure lIS caching for . aspx pages; the runtime manages
the settings for you when you enable ASP.NET output caching.

However, if you are using HttpHandlers or non-ASP.NET dynamic content, such as PHP, then you
may need to enable lIS output caching explicitly. You can do that using the dialog box in Figure 3-7 and

�CHAPTER 3 CACHING

selecting the User Mode Caching box. After that, click the Advanced button to bring up the dialog box in
Figure 3-8.

Figure 3-8. Advanced Output Cache Rule Settings dialog box for IIS 7 output caching

From there you can set the query string variables or HTTP headers that IIS should use to vary the
cache output.

ASP.NET Output Caching
ASP.NET has an output cache that is separate from the one in IIS; it's implemented by a standard
HttpModu1e called OutputCacheModu1e.

You can enable it with the same OutputCache directive that you used earlier to enable http.sys
caching:

<%@ OutputCache Duration="S6400" VaryByParam="None" %>

Unlike http.sys and IIS, the ASP.NET cache can vary its output based on parameters that are more
complex than HTTP headers or query string values, such as a user's role or the content of a table in the
database. In addition to entire pages, it can cache page fragments, and it also supports programmatic
invalidation.

As with http. sys and IIS caching, in general you should apply ASP. NET output caching only to
pages and controls that have the same output for many users. Be cautious about caching output that is
unique per user, since the likelihood of it being requested again from the same server may not be as
good as for shared content-a situation that's compounded as the number of users and pages on your
site increases. You also risk polluting your cache by causing the runtime to evict pages that are
frequently referenced, as the available space fIlls. The more load-balanced web servers or IIS worker
processes you have, the more unlikely it is that user-specific content generated on anyone server will be
reused.

103

�CHAPTER 3 CACHING

104

Caching per-user content may be appropriate on a single-server site where only a relatively small
number of users are active at anyone time, and where the odds are good that a user will revisit the same
page again in the near future.

Avoid caching output that is infrequently accessed, even if it's shared. You don't want to fIll your
cache with content that won't be reused. Good candidates for output caching include content that is
either the same for all users or that varies only based on which browser the user has, their selected
language or role, certain query string values, a specific table in the database, and so on.

If pages have small user-specific variations, such as putting the user's name on the page, then you
should store the relevant information in cookies or in Silverlight isolated storage and use script or
Silverlight to place the content on the page, as described in Chapter 2 and in the Silverlight example
earlier in this chapter. That way, all users can receive the same HTML, so you can place it in the output
cache. However, be sure not to set cookies from the cached page. ASP.NET will disable output caching in
that case to avoid accidentally sending user-specific cookies to all users. Instead, you should set cookies
from a page that the server doesn't cache, or perhaps from a purpose-built page, image, or HttpHandler
that your pages load when needed.

You can use a similar approach for pages that vary from one request to the next only by information
that's otherwise available directly from J avaScript or Silverlight. For example, you can display the current
time on each page with script, rather than adding it on the server.

Caching Page Fragments with User Controls
For data-driven pages and other content that is best created on the server, you should build fixed
content separately from dynamic content. You can do that in two ways: user controls (fragments) and
substitution controls.

For example, here's a user control that displays just a string and the date (see Controls\Date.ascx):

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="Date.ascx.cs" Inherits="Controls Date" %>

<%@ OutputCache Duration="s" VaryByParam="None" Shared="true" %>
Control time: <%= DateTime.Now.ToString() %>

It has an OutputCache directive that will cause the text the control generates to be cached for five
seconds.

To use the control, first place a Register directive near the top of your .aspx page (see datel.aspx):

<%@ Register Src="~/Controls/Date.ascx" TagPrefix="ct" TagName="Date" %>

Later in the page, call the control and display the date again:

<ct:Date runat="server" I>

Page time: <%= DateTime.Now.ToString() %>

When you run the page, what you'll see is that the two times start out the same. If you refresh the
page quickly a few times, the Control time will stay the same for five seconds and then change, whereas
the Page time is updated after every refresh. That's because after the Date control runs, the runtime
reuses its output for all requests that arrive over the following five seconds. Mter that, the runtime drops
the cache entry and executes the control again the next time a request calls it.

You should use a fixed cache Duration for content that you need to update periodically but that you
can't easily associate with an update event such as a SQL Server change notification. For example, let's
say you have a page that shows several images, along with counts of how often users access the images.
However, users don't need to see the absolute latest counts. Instead of retrieving all of the counts from
the database each time users access the page, you could have a user control that retrieves them and then

�

�CHAPTER 3 CACHING

enable output caching on the control with a Duration of 300 seconds. The page would use the cached
output of the control until it expires.

User controls are not instantiated as objects when the runtime retrieves them from the output
cache, so before you place them in the output cache, you should make sure they don't need to
participate programmatically with the rest of the page for each request.

You will revisit user controls in more detail in Chapter 6.

Substitution Caching
You can think of substitution caching as the inverse of user control caching. Instead of dynamically
generating the outer page and retrieving inner parts of it from the cache, you cache the outer page and
dynamically generate inner parts of it.

Let's use substitution caching to create output similar to the preceding example. You will cache the
. aspx page and generate a new time value for each page view using the substitution control. Here's the
. aspx page (see date2. aspxJ:

Cached time: <%= DateTime.Now.ToString() %>
<br I>Page time:
<asp:Substitution ID="sub" runat="server" MethodName="SubTime" I>

Next, add the method specified in the MethodName property of the substitution control to the code
behind. The runtime will call it to generate a string that it will insert in place of the substitution control:

public static string SubTime(HttpContext context)
{

return DateTime.Now.ToString();
}

If you view the page at this point, the two date strings will always be the same.
Next, enable output caching on the page:

<%@ OutputCache Duration="s" VaryByParam="None" %>

Now when you view the page, the Page time will be different each time, since it's generated for every
page view, but the Cached time will be updated only every five seconds.

Note Although the static method that generates the content for insertion into the substitution control can
access the HttpContext object for the request, it cannot return an ASP.NET control. The returned string is inserted
directly into the final output; it is not compiled and parsed into objects as with a user control.

Disabling Output Caching
Output caching is not appropriate for pages or fragments that require per-access logging or other back
end tracking, authorization, or accounting, since the code that's embedded in the page or that's located
in code-behind will not be executed when the content is delivered from the cache.

You can programmatically disable output caching for a particular request as follows:

this.Response.Cache.SetNoServerCaching();

105

�

�

CHAPTER 3 CACHING

106

If you were to call that method from Page_Load() in the code-behind for the previous example with
substitution caching, the two date strings on the page would always be the same, since the page would
not be cached. However, this call only disables caching at the page level, not for controls used by the
page.

Removing Items from the Output Cache
Once you have placed a page in the ASP.NET output cache, you can remove it later. You might want to
do this if something is changed that was used to generate the page. Here's an example:

HttpResponse.RemoveOutputCacheItem("/pages/default.aspx");

Caution Using RemoveOutputCacheItemO by itself on one machine in a server farm will not remove the page
from the cache on other machines or worker processes in the farm.

You can remove several related pages from the output cache at the same time by associating them
with an object in the ASP.NET object cache.

For example, first let's add an object to the cache. You might do this from Global. asax or from an
HttpModule (see App _ Code\Global.csl:

HttpRuntime.Cache.lnsert("key", "value", null,
DateTime.MaxValue, Cache.NoSlidingExpiration,
CacheltemPriority.NotRemovable, nUll);

You mark the object as NotRemovable so that it won't be aged out of the cache or removed if memory
pressure starts to increase.

Next, associate entries in the output cache for the related pages with the same cache key. See cache
item-dependl.aspx:

this.Response.AddCacheltemDependency("key");

If you modify the value in the cache that's associated with the specified key, then all the pages with
output caching enabled that have called AddCacheDependency with that key will have their cache entries
expired. See cache- item-depend2. aspx:

HttpRuntime.Cache.lnsert("key", "a new value", null,
DateTime.MaxValue, Cache.NoSlidingExpiration,
CacheltemPriority.NotRemovable, nUll);

As with RemoveOutputCacheItem earlier in the chapter, this works only on a single server.
If the cache key doesn't exist at the time you call AddCacheDependency, then the page won't be cached

at all.
You can't call AddCacheItemDependency from a user control. Instead, you can create a

CacheDependency object and assign it to the control's Dependency property. For example, see
Controls\Date3.ascx.cs:

CacheDependency depend = new CacheDependency(this.MapPath("~/depend.txt"»;
this.CachePolicy.Dependency = depend;

�CHAPTER 3 CACHING

You configure the output cache entry holding the control to expire if the file depend. txt changes
(see date3. aspx).

Database Dependencies
Pages or fragments that depend on the database can be associated with the corresponding tables or
queries so that their cache entries automatically expire when those objects change. This also has the
advantage of keeping the associated cache entries on all machines in a server farm in sync.

One way to do this is by setting the SqlDependency propertyin the OutputCache directive. Here's an
example:

<%@ OutputCache VaryByParam="None" SqlDependency="CommandNotification" %>

What this does is to set a hidden flag that tells SqlCommand to include a SqlDependency request with all
queries, which in turn tells SQL Server to send a notification when the results of those queries might
have changed. SQL Server implements change notifications using Service Broker, which you will need to
enable in order for this to work, as I describe in Chapter 8.

The net effect of enabling CommandNoti fication is that the runtime will place your page in the output
cache unless one of the database queries it uses is not compatible with query notifications, such as using
SELECT * or not specifying two-part table names. See Chapter 8 for details. Provided the underlying
queries meet the requirements for SqlDependency, CommandNoti fication works even when you issue
queries from other assemblies, from transactions or stored procedures, or using LINQ to SQL.

Once in the output cache, if the database receives an INSERT, UPDATE, or DELETE command that might
modify the results of those queries, even if the command originates from other machines, then it sends a
notification back to all servers that posted dependencies. When the web servers receive the notification,
they remove the page that issued the original query from the output cache.

If your page issues a number of queries or if you need to bypass queries that aren't compatible with
SqlDependency, then you can instead use AddCacheDependency together with SqlCacheDependency. Here's
an example (see dependl.aspx):

protected void Page_Load(object sender, EventArgs e)
{

}

string cs = ConfigurationManager.ConnectionStrings["data"].ConnectionStringj
using (SqlConnection conn = new SqlConnection(cs»
{

}

string sql = "dbo.GetInfo" j
using (SqlCommand cmd = new SqlCommand(sql, conn»
{

}

cmd.CommandType = CommandType.StoredProcedurej
conn. Open 0 j
SqlCacheDependency dep = new SqlCacheDependency(cmd);
mygrid.DataSource = cmd.ExecuteReader()j
mygrid.DataBind()j
this. Response.AddCacheDependency(dep);

Execute the query and bind the results to a control as usual, but just before calling ExecuteReader,
create a SqlCacheDependency object. Then pass a reference to that object to AddCacheDependency, which
will cause the runtime to remove the page from the output cache when it receives a query change
notification.

107

�CHAPTER 3 CACHING

108

Here's the corresponding markup:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="dependl.aspx.cs" Inherits="dependl" %>

<%@ OutputCache Duration="86400" VaryByParam="None" %>
<!DOCTYPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"

''http://www.W3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd''>
<html xmlns=''http://www.w3.org/1999/xhtml''>
<head runat="server">

<title></title>
</head>
<body>

<form id="forml" runat="server">
<div>

Last updated: <%= DateTime.NoN %><br I>
<asp:GridVielill runat="server" ID="mygrid" I>

</div>
<!form>

</body>
</html>

The fIrst time you request the page, the runtime will execute the database query and place the
rendered page in the output cache. If you refresh the page, you will see that the Last updated time
doesn't change.

If you use Server Explorer or SSMS to modify the table that's the target of the query, then behind the
scenes the runtime will receive a notification and remove the page from the cache. The next time you
refresh the page, you will see the current time and the updated data in the GridView.

If you're using LINQ to SQL, you can't directly attach a SqlDependency object to the underlying
query. However, as long as the generated query meets the requirements for query notifIcations, you can
achieve the same effect as follows (see depend2 .aspx):

public const string SqlDependencyCookie = "MS.SqIDependencyCookie"j

protected void Page_Load(object sender, EventArgs e)
{

}

var context = new DataClasses()j
var depend = new SqIDependency()j
var oldCookie = CaIIContext.GetData(SqIDependencyCookie)j
try
{

CaIIContext.SetData(SqIDependencyCookie, depend.ld)j
depend.OnChange += depend_OnChangej
var query = from info in context.Mylnfos select infoj
var result = query.ToArraY()j
mygrid.DataSource = resultj
mygrid.DataBind()j

}
finally
{

CaIIContext.SetData(SqIDependencyCookie, oldCookie)j
}

�CHAPTER 3 CACHING

static void depend_OnChange(object sender, SqlNotificationEventArgs e)
{

HttpResponse.RemoveOutputCacheltem("/depend2.aspx");
}

After instantiating a copy of the LINQ to SQL data context class, you get the value of the
SqlDependencyCookie that's assigned to the current CallContext, and then set that value to the Id of a
newly created SqlDependency object.

Then, assign an OnChange event handler, build and execute the LINQ query, assign the results as the
DataSource for the control, and call DataBindO. Afterwards, set the SqlDependencyCookie back to its
original value. Otherwise, future database calls could be bound to the same SqlDependency object.

When the OnChange event fires, you remove the page from the output cache.
Although this technique is admittedly somewhat cryptic and indirect, it's the same method used by

the runtime when you set SqlDependency to CommandNoti fication in the OutputCache directive. Although
we could have used CommandNoti fication in this example, that approach won't work if you only want to
attach a query notification to a subset of queries that you make on a page.

The CallContext approach doesn't work with SqlCacheDependency, so if you cache your result in the
ASP.NET object cache, you will need to use an OnChange event handler to remove it from the cache when
the query notification arrives.

Varying the Output Cache
For cases where the output of a page or control varies based on things like cookie values or a user's role,
you can use the VaryByCustom property of the OutputCache directive. For example, let's say you have a
page that generates different output based on the value of a cookie. First, set VaryByCustom in the
OutputCache directive (see vary1. aspx):

<%@ OutputCache Duration="300" VaryByParam="None" VaryByCustom="info" %>

Then in your code-behind for global. asax, override the GetVaryByCustomString method (see
AppJode\Global.cs):

public override string GetVaryByCustomString(HttpContext context, string arg)
{

}

if (arg == "info")
{

}

HttpCookie cookie = context.Request.Cookies[arg];
return cookie == null? String. Empty : cookie.Value;

return base.GetVaryByCustomString(context, arg);

All pages in your application that use this feature share the same method. When the method is
called, the arg string will have the value that you set in the VaryByCustom property on the page. The
runtime will generate and store different versions of the page for each unique value that
GetVaryByCustomString returns (think of the return value as the key for a hash table). In this case, you're
returning the value of a cookie, so the runtime will cache a different version of the page for each value of
the cookie. For cases with greater complexity and multiple dependencies, you can return a string that's
an ordered composite of several different values.

Uyou specify the special value of browser to VaryByCustom, then the runtime caches different
versions of the page based on the browser's type and major version number.

109

�

�

CHAPTER 3 CACHING

llO

For cases where the content of the page varies based on query string or form POST parameters, you
can use the VaryByParam property of the OutputCache directive, with the parameter names separated by
semicolons. For example, to cache different versions of a page based on both the search and pagenum
query string parameters:

<%@ OutputCache Duration="300" VaryByParam="searchjpagenum" %>

You can also use the special value "*,, to vary the cache based on all query string and form POST
parameters.

Cache Validation
If it would be better for your application to determine programmatically whether a cache entry is still
valid, you can use a cache validation callback. The runtime will invoke the callback to determine
whether it should return an entry that's already in the cache or whether it should flush the cache entry
and re-create the page.

Let's say you have a requirement to be able to bypass output caching for a particular page (see
validl.aspx):

public static void ValidateCache(HttpContext context, Object data,
ref HttpValidationStatus status)

{

}

string fresh = context.Request.QueryString["fresh"]j
if (fresh != nUll)

status HttpValidationStatus.Invalidj
else

status = HttpValidationStatus.Validj

The callback checks to see whether a query string called fresh is present and has a value assigned to
it. If so, then setting status to HttpValidationStatus. Invalid tells the runtime to invalidate the current
cache entry and to re-create the page. If the query string value isn't there, then setting status to
HttpValidationStatus. Valid tells the runtime to return the already cached page.

Caution ASP.NET makes a third option available, HttpValidationStatus.IgnoreThisRequest, but at least
with the versions of the .NET Framework I've tested, it seems to do the same thing as Invalid, so I suggest
avoiding it.

You should keep the execution time of the validation method short, since the runtime will call it for
every page view.

Next, associate the callback with the page by calling AddValidationCallback:

HttpCacheValidateHandler val = new HttpCacheValidateHandler(ValidateCache)j
this.Response.Cache.AddValidationCallback(val, nUll)j

If you request the page as just validl. aspx, you will see the cached result after each page refresh. If
you add the query string as valid1. aspx?fresh=y, then the result is not cached. After that, if you load the
first URL again, you will see the old content from the client -side cache at first, but if you hit refresh, you
will see new content that is once again cached on the server.

�CHAPTER 3 CACHING

When you have pages that use any of the server-side validation or dynamic expiration methods, you
may want to avoid caching them in proxies or clients. When the runtime invalidates a page in the output
cache on the server, it does not change any copies that proxies or clients may have cached. To enable
server-side output caching while disabling proxy and client caching, you should set the Location
property of the OutputCache directive to Server. Here's an example (see server1.aspx):

<%@ OutputCache Duration="300" VaryByParam="None" Location="Server" %>

That's equivalent to the following code (see server2. aspx):

TimeSpan expires = TimeSpan.FromSeconds(300.0);
this.Response.Cache.SetMaxAge(expires);
this.Response.Cache.SetCacheability(HttpCacheability.Server);
this.Response.Cache.SetValidUntilExpires(true);

The call to SetMaxAge in this case sets the duration of the output caching, but does not actually set
the Cache-Control: max-age header as the routine's name implies.

The call to SetValidUntilExpiresO prevents Cache-Control cache invalidation headers sent by the
client (such as when you refresh a page) from causing the server's cache to expire.

Custom OutputCache Providers
There may be times when you would like to have more control or monitoring over how and when objects
are added to or removed from the ASP.NET output cache. You can do that by implementing an instance
of the OutputCacheProvider.

Here's a sample implementation based on the ASP. NET object cache (see
App_Code\MemoryCacheProvider.cs):

using System;
using System. Web;
using System.Web.Caching;

names pace Samples
{

public class MemoryCacheProvider : OutputCacheProvider
{

public override object Add(string key, object entry, DateTime utcExpiry)
{

}

object result = HttpRuntime.Cache[key];
if (result == nUll)
{

}

this.Set(key, entry, utcExpiry);
result = entry;

return result;

public override object Get(string key)
{

return HttpRuntime.Cache[key];
}
public override void Remove(string key)

111

�CHAPTER 3 CACHING

112

}
}

{

}
HttpRuntime.Cache.Remove(key);

public override void Set (string key, object entry, DateTime utcExpiry)
{

}

HttpRuntime.Cache.lnsert(key, entry, null, utcExpiry,
Cache.NoSlidingExpiration, CacheltemPriority.High, nUll);

The abstract class OutputCacheProvider requires the implementation of four methods: Add, Get,
Remove and Set.

To configure ASP.NET to use the provider, make the following entry in web. config:

<system.web>

<caching>
<outputCache>

<providers>
<add name="MemoryCacheProvider" type="Samples.MemoryCacheProvider" I>

</providers>
<loutputCache>

</caching>
</system.web>

You can set default Provider to MemoryCacheProvider in the <outputCache> element to have all pages
and controls use the new provider by default. You can also use the new provider for certain controls only
by specifying the ProviderName property in their OutputCache directive (see
Controls \ ProviderDate. ascx):

<%@ OutputCache Duration="S" VaryByParam="None" Shared="true"
ProviderName="MemoryCacheProvider" %>

Since that approach doesn't work for pages, you can programmatically choose which output cache
provider a given page should use by overriding the GetOutputCachingProvider method in global. asax
and returning the cache provider's name when the runtime should use it for the current request (see
App _ Code\Global. cs):

public override string GetOutputCacheProviderName(HttpContext context)
{

if (context.Request.Url.AbsolutePath.EndsWith("provider2.aspx"))
{

return "MemoryCacheProvider";
}
return base.GetOutputCacheProviderName(context);

}

On a large site with limited RAM at the web tier, you could use a custom cache provider to store
objects elsewhere, such as on the local disk, in a database, in the cloud, or in a distributed caching tier
such as AppFabric. You could also apply a caching policy of some kind, such as only caching the top N
most popular pages.

�

�CHAPTER 3 CACHING

Caution If you choose a non-memory-backed implementation for an OutputCacheProvider, make sure it's
much less expensive to save and retrieve the object from the cache than it is to simply recreate it.

A custom provider allows you to monitor and influence memory use more directly, and is a good
place to have some performance counters to monitor cache effectiveness (see Chapter 10 for more
information about performance counters). It can also be a useful tool for debugging output cache
behavior.

ASP.NET Object Caching
ASP.NET can cache objects that are frequently referenced or expensive to create. Several different
options are available, depending on the object's scope and expected lifetime.

Caching Objects with Global Scope and Indefinite Lifetime
You can use static variables to cache objects that should always be in memory and that different web
pages can use at the same time. For best performance, use initializers instead of static constructors.
Better yet, only set the variables when they are first referenced (lazy initialization).

You can use the HttpContext.Application object for similar purposes, although it's a bit slower,
since it uses a hash table. As with all global variables that you can read and write from multiple threads,
you should use some form oflocking to ensure consistent state in case you're reading the object in one
thread while writing it in another. In this case, the Application object includes its own Lock() and
UnLockO methods. Here's an example (see app1. aspx):

HttpApplicationState app = this.Context.Application;
string myValue = null;
app. LockO;
try
{

}

myValue = (string)app["key"];
if (myValue == nUll)
{

}

myValue = "value";
app["key"] = myValue;

finally
{

app.UnLockO;
}

Caching Objects Used Only by the Current Request
You can use HttpContext.Items to cache objects that are needed only during the current request. The
runtime drops the collection when the current request is complete.

113

�CHAPTER 3 CACHING

114

This is the mechanism I prefer for passing data between an HttpModule and page-specific code. It
can also be useful for sharing data with or between user controls, when access to properties would be
difficult.

Since the Items collection is local to the current request, multiple threads don't usually access it at
the same time, so it doesn't require locking. Here'san example:

this.Context.Items["key"] = "value";

Caching Objects Used by More Than One Page Request
You can use HttpContext.Cachetocache objects that are needed by more than one page request.

Examples include results of database queries, results of web service calls, the contents of frequently
used local files, preparsed data structures, and so on.

As with the Application object, multiple threads can access the Cache object at the same time, so
you should use a lock to ensure a consistent state between related operations. Even though the Cache
object is "thread safe," this applies only to single operations, not to sequences. I don't recommend using
the Cache object for the lock, since other code not under your control might use the same object,
resulting in deadlocks or performance issues; you should create a separate Object for that purpose.
Here's an example access pattern:

public static readonly Object lockObject = new Object();
private const string myKey = "key";

string result = null;
lock (lockObject)
{

}
II

string result = this.Cache[myKey] as string;
if (result == nUll)
{

}

result = GetMyResult();
this.Cache[myKey] = result;

II use result
II

Using the indexer to add an item to the cache, as in the example, is equivalent to calling
Cache.lnsert(myKey, result).

Without locking, it would be possible for the conditional to succeed in one thread, and then a
context switch right after that could allow the conditional to succeed in another thread too. One thread
would set the Cache entry, and then the other thread would set it again.

The runtime can remove objects from this cache at any time, depending on memory pressure and
other factors. There is no guarantee that your data will still be there when you next look for it, even
during the same web request.

�

�

�CHAPTER 3 CACHING

Note When you reference a cached object more than once from the same request, you should store the object
in a temporary variable so you have a consistent reference, as in the example.

When you add an object to the cache, you can specify how long the runtime should keep it there.
However, the specification is only a hint; the runtime can still drop the object at any time. Here's an
example (see cache1.aspx):

string result = DateTime.Now.ToString();
this.Cache.Add(myKey, result, null, DateTime.UtcNow.AddSeconds(s),

Cache.NoSlidingExpiration, CacheltemPriority.High, nUll);

You are asking the runtime to retain the object in the cache for up to 5 seconds. To avoid bugs that
can arise on the boundary of time changes due to Daylight Savings, set absolute expiration times based
on DateTime. UtcNow instead of DateTime. Now. With the latter, right before the time changes, a few
seconds or minutes from DateTime. Now may appear to be in the past or more than an hour away.

You can also specify a sliding expiration time, as a TimeSpan, which advises the runtime to retain the
object until the specified interval from when you last accessed it.

Tip It's a good idea to double-check how long the runtime is retaining your objects in the cache compared to
the hints that you specify using the debugger or custom performance counters. By default, the Cache class has an
aggressive policy of dropping objects; you might find that the runtime is dropping your objects much sooner than
you expect.

To encourage the runtime to retain objects longer, you can increase the CacheItemPriori ty from the
Framework's default setting of Normal. I generally use a setting of High for my default, as in the example.

File-Based Dependencies
You can associate a CacheDependency with a cache entry that's associated with a fIle so that when the file
changes, the cache entry is removed (see App Jode \XmlDepend. cs):

using System;
using System.Web;
using System.Web.Caching;
using System.Xml;

public class XmlDepend
{

public static readonly Object lockObject = new Object();

public static XmlDocument MyDocument(string path)
{

string key = "mydoc:" + path;

115

�CHAPTER 3 CACHING

116

}
}

Cache cache = HttpContext.Current.Cache;
lock (lockObject)
{

}

XmlDocument doc = cache[key] as XmlDocument;
if (doc == nUll)
{

}

doc = new XmlDocument();
doc. Load(path);
CacheDependency cd = new CacheDependency(path);
cache.Insert(key, doc, cd);

return doc;

Pass the method a path to an XML file, which it uses to construct a unique key for the Cache. Since all
pages on the site share the same Cache, this helps avoid possible collisions. Next, establish a lock using a
shared lock object. If the XmlDocument is still in the Cache, return it. Otherwise, load it from disk. Create a
CacheDependency object, and pass it along with the key and the XmlDocument to Cache. Insert ().

The CacheDependency object registers with the operating system to listen for changes to the specified
file. If the file changes, it receives a notification and removes the XmlDocument from the Cache.

Database Dependencies
You can use a similar mechanism with database queries (see App _ Code\DataDepend. cs):

using System;
using System. Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Web;
using System.Web.Caching;

public static class DataDepend
{

public static readonly Object lockObject new Object();
public const string DataKey = "key";

public static DataSet MyData()
{

DataSet ds;
Cache cache = HttpContext.Current.Cache;
lock (lockObject)
{

ds = (DataSet)cache[DataKey];
if (ds == nUll)
{

string cs = ConfigurationManager.ConnectionStrings["data"]
.ConnectionString;

using (SqlConnection conn = new SqlConnection(cs))

�CHAPTER 3 CACHING

{

}
}

}
return dSj

}
}

string sql = "dbo.GetInfo" j
using (SqlCommand cmd = new SqlCommand(sql, conn))
{

}

cmd.CommandType = CommandType.StoredProcedurej
using (SqlDataAdapter adapter = new SqlDataAdapter(cmd))
{

}

conn. Open 0 j
SqlCacheDependency dep = new SqlCacheDependency(cmd)j
adapter.Fill(ds)j
cache.lnsert(DataKey, ds, dep)j

This code is similar to the earlier example, where you used SqlCacheDependency to invalidate the
output cache when the data changes. In this example, you are using the object cache instead.

Before you issue the query, associate a SqlCacheDependency object with the SqlCommand. A
SqlDataAdapter then sends the query to SQL Server and reads the results into a DataSet. Insert the
DataSet into the Cache and associate it with the SqlCacheDependency object.

Later, when SQL Server processes a conunand that might change the results of the query that
generated the DataSet, it sends a notification event to the SqlCacheDependency object. The conunand that
triggers the notification can originate from any host that's connected to the database; it's not limited to
the one that originated the query. When the server receives the notification, it invalidates the cache
entry; the next time your application needs the data, it will reissue the query and re-create the DataSet.

Using WeakReferences for Caching
You can allow the .NET garbage collector (Ge) to manage a cache for you. When you have objects that
don't require an explicit expiration policy or when you'd like the policy to be "whatever fits in memory,"
you can store them in a static WeakReference or Dictionary<Tkey, WeakReference>. Here's an example
(see App_Code\Weak. cs):

using Systemj
using System.Dataj

public static class Weak
{

public static WeakReference Myltem { getj setj }
public static readonly Object lockObject = new Object()j

public static DataSet WeakData()
{

DataSet ds = nullj
lock (lockObject)
{

117

�CHAPTER 3 CACHING

118

}
}

}

if (MyItem != nUll)
ds = MyItem.Target as DataSet;

if (ds == nUll)
{

ds = new DataSet();
MyItem = new WeakReference(ds);

}

return ds;

If MyItem is not null, and if the GC hasn't reclaimed the object held by the WeakReference yet, then
cast it to the right type and return it. Otherwise, create the object and associate it with a WeakReference.

If the GC decides that it needs more memory, it will reclaim the DataSet. If there is no memory
pressure, then the DataSet will still be available the next time it's needed.

You might consider using WeakReferences for "speculative" caching, where there's a chance that an
object might be reused but you're not sure.

A potential advantage compared to using the Cache class is that the GC and memory pressure alone
drive WeakReferences. It should also be more efficient, since the GC replaces the Cache object's policy
management logic.

Caching in Sal Server
In addition to caching the results of database queries in the ASP.NET part of your application, as
described earlier, SQL Server itself can also act as a cache. This type of caching is largely transparent and
automatic. Even so, there are a few things you can do to encourage and take advantage of it.

While processing your queries, SQL Server may need to read data pages into RAM from disk. It will
keep those pages in RAM for as long as it can, depending on the memory requirements of other requests.
It's similar to the ASP.NET Cache object in that way. If the server doesn't need the RAM for something
else after the query is first issued, SQL Server can very quickly return results using the pages in memory,
rather than fetching them again from disk first. The net effect is that with enough RAM, it can act as a
large cache once it has processed a query the first time.

To take advantage of this, first make sure that your database server has plenty of memory. See
Chapter 8 for more details on how SQL Server manages memory and how you can determine whether
you need more.

Next, you can prefetch data pages so that they will be available for future queries. Let's say that after
you've completed processing a page, you can anticipate the user's next action, along with an associated
query. In that case, you can queue a request to a background thread on the web server to issue that
query (or a related one) to cause SQL Server to read the pages you will need into its memory. That way,
when the user takes the action you anticipated, the data they require will already be in memory, and the
query will complete more quickly. Even if the anticipated query is an UPDATE, INSERT, or DELETE, the query
you use for precaching should always be a SE LECT that references the same rows and indexes. The goal is
not necessarily to perform the actual action, just to get the needed data into memory. Of course, if it's
appropriate, you can also cache the results on the web server.

This approach works best for data that your application doesn't access too frequently. For example,
if most of the pages on your site query a particular table, there's no reason to precache that table from
the few web pages that don't use it; since so many other pages use the data frequently, it will be there
anyway.

An example where it would be useful is an image gallery. After issuing a query to retrieve the data for
the current page of images, you might know that there's a good chance the user will want to see the next

�CHAPTER 3 CACHING

page too. After completing the current page, you can queue a query for the next page's data in a
background thread. Even if a different web server in your load-balanced server farm processes the next
page, the data will still be in memory on the database server, where SQL Server can return it quickly.

I will cover data precaching in more detail in Chapter 8.

Distributed Caching
To help offload database servers and ease scale out, it's possible to store some content in a dedicated in
memory-only caching tier instead of in a database. Since the content is not persisted to disk, short-lived
content is generally most appropriate, such as session state. To achieve scale-out, you distribute the
caching tier among a number of servers and include support for high -availability, failover, and so on.

The premise of distributed caching systems is that they are faster, easier to scale, and less expensive
than database-oriented solutions. They can be the right solution for some environments. However, you
should also watch for a number of pitfalls.

One argument in support of distributed caches is that they are faster because they don't have to
persist the data. However, in order to support the failure of individual nodes, the data set does have to be
stored in at least two servers. Therefore, a properly designed distributed caching architecture will have to
wait for an acknowledgment that the data has been sent to at least two nodes. You are effectively trading
off disk bandwidth on a database server for network bandwidth and latency. Different distributed cache
architectures approach this problem in different ways (multicast, unicast, and so on), but the net effect
is the same.

Write throughput on SQL Server is largely determined by the speed of writing sequentially to the
database log. Just adding a few additional drives can significantly increase write throughput. Adding
battery-backed write cache on a disk controller or a SAN can also help. I will cover this in more detail in
Chapters 8 and 10.

Read overhead in a distributed cache can require more than one round-trip, depending on the
details of the cache and application architecture. Regardless of the technique that the system uses to
query and read the distributed cache, if the data set you need isn't there, and you have to go to the
database for it, that will increase latency.

Some systems rely on a directory to determine where a given object resides, part of which you can
cache on the web servers. However, the more changes your application makes to the main cache, the
less effective the cached directory tends to be. As the size of the directory increases and as you spread
the cached entries out among a large number of servers, the hit rate will naturally decline.

On the scalability front, the argument in favor of distributed caches is that they are easy to scale in
theory by just adding more cheap servers, whereas scaling up a database server is perceived as
expensive, and scaling out is perceived as technically difficult.

However, the usual initial approach to scaling up your database should involve just adding more
RAM to improve caching and adding more drives to make the log or data volumes faster, which is almost
certainly no more expensive than adding distributed cache servers. Scaling out does require some code,
but it doesn't have to be difficult or complex.

From a cost perspective, you should consider whether your application might be able to use the free
SQL Server Express. It uses the same relational database engine as the full SQL Server Standard but is
limited in terms of how much RAM it can use and how large the database can be (a few features are also
limited by edition).

I'll cover partitioning and scaling techniques and ways to leverage SQL Server Express in Chapters 5
and 8.

The advantage of using SQL Server instead of a distributed cache is that it simplifies your
architecture by eliminating an entire tier. Deployment, testing, software maintenance, debugging, and
operations efforts are all reduced. Having fewer tiers also tends to increase your ability to be agile.

119

�CHAPTER 3 CACHING

120

Responding quickly to new business opportunities gets easier, which is in keeping with the ultra-fast
approach, as described in Chapter l.

I'm not saying that there is never a role for distributing caching; in some applications, it can be a
great tool. However, when I can, I prefer to rely on time-tested logic to handle critical functions such as
locking, memory management, updates, transactions, queries, and so on. Those algorithms can be
complex and difficult to implement correctly and efficiently, and small mistakes might not be noticed or
found right away. For me, having one less component in the architecture that might introduce bugs and
latency is usually a good thing.

Cache Expiration Times
One way to manage the expiration of cached content is to use relatively short expiration times. With that
approach, the client checks back frequently with the server to see whether newer content is available.
The extra round-trips that causes, though, are undesirable.

Another way is to arrange for a cache flush mechanism of some kind so that content is ejected from
the cache when the underlying data changes. Most tiers don't support this type of mechanism; it's not
possible to tell a client or a proxy proactively to flush their caches, for example. ASP.NET does have a
comprehensive cache flush system, including integration with SQL Server, using SqlDependency, as
discussed earlier.

Another approach is to set far-future expiration times. Then, when the content is changed, its name
is also changed, instead of waiting for the remote caches to expire.

In most web sites, you will use all three methods: relatively short expiration times for content where
the name shouldn't be changed, such as dynamic content, Silverlight applications that use isolated
storage, and favicon. ico; active invalidation for certain SQL Server queries; and far-future expiration
dates for most static content.

Dynamic Content
For most sites, I like to set a relatively short default expiration time of between 1 and 30 days for dynamic
content, depending on the nature of the application. Shorter or longer times are then set on an
exception basis, including the possibility of disabling caching.

When you're thinking about disabling caching because a page changes frequently, consider using a
very short expiration time instead, particularly for heavily referenced content. For example, let's say you
have a page that takes 50ms to execute and that your users view once per second per server. If you assign
the page a 5-second lifetime in the output cache, where a cache hit takes lms or less to process, then for
each 5-second interval this would result in a 78 percent reduction in the CPU time needed to render that
page.

Static Content
For long-lived content such as static files, expiration times aren't as useful since the content will not
change in sync with the expiration times. In these cases, you should use a far-future expiration date and
manage changes in the contents of the files by changing their names, perhaps by including a date string
in the name of the files or their folders. You should then update references to the changed file in your
project (ideally, using an automated process).

In addition, consider including old static data with new releases. That may allow things like old
pages that are cached by search engines, or old e-mails that reference external images, to still work
correctly after updates are applied.

�

�CHAPTER 3 CACHING

Tip You can isolate references to regularly updated static content in a user control, a master page, a CSS file,
or an ASP.NET • skin file to minimize the number of places that have to be updated when the content changes.
See Chapter 6. You can use Control Adapters and URL routing to help manage path and name changes. See
Chapters 6 and 7.

As your content's frequency-of-change increases, it starts to make sense to get the location of the
content (or even the content itself) from a database, instead of embedding it in your source files and
trying to manage it with new deployments of your site. Of course, at some point, "static" content starts to
become "dynamic" content, and the dynamic content rules apply instead.

A very common problem, even on large web sites, is allowing static content to expire too quickly. I
suggest using one year as a default expiration time. You can then set this to a shorter time on an
exception basis, if needed. Remember, every time a client requests content that could have been cached,
it presents an extra load on the server and slows down the page and the site.

Summary
In this chapter, I covered following:

• Taking content uniqueness and access frequency into account when deciding
whether to cache in a particular tier

• Using IIS and ASP. NET to enable or disable browser caching

• Using Viewstate to cache information that's specific to a particular page

• Understanding the importance of minimizing the size of ViewS tate: You should
disable it by default on a per-page basis and enable it only when you need it

• Creating a custom template in Visual Studio and using it to help simplify the
process of establishing consistent per-page defaults

• Storing Viewstate on the server when needed

• Using cookies to cache state information on the client

• Setting cookies and their properties and reading the resulting name/value pairs
from ASP.NET, JavaScript, and Silverlight

• Setting the path property on cookies to limit how often the browser sends them to
the server, since cookies consume bandwidth and add latency

• Encoding binary data in cookies

• Using a compact privacy policy to help make sure that your user's browser accepts
your cookies

• Using web storage as an alternative to cookies for caching on the client

• Using isolated storage to cache data in the user's filesystem

121

�CHAPTER 3 CACHING

122

• Using ASP.NET and IIS to make your content cacheable by proxies by setting the
Cache-Control: public HTTP header

• Enabling the high-performance kernel cache on your web servers to cache your
dynamic content

• Finding that caching a page using http. sys satisfied 84 percent more requests per
second

• Using IIS to cache dynamic content that varies based on query strings or HTTP
headers

• Configuring ASP. NET output caching for pages and page fragments using the
OutputCache directive

• Using substitution caching

• Removing items from the output cache with RemoveOutputCacheItemO and
AddCacheltemDependency().

• Using page-level database dependencies with the SqlDependency parameter in the
OutputCache directive

• Using SqlDependency with LINQ to SQL

• Varying the output cache based on objects such as cookies

• Using a cache validation callback to decide whether the cached version of your
content is still valid

• Using a custom OutputCache provider

• Caching objects using HttpApplicationState, HttpContext. Items,
HttpContext.Cache, and WeakReferences

• Using fIle and database dependencies with cached objects

• Using locking around references to static fields and cached objects that might be
accessible to more than one thread

• Using SQL Server as an extended cache

• Potential pitfalls to watch for if you're considering distributed caching

• Managing cache expiration times, with suggested defaults of 1 year for static
content and between 1 and 30 days for dynamic content

CHAPTER 4

liS 7.5

Internet Information Services (IIS) is the web server that's included with (and integrated into) Windows.
As the application that sits between your web site and the operating system, IIS has a big impact on the
performance and scalability of your site.

IIS 7 is included with Windows Server 2008 and some editions of Windows Vista. IIS 7.5 adds a few
features to IIS 7 (and changes a few default settings), and is included with Windows Server 2008R2 and
some editions of Windows 7. IIS Express is a lightweight, self-contained version of IIS 7.5 that supports
web development. It's included with Visual Studio 11, and is available as a free download for use with
Visual Studio 2010. With the release of IIS Express, Microsoft has deprecated the previous web
development server known as Cassini.

In this chapter, I'll cover the following:

• Application pools and web gardens.

• The IIS request-processing pipeline.

• Windows System Resource Manager.

• Common HTTP issues.

• Compression.

• HTTP keep-alives.

• Reducing the length of your URLs.

• Managing traffic.

• Failed request tracing.

• Miscellaneous IIS performance tuning.

Application Pools and Web Gardens
When you configure a single web site to run under IIS with default settings, you can see the worker
process running in Task Manager as w3wp.exe. However, IIS isn't limited to running as a single worker
process per web site. You can configure it to use multiple worker processes (as a web garden), with each
worker process handling requests for one or more web sites. Each group ofIIS processes handling
requests for the same collection of web sites is called an application pool (or AppPool). A single AppPool
is capable of supporting a large number of web sites.

123

�CHAPTER 4 liS 7.5

124

To specify settings for an AppPool, first start IIS Manager. In Windows 7 or Server 2008 or 2008R2,
you can type iis in the search box in the Start menu, and select Internet Information Services (IIS)
Manager from the results-or you can run it directly with the inetmgr command. In Windows Server
2008 or 2008R2, start Server Manager and select Roles> Web Server (IIS) > Internet Information
Services (IIS) Manager.

Open the section for your computer in the Connections pane in IIS Manager, select Application
Pools, then select an AppPool in the center panel, and finally click Advanced Settings in the right-hand
pane. Available settings include Managed Pipeline Mode (Classic or Integrated), Maximum Worker
Processes, CPU Limit, Processor Affinity, and the Windows Identity used to run the process, parameters
for health monitoring, Rapid-Fail, and Recycling parameters. See Figure 4-1.

Figure 4-1. IIS application pool Advanced Settings

�CHAPTER 4 liS 7.5

AppPool Recycling
By default, AppPools are set to recycle every 1,740 minutes (29 hours). When they recycle, the associated
IIS worker processes are shut down and restarted in an overlapping manner, so that no HTTP requests
are missed. However, all the data stored in memory that your application has modified since the
AppPool started, including the cache, static variables, and InProc session state, are lost.

Recycling can help prevent outages due to memory leaks or other resource leaks or due to
application bugs that might cause a thread in the AppPool to hang, or to use all available CPU, 1/0 or
network resources. However, it also presents an additional load on your server that can affect
performance and throughput.

To avoid unnecessarily disrupting your users, one approach is to schedule recycling at a specific
time every day when you know the traffic on your site will be low. Although this usually works well for
smaller sites, larger sites should either stagger their recycle times, or configure recycling based on the
number of requests processed. In combination with the right load-balancing algorithm, such as one
based on the number of connections per server (as opposed to round robin), recycling after a certain
number of requests should prevent your servers from recycling at the same time.

Another possibility is to disable recycling. However, I've generally found that this is a bad idea,
except on sites that are using active monitoring, where you can detect and act on faults in other ways.
Even on very large sites, it's surprisingly common that application bugs will occasionally cause problems
that are resolved by restarting the AppPool.

Multiple AppPools
When multiple web sites are sharing a single AppPool, all of the sites are effected when one of them does
something to cause a worker process in the AppPool to crash or reset.

Uyou have web sites (or parts of web sites) with uptime or reliability requirements that are
significantly different from one another, you should consider using more than one AppPool. By
segregating the applications into separate AppPools, you can help prevent bugs or outages in one web
site from causing problems in the other.

For example, let's say that one part of your site is responsible for processing customer orders and
another part allows users to browse your product catalog. The former is critical to business, while the
latter is not. To avoid letting outages in the catalog part of the site also bring down the order-processing
part, you could separate the two applications into differentAppPools.

Since switching contexts is faster between threads than between processes, there is a performance
cost to using more worker processes. I generally recommend no more than one or two per CPU core to
help minimize context -switch overhead. For example, a server with a single quad-core CPU should
usually have no more than about four to eight worker processes.

Web Gardens
Web gardens can help mitigate the risk of a worker process failure by having more than one worker
process handle requests for the same web sites. However, all application-specific memory is duplicated
in each worker process, including user-mode output caches and static data. Therefore, I don't
recommend using web gardens except in those special cases where reliability is critical and your site is
running from a single web server, rather than in the usual load-balanced configuration used by larger
sites. With enough RAM, web gardens can provide a basic level of redundancy; if one worker process
crashes, another will be available to handle requests.

Another scenario where web gardens can be useful is if you're running on a single server but
planning to move up to a multiserver load-balanced environment later. In the interim, you can use a

125

�CHAPTER 4 liS 7.5

126

web garden to help debug any issues that you might have with a load-balanced architecture, such as
cache and state management.

You establish a web garden by setting Maximum Worker Processes in AppPoolAdvanced Settings
to a value greater than one. The http.sys driver distributes incoming connections from one worker
process to another in a round-robin fashion. When you have HTTPkeep-alives enabled (which is the
default), a single connection can handle multiple HTTP requests. This means, for example, that if you
refresh your browser, those requests are likely to use the same connection, and therefore, the same
worker process. For testing purposes, you may want to disable keep-alives in IIS temporarily. To test
with keep-alives enabled, you may want to use a multi-threaded load generation tool.

Request-Processing Pipeline
IIS has two request-processing pipeline modes: Integrated and Classic. Integrated mode allows both
native code and managed code to run in response to events as HTTP requests move through the
pipeline. In Classic mode, only native code (C++) can process IIS events. I recommend using Integrated
mode (which is the default), since it allows you to use .NET code to handle events that aren't associated
with the ASP.NET handler, such as images and other static fIles.

Each HTTP request that IIS receives goes through a sequence of states. In Integrated mode,
managed HttpModu1es can register event handlers before, during, or after most state transitions. Figure
4-2 shows the sequence of events using plus signs before or after the event names to indicate where you
can register pre- and post -event handlers. The Execute Handler box has rounded corners to show that it
isn't an event itself, and the plus signs show that the Framework fires events before and after it calls the
handler.

ND"'oI.rministic Ev

Pre Send Request Headers

Authenticate Req,I.IBst + Pre Send Request Content

Authorize Request + Error

Resolve Request Cache +

Map Request Handler +

Acquire Request State +

+ Execute Handler +

Release Request state +

Update Request Cache ...

Log Request +

Response

Figure 4-2. lIS request-processing pipeline

�

�CHAPTER 4 liS 7.5

Note HttpModules are just organized collections of event handlers for liS state transitions. liS invokes the

event handlers in all HttpModules that have registered for a particular event before moving to the next state.

Before beginning the request pipeline, the Framework creates an instance of the
HostingEnvironment class, which provides information about the application, such as the name of the
folder where it's stored. ASP.NET starts the application by creating an instance of the HttpApplieation
class in Global. asax. For each request, the Framework also creates instances of the HttpContext,
HttpRequest, and HttpResponse classes.

After the initial conditions are established, deterministic states progress from the top of Figure 4-2
to the bottom. There are also three nondeterministic states, which can happen at various times in the
pipeline. The Error state, for example, can happen at any time or may not happen at all. Headers and
content can be sent early in the pipeline such as after retrieving them from cache, or later, after the End
Request event.

Examples of the functions implemented by standard HttpModules include authenticating forms,
authorization, profile support, role management, session state, and logging.

The request handlers called from the pipeline are responsible for retrieving the resource that's
associated with a particular URL. Handlers are mapped to specific file extensions. For example, the
ASP.NET handler is associated with . aspx fIles.

You can have ASP. NET process additional fIle extensions other than. aspx by adding them to the
Handler Mappings section of IIS Manager. You might want to do this when you're migrating to ASP. NET
from another technology so that you can maintain your existing search engine entries and links from
other sites without redirects. For example, you could turn your static. htm pages into dynamic pages this
way, including support for code-behind, ASP.NET directives, and so on. You can use the same technique
to generate .ess or .js fIles dynamically (you may also need to configure a build Provider in web.eonfig).

Similarly, if you wanted to support another dynamic page-generation technology such as PHP or
Perl, you would do so by adding an appropriate handler and mapping it to the desired fIle extension.

Windows System Resource Manager
Windows System Resource Manager (WSRM) is a feature that comes standard with Windows Server 2008
that allows you to reserve a minimum amount of CPU or memory for different groups of processes. It is a
server-only feature, so it's not available for client versions of operating systems, such as Windows 7.

Let's walk through an example. Start by creating two AppPools, one for an online catalog and
another for purchase transactions. Call the first one Catalog and the second one Trans.

Under normal (unmanaged) conditions, let's say that you've measured CPU use by Catalog to be 50
percent, Trans is 10 percent, and the operating system uses an additional 10 percent for things such as
network processing and kernel mode caching.

You can use WSRM to protect against bugs or load spikes in one application impairing the
performance of the other. In this example, I will show how to use it to ensure that Catalog gets at least 65
percent of the CPU if it needs it, Trans gets 20 percent, and everything else gets 15 percent, including the
operating system.

To do that, first add the WSRM feature from Server Manager and start the WSRM service. Then start
the WSRM console by selecting Start> Administrative Tools> Windows System Resource Manager.
When the Connect to Computer dialog box comes up, select This Computer, and click Connect.

To configure WSRM, the first step is to tell the software how to identify the processes that you want
it to manage. Right -click Process Matching Criteria in the left panel, and select New Process Matching

127

�CHAPTER 4 liS 7.5

128

Criteria. In the dialog box that comes up, click Add. The next dialog box that opens is where you define
the files or command lines that will be included in this rule. Select lIS App-Pool in the option box, and
click Select. In the dialog box that comes up, select the Catalog AppPool, and click OK. See Figure 4-3.

Figure 4-3. Add Rule dialog box in Windows System Resource Manager

Click OK to dismiss the dialog box. In the New Process Matching Criteria dialog box, give the criteria
a name. Let's call it CatalogAppPool (spaces aren't allowed). See Figure 4-4.

�CHAPTER 4 liS 7.5

Figure 4-4. New Process Matching Criteria dialog box in Windows System Resource Manager

Click OK to dismiss the dialog box and complete the definition of the first process matching criteria.
Repeat the process for the other AppPool. Call the second criteria TransAppPool.
Next, right -click Resource Allocation Policies, and select New Resource Allocation Policy. In the

dialog box that comes up, click Add. In the next dialog box, in the Process matching criteria option box,
select CatalogAppPool, and set the Percentage of processor allocated for this resource to 65, as in
Figure 4-5.

129

�CHAPTER 4 liS 7.5

130

Figure 4-5. Add or Edit Resource Allocation dialog box in Windows System Resource Manager

That defines the minimum CPU time that will be available to this AppPool. Click OK to dismiss the
dialog box.

Repeat the process to add TransAppPool to the policy, giving it a 20 percent allocation. Give the
policy a name, such as CatalogTrans. See Figure 4-6.

�CHAPTER 4 liS 7.5

Figure 4-6. New Resource Allocation Policy dialog box in Windows System Resource Manager

Notice that Available percentage of processor remaining is 15 percent. This is the residual
allocation that will be available for the OS and other processes. Click OK to dismiss the dialog box and
create the policy.

To activate the policy, first right -click it in the left panel and select Set as Managing Policy. Then
right -click Windows System Resource Manager (Local) at the top of the left panel and select Start
Windows System Resource Manager management.

When enforcing CPU limitations, WSRM doesn't become active until aggregate total CPU use
exceeds 70 percent. Applications can use more than their allocated share of the CPU until another
managed application needs its share. At that point, WSRM lowers the priority of the application that's
using more than its allocated share, which will decrease its CPU use.

For example, let's say that Catalog needs 80 percent ofthe CPU (vs. 65 percent allocated), Trans
needs 5 percent (vs. 20 percent allocated), and the OS needs 10 percent (vs. 15 percent allocated), which
is 95 percent altogether. WSRM will not adjust CPU usage or process priorities, because none of the
managed process groups is limited within its specified minimums and because free CPU cycles are still

131

�CHAPTER 4 liS 7.5

132

available. However, if the load on Trans increases to where it could use 15 percent, then WSRM will lower
the priority of Catalog so that it uses only 75 percent.

Another way of looking at this is that available CPU cycles aren't wasted. If one of the managed
processes can use the CPU without limiting the cycles available to another managed process to
something below its minimum allocation, then WSRM will allow that to happen. This allows more
efficient sharing of hardware resources.

That behavior leads to a different way of using WSRM than described in the example. Instead of
reserving minimum CPU use to a value somewhat above average use, you could make sure that a high
priority AppPool can always get as much of the CPU as it needs to cover loads during peak periods.
Extending the earlier example, you might allocate 80 percent to Trans, 10 percent to Catalog, and 10
percent to residual. Average use as described earlier would be unimpaired. The difference is that if there
were a load spike on Trans, it would be allowed to use 80 percent of the CPU, at the expense of the
Catalog application.

In most environments, WSRM can reduce the need to segregate applications onto dedicated
hardware so that they don't interfere with one another. It also provides better control than using
multiple virtual machines on a single physical host. Segregating business-critical applications from
other apps, particularly when the other apps change frequently or are much less stable, is a sound
architectural principle. However, placing them on separate machines or VMs for that reason alone often
introduces another set of problems related to operations, deployment, monitoring, capacity planning,
and so on.

WSRM has several other features, including the ability to manage memory use, binding processes to
certain processors, matching processes by the user or group that starts them, and switching to different
policies at certain times. I suggest managing by CPU use instead of memory use whenever possible,
since restricting memory use can have unexpected side effects, including increased disk activity
(paging). The other features tend to be most useful in environments with a large number of AppPools or
ones that are running applications other than just IIS.

Common HTTP Issues
As sites grow and evolve, file and folder names change regularly. One side effect is inadvertent HTTP 404
Not Found errors. Since errors can have a negative impact on both performance and site functionality,
it's important to establish a process to identify these errors when they appear. One way is to analyze
your IIS log fIles regularly using a tool like Log Parser.

You can download Log Parser from this location:

http://www.microsoft.com/DownLoads/
details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07&displaylang=en

Here's an example that uses Log Parser to find the 404 Not Found errors in all the logs for my
primary site and to display how many times the error has happened, along with the URL:

C:\>logparser "select count(*) as Times, cs-uri-stem as URL
from <1>
Nheresc-status = 404
group by cs-uri-stem
order by Times desc"

Times URL

157807 /pages/defaultx.aspx
42 /static/myimage.jpg

�

�CHAPTER 4 liS 7.5

The <1> in the query tells Log Parser to find the site with an ID of 1 (usually the default site) and to
locate and process all of its logs, even if they are spread among multiple files. You can find the ID for
your site either in the site's Advanced Settings dialog box in IIS Manager or in the
applicationHost. con fig fIle. Log Parser also supports several other ways of selecting a site, or you can
point it to a specific fIle that contains the log data.

Log Parser uses a SQL-like query language to specify commands that parse, summarize, or
transform a wide variety of source data, including Active Directory objects, binary IIS logs, CSV fIles, the
Windows event log, fIle and directory structures, the http.sys log, Netrnon capture files, registry values,
XML files, and others. The documentation included in the download describes the syntax in detail. In
addition to text output, it can also generate bar charts as images, or insert results into other data stores,
such as SQL Server. It's a powerful and flexible tool, and I recommend it highly.

Caution Be sure not to enable custom logging in liS, since that disables kernel-mode caching (http.sys).

You can use Log Parser to obtain useful performance-related information from your IIS logs,
including:

• How many requests are coming from search engines (based on the User-Agent
string and the number of requests for robots. txt).

• The URLs referenced most often by your users or by search engines.

• The URLs responsible for consuming the most bandwidth (total size).

• How many HTTP errors are produced, and by which URLs.

• The minimum and maximum average response time.

• How much traffic you are handling from leeched content (images or other fIles
hosted on your site, but referenced by other sites).

• The number of requests per IP address (abnormally high counts can be from
masked search engines or other bots).

• The most frequent referring URLs, either from your site or from other sites.

Processing logs manually is increasingly time-consuming and prone to error on multi-server sites,
since the log fIles have to be collected from each server. For . aspx pages and other dynamic content, you
can simplify the process by logging both HTTP requests and errors in a central database, ideally using a
background thread to minimize the performance impact. It is much easier to perform trend analyses
and detect potential problems early using the data in SQL Server.

It is usually best to handle HTTP errors related to images and other static content by automated
multiserver monitoring, rather than directly in your application. Chapter 10 will cover this approach in
more detail.

133

�CHAPTER 4 liS 7.5

134

HTTP Redirects
Uyou request a URL that refers to a folder and the URL doesn't end in a slash, IIS will automatically issue
a redirect to the same URL, with a slash added at the end.

For example, the following URL (without the trailing slash):

http://WWW.12titans.net/samples

will be redirected to this (with the trailing slash):

http://WWW.12titans.net/samples/

Here's what the HTTPresponselookslike:

HTTP/l.l 302 Found
Cache-Control: private
Content-Type: text/htmlj charset=utf-8
Location: /samples/
X-Powered-By: ASP.NET
Server: Microsoft-IIS/7.S
X-AspNet-Version: 4.0.30319
Date: Mon, 12 Dec 2011 11:52:23 GMT

<html><head><title>Object moved</title></head>
<body><h2>Object moved to
here.
</h2></body></html>

IIS will obtain the content for a folder-based URL from one of the configured default files. For
example, with the previous URL, the content might come from this location:

http://WWW.12titans.net/samples/default.aspx

This means there are three equivalent URLs for default pages. In order to avoid "hidden" redirects
like these, it's important to use consistent URLs to reference default pages. The browser will also treat all
three URLs as distinctly different, from a caching perspective. After experiencing a redirect on the first
URL in the previous example, if a user later clicks a link that references the third version, they could end
up with two copies of the page in their browser cache.

Consistently using full, explicit URLs on your site is the best solution because it helps minimize the
chances of duplicate caching on clients and proxies. In addition, http.sys won't cache "implied default"
URLs like the first two shown earlier.

Notice that the redirect response in the previous example includes some HTML. The same is true for
error responses such as a 404 Not Found. Even when the requested object is an image, the server will still
return HTML-formatted error text. The text is there for human readability, but people rarely see redirect
responses, since the browser should immediately reissue the request. People sometimes see HTTP error
pages, although usually they don't since browsers tend to display their own error pages instead.

For those reasons, it is advisable to use custom error pages and to keep the error text very short.
Custom error pages that users are unlikely to see should be implemented with "plain" HTML and should
not reference any images or external J avaScript or CSS files to avoid possible circular errors (such as if
the image on a 404 Not Found error page also can't be found).

Custom error pages that you use in association with the Application_Error event or with Web
Events usually don't need to be as restrictive. Although simplicity is still a good idea, you might use. aspx

�

�CHAPTER 4 liS 7.5

pages in some cases. Just be sure that your error pages can't generate the same type of errors that you
are using them for.

Since redirects require an additional server round-trip, you should avoid using them for your
regular content. The most appropriate use of redirects is to manage situations where you would like to
provide a way for old or archived pages to find content that you have recently moved or renamed.
However, those redirects should be permanent, not temporary. Browsers can cache redirects if they're
permanent, but not if they're temporary.

I'll cover some additional techniques in Chapter 5 for programmatically minimizing redirects for
dynamic content, using ASP.NET.

HTTP Headers
As you saw earlier in the HTTP response for redirects, IIS and ASP.NET insert a few "informational"
HTTP headers that are useful mostly for third -party statistical purposes. You can easily see them with a
tool like the Fiddler proxy. They have no impact on either the browser or the web server, other than to
add extra traffic to every request, so it's a good idea to remove them.

The issue with these headers is not that they are performance killers. Rather, their elimination is in
keeping with the ultra-fast philosophy as explained earlier: every little bit helps, and lots of little bits in
the right places add up quickly. HTTP headers, for example, can have an impact on every response
generated by the server.

There is a minor side issue here relating to site security. There is a chance that a hacker might
choose to target sites based on which operating system or web server the sites are using. Although there
are many techniques a hacker might use to figure that out, there's no reason you need to make it easy for
them by advertising your web server type and .NET version number in every HTTP response you
generate.

Removing the headers doesn't do anything to enhance the security of your site, but it does reduce
the risk that a hacker will use the headers to identify and target your site in the event that a specific IIS or
.NET security vulnerability is identified. Like performance and scalability, many small security
improvements add up - every little bit helps.

Tip I recommend regularly looking at the HTTP responses generated by your site using a web proxy tool like
Fiddler. That can help identify HTTP errors, unexpected HTTP headers, hidden redirects, and the like; it can be a
very enlightening experience.

Removing the X-Powered-By Header
To remove the X-Powered -By header, first double-click HTTP Response Headers in IIS Manager. Then
click the header, and select Remove on the right side, as in Figure 4-7.

135

�CHAPTER 4 liS 7.5

136

Figure 4-7. Removing informational HTTP headers using IIS Manager

Since the header type is Inherited, you can remove it either on a per-site basis (as shown in Figure
4-7) or for all web sites on your server by selecting the top-level machine node in lIS Manager before
opening the HTTP Response Headers panel.

Removing the Server Header
The next informational header in the example response shown earlier is Server. Unfortunately, you can't
remove it with a configuration setting in lIS Manager. Here's some example code for a custom
HttpModule that will do the job (see App _ Code\HttpHeaderCleanup. cs):

using System;
using System.Web;

names pace Samples
{

public class HttpHeaderCleanup : IHttpModule
{

public void Init(HttpApplication context)
{

context.PreSendRequestHeaders += OnPreSendRequestHeaders;
}

voidOnPreSendRequestHeaders(object sender, EventArgs e)
{

�CHAPTER 4 liS 7.5

}
}

}

HttpResponse response = HttpContext.Current.Response;
response. Headers. Remove("Server") j

public void Dispose()
{
}

The code registers an event handler for the PreSendRequestHeaders event. When the event fires, the
handler removes the Server header from the outgoing Response.

Next, register the HttpModule in web. con fig:

<system.webServer>
<modules>

<add name="HttpHeaderCleanup" type="Samples.HttpHeaderCleanup" I>
</modules>
</system.webServer>

For this to work, be sure the application pool is configured in Integrated mode (which is the
default). Setting it up this way will cause the HttpModule to run for both static and dynamic content.

Removing the ETag Header
IIS generates ETag headers for static content. For example, after cleaning up the headers as described
earlier, the HTTP response for an image might look something like this:

HTTP/1.1 200 OK
Cache-Control: max-age=31536000, public
Content-Type: image/png
Last-Modified: Mon, 16 Jun 2008 10:17:50 GMT
Accept-Ranges: bytes
ETag: "fof013b9acfc81:0"
Date: Tue, 17 Feb 2009 01:26:21 GMT
Content-Length: 4940

The idea behind the ETag header is that if the content expires, the browser can use an HTTP I f
Modified-Since request to ask the server to send anew copy only ifit has changed since it was first
retrieved. For example:

If-Modified-Since: Mon, 16 Jun 2008 10:17:50 GMT
If-None-Match: "fof013b9acfc81:0"

Although the concept sounds good in principle, with far-future expiration times, the If-Modified
Since call may never happen; the basic HTTP responses will vastly outnumber the potential I f
Modified-Since calls. In addition, the round-trip to make such a call takes almost as long as retrieving
small static objects, so you save very little time unless the objects are large or resource-intensive to
generate on the server side. Unless you have a specific application for them, you should disable ETags,
since this will reduce the size of all of your static fIle response headers.

137

�CHAPTER 4 liS 7.5

138

Unfortunately, as with the Server header, IIS doesn't provide a configuration setting to disable
ETags. Luckily, you can handle them in the same way by adding the following code to the end of
OnPreServerRequestHeaders 0 from the example above:

response.Headers.Remove(nETagn)j

Removing the X-Aspnet-Version Header
You can remove the X-Aspnet-Version header from the HTTPresponse for ASP.NET pages by setting the
enableVersionHeader property to false in the <httpRuntime> tag in web. con fig:

<configuration>

<system.web>
<httpRuntimeenableVersionHeader="false" I>

</system.web>

Using HTTP 1.1 Headers
Modern browsers now universally support HTTP 1.1, so in most environments there is no longer any
need to support HTTP 1.0 explicitly. The only HTTP 1.0 clients you're likely to encounter are old bots or
old proxies.

If you explicitly need to add your own headers for some reason, you should use the ones from HTTP
1.1, rather than their HTTP 1.0 equivalents. In particular, Cache-Control: max-age should be used instead
of Expires, and Cache-Control: no-cache should be used instead of a "back-dated" Expires header or
Pragma: no-cache. There should never be a need to use either Expires or Pragma.

Compression
Compression of text files, including HTML, CSS, and J avaScript, can often reduce fIle sizes by 60 percent
or more. This has several advantages:

• Server network bandwidth is reduced.

• The content is received by the client more quickly (reduced latency).

• For content that the runtime doesn't have to recompress for every request, servers
can deliver more requests per second when it is compressed.

There are also a couple of disadvantages:

• It takes server CPU resources to compress the file the first time.

• Additional server disk space and RAM are required.

Note that Cassini, the development web server included with some versions of Visual Studio, does
not support compression. With the release of Visual Studio 11, Microsoft has deprecated Cassini, so you
should use IIS Express instead, which does support compression. Alternatively, for development on
Windows 7 or Windows Server 2008, you can easily configure IIS to run your site instead of Cassini or IIS
Express, and set the startup URL in Visual Studio accordingly. When you're developing multiple web

�CHAPTER 4 liS 7.5

sites on the same machine, you can either use different port numbers on localhost for each site, or
create several aliases for 127.0.0.1 in your hosts file.

Enabling Compression
Before enabling compression, first install the dynamic compression role service for lIS, if you haven't
already, from Server Manager on Windows Server or from Turn Windows features on or off in the
Programs and Features control panel on Windows 7. Next, configure basic settings at the machine level
by selecting your computer (the top-level node) in the Connections pane in lIS Manager and then
double-clicking the Compression feature. See Figure 4-8.

Figure 4-8. Compression configuration panel at the machine level in lIS Manager

From there, you can set the minimum size of the files before the runtime can compress them, the
folder where lIS should cache the files once they are compressed, and the maximum disk space to be
allocated to the cache folder. Those settings are available only at the machine level, not at the web site
level or below. You can also enable static or dynamic compression for all web sites on your machine. At
this stage, I suggest enabling static compression, but not dynamic compression, as in Figure 4-8.

You should consider which disk drive you will use to cache the compressed files, since it will incur
additional load as lIS writes and then later reads the files, using up to the specified disk space limit.

You can override server-wide enabling or disabling of compression at the web site, folder, or file
level by selecting the target in lIS Manager and double-clicking the Compression feature. See Figure 4-9.

139

�CHAPTER 4 liS 7.5

140

Figure 4-9. Compression configuration panel at the site, folder, or file level in IIS Manager

If you have entire folders where all of the dynamic files they contain can be compressed, you can
enable that this way.

Enabling compression typically increases CPU use by roughly 3 to 5 percent for an active site. For
most sites, the trade-off is generally worth it.

Setting Compression Options
Browsers generally understand two different compression algorithms: gzip and deflate. lIS enables gzip
in its default configuration but not deflate, even though that algorithm is also available in the standard
gzip. d11. The difference between the two is the wrapper around the compressed data, rather than the
compression algorithm itself (both use the zlib algorithm). The header used with deflate is slightly
smaller.

The gzip and deflate algorithms both support varying levels of compression. The higher the level,
the more CPU time they spend trying to optimize and improve the degree of compression. Levels vary
from zero to ten, although I've found that the effect is not continuous; you may need to go up or down
by several numbers to see a change in the size of your output. The default is seven for both static and
dynamic compression. A light level of compression for dynamic files minimizes the extra CPU load,
while still providing most of the benefits. Heavy compression for static files provides maximum benefits
with minimal additional cost, since the compression is done only once and the file is then served many
times.

Another configuration option controls whether the runtime disables compression if CPU use
reaches a certain threshold. I don't suggest using that feature. On a heavily loaded site, where the load
never drops below the default threshold of 50 percent for static content, your content might never be
compressed. For dynamic content, even if your server is behaving normally, CPU use might periodically
peak at 100 percent while delivering regular traffic. If lIS suddenly disabled dynamic compression when
your server reached the default 90 percent point, network traffic might spike from sending
uncompressed content, which could cause more problems than it solves; the number of requests per
second that the server can deliver could easily decline. It's much better to allow the system to degrade
gracefully when it reaches maximum CPU use. You can turn those features off by raising the "disable"
thresholds to 100 percent.

You can make the changes suggested in this section, including enabling the deflate algorithm, by
modifying the <httpCompression> section in applicationHost. config as follows (control over these
settings is not available from the GUl; see compress. config in the code download:

�

�CHAPTER 4 liS 7.5

<httpCompression directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files"
staticCompressionDisableCpuUsage="100"
dynamicCompressionDisableCpuUsage="100">

<scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll"
staticCompressionLevel="10" dynamicCompressionLevel="3" I>

<scheme name="deflate" dI1="%Windir%\system32\inetsrv\gzip.dll"
staticCompressionLevel="10" dynamicCompressionLevel="3" I>

<staticTypes>
<add mimeType="text/*" enab1ed="true" />
<add mimeType="message/*" enab1ed="true" I>
<add mimeType="app1ication/x-javascript" enab1ed="true" I>
<add mimeType="*/*" enab1ed="fa1se" I>

</staticTypes>
<dynamicTypes>

<add mimeType="text/*" enab1ed="true" I>
<add mimeType="message/*" enab1ed="true" I>
<add mimeType="app1ication/x-javascript" enab1ed="true" I>
<add mimeType="*/*" enab1ed="fa1se" I>

</dynamicTypes>
</httpCompression>

Tip If you are serving a particular MIME type that would benefit from compression, you should make sure that
it's included in either <staticTypes> or <dynamicTypes>, or both, as appropriate.

You can use Firefox to confirm that the deflate algorithm is working correctly. In the about:config
page, enter accept -encoding as the fIlter criteria. Double-click network.http.accept-encoding, and
change the value to deflate. Mter that, when you use Fiddler or Firebug to view a request made by
Firefox for a page from your site that has compression enabled, you should see the HTTP Content
Encoding header set to deflate, and of course, the page should render correctly.

Using web.config to Configure Compression
For folder-specific compression-related settings, the GUI will create a small web. config file in each
folder. I prefer to group settings together in the top-level web. config, which means making the entries by
hand rather than using the GUI. For example:

<location path="pages">
<system.webServer>

<ur1CompressiondoDynamicCompression="true" I>
</system.webServer>

</location>

141

�CHAPTER 4 liS 7.5

142

Caching Compressed Content
When you enable both output caching and compression, IIS compresses the content before storing it in
the output cache.

You can have IIS cache both compressed and uncompressed versions of your pages. You do that by
setting the VaryByContentEncoding property of the OutputCache directive. For example:

<%@ OutputCache Duration="S6400" VaryByParam="None" VaryByContentEncoding="gzipjdeflate" %>

You can also specify that property in a cache profile in web. con fig:

<add name="CachelDay" duration="S6400" varyByParam="none"
varyByContentEncoding="gzipjdeflate" I>

However, be aware that VaryByContentEncoding will disable http.sys caching since the runtime
needs to decide which cached version to use.

Programmatically Enabling Compression
There are cases where it's not always desirable to compress a page. For example, pages that can't be
output cached and are less than about lKB in size, and, consequently, fit into a single TCP packet, are
generally not good candidates for dynamic compression. Since the usual delay between TCP packets in
the response doesn't exist when there's only one packet, the reduction in data size may not be worth the
increase in latency caused by the compression.

In addition, if your servers are frequently running close to 100 percent CPU utilization, you might
want to consider selectively disabling dynamic compression, particularly for pages that can't be output
cached.

You can programmatically enable dynamic compression by adding the following code to your
Page_Load 0 method (see compress.aspx):

if (!String.IsNullOrEmpty(this.Request.ServerVariables["SERVER_SOFTWARE"]))
this.Request.ServerVariables["nS_EnableDynamicCompression"] = "l"j

The check for SERVER_SOFTWARE ensures that we're running on IIS7 + or IIS Express, since Cassini and
IIS 6 don't allow you to set ServerVariables, and Cassini doesn't support compression.

Alternatively, you can disable dynamic compression by setting the ServerVariable to "0" (a string
containing zero).

HTTP Keep-AI ives
You should not disable HTTPkeep-alives in IIS. If you do, browsers will revert to the HTTP 1.0 behavior
of one request per TCP connection. If the browser is forced to open a new connection for every object on
the page, it can have a very negative impact on performance.

The default settings for IIS are to enable keep-alives, with a 120-second timeout; if the browser
hasn't reused a connection after 120 seconds, IIS will close it. Depending on the nature of how your
users interact with your site, since opening a new connection increases request latency, you might
consider extending the timeout. If users tend to navigate to a page, read for a while, and then click to a
new page, then a longer timeout might make sense. If they tend to click a few links and leave your site
quickly, then there's no need to change the default.

�CHAPTER 4 liS 7.5

Although keeping the connection open does consume memory on the server, it's only roughly 1KB
per connection, or 1MB per 1,000 connections. It's a small price to pay for a significant improvement in
performance.

Reducing the Length of Your URLs
Since URLs appear in HTTP request headers, as well as in your HTML, it's a good idea to avoid
excessively long ones. Yahoo, for example, has a long history of using single-character paths in certain
parts of its site.

As a rule of thumb, you should try to keep both file names and folder names less than about eight
characters long (two to six is best), except where search engine optimization comes into play. Folder
hierarchies should be flat, rather than deep. For example, the following:

http://sl.12titans.net/images/mypic.jpg

is much better than this:

http://coo1staticfi1es.12titans.net/rea11ycoo1images/picsfrom1astyear/mycoo1pic.jpg

If you need to work with an existing hierarchy that uses long names or if your system needs longer
names to ease some aspects of development or maintenance, then you can shorten the long URLs using
virtual directories or URL rewriting.

Virtual Directories
You can use virtual directories with short names to refer to the actual folders. You may be able to bypass
one or more levels of an on-disk folder hierarchy this way.

For example, if you wanted to map the long path shown earlier to a shorter one under the images
folder, then right-click the folder in IIS Manager, and select Add Virtual Directory. See Figure 4-10.

Figure 4-10. Adding a virtual directory to shorten your URIs

143

�CHAPTER 4 liS 7.5

144

Type in the alias you'd like to use and the physical path that you want to map to that alias. In the
example, lIS would map all files in the folder F: \reallycoolimages\picsfromlastyear to the default web
site at http://S1.12titans . net/images/cool/.

URL Rewriting
Although URL rewriting is often used to make URLs search engine friendly, you can also use it to make
them shorter. You might want to do this in cases where you are unable to rename the existing files or
folders for some reason, or when you want to have a local file structure that is different from the
externally visible one. You can also use URL rewriting to hide query strings from http.sys, which can
make a page cacheable that wouldn't be otherwise.

You can rewrite URLs in lIS using the URL Rewrite Module or in ASP.NET using page routing. The
lIS approach tends to be slightly more efficient for static content, and can be configured in web. config or
using the GUI in lIS Manger. See Chapter 7 for details on page routing.

To use the URL Rewrite Module with lIS, first download and install it:

http://www.iis.net/extensions/URLRewrite

As an example, let's use it to shorten a URL. Create a folder in your web site called mylongfoldername,
put an image in it called logo. png, and configure the web site in lIS.

Next, click your web site in the Connections panel in lIS Manager. Then double-click URL Rewrite
in the center panel to enter the configuration area. Click Add Rules in the right-hand panel to bring up
the Add rule(s) dialog box as in Figure 4-11. Select Blank rule, and click OK.

Figure 4-11. Selecting the blank URL rewriting rule template

�CHAPTER 4 liS 7.5

N ext, in the Edit Inbound Rule screen, enter a name in N arne for the rule, and enter Ami (• *) in
Pattern. See Figure 4-12.

Figure 4-12. Entering a regular expression pattern for the incoming URL

The Pattern field contains a regular expression that matches the incoming URL. In this case, you're
looking for a URL that starts with the letter m, then a slash, and anything else after that. You use the
parentheses to establish a capture group, which you can reference later in the rewritten URL. Capture
groups are numbered from left to right, from one to N. Capture group zero is a special case that
represents the entire incoming URL.

To test the regular expression, click Test pattern. Enter an example of an incoming URL that the
pattern is supposed to match as the Input data to test. Click the Test button to see the results of the test,
including the capture groups. See Figure 4-13.

145

�CHAPTER 4 liS 7.5

146

Figure 4-13. Testing the regular expression

Click Close to dismiss the Test Pattern dialog box, and enter my longfo1dername/ {R: 1} in Rewrite
URL in the Action section of Edit Inbound Rule. This is the name of the local resource, which includes
the long folder name, followed by {R: 1}, which is the first capture group from the regular expression.
Leave the other settings at their defaults. See Figure 4-14.

�

CHAPTER 4 liS 7.5

Figure 4-14. Entering the rewrite URL using a capture group from the regular expression

Click Apply at the upper right of the screen, which will activate the rewrite rule and save it in the
web site's web. config.

Note Since adding a new URL rewrite rule updates web. config, it will also cause your site to restart.

After applying the rule, lIS will map an incoming URL like http://localhost/mllogo . png to
http://localhost/mylongfoldername/logo.png.

If you have a number of rules, you might find it easier to edit web.config directly, instead of using
the GUI. For example:

<system.webServer>

<rewrite>
<rules>

<rule name="Images">
<match url="Am/(.*)" />
<action type="Rewrite" url="mylongfoldername/{R:l}" />

</rule>
</rules>

</rewrite>
</system.webServer>

Managing Traffic and Bandwidth
For most sites, having search engines visit regularly is very desirable. However, each page or file that a
search engine requests presents a load on your servers and network, and those requests compete with
your regular users.

147

�CHAPTER 4 liS 7.5

148

For some sites, the load from search engines and other bots can be substantial. You can help
manage the load they put on your site by using robots. txt, site maps, and bandwidth throttling.

The type of content that you may want to prevent bots from accessing includes the following:

• Images, CSS, and other fIles that you use primarily for layout purposes.

• JavaScript fIles.

• Registration and logon pages.

• Search results.

• Certain file types, such as . zip, . avi, . docx, . pptx, and so on.

• Pages that require authentication.

• Lists of users who are currently online, and similar content that's only meaningful
to someone connected to your site.

It's a good idea to partition your images into folders, based on those that would be suitable for
image search and those that wouldn't be, to make it easier to block access to the latter. For example, in
an image gallery application, you might want to allow access to thumbnails but not to full-size images.

Using robots.txt
You can place a robots. txt fIle in the root of your site to help inform search engines and other bots
about the areas of your site that you don't want them to access. For example, you may not want bots to
access the content of your images folder:

User-agent: *
Disallow: limagesl

You can also provide instructions for particular bots. For example, to exclude Google image search
from your entire site, use this:

User-agent: Googlebot-Image
Disallow: I

The robots. txt standard is unfortunately very limited; it only supports the User-agent and Disallow
fields, and the only wildcard allowed is when you specify it by itself in User-agent, as in the previous
example.

Google has introduced support for a couple of extensions to the robots. txt standard. First, you can
use limited patterns in pathnames. You can also specify an Allow clause. Since those extensions are
specific to Google, you should only use them with one of the Google user agents or with Googlebot,
which all of its bots recognize.

For example, you can block PNG files from all Google user agents as follows:

User-agent: Googlebot
Disallow: I*.png$

The asterisk refers to matching any sequence of characters, and the dollar sign refers to matching
the end of the string. Those are the only two pattern-matching characters that Google supports.

To disable all bots except for Google, use this:

User-agent: *
Disallow: I

�

CHAPTER 4 D liS 7.5

User-agent: Googlebot
Allow: I

To exclude pages with sort as the first element of a query string that can be followed by any other
text, use this:

User-agent: Googlebot
Disallow: I*?sort

Caution When you create a . txt file from Visual Studio, it is stored in UTF-8 format by default, which results in

a byte order marker (BOM) that is written at the beginning of the file. Bots that don't understand the BOM can't

parse the file. This can be an issue for Google, as well as some online syntax-check utilities. It's easily fixed by

having a blank line or a comment as the first line of the file. If you use Notepad to create the file, the default is to

store it as an ANSI file, which doesn't use a BOM.

You might consider generating robots. txt dynamically, rather than statically, which allows you to
set custom performance counters and adapt to new bots or content.

Site Maps
Site maps are XML files that list all of the URLs on your site, along with when the content was last
modified, an indication regarding how often it changes, and a relative priority (not to be confused with
ASP.NET site maps, which have a different format and serve a different purpose). By providing a site
map, you can help search engines optimize how often they revisit your site. If the content on a particular
page never changes, you can let search engines know so they don't keep reading it repeatedly.

You can fmd the site map specification online at http://www.sitemaps .org/. Here's an example:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns=''http://www.sitemaps.org/schemas/sitemap/o.9''>

<url>
<loc>http://www.12titans.net/p/default.aspx</loc>
<lastmod>2011-12-01</lastmod>
<changefreq>daily</changefreq>
<priority>0.8</priority>

</url>
</urlset>

You list each URL in a separate < ur l> block. Only the doc> tag is required; the others are optional.
Several tools are available online to help you generate site maps and submit them to search engines.

If you choose to do it yourself, be sure to use correct XML syntax, including escaping entities such as
ampersands.

You can advertise the availability of a site map in your robots. txt file:

Sitemap: http://www.12titans.net/sitemaps/sitemap.xml.gz

You can also submit the URL of the site map file directly to search engines. The details vary by
search engine. For Google, you can use its Web master Tools.

149

�CHAPTER 4 liS 7.5

150

Bandwidth Throttling
Although it's most often used when serving media content, you can also use bandwidth throttling as a
traffic and load management technique. For example, one way to apply this concept is to send content
more slowly to bots than to real users. This can make more bandwidth and CPU cycles available to users
when your site is under heavy usage, so the content will load faster for them than it would otherwise.

You can also use bandwidth throttling to make sure that you give users a chance to change their
minds about whether they want to download a large file. For example, with streaming video, a user
might watch the first few seconds and then decide they don't want to download the whole thing. Uyou
send it to them in a high-speed mode, it might be too late for them to cancel the download by the time
they change their minds. Using bandwidth throttling, you can slow things down and give them time to
cancel, while not interfering with their streaming experience. In addition to improving overall system
performance, this can also help reduce your bandwidth costs, by reducing the total amount of data
transferred and by lowering your peak transfer rate.

To use bandwidth throttling, install the IIS extension for Media Services:

http://www.iis.net/extensions/BitRateThrottling

To enable it from IIS Manager, first click your site or machine in the Connections pane. Double
click Bit Rate Throttling in the center panel, and click Enable in the Actions pane on the right side. This
will enable default throttling for most media content, such as . avi and. mp3 files.

With bandwidth throttling enabled, the defaults are set so that IIS will start by sending media
content in high -speed burst mode. Mter a little while, the throttling module will reduce the rate to the
encoded bit rate, which it determines by examining the file. For example, consider an . avi file that's
encoded at 500Kbps. IIS will start by sending 20 seconds of the file at full speed and then limit the
bandwidth to 100 percent of the encoded 500Kbps rate.

From a performance and scalability perspective, the real power of Bit Rate Throttling comes into
play using its programmability. You can set server variables to control the maximum bandwidth used by
a given response.

You might consider applying bandwidth throttling programmatically according to conditions such
as the following:

• Based on the User-Agent string (search engines and other bots, media players, and
so on).

• Particular pages, folders, images, or domains.

• Time of day, day of the week, or month.

• Cookies (user, role, VIP users, banned users, and so on).

• Leeched content (images or other files used directly on other sites, determined
using the HTTPreferrer).

• Request rate (perhaps using cookies or session state to track the history).

• HTTP 1.0 requests (identify using Request. ServerVariables ["SERVER_PROTOCOL"]).

• IP addresses (countries or states, identified using a Geo-IP database, or certain IP
ranges).

• How busy the server is (using performance counters for CPU, network, disk, and
so on).

CHAPTER 4 D liS 7.5

As an example, let's create an HttpModule that programmatically limits the download speed of • zip
fIles when they aren't accessed by clicking on a link on our web site (see App_Code\ Throttle.cs):

using System;
using System.Web;

names pace Samples
{

}

public class Throttle : IHttpModule
{

}

public void Init(HttpApplication context)
{

context.PostRequestHandlerExecute += OnPostRequestHandlerExecute;
}

voidOnPostRequestHandlerExecute(object source, EventArgs e)
{

}

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
HttpResponse response = context.Response;
HttpRequest request = context.Request;
try
{

}

if «response.ContentType == "application/x-zip-compressed") &&
«request.UrlReferrer == nUll) I I
!request.UrlReferrer.Host.Contains("12titans.net")))

{

}

if (!String.IsNullOrEmpty(request.ServerVariables["SERVER_SOFTWARE"]))
{

}

request.ServerVariables["ResponseThrottler-InitialSendSize"] = "20";
request.ServerVariables["ResponseThrottler-Rate"] = "10";

catch (Exception)
{

II log the error
}

public void Dispose()
{
}

In an event handler called after the request handler runs, you check the MIME type of the response
to see whether it's a • zip file. If it is, and the HTTP referrer is null or doesn't refer to our domain name,
then check if you're running under IIS or IIS Express instead of Cassini. If so, then set two server
variables. ResponseThrottler- Ini tialSendSize indicates that you want the first 20KB of the fIle to be
downloaded at full network speed, and ResponseThrottler-Rate says that you want the rest of the fIle to

151

�

�

CHAPTER 4 liS 7.5

152

be downloaded at 10Kbps (about 1.25KB/s). Malformed referrer URLs can cause an exception, so put the
code in a try / catch block.

Next, register the HttpModule in web. con fig:

<system.webServer>

<modules>

<add name="ThrottleModule" type="Samples.Throttle, App_Code"l>
</modules>

</system.webServer>

This configures IIS to run the code with both static and dynamic content.
Next, put a . zip file in the web site and access it from a browser. After an initial burst, you will see

the download rate settle at around the target (the transfer rate displayed by IE is an average, not the
current rate). See Figure 4-15.

Figure 4-15. Bandwidth-limited download

Note Bandwidth throttling doesn't work when you access the site using the same machine that is running liS
(such as localhost).

CHAPTER 4 D liS 7.5

Failed Request Tracing
Don't let the name of the lIS Failed Request Tracing (FRT) feature fool you. In addition to tracing
requests that fail, you can also use it to trace successful requests. In particular, you can use it to trace
requests that take too long or aren't being processed in a way that you expect, such as with caching or
compression.

As an example, let's analyze a case where http.sys is not caching a particular image. First, you need
to install the feature.

On Windows Server, from Server Manager, select Go To Roles. In the Web Server (lIS) section,
under Role Services, select Add Role Services. Under Health and Diagnostics, select Tracing, and click
Install.

On Windows 7, from the Programs and Features control panel, click Turn Windows features on and
off, under World Wide Web Services, open Health and Diagnostics, select Tracing, and click OK.

Next, open lIS Manager, open your web site in the Connections pane, and click the folder that
contains the files you're interested in tracing. Then double-click Failed Request Tracing Rules in the
center pane, and click Add in the right-hand pane. For this example, you're interested in all PNG files in
the selected folder, so in the Specify Content to Trace dialog box, select Custom and enter *. png as the
filename pattern. See Figure 4-16.

Figure 4-16. Specifying content to trace for Failed Request Tracing

153

�CHAPTER 4 liS 7.5

154

Click the Next button, and specify the trace conditions. In this case, you're interested in successful
responses rather than errors or pages that take too long to execute (which are, however, very useful in
their own right). Select the Status code(s) box, and enter 200, which is the HTTP response code that
indicates success. See Figure 4-17.

Figure 4-17. Defining trace conditions for Failed Request Tracing

Click Next to select the trace providers of interest. In this case, you're interested only in the WWW
Server provider. Uncheck the others, and select the WWWServer entry in the Providers panel on the
left, which will cause the Areas available for tracing to be displayed on the right. You're interested only in
the Cache area, so uncheck the others as in Figure 4-18. Since the trace information is written to disk as
an XML file, it's a good idea to select only the information you're interested in to limit the size of the file,
particularly when using tracing on a server in production.

CHAPTER 4 D US 7.5

Add Failed Request Tracing Rule

Select Trace Providers

Providers:

L.J ASP
U ASPNET
l.J)SAPI Extension
J WWWServer

Provider Properties

Verbosity:

I Verbose

Areas:

D Authentication
EI Security

Filter
D Static File
n CGI

Compression
J Cache
D RequestNotifications
EJ Module

Previous Next

Figure 4-18. Selecting trace providers for Failed Request Tracing

Click Finish to complete creation of the rule.

l '£I I

~ ,I

,--_Fi_n_ish_-JI I Cancel

Next, you need to enable FRT to activate the rule. Click the web site in the Connections panel. Then
click Failed Request Tracing on the right-hand panel, under Manage Web Site> Configure. In the
dialog box that comes up, select Enable, as in Figure 4-19. Then click OK to activate FRT.

155

CHAPTER 4 D liS 7.5

Figure 4-18. Selecting trace providers for Failed Request Tracing

Click Finish to complete creation of the rule.
Next, you need to enable FRT to activate the rule. Click the web site in the Connections panel. Then

click Failed Request Tracing on the right-hand panel, under Manage Web Site> Configure. In the
dialog box that comes up, select Enable, as in Figure 4-19. Then click OK to activate FRT.

155

�CHAPTER 4 liS 7.5

156

Figure 4-19. Enabling Failed Request Tracing

The directory name in this dialog box is where lIS will write the trace files. You can also specify a
maximum number of trace files, which can be useful for systems in production, to avoid filling the disk
with them. In many cases, you will only need a small number of trace files in order to diagnose the
problem.

Before running the test for the example, open the FailedReqLogFiles folder in Windows Explorer.
Next, use IE to open a URL to a PNG file from the folder in the web site being tested that you originally
specified when you created the rule. Press Ctrl+Refresh to refresh the page four or five times. There
should now be a folder with a name resembling W3SVCl in the Explorer window. Open the folder, and you
will see several XML files, which are the output files from the trace. Drag the most recent file into IE to
open it, and click the Compact View tab at the top. The line you're looking for is the one with
HTTPSYS CACHEABLE in the Event Name column:

HttpsysCacheable="true", Reason="OK",
CachePolicy="USER _INVALIDATES", TimeToLive="o"

This says that the file is cache able by http.sys. Uyou press Ctrl+Refresh enough times in a row,
you'll notice that FRT stops creating new trace files after the file starts to be served from http. sys.

Now let's change the URL to include a query string, which will prevent http.sys from caching it. Just
adding a question mark to the end of the URL will be enough. Press Ctrl+Refresh a bunch of times in a
row, as before. This time, notice that the files don't stop appearing in the folder as they did before. Open
the latest XML file in IE, and click the Compact View tab as discussed earlier. The HTTPSYS_CACHEABLE line
reads similar to the following:

HttpsysCacheable="false", Reason="STATIC_REQUEST_QUERYSTRING",
CachePolicy="NO_CACHE", TimeToLive="o"

This tells you that the file is not cacheable by http.sys, and the reason is that the request includes a
query string.

CHAPTER 4 D liS 7.5

You can use FRT to help diagnose unexpected behavior in caching, in compression, or during many
of the other steps in the IIS pipeline. It's also useful to catch pages that are running slowly. For example,
you might collect tracing on all of the requests that take longer than one second to execute to help
identify bottlenecks. In production environments, I suggest enabling it on as few servers as you can and
only for as long as you need it, since there is a performance cost when it's running.

Miscellaneous liS Performance Tuning
Here are a few miscellaneous tips for tuning IIS:

• Order the list of file types for default documents by their approximate frequency of
use, and delete any file types that you don't use. For example, if most of your
default pages are default. aspx and you have a few index. htm, then place
default. aspx at the top of the list, followed by index. htm, and remove all the other
entries. If defaul t. aspx is located at the end of the list, then IIS will look for all the
other files every time users access the default page. You can make this change at
both the site level and for individual folders.

• Remove modules that you aren't using. Configured modules still handle pipeline
events, even if you're not using them. This also helps from a security perspective
by reducing the attack surface of the application.

• Don't allow the use of web. con fig files in subdirectories of your applications. You
should have only a single web. config at the top level. With that restriction in place,
you can modify applicationHost. config as follows so that IIS doesn't search for
config files where they won't exist, including in odd places such as
file. htm/web. config, where IIS is checking to see whether the file name might be
a folder:

<system.applicationHost>
<sites>

<virtualDirectoryDefaultsall0t6ubDirConfig="false" I>
</sites>

</system.applicationHost>

Summary
In this chapter, I covered the following:

• When you should use multiple AppPools or a web garden.

• Configuring recycling on your AppPools.

• How HttpModules and request handlers fit into the IIS request-processing pipeline.

• UsingWSRM to help manage contention between AppPools.

• Using Log Parser to find HTTP errors in your log files.

• Using consistent URLs to help eliminate unnecessary HTTP redirects.

157

�CHAPTER 4 liS 7.5

158

• How to remove the X-Powered-By, Server, ETag, and X-Aspnet-Version HTTP
headers.

• Enabling static and dynamic compression, and optimizing the compression
configuration settings.

• Enabling caching for compressed content.

• Programmatically enabling compression.

• Why it's important not to disable HTTPkeep-alives.

• Using virtual directories and URL rewriting to reduce the length of your URLs.

• Using robots. txt and site maps to help limit the load on your site from search
engines and other bots.

• Using bandwidth throttling to help manage the load from network traffic and total
data transferred.

• Using Failed Request Tracing to trace requests that take too long or that aren't
being processed in a way that you expect, such as with caching or compression.

• Miscellaneous tips for tuning IIS.

CHAPTER 5

ASP.NET Threads and Sessions

For many ASP.NET -based web sites, an effective way to improve site performance and scalability is by
thoroughly addressing issues related to threads and sessions.

In this chapter, I'll cover the following:

• The very negative impact of using synchronous pages when you make out -of
process or off-server calls

• Improving the scalability of your site by using asynchronous pages and
background worker threads

• A brief overview of locking as it applies to asynchronous programming

• The scalability impact of the default session state provider, why it's best to avoid
session state if you can, and what the alternatives are

• An approach to building a customized and highly scalable session state provider

Threads Affect Scalability
I've noticed that many large sites end up spending a lot of effort optimizing their systems in the wrong
places.

As an example, let's say that you're building a one-page site that should support 1,200 simultaneous
users, with a response time of one second or less, and you have plans to scale-up later on to 120,000
users.

During load testing, you reach your maximum acceptable response time after reaching 120
simulated users on a single CPU, and the CPU is 24% busy. As you increase the load, you find that CPU
use stays the same, but response time increases. By the time you reach 1,200 users, response time is ten
seconds-ten times what it was at 120 users.

At this stage, you will need ten CPU cores (best case, assuming linear scaling) to support your target
user load and performance goals in the short term, and 1,000 cores in the long term.

To determine to what extent you can to optimize this scenario, you measure the time it takes to
process each phase of a single request on an unloaded machine. The results are in Figure 5-1.

159

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

160

Send, 16ms

Generate,
2ms

Request, 5ms

Figure 5-1. Time to process a hypothetical web page request

Database,
77ms

You find that receiving O.SKB at 128Kbps takes Sms, obtaining the needed data from the database
takes 77ms, generating the response HTML takes 2ms, and sending the SKB response at 384Kbps takes
16ms.

When faced with data like this, the first place many developers would look for improvements is the
slowest part of the process, which in this case is the database access. In some environments, the
database is a black box, so you can't tune it. When you can, the usual approach is to put a lot of
emphasis on query optimization. Although that certainly can be helpful, it often doesn't completely
solve the problem. In later chapters, I'll show some reasons why that's the case and what you can do
about it. For this example, let's assume the queries are already fully tuned.

The next largest chunks of time are spent receiving the request and sending the response. A typical
initial reaction of developers is that "you can't do anything about the client's data transmission rates, so
forget about the request and response times." As I've shown in Chapter 2, that clearly is not the whole
story.

That leaves the time to generate the HTML, which in this case is only 2 percent of the total request
processing time. Because that part of the application appears to developers to be most readily under
their control, optimizing the time spent there is often where they end up spending their performance
improvement efforts. However, even if you improve that time by 50 percent, down to Ims, the overall
end-to-end improvement seen by end users may only be 1 percent. In this example, CPU use would
decline to 12 percent, but you would still need the same total number of CPUs; it doesn't improve
scalability.

I would like to suggest looking at this problem in a much different way. In a correctly designed
architecture, the CPU time spent to process a request at the web tier should not be a primary factor in
overall site performance or scalability. In the previous example, an extra 2ms one way or the other won't
be noticeable by an end user.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

In this example, and often in the real world as well, reducing the CPU time spent by the web tier in
generating the pages reduces the CPU load on each machine, but it doesn't improve throughput or
reduce the number of machines you need.

What's happening in the example is that the site's throughput is limited by the IIS and ASP.NET
thread pools. By default, there are 12 worker threads per CPU. Each worker processes one request at a
time, which means 12 requests at a time per CPU. If clients present new requests when all of the worker
threads are busy, they are queued.

Since each request takes lOOms to process from end to end, one thread can process ten requests per
second. With 12 requests at a time, that becomes 120 requests per second. With 2ms of CPU time per
request, 120 * 0.002 = 0.24 or 24% CPU use.

The solution to scalability in this case is to optimize thread use, rather than minimizing CPU use.
You can do that by allowing each worker thread to process more than one request at a time, using
asynchronous database requests. Using async requests should allow you either to reach close to 100%
CPU use, or to push your scalability issues to another tier, such as the database. At 100% CPU use, you
would only need one quarter of the CPU s you did at the start.

Adding more worker threads can help in some cases. However, since each thread has costs
associated with it (startup time, memory, pool management, context switch overhead), that's only
effective up to a point.

In this example, caching helps if you can use it to eliminate the database request. Threads come into
play when you can't. When CPU use per server averages 70 to 80+ percent under peak load, then it tends
to become a determining factor for how many CPU s you need. At that stage, it makes sense to put effort
into optimizing the CPU time used by the application-but to minimize the number of servers you need,
not to improve performance from the user's perspective.

Of course, there are cases where CPU use is the dominant factor that you should address first, but
once a site is in production, those cases tend to be the exception and not the rule. Developers and testers
tend to catch those cases early. Unfortunately, threading issues often don't appear until a site goes into
production and is under heavy load.

Low CPU use per server is one reason some sites have found that using virtual machines (VMs) or
IIS web gardens can improve their overall throughput. Unfortunately, VMs add overhead and can
complicate operations, deployment, and maintenance. You should weigh those options against the
effort to modify your applications to improve thread use through async requests and related
optimizations covered in this chapter.

ASP.NET Page Life Cycle
As I discussed in Chapter 4, HTTP requests processed by IIS go through a series of states on the way to
generating a response. Similarly, ASP.NET pages also go through a series of states. As with IIS, the
runtime generates events at each state that you can register a handler for and take action on. See Figure
5-2 for a diagram of the standard synchronous page life cycle and associated events.

161

�

�

CHAPTER 5 ASP.NET THREADS AND SESSIONS

162

Request

~ --,,;g;~~~ ~I~ :::: :
Thread I

II Pre-init I

II Init I

II Init Complete I

,II Pre-load I
II load I
, •.••..•..•. J •....••.••..•
: Control Events .
, ·1·······, .

II load Complete I
II Pre-render I
II Pre-render Complete I
II Save State Complete I

C Render

II Unload I

_____ L ____)

~ _ End .:x~u~ Handle~ _ J

Response

Figure 5-2. ASP.NET page processing life cycle and events

The HTTP request enters the page-processing pipeline at the top of the figure, when IIS starts to
execute the Page Handler (see also Figure 4-2). As the processing progresses, the runtime moves from
one state to another, calling all registered event handlers as it goes. In the synchronous case, a single
thread from the ASP.NET thread pool does all the processing for the page.

Note The Render phase is not an event. All pages and controls have a RenderO method that's responsible for
generating the output that will be sent to the client.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

For Init and Unload, the runtime fires the events for child controls before the parent (bottom-up),
so the Page events fire last. For Load and PreRender, the runtime fires events in the parent followed by
child events (top-down), so Page events fire first. The other events in the figure above, except for Control
Events, only exist at the Page level, not in controls. The runtime treats master pages as child controls of
the Page.

DataBind is an optional event that happens after PreRender either when you set a DataSourceID
declaratively, or when you call DataBind ().

If you have code blocks in your markup (using <%= %», the runtime executes that code during the
Render phase. That's why you can't set control properties using code blocks; controls are instantiated,
including setting their initial properties, at the beginning of the page life cycle, whereas Render happens
at the end.

Instead of the usual serial and synchronous approach, it's possible to configure a page to run
asynchronously. For asynchronous pages, ASP.NET inserts a special "async point" into the page life
cycle, after the PreRender event. One thread executes the part of the life cycle before the async point and
starts the async requests. Then the same thread, or possibly a different one from the thread pool,
executes the rest of the life cycle after the async point. See Figure 5-2.

Request , ________ l _______ _
I Begin Execute Handler : L------- l --------·

Thread A I
I Pre-init I
I Init I
I Init Complete I
I Pre-load I
I Load I
•••••.•••••••••••••••••• J •••••••••••••••••••••••••

i Control Events i
L·····················T ······················:

I Load Complete I
I Pre-render I
, __________ ..J. __________ _

! Async Begin !
Async -.--------""]-----------1
Point i-------il.;ync-End--------!

---------------- ______ 1

Thread B I
I Pre-render Complete I
I Save State Complete I
(Render)

I Unload I
, ________ L _______ _

1 End Execute Hanc'ler : L------- l --------·
Response

Figure 5-3. Asynchronous page processing life cycle and events

163

�

�

CHAPTER 5 ASP.NET THREADS AND SESSIONS

164

Application Thread Pool
Let's put together a test case to demonstrate how the application thread pool processes both sync and
async pages.

Synchronous Page
Add a new web form in Visual Studio, and call it sql-sync.aspx. Keep the default markup, and use the
following code-behind:

using System;
using System.Data.SqlClient;
using System.Web.UI;

public partial class sql_sync : Page
{

public const string ConnString = "Data Source=.;Integrated Security=True";

protected void Page_Load(object sender, EventArgs e)
{

using (SqlConnection conn = new SqlConnection(ConnString»
{

conn. Open 0;
using (SqlCommand cmd = new SqlCommand("WAITFOR DELAY '00:00:01''', conn»
{

cmd.ExecuteNonQuery();
}

}
}

}

The code connects to SQL Server on the local machine and issues a WAITFOR DELAY command that
waits for one second.

Note I'm using a connection string that's compatible with a local default instance of a "full" edition of Sal
Server, such as Developer, Enterprise or Standard. If you're using Sal Server Express, which works with most (but
not all) of the examples in the book, the Data Source field should be • \SQLEXPRESS. In both cases, the dot is
shorthand for localhost or your local machine name. I'm showing connection strings in-line for clarity. In a
production application, you should usually store them in web. config or a related configuration file.

You don't need to specify which database to connect to, since you aren't accessing any tables or
other securables.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

Asynchronous Page Using the Asynchronous Programming Model
Next, create another page called sql-async. aspx. Change the Page directive in the markup fIle to include
Async="true":

<%@ Page Language="C#" Async="true" AutoEventWireup="true"
CodeFile="sql-async.aspx.cs" Inherits="sql_async" %>

That tells the runtime that this page will be asynchronous, so it will create the async point as in
Figure 5-3.

Next, create the code-behind as follows, using the asynchronous programming model (APM):

using System;
using System.Data.SqlClient;
using System.Web;
using System.Web.UI;

public partial class sql_async : Page
{

public const string ConnString = "Data Source=.;Integrated Security=True;Async=True";

Here you are including Async= True in the connection string to inform SQL Server that you will be
issuing asynchronous queries. Using async queries requires a little extra overhead, so it's not the default.

protected void Page_Load(object sender, EventArgs e)
{

}

PageAsyncTask pat = new PageAsyncTask(BeginAsync, EndAsync, null, null, true);
this.RegisterAsyncTask(pat);

In the Page_Load 0 method, you create a PageAsyncTask object that refers to the BeginAsync 0
method that the runtime should call to start the request and the EndAsync 0 method that it should call
when the request completes. Then you call RegisterAsyncTaskO to register the task. The runtime will
then call BeginAsync 0 before the PreRenderComplete event, which is fired before the markup for the page
is generated.

private IAsyncResult BeginAsync(object sender, EventArgs e,
AsyncCallback cb, object state)

{

}

SqlConnection conn = new SqlConnection(ConnString);
conn. Open 0;
SqlCommand cmd = new SqlCommand("WAITFOR DELAY '00:00:01''', conn);
IAsyncResult ar = cmd.BeginExecuteNonQuery(cb, cmd);
return ar;

The BeginAsyncO method opens a connection to SQL Server and starts the WAITFOR DELAY command
by calling Begin ExecuteNonQuery (). This is the same database command that was used in the
synchronous page, but BeginExecuteNonQuery() doesn't wait for the response from the database like
ExecuteNonQuery() does.

165

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

166

private void EndAsync(IAsyncResult ar)
{

using (SqlCommand cmd = (SqlCommand)ar.AsyncState)
{

using (cmd.Connection)
{

int rows = cmd.EndExecuteNonQuery(ar);
}

}
}

}

The runtime will call EndAsync 0 when the async database call completes. EndAsync 0 calls
EndExecuteNonQueryO to complete the command. You have two using statements that ensure DisposeO
is called on the SqlConnection and SqlCommand objects.

Keep in mind when writing async pages that it doesn't help to perform CPU-intensive operations
asynchronously. The goal is to give up the thread when it would otherwise be idle waitingfor an
operation to complete so that it can do other things. If the thread is busy with CPU-intensive operations
and does not go idle, then using an async task just introduces extra overhead that you should avoid.

Asynchronous Page Using the Task-Based Asynchronous Pattern
Starting in .NET 4.5, you have the option of implementing async pages using the task-based
asynchronous pattern (TAP), which results in code that's easier to read, write, and maintain (see sql
async2. aspx. cs):

using System;
using System.Data.SqlClient;
using System. Threading. Tasks;
using System.Web.UI;

public partial class sql_async2 : Page
{

}

public const string ConnString = "Data Source=.;Integrated Security=True;Async=True";

protected async void Page_PreRender(object sender, EventArgs e)
{

}

using (SqlConnection conn new SqlConnection(ConnString))
{

}

conn. Open 0;
using (SqlCommand cmd = new SqlCommand("WAITFOR DELAY '00:00:01"', conn))
{

}

await Task.Factory.FromAsync<int>(cmd.BeginExecuteNonQuery,
cmd.EndExecuteNonQuery, nUll);

The connection string and the Page directive still require Async= True. Instead of using the async
Begin and End methods directly, you add the async keyword to the Page _PreRender event handler, and

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

structure the database calls nearly as you would for the synchronous case. However, instead of using
ExecuteNonQueryO, you call Task. Factory. FromAsyncO with the names of the Begin and End methods,
and prefix the call with the await keyword. That will start the async operation and create a hidden, in
place continuation that the runtime will call when it completes.

With this approach, note that the thread returns to the thread pool right after starting the request, so
the runtime won't execute any code after the line with the await keyword until after the async request
completes.

One difference between using TAP and APM for async pages is that TAP starts the async operation
right away, whereas by defaultAPM queues the async request and doesn't start it until the async point,
right after the PreRender event.

Asynchronous vs. Synchronous Load Tests
For the tests below to work as I describe, use Windows Server 2008 or 2008 R2. Threading behaves
differently with IIS on Vista or Windows 7, which support only either three or ten simultaneous requests,
depending on the edition you're using.

Add the new pages to a web site that's running under IIS (not IIS Express or Cassini), and check to
make sure they're working.

Let's use the same load test tool as in Chapter 3, WCAT. Create the configuration file as follows in
the WCAT Controller folder, and call it c2. cfg:

Warmuptime 55
Duration 305
CooldownTime Os
NumClientMachines 1
NumClientThreads 100

The test will warm up for 5 seconds and run for 30 seconds, using a single client process with 100
threads.

Let's test the synchronous case first. Create the test script in the same folder, and call it 52. cfg:

SET Server = "localhost"
SET Port = 80
SET Verb = "GET"
SET KeepAlive = true

NEW TRANSACTION
classld = 1
Weight = 100
NEW REQUEST HTTP
URL = "/sql-sync.aspx"

You can of course adjust the server name or port number if needed.

Load Test Results
You are now ready to run the first test. Open one window with the WCAT Controller and another with
the WCAT Client. In the controller window, start the controller as follows:

wcctl-a localhost -c C2.cfg -5 S2.cfg

167

�

�

CHAPTER 5 ASP.NET THREADS AND SESSIONS

168

In the client window, start the client:

wcclient localhost

I used a virtual machine for the test, configured as a single CPU socket with four cores, running
Windows Server 2008 R2 x64 and IIS 7.5 with .NET 4.5. I ran WCAT from the host, with Windows 7
Ultimate x64. I started the test right after restarting the AppPool. Here are the results, as shown in the
client window at the 10,20, and 30-second points:

Total 200 OK 133 (13/Sec)
Avg. Response Time (Last) 8270 MS

Total 200 OK 370 (23/Sec)
Avg. Response Time (Last) 6002 MS

Total 200 OK 701 (23/Sec)
Avg. Response Time (Last) 4680 MS

Even though the only thing the page does is to sleep for one second, the server is able to deliver just
13 to 23 requests per second, and the average response time ranges from 8.3 to 4.7 seconds.

Next, change the URL in S2.cfg to refer to one of the async pages, recycle the AppPool, and repeat
the test. Here are the results:

Total 200 OK 1000 (loo/Sec)
Avg. Response Time (Last) 1001 MS

Total 200 OK 2000 (loo/Sec)
Avg. Response Time (Last) 1001 MS

Total 200 OK 3000 (100/Sec)
Avg. Response Time (Last) 1002 MS

The number of requests per second has increased by a factor of four, to 100 per second, and the
response time has decreased to one second-which is what you would expect with 100 request threads
each running a task that sleeps for one second.

Note If you increase NumClientThreads above 100 for the async test case, you will find that the load test

slows down again. This happens because the SQl Server client API by default supports a maximum of 100

simultaneous connections per unique connection string. Beyond that, connection requests to the database are
queued. You can increase the maximum by setting Max Pool Size in the connection string.

Why is the synchronous case so much slower?
In the synchronous test case, one thread can handle only one request at a time. Since there were 13

requests per second at the lO-second mark, and since each request ties up a thread the whole time it
runs, you can tell that there were 13 threads, or roughly three per CPU core. By 20 seconds, there were 23
requests per second, which means 23 threads, or roughly six per core. The runtime added more threads
when it detected requests that were being queued.

�

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

Since creating new threads is a relatively expensive operation, the runtime adds them slowly, at a
maximum rate of about two per second. This can cause accentuated performance problems on web sites
with relatively bursty traffic, since the thread pool may not grow quickly enough to eliminate request
queuing.

In the async case, after a thread starts the async operation, the thread returns to the pool, where it
can go on to process other requests. That means it takes far fewer threads to process even more requests.

Tuning the liS Application Thread Pool
You can tune the thread pool in IIS 7 and 7.5 by editing the Aspnet.config file, which is located in
C: \Windows \Microsoft. NET\ Framework\ v4. 0.30319. Here's an example:

<configuration>

<system.web>
<applicationPool maxConcurrentRequestsPerCPU="Sooo"

maxConcurrentThreadsPerCPU="O"
requestQueueLimit="Sooo" />

</system.web>
</configuration>

The parameters in the example are the same as the defaults for .NET 4.5. After updating the fIle, you
will need to restart IIS in order for the changes to take effect. If you rerun the previous tests, you should
see that they both produce the same results.

You can also get or set two of these parameters programmatically, typically from Application_Start
in global. asax:

using System. Web. Hosting;

HostingEnvironment.MaxConcurrentRequestsPerCPU = 5000;
HostingEnvironment.MaxConcurrentThreadsPerCPU = 0;

You can adjust the limits on the number of concurrent requests per CPU with the
maxConcurrentRequestsPerCPU parameter, and the threads per CPU with the maxConcurrentThreadsPerCPU
parameter. A value of 0 means that there is no hard limit. One parameter or the other can be set to 0, but
not both. Both can also have nonzero values. Enforcing thread limits is slightly more expensive than
enforcing request limits.

The number of concurrent requests and concurrent threads can only be different when you're using
async pages. If your pages are all synchronous, each request will tie up a thread for the duration of the
request.

Note In addition to the concurrent request limits that liS imposes, the http.sys driver has a separately

configured limit, which is set to 1,000 connections by default. If you reach that limit, http.sys will return a 503

Service Unavailable error code to clients. If you see those errors in your liS logs (or if they are reported by

users), consider increasing the Queue Length parameter in AppPool Advanced Settings.

For most applications, the defaults in .NET 4.5 work fine. However, in some applications, serializing
requests to some degree at the web tier by reducing maxConcurrentRequestsPerCPU or by using
maxConcurrentThreadsPerCPU instead can be desirable in order to avoid overloading local or remote

169

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

170

resources. For example, this can be the case when you make heavy use of web services or when the
number of threads in the thread pool becomes excessive. In mixed-use scenarios, you may find that it's
better to implement programmatic limits on resource use, rather than trying to rely entirely on the
runtime.

In sites whose primary off-box calls are to SQL Server, it's usually better to allow many simultaneous
requests at the web tier, and let the database handle queuing and serializing the requests. SQL Server
can complete some requests quickly, and in a large-scale environment, there might be multiple
partitioned database servers. In those cases, the web tier just doesn't have enough information for a
policy of substantially limiting the number of simultaneous requests to be an effective performance
enhancing mechanism.

Improving the Scalability of Existing Synchronous Pages
Since increasing the maximum number of concurrent requests or threads won't help the sync test case,
if you have a large site with all-sync requests, you might be wondering whether there's anything you can
do to improve throughput while you're working on converting to async. If your application functions
correctly in a load -balanced arrangement and you have enough RAM on your web servers, then one
option is to configure your AppPools to run multiple worker processes as a web garden.

In the previous sync test case, if you configure the AppPool to run two worker processes, throughput
will double. One price you pay for multiple workers is increased memory use; another is increased
context switch overhead. Data that can be shared or cached will need to be loaded multiple times in a
web garden scenario, just as it would if you were running additional web servers.

Executing Multiple Async Tasks from a Single Page
While developing async pages, you will often run into cases where you need to execute multiple tasks on
a single page, such as several database commands. Some of the tasks may not depend on one another
and so can run in parallel. Others may generate output that is then consumed by subsequent steps.
From a performance perspective, it's usually best to do data combining in the database tier when you
can. However, there are also times where that's not desirable or even possible.

Executing Tasks in Parallel Using APM
The first solution to this issue works when you know in advance what all the steps will be and the details
of which steps depend on which other steps. The fifth (last) argument to the PageAsyncTask constructor
is the executelnParallel flag. You can register multiple PageAsyncTask objects with the page. When you
do, the runtime will start them in the order they were registered. Tasks that have executelnParallel set
to true will be run at the same time. When the flag is set to false, those tasks will run one at a time, in a
serialized fashion.

For example, let's say that you have three tasks, the first two of which can run at the same time, but
the third one uses the output of the first two, so it shouldn't run until they are complete (see async
parallel.aspx):

protected void Page_Load(object sender, EventArgs e)
{

PageAsyncTask pat = new PageAsyncTask(BeginAsyncl, EndAsyncl, null, null, true);
this.RegisterAsyncTask(pat);
pat = new PageAsyncTask(BeginAsync2, EndAsync2, null, null, true);
this.RegisterAsyncTask(pat);
pat = new PageAsyncTask(BeginAsync3, EndAsync3, null, null, false);

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

this.RegisterAsyncTask(pat);
}

The executelnParallel flag is set to true for the first two tasks, so they run simultaneously. It's set to
false for the third task, so the runtime doesn't start it until the first two complete.

The fourth argument to the PageAsyncTask constructor is a state object. Uyou provide a reference to
one, it will be passed to your BeginEventHandler. This option can be helpful if the BeginEventHandler is in
a different class than your page, such as in your data access layer (DAL).

Executing Async Tasks After the PreRender Event
The other approach to this issue relies on the fact that the runtime won't advance to the next state in the
page-processing pipeline until all async tasks are complete. That's true even if you register those tasks
during the processing of other async tasks. However, in that case, you need to take one extra step after
registering the task, which is to start it explicitly.

The following builds on the previous sql-async.aspx example (see async-seq .aspx):

private void EndAsync(IAsyncResult ar)
{

}

using (SqlCommand cmd = (SqlCommand)ar.AsyncState)
{

using (cmd.Connection)
{

int rows = cmd.EndExecuteNonQuery(ar);
}

}
PageAsyncTask pat = new PageAsyncTask(BeginAsync2, EndAsync2, null, null, true);
this. RegisterAsyncTask(pat);
this. ExecuteRegisteredAsyncTasks();

The call to ExecuteRegisteredAsyncTasks () will start any tasks that have not already been started.
It's not required for tasks that you've registered before the end of Pre Render event processing. This
approach also allows the tasks to be conditional or to overlap in more complex ways than the
executelnParallel flag allows.

You can also call ExecuteRegisteredAsyncTasksO earlier in the page life cycle, which will cause the
runtime to execute all registered tasks at that time, rather than at the async point. Tasks are called only
once, regardless of how many times you call ExecuteRegisteredAsyncTasks ().

Executing Tasks in Parallel Using TAP
You can also use TAP to execute tasks in parallel (see async-paralle12.aspx.cs):

using System;
using System.Data.SqlClient;
using System. Threading. Tasks;
using System.Web.UI;

public partial class async_paralle12 : Page
{

public const string ConnString = "Data Source=.;Integrated Security=True;Async=True";

171

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

172

}

protected void Page_PreRender(object sender, EventArgs e)
{

}

Task10 ;
Task20;

private async void Task1()
{

}

using (SqlConnection conn = new SqIConnection(ConnString))
{

}

conn. Open 0;
using (SqlCommand cmd = new SqICommand("WAITFOR DELAY '00:00:01"', conn))
{

await Task.Factory.FromAsync<int>(cmd.BeginExecuteNonQuery,
cmd.EndExecuteNonQuery, nUll);

}
using (SqlCommand cmd = new SqICommand("WAITFOR DELAY '00:00:02''', conn))
{

}

await Task.Factory.FromAsync<int>(cmd.BeginExecuteNonQuery,
cmd.EndExecuteNonQuery, nUll);

private async void Task2()
{

}

using (SqlConnection conn = new SqIConnection(ConnString))
{

}

conn. Open 0;
using (SqlCommand cmd = new SqICommand("WAITFOR DELAY '00:00:03''', conn))
{

}

await Task.Factory.FromAsync<int>(cmd.BeginExecuteNonQuery,
cmd.EndExecuteNonQuery, nUll);

Task10 will start the first SQL command and then return, and Task20 will then start the second
command in parallel. After the first command in Task1 0 completes, the second one will be called. By
using slightly different parameters for each WAITFOR DELAY command, you can easily follow the sequence
of events with SQL Profiler.

Handling Timeouts
As the third parameter in the PageAsyncTask constructor, you can pass a delegate that the runtime will
call if the async request takes too long to execute:

PageAsyncTask pat = new PageAsyncTask(BeginAsync, EndAsync, TimeoutAsync, null, true);

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

You can set the length of the timeout in the Page directive in your markup file:

<%@ Page AsyncTimeout="30" • • • %>

The value of the AsyncTimeout property sets the length of the timeout in seconds. However, you
can't set a separate timeout value for each task; you can set only a single value that applies to all of them.

You can set a default value for the async timeout in web. con fig:

<system.web>
<pages asyncTimeout="30" • • • I>

</system.web>

You can also set the value programmatically:

protected void Page_Load(object sender, EventArgs e)
{

this.AsyncTimeout = TimeSpan.FromSeconds(30)j

}

Here's an example that forces a timeout (see async -timeout. aspx):

using System;
using System.Data.SqlClient;
using System.Web.UI;

public partial class async_timeout Page
{

public const string ConnString "Data Source=.;Integrated Security=True;Async=True";

protected void Page_Load(object sender, EventArgs e)
{

}

this.AsyncTimeout = TimeSpan.FromSeconds(5);
PageAsyncTask pat = new PageAsyncTask(BeginAsync, EndAsync,

TimeoutAsync, null, true);
RegisterAsyncTask(pat);

You set the timeout to five seconds and then create and register the task.

private IAsyncResult BeginAsync(object sender, EventArgs e,
AsyncCallback cb, object state)

{

}

SqlConnection conn = new SqlConnection(ConnString);
conn. Open 0;
SqlCommand cmd = new SqlCommand("WAITFOR DELAY '00:01:00"', conn);
IAsyncResult ar = cmd.BeginExecuteNonQuery(cb, cmd);
return ar;

The WAIT FOR command waits for one minute, which is longer than the five-second timeout, so the
page will display the error message when it runs.

173

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

174

}

private void EndAsync(IAsyncResu1t ar)
{

using (Sq1Command cmd = (Sq1Command)ar.AsyncState)
{

using (cmd.Connection)
{

int rows = cmd.EndExecuteNonQuery(ar);
}

}
}

private void TimeoutAsync(IAsyncResu1t ar)
{

}

error Label. Text = "Database timeout error.";
Sq1Command cmd = (Sq1Command)ar.AsyncState;
cmd.Connection.Dispose();
cmd .DisposeO;

The runtime doesn't call the end event handler if a timeout happens. Therefore, in the timeout
event handler, you clean up the Sq1Command and Sq1Connection objects that were created in the begin
handler. Since you don't have any code that's using those objects here like you do in the end handler,
you explicitly call their DisposeO methods instead ofrelying on using statements.

Asynchronous Web Services
Another type of long-running task that's a good candidate to run asynchronously is calls to web services.
As an example, let's build a page that uses Microsoft's TerraServer system to get the latitude and
longitude for a given city in the United States. First, right -click your web site in Visual Studio, select Add
Service Reference, and enter the URL for the WSDL:

http://terraserverusa.com/TerraService2.asmx?WSDL

Click the Go button to display the available services. See Figure 5-3.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

Add Service Reference ['i,l I J

To see a list of available services on a specific server, enter a service URland click Go. To browse for available
services, click Discover.

Address:

http://terraserverusa.com!TerraService2.asmx?WSDl
y 8 II Discover H

rS_erv_i7ces __ : -------------------,rO~p-er-at-io-n-s:----------------------------__ -,
0 !fl TerraService '\l ConvertlonlatPtToNearestPlace

00 T erraServiceSoap Convertl onlatPtT oUtmPt

ConvertPlace TolonlatPt

ConvertUtmPtT olonlatPt

CountPlaceslnRect

GetAreaFromPt

.... GetAreaFromRect

GetAreaFrom TileJd

GetlatlonMetrics

[1 service(s) found at address 'http://terraserverusa .com!TerraService2.asmx?WSDl'.

Namespace:

TerraServer

Advanced ... 1::: :: :?:<::::::I I Cancel

Figure 5-4. Adding a service reference for TerraService

Set the Namespace to TerraServer and click OK to finish adding it.
Next, add a web form called terra1.aspx.
Set Async= "True" in the Page directive, and add two <asp: Label> tags to hold the eventual results:

<%@ Page Async="true" Language="C#" AutoEventWireup="true"
CodeFile="terral.aspx.cs" Inherits="terral" %>

<!DOCTVPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"
''http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns=''http://www.w3.org/1999/xhtml''>
<head runat="server">

<title></title>
</head>
<body>

<form id="forml" runat="server">
<div>

<asp:Label runat="server" ID="LA" I>
<br I>
<asp:Label runat="server" ID="LO" I>

</div>
</form>
</body>
</html>

175

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

176

Here's the code-behind (see terral. aspx. cs):

using System;
using System.Web.UI;
using TerraServer;

public partial class terral : Page
{

}

protected async void Page_Load(object sender, EventArgs e)
{

}

var terra = new TerraServiceSoapClient();
Place place = new Place()
{

};

City = "Seattle",
State = "WA",
Country = "US"

var result = await terra.GetPlaceFactsAsync(place);
Place Facts facts = result.Body.GetPlaceFactsResult;
this. LA. Text String. Format("Latitude: {O:O.##}", facts.Center.Lat);
this.LO.Text = String. Format("Longitude: {O:O.##}", facts.Center.Lon);

Services use the TAP model for async operations, so start by adding the async keyword to the
declaration for Page_LoadO. Create an instance of the TerraServerSoapClient service proxy object that
Visual Studio created for you, along with a Place object that contains the City, State and Country you
want to lookup.

Invoke the web service asynchronously by calling GetPlaceFactsAsync () with the Place object as an
argument, and await the response. When the call returns, get the PlaceFacts object from the results and
use it to obtain the latitude and longitude of the specified Place.

Asynchronous File 1/0
For an asynchronous fIle 110 example usingAPM, create a new web form called filel.aspx. Set
Async= True in the Page directive and add the same two Labels to the markup as you did for the web
service example earlier.

Here's the code-behind (see filel.aspx.cs):

using System;
using System.IO;
using System.Web;
using System.Web.UI;

public partial class filel : Page
{

private byte[] Data { get; set; }

protected void Page_Load(object sender, EventArgs e)
{

PageAsyncTask pat = new PageAsyncTask(BeginAsync, EndAsync, null, null, true);
RegisterAsyncTask(pat);

�

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

}

As before, you create and register the async task. You're not using a timeout handler here since local
fIle access shouldn't need it.

private IAsyncResult BeginAsync(object sender, EventArgs e,
AsyncCallback cb, object state)

{

}

FileStream fs = new FileStream(this.Server.MapPath("csg.png"),
FileMode.Open, FileAccess.Read, FileShare.Read, 4096,
FileOptions.Asynchronous I FileOptions.SequentialScan)j

this.Data = new byte[64 * 1024]j
IAsyncResult ar = fs.BeginRead(this.Data, 0, this.Data.Length, cb, fS)j
return arj

To use a FileStream for asynchronous fIle I/O, be sure to either set the useAsync parameter to true
or include the FileOptions .Asynchronous bit in the FileOptions flag. For best performance, you should
use a buffer size of IKB or more; I've used 4KB in the example. For larger files, you may see a slight
performance improvement with buffers up to about 64KB in size. If you know the access pattern for your
fIle (random vs. sequential), it's a good idea to include the corresponding flag when you create the
FileStream, as a hint that the OS can use to optimize the underlying cache. I've specified
FileOptions. SequentialScan to indicate that I will probably read the file sequentially.

To use TAP instead of APM, you can call FileStream. ReadAsync 0 to start the read operation and
return an awaitable Task object:

int size = await fs.ReadAsync(this.Data, 0, this.Data.Length)j

Tip When you're reading just a few bytes, async file I/O can be considerably more expensive than synchronous
I/O. The threshold varies somewhat, but I suggest a 1 KB file size as a reasonable minimum: for files less than 1 KB
in size, you should prefer synchronous I/O.

}

private void EndAsync(IAsyncResult ar)
{

}

using (FileStream fs = (FileStream)ar.AsyncState)
{

}

int size = fS.EndRead(ar)j
this. LA. Text = "Size: " + sizej

When the I/O is done, you call EndReadO to get the number of bytes that were read and then write
that value in one of the labels on the page.

The process for async writes is similar. However, in many cases even when you request an async
write, the operating system will handle it synchronously. The usual reason is that the OS forces all
requests that extend files to happen synchronously. If you create or truncate a file and then write it
sequentially, all writes will be extending the fIle and will therefore be handled synchronously. If the file

177

�

�

CHAPTER 5 ASP.NET THREADS AND SESSIONS

178

already exists, you can get around that by opening it for writing and, rather than truncating it, use
FileStream. SetLengthO to set the length of the fIle as early as you can. That way, if the old file is as long
as or longer than the new one, all writes will be asynchronous. Even if the fIle doesn't already exist,
calling FileStream. SetLength() as early as you can is still a good idea, since it can allow the operating
system to do certain optimizations, such as allocating the file contiguously on disk.

In addition, reads and writes to compressed fIlesystems (not individual compressed files) and to
fIles that are encrypted with NTFS encryption are forced by the OS to be synchronous.

Tip During development, it's a good practice to double-check that the OS is really executing your calls
asynchronously. With APM, you can do that by checking the IAsyncResult.CompletedSynchronously flag after
you issue the Begin request.

Asynchronous Web Requests
Following what by now I hope is a familiar pattern, let's walk through an example of how to execute a
web request asynchronously using TAP. First, create a new web form called webreql. aspx. Make the
same changes to the markup fIle that you did for the previous examples: set the Async flag in the Page
directive, and add the <asp: Label> controls.

Here's the code-behind (see webreq1. aspx. cs):

using System;
using System. Net;
using System. Text;
using System.Web.UI;

public partial class webreql : Page
{

}

protected async void Page_Load(object sender, EventArgs e)
{

}

WebRequest request = WebRequest.Create(.. http://www.apress.com/ ..);
WebResponse response = await request.GetResponseAsync();
StringBuilder sb = new StringBuilder();
foreach (string header in response. Headers. Keys)
{

}

sb.Append(header);
sb.Append(": ");
sb.Append(response.Headers[header]);
sb.Append("
");

this.LO.Text = sb.ToString();

Add the async keyword to the Page_Load 0 method. Create a WebRequest object, and await a call to its
GetResponseAsync 0 method. Mter the call returns, collect the response header keys and values into a
StringBuilder, along with a <br I> between lines, and display the resulting string in one of the labels on
the page.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

The WebRequest and WebResponse objects don't implement !Disposable, so you don't need to call
DisposeO as you did in the other examples.

Background Worker Threads
Another approach to offloading ASP.NET worker threads is to defer activities that might take a long time.
One way to do that is with a background worker thread. Rather than performing the task in-line with the
current page request, you can place the task in a local queue, which a background worker thread then
processes.

Background worker threads are particularly useful for tasks where you don't require confirmation
that they've executed on the current page before returning to the user and where a small probability that
the task won't be executed is acceptable, such as if the web server were to crash after the request was
queued but before the task was executed. For example, logging can fall in this category. Service Broker is
useful for longer tasks that you can't afford to skip or miss, such as sending an e-mail or recomputing
bulk data of some kind. I will cover Service Broker in Chapter 8.

ASP.NET does provide ThreadPool.QueueUserWorkItemO for executing work items in the
background. However, I don't recommend using it in web applications for two reasons. First, it uses
threads from the same thread pool that your pages use and is therefore competing for that relatively
scarce resource. Second, multiple threads can execute work items. One of the things that I like to use a
background thread for is to serialize certain requests. Since the standard ThreadPool is a shared object
whose configuration shouldn't be adjusted to extremes, task serialization isn't possible with
QueueUserWorkItemOwithout using locks, which would cause multiple threads to be blocked.

Similarly, the .NET Framework provides a way to asynchronously execute delegates, using
BeginlnvokeO. However, as earlier, the threads used in this case also come from the ASP.NET thread
pool, so you should avoid using that approach too.

There is a fundamental difference between native asynchronous II 0 and processing II 0 requests
synchronously in background threads (so they appear asynchronous). With native async, a single thread
can process many II 0 requests at the same time. Doing the same thing with background threads
requires one thread for each request. Threads are relatively expensive to create. Native async, as you've
been using in the examples, is therefore much more efficient in addition to not putting an extra load on
the worker thread pool, which is a limited resource.

C# USING AND LOCK STATEMENTS

The using statement in C# has the following syntax:

using (IDisposable disposable = (IDisposable)statement)
{

}

That code is shorthand for the following:

IDisposable disposable = (IDisposable)statementj
try
{

}
finally

179

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

180

{

}

if (disposable != nUll)
disposable.Dispose();

The idea is to make sure that !Disposable objects have their DisposeO methods called, even in the
event of an exception, an early return, or other changes in the flow of control.

The lock statement has the following syntax:

lock (obj)
{

}

That's shorthand for the following:

Monitor. Enter(obj);
try
{

}

finally
{

Monitor. Exit(obj);
}

The lock is released if an exception is thrown. However, it's important to note that when processing
exceptions thrown from inside the lock, it might be possible for your objects to be left in an inconsistent
state. For that reason, using an additional try/catch block inside a lock is sometimes necessary.

Background Thread for Logging
Here's a detailed example of using a background thread, which demonstrates a number of key principles
for async programming, such as locks (monitors), semaphores, queues, and signaling between threads.
The goal of the code is to allow multiple foreground threads (incoming web requests) to queue requests
to write logging information to the database in a background worker thread.

The code supports submitting logging requests to the worker thread in batches, rather than one at a
time, for reasons that will become clear later in the book.

See App _ Code\RequestInfo. cs:

names pace Samples
{

public class Requestlnfo
{

public string Page { get; private set; }

public Requestlnfo()
{

this.Page = HttpContext.Current.Request.Url.ToString();
}

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

}
}

The RequestInfo object encapsulates the information that you will want to write to the database
later. In this case, it's just the URL of the current page.

See App _Code \WorkItem. cs:

names pace Samples
{

public enum ActionType
{

}

None = 0,
Add = 1

The ActionType enum defines the various actions that the background worker thread will perform. I
use None as a placeholder for an unassigned value; it is not valid for a queued work item.

public class Workltem
{

private static Queue<Workltem> queue = new Queue<Workltem>();
private static Semaphore maxQueueSemaphore =

new Semaphore(MaxQueueLength, MaxQueueLength);
private static Object workltemLockObject = new Object();
private static Workltem currentWorkltem;
private static Thread worker;
public delegate void Worker();

The WorkItem class manages a collection of requests for work to be done, along with a static Queue of
WorkItems.

You use a Semaphore to limit how many WorkItem objects can be queued. When a thread tries to
queue a WorkItem, if the queue is full, the thread will block until the number of items in the queue drops
below MaxQueueLength. You apply a lock to workItemLockObject to serialize access to currentWorkItem, in
order to allow multiple threads to enqueue requests before you submit the WorkItem to the background
worker thread.

public ActionType Action { get; set; }
public ICollection<Requestlnfo> RequestlnfoList { get; private set; }

public static int MaxQueueLength
{

get { return 100; }
}

public int Count
{

get { return this.RequestlnfoList.Count; }
}

public static int QueueCount
{

get { return queue. Count; }
}

181

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

182

public Workltem(ActionType action)
{

this.Action = action;
this.RequestlnfoList = new List<Requestlnfo>();

}

The constructor stores the specified ActionType and creates a List to hold RequestInfo objects.
Using a List maintains the order of the requests.

private void Add(Requestlnfo info)
{

this.RequestlnfoList.Add(info);
}

The Add () method adds a RequestInfo object to the end of RequestInfoList.

private void Enqueue()
{

}

if (maxQueueSemaphore.WaitOne(1000))
{

}
else
{

}

lock (queue)
{

}

queue.Enqueue(this);
Monitor.Pulse(queue);

EventLog.WriteEntry("Application",
"Timed-out enqueueing a WorkItem. Queue size = " + QueueCount +
", Action = " + this.Action, EventLogEntryType.Error, 101);

The EnqueueO method adds the current WorkItem to the end of the Queue and signals the worker
thread. You write an error to the Windows event log if the access to the Semaphore times out.

This method waits up to 1,OOOms to enter the semaphore. If successful, the semaphore's count is
decremented. If the count reaches zero, then future calls to Wai tone o will block until the count is
incremented by calling ReleaseO from DequeueO.

After entering the semaphore, obtain a lock on the queue object since Queue. EnqueueO is not thread
safe. Next, save the current WorkItem in the queue. Then call Monitor. PulseO to signal the worker thread
that new work is available in the queue.

public static void QueuePageView(Requestlnfo info, int batchSize)
{

lock (workltemLockObject)
{

if (currentWorkltem == nUll)
{

currentWorkltem = new Workltem(ActionType.Add);
}
currentWorkltem.Add(info);
if (currentWorkltem.Count >= batchSize)
{

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

}
}

}

currentWorkltem.Enqueue();
currentWorkltem = null;

The QueuePageView() method starts by getting a lock on workItemLockObject to serialize access to
currentWorkItem. If currentWorkItem is null, then create a new WorkItem with a type of ActionType .Add.
After adding the given RequestInfo object to the List held by the WorkItem, if the number of objects in
that List is equal to the specified batch Size, then the WorkItem is enqueued to the worker thread.

public static Workltem Dequeue()
{

}

lock (queue)
{

}

for (;;)
{

}

if (queue.Count > 0)
{

}

Workltem workltem = queue.Dequeue();
maxQueueSemaphore.Release();
return workltem;

Monitor.Wait(queue);

The worker thread uses the DequeueO method to obtain the next WorkItem from the Queue. First, lock
queue to serialize access. If the queue has anything in it, then DequeueO the next item, ReleaseO the
semaphore, and return the WorkItem. Releasing the semaphore will increment its count. If another
thread was blocked with the count at zero, it will be signaled and unblocked.

If the queue is empty, then the code uses Monitor .WaitO to release the lock and block the thread
until the EnqueueO method is called from another thread, which puts a WorkItem in the queue and calls
Monitor. PulseO. After returning from the Wait, the code enters the loop again at the top.

}

public static void Init(Worker work)
{

}

lock (workltemLockObject)
{

}

if (worker == nUll)
worker = new Thread(new ThreadStart(work));

if (!worker.lsAlive)
worker. Start 0;

The InitO method obtains a lock on the workItemLockObject to serialize the thread startup code,
ensuring that only one worker thread is created. Create the worker thread with the entry point set to the
provided Worker delegate and then start the thread.

public static void Work()
{

183

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

184

try
{

for (;;)
{

Workltem workltem = Workltem.Dequeue();
switch (workltem.Action)
{

case ActionType.Add:

The code that's executed by the worker thread starts with a loop that calls Dequeue() to retrieve the
next WorkItem. Dequeue 0 will block if the queue is empty. Mter retrieving a work item, the switch
statement determines what to do with it, based on the ActionType. In this case, there is only one valid
ActionType, which is Add.

}
}

}

string sq1 = "[Traffic]. [AddPageView]";
using (Sq1Connection conn = new Sq1Connection(ConnString»
{

foreach (Requestlnfo info in workltem.RequestlnfoList)
{

}
}
break;

using (Sq1Command cmd = new Sq1Command(sq1»
{

}

cmd.CommandType = CommandType.StoredProcedure;
Sq1ParameterCo11ection p = cmd.Parameters;
p.Add("pageurl", Sq1DbType.VarChar, 2S6).Va1ue

= (object)info.Page ?? DBNu11.Va1ue;
try
{

}

conn. Open 0;
cmd.ExecuteNonQuery();

catch (Sq1Exception e)
{

}

EventLog.WriteEntry("Application",
"Error in WritePageView: " + e.Message + "\n",
EventLogEntryType.Error, 104);

catch (ThreadAbortException)
{

return;
}
catch (Exception e)
{

EventLog.WriteEntry("Application",
"Error in MarketModu1e worker thread: " + e.Message,
EventLogEntryType.Error, 105);

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

throw;
}

}
}

The remainder of the method uses ADO.NET to call a stored procedure synchronously to store the
URL of the page. The stored procedure has a single argument, and you call it once for each RequestInfo
object that was stored with the WorkItem. I will cover several techniques for optimizing this code later in
the book.

The ThreadAbortException is caught and handled as a special case, since it indicates that the thread
should exit. The code also catches and logs generic Exceptions. Even though it's not a good practice in
most places, Exceptions that are thrown from a detached thread like this would be difficult to trace
otherwise.

Using the worker thread is easy. First, start the thread:

Workltem.lnit(Work);

You can do that from the InitO method of an HttpModule, or perhaps from Application_Start 0 in
Global. asax.

After that, just create a RequestInfo object and pass it to QueuePageViewO along with the batch size:

Workltem.QueuePageView(new Requestlnfo(), 10);

Task Serialization
You can also use background threads as a way of executing certain types of tasks one at a time, as an
alternative to locking for objects that experience heavy contention. The advantage over locking is that
the ASP.NET worker thread doesn't have to block for the full duration of the task; you could write the
request to a queue in a BeginAsyncHandler method, and the thread would continue rather than block.
Later, when the task completes, the background thread could signal an associated custom IAsyncResult,
which would cause the EndAsyncHandler method to execute.

However, because of the significant additional overhead, this makes sense only when threads are
frequently blocking for relatively long periods.

If your code accesses different areas of disk at the same time, the disk heads will have to seek from
one area to another. Those seeks can cause throughput to drop by a factor of 20 to 50 or more, even if the
fIles are contiguous. That's an example of where you might consider using task serialization with a
background thread. By accessing the disk from only one thread, you can limit seeks by not forcing the
operating system to interleave requests for data from one part of the disk with requests for data from
another part.

Locking Guidelines and Using ReaderWriterLockSlim
Whenever you have multiple threads, you should use locks to prevent race conditions and related
problems. Locking can be a complex topic, and there's a lot of great material that's been written about it,
so I won't go into too much detail here. However, for developers who are new to asynchronous
programming, I've found that it's often helpful to establish a couple of basic guidelines:

• Use a lock to protect access to all writable data that multiple threads can access at
the same time. Access to static data, in particular, should usually be covered with a
lock.

185

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

186

• Avoid using a lock within another lock. If absolutely required, ensure that the
order of the locks is always consistent to avoid deadlocks.

• Lock the minimum amount of code necessary (keep locks short).

• When deciding what code to lock, keep in mind that interrupts can happen
between any two nonatomic operations and that the value of shared variables can
change during those interrupts.

The standard C# lock statement serializes access to the code that it surrounds. In other words, the
runtime allows only one thread at a time to execute the code; all other threads are blocked. For cases
where you mostly read and only infrequently write the static data, there is a useful optimization you can
make. The .NET Framework provides a class called ReaderWri terLockSlim that allows many readers, but
only one writer, to access the locked code at the same time. The standard lock doesn't differentiate
between readers and writers, so all accesses of any type are serialized.

For example, here are two shared variables, whose values need to be read or written at the same
time in order for them to be consistent:

public static double Balance;
public static double LastAmount;

Here's the declaration of the lock:

public static ReaderWriterLockSlim rwLock new ReaderWriterLockSlim();

Here's the code to read the shared data:

rwLock.EnterReadLock();
double previous Balance = Balance + LastAmount;
rwLock.ExitReadLock();

If there is any chance of the locked code throwing an exception or otherwise altering the flow of
control, you should wrap it in a try/finally block to ensure that ExitReadLock() is always called.

Here's the code to write the shared data:

rwLock.EnterWriteLock();
LastAmount = currentAmount;
Balance -= LastAmount;
rwLock.ExitWriteLock();

When you use the default constructor, the resulting object doesn't support recursive (nested) locks.
To allow recursive locks:

public static ReaderWriterLockSlim rwLockRecurse =
new ReaderWriterLockSlim(LockRecursionPolicy.SupportsRecursion);

If you enter this type of lock again after you've already acquired it once, the runtime will increment
an internal counter. Exiting the lock will decrement the counter until it reaches zero, when the lock will
actually be released.

Session State
Web applications often have a requirement for managing information that is carried over from one
HTTP request to another. For example, this information could include a logged-on user's name, their
role, authorization details, shopping cart contents, and so on.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

In a load -balanced environment, each HTTP request from a given client might be routed to a
different web server, so storing that state information on the web tier won't work. The HTTP protocol
itself is stateless; each connection carries no history with it about anything that has happened before
other than what the browser presents in each request.

Session state is "historical" or state information that is useful only for the duration of a session. A
session is the period that a client is "active," which might be the time that they are logged on or perhaps
the time that the browser is open.

The management of session state, or more often its mismanagement, is a significant issue that sites
often encounter as they grow. Because it's easy to use and yet presents a significant load to your back
end data store, it can become a significant barrier to scalability. From a scalability perspective, the best
solution to avoiding session state problems is not to use it; most sites can get along fine with just cookies.
Having said that, there are times when it's useful and desirable.

ASP.NET includes a comprehensive set of mechanisms for managing session state. While the built
in system can work great for small to medium sites, it's not sufficiently scalable as-is for large sites,
although the system does have several hooks that will allow you to improve its scalability substantially.

Here's an example of how to set session state from a web page:

this.Session["info"] = "this is my info";

You can then read the information in a subsequent request for the same page or a different one:

string myinfo = (string)this.Session["info"];
if (myinfo != nUll)
{

II myinfo will be set to "this is my info"
}

The Sess ion object is a specialized dictionary that associates a key with a value. The semantics are
similar to those of the ViewState object, as described in Chapter 3.

Session IDs
Session state works in part by associating some client -specific data called the session ID with a record
that's stored somewhere on the server side. The usual approach is to provide a unique session ID to each
client as a cookie.

An alternative approach is to use cookie less session IDs, where the session ID is encoded in the URL.
In many applications, providing ready access to session IDs, such as is possible when they are encoded
in a URL, is a potential security risk. As I mentioned in Chapter 1, modern public-facing web sites will
encounter very few real clients (as opposed to spiders) that don't support cookies. For those reasons, I
recommend using only the cookie-based approach.

The default implementation of session ID cookies by ASP.NET doesn't assign an explicit expiration
time to them. That causes the browser to consider them temporary, so it can delete the cookies on its
own only when the browser's window is closed. Temporary cookies never timeout; they are active as
long as the window is open. When you provide an expiration time, the browser writes the cookies to disk,
and they become (semi) permanent. The browser deletes them after they expire.

Both types of cookies have a role in implementing session state or alternatives, depending on the
requirements for your site. You might want users to stay logged in for a while, even if they close the
browser. You might also want the user's session to timeout if they walk away from their computer for a
while without closing the browser. In most cases, I prefer cookies to be permanent, with specific
expiration times. If your application requires the session to end when a user closes the browser, then you
might consider a custom provider with both a temporary cookie and a permanent one. Together, you
will have all the information you need to take the correct action on the server. From a code complexity

187

�CHAPTER 5 D ASP.NET THREADS AND SESSIONS

188

perspective, I prefer that approach to using temporary cookies with timeout information encoded into
them.

InProc Mode
The default configuration is to store session state information in the memory of the IIS worker process
using In Proc mode. The advantage of this approach is that it's very fast, since session objects are just
stored in (hidden) slots in the in-memory Cache object. The stored objects aren't serialized and don't
have to be marked as serializable.

Since one worker process doesn't have access to the memory in another, the default configuration
won't work for a load-balanced site, including web gardens. Another issue is that if the web server
crashes or reboots or if the IIS worker process recycles, all current state information will be lost. For
those reasons, I don't recommend using InProc mode, even for small sites.

One approach that some web sites take to address the problems with InProc mode is to configure
their load balancer to use sticky connections to the web servers. That way, the load balancer will assign
all connections from a particular client to a particular web server, often based on something like a hash
code of the client's IP address. Although that solution partly addresses the scalability issue, the data is
still stored in RAM only and will therefore still be lost in the event of a server failure or a worker process
recycle.

In addition, using sticky connections introduces a host of additional problems. Since the load
balancer is no longer free to assign incoming connections in an optimized way (such as to the server
with the least number of active connections), some servers can experience significant and unpredictable
load spikes, resulting in an inconsistent user experience. Those load spikes might result not just in
purchasing more hardware than you would otherwise need, but they can also interfere with your ability
to do accurate capacity planning and load trend forecasting.

Using StateServer
Another option for storing session state is to use State Server, which is included as a standard
component of ASP.NET. Unlike InProc mode, StateServer serializes objects before storing them.

State Server has the advantage of running outside of IIS, and potentially on a machine of its own, so
your site will function correctly without sticky connections when it's load balanced or a web garden.

However, as with the InProc mode, StateServer stores state information only in memory, so if you
stop the process or if the machine reboots, all session data is lost. With State Server, you are effectively
introducing a single point of failure. For those reasons, I don't recommend using StateServer.

Using SQL Server
Storing session state in a database addresses the reliability issues for both InProc and StateServer. If the
database crashes or reboots, session state is preserved.

To enable use of the built-in SQL Server session provider, execute the following command from
C:\Windows\Microsoft.NET\Framework64\v4.0.30319:

aspnet_regsql -E -S localhost -ssadd -sstype p

The -E flag says to use a trusted connection (Windows authentication). The -S flag specifies which
database server instance to use; for SQL Server Express, you should specify. \SQLEXPRESS, as you would
with a connection string. -ssadd says to add support for SQL Server session state. -sstype p says to store
both session state and the associated stored procedures in the newly created ASPState database.

�

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

If you have trouble getting aspnet Jegsql to work correctly in your environment, the I? flag will
display a list of options.

If you're curious, you can look in the InstallPersistSqlState. sql fIle in that same folder for an idea
of what the previous command will do. However, you shouldn't execute that script directly since it's
parameterized; use aspnet_regsql as shown earlier.

After you run aspnetJegsql, if you take a look at SQL Server using SSMS, you'll notice anew
database called ASPState, which has two tables and a bunch of stored procedures. You might need to
configure the database to allow access from the identity that your web site's AppPool uses, depending on
the details of your security setup.

A SQLAgent job is also created, which runs once a minute to delete old sessions. You should enable
SQLAgent so that the job can run.

Caution If you don't enable Sal Agent so that it can run the job that periodically deletes expired sessions, you
will find that sessions never expire. The standard session provider never checks the session's expiration time.

Configuring the Application
Enable SQL Server session state storage by making the following change to web. con fig:

<system.web>
<sessionState mode="SQLServer"

sqlConnectionString="Data Source=.;Integrated Security=True"
timeout="20"
cookieName="SS" />

</system.web>

The timeout property specifies how long a session can be idle before it expires, in minutes.
The sqlConnectionString property specifies the server to use. The database name of ASPState is

implied; the runtime won't allow you to specify it explicitly unless you also set the
allowCustomSqlDatabase property to true. As an alternative to including a full connection string, you can
also use the name of one from the connection Strings section of your web. config.

Using the cookieName property, I've specified a short two-character name for the name of the
session ID cookie instead of the default, which is ASP .NET Sessionld.

If you're interested in exploring how sessions work in more details, after running a small test page,
along the lines of the earlier Session example, you can query the tables in the ASPState database to see
that they are in fact being used. You can also take a look at the HTTP headers using Fiddler to see how
the session ID cookie is handled and view the session-related database queries with SQL Profiler.

Compressing Session State
In some cases, you can improve the performance of your session state by compressing the serialized
session dictionary before sending it to SQL Server. You enable automatic compression with GZipStream
by setting the compressionEnabled property of the sessionState element in web. config.

189

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

190

Extending the earlier example:

<system.web>
<sessionState mode="SQLServer"

sqlConnectionString="Data Source=.;Integrated Security=True"
timeout="20"
cookieName="SS"
compressionEnabled="true" I>

</system.web>

This can improve performance by reducing the load on the network and the database, at the
expense of additional CPU time on the web server.

Selectively Enabling Session State and Using ReadOnly Mode
In spite of its positive aspects, database storage of session state does have some drawbacks. The biggest
is that the standard implementation doesn't adequately address scalability.

Having many web servers that talk to a single session database can easily introduce a bottleneck.
One database round-trip is required at the beginning of a web request to read the session state, obtain
an exclusive lock, and update the session's expiration time, and a second round-trip is required at the
end of the request to update the database with the modified state and release the lock. The runtime also
needs to deserialize and reserialize the state information, which introduces even more overhead.

One side effect of the exclusive locks is that when multiple requests arrive from the same user at
once, the runtime will only be able to execute them one at a time.

Writes to the database are particularly expensive from a scalability perspective. One thing you can
do to help minimize scalability issues is to heavily optimize the database or file group where the session
state is stored for write performance, as described in later chapters.

Something that can have even more impact is to limit which pages use session state and to indicate
whether it's only read and not written. You can disable session state for a particular page by setting the
EnableSessionState property to false in the Page directive:

<%@ Page EnableSessionState="false" . . . @>

Uyou try to access the Session object from a page that has session state disabled, the runtime will
throw an exception.

With session state disabled, even if you don't access the Session object, if the client has a session ID
cookie set, the session provider still accesses the database in order to update the session timeout. This
helps keep the session alive, but it also presents additional load on the database.

You can use the same property to indicate that the session data used by the page is read-only:

<%@ Page EnableSessionState="ReadOnly" . . . @>

The provider still updates the database with a new session expiration time, even in ReadOnly mode,
but it's done by the same stored procedure that reads the session data, so it doesn't require a second
round-trip.

In addition to eliminating a second round-trip, setting read-only mode helps performance by
causing the session provider to use a read lock on the database record, rather than an exclusive lock. The
read lock allows other read -only pages from the same client to access the session data at the same time.
That can help improve parallelism and is particularly important when a single client can issue many
requests for dynamic content at the same time, such as with some Ajax-oriented applications, with sites
that use frames, or where users are likely to issue requests from more than one browser tab at a time.

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

You can set the default for the EnableSessionState property in web. config:

<configuration>
<system.web>

<pages enableSessionState="false">

</pages>

</system.web>
</configuration>

In most environments, I suggest setting the default to false and then explicitly enabling session
state on the pages that need it, or setting it to ReadOnly on pages that only need read access. That way,
you avoid accidentally enabling it on pages that don't need it.

It's also a good idea to split functions that need session data only in read -only form onto separate
pages from those that need read/write access to minimize further the write load on the database.

Scaling Session State Support
As I mentioned earlier, the standard support for session state using SQL Server unfortunately isn't
scalable for large sites. However, if it's an important part of your architecture, the framework does
provide a couple of hooks that make it possible to modify several key aspects of the implementation,
which you can use to make it scalable.

Although the cost of serializing session state data can be significant, it normally has an impact
mostly on the performance side, rather than on scalability. Since it's a CPU-intensive activity, if your site
is scalable, you should be able to add more servers to offset the serialization cost, if you need to do so.
The time it takes to write the session data to the database is where scalability becomes an issue.

It is possible to use distributed caching technology, such as Microsoft's Velocity, as a session state
store. See the "Distributed Caching" section in Chapter 3 for a discussion of that option.

Scaling Up
If the data you need is already in RAM, SQL Server can act like a large cache, so that read queries execute
very quickly, with no access to disk. However, all INSERT, UPDATE, and DE LETE operations must wait for the
database to write the changes to disk. I'll cover database performance in more detail in later chapters.
For now, the main point is that database scalability is often driven more by writes than reads.

To increase database write performance, the first step is to maximize the performance of your
database hardware. Database write performance is largely driven by the speed with which SQL Server
can write to the database log. Here are a few high -impact things you can do:

• Place the session database log file on its own disks, separate from your data.

• Use RAID-lO and avoid RAID-5 for the log disks.

• Add spindles to increase log write performance.

I'll discuss those optimizations in more detail in later chapters.

191

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

192

Scaling Out
Once you reach the limit of an individual server, the next step is to scale out. Your goal should be to
distribute session state storage onto several different servers in such a way that you can figure out which
server has the state for a particular request without requiring yet another round-trip. See Figure 5-4.

Session
Database A

Session
Database B

Web Servers

Session
Database C

Figure 5-5. Scaled-out databases for session state storage

Custom Session ID Manager
The default session ID is a reasonably random 24-character string. A simple approach you might use for
partitioning is to convert part of that string to integer, take its modulo, and use that to determine which
database server to use. If you had three servers, you would take the ID modulo three.

What complicates the issue for large sites is the possibility that you might want to change the
number of session state servers at some point. The design shouldn't force any existing sessions to be lost
when you make such a change. Unfortunately, algorithms such as a simple modulo function that are
based entirely on a set of random inputs aren't ideal in that sense, since without accessing the database
you don't have any history to tell you what the server assignment used to be before a new server was
added.

A better approach is to encode the identity of the session server directly into the session ID, using a
custom session ID generator. Here's an example (see App _ Code\ScalableSessionIDManager. cs):

using System;
using System.Web;
using System.Web.SessionState;

names pace Samples
{

public class ScalableSessionIDManager SessionIDManager
{

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

Here you are going to extend the default SessionIDManager class. You only need to override two
methods to implement custom session IDs. If you also wanted to modify the way the session cookies are
handled, you would implement the ISessionIDManager interface instead.

public static string[] Machines = { "A", "B", "CO };
private static Object randomLock = new Object();
private static Random random = new Random();

public override string CreateSessionID(HttpContext context)
{

}

int index;
lock (random Lock)
{

index = random.Next(Machines.Length);
}
string id = Machines[index] + "." + base.CreateSessionID(context);
return id;

Pick a random number between zero and the length of the Mach ines array. This index determines
which database server you'll use to store the session state.

If the hardware you're using for each of your session servers is not identical, you could apply
weighting to the random assignments to allow for the difference in performance from one server to
another.

Since creating the Random class involves some overhead, use a single instance of it to generate the
random numbers. Since its instance methods are not thread safe, get a lock first before calling
Random. Next (). In keeping with best practices for locking, create a separate object for that purpose.

Finally, you create the session ID by concatenating the machine ID with a separator character and
the ID provided by the base class. This approach will allow you to add new session servers later if
needed, without disturbing the existing ones, since the session server assignment is encoded in the
session ID.

public static string[] GetMachine(string id)
{

}

if (String.IsNullOrEmpty(id»
return null;

string[] values = id.Split('. ');
if (values. Length != 2)

return null;
for (int i = 0; i < Machines.Length; i++)
{

}

if (Machines[i] == values[o])
return values;

return null;

public override bool Validate(string id)
{

string[] values = GetMachine(id);
return (values != nUll) && base.Validate(values[l]);

}

193

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

194

The static GetMach ine () method parses your new session IDs and makes sure that they contain a
valid session server ID. The overridden ValidateO method first calls GetMachineO to parse the session
ID and then passes the part of it that originally came from the base class to the ValidateO method in the
base class.

Partition Resolver
To map your new session IDs into appropriate database connection strings, you use a partition resolver.
See App_Code\ScalablePartitions. cs:

using System. Web;

names pace Samples
{

public class ScalablePartitions : IPartitionResolver
{

Implement the IPartitionResolver interface, which contains only two methods: InitializeO and
ResolvePartition().

private string[] sessionServers = {

};

"Data Source=ServerA;Initial Catalog=session;Integrated Security=True",
"Data Source=ServerB;Initial Catalog=session;Integrated Security=True",
"Data Source=ServerC;Initial Catalog=session;Integrated Security=True"

Specify the connection strings for the different servers. During testing, you might configure this
either with different database instances or with different databases in a single instance.

public void Initialize()
{
}

public string ResolvePartition(object key)
{

}

string id = (string)key;
string[] values = ScalableSessionIDManager.GetMachine(id);
string cs = null;
if (values != nUll)
{

}

for (int i = 0; i < ScalableSessionIDManager.Machines.Length; i++)
{

}

if (values[o] == ScalableSessionIDManager.Machines[i])
{

}

cs = sessionServers[i];
break;

return cs;

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

InitializeO is called once per instance of the class. This implementation doesn't require any
instance-specific initialization, so that method is empty.

ResolvePartitionO receives the session ID as its argument. Pass the ID to the static GetMachineO
shown earlier, which will parse the ID and return a two-element array if it's properly formatted. The first
element in the array is the key that determines which session server to use. After finding that key in
ScalableSessionIDManager .Machines, use its index to determine which connection string to return.

Configuring the Custom Session ID Manager and Partition Resolver
To tell the runtime to use the new code, make the following change to web. con fig:

<system.web>
<sessionState sessionIDManagerType="Samples.ScalableSessionIDManager"

partitionResolverType="Samples.ScalablePartitions"
mode="SQLServer" timeout="20" cookieName="SS"
allowCustomSqlDatabase="true" I>

</system.web>

The sessionIDManagerType property specifies the class name for the custom session ID manager.
The partitionResolverType property specifies the class name for the partition resolver. Setting mode to
SQLServer causes the SQL Server session provider to be used. The cookie Name property gives a nice short
name for the session state cookie.

Setting allowCustomSqlDatabase to true allows you to include the name of a database in the
connection strings returned by the partition resolver. That's particularly useful during development,
when you might want to use several different databases on the same server. The default setting of fa lse
prevents that, which forces use of the default ASPState database.

The database connection string that you may have previously included in the <sessionState>
section is no longer needed, since the partition resolver will now provide them.

Testing the New Code
To test the code, create a new web form called sessionl. aspx. Enable session state in the Page directive:

<%@ Page EnableSessionState="True" Language="C#" AutoEventWireup="true"
CodeFile="sessionl.aspx.cs" Inherits="sessionl" %>

Next, replace the code-behind with the following:

using System;
using System.Web.UI;

public partial class sessionl : Page
{

protected void Page_Load(object sender, EventArgs e)
{

this.Session["test"] = "my data";
}

}

Unless you store something in the Session object, the runtime won't set the session cookie.

195

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

196

Start the Fiddler web debugger and load the page. The response should include a Set-Cookie
header, something like the following:

Set-Cookie: SS=C.ssmg3x3tlmyudf30sq3whdf4; path=l; HttpOnly

Notice the use of the cookie name that you configured, along with the session server key at the
beginning of the session ID.

ASP.NET also displays the session ID on the page when you enable tracing:

<%@ Page Trace="True" . . . %>

You can verify the use of the correct database by issuing an appropriate query from SSMS. For
example:

SELECT *
FROM ASPStateTempSessions
WHERE SessionID LIKE 'C.ssmg3x3tlmyudf30sq3whdf4%'

You need the LIKE clause since the session provider creates the database key by appending an
application ID to the value in the session ID cookie. The provider generates the application ID by
computing a hash of the application name, which you can get from HostingEnvironment. ApplicationID.
That allows a single ASPState database to support more than one application. See the TempGetAppID
stored procedure for details.

Fine-Tuning
You should address several additional issues in your support for performance-optimized session state.
Notice that the standard session provider doesn't set an expiration date on the session ID cookie, which
results in a browser session cookie. That means if the user closes the browser's window, the cookie may
be dropped. If the user never closes the browser, the cookie will never be dropped. Notice too that the
path is set to I, so the cookie will be included with all requests for the given domain. That introduces
undesirable overhead, as I discussed in Chapters 2 and 3. Unfortunately, the default implementation
doesn't provide a way to override the path.

The default session IDs aren't self-validating. The server needs to issue queries to the database to
make sure that the session hasn't expired and to update its expiration date. Also, as I mentioned earlier,
even when sessions have been disabled on a page, once a user activates a session, a database round-trip
is still made in order to update the session's expiration time. In keeping with the core principles as
outlined in Chapter 1, it would be nice to eliminate those round-trips.

One approach would be to encode the session expiration time in the session cookie (or perhaps a
second cookie), along with a hash code that you could use to validate the session ID and the expiration
time together. You could implement that as a custom ISessionIDManager.

Full-Custom Session State
To get full control over the way session state is managed, you will need to replace the default session
HttpModule. Such a solution would involve implementing handlers for the AcquireRequestState and
ReleaseRequestState events to first retrieve the session data from the database and then to store it back
at the end of the request. You will need to handle a number of corner cases, and there are some good
opportunities for performance optimization. Here is a partial list of the actions your custom session
HttpModule might perform:

• Recognize pages or other HttpHandlers that have indicated they don't need access
to session state or that only need read -only access

�

CHAPTER 5 D ASP.NET THREADS AND SESSIONS

• Implement your preferred semantics for updating the session expiration time

• Call your ISessionIDManager code to create session IDs and to set and retrieve the
session ID cookie

• Call your IPartitionResolver code to determine which database connection
string to use

• Serialize and deserialize the Session object

• Implement asynchronous database queries and async HttpModule events

• Implement your desired locking semantics (optimistic writes vs. locks, and so on)

• Handle creating new sessions, deleting old or abandoned sessions, and updating
existing sessions

• Ensure that your code will work in a load-balanced configuration (no local state)

• Store and retrieve the Session object to and from HttpContext, and raise
SessionStart and SessionEnd events (perhaps using the SessionStateUtility
class)

There are also details on the database side, such as whether to use the default schema and stored
procedures or ones that you've optimized for your application.

You might also consider transparently storing all or part of the Session object in cookies, rather than
in the database. That might eliminate the database round-trips in some cases.

Session Serialization
The standard session state provider uses a serialization mechanism that efficiently handles basic .NET
types, such as integers, bytes, chars, doubles, and so on, as well as DateTime and TimeSpan. Other types
are serialized with BinaryFormatter, which, unfortunately, can be slow. You can reduce the time it takes
to serialize your session state by using the basic types as much as possible, rather than creating new
serializable container classes.

If you do use serializable classes, you should consider implementing the ISerializable interface
and including code that efficiently serializes and deserializes your objects. Alternatively, you can mark
your classes with the [Serializable] attribute and then mark instance variables that shouldn't be
serialized with the [NonSerialized] attribute.

Something to be particularly cautious about when you're using custom objects is to avoid
accidentally including more objects than you really need. BinaryFormatter will serialize an entire object
tree. If the object you want to include in session state references an object that references a bunch of
other objects, they will all be serialized.

Tip It's a good idea to take a look at the records that you're writing to the session table to make sure that their
sizes seem reasonable.

197

�CHAPTER 5 ASP.NET THREADS AND SESSIONS

198

With a custom session HttpModule, you might also want to check the size of the serialized session
and increment a performance counter or write a warning message to the log if it exceeds a certain
threshold.

Alternatives to Session State
For cases where you only need the data on the client, Silverlight and web storage can provide good
alternatives to session state. That way you can use the data locally on the client, without requiring the
browser to send it back to the server. If the server does need it, you can send it under program control,
rather than with every request as would happen with cookies. Instead of using the Session-based API,
your web application would simply pass state information to your Silverlight app or]avaScript as part of
the way it communicates for other tasks, such as with web services.

Cookies are another alternative. As with Silverlight and web storage, the easy solution here involves
using cookies directly and avoiding the Session-based API.

However, if your site already makes heavy use of the Session object, it is also possible to write a
custom session provider that would save some state information to cookies. You could save data that is
too big for cookies or that might not be safe to send to clients even in encrypted form in a database. For
sites that need session state with the highest possible performance, that's the solution I recommend.

Cookies have the disadvantage of being limited to relatively short strings and of potentially being
included with many HTTP requests where the server doesn't need the data. They are also somewhat
exposed in the sense that they can be easily sniffed on the network unless you take precautions. In
general, you should therefore encrypt potentially sensitive data (such as personal information) before
storing it in a cookie. In Chapter 2, I've provided an example for encrypting and encoding data for use in
a cookie.

When using cookies as an alternative to session state, you should set their expiration times in a
sliding window so that as long as a user stays active, the session stays alive. For example, with a 20-
minute sliding expiration time, when the user accesses the site with 10 minutes or less to go before the
cookies expire, then the server should send the session-related cookies to the client again with a new 20-
minute expiration time. If users wait more than 20 minutes between requests, then the session times out
and the cookies expire.

The other guidelines that I described for cookies in Chapter 2 also apply here, including things such
as managing cookie size and using the httpOnly, path, and domain properties.

Summary
In this chapter, I covered the following:

• How synchronous I/O can present a significant barrier to system scalability

• How you should use asynchronous 110 on web pages whenever possible for
database accesses, filesystem 110, and network I/O such as web requests and web
services

• Using background worker threads to offload the processing oflong-running tasks

• Why you should avoid using session state if you can, and why cookies, web
storage, or Silverlight isolated storage are preferable

• In the event your application requires session state, how you can improve its
scalability by strategically limiting the way it's used, and by using custom session
IDs, a partition resolver, and a custom session management HttpModule

CHAPTER 6

Using ASP.NET to Implement and
Manage Optimization Techniques

You can use a number of standard ASP.NET mechanisms to implement many of the optimization
techniques described in Chapters 2 and 3. Implementations that use shared or centralized code can help
reduce the time and effort required to create new high-performance content or to modify existing
content. Speed in those dimensions is an important part of the ultra-fast approach.

In this chapter, I will cover the following:

• How to use master pages, user controls, and themes and skins to help centralize
and manage your optimized code and markup

• How to customize the output of standard user controls to generate optimized
output that implements some of the strategies from Chapter 2

• How to generate J avaScript and CSS dynamically

• How to automatically retrieve your static files from multiple domains

• How to resize and recompress images from your application

Master Pages
Master pages can help improve consistency and reliability by allowing you to share a single copy of
frequently referenced code and markup among multiple pages. Reusing a common implementation can
also help simplify the process of performance optimizing your pages.

Improving the speed with which you can effectively respond to changing requirements from
customers or from your business and being able to find and fix bugs quickly are also aspects of the ultra
fast approach that are supported by master pages. With master pages, you can make changes to a single
fIle that will be reflected immediately through your entire site.

As an example, let's say you've decided to use DOCTYPE Strict for your site. Since that's not the
default in the standard web form template used by Visual Studio and since you might want to change it
in the future, you decide to create a top-level master page that contains your desired DOCTYPE setting.
That way, other developers on the team can use the master page, and you don't have to worry about
them remembering to include the right DOCTYPE or a custom template. In addition, since the standard
web form template includes a server dorm> tag, you decide to remove that from the top-level master so
that content -only pages won't include the extra HTML for the dorm> tag itself and the ViewState
information that comes along with it. Here's the markup for the master page (see
Master\Master .master):

199

�

�

CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

200

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="Master.master. cs"
Inherits="Master" %>

< ! DOCTYPE html PUBLIC "- I IW3CI IDTD XHTML 1. 0 Stricti lEN"
''http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd''>

<html xmlns=''http://www.W3.org/1999/xhtml''>
<head runat="server">

<title></title>
</head>
<body>

<asp:ContentPlaceHolder id="BD" runat="server">
</asp:ContentPlaceHolder>

</body>
</html>

The fIrst line is the Master directive, which indicates to ASP.NET that this is a master page.

Note You can't include an OutputCache directive in a master page.

In addition to the DOCTYPE tag and the removal of the <form> tag, notice that there is an
<asp: Content PlaceHolder> tag, which defmes where content will be placed that is provided by pages that
are derived from the master page. You can have as many of them as you need. Also, notice that the ID
that you've used for that tag is very short: only two characters long. That ID string will often appear
directly in the generated HTML, so it's a good idea to keep it short.

Next, let's create a page that uses that master page. When you create the new web form, select the
Select master page checkbox. Then choose the one that you just created. Visual Studio will
automatically insert an <asp: Content> control for each <asp: Content PlaceHolder> in the master page.

After Visual Studio creates and opens the new page, add an <asp: HyperLink> tag in the
<asp: Content> section.

Here's the final markup (see pagel.aspx):

<%@ Page Title="Test" Language="C#" MasterPageFile="-/Master/Master.master"
AutoEventWireup="true" CodeFile="pagel.aspx.cs" Inherits="pagel" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="BD" Runat="Server">
<asp:HyperLink runat="server" ID="home" NavigateUrl="-/default.aspx">
Home
</asp:HyperLink>
</asp:Content>

In the Page directive, Visual Studio has specified a MasterPageFile that refers to the new master
page. You have also included a title for the page, which the runtime will place in the <head> section ofthe
generated HTML, replacing the empty <ti tle> tag in the master page.

View this page in a browser, and then view the source of the page. Notice that the hidden field for
ViewState is not present, since you don't have a server-side <form>. Here is the <a> tag that's generated
by <asp: HyperLink>:

�CHAPTER 6 USING ASP.NET TO IMPLEMENT A ND MANAGE OPTIMIZATION TECHNIQUES

Notice that the IDs of both the <asp: Content PlaceHolder> and the <asp: HyperLink> are included in
the generated ID of the <a> tag. You can keep that string short by using short IDs in your markup. Even
better, when you don't need to reference that object from the code-behind or from JavaScript, you can
simply omit the ID tag, and it won't be generated in the HTML.

You can disable the feature in Visual Studio that automatically adds an ID to controls when you
copy and paste them. Go to Tools > Options, select Text Editor> HTML > Miscellaneous in the left
pane!, deselect Auto ID elem ents on paste in Source view on the right side (as in Figure 6-1), and click
OK.

Options l'Y I~1

• Text Editor ~ Miscellaneous HTMl options

General L Auto [D elements on paste in Source view
Fi[e Extension ~

[Auto ID elements on snippet insertion
AlIlanguage5
Basic [' Format HTML on paste

c; 17 Require ' <' to trigger tag completion window
C/C++ -
C55
F=

• HTMl
General _L

Tabs
Formatting
Miscellaneous
Validation

JavaScript
Plain Text
R6.lSON Resource
SOL Server Tools ~

'- --
[OK II Cancel I

Figure 6-1. Disable "Auto ID elements on paste in Source view" in Visual Studio

Nested Master Pages
ASP.NET supports nested master pages. You create them by deriving a master page from another

master page, which you can do easily by simply using the same MasterPageFile property in the Master
directive as you use with Pages.

For example, here's a nested master page that includes a server dorm> tag (see Master\Form. master) :

<%@ Master Language="C#" MasterPageFile="-/Master/Master.master"
AutoEventWireup="true" CodeFile="Form.master.cs" Inherits="Master_Form" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="BD" Runat="Server">
<form id="mainform" runat="server">

<asp:ContentPlaceHolder ID="IC" runat="server">
</asp:ContentPlaceHolder>

<!form>
</asp:Content>

201

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

202

Notice that you replaced the Content PlaceHolder BD in the original master page with the dorm> tag
and a new Content PlaceHolder IC, which will be the one that pages derived from this master page will
replace with content (although you had the option ofreusing BD in this scope).

Dynamic Master Pages
Instead of assigning a page to a particular master page using the MasterPageFile property in the Page
directive, it's also possible to make the assignment dynamically at runtime. You might want to do that as
part of a personalization scheme, where you provide a way for users to select different page layouts, each
of which is implemented by a different master page. Supporting mobile devices is another potential
application for dynamic master pages.

For this to work, you must make the assignment from Page_PrelnitO in your code-behind, which is
called before Page_InitO and Page_Load 0 in the page-processing pipeline.

Here's an example:

protected void Page_Prelnit(object sender, EventArgs e)
{

this.MasterPageFile = "~/Master/Master.master";
}

When you use dynamic master pages with content pages that you would like to be compatible with
output caching, you should use VaryByCustom to tell the runtime to cache different versions of the page
for each available master page.

Referencing the Master Page
From the perspective of a web forms page, a master page behaves largely like a child control for things
like life cycle event order and so on. One difference is that you can't set properties on a master page
declaratively as you can with a control.

To get around this limitation, you can use the MasterType directive on your page to declare the type
name of the master page. Mter that, you can reference properties and methods in the master page
without the need to cast this. Master first.

For example (see Master\Content. master and page2. aspx):

<hl><%= this.Header %></hl>

In the master page, you use the Header property to set the header text for the page.

<%@ Page Title="My Content" Language="C#" MasterPageFile="~/Master/Content.master"
AutoEventWireup="true" CodeFile="page2.aspx.cs" Inherits="page2" %>

<%@ MasterType TypeName="Content" !b
<asp:Content ID="CC" ContentPlaceHolderID="BD" Runat="Server">
Here's the content
</asp:Content>

In the markup for the page, you specify the MasterPageFile, along with the MasterType.

this.Master.Header = "My Header";

In the code behind for the page, you can access the Header property directly, without casting
this. Master to the correct type first.

�

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

User Controls
Like with pages, user controls in ASP.NET are objects that generate text, which is usually, but not always,
HTML. User controls have a life cycle that's similar to pages, including many of the same events, and you
can cache their output (fragment caching).

User controls can be a great way to centralize, encapsulate, and reuse performance-optimized code
for your site. You could use them to implement a number of the performance optimization techniques
that I covered earlier in the book.

You should consider moving markup and its associated code-behind into a user control under
conditions similar to when you would create a subroutine. For example, you might create a control when
it's likely to be reusable in other places, when it would help to split it off for maintenance or
development purposes, or when it helps improve code clarity, provides an optimized implementation,
implements best practices or standardized business rules, and so on.

Tip You can access most regular HTML tags from the code-behind by adding runat=" server" and an ID; you

don't have to convert them to custom or <asp>-type user controls to do so.

As with the example in the previous section on master pages, when you're using ASP.NET controls,
be aware that they often output all or part of the strings you choose as object IDs in the HTML.
Therefore, unlike conventional software wisdom that correctly advocates descriptive and potentially
long names, you should try to use short IDs whenever you can. In addition, although IDs are generally
recommended, they are not required unless you need to reference the object from code-behind, from
another declarative statement, or from J avaScript. It's therefore reasonable to simply leave them off
unless they are explicitly used somewhere.

Example: Image Handling
I briefly discussed user controls in Chapter 3, in the section on page fragment output caching. Here's
another example that implements a couple of the recommendations from Chapter 2:

• URLs used in tags should use consistent case throughout your application
so that the browser downloads an image only once when there are multiple
references to it. Ideally, the URLs should be in lowercase to maximize
compressibility.

• You should always include a height and width with tags to speed up the
browser's rendering of the page to the screen.

Control Output Caching
Here's the markup for the control (see Controls\image.ascx):

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="image.ascx.cs"
Inherits="Controls_image" %>

<%@ OutputCache Duration="86400" VaryByControl="src" Shared="true" %>
<img src="<%= src %>" height="<%= height %>" width="<%= width %>"

203

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

204

alt="<%= alt %>" I>

Since the control might have to do some work to determine the size of the image, you enable output
caching to cache the results. Setting VaryByControl to src tells the runtime to cache a different version of
the control for each different value of the src property. Setting Shared to true allows multiple pages to
share a single instance of the cached control.

The way control caching works is that the runtime constructs a key that it uses to store and retrieve
information about the control in the cache, along with its rendered contents. The key includes the fully
qualified ID of the control, so if you have three instances of the control on one page, the runtime will
cache them separately. Similarly, if you have multiple instances that you reference in nested controls,
they will also be cached separately, since their fully qualified path IDs will be different, even if the local
or immediate IDs are the same. If Shared is set to false (the default), then the runtime also includes the
page class name in the cache key, so you will have different versions of the control cached for each page,
even when their fully qualified path names are the same.

From a practical perspective, this means that you should be sure to use the same ID from one page
to another for controls that should use cached output. If you use different IDs, it might appear to work,
but you will in fact have multiple copies of the control in the cache, even when Shared is true.
Conversely, if you set Shared to true and use the same IDs from one page to another, don't let it surprise
you when the page uses a version that may have been created and cached on a different page.

If your control varies based on more than one input property, you can include them in
VaryByControl by separating them with semicolons. In that case, the runtime will include all listed
property values in the cache key, so you will have different versions for each combination.

You can also specify a list of fully qualified control IDs in VaryByControl using a dollar sign as the
path separator, such as MyControl$OtherControl$MyTextBox. In that case, the runtime includes the hash
code of the control (from GetHashCodeO) as a component of the cache key. Unfortunately, the fully
qualified path name approach can be somewhat fragile, particularly when you're using master pages.

The properties on the < img> tag are set from properties of the same name in the control to make it
easy to modify existing HTML to use it.

Here's the code-behind for the control (see Controls\image.ascx.cs):

[PartialCaching(86400, null, "src", null, true)]
public partial class Controls_image : UserControl
{

private string _src;

protected void Page_Load(object sender, EventArgs e)
{

}

if (this.height <= 0 I I this.width <= 0)
{

}

string path = Server.MapPath(this.src);
using (Stream stream = new FileStream(path, FileMode.Open»
{

}

using (System.Drawing.lmage image =
System.Drawing.lmage.FromStream(stream»

{

}

width = image.Width;
height = image. Height;

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

}

public string src
{

}

get
{

}
set
{

}

return this._src;

this. src = ResolveUrl(value).ToLowerlnvariant();

public int height { get; set; }
public int width { get; set; }
public string alt { get; set; }

The PartialCaching attribute is an optional alternative to the OutputCache directive that specifies the
same information (so you need only one or the other, not both as in the example). Although it's useful in
some projects, most of the time I prefer the OutputCache directive, since using the same pattern as pages
is usually easier to understand and maintain.

The code defines public properties for src, height, width, and alt. For src, it uses ResolveUrlO to
determine an absolute path to the image and converts the result to lowercase. That allows developers to
use references starting with a tilde to indicate a path relative to the home directory.

If the size properties aren't set, the Page_Load () method reads the image from disk and determines
its size. Note that production code should probably use asynchronous I/O.

Registering and Using the Control
To use the control, first you register it on the page with the following directive after the Page directive
(see image1. aspx):

<%@ Register Src="~/Controls/image.ascx" TagPrefix="ctl" TagName="image" %>

Then you invoke the control at the desired location on the page:

<ctl:image runat="server" src="~/CSG.png" alt="Test Image" I>

When you run the page and view the HTML source, here's the text generated by the control:

Notice that the URL for the image has been determined and is in lowercase and that the height and
width properties are filled in, even though you didn't provide them originally.

Placing Controls in an Assembly
It'possible to place controls in a DLL. Once there, although you can continue to use a version of the
Register directive if you prefer, I find it's easier and less error prone to do the registration in web. config.
Let's say that your controls are in an assembly called Sample, in a namespace called MyControls. You
could register the controls in web. config as follows:

205

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

206

<system.web>

<pages . . . >
<controls>

<add tagPrefix="ctl" assembly="Sample" namespace="MyControls" I>

</controls>
</pages>

</system.web>

With that configuration change in place, you can reference controls in that assembly directly from
your pages, without the need for a Register directive. Visual Studio will also provide IntelliSense for
available control names.

Templated Controls
If you want your user control to wrap other controls at the point where you use it, a standard control
won't work. Instead, you need a templated control.

As an example, start with the markup for the control (see Controls\Frame.ascx):

<%@ Control Language="C#" AutoEventWireup="false" CodeFile="Frame.ascx.cs"
Inherits="Controls Frame" %>

<asp:Panel runat="server" ID="header">
</asp:Panel>
<asp:Panel runat="server" ID="center">
</asp:Panel>

It looks like a standard control so far, with two <asp: Panel> controls.
Next, add the code behind (see Controls\Frame.ascx.cs):

using System;
using System.Web.UI;

public partial class Controls_Frame : UserControl
{

public string HeaderText { get; set; }
private FrameContainer Container { get; set; }

[TemplateContainer(typeof(FrameContainer))]
[PersistenceMode(PersistenceMode.lnnerProperty)]
public ITemplate HeaderTemplate { get; set; }

[Templatelnstance(Templatelnstance.Single)]
[PersistenceMode(PersistenceMode.lnnerProperty)]
public ITemplate BodyTemplate { get; set; }

The class extends UserControl. Add the HeaderText property, a FrameContainer, and two !Template
objects. The TemplateContainer attribute specifies the name of an associated INamingContainer, which
the control needs to support data binding. The PersistenceMode. InnerProperty attribute specifies that
the associated property persists in the control as a nested tag. The Templatelnstance. Single attribute
says that there will only be one instance of the associated template in the control. That allows the
compiler to make instances of child controls directly accessible by the page, without using FindControl.

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

The compiler (and Visual Studio) takes the names of the two templates directly from the property
names.

protected override void Onlnit(EventArgs e)
{

}

if (this.HeaderTemplate != nUll)
{

}

this.Container = new FrameContainer();
this.HeaderTemplate.lnstantiateln(this.Container);
this.header.Controls.Add(this.Container);

if (this.BodyTemplate != nUll)
{

this.BodyTemplate.lnstantiateln(this.center);
}

In the Onlnit event, if a HeaderTemplate exists, create the FrameContainer, instantiate HeaderTemplate
(which includes the controls and other markup specified when the Frame control is used) in the
container, then Add the container (with its controls) as a child of the header control (from the markup).
For BodyTemplate, you don't need data binding, so just instantiate it (and the controls carried with it)
into the center control (from the markup).

}

protected override void OnPreRender(EventArgs e)
{

}

base.OnPreRender(e);
this.Container.HeaderText = this.HeaderText;
this.Container.DataBind();

public class FrameContainer : Control, INamingContainer
{

public string HeaderText { get; set; }
}

In the OnPreRender event, set the HeaderText property of the FrameContainer to the HeaderText
property of the control, and call DataBind () to process <%# %> type markup that may be in the
HeaderTemplate.

Declare the FrameContainer class to inherit from Control and implement the INamingContainer
interface. It only has one property, HeaderText.

Make the control visible to your pages by declaring it in web. config:

<system. web>

<pages>
<controls>

<add tagPrefix="ct" tagName="Frame" src="-/Controls/Frame.ascx"l>
<Icontrols>

</pages>
</system.web>

207

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

208

To use the control (see frame1. aspx):

<ct:Frame runat="server" ID="Content" HeaderText="Header">
<HeaderTemplate>

<hl><%# Container.HeaderText %></hl>
</HeaderTemplate>
<BodyTemplate>

<asp:Label ID="BodyLabel" runat="server" Text="Body" I>
</BodyTemplate>

</ct:Frame>

You set the value of the HeaderText property in the <ct: Frame> tag (or programmatically)' and use it
in HeaderTemplate via Container. HeaderText in a data binding marker.

You can override the Text property for the Label control from the code behind for the page, by
referencing the control's ID directly (see framel.aspx. cs):

this. BodyLabel. Text = "from page load";

When you run the page, the control generates the following markup:

<div id="Content header">
<hl>Headerdhl>

</div>
<div id="Content center">

from page load
</div>

Themes
As with master pages and user controls, themes are helpful from an ultra-fast perspective because they
allow you to factor out common code and put it in a central, easily managed location. Using a single
central copy makes it easier and faster for you to change, debug, or performance tune. Avoiding code
duplication also helps save time during development and debugging.

Static Files
Themes provide a way to group static files such as images, CSS, and J avaScript and to dynamically switch
between those groups. When you apply a theme to a page, references to the CSS and script fIles it
contains are automatically included in the <head> section of the generated HTML.

You can use themes as one aspect of implementing roles. You might assign regular users to one
theme and administrators to another, with each having different CSS and J avaScript fIles. You can also
use themes as part of a version migration (and fallback) strategy.

Unfortunately, themes in their current form suffer from some significant drawbacks, so they aren't
suitable for all projects. For example, you can't specify the order in which CSS fIles will appear on a page
(they are always included in lexicographic order) or which CSS files will be included (it's always all of
them). One of the biggest issues for me is that the runtime does not allow you to use any dynamic page
generation technologies for theme fIles, so you can't use an . aspx fIle to generate script or CSS in a
theme.

�

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

Skins
Skins are collections of default property values for user controls. They are associated with a particular
theme and are contained in one or more. skin files. Each set of default property values can be either
unnamed or associated with a particular Skinld.

Note You can't specify certain control properties, such as EnableViewState, in a skin.

You might think of skins as a very restricted variant of user controls, where you can only specify
certain property values, with no code or nesting.

Setting Themes Dynamically
There are two different kinds of themes. Properties from a StyleSheetTheme are applied to controls first.
Then properties at the Page level are applied. Finally, properties from a regular Theme are applied. In
other words, in your Page you can override properties that are set in a StyleSheetTheme, and properties
set in a regular Theme override the properties you set on the Page.

To set a regular Theme dynamically from a page, you must do so in the Prelnit event. Here's an
example (see theme1.aspx.cs):

protected void Page_Prelnit(object sender, EventArgs e)
{

this.Theme = "mkt";
}

You can't set the StyleSheetTheme property directly from a Page. You must instead override the
property (see theme2.aspx.cs):

public override string StyleSheetTheme { get { return "mkt"; } }

You can also set site-wide defaults in web. config for both types of themes:

<system.web>

<pages styleSheetTheme="mkt">

</pages>
</system.web>

If you need to set a site-wide default programmatically instead of declaratively in web. config, you
can do so from the PreRequestHandlerExecute event in an HttpModule. In that case, you can set either
theme property directly.

Here's an example:

public void Init(HttpApplication context)
{

context.PostRequestHandlerExecute += this.Sample_PostRequestHandlerExecute;
}
private void Sample_PreRequestHandlerExecute(Object source, EventArgs e)

209

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

210

{

}

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
Page page = context.Handler as Page;
if (page != null)
{

page.StyleSheetTheme = "mkt";
}

Normally, you would set a default theme programmatically or in web. con fig and then override the
default declaratively or programmatically required.

Themable Properties
When you're writing custom user controls, by default all public properties are themable. If there' s a
public property that you don't want to be settable from a skin, you should mark it with the
[Themeable(false)] attribute.

For example, let's say that you don't want the alt property in the earlier user control example to be
settable from a skin:

[Themeable(false)]
public string alt { get; set; }

You can disable theming for an entire control either by setting its EnableTheming property to false in
the PreInit event handler or by overriding the EnableTheming property in a custom control.

Example: Theme and Skin
Images that you reference with a relative path from a skin or a CSS file in a theme will be contained in
the theme.

Let's say you have an image that you normally reference with an <asp: Image> tag that you want to be
able to change from one theme to another. Right -click your web site in Solution Explorer, and select Add
ASP.NET Folder and then Theme. That will create a folder called App _Themes at the top level of your site,
along with an empty folder inside it. Rename the empty folder to mkt, which will be the name of the
theme. Then create another folder called images in the mkt folder, which is where you will place the
image files. Now you're ready to create the. skin file. Call it mkt. skin, and place it in the mkt folder. The
first part of the name ofthe . skin file is just for organizing or grouping; the runtime will collect all files in
the theme that end in . skin and use them together. After including a few images and a CSS file, the
resulting folder structure will look like Figure 6-2.

:3 App_Themes

-I mid

d images

checlcrnarkpng

• logo.png

top-grad.gif

~ common.css

~ mld.skin

Figure 6-2. Folder structure for an ASP. NET theme

�

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

In the. skin file, add an <asp: Image> tag that references your image with a relative path, along with a
SkinId that you will use later:

<asp:Image runat="server" Skinld="logo" ImageUrl="images/logo.png" I>

As mentioned, the key here is that relative paths from a • skin file are resolved with respect to the
skin, rather than with respect to the page. CSS files work the same way.

Tip To specify custom controls in a . skin file, either include a Register directive at the top of the. skin file,
as with an . aspx page, or register the control or its assembly in web. config.

To use this image, first you need to specify the theme either at runtime, declaratively in the page
itself, or in web. config. In this case, let's put it in the page (see default. aspx):

<%@ Page Theme="mkt" Language="C#" AutoEventWireup="true"
CodeFile="default. aspx. cs" Inherits="_default" %>

Finally, to reference the image, simply specify its SkinId in an <asp: Image> tag:

<asp:Image runat="server" Skinld="logo" I>

The runtime will get the ImageUrl property from the .skin file. If the name of the image file changes,
you can update it in the. skin file, and all references to it will automatically be changed. You might use
this approach to help manage name changes for static files when you version them, as I discussed in
Chapter 2. Instead of changing many. aspx pages that reference your static files, you can change just one
or a few. skin files and then easily test the changes or fall back to the old version if you need to do so.

This approach is also useful to help consistently associate particular properties with an image, such
as a CSS class or height and width.

In addition to images, you can apply skins to most controls. For some ofthe same reasons that it's a
good idea to move style-related information such as colors and fonts into CSS files, it's also a good idea
to move similar types of information into skins when it's applied to controls in the form of properties.

Pre caching Themed Images
An issue may come up when you're implementing image precaching from JavaScript, as I discussed in
Chapter 2, when you're also using themes. A fixed path name won't work correctly, since the path name
changes when the theme changes. Paths can also be different in Cassini than in lIS. The solution is to use
ResolveUrl and the current theme name to generate the required path:

<body onload="OnPageLoad">

<script type="text/javascript">
function OnPageLoad(evt) {

}

var cim = new Image();
cim.src = '<%= ResolveUrl("N/app_themesl" + this.StyleSheetTheme +

"/images/logo.png") %>';

</scripb
</body>

211

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

212

You could extend this technique to force lowercase URLs and to support multiple static domains for
your images, along the lines shown later in this chapter.

Bundling and Minification
To help minimize round trips between browsers and your web server, the runtime can bundle multiple
CSS or JavaScript files into a single file. In the process, it can also "minify" the files, by removing extra
whitespace and so on.

To enable default bundling and minification processing, add the following code to
Application_Start (see App _Code\Global. cs):

System.Web.Optimization.BundleTable.Bundles.EnableDefaultBundles();

Uyour JavaScript files are in the scripts folder, you would use the following markup to tell the
runtime to bundle the *. js files in that folder into a single file, and minify the results (see bundle1. aspx):

<script src="scripts/js" type="text/javascript"></script>

The /j 5 suffix is the trigger for the bundling and minification process. The runtime will determine
the order of the script files within the bundle by sorting the file names, grouping the results by libraries,
such as jQuery or Dojo, and placing the library files first. For example, jquery-i. 7 .i.min .js would come
before aaa • j 5 in the bundle. You should prefer preminified versions of libraries to dynamic minification
when possible, such as in this example for jQuery.

The process is similar for CSS files. For example, if your * .css files are in the styles folder:

<link href="styles/css" rel="stylesheet" />

As before, the files in the bundle are ordered alphabetically by file name, except in this case,
reset. css and normalize. css come first.

You can specify the path and which minifier to use (see App_Code\Global.cs):

Bundle bundle = new Bundle("-/jsf", typeof(JsMinify));
bundle.AddDirectory("-/scripts", "*.js", false);
BundleTable.Bundles.Add(bundle);

This would allow you to use the following markup:

<script src="/jsf" type="text/javascript"></script>

You can customize the order of the files within the bundle using the Orderer property ofthe Bundle
class.

Caching Browser-Specific Pages
Pages that generate browser-specific markup or script on the server require extra care in order to be
correctly output cached. You should vary the cache by specifying an appropriate value for VaryByCustom
in the OutputCache directive, along with providing the corresponding logic in the GetVaryByCustomString
method in global. asax.

The brute-force approach is to set VaryByCustom to "browser". That will cause the runtime to cache
different versions of the page based on the browser's type and major version number. This approach
doesn't require a custom GetVaryByCustomString method. However, if your only variations are for IE,
Mozilla, and all others, the brute-force solution will result in caching many more versions of the page
than you actually need. Instead, an optimized GetVaryByCustomString methodwould be better.

�

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

Here's an example (see Global.cs):

public override string GetVaryByCustomString(HttpContext context, string custom)
{

}

switch (custom.ToLower())
{

}

case "iemozilla":
switch (context.Request.Browser.Browser.ToLower())
{

}
default:

case Hie":
case "blazer 3.0":

return Hie";
case "mozilla":
case "firebird":
case "firefox":
case "applemac-safari":

return "mozilla";
default:

return "default";

return base.GetVaryByCustomString(context, custom);

The runtime will cache different versions of the page for each different string that this method
returns; the exact value of the strings doesn't matter. In this case, we have up to three versions of each
iemozilla page: ie, mozilla, and default (plus the base method, which handles the case where custom is
"browser").

Caution This approach relies on the Request. Browser object, which ultimately uses the HTTP User-Agent

string to try to deduce information about the browser. Unfortunately, as the variety of different devices, browsers,
and spiders has increased, this technique has become unreliable, except in a very broad sense.

Then to configure output caching (see browserl. aspx):

<%@ OutputCache Duration="60" VaryByParam="None" VaryByCustom="ieMozilla" %>

The runtime passes the ieMozilla string assigned to VaryByCustom to the GetVaryByCustomString
method.

Control Adapters
Part of the life cycle of a user control includes the Render phase, during which the control generates its
output. It's possible to use a control adapter to alter the output that a control generates.

Control adapters are useful for several things related to performance. For example, you might want
to change a control to use a tableless layout or to shorten the markup. You can also use control adapters
to modify some of the control's properties before it's rendered. You can use these features to implement
some of the HTML optimization techniques from Chapter 2.

213

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

214

Example: Enforcing Lowercase URLs for Images
In the earlier example of a user control, one of the things that you did was to convert the image URL to
lowercase. Let's build a control adapter to do that automatically for all <asp: Image> controls (see
App_Code\ImageControlAdapter.cs):

using System;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.Adapters;

names pace Samples
{

}

public class ImageControlAdapter WebControlAdapter
{

public ImageControlAdapter()
{
}

Since the Image control derives from WebControl, derive the control adapter from WebControlAdapter.

protected override void BeginRender(System.Web.UI.HtmlTextWriter writer)
{

}
}

Image image = Control as Image;
if «image != nUll) && !String.IsNullOrEmpty(image.ImageUrl»
{

}

if (! image. ImageUrl. StartsWith("http"»
{

image.ImageUrl = this.Page.ResolveUrl(image.ImageUrl).ToLower();
}

base.BeginRender(writer);

You need to override only one method in this case. The runtime will call BeginRender at the start of
the rendering process for controls that are attached to this adapter. If the attached control is Image, and if
its ImageUr 1 property is present and doesn't refer to an external site (where URL case might matter), then
replace it with a lowercase version that includes the full path. After that, just call base. BeginRender which
will render the control as usual.

Next, to attach the control adapter to the Image control, create a fIle called adapter. browser in your
App_Browser folder:

<browsers>
<browser refID="Default">

<controlAdapters>
<adapter controlType="System.Web.UI.WebControls.Image"

adapterType="Samples.ImageControlAdapter" I>
</controlAdapters>

</browser>
</browsers>

You specify the ID of the browsers that you want this control adapter to be used for in the refID
property. Since you want it to be used for all browsers in this case, specify Default. Specify the full type

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

name of the Image control in the control Type property and the type of the new control adapter in the
adapterType property.

To test the adapter, create a new web form and add an <asp: Image> control with an uppercase
ImageUrl property. When you view the page in a browser and examine the source, you should see the
URL in lowercase.

Example: Removing IDs from Panel, Hyperlink and Label Controls
You only need the HTML IDs that the runtime adds to controls, if you reference them from script. To
reduce the size of your HTML slightly, you can use a control adapter to remove the ID strings when you
don't need them.

Begin by creating a page base class. The control adapter won't affect pages unless they inherit from
this class (see App_Code\PageBase. cs):

using System;
using System.Web;
using System.Web.UI;

public class PageBase : Page
{

}

protected override void OnInit(EventArgs e)
{

}

base.OnInit(e);
this.RemoveIds = true;

public bool RemoveIds { get; set; }

The class adds a RemoveIds property, and sets it to true by default in the OnIni t event handler. A
page will be able to disable the new behavior by setting RemoveIds to false.

Here's the code for the control adapter (see App _Code \NoIdControlAdapter . cs):

using System;
using System.IO;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.Adapters;

names pace Samples
{

public class NoIdControlAdapter : WebControlAdapter
{

protected override void Render(HtmlTextWriter writer)
{

PageBase page = this. Page as PageBase;
if ((page != nUll) && page.RemoveIds &&

(this.Control.ClientIDMode != ClientIDMode.Static))
{

HtmlTextWriter noIdwriter = new NoIdHtmlWriter(writer);
base.RenderBeginTag(noIdwriter);
base.RenderContents(writer);

215

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

216

base.RenderEndTag(noldwriter);
}
else
{

base.Render(writer);
}

}
}

In the Render method, first check to see if the page inherits from the new PageBase class, and if so,
whether it has the Removelds flag set to true, and if the attached control does not have its ClientIDMode
set to ClientIDMode.Static (which you could do if you wanted to reference the control from JavaScript).
If the conditions are met, then you create an instance of the (new) NoldHtmlWri ter class, and use it to
render the begin tag and end tag for the control, while rendering the contents of the control with the
original HtmlTextWriter.

}

public class NoldHtmlWriter : HtmlTextWriter
{

}

public NoldHtmlWriter(TextWriter writer)
: base(writer)

{
}

public override void AddAttribute(HtmlTextWriterAttribute key, string value)
{

}

if (key != HtmlTextWriterAttribute.ld)
base.AddAttribute(key, value);

Declare the new NoldHtmlWriter class to inherit from the standard Html TextWriter. Override the
AddAttribute method, where you call the AddAttribute method of the base class for all attributes except
ID, since you don't want that one to appear in your final HTML.

Configure the runtime to use the control adapter by adding it to a . browser fIle in the App _Browsers
folder (see App _Browsers \adapter . browser):

<browsers>
<browser refID="Default">

<controlAdapters>
<adapter controlType="System.Web.UI.WebControls.Panel"

adapterType="Samples.NoldControlAdapter" I>
<adapter controlType="System.Web.UI.WebControls.Label"

adapterType="Samples.NoldControlAdapter" I>
<adapter controlType="System.Web.UI.WebControls.HyperLink"

adapterType="Samples.NoldControlAdapter" I>
</controlAdapters>

</browser>
</browsers>

You specify Default as the refID in the top-level <browser> element so that the runtime will apply
the adapter for all browsers. You include one <adapter> element for each control that you want to attach
to the new adapter: Panel, Label and HyperLink.

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

To use the adapter, create a new page based on the Form. master master page, and set the
CodeFileBaseClass to PageBase (see noid1. aspx):

<%@ Page Title="" Language="C#" MasterPageFile="N/Master/Form.master" AutoEventWireup="true"
CodeFile="noidl.aspx.cs" Inherits="noidl" CodeFileBaseClass="PageBase" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="IC" Runat="Server">
<asp:HyperLink runat="server" ID="MyHyperLink"

NavigateUrl="Nlnoidl.aspx">Link</asp:HyperLink>
<asp:Panel runat="server" ID="MyPanel">Panel</asp:Panel>
<asp:Label runat="server" ID="MyLabel" Text="Label text"></asp:Labeb
</asp:Content>

Here's the code behind (see noid1.aspx.cs):

public partial class noidl : PageBase
{

protected void Page_Load(object sender, EventArgs e)
{

this.Removelds = false;
}

}

Run the page the first time with Removelds set to false. The page generates the following HTML for
the three controls:

Link
<div id="ctloo_ctlOO_BD_IC_MyPanel">Panel</div>
Label text

Notice the long ID strings.
Next, set Removelds to true (or remove the code and rely on the default), and load the page again to

see the modified HTML:

Link
<div>Panel</div>
Label text

The ID strings are no longer present.

Browser Providers
.NET 4 introduced a feature called HttpCapabilitiesProviders, which allows you to determine the
browser type and related capabilities programmatically, completely bypassing the default semi static
mechanisms.

One advantage of this technique from a performance perspective is that it allows you to look at
more than just the User-Agent string. You might use this approach to identify search engines and other
bots, for example, by looking at cookies or access patterns.

As an example, create a file called BrowserProvider . cs in your App _Code folder:

using System;
using System. Collections;
using System.Web;
using System.Web.Caching;
using System.Web.Configuration;

217

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

218

names pace Samples
{

public class BrowserProvider HttpCapabilitiesProvider
{

public BrowserProvider()
{
}

The class inherits from HttpCapabilitiesProvider. You need to override only one method:

public override HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request)
{

}

string key = "bw-" + request.UserAgent;
Cache cache = HttpContext.Current.Cache;
HttpBrowserCapabilities caps = cache[key] as HttpBrowserCapabilities;
if (caps == nUll)
{

}

II
II Determine browser type here ...
II
caps = new HttpBrowserCapabilities();
caps.AddBrowser("test");
Hashtable capDict = new Hashtable(StringComparer.OrdinallgnoreCase);
capDict["browser"] = "Default";
capDict["cookies"] = "true";
capDict["ecmascriptversion"] = "0.0";
capDict["tables"] = "true";
capDict["w3cdomversion"] = "0.0";
caps. Capabilities = capDict;
cache.lnsert(key, caps, null, Cache.NoAbsoluteExpiration,

TimeSpan.FromMinutes(60.0»;

return caps;

First, construct a key to use with the cache to see whether you have previously determined the
HttpBrowserCapabilities object for the current User-Agent. The results are cached because this method
can be called multiple times during a single request and because the lookup process might be time
consuming. To generate the cache key, prep end a fixed string to the User-Agent string to avoid potential
collisions with other pages or applications.

If the cache lookup fails, then determine the browser type (not shown in the example), construct an
HttpBrowserCapabilities object with an associated Hashtable of properties, and insert it into the cache.

The properties added in the example are the minimum set needed to display a very simple web
page.

To enable the provider, make the following change to Global. cs:

using System.Web.Configuration;

void Application_Start(object sender, EventArgs e)
{

}

HttpCapabilitiesBase.BrowserCapabilitiesProvider =
new Samples.BrowserProvider();

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

To test the provider, create a page that displays Request. Browser. Id and Request. Browser. Browser.
Notice that the results are different after enabling the provider.

Dynamically Generating JavaScript and CSS
JavaScript plays a critical role in all modern web sites. Unfortunately, though, the ugly reality is that
JavaScript is not a type-safe language, and it's interpreted rather than compiled. As a result, it tends to be
a rich source of bugs, even on some of the world's largest and busiest sites.

I've worked with development teams that seem to spend more time chasing bugs in J avaScript than
they do in server-side code, even though the script is a small fraction of the size. Fortunately, widely
used libraries such as jQuery have been a big step forward in that regard.

In addition to using standard libraries, you can minimize these types of problems in two other ways.
The first, as I described earlier, is to replace script with Silverlight on the client when possible. The
second is to minimize the size and complexity of your script by generating it dynamically on the server.

There is a similar story for CSS. I've seen extremely inventive yet terribly convoluted and hard to
maintain code that handles browser differences in CSS. You can make your life much easier by
dynamically generating the correct CSS on the server.

When thinking about how to make dynamic J avaScript and CSS work, consider for a moment what
. aspx pages (and user controls) really are: a fancy way to generate text in response to an HTTP request.
In the usual case, that text happens to be HTML, but it doesn't have to be.

Example: Dynamic J avaScript
For example, create a new web form called scriptl. aspx, and replace the markup with the following:

<%@ Page EnableTheming="false" StylesheetTheme='''' EnableViewState="false"
AutoEventWireup="true" Language="C#" CodeFile="scriptl.aspx.cs"
Inherits="scriptl" %>

alert('<%= "User Agent = " + Request.UserAgent %>');

If you're planning to use themes on your site, it's important to set EnableTheming to false and
Sty leSheetTheme to an empty string. Otherwise, the runtime will generate an error saying that you need
to include a <head runat="true"> tag. Unfortunately, setting those values in a central location such as an
HttpModule won't work.

Notice that the argument to alert includes text that will be dynamically generated when the file is
requested.

In the code-behind:

protected void Page_Load(object sender, EventArgs e)
{

this.Response.ContentType = "text/javascript";
}

This sets the MIME type of the response, which tells the browser what type of data it contains. If you
want to generate CSS instead, the MIME type would be text/css.

Next, create a web form called script-testl. aspx, and insert the following at the top ofthe <body>:

<script type="text/javascript" src="scriptl.aspx">
</script>

Now view script-test1.aspx in a browser, and you should see an alert displayed from
scriptl. aspx.

219

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

220

It's possible to configure ASP.NET to process .js or .css fIles as though they were .aspx fIles.
However, there are issues that prevent that from working right if you're using themes. In particular, as I
mentioned earlier, the runtime doesn't allow dynamic fIles in the App _Themes folder, presumably to
prevent accidental recursion.

Using JavaScript to Access Markup Generated by Controls
You can easily use J avaScript to access the markup generated by your user controls. Although the default
IDs generated by the runtime in the final HTML are sometimes predictable, often they are not. The use
of master pages, for example, will result in IDs that are different from the ones you specify for your
controls.

To demonstrate, let's say you have an <asp: Label> control on a page that uses a master page and
you want to modify the content of the control on the client using jQuery (see script2. aspx):

<%@ Page MasterPageFile="-/master/Main.master" Language="C#" AutoEventWireup="true"
CodeFile="script2.aspx.cs" Inherits="script2" %>

<asp:Content runat="server" ID="NW" ContentPlaceHolderID="LG">
<asp:Label runat="server" ID="mylnfo" Text="Initial text" I>
<script type="text/javascript" src="scripts/jquery-l.7.1.min.js"></script>
<script type="text/javascript">

$('#<%= mylnfo.ClientID %>').text('Replacement text');
</script>
</asp:Content>

You call mylnfo.ClientID to get the HTML ID for the control.
The runtime generates the following HTML for the <asp: Label> control:

Initial text

The generated J avaScript looks like this:

<script type="text/javascript">
$('#ctloO_LG_mylnfo').text('Replacement text');

</script>

You can use the ClientIDMode property on controls to change the way the runtime generates HTML
IDs. The most useful alternative to the default setting is Static, which sets the HTML ID to be the same
as the ASP.NET control ID. For example:

<asp:Label runat="server" ID="mylnfo" Text="Initial text" ClientIDMode="Static" I>

The generated HTML is:

Initial text

This can simplify your J avaScript in cases where you don't use the same control on your page more
than once, by not requiring the use of ClientID to discover the HTML ID.

Multiple Domains for Static Files
One of the suggestions I made in Chapter 2 was to distribute your image fIles among multiple
subdomains, which can allow the browser to do more downloading in parallel. To maximize cache ability
on the client and in proxies, you shouldn't make that assignment randomly; you should do it in a
deterministic way so that the same image is always mapped to the same sub do main.

�

�

CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

One approach you could take for images is to extend the <ctl: image> user control that I described
earlier in the "User Controls" section. Since you are already manipulating the URL of the image there, it
would be straightforward to add support for mUltiple subdomains.

Here's an example (see Controls \imagesub. ascx. cs):

private string _src;
private static string[] subdomains = {

"http://Sl.12titans.net",
"http://S2.12titans.net",
"http://S3.12titans.net"

};

public string src
{

get
{

}
set
{

}
}

HttpContext ctx = HttpContext.Current;
if (ctx.Request.Url.Host 1= "localhost")
{

}

if (IString.IsNullOrEmpty(this._src) && Ithis._src.StartsWith("http") &&
Ithis._src.StartsWith("data:"))

{

}

int n = Math.Abs(this._src.GetHashCode()) % subdomains.Length;
return subdomains[n] + this._src;

return this._src;

this. src ResolveUrl(value).ToLowerInvariant();

public int height { get; set; }
public int width { get; set; }
public string alt { get; set; }

The example code does not change the URL when it's running on your local machine, when the
image comes from another site or when it's a data URL.

You could apply this same technique in a control adapter for the <asp: Image> control, in addition to
making the URL lowercase as in the earlier example.

Note The standard GetHashCodeO function does not return the same result in the x86 version of the .NET
Framework as it does in the x64 version. If you're doing development or testing in one environment and deploying
in another, you may want to provide your own version of a hashing function to ensure consistent results.

In a production version of this code, you might want to add logic to minimize the effects of adding
new domains or removing old ones. This would also be a good place to automatically apply similar
mappings for a content distribution network.

221

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

222

Image Resizing
As I mentioned in Chapter 2, images often represent a significant fraction of both the data required by
the browser to render a page fully and a site's bandwidth use. For those reasons, it's important to make
sure that you don't send large images to the client when smaller ones will work just as well. If your
images are too big or have a much higher quality than your users need, you might of course choose to
resize or recompress them statically: figure out all the right sizes and compression factors, run them
through a tool of some kind, and you're done. However, if you have tens of thousands, or perhaps tens of
millions of images like some sites do, that can be more than a little tedious.

An alternative is to resize and recompress your images dynamically and cache the results as you go.
You might create a user control to do that, for example, or for a large library of images, you might do it in
a background thread. Since the number and size of the images could be large and since IIS has an
efficient method for caching static files, you should generally store the resized images as files rather than
in memory.

Here's an example of a routine that can resize JPEG and GIF images. For JPEGs, you can specify a
level of compression between 0 and 100, with 0 being maximum compression and minimum size and
with 100 being minimum compression and maximum size. You specify the size ofthe resized image as
the length of the longest dimension. You might use this to create thumbnails, for example, that all fit in a
100 x 100 pixel area.

See App _ Code\ImageResizer . cs:

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Drawing.Drawing2D;
using System.IO;
using System. Threading. Tasks;

names pace Samples
{

public class ImageResizer
{

private static ImageCodecInfo jpgEncoder;

public async static void ResizeImage(string in File, string outFile,
double maxDimension, long level)

{
byte [] buffer;
using (Stream stream = new FileStream(inFile, FileMode.Open»
{

}

buffer = new byte[stream.Length];
await Task<int>.Factory.FromAsync(stream.BeginRead, stream.EndRead,

buffer, 0, buffer. Length, nUll);

using (MemoryStream memStream = new MemoryStream(buffer»
{

using (Image inImage = Image.FromStream(memStream»
{

Mark the method with the async keyword to indicate that it contains a Task-based asynchronous
operation using the await keyword.

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

Read the image file with a FileStream into a byte array. By wrapping the BeginRead and EndRead calls
with the FromSyncO method, you create an await-able Taskdnt>, which allows you to use asynchronous
I/O without building a separate continuation method. After the read completes, you wrap the byte array
with a MemoryStream, and use it to build an Image object.

double width;
double height;

if (inImage.Height < inImage.Width)
{

width = maxDimension;
height = (maxDimension / (double)inImage.Width) * inImage.Height;

}
else
{

height = maxDimension;
width = (maxDimension / (double)inImage.Height) * inImage.Width;

}
using (Bitmap bitmap = new Bitmap«int)width, (int)height»
{

using (Graphics graphics = Graphics.FromImage(bitmap»
{

After calculating the dimensions of the new image based on the given parameters and the
dimensions of the original image, create an empty Bitmap object that will contain the resized image and
a Graphics object that you can use to draw into the Bitmap.

graphics.SmoothingMode = SmoothingMode.HighQuality;
graphics.InterpolationMode =

InterpolationMode.HighQualityBicubic;
graphics.DrawImage(inImage, 0, 0, bitmap.Width, bitmap.Height);

Copy the original image into the Bitmap using the Graphics object, resizing it as you go according to
the parameters specified for SmoothingMode and InterpolationMode.

if (inImage.RawFormat.Guid == ImageFormat.Jpeg.Guid)
{

if (jpgEncoder == null)
{

}

ImageCodecInfo[] ici =
ImageCodecInfo.GetImageDecoders();

foreach (ImageCodecInfo info in ici)
{

}

if (info.FormatID == ImageFormat.Jpeg.Guid)
{

}

jpgEncoder = info;
break;

If the original image is in the JPEG format and you haven't previously found the corresponding
ImageCodecInfo object, then look it up now.

223

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

224

}
else
{

}

if (jpgEncoder != nUll)
{

}
else

II

EncoderParameters ep = new EncoderParameters(l);
ep.Param[o] = new EncoderParameter(Encoder.Quality,

level);
bitmap.Save(outFile, jpgEncoder, ep);

bitmap.Save(outFile, inlmage.RawFormat);

II Fill with white for transparent GIFs
II
graphics.FillRectangle(Brushes.White, 0, 0, bitmap. Width,

bitmap. Height);
bitmap.Save(outFile, inlmage.RawFormat);

If the original image was a JPEG, then set the compression level of the output image based on the
specified input parameter, and encode the image. Otherwise, encode the output image in the same
format as the original image.

}
}

}
}

}
}

}

To use the method during a page request, first set the Async property for the page to true (see
resize1. aspx):

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="resize1.aspx.cs"
Inherits="resizel" Async="true" %>

Then call the method (see resize1.aspx.cs):

ImageResizer.Resizelmage(this.Server.MapPath("-/launch.jpg"),
this.Server.MapPath("-/launch_th.jpg"), 150.0, 60);

Summary
In this chapter, I covered the following:

• Using master pages, user controls, and themes and skins to encapsulate high
performance implementations to improve code reuse and to reduce the time it
takes you to make changes to your site

• Using bundling and minification to reduce the size of your JavaScript and CSS
fIles, and the number of round trips it takes to retrieve them

�CHAPTER 6 USING ASP.NET TO IMPLEMENT AND MANAGE OPTIMIZATION TECHNIQUES

• Applying output caching to user controls and browser-specific pages

• Using control adapters to modify the output of user controls to produce optimized
HTML and to implement some of the optimization techniques from Chapter 2

• Using HttpCapabilitiesProvider to determine browser type and related
capabilities programmatically

• Generating JavaScript and CSS dynamically using the same mechanisms you use
to generate HTML

• Accessing HTML generated by ASP .NET controls from J avaScript

• Generating consistent domains for static files, as suggested in Chapter 2

• Dynamically resizing images, with asynchronous 1/0 and optimized compression
for JPEGs

225

CHAPTER 7

Managing ASP.NET Application
Policies

During the design and coding of your web site, you will often come up with actions that you would like
to take for every page on your site, or perhaps for every control of a certain type. I call those actions
application policies. You might apply them before or after a page generates its content or as part of page
or control processing.

Application policies can have a big impact on performance in areas such as session management,
caching, URL rewriting, output filtering, and control rendering. They also form an important part of the
ultra-fast approach, since they allow you to easily centralize, manage, and monitor certain aspects of
your application. That helps improve agility while minimizing code duplication and simplifying many
system-wide debugging and analysis tasks.

In this chapter, I will cover the following:

• Using custom HttpModules, which allow you to apply policies at any point in the
IIS request life cycle

• Using custom HttpHandlers, which allow you to bypass the policies and associated
overhead imposed by the Page handler

• Implementing a page base class, which will allow you to override Page policies and
to add others of your own

• Using URL rewriting (routing) programmatically to help shorten your URLs

• Using page adapters, tag mapping, and control adapters to implement application
policies

• Using HTTP redirects and their alternatives

• Improving your user's experience by flushing the response buffer early

• Reducing the size of your page with HTML whitespace filtering

Custom HttpModules
ASP.NET requests have a life cycle that starts with an incoming HTTP request. IIS and the runtime then
step through a number of states, ultimately producing the HTTP response. At each state transition, IIS
and the runtime invoke all registered event handlers. Depending on the event, those event handlers
might be located in your Global. asax file or in a standard or custom HttpModule.

When your site is running in IIS Integrated mode, as I suggest in Chapter 4, the pipeline events are
as shown in Figure 4-2. The events happen for both static and dynamic content, and you can write event

227

�

�

CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

228

handlers in either managed or unmanaged code. For example, you could write an HttpModule in C# that
handles events for your static images or even for files processed by a nonmanaged handler, such as PHP.

One of the differences between Global. asax and HttpModules is that events in Global. asax are
executed only for requests that are processed by the ASP.NET handler, even when IIS is running in
Integrated mode.

From an architectural perspective, I tend to discourage use of Global. asax as much as possible,
since integrating a new HttpModule from another project into your site is much easier than merging
multiple Global. asax files together. However, a couple of events are available only in Global. asax, and
not in HttpModules, such as Application_Start and Application_End.

Note Cassini, the development web server that's used by default in Visual Studio 11 with projects converted
from earlier versions of Visual Studio, sends all requests through all HttpModules, even when the site is
configured in Classic mode.

As with web pages, you can write HttpModules to operate asynchronously. Since they run for every
request, it's particularly important for scalability to use async operations if your HttpModule does any
I/O, including database requests.

The following are some example applications ofHttpModules:

• Enforcing site-wide cookie policies

• Centralized monitoring and logging

• Programmatically setting or removing HTTP headers

• Wiring up post-processing ofresponse output, such as removing extra whitespace

• Session management

• Authorization and authentication

Requirements for the Example HUpModule
I covered a simple example of an HttpModule in Chapter 4. However, since HttpModules can playa very
important role in establishing site-wide consistency and because of their potential impact on
performance, let's walk through a much more detailed example that includes some of the techniques
that I've discussed.

Here's a list of the requirements for the example:

• Allow the default theme to be modified at runtime.

• Set a long-lasting cookie on each client that contains a unique ID, and record the
value of that ID in the database.

• If the Page or the HttpModule itself sets a cookie, make sure that the P3 P privacy
header is also set (see Chapter 3).

• Differentiate between clients that retain cookies and those that don't (as a high
level indicator of whether they might be spider and not a real user).

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

• For all • aspx requests, log the client's unique ID and details about the page
request in the database, using a background worker thread.

InitO Method
Create MainModule. cs in your App _Code folder:

using System;
using System.Collections.Generic;
using System. Data;
using System.Data.SqlClient;
using System. Diagnostics;
using System. Text;
using System. Threading;
using System.Web;
using System.Web.UI;

names pace Samples
{

public class MainModule : IHttpModule
{

public const string CookiePath = "/Samples/pages/";
public const string MachCookie = "MC";
public const string Machld = "min;
public const string MachFirst = "mf";
public const int PageViewBatchSize = 10;
public const string ConnString =

"Data Source=.;Initial Catalog=Sample;Integrated Security=True;Async=True";

The only methods in the IHttpModuleinterface are InitO and DisposeO. The bulk of the class will
be event handlers that you will wire up in InitO.

CookiePath is set to work with Cassini; under lIS or lIS Express, it normally wouldn't include the
project name.

public void Init(HttpApplication context)
{

}

Workltem.lnit(Workltem.Work);
context.AddOnAuthenticateRequestAsync(this.Sample_BeginAuthenticateRequest,

this. Sample_EndAuthenticateRequest) j
context.PreRequestHandlerExecute += this.Sample_PreRequestHandlerExecutej
context.EndRequest += this.Sample_EndRequestj

public void Dispose()
{
}

The Init() method calls WorkItem. Init() to initialize a background worker thread, which you will
use for logging as I discussed earlier in the section on thread management. I'm using the same
background worker class that I walked you through in Chapter 5. Workltem.Work is the method that the
worker thread will call to process WorkItem objects.

229

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

230

Since the code will need to access the database, you configure an event handler for the async
version of the AuthenticateRequest event, which happens early in the request life cycle. The
AddOnAuthenticateRequestAsyncO method takes two arguments. Sample_BeginAuthenticateRequest is a
method that will start an asynchronous operation, and Sample_EndAuthenticateRequest will complete it.

Next, register an event handler for the PreRequestHandlerExecute event. As its name implies, this
event is fired right before the request handler is executed. You may recall from Chapter 4 that the request
handler is the code that's responsible for generating the primary output of the request. Request handlers
are implementations of the IHttpHandler interface; the Page class is one example of a handler. There are
also handlers for static files, ASMX web services, WCF, and so on. Your site might also include custom
handlers. In the absence of URL routing, IIS determines which handler to invoke based on the extension
of the URL that it's processing.

Finally, register an event handler for the EndRequest event, which happens near the end of the
request life cycle.

PreRequestHandlerExecute Event Handler
Here's the PreRequestHandlerExecute event handler:

private void Sample_PreRequestHandlerExecute(Object source, EventArgs e)
{

}

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
Page page = context. Handler as Page;
if (page != nUll)
{

page.StyleSheetTheme = "mkt";
}

The code checks to see whether the request handler assigned to the current request is a Page object,
which is the case for all . aspx pages. If it is, then the Sty leSheetTheme property is set to the name of the
default theme. Since this happens before the handler is invoked, the Page itself can still override the
setting in its Page_PrelnitO method.

BeginAuthenticateRequest Event Handler
Here's the BeginAuthenticateRequest event handler, where you will check and set some cookies, and
possibly start an async database call:

private IAsyncResult Sample_BeginAuthenticateRequest(Object source, EventArgs e,
AsyncCallback cb, Object state)

{
IAsyncResult ar = null;
HttpApplication application = (HttpApplication)source;
HttpContext context = application. Context;
string path = context.Request.Url.AbsolutePath;

if (path.StartsWith(CookiePath, StringComparison.OrdinallgnoreCase) &&
(path.EndsWith(".aspx", StringComparison.OrdinallgnoreCase) I I
path.EndsWith("/", StringComparison.Ordinal»)

{

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

Since this HttpModule will run in lIS Integrated mode and since you might use Cassini for testing,
you need to check to make sure that this is a request for a page, rather than a CSS file or some other
object. You do that by looking at the AbsolutePath of the URL, which doesn't include the query string, in
case there is one.

In your site architecture, you have collected all the pages that you want to track with the ID cookie
into one folder, which is specified by the CookiePath configuration parameter. In addition to checking
what the path ends with, also make sure that it starts with CookiePath. Ignore case where appropriate,
since URLs in lIS are case insensitive.

Requestlnfo info;
HttpCookie machCookie = context.Request.Cookies[MachCookie];
if ((machCookie == nUll) II ! machCookie. Has Keys II

{

}

(machCookie.Values[Machld] == nUll))

info = new Requestlnfo(Guid.NewGuid(), true, false);

If the MachCookie cookie is not present, or if it's present but incorrectly formatted, then create a new
RequestInfo object, along with a new GUID, which you'll use as an ID to track the remote browser. Use a
GUID as an ID so that multiple load-balanced servers can create them independently, without involving
the database. GUIDs are also semi-random, which makes it difficult for one client to impersonate
another by guessing the ID.

The RequestInfo object here is an extension of the one I discussed earlier, in Chapter 5. The second
parameter to the RequestInfo constructor indicates whether the ID value is new, and the third parameter
indicates whether you've received the ID back from a client.

else
{

}

string guidStr = machCookie.Values[Machld];
try
{

}

Guid machGuid = new Guid(guidStr);
bool firstResp = false;
if (machCookie.Values[MachFirstj != nUll)

firstResp = true;
info = new Requestlnfo(machGuid, false, firstResp);

catch (Format Exception)
{

info = new Requestlnfo(Guid.NewGuid(), true, false);
}

Otherwise, if the cookie is present, extract the ID string and convert it to a Guid object. If the GUID
conversion was successful, then look to see whether the MachFirst flag was set in a subkey in the cookie.
If it was, then this is the first time you've seen this ID value come back from the client, and you set
firstResp to true. Either way, create a new RequestInfo object that encapsulates the results.

Receiving a cookie back from a client tells you that the client has cookies enabled. That's a useful
thing to know, because some spiders, including spam bots, some search engines, and so on, don't use
cookies, whereas nearly all real users do. Of course, the User-Agent string is supposed to provide that sort
of information, but some spider authors forge it, so relying on multiple detection mechanisms is usually
prudent.

231

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

232

If the old cookie was malformed for some reason, then just create a new RequestInfo object as
though the cookie isn't there. In a production environment, this might be a good place to do some
logging or increment a performance counter, since if this code path executes, the most likely causes are
a bug on the server somewhere or users who are attempting to hack the system in some way.

context.Items[RequestInfo.REQ_INFOl = info;

All the code paths shown previously result in a RequestInfo object being created and stored in the
info variable. Now, place a reference to that object in the Items collection in the HttpContext object. The
reason for this is to make it available to other classes that are involved with this request. As I discussed in
Chapter 3, the Items collection is scoped to the current request.

if (info.FirstResponse)
{

}

sqlConnection conn = new sqlConnection(Connstring);
sqlCommand cmd = new sqlCommand("[Trafficl.[AddMachinel", conn);
cmd.CommandType = CommandType.storedProcedure;
cmd.Parameters.Add("id", sqlDbType.UniqueIdentifier).Value

info.MachineId;
conn. Open 0;
ar = cmd.BeginExecuteNonQuery(cb, cmd);

If this is the first time a client has returned an ID that you previously sent to him, then start an async
command to record the ID in the database.

The first argument to BeginExecuteNonQueryO is the AsyncCallback that the runtime passed in as an
argument to the event handler. The second argument will be stored in the Asyncstate field of the
IAsyncResul t, where you can retrieve it later when the request completes.

}
return ar ?? CompletedResult.Create(state, cb);

}

The return value from the event handler is the IAsyncResul t from the call to BeginExecuteNonQuery,
if it was executed.

Unfortunately, you can't just return null from a Begin handler to indicate that you didn't start an
async request of some kind. Therefore, if you didn't need to send a request to the database for this
request, the return value is a new instance of CompletedResul t, which is a custom implementation of
IAsyncResult that always returns true for Completed Synchronously and IsCompleted. The static CreateO
method also invokes the AsyncCallback.

EndAuthenticateRequest Event Handler
Here is the EndAuthenticateRequest event handler:

private void sample_EndAuthenticateRequest(IAsyncResult ar)
{

if (!(ar is CompletedResult»
{

sqlCommand cmd = ar.Asyncstate as sqlCommand;
if (cmd != nUll)
{

try
{

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

}
}

}

cmd.EndExecuteNonQuery(ar);
}
catch (SqlException e)
{

}

EventLog.WriteEntry("Application",
"SqlException in Sample_EndAuthenticateRequest: " + e.Message,
EventLogEntryType.Error, 201);

finally
{

}

cmd.Connection.Dispose();
cmd .DisposeO;

This code is called when the database request has completed or immediately after
BeginAuthenticateRequest returns a CompletedResul t. Uyou executed a database request, then you can
obtain the SqlCommand object that you previously stored in AsyncState. Using that, you call
EndExecuteNonQuery, which completes the request.

As with all IDisposable objects, it's important for long-term performance to call DisposeO when
you're done with them. A using statement is a syntactically easy way of doing so, but it's not as clean
when you create the objects in one method and use them in another, so you use the try lfinally pattern
here instead.

EndRequest Event Handler
Here's the EndRequest event handler:

private void Sample_EndRequest(Object source, EventArgs e)
{

HttpApplication application = (HttpApplication)source;
HttpContext context = application. Context;
HttpResponse response = context.Response;

Requestlnfo info = (Requestlnfo)context.ltems[Requestlnfo.REQ_INFO];

This code looks in the HttpContext.Items collection to see whether a RequestInfo object was
previously stored there. Recall from the earlier discussion that you create a RequestInfo object and store
it in the Items collection only when the current request is for an . aspx page.

if (info != nUll)
{

Workltem.QueuePageView(info, PageViewBatchSize);

If the RequestInfo object was present, then queue a request to a background thread to log a record
to the database that includes the page URL and the client's ID. All the data that you want to log is
contained in the RequestInfo object. As described earlier, the PageViewBatchSize argument specifies how
many RequestInfo objects need to be queued in a single WorkItem before the logging task will be
triggered.

233

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

234

}

if (info.FirstResponse I I info. First)
{

}

HttpCookie machCookie = new HttpCookie(MachCookie);
machCookie.Path = CookiePath;
machCookie.HttpOnly = true;
machCookie.Values[MachId] = info.MachineId.ToString();
if (info.FirstResponse)

machCookie.Expires = DateTime.Now.AddYears(50);
else

machCookie.Values[MachFirst] = "1";
response.AppendCookie(machCookie);

If this is the first time that a new ID is being set or if it's the first time a client has sent an ID back to
the server, then create the cookie and append it to the response. Set the path and httpOnly properties on
the cookie, as per the best practices I covered earlier. Encode the ID GUID as a string, and insert it in the
MachId subkey in the cookie.

If this is the first time a client has sent the cookie back to the server, then set the expiration date to
50 years in the future. Otherwise, don't set an expiration date, so the cookie becomes a browser session
cookie that will expire when the user closes their browser. In that case, also set the Mach First flag as
another subkey in the cookie, which will indicate to you in the client's next request that this is the first
time the server has seen the ID coming back from the client.

}

if (!String.IsNullOrEmpty(context.Request.ServerVariables["SERVER_SOFTWARE"]))
{

if «response.Cookies.Count > 0) && (response.Headers["P3P"] == nUll))
{

response.AddHeader("P3P", "CP = \"NID DSP CAO COR\"");
}

}

As I discussed earlier, the P3P HTTP header is required in some cases for the browser to accept your
cookies. To avoid adding those extra bytes to all responses, the code here checks to see whether there are
any cookies set in the response. If so and if the P3P header hasn't already been set somewhere else, then
add it to the response.

The code also checks to see whether the SERVER_SOFTWARE server variable is set, which is one way to
check whether you're running under Cassini. You need to do that here, since you can't view or
manipulate the response headers unless you're running under lIS or lIS Express.

Database Table and Stored Procedure
Here are the definitions for the database table and the stored procedure that the example uses:

CREATE TABLE [Traffic].[Machines] (
MachineId UNIQUE IDENTIFIER,
CreationDate DATETIME

CREATE PROCEDURE [Traffic].[AddMachine]
@id UNIQUE IDENTIFIER

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

AS
BEGIN

END

SET NOCOUNT ON
DECLARE @trandate DATETIME
SET @trandate = GETUTCDATE()
INSERT INTO [Traffic].[Machines]

([MachineId], [CreationDate])
VALUES
(@id, @trandate)

The table is a heap, with no indexes, so inserts will be fast.
Note that using a UNIQUE IDENTIFIER as a primary key would result in a heavily fragmented table, with

an associated performance cost.

Registering the HttpModule in web,config
To use the HttpModule, you will need to register it in web. config. For IIS Integrated mode, as
recommended in Chapter 4, add it to the <system. webServer> section, as follows:

<system,webServer>
<modules>

<add name="MainModule" preCondition="managedHandler"
type="Samples,MainModule" />

</modules>

</system.webServer>

Setting preCondition to managedHandler tells IIS to call this HttpModule only if the request handler
runs managed code, like the one for. aspx pages. If you want it to be executed for static content as well,
you would omit the preCondition attribute.

To allow testing with Cassini, you should also configure the <httpModules> section:

<system.web>
<httpModules>

<add name="MainModule" type="Samples.MainModule" />
</httpModules>

</system.web>

After it's registered, create a blank page in the pages folder of the Sample site, start the Fiddler web
proxy, and view the page. The first time the page loads, it will set a cookie that includes the MachFirst
flag ("mf") in a subkey. Here's an example:

Set-Cookie: MC=mi=f5489d25-2eb7-410b-87bf-f56b7e9a68a4&mf=1; path=/Samples/pages/; HttpOnly

The next time you request any page in that folder, the HttpModule will remove the MachFirst flag and
set the cookie again with a far-future expiration date:

Set-Cookie: MC=mi=f5489d25-2eb7-410b-87bf-f56b7e9a68a4;
expires=Fri, 12-Sep-2059 12:01:25 GMT; path=/Samples/pages/; HttpOnly

235

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

236

The code will also call the AddMachine stored procedure at this time, to INSERT a row into the
Machines table, indicating that the ID is valid. You can verify that using SQL Profiler.

Custom HttpHandlers
As you saw in Chapter 4, as lIS is stepping through the HTTP request-processing life cycle, one of the
things it does is to execute a request HttpHandler. The runtime uses an HttpHandler to process. aspx
pages. In fact, the Page class, from which all . aspx pages are derived, is an HttpHandler.

You can also create your own custom HttpHandlers. I find them to be useful in many cases where
the markup file would have been empty, such as for dynamic image generation or delivering data
directly from a file or a database.

From a performance perspective, HttpHandlers have the potential of being much lighter weight than
an • aspx page. However, the downside is that you might also need to do more coding yourself to handle
things such as output caching and returning appropriate HTTP error codes when needed.

As with Pages and HttpModules, for requests that include I/O or database accesses, you should use
the asynchronous version, called IHttpAsyncHandler.

There are two ways to call HttpHandlers. One is to register them in web. config to be associated with
a particular file extension. The other way is as an . ashx file, also known as a generic handler.

Beginning the Request
As an example, let's say you have some plain HTML pages stored in a database. The table has an integer
key and a column that contains the HTML. Let's create a basic async HttpHandler that will determine the
page ID from a query string parameter and call a stored procedure to retrieve the HTML.

To begin, right-click your web site, select Add New Item, and then select Generic Handler. Keep the
default name of Handler. ashx. Modify the code as follows:

<%@ WebHandler Language="C#" Class="Handler" %>

using System;
using System. Data;
using System.Web;
using System.Data.SqIClient;

public class Handler : IHttpAsyncHandler {
public const string ConnString =

"Data Source=.;Initial Catalog=Sample;Integrated Security=True;Async=True";
HttpContext Context { get; set; }

public void ProcessRequest(HttpContext context)
{
}

Derive the class from IHttpAsyncHandler, which itself inherits from IHttpHandler. You therefore
need to implement the ProcessRequestO method, even though you won't use it.

Include Async= True in your connection string to indicate that you will be using asynchronous
database requests.

public IAsyncResult BeginProcessRequest(HttpContext context,
AsyncCallback cb, object extraData)

{

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

}

this.Context = context;
int fileid = 1;
string id = context.Request.QueryString["id"];
if (!String.IsNullOrEmpty(id))

fileid = Convert.Tolnt32(id);
SqlConnection conn = new SqlConnection(ConnString);
conn. Open 0;
SqlCommand cmd = new SqlCommand("GetHtml", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add("fileld", SqlDbType.lnt).Value = fileid;
IAsyncResult ar = cmd.BeginExecuteReader(cb, cmd);
return ar;

The BeginProcessRequest () method parses the id value in the query string, passes it as an integer
parameter to the GetHtml stored procedure, starts the async database query, and returns the associated
IAsyncResul t object.

Keep in mind that you shouldn't use async .NET delegates here for the same reason you shouldn't
use them in async pages: they will consume a worker thread, thereby defeating one of our scalability
goals.

Ending the Request
Here's the EndProcessRequestO method:

}

public void EndProcessRequest(IAsyncResult ar)
{

}

using (SqlCommand cmd = (SqlCommand)ar.AsyncState)
{

}

using (cmd.Connection)
{

}

SqlDataReader reader = cmd.EndExecuteReader(ar);
while (reader.Read())
{

Context.Response.Write(reader["Html"]);
}

Context.Response.ContentType = "text/html";

public bool IsReusable
{

}

get
{

}
return false;

The code collects the result of the query and calls the DisposeO method of the SqlCommand and
SqlConnection objects, by way of the using statements.

237

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

238

Write the Html column of result of the query to the output stream and then set the MIME type of the
response to textlhtml.

The Is Reusable property, which is required by IHttpHandler, is set to false to indicate that a single
instance of this class cannot be used to service multiple requests.

The result of invoking this handler in a browser will be to asynchronously read the specified record
from the database and send the result to the browser as HTML.

Here's aT -SQL script to create the table, stored procedure, and some simple test data for the
Handler (see create2. sql in the Database project):

CREATE TABLE HtmlData
(

)
GO

id INT IDENTITY,
Html VARCHAR(MAX)

CREATE PROC GetHtml
(

)
AS

@fileId INT

BEGIN

END
GO

SELECT hd.Html
FROM HtmlData hd
WHERE id = @fileId

INSERT INTO HtmlData (Html)
VALUES ('<html><body>This is record l.</body></html>')

INSERT INTO HtmlData (Html)
VALUES ('<html><body>This is <i>record two</i>.</body></html>')

After running the T-SQL script, to test the handler, double-check the connection string, and request
Handler .ashx?id=2 from your browser.

Page Base Class
During the process of developing your web site, it's likely that you will encounter one or more methods
that you would like to have associated with all or most of your pages. A class derived from the Page class
is a good way to do that.

Although there's nothing magic about abstract or derived classes, you might want to do a few other
things at the same time which have an impact on performance, project consistency, and overall ease of
use.

The standard Page uses reflection to look for methods to call for each life cycle event. Unfortunately,
reflection is somewhat slow, so you can improve performance by disabling that feature and then
overriding the built-in event handlers. To disable the default mechanism, set the AutoEventWireup flag to
false in the Page directive:

<%@ Page Language="C#" AutoEventWireup="false"
CodeFile="code.aspx.cs" Inherits="code" %>

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

In addition to the performance aspect, I like this approach because it allows me to use IntelliSense
to find event handlers. After selecting one, Visual Studio will automatically create the method, including
its arguments and a call to the base method.

I suspect that one reason this approach isn't the default is because it means that developers have to
remember to call the base methods. Uyou don't, then your application might break in subtle or
unexpected ways. I normally call the base method before my code, unless I explicitly need to override
something that the base method would otherwise do.

In addition to providing some custom functionality, you might also use a custom page base class to
implement certain application policies that an HttpModule can't effectively enforce, such as when
protected methods are involved or when you need to intervene at some point in the page life cycle. For
example, if the browser is a mobile device, you might want to persist ViewState in a database.

Here's an example of a custom base class, including two custom (but empty) methods for handling
ViewState (see Chapter 3 for an example implementation) (see App_Code\MyBaseClass. cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;

public class MyBaseClass Page
{

}

public MyBaseClass()
{
}

protected override object LoadPageStateFromPersistenceMedium()
{

return base.LoadPageStateFromPersistenceMedium();
}

protected override void SavePageStateToPersistenceMedium(object state)
{

base.SavePageStateToPersistenceMedium(state);
}

Here's the code-behind for an empty page that uses the base class (see templatel.aspx.cs):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class templatel: MyBaseClass
{

protected override void OnLoad(EventArgs e)
{

base.OnLoad(e);
II
II Your code here

239

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

240

II
}

}

Once you have created a page base class and have selected customized page settings, you may also
want to encapsulate them in a Visual Studio template to simplify the process of creating new pages that
use them. I covered how to create a template in Chapter 3.

One problem with trying to implement site-wide policies with page base classes is that developers
might forget to use them.

You can tell the framework to check that all pages on your site use the same base class with the
pageBaseType property in web. con fig:

<system.web>

<pages pageBaseType="PageBase">

</pages>
</system.web>

Page Adapters
Using a site-wide page base class requires you to modify all of your existing pages and code-behind. For
an existing large site, that can be an issue. So, as an alternative, ASP.NET has a feature called page
adapters that will allow you to globally override many functions of the default Page class, including event
and ViewState management, how hyperlinks and postback events are rendered, and transformation of
text on the page. Page adapters aren't as flexible as a page base class, but they can be useful in some
situations.

Example: PageStatePersister
As an example, let's create a page adapter that implements a simple server-side ViewState caching
mechanism.

The first class you need will inherit from PageStatePersister. You will use this from the page
adapter. Override two methods, SaveO and LoadO (see AppCode\MyPageAdapter .cs):

using System;
using System.Web.UI;
using System.Web.UI.Adapters;

names pace Samples
{

public class MabilePersister : PageStatePersister
{

public canst string ViewKeyName = "_ viewkey" ;
private canst string _viewCache = "view";
private canst string _cantralCache = "ctl";

public MabilePersister(Page page)
: base(page)

{

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

}

public override void Save()
{

}

if «this.ViewState != nUll) I I (this.ControlState != nUll»
{

}

string key = Guid.NewGuid().ToString()j
this.Page.ClientScript.RegisterHiddenField(ViewKeyName, key)j
if (this.ViewState != nUll)

this.Page.Cache[key + _viewCache] = this.ViewStatej
if (this.ControlState != nUll)

this.Page.Cache[key + _controlCache] = this.ControlStatej

The Save () method checks to see whether there is any ViewState or ControlState that should be
persisted. If there is, it creates a new GUm and stores it in a hidden field on the page. ViewS tate and
ControlState are stored in the ASP.NET object cache using the Gum plus a short string as the key.

}

public override void Load()
{

}

string key = this.Page.Request[ViewKeyName]j
if (key != nUll)
{

}

this.ViewState = this.Page.Cache[key + _viewCache]j
this.ControlState = this.Page.Cache[key + _controlCache]j

The Load () method retrieves the Gum from the hidden field and uses it plus the same short strings
as in the SaveO method to retrieve the ViewState and (ontrolState from the shared cache.

PageAdapter Class
Here's the MyPageAdapter class:

public class MyPageAdapter PageAdapter
{

public MyPageAdapter()
{
}

public override PageStatePersister GetStatePersister()
{

if (this.Page.Request.Browser.IsMobileDevice)
{

return new MobilePersister(this.Page)j
}
else

return base.GetStatePersister()j
}

241

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

242

}
}

The code inherits from PageAdapter. The overridden GetStatePersister() method checks to see
whether the current browser is a mobile device. If it is, then it returns an instance of the new
MobilePersister class. Otherwise, it returns the default PageStatePersister.

Registering the PageAdapter
To use the page adapter, register it in a • browser file in the App _Browsers folder, the same way that you
did earlier for control adapters:

<browsers>
<browser refID="Default">

<controlAdapters>
<adapter controlType="System.Web.UI.Page"

adapterType="Samples.MyPageAdapter" I>
<lcontrolAdapters>

</browser>
</browsers>

The result is that the page adapter will be called for all Pages on the site, providing a consistent
implementation of ViewS tate and ControlState persistence for mobile devices.

URL Rewriting
URL rewriting is the process of transforming an externally visible URL into an internal one, so that the
external URL no longer needs to correspond with a physical file. Although search engine optimization is
normally the primary motivation for URL rewriting, it's also useful from a performance perspective for
two reasons. First, it allows you to create shorter URLs. As I discussed in Chapter 2, shorter is better.
Second, it can allow you to fool http. sys into caching a page that uses query strings, and so would
otherwise not be cacheable there.

As I discussed in Chapter 4, it's possible to use an lIS plug-in to do URL rewriting using regular
expressions. It's also possible to do URL rewriting programmatically in ASP.NET. A full-custom
approach would make sense when you need more fine-grained control.

You can programmatically rewrite URLs either from an HttpModule or from Global. asax. Using an
HttpModule will allow you to have access to all URLs processed by lIS, including those for static files.

Here's an example (see AppCode\RewriteModule.cs):

using System;
using System.Web;

names pace Samples
{

public class RewriteModule IHttpModule
{

public RewriteModule()
{
}

public void Init(HttpApplication context)

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

}
}

{

}
context.BeginRequest += this.Sample_BeginRequest;

private void Sample_BeginRequest(Object source, EventArgs e)
{

}

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
string path = context.Request.RawUrl;
if (path.Contains("/p/"))
{

}

string newUrl = path.Replace("/p/", "/mycoolproductpages/");
context.RewritePath(newUrl, false);

public void Dispose()
{
}

The code starts by registering a handler for the BeginRequest event. The event handler checks to see
whether the incoming URL contains a certain string. If it does, then you replace that string with your
local (and much longer) path. The call to RewritePathO tells the runtime to process newUrl as though it
was the page requested by the user. Setting the second argument ofRewritePath() to false tells the
runtime that the page should not be rebased to the new URL. That allows relative URLs on the
destination page to work correctly.

With this code in place, you can use Ipl defaul t. aspx instead of Imycoolproductpagesl defaul t. aspx.
The http.sys cache only sees the original URL, not the rewritten one. That means if you encode

page parameters in the URL and then translate them into a query string during the rewrite process, then
http. sys can cache the page if it's marked with an appropriate OutputCache directive.

URL Routing
The nice thing about URL rewriting is that you can normally use it with existing pages relatively easily.
The downside is that you need to handle pattern matching against incoming URLs yourself, along with
construction of the destination URLs, as well as adding support for fixing dorm> tags.

An alternative approach that simplifies the process is URI routing. The downside of routing is that
you will need to modify existing pages to handle incoming query string-type arguments differently.

A route is a URL pattern that maps to an HttpHandler, such as an . aspx page. In ASP.NET MVe, the
handler is often a controller.

Routes differ from URL rewriting. With rewriting, you modify the incoming URL before executing
the page. You can extract parameters from the path and use them to build a query string. There is no
built-in method of generating a rewritable URL based on parameters. With routing, the runtime passes
the unchanged incoming URL to the page after parsing any parameters, and there is a way to generate
URLs from parameters (which means it's easier and faster to make changes to your URL mapping).

To add routes to your application, call RouteCollection. MapPageRoute () in Application_Start ().
For example, to shorten the incoming URL from Imycoolproductpages/defaul t. aspx to just 1m (see
App _ Code\Global. cs):

243

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

244

RouteCollection rc = RouteTable.Routes;
rc.MapPageRoute("cool-product", Om", "-/mycoolproductpages/default.aspx");

The first argument to MapPageRoute() is the name of the route. You can use this later to generate
URLs from routes. The second argument is the URL pattern. In this example, you're using a fixed string.
The third argument is the path to the physical file that contains the HttpHandler. In this case, the
destination is the default. aspx page.

Next, extend the example by adding a component to the incoming path that you can retrieve as a
parameter on the page, instead of using a query string. Rather than
/mycoolproductpages/ default. aspx? id=1234, you would prefer to use /m/1234:

rc.MapPageRoute("id-product", "m/{id}", "-/mycoolproductpages/default.aspx");

The {id} part of the URL pattern represents the location in the path of your parameter, and the
name you would like to use to reference it. URL patterns can have mUltiple parameters, provided you
separate them with fixed text. For example, m/{category}-{id} is a valid pattern, with two parameters
separated by a hyphen instead of a slash.

After adding the new route, the previous one still works, since the runtime can differentiate one
from the other. You can also still access the file using its physical path.

To reference the parameter in your page, use the RouteData. Values collection (see
mycoolproductpages\default.aspx.csJ:

string id = this.RouteData.Values["id"] as string;
if (id != nUll)
{

this.MyLabel.Text = id;
}

You can reference the parameter from markup by using the RouteValue expression builder (see
mycoolproductpages \defaul t. aspxJ:

<asp:Label runat="server" Text="<%$ RouteValue:id %>"></asp:Label>

You specify the name of the parameter after the RouteVa lue keyword.
You can specify defaults for your parameters:

rc.MapPageRoute("id-def-product", "d/{category}/{id}", "-/mycoolproductpages/default.aspx",
true,
new RouteValueDictionary { { "category", "abc" }, { "id", "1234" } });

After running this code, if you request the URL /d by itself, the page will report the default setting of
abc for category and 1234 for id.

If you would like your parameter to include the rest of a URL, including slashes, then put an asterisk
at the beginning of the parameter name:

rc.MapPageRoute("id-query-product", "q/{*id}", "-/mycoolproductpages/default.aspx");

This way, if you request /q/one/two/three, the id parameter will be set to one/two/three.
You can add constraints to routes in the form of regular expressions. For example, to constrain the

route to ids with four-digit numbers:

rc.MapPageRoute("id-con-product", "c/{category}-{id}", "-/mycoolproductpages/default.aspx",
true,
new RouteValueDictionary { { "category", "abc"}, {"id", "1234" } },
new RouteValueDictionary { { Hid", @"\d{4}" } });

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

If you request a URL with an id that doesn't match the constraint, and the URL doesn't match any
other routes, then the framework will return a 404 Not Found error.

The runtime matches URLs to routes by first looking to see if a physical file exists at the given URL. If
a file doesn't exist, then the runtime examines routes in the order you added them, including
constraints, and takes the first match.

To generate a URL from a route:

var rvd = new RouteValueDictionary();
rvd.Add("id", "7777");
rvd .Add ("category", "stuff");
var vpd = RouteTable.Routes.GetVirtualPath(null, "id-con-product", rvd);
this.CodeLink.NavigateUrl = vpd.VirtualPath;

Create a RouteValueDictionary, and add the two parameters. Then call GetvirtualPath(), specifying
the name of the route (the string you provided when you added the route with MapPageRoute()) and the
RouteValueDictionary with the parameter details. The VirtualPath property of the returned object will
then contain the corresponding URL.

You can do something similar in markup with an expression builder:

<asp:HyperLink runat="server" ID="MarkupLink" NavigateUrl="<%$RouteUrl:id=5555 %>">
Link from markup
</asp:HyperLink>

You provide the name of parameter and its value after the RouteUrl keyword. You can include
multiple parameters by separating them with a comma.

Unfortunately, you can't specify the name of the route this way. Instead, the runtime will search the
list of routes for the first one that matches the current physical page, and use that. If the route doesn't
include the given parameter, then the runtime will add it to the generated URL as a query string (which
is what it does in the sample code).

Tag Transforms
You may occasionally encounter cases where you would like to replace the class for one control with
another class everywhere that it's used in your application. That can be much easier than writing a
control adapter in certain cases.

As an example, the standard ListView control can emit quite a bit of ControlState. If you're not
using the advanced features of the control, you may be able to get along without that extra data in your
page. You can't disable ControlState with a parameter or property (since it will cause some features to
stop working), so let's use a tag transform to work around that limitation (see
App_Code\ListViewNoCS.cs):

using System.Web.UI.WebControls;

names pace Samples
{

public class ListViewNoCS : ListView
{

protected override object SaveControlState()
{

return null;
}

}

245

�

�

CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

246

}

Inherit from the standard Listview class, then override its SaveControlState() method to always
return null.

Next, register the class in web. config in the <tagMapping> section:

<pages>

<tagMapping>
<add tagType="System.Web.UI.WebControls.ListView"

mappedTagType="Samples.ListviewNoCS" />
</tagMapping>

</pages>

That will cause the compiler to replace theListview class with the ListviewNoCS class everywhere it
appears in your application.

Note The type in mappedTagType must inherit from tagType.

If you run listviewl. aspx in the sample code (which just contains an empty ListView control)
before and after making the change to web.config, you will see that the _VIEWSTATE field is shorter after
making the change.

Redirects
Standard HTTP redirects cause the browser to request the specified URL in place of the original one,
which results in an additional client-to-server round trip. In keeping with our core principles, it's better
to avoid that if you can.

Conventional Redirects
You can do a conventional 302 Found redirect as follows:

this.Response.Redirect("-/pages/error.aspx", true);

Setting the second argument to true causes the runtime to terminate the current response by calling
Response. End 0, which in turn will throw a ThreadAbortException. To avoid the overhead and hassle of
handling the exception, you can set the flag to false. However, in that case, both the ASP.NET and the IIS
pipelines will continue to execute. You can tell IIS to skip the remaining events by calling
CompleteRequest():

HttpContext.Current.Applicationlnstance.CompleteRequestel;

ASP.NET events will still execute in that case. Skipping them as well requires a little additional code.
For example, you might set a flag when you call CompleteRequestO and then, in overridden event
handlers, check to see whether that flag is set before calling the base handler. This might be a good task
for your base class.

This type of redirect is useful when you want to tell the browser to fetch a certain page conditionally,
such as in the event of an error, as in the earlier example. Browsers and proxies can't cache 302 Found
redirects, and search engines should not follow them.

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

If you're using routing, you can redirect to a route as follows (see
mycoolproductpages \defaul t. aspx):

this.Response.RedirectToRoute("id-product", new { id = "8888" });

You specify the name of the route as the first parameter, followed by an object containing the
route's parameters.

Permanent Redirects
There are cases when redirects should be permanent, such as when a page has moved:

this.Response.RedirectPermanent("-/pages/newpage.aspx", true);

This will generate a 301 Moved Perma nentl y HTTP response.
Browsers and proxies can cache permanent redirects, and search engines follow them.
It's a good idea to look at the text that accompanies your HTTP redirects to make sure you are

returning as little as possible. Even though the browser doesn't display the body of the redirect, users
can easily see it in a web proxy tool like Fiddler. In addition to the performance impact, if you did the
redirect for security reasons and forgot to end the request afterward, you might accidentally still be
rendering the page that you didn't want the user to access (see redirectl.aspx).

You can also configure conventional redirects from lIS, which is handy for static files or for cases
where programmatic logic isn't required.

If you're using routes, the call is similar to the one for temporary redirects:

this.Response.RedirectToRoutePermanent("id-product", new { id = "8888" });

Using Server.TransferO
One mechanism for avoiding the round trip associated with redirects is the Server. Transfer () method.
As with URL rewriting and routing, the server doesn't tell the client to get a new page in that case, so the
URL in the browser's address bar doesn't change.

You can use URL rewriting to dynamically redirect a request when the new path is known before the
HttpHandler is called, such as from an HttpModule. Once the HttpHandlerhas been called, RewritePathO
will no longer transfer control to a new page, and you should use Server. Transfer() instead.

Instead of putting the burden of making a new request back on the browser, Server. Transfer()
reissues HttpHandler . ProcessRequest () without informing the client; no additional round trips are
required. As with calling Response. RedirectO when the endResponse flag is set to true,
Server. TransferO always ends the current request by calling Response. End 0, which in turn throws a
ThreadAbortException. Here's an example:

this.Server.Transfer("-/pages/error.aspx", false);

The purpose of setting the second parameter to true is supposed to be to allow you to see the query
string and form parameters of the current page when the new page starts to execute. However, because
of ViewS tate integrity verification (enableViewStateMac, which should be enabled as described in
Chapter 3), it will cause an exception if the current page contains any ViewS tate. You should therefore
set the second parameter to true only if the current page does not use server-side forms or ViewState
but does use query strings whose value you need in the destination page.

Of course, you can't use this mechanism to transfer control to another server, or even another
AppPool. It works only for . aspx pages in the current AppPool.

The server does not reauthenticate users when you call Server. Transfer(). If you require
authentication, you should apply it programmatically.

247

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

248

Early Response Flush
Unlike with ASP or PHP, the way ASP.NET creates a page involves recursively stepping through the life
cycle of the page itself and all of its controls. The runtime doesn't render the page's output until almost
the very end. That approach facilitates things like control-specific event handlers, and it allows controls
that are located in one place on the page to make changes to output anywhere on the page.

When a page is ready to be rendered, the ASP.NET HttpHandler calls the RenderO method of the
page and all of its controls. By default, the output from Render() is buffered in memory. When the
rendering phase is complete, the final size of the page is included in the HTTP headers, and the headers
and the buffered content are sent to the client.

The standard approach works fine for pages that don't contain any long-running tasks. Although
you should try hard not to have long-running tasks on a page, there are times when you can't avoid
them. In keeping with the core principle of focusing on performance as perceived by users, for pages
with long-running tasks it would be nice if you could send part of the response before sending the whole
thing.

Before describing this technique, let me say that I prefer Ajax and partial-page updates most of the
time. However, there are cases where you can't use Ajax. For example, search engines can't index
content that you insert onto a page from an Ajax call.

ASP.NET provides a method called Response. Flush () that will flush the response buffer. However,
by default nothing gets written into the response buffer until the rendering phase, so calling it before
then doesn't do much. You might also be tempted to call FlushO in-line from your markup file, as you
can from ASP (or equivalently from PHP). Unfortunately, the code in your markup file is called during
the rendering phase, and by that time, whatever slow task you had on the page will have already
completed.

Example
The solution isn't pretty, but it works. As an example, see flushl. aspx:

<%@ Page StylesheetTheme="mkt" Title="Testing" Language="C#" AutoEventWireup="false"
CodeFile="flushl.aspx.cs" Inherits="flushl" Async="true" %>

<head runat="server">
ditle></title>
<script type="text/javascript" src="test.js"></script>

</head>
<body>

<form id="forml" runat="server">
<div>
<asp:Label runat="server" ID="test" Text="testing" I>
</div>
</form>

</body>
</html>

Notice that I'm referencing a StyleSheetTheme, that AutoEventWireup is set to false, and that the
<! DOCTYPE> and <html> tags are missing from the beginning of the file.

Here's the code-behind (see flush1.aspx.cs):

using System;
using System.Data.SqlClient;
using System. Threading. Tasks;

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

using System.Web.UI;

public partial class flushl : Page
{

public const string ConnString
"Data Source=127.0.0.1;Integrated Security=True;Async=True";

I'm using 127.0.0.1 instead of a single dot or localhost, since that makes the SQL Server traffic
visible to the packet trace software. Specify Async= True in the connection string, since you'll be issuing
an async command.

protected async override void OnLoad(EventArgs e)
{

}

base.OnLoad(e);
using (SqlConnection conn new SqlConnection(ConnString))
{

}

conn. Open ();
using (SqlCommand cmd = new SqlCommand("WAITFOR DELAY '00:00:02"', conn))
{

}

await Task.Factory.FromAsync<int>(cmd.BeginExecuteNonQuery,
cmd.EndExecuteNonQuery, nUll);

In the On Load event handler for the page, open a connection to SQL Server and issue a WAITFOR DELAY
command to sleep for two seconds. Use Task. Factory. FromAsync () to create an awaitable Task based on
the BeginExecuteNonQuery and EndExecuteNonQuery methods in SqlCommand. Since you're using the Task
based await, add the async keyword to the declaration for OnLoad.

}

protected async override void OnPreRender(EventArgs e)
{

}

base.OnPreRender(e);
this.Response.Write("<lDOCTYPE html PUBLIC" +

"\"-IIW3CIIDTD XHTML 1.0 TransitionalIIEN\" " +
"\ "http://www .w3. orglTR/xhtml1/DTD/xhtml1-transitional. dtd\"> \n");

this.Response.Write("<html xmlns=\"http://www.w3.org/1999/xhtml\">\n");
HtmlTextWriter writer = this.CreateHtmlTextWriter(this.Response.Output);
this.Header.RenderControl(writer);
writer. Flush 0;
await Task.Factory.FromAsync(this.Response.BeginFlush,

this.Response.EndFlush, nUll);
this.Controls.Remove(this.Header);

Here's the tricky part. What you've done is to override the OnPreRenderO event handler under the
assumption that the slow tasks will happen either as async tasks, or if they're synchronous, sometime
after OnPreRender, such as in the PreRenderComplete event.

After calling the base event handler, write the < 1 DOCTYPE> and <html> tags, that you left out of the
markup file, into the response buffer.

249

�

�

CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

250

Next, get an HtmlTextWriter object using Page.CreateHtmlTextWriterO and use it to render the page
header control into the response buffer, to follow the <! DOCTYPE> and <html> tags. The header control
includes the <head> tag and its contents, including CSS and JavaScript specified by the theme and the
< script> tag you included in the markup.

Ideally, the initial content that you send to the browser should not only request a few of the files
you'll need for the page but should also display something to indicate that the request is being
processed. You might display a progress bar or graphic, for example.

Next, flush the Html TextWriter. Then create, start, and wait for an await able Task object based on
the older-style async methods to flush the response buffer, BeginFlush 0 and End Flush O. That will start
an async write of the buffer's contents and the current HTTP headers to the network, and wait for an
acknowledgment.

Finally, remove the header from the control tree so that it won't be rendered a second time during
the official render phase.

Waiting to do this until the PreRender event allows any events to execute that are attached to the
Header control or its children. Once you remove it from the control tree, events that are attached to it will
no longer fire.

Caution After calling Response.BeginFlushO, it is an error to set any additional HTTP headers (including from
an HttpModule), since they are sent to the client when BeginFlush 0 is called.

Packet Trace
To get a better feeling for what's happening, let's look at a packet trace. For this test, I ran the page twice.
The first time was from Internet Explorer, to get the (numerous) SQL Server initial connection and login
packets out of the way. The second time was from Firefox, so that the packets to open connections to the
server are included (otherwise, the browser reuses the connections, in accordance with HTTP
KeepAlive).

Wireshark alone doesn't work with the local loop back network interface. I used the local URL
http://127 .0. O.l/flushl. aspx, so that I could capture the packets with RawCap.exe, and then displayed
and filtered the capture in Wireshark. The results are shown in Figure 7-1.

�CHAPTER 7 MANAGING ASP.N ET APPLICATION POLICIES

No. Time Protocol length Info
10 " REF " TCP 52 23793 > http [SYN] seq=O win=8192 Len=O MSS=6 5495 WS=4
11 0. 000000 TCP 52 http > 23793 [SYN. ACK] seq=O Ack=l wi n=8192 Len=O MSS=
12 0.000000 TCP 40 23793 > http [ACK] seq:1 Ack=l win=8192 Len=O
13 0.000976 HTTP 377 GET / fl ush1. aspx HTTP/ 1.1
140.000976 TCP 40 http > 23793 [ACK] seq=l Ack=338 win=7680 Len=O
150. 000976 TOS 118 SQL batch
16 0. 000976 TCP 40 ms-sql-s > 23791 [ACK] seq=l Ack=79 win=27 Len=O
17 0.000976 TCP 627 [TCP segment of a reassembl ed pou]
18 0.000976 TCP 40 23793 > http [ACK] seq=338 Ack=588 win=7604 Len=O
33 0.022461 TCP 52 23794 > http [SYN] seq=O win=8192 Len=O Mss=6 5495 WS=4
34 0. 022461 TCP 52 http > 23794 [SYN. ACK] seq=O Ack=1 win=8192 Len=O MSS=
35 0.022461 TCP 40 23794 > http [ACK] seq=l Ack=l win=8192 Len=O
38 0.022461 HTTP 385 GET / App_Themes/ mkt / common.css HTTP/ 1.1
39 0.022461 TCP 40 http > 23794 [ACK] seq-1 Ack-346 win-7680 Len=O
40 0. 022461 TCP 52 23795 > http [SYN] Seq=O win=8192 Len=O ~ISS=65495 WS=4
41 0.023437 TCP 52 http > 23795 [SYN . ACK] seq=O Ack-1 win=8192 Len=O MSS·
42 0. 023437 TCP 40 23795 > http [ACK] seq=l Ack=1 win=8192 Len=O
430.023437 HTTP 352 GET / test.js HTTP/ 1.1
44 0.023437 TCP 40 http > 23795 [ACK] Seq=l Ack=313 win=7680 Len=O
45 0. 023437 HTTP 299 HTTP/ 1 . 1 200 OK (text/ css)
46 0.023437 TCP 40 23794 > http [ACK] seq=346 Ack=260 win=7932 Len=O
47 0. 023437 TCP 1500 [TCP segment of a reassembled PDU]
48 0.024414 TCP 1500 [TCP segment of a reassembled PDU]
49 0.024414 TCP 40 23795 > http [ACK] seq=313 Ack=2921 win=8192 Len=O
52 0.024414 TCP 1500 [TCP segment of a reassembled pou]
53 0. 024414 HTTP 1017 HTTP/ l.l 404 Not Found (text / html)
540.025390 TCP 40 23795 > http [ACK] seq=313 Ack=5358 wi n=8192 Len=O
57 2.000976 TDS 67 Response
58 2.001953 TCP 4023791 > ms-sq l -s [ACK] seq=79 Ack=28 win=26 Len=O
592.001953 HTTP 378 HTTP/ 1.1 200 OK (text/ html)
60 2.001953 TCP 40 23793 > http [ACK] seq=338 Ack=926 win=7264 Len=O

Figure 7-1. Packet trace of an early response flush

• Packets 10, 11, and 12 are the browser opening a connection to the server. With
three packets and one- and- a- half round trips, you can see why opening a new
connection is expensive.

• At packet 13, the highlighted line in the figure, the browser sends the HTTP GET to
the server. Packet 14 is an acknowledgement (ACK) of the GET from the server to the
client.

• At packet 15, right after the server receives the GET command, it sends the WAIT FOR
DELAY command to SQL Server (the reported time values are only accurate to
within a millisecond or so).

• Packet 16 is SQL Server acknowledging receipt of the command packet.

• Packet 17 is the server sending the partial response after the async BeginFlush call.
The packet contains the <! DOCTYPE> and <head> tags. Wireshark sees this as a
partial HTTP response and can't decode it at this stage of the conversation.

• Packet 18 is an acknowledgement from the client to the server ofthe partial
response packet.

• Packets 33, 34, and 35 are the browser opening a second connection to the server
after it parses enough of the partial response to know that it will need one. The
packet numbers jump here, because I've configured Wireshark to filter out some
packets not related to this application.

251

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

252

• At packet 38, the browser issues a GET request for a CSS file that's part ofthe
theme. This means that the browser is issuing a new HTTP request while it's
waiting to receive the rest of the page. Packet 39 is an ACK for the request packet.

• Packets 40, 41, and 42 are the browser opening a third connection to the server.

• Packet 43 is the browser using the third connection to issue a GET request for the
<script> file that you included in the <head> section (the file itself is not needed or
included in the sample code). Notice that this happens after the CSS request, since
the <script> tag comes after the dink> tag in the HTML. Packet 44 is an ACK for
the request packet.

• Packet 45 is the server's response to the GET for the CSS file (200 OK) over the
second connection.

• Packets 47,48,52, and 53 are the server's 404 Not Found response to the GET for the
script file, since the file doesn't exist. Notice that the response requires four
packets to deliver the standard error text, even though the user will never see it.

• Exactly two seconds after the application sent the WAITFOR DELAY command to SQL
Server, the response that signals completion arrives in packet 57. This shows that
the client received and acted on the partial HTML response, which arrived well
before the "long running" SQL command finished.

• Packet 59 is the server sending the rest of the response to the client, after the page
processing completes. Mter receiving this packet, Wireshark has enough
information to decode the entire response, including packet 17.

Chunked Encoding
To avoid closing the connection after using Response. BeginFlush (), the runtime uses HTTP chunked
encoding to send the response. In a normal response, the runtime knows the size of the entire response,
since it's buffered before being sent. The server encodes the length in the HTTPContent-Length header,
so the browser knows how much data to read before looking for the HTTP headers for the next response.
With chunked encoding, the length is instead given right before the content. Here's the full server
response:

HTTP/1.1 200 OK
Cache-Control: private
Transfer-Encoding: chunked
Content-Type: text/htm1j charset=utf-8
Server: Microsoft-IIS/7.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Fri, 03 Feb 2012 12:16:11 GMT
161
<!DOCTYPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"
''http://www.w3.org/TR/xhtm11/DTD/xhtmll-transitiona1.dtd">
<html xmlns=''http://www.w3.org/1999/xhtml''>
<head id="Headl">
<link href="App_Themes/mktlcommon.css" type="textlcss" rel="stylesheet" I>
<title>
Testing

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

</title>
<script type="text/javascript" src="test.js"></script>

</head>
146
<body>

<form name="forml" method="post" action="flushl.aspx" id="forml">
<div>
<input type="hidden" name="_VIEWSTATE" id="_VIEWSTATE"
value="/wEPDwULLTEONDMxNDMOMTlkZAOloE+taD1AMKhxDNDZZLZADwxZqGnPPbIF8Mylq4PV" I>
</div>

<div>
testing
</div>
</form>

</body>
</html>
o

Notice Transfer- Encoding: chunked in the header, and 161, 146, and 0, which indicate the number
of characters in the following chunk. The packet boundary was right before the 146.

In addition to the hassle of using Response. Write() to put text into the response buffer, it's
unfortunate that this technique produces some XHTML validation warnings in Visual Studio and that it
breaks the visual designer. Also, the runtime doesn't allow code blocks (like <% %» in the markup file if
you call Controls. Remove (). However, even with those shortcomings, this approach can still be useful on
certain pages.

Whitespace Filtering
You can reduce the size of dynamically generated HTML that the server sends to the client by processing
it first to remove extra whitespace. This is in the same spirit as the JavaScript minification that I
discussed in Chapters 2 and 6, now applied to dynamic HTML. You might be surprised to see how much
extra whitespace some HTML pages contain.

The first step is to write a filter that does the appropriate processing on the output stream of the
Page. You should implement the filter using the Stream interface. The main method of interest is Wri te(),
whose input is a byte array and an offset and a count. The fact that the runtime doesn't write all the
output for the page at one time means you need to track some state information from one call to the
next.

The resulting code is a bit too much to walk through as a detailed example, but here's an outline of
what's required:

using System;
using System.IO;
using System. Text;

names pace Sample
{

public class MinifyStream : Stream
{

private StreamWriter Writer { get; set; }
private Decoder Utf8Decoder { get; set; }

253

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

254

public MinifyStream(Stream stream)
{

}

this.Writer = new StreamWriter(stream, Encoding.UTF8);
this.Utf8Decoder = Encoding.UTF8.GetDecoder();

The class inherits from Stream, and the constructor wraps the provided Stream in a new
StreamWriter, with UTF-8 encoding.

public override void Write(byte[] buffer, int offset, int count)
{

}

int characterCount = this.Utf8Decoder.GetCharCount(buffer, offset, count);
char[] result = new char[characterCount];
int decoded Count = this.Utf8Decoder.GetChars(buffer, offset, count, result, 0);
if (decodedCount <= 0)

return;

The Write() method should process the input byte array as UTF-8 characters. The algorithm should
filter out extra whitespace and write the filtered output to this .Writer, taking into account that the
buffer boundary may not be on a line boundary.

You should override the Read (), Set Length (), and Seek () methods to throw
NotImplementedException, since this is a write-only, forward-only Stream. Similarly, you should override
the Position and Length properties to throw InvalidOperationException.

public override void Flush()
{

this.Writer.Flush();
}

public override bool CanWrite
{

get { return true; }
}

public override bool CanSeek
{

get { return false; }
}

public override bool CanRead
{

get { return false; }
}

public override void Close()
{

}

this.Writer.Flush();
this.Writer.Close();
base.Close();

I've shown the remaining properties and methods here with straightforward overrides.

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

With the filter class in hand, the next step is to wire it up. In an HttpModule such as the one I walked
you through earlier in this chapter, create and configure a new event handler for the
PostRequestHandlerExecute event, meaning that it will run right after the page handler finishes:

private void Sample_PostRequestHandlerExecute(Object source, EventArgs e)
{

}

HttpApplication application = (HttpApplication)source;
HttpResponse response = application.Context.Response;
if(response.ContentType == HtextlhtmlH)

response. Filter = new MinifyStream(response.Filter);

You want to apply this filter to HTML output only; code that is optimized to remove whitespace
from HTML won't work with anything else. You check that by looking at Response. ContentType, which
contains the MIME type ofthe output.

The final step to making this whole thing work is to assign a new instance of the filter to
Response. Filter. That will tell the runtime to call the filter code to process the output of the page. You
pass a reference to the old filter as an argument to the constructor so that your class will know where to
send the output once it's done removing the extra whitespace.

Other Ways to Avoid Unnecessary Work
One of the standard performance-improvement tenets is to avoid doing more work than you need. In
addition to the mechanisms I've described earlier, such as caching, you can also do a few more things
along those lines.

Check Page.IsPostBack
Many controls cache their state in ViewState, and the runtime will restore that state during a postback.
As I discussed in Chapter 3, you can also use ViewState to cache the results of page-specific long
running tasks, such as database queries. To avoid repeating those tasks during a postback, be sure to
check the Page. IsPostBack flag:

protected override void OnLoad(EventArgs e)
{

}

base.OnLoad(e);
if (!this.IsPostBack)
{

}

II
II Do expensive operations here that can be cached in ViewState,
II cookies, etc.
II

Identify a Page Refresh
If your page performs any actions that should be done only once per page request per user, you may
want to differentiate a normal page request from a page refresh. This is a good candidate method for a
base class.

255

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

256

Fortunately, IE and Firefox both insert an extra HTTP request header for a refresh, although it's a
different one for each browser. Here's some sample code:

protected virtual bool IsRefresh
{

}

get
{

}

return this.Request.Headers["Pragma"] == "no-cache" I I
this.Request.Headers["Cache-Control"] == "max-age=o";

You might use this before updating a count of the number of times users have accessed the page, for
example.

Cookies are another possible solution to this issue. The best approach depends on whether you
want to apply restrictions to multiple accesses of any kind within some period (cookies) or just page
refreshes (HTTP headers).

Avoid Redirects After a Postback
A coding pattern that I often see in ASP.NET sites is to have a web form that redirects to another page
after it handles a postback in some way. You should try to avoid those redirects, either using
Server. TransferO as described earlier or perhaps by posting back to a different page. You can do a
cross-page postback by specifying the PostBackUrl property on an <asp: Button> control:

<asp:Button runat="server" PostBackUrl="N/pages/otherpage.aspx" Text="Submit" I>

You can simplify the process of accessing information from the previous page by declaring it with a
directive in the destination page:

<%@ PreviousPageType VirtualPath="N/pages/firstpage.aspx" %>

With that directive in place, you can refer to the first page with the Previous Page property:

var info = this.PreviousPage.MyProperty;

Cross-page postbacks use the incoming ViewState to reestablish the state of the controls on the
previous page before transferring control to the new page.

Check Response.lsClientConnected
There are times when a user requests a page and then cancels the request before the server has a chance
to respond. They might click away to another page, hit the back button on the browser, hit the stop or
refresh keys, or even close the tab or the browser entirely. In those cases, the browser or the client OS
will close the network connection. You can tell when that happens by checking the
Response. IsClientConnected flag.

The runtime checks Response. IsClientConnected before it sends a response. However, clients can
abort requests at any time, including immediately after they send the request. It is therefore a good idea
to check the flag before you perform any 110, database requests, or long-running tasks. Here's an
example:

protected override void OnLoad(EventArgs e)
{

base.OnLoad(e);

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

if (this,Response,IsClientConnected)
{

this,Server,Transfer("otherpage,aspx");
}

}

Disable Debug Mode
Enabling debug mode in ASP .NET does the following:

• Disables page timeouts. This is to allow easy debugging from Visual Studio but is
not appropriate for a live site.

• Disables most compiler optimizations so that symbols are guaranteed to align
with source code statements (important for single stepping).

• Disables some batch optimizations, to speed up compilation time.

• Significantly increases the memory footprint of the running application.

• Disables caching of WebResources, axd by the client. This can have a big effect on
pages that use Ajax and certain standard ASP.NET controls, since the browser will
download the associated script files again for every page.

• Disables compression of WebRe sources ,axd. When you disable debug mode, the
output of WebResources, axd will be compressed.

• Generates source code files in the ASP.NET temporary files folder (which requires
extra time and disk space). Although they might be useful while you're debugging,
once again you shouldn't need them on a production server.

• Generates symbol (, pdb) files, which are useful not just with a debugger; they are
also used to produce stack traces in the event of an error on the server. If you
would like to have more detailed stack traces, you can compile your site first with
debug set to true in a web deployment project (as described in Chapter 2), then
recompile with debug set to false just prior to deployment. You can then include
the, pdb files with the deployment, and they will be used to generate more detailed
stack traces.

You can disable debug mode by setting the debug property to false on the <compilation> element in
web. con fig:

<system.web>
<compilation debug="false" ... >

</compilation>
</system,web>

If you have a number of different sites on your production servers, you can force all of them to have
debug set to false by adding the <deployment> element to machine. config:

<system.web>
<deployment retail="true" />

</system.web>

257

�CHAPTER 7 MANAGING ASP.NET APPLICATION POLICIES

258

That will also disable tracing output and the ability to show detailed stack traces remotely for all
sites.

Batch Compilation
When your site is compiled, whether it's on-demand or precompiled, the batch property of the
<compilation> element determines how assemblies are produced. When batch is set to true, an entire
folder is compiled and grouped into a small number of assemblies (files such as Global. asax and
controls are put in separate assemblies). When batch is set to false, the compiler puts each page into a
separate assembly. Having a large number of assemblies like that can increase memory fragmentation
and page load times.

If you normally update your live site with individual new pages instead of updating the full site at
once, you may find that the runtime sometimes get confused and out of sync if batch is true. Changing it
to false will often alleviate those live update problems.

Summary
In this chapter, I covered the following:

• Using custom HttpModuleswithasync I/O to implement site-wide application
policies. Examples include tracking cookies, centralized logging and monitoring,
HTTP header management, authentication, authorization, and so on.

• Using custom HttpHandlers with async I/O to improve performance for content
that doesn't require ASP.NET-style markup or controls, such as dynamic images
or content delivered directly from a file or a database.

• Using a page base class and a page adapter to override the behavior of a Page and
to implement site-wide performance optimizations such as managing ViewState
for mobile devices.

• Using tag mapping and control adapters to customize or optimize the way that
controls work.

• Programmatically rewriting or routing URLs to help improve performance by
making them shorter and by allowing them to be cache able by http.sys.

• Issuing 302 Found and 301 Permanent HTTP redirects and why you should avoid
them if you can by using cross-page postbacks, URL rewriting, or
Server.Transfer() instead.

• Flushing the response buffer early to improve the perceived performance of pages
when you can't avoid long-running tasks.

• Using whitespace filtering to reduce the size of your HTML.

• Helping prevent the server from doing more work than it has to by using
Page. IsPostBack and Response. IsClientConnected, by checking for page refreshes,
and by disabling debug mode.

CHAPTER 8

SQL Server Relational Database

In this chapter, I'll cover a few areas that can have a large impact on the performance of your data tier,
even if you have already optimized your queries fully.

For example, our principle of minimizing round -trips also applies to round-trips between the web
tier and the database. You can do that using change notifications, multiple result sets, and command
batching.

The topics that I'll cover include the following:

• How SQL Server manages memory

• Stored procedures

• Command batching

• Transactions

• Table-valued parameters

• Multiple result sets

• Data precaching

• Data access layer

• Query and schema optimization

• Data paging

• Object relational models

• XMLcolumns

• Data partitioning

• Full-text search

• Service Broker

• Data change notifications

• Resource Governor

• Scaling up vs. scaling out

• High availability

259

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

260

• Miscellaneous performance tips

How SOL Server Manages Memory
Similar to ASP.NET, it's possible to have a fast query (or page) but a slow database (or site). One of the
keys to resolving this and to architecting your database for speed is to understand how SQL Server
manages memory.

Memory Organization
On 32-bit systems, SQL Server divides RAM into an area that can hold only data pages and a shared area
that holds everything else, such as indexes, compiled queries, results of joins and sorts, client
connection state, and so on. 32 bits is enough to address up to 4GB at a time. The default configuration is
that 2GB of address space is reserved for the operating system, leaving 2GB for the application. When
running under one of the 32-bit versions of Windows Server, SQL Server can use Address Windowing
Extensions (AWE) to map views of up to 54GB dynamically into its address space. (AWE isn't available for
the desktop versions of Windows.) However, it can use memory addressed with AWE only for the data
area, not for the shared area. This means that even if you have 54GB of RAM, with a 32-bit system you
might have only 1GB available for shared information.

You can increase the memory available to 32-bit versions of SQL Server on machines with 15GB or
less by adding the 13GB flag in the operating system's boot. ini file. That reduces the address space
allocated to the operating system from 2GB to 1GB, leaving 3GB for user applications such as SQL Server.
However, since limiting the RAM available to the as can have an adverse effect on system performance,
you should definitely test your system under load before using that switch in production.

On 54-bit systems, the division between data pages and shared information goes away. SQL Server
can use all memory for any type of object. In addition, the memory usage limit increases to 2TB. For
those reasons, combined with the fact that nearly all CPUs used in servers for quite a few years now are
capable of supporting 54-bit operating systems (so there shouldn't be any additional hardware or
software cost), I highly recommend using 54-bit systems whenever possible.

Reads and Writes
SQL Server uses three different kinds of files to store your data. The primary data store, or MDF file,
holds tables, indexes, and other database objects. You can also have zero or more secondary data stores,
or NDF files, which hold the same type of content in separate filegroups. The LDF file holds the database
log, which is a list of changes to the data file.

The MDF and NDF files are organized as 54KB extents, which consist of eight physically contiguous
8KB pages. Table or index rows are stored on a page serially, with a header at the beginning of the page
and a list of row offsets at the end that indicate where each row starts in the page. Rows can't span
multiple pages. Large columns are moved to special "overflow" pages.

When SQL Server first reads data from disk, such as with a SE LECT query, it reads pages from the data
files into a pool of 8KB buffers, which it also uses as a cache. When the pool is full, the least-recently used
buffers are dropped first to make room for new data.

Since SQL Server can use all available memory as a large cache, making sure your server has plenty
of RAM is an important step when it comes to maximizing performance. It would be ideal if you have
enough room to fit the entire database in RAM. See the "Scaling Up vs. Scaling Out" section in this
chapter for some tips on how to determine whether your server needs more memory. Based on my
experience, it's common in high-performance sites to see database servers with 32GB of RAM or more.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

When you modify data, such as with an INSERT, UPDATE, or DELETE, SQL Server makes the requested
changes to the data pages in memory, marks the associated data buffers as modified, writes the changes
to the database log file (LDF) , and then returns to the caller after the log write completes. A dedicated
"lazy writer" thread periodically scans the buffer pool looking for modified buffers, which it writes to the
data file (MDF). Modified buffers are also written to the MDF file if they need to be dropped to make
room for new data or during periodic checkpoints.

Writes to the logfile are always sequential. When properly configured on a disk volume by itself, the
disk heads shouldn't have to move very much when writing to the log file, and write throughput can be
very high.

Writes to the data file will generally be at random locations in the MDF file, so the disk heads will
move around a lot; throughput is normally a small fraction of what's possible with an equivalently
configured log drive. In fact, I've seen a factor of 50-to-1 performance difference, or more, between
random and sequential writes on similar drives. See Chapter 10 for details.

To avoid seeks and thereby maximize write throughput, it's especially important to have the
database log file on a set of dedicated spindles, separate from the data file.

Performance Impact
Understanding the way that SQL manages memory leads to several important conclusions:

• The first time you access data will be much slower than subsequent accesses,
since data has to be read from disk into the buffer cache. This can be very
important during system startup and during a database cluster failover, since
those servers will start with an empty cache. It also leads to the beneficial concepts
of database warm-up and precaching of database content.

• Aggregation queries (sum, count, and so on) and other queries that scan large
tables or indexes can require a large number of buffers and have a very adverse
effect on performance if they cause SQL Server to drop other data from the cache.

• With careful design, it's possible to use SQL Server as an in-memory cache.

• Write performance is determined largely by how fast SQL Server can sequentially
write to the log file, while read performance is mostly determined by a
combination of the amount of RAM available and how fast it can do random reads
from the data file.

• When writes to the database log start happening simultaneously with the lazy
writer thread writing modified pages to the data file, or simultaneously with data
reads hitting the disk, the reSUlting disk seeks can cause the speed of access to the
log file to decrease dramatically if the log and data files are on the same disk
volume. For that reason, it's important to keep the log and data files on separate
disk spindles.

Stored Procedures
Using stored procedures as your primary interface to the database has a number of advantages:

• Stored procedures allow easy grouping and execution of multiple T -SQL
statements, which can help reduce the number of round-trips that the web server
requires to perform its tasks.

261

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

262

• They allow you to make changes on the data tier without requiring changes on the
web tier. This helps facilitate easy and fast application evolution and iterative
improvement and tuning of your schema, indexes, queries, and so on.

• They more easily support a comprehensive security framework than dynamic
SQL. You can configure access to your underlying tables and other objects so that
your web tier can access them only through a specific set of procedures.

Another way to think of it is that stored procedures are a best practice for the same reason that
accessors are a best practice in object-oriented code: they provide a layer of abstraction that allows you
to modify easily all references to a certain object or set of objects.

When you submit a command to SQL Server, it needs to be compiled into a query plan before it can
be executed. Those plans can be cached. The caching mechanism uses the command string as the key
for the plan cache; commands that are exactly the same as one another, including whitespace and
embedded arguments, are mapped to the same cached plan.

In dynamic ad hoc T -SQL, where parameters are embedded in the command, SQL Server performs
an optimization that automatically identifies up to one parameter. This allows some commands to be
considered the same so they can use the same query plan. However, if the command varies by more
than one parameter, the extra differences are still part of the string that's used as the key to the plan
cache, so the command will be recompiled for each variation. Using stored procedures and
parameterized queries can help minimize the time SQL Server spends performing compilations, while
also minimizing plan cache pollution (filling the cache with many plans that are rarely reused).

When you're writing stored procedures, one of your goals should be to minimize the number of
database round-trips. It's much better to call one stored procedure that invokes ten queries than ten
separate procedures that invoke one query each. I generally don't like to get too much business logic in
them, but using things like conditionals is normally fine. Also, keep in mind that, as with subroutines or
even user controls, it's perfectly acceptable for one stored procedure to call another one.

I suggest using dynamic T -SQL only when you can't create the queries you need with static T -SQL.
For those times when it's unavoidable, be sure to use parameterized queries for best performance and
security. Forming queries by simply concatenating strings has a very good chance of introducing SQL
injection attack vulnerabilities into your application.

Here's an example of creating a table and a stored procedure to access it. I'm also using a SCHEMA,
which is a security-related best practice:

create schema [Traffic] authorization [dbo]

CREATE TABLE
[PvId]
[PvDate]
[UserId]
[PvUrl]

[Traffic].[PageViews] (
BIGINT IDENTITY NOT NULL,
DATETIME NOT NULL,
UNIQUEIDENTIFIER NULL,
VARCHAR(256) NOT NULL

ALTER TABLE [Traffic].[PageViews]
ADD CONSTRAINT [PageViewIdPK]
PRIMARY KEY CLUSTERED ([PvId] ASC)

CREATE PROCEDURE [Traffic].[AddPageView]
@pvid BIGINT OUT,
@userid UNIQUE IDENTIFIER,
@pvurl VARCHAR (256)

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

AS
BEGIN

end

SET NOCOUNT ON
DECLARE @trandate DATETIME
SET @trandate = GETUTCDATE()
INSERT INTO [Traffic].[PageViews]

(PvDate, UserId, PvUrl)
VALUES
(@trandate, @userid, @pvurl)

SET @pvid = SCOPE_IDENTITY()

The stored procedure gets the current date, inserts a row into the [Traffic] . [PageViews] table, and
returns the resulting primary key as an output variable.

You will be using these objects in examples later in the chapter.

Command Batching
Another way to reduce the number of database round -trips is to batch several commands together and
send them all to the server at the same time.

Using SqlDataAdapter
A typical application of command batching is to INSERT many rows. As an example, let's create a test
harness that you can use to evaluate the effect of using different batch sizes. Create a new web form
called sql-batch1.aspx, and edit the markup to include the following:

<form id="forml" runat="server">
<div>
Record count: <asp:TextBox runat="server" ID="cnt" I><br I>
Batch size: <asp:TextBox runat="server" ID="sz" I><br I>
<asp:Button runat="server" Text="Submit" I><br I>
<asp:Literal runat="server" ID="info" I>
</div>
</form>

You will use the two text boxes to set the record count and the batch size and an <asp: Literal> to
display the results.

The conventional way to do command batching for INSERTs, UPDATEs, and DELETEs with ADO.NET is
to use the SqlDataAdapter class. Edit the code-behind as follows:

using System;
using System. Collections;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;
using System. Text;
using System.Web.UI;

public partial class sql_batchl : Page
{

public const string ConnString =

263

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

264

"Data source=server;Initial Catalog=sample;Integrated security=True";

protected void Page_load(object sender, EventArgs e)
{

if (this.IsPostBack)
{

int numRecords = Convert.Tolnt32(this.cnt.Text);
int batchsize = Convert.Tolnt32(this.sz.Text);
int numBatches = numRecords I batch Size;
long pvid = -1;
using (sqlConnection conn = new sqlConnection(Connstring»
{

conn. Open 0;
conn.statisticsEnabled = true;
for (int j = 0; j < numBatches; j++)
{

DataTable table = new DataTable();
table.Columns.Add("pvid", typeof(long»;
table.Columns.Add("userid", typeof(Guid»;
table.Columns.Add("pvurl", typeof(string»;

After parsing the input parameters and creating a sqlConnection, in a loop that's executed once for
each batch, create a new DataTable with three columns that correspond to the database table.

using (sqlCommand cmd =

{
new sqlCommand("[Traffic].[AddPageView]", conn»

cmd.CommandType = CommandType.storedProcedure;
sqlParameterCollection p = cmd.Parameters;
p.Add("@pvid", sqlDbType.Biglnt, 0, "pvid").Direction

ParameterDirection.Output;
p.Add("@userid", sqlDbType.Uniqueldentifier, 0, "userid");
p.Add("@pvurl", sqlDbType.VarChar, 256, "pvurl");

Next, create a sqlCommand object that references the stored procedure, and define its parameters,
including their data types and the names of the columns that correspond to each one. Notice that the
first parameter has its Direction property set to ParameterDirection. Output to indicate that it's an
output parameter.

using (sqlDataAdapter adapter = new sqlDataAdapter(»
{

cmd.UpdatedRowsource = UpdateRowsource.OutputParameters;
adapter.lnsertCommand = cmd;
adapter.UpdateBatchsize = batchsize;
Guid userld = Guid.NewGuid();
for (int i = 0; i < batchsize; i++)
{

}
try
{

table.Rows.Add(o, userld,
"http://www.12titans.netltest.aspx");

adapter.Update(table);

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}
}

}

pvid = (long)table.Rows[batchSize - l]["pvid"];
}
catch (SqlException ex)
{

}

EventLog.WriteEntry("Application",
"Error in WritePageView: " + ex.Message + "\n",
EventLogEntryType.Error, 101);

break;

Next, set UpdatedRowSource to UpdateRowSource .Outputparameters to indicate that the runtime
should map the pvid output parameter of the stored procedure back into the DataTable. Set
UpdateBatchSize to the size of the batch, and add rows to the DataTable with the data. Then call
adapter .UpdateO to synchronously send the batch to the server, and get the pvid response from the last
row. In the event of an exception, write an entry in the operating system Application log.

}

}
}

}

StringBuilder result = new StringBuilder();
result.Append("Last pvid = H);
result.Append(pvid.ToString(»;
result.Append("
");
IDictionary dict = conn.RetrieveStatistics();
foreach (string key in dict.Keys)
{

}

result.Append(key);
result.Append(" = H);
result.Append(dict[key]);
result.Append("
");

this. info. Text = result.ToString();

Then you display the pvid of the last record along with the connection statistics, using the
<asp: Literal> control. Each time you submit the page, it will add the requested number ofrows to the
PageViews table.

Results
The client machine I used for the examples in this chapter had a 6-core 2.67GHz Xeon X5650 CPU with
24GB of RAM running 64-bit Windows 7 Ultimate. SQ L Server 2012 RCO Enterprise was running under
64-bit Windows Server 2008 R2 Enterprise as a virtual machine on the same physical box, configured as a
single CPU with 4-cores and 4GB RAM. The database data file was on an 8-drive RAID-50 volume, and
the log file was on a 2-drive RAID-O. Both volumes used MLC SSD drives.

Here are the results after adding 20,000 rows on my test server, with a batch size of 50:

Last pvid = 20000
IduRows = 0
Prepares = 0

265

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

266

Prepared Execs = 0
ConnectionTime = 7937
SelectCount = 0
Transactions = 0
BytesSent = 3171600
NetworkServerTime = 7636
SumResultSets = 0
BuffersReceived = 400
BytesReceived = 1003206
Unprepared Execs = 400
ServerRoundtrips = 400
IduCount = 0
BuffersSent = 400
ExecutionTime = 7734
Select Rows = 0
CursorOpens = 0

The test took 400 round-trips and about 7.7 seconds to execute. In Table 8-1, I've shown the results
of running the test for various batch sizes, while maintaining the number of rows at 20,000.

Table 8-1.Insert Performance for Various Batch Sizes

Batch Size Round-Trips Execution Time (ms)

120,0 00 14,700

210,0 00 10,480

54,00 0 8,698

102,00 0 7,866

50400 7,734

You can see that throughput roughly doubles as you increase the batch size from 1 to 10 and that
larger batch sizes don't show any additional improvement (or they might even be a little slower). At that
point, you are limited by disk speed rather than round-trips.

Limitations
Although this technique works reasonablyweil for INSERTs, it's not as good for UPDATEs and DELETEs,
unless you already happen to have populated a DataTable for other reasons. Even then, SqlOataAdapter
will send one T-SQL command for each modified row. In most real-life applications, a single statement
with a WHERE clause that specifies multiple rows will be much more efficient, when possible.

This highlights a limitation of this approach, which is that it's not general purpose. Uyou want to do
something other than reflect changes to a single DataTable or DataSet, you can't use the command
batching that SqlDataAdapter provides.

Another issue with SqlDataAdapter . Update () is that it doesn't have a native async interface. Recall
from earlier chapters that the general-purpose async mechanisms in .NET use threads from the ASP .NET
thread pool, and therefore have an adverse impact on scalability. Since large batches tend to take a long
time to run, not being able to call them asynchronously from a native async interface can cause or
significantly compound scalability problems, as described earlier.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Building Parameterized Command Strings
The alternative approach is to build a parameterized command string yourself, separating commands
from one another with semicolons. As crude as it might sound, it's very effective, and it addresses the
problems with the standard approach in that it will allow you to send arbitrary commands in a single
batch.

As an example, copy the code and markup from sql-batchl.aspx into a new web form called sql
batch2.aspx, and edit the code-behind, as follows:

public const string Connstring =
"Data source=server;Initial Catalog=sample;Integrated security=True;Async=True";

protected async void Page_load(object sender, EventArgs e)
{

Add Async= True to the connection string and to the Page directive in the. aspx file. Add the async
keyword to the declaration for the Page_Load () method.

if (this.IsPostBack)
{

int numRecords = Convert.Tolnt32(this.cnt.Text);
int batchsize = Convert.Tolnt32(this.sz.Text);
int numBatches = numRecords / batch Size;
stringBuilder sb = new stringBuilder();
string sql =

"EXEC [Trafficl.[AddPageViewl @pvid{o} out, @userid{o}, @pvurl{o};";
for (int i = 0; i < batchsize; i++)
{

sb.AppendFormat(sql, i);
}
string query = sb.Tostring();

You construct the batch command by using EXEC to call your stored procedure, appending a number
to the end of each parameter name to make them unique, and using a semicolon to separate each
command.

using (sqlConnection conn = new sqlConnection(Connstring))
{

await conn.OpenAsync()j
conn.statisticsEnabled = true;
sqlParameterCollection p = nullj
for (int j = OJ j < numBatchesj j++)
{

using (sqlCommand cmd = new sqlCommand(query, conn))
{

p = cmd.Parametersj
Guid userld = Guid.NewGuid();
for (int i = OJ i < batchsizej i++)
{

p.Add("pvid" + i, sqlDbType.Biglnt).Direction
ParameterDirection.Outputj

p.Add("userid" + i, sqlDbType.Uniqueldentifier).Value userldj
p.Add("pvurl" + i, sqlDbType.VarChar, 256).Value =

267

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

268

.. http://www.12titans.netltest.aspx .. ;
}

To finish building the batch command, assign a value to each numbered parameter. As in the
previous example, pvid is an output parameter, userid is set to a new GUID, and pvurl is a string.

}
}

}

}
}

try
{

await emd.ExeeuteNonQueryAsyne();
}
eateh (SqlExeeption ex)
{

}

Eventlog.WriteEntry("Applieation",
"Error in WritePageView: " + ex.Message + "\n",
EventLogEntryType.Error, 101);

StringBuilder result = new StringBuilder();
result.Append("Last pvid = ");
result.Append(p["pvid" + (batehSize - l)].Value);
result.Append("
");
IDietionary diet = eonn.RetrieveStatisties();
foreaeh (string key in diet.Keys)
{

}

result.Append(key);
result.Append(" = ");
result.Append(diet[key]);
result.Append("
");

this. info. Text = result.ToString();

N ext, asynchronously execute and awa it all the batches you need to reach the total number of
records requested and collect and display the resulting statistics.

The reported ExeeutionTime statistic is much lower than with the previous example (about 265ms
for a batch size of 50), which shows that ExeeuteNonQueryAsyne () is no longer waiting for the command
to complete. However, from the perspective of total elapsed time, the performance of this approach is
about the same. The advantages of this approach are that you can include arbitrary commands and that
it runs asynchronously.

Transactions
As I mentioned earlier, each time SQL Server makes any changes to your data, it writes a record to the
database log. Each of those writes requires a round-trip to the disk subsystem, which you should try to
minimize. Each write also includes some overhead. Therefore, you can improve performance by writing
multiple changes at once. The way to do that is by executing multiple writes within one transaction. If
you don't explicitly specify a transaction, SQL Server transacts each change separately.

There is a point of diminishing returns with regard to transaction size. Although larger transactions
can help improve disk throughput, they can also block other threads if the commands acquire any

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

database locks. For that reason, it's a good idea to adopt a middle ground when it comes to transaction
length - not too short and not too long - to give other threads a chance to run in between the
transactions.

Copy the code and markup from sql-batch2 .aspx into a new web form called sql-batch3. aspx, and
edit the inner loop, as follows:

for (int j = 0; j < numBatches; j++)
{

}

using (SqlTransaction trans = conn.BeginTransaction(»
{

}

using (SqlCommand cmd = new SqlCommand(query, conn»
{

}

cmd.Transaction = trans;
p = cmd.Parameters;
Guid userld = Guid.NewGuid();
for (int i = 0; i < batchSize; i++)
{

}
try
{

}

p.Add("pvid" + i, SqlDbType.Biglnt).Direction
ParameterDirection.Output;

p.Add("userid" + i, SqlDbType.Uniqueldentifier).Value userld;
p.Add("pvurl" + i, SqlDbType.VarChar, 256).Value

"http://www.12titans.netltest.aspx";

await cmd.ExecuteNonQueryAsync();
trans.CommitO;

catch (SqlException ex)
{

}

trans.Rollback();
EventLog.WriteEntry("Application",

"Error in WritePageView: " + ex.Message + "\n",
EventLogEntryType.Error, 101);

Call conn. BeginTransaction () to start a new transaction. Associate the transaction with the
SqlCommand object by setting cmd. Transaction.

After the query is executed, call trans .Commit() to commit the transaction. If the query throws an
exception, then call trans. Rollback() to roll back the transaction (in a production environment, you
may want to wrap that call in a separate try I catch block, in case it fails).

Table 8-2 shows the results of the performance tests, after truncating the table first to make sure
you're starting from the same point.

269

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

270

Table 8-2. Insert Performance Using Basic Transactions

Batch Size Round-Trips Execution Time (ms)

160,0 00 20,133

230,0 00 10,374

512,0 00 4,799

106,00 0 2,994

501,20 0 1,879

Notice that the number of round-trips has tripled in each case. That's because ADO.NET sends the
BEGIN TRANSACTION and COMMIT TRANSACTION commands in separate round-trips. That, in turn, causes the
performance for the first case to be worse than without transactions, since network overhead dominates.
However, as the batch size increases, network overhead becomes less significant, and the improved
speed with which SQL Server can write to the log disk becomes apparent. With a batch size of 50,
inserting 20,000 records takes only 24 percent as long as it did without explicit transactions.

Using Explicit BEGIN and COMMIT TRANSACTION Statements
Partly for fun and partly because the theme of this book is, after all, ultra-fast ASP.NET, you can
eliminate the extra round-trips by including the transaction commands in the text of the command
string. To illustrate, make a copy of sql-batch2. aspx (the version without transaction support), call it
sql-batch4. aspx, and edit the part of the code-behind that builds the command string, as follows:

StringBuilder sb = new StringBuilder()j
string sql = "EXEC [Trafficl.[AddPageViewl @pvid{O} out, @userid{O}, @pvurl{O}j"j
sb.Append("BEGIN TRY; BEGIN TRANSACTION;");
for (int i = OJ i < batchSizej i++)
{

sb.AppendFormat(sql, i)j
}
sb.Append(

"COMMIT TRANSACTlON;END TRY\nBEGIN CATCH\nROLLBACK TRANSACTlON\nEND CATCH");
string query = sb.ToString()j

The T -SQL syntax allows you to use semicolons to separate all the commands except BEGIN CATCH
and END CATCH. For those, you should use newlines instead.

Table 8-3 shows the test results. Notice that the difference from the previous example is greatest for
the smaller batch sizes and diminishes for the larger batch sizes. Even so, the largest batch size is about
14 percent faster, although the code definitely isn't as clean as with BeginTransaction O.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Table 8-3. Insert Performance Using Transactions with Minimal Round-Trips

Batch Size Round-Trips Execution Time (ms)

120,0 00 10,607

210,0 00 5,986

54,00 0 3,374

102,00 0 2,265

50400 1,627

Table-Valued Parameters
T -SQL doesn't support arrays. In the past, developers have often resorted to things like comma
separated strings or XML as workarounds. SQL Server 2008 introduced table-valued parameters. The
idea is that since tables are somewhat analogous to an array, you can now pass them as arguments to
stored procedures. This not only provides a cleaner way to do a type of command batching, but it also
performs well, assuming that the stored procedure itself uses set-based commands and avoids cursors.

To extend the previous examples, first use SQL Server Management Studio (SSMS) to add a new
TABLE TYPE and a new stored procedure.

create type PageViewType as table (
[UserId] UNIQUEIDENTIFIER NULL,
[PvUrl] VARCHAR(256) NOT NULL

CREATE PROCEDURE [Traffic].[AddPageViewTVP]
@pvid BIGINT OUT,
@rows PageViewType READONlY

AS
BEGIN

SET NOCOUNT ON
DECLARE @trandate DATETIME
SET @trandate = GETUTCDATE()
INSERT INTO [Traffic].[PageViews]

SELECT @trandate, UserId, PvUrl
FROM @rows

SET @pvid = SCOPE_IDENTITY()
END

You use the TABLE TYPE as the type of one of the arguments to the stored procedure. T-SQL requires
that you mark the parameter READONL Y. The body of the stored procedure uses a single insert statement
to insert all the rows of the input table into the destination table. It also returns the last identity value
that was generated.

To use this procedure, copy the code and markup from sql-batchl.aspx to sql-batchs.aspx, add
the async keywords to the Page directive, connection string and method declaration as in the previous
examples, and edit the main loop, as follows:

271

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

272

for (int j = 0; j < numBatches; j++)
{

}

DataTable table = new DataTable();
table.Columns.Add("userid", typeof(Guid));
table.Columns.Add("pvurl", typeof(string));
using (sqlCommand cmd = new sqlCommand("[Traffic].[AddPageViewTVP]", conn))
{

}

cmd.CommandType = CommandType.storedProcedure;
Guid userld = Guid.NewGuid();
for (int i = 0; i < batchsize; i++)
{

table.Rows.Add(userld, "http://www.12titans.net/test.aspx");
}
sqlParameterCollection p = cmd.Parameters;
p.Add("pvid", sqlDbType.Biglnt).Direction = ParameterDirection.Output;
sqlParameter rt = p .AddWithValue("rows", table);
rt.sqlDbType = sqlDbType.structured;
rt.TypeName = "PageViewType";
try
{

}

await cmd.ExecuteNonQueryAsync();
pvid = (long)p["pvid"].Value;

catch (sqlException ex)
{

}

EventLog.WriteEntry("Application",
"Error in WritePageView: " + ex.Message + "\n",
EventLogEntryType.Error, 101);

break;

Here's what the code does:

• Creates a DataTable with the two columns that you want to use for the database
inserts.

• Adds batch Size rows to the DataTable for each batch, with your values for the two
columns

• Configures the sqlParameters for the command, including setting pvid as an
output value and adding the DataTable as the value of the rows table-valued
parameter. ADO.NET automatically transforms the DataTable into a table-valued
parameter.

• Asynchronously executes the command and retrieves the value of the output
parameter.

• Catches database exceptions and writes a corresponding message to the Windows
error log.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

In addition to providing a form of command batching, this version also has the advantage of
executing each batch in a separate transaction, since the single insert statement uses one transaction to
do its work.

It's worthwhile to look at the command that goes across the wire, using SQL Profiler. Here's a single
batch, with a batch size of 2:

declare @pl bigint
SET @pl=O
DECLARE @p2 dbo.PageViewType
INSERT INTO @p2 VALUES

('AD08202A-5CE9-475B-AD7D-581B1AE6F5Dl' .N.http://www.12titans.net/test.aspx.)
INSERT INTO @p2 VALUES

('AD08202A-5CE9-475B-AD7D-581B1AE6F5Dl' .N.http://www.12titans.net/test.aspx.)
EXEC [Traffic].[AddPageViewTVP] @pvid=@pl OUTPUT,@rows=@p2
SELECT @pl

Notice that the DataTable rows are inserted into an in-memory table variable, which is then passed
to the stored procedure.

Table 8-4 shows the performance of this approach.

Table 8-4. Insert Performance Using a Table- Valued Parameter

Batch Size Round-Trips Execution Time (ms)

120,0 00 27,306

210,0 00 13,944

54,00 0 5,758

102,00 0 4,101

50400 704

100200 462

200100 336

50040 227

The performance isn't as good as the previous example (sql-batch4.aspx) until the batch size
reaches 50. However, unlike with the previous examples, in this case write performance continues to
improve even if you increase the batch size to 500. The best performance here has more than 64 times
the throughput of the original one-row-at-a-time example. A single row takes only about 11
microseconds to insert, which results in a rate of more than 88,000 rows per second.

Multiple Result Sets
If you need to process a number of queries at a time, each of which produces a separate result set, you
can have SQL Server process them in a single round -trip. When executed, the command will return
multiple result sets. This provides a mechanism to avoid issuing back-to-back queries separately; you
should combine them into a single round-trip whenever possible.

273

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

274

You might do this by having a stored procedure that issues more than one SELECT statement that
returns rows, or perhaps by executing more than one stored procedure in a batch, using the command
batching techniques described earlier.

As an example, first create a stored procedure:

CREATE PROCEDURE [Traffic].[GetFirstLastPageViews]
@count INT

AS
BEGIN

END

SET NOCOUNT ON
SELECT TOP (@count) PvId, PvDate, UserId, PvUrl

FROM [Traffic].[PageViews]
ORDER BY Pvid ASC

SELECT TOP (@count) PvId, PvDate, UserId, PvUrl
FROM [Traffic].[PageViews]
ORDER BY Pvid DESC

The procedure returns the first and last rows in the PageViews table, in two result sets, using a
parameterized count.

Using SqlDataReader.NextResultO
Create a web form called sql-resul tl. aspx, add Async="True" to the Page directive, and edit the <form>
part of the markup as follows:

<form id="forml" runat="server">
<div>
Count: <asp:TextBox runat="server" ID="cnt" I><br I>
<asp:Button runat="server" Text="Submit" I><br I>
<asp:GridView runat="server" ID="first" I>
<br I>
<asp:GridView runat="server" ID="last" I>
</div>
</form>

The form has one text box for a count parameter, a submit button, and two data GridView controls.
Next, edit the code-behind, as follows:

using System;
using System. Collections;
using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;
using System. Text;
using System.Web.UI;

public partial class sql_resultl : Page
{

public const string ConnString =
"Data Source=server;Initial Catalog=Sample;Integrated Security=True;Async=True";

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}

protected async void Page_load(object sender, EventArgs e)
{

}

if (this.IsPostBack)
{

}

int numRecords = Convert.Tolnt32(this.cnt.Text);
using (SqlConnection conn = new SqlConnection(ConnString))
{

}

await conn.OpenAsync();
using (SqlCommand cmd =

{

}

new SqlCommand("[Traffic].[GetFirstlastPageViews]", conn))

cmd.CommandType = CommandType.StoredProcedure;
SqlParameterCollection p = cmd.Parameters;
p.Add("count", SqlDbType.lnt).Value = numRecords;
try
{

}

SqlDataReader reader = await cmd.ExecuteReaderAsync();
this.first.DataSource = reader;
this.first.DataBind();
aNait reader.NextResultAsync();
this.last.DataSource = reader;
this.last.DataBind();

catch (SqlException ex)
{

}

EventLog.WriteEntry("Application",
"Error in GetFirstlastPageView: " + ex.Message + "\n",
EventLogEntryType.Error, 102);

throw;

The code executes the stored procedure and then binds each result set to a GridView control. Calling
reader. NextResul tAsync () after binding the first result set causes the reader to asynchronously advance
to the next set of rows. This approach allows you to use a single round -trip to retrieve the two sets of
rows generated by the stored procedure.

Using SqlDataAdapter and a DataSet
You can also use SqlDataAdapter to load more than one result set into multiple DataTables in a DataSet.

For example, make a copy of sql-resul t1. aspx called sql-resul t2. aspx, and edit the code-behind,
as follows:

using (SqlCommand cmd = new SqlCommand("[Traffic].[GetFirstlastPageViews]", conn))
{

cmd.CommandType = CommandType.StoredProcedurej
SqlParameterCollection p = cmd.Parameters;
p.Add("count", SqlDbType.lnt).Value = numRecordsj

275

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

276

}

using (SqlDataAdapter adapter new SqlDataAdapter(cmd))
{

}

try
{

}

DataSet results = new DataSet();
adapter. Fill(results);
this.first.DataSource = results.Tables[o];
this.first.DataBind();
this.last.DataSource = results.Tables[l];
this.last.DataBind();

catch (SqlException ex)
{

}

EventLog.WriteEntry("Application",
"Error in GetFirstLastPageView: " + ex.Message + "\n",
EventLogEntryType.Error, 102);

throw;

The call to adapter. FillO will check to see whether more than one result set is available. For each
result set, it will create and load one DataTable in the destination DataSet. However, this approach
doesn't work with asynchronous database calls, so it's only suitable for background threads or perhaps
infrequently used pages where synchronous calls are acceptable.

Data Precaching
As I mentioned earlier, after SQL Server reads data from disk into memory, the data stays in memory for
a while; exactly how long depends on how much RAM is available and the nature of subsequent
commands. This aspect of the database points the way to a powerful and yet rarely used performance
optimization technique: pre caching at the data tier.

Approach
In the cases where you can reasonably predict the next action of your users and where that action
involves database access with predictable parameters, you can issue a query to the database that will
read the relevant data into RAM before it's actually needed. The goal is to pre cache the data at the data
tier, so that when you issue the "real" query, you avoid the initial disk access. This can also work when
the future command will be an UPDATE or a DELETE, since those commands need to read the associated
rows before they can be changed.

Here are a few tips to increase the effectiveness of database precaching with a multiserver load
balanced web tier:

• You should issue the precache command either from a background thread or from
an asynchronous Ajax call. You should not issue it in-line with the original page,
even if the page is asynchronous.

• You should limit (throttle) the number pre caching queries per web server to avoid
unduly loading the server based solely on anticipated future work.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

• Avoid issuing duplicate pre caching queries.

• Don't bother pre caching objects that will probably already be in database
memory, such as frequently used data.

• You should discard pre caching queries if they are too old, since there's no need to
execute them after the target page has run.

• Execute precaching commands with a lower priority, using Resource Governor, so
that they don't slow down "real" commands.

Pre caching Forms-Based Data
You may be able to use database precaching with some forms-based data. For example, consider a login
page. After viewing that page, it's likely that the next step for a user will be to log in, using their username
and password. To validate the login, your application will need to read the row in the Users table that
contains that user's information. Since the index of the row you need is the user's name and since you
don't know what that is until after they've started to fill in the form, Ajax can provide the first part of a
solution here for pre caching.

When the user exits the username box in the web form, you can issue an async Ajax command to the
server that contains the user's name. For pre caching, you don't care about the password, since the name
alone will be enough to find the right row.

On the web server, the other side of the Ajax call would queue a request to a background thread to
issue a SELECT to read the row of interest. The server will process that request while the user is typing
their password. Although you might be tempted to return a flag from the Ajax call to indicate that the
username is valid, that's usually not recommended, for security reasons. In addition, the Ajax call can
return more quickly if it just queues the request and doesn't wait for a result.

When the user clicks the Login button on the web form, the code on the server will validate the
username and password by reissuing a similar query. At that point, the data will already be in memory
on the database server, so the query will complete quickly.

Pre caching Page-at-a-Time Data
Another example would be paging through data, such as in a catalog. In that case, there may be a good
chance that the user will advance to the next page after they finish viewing the current one. To make
sure that the data for the next page are in memory on the database server, you could do something like
this:

• Queue a work item to a background thread that describes the parameters to read
the next page of data from the catalog and a timestamp to indicate when you
placed the query in the queue.

• When the background thread starts to process the work item, it should discard the
request if it's more than a certain age (perhaps one to three seconds), since the
user may have already advanced to the next page by then.

• Check the work item against a list of queries that the background thread has
recently processed. If the query is on that list, then discard the request. This may
be oflimited utility in a load-balanced environment, but it can still help in the
event of attacks or heavy burst -oriented traffic.

277

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

278

• Have the background thread use a connection to the server that's managed by
Resource Governor (see later in this chapter), so that the precaching queries from
all web servers together don't overwhelm database resources. That can also help
from a security perspective by minimizing the impact of a denial-of-service attack.

• Cache the results of the query at the web tier, if appropriate.

• After issuing the query, the background thread might sleep for a short time before
retrieving another work item from the queue, which will throttle the number of
read-ahead requests that the web server can process.

The performance difference between using data that's already in memory and having to read it from
disk first can be very significant - as much as a factor of ten or even much more, depending on the size of
the data, the details of the query and the associated schema, and the speed of your disk subsystem.

Data Access Layer
An often-cited best practice for data-oriented applications is to provide a layer of abstraction on top of
your data access routines. That's usually done by encapsulating them in a data access layer (DAL), which
can be a class or perhaps one or more assemblies, depending on the complexity of your application.

The motivations for grouping the data access code in one place include easing maintenance,
database independence (simplifying future migration to other data platforms), encouraging consistent
patterns, maximizing code reuse, and simplifying management of command batches, connections,
transactions, and mUltiple result sets.

With synchronous database commands, the DAL methods would typically execute the command
and return the result. Uyou use asynchronous commands everywhere you can, as I suggested in earlier
chapters, you will need to modify your DAL accordingly.

For the Asynchronous Programming Model (APM), in the same style as the ADO.NET libraries, you
should divide your code into one method that begins a query and another that ends it and collects the
results.

Here's an example:

public static class DAl
{

public static IAsyncResult AddBrowserBegin(Requestlnfo info,
AsyncCallback callback)

{

}

SqlConnection conn =
new SqlConnection(ConfigData.TrafficConnectionStringAsync);

SqlCommand cmd = new SqlCommand("[Traffic].[AddBrowser]", conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add("id", SqlDbType.Uniqueldentifier).Value = info.Browserld;
cmd.Parameters.Add("agent", SqlDbType.VarChar, 256).Value = info.Agent;
conn.Open();
return cmd.BeginExecuteNonQuery(callback, cmd);

public static void AddBrowserEnd(IAsyncResult ar)
{

using (SqlCommand cmd = ar.AsyncState as SqlCommand)
{

if (cmd != nUll)

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

{

}
}

}
}

try
{

cmd.EndExecuteNonQuery(ar);
}
catch (SqlException e)
{

EventLog.WriteEntry("Application",
"Error in AddBrowser: " + e.Message,
EventLogEntryType.Error, 103);

throw;
}
finally
{

cmd.Connection.Dispose();
}

The AddBrowserBegin () method creates a SqlConnection from an async connection string, along
with an associated SqlCommand. After filling in the parameters, it opens the connection, begins the
command, and returns the resulting IAsyncResul t.

The AddBrowserEndO method ends the command and calls DisposeO on the SqlConnection and
SqlCommand objects (implicitly via a using statement for SqlCommand and explicitly for SqlConnection).

For the Task-based Asynchronous Pattern (TAP), it only takes a single method; you can simplify the
code considerably:

public static async void AddBrowser(Requestlnfo info)
{

}

using (SqlConnection conn =

{

}

new SqlConnection(ConfigData.TrafficConnectionStringAsync))

using (SqlCommand cmd = new SqlCommand("[Traffic].[AddBrowser]", conn))
{

}

cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.Add("id", SqlDbType.Uniqueldentifier).Value = info.Browserld;
cmd.Parameters.Add("agent", SqlDbType.VarChar, 256).Value = info.Agent;
await conn.OpenAsync();
await cmd.ExecuteNonQueryAsync();

You will probably also want to include connection and transaction management in your DAL.
ADO.NET uses connection pools to reuse connections as much as it can. Connections are pooled based
entirely on a byte-for-byte comparison of the connection strings; different connection strings will not
use connections from the same pool. However, even with identical connection strings, if you execute a
command within the scope of one SqlConnection object and then execute another command within the
scope of a different SqlConnection, the framework will treat that as a distributed transaction. To avoid
the associated performance impact and complexity, it's better to execute both commands within the

279

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

280

same SqlConnection. In fact, it would be better still to batch the commands together, as described
earlier. Command batching and caching are also good things to include in your DAL.

auery and Schema Optimization
There's a definite art to query and schema optimization. It's a large subject worthy of a book of its own,
so I'd like to cover just a few potentially high -impact areas.

Clustered and N onc1ustered Indexes
Proper design of indexes, and in particular the choice between clustered and nonclustered indexes and
their associated keys, is critical for optimal performance of your database.

As I mentioned earlier, SQL Server manages disk space in terms of 8KB pages and 64KB extents.
When a clustered index is present, table rows within a page and the pages within an extent are ordered
based on that index. Since a clustered index determines the physical ordering of rows within a table,
each table can have only one clustered index.

A table can also have secondary, or nonclustered, indexes. You can think of a nonclustered index as a
separate table that only has a subset of the columns from the original table. You specify one or more
columns as the index key and they will determine the physical order of the rows in the index. By default,
the rows in a nonclustered index only contain the key and the clustered index key, if there is one and if
it's unique. However, you can also include other columns from the table.

A table without any indexes is known as a heap and is unordered.
Neither a clustered nor a nonclustered index has to be unique or non-null, though both can be. Of

course, both types of indexes can also include multiple columns, and you can specify an ascending or
descending sort order. If a clustered index is not unique, then all nonclustered indexes include a 4-byte
pointer back to the original row, instead of the clustered index.

Including the clustered index key in the nonclustered index allows SQL Server to quickly find the
rest of the columns associated with a particular row, through a process known as a key lookup. SQL
Server may also use the columns in the nonclustered index to satisfy the query; if all the columns you
need to satisfy your query are present in the nonclustered index, then the key lookup can be skipped.
Such a query is covered. You can help create covered queries and eliminate key lookups by adding the
needed columns to a nonc1ustered index, assuming the additional overhead is warranted.

Index Performance Issues
Since SQL Server physically orders rows by the keys in your indexes, consider what happens when you
insert a new row. For an ascending index, if the value of the index for the new row is greater than that for
any previous row, then it is inserted at the end of the table. In that case, the table grows smoothly, and
the physical ordering is easily maintained. However, if the key value places the new row in the middle of
an existing page that's already full of other rows, then that page will be split by creating a new one and
moving half of the existing rows into it. The result is fragmentation of the table; its physical order on disk
is no longer the same as its logical order. The process of splitting the page also means that it is no longer
completely full of data. Both of those changes will significantly decrease the speed with which you will
be able to read the full table.

The fastest way for SQL Server to deliver a group of rows from disk is when they are physically next
to each other. A query that requires key lookups for each row or that even has to directly seek to each
different row will be much slower than one that can deliver a number of contiguous rows. You can take
advantage of this in your index and query design by preferring indexes for columns that are commonly
used in range-based WHERE clauses, such as BETWEEN.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

When there are indexes on a table, every time you modify the table, the indexes may also need to be
modified. Therefore, there's a trade-off between the cost of maintaining indexes and their use in
allowing queries to execute faster. If you have a table where you are mostly doing heavy INSERTs and only
very rarely do a SELECT, then it may not be worth the performance cost of maintaining an extra index (or
any index at all).

If you issue a query with a column in the WHERE clause that doesn't have an index on it, the result is
usually either a table scan or an index scan. SQL Server reads every row of the table or index. In addition
to the direct performance cost of reading every row, there can also be an indirect cost. If your server
doesn't have enough free memory to hold the table being scanned, then buffers in the cache will be
dropped to make room, which might negatively affect the performance of other queries. Aggregation
queries, such as COUNT and SUM, by their nature often involve table scans, and for that reason, you should
avoid them as much as you can on large tables. See the next chapter for alternatives.

Index Guidelines
With these concepts in mind, here are some guidelines for creating indexes:

• Prefer narrow index keys that always increase in value, such as an integer
IDENTITY. Keeping them narrow means that more rows will fit on a page, and
having them increase means that new rows will be added at the end of the table,
avoiding fragmentation.

• Avoid near-random index keys such as strings or UNIQUEIDENTIFIERs. Their
randomness will cause a large number of page splits, reSUlting in fragmentation
and associated poor performance.

• Although exact index definitions may evolve over time, begin by making sure that
the columns you use in your WHERE and JOIN clauses have indexes assigned to them.

• Consider assigning the clustered index to a column that you often use to select a
range of rows or that usually needs to be sorted. It should be unique for best
performance.

• In cases where you have mostly INSERTs and almost no SELECTs (such as for logs),
you might choose to use a heap and have no indexes. In that case, SQL Server will
insert new rows at the end of the table, which prevents fragmentation. That allows
INSERTs to execute very quickly.

• Avoid table or index scans. Some query constructs can force a scan even when an
index is available, such as a LIKE clause with a wildcard at the beginning.

Although you can use NEWSEQUENTIALID() to generate sequential GUIDs, that approach has some
significant limitations:

• It can be used only on the server, as the DEFAULT value for a column. One ofthe
more useful aspects of GUIDs as keys is being able to create them from a load
balanced web tier without requiring a database round- trip, which doesn't work
with this approach.

• The generated GUIDs are only guaranteed to be increasing for "a while." In
particular, things like a server reboot can cause newly generated GUIDs to have
values less than older ones. That means new rows aren't guaranteed to always go
at the end of tables; page splits can still happen.

281

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

282

• Another reason for using GUIDs as keys is to have user-visible, non-guessable
values. When the values are sequential, they become guessable.

Example with No Indexes
Let's start with a table by itself with no indexes:

create table ind (
vi INT IDENTITY,
v2 INT,
v3 VARCHAR(64)

The table has three columns: an integer IDENTITY, another integer, and a string. Since it doesn't have
any indexes on it yet, this table is a heap. INSERTs will be fast, since they won't require any validations for
uniqueness and since the sort order and indexes don't have to be maintained.

Next, let's add a half million rows to the table, so you'll have a decent amount of data to run test
queries against:

declare @i int
SET @i = 0
WHILE (@i < 500000)
BEGIN

END

INSERT INTO ind
(V2, V3)
VALUES
(@i * 2, 'test')

SET @i = @i + 1

The vi IDENTITY column will automatically be filled with integers from 1 to 500,000. The v2 column
will contain even integers from zero to one million, and the v3 column will contain a fixed string. Of
course, this would be faster if you did multiple inserts in a single transaction, as discussed previously,
but that's overkill for a one-time-only script like this.

You can have a look at the table's physical characteristics on disk by running the following
command:

dbcc showcontig (ind) with all_indexes

Since there are no indexes yet, information is displayed for the table only:

Table: 'ind' (101575400); index ID: 0, database ID: 23
TABLE level scan performed.
- Pages Scanned •••••••••••••••••••••••••••••••• : 1624
- Extents Scanned •••••••••••••••••••••••••••••• : 204
- Extent Switches : 203
- Avg. Pages per Extent : 8.0
- Scan Density [Best Count:Actual Count] : 99.51% [203:204]
- Extent Scan Fragmentation : 0.98%
- Avg. Bytes Free per Page : 399.0
- Avg. Page Density (full) : 95.07%

You can see from this that the table occupies 1,624 pages and 204 extents and that the pages are
95.07 percent full on average.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Adding a Clustered Index
Here's the first query that you're going to optimize:

SELECT vl, v2, v3
FROM ind
WHERE vl BETWEEN 1001 ANO 1100

You're retrieving all three columns from a range ofrows, based on the vl IDENTITY column.
Before running the query, let's look at how SQL Selver will execute it. Do that by selecting it in

SSMS, right-clicking, and selecting Display Estimated Execution Plan. Here's the result:

:J
SELECT

Cost: e %

Table Scan
[ind]

Cost : 1ee %
This shows that the query will be executed using a table scan; since the table doesn't have an index

yet, the only way to find any specific values in it is to look at each and every row.
Before executing the query, let's flush all buffers from memory:

checkpoint
OBCC OROPClEANBUFFERS

The CHECKPOINT command tells SQL Server to write all the dirty buffers it has in memory out to disk.
Afterward, all buffers will be clean. The OBCC OROPCLEANBUFFERS command then tells it to let go of all the
clean buffers. The two commands together ensure that you're starting from the same place each time: an
empty buffer cache.

Next, enable reporting of some performance-related statistics after running each command:

set statistics io on
SET STATISTICS TIME ON

STATISTICS IO will tell you how much physical disk 1/0 was needed, and STATISTICS TIME will tell
you how much CPU time was used.

Run the query, and click the Messages tab to see the reported statistics:

Table 'ind'. Scan count 1, logical reads 1624,
physical reads 29, read-ahead reads 1624,
lob logical reads 0, lob physical reads 0, lob read-ahead reads o.

SQL Server Execution Times:
CPU time = 141 ms, elapsed time = 348 ms.

The values you're interested in are 29 physical reads, 1,624 read-ahead reads, 141ms of CPU time,
and 348ms of elapsed time. Notice that the number of read-ahead reads is the same as the total size of
the table, as reported by OBCC SHOWCONTIG in the previous code listing. Also notice the difference between
the CPU time and the elapsed time, which shows that the query spent about half of the total time waiting
for the disk reads.

283

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

284

D Note I don't use logical reads as my preferred performance metric because they don't accurately reflect the
load that the command generates on the server, so tuning only to reduce that number may not produce any visible
performance improvements. CPU time and physical reads are much more useful in that way.

The fact that the query is looking for the values of all columns over a range of the values of one of
them is an ideal indication for the use of a clustered index on the row that's used in the WHERE clause:

CREATE UNIQUE CLUSTERED INDEX IndIX ON ind(vl)

Since the vi column is an IDENTITY, that means it's also UNIQUE , so you include that information in
the index. This is almost the same as SQL Server's default definition of a primary key from an index
perspective, so you can accomplish nearly the same thing as follows:

ALTER TABLE ind ADD CONSTRAINT IndIX PRIMARY KEY (Vi)

The difference between the two is that a primary key does not allow NULLs, where the unique
clustered index does, although there can be only one row with a NULL when the index is unique.

Repeating the DBCC SHOWCONTIG command now shows the following relevant information:

- Pages Scanned : 1548
- Extents Scanned : 194
- Avg. Page Density (full) : 99.74%

There are a few less pages and extents, with a corresponding increase in page density.
After adding the clustered index, here's the resulting query plan:

SELECT

Cost : B %

I~
Clust ered Ind ex Seek (c...

[ind] . [IndIX]
Co st : lBB %

The table scan has become a clustered index seek, using the newly created index.
After flushing the buffers again and executing the query, here are the relevant statistics:

physical reads 3, read-ahead reads 0
CPU time = 0 ms, elapsed time = 33 ms.

The total number of disk reads has dropped from 1,624 to just 3, CPU time has decreased from
14lms to less than lms, and elapsed time has decreased from 348ms to 33ms. At this point, our first
query is fully optimized.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Adding a Nonclustered Index
Here's the next query:

SELECT vl, v2, v3
FROM ind
WHERE v2 BETWEEN 1001 AND 1100

This is similar to the previous query, except it's using v2 in the WHERE clause instead ofvl.
Here's the initial query plan:

::J
SELECT

Cost : 0 %

fm
Clustered Index Scan (c...

[ind] . [IndIX)
Cost: 100 %

This time, instead of scanning the table, SQL Server will scan the clustered index. However, since
each row of the clustered index contains all three columns, this is really the same as scanning the whole
table.

Next, flush the buffers again, and execute the query. Here are the results:

physical reads 24, read-ahead reads 1549
CPU time = 204 ms, elapsed time = 334 ms.

Sure enough, the total number of disk reads still corresponds to the size of the full table. It's a tiny
bit faster than the first quely without an index, but only because the number of pages decreased after
you added the clustered index.

To speed up this query, add a nonclustered index:

CREATE UNIQUE NONCLUSTERED INDEX IndV2IX ON ind(v2)

As with the first column, this column is also unique, so you include that information when you
create the index.

Running DBCC SHOWCONTIG now includes information about the new index:

- Pages Scanned : 866
- Extents Scanned : 109
- Avg. Page Density (full) : 99.84%

You can see that it's a little more than half the size of the clustered index. It's somewhat smaller
since it only includes the integer vl and v2 columns, not the four-character-Iong strings you put in v3.

Here's the new query plan:

D
SELECT

Cost: 0 %

Nested loops _ Index Seek (NonClustere ...

(Inner Join) 1 [ind].[IndV2IX]
Cost: 0 % Cost: 2 %

~
Key lookup (Clustered)

[ind] . [IndIX]
Cost: 98 %

285

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

286

This time, SQL Server will do an inexpensive index seek on the IndV2IX nonclustered index you just
created. That will allow it to find all the rows with the range of v2 values that you specified. It can also
retrieve the value of vl directly from that index, since the clustered index column is included with all
nonclustered indexes. However, to get the value of v3 , it needs to execute a key lookup, which finds the
matching row using the clustered index. Notice too that the key lookup is 98 percent of the cost of the
query.

The two indexes amount to two physically separate tables on disk. The clustered index contains vl,
v2, and v3 and is sorted and indexed by vl. The nonclustered index contains only vl and v2 and is sorted
and indexed by v2. After retrieving the desired rows from each index, the inner join in the query plan
combines them to form the result.

After flushing the buffers again and executing the query, here are the results:

physical reads 4, read-ahead reads 2
CPU time = 0 ms, elapsed time = 35 ms.

The CPU time and elapsed time are comparable to the first quely when it was using the clustered
index. However, there are more disk reads because of the key lookups.

Creating a Covered Index
Let's see what happens if you don't include v3 in the query:

SELECT vl, v2
FROM ind
WHERE v2 BETWEEN 1001 AND 1100

Here's the query plan:

:::J
SELECT

Cost: 0 %

J

Index Seek (NonCluster~_
[ind). [I ndV2IX)

Cost : 100 %
Since you don't need v3 any more, now SQL Server can just use an index seek on the nonclustered

index.
After flushing the buffers again, here are the results:

physical reads 3, read-ahead reads 0
CPU time = 0 ms, elapsed time = 12 ms.

You've eliminated the extra disk reads, and the elapsed time has dropped significantly too.
You should be able to achieve a similar speedup for the query that uses v3 by adding v3 to the

nonclustered index to create a covered index and avoid the key lookups:

create unique nonclustered index IndV2IX on ind(v2)
INCLUDE (V3)
WITH (DROP_EXISTING = ON)

This command will include v3 in the existing index, without having to separately drop it first.
Here's the updated DBCC SHOWCONTIG for the nonclustered index:

- Pages Scanned : 1359
- Extents Scanned : 170
- Avg. Page Density (full) : 99.98%

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

The index has grown from 866 pages and 109 extents to 1,359 pages and 170 extents, while the page
density remains close to 100 percent. It's still a little smaller than the clustered index because of some
extra information that is stored in the clustered index other than just the column data.

The new query plan for the original query with v3 that you're optimizing is exactly the same as the
plan shown earlier for the query without v3 :

~ ::l
SELECT

Cost : 0 %

Index Seek (NonClus te r e .
[i nd] . [I ndV2IX]

Cost: 100 %
Here are the statistics:

physical reads 3, read-ahead reads 0
CPU time = 0 ms, elapsed time = 12 ms.

The results are also the same as the previous test. However, the price for this performance is that
you now have two complete copies of the table: one with vi as the index, and one with v2 as the index.
Therefore, while SELECTs of the type you used in the examples here will be fast, INSERTs, UPDATEs, and
DELETEs will be slower, because they now have to change two physical tables instead of just one.

Index Fragmentation
Now let's see what happens if you insert 5,000 rows of data that has a random value for v2 that' s in the
range of the existing values, which is between zero and one million. The initial values were all even
numbers, so you can avoid uniqueness collisions by using odd numbers. Here's the T -SQL:

declare @i int
SET @i = 0
WHILE (@i < 5000)
BEGIN

END

INSERT INTO ind
(v2, V3)
VALUES
((CONVERT(INT, RANDO * 500000) * 2) + 1, 'test')

SET @i = @i + 1

Those 5,000 rows are 1 percent of the 500,000 rows already in the table. After running the script,
here's what DBCC SHOWCONTIG reports for the clustered index:

- Pages Scanned : 1564
- Extents Scanned : 199
- Avg. Page Density (full) : 99.70%

For the nonclustered index, it reports the following:

- Pages Scanned : 2680
- Extents Scanned : 339
- Avg. Page Density (full) : 51.19%

Notice that the clustered index has just a few more pages and extents, and it remains at close to 100
percent page density. However, the nonclustered index has gone from 1,359 pages and 170 extents at
close to 100 percent density to 2,680 pages, 339 extents, and about 50 percent density. Since the

287

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

288

clustered index doesn't depend on the value of v2 and since vl is an IDENTITY value that steadily
increases, the new rows can just go at the end of the table.

Rows in the nonclustered index are ordered based on v2. When a new row is inserted, SQL Server
places it in the correct page and position to maintain the sort order on v2. If that results in more rows
than will fit on the page, then the page is split in two, and half the rows are placed in each page. That's
why you see the average page density at close to 50 percent.

Excessive page splits can have a negative impact on performance, since they can mean that many
more pages have to be read to access the same amount of data.

You can explicitly defragment the indexes for the ind table with the following command:

DBCC INDEXDEFRAG(SampleDB, 'ind')

COLUMNSTORE Index
SQL Server 2012 introduced a new, special purpose type of index called COLUMNSTORE, available only in
the Enterprise and Developer editions. COLUMNSTORE indexes improve the efficiency of index scans.
They're useful in scenarios where you have very large tables (generally multiple millions of rows) that
you often query using joins and aggregates, such as with a fact table in a data warehouse.

One downside of COLUMNSTORE indexes is that they cause your table to become read-only. Limited
modification is possible without dropping and re-creating the index on the entire table, but it requires
using data partitioning (covered later in this chapter) to switch out part of the table.

The upside of COLUMNSTORE indexes is that they can provide a very significant performance boost for
certain types of queries. Scans of even billions of rows can complete in a few seconds or less.

As the name implies, COLUMNSTORE indexes organize data by columns, rather than by rows as in a
conventional index. The indexes don't have a particular order. SQL Server compresses the rows within
each column after first re-ordering them to optimize the amount of compression that's possible.

As an example, let's optimize the following query, which uses a table scan:

SELECT COUNT(*), v3
FROM ind
GROUP BY v3

Here are the initial statistics:

Scan count 1, logical reads 1557, physical reads 2, read-ahead reads 1595
CPU time = 219 ms, elapsed time = 408 ms.

Create the index:

CREATE NONCLUSTERED COLUMNSTORE INDEX indcolIX
ON ind (Vl, v2, V3)

It's a sound practice to include all of the eligible columns of your table in the index. There are
several data types you can't use in a COLUMNSTORE index: BINARY, VARBINARY, IMAGE, TEXT, NTEXT,
VARCHAR(MAX),CURSOR,HIERARCHYID, TIMESTAMP,UNIQUEIDENTIFIER, SQLVARIANT,XML,DECIMALorNUMERIC
with precision larger than 18, and DATETIMEOFFSETwith precision greater than 2.

Here are the statistics after repeating the query with the index in place:

Scan count 1, logical reads 10, physical reads 1, read-ahead reads 2
CPU time = 125 ms, elapsed time = 140 ms.

Due to the high compressibility of the data (all rows contain the same value ofv3), the query only
requires three physical disk reads for the index, compared to 1,597 reads without the index. CPU time
and elapsed time are also much lower.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Miscellaneous auery Optimization Guidelines
Here are a few high -level guidelines for optimizing your queries:

• If you're writing new queries or code that invokes queries, you should make
frequent and regular use of the SQL Profiler to get a feeling for how many round
trips your code is making and how long the queries are taking. For me, it plays an
irreplaceable role when I'm doing that kind of work.

• Avoid cursors. Processing data a row-at-a-time in T -SQL is very expensive.
Although there are exceptions, 99 percent of the time, it's worth the effort to
rewrite your queries to use set-based semantics, if possible. Alternatives include
things like table variables, temporary tables, and so on. I've rewritten some
cursor-based queries that ran 1,000 times faster as set-based operations. If you
can't avoid cursors, identify all read-only queries, and mark the associated cursors
as FAST FORWARD.

• Avoid triggers. Triggers are a powerful tool, but you should think of them as a last
resort; use them only if there is no other way. They can introduce massive
amounts of overhead, which tends to be of the slow, row-at-a-time type. Because
triggers are nominally hidden from the view of developers, what's worse is that the
extra overhead is hidden too.

• To avoid performance problems because of deadlocks, make a list of all the stored
procedures in your system and the order in which they modify tables, and work to
ensure that order is consistent from one stored procedure to another. In cases
where consistent order isn't possible, either use an increased transaction isolation
level or use locking hints or increased lock granularity.

• Use SET NOCOUNT ON at the top of most of your stored procedures to avoid the extra
overhead of returning a result row count. However, when you want to register the
results of a stored procedure with SqlDependency or SqlCacheDependency, then you
must not use SET NOCOUNT ON. Similarly, some ofthe logic that synchronizes
DataSets uses the reported count to check for concurrency collisions.

Data Paging
If you have a large database table and you need to present all or part of it to your users, it can be
painfully slow to present a large number of rows on a single page. Imagine a user trying to scroll through
a web page with a million rows on it. Not a good idea. A better approach is to display part ofthe table.
While you're doing so, it's also important to avoid reading the entire table at both the web tier and the
database tier.

Common Table Expressions
You can use common table expressions (CTEs) to address this issue (among many other cool things).
Using the PageViews table from the beginning of the chapter as an example, here's a stored procedure
that returns only the rows you request, based on a starting row and a page size:

CREATE PROC [Traffic].[PageViewRows]
@startrow INT,

289

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

290

@pagesize INT
AS
BEGIN

END

SET NOCOUNT ON
;WITH ViewList ([row], [date], [user], [url]) AS (

SELECT ROW NUMBER() OVER (ORDER BY PvId) [row], PvDate, UserId, PvUrl
FROM [Traffic].[PageViews]

)
SELECT [row], [date], [user], [url]

FROM ViewList
WHERE [row] BETWEEN @startrow AND @startrow + @pagesize - 1

The query works by first declaring an outer frame, including a name and an optional list of column
names, in this case, ViewList ([row], [date], [user], [url]).

Next, you have a query that appears to retrieve all the rows in the table, while also applying a row
number, using the ROW_NUMBER() function, with which you need to specify the column you want to use as
the basis for numbering the rows. In this case, you're using OVER (ORDER BY PvId). The columns
returned by this query are the same ones listed in the outer frame. It might be helpful to think of this
query as returning a temporary result set.

Although the ROW_NUMBER() function is very handy, unfortunately you can't use it directly in a WHERE
clause. This is what drives you to using a CTE in the first place, along with the fact that you can't
guarantee that the PvId column will always start from one and will never have gaps.

Finally, at the end of the CTE, you have a query that references the outer frame and uses a WHERE
clause against the row numbers generated by the initial query to limit the results to the rows that you
want to display. SQL Server only reads as many rows as it needs to satisfy the WHERE clause; it doesn't
have to read the entire table.

Note The WITH clause in a CTE should be preceded by a semicolon to ensure that Sal Server sees it as the
beginning of a new statement.

OFFSET
SQL Server 2012 introduced an alternative approach to CTEs for data paging that's much easier to use:
OFFSET.

For example:

SELECT PvId [row], PvDate, UserId, PvUrl
FROM [Traffic].[PageViews]
ORDER BY [row]
OFFSET 10 ROWS FETCH NEXT 5 ROWS ONLY

OFFSET requires an ORDER BY clause. An OFFSET of zero produces the same results as TOP.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Detailed Example of Data Paging
To demonstrate data paging in action, let's build an example that allows you to page through a table and
display it in a GridView control.

Markup
First, add a new web form to your web site, called paging. aspx, and edit the markup as follows:

<%@ Page Language="C#" Enab1eViewState="fa1se" AutoEventWireup="fa1se"
CodeFi1e="paging.aspx.cs" Inherits="paging" %>

Here you're using several of the best practices discussed earlier: both ViewState and
AutoEventWireup are disabled.

<!DOCTVPE html>
<html>
<head runat="server">

<title></title>
</head>
<body>

<form id="forml" runat="server">
<div>

<asp:GridView ID="pvgrid" runat="server" AllowPaging="true"
PageSize="S" DataSourceID="PageViewSource">
<PagerSettings FirstPageText="First" LastPageText="Last"

Mode="NumericFirstLast" I>
</asp:GridView>

In the GridView control, enable AllowPaging, set the PageSize, and associate the control with a data
source. Since you want to use the control's paging mode, using a data source is required. Use the
< PagerSettings> tag to customize the page navigation controls a bit.

<asp:ObjectDataSource ID="PageViewSource" runat="server"

Enab1ePaging="True" TypeName="Samp1es.PageViews"
Se1ectMethod="GetRows" Se1ectCountMethod="GetCount"
OnObjectCreated="PageViewSource_ObjectCreated"
OnObjectDisposing="PageViewSource_ObjectDisposing">

</asp:ObjectDataSource>
</div>
</form>

</body>
</html>

Use an Obj ectDataSource as the data source, since you want to have programmatic control over the
details. Set Enab1ePaging here, associate the control with what will be your new class using TypeName, and
set a Se1ectMethod and a Se1ectCountMethod, both of which will exist in the new class. The control uses
Se1ectMethod to obtain the desired rows and Se1ectCountMethod to determine how many total rows there
are so that the GridView can correctly render the paging navigation controls. Also, set OnObjectCreated
and OnObjectDisposing event handlers.

291

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

292

Stored Procedure
Next, use SSMS to modify the stored procedure that you used in the prior example as follows:

ALTER PROC [Traffic].[PageViewRows]
@startrow INT,
@pagesize INT,
@getcount BIT,
@count INT OUT

AS
BEGIN

SET NOCOUNT ON
SET @count = -1;
IF @getcount = 1
BEGIN

SELECT @count = count(*) FROM [Traffic].[PageViews]
END
SELECT PvId [row], PvDate, UserId, PvUrl

FROM [Traffic]. [PageViews]
ORDER BY [row]
OFFSET @startrow - 1 ROWS FETCH NEXT @pagesize ROWS ONLY

END

Rather than requiring a separate round trip to determine the number of rows in the table, what the
example does instead is to add a flag to the stored procedure, along with an output parameter. The T
SQL incurs the overhead of running the SELECT COUNT(*) query (which requires a table scan) only if the
flag is set, and returns the result in the output parameter.

Code-Behind
Next, edit the code-behind as follows:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using Samples;

public partial class paging : Page
{

protected override void OnInit(EventArgs e)
{

}

base.OnInit(e);
this.RegisterRequiresControlState(this);

Since AutoEventWireup is disabled, override the OnEvent-style methods from the base class.
The ObjectDataSource control needs to know how many rows there are in the target table. Obtaining

the row count is expensive; counting rows is a form of aggregation query that requires reading every row
in the table. Since the count might be large and doesn't change often, you should cache the result after
you get it the first time to avoid having to repeat that expensive query.

You could use the Cache object if you access the count frequently from multiple pages. In a load
balanced environment, a different server might process the request for the next page, and it wouldn't

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

have the access to the same cache. You could use a cookie, but they are a bit heavyweight for
information that's specific to a single page. For data that's specific to a page like this, ViewState might be
a good choice. However, on this page, you would like to keep ViewState disabled because it gets very
voluminous for the GridView control and therefore has an associated negative effect on page
performance. You could enable ViewState on the page and just disable it for the GridView control, but
leaving it enabled for other controls will make the page larger than it has to be. Instead, let's use
ControlState, which serves a purpose similar to ViewState, except that it can't be disabled.

In OnlnitO, call RegisterRequiresControlStateO to inform the Page class that you will be using
ControlState.

protected override void Onload(EventArgs e)
{

}

base.Onload(e);
if (!this.IsPostBack)
{

this.Count = -1;
}

If the current request isn't a postback, that means a user is coming to the page for the first time, and
you will need to obtain the row count. If the request is a postback, then you will obtain the row count
from ControlState.

protected override void LoadControlState(object savedState)
{

}

if (savedState != nUll)
{

this.Count = (int)savedState;
}

protected override object SaveControlState()
{

return this.Count;
}

Unlike with ViewState, which uses a Dictionary as its primary interface, with ControlState you have
to override the LoadControlStateO and SaveControlStateO methods instead. LoadControlStateO is
called before the Load event, and SaveControlStateO is called after the PreRender event. As with
ViewState, ControlState is encoded and stored in the _ VIEWSTATE hidden field in your HTML.

protected void PageViewSource_ObjectCreated(object sender,
ObjectDataSourceEventArgs e)

{

}

PageViews pageViews = e.Objectlnstance
if (pageViews != nUll)
{

pageViews.Count = this.Count;
}

as PageViews;

The runtime will call the ObjectCreated event handler after creating an instance ofthe
Sample. PageViews object. Use this event to push the row count into the object.

293

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

294

protected void PageViewSource_ObjectDisposing(object sender,
ObjectDataSourceDisposingEventArgs e)

{

}

PageViews pageViews = e.Objectlnstance as PageViews;
if (pageViews != nUll)
{

this.Count = pageViews.Count;
}

The runtime will call the ObjectDisposing event handler after it has done its work. Use this event to
retrieve the (possibly updated) row count from the object, so that you can cache it on the page.

public int Count { get; set; }
}

Object Data Source
Next is the object data source, which is the final class for the example. Add a file for a new class called
PageViews. cs to your project in the App _Code folder:

using System. Data;
using System.Data.SqlClient;

names pace Samples
{

public class PageViews
{

public const string ConnString =
"Data Source=.;Initial Catalog=Sample;Integrated Security=True";

public PageViews()
{

this.Count = -1;
}

public int GetCount()
{

return this.Count;
}

public DataTable GetRows(int startRowlndex, int maximumRows)
{

bool needCount = false;
if (this.Count == -1)
{

needCount = true;
}
DataTable data = new DataTable();
using (SqlConnection conn = new SqlConnection(ConnString))
{

using (SqlCommand cmd = new SqlCommand("[Traffic].[PageViewRows]", conn))

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}
}

}

{

}
}

cmd.CommandType = CommandType.StoredProcedure;
SqlParameterCollection p = cmd.Parameters;
p.Add("startrow", SqlDbType.lnt).Value = startRowlndex + 1;
p.Add("pagesize", SqlDbType.lnt).Value = maximumRows;
p.Add("getcount", SqlDbType.Bit).Value = needCount;
p.Add("count", SqlDbType.lnt).Direction = ParameterDirection.Output;
conn. Open ();
using (SqlDataReader reader = cmd.ExecuteReader(»
{

}

data . Load(reader);
if (needCount)
{

this.Count = (int)cmd.Parameters["count"].Value;
}

return data;

Call the stored procedure to obtain the row count (if needed) using an output parameter, along with
the requested rows. This logic relies on the fact that the runtime calls Get Rows () before GetCount (), since
the count reported by the latter is obtained (the first time) from the former.

Results
The resulting web page still needs some work to pretty it up, but it's definitely functional. Equally
important, it's also very scalable, even on extremely large tables. It uses an efficient query for paging,
caches the row count in ControlState so the count query doesn't need to be executed again for every
new page viewed by the same user, and always uses only one round-trip to the database.

Figure 8-1 shows part of page 11 of the output, including the column headers and the navigation
links.

row date user
51 6/27/2009 12:59:43 PM c58f9d4e-2e7b-4337-b09d-209dl b58abc5 http:
52 612 1200912:59:43 PMc58f9d4e-2e7b-433 -b09d-209dlb58abc5http:
53 6/27/2009 12:59:43 PM c58f9d4e-2e7b-4337-b09d-209dlb58abc5 http:
54 612 12009 12:59:43 PM c58f9d4e-2e7b-4337-b09d-209d l b58abc5 http:
55 612712009 12:59:43 PM c58f9d4e-2e7b-4337-b09d-209dl b58abc5 http:

First = 11 12 1114 ~ 1611.li.!2 20 = Last

Figure 8-1. Output from the paging GridView example

295

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

296

UNO to Sal, Entity Framework and other DRMs
Language Integrated Query (LINQ) was one of the very cool additions to C# 3.0. It provides a type-safe
way to query XML, SQL Server, and even your own objects. LINQ to SQL also provides a mapping from
database objects (tables and rows) to .NET objects (classes). That allows you to work with your custom
business objects, while delegating much of the work involved with synchronizing those objects to LINQ.

The Entity Framework (EF) is an alternative to LINQ to SQL, which you can also query with LINQ.
NHibernate is an open source system that provides similar functionality.

All of these systems provide an Object Relational Model (ORM), each with its own pros and cons. I
have mixed feelings about all ORM systems. I love them because they allow me to develop small, proof
of-concept sites extremely quickly. I can side step much of the SQL and related complexity that I would
otherwise need and focus on the objects, business logic and presentation. However, at the same time, I
also don't care for them because, unfortunately, their performance and scalability is usually very poor,
even when they're integrated with comprehensive caching - which isn't always easy or even
straightforward.

The object orientation of ORM systems very often results in extremely chatty implementations.
Because ORM systems tend to make it a little too easy to access the database, they often result in making
many more round-trips than you really need. I've seen sites that average more than 150 round-trips to
the database per page view! Overall, databases are more efficient at handling set-based operations than
per-object (row-at-a-time) operations.

Although both LINQ and NHibernate's hql do provide some control over the queries that are
autogenerated by these systems, in complex applications the queries are often inefficient and difficult or
impossible to tune fully. In addition, in their current incarnations, LINQ to SQL and the Entity
Framework don't provide good support for asynchronous requests, command batching, caching, or
multiple result sets, which are all important for scalable high-performance databases.

You can also use stored procedures with ORM systems, although you do sacrifice some flexibility in
doing so.

Of course, I understand that ORM systems have become extremely popular, largely because of their
ease of use. Even so, in their current form I can't recommend any of them in high-performance web
sites, in spite of how unpopular that makes me in some circles. LINQ is great for querying XML and
custom objects; I just would prefer not to use it or EF with SQL, except in very limited circumstances,
such as:

• Rapid prototyping or proofs of concept, where speed of delivery is more important
than performance and scalability (beware of the tendency for successful
prototypes to move to production without an opportunity for a complete rewrite).

• Small-scale projects.

• As an alternative to generating dynamic SQL by concatenating strings on the web
tier when you can't otherwise avoid it.

• As a way of calling stored procedures synchronously with type-safe parameters,
such as from a background thread or a Windows service.

• Isolated, low-traffic, low-load parts of a site.

I'm definitely not saying that working with objects is a bad idea; it's the T-SQL side of things that
presents difficulties. You can fill a collection of custom objects yourself very quickly and efficiently by
using a SqlDataReader; that's what the SqlDataAdapter and DataTable objects do. Uyou need change
detection, you can use a DataSet (which can contain one or more DataTables). However, that is a fairly
heavyweight solution, so custom objects are usually the most efficient approach.

�

�

CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Tip To see the T -SQl command text generated by UNQ, you can set Context. Log = Console. Out during
development, which will display it in the Visual Studio output window after it runs. You can access the command
text before the query runs from Context.GetCommand(query) .CommandText. In EF you can use
((System.Data.Objects.ObjectQuery)query).ToTraceString().

From a performance perspective, if you're using the LinqDataSource control, it helps if you can
include a TIMESTAMP column in the associated tables. If a table doesn't have a TIMESTAMP column, the
control checks data concurrency by storing the original data values on the page. LINQ to SQL verifies
that the row still contains the original values before it updates or deletes data. This approach can result
in an unnecessarily large page, as well as presenting potential security issues. If the table has a TIMESTAMP
column, then the control stores only that value on the page. LINQ to SQL can verify data consistency by
checking whether the original TIMESTAMP matches the current one.

XML Columns
SQL Server 2005 introduced the ability to store XML data as a native data type. Before that, the
alternative was to store it as a blob of text. With XML native columns, you can efficiently query or modify
individual nodes in your XML. This feature is useful from a performance perspective in several scenarios:

• As a replacement for sparse columns. Rather than having a very wide table where
most of the values are NULL, you can have a single XML column instead.

• When you need recursive or nested elements or properties that are difficult to
represent relationally.

• When you have existing XML documents that you would like to be able to query or
update, while retaining their original structure.

• As an alternative to dynamically adding new columns to your tables. Adding new
columns to a table will lock the table while the change is in progress, which can be
an issue for very large tables. Adding new columns can also be challenging to track
with respect to their impact on existing queries and indexes.

• As an alternative to many -to-many mappings. In cases where a relational solution
would include extra tables with name/value pairs and associated mappings and
indexes, native XML columns can provide a more flexible solution that avoids the
overhead of joining additional tables.

Before going any further, I should say that if your data fits the relational model well, then you should
use a relational solution. Only consider XML when relational becomes difficult, awkward, or expensive
from a performance perspective, as in the examples I listed earlier. Avoid the temptation to convert your
entire schema to XML, or you will be very disappointed when it comes to performance!

XML columns have their own query language, separate from (although integrated with) T -SQL,
called XQuery. Rather than diving into its full complexities, let's walk through a couple of examples to
give you a sense of what it's like, along with a few performance tips.

297

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

298

XMLSchema
Let's build a table of products. The product name is always known, so you'll put that in a relational
column. Each product can also have a number of attributes. You expect that the number and variety of
attributes will expand over time and that they might have a recursive character to them, so you decide to
represent them in XML and include them in an XML column in the products table.

Here's an example of what the initial XML will look like:

<info>
<props width="1.0" depth="3.0" />
<color part="top">red</color>
<color part="legs">chrome</color>

</info>

SQL Server can associate a collection ofXML schemas with an XML column. Although the use of
schemas is optional, they do have a positive impact on performance. Without a schema, XML is stored as
a string and is parsed for each access. When a schema is present, the XML is converted to binary, which
reduces its size and makes it faster to query. In addition, numeric values are stored in their converted
form. Without a schema, SQL Server can't tell the difference between an item that should be a string and
one that should be a number, so it stores everything as strings.

Since schemas are a good thing, let's create one that describes our XML and create a schema
collection to go with it:

create xml schema collection ProductSchema as
'<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="info">
<xs:complexType>

<xs:sequence>
<xs:element name="props" minOccurs="O">

<xs:complexType>
<xs:attribute name="width" type="xs:decimal" I>
<xs:attribute name="depth" type="xs:decimal" I>

</xs:complexType>
</xs:element>
<xs:element name="color" minOccurs="O" maxOccurs="unbounded">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="part" type="xs:string"

use="required" I>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>'

This schema encodes the rules for the structure of your XML: inside an outer info element, the
optional <props> element has optional width and depth attributes. There can be zero or more <color>

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

elements, each of which has a required part attribute and a string that describes the color. If it's present,
the <props> element must come before the <color> elements «xs: sequence».

XML schemas can get complex quickly, so I recommend using some software to accelerate the
process and to reduce errors. Since the market changes frequently, see my links page at
www.12titans.net/p/links . aspx for current recommendations.

Creating the Example Table
Nowyou're ready to create the table:

CREATE TABLE
[Id]
[Name]
[Info]

[Products] (
INT IDENTITY PRIMARY KEY,
VARCHAR(128),
XML (ProductSchema)

You have an integer IDENTITY column as a PRIMARY KEY, a string for the product name, and an XML
column to hold extra information about the product. You have also associated the ProductSchema
schema collection with the XML column.

N ext, insert a few rows into the table:

INSERT INTO [Products]
([Name], [Info])
VALUES
('Big Table',
'<info>

<props width="1.0" depth="3.0" I>
<color part="top">red<lcolor>
<color part="legs">chrome<lcolor>

</info>')
INSERT INTO [Products]

([Name], [Info])
VALUES
(' Small Table',
'<info>

<props width="O.5" depth="1.5" I>
<color part="top">black<lcolor>
<color part="legs">chrome<lcolor>

</info>')
INSERT INTO [Products]

([Name], [Info])
VALUES
('Desk Chair',
, <info>

<color part="top">black<lcolor>
<color part="legs">chrome<lcolor>

</info>')

You might also try inserting rows that violate the schema to see the error that SQL Server returns.

299

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

300

Basic XML Queries
A simple query against the table will return the Info column as XML:

SELECT * FROM Products

Now let's make some queries against the XML:

SELECT [Id], [Name], [Info].query('/info/props')
FROM [Products]
WHERE [Info].exist('/info/props[@width]') = 1

The exist () clause is equal to 1 for rows where the XML has a props element with a width attribute.
The query() in the selected columns will display the props element and its attributes (and children, if it
had any) as XML; it's a way to show a subset of the XML.

Both queryO and existO use XPath expressions, where elements are separated by slashes and
attributes are in brackets preceded by an at-sign.

Here's another query:

SELECT [Id], [Name], [Info].value('(/info/props/@width)[l]', 'REAL') [Width]
FROM [Products]
WHERE [Info].value('(linfo/color[@part = "top"])[l]', 'VARCHAR(16)') = 'black'

This time, you're looking for all rows where <color part="top"> is set to black. The valueO query
lets you convert an XQuery IXML value to aT -SQL type so you can compare it against black. In the
selected columns, use valueO to return the width attribute of the props element. Converting it to a T
SQL type means that the returned row set has the appearance of being completely relational; there won't
be any XML, as there was in the previous two queries. Since the XPath expressions might match more
than one node in the XML, the [1] in both value() queries says that you're interested in the first match;
value () requires you to limit the number of results to just one.

Here's the next query:

DECLARE @part VARCHAR(16)
SET @part = 'legs'
SELECT [Id], [Name], [Info].value(' (/info/color) [1] , , 'VARCHAR(16)') [First Color]

FROM [Products]
WHERE [Info].value('(/info/color[@part = sql:variable("@part")])[l]',

'VARCHAR(16)') = 'chrome'

This time, you're using the sql: variable () function to integrate the @part variable into the XQuery.
You would use this approach if you wanted to parameterize the query, such as in a stored procedure. On
the results side, you're returning the first color in the list.

Modifying the XML Data
In addition to being able to query the XML data, you can also modify it:

UPDATE [Products]
SET [Info].modify('replace value of

(/info/color[@part = "legs"])[l]
with "silver"')

WHERE [Name] = 'Desk Chair'

This command will set the value of the <color part="legs"> element for the Desk Chair row to
silver.

�

�

CHAPTER 8 SQl SERVER RELATIONAL DATABASE

UPDATE [Products]
SET [Info].modify('insert

<color part="arms">white</color>
as first
into (/info)[l]')

WHERE [Name] = 'Desk Chair'

This command inserts a new color element at the beginning of the list. Notice that a T -SQL UPDATE
statement is used to do this type of insert, since you are changing a column and not inserting a new row
into the table.

UPDATE [Products]
SET [Info].modify('delete

(/info/color)[l]')
WHERE [Name] = 'Desk Chair'

This command deletes the first color element in the list, which is the same one that you just
inserted with the previous command.

XMLIndexes
As with relational data, you can significantly improve the performance of queries against XML if you use
the right indexes. XML columns use different indexes than relational data, so you will need to create
them separately:

CREATE PRIMARY XML INDEX ProductIXML
ON [Products] ([Info])

A PRIMARY XML INDEX is, as the name implies, the first and most important XML index. It contains
one row for every node in your XML, with a clustered index on the node number, which corresponds to
the order of the node within the XML. To create this index, the table must already have a primary key.
You can't create any of the other XML indexes unless the PRIMARY XMl INDEX already exists.

Caution The size of a PRIMARY XML INDEX is normally around three times as large as the XML itself (small tags
and values will increase the size multiplier, since the index will have more rows). This can be an important sizing
consideration if you have a significant amount of data.

CREATE XML INDEX ProductPathIXML
ON [Products] ([Info])
USING XML INDEX ProductIXML
FOR PATH

CREATE XML INDEX ProductPropIXML
ON [Products] ([Info])
USING XML INDEX ProductIXML
FOR PROPERTY

301

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

302

CREATE XMl INDEX ProductValueIXMl
ON [Products] ([Info])
USING XMl INDEX ProductIXML
FOR VALUE

You create the remaining three indexes in a similar way, using either FOR PATH, FOR PROPERTY, or FOR
VALUE. These secondary indexes are actually nonclustered indexes on the node table that comprises the
primary index. The PATH index includes the tokenized path of the node and its value. The PROPERTY index
includes the original table's primary key plus the same columns as the path index. The VALUE index has
the value first, followed by the tokenized path (the inverse of the PATH index).

Each index is useful for different types of queries. Because of the complexity of both the indexes and
typical queries, I've found that the best approach for deciding which indexes to generate is to look
carefully at your query plans. Of course, if your data is read-only and you have plenty of disk space, then
you might just create all four indexes and keep things simple. However, if you need to modify or add to
your data, then some analysis and testing is a good idea. XML index maintenance can be particularly
expensive; the entire node list for the modified column is regenerated after each change.

Miscellaneous XML Query Tips
Here are a few more tips for querying XML:

• Avoid wildcards, including both the double-slash type (/ /) and the asterisk type.

• Consider using full- text search, which can find strings much more efficiently than
XQuery. One limitation is that it doesn't understand the structure of your XML, so
it ignores element and attribute names.

• If you search against certain XML values very frequently, consider moving them
into a relational column. The move can be either permanent or in the form of a
computed column.

• You may be able to reduce the coding effort required to do complex joins by
exposing relevant data as relational columns using views.

Data Partitioning
Working with very large tables often presents an interesting set of performance issues. Here's an
example:

• Certain T -SQL commands can lock the table. If those commands are issued
frequently, they can introduce delays because of blocking.

• Queries can get slower as the table grows, particularly for queries that require
table or index scans.

• If the table grows quickly, you will probably want to delete part of it eventually,
perhaps after archiving it first. Deleting the data will place a heavy load on the
transaction log, since SQL Server will write all the deleted rows to the log.

• If the table dominates the size of your database, it will also drive how long it takes
to do backups and restores.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

SQL Enterprise and Developer editions have a feature called table partitioning that can help address
these problems. The way it works is that first you define one or more data value borders that are used to
determine in which partition to place each row. Partitions are like separate sub tables; they can be locked
separately and placed on separate filegroups. However, from a query perspective, they look like a single
table. You don't have to change your queries at all after partitioning a table; SQL Server will
automatically determine which partitions to use.

You can also switch a partition from one table to another. After the change, you can truncate the
new table instead of deleting it, which is a very fast process that doesn't overwhelm the database log.

Partition Function
Let's walk through a detailed example with the same PageViews table that you used earlier. Let's say that
the table grows quickly and that you need to keep data for only the last few months online for statistics
and reporting purposes. At the beginning of each month, the oldest month should be deleted. If you just
used a DE LETE command to delete the oldest month, it would lock the table and make it inaccessible by
the rest of your application until the command completes. If your site requires nonstop 24x7 operations,
this type of maintenance action can cause your system to be slow or unresponsive during that time. You
can address the issue by partitioning the table by month.

The first step is to create a PARTITION FUNCTION:

CREATE PARTITION FUNCTION ByMonthPF (DATETIME)
AS RANGE RIGHT FOR VALUES (
'20090101', '20090201', '20090301',
'20090401', '20090501', '20090601',
'20090701', '20090801', '20090901')

The command specifies the data type of the column against which you will be applying the partition
function. In this case, that's DATETIME. Specifying RANGE RIGHT says that the border values will be on the
right side of the range.

The values are dates that define the borders. You've specified nine values, which will define ten
partitions (N + 1). Since you're using RANGE RIGHT, the first value of 20090101 defines the right side of the
border, so the first partition will hold dates less than 01 Jan 2009. The second value of 20090201 says that
the second partition will hold dates greater than 01 Jan 2009 and less than 01 Feb 2009. The pattern
repeats up to the last value, where an additional partition is created for values greater than 01 Sep 2009.

Partition Scheme
Next, create a PARTITION SCHEME, which defines how the PARTITION FUNCTION maps to filegroups:

CREATE PARTITION SCHEME ByMonthPS
AS PARTITION ByMonthPF
ALL TO ([PRIMARY])

In this case, place all the partitions on the PRIMARY filegroup. Multi-filegroup mappings can be
appropriate in hardware environments where multiple LUNs or logical drives are available to help
spread the 1/0 load.

At this point, you can use the $parti tion function along with the name of the PARTITION FUNCTION as
defined earlier to test the assignment of partition values to specific partitions:

SELECT $partition.ByMonthPF('20090215')

303

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

304

That query displays 3, which indicates that a row with a partition value of 20090215 would be
assigned to partition number 3.

Nowyou're ready to create the table:

CREATE TABLE [Traffic].[PageViews] (
[PvId] BIGINT IDENTITY,
[PvDate] DATETIME NOT NULL,
[UserId] UNIQUEIDENTIFIER NULL,
[PvUrl] VARCHAR(256) NOT NULL

) ON ByMonthPS ([PvDate])

Assign the ByMonthPS partition scheme to the table with the ON clause at the end of the definition,
along with the column, PvDate, that SQL Server should use with the partition function.

Generating Test Data
At this point, you're ready to generate some test data.

Some editions of Visual Studio include an automated data generation tool. However, in a case like
this, where we mainly need to generate random data for one field, aT -SQL script can offer a little more
flexibility (in part because it doesn't require Visual Studio to develop or run the script):

SET NOCOUNT ON
DECLARE @TimeRange INT
DECLARE @i INT
DECLARE @j INT
SET @i = RAND(l)
SET @TimeRange = DATEDIFF(s, '01-0ct-2008', '05-Jul-2009')
SET @i = 0
WHILE @i < 500
BEGIN

BEGIN TRAN
SET @j = 0
WHILE @j < 1000
BEGIN

INSERT INTO [Traffic].[PageViews]
(PvDate, UserId, PvUrl)
VALUES
(DATEADD(s, RAND() * @TimeRange, '01-0ct-2008'),
NEWIDO, ' http://12titans • net/example. aspx')

SET @j = @j + 1
END
COMMIT TRAN
SET @i = @i + 1

END

The call to RAND (1) sets a seed for the random number generator that carries through the rest of the
script. That means you can reproduce the exact results you see here, and they will stay the same from
one run to another.

You generate random a random DATETIME field by first computing the number of seconds between
o I-Oct -2008 and 05-Jul-2009, which overlaps the partition definition function from earlier. Then add a
random number of seconds between zero and that number to the lower end of the range, and INSERT
that value into the table.

NEWID() generates a new Gum for each call, and you're using a fixed value for the PvUrl column.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

In keeping with the earlier discussion about inserting multiple rows per transaction for best
performance, you have an inner loop that inserts 1,000 rows for each transaction, and an outer loop that
executes 500 of those transactions, for a total of 500,000 rows. Using transactions in this way reduces the
run time on my machine from 63 seconds to 9 seconds.

Adding an Index and Configuring Lock Escalation
Nowyou're ready to add an index:

ALTER TABLE [Traffic].[PageViews]
ADD CONSTRAINT [PageViewsPK]
PRIMARY KEY CLUSTERED ([PvId], [PvDate])

If you have a clustered key, the column you use for partitioning must also be present in the key, so
you include PvDate in addition to PvId. If you try to exclude PvDate from the key, you'll get an error.

Let's also configure the table so that when needed, SQL Server will escalate locks up to the heap or
B-tree granularity, rather than to the full table:

ALTER TABLE [Traffic].[PageViews]
SET (LOCK_ESCALATION = AUTO)

That can help reduce blocking and associated delays if you're using commands that require table
locks.

To see the results of partitioning the test data, run the following query:

SELECT partition_number, rows
FROM sys.partitions
WHERE object_id = object_id('Traffic.PageViews')

See Figure 8-2 for the results.

partition_number rows

1
l"·, · · · .. ··1
: : 166947
... ,

2 2 56020
3 3 50468
4 4 56062

5 5 53955
6 6 55550
7 7 53848
8 8 7150
9 9 0

10 10 0

Figure 8-2. Results of data partitioning after test data generation

Partitions 2 through 8 have roughly the same number of rows, covering one month each. Partition 1
has more than the average, because it includes several months (01-Oct-2008 to 31-Dec-2008), based on

305

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

306

the lower end of the date range you used for the test data. Partition 8 has less than the average, since the
high end of the range (05-Jul-2009) didn't include an entire month.

Archiving Old Data
Let's get ready to archive the old data. First, create a table with the same schema and index as the source
table:

CREATE TABLE [Traffic].[PageViewsArchive]
[PvId] BIGINT IDENTITY,
[PvDate] DATETIME NOT NULL,
[UserId] UNIQUEIDENTIFIER NULL,
[PvUrl] VARCHAR(256) NOT NULL

) ON ByMonthPS ([PvDate])

ALTER TABLE [Traffic].[PageViewsArchive]
ADD CONSTRAINT [PageViewArchivePK]
PRIMARY KEY CLUSTERED ([PvId], [PvDate])

Although it's not a strict requirement, I've also applied the same partitioning scheme.
To move the old data into the new table, you will SWITCH the partition from one table to the other:

ALTER TABLE [Traffic].[PageViews]
SWITCH PARTITION 1
TO [Traffic].[PageViewsArchive] PARTITION 1

Notice that the switch runs very quickly, even for a large table, since it is only changing an internal
pointer, rather than moving any data.

Running SELECT COUNT(*) on both tables shows that the old one now has 333,053 rows, and the new
one has the 166,947 rows that previously were in the first partition. The total is still 500,000, but you have
divided it between two tables.

Nowyou can truncate the archive table to release the associated storage:

TRUNCATE TABLE [Traffic].[PageViewsArchive]

Once again, notice that command executes very quickly, since the rows in the table don't have to be
written to the database log first, as with a DE LETE.

Summary
Data partitioning is a powerful tool for reducing the resources that are consumed by aspects of regular
system maintenance, such as deleting old data and rebuilding indexes on very large tables. It can also
help reduce blocking by allowing would-be table locks to be moved to the heap or B-tree granularity.
The larger your tables are and the more important it is for you to have consistent 24x7 performance, the
more useful data partitioning will be.

Full-Text Search
Full-text search has been available in SQL Server for many years. Even so, I've noticed that it is often
used only for searching documents and other large files. Although that's certainly an important and valid
application, it's also useful for searching relatively short fields that contain text, certain types of encoded
binary, or XML.

�

�

CHAPTER 8 SQl SERVER RELATIONAL DATABASE

A common approach to searching text fields is to use a T-SQL LIKE clause with a wildcard. If the
column has an index on it and if the wildcard is at the end of the string, that approach can be reasonably
fast, provided it doesn't return too many rows. However, if the wildcard comes at the beginning of the
LIKE clause, then SQL Server will need to scan every row in the table to determine the result. As you've
seen, table and index scans are things you want to avoid. One way to do that in this case is with full-text
search.

As an example, let's create a table that contains two text columns and an ID, along with a clustered
index:

CREATE TABLE TextInfo (
Id INT IDENTITY,
Email NVARCHAR(256),
Quote NVARCHAR(1024)

CREATE UNIQUE CLUSTERED INDEX TextInfoIX ON TextInfo (Id)

Next, add a few rows to the table:

INSERT INTO TextInfo (Email, Quote)
VALUES (N'joe@gmail.com', N'The less you talk, the more you' 're listened to. ')

INSERT INTO TextInfo (Email, Quote)
VALUES (N'bob@yahoo.com', N'Nature cannot be fooled. ')

INSERT INTO TextInfo (Email, Quote)
VALUES (N'mary@gmail.com', N'The truth is not for all men. ')

INSERT INTO TextInfo (Email, Quote)
VALUES (N'alice@12titans.net', N'Delay is preferable to error. ')

Creating the Full-Text Catalog and Index
To enable full-text search, first create a full-text catalog, and set it to be the default:

CREATE FULLTEXT CATALOG [SearchCatalog] AS DEFAULT

N ext, create the full- text index on the table:

CREATE FULLTEXT INDEX
ON TextInfo (Email, Quote)
KEY INDEX TextInfoIX

That will include both the Email and the Quote columns in the index, so you can search either one.
For this command to work, the table must have a clustered index.

Tip For best performance, the clustered index of the table should be an integer. Wider keys can have a
significant negative impact on performance.

For large tables, after running the full-text index command, you will need to wait a while for the
index to be populated. Although it should happen very quickly for this trivial example, for a larger table
you can determine when the index population is complete with the following query:

307

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

308

SELECT FULLTEXTCATALOGPROPERTY('SearchCatalog', 'PopulateStatus')

The query will return a when the population is done or 1 while it's still in progress.

Caution When you modify a table that has a full-text search index, there is a delay between when your change
completes and when the change appears in the fUll-text index. High table update rates can introduce significant
additional load to update the fUll-text index. You can configure fUll-text index updates to happen automatically after
a change (the default), manually, or never.

Full-Text Queries
One way of searching the Email column for a particular host name would be like this, with a wildcard at
the beginning of a LIKE clause:

SELECT * FROM TextInfo t WHERE t.Email LIKE '%12titans%'

After creating the full- text index, you can query for an e-mail domain name as follows:

SELECT * FROM TextInfo WHERE CONTAINS(Email, N'12titans')

One difference between this query and the one using LIKE is that CONTAINS is looking for a full word,
whereas LIKE will find the string anywhere in the field, even if it's a subset of a word.

Depending on the size of the table and the amount of text you're searching, using full-text search
instead of a LIKE clause can improve search times by a factor of 100 to 1,000 or more. A search of millions
ofrows that might take minutes with a LIKE clause can normally be completed in well under a second.

In addition to "direct" matches as in the previous examples, you can also do wildcard searches.
Here's an example:

SELECT * FROM Textlnfo WHERE contains(Quote, N'"nat*"')

That query will find all quotes with a word that starts with nat, such as Nature in the second row.
Notice that the search string is enclosed in double quotes within the outer single quotes. If you forget the
double quotes, the search will silently fail.

You can also search more than one column at a time, and you can use Booleans and similar
commands in the search phrase:

SELECT * FROM Textlnfo WHERE contains«Email, Quote), N'truth OR bob')

That query will find row 3, which contains truth in the Quotes column, and row 2, which contains
bob in the Email column.

The FREETEXT clause will search for words that are very close to the given word, including synonyms
and alternate forms:

SELECT * FROM TextInfo WHERE freetext(Quote, N'man')

That query will match the word men in row 3, since it's a plural of man.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Obtaining Search Rank Details
The CONTAINSTABLE and FREETEXTTABLE clauses do the same type of search as CONTAINS and FREETEXT,
except they return a temporary table that includes a KEY column to map the results back to the original
table and a RANK column that describes the quality of the match (higher is better):

SELECT ftt.[RANK], t.ld, t.Quote
FROM Textlnfo AS t
INNER JOIN CONTAINSTABLE([Textlnfo], [Quote], 'delay N error') ftt

ON ftt.[KEY] = t.ld
ORDER BY ftt.[RANK] DESC

That query will sort the results by RANK and include RANK as a column in the results.

Full-Text Search Syntax Summary
Here's a summary of the search syntax that applies to CONTAINS, CONTAINSTABLE, FREETEXT, and
FREETEXTTABLE:

• Phrase searches must be in double quotes, as in "word phrase".

• Searches are not case sensitive.

• Noise words such as a, the, and are not searchable.

• Punctuation is ignored.

• For nearness-related searches, use the NEAR keyword or the tilde character H,
which is a synonym, as in word NEAR other.

• You can chain multiple nearness searches together, as in word N still N more.

• Inflectional variations are supported: FORMSOF(inflectional, keyword). For
example, FORMSOF (inflectional, swell) AND abdomen will find rows containing
both swollen and abdomen.

• You can't use the NEAR operator with FORMSOF.

• Initial search results are sorted by the quality of the resulting match (rank).

• You can influence result ranking using weight factors that are between 0.0 and 1.0,
as in ISABOUT(blue weight(o.8), green weight(o.2)).

The following additional syntax is available only for CONTAINS and CONTAINSTABLE:

• You must enclose wildcards in double-quotes, as in "pram*".

• Wildcards are valid only at the end of strings, not the beginning.

• Boolean operators are supported (with synonyms): AND (&), AND NOT (&!), OR (I).
NOT is applied before AND.

• AND cannot be used before the first keyword.

• You can use parentheses to group Boolean expressions.

309

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

310

Full-text search has considerable additional depth. Features that I didn't cover here include
searching binary-formatted documents, like Word or PDF files, multilingual support, configurable stop
words, a configurable thesaurus, various management views, and so on.

Service Broker
As I discussed in the section on thread management in Chapter 5, tasks that take a long time to complete
can have a very negative impact on the performance of your site. This includes things like sending an e
mail, executing a long-running database query, generating a lengthy report, or performing a time
consuming calculation. In those cases, you may be able to improve the scalability and performance of
your site by offloading those tasks to another server. One way to do that is with Service Broker, which is a
persistent messaging and queuing system that's built into SQL Server.

You can also use Service Broker to time-shift long-running tasks. Instead of offloading them to
different servers, you might run them from a background thread on your web servers, but only during
times when your site isn't busy.

Service Broker has several features that differentiate it from simply running a task in a background
thread, as you did earlier:

• Messages are persistent, so they aren't lost if a server goes down.

• Messages are transactional, so if a server goes down after retrieving a message but
before completing the task, the message won't be lost.

• Service Broker will maintain the order of your messages.

• You can configure Service Broker to validate your messages against an XML
schema, or your messages can contain arbitrary text or binary data, such as
serialized .NET objects.

• You can send messages transactionally from one database server to another.

• You can send a sequence of messages in a single conversation, and Service Broker
guarantees to deliver them all together.

• Service Broker guarantees that it will deliver each message once and only once.
That means you can have multiple servers reading from the same queue, without
worrying about how to make sure that tasks only get executed once.

To send Service Broker messages on a single database server, you will need four different types of
database objects:

• MESSAGE TYPE defines the validation for your messages.

• CONTRACT defines which MESSAGE TYPEs can be sent by the INITIATOR ofthe message
(the sender) or the TARGET (the recipient).

• QUEUE is a specialized table that holds your messages while they're in-transit.

• SERVICE defines which CONTRACTs can be stored in a particular queue.

When you send or receive messages, you group them into CONVERSATIONs. A CONVERSATION is just an
ordered group of messages. In addition to your own messages, your code also needs to handle a few
system messages. In particular, Service Broker sends a special message at the end of each conversation.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

At a high level, when you send a message, you can think of it as being inserted into a special table
called a QUEUE. When you read the message, it's deleted from the table (QUEUE), and assuming the
transaction is committed, Service Broker guarantees that no one else will receive the same message.
With some effort, you could implement similar functionality yourself with vanilla database tables, but
handling things such as multiple readers, being able to wait for new messages to arrive, and so on, can
be complex, so why reinvent the wheel when you don't have to do so?

Enabling and Configuring Service Broker
Let's walk through an example. First, before you can use Service Broker, you need to enable it at the
database level:

ALTER DATABASE [Sample] SET ENABLE_BROKER WITH ROLLBACK IMMEDIATE

Next, create a MESSAGE TYPE:

CREATE MESSAGE TYPE [1112titans.net/TaskRequest]
AUTHORIZATION [dbo]
VALIDATION = NONE

In this case, specify no VALIDATION, since you want to send arbitrary text or binary data. If you're
sending XML messages, you can have them validated against a schema as part of the send process. The
type name is just a unique string.

Next, create a CONTRACT:

CREATE CONTRACT [1112titans.net/TaskContract/vl.0]
AUTHORIZATION [dbo]
([1112titans.net/TaskRequest] SENT BY INITIATOR)

I've specified a version number at the end of the CONTRACT name to simplify the process of adding a
new contract later, if needed. You would need a new CONTRACT if you wanted to send a different type of
message.

Next, create a QUEUE and an associated SERVICE:

CREATE QUEUE [dbo].[TaskRequestQueue]

CREATE SERVICE [1112titans.net/TaskService]
AUTHORIZATION [dbo]
ON QUEUE [dbo].[TaskRequestQueue] ([1112titans.net/TaskContract/vl.0])

The SERVICE associates the queue with the CONTRACT.

Stored Procedure to Send Messages
Now that the infrastructure is in place, you're ready for a stored procedure to send messages:

CREATE PROC [dbo].[SendTaskRequest]
@msg VARBINARY(MAX)

AS
BEGIN

SET NOCOUNT ON
DECLARE @handle UNIQUE IDENTIFIER
BEGIN TRANSACTION

BEGIN DIALOG @handle FROM SERVICE [1112titans.net/TaskService]

311

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

312

END

TO SERVICE '1112titans.net/TaskService'
ON CONTRACT [1112titans.net/TaskContract/vl.0]
WITH ENCRYPTION = OFF

;SEND ON CONVERSATION @handle
MESSAGE TYPE [1112titans.net/TaskRequest] (@msg)

END CONVERSATION @handle
COMMIT TRANSACTION

Within a transaction, the code begins a DIALOG, which is a type of CONVERSATION that provides
exactly-once-in-order messaging. The DIALOG connects a sending SERVICE and a receiving SERVICE,
although in this case you're using the same service type for both directions. You also specify which
CONTRACT you will be using for this CONVERSATION. If you try to SEND MESSAGE TYPEs that you didn't include
in the specified CONTRACT, it will produce an error. Although CONVERSATIONs can be encrypted, which can
be useful when you're sending messages from one machine to another, you disable encryption in this
case.

After starting the DIALOG, the code SENDs the message, ENDs the CONVERSATION, and COMMITs the
transaction.

Stored Procedure to Receive Messages
Next, here's a stored procedure to receive the messages:

CREATE PROC [dbo].[ReceiveTaskRequest]
@msg VARBINARY(MAX) OUT

AS
BEGIN

END

SET NOCOUNT ON
DECLARE @handle UNIQUE IDENTIFIER
DECLARE @msgtable TABLE (

) ;

handle UNIQUEIDENTIFIER,
[message] VARBINARY(MAX),
msgtype VARCHAR(256)

SET @handle = NULL
WAITFOR (

RECEIVE [conversation handle], message_body, message_type_name
FROM [dbo].[TaskRequestQueue]
INTO @msgtable

), TIMEOUT 60000
SELECT @handle = handle

FROM @msgtable
WHERE msgtype = 'http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog'

IF @handle IS NOT NULL
BEGIN

END CONVERSATION @handle
END
SELECT @msg = [message]

FROM @msgtable
WHERE MSGTYPE = '1112TITANS.NET/TASKREQUEST'

�

�

CHAPTER 8 SQl SERVER RELATIONAL DATABASE

When receiving a message, the associated transaction will generally be at an outer scope, so don't
create one here. After declaring a few variables, the code calls RECEIVE, specifying the QUEUE that you
want to read from and the output data that you're interested in: the CONVERSATION handle, the message
body, and the message type. Since you might get more than one row of data (in this case, the data itself
and an EndDialog message), use the INTO clause of the RECEIVE statement to put the data into a
temporary table.

The RECEIVE is wrapped in a WAIT FOR statement, with a timeout set to 60,000ms. If nothing arrives in
the QUEUE after 60 seconds, it will time out.

After the data arrives, you check to see whether it contains an EndDialog message. If it does, then
end this side of the CONVERSATION. Both the sender and the receiver must separately end their half of the
CONVE RSA TION.

Finally, SE LECT the message body from the temporary table, based on the message type that you're
looking for, and return that data to the caller using an output variable.

Testing the Example
To test things, first either open two tabs in SSMS to your database. In one tab, run the following
commands as a single batch:

DECLARE @msg VARBINARY(MAX)
EXEC dbo,ReceiveTaskRequest @msg OUT
SELECT CONVERT(VARCHAR(MAX), @msg)

The command should wait and do nothing. After 60 seconds, it should time out. Before it times out,
run the following commands in a single batch from another tab:

DECLARE @msg VARBINARY(MAX)
SET @msg = CONVERT(VARBINARY(MAX), 'abc')
EXEC dbo,SendTaskRequest @msg

In this case, you're just sending the text abc after converting it to a VARBINARY(MAX). After the
message is sent, you should see the receive window display the same message shortly thereafter.

Note Although Service Broker's internal message delivery mechanisms are triggered right away when you send
a message, on a very busy system the delay before it's received might be several seconds or more; it's fast but
not instantaneous.

Avoiding Poisoned Messages
You should be sure to avoid poisoned messages. These happen when you pull a message off the QUEUE in
a transaction and then ROL LBACK the transaction instead of committing it, usually in response to an error.
After that happens five times for the same message, Service Broker will abort the process by disabling the
QUEUE.

A good way to avoid poisoned messages is to catch errors or exceptions that probably won't go away
if you just repeat the command. You can log the bad messages to another table or to the Windows event
log. After that, go ahead and COMMIT the transaction to remove the message that failed, rather than rolling
back.

313

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

314

Table-based FIFO Queues
If you can't use Service Broker for some reason (such as with SQL Azure) , you may be able to use table
based FIFO queues instead.

Start with a table to hold the queue:

CREATE TABLE MyQueue (
QueueId BIGINT NOT NULL IDENTITY,
Data VARCHAR(MAX)

CREATE CLUSTERED INDEX MyQueueIdIdx ON MyQueue(QueueId)

You can add as many columns as you need.
To insert a row at the end of the queue:

INSERT INTO MyQueue (Data) VALUES ('abc')

To read and delete the next available row from the queue:

;WITH DeQueue AS (
SELECT TOP(l) Data

FROM MyQueue
WITH (ROWLOCK, READPAST)
ORDER BY QueueId

DELETE FROM DeQueue
OUTPUT DELETED.Data

The READPAST locking hint means one thread won't block another, so the queue isn't a strict FIFO,
but it's also faster than it would be otherwise.

If one thread retrieves a row in a transaction, and then rolls the transaction back, another thread
might process the following row before the first one is processed. To avoid processing the same row
repeatedly, though, as with Service Broker, you generally should avoid ROLLBACKs.

One disadvantage of this type of queue, compared to Service Broker, is that it's not event-driven, so
it requires polling. You may be able to reduce the performance impact of polling on your database by
using increasing delays between dequeuing attempts that come up empty. If the last call successfully
retrieved a row, then make the next attempt with no delay. However, if the last call did not return any
rows, then wait for a little while before trying again. After that, wait two to ten times as long, and repeat,
up to some maximum. For example, the delays might be one minute, five minutes, 30 minutes, and 60
minutes. Then stay at 60 minutes until data arrive again.

Sending E-mail via Service Broker
Sending large volumes of e-mail from your web site can quickly become a significant issue from a
performance and scalability perspective.

A common approach is to connect from a page to an SMTP server synchronously. The SMTP server
is often the one that's included with Windows, installed locally on each web server. This approach has
several drawbacks:

• Connecting synchronously has a negative impact on scalability.

• IIS and your application have to compete with the SMTP server for resources.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

• You will need to allow your web servers to make outgoing SMTP connections,
which is a bad idea from a security perspective.

• You have no way to get any feedback from the SMTP server regarding whether the
message was delivered successfully to its final destination.

• In a load-balanced configuration, web servers are intended to be fully redundant.
If one server crashes, no data should be lost. However, with an SMTP server on
each web server, if a machine crashes, any queued e-mail messages will be lost.

• The interaction with the SMTP server isn't transactional. You will need
considerable additional logic on the web side to handle the case where the SMTP
server generates an error or happens to be offline for some reason.

• This approach doesn't respond well to peak loads. If you suddenly have a large
number of e-mails to send, it can have an adverse impact on the performance of
your site as a whole.

A typical response to the previous realizations is to use a dedicated e-mail server. However, on its
own, that isn't enough since it would be a single point of failure. That leads to a load-balanced pair or
cluster of servers, with RAID disks so that data isn't lost. By this point, the resulting system is getting
reasonably complex, yet it still doesn't address all the drawbacks in previous the list.

A better approach is to use Service Broker. Web pages can use async database calls to queue
messages with the details about the e-mail to be sent. A thread running on a dedicated server then reads
messages from the queue and sends the requested e-mail directly to the remote SMTP server, bypassing
the need for a local one. You can deploy as many servers as you need to handle the workload. They can
all be reading from the same queue, without having to worry about getting duplicate messages. Although
you still end up with separate servers, the architecture is easier to configure since you don't need load
balancing or RAID disks. As with web servers, the servers reading and processing Service Broker
messages would be stateless; all the state information is stored in SQL Server.

The reader threads might be located in a Windows service, which simplifies certain aspects of
management and deployment. They could also be background threads in a special-purpose web site.

Even if you wanted to connect directly to the destination SMTP server from your web application,
you wouldn't normally have the ability to handle remote e-mail servers that aren't available. Handling
those connection retries is one reason you need a local SMTP server in the usual scenario.

With a dedicated server that uses Service Broker queuing, an alternative approach makes it possible
for the application to track the delivery of each e-mail more accurately. You can look up the IP address of
the remote e-mail server based on the MX record of the destination host and send the e-mail directly
there if it's accessible; otherwise, queue it for retry using a separate retry queue.

Creating a Background Worker Thread
Let's walk through a detailed example and build on the stored procedures you defined earlier. First,
right -click your web site in Solution Explorer and select Add New Item. Select Global Application Class,
and click Add. Open the newly created Global. asax file, and replace all the template text with the
following single line:

<%@ Application Language="C#" Inherits="Global" %>

The default <scripb-based approach that Visual Studio uses makes it difficult to use certain
features of the code editor, so I prefer to put the source code in a class by itself. To do that, add a new
class to the App _Code folder in your web site, and call it Global. cs. Edit the file as follows:

315

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

316

using System;
using System. Threading;
using System.Web;

public class Global : HttpApplication
{

}

private static Thread TaskThread { get; set; }

public Global ()
{
}

void Application_Start(object sender, EventArgs e)
{

}

if «TaskThread == nUll) I I !TaskThread.IsAlive)
{

}

ThreadStart ts = new ThreadStart(BrokerWorker.Work);
TaskThread = new Thread(ts);
TaskThread.Start();

void Application_End(object sender, EventArgs e)
{

}

if «TaskThread != nUll) && (TaskThread.IsAlive))
{

TaskThread.Abort();
}
TaskThread = null;

The Application_Start () method creates and starts our background worker thread when the web
app first starts, and Application _ End () stops it when the app shuts down.

Reading and Processing Messages
Next, create BrokerWorker. cs:

using System;
using System. Data;
using System.Data.SqlClient;
using System. Diagnostics;
using System.IO;
using System.Net.Mail;
using System. Runtime. Serialization. Formatters. Binary;
using System. Threading;
using System. Transactions;

public static class BrokerWorker
{

public const string ConnString =

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

"Data Source=server;Initial Catalog=Sample;Integrated Security=True";

public static void Work()
{

DateTime lastLogTime DateTime.Now;
string lastMessage = String. Empty;

for (; ;)
{

using (TransactionScope scope new TransactionScope())
{

using (SqlConnection conn new SqlConnection(ConnString))
{

using (SqlCommand cmd
new SqlCommand("[dbo].[ReceiveTaskRequest]", conn))

{
cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandTimeout = 600; II seconds
cmd.Parameters.Add("msg", SqlDbType.VarBinary, -l).Direction =

ParameterDirection.Output;

This is the code for the worker thread. It runs in a loop forever. Establish a transaction using
TransactionScope, and then configure the SqlConnection and SqlCommand objects to refer to your stored
procedure using a synchronous connection. Set the command timeout to 600 seconds and add a single
output parameter of type VARBINARY(MAX).

byte[] msg = null;
try
{

}

conn. Open 0;
cmd.ExecuteNonQuery();
msg = cmd.Parameters["msg"].Value as byte[];
if (msg != null)
{

PerformTask(msg);
}

After opening a connection to the database, run the stored procedure. If there aren't any messages
in the queue, it will wait for 60 seconds and then return with a null result. If a message did arrive, call
PerformTaskO to do the work.

catch (Exception e)
{

if (e is ThreadAbortException)
{

}
else
{

break;

TimeSpan elapsed = DateTime.Now - lastLogTime;
if «lastMessage != e.Message) I I

(elapsed. Minutes > 10))

317

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

318

}
}

}
}

}

}
}
finally
{

{

}

EventLog.WriteEntry("Application", e.Message,
EventLogEntryType.Error, 105);

lastLogTime = DateTime.Now;

else if (lastMessage == e.Message)
{

Thread.Sleep(60000);
}
lastMessage = e.Message;

if (msg != nUll)
{

scope.Complete();
}

}

Since you're running in a background thread, catch all Exceptions. Ifit's a ThreadAbortException,
then break from the outer loop and exit gracefully. Otherwise, write an error message to the Windows
event log, taking care to make sure that you don't flood the log or go CPU -bound doing nothing but
processing errors. Do that by checking for recurring messages in the Exception, by tracking the last time
that you wrote to the event log, and by sleeping for a minute if there are repeat errors.

Whether there was an exception or not, call scope. Complete () to commit the transaction, which
avoids the problems associated with poison messages. In a production system, you might want to save
the failed message in a table for possible later processing or analysis.

private static void PerformTask(byte[] msg)
{

BinaryFormatter formatter = new BinaryFormatter();
using (MemoryStream stream = new MemoryStream(msg))
{

}

TaskRequest request = formatter.Deserialize(stream) as TaskRequest;
if (request != null)
{

}

switch (request.TaskType)
{

}

case TaskTypeEnum.Email:
SmtpClient smtp = new SmtpClient("localhost");
smtp.Send("rick@12titans.net", request. EmailToAddress,

request.EmaiISubject, request. EmaiIMesssage);
break;

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}
}

The PerformTask() method deserializes the incoming message, transforming it back into a
TaskRequest object. Then you use those parameters to send the e-mail. In this case, I'm still using a local
SMTP server. In a production system, you would look up the MX record of the destination host and send
the mail directly there, with a separate queue for retries, as I described earlier.

Next, add TaskRequest.cs:

using System;

[Serializable]
public class TaskRequest
{

}

public TaskRequest()
{
}

public TaskTypeEnum TaskType { get; set; }
public string EmailToAddress { get; set; }
public string EmailSubject { get; set; }
public string EmailMesssage { get; set; }

public enum TaskTypeEnum
{

}

None,
Email

TaskRequest is a Serializable class that holds the information that you want to pass from the web
tier to the task thread.

Web Form to Queue a Message to Send an E-mail
Next, add a web form called broker-email. aspx, and edit the markup as follows:

<%@ Page Language="C#" EnableViewState="false" AutoEventWireup="false"
Async="true" CodeFile="broker-email. aspx. cs" Inherits="broker _email" %>

<!DOCTVPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"
''http://www . w3. org/TR/xhtmll/DTD/xhtmll-transitional. dtd">

<html xmlns=''http://www.w3.org/1999/xhtml''>
<head runat="server">

<title></title>
</head>
<body>

<form id="forml" runat="server">
<div>

Email: <asp:TextBox ID="Email" runat="server" I><br I>
Subject: <asp:TextBox ID="Subject" runat="server" I><br I>
Body: <asp:TextBox ID="Body" runat="server" Width="soo" I><br I>
<asp:Button ID="Submit" runat="server" Text="Submit" I><br I>
<asp:Label ID="Status" runat="server" ForeColor="Red" I>

319

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

320

</div>
</form>

</body>
</html>

Notice that ViewState and AutoEventWireup are disabled and Async is enabled. The page has three
<asp: TextBox> controls that you'll use to set the parameters for the e-mail, along with a submit button
and an <asp: Label> control for status information.

Next, edit the code-behind:

using System;
using System. Data;
using System.Data.SqlClient;
using System.IO;
using System. Runtime. Serialization. Formatters. Binary;
using System.Web;
using System.Web.UI;

public partial class broker_email: Page
{

public const string ConnString =
"Data Source=server;Initial Catalog=Sample;Integrated Security=True;Async=True";

protected override void OnLoad(EventArgs e)
{

}

base.OnLoad(e);
if (this.IsPostBack)
{

}

PageAsyncTask pat = new PageAsyncTask(BeginAsync, EndAsync, null, null, true);
RegisterAsyncTask(pat);

Start the PageAsyncTask only if the page is a postback, since the TextBox controls won't have
anything in them otherwise.

private IAsyncResult BeginAsync(object sender, EventArgs e,
AsyncCallback cb, object state)

{
TaskRequest request = new TaskRequest()
{

};

TaskType = TaskTypeEnum.Email,
EmailToAddress = this. Email. Text,
EmailSubject = this.Subject.Text,
EmailMesssage = this.Body.Text

SqlConnection conn = new SqlConnection(ConnString);
SqlCommand cmd = new SqlCommand("[dbo].[SendTaskRequest]", conn);
cmd.CommandType = CommandType.StoredProcedure;
BinaryFormatter formatter = new BinaryFormatter();
using (MemoryStream stream = new MemoryStream())
{

formatter.Serialize(stream, request);

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}

stream. Flush 0;
cmd.Parameters.Add("msg", SqlDbType.VarBinary).Value stream.ToArray();

}
conn. Open 0;
IAsyncResult ar cmd.BeginExecuteNonQuery(cb, cmd);
return ar;

The BeginAsync method creates a TaskRequest object and assigns its properties based on the
incoming contents of the TextBoxes. Then it serializes the object and passes it to the SendTaskRequest
stored procedure.

}

private void EndAsync(IAsyncResult ar)
{

}

using (SqlCommand cmd = (SqlCommand)ar.AsyncState)
{

}

using (cmd.Connection)
{

}

cmd.EndExecuteNonQuery(ar);
this.Status.Text = "Message sent";

When the stored procedure completes, call EndExecuteNonQueryO and set a message in the Status
control.

Results
With all of the components in place, when you bring up broker-email. aspx in a browser, fill in the form,
and click Submit, it sends a message via Service Broker to the background thread, which then sends an e
mail. The process happens very quickly.

This architecture also allows a couple of new options that aren't easily possible with the usual
approach:

• You can easily restrict the times of day at which e-mails are sent, or you can limit
the rate they're sent so that they don't place a disproportionate load on your
network.

• As another load-management technique, you can explicitly control how many e
mail requests are processed in parallel at the same time. You might adjust that
number based on the time of day or other parameters.

In addition to using Service Broker for e-mail, you can also use it for any long-running tasks that can
be executed independently of web pages and that you would like to move out of the web tier, such as
reports, long-running relational or MDX queries, data movement or ETL, calling web services, event
notification (instant messaging, SMS, and so on), application-specific background tasks, and so on.
However, since the queuing process does involve some overhead (including some database writes), you
should make sure that the task isn't too small. Otherwise, it may be better to do it inline instead.

321

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

322

Data Change Notifications
To help facilitate caching database query results at the web tier, you can register a subscription with SQL
Server so that it will send a notification when the results of a query may have changed. This is a much
more efficient and scalable alternative to using timed cache expiration combined with polling.

As you learned in Chapter 3, the SqlCacheDependency class uses notifications of this type to remove
items from the cache automatically when they change. A related approach is to register a change event
handler to be called when the notification arrives, using the SqlDependency class.

The notification mechanism relies on Service Broker, so you have to enable it for your database
before attempting to use it, as described earlier. As with SqlCacheDependency, it also uses a dedicated
thread on the .NET side, which you need to start before registering a subscription by calling
SqlDependency.Start().

Using a change event handler allows you to take additional action when the data changes. Rather
than just removing a cache entry, you might also proactively read the data again, send messages to a log,
and so on.

Registering data change notifications using Service Broker does incur some overhead. SQL Server is
designed to support up to perhaps a thousand or so simultaneous notification subscriptions per
database server (total for all incoming connections), but not tens or hundreds of thousands or more. On
a large system, you may therefore need to limit the number of subscriptions that a single web server is
allowed to make.

Query Restrictions
You can register change notification subscriptions for command batches or stored procedures, including
cases that return multiple result sets. However, the particular queries that are eligible for subscriptions
are heavily restricted; you must compose them according to a strict set of rules. These are the most
important things to remember when you're first getting notifications to work correctly:

• Use full two-part table names, such as [dbo]. [MyTable].

• Explicitly name every column (asterisks and unnamed columns are not allowed).

• Don't use SET NOCOUNT ON in a stored procedure.

• Don't use a TOP expression.

• Don't use complex queries or aggregations.

Caution If you try to subscribe to a command that isn't correctly composed, Sal Server may fire an event
immediately after you issue the query. Be sure to check for error conditions in your event handler to avoid
overloading your system with many unnecessary queries.

The details of the final bullet in the previous list require a much longer list. First, here are the things
that you must do:

• The connection options must be set as follows (these are usually system defaults):

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

• ANSI_NULLS ON (must also be set when a stored procedure is created)

• ANSI PADDING ON

• ANSI WARNINGS ON

• CONCAT NULL YIELDS NULL ON - - -
• QUOTED_IDENTIFIER ON (must also be set when a stored procedure is

created)

• NUMERIC ROUNDABORT OFF

• ARITHABORT ON

• Reference a base table.

Here are the things that you must not do, use, include, or reference:

• READ UNCOMMITTED or SNAPSHOT isolation.

• Computed or duplicate columns.

• Aggregate expressions, unless the statement uses group by. In that case, you can
use COUNT_BIGO or SUMO only.

• Commands that involve symmetric encryption, such as OPEN SYMMETRIC KEY,
E NCRYPTBYKEY (), and so on.

• Any of the following keywords or operators: HAVING, CUBE, ROLLUP, PIVOT, UNPIVOT,
UNION, INTERSECT, EXCEPT,DISTINCT,COMPUTE,COMPUTE BY, INTO,CONTAINS,
CONTAINSTEXTTABLE, FREETEXT, FREETEXTTABLE,OPENROWSET,OPENQUERY, or FOR
BROWSE.

• Views.

• Server global variables (that start with @@).

• Derived or temporary tables.

• Table variables.

• Subqueries.

• Outer joins.

• Self joins.

• The NTEXT, TEXT, or IMAGE data types (use VARCHAR(MAX) orVARBINARY(MAX) instead).

• Aggregate functions: AVG, COUNT, MAX, MIN, STDEV, STDEVP, VAR, VARP, or user-defined
aggregates.

• Nondeterministic functions, such as RANK() and DENSE_RANK(), or similar functions
that use the OVER clause.

• System views, system tables, catalog views, or dynamic management views.

323

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

324

• Service Broker QUEUEs.

• Conditional statements that can't change and that don't return results (such as
WHILE(l=O)l.

• A READPAST locking hint.

• Synonyms.

• Comparisons based on double or real data types.

Example: A Simple Configuration System
As an example, let's build a simple configuration system. First, create a table to hold the configuration
data, and create a primary key for the table:

CREATE TABLE [dbo].[ConfigInfo] (
[Key] VARCHAR(64) NOT NULL,
[Strval] VARCHAR(256) NULL

ALTER TABLE [dbo].[ConfigInfo]
ADD CONSTRAINT [ConfigInfoPK]
primary key clustered ([Key])

Next, insert a couple of rows into the table:

INSERT INTO [dbo].[ConfigInfo]
([Key], [Strval]) VALUES (' CookieName', 'CC')

INSERT INTO [dbo].[ConfigInfo]
([Key], [Strval]) VALUES (' CookiePath', '/p/')

Create a stored procedure to read the table:

CREATE PROCEDURE [dbo].[GetConfigInfo]
AS
BEGIN

SELECT [Key], [Strval] FROM [dbo].[ConfigInfo]
END

Notice that you are not using SET NOCOUNT ON, that the table has a two-part name, and that you
named all the columns explicitly.

Next, add ConfigInfo.cs:

using System. Data;
using System.Data.SqlClient;

public static class ConfigInfo
{

public const string ConnString =
"Data Source=server;Initial Catalog=Sample;Integrated Security=True";

public static DataTable ConfigTable { get; set; }

public static void Start()
{

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

}

SqlDependency.Start(ConnString);
LoadConfig();

public static void Stop()
{

SqlDependency.Stop(ConnString);
}

Expose the configuration data to the rest of the application using the DataTable in ConfigTable.
You will call the StartO and StopO methods from the Global.cs class (see the code a little later).

The methods start and stop the SqlDependency notification handling thread, and the Start () method
also calls LoadConfig () to read the configuration data for the first time.

private static void LoadConfig()
{

}

using (SqlConnection conn = new SqlConnection(ConnString»
{

}

using (SqlCommand cmd = new SqlCommand("[dbo].[GetConfigInfo]", conn»
{

}

cmd.CommandType = CommandType.StoredProcedure;
SqlDependency depend = new SqlDependency(cmd);
depend.OnChange += OnConfigChange;
ConfigTable = new DataTable();
conn. Open 0;
using (SqlDataReader reader = cmd.ExecuteReader(»
{

ConfigTable.Load(reader);
}

This method calls the stored procedure and stores the results in the publically accessible DataTable.
However, before calling ExecuteReader(), create a SqlDependency object that's associated with this
SqlCommand and add OnConfigChangeO to the list of the object's OnChange event handlers.

}

private static void OnConfigChange(object sender, SqlNotificationEventArgs e)
{

}

SqlDependency depend = (SqlDependency)sender;
depend.OnChange -= OnConfigChange;
if (e. Type == SqlNotificationType.Change)

LoadConfigO;

The OnConfigChange () event handler removes itself from the event handler list and then calls
LoadConfig() again if the SqlNoti ficationType is Change, meaning that the data returned by the
subscribed query may have changed. The response type might also be Subscribe, which would indicate
that there was an error in establishing the subscription. In that case, you can look at e. Info to determine
the reason for the problem.

Next, update Global.cs (which you created for an earlier example) to call the StartO and StopO
methods from Application _Start () and Application _ End (), respectively:

325

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

326

void Application_Start(object sender, EventArgs e)
{

Configlnfo.Start();
}

void Application_End(object sender, EventArgs e)
{

Configlnfo.Stop();
}

After starting the application, executing the following command from SSMS will cause
OnConfigChangeO to run, and it will read the configuration data again from the Configlnfo table:

UPDATE [dbo].[Configlnfo]
SET [Strval] = 'CD'
WHERE [Key] = 'CookieName'

You can see the response happen either with SQL Pro filer or by setting an appropriate breakpoint
with the debugger.

Note Since data change notifications use Service Broker, they are subject to the same underlying performance
implications. In particular, notifications are sent asynchronously from when you make changes. That means there
will be a slight delay from the time you make the change until servers receive and respond to the notification.

Data change notifications are a powerful mechanism that you can use on the web tier to eliminate
polling for data changes, while also reducing the latency from when you modify data until your servers
know about it and start using it.

Resource Governor
Most web sites have several different kinds of database traffic. For example, in addition to "regular"
transactions, you might have logging, back-end reports, and customer order placement. You might also
have several classes of users, such as anonymous users, logged-in users, administrative users, and
perhaps privileged VIP users. The default configuration is that each database connection receives equal
priority. If your database encounters regular resource contention, you can improve the performance of
user-visible commands using a SQL Enterprise/Developer-only feature called Resource Governor.

Resource Governor allows you to specify the minimum and maximum percentage of CPU time and
memory that SQL Server will allocate to a certain group of connections. You determine the grouping
programmatically, using a classifier function. You should use Resource Governor to help minimize the
impact of background tasks, such as logging, on user-visible foreground tasks. You can also use it to
provide different levels of performance for different types of users.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Configuration
As an example, let's say that you would like to make sure that VIP users on your site have better
performance than regular users. First, make sure that SQL Auth is enabled. Right-click the top-level
database node in Object Explorer in SSMS, and select Properties. Click Security in the panel on the left,
and make sure that SQL Server and Windows Authentication mode is selected on the right, as in
Figure 8-3.

Select a page £S Script ... Help

Server authentication ------------

6 Windows Authentication mode

@ SQl Server and Windows Authentication mode

.:!:J Permissions

Figure 8-3. Enable SQL Authentication mode

Click OK to dismiss the dialog box. Then open a New Query window, and select master as the
destination database. Since Resource Governor settings are applied to alilogins, they are configured in
the master database.

Next, create a new login for the VIP users:

CREATE lOGIN vip WITH PASSWORD = 'Pass@Word1'

In a live environment, you would also need to create an associated user and to assign role
membership and permissions, and so on. However, for the purpose of this example, you can skip those
steps.

Resource Governor includes two standard resource pools: DEFAULT and INTERNAL. All connections are
assigned to the DEFAULT pool, and functions such as the lazy writer, checkpoint, and ghost record
cleanup are assigned to the INTERNAL pool. Both pools have a minimum and maximum CPU and
memory set to a percent and 100 percent, which means they effectively aren't constrained. You can
modify the settings of the DEFAULT pool, but not the INTERNAL pool.

You would like to guarantee your VIP users a significant fraction of available CPU time, so you need
a new RESOURCE POOL:

CREATE RESOURCE POOL VipPool
WITH (MIN_CPU_PERCENT = 80,
MAX_CPU_PERCENT = 100)

This says that for the group of connections assigned to this pool, Resource Governor will guarantee
a minimum of 80 percent of the CPU, and the pool can use up to 100 percent. However, those allocations
apply only when CPU uses becomes constrained. If Vip Pool is using only 5 percent of the CPU and DE FAULT
connections are using 85 percent, then CPU use is unconstrained, and Resource Governor won't change
the way CPU time is allocated. However, if connections assigned to the Vip Pool wanted to increase their
usage to 50 percent, then Resource Governor would step in and reduce CPU use by the DEFAULT pool
from 85 percent to 50 percent so that both pools could operate within their specified parameters.

The sum of all minimum allocations can't exceed 100 percent.

327

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

328

Resource allocation works similarly with the maximum parameters. The resources used by each
pool can exceed their specified maximums, as long as there isn't any contention. Resource Governor
never limits the total CPU used by SQL Server; it only adjusts the allocations of CPU use to particular
pools or groups. If a pool had a maximum allocation of 50 percent CPU and no other pools were active, it
would be able to use 100 percent of the CPU if it needed to do so.

Note Resource Governor resource allocations apply only within a single instance of SQl Server; they do not
take other applications or instances on the box into consideration.

Next, create a resource WORKLOAD GROUP, and assign it to the resource pool:

CREATE WORKLOAD GROUP VipGroup USING "VipPool"

You can have multiple groups in the same pool. Each group can have a different priority within the
pool. You can also set limits for each group on things like the maximum CPU time that can be used by a
single request or the maximum degree of parallelism.

Next, create a classifier function in the master database. Double-check that your query window in
SSMS is set to the master database first (or execute USE master):

CREATE FUNCTION classifier()
RETURNS SYSNAME
WITH SCHEMABINDING

AS
BEGIN

END

DECLARE @group SYSNAME
SET @group = 'default'
IF SUSER_NAME() = 'vip'

SET @group = 'VipGroup'
RETURN @group

If the current login is vip, then the function returns VipGroup, which is the name of the WORKLOAD
GROUP to which the connection will be assigned.

The classifier function can look at any system parameters you like to determine to which WORKLOAD
GROUP the current connection belongs. You return the group name as a SYSNAME (a string). Since the
classifier function runs for every login, it should execute quickly to avoid performance issues.

The previous function determines group membership based on the current login name. You might
also look at things like the application name, using the APP _NAME () function (you can set its value in your
connection string with Application Name), the user's role, the time of day, and so on.

Next, assign the classifier function to Resource Governor:

ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = [dbo].[classifier])

Finally, activate the changes:

ALTER RESOURCE GOVERNOR RECONFIGURE

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

One handy aspect of Resource Governor is that you can change the resource allocations on the fly,
while the server is running. If the usage patterns on your system differ significantly at different times of
the day, week, or month, you might run a SQL Agent job to configure Resource Governor appropriately
for those times.

If you change the classifier function, keep in mind that connections are assigned to a WORKLOAD
GROUP only when they are first created. An existing connection would have to be closed and then
reopened in order to use a new classifier function. With standard connection pooling on ASP.NET, that
may not happen as soon you might expect.

SSMS also provides a GUI that you can use to manage Resource Governor. To see the changes you
just made, open Management in Object Explorer. Then right-click Resource Governor and select
Properties. SSMS will display a dialog box similar to the one in Figure 8-4 .

.Qi Script - III Help

Classifier function name I [dboJ.[classifierJ ~ I
~ Enable Resource Governor

Resource pools

Name Minimum CPU % Maximum CPU % Minimu ·ll
internal 10 100 10 ~

~ I.'nt ' •• 80 100 I 0 ~ ,
'" I
' L III J ~ -=

Workload groups for resource pool: V ipPool

Figure 8-4. Resource Governor management GUI in SQL Management Studio

Testing
To test the changes, open a new instance of SSMS, but connect to SQL Server using the vip login and
password that you created rather than your usual credentials. Put the following code in both the original
window and the new one:

DECLARE @count BIGINT
SET @count = 0
DECLARE @start DATETIME
SET @start = GETDATE()
WHILE DATEDIFF(second, @start, GETDATE()) < 30
BEGIN

SET @count = @count + 1
END
SELECT @count

329

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

330

This is a CPU -bound script that just increments a counter as much as it can over a 3D-second
period. Start the script in the original window, and then as quickly as you can afterward, start it in the
vip window so that both windows are running at the same time.

When the commands complete, you should see that the final count in the vip window is roughly 80
percent of the sum of the two counts. On my local machine, it was about 78 percent, rather than the 50
percent or so that it would be without Resource Governor.

Caution Although you can restrict memory use with Resource Governor, in most cases I don't recommend it
unless you have a compelling technical reason for doing so. There are a large number of underlying variables
surrounding memory allocation, and I've found that it's difficult to predict the performance impact if memory is
restricted.

To use this feature from ASP.NET, your code should use different connection strings depending on
the nature of the command to be executed, and the type of user who will be requesting the command.
For example, anonymous users, logged-in users, VIP users, and logging might all use connection strings
with differences that you can identify in your classifier function, such as login name or application
name, as described earlier.

Scaling Up VS. Scaling Out
As database servers approach their capacity, one way to grow is to scale up by increasing the capacity of
your existing servers. The other way is to scale out by adding additional servers. Each approach has its
pros and cons.

Scaling Up
In general, scaling up to add capacity to your site is easier and more cost effective, from both a hardware
and a software perspective, than scaling out. However, you will of course reach a limit at some point,
where you can't scale up any more. At that point, scaling out becomes your only alternative.

There are also cases where you want to improve performance, rather than to add capacity. In that
event, there are times where scaling out is more effective than scaling up.

In deciding which way to go, one of the first things to look at is how busy the CPUs are. If they're
close to 100 percent most of the time, then you're CPU bound, and adding more 1/0 capacity or more
memory won't help. You can add more CPU sockets or cores, or switch to CPUs with a larger cache or a
higher clock rate. Once your system has reached its capacity in those areas, you will need to upgrade the
entire server to continue scaling up. The associated cost factor is often a good motivator for scaling out
at that point instead. However, in my experience, there is usually plenty of room for improvement in
other areas before you reach this point.

For I/O-bound systems, a common scenario would be to scale up by adding more memory first, up
to your system's maximum (or approximately the size of your database, whichever is less) or what your
budget allows. Next, add more disks andlor controllers to increase your system's 110 throughput. 1/0
bound servers can often benefit from a surprisingly large number of drives. Proper disk subsystem
design is critical and has a huge impact on performance. See Chapter 10 for additional details.

In the process of architecting a scaling approach, there are a couple of things to keep in mind:

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

• Adding more 1/0 capacity in the form of a new server (scale out) is more expensive
than adding it to an existing one (scale up).

• You can increase database write performance by first making sure that your
database log files are on dedicated volumes and then by adding more drives to
those volumes. That's much less expensive than adding more servers.

• Adding I/O capacity won't help if your system is CPU bound.

Scaling Out
When you reach the point where scaling out makes sense, you can partition your data in several different
ways:

• Horizontally. Place parts of your tables on each server. For example, put users with
names starting from A to M on server #1, and put users with names starting from
N to Z on server #2. For the boundaries to be adjustable, you may also need some
new "directory" tables, so your application can tell which servers have which rows.

• Vertically. Place entire tables on one server or another. Ideally, group the tables so
that the ones that participate in SQL joins with each other are on the same server.

• Read-only servers: You can place your read-only data onto separate servers. The
easiest approach would be to copy all the related tables, rather than trying to
divide them in some way. You can keep the machines with read-only copies in
sync with a writable copy by using replication and load balance several together
for additional scalability, as in Figure 8-5. You can configure the servers as a
scalable shared database, with a common data store, or as separate servers, each
with its own data.

Read-Only
nalabase

Welb Servers

Read-Only
natabase

Rep,llicaliion

Writable
Database
(master
copy)

Figure 8-5. Load-balanced read-only databases kept in sync with replication.

331

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

332

• Write-mostly servers: If your application does a lot oflogging, or other heavy
writes, you can partition that work off onto one or more servers dedicated to that
purpose. However, as I mentioned, increasing the write performance of an
existing server is usually less expensive than using multiple new servers.

If your database contains large amounts of read -only data, you may be able to improve performance
by moving it onto a read-only filegroup. That allows SQL Server to make several optimizations, such as
eliminating all locks.

Another design parameter is the possibility of using SQL Express. For example, the load-balanced
array ofread-only servers shown in Figure 8-5 could be running SQL Express. That can be particularly
effective if the database is small enough to fit in memory so that I/O isn't an issue. However, ifI/O is an
issue, it's better to create a single scaled-up server that's faster and less expensive than an array of cheap
servers.

Identifying System Bottlenecks
To determine which type of scaling would be most effective, you can use Windows performance
counters to help identify your system's bottlenecks. You can configure and view performance counters
using the perfmon tool. There are a staggering number of counters from which to choose. The ones I've
found to be most useful for SQL Server scalability analysis are included in the following list. Ideally, you
should make all measurements when your database is under peak load and after the database cache is
fully warmed up and populated.

• PhysicalDisk, for all active volumes used by the database:

• Avg. Disk Queue Length: For OLTP systems, this should be less than one
per active spindle (not including the extra drives needed for your RAID
configuration). For example, if you have 20 spindles in RAID 10, that
would be 10 active spindles, so the counter value should be less than 10.
For staging databases, the value can be as high as 15 to 20 per active
spindle.

• Avg. Disk sec/Transfer: Your target should be under 0.020 (20 ms) for
reads, and under 0.005 (5 ms) for writes to the database log.

• Disk Transfers/sec: A properly configured data volume using 15,000 rpm
drives on a quality hardware RAID controller or SAN should be capable
of roughly 400 transfers per second per active spindle. A log volume with
the same type of drives should be able to do 12,500 transfers per second
per active spindle.

• Processor

• % Processor Time: The average use should be below about 75 percent.
Brief peaks to 100 percent do not necessarily indicate that your system is
underpowered. Since this counter shows the average use over all CPU
cores, you should also check Task Manager to make sure you don't have
a single process that's consuming all or most of one or more cores.

• SQLServer:Buffer Manager.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

• Buffer cache hit ratio: This shows how often the data you request is
already in memory. If this is below 90 percent, you may benefit from
additional memory. Ideal values are above 99 percent.

• Lazy writes/sec: This shows how often the lazy writer thread is writing
dirty pages to disk. Values greater than 20 indicate that more memory
could help performance.

• Page life expectancy: This indicates how long pages are staying in cache,
in seconds. Values less than about 350 would be one ofthe strongest
indications that you need more memory.

• SQLServer:Memory Manager.

• Target Server Memory (KB): This indicates how much memory is
available for SQL Server.

• Total Server Memory (KB): This indicates how much memory SQL
Server is currently using. If Total Memory is well under Target Memory,
that's an indication that you probably have enough memory. However,
you shouldn't use these counters to determine whether you don'thave
enough memory. In particular, if they're equal or close to equal, that by
itself does not mean that you need more memory.

I often prefer to use the report format in perfmon, as in Figure 8-6. You can select report format from
the Change Graph Type button at the top of the panel.

PhyslcalDlsk 1 F: 2 E:
Avg. Disk 'Quelile length
Avg., DlskseC/l'ransfe,r
Disk Tr.ansferS/sec

Proce.S50r
% Processor Tiime

SQLServer:Buffer Manager
Buffer cache h it ratio
lazy writes/sec
Pa!lle life expectancy

SQlServer:Memory M';lnager
Target Server Memory (IKS)
Total Server Memory (KB)

0.000 0.'000
0.000 01000
0.000 0.000

_Total

7.272

100.000
0.000

6,655.000

773,664.000
63,176.000

Figure 8-6. SQL Server performance counters in perfmon's report format

High Availability
Load-balanced web servers provide resilience against hardware failures at the web tier. High availability
technologies such as database clustering and mirroring can provide a similar type of resilience for your
database tier.

333

�

�

CHAPTER 8 Sal SERVER RELATIONAL DATABASE

334

There are a few important performance-related trade-offs between clustering and mirroring. With
clustering, there is very little additional overhead during normal operations. However, if a failure
happens, it can take 30 seconds or more for the backup server to come online. Any transactions that
were in progress at the time of the failure will have to be rolled back. In addition, the backup server will
start with an empty RAM cache, so performance will probably be poor for a while after the switch over,
until the cache fills.

With mirroring, the active and backup servers are both always running, so switchover takes only a
couple of seconds. However, the trade-off is a slight degradation in performance during normal
operation, since the active database has to forward all data modification commands to the backup
server. You can minimize the impact of that additional overhead by using asynchronous mirroring.
When the backup server comes online, its RAM cache may not be identical to that of the primary server,
but it won't be empty either, so the post-switchover performance loss shouldn't be as significant as with
a cluster, assuming that the hardware of both mirrors is the same.

Another trade-off between clusters and mirrors is that you can place read-only queries against a
mirror but not against the backup server in a cluster. The hardware you use for mirrors can be anything
that will run SQL Server; the servers don't even have to be identical (although it's a good idea if they are).

With clustering, you should only use hardware that Microsoft has specifically approved for use in a
cluster. Clusters require a multiported disk subsystem, so both the primary server and the backup can
access them. Mirrors can use standard single-ported disk controllers. Clusters tend to be more complex
to configure and maintain than mirrors.

You can geographically separate the machines in a mirror. You should keep machines in a cluster
physically close to each other, ideally in the same rack.

Tip If you're not using a high availability architecture in your production system yet, but there's a good chance
that you will in the future, you should do your development, testing, and initial deployment using a named
database instance rather than a default instance. Since that can require some additional setup (SQl Browser),
different management, and different connection strings, it's a good idea to address those issues early in your
development process.

Although SQL Standard supports only two-node clusters, with SQL Enterprise you can have up to 16
nodes. In a multi -database-server environment, that means you should need fewer standby (and idle)
machines. For example, you might have three active nodes and one standby node, configured so that
any of the active machines can failover to the standby.

A so-called active-active configuration is also possible. For example, you might have three active
nodes, where each node can fail over to another active node. However, if your servers regularly operate
at close to capacity, that configuration can result in one node becoming overloaded in the event of a
failure. Having an idle standby node allows much more resilience in the event of a failure.

�CHAPTER 8 SQl SERVER RELATIONAL DATABASE

Miscellaneous Performance Tips
Here are a couple of additional performance tips:

• Database connections are pooled by default by ASP.NET. To minimize the
number of simultaneous connections your application needs, you should open a
connection right before you use it and then call Dispose () as soon as you're done
(ideally with a using statement).

• Keeping the connection open longer is acceptable, provided that the total
execution time can be reduced by using a transaction, command batching, or
mUltiple result sets.

• Minimize filesystem fragmentation and the resulting reduction in disk throughput
by setting a large initial file size for your database and log, as well as a large
incremental size. Ideally, the file sizes should be large enough that neither the data
file nor the log should ever have to grow.

• To minimize fragmentation that might be introduced by the NTFS filesystem,
ideally each disk volume should only hold one database data or log file.

• Don't shrink or auto shrink your files, since that can undo the benefits of giving
them a large-enough- to-grow size.

• Minimize the number of databases you have. Using multiple databases increases
maintenance and deployment effort and complexity and can cost you
performance. More than one database log file means that you either need multiple
dedicated drives to ensure that all writes will be sequential or need to combine
mUltiple logs on a single drive and therefore lose the ability to do sequential writes
(with an associated performance hit). You can achieve all of the partitioning and
security benefits of multiple databases with just one instead.

• Consider using SQL CLR for stored procedures or functions that contain a large
amount of procedural code. T -SQL is great for set -based operations, but its
procedural features are minimal. As with vanilla stored procedures, avoid putting
too much business logic in a SQL CLR procedure. However, if a little extra logic in
the database can help you avoid some round-trips, then it's worth considering.
SQL CLR is also a great way to share constants between your web application and
your stored procedures.

• Avoid aggregation queries as much as you can. When you need them, consider
caching their results on the web tier or in a small table, which you then recompute
periodically. That way, you can easily share the results among multiple web
servers, further minimizing the number of times you need to run the queries. Each
web server can use SqlCacheDependency to watch for changes in the results table.
Another option is to use Analysis Services to generate preaggregated results and to
make your aggregation queries against that data instead of against the relational
store. I'll cover that approach in detail in the next chapter.

335

�CHAPTER 8 Sal SERVER RELATIONAL DATABASE

336

Summary
In this chapter, I covered the following:

• How SQL Server can act like a large cache if it has enough RAM and how using the
64-bit version is an important part of being able to use that memory effectively.

• The importance of placing database log files on a volume by themselves.

• Using stored procedures instead of dynamic SQL whenever you can.

• Using command batching, table-valued parameters, and multiple result sets to
improve performance by reducing the number of database round-trips.

• Using transactions to reduce I/O pressure to the database log, which can
significantly improve database write performance.

• Improving the performance of future queries with data pre caching. By executing a
similar query before the anticipated one, you can read the required data pages
into memory before they are needed.

• Using clustered and nonclustered indexes to speed up your queries.

• Choosing indexes to minimize table and index fragmentation.

• Constructing and using efficient data paging queries.

• Integrating data paging with a GridView control, an ObjectDataSource, per-request
caching, multiple result sets, and ControlState.

• Choosing ADO.NET over LINQ or the Entity Framework when you need top
performance.

• Using the XML data type, querying and modifying XML columns, and using XML
indexes and schemas to improve query performance.

• Partitioning large tables to improve performance and ease maintenance tasks.

• Using full- text search to improve query performance.

• U sing Service Broker to move or defer long -running tasks.

• Subscribing to and using data change notifications.

• Using Resource Governor to balance or give priority to workloads on busy servers.

• Choosing between scaling up and scaling out and knowing whether your server
needs more RAM, disk, or CPU.

• The performance-related trade-offs between using clustering or mirroring for
high-availability.

CHAPTER 9

SQL Server Analysis Services

In the previous chapter, you saw how aggregation queries, such as counts and sums, can have a
significant adverse impact on the performance of a database. The problems arise partly because of the
time it takes the relational database to step through each row in the tables involved and partly because
of an increase in memory use. If the aggregation requires scanning a large table or index, the process can
displace other buffers from memory so that SQL Server has to read them from disk again the next time
another query needs them.

One way to improve the performance of aggregation queries is to cache their results. You can make
the cached results available to all the servers in your web tier by using a small database table for your
cache. Imagine that you have many different kinds of aggregations that you would like to cache, over a
variety of parameters. If you were to take that concept and expand on it considerably, you would
eventually find that you need a way to query the cached data and to update it regularly and that it's
possible to gain some powerful insights into your data that way. This realization resulted in the creation
of the first multidimensional databases (MDDBs) and eventually an entire industry known as business
intelligence (BI). SQL Server Analysis Services (SSAS) is Microsoft's BI product. It comes "in the box" with
the commercial and developer versions of Microsoft's relational database (not with SQL Express).

Although BI seems to be used most often to support back-end reporting, it can also play an
important role in improving the performance of your web tier. You can move aggregation queries to
SSAS and eliminate their adverse performance impact on your relational database. Not only should the
aggregation queries themselves run faster, but the rest of your RDBMS should also run faster because
buffering efficiency improves and the load on your disk subsystem declines.

Communication about BI and data warehousing unfortunately is often made confusing because of a
conflicting use of a plethora of industry-specific terms by companies, books, and individuals. I've
endeavored to reduce confusion here by listing these terms and definitions as I use them in the glossary.
Even if you've worked with BI before, I encourage you to review the glossary.

This chapter starts with a summary of how SSAS works and how you can use it in your web site. You
then walk through a detailed example that involves building a cube and issuing queries against it from a
web page.

Analysis Services Overview
The term multidimensional is used when talking about BI because the technology allows you to look at
aggregations from several different directions. If you had a table of past order details, you might want to
look at things such as the number of orders by date, the number of orders by customer, dollars by
customer, or dollars by state the customer lives in. Each of these different views through your data is
called a slice.

A collection of aggregations is called a cube. A cube is the multidimensional equivalent of a single
relational database management system (RDBMS); a cube contains facts and dimensions, whereas an

337

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

338

RDBMS contains tables. A collection of cubes is called a multidimensional database (MDDB). When you
add an SSAS project to Visual Studio, you are adding an MDDB.

SSAS retrieves the data that it uses for its calculations from an RDBMS. To do that, first you define a
data source that contains instructions about how to connect to your database. Then, you define a Data
Source View (DSV) that tells SSAS how the tables in your database are associated with each other. With
the DSV in place, you can define and build a cube. When you define a cube, you specify which tables
contain facts, which are collections of numeric information and foreign keys. You also specify which
tables contain dimensions, which are collections of primary keys and strings (usually). At first, a cube
contains only some high-level precomputed aggregations. As you place queries against the cube, SSAS
caches any new aggregations that it has to calculate. You can also configure your cube to precompute a
larger number of aggregations up front.

After you've defined a cube in Visual Studio, you need to deploy it to the server before you can place
queries against it. After deployment, SSAS may need to reaggregate the associated data through
processing. Using proactive caching, you can automate processing so that it happens either periodically
or when data changes. You can also request reprocessing from Visual Studio or SQL Server Integration
Services (SSIS).

After you have deployed and processed a cube, you can issue queries against it. Visual Studio
contains a data browser that supports an easy drag-and-drop query interface you can use for testing. For
reporting, data browsing, or testing purposes, you can also use pivot tables in Excel to browse the cube,
or you can view its structure with pivot diagrams in Visio. In addition, SQL Server Reporting Services
(SSRS) can query the cube and generate reports from the results.

You can use SQL Server Management Studio (SSMS) to interface to SSAS; instead of connecting to a
relational database, you can connect to SSAS. The primary query language used by SSAS is called
Multidimensional Expressions (MDX). You can send MDX to SSAS using SSMS and view the results there,
just as you would view rows returned from a table in an RDBMS.

SSAS also supports an XML-based language called XMLA, which is useful mostly for administrative
or DDL-like functions such as telling SSAS to reprocess a cube, create a dimension, and so on.

While you're debugging, you can connect to SSAS with SQL Pro filer to see queries and other activity,
along with query duration measurements.

From your web site, you can send queries to SSAS using the ADOMD.NET library. The structure of
the library is similar to ADO.NET, with the addition of a CellSet class as an analog of DataSet that
understands multidimensional results.

In spite of its benefits, SSAS does have some limitations:

• It doesn't support conventional stored procedures, in the same sense as a
relational database. Stored procedures in SSAS are more like CLR stored
procedures, in that they require a .NET assembly.

• You can't issue native async calls usingADOMD.NET as you can withADO.NET.

• ADOMD.NET doesn't support command batching of any kind.

• MDX queries are read -only. The only way to update the data is to reprocess
the cube.

• A delay normally occurs between the time when your relational data change and
when the data in the cube are reprocessed. You can minimize that latency by
using proactive caching. In addition, the smaller the latency is, the higher the load
is on your relational database, because SSAS reads the modified data during
reprocessing.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

Example MDDB
I've found that the best way to understand SSAS is by example. Toward that end, let's walk through one
in detail. You start by defining a relational schema and then build a DSVand a cube, along with a few
dimensions and a calculated member.

The application in this example might be part of a blog or forum web site. There is a collection of
Items, such as blog posts or comments. Each Item has an ItemName and belongs to an rtemCategory such
as News, Entertainment, or Sports, and an ItemSubcategory such as Article or Comment. You also have a
list of Users, each with a UserId and a UserName. Each User can express how much they like a given Item
by voting on it, with a score between 1 and 10. Votes are recorded by date.

The queries you want to move from the relational database to SSAS include things like these:

• What are the most popular Items, based on their average votes?

• How many votes did all the Items in each ItemCategory receive during a particular
time period?

• How many total votes have Users cast?

RDBMS Schema
First, you need a table to hold your Users, along with an associated index:

CREATE TABLE [Users] (
UserId INT IDENTITY,
UserName VARCHAR(64)

ALTER TABLE [Users]
ADD CONSTRAINT [UsersPK]
PRIMARY KEY ([UserId])

Next, create a table for the Items and its index:

CREATE TABLE [Items] (
ItemId INT IDENTITY,
ItemName VARCHAR(64) ,
ItemCategory VARCHAR(32),
ItemSubcategory VARCHAR(32)

ALTER TABLE [Items]
ADD CONSTRAINT [ItemsPK]
PRIMARY KEY ([ItemId])

Next, you need a table for the Votes and its index:

CREATE TABLE
VoteId
UserId
ItemId
VoteValue

[Votes] (
INT IDENTITY,
INT,
INT,
INT,

339

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

340

VoteTime DATETIME

ALTER TABLE [Votes]
ADD CONSTRAINT [VotesPK]
PRIMARY KEY ([VoteId])

You also need two foreign keys to show how the Votes table is related to the other two tables:

ALTER TABLE [Votes]
ADD CONSTRAINT [VotesUsersFK]
FOREIGN KEY ([UserId])
REFERENCES [Users] ([UserId])

ALTER TABLE [Votes]
ADD CONSTRAINT [VotesItemsFK]
FOREIGN KEY ([ItemId])
REFERENCES [Items] ([ItemId])

Notice that the names for the corresponding foreign key and primary key columns are the same in
each table. This will help simplify the process of creating a cube later.

Notice also that the values in the Votes table are all either numeric or foreign keys, except VoteTime.
Votes is the central fact table.

With the schema in place, let's use Visual Studio's Data Generator to create some test data. Table
9-1 shows the relevant data generation patterns. All the columns should be configured with Unique
Values set to false.

Table 9-1. Data Generator Patterns for the SSAS Example

Table Column Generator Expression Length Seed

Items ItemName RegEx ([A-Z][a-z]{2,10})([A-Z][a-z]*) 4015
{O,2}

Items ItemCategory RegEx (News I Entertainment I Business I 3217
Sports IHealth I Science)

Items ItemSubcategory RegEx (Articles I Images I Comments) 3219

Users UserName RegEx [a-zA-Z][a-zO-9]* 2413

Votes UserId IntegerU niform, Min=l, Max=50000 5

Votes ItemId IntegerU niform, Min=l, Max=2500 9

Votes VoteValue Integer NormalInverse, Min=l, Max=10 11

Votes VoteTime DateTime Uniform, 10/1/2008,7/31/2009 7

Notice that each item has a different Seed value. That helps to prevent unintended correlations
between the data that can otherwise happen as a side effect of the random number generator.

Generate 2,500 rows for the Items table, 50,000 rows for Users, and 5,000,000 rows for Votes.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

Data Source View
With your schema and data in place, you're ready to start building a cube. To have the correct project
type available, you should install SQL Server client tools on your machine first, either as part of installing
a local instance of SQL Server or separately, but using the same installer. You can walk through the
following example using either SQL Server Data Tools (SSDT), which is a special version of Visual Studio
that's installed with the SQL Server 2012 client tools, or Business Intelligent Development Studio (BIDS),
which comes with SQL Server 2008:

1. Right-click your solution in Solution Explorer, select Add> New Project, and
then select Business Intelligence Projects in the Project types panel on the left
and Analysis Services Multidimensional and Data Mining Project in the
Templates panel on the right. Call the project SampleCube, and click OK.

2. In the new project, right-click Data Sources in Solution Explorer and select
New Data Source to start the Data Source Wizard. Click Next. In the Select
how to define the connection dialog box, configure a connection to the
relational database that has the schema and data you created in the previous
section.

3. Click Next again. In the Impersonation Information dialog box, select Use the
Service Account. SSAS needs to connect directly to the relational store in order
to access the relational data. This tells SSAS to use the account under which
the SSAS service is running to make that connection. This should work if you
kept all the defaults during the installation process. If you've changed any of
the security settings, you may need to assign a SQL Server Auth account or add
access for the SSAS service account.

4. Click Next. In the Completing the Wizard dialog box, keep the default name,
and click Finish to complete the creation of the data source.

5. Right -click Data Source Views, and select New Data Source View to bring up
the Data Source View Wizard. Click Next, and select the data source you just
created.

6. Click Next again. In the Select Tables and Views dialog box, for each of the
three tables from your test schema, click the table name in the left panel, and
then click the right -arrow button to move the table name into the right panel,
as shown in Figure 9-1.

341

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

342

ttl Data Source View Wizard 1=10~

Select Tables and Views
Select obj ects from the relational database to be included in the data source view.

Available objects: Included objects:

Name Type Name Type

D (onfiglnfo (dbo) Table D Items (dbo) Tab le

D PageViews (Traffic) Table

r
D Users (dbo) Tab le

>
Cl PageViewsArchive (Traffic) Table D Votes (dbo) Tab le

L:l Textlnfo (dbo) Table
I
l <

J

[J
B

Filter: ~ Add Related Tables

D Show system objeds

I < Back II Next > I Finish» I Cancel I

Figure 9-1. Select tables and views for the example cube.

7. Click Next to advance to the Completing the Wizard dialog box, accept the
default name, and click Finish. Doing so displays the initial DSV, as in
Figure 9-2.

I] Votes rn Items 'II VoteId
UserId of Itemid

ItemId ItemName

VoteValue Itemcategory

VoteTlme ItemSubcategory

I] Users
. >If UserId

UserName

Figure 9-2. Initial data source view

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

You can see that the DSV shows primary keys with a small key icon. The arrows between the tables
show how they're related.

When you build the cube, you want to be able to do analysis based on the date when users placed
their votes. For that to work, you need to generate a different version of the VoteTime column that
contains a pure date, rather than the mixed date and time created for you by the data generator. That
way, the pure date can become a foreign key in a special table (dimension) you'll create a little later.

You can do this by adding a named calculation to the Votes table. Right-click the header of the Votes
table, and select New Named Calculation. Call the column VoteDate, and enter CONVERT(DATETIME,
CONVERT(DATE, [VoteTime]» for the expression, as shown in Figure 9-3. That converts the combined
date and time to a DATE type and then back to a DATETIME type.

I!il Edit Named Ca lculation

Column name: VoteDate

Description:

Expression:

CONVERT(DATETIME, CONVERT(DATE, [VoteTimeJ))

'--_o_K _____ 11 Cancel I L-[__ H_el_p_ -,

Figure 9-3. Create a named calculation.

Let's double-check that the named calculation is working correctly. Right-click the Votes table and
select Explore Data. Your results should look something like Figure 9-4, particularly in the sense that the
times on the VoteDate column are all zero.

Table I Pivot Table I Chart I Pivot Chart l

Voteld Userld Itemld VoteValue VoteTime VoteDate

,n, 16920 1072 8 2009-01-25 11:58:35Z 2009-01-2500:00:00Z

2 14223 1147 2 2009-06-2220:40:52Z 2009-06-22 OO:OO:OOZ

3 13150 149 10 2009-04-19 22:12~ ~9-04-19 OO:OO:OOZ

4 31270 1199 9 2008-10-16 21:18:05Z 2008-10-1600:00:00Z

5 23175 675 1 2009-01-2009:29:50Z 2009-01-2000:00:00Z

Figure 9-4. Using Explore Data to double-check the VoteDate named calculation

343

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

344

Cube
To create the cube, follow these steps:

1. Right-click Cubes in Solution Explorer, and select New Cube to open the Cube
Wizard.

2. Click Next. In the Select Creation Method dialog box, accept the default of Use
existing tables, because you want to create a cube based on the tables in your
data source.

3. Click Next. In the Select Measure Group Tables dialog box, select the Votes
table. That is your fact table, which forms the core of your measure group.
Measure groups can contain more than one fact table.

4. Click Next. In the Select Measures dialog box, keep the default selections, with
both Vote Value and Votes Count selected. Measures are numeric quantities
(usually aggregations) that are associated with a fact table, such as counts and
sums.

5. Click Next. In the Select Dimensions dialog box, keep the default selections,
which include both the Users and Items tables. Dimensions contain primary
keys and usually one or more strings that are associated with those keys (such
as UserName).

6. Click Next. In the Completing the Wizard dialog box, keep the default name,
and click Finish. When it completes, you should see a diagram that looks very
similar to the DSV in Figure 9-2, except the fact table now has a yellow title and
the dimensions have blue titles.

Although it's possible to build and deploy the cube at this point, before you can make any useful
queries against it, you must add a time dimension and add the string columns from the Items and Users
tables to the list of fields that are part of those dimensions.

Time Dimension
The time dimension will hold the primary keys for the VoteD ate calculated member column you added
to the DSV, which will be the foreign key.

To add the time dimension, follow these steps:

1. Right-click Dimension in Solution Explorer, and select Add New Dimension to
open the Dimension Wizard.

2. Click Next. In the Select Creation Method dialog box, select Generate a time
table on the server. Unlike the other two dimensions, this one will exist in
SSAS only; it won't be derived from a relational table.

3. Click Next. In the Define Time Periods dialog box, set the earliest date for your
data as the First Calendar Day and the end of 2009 for the Last Calendar Day.
In the Time Periods section, select Year, Half Year, Quarter, Month, Week,
and Date, as in Figure 9-5. Those are the periods that SSAS will aggregate for
you and that you can easily query against.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

k: Dimension Wizard

Define Time Periods
Select the time peri ods to use when generating the hierarchies.

First calendar day:

Last calendar day:

First day of the week

Time periods:

Language for time member names:

Wednesday, October 01, 2008

Thursday , December 31, 2009

ISUnday

~ Year

I1l Half Year

[i] Quarter

U Trimester

III Month

U Ten Days

I1l Week

~ Date

I English (United States)

< Back II Next > I [FInish" >] I Cancel

Figure 9-5. Define time periods for the time dimension.

~ I

~ I

4. Click Next. In the Select Calendars dialog box, keep the default selection of
Regular calendar.

5. Click Next. In the Completing the Wizard dialog box, keep the default name,
and click Finish. You should see the Dimension designer for the new wizard,
which you can close.

6. After creating the dimension table, you need to associate it with a column in
the Votes fact table. To do that, open the cube designer, select the Dimension
Usage tab, right-click the background of the panel, and select Add Cube
Dimension. In the dialog box that comes up, select the Time dimension, and
click OK. Doing so adds a Time dimension row to the list of dimensions on the
left of the Dimension Usage panel.

345

�CHAPTER 9 Sal SERVER ANALYSIS S ERVICES

346

7. Click the box at the intersection of the Time row and the Votes column, and
then click the button on the right side of that box to bring up the Define
Relationship dialog box. Select a Regular relationship type, set the Granularity
attribute to Date, and set the Measure Group Column to VoteDate, as in Figure
9-6. That's your new date-only calculated column with the time details
removed so that you can use it as a foreign key into to the Time dimension.

[Regular

I to the fact table.

Granularity attribute: [Date ·1 ~ ____________________________________ d

Dimension table: Server provided

Measure group table: Votes

Relationship:

I Dimension Columns

Server provided
1"'~:::6~~;r.?_UP_C.O.I.~.'?,1.~~_"", ", .. ",._" "_." 1

•...... - _." "._." "-" ················"·_"1

Figure 9-6. Define the relationship between the Time dimension and the VoteDate column.

8. Click OK. The Dimension Usage panel shows the new relationship, as in
Figure 9-7.

Measure Groups G

Dimensions G [,01] Votes

1ft Users User Id

1£t Items Item Id

1ft lime Date •

Figure 9-7. The Dimension Usage panel after adding the Time dimension

Items and Users Dimensions
Although the cube-creation wizard added dimensions for the Items and Users tables, they only contain
an ID field. To be useful for queries, you need to add the string columns as dimension attributes. For the
Items dimension, you also define a hierarchy that shows how ItemSubcategory is related to ItemCategory:

1. Double-click Items.dim in Solution Explorer to open the dimension designer.
Click ItemName in the Data Source View panel on the right, and drag it to the
Attributes panel on the left. Repeat for ItemCategory and ItemSubcategory.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

2. To create the hierarchy, click Item Category in the Attributes pane!, and drag
it to the Hierarchies panel in the middle. Doing so creates a Hierarchy box in
the middle panel. Then, click Item Subcategory in the Attributes pane!, and
drag it to the <new level> row in the Hierarchy box. Finally, right -click the
word Hierarchy at the top of the box in the middle, select Rename, and change
the name to Categories. The result should look similar to Figure 9-8.

J IS Dimension Struct... Ii!: Attribute Relationships 114 Translations lid. Browser

~'t~1 §I . x.I ·; _I
1 Attributes r-I H-ie-ra- r-C-hies-------I Data SOurce VteW

r.-:----- r-;::;==========:::::::;-
k:~ l.n ~ @)

:: Item Category
:~ Item ld Item cateqory
:: Item Name .. Item Subcateqory
:: Item Subcategor <new level>

Figure 9-8. Dimension designer for the Items dimension

ItemName
Itemcategory
ItemSubcategory

The warning triangle at upper left in the hierarchy definition and the blue wavy lines are there to
remind you that you haven't established a relationship between the levels. This type of a relationship
could be a self-join in the original table, such as for parent-child relationships.

Notice the single dot to the left of Item Category and the two dots to the left ofItem Subcategory.
These are reminders of the amount of detail that each level represents. Fewer dots mean a higher level in
the hierarchy and therefore less detail.

Repeat the process for the Users dimension by dragging the UserName column from the Data Source
View to the Attributes panel.

Calculated Member
When determining the most popular Items on your site, one of the things you're interested in is the
average vote. You can calculate that by taking the sum ofthe VoteValues for the period or other slice
you're interested in and dividing by the number of votes.

To define the calculation, open the cube designer by double-clicking Sample. cube. Select the
Calculations tab at the top of the designer, and click the New Calculated Member icon button (hover
over a button to see a tooltip with the button's name). Set the name of the calculation to [Vote Ave], and
set the expression to the following:

[Measures].[Vote Value] / [Measures]. [Votes Count]

Regardless of whether you query by date or by ItemCategory or any other dimension attribute, SSAS
uses the corresponding sum and count for just the data you request.

Next, set the Format string to "0.000" to indicate that the average should include three digits to the
right of the decimal place, as in Figure 9-9.

347

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

348

Name:

[Vote Ave]

~ Parent properties

Parent hierarchy: I Measures

Parent member:

~ Expression

[~leasure s] _ [Vote Value] / [~leasures] _ [Votes Count]

~ Additional Properties

Format string: "0.000"

VISible: [True

Figure 9-9. Define a calculated member for determining the average vote.

Deploy and Test
Now, you're ready to deploy the cube to the server and to do some initial testing:

1. Right-click SampleCube in Solution Explorer, and select Deploy. Doing so
sends the cube definition to SSAS and tells it to use the DSV to read the data it
needs from the relational database and to process the cube.

2. Back in the cube designer, click the Browse tab. You will see a list of measures
and dimensions on the left and a reporting panel on the right. Notice the areas
that say Drop Column Fields Here, Drop Row Fields Here, and Drop Totals or
Detail Fields Here.

3. Expand the Votes measure in the left panel, and drag Vote Count into the
center Detail Fields area. Doing so shows the total number of rows in the Votes
table, which is 5 million. Repeat the process with the Vote Ave calculated
member to see the average value of all votes. Notice that Vote Ave has three
digits to the right of the decimal point, as you specified in the Format String.

4. Expand the Items dimension, and drag Item Category to the Row Fields area.
Notice how the counts and averages expand to show details based on the row
values. Repeat the process for Item Subcategory, drop it to the right of the
Category column, and expand the Business category to see its subcategories.

5. Expand the Time dimension, and drag Half Year to the Column Fields area.
The final results are shown in Figure 9-10.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

Half Year ... 1
Semester 2, 2008 j Semester 1, 2009 j Semester 2, 2009 jGrand Total I

Item Category ... Item Subcategory ... Votes Countlvote Ave Votes Countivote Avejvotes Countlvote Avelvotes Countlvote Avel
El8usiness Articles 75759 5.509 148482 5.512 25779 5.517 250020 5.512

Comments 78806 5.509 154878 5.499 26337 5.505 260021 5.503
~ges 86986 5.500 171452 5.495 29329 5.514 287767 5.498
Total 241551 5.506 474812 5.502 81445 5.512 797808 5.504

IE Entertllinment 251657 5.505 493539 5.496 84507 5.489 829703 5.498 ---
IE Health 263932 5.481 518448 5.503 88646 5.481 871026 5.494
IE News 245039 5.507 481593 5.500 82511 5.483 809143 5.500
IE ScIence 271908 5.501 532669 5.499 90959 5.485 895536 5.498
IE Sports 241694 5.502 473747 5.506 81343 5.502 796784 5.504
Grand Total _ 1515781 5.500 2974808 5.501 509411 5.492 5000000 5.500

Figure 9-10. Results aftesting the example cube using the Browser in SSAS

Notice how the calculations for the intermediate aggregates of date and subcategory are all
calculated automatically without any additional coding.

Example MDX Queries
Here's aT -SQL query for determining the total number of rows in the Votes table in the relational
database:

SELECT
COUNT(*) [Votes Count]
FROM [Votes]

The result is

Votes Count
1··5000000·······_]
:.", , " ;

After running CHECKPOINT and DBCC DROPCLEANBUFFERS on my desktop machine, this takes about 18
seconds to run and has about 20,000 disk reads.

To use the cube from your web site, you query it using MDX. Use SSMS to test your queries.
After connecting to the relational database as you did before, click Connect in Object Explorer,

select Analysis Services, provide the appropriate credentials, and click the Connect button. After it
connects, expand the Databases menu, right -click SampleCube, and select New Query> MDX.

Nowyou can execute the following MDX query, which is equivalent to the earlier T -SQL query:

SELECT
[Measures].[Votes Count] ON COLUMNS
FROM [Sample]

I Votes Count I
5000000

This says to use the Votes Count measure on the columns with the Sample cube. You can't use SSMS
to get time information from SSAS as you can with the relational database, but you can use SQL Proftler.
It shows that the query takes about 2ms, compared to 18 seconds for the relational query.

349

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

350

Next, let's look at the number of votes for the month ofJanuary 2009, grouped by ItemCategory.
Here's the T -SQL query and its result:

SELECT i.ItemCategory, COUNT(*) [Votes Count]
FROM [Votes] v

1

2

3

4

5

6

7

INNER JOIN [Items] i ON i.ItemId = v.ItemId
WHERE v.VoteTime BETWEEN '20090101' AND '20090201'
GROUP BY ROLLUP(i.ItemCategory)
ORDER BY i.ItemCategory

ItemCategory Votes Count

[~:~~~,: ' : : : : : : : : : : :::::,:,:,:::,:::J 508692

Business 81054

Entertainment 84360

Health 88659

News 82645

Science 91122

Sports 80852

With an empty cache, this takes about 6.8 seconds to execute, still with about 20,000 disk reads.
However, recall from the previous chapter that columns used to select a group ofrows are good
candidates for indexes. The estimated query plan tells you that you're missing an index, so let's create it:

CREATE NONCLUSTERED INDEX [VotesTimeIX]
ON [Votes] ([VoteTime])
INCLUDE ([ItemId])

Repeating the query with an empty cache shows that the execution time is now only 0.7 seconds,
with about 1,400 disk reads. Let's see how SSAS compares.

Here's the equivalent MDX query and its result:

SELECT
[Measures]. [Votes Count] ON COLUMNS,
[Items].[Item Category].Members ON ROWS
FROM [Sample]
WHERE [Time]. [Month]. [January 2009]

, II Votes Count I
'All I 508692

,Business I 81054

' Entertainment I 84360

,Health I 88659

' News I 82645

' Science I 91122

' Sports I 80852

' Unknown I (null)

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

You are specifying Votes Count for the columns again, but this time the Members of the Item
Category dimension are the rows. The Members include the children, such as Business , Entertainment,
and so on, along with the special All member, which refers to the total.

You use the WHERE clause to specify a filter for the data that appear in the middle of the result table.
In this case, you want the data for January 2009. The result is the intersection of ROWS, COLUMNS, and the
WHERE clause: Votes Counts for Item Categories in January 2009.

SQL Profiler tells you that this query takes 3ms or 4ms to execute, which is well below the 700ms for
its relational equivalent. This also avoids the 1,400 disk reads on the relational side and the associated
reduction in memory available for other queries.

Next, let's filter those results to show the Health row only. Here's the relational query and its result:

SELECT
COUNT(*) Health
FROM [Votes] v
INNER JOIN [Items] i ON i . ItemId = v. ItemId
WHERE v.VoteTime BETWEEN ' 20090101 ' AND ' 20090201 '
AND i . ItemCategory = ' Health'

Health

!'''SS65S''']
f. j

You just check for the Health category in the WHERE clause.
Here's the MDX equivalent and its result:

SELECT
[Measures]. [Votes Count] ON COLUMNS,
[Items] . [Item Category] .& [Health] ON ROWS
FROM [Sample]
WHERE [Time].[Month].[January 2009]

II Votes Count I
I;=H=e=a l=th~1 88659

Instead of including all the Item Category members on the rows, you include only the Health row by
specifying its name, preceded by an ampersand. The WHERE clause is unchanged.

Rather than getting too distracted with T-SQL, let's focus on the MDX only from now on. You can
apply the same pattern from earlier to look at average vote values for each Item:

SELECT
[Measures].[Vote Ave] ON COLUMNS,
[Items].[Item Name].Children ON ROWS
FROM [Sample]
WHERE [Time]. [Month]. [January 2009]

351

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

352

II Vote Ave I
I Aajglbe Gvg I 5.597

IAbie Pydlvt Ochgsg I 5.486

I Abxn Epgtxfyy I 5.206

I Acdzl I 5.437

! Acoxphmanc I 5.263

I Actuwazeys 1m Cdrxxbabzk I 5.024

! Acyjmknu Rstngansa Fvbzmjrmua I 5.648

Vote Ave is the calculated member you defined earlier. For this query, you're using Children instead
of Members, which excludes the total from the All member. This query returns one row for each of the
2,500 Items. Let's filter the results to return only the Items with the top five highest average vote values:

SELECT
[Measures]. [Vote Ave] ON COLUMNS ,
TOPCOUNT(

[Items].[Item Name] .Children ,
5,
[Measures] . [Vote Avg]
) ON ROWS

FROM [Sample]
WHERE [Time] . [Month] . [January 2009]

~========:::;II Vote Ave I
!Ajozyjgbhl I 6.505
[~P~d=O~bi~p=in=km=a=====~1 6.392

! Oohaumgg V I 6.344
[~R=P=SO=d=V::::!IU~D=d=fbv.Awd==e=lo==~1 6.288

! Itdsnrl Weaglawp Ghmsggkyfz I 6.258

You use the TOPCOUNT () function to select the top five.
So far, your query results have had only a single column. Let's look at the number of votes by Item

Category, split out by Quarter:

SELECT
[Time]. [Quarter].Children ON COLUMNS,
[Items].[Item Category].Children ON ROWS
FROM [Sample]
WHERE [Measures]. [Votes Count]

II QUll rter 4.2008 11 QUllrter 1. 2009 II QUllrter 2. 2009 II QUllrter 3 . 2009 II Quarter 4. 2009 1

I Business 1 241551 235704 239108 81445 (null)

I Entertainment 1 251657 245650 247889 84507 (null)

I Health I 263932 257582 260866 88646 (null)

I News I 245039 239363 242230 82511 (null)

I Science I 271908 265088 267581 90959 (null)

IS(!2rts I 241694 235086 238661 81343 (null)

[Unknown I (null) (null) (null) (null) (null)

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

To do that, you specify the Children of the Quarter dimension as the columns. However, that result
includes some null rows and columns, because you don't have any Unknown items (Unknown is another
default Member) and because you don't have any Votes in Quarter 4, 2009.

Let's filter out the null rows and columns:

SELECT
NONEMPTY([Time].[Quarter].Children,

[Items].[Item Category].Children) ON COLUMNS ,
NONEMPTY([Items].[Item Category].Children ,

[Time] . [Quarter] . Children) ON ROWS
FROM [Sample]
WHERE [Measures]. [Votes Count]

~===~II Quarter 4. 2008 II Querter 1. 2009 II Querter 2. 2009 II Querter 3. 2009 I
IBusiness I 241551 235704 239108 81445

IEnterteinment I 251657 245650 247889 84507

I Heellh I 263932 257582 260866 88646

I News I 245039 239363 242230 82511

I Science I 271908 265088 267581 90959

I Sports I 241694 235086 238661 81343

The NONEMPTYO function selects non-null entries with respect to its second argument and the WHERE
clause. For example, the first call says to return only Children of the Quarter dimension that have a non
null Votes Count for all of the Item Category Children.

Let's show just the results for the Health Category and include a breakdown by Subcategory:

SELECT
NONEMPTY([Time].[Quarter].Children,

[Items] . [Item Category] . Children) ON COLUMNS,
([Items].[Item Category].&[Health],

[Items].[Item Subcategory].Children) ON ROWS
FROM [Sample]
WHERE [Measures]. [Votes Count]

~====;II QUllrter 4, 2008 II Quarter 1, 2009 II Quarter 2. 2009 II QUlIrter 3. 2009 I
~======;I 79419 77668 78716 26953

90801 88117 89518 30378

93712 91797 92632 31315

Including the Health Category and the Subcategory Children together inside parentheses is an
MDX syntax that indicates they are a tuple. That's how you specify that you want to show the
Subcategories of the Health Category. In the results, notice that each row has two labels, one for each
member of the tuple.

Next, let's say that you want to see the Votes Count totals for the Health Category for the three days
ending on March 7, 2009:

353

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

354

SELECT
LASTPERIODS(

3,
[Time].[Date].[Saturday, March 07 2009]
) ON COLUMNS,

[Items].[Item Category].&[Health] ON ROWS
FROM [Sample]
WHERE [Measures]. [Votes Count]

~I ThursdllY, March 052009 I[FridllY, Mllrch 06 2009 I~. Mllrch 07 2009 1

I HeClI~ I 2813 2824 2881

The LASTPERIODSO function uses the position of the specified date in its dimension and includes the
requested number of periods by using sibling nodes in the dimension. Jfyou replaced the date in the
query with a Quarter, the query results would show three quarters instead of three days.

WITH

Next, let' s take the sum of those three days:

MEMBER [Measures].[Last3Days]
AS 'SUM(LASTPERIODS(3, [Time].[Date].[Saturday, March 07 2009]),

[Measures]. [Votes Count])'
SELECT

[Measures].[Last3Days] ON COLUMNS,
[Items].[Item Category].&[Health] ON ROWS
FROM [Sample]

r:==J I LIIst3DClYs I
I HeClt~ 1 8518

You don't have a dimension for those three days together, like you do for full weeks, months,
quarters, and so on, so you have to calculate the result using the SUMO function. You use the WITH MEMBER
clause to define a temporary calculated member, which you then use in the associated SE LECT statement.
The arguments to the SUM () function are the date range and the measure that you want to sum over
those dates.

Next, let's extend that query further by including a sum of the Vote Values for those three days, as
well as the average Vote Value. Let's also look at those values for the top five Items, based on their
average vote value:

WITH
MEMBER [Measures].[Last3DaysCount]

AS 'SUM(LASTPERIODS(3, [Time].[Date].[Saturday, March 07 2009]),
([Measures]. [Votes Count]))'

MEMBER [Measures].[Last3DaysSum]
AS 'SUM(LASTPERIODS(3, [Time].[Date].[Saturday, March 07 2009]),

([Measures]. [Vote Value]))'
MEMBER [Measures].[Last3DaysAvg]

AS '[Measures].[Last3DaysSum] / [Measures]. [Last3DaysCount], ,
FORMAT STRING = '0.000'

SELECT
{[Measures]. [Last3DaysCount] ,

[Measures].[Last3DaysSum],
[Measures].[Last3DaysAvg]

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

} ON COLUMNS,
TOPCOUNT(

[Items].[Item Name].Children,
5,
[Measures].[Last3DaysAvg]) ON ROWS

FROM [Sample]

I Wiocjljjb Rgue

I Kpjjyluiu Dllon~vc PglTlXQlhv I 19 161

IVlvlj I 18 145

I Mrhnfdgmm Tfcnsfl Wm I 18 144

I Gzrkf Dejwmtlbc:tn I 16 126

8-474

8.056
8.000
7.875

To include the three different calculated members in the columns, you specify them as a set using
curly braces. Notice too that you specify a format string for Last3DaysAvg, as you did for Vote Ave when
you were building the cube.

MDX is a powerful language that's capable of much more than I've outlined here. Even so, the
syntax and capabilities covered in this section should be enough for you to offload a number of
aggregation queries from your relational database, including sums, counts, averages, topcount,
lastperiods, and summaries by multiple dates or periods.

ADOMD.NET
Before you can query SSAS from your web application, you need to download and install the
ADOMD.NET library, because it's not included with the standard .NET distribution. It's part of the
Microsoft SQL Server Feature Pack (a free download).

After completing the installation, right-click your web site in Solution Explorer, and select Add
Reference. On the .NET tab of the dialog box, select the latest version of
Microsoft.AnalysisServices.AdomdClient, and click OK. See Figure 9-11.

355

�CHAPTER 9 Sal SERVER ANALYSIS S ERVICES

356

~ Add Reference

.NET I COM I Projects I Browse I Recent I

Component Name

ISymWrapper

Microsoft Analysis Services Time Dimension Generator

Microsoft ASP.NET 2.0 AJAX. Extensions Toolbox Package

Microsoft.AnalysisServices.AdomdClient

MicrosoftAnalysisServices.AdomdClient

Microsoft.AnalysisServices.AdomdServer

Microsoft.AnalysisServices.system.DataMining

Microsoft.Build.Conversion

Microsoft.Build.Conversion.v3.5

Microsoft.Build.Engine

Microsoft.Build.Engine
• I. III

Version

2.0.0.0

10.0.0.0

1.0.6102 ...

9.0.242.0

10.0.0.0

9.0.0.0

10.0.0.0

2.0.0.0

3.5.0.0

2.0.0.0

3.5.0.0
]

I 'i? ~ I

Runtime

v2.0.50727

v2.0.50727
~ v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

v2.0.50727

OK II Cancel

Figure 9-11. Add a reference to the ADOMD.NET library.

Example with a Single-Cell Result
For the first example, let's make a web page that displays a single result from an MDX query. In
particular, the query retrieves the total number of votes for the Health Category for January 2009.

First, create a new web form called mdxl.aspx, and edit the markup as follows:

<%@ Page Language="C#" EnableViewState="false" AutoEventWireup="false"
CodeFile="mdxl.aspx.cs" Inherits="mdxl" %>

<!DOCTVPE html PUBLIC "-IIW3CIIDTD XHTML 1.0 TransitionalllEN"
''http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns=''http://www.w3.org/1999/xhtml''>
<body>
Total
<asp:Label ID="RoNName" runat="server" I>
votes for January 2009:
<asp:Label ID="TotHealthVotes" runat="server" I>
</body>
</html>

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

The markup mainly has two <asp: Label> controls, which you use to display the results.
Here's the code-behind:

using System;
using System.Web.UI;
using Microsoft.AnalysisServices.AdomdClient;

public partial class mdxl : Page
{

}

private const string connStr = "data source=.;initial catalog=SampleCube";

protected override void OnLoad(EventArgs e)
{

}

base.OnLoad(e);
using (AdomdConnection conn = new AdomdConnection(connStr))
{

}

const string mdx = "SELECT " +
"[Measures].[Votes Count] ON COLUMNS, " +
"[Items].[Item Category].&[Health] ON ROWS" +
"FROM [Sample] " +
"WHERE [Time]. [Month]. [January 2009]";

using (AdomdCommand cmd = new AdomdCommand(mdx, conn))
{

}

conn. Open 0;
var reader = cmd.ExecuteReader();
if (reader.Read())
{

}

this.RowName.Text = reader[o].ToString();
this.TotHealthVotes.Text = reader[l].ToString();

You can see that the code pattern for using ADOMD.NET is analogous to standard ADO.NET. You
are mainly just replacing SqlConnection with AdomdConnection, and SqlCommand with AdomdCommand. The
library doesn't have a native asynchronous interface like ADO.NET, so you're using a synchronous page.

One difference compared with the relational database is that you have to include the full text of the
MDX query, because SSAS doesn't support stored procedures in the same way. The result set is also
somewhat different, because each row can have labels, in addition to each column. The difference isn't
too noticeable here, because the result has only one row, with a label in column 0 and the result in
column l. It is more apparent in the next example.

When you run the page, it displays the following:

Total Health votes for January 2009: 88659

You can use a query like this to avoid executing the equivalent aggregation query on the relational
side. In a production system, you may want to cache the result at your web tier to avoid executing the
query more often than necessary.

357

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

358

Displaying a Multiple-Row Result Using a GridView
For the next example,let's display the results of an MDX query that returns a number of rows. Let's look
at the number of votes for each Category for January 2009.

Here's the markup for mdx2. aspx:

<%@ Page Language="C#" EnableViewState="false" AutoEventWireup="false"
CodeFile="mdx2.aspx.cs" Inherits="mdx2" %>

<!DOCTVPE html PUBLIC "-//W3C//DTD XHTMl 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title></title>
</head>
<body>

<form id="forml" runat="server">
<div>

<asp:GridVielill ID="MdxGrid" runat="server" I>
</div>
</form>

</body>
</html>

You have an <asp:GridView> control that holds the results.
Here's the code-behind:

using System;
using System.Data;
using System.Web.UI;
using Microsoft.AnalysisServices.AdomdClient;

public partial class mdx2 : Page
{

private const string connStr = "data source=.;initial catalog=SampleCube";

protected override void Onload(EventArgs e)
{

base.Onload(e);
using (AdomdConnection conn = new AdomdConnection(connStr))
{

const string mdx = "SELECT " +
"[Measures]. [Votes Count] ON COLUMNS, " +
"[Items].[Item Category].Members ON ROWS" +
"FROM [Sample] " +
"WHERE [Time]. [Month]. [January 2009]";

using (AdomdCommand cmd = new AdomdCommand(mdx, conn))
{

conn. Open 0;
CellSet cs = cmd.ExecuteCellSet();
DataTable dt = new DataTable();
dt.Columns.Add(" H);
Axis columns = cs.Axes[o];
TupleCollection columnTuples = columns.Set.Tuples;

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

}
}

}
}

for (int i = 0; i < columnTuples.Count; i++)
{

dt.Columns.Add(columnTuples[i].Members[o].Caption);
}
Axis rows = cs.Axes[l];
TupleCollection rowTuples = rows.Set.Tuples;
int rowNum = 0;
foreach (Position rowPos in rows. Positions)
{

}

DataRow dtRow = dt.NewRow();
int colNum = 0;
dtRow[colNum++] = rowTuples[rowNum].Members[o].Caption;
foreach (Position colPos in columns. Positions)
{

dtRow[colNum++] =
cs.Cells[colPos.Ordinal, rowPos.Ordinal].FormattedValue;

}
dt.Rows.Add(dtRow);
rowNum++;

this.MdxGrid.DataSource dt;
this.MdxGrid.DataBind();

The outer structure of the code is the same as the first example, with AdomdConnection and
AdomdCommand. However, this time you're using ExecuteCellSet () to run the query. It returns a CellSet
object, which is the multidimensional equivalent of a DataTable. Unfortunately, you can't bind a CellSet
directly to the GridView control, so you have to do some work to transform it into a DataTable, which you
can then bind to the grid.

See Figure 9-12 for the results.

Votes Count
All 508692
Business 81054
Entertainment 84360
Health 88659
News
Science
Sports
Unknown

82645
91122
80852

Figure 9-12. Web page containing a multirow MDX query result

359

�CHAPTER 9 Sal SERVER ANALYSIS S ERVICES

360

Updating Your Cube with SSIS
As you've been developing your example cube, you've only been pulling over new data from the
relational engine when you manually reprocess the cube. SSAS retrieves data from the relational engine
through the DSV you created along with the cube.

In a production environment, you would, of course, want to automate that process. One approach is
to use SQL Server Integration Services (SSIS) to run a task that tells SSAS to process the cube in the same
way as previously. You can then create a job in SQL Agent to run that task once a day or as often as you
need it.

Let's walk through the process:

1. Right-click your solution in Solution Explorer, and select Add > Add New
Project. In the dialog box, select Business Intelligence Projects in the left
panel and Integration Services Project on the right. Call the project
Sampl eSSIS, and click OK.

2. Right-click SampleSSIS, and select Add> New Item. Select New SSIS Project,
call it ProcessCube . dts x, and click Add. Doing so opens the SSIS package
designer with the Control Flow tab selected by default.

3. Click the Toolbox panel, and drag Analysis Services Processing Task from the
Toolbox to the surface of the SSIS package designer. See Figure 9-13.

Toolbox ... {:I X

B Control Flow Items ..

~ Pointer

ActiveX Script Task

~ Analysis Services Exe .. .

I~ Analysis Services Pro ... 1
~ Bulk Insert Task

nI Event Handlers Package Explo ...

Analysis ~
Service .. .

Figure 9-13. Adding the Analysis Services Processing task to the SSIS package

4. Double-click the task to open its task editor. Select Processing Settings in the
left panel, and click New in the right panel to add a new connection manager.
In the Add Analysis Services Connection Manager dialog box, click Edit. In the
Connection Manager dialog box, define your connection parameters, and set
the Initial Catalog to SampleCube. Click Test Connection, and then click OK.
See Figure 9-14.

�CHAPTER 9 SQl SERVER ANALYSIS S ERVICES

,fl . OLE DB Provider:

Connection Microsoft OLE DB Provider for Analysis Services 10.0 • I Data Links ...

All

Enter a server or file name

Server or file name: localhost

Location:

Log on to the server

@ Use Windows NT Integrated Security

([) Use a specific user name and password:

User name:

Password:

]
____ J

C Blank password U Allow saving password

Initial catalog:

SampleCube

Figure 9-14. Adding a connection manager for the example cube

5. Click OK again to get back to the Analysis Services Processing Task Editor. To
specify the cube that you want to process, click Add, select SampleCube, and
click OK. See Figure 9-15. Notice that, by default, Process Options is set to
Process Full, which tells SSAS to re-create the data in the cube from scratch
using the DSVyou configured earlier. Click OK again to dismiss the editor.

Analvsis Services connection manaaer:

Lllo_c_a_lh_o_~_.s_am~PI_eC_U_b_e __ ~· I I~==~N~P.W~ ... ~~
Processing configuration

,Obiect list:
l Object Name

I] SampleCube

I

Type

Database

Process Options

Process Full

Figure 9-15. Configure the cube in the Analysis Services Processing Task Editor.

Settings

6. At this point, you can test the package in debug mode. Right-click
ProcessCube. dtsx in Solution Explorer, and select Execute Package. You
should see the task box turn yellow while it's running and then turn green
when it completes.

361

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

362

7. To complete the process of automating the task, copy the ProcessCube. dtsx
file to your server. Open SSMS, connect to your relational database, right-click
SQL Server Agent in Object Explorer, and select New> Job. Call the job
Process Cube, and click Steps on the left panel, where you define what this job
does. Click New, and call the step Run SSIS Processing Task. For the job Type,
select SQL Server Integration Services Package. For Package source, select
File system, and set the path to the ProcessCube. dtsx file . See Figure 9-16.
Click OK.

Step name:

Run SSIS Processing Task

Type:

I SQl Server Integration Services Package ,.)

Run as:

I SQl Server Agent Service Account

PackaQe source: I File system

Sever

log on to the server

@ Use WindaNS Authentication

Use SQl Server Authentication

User name

Password

PackaQe:

C:\SSIS Packages\ProcessCube.dtsx o

Figure 9-16. Configure a SQL Server Agent job step with an SSIS Processing Task.

8. Select Schedules in the left panel, and configure how often you want the task
to run. If once-per-day processing is enough, choose a time of day when your
site isn't busy, in order to reduce the impact on your live site. Click OK to finish
configuring the job.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

After configuring the job, you can test it by right-clicking the job name in Object Explorer and
selecting Start job at step.

The approaches to cube processing discussed so far have involved SSAS pulling data from the
relational store. It is also possible to push data into SSAS using a different type of SSIS task. Pushing data
is useful in cases where you also need to manipulate or transform your data in some way before
importing it into a cube, although a staging database is preferable from a performance perspective (see
the section on staging databases later in this chapter).

Proactive Caching
A much more efficient way to automate cube updates in your production environment is with a SQL
Server Enterprise, Business Intelligence and Developer edition-only feature called proactive caching.

Data Storage Options
SSAS maintains two different types of data. One is measure group data, which includes your fact and
dimension tables, also known as leaf data. The other is precalculated aggregations. You can configure
SSAS to store each type of data either in a native SSAS-specific format or in the relational database. You
have three options:

• Multidimensional OLAP, or MOLAPmode, stores both the measure group data
and the aggregation data in SSAS. Aggregates and leaf data are stored in a set of
files in the local filesystem. SSAS runs queries against those local files.

• Relational OLAP, or ROLAPmode, stores both the measure group data and the
aggregation data in the relational database.

• Hybrid OLAP, or HOLAP mode, stores aggregations in local files and stores the leaf
data in the relational database.

MOLAP mode generally provides the best query performance. However, it requires an import phase,
which can be time-consuming with large datasets. ROLAP is generally the slowest. You can think of both
ROLAP and HOLAP as being "real time" in the sense that OLAP queries reflect the current state of the
relational data. Because these modes make direct use of your relational database during query
processing, they also have an adverse effect on the performance of your database, effectively defeating
one of your main motivations for using SSAS in the first place.

You can configure the storage mode from the Partitions tab in the cube designer. Right-click the
default partition, and select Storage Settings. See Figure 9-17.

363

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

364

it" Partition Storage Settings - Votes

@ Standard setting

Real -t ime
ROLAP

Rea l-t ime
HOLAP

Low-latency
MOLAP

Medium-latency
MOLAP

Automatic
MOLAP

Scheduled
MOLAP

- Measure group data and aggregations are stored in a mult idimensional format.
- Notifications are not received when data changes.
- Processing must be either scheduled or performed manually.

e') Custom setting

To vIew or modIfy settmgs click OptIOns.

o
MOLAP

Options ...

L-___ O_K __ ~I ~I ___ ca_n_ce_I __ ~1 1L-__ H_e_IP __ ~

Figure 9-17. Partition storage settings

Caching Modes
SSAS supports several different processing-related settings for proactive caching. Click the Options
button in the dialog box in Figure 9-17. See Figure 9-18.

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

Storage mode: I MOLAP

~ Enable proactive caching

Cache Settings

~ Update the cache when data changes

Silence interval: 10 1 Seconds · 1

Silence override interval: 10 1 Minutes · 1

[J Drop outdated cache

latency J ~t enabled) ~

[J Update the cache period ically

RebUila mtel ~al. 1 [(Not enab_le_d_) _--,·1

Options

ICJ Bring online immediately Apply settings 10 dimensions

ID Enable ROLAP aggregations

Figure 9-18. Proactive caching options

Select the Enable proactive caching check box to enable the options.
One option is to process the cube, also known as updating the cache, when SSAS receives a

notification from the relational database that the data has changed. There are two parameters: the
silence interval is how long SSAS should try to wait after the last change notification before processing
the cube. Silence override interval is how long SSAS waits after receiving the first change notification,
but without the silence interval being satisfied. The net effect is that if there is a short burst of activity on
the staging database, SSAS processes the cube after the silence interval. If the activity goes on for a long
time, then it delays processing until the silence override interval has passed.

The next option is whether SSAS should Drop outdated cache (the imported and processed data).
The Latency parameter is the time beginning when it starts rebuilding the cube and ending when it
drops the cache.

365

�

�

CHAPTER 9 Sal SERVER ANALYSIS SERVICES

366

You can also configure SSAS to Update the cache periodically-for example, once per day. That
mode does not depend on SSAS receiving change notifications from the relational engine. The other
modes require Service Broker to be enabled so that change notifications work.

If you select Bring online immediately, then SSAS sends ROLAP queries to the relational database
while the cube is being rebuilt. You must select this option if Drop outdated cache is selected. With both
options selected, the effect is that when a change is detected, the MOLAP cache is dropped after the
latency period. Subsequent OLAP queries are then redirected to the relational database using ROLAP.
When the cube processing has completed, queries are again processed using MOLAP.

The Enable ROLAP aggregations option causes SSAS to use materialized views in the relational
database to store aggregations. This can improve the performance of subsequent queries that use those
aggregates when the cube is using ROLAP mode.

Together, you can use these settings to manage both the cube refresh interval and the perceived
latency against the staging database. The main trade-off when using Bring online immediately is that,
although it has the potential to reduce latency after new data has arrived in the staging database, ROLAP
queries may be considerably slower than their MOLAP counterparts because aggregations must be
computed on the fly. The resulting extra load on the relational database also has the potential of slowing
down both the cube-rebuilding process and your production OLTP system. Therefore, although it's
appealing on the surface, you should use this option with care, especially for large cubes.

To configure relational database notifications, click the Notifications tab, and select SQL Server and
Specify tracking tables. Click the button to the right, select the Items, Users, and Votes tables, and click
OK. See Figure 9-19.

Storage mode: [MOLAP ~ I

[{] Enable proactive caching

General

@ SQlServer

~ Specify tracking tables

[dbo).[Items);[dbo).[Users]; [dbo]. [Votes] D
Figure 9-19. Specify SQL Server notifications for proactive caching.

Note Only tables are allowed for Sal Server notifications. The use of views or stored procedures is not
supported.

After making the configuration changes, deploy the cube to the server so that the changes take
effect.

You can test your proactive caching settings as follows. First, issue the following MDX query from
SSMS, which shows the number of rows in the fact table:

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

SELECT
[Measures]. [Votes Count] ON COLUMNS
FROM [Sample]

Next, make a change to the relational data by inserting a row into the Votes table:

INSERT INTO Votes
(UserId, ItemId, VoteValue, VoteTime)
OUTPUT INSERTED.VoteId
VALUES
(2, 2, 1, GETDATE())

After allowing enough time for your configured silence interval to pass, along with time to reprocess
the cube, issue the MDX query again. You should see that the reported count has increased by one.

The achievable cube-refresh interval ultimately depends on factors such as the following:

• The amount of new data at each refresh

• Available hardware on both the relational database and the SSAS machines: CPU
count and speed, amount of RAM, speed of disks and number of available LUNs or
channels, and speed of the network between the machines

• Speed of the relational database, including both how fast it can deliver data to
SSAS and how fast it can process aggregation queries in ROLAP mode

• If you're using SSIS for data import: how fast it can pull data from the production
databases (query complexity, production database machine speed, and load
during the BTL process)

• Amount of pre aggregation done in each partition in the cube (additional
pre aggregation can improve the performance of some queries but requires more
time during cube processing)

• Total number of dimension attributes

• Other performance-related parameters and settings in SSAS, such as partition
configurations, hierarchies, and so on

Using a Staging Database
Although allowing SSAS to import data directly from your production relational database/OLTP system
can be acceptable in some scenarios, it is often better from a performance and scalability perspective to
use a staging database instead.

A staging database is another relational database that sits between your OLTP store and SSAS. It
differs from your OLTP store in the following ways:

• It is organized structurally with a star snowflake schema that's similar to your
cubes, with one or more central fact tables and associated dimension tables.

• It contains more historical data, leaving only reasonably current data on your
OLTP system.

• You should configure the hardware to support bulk 1/0, optimized for queries that
return many more rows on average than your OLTP system.

367

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

368

This type of system is sometimes also called a data warehouse, although I prefer to use that term to
refer to a collection of data marts, where each data mart contains an OLTP system, a staging database,
andSSAS.

A staging database has the following benefits:

• You can run queries against the staging database without affecting the
performance of your OLTP system.

• SSAS can import data from the staging database so the process doesn't burden
your production OLTP system (although you still need to import data into the
staging database).

• You can offload (partition) your OLTP database by moving older archival data into
the staging database and keeping transaction tables relatively short.

• The staging database provides a solid base that you can use to rebuild cubes from
scratch if needed, without adversely affecting the performance of your OLTP
system.

A typical architecture involves using SSIS to create a database snapshot on your OLTP system and
then pulling data from the snapshot (which helps keep it consistent), transforming the data, and storing
the data in the staging database. SSAS then uses proactive caching to receive notifications when the
staging database changes, and pulls data from there for processing your cubes. See Figure 9-20.

OLTP
Databases

Web Servers

Read-Oniyand
Archived Data

Stagilllg
Database Proactiv,e

!:aching

Aggregations

SSAS

Figure 9-20. Data tier architecture with a staging database and SSAS

You can run production queries against all three data stores: the OLTP system for current data, the
staging database for read-only and archived data, and SSAS for aggregation queries. You can run back
end reports from either the staging database or SSAS, or both.

During the ETL process, SSIS can perform functions such as the following:

• Data cleansing

• Ensuring fact table foreign keys are present as primary keys in the corresponding
dimensions

• Removing unused columns

• Data denormalization (joins across multiple tables)

• Creating new columns that are derived from existing columns

�CHAPTER 9 SQl SERVER ANALYSIS SERVICES

• Replacing production keys with surrogate keys (optional, but recommended)

• Split tables into facts and dimensions (which should result in much smaller
dimensions)

• Handling incremental updates so the entire staging database doesn't need to be
rebuilt each time

While designing the SSIS packages to move data from your OLTP system to a staging database, you
should also analyze each dimension and fact table:

• Which columns should be included? You should only include columns needed in
the cube.

• Can rows in the table ever change? If so, a slowly changing dimension (SCD) will
probably be required.

• How should changes be managed? Updated or historical?

• Are there any data transformations that should be done during the export,
transform, and load (ETL) process, such as converting DATETIME values to date
only as in the example?

• Review the business keys on the relational side to make sure new ones are always
increasing and to verify that there aren't any unexpected values (negative
numbers, nulls, and so on).

• For fact tables that are also dimensions, fact columns should be extracted and
placed into a separate table from the dimension columns.

• Look for optimizations that may be possible for the resulting dimension tables,
such as removing duplicates.

As the amount of data that you are processing increases, there may eventually be a time when the
structure of some queries should change for performance reasons. For example, if a multitable join for
the fact tables gets too slow or puts too much of a load on the source database, you can replace it with a
sequence of Lookup steps in the data flow.

Summary
In this chapter, I covered the following:

• Using SSAS to offload aggregation queries from your relational database and why
that's important from a performance and scalability perspective

• Understanding SSAS and multidimensional databases

• Building an example cube

• Using example MDX queries against the sample cube

• Using ADOMD.NET to programmatically send MDX queries to SSAS and display
the results on a web page

• Using SSIS and SQL Server Agent to update your cube

369

�CHAPTER 9 Sal SERVER ANALYSIS SERVICES

370

• Using proactive caching to reduce the latency between changes in your relational
data and corresponding updates to your cubes

• Using a staging database to reduce the load on your OLTP server during cube
processing

CHAPTER 10

Infrastructure and Operations

Creating fast and scalable software is, of course, central to building an ultra-fast web site. However, the
design of your production hardware and network environment, the process of deploying your software
into production, and the process you follow to keep everything running smoothly are also vitally
important factors.

Most web sites are evolving entities; their performance and character change over time as you add
and remove code and pages, as your traffic increases, and as the amount of data that you are managing
increases. Even if your end -to-end system is fast to begin with, it may not stay that way unless you plan
ahead.

Establishing the right hardware infrastructure and being able to deploy new releases quickly and to
detect and respond to performance problems quickly are key aspects of the ultra-fast approach.

In this chapter, I will cover the following:

• Instrumentation

• Capacity planning

• Disk subsystems

• Network design

• Firewalls and routers

• Load balancers

• DNS

• Staging environments

• Deployment

• Server monitoring

Instrumentation
I have seen many web sites that look fast during development but rapidly slow down when they get to
production. A common scenario is a site that runs well most of the time but suffers from occasional
dramatic slowdowns. Without the proper infrastructure and operations process, debugging performance
and scalability problems can be extremely challenging and time-consuming. One tool that can be
immensely helpful is instrumentation in the form of Windows performance counters (or just counters for
short).

371

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

372

Counters are lightweight objects that you can use to record not only counts of various events (as the
name implies) but also timing-related information. You can track averages as well as current values.
Counters are integrated with Windows. You can view them using perfmon. You can see them as a graph
or chart in real time, or you can record them into a file for later processing. You can also see them from a
remote machine, given the appropriate permissions. Even for an application that is very rich in counters,
the incremental CPU overhead is well under 1 percent.

All of Microsoft's server products include custom counters. Your applications should use them for
the same reason Microsoft does: to aid performance tuning, to help diagnose problems, and to help
identify issues before they become problems.

Here are some guidelines on the kinds of things that you should consider counting or measuring
with counters:

• All off-box requests, such as web service calls and database calls, both in general
(total number of calls) and specifically (such as the number of site login calls).

• The time required to generate certain web pages.

• The number of pages processed, based on type, category, and so on. The built-in
ASP.NET and IIS counters provide top-level, per-web-site numbers.

• Queue lengths (such as for background worker threads).

• The number of handled and unhandled exceptions.

• The number of times an operation exceeds a performance threshold.

For the last point, the idea is to establish performance thresholds for certain tasks, such as database
calls. You can determine the thresholds based on testing or dynamic statistics. Your code then measures
how long those operations actually take, compares the measurements against the thresholds, and
increments a counter if the threshold is exceeded. Your goal is to establish an early warning system that
alerts you if your site's performance starts to degrade unexpectedly.

You can also set counters conditionally, based on things such as a particular username, browser
type, and so on. If one user contacts you and reports that the site is slow, but most people say it's OK,
then having some appropriate counters in place can provide a way for you get a breakdown of exactly
which parts of that user's requests are having performance problems.

There are several types of counters:

• NumberOfItems32

• NumberOfItems64

• NumberOfltemsHEX32

• NumberOfltemsHEX64

• RateOfCountsPerSecond32

• RateOfCountsPerSecond64

• CountPerTimelnterva132

• CountPerTimelnterva164

• RawFraction

• RawBase

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

• AverageTimer32

• AverageBase

• AverageCount64

• SampleFraction

• SampleCounter

• SampleBase

• CounterTimer

• CounterTimerlnverse

• Timerl00Ns

• Timerl00Nslnverse

• ElapsedTime

• CounterMultiTimer

• CounterMultiTimerlnverse

• CounterMultiTimerl00Ns

• CounterMultiTimerl00Nslnverse

• CounterMultiBase

• CounterDelta32

• CounterDelta64

Counters are organized into named categories. You can have one category for each major area of
your application, with a number of counters in each category.

Here's an example of creating several counters in a single category (see Program. cs):

using System. Diagnostics;

public static readonly string CategoryName "Membership";

public static bool Create()
{

if (!PerformanceCounterCategory.Exists(CategoryName))
{

var ccd = new CounterCreationData("Logins", "Number of logins",
PerformanceCounterType.NumberOfltems32);

var ccdc = new CounterCreationDataCollection();
ccdc.Add(ccd);
ccd = new CounterCreationData("Ave Users", "Average number of users",

PerformanceCounterType.AverageCount64);
ccdc.Add(ccd);
ccd = new CounterCreationData("Ave Users base", "Average number of users base",

PerformanceCounterType.AverageBase);

373

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

374

}
else
{

}
}

ccdc.Add(ccd);
PerformanceCounterCategory.Create(CategoryName, "Website Membership system",

PerformanceCounterCategoryType.Multilnstance, cede);
return true;

return false;

You create a new 32-bit integer counter called Logins and a 54-bit average counter called Ave Users,
along with its base counter, in a new category called Membership. Base counters must always immediately
follow average counters. The reported value is the first counter divided by the base.

To create new counters programmatically or to read system counters, your application needs either
to have administrative privileges or to be a member of the Performance Monitor Users group. For web
applications, you should add your AppPool to that group, to avoid having to run with elevated privileges.
You can do that by running the following command:

net localgroup "Performance Monitor Users" "lIS AppPool\DefaultAppPool" /add

If you're using the default identity for lIS 7.5 (ApplicationPoolIdentityl. then replace
DefaultAppPool with the name of your AppPool. Otherwise, use the identity's fully qualified name, such
as NT AUTHORITY\NETWORK SERVICE.

Alternatively, you can use the Computer Management GUI to do the same thing.

1. Open Local Users and Groups and click on Groups.

2. Double-click on Performance Monitor Users.

3. Click Add, enter lIS AppPool \DefaultAppPool and click on Check Names to
confirm. Finally, click OK.

You can also create counters on your local machine from Server Explorer in Visual Studio. Expand
Servers, click your machine name, right -click Performance Counters, and select Create New Category.
See Figure 10-1.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

Figure 10-1. Adding new performance counters from Server Explorer in Visual Studio

Using a counter is even easier than creating one:

using System. Diagnostics;

var numLogins = new PerformanceCounter("Membership", "Logins", "MyApplnstance", false);
numLogins.lncrement();

You increment the value in the Logins counter you created previously. You can also IncrementByO
an integer value or set the counter to a specific RawValue.

Counters can be either single instance or multi-instance, as in the example. A single instance
counter has the same value everywhere you reference it on your machine. For example, the total CPU
use on your machine would be a single instance counter. You use multi-instance counters when you
want to track several values of the same type. In the example above, you might have several applications
that you want to track separately. For multi-instance counters, you specify the instance name when you
create the counter, and you can select which instances you want to view when you run perfmon.

375

�

�

CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

376

Note Performance counters are read-only by default. Be sure to set the ReadOnly flag to false before setting a
value, either implicitly with the appropriate argument to the PerformanceCounter constructor or explicitly after
obtaining an instance.

After your web site is running and you have created your counters, you can select and view them
using perfmon, as you did in Chapter 8 for SQL Server. The description you used when you created the
counter is visible at the bottom of the window when you select the Show description checkbox. See
Figure 10-2.

Figure 10-2. Selecting custom performance counters with perfmon

Once your application is running and you've selected the counters that you're interested in, perfmon
can show them either as a graph or in report form, as in Figure 10-3.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

Figure 10-3. Viewing performance counters in the report format

Capacity Planning
As your site grows, if you wish to avoid unexpected surprises with regard to performance, it's important
to be able to anticipate the future performance of your site under load. You should be able to track the
current load on your servers over time and use that information to predict when you will need additional
capacity.

During development, you should place a maximum load on your servers and observe how they
behave. As you read earlier, if you're using synchronous threads, it may not be possible to bring your
servers anywhere close to 100 percent CPU use. Even so, whatever that limit is on your system, you
should understand it. Another argument for using async threads is that they allow increased CPU use, so
they improve both overall hardware utilization and capacity planning.

Next, it's important to minimize the different types of servers you deploy in your web tier. If you
have one type of server to handle membership, another for profiles, another for content, and so on, then
each one will behave differently under load. One type of server may reach its capacity, while the others
are close to idle. As your site grows, it becomes increasingly difficult to predict which servers will reach
their capacity before others. In addition, it's generally more cost effective to allow multiple applications
to share the same hardware. That way, heavily loaded applications can distribute their load among a
larger number of servers. That arrangement also smoothes the load on all the servers and makes it easier
to do capacity planning by forecasting the future load based on current load.

If necessary, you can use WSRM to help balance the load among different AppPools or to provide
priority to some over others, as discussed in Chapter 4.

You should track performance at all the tiers in your system: network, web, data, disk, and so on.
The CPU on your database server may be lightly loaded, while its disk subsystem becomes a bottleneck.
You can track that by collecting a standard set of counters regularly when your system is under load. You
can use perfman, or you can write an application that reads the counters and publishes them for later
analysis.

Disk Subsystems
Disks are mechanical devices. They contain rotating magnetic media and heads that move back and
forth across that media, where they eventually read or write your data. See Figure 10-4.

377

�

�

CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

378

Parliti'ons ~
o

D

Partitilons ~
A

Inner Edgle

OlJter Edge

Figure 10-4. Physical disk platter and heads

Most modern drives support Native Command Queuing (NCQ), which can queue multiple requests
and service them in an order that is potentially different from the order in which you submitted them.
The drives also use RAM to buffer data from reads and can sometimes be used to buffer write data. Data
on the media is organized into physical 512-byte blocks, which is the minimum size that the drive can
read or write at a time.

Note Both on-drive and on-controller write caches can significantly improve burst disk-write performance.
However, in order to ensure the integrity of your data, you should enable them only if your system has a battery
backup. Otherwise, data in cache but not yet on disk can be lost in a power failure.

Random vs. Sequential II0s per Second
One way to measure disk performance is in terms of the number of reads and/or writes (I/Os) per
second (IOPS) at a given buffer size.

As an example, consider a typical15,OOOrpm SAS disk. At that speed, it takes 4ms for the media to
complete one rotation. That means to go from one random rotational position to another takes, on
average, half that time, or 2ms. Let's say the average time for the heads to move (average seek) is 2.9ms
for reads and that the average time to read 8KB (SQL Server's page size) is O.12ms. That makes the total
5.02ms. Over one second, the drive can make about 199 of those 8KB random reads, or 199IOPS. That's
only 1.6MB/sec. In other words, when disks operate in random mode, they can be extremely slow.

If the disk is reading sequentially, then the average maximum sustainable read rate may be about
70MBps. That's 8,750IOPS, or 44 times faster than random mode. With such a large difference, clearly
anything you can do to encourage sequential access is very important for performance.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

This aspect of disk performance is why it's so important to place database log files on a volume of
their own. Because writes to the log file are sequential, they can take advantage of the high throughput
the disks have in that mode. If the log files are on the same volume as your data files, then the writes can
become random, and performance declines accordingly.

One cause of random disk accesses is using different parts of the same volume at the same time. If
the disk heads have to move back and forth between two or more areas of the disk, performance can
collapse compared to what it would be if the accesses were sequential or mostly sequential. For that
reason, if your application needs to access large files on a local disk, it can be a good idea to manage
those accesses through a single thread.

This issue often shows up when you copy files. If you copy files from one place to another on the
same volume without using a large buffer size, the copy progresses at a fraction of the rate that it can if
you copy from one physical spindle to another. The cost of introducing extra disk seeks is also why
multithreaded copies from the same disk can be so slow.

NTFS Fragmentation
The NTFS filesystem stores files as collections of contiguous disk blocks called clusters. The default
cluster size is 4KB, although you can change it when you first create a filesystem. The cluster size is the
smallest size unit that the operating system allocates when it grows a file. As you create, grow, and delete
files, the space that NTFS allocates for them can become fragmented; it is no longer contiguous. To
access the clusters in a fragmented file, the disk heads have to move. The more fragments a file has, the
more the heads move, and the slower the file access.

One way to limit file fragmentation is to run a defragmentation utility regularly. If your servers tend
not to be busy at a particular time of the day or week, you can schedule defragmentation during those
times. However, if you require consistent 24 x 7 performance, then it's often better to take one or a few
servers offline while defragmentation is running because the process can completely saturate your disk
subsystem.

To schedule regular disk defragmentation, right-click the drive name in Windows Explorer, and
select Properties. Click the Tools tab, and then click Defragment Now, as shown in Figure 10-5.

Figure 10-5. Scheduling periodic disk defragmentation

379

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

380

If your system regularly creates and deletes a large number of files at the web tier, then periodic
defragmentation can play an important role in helping to maintain the performance of your system.

You may also encounter cases where you have a few specific files that regularly become fragmented.
In that case, instead of defragmenting your entire drive, you may want to defragment just those files.
Alternatively, you may want to check to see how many fragments certain files have. For both of those
scenarios, you can use the contig utility. It's available as a free download:

http://technet.microsoft.com/en-us/sysinternals/bb897428.aspx

For example, you can use contig as follows to see how many fragments a file has:

C:\>contig -a file. zip

Contig v1.6 - Makes files contiguous
Copyright (C) 1998-2010 Mark Russinovich
Sysinternals - www.sysinternals.com

C:\file.zip is in 17 fragments

Summary:
Number of files processed
Average fragmentation

You defragment the file like this:

C:\>contig file.zip

1
17 frags/file

Contig v1.6 - Makes files contiguous
Copyright (C) 1998-2010 Mark Russinovich
Sysinternals - www.sysinternals.com

Summary:
Number of files processed 1
Number of files defragmented: 1
Average fragmentation before: 17 frags/file
Average fragmentation after : 1 frags/file

When you create a large file on a new and empty filesystem, it will be contiguous. Because of that, to
ensure that your database data and log files are contiguous, you can put them on an empty, freshly
created filesystem and set their size at or near the maximum they will need. You also shouldn't shrink
the files because they can become fragmented if they grow again after shrinking.

If you need to regularly create and delete files in a filesystem and your files average more than 4KB
in size, you can minimize fragmentation by choosing an NTFS cluster size larger than that. Although the
NTFS cluster size doesn't matter for volumes that contain only one file, if your application requires
mixing regular files with database data or log files, you should consider using a 64KB NTFS cluster size to
match the size of SQ L Server extents.

Before your application begins to write a file to disk, you can help the operating system minimize
fragmentation by calling FileStream. Set Length () with the total size of the file. Doing so provides the OS
with a hint that allows it to minimize the number offragments it uses to hold the file. If you don't know
the size of the file when you begin writing it, you can extend it in 64KB or 128KB increments as you go
(equal to one or two SQL Server extents) and then set it back to the final size when you're done.

You can help maximize the performance of NTFS by limiting how many files you place in a single
folder. Although disk space is the only NTFS-imposed limit on the number offiles you can put in one

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

folder, I've found that limiting each folder to no more than about 1,000 files helps maintain optimal
performance. Jfyour application needs significantly more files than that, you can partition them into
several different folders . You can organize the folders by something like the first part of file name to help
simplify your partitioning logic.

Disk Partition Design
You can improve the throughput of your disks by taking advantage of the fact that the outer edge of the
disk media moves at a faster linear speed than the inner edge. That means that the maximum
sustainable data transfer rate is higher at the outer edge.

Figure 10-6 shows example transfer rates for a 15,000rpm 73GB SAS drive. The left side of the chart
shows the transfer rate at the outer edge, and the right side is the inner edge.

90

80

70 ----60

50
MB/sec 40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

Percent of disk size

Figure 10-6. Sustained disk transfer rates based on the location of the data on the disk

You can see that the maximum transfer rate only holds over about the first 30 percent of the drive.
After that, performance declines steadily. At the inner edge of the drive, the maximum transfer rate is
only about 55 percent ofthe rate at the outer edge.

In addition, you can reduce average seek times by placing your data only in a narrow section of the
disk. The narrower the area, the less distance the heads have to travel on average.

For random access, minimizing seek times is much more important than higher data rates. For
sequential access, the reverse is true.

Extending the previous example, let's say you have a 73GB drive. You can make a partition covering
the first 30 percent of the drive, which is about 20GB. The first partitions you create on a drive are at the
outer edge of the media, as shown in Figure 10-4. The rotational latency in that partition is still2ms, but
the average seek is reduced from 2.9ms to about 1.2ms. (Seek times aren't linear; the heads accelerate
when they start and then decelerate as they approach the destination.) The data-transfer time is a tiny
bit better, dropping from 0.12ms to O.lOms. The total is 3.3ms, which is about 303IOPS. That's about a 50
percent improvement in random disk I/O throughput, simply by limiting the size of the partition. You
can improve throughput even more by further reducing the partition's size.

For an equal partition size, you can increase disk performance further by using drives with more
platters because doing so lets you use physically narrower partitions for the same amount of space. The

381

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

382

drives electronically switch between different heads to access the additional platters. That switching
time doesn't affect latency; so, for example, the average seek for the example 20GB partition may drop to
around 0.44ms, which increases throughput to about 394IOPS, or roughly twice the original value.

Of course, that's still a far cry from sequential throughput. The next step in increasing disk
performance is to use several disks together as a RAID volume.

RAID Options
The most common types of RAID are 0, 1,5, and 10. RAID 3 and 6 are less common but are still useful in
certain environments. In my experience, the others are rarely used.

RAID 0 and Stripe Size
RAID 0, also known as disk striping, puts one small chunk of data on one drive, the next logical chunk on
the next drive, and so on. It doesn't use any redundancy, so if one drive in a volume fails, the rest of the
data in the volume is also lost. As such, it is not an appropriate configuration to use in production.

The size of the chunk of data on each drive is sometimes known as the strip size. The strip size times
the number of drives is the stripe size. If your application reads that many bytes at once, all of the drives
are active at the same time.

Let's say you have four drives configured as a RAID 0 volume. With a 64KB stripe size, the strip size is
16KB. If you read 16KB from the beginning of the volume, only the first drive is active. If you read 32KB,
the first two drives are active at the same time. With 64KB, the controller requests 16KB from all four
drives at once. With individual 16KB requests, your I/O throughput is still limited to the speed of a single
drive. With 64KB per read, it is four times as high. What you see in practice is somewhere in between,
with the details depending not only on your application but also on the particular disk controller
hardware you're using. There is quite a bit of variability from one vendor to another in terms of how
efficiently controllers are able to distribute disk I/O requests among multiple drives, as well as how they
handle things like read -ahead and caching.

RAID 1
RAID 1 is also known as mirroring. The controller manages two disks so that they contain exactly the
same data. The advantage compared to RAID 0 is that if one of the drives fails, your data is still available.
Read throughput can in theory be faster than with a single drive because the controller can send
requests to both drives at the same.

RAID 5
RAID 5 extends RAID 0 by adding block-level parity data to each stripe. The location of the parity data
changes from one drive to the next for each stripe. Unlike with RAID 0, if one of the drives fails, your data
is safe because the controller can reconstruct it from the remaining data and the parity information.
Reads can be as almost as fast as with RAID 0 because the controller doesn't need to read the parity
unless there's a failure. Writes that are less than a full stripe size need to read the old parity first, then
compute the new parity, and write it back. Because the controller writes the new parity to the same
physical location on the disk as the old parity, the controller has to wait a full rotation time before the
parity write completes. A battery-backed cache on the controller can help.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

If the controller receives a write request for the full stripe size on a RAID 5 volume, it can write the
parity block without having to read it first. In that case, the performance impact is minimal.

When you stripe several RAID 5 volumes together, it's known as RAID 50.

RAID 10
RAID 10 is a combination of RAID 1 and RAID O. It uses mirroring instead of parity, so it performs better
with small block writes.

RAID 3
RAID 3 is like RAID 5, except it uses byte-level instead of block-level parity, and the parity data is written
on a single drive instead of being distributed among all drives. RAID 3 is slow for random or
multithreaded reads or writes, but can be faster than RAID 5 for sequential I/O.

RAID 6
RAID 6 is like RAID 5, except that instead of one parity block per stripe, it uses two. Unfortunately, as
disk drive sizes have increased, unrecoverable bit error rates haven't kept pace, at about 1 in 1014 bits
(that's 10TB) for consumer drives, up to about 1 in 101" bits for Enterprise drives. With arrays that are
10TB or larger, it begins to be not just possible but likely that, in the event of a single drive failure, you
can also have an unrecoverable error on a second drive during the process of recovering the array. Some
controllers help reduce the probability of a double-failure by periodically reading the entire array. RAID
6 can help mitigate the risk even further by maintaining a second copy of the parity data.

RAID 5 with a hot spare is a common alternative to RAID 6. Which approach is best depends heavily
on the implementation of the controller and its supporting software.

RAID Recommendations
Although the exact results differ considerably by controller vendor, Table 10-1 shows how the most
common RAID technologies roughly compare to one another, assuming the same number of drives for
each.

Table 10-1. Relative RAID Performance

RAID Type Small Reads Large Reads Small Writes Large Writes

o Good Excellent Excellent Excellent

5 Good Excellent Poor Excellent

10 Excellent Good Good Good

I didn't include RAID 1 because you can consider it to be a two-drive RAID 10. Keep in mind as well
that although I've included RAID 0 for comparative purposes, it isn't suitable for production
environments because it doesn't have any redundancy.

383

�

�

CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

384

Although SQL Server's disk-access patterns vary, as a rule of thumb for data files, it tends to read
64KB extents (large reads) and write 8KB pages (small writes). Because RAID 5 does poorly with small
writes and very well for large reads, it's a good choice for databases that either are read-only or are not
written very much. Either RAID 5 or 10 can work well for databases with typical read/write access
patterns, depending on the details of your system, including both hardware and software. RAID 10 is
usually the best option for the write-heavy database log and tempdb. See Table 10-2.

Table 10-2. RAID Recommendations by Database Type

Database Type RAID Level

Read-heavy 5

Read-write 5 or 10

Write-heavy (logs, temp db) 10

If you're using RAID 5, depending on your specific controller hardware, a stripe size of 64KB is a
good place to start, so that it's the same as the SQL Server extent size. That should enable better
performance for large writes. For RAID 10, the stripe size isn't as important. In theory, a smaller stripe
size should be more efficient. Unfortunately, in practice, it doesn't seem to work out that way because of
controller quirks. Even so, if you have enough drives that you can spread out a stripe so that one 8KB
SQL Server page is split between at least two drives, that should help.

Note Most RAID controllers use the strip size for the definition of the array, instead of the stripe size, and
unfortunately some vendors confuse or mix the terms.

Although the technology is always evolving, I've found that SAS or SCSI drives work best in high
performance arrays. One reason is that their implementations of NCQ seem to be more effective when
compared to those in SATA drives. NCQ can help minimize latency as the disk-queue depth increases. It
works by sorting the requests in the queue by their proximity to the current location of the disk heads,
using an elevator algorithm. The heads move in one direction until there are no more requests to service,
before reversing and moving in the other direction. SAS drives support bidirectional communication
with the drive, which is helpful during heavy use. They also tend to have better MTBF and bit error rates
than SATA drives.

When you are designing high-performance disk arrays, you should apply the same partitioning
strategy that you used for the single-drive case: one small, high -speed partition at the beginning of the
array for your data. You can follow that with a second smaller partition to hold tempdb, a third small
partition for the system databases (master, model, and msdb), and a fourth for backups, which occupies
most of the volume.

You should also consider controller throughput. A PC Ie 2.0 x8 controller should be capable of
roughly 2.0GBps of throughput. At 400IOPS per drive, a single drive can read only 3.2MBps in random
access mode, or around 75MBps in sequential mode. On an OLTP system, where the workload is a mix of
random and sequential, you can estimate that total throughput might peak at around 25MBps per drive.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

That means a maximum of about 80 drives per controller for the data files and up to about 13 drive pairs
(26 drives) per controller for log files and other sequential access.

As your system grows, you can put a new SQL Server filegroup on each new volume.
The requirements for data warehouse staging or reporting databases are somewhat different.

Because the tables are usually larger and because you should design the system to handle table and
index scans as it exports data to SSAS, more of the I/O is sequential, so the sustainable maximum I/O
rate is higher. You may want only half as many drives per controller compared to the OLTP case. I would
expect the disk-queue length to be substantially higher on a staging database under load than on an
OLTP system.

Storage Array Networks
An alternative to piecing together a customized disk subsystem is to use a storage array network (SAN).
SANs are great for environments where reliability is more important than performance, or where you
prefer to rely on an outside vendor to help set up, tune, and configure your disk subsystem, or in heavily
shared environments. It can be very handy to be able to delegate that work to an outside firm so that you
have someone to call if things break. The disadvantage is cost.

Using the information I've presented here, you can readily build an array that outperforms a SAN in
most scenarios for a fraction of the price. However, in many shops, do-it-yourself configurations are
discouraged, and that's where SANs come in.

You should be cautious about two things with SANs. First, you shouldn't consider a huge RAM cache
or other tiered storage in the SAN to be a cure-all for performance issues. It can sometimes mask them
for a while, but the maximum sustained performance is ultimately determined by the drives, not by how
much cache the system has. Second, when it comes to SQL Server in particular, recall from the earlier
discussion about how it manages memory so that it becomes a huge cache. Provided SQL Server has
enough RAM, that makes it difficult for a SAN to cache something useful that SQL Server hasn't already
cached.

Another issue is focusing only on random lOPS. I've seen some SANs that don't allow you to
differentiate between random and sequential lOPS when you configure them. One solution, in that case,
is to put a few extra drives in the CPU chassis and to use those for your log files instead of the SAN.

Controller Cache
The issue with cache memory also applies to controllers. The cache on controllers can be helpful for
short -duration issues such as rotational latency during RAID 5 writes. However, having a huge cache can
be counterproductive. I encourage you to performance- test your system with the disk controller cache
disabled. I've done this myself and have found multiple cases where the system performs better with the
cache turned off.

The reasons vary from one controller to another, but in some cases, disabling the cache also
disables controller read-ahead. Because SQL Server does its own read-ahead, when the controller tries to
do it too, it can become competitive rather than complementary.

Solid State Disks
Solid state disks (SSDs) built with flash memory are starting to become price-competitive with rotating
magnetic media on a per-GB basis, when you take into account that the fastest part of conventional
disks is the first 25 to 30 percent.

SSDs have huge performance and power advantages over disks because they don't have any moving
parts. Rotational delay and seek times are eliminated, so the performance impact is extremely

385

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

386

significant. Random access can be very fast, and issues such as fragmentation are not as much of a
concern from a performance perspective.

Flash-based SSDs have some unique characteristics compared to rotating magnetic media:

• They use two different underlying device technologies: multilevel cell (MLC) and
single-level cell (SLC) NAND memory.

• You can only write them between roughly 10,000 (MLC) and 100,000 (SLC) times
before they wear out (even so, they should last more than 5 years in normal use).

• Write speeds with SLC are more than twice as fast as MLC.

• SLC has nearly twice the mean time between failure (MTBF) of MLC (typically
1.2M hours for MLC and 2.0M hours for SLC).

• MLC-based devices have about twice the bit density of SLC.

SSDs are organized internally as a mini -RAID array, with multiple channels that access multiple
arrays of NAND memory cells in parallel. The memory consists of sectors that are grouped into pages.
The details vary by manufacturer, but an example is 4KB sectors and 64KB pages.

With disks, you can read and write individual 512-byte sectors. With SSDs, you can read an
individual sector, but you can only write at the page level and only when the page is empty. If a page
already contains data, the controller has to erase it before it can be written again.

SSDs have sophisticated vendor-specific controllers that transparently manage the page-erase
process. The controllers also vary the mapping of logical to physical block addresses to help even out the
wear on the memory cells (wear leveling).

Typical performance of a single SSD for sequential reads is close to the limit of the SATA 3.0 Gbps
interface specification, at 250MBps. Typical sequential write speeds for an MLC device are 70MBps, with
SLC at around 150MBps.

SSDs with SATA interfaces are compatible with standard RAID controllers. By grouping several SSDs
in RAID, you can easily reach the limit of PCle bus bandwidth for sequential reads on a single volume,
although you are likely to hit the controller's limit first. PCle 2.0 throughput is about 600MBps per
channel, or 4.8GBps for an x8 slot; a good x8 controller can deliver close to 2.0GBps.

SSDs have already started to augment and replace rotating magnetic drives in high-performance
production environments. I expect that trend to continue.

Disk Array Benchmarks
Table 10-3 shows some benchmark results for a few disk arrays.

Table 10-3. Disk array performance measurements (results in MBpsJ

RAID-50 RAID-1 RAID-50 RAID-1 RAID-50

Benchmark 6 x 7200rpm 2 x 7200rpm 8x MLC SSD 2x MLC SSD 8x MLC SSD

Data size 1GB 1GB 1GB 1GB 100M B

Read: sequential 257.3 112.0123 5.0 243.3152 4.0

Read: 512KB 44.8 45.7 934.8187. 7134 2.0

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

Read: 4KB 0.7 0.7 21.8 14.4 105. 6

Read: 4KB QD=32 26.7 3.5 264.6 220.1 355.7

Write: sequential 45.3 57.3144. 8 77.2172 7.0

Write: 512KB 15.7 33.4 101. 7 82.8139 6.0

Write: 4KB 0.6 0.5 12.336.181.3

Write: 4KB QD=32 2.5 1.3 18.3 74.9 270.7

The disk controller I used for all of the benchmarks except the SSD RAID-1 was an LSI Logic 9260-8i
with 512MB cache and the FastPath option. The SSD RAID-1 controller was an ICH-10 on the
motherboard. I configured the arrays with a 32KB strip size, and enabled write-back caching for the
RAID-50 SSDs, with a battery backup on the controller card. The 7200rpm drives have a 1 TB capacity
each, and were configured with write-through caching.

I ran all of the benchmarks except one with a 1GB file size, which is large enough that it doesn't fit in
the controller's cache. The final test was with a 100MB file size, which does fit in cache, so it's more a
demonstration of the controller's performance than the underlying drive's performance.

I used a benchmark program called CrystalDiskMark. The tests are sequential access, random with
512KB blocks and QD=l (queue depth), random 4KB blocks QD=l, and random 4KB blocks QD=32.
Queue depth is a measure of how many requests are outstanding at the same time. I generally use the
512KB results as a first cut when estimating SQL Server's OLTP performance.

A few observations about the results:

• The SSD two-drive RAID-1 mirror has as much sequential read performance as the
7200rpm 6-drive RAID-50 array, and more than four times the 512KB read
performance.

• The SSD eight -drive RAID-50 array is nearly five times as fast for sequential reads
as the 7200rpm 6-drive RAID-50 array, nearly 21 times as fast for 512KB reads, and
more than 30 times as fast for 4KB reads.

• The 7200rpm two-drive RAID-1 mirror is faster than the six-drive RAID-50 array
for all write benchmarks except with high queue depth because the controller
needs to read the parity information on the RAID-50 array before writing it.

• Sequential writes are 22 times faster when the active volume's working set fits in
the controller's cache in write-back mode because the software doesn't have to
wait for the write to be committed to the media before it can indicate success.

Network Design
One source of latency in your data center is the network that connects your servers. For example, a
100Mbps network has an effective data-transfer rate of up to roughly 10MBps. That means a 100KB
response from your database takes 10ms to transfer, and 100 such requests per second will saturate the
link.

387

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

388

Recall from the earlier discussion of threading in ASP.NET that long request latency can have a
significant adverse impact on the scalability of your site and that the issue is compounded if you are
making synchronous requests. Uyou were to increase the speed of the network connection to 1Gbps,
with effective throughput of roughly 100MBps, that would reduce the latency for a 100KB response from
10ms to just 1ms, or 1,000 requests per second.

The issue isn't performance; reducing the time that it takes to process a single request by 9ms won't
visibly improve the time it takes to load a page. The issue is scalability. A limited number of worker
threads are available at the web tier. In synchronous mode, if they are all waiting for data from the data
tier, then any additional requests that arrive during that time are queued. Even in async mode, a limited
number of requests can be outstanding at the same time; and the longer each request takes, the fewer
total requests per second each server can process.

The importance of minimizing latency means that network speeds higher than 1 Gbps are generally
worthwhile when scalability is a concern. 10Gbps networking hardware is starting to be widely available,
and I recommend using it if you can.

For similar reasons, it's a good idea to put your front-end network on one port and your back-end
data network on a separate port, as shown later in Figure 10-8. Most commercial servers have at least
two network ports, and partitioning your network in that way helps to minimize latency.

Jumbo Frames
Another way to increase throughput and reduce latency on the network that connects your web servers
to your database is to enable jumbo frames. The maximum size of a standard Ethernet packet, called the
maximum transmission unit (MTU), is 1,518 bytes. Most gigabit interfaces, drivers, and switches
(although not all) support the ability to increase the maximum packet size to as much as 9,000 bytes.
Maximum packet sizes larger than the standard 1,518 bytes are called jumbo frames. They are available
only at gigabit speeds or higher; they aren't available on slower 100Mbps networks.

Each packet your servers send or receive has a certain amount of fixed overhead. By increasing the
packet size, you reduce the number of packets required for a given conversation. That, in turn, reduces
interrupts and other overhead. The result is usually a reduction in CPU use, an increase in achievable
throughput, and a reduction in latency.

An important caveat with jumbo frames is that not only do the servers involved need to support
them, but so does all intermediate hardware. That includes routers, switches, load balancers, firewalls,
and so on. Because of that, you should not enable jumbo frames for ports or interfaces that also pass
traffic to the Internet. Uyou do, either the server has to take time to negotiate a smaller MTU, or the
larger packets are fragmented into smaller ones, which has an adverse impact on performance. Jumbo
frames are most useful on your physically private network segments, such as the ones that should
connect your web and database servers.

To enable jumbo frames, follow these steps:

1. On Windows Server, start Server Manager, select Diagnostics in the left panel,
and then choose Device Manager. On Windows 7, right-click on Computer,
select Manage, and then choose Device Manager in the left-hand panel.

2. Under Network Adapters in the center panel, right-click on a gigabit interface,
and select Properties.

3. Click the Advanced tab, select Jumbo Frame (the string is vendor-specific, so it
might be something similar like Jumbo MTU or Jumbo Packet), and set the
MTU size, as shown in Figure 10-7.

Repeat the process for all machines that will communicate with each other, setting them all to the
same MTU size.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

Figure 10-7. Enablingjumbo frames on your network interface

Link Aggregation
If you have more than one web server, then another technique for increasing throughput and decreasing
latency for your database servers is to group two network ports together so they act as a single link. The
technology is called link aggregation and is also known as port trunking or NIC teaming. It is managed
using the Link Aggregation Control Protocol (LACP) , which is part of IEEE specification SOZ.3ad.
Unfortunately, this isn't yet a standard feature in Windows, so the instructions on how to enable it vary
from one network interface manufacturer to another. You need to enable it both on your server and on
the switch or router to which the server is connected.

After you enable it, link aggregation lets your server send and receive data at twice the rate it would
be able to otherwise. Particularly in cases where multiple web servers are sharing a single database, this
can help increase overall throughput. See Figure 10-S.

If you have only one web server, you should have one network port for connections to the Internet
and one for the database. Link aggregation won't help in that case, unless your web server happens to
have three network ports instead of the usual two.

389

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

390

f··------~··-----·-··-- ------------.. -------,
! Firewall (Optional) i
t.,., , ,1

Jumbo Frame's Enabled

Web
Servers

Database
Server

Figure 10-8. Optimized network design with jumbo frames and link aggregation

Firewalls and Routers
When you are considering whether a server -side firewall would be appropriate for your environment, it's
important to take your full security threat assessment into account. The biggest threats that most web
sites face are from application vulnerabilities such as SQL injection or cross-site scripting, rather than
from the kinds of things that firewalls protect against.

From a performance and scalability perspective, you should be aware that a firewall might
introduce additional latency and other bottlenecks, such as limiting the number of simultaneous
connections from browsers to web servers.

It's my view that most vanilla web sites don't need hardware firewalls. These firewalls can be a
wonderful tool for protecting against things such as downloading malicious files or accidentally
introducing a virus by connecting an unprotected laptop to your network. However, in a production
environment, you should prohibit arbitrary downloads onto production servers and connecting client
type hardware to the production network, which dramatically reduces the risk of introducing viruses or

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

other malware. A large fraction of the remaining types of external attacks can be prevented by simply
filtering out all requests for connections to ports other than 80 (HTTP) or 443 (SSL).

Another service that hardware firewalls can provide is protection against network transport layer
attacks, such as denial of service. If those are a concern for you, and if you don't have access to your
router, then a hardware firewall may be worth considering.

If you do use a hardware firewall, you should place it between your router and your load balancer, as
shown in Figure 10-7, so that it can filter all traffic for your site.

Another valid use for hardware firewalls is as a virtual private network (VPN) endpoint. You should
not have a direct path from the public Internet to your back-end database servers. To bypass port
filtering and to gain access to those back-end servers, you should connect to your remote servers over
VPN. Ideally, the VPN should connect to a separate management network, so the VPN endpoint doesn't
have to handle the full traffic load of your site.

Windows Firewall and Antivirus Software
You can apply port-filtering functions using Windows Firewall, which you should enable on all
production servers. Using a software firewall also helps protect you against a variety of threats that
hardware firewalls can't address, such as application bugs that may allow an attacker to connect from
one server to another. Because those attacks don't normally go through the hardware firewall on their
way from one server to another, they can't be filtered that way, whereas a software firewall running on
each machine can catch and filter that type of network traffic.

On smaller sites, where your users can upload files onto your servers, you should consider using
server-side antivirus software as an alternative to a hardware firewall.

U sing Your Router as an Alternative to a Hardware Firewall
In most hosted environments, you don't need a router of your own; your ISP provides it for you.
However, as your site grows, at some point you will want to take over management of your network
connection, including having a router. Having access to your router also means you can use it to help
improve the performance and security of your site. For example, you can use it to do port filtering. Many
routers, including those that run Cisco lOS, also support protection against things like SYN floods and
other denial-of-service attacks. Being able to offload that type of work onto your router, and thereby
avoid the need for a hardware firewall, can help minimize latency while also reducing hardware and
ongoing maintenance costs.

Load Balancers
As your site grows and as resilience in the event of hardware failures becomes more important, you will
need to use some form of load balancing to distribute incoming HTTP requests among your servers.
Although a hardware solution is certainly possible, another option is network load balancing (NLB),
which is a standard feature with Windows Server.

NLB works by having all incoming network traffic for your virtual IP addresses (normally, those are
the ones public users connect to) delivered to all your servers and then filtering that traffic in software. It
does therefore consume CPU cycles on your servers. The scalability tests I've seen show that NLB can be
a reasonable option up to no more than about eight servers. Beyond that, the server-to-server overhead
is excessive, and hardware is a better choice.

As with hardware load balancers, keep in mind that NLB works at the link protocol level, so you can
use it with any TCP- or UDP-based application, not just IIS or HTTP. For example, you can use it to load
balance DNS servers.

391

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

392

To configure NLB, follow these steps:

1. Install the Network Load Balancing feature from Server Manager.

2. Open the Network Load Balancing Manager from Administrative Tools.

3. Right-click Network Load Balancing Clusters in the left pane, select New
Cluster, and walk through the wizard.

When you are selecting load balancing hardware, pay particular attention to network latency. As
with the other infrastructure components, minimizing latency is important for scalability.

In addition to its usual use in front of web servers, another application for load balancing is to
support certain configurations in the data tier. For example, you may distribute the load over two or
more identical read-only database servers using NLB.

You can also use reverse load balancing (RLB) to facilitate calls from one type of web server to
another from within your production environment, such as for web services. As with public-facing load
balancing, RLB lets you distribute the internal load among multiple servers and to compensate in the
event of a server failure.

DNS
Before a client's browser can talk to your web site for the first time, it must use DNS to resolve your
hostname into an IP address. If your site uses a number of sub domains, as I suggested in Chapter 2, then
the client's browser needs to look up each of those addresses. The time it takes for name resolution has a
direct impact on how quickly that first page loads.

DNS data is cached in many places: in the browser, in the client operating system, in the user's
modem or router, and in their ISP's DNS server. Eventually, though, in spite of all the caches, your DNS
server must deliver the authoritative results for the client's query.

There's a whole art and science to making DNS fast and efficient, particularly in global load
balancing and disaster failover scenarios. However, for many sites, it's enough to know that the
performance of the server that hosts your DNS records is important to the performance of your site.
Even relatively small sites can often benefit from hosting their own DNS servers because some shared
servers can be terribly slow.

For larger sites, it usually makes sense to have at least two load-balanced DNS servers. That helps
with performance and provides a backup in case one of them fails. The DNS protocol also allows you to
specify one or more additional backup servers at different IP addresses, although you can't specify the
order in which clients access the listed DNS servers.

The main requirement for DNS servers is low latency. That mayor may not be compatible with
running other applications on the same hardware, depending on the amount of traffic at your site.

When you are entering records for your domains and sub domains into your DNS zones, be sure to
use A records whenever possible and avoid (NAME records. Depending on the DNS server software you're
using and where the names are defined, it can take an extra round-trip to resolve (NAMEs, whereas A
records are fully resolved on the initial query.

You should also set the DNS time to live (TTL) value for your site, which determines how long the
various DNS caches should hold onto the resolved values. Some sites use a short TTL as part of a site
fail over scheme. If the primary site fails, the DNS server provides the IP address of the backup site
instead of the primary. If sites were using the primary address, when their cache times out, DNS returns
the secondary address, and they begin using the backup site. However, if you are not using DNS as part
of your failover scheme, then in general a longer TTL time helps improve your site's performance by
limiting how often clients need to reissue the DNS lookups. Because server IP addresses occasionally

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

change, such as if you move to a new data center, you shouldn't set the value to be too large, though.
Usually, something around 24 hours or so is about right.

Staging Environments
To minimize the time it takes to deploy a new release into production and to reduce the risk of post
deployment issues, it helps tremendously if you can establish a staging environment. Larger systems
often warrant multiple staging environments.

As an example, you can have one server that you use for nightly builds. Developers and Quality
Assurance (QA) can use that server for testing. QA may have a second staging environment for
performance testing or other testing that can interfere with developers. When a new release is ready for
exposure to public users, you can deploy it into a beta test environment, using servers in your data
center. You may even have two beta environments, sometimes called early and late, beta-l and beta-2,
alpha and beta, or beta and preproduction. After the beta test phase, you finally move the release into
your production environment.

The organization of your staging environments can vary considerably, depending on the scale of
your project. You can separate them by AppPool on a single machine, you might use several virtual
servers, or they can be physically separate machines.

In addition to giving you a chance to catch bugs before they enter production, this approach also
provides an opportunity to double-check your site's performance for each release. It's a good idea to
track the performance of various aspects of your site over time and make sure things don't degrade or
regress beyond a certain tolerance.

Staging environments also provide a mechanism that lets you respond quickly to site bugs or urgent
changes in business requirements. I've worked with many companies that skip this phase, and it's
shocking how much time they seem to spend doing firefighting when new releases don't behave as
expected. Another observation I can offer is that large sites that don't use staging environments also tend
to be the ones with the largest performance problems-in part, no doubt, because they don't have a
good preproduction test environment.

A common argument against using staging environments is that it's too costly to reproduce the
entire production environment multiple times. This is another good reason to minimize the different
types of servers you need. Your system architecture should make it possible to run your entire site on
one or two physical machines at most (possibly using multiple virtual machines), regardless of how big
or complex it is. Even if your production web farm has hundreds of machines, being able to run and test
everything functionally in a controlled environment is invaluable. I'm not saying there aren't exceptions;
but even when there are, try to isolate those components that you can separately stage, test, and deploy.

Deployment
Deploying your site to a single server is normally straightforward:

1. Copy your latest release to the production machine.

2. Create an app _offline. htm file in the root of the existing site to take it offline.
The contents of that file are displayed to users who visit your site while you're
working on it. This standard ASP.NET feature doesn't require any code.

3. Copy or unzip the new code into place.

4. Make any required as, IIS, or database schema changes.

5. Remove (or rename) app_offline.htm.

393

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

394

If you update your entire site for each release, another approach is to change the source folder for
the site in IIS to point to the newly uploaded files, rather than copying on top of your old site or deleting
it first. Using a new, parallel folder can also provide an easy fallback process, in the event of pro blems.

With either approach, this seemingly simple process quickly gets very complex and error prone as
your site increases in size and begins to include mUltiple servers. Constant 24 x 7 uptime and avoiding
significant performance hiccups both add significant wrinkles. How do you upgrade without taking the
whole site offline? How do you reliably get the exact same settings and files on a large number of servers?

For a small number of servers-up to roughly four or five or so-if you can take your site offline for
an extended period, you should be able to use the single-server deployment process and make it work.
However, beyond that, or as soon as you introduce a requirement for uninterrupted uptime or
consistent site performance during upgrades, then you need to take a different approach.

To address the uninterrupted uptime requirement, the best solution is to use rolling upgrades. For
example, if you have two load-balanced web servers, you take one offline first, upgrade it, and bring it
back online; then, you repeat the process for the second one. With a larger number of servers, you can of
course take more of them offline at a time. Hardware load balancers can be very helpful in orchestrating
switching the load quickly from one group of servers to another.

Data Tier Upgrades
Complications with deployment often arise when you also need to make changes to the data tier. The
solution requires support in your software architecture as well as in the deployment process. Some of
the techniques you may use include the following:

• When changing your schema in ways that break existing stored procedures,
consider fixing the old SPs, even if the fixes run slowly or don't produce complete
results. New SPs that use the new schema should be able to exist side by side with
the old ones. That way, during an upgrade, servers running the previous version
can use the old SPs, while the new version uses the new code. This may also allow
you to roll back the web tier without rolling back the data tier, should the need
arise.

• Design your DAL to support new and old versions of the data tier, and provide a
mechanism to switch between the two. You can initially deploy using the old
version code, upgrade the data tier, and then command all the servers to switch to
the new mode at the same time, or fall back to the old mode ifthere's a problem.

• If your site can't go offline completely during upgrades, perhaps it can run in a
read -only mode for a short time. If so, first create a database snapshot. Then, send
a command to your web servers, telling them to use a new connection string that
references the snapshot instead ofthe main DB, so that they are isolated from the
changes, and to restrict access to read-only mode. When the upgrade is done,
reverse the process.

In a clustered environment, for operating system changes and updates, you can modify the standby
database node first, then make it the active node, update and reboot the primary node, and then switch
back.

I don't mean to trivialize the process; there is, of course, much more to it than I've outlined here,
and the details tend to be application-specific. The point I'm trying to make is that this is an important
problem and if it affects your application, it's much easier to address sooner than later.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

Improving Deployment Speed
Another aspect of deployment is getting it done quickly. If it takes you a week to deploy a new release,
that means you can't make new releases often, you have that much less time available to work on your
site's features and performance, and site bugs become extremely expensive to fix.

I've worked with several very large sites that can roll out an entire new release to many dozens of
servers in under an hour. It's possible to be efficient enough that you can afford to deploy a new release
every few weeks.

In my experience, being able to deploy rapidly is a critical prerequisite to building a fast and scalable
site. An inability to respond to user feedback and your own observations inevitably leads to problems.

I have also worked with companies that are only able to roll out new versions once every 10 to 12
months or more. Not surprisingly, they also tend to be the ones with the largest performance problems.
Many small releases are infinitely easier to manage than a few huge ones.

In a multiserver environment, you can simplify and speed up the deployment process by using
image-based deployment. Instead of copying your code to each server separately, you copy it to a single
master server. In addition to your application, you can also make as and IIS changes to that machine.
You can apply the latest as updates, for example. Then, when you're sure everything is correct on that
machine, you multicast a copy of it to your production servers. The application that handles this process
is called Windows Deployment Services (WDS) , and it's included as a standard role with Windows Server
Standard and above.

The use of image-based deployment helps you guarantee that all your servers are exactly the same,
by eliminating per-machine manual updates. It's also very fast; you should be able to reimage a server
completely in around 20 minutes. Even better, you can reimage many servers in the time it takes to do
one because the data is multicast. This approach also lets you handle server failure or data corruption
efficiently. Instead of trying to figure out which files may have been damaged if a server fails, just
reimage the server. If it fails again, then the hardware is bad. Easy.

Page Compilation
After deploying a new release to your web tier, with the default ASP.NET dynamic compilation
mechanism, the runtime compiles your pages on a folder-by-folder basis when they are first accessed.
The larger your site is, the more time this can take. I've seen sites that take many minutes to recompile
when they first start, which is definitely not an ideal user experience.

You can address this problem in a couple of ways. My preference is to build a precompiled site, as I
described in Chapter 2. That way, you can generate a single DLL for your whole site. The deployment
files include. aspx pages as placeholders, but not the code-behind. When the web site first starts, the
runtime doesn't need to do any additional compilation, so your site can be active right away.

Another approach is to keep dynamic compilation but run a script against your site before you
enable public access. The script causes the runtime to compile everything by requesting one page from
each folder. If you're using image-based deployment, you should invoke the script and the compilation
before creating your deployment image. Of course, the larger your site is, the more error-prone and
time-consuming this sort of process is, and the more appealing precompilation becomes.

Cache Warm-Up
The larger your database is, and the more RAM you have available on your database server, the longer it
takes for the RAM cache to be refilled from disk after a restart. Recall the earlier discussions about how
SQL Server uses memory: when your data is in RAM, the database acts like a big cache. Let's say you
have 32GB of RAM and a disk subsystem that can deliver 60MB per second from the SQL Server data

395

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

396

files. There may be enough room for up to 30GB of cached data, which takes more than 8 minutes to
read from disk. During that time, your site may be much slower than it is after the cache is full.

You can address this issue by using a stored procedure to pre cache the tables your site is likely to
need. You can run the SP from a web page, a background thread on your web site, or maybe from SSMS,
when you reboot the server. Although minimizing the use of aggregate functions in production is a
sound practice, they can be a good tool in this case. The SP can do a SELECT COUNT(*) to bring in a whole
table or index; you should check the query plan and I/O statistics to be sure you're accessing the right
objects. Of course, you can limit or optimize as needed using the same principle. The goal is to read the
data so that it's available in RAM before your web pages need it.

To decide which objects to bring into memory, it may help to know how large they are. You can see
that with the sp_spaceused command:

EXEC sp_spaceused N'dbo.Votes'

You can use a complementary approach to warm up the cache on your web servers when they first
start. You might do that from a background thread, rather than writing specialized web pages, so the
process is automatic when the sites first start.

Server Monitoring
After you build and deploy a high-performance web site, in order to make sure that it performs as you
designed it and that performance doesn't unexpectedly degrade under load or over time, it is important
to monitor the performance of your servers.

Having an ultra-fast site means having not only fast pages but also fast response and resolution
times in the event of problems. Minimizing your mean time to resolution (MTTR) should be one of your
design goals.

Monitoring your servers for failures and other problems is relatively straightforward when you have
only a couple of them. For example, you may capture the output from a perfmon trace a few times a week
and then analyze it offline. You should also regularly check the Windows error logs. However, as your
site grows to include more servers, monitoring becomes increasingly challenging. On a small site, the
outright failure of a server is usually obvious. On a large site, although a load balancer should stop
sending requests to a web server that has completely failed, this can mean a reduction in capacity if you
don't notice it quickly. Partial or intermittent failures can be much more difficult to detect without good
instrumentation and monitoring.

Certain types of problems produce symptoms that you can detect early, before an outright failure
happens. Proactive monitoring allows you to detect failures that either make things very slow or return
erroneous results in a way that a vanilla load balancer may not be able to detect. Accurate load
forecasting, capacity planning, and trend analysis also rely on being able to monitor all your servers
regularly and to track those results over time.

Proactive monitoring lets your operations staff more effectively isolate and fix errors without
involving your development team. This, in turn, helps improve the long-term performance and
scalability of your site by allowing developers to remain focused on development, rather than getting
distracted with debugging operations-related problems in production. Using proactive monitoring to
minimize your MTTR also helps keep your end users happy in the event of failures.

You should consider monitoring from four different perspectives:

• User perspective. Make sure web pages return the correct content, without errors.

• Database perspective. Make sure performance-sensitive queries are running
without errors and within their design thresholds, including connect time, query
execution time, and data transfer time.

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

• Performance counters. Use both custom counters from your application and
counters from IIS, SQL Server, and Windows to identify resource use and various
internal metrics and trends.

• Windows event logs. Continuously monitor the logs for errors and other
unexpected events.

Several commercial tools collect this type of data from your servers into a central repository and
then allow you to generate reports, raise events, or define actions based on the results. For example,
such a tool may send an e-mail to you if CPU use on a particular server exceeds 95 percent for more than
10 minutes, or page you if a certain database query takes more than 10 seconds to execute.

Microsoft calls its offering in this area System Center Operations Manager (SCOM). SCOM uses
Agents installed on each server to collect monitoring data and send it back to a central console. You can
also configure Agents to issue web or database requests and to raise alerts if the response doesn't
conform to your expectations.

Most of Microsoft's server products, including IIS and SQL Server, have SCOM management packs
that include various heuristics to help you monitor and manage those applications.

Third -party plug -ins are also available for SCOM from companies such as A VIcode; these can
provide even more detail in the events and reports that SCOM generates.

Summary
In this chapter, I covered the following:

• Instrumenting your application using performance counters to simplify
performance tuning and problem diagnosis

• Improving your ability to do capacity planning

• Improving the throughput of your disk subsystem by optimizing partition design
to maximize lOPS and by encouraging sequential 1/0 over random 1/0

• Defragmenting whole file systems and specific files

• Comparing RAID levels and choosing between them

• Understanding why network latency is important and how you can use faster
network speeds, jumbo frames, and link aggregation to minimize it

• Understanding how hardware firewalls can influence scalability, where they fit
into your network architecture when you need them, and how you may be able to
use Windows Firewall, antivirus software, and router-configuration changes as
alternatives

• Using NLB as an alternative to a hardware load balancer

• Configuring DNS for optimum performance

• Using staging environments to decrease the time that it takes to deploy a new
release

• Developing a sound deployment strategy and knowing when to use WDS to
deploy your application quickly

397

�CHAPTER 10 INFRASTRUCTURE AND OPERATIONS

398

• Using a precompiled site to eliminate the slow site issues that otherwise
accompany dynamic page compilation after a new release

• Warming up the caches at your web and data tiers after a restart

• Using proactive monitoring to check your servers for intermittent or soon-to-be
problems, to monitor current performance and trends, and to minimize the time
it takes you to respond to problems when they occur

CHAPTER 11

Putting It All Together

Writing software has some interesting similarities to building a skyscraper. The architecture of a building
defines its style, aesthetics, structure, and mechanics. Software architecture includes the same things;
there's a definite flow and texture to it. There's an art to both, and software can be just as beautiful.

With a good architecture, the pieces fit together smoothly. The relationships between building
blocks are clear. The system can be more easily developed, maintained, deployed, expanded, and
managed. You can tell you're working with a good architecture during the development phase because
the hiccups tend to be small; forward progress tends to be consistent, you can fix bugs readily when you
find them, and there are no big surprises.

A good architecture is a key prerequisite for an ultra-fast web site. You might be able to make a few
fast pages without one, in the same way that you might be able to build a few rooms of a skyscraper
without one. However, in order to build a large site, you need a cohesive plan.

This chapter covers the following:

• Where to start

• How to choose and tune your software development process

• How to establish a rough sense of the target performance of your site (your league)
and how to use that to establish some architectural guidelines

• Tools to aid the development process

• How to approach your architectural design

• Detailed checklists that summarize recommendations from earlier chapters

Where to Start
Although every project has unique requirements, I can offer some guidelines that I've found helpful in
kicking off new projects that incorporate the ultra-fast principles:

• Establish the software development process that you're going to use. In my
experience, choosing the wrong process, or not having a formal process at all, is
one of the most common reasons projects get off track.

• Define your project's requirements in detail, and determine your league. This
process helps establish the foundation and motivation for many aspects of the
project.

399

�CHAPTER 11 PUTIING IT ALL TOGETHER

400

• Establish a solid infrastructure to support your development, including software
tools and build, test, and staging environments.

• Define your system architecture. Start with a high-level block diagram, and work
down to functional building blocks. Spend more time in this phase than you think
you need.

• The design phase is a key part of your development process. However, be careful
not to over-design. One of the most important insights about software
development that I've gained in my 30+ years in the business is this: the software is
the design. In other words, the only way to specify a software design completely is
to actually build it.

• Software development projects are driven by cost, features, schedule, and quality
(performance and security are aspects of quality). With careful planning, you can
choose which three of those four attributes you want to constrain. Although trade
offs are possible, you can't constrain all of them at the same time. It reminds me of
the Heisenberg Uncertainty Principle in physics, which says that you can
determine either position or momentum to arbitrary precision, but that the more
accurately you know one, the less accurately you know the other. Most projects
start out with trying to control cost. Features are next, because that's what
managers think they are paying for. Then, the projects inevitably have business
requirements that force delivery by a certain date. With cost, features, and
schedule heavily constrained, quality often ends up being sacrificed. When the
quality is found to be unacceptable, managers lose control of cost and schedule,
and the results are huge cost overruns and delays. The solution is straightforward:
let features be the aspect that you allow to change; maintain the cost, schedule,
and quality constraints, and cut features if you must.

• Project staffing is of course a crucial element. Good people are at the heart of any
successful project. However, it's also true that having too many people, or people
with the wrong skills, can significantly delay your project.

Development Process
As I mentioned, using the right development process is an important cornerstone to the success of any
complex software project. Surprisingly, most companies I've worked with use an ad hoc process that is
often based around what they're comfortable with or an approach they find to be intuitive, rather than
on what the industry has found to be effective.

I am keenly aware that the choice of development process is often a near-religious one and that
there is no one-size-fits-all solution. However, given the importance of choosing and using a good
process to building an ultra-fast site, let's review one way of doing things in detail.

After working with dozens of companies that create software, some as the core of their business and
others because they are forced into it out of necessity, I've seen just about every different type of
software development process you can imagine. My experience also includes working at Microsoft for
several years on a development team. In addition, I've done considerable development in my own
company, where I've been able to choose and customize the process.

The conclusion I've reached is that the process Microsoft uses is an excellent starting point. The
company's ability to deliver regularly such a broad array of immensely complex products is a testament
to its success.

�

�

CHAPTER 11 PUTIING IT ALL TOGETHER

For example, the Developer Division at Microsoft employs more than two thousand people. They
create more than 30 different products for software developers, including Visual Studio, the .NET
Framework, and Team Foundation. Their code base consists of more than 8 million lines of code, and
they are able to regularly release substantial new versions and feature enhancements that are used by
tens of thousands of developers all over the world.

Microsoft used its internal experience as the foundation for the MSF Agile process, which it has
incorporated into Team Foundation. I have an ultra-fast spin on this approach, which includes several
additional techniques that can improve team effectiveness even more, particularly when it comes to
quality and performance.

Organization
The team at Microsoft that builds an individual software product is called a Product Group. Table 11-1
shows the number of people in each role in a typical medium-sized Product Group of 40 people.

Table 11-1. Product Group Team Member Roles

Role Number of People

Product Group management 1

Developers 10

Quality Assurance (QA) / Test 18

Program management 4

Documentation, education, localization 4

Marketing 3

Note There are almost twice as many people working on QA and Test as on Development.

Program managers drive features. They own the customer experience and are responsible for
managing the Product Group and for helping team members make decisions regarding priorities. They
are also responsible for writing a design specification for each feature.

Project Phases and Milestones
Microsoft breaks a project down into phases, with a milestone or deliverable at the end of each phase, as
indicated in Table 11-2.

401

�CHAPTER 11 PUTIING IT ALL TOGETHER

402

Table 11-2. Project Phases, Milestones, and Deliverables

Phase Milestone or Deliverable

Planning (MOl Vision statement

MI Technology preview

M2 Zero bug bounce (ZBBl and feature complete

Beta I ZBB

Beta2 ZBB

RCI Escrow and Release to Manufacturing/Release to Web (RTM/RTW)

All milestones include quality-based exit criteria. Each phase is finished only when the milestones
are complete. Features that don't meet the exit criteria on time can be dropped. There may be additional
beta test and release candidate phases if they are needed.

In the planning phase, most of the developers, testers, and documentation or localization staff
aren't yet involved. The marketing team gathers requirements based on product concepts provided by
upper management.

Marketing then works with engineering and program management to create a vision statement
along with an initial schedule, including estimates of which features will go into which release, and their
priorities. The vision statement adds details to the initial concept and requirements and becomes the
input to the system architecture design. Coding for new features is typically broken down into eight- to
ten-week periods, with continuous integration.

The M2 and beta-test phases end with a milestone called zero bug bounce (ZBB). The idea is to help
ensure application stability by delaying exit from the project phase until there are no bugs more than 48
hours old. Features that are still generating new bugs at the end of the project phase may be cut or
deferred to the next release to help ensure quality.

Project escrow is typically a 48-hour period at the end of the project, just prior to final release, which
is used to help ensure that the product is stable. The team holds the software without making any
changes, while continuing testing. If any blocking bugs turn up during that period, then the bugs are
fixed and the escrow starts over again.

After the end of M2, the team no longer starts development on any new features. Instead, they focus
all remaining time on testing, fixing bugs, and improving stability and quality.

Coding
In addition to the code for the features they're working on, developers are also responsible for writing
unit tests. The tests should exercise the new feature with a goal of at least 70 percent code coverage. All
unit tests must run correctly before a developer checks in their changes.

After check-in, other team members are notified about the nature of the changes, either by e-mail
or through the source control system or a central management web site.

Using an automated build system, the full product is built after every check-in, and released every
evening. The QA team deploys the nightly releases to a dedicated staging environment the next day,
where they run tests on the previous day's changes.

�CHAPTER 11 PUTIING IT ALL TOGETHER

Testing
The QA team is responsible for writing and executing test plans and for building and maintaining test
specific infrastructure, as well as performing tests and reporting the results.

Testing includes functional, performance, load (scalability), deployment, operations, monitoring,
and regression tests. It is the testing team's responsibility to make sure the software is ready both for end
users and for deployment and operations.

To give you an idea of the scale of testing that goes into an enterprise-class product, Visual Studio
has more than 10 million functional test cases. Microsoft uses about nine thousand servers to run the
tests, and a full test pass takes about three weeks to run. That's more than one test case per line of code
and roughly one test server for every thousand test cases.

Bug Tracking
Program managers triage bugs and assign them a priority from zero to four. Priority zero (PO) means
developers should stop whatever else they were doing and fix the bug immediately. That may happen
if the production site is having urgent problems or if the developer broke the build somehow. PI and
P2 bugs are for the most important features. P3 bugs are "if you have time," and P4 bugs are "if you feel
like it."

Bugs are tracked in a central location that's integrated with the source control system, such as Team
Foundation Server (TFS) , which facilitates reporting and change-history tracking. The tool that
Microsoft used internally (and that some teams are still using) for many years to track bugs, called
Product Studio, inspired the bug-tracking part ofTFS.

When team members check in a fix for a bug, they mark the bug resolved. The person who
submitted the original bug report is then responsible for verifying the fix before they close it.

After the project gets to the feature-complete milestone at the end of M2, all development efforts
focus on testing and bug fixing. The goal is either to fix bugs or to defer them (and possibly the related
feature) to the next release. By the time they release the product, there should be no bugs outstanding
that they haven't consciously deferred.

Beginning in the Beta 2 phase, the team locks down the design, more and more as the release date
approaches. The bug triage team establishes a priority and importance threshold, or bug bar, to decide
between bugs that will be fixed in the current release and bugs that will be deferred. They then raise the
bar as time goes on. The goal is to maximize stability by minimizing changes. With a good architecture
and a sound software development process, the number of must-fix showstopper bugs drops to zero as
the ship date approaches (a process that sometimes requires considerable effort).

After bugs stop coming in, the build goes into escrow for a few days to be sure the system remains
stable while testing continues. If everything is still OK after that, the build is released to manufacturing
or to an operations team and the Web.

User Feedback
User feedback, including the response to beta tests and release candidates, forms an important pillar of
the development process. From a performance perspective, you should confirm that your users think
the parts of the site which interest them are fast. You should also provide an easy way for them to let you
know if they have problems.

Microsoft solicits feedback from many different sources, including its Connect web site, forums,
newsgroups, the Technical Assistance Program (TAP), and Community Technology Previews (CTPs). The
company analyzes that feedback continuously and uses it to drive product features and priorities.

403

�CHAPTER 11 D PUTTING IT ALL TOGETHER

404

The Ultra-Fast Spin
Here are a few variations on Microsoft's process that I've found can further reduce risk and help to
deliver a scalable, high-performance, high-quality site.

Depth-First Development
The most powerful technique is something I call depth-first development (DFD). The idea flows from an
additional project requirement, which is that instead of trying to target specific delivery dates, you
should build your site in such a way that you could deploy it into production at almost any time in the
development process, not just at the very end. Projects that use DFD are never late.

Implementing DFD involves building the software infrastructure that you need to deploy and
operate your site before building more user-visible features. That includes things such as how you
handle software or configuration updates in production, custom performance counters, logging,
capacity planning, using data access and business logic layers, caching, deployment, and so on.

With this approach, I've found that although developing the first few pages on a site goes very
slowly, things are also dramatically easier as the site grows.

With a more conventional approach, the "deep" aspects of your system, such as deployment and
operations, are often left to the end as developers focus on features. In many companies, the features are
what earn pats on the back from management, so they naturally receive first priority. The deep
components are also sometimes forgotten in the original development plan and schedule, because they
relate to all features rather than to one particular feature. What's often missed is the fact that those
components aid development, too. You can use the same system to find and fix problems during
development that your operations team will later use to identify bugs quickly after the site goes live.

Imagine building a race car. When the car is in a race, you know you will need to be able to fill it with
fuel and change tires quickly. However, you will also be testing the car a lot before the race. Think about
how much time you could save at the test track if you had the ability to do those things early on.

DFD also helps you iron out deployment and operations issues early, when they are usually orders
of magnitude less expensive to fix. For a large site, it allows the hardware or VM infrastructure to be built
up incrementally, alongside the software.

You might think of DFD as narrow but deep: build everything you need, but only what you need, and
nothing more. The idea is to focus on what the site could use immediately if it was in production, rather
than what it might need many months from now, which can be very difficult to predict accurately.

DFD helps minimize code rework by establishing important patterns early. Uyou don't add things
like logging to your system early, then when you do add them, they end up touching nearly your entire
system. A large number of changes like that can easily introduce instabilities, as well as being costly and
time-consuming. It's much better to establish the coding patterns early and then use them as you go.

Unit Testing
Another area where I like to do things a little differently involves unit tests. First, I appreciate the concept
behind test-driven development (TDD) very much, and I've used it at length. Unfortunately, I can't
endorse its use in real-world environments. My experience has been that it doesn't produce better code
or reduce development time compared to other alternatives. However, unit tests are extremely
important.

In addition to developers coding their own tests, I also like to have developers write unit tests for
each other's code. In some shops, having QA write unit tests can also be useful. The idea is that
developers (myself included) sometimes become stuck thinking about their code in a certain way, and

�CHAPTER 11 PUTIING IT ALL TOGETHER

they miss code paths and test cases that others may see. Having developers write tests for each other's
code is a wonderful prelude to code reviews.

I also like to include performance and security-specific unit tests that verify not just functionality
but also quality. Those tests can help to identify regressions. If someone introduces a change that slows
down another part of the system, it's much better to catch it when the change is first made than after the
code is running in production.

Unit tests should include your stored procedures as well as your .NET code. You can use a data
generator to create a realistic number of rows for your tests. Some editions of Visual Studio include
support for auto-generating unit test stubs for stored procedures. You can also easily add checks to
ensure that the calls execute within a certain amount of time. Combined with the data generator, that
provides a great way to help avoid performance surprises when your code goes into production.

Other Tips
Here are a few more tips.

• Establish formal coding standards. The larger your team is, the more important it
becomes for everyone to use a consistent style. Humans are very good at
processing familiar patterns. An experienced developer can quickly tell a lot about
how code works just by how it looks when it's formatted in a consistent and
familiar way. I suggest starting with the Visual Studio standard code-formatting
rules, because that makes it easy for everyone on the team to be consistent. Then,
add rules concerning comments, order of objects within a file, mapping between
file names and their contents, object naming, and so on. The whole thing
shouldn't be more than a couple of pages long.

• Store your schema definitions and other database scripts and code in source code
control along with the rest of your site. It's a good idea for the same reason that
using source control for the rest of your site is. To make it easier to track changes,
separate your scripts at the database object level (tables, stored procedures, and
so on) rather than having a single do-all file.

• Use a source control system that's tightly coupled with your bug-tracking system.
Doing so provides a valuable synergy that allows you to see not only what changed
in your system from one check-in to another, but why.

• Schedule regular code reviews to look at the code your team is developing. In
addition to checking the code for functional accuracy, also look at it from a quality
perspective, including maintainability, performance, security, and so on. I've also
found regular brown bag talks to be useful, where team members give a
presentation about the details of their design and implementation, typically over
lunch.

• Refactor your code frequently. Make sure it's readable, remove dead code, make
sure names adhere to your coding standards, improve the code's maintainability,
factor out duplicate code, refine your class design, and so on. I'm not saying to
focus on refactoring to the point of distraction, but if you see something that's not
structured correctly that you can fix easily at a tactical level, you should fix it.
Similarly, if you make changes that render other code no longer necessary or that
introduce redundant code, it's better to fix those issues sooner than later. Good
unit tests will help you avoid undue disruption from refactoring.

405

�CHAPTER 11 PUTIING IT ALL TOGETHER

406

• Leverage static code analysis to help identify code patterns that can be a problem.

League

The Premium and Ultimate editions of Visual Studio include support for code
analysis (see the Analyze menu), with rules that look at things like library design,
globalization, naming conventions, performance, interoperability,
maintainability, mobility, portability, reliability, security, and usage. Another
option is FxCop, which has similar functionality and is available as a free download
from Microsoft.

To help focus your efforts on the tasks that are most likely to improve the performance and scalability of your
site, I've found that it's useful to establish a rough sense of your site's target performance and scalability.

I've never seen a formal partitioning along these lines, so I came up with my own system that I call
leagues. See Table 11-3.

Table 11-3. League Definitions

League Description

LG-l Shared hosting. You don't have direct control of the server, and you share it with other sites.

LG-2 Dedicated server, single machine. You have full control over the server. The web site, database,
and optionally SSAS run on the same machine, possibly along with other applications.

LG-3 Two servers. Your web site runs on one, and your database and SSAS run on the other.

LG-4 Two or more web servers, with one database server. The web servers run in a load-balanced
configuration, using either NLB or a hardware load balancer.

LG-5 Two or more web servers, with one high-availability database, using either clustering or
mirroring.

LG-6 Two or more web servers, with multiple partitioned databases, some or all of which are highly
available. The partitioned databases may include support for things like logging or read-only
databases.

LG-7 Two or more web servers, with multiple partitioned high-availability databases and multiple
physical locations that you manage. The multiple locations may be for disaster failover, global
load balancing, and so on.

These definitions don't include secondary hardware or software that may be attached to your
system, nor do they say anything about how big your servers are, whether they are virtual machines, or
even how much traffic they serve.

Knowing the league you're playing in helps simplify many decisions during your site development
process. Certain architectural options may be reasonable for one league that would be very
unreasonable at another. For example, even though I don't recommend in-proc session state, if you're
targeting LG-l, where your site is always on a hosted server, then it may be an option for you because it

�CHAPTER 11 PUTIING IT ALL TOGETHER

works in a single-server environment. On the other hand, if you're targeting LG-4, you can quickly rule
out in-proc session state, because it doesn't work correctly in a true load-balanced environment.

Similar decisions and analysis are possible across many dimensions of web site development. For
example, the requirements for logging, staging environments, monitoring, and deployment vary from
one league to another.

Establish your league by determining where your site will be within three to five years. Keep in mind
that higher leagues cost more to build and operate. Overestimating your league will result in
unnecessary costs; underestimating will result in rework down the road and potential performance and
operations issues in the meantime.

When you know your league, use it as a focal point in your architectural analysis and decision
making. For example, in LG-5, adding a high-availability database also means that having a Windows
domain in your production environment would be a good idea to help manage the cluster. With that in
mind, you may need to allocate additional resources for primary and secondary domain controllers.

Tools
Using good tools can make a huge difference in both developer productivity and code quality. I'm
always shocked when I see companies with large software teams and poor tools. The time saved with
good tools invariably reduces labor costs through productivity improvements, which allows smaller
teams. Then costs decline even more because smaller teams are more efficient and because high-quality
code doesn't take as much effort to maintain.

Imagine a carpenter with hand tools compared to power tools, or carrying firewood in your
backpack instead of in the back of a truck, or making changes to a book you've written with pencil and
paper instead of a word processor. It's the same idea for software development.

Of course, exactly which tools to use is often a matter of debate. Visual Studio is at the heart of
ASP.NET development, and I'm partial to the Microsoft tools because they are seamlessly integrated.
There are also a few open source options and third-party vendors of well-integrated tools that can be
very useful. I find the overhead of using development tools that aren't integrated into Visual Studio to
often be time-consuming and error-prone.

When you have the tools, it's important to know how to use them well, so a little training can go a
long way-even if it's just a web cast or two. Visual Studio includes a number of productivity-enhancing
features, some of which aren't very visible unless you know they're there (things like code snippets).

Some of the more important tools that ultra-fast developers should have available include the
following:

• Code analysis

• Code coverage

• Code profiler

• Memory profiler

• SQL Server profiler

• Source code control

• Bug tracking

• SQL data generator

• Web load test generator

407

�CHAPTER 11 PUTIING IT ALL TOGETHER

408

• Unittest framework for .NET and T -SQL

• Web debugger (such as Fiddler)

Architecture
Whether you're working on a new site or modifying an existing one, it's a good idea to spend some time
putting together an architectural block diagram. It may sound simple and obvious, but it's a useful
exercise. Figure 11-1 shows an example architectural diagram for a high-end LG-6 system.

Router

j---------- ---'---'----.,
I
I
I

Firewalll (Optional)
I
I
I L. ____ ---------J ~rI~; (;n~)~ ~ (SSL) 'Only Outbound

on Pori 25
(SMTP)

Only Load Balancer

r- ~
Deployment

Task Servers I
Web (WDS) &

Doma.iln
Servers Monitoring

Controllers (SOOM)

n ~
Switch (Back-End Network)

1 3+ 1 Node Glusler 1r 1r

OLTP
Staging

Analysis
~ Database & ~ Database

S51S Servilces

Jl JlL Jl
SAN or Multiported Disk Array

Figure 11-1. Example architectural block diagram

i-----'-.,
I I
I Reporthg I
I Services I
I I
I (Optiona.l) I
I I '---1[---'

J[
Monitoring &

logging
iI1alabase

n

Include all the main components of your system, and break them out both logically and physically.
Include third-party resources on which your site relies.

�CHAPTER 11 PUTIING IT ALL TOGETHER

With a draft diagram in hand (or, even better, on a white board) , think about the issues discussed
earlier in the book: minimizing round trips, minimizing latency, caching, deployment, monitoring,
upgrading, partitioning, AppPools, minimizing the number of different server types, and so on. You may
find that a slight reorganization of your production environment can result in significant improvements.

Something else to consider in the area of architecture is the number of tiers in your system. By tiers,
I mean software layers that are separated by out-of-process calls, such as web services or database calls
(a data access layer or a business logic layer is not a tier). Keeping the core principles in mind, it should
come as no surprise that I favor flat architectures, because they tend to minimize round trips. In general,
a two-tier server architecture, where your web tier talks directly to your data tier, can perform much
better than systems with three or more tiers.

Architects often introduce additional tiers as a way to reduce the load on the database. However, as I
discussed at length earlier in the book, you can usually do better by offloading the database in other
ways, such as by caching, partitioning, read-only databases, Service Broker, and SSAS.

Allowing the web tier to connect directly to the database also facilitates SqlDependency type caching,
where SQL Server can send notifications to the web tier when the results of a prior query have changed.

Another goal of additional middle tiers is often to provide a larger cache of some kind. However,
recall from the earlier discussion that the way SQL Server uses memory means it can become a large
cache itself. Because SQL Server can process queries very quickly when the data it needs is already in
memory, it is often difficult to improve that performance by just adding more cache in another tier. The
reverse is often true: the additional latency introduced by a middle tier can have an adverse impact on
performance and scalability.

Checklists
Here are a few checklists that summarize recommendations from earlier chapters.

Principles and Method (Chapter 1)
o Focus on perceived performance.

o Minimize blocking calls.

o Reduce round trips.

o Cache at all tiers.

o Optimize disk 1/0 management.

Client Performance (Chapter 2)
o Put one or more requests for resources in the first 500 bytes of your HTML.

o Move requests for resources from the <head> section into the <body> of your
HTML, subject to rendering restrictions.

o Make the position of objects on the page independent of download order, with
early- and late-loading techniques (load large objects as late as you can).

o Use lowercase for all your URLs.

o Use a single, consistent URL for each resource, with matched case and a single
domain name.

409

�CHAPTER 11 PUTIING IT ALL TOGETHER

410

I:l Use two or three sub domains to optimize parallel loading of your static files.

I:l Minimize the number of different script files you're using. If you can't avoid
having mUltiple files, combine them into the minimum possible number of files
on the server.

I:l If you need mUltiple script files because they call document. write(), use innerHTML
or direct DOM manipulation instead.

I:l If you can't avoid document . write (), use absolute positioning to invoke the script
late in the file or use the hidden <div> technique.

I:l Use the page on load handler (directly or via jQuery) to request objects that aren't
needed until after everything else on the page, such as rollover images or images
below the fold.

I:l Replace spacer GIFs and text images with CSS.

I:l Bundle multiple CSS files into one.

I:l Hide, remove, or filter comments from your HTML, CSS, and JavaScript.

I:l Use lowercase HTML tags and property names.

I:l Consider using CSS instead of images for transparency, borders, color, and so on.

I:l Consider varying CSS transparency instead of using separate rollover images.

I:l Use image tiling when appropriate to help minimize image sizes, such as for
backgrounds.

I:l Crop or resize images to the minimum size.

I:l Use the smaller of GIF or PNG format for lossless images, and use JPEG for
complex images without sharp edges in them (such as photos).

I:l Enable progressive rendering on large PNG and JPEG images, to improve
perceived performance.

I:l Increase the level of compression on JPEG images to the maximum that's
reasonable for your application.

I:l Use the lowest bit depth on your images that you can (8-bit images are smaller
than 24-bit images).

I:l Consider using image slicing to improve the perceived performance of large
images.

I:l Consider using image maps instead of multiple images for things like menus
(although a text and CSS-based menu is even better).

I:l Specify an image's native size or larger in an dmg> tag. If you need to use a size
that's smaller than native, you should resize the source image instead.

I:l Instead of modifying image sizes to adjust fill and spacing on a page, use CSS.

I:l Set a relatively near-term expiration date on your favicon. ico file (such as 30
days).

�CHAPTER 11 PUTIING IT ALL TOGETHER

I:l Consider running your HTML and CSS through an optimizer, such as the one
available in Expression Web.

I:l Remove unused JavaScript.

I:l Move style definitions from your HTML into a CSS include file.

I:l Consider generating inline CSS the first time a user requests a page on your site,
followed by pre caching the CSS file to reduce the load time for subsequent pages.

I:l Validate form fields on the client before submitting them to the server.

I:l Don't enable submit buttons until all form fields are valid.

I:l Use script to avoid or delay submitting a form if the new parameters are the same
as the ones that were used to generate the current page.

I:l Use script to generate repetitive HTML, which reduces HTML size.

I:l Use script to add repetitive strings to property values in your HTML.

I:l Minimize the total size of your cookies by using short names and optimized
encoding, merging mUltiple cookies into one, and so on.

I:l Set an explicit path for all cookies, and avoid using the root path (/) as much as
possible.

I:l Group pages and other content that need cookies into a common folder hierarchy,
to help optimize the cookie path setting.

I:l Reference your static content from sub domains that never use cookies.

I:l Optimize your CSS by merging and sharing class definitions, leveraging property
inheritance, eliminating whitespace, using short specifiers and property
cascading, remove unused and duplicate CSS classes, and so on.

I:l Combine multiple images used on one page into a single file, and use CSS image
sprites to display them.

I:l Use JavaScript to avoid a server round trip for things like showing and hiding part
of the page, updating the current time, changing fonts and colors, and event
based actions.

I:l Use Ajax to make partial-page updates.

I:l Prefer CSS to <table>.

I:l When you can't avoid <table>, consider using <col>, and make sure to set the size
properties of any images the <table> contains.

I:l Include a <! DOCTYPE> tag at the top of your HTML.

I:l Uyou can anticipate the next page that a user will request, use script to precache
the content and DNS entries that page will use.

I:l Optimize the performance of your JavaScript.

411

�CHAPTER 11 PUTIING IT ALL TOGETHER

412

Caching (Chapter 3)
o Enable Cache-Control: max-age for your static content, with a default far-future

expiration date.

o Review all pages of your dynamic content, and establish an appropriate caching
location and duration for them: client-only, proxies, server-side, cache disabled,
and so on.

o Use cache profiles in web. config to help ensure consistent policies.

o Disable ViewState by default, on a per-page basis. Only enable it on pages that
post back and where you explicitly need the functionality it provides.

o Create and use a custom template in Visual Studio that disables ViewState,
disables AutoEventWireup, and sets a base class for your page, if you're using one.

o Use ViewState or ControlState to cache page-specific state.

o Prefer using cookies, web storage, or Silverlight isolated storage to cache state
that's referenced by multiple pages, subject to size and security constraints.

o Send a privacy policy HTTP header (P 3 P) whenever you set cookies.

o Use Cache. VaryByHeaders() for pages that vary their content based on HTTP
headers such as Accept- Language.

o Consider using a CDN to offload some of your static file traffic.

o Change the name of your static files (or the folders they're in) when you version
them, instead of using query strings, so that they remain cacheable by http.sys.

o Enable output caching for your user controls, where appropriate.

o If you have pages that you can't configure to use the output cache, consider either
moving some of the code on the pages into a cache able user control or using
substitution caching.

o Avoid caching content that is unique per user.

o Avoid caching content that is accessed infrequently.

o Configure cached pages that depend on certain database queries to drop
themselves from the cache based on a notification that the data has changed.

o Use the VaryByCustom function to cache multiple versions of a page based on
customizable aspects of the request such as cookies, role, theme, browser, and
soon.

o Use a cache validation callback if you need to determine programmatically
whether a cached page is still valid.

o Use HttpApplicationState, Cache, and Context. Items to cache objects that have
permanent, temporary, and per-request lifetimes, respectively.

o Associate data that you store in Cache with a dependency object to receive a
notification that flushes the cache entry if the source data changes.

�CHAPTER 11 PUTIING IT ALL TOGETHER

I:l Consider using a WeakReference object to cache objects temporarily in a
lightweight way compared to the Cache object, but with less control over cache
lifetime and related events.

I:l Use the 64-bit versions of Windows Server and SQL Server.

I:l Make sure your database server has plenty of RAM, which can help improve
caching.

I:l Consider precaching SQL Server data pages into RAM by issuing appropriate
queries from a background thread when you can anticipate the user's next
request.

I:l For dynamic content that changes frequently, consider using a short cache
expiration time rather than disabling caching.

lIS 7.5 (Chapter 5)
I:l Partition your application into one or more AppPools, using the Integrated

pipeline mode.

I:l Configure AppPool recycling to happen at a specific time each day when your
servers aren't busy.

I:l Consider using a web garden (particularly if your site is LG-3+ but you are
temporarily using LG-2).

I:l If you're using multiple AppPools, consider using WSRM to help ensure optimal
resource allocation between them when your system is under load.

I:l Use Log Parser to check your lIS logs for HTTP 404 Not Found errors and other
similar errors that may be wasting server resources.

I:l Configure lIS to remove the X-Powered-By HTTP header.

I:l Install an HttpModule to remove the Server and ETag HTTP headers.

I:l Modify your web.config to remove the X-Aspnet-Version HTTPheader.

I:l Enable site-wide static file compression.

I:l Add support for the deflate compression option to application Host . con fig.

I:l Specify staticCompression Level=" 10" and dynamicCompression Level=" 3" in
applicationHost.config.

I:l Turn off the feature that disables compression if the server's CPU use exceeds a
certain threshold.

I:l Use the <urlCompression> tag in web. config to selectively enable dynamic
compression.

I:l Keep your URLs short and your folder hierarchies flat, rather than deep.

I:l Consider using virtual directories to help flatten existing hierarchies.

I:l Consider using URL rewriting to help shorten URLs and make them more
meaningful for search engines.

413

�CHAPTER 11 PUTIING IT ALL TOGETHER

414

I:l Use Failed Request Tracing to validate caching behavior and to find pages that fail
or run too slowly.

I:l Consider using lIS bandwidth throttling to help smooth the load on your servers,
particularly during peak periods.

ASP.NET Threads and Sessions (Chapter 5)
I:l Use asynchronous pages for all pages that do 110, including accessing the

database, web service calls, filesystem access, and so on.

I:l Modify the <application Pool> section in your Aspnet. config file to reflect the load
you anticipate on your servers.

I:l Use code rather than the runtime to enforce concurrency limits where the load on
a remote system is an issue, such as with some web services.

I:l If you have an existing site that uses synchronous calls, you're seeing low CPU use
and high request latencies, and your code is compatible with load balancing,
consider temporarily using multiple worker processes while you migrate to async
pages.

I:l Add a background worker thread to your application, and use it for tasks that
don't have to be executed in-line with page requests, such as logging.

I:l Avoid session state if you can; use cookies, web storage, or Silverlight isolated
storage instead whenever possible.

I:l If you do need session state, configure the runtime to store it in SQL Server.

I:l When using session state, disable it by default in web. config, and enable it only on
the pages that need it.

I:l Configure ReadOn1 y session state for pages that don't need to write it.

I:l If your site makes heavy use of session state, maximize the performance ofthe
supporting hardware, and consider using partitioning for added scalability.

I:l When you choose which objects to store in the Session dictionary, prefer basic
data types to custom objects.

Using ASP.NET to Implement and Manage Optimization
Techniques (Chapter 6)

I:l Use master pages as a dynamic page template system.

I:l Use custom user controls to factor out code that you use on several different
pages.

I:l Consider applying output caching to your user controls.

I:l Use short strings for control IDs, because the strings can appear in your HTML.

I:l Use IDs only when you need to reference an object from your code-behind.

�CHAPTER 11 PUTIING IT ALL TOGETHER

I:l Use ASP.NET themes to help group and manage your style-related assets. Prefer
sty1eSheetThemes to standard themes.

I:l Use ASP.NET skins to help define default or often-used user control properties.

I:l Use the runtime's bundling and minification features to reduce the number and
size of your CSS and J avaScript files.

I:l Use an optimized GetVaryByCustomStringO to limit the number of different
versions of browser-specific pages or controls that the runtime caches.

I:l Consider using control adapters to help optimize generated HTML.

I:l Consider generating CSS and J avaScript dynamically, particularly for things like
browser dependencies.

I:l Use custom user controls or control adapters to automatically assign your static
files to multiple sub domains and to implement other techniques from Chapter 2.

I:l Uyou have many images that are larger on the server than the client needs them
to be, consider using a dynamic image-resizing control that resizes and caches
them on the server before sending the smaller files to the client.

Managing ASP.NET Application Policies (Chapter 7)
I:l Consider using one or more custom HttpModu1es to enforce things like site-wide

cookie policies, centralized monitoring and logging, custom session handling, and
custom authorization and authentication.

I:l Because HttpModu1es run in-line with every request, try to offload long-running
tasks (such as logging to a database) onto a background worker thread when you
can.

I:l Consider using a custom HttpHand1er for dynamic content that doesn't include a
markup file, such as dynamic images and charts.

I:l Use an async HttpModu1e or HttpHand1er if your code needs to access the database
or do any other I/O.

I:l Create a page base class, and use it with all your pages.

I:l Disable AutoEventWireup in the Page directive, and override the On Load 0 style
methods instead of using the default Page_Load () style.

I:l Consider using a page adapter to implement site-wide page-specific policies,
such as custom ViewState handling.

I:l Identify client requests that are page refreshes, and limit or minimize the
processing to create a new page when appropriate.

I:l Consider using URL routing or programmatic URL rewriting to help shorten the
URLs of your dynamic content.

I:l Consider using tag transforms in cases where you like to replace the class for one
control with another class everywhere it's used in your application.

I:l Minimize the use of redirects. Use Server. Transfer() instead when you can.

415

�CHAPTER 11 PUTIING IT ALL TOGETHER

416

I:l When you use redirects, be sure to end page processing after issuing the redirect.

I:l Regularly review the HTTP requests and responses that your pages make, using
the Fiddler debugging proxy.

I:l For pages with long-running tasks and where Ajax wouldn't be appropriate,
consider flushing the response buffer early to help improve perceived page-load
time.

I:l Use whitespace filtering to minimize the size of your HTML.

I:l Check Page. IsPostBack to see whether you can avoid repeating work that is
already reflected on the page or stored in ViewState.

I:l Before performing any time-consuming operations on a page, check the
Response. IsClientConnected flag to make sure the client still has an active
network connection.

I:l Disable debug mode for the version of your site that runs in production.

SQL Server Relational Database (Chapter 8)
I:l Make sure your database data and log files are on separate disks from one another.

I:l Make sure you have enough RAM (helps improve caching and read performance).

I:l Use stored procedures as your primary interface to the database.

I:l Use dynamic SQL, triggers, or cursors only when there is no other way to solve a
particular problem.

I:l When you have to use dynamic SQL, always use it with parameterized queries.

I:l Structure your stored procedures to help minimize database round trips.

I:l Use command batching, table-valued parameters, and multiple result sets to help
minimize database round trips.

I:l Group multiple INSERT, UPDATE, and DELETE operations into transactions to help
minimize database log 110 pressure.

I:l Optimize the data types you choose for your tables, and prefer narrow, always
increasing keys to wide or randomly ordered ones.

I:l Optimize the indexes for your tables, including clustered vs. nonclustered indexes
and including extra columns to allow the indexes to cover queries.

I:l Try to structure your queries and indexes to avoid table and index scans.

I:l Make frequent use of SQL Profiler to observe the activity on your database.

I:l To prevent deadlocks, ensure that you access lockable database objects
consistently in the same order.

I:l Use SET NOCOUNT ON at the top of your stored procedures, except in cases where
the results are associated with Sq1Dependency.

I:l Use data paging to retrieve only the rows you need to use for a particular page.

�CHAPTER 11 PUTIING IT ALL TOGETHER

I:l Prefer ADO.NET to ORM systems such as LINQ to SQL and the Entity Framework
or NHibernate, particularly for large projects, due to its support for native async
commands, command batching, mUltiple result sets, and table-valued
parameters. ORM systems may be acceptable for LG-l or LG-2 sites or for rapid
prototyping that won't evolve into production code.

I:l Consider using XML columns as an alternative to having many sparse columns
when you have properties that are difficult to represent in relational form, when
you have XML documents that you need to query, as an alternative to adding new
columns dynamically to your tables, or as an alternative to many-to-many
mappings.

I:l Avoid using wildcards in your XML queries.

I:l For sites that require consistent performance and 24/7 uptime, consider using
table partitioning to ease ongoing maintenance issues; doing so requires SQL
Server Enterprise (LG-5+).

I:l Prefer full-text search to wildcard searches using the T -SQL LIKE clause.

I:l Enable Service Broker in your database.

I:l Use Service Broker to offload or time-shift long-running tasks to a background
thread (LG-l to LG-3) or to a Windows Service (LG-3+).

I:l Use Service Broker to queue requests to send e-mails, rather than sending them
in-line.

I:l Associate SqlDependency or SqlCacheDependency objects with database queries that
return cache able results (requires Service Broker).

I:l Use Resource Governor to help maintain the relative priorities of certain types of
database traffic, such as low-priority logging compared to commands generated
by your VIP users or purchase transactions; this requires SQL Server Enterprise
(LG-5+).

I:l Prefer scaling up your database servers first, before scaling out.

I:l For read-heavy workloads, consider using several load-balanced read-only
database servers (LG-6+).

I:l Monitor the relevant Windows and SQL Server performance counters to help
identify bottlenecks early and for long-term trend analysis and capacity planning.

I:l Be sure to take into account the time for a failover to happen when designing
your high-availability architecture. In general, prefer clustering when a fail-over
time of 30 seconds or more is acceptable, and prefer mirroring when a shorter
time is required (LG-5+).

I:l Set a large enough file size for your database data and log files that they should
never have to auto grow.

I:l Don't shrink or auto shrink your database files.

I:l Minimize the number of different databases you need.

417

�CHAPTER 11 PUTIING IT ALL TOGETHER

418

I:l Consider SQL CLR for functions, types, or stored procedures that contain a large
amount of procedural code, or to share constants or code between your web and
data tiers.

SQL Server Analysis Services (Chapter 9)
I:l Avoid using the relational database for aggregation queries such as sums and

counts; whenever possible, prefer SSAS for that instead (LG-2+l.

I:l Download and install ADOMD.NET so that you can query your cubes from your
web site (LG-2+l.

I:l Use SSMS to test your MDX queries.

I:l Use both Visual Studio and Excel to peruse your cube and to make sure the data is
organized as you intended.

I:l As with relational queries, be sure to cache the results of MDX queries when it
makes sense to do so. Keep in mind that cubes are updated less often than your
tables.

I:l For sites with SQL Server Standard, use SSIS and SQLAgent to automate the
process of updating your cubes (LG-2+l.

I:l For sites with SQL Server Enterprise, configure proactive caching to update your
cubes when the relational data changes (LG-5+l.

I:l Consider using a staging database in between your OLTP database and SSAS.
Populate the staging database with SSIS, and allow it to be used for certain types
ofread-only queries (LG-6+l.

Infrastructure and Operations (Chapter 10)
I:l Use custom performance counters to instrument and monitor your application.

I:l Minimize the different types of web and application servers that you use in your
production environment. If necessary, use WSRM to help balance the load among
different AppPools.

I:l Test your servers to determine how they behave under heavy load, including
determining their maximum CPU use. Use that information in your capacity
planning analysis.

I:l Optimize your disk subsystem by using disks with a high rotation speed, narrow
partitions, and an appropriate RAID type; matching controller capacities with the
achievable throughput; having enough drives; using a battery-backed write cache;
and so on.

I:l Minimize NTFS fragmentation by putting your database files on fresh file systems
by themselves.

I:l For filesystems where you add and delete files regularly, periodically run a disk or
file defragmentation tool and use a cluster size that reflects your average file size.

�CHAPTER 11 PUTIING IT ALL TOGETHER

I:l Prefer SAS or SCSI drives to SATA when maximizing throughput or data reliability
are important.

I:l Consider using SSD drives. Although they have a cost premium, they are much
faster than rotating disks.

I:l Consider using a SAN in environments where building and maintaining your own
disk arrays aren't practical, or where data reliability is paramount.

I:l Use a high-speed back-end network: at least IGbps, and lOGbps if you can
(LG-3+).

I:l Configure the network that connects your web tier with your data tier to use
jumbo frames (LG-3+).

I:l Configure the network from your database servers to the local switch to use link
aggregation (LACP) (LG-4+).

I:l Enable Windows Firewall on all your servers.

I:l For LG-l to LG-3 sites where users can upload files onto your web server, consider
using server-side antivirus software as an alternative to a hardware firewall (LG-4+
sites shouldn't store any uploaded files on the web servers, except perhaps as a
temporary cache).

I:l If you have access to your router, configure it to do port filtering and to protect
against things like SYN floods and other DDOS attacks (LG-4+).

I:l For sites with up to eight web servers, consider using NLB for load balancing. For
more than eight servers, use a hardware load balancer (LG-4+).

I:l Consider running your own DNS server or subscribing to a commercial service
that provides high-speed DNS.

I:l Prefer DNS A records to (NAME records whenever possible.

I:l If you aren't using DNS as part of a failover scheme (LG-7), set your default TTL to
around 24 hours.

I:l Establish staging environments for testing both in development and in
preproduction.

I:l Establish a deployment procedure that allows you to complete deployments
quickly. It may be manual for smaller sites or automated using WDS for larger
sites.

I:l Establish a procedure for upgrading your data tier.

I:l Deploy your web site in precompiled form.

I:l Create an app _offline. htm file in the top-level folder of your web site to take it
offline temporarily, such as while performing upgrades.

I:l Warm up the cache after a restart on both your web and database servers.

I:l Consider deploying a system to monitor your servers proactively, such as System
Center Operations Manager (LG-4+).

419

�CHAPTER 11 PUTIING IT ALL TOGETHER

420

Summary
In this chapter, I covered the following:

• The steps to follow to kick off a new project that incorporates ultra-fast principles,
as well as the importance of developing a good architecture

• An overview of Microsoft's internal software development process

• The ultra-fast spin on the software development process, including how you can
use Depth-first Development to improve the quality and predictability of your
project

• The importance of unit testing, including testing for quality-oriented metrics such
as execution time

• How determining the league of your system can help provide a focal point for
many architectural decisions

• The importance of good software tools, as well as a list of the more important ones
to have available

• An example architectural block diagram

• Why two-tier server architectures are generally preferable to three-tier or N-tier

• Detailed checklists with recommendations from earlier chapters

Glossary

Business Intelligence (BI) Terminology
cube

Multidimensional data processed by a single MDDBS.

data mart
The staging database, OLAP Services, and report server related to a particular set of
business processes, such as Sales or Marketing. Companies often have multiple data
marts.

data mining
Statistical analysis of data, usually with a predictive orientation. You can do data mining
against either relational or multidimensional data. However, the required analysis is often
much more efficient when multidimensional data is used. The results of data-mining
analysis are stored in separate structures and are queried separately from the source
MDDBS. Analysis Services includes a data-mining component.

data warehouse
The collection of all data marts in a company. Some BI vendors also use the term to refer
to certain pieces of the overall architecture, such as just the staging database or just OLAP
Services. In SQL Server, for example, the Adventure Works sample refers to the staging
database as the data warehouse.

dimension
The peripheral tables of either a star schema or a snowflake schema, when the central
table is a fact table. Dimension tables normally contain mostly strings in their non-key
columns. Some architectures require that all original keys be replaced with surrogate keys,
which simplifies certain types of updates.

DMX
Data Mining Extensions. The language used to query data-mining structures.

421

� GLOSSARY

422

ETL
Export, Transform, and Load. The process of exporting (reading) data from a source
database; transforming it through a series of steps that may include cleaning, duplicate
removal, schema modifications, and so on; and loading the data in a destination database.
SQL Server Integration Services (SSIS) is an example of an ETL tool.

fact table
The central table of a star or snowflake schema, with columns that are all either numeric
or foreign keys to the dimensions. Examples of numeric columns include price, quantity,
weight, extended price, and discount. You can represent dates as foreign keys in the fact
table that refer to a date dimension. The date dimension provides a breakdown of the date
by week, month, quarter, year, and so on.

HOLAP
Hybrid OLAP. A mode in which some OLAP data, such as aggregations, is stored locally,
and detailed data is stored in a remote RDBMS.

KPI
Key Performance Indicator. In the generic sense, a high-level calculated value that gives
an idea about the performance of some aspect of a business. For example, total revenue is
a typical KPI. KPis in Microsoft products have a more specific definition that includes
icons to represent good, caution, and bad (such green, yellow, and red stoplights), along
with optional additional icons to represent trends-up, down, and sideways.

MDDBS
Multidimensional Database System. Also called an MDDB. A database that is optimized
for working with multidimensional data (sometimes called OLAP Services). SQL Server
Analysis Services (SSAS) is an example of an MDDBS. It can also refer to a collection of
cubes.

MDX
Multidimensional Expressions. The language used to query OLAP Services. Microsoft
provides support for MDX both directly in SQL Server Data Tools and programmatically
withADOMD.NET.

measure
A numeric column in a fact table. Measures are sometimes used to refer to individual non
key cells in a fact table.

� GLOSSARY

measure group
A single fact table and its related dimensions. There can be multiple measure groups per
cube in Analysis Services in SQL Server 2005 and later. SQL Server 2000 supports only one
measure group per cube.

MOLAP
Multidimensional OLAP. A mode in which OLAP queries are run against a data store that's
local to the MDDBS. When a cube is processed by SSAS, data files are created in the local
filesystem in MOLAP mode. Because the cube can be re-created from the source database,
this is also sometimes called a MOIAP cache; however, it contains preprocessed
aggregates and other metadata, so strictly speaking it is more a transformation of the
source data than a cache.

multidimensional data
One or more fact tables and the associated dimensions, transformed and optimized for
processing, including aggregation (sums, totals, counts, and so on) and grouping by
hierarchies or time. Multidimensional data is no longer relational. After transformation,
multidimensional data is called a cube.

OLAP
Online Analytic Processing. The primary type of processing done by an MDDBS.

OLTP
Online Transactional Processing. The primary type of processing done by an RDBMS.

RDBMS
Relational Database Management System. What most users consider to be their central
data store, often referred to as just a database. SQL Server's Relational Database is an
example.

report server
A dedicated server to handle creation and distribution of reports that are based on queries
to either an MDDBS or an RDBMS. Some architectures also use queries to the staging
database for certain types of reports. Queries against production databases for reporting
purposes only are strongly discouraged, due to their generally negative impact on
performance and scalability.

423

� GLOSSARY

424

ROLAP
Relational OLAP. A mode in which OLAP queries are run against a remote RDBMS. Rather
than precomputing aggregates as in MOLAP, they are computed on the fly using SQL
queries against the source RDBMS. As a result, this mode tends to be much slower than
MOLAP.

staging database
An RDBMS that sits between production database servers and an MDDBS.

Production databases have a number of attributes, such as a high degree of
normalization, that tend to make them an inefficient source for an MDDBS. A common
solution to this problem is the creation of one or more staging databases. An ETL process
reads data from the production databases and stores it in a star or snowflake schema in
the staging database. The MDDBS is then loaded and refreshed from the staging database.
This also helps minimize the load impact on production servers.

The amount of history retained in the staging database is typically much larger than in the
production databases. Using a staging database for historical queries often helps improve
the scalability of the production servers. Some architects don't allow queries against the
staging database, whereas others do.

star schema
A relational schema that consists of a single central table and multiple peripheral tables.
The peripheral tables contain primary keys that are referenced by foreign keys in the
central table. A fully connected set of relational tables can be transformed into a star
schema using denormalization, where parts of multiple tables are joined together to form
the central table.

star snowflake schema
A star schema that includes additional tables that are referenced by keys in the peripheral
tables. At most, one level of indirection exists between the outermost tables and the
central table. Also called a snowflake schema.

�

Index

A
AcquireRequestState event, 196
ActionType enum, 181
AddCacheDependency,106,107
Add Cache Rule dialog, 99
Address Windowing Extensions (AWE), 260
AddValidationCallback, 110
Add Web Reference dialog, Visual Studio, 174,

175
Adobe Photoshop, 10
AdomdCommand, 357
AdomdConnection, 357
ADOMD.NET

library, 338
Microsoft SQL Server Feature Pack, 355
multiple-row result, GridView, 358-359
reference addition, 356

Advanced Output Cache Rule Settings dialog box
liS Manager, 103

Ajax and plain JavaScript, 9
allowCustomSqlDatabase property, 189, 195
Analysis Services Processing Task, 360
Application policies

batch compilation, 258
Check Page.IsPostBack, 255
Check Response.IsClientConnected, 256
chunked encoding, 252-253
cross-page postback, 256
custom HttpHandlers

aspx page, 236
BeginProcessRequest() method, 236-237
EndProcessRequest() method, 237-238
generic handler, 236
IHttpAsyncHandler, 236

custom HttpModules
applications, 228
async operations, 228
BeginAuthenticateRequest Event

Handler, 230-232

database table and stored procedure,
234-235

EndAuthenticateRequest Event Handler,
232-233

EndRequest Event Handler, 233-234
Global.asax file, 227
Init() method, 229-230
PreRequestHandlerExecute Event

Handler, 230
requirements, 228-229
web.config, registering, 235-236

debug mode disabling, 257-258
flushl.aspx, 248
OnPreRender() event handler, 249
packet trace, 250-252
page adapters, 240-242
page base class, 238-240
Page.CreateHtmlTextWriter(), 250
page refresh identification, 255
redirects, 246-247
Render() method, 248
Response.Flush() method, 248
tag transforms, 245-246
Task.Factory.FromAsync(), 249
URL rewriting, 242-243
URL routing, 243-245
whites pace filtering, 253-255

Application thread pool
asynchronous file II 0, 176-178
asynchronous page (see Asynchronous page)
asynchronous web requests, 178-179
asynchronous web services, 17 4-176
handling timeouts, 172-17 4
synchronous page (see Synchronous page)

AppPools, 413, 418
<asp:Label> controls, 357
ASP.NET, 62

application policies (see Application policies)
browser providers

BrowserProvider.cs, 217
HttpBrowserCapabilities, 218

425

INDEX

426

ASP.NET, Browser Providers (cont.)
HttpCapabilitiesProviders, 217
Request.Browser.Id, 219

bundling and minification, 212
caching browser-specific pages, 212-213
control adapters

ID removal, 215-217
lowercase URL, images, 214-215

development, 407
dynamic JavaScript, 219
HttpModule, 18
image resizing

App_Code\ImageResizer.cs, 222
async keyword, 222
async property, 224
bitmap object, 223
FromSync() method, 223
ImageCodeclnfo object, 223

J avaScript markup, 220
master pages

<asp:ContentPlaceHolder> tag, 200, 201
<asp:HyperLink>, 201
Auto ID elements, 201
DOCTYPE Strict, 199
dynamic, 202
MasterPageFile, 200
nested, 201, 202
referencing, 202
in visual studio, 201

multiple domains, 220-221
object caching

CacheitemPriority, 115
Database Dependency, 116-117
file-based dependency, 115
global scope and indefinite lifetime, 113
HttpContext.Items, 113
thread safe, 114
TimeSpan, 115
WeakReferences, 117-118

output caching
custom providers, 111-113
database dependency, 107-109
disable, 105
outputCache directive, 103
page fragments, 104-105
removing items, 106-107
substitution caching, 105
validation, 110-111
VaryByCustom property, 109

page life cycle, 161-163
session (see Session state)

software development process
application policies, 415-416
optimization management, 414-415
threads and sessions, 414

themes
addASP.NET folder, 210
asp:Image> tag, 211
precaching themed images, 211
runtime, 211
setting, 209-210
skins, 209
static files, 208
themable properties, 210

threads
application thread pool (see Application

thread pool)
background worker threads (see

Background worker threads)
locking guidelines, 185-186
ReaderWriterLockSlim, 185
scalability, 159-161

user controls (see User controls)
ASPState database, 188, 189, 195, 196
Asynchronous page

async task execution
after PreRender event, 171
parallel using APM, 170-171
parallelusingTAP, 171-172

asynchronous programming model, 165-166
vs. synchronous load tests

configuration file, 167
liS application thread pool, 169-170
load test results, 167-169
test script, 167
WCAT tool, 167

task-based asynchronous pattern, 166-167
Asynchronous programming model (APM), 165-

166,278
Async point, 163
AsyncTimeout property, 173
Attributes panel, 34 7

B
Background worker threads

Beginlnvoke() method, 179
Dispose() methods, 180
lock statement, 180
logging

ActionType, 181-182

�

�

�

�

Dequeue() method, 183, 184
Enqueue() method, 182
Init() method, 183-185
QueuePageView() method, 182-183, 185
Requestlnfo object, 180-181
ThreadAbortException, 185
Workltem class, 181

task serialization, 185
ThreadPool. Queue U serW orkltem() method,

179
using statement, 179-180

Base-64 encode, 84
BeginAsyncHandler method, 185
BeginAsync() method, 165
BeginExecuteNonQuery() method, 165
Beginlnvoke() method, 179
Beta-test phase, 402
BinaryFormatter, 197
64-bit memory systems, 260
Bring online immediately option, 366
Browser cache

dynamic content, 66
disable, 67
profiles, 66
VaryByParam, 66

static content, 63
cache-control, 64-65
conditional GETs, 63
disable browser caching, 65

Bug bar, 403
Bug tracking, 403
Business intelligence (BI), 337

c
CacheDependency object, 116
CacheitemPriority, 115
Cache object, 412
Cache.SetVaryByCustom() method, 412
Cache validation callback, 412
Caching

browser cache (see Browser cache)
configure, 63
cookies (see Cookies)
definition, 61
distributed system, 119-120
expiration times

dynamic content, 120
flush mechanism, 120
static content, 120

proxy cache (see Proxy cache)
silverlight isolated storage (see Silverlight)
SQL server, 118
ViewS tate (see ViewS tate)
web applications, 62
web server (see Web server cache)

Cache at all tiers, 8
Capacity planning, 377
Cascading style sheets (CSS)

minimization, 26
optimization

advantages, 43
cascade style, 46
color attribute, 44-45
properties, 43-44
style properties, 42

round-trip elimination
Add Custom HTTP Response Header, 36
client -side caching, 35
disadvantages, 37
embedded <style> section, 36
dink> tag, 35
page onload handler, 35
proxies and http.sys caching, 37
Set-Cookie HTTP header, 36
web.config file, 36

tableless layout
absolute positioning concepts, 56
benefits, 55
ctr class, 57
<div> tags, 57
liquid layout, 57
three-column tableless layout, 58

CellSet object, 359
Client performance, 13, 60

Ajax
features, 49
image sprite code, 49-50
jQuery, 51
move() function, 50-51
server round-trip avoidance, 49
XmlHttpRequest control, 50

background gradients, 25
browser caching, 18-19
browser page processing

network connections and initial HTTP
request, 14-16

page parsing and new resource requests,
16

page resource order and reordering,
17-18

INDEX

427

� INDEX

428

Client performance (cont.)
compression algorithm, 27
cookie path property, 42
CSS (see Cascading style sheets)
DSL connection, 41
field separator I ASP .NET dictionary cookie

mechanism, 42
gate page requests, 37-39
gotlogo() function, 26
HTML, 13

minimization, 26
optimizer, 33-34
size reduction, 39-40
standards, 34-35

image optimization
background images, 28
client-side image maps, 31
image compression and dimensions, 29-

31
image format, 29
image size attributes, 32
image slicing, 31
inline image encoding, 28-29
number of images, minimization, 27
transparency style, 27

image sprites and clustering
CSS creation, 4 7
display: block property, 4 7
hover selector, 48
image editor, 46
image src property, 48
 tag, 48
web page, 48

J avaScript (see J avaScript)
layout and rendering speed, 51-53
Lucida Handwriting font, 26
<meta refresh> tags, 32
network optimizations

ASP.NET control adapter, 21
host domain, 19
HTML, 19-20

page onload handler, 26
precaching, 53-55
Set-Cookie header, 41
 tags, 32
. txtlogo span CSS selector, 26
User-Agent string, 41
web site icon file, 32

Clustered and nonclustered index, 416
clustered index addition, 283-284
COLUMNSTORE index, 288-289

covered index creation, 286-287
definition, 280
fragmentation, 287
guidelines, 281-282
key lookup process, 280
nonclustered index addition, 285-286
performance issues, 280-281
tables without index, 282-283

Clusters, 379
<cob tag, 411
COLUMNSTORE index, 288-289
Command hatching

parameterized command string, 267-268
SqlDataAdapter

adapter.Update(), 265
batch size, 263
DataTable creation, 264
for inserts, updates and deletes, 263-264
limitations, 266
results, 265-266
SqlCommand object creation, 264-265
UpdateBatchSize, 265
UpdatedRowSource, 265

CommandNotification, 107
Common table expressions (CTEs), 290
Community Technology Previews (CTPs), 403
CompletedSynchronously flag, 178
compressionEnabled property, 189
Connection Manager dialog box, 360, 361
Content distribution network (CDN), 5
Context.Items object, 412
Contig software, 10
cookieName property, 189, 195
Cookies, 198

caching mechanism, 76
definition, 76
JavaScript, 76
name/value pairs, 77
property

compact privacy policy, 84-86
domain, 79
expires, 78
HttpOnly, 80
management, 86
path, 78-79
read, 81
secure,80
storing binary data, 82-84

session cookie, 77
WCF services, 77
web storage, 87

Counters
definition, 372
guidelines, 372
Logins and Ave Users, 374
named categories, 373
perfmon, 372
performance, 376, 377
Performance Monitor Users group, 37 4
single/multi-instance, 375
types, 372

Cross-site request forgery (CSRF), 71

D
Database write performance, 191
DataBind() function, 163
Data generator, 340
Data marts, 368
Data Source View (DSV), 338,341
Data tier architecture, 368
Data warehouses, 368
dbcc dropcleanbuffers, 349
Defense-in-depth techniques, 96
Define Relationship dialog box, 346
Depth-first development (DFD), 404
Dequeue() method, 183
dhref property, 38
Dictionary cookie, 77
Dimensions, 344

usage panel, 346
Wizard, 344

Disks, 377
benchmarks, 386
controller cache, 385
controller throughput, 384
CrystalDiskMark, 387
elevator algorithm, 384
NTFS fragmentation, 379-381
partition design, 381-382
performance measurement, 378
platter and heads, 378
RAID options, 382

RAID 0, 382
RAID 1, 382
RAID 10,383
RAID3, 383
RAID 5, 382
RAID 6, 383
recommendations, 383

SANs, 385

SSDs, 385
striping, 382

Dispose() methods, 174
DNS servers, 392
<!DOCTYPE> tag, 411
DoDirMonitoringForUnc registry property, 97
Drop outdated cache option, 365

E
-E flag, 188
Email,Service Broker

background worker thread, 315-316
drawbacks, 314-315
message reading and processing, 316-319
remote SMPT server, 315
results, 321
web form, message queue, 319-321

Enable proactive caching check box, 365
Enable ROLAP aggregations option, 366
EnableSessionState property, 191
EnableViewState property, 209
Encrypted cookies, 82
EndAsyncHandler method, 185
EndAsync() method, 165, 166
EndExecuteNonQuery() method, 166
EndRead() method, 177
EndsWith (tail) match, 80
End-to-End Web page processing, 5-7
Enqueue() method, 182
Entity Framework(EF), 296, 417
Environment and tools

Author's web site, 12
cross-browser compatibility, 10
NetApplications, 10
software tools and versions, 10-ll
terminology, 12
typographic conventions, 12

Escrow, 403
ExecuteCellSet() method, 359
executelnParallel flag, 170, 171
executelnParallel value, 170
ExecuteNonQuery() method, 167
ExecuteRegisteredAsyncTasks() method, 171
Explore Data option, 343
Export Template Wizard, 74
Export, transform, and load (ETL) process, 368,

369
Expression Web, ll

INDEX

429

�

�

�

�

�

�

�

� INDEX

430

F
Failed Request Tracing, 414
Fiddler Web Debugger, 11
FileStream object, 177
FileStream.ReadAsync() method, 177
Firebug, 11
Firefox, 11
Firewalls and Routers, 390

G
GetMachine() method, 194, 195
GetPlaceFactsAsync() method, 176
GetResponseAsync() method, 178
GetVaryByCustomString() method, 415
GIF format, 410
gotlogo() function, 26
GzipStream, 84, 189

H
<head> section, 17
Heisenberg Uncertainty Principle, 400
High-impact core architectural, 8
href property, 38
HttpApplicationState object, 412
Http Handler object, 415
HttpModule, 198, 413, 415
HttpOnly property, 80
http.sys driver, 101
Hybrid OLAP (HOLAP) mode, 363

IAsyncResult, 185
!Disposable objects, 180
liS 6.0 Resource Kit Tools, 100
Infrastructure and operations, 371

capacity planning, 377
deployment, 393

data tier upgrades, 394
image-based deployment, 395
page compilation, 395

disk subsystems, 377
DNS, 392
firewalls and routers, 390
instrumentation (see Counters)
load balancing, 391

network design, 387
jumbo frames, 388
link aggregation, 389

server monitoring, 396
database perspective, 396
MTTR, 396
performance counters, 397
SCOM,397
user perspective, 396
window event logs, 397

staging environments, 393
Initialize() method, 194-195
Init() method, 183, 185
InProc mode, 188
Internet explorer software, 11
Internet Information Services (liS) 7.5

AppPool
advanced settings, 124
multiple web sites, 125
recycling, 125

compression
advantages, 138
compress.config, 140
configuring, 141
content, caching, 142
disadvantages, 138
dynamic compression, 142
enabling, 139-140
gzip and deflate algorithm, 140
keep-alives, 142

failed request tracing
content specifying, 153
enabling, 156
FailedReqLogFiles folder, 156
HTTPSYS_CACHEABLE line, 156
trace conditions defining, 154
trace providers selecting, 155
WWW Server, 154

HTTP issues
applicationHost.config file, 133
ETag header, 137
HTTP 1.1 headers, 138
log parser, 132, 133
404 Not Found errors, 132
redirects, 134-135
server header, 136-137
X-Aspnet-version header, 135-136
X-powered-by header, 135-136

performance tuning, 157
request -processing pipeline, 126-127
traffic and bandwidth managing

bandwidth throttling, 150-152
robots.txtfile, 148-149
site maps, 149

URL
rewriting, 144-147
virtual directories, 143-144

web gardens, 125
WSRM

Add Rule dialog box, 128
Add/Edit Resource Allocation dialog box,

130
Catalog, 127
Catalog AppPool, 128
CPU limitations, 131
CPU time, 130
features, 132
New Process Matching Criteria dialog

box, 128, 129
New Resource Allocation Policy dialog

box, 131
process matching criteria, 127
Server Manager, 127
Trans, 127

IPartitionResolver interface, 194
ISerializable interface, 197
ISessioniDManager interface, 193
Item Category, 346, 347
Item Subcategory, 346, 34 7

J
JavaScript, 76

grouping and placement
<script async>, 25
<script defer>, 24
images and objects request, 24
inline document.write(), 21, 22
mid -document script, 21
script reorder, 22, 23

minimization, 26
performance optimization, 58

JPEG format, 410

K
KeepAlive, 101

L
Leaf data, 363

LIKE clause, 196
Link aggregation, 389
Load balancing, 391

network, 391
reverse, 392

LoadPageStateFromPersistenceMedium, 75-76
Lock() method, 113
lock statement, 180, 186
LoginButton_Click, 89
Log Parser, ll
LosFormatter, 75
Lossless images, 410

M
maxConcurrentRequestsPerCPU parameter, 169
maxConcurrentThreadsPerCPU parameter, 169
Maximum transmission unit (MTU), 16
MDDBs. See Multidimensional databases
MDX. See Multidimensional Expressions
Measure group data, 363
Measures, 344
Message authentication code (MAC), 7l
MethodName property, lOS
Microsoft TerraServer system, 174
Microsoft Velocity, 191
Minimize blocking calls, 8
Mirroring, 382
Modulo function, 192
MSF Agile process, 401
M2 testing phase, 402
Multidimensional database (MDDB), 337,338

calculated member, 347-348
cube creation, 344
data source view

client tools installation, 341-342
Explore Data option, 343
named calculation, 343
SSDT, 341

deployment and testing, 348-349
items and users dimensions, 346-347
RDBMS schema, 339-340
time dimension, 344-346

Multidimensional Expressions (MDX), 338
children, quarter dimension, 353
health category, 353
index, 350
LASTPERIODS() function, 354
NONEMPTY() function, 353
null rows and columns filter, 353

INDEX

431

�

�

�

�

�

INDEX

432

Multidimensional Expressions (cont.)
sets, 355
subcategory, 353
SUMO function, 354
TOPCOUNT() function, 352
T -SQL query, 349-350
tuple, 353
Vote Ave, 352
WHERE clause, 351
WITH MEMBER clause, 354

Multidimensional OLAP (MOLAPJ mode, 363

N
Native Command Queuing (NCQ), 378
.NET Framework, cost, 11
.NET garbage collector (GC), 117
New Named Calculation dialog box, 343
NHibernate, 417
NTFS fragmentation, 418
N-tier architecture, 409

0
Object Relational Model (ORM), 296
Office, cost, 11
OLTP system, 367-368
OnLoad() style methods, 415
Optimize disk II 0 management, 9
OutputCache directive, 102

p

PageAsyncTask constructor, 170-172
PageAsyncTask object, 165
PageHandler, 162
Page_Load() method, 89, 178
Partition Storage Settings dialog box, 363, 364
Partition resolver, 194-95
PartitionResolverType property, 195
P1 bugs, 403
P2 bugs, 403
P3 bugs, 403
P4 bugs, 403
Permanent cookies, 187
PNG format, 410
Port trunking/NIC teaming, 389
Precaching, 118
Primary XML index, 301
Priority zero (PO) bug, 403

Proactive monitoring, 396
ProcessCube.dtsx file, 362
Product Group product, 401
Proxy cache

Accept-Language header, 96
cache-control HTTP header

ASP.NET runtime marks, 94
cookies and authentication, 95
SetCacheability, 95
SetNoServerCaching(), 95
static content, 96

defense-in-depth techniques, 96
filtering and logging, 94
HTTP, 94
invisible, 94
VaryByHeaders, 96
visible proxy, 94

Q
Quality-based exit criteria, 402
Queue Length parameter, 169
QueuePageView() method, 182-183, 185
QueueUserWorkltem() method, 179

R
Random class, 193
ReaderWriterLockSlim, 185-186
Read-heavyworkloads, 417
Reduce round trips, 8
RegisterAsyncTask() method, 165
Register directive, 211
RegisterScriptableObject(), 92
Relational database management system

(RDBMS), 337
Relational OLAP (ROLAP) mode, 363
ReleaseReaderLock() method, 186
ReleaseRequestState event, 196
RemoveOutputCacheltem() method, 106
Render() method, 162
Requestlnfo object, 180-181, 185
Resolved bugs, 403
ResolvePartition() method, 194-195
Resource Governor, 417
Response.IsClientConnected flag, 416
RijndaelManaged Cryptor, 82
ROLAP mode, 367

�

�

�

�

�

�

�

�

s
SavePageStateToPersistenceMedium method,

75-76
Scalability and performance, 2
Secondary techniques, 9-10
Semaphore object, 181
Serializable classes, 197
Server monitoring, 396
Server. Transfer() method, 415
Service Broker, 417
Session object, 187, 197, 198
Session state

alternatives, 198
full-custom, 196-197
HTTP protocol, 187
InProc mode, 188
management, 187
ReadOnlymode, 190-191
scaling

code testing, 195-196
custom session ID manager, 192-195
partition resolver, 194-195
scaling out, 192
scaling up, 191
serialization cost, 191

selective enabling, 190-191
serialization, 197-198
session ID, 187-188, 196
SQL Server, 188-190
StateServer, 188

SessioniDManager class, 193
sessioniDManagerType property, 195
SetLength() method, l 78
setTimeout() property, 38
SetValidUntilExpires() method, Ill
Showstopper bugs, 403
Silence interval, 365
silence override interval, 365
Silverlight, 198

cookies, 78
isolated storage

application, 92-93
deploying and updating, 93
HTML and user's experience, 91-92
LoginButton_Click(), 91
MainPage.xaml.cs, 89
Page_Loaded() method, 89
sample application, 88
site-specific, 87

<TextBox> control, 90
XAML Markup, 88-89

Slowly changing dimension (SCD), 369
Software development process

ad hoc process, 400
architecture

block diagram, 408
draft diagram, 409
N- tier architecture, 409
SqlDependency type caching, 409
three-tier architecture, 409
tiers, 409
two-tier server architecture, 409

ASP.NET
application policies, 415-416
optimization management, 414-415
threads and sessions, 414

bug tracking, 403
caching, 412-413
client performance, 409-411
coding, 402
cost, features, schedule, and quality, 400
design phase, 400
establishment, 399
liS 7.5, 413-414
infrastructure and operations, 418-419
league, 406-407
Microsoft, 400-401
organization, 40 l
principles and method, 409
project phases and milestones, 40 l-402
solid infrastructure, 400
SQL server analysis services, 418
SQL server relational database, 416-418
staffing, 400
system architecture, 400
testing, 403
tools, 407-408
ultra-fast spin

brown bag talks, 405
depth-first development, 404
formal coding standards, 405
FxCop tool, 406
refactoring code, 405
source code control, 405
unit testing, 404-405

user feedback, 403
Solid state disks (SSDs), 9, 385
SqlCacheDependency, 107, 117, 417
SqlCommand, 166, 174, 357
SqlConnection, 166, 174, 357

INDEX

433

� INDEX

434

sqlConnectionString property, 189
SqlDependency

object, 417
property, 107
type caching, 409

SQL Server analysis services (SSAS), 418
ADOMD.NET (see ADOMD.NET)
aggregation queries, 337
cube

definition, 337
updationwith SSIS, 360-363

data source, 338
dimensions, 338
disadvatages, 338
DSV, 338
facts, 338
MDDB (see Multidimensional database)
MDX queries (see Multidimensional

Expressions)
proactive caching, 338

data storage options, 363-364
modes, 364-367

slice, 337
staging database, 367-369

SQL Server Data Tools (SSDT), 11, 341
SQL Server Express, 119
SQL Server Feature Pack, cost, 11
SQL Server Integration Services (SSIS), 338, 360
SQL Server Management Studio (SSMS), 271, 338
SQL Server Relational Database, 416-418

command hatching (see Command hatching)
data access layer

AddBrowserBegin() method, 279
AddBrowserEnd() method, 279
asynchronous programming model, 278
connection and transaction

management, 280
data access code, 278
synchronous database commands, 278
task-based asynchronous pattern, 279

data change notifications
change event handler, 322
configuration system, 324-326
data registration, 322
mechanism, 322
query restrictions, 322-324
SqlCacheDependency class, 322

data paging, 289
code-behind, 292-294
common table expressions, 290

markup, 291-292
object data source, 294-295
OFFSET, 290
output, 295
stored procedure, 292

data partitioning
index addition, 305
Lock Escalation configuration, 305
old data archiving, 306
partition function, 303
partition scheme, 303
SQLEnterprise and Developer, 303
tables, performance issues, 302
test data generation, 304-305

data precaching
forms-based data, 277
multiserverload-balanced web tier, 276-

277
Page-at-a-Time Data, 277-278

full-text search
clustered index creation, 307
full-text catalog and index, 307-308
full-text queries, 308
rank details, 309
syntax summary, 309-310
table creation, 307
T -SQL LIKE clause with wildcard, 306

high availability, 333-334
LINQ to SQL, 296

Entity Framework, 296
limitations, 296
Object Relational Model, 296
TIMESTAMP column, 297
T -SQL command, 296

memory management
memory organization, 260
performance impact, 261
reads and writes, 260-261

multiple result sets
SqlDataAdapter and dataset, 275-276
SqlDataReader.NextResult(), 274-275
stored procedure, 274

query and schema optimization, 280
clustered and nonclustered index (see

Clustered and nonclustered index)
high-level guidelines, 289

resource governor
advantages, 326
configuration, 327-329
testing process, 329-330

scaling up vs. scaling out, 330
buffer manager, 332-333
memory manager, 333
physicaldisk, 332
processor, 332
scaling out, 331-332
scaling up, 330

Service Broker
configuartion, 311
Email (see Email,Service Broker)
poisoned message avoidance, 313
single batch commands, 313
single database server, database object

types, 310
stored procedure, 311-313
table-based FIFO queues, 314
vs. thread task, 310
time-shift long-running tasks, 310

stored procedures, 261-263
transactions

BEGIN and COMMIT statements, 270
conn.BeginTransaction(), 269
insert performance, 269
record writing, 268
sql-batch3.aspx, 269
table-valued parameters, 271-273
transaction size and length, 269

XML columns (see XML columns)
SQL Server Reporting Services (SSRS), 338
Sql-sync.aspx, 164
SSAS. See SQL Server Analysis Services
Staging database, 367-369
Staging environments, 393
State information. See Session state
State object, 171
StateServer, 188
Storage array networks (SANs), 385
SYN and SYN ACK packets, 16
Synchronous page, 164

vs. asynchronous load tests
configuration file, 167
liS application thread pool, 169-170
load test results, 167-169
test script, 167
WCAT tool, 167

scalability, 159-161
System Center Operations Manager (SCOM), 11,

397, 419

T
Target Server Memory (KB), 333
Task-based asynchronous pattern (TAP), 166-

167,279
TCP protocol, 14-15
Team Foundation, 401, 403
Technical Assistance Program (TAP), 403
Temporary cookies, 187
Test-driven development (TDD), 404
Three- tier architecture, 409
Timeout property, 189
TimeSpan, 115
Transparent proxy, 7
Two-tier server architecture, 409

u
Ultra-fast and ultra-scalable approach

goals, 2
optimization, 3
process, 4
speed and scalability, 2
user experience, 5

Universal Naming Convention (UNC) file, 97
UnLock() method, 113
Update the cache periodically option, 366
<urlCompression> tag, 413
User controls

control output caching
dollar sign, 204
Page_Load() method, 205
Partial Caching attribute, 205
ResolveUrl(), 205
store and retrieve information, 204
VaryByControl, 204

placing, 205
registration, 205
templated controls

Controls\Frame.ascx, 206
<ct:Frame> tag, 208
HeaderText property, 206
Oninit event, 207
OnPreRender event, 207

Using statement, 179-180

v
Validate() method, 194
VaryByCustom function, 412

INDEX

435

�

�

�

�

�

�

� INDEX

436

VaryByHeaders, 96
ViewS tate

control tree, 68
definition, 67
manage, 69
multi-server environment, 70
object, 187
page-rendering process, 68
Prelnit event, 68
protecting data integrity

ASP.NET controls, 73
BinaryFormatter, 75
CSRF, 71
EnableViewState, 73
GridView, 72, 73
IP addresses, 72
LoadPageStateFromPersistenceMedium

method, 75-76
LosFormatter, 75
MAC, 71
SavePageStateToPersistenceMedium

method, 75-76
session ID, 72
TypeConverter, 75
upload times, 72
validationKey, 71
ViewStateMode, 73
ViewStateUserKey property, 71
visual studio, 74-75

server-only objects, 70
_VIEWS TATE field, 69

Vision statement, 402
Visual Studio software, 11

w
waitfor command, 173
Wait() method, 183
WeakReferences, 117-ll8, 413
Web architecture model, 5
web.config, 412, 413
Web proxy. See Proxy cache
Web server cache

ASP.NET object caching
CacheltemPriority, 115
Database Dependency, 116-117
file-based dependency, ll5
global scope and indefinite lifetime, ll3
HttpContext.Items, ll3
thread safe, ll4

TimeSpan, 115
WeakReferences, ll7-ll8

ASP.NET output caching
custom providers, 111-113
database dependency, 107-109
disable, 105
outputCache directive, 103
page fragments, 104-105
removing items, 106-107
substitution caching, 105
validation, ll0-ll1
VaryByCustom property, 109

liS output caching, 102-104
windows Kernel cache

applicationHost.config, 100
dynamic files, 99
enable http.sys caching, 98
kernel-mode HTTP driver, 96
limitations, 97-98
performance comparison, 100-102

Web storage, 198
WelcomeMessage() method, 92
whitespace filtering, 416
Windows Deployment Services (WDS), 395
Windows performance counters. See Counters
Windows Server, cost, ll
Windows system resource manager (WSRM)

Add Rule dialog box, 128
Add/Edit Resource Allocation dialog box, 130
Catalog, 127
Catalog AppPool, 128
CPU limitations, 131
CPU time, 130
features, 132
New Process Matching Criteria dialog box,

128, 129
New Resource Allocation Policy dialog box,

131
process matching criteria, 127
Server Manager, 127
Trans, 127

Wireshark software, 11
Workltem class, 181
workltemLockObject, 181

X
.xap files, 93
XMLcolumns

basic queries, 300, 302

�

�

�

data modification, 300-301
performance perspectives, 297
table creation, 299
~Lindexes,30l-302

~L schema, 298-299
~LAlanguage,338

INDEX

y

YSlow software, ll

z
Zero bug bounce (ZBB), 402

437

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Technical Reviewers
	About the Author
	Introduction
	Who Th is Book Is For
	ASP.NET MVC, Windows Azure, and Sal Azure
	Contacting the Author
	Acknowledgments

	CHAPTER 1 Principles and Method
	The Difference Between Performance and Scalability
	Why Ultra-fast and Ultra-scalable?
	Optimization
	Process
	The Full Experience

	End-to-End Web Page Processing
	Overview of Principles
	Performance Principles
	Secondary Techniques

	Environment and Tools Used in This Book
	Software Tools and Versions
	Terminology
	Typographic Conventions
	Author's Web Site

	CHAPTER 2 Client Performance
	Browser Page Processing
	Network Connections and the Initial HTTP Request
	Page Parsing and New Resource Requests
	Page Resource Order and Reordering

	Browser Caching
	Network Optimizations
	JavaScript Grouping and Placement
	Avoiding document.writeO
	Reordering Script That You Can't Modify
	Requesting Images and Other Objects Mter the Page Loads
	Script Defer and Async

	Downloading Less
	Reduce the Number of Resources per Page
	Minify Your HTML, CSS, and JavaScript
	Maximize Compressibility
	Image Optimization
	Minimize the Number of Images on Your Pages
	Use Transparency as an Alternative to Rollover Images
	Optimize Background Images
	Inline Image Encoding
	Choose the Right Image Format
	Optimize Image Compression and Dimensions
	When to Use Image Slicing
	Client-Side Image Maps
	Specify Image Size Attributes
	Web Site Icon File
	General HTML, CSS, and JavaScript Optimization
	Using an HTML Optimizer
	Avoid Optimization Techniques That Violate the HTML Standards
	Eliminating CSS Round-Trips for the First Page View

	Using JavaScript to Gate Page Requests
	Submit Buttons
	Links

	Using JavaScript to Reduce HTML Size
	Generate Repetitive HTML
	Add Repetitive Text to Your Tags

	Uploading Less
	Optimizing CSS
	Using Image Sprites and Clustering
	Leveraging Dynamic HTML and JavaScript (Ajax)
	Improving Layout and Rendering Speed
	Precaching
	PrecachingIrnages
	Precaching CSS and J avaScript

	Using CSS Layout Without Tables
	Optimizing JavaScript Performance
	Summary

	CHAPTER 3 Caching
	Caching at All Tiers
	Browser Cache
	Caching Static Content
	Avoiding Conditional GETs
	Setting Cache-Control: max-age
	Disabling Browser Caching for Static Content

	Caching Dynamic Content
	Using Cache Profiles
	Disabling Caching

	ViewState
	How ViewState Works
	Avoiding ViewS tate Misuse
	UsingViewState as a Form of Caching
	Protecting ViewState Data Integrity

	Other Uses of ViewState
	Minimizing ViewState Size
	Using a Custom Template in Visual Studio
	Minimizing Serialization Overhead
	Storing ViewState on the Server

	Cookies and Web Storage
	Setting Session Cookies
	Multiple NamelValue Pairs in a Single Cookie
	Cookie Properties
	Expires
	Path
	Domain
	HttpOnly
	Secure
	Reading Cookies
	Storing Binary Data in Cookies
	Using a Compact Privacy Policy
	Managing Cookies

	Web Storage

	Silverlight Isolated Storage
	Sample Application: "Welcome Back"
	XAML Markup
	Using Isolated Storage
	HTML and the User's Experience
	Sharing Isolated Storage With a Second Application
	Deploying and Updating Silverlight Applications

	Proxy Cache
	Using the Cache-Control HTTP Header
	Using Cookies and Authentication with Proxies

	Static Content

	Managing Different Versions of the Same Content
	Web Server Cache
	Windows Kernel Cache
	Limitations
	Enabling Kernel Caching for Dynamic Content
	Performance Comparison

	lIS Output Caching
	ASP.NET Output Caching
	Caching Page Fragments with User Controls
	Substitution Caching
	Disabling Output Caching
	Removing Items from the Output Cache
	Database Dependencies
	Varying the Output Cache
	Cache Validation
	Custom OutputCache Providers

	ASP.NET Object Caching
	Caching Objects with Global Scope and Indefinite Lifetime
	Caching Objects Used by More Than One Page Request
	Caching Objects Used Only by the Current Request
	File-Based Dependencies
	Database Dependencies
	Using WeakReferences for Caching

	Caching in SQL Server
	Distributed Caching
	Cache Expiration Times
	Dynamic Content
	Static Content

	Summary

	CHAPTER 4 IIS 7.5
	Application Pools and Web Gardens
	AppPool Recycling
	Multiple AppPools
	Web Gardens

	Request-Processing Pipeline
	Windows System Resource Manager
	Common HTTP Issues
	HTTP Redirects
	HTTP Headers
	Removing the X-Powered-By Header
	Removing the Server Header
	Removing the ETag Header
	Removing the X-Aspnet-Version Header

	Compression
	Enabling Compression
	Setting Compression Options
	Using web.config to Configure Compression
	Caching Compressed Content
	Programmatically Enabling Compression

	HTTP Keep-AI ives
	Reducing the Length of Your URLs
	Virtual Directories
	URL Rewriting

	Managing Traffic and Bandwidth
	Using robots.txt
	Site Maps
	Bandwidth Throttling

	Failed Request Tracing
	Miscellaneous liS Performance Tuning
	Summary

	CHAPTER 5 ASP.NET Threads and Sessions
	Threads Affect Scalability
	ASP.NET Page Life Cycle
	Application Thread Pool
	Synchronous Page
	Asynchronous Page Using the Asynchronous Programming Model
	Asynchronous Page Using the Task-Based Asynchronous Pattern
	Asynchronous vs. Synchronous Load Tests
	Load Test Results
	Tuning the liS Application Thread Pool

	Improving the Scalability of Existing Synchronous Pages
	Executing Multiple Async Tasks from a Single Page
	Executing Tasks in Parallel Using APM
	Executing Async Tasks After the PreRender Event
	Executing Tasks in Parallel Using TAP

	Handling Timeouts
	Asynchronous Web Services
	Asynchronous File 1/0
	Asynchronous Web Requests

	Background Worker Threads
	Background Thread for Logging
	Task Serialization

	Locking Guidelines and Using ReaderWriterLockSlim
	Session State
	Session IDs
	InProc Mode
	Using StateServer
	Using SQL Server
	Configuring the Application
	Compressing Session State

	Selectively Enabling Session State and Using ReadOnly Mode
	Selectively Enabling Session State and Using ReadOnly Mode
	Scaling Session State Support
	Scaling Up
	Scaling Out
	Custom Session ID Manager
	Partition Resolver
	Configuring the Custom Session ID Manager and Partition Resolver
	Testing the New Code

	Fine-Tuning
	Full-Custom Session State
	Session Serialization

	Alternatives to Session State
	Summary

	CHAPTER 6 Using ASP.NET to Implement andManage Optimization Techniques
	Master Pages
	Nested Master Pages
	Dynamic Master Pages
	Referencing the Master Page

	User Controls
	Example: Image Handling
	Control Output Caching
	Registering and Using the Control

	Placing Controls in an Assembly
	Templated Controls

	Themes
	Static Files
	Skins
	Setting Themes Dynamically
	Themable Properties
	Example: Theme and Skin
	Pre caching Themed Images

	Bundling and Minification
	Caching Browser-Specific Pages
	Control Adapters
	Example: Enforcing Lowercase URLs for Images
	Example: Removing IDs from Panel, Hyperlink and Label Controls

	Browser Providers
	Dynamically Generating JavaScript and CSS
	Example: Dynamic J avaScript
	Using JavaScript to Access Markup Generated by Controls

	Multiple Domains for Static Files
	Image Resizing
	Summary

	CHAPTER 7 Managing ASP.NET Application Policies
	Custom HttpModules
	Requirements for the Example HUpModule
	InitO Method
	PreRequestHandlerExecute Event Handler
	BeginAuthenticateRequest Event Handler
	EndAuthenticateRequest Event Handler
	EndRequest Event Handler
	Database Table and Stored Procedure
	Registering the HttpModule in web,config

	Custom HttpHandlers
	Beginning the Request
	Ending the Request

	Page Base Class
	Page Adapters
	Example: PageStatePersister

	PageAdapter Class
	Registering the PageAdapter
	URL Rewriting
	URL Routing
	Tag Transforms
	Redirects
	Conventional Redirects
	Permanent Redirects
	Using Server.TransferO

	Early Response Flush
	Example
	Packet Trace
	Chunked Encoding

	Whitespace Filtering
	Other Ways to Avoid Unnecessary Work
	Check Page.IsPostBack
	Identify a Page Refresh
	Avoid Redirects After a Postback
	Check Response.lsClientConnected
	Disable Debug Mode
	Batch Compilation

	Summary

	CHAPTER 8 SQL Server Relational Database
	How SOL Server Manages Memory
	Memory Organization
	Reads and Writes
	Performance Impact

	Stored Procedures
	Command Batching
	Using SqlDataAdapter
	Results
	Limitations

	Building Parameterized Command Strings

	Transactions
	Using Explicit BEGIN and COMMIT TRANSACTION Statements
	Table-Valued Parameters

	Multiple Result Sets
	Using SqlDataReader.NextResultO
	Using SqlDataAdapter and a DataSet

	Data Precaching
	Approach
	Pre caching Forms-Based Data
	Pre caching Page-at-a-Time Data

	Data Access Layer
	Query and Schema Optimization
	Clustered and N onclustered Indexes
	Index Performance Issues
	Index Guidelines
	Example with No Indexes
	Adding a Clustered Index
	Adding a Nonclustered Index
	Creating a Covered Index
	Index Fragmentation
	COLUMNSTORE Index

	Miscellaneous auery Optimization Guidelines
	Data Paging
	Detailed Example of Data Paging
	Common Table Expressions
	OFFSET
	Detailed Example of Data Paging
	Markup
	Stored Procedure
	Code-Behind
	Object Data Source
	Results

	LINQ to SQL, Entity Framework and other ORMs
	XML Columns
	XMLSchema
	Creating the Example Table
	Basic XML Queries
	Modifying the XML Data
	XMLIndexes

	Data Partitioning
	Partition Function
	Partition Scheme
	Generating Test Data
	Adding an Index and Configuring Lock Escalation
	Summary

	Full-Text Search
	Creating the Full-Text Catalog and Index
	Full-Text Queries
	Obtaining Search Rank Details
	Full-Text Search Syntax Summary

	Service Broker
	Enabling and Configuring Service Broker
	Stored Procedure to Send Messages
	Stored Procedure to Receive Messages
	Testing the Example
	Avoiding Poisoned Messages
	Table-based FIFO Queues

	Sending E-mail via Service Broker
	Creating a Background Worker Thread
	Reading and Processing Messages
	Web Form to Queue a Message to Send an E-mail
	Results

	Data Change Notifications
	Query Restrictions
	Example: A Simple Configuration System

	Resource Governor
	Configuration
	Testing

	Scaling Up VS. Scaling Out
	Scaling Up
	Scaling Out
	Identifying System Bottlenecks

	High Availability
	Miscellaneous Performance Tips
	Summary

	CHAPTER 9 SQL Server Analysis Services
	Analysis Services Overview
	Example MDDB
	RDBMS Schema
	Data Source View
	Time Dimension
	Items and Users Dimensions
	Calculated Member
	Deploy and Test

	Example MDX Queries
	ADOMD.NET
	Example with a Single-Cell Result
	Displaying a Multiple-Row Result Using a GridView

	Updating Your Cube with SSIS
	Proactive Caching
	Data Storage Options
	Caching Modes

	Using a Staging Database
	Summary

	CHAPTER 10 Infrastructure and Operations
	Instrumentation
	Capacity Planning
	Disk Subsystems
	Random vs. Sequential II0s per Second
	NTFS Fragmentation
	Disk Partition Design
	RAID Options
	RAID 0 and Stripe Size
	RAID 1
	RAID 5
	RAID 10
	RAID 3
	RAID 6
	RAID Recommendations

	Storage Array Networks
	Controller Cache
	Solid State Disks
	Disk Array Benchmarks

	Network Design
	Jumbo Frames
	Link Aggregation

	Firewalls and Routers
	Windows Firewall and Antivirus Software
	Using Your Router as an Alternative to a Hardware Firewall

	Load Balancers
	 DNS
	Staging Environments
	Deployment
	Data Tier Upgrades
	Improving Deployment Speed
	Page Compilation
	Cache Warm-Up

	Server Monitoring
	Summary

	CHAPTER 11 Putting It All Together
	Where to Start
	Development Process
	Organization
	Project Phases and Milestones
	Coding
	Testing
	Bug Tracking
	User Feedback
	The Ultra-Fast Spin
	The Ultra-Fast Spin
	Depth-First Development
	Unit Testing
	Other Tips

	League
	Tools
	Architecture
	Checklists
	Principles and Method (Chapter 1)
	Client Performance (Chapter 2)
	Caching (Chapter 3)
	IIS 7.5 (Chapter 5)
	ASP.NET Threads and Sessions (Chapter 5)
	Using ASP.NET to Implement and Manage OptimizationTechniques (Chapter 6)
	Managing ASP.NET Application Policies (Chapter 7)
	SQL Server Relational Database (Chapter 8)
	SQL Server Analysis Services (Chapter 9)
	Infrastructure and Operations (Chapter 10)

	Summary

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

