
 i

iPhone and iPad Apps
for Absolute Beginners,

iOS5 Edition

■ ■ ■

Dr. Rory Lewis

iPhone and iPad Apps for Absolute Beginngers, iOS5 Edition

Copyright © 2012 by Dr. Rory Lewis

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN 978-1-4302-3602-3

ISBN 978-1-4302-3603-0 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor:Matthew Moodie
Technical Reviewer: Matthew Knott
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Morgan Engel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Chandra Clarke
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

To my best friend, my wife, my life, my light, my Kera.

—Dr. Rory Lewis

iv

Contents at a Glance

Contents .. v

Foreword: About the Author .. ix

About the Contributing Authors .. xii

About the Technical Reviewer ... xiii

Acknowledgments .. xiv

Preface .. xv

■Chapter 1: Before We Get Started .. 1�

■Chapter 2: Blast-Off! .. 33�

■Chapter 3: Keep on Truckin’ .. 57�

■Chapter 4: Buttons & Labels with Multiple Graphics 101�

■Chapter 5: Touches .. 155�

■Chapter 6: Switches .. 217�

■Chapter 7: Storyboards ... 255�

■Chapter 8: Debugging .. 325�

■Chapter 9: MapKit & Storyboarding .. 361�

■Chapter 10: MapKit & Tables with Storyboarding 431�

■Chapter 11: Storyboarding to Multimedia Platforms 487�

Index ... 521

v

Contents

Contents at a Glance .. iv�
Foreword: About the Author .. ix�
About the Contributing Authors .. xii
About the Technical Reviewer ... xiii�
Acknowledgments .. xiv�
Preface .. xv

■Chapter 1: Before We Get Started .. 1�

Necessities and Accessories .. 1�
What I Won’t Teach You .. 17�

Computer Science: A Broad and Diverse Landscape ... 17�
What You Will Learn .. 21�
How Does This All Work? .. 22�

Our Road Map: Using Xcode and Interface Builder .. 25�

■Chapter 2: Blast-Off! .. 33�
Running Your App on the iPhone Simulator .. 34�
Running your app on the iPad Simulator that reads your iPhone environment .. 50�
Running your App on the iPad Simulator .. 53�
Running your App on Physical Devices ... 54�
Digging the Code ... 55�

■Chapter 3: Keep on Truckin’ .. 57�
helloWorld_03 – An Interactive View-Based App ... 57�

Creating the User Interface .. 63�
Connecting to the Code .. 73�
Avoiding an Annoying Error ... 80�
Setting up the Coding Environment ... 83�
Creating a Programming Roadmap .. 85�

Digging the Code ... 91�
Nibs, Zibs, and Xibs ... 93�
Methods ... 95�
Header Files ... 96�
The Inspector Bar ... 97�

■ CONTENTS

vi

NSStrings ... 98�
More on Memory Management .. 98�

Alright! .. 99�

■Chapter 4: Buttons & Labels with Multiple Graphics 101�
Roadmap Recap .. 102�
helloWorld_04: A View-based Application .. 102�

Understanding IBOutlets .. 131�
Pointers .. 133�
Properties: Management & Control .. 135�
Adding IBActions .. 138�

Digging the Code ... 148�
IBOutlets and IBActions ... 148�
More About Pointers .. 149�
You’ve Said “Hello!”… but now, INDIO! .. 150�

In the Chapter Ahead .. 153�

■Chapter 5: Touches .. 155�
Redefining “Giving Up” ... 155�
Roadmap Recap .. 157�
Touches: A View-Based Application ... 157�

CGAffineTransform Structs .. 157�
Coding the Header File ... 182�
Working in the Implementation File ... 191�
Running the Code ... 213�

Digging the Code ... 216�
In the Chapter Ahead .. 216�

■Chapter 6: Switches .. 217�
Don’t Freak Out: Let’s Look at Your Brain! .. 217�
switch: A Tabbed Application ... 220�

Obtaining the Resources .. 221�
Creating the App .. 222�
Adding the Images to the Project ... 224�
Running the App .. 227�
Customizing the Tabs .. 230�
Coding the Second View .. 242�
Adding a Button ... 244�
Coding the Button .. 247�
Using the Button .. 249�

Digging the Code ... 251�
Content View Modes .. 251�
Compile-time and Runtime .. 253�

In the Chapter Ahead .. 253�

■Chapter 7: Storyboards ... 255�
Storytelling .. 255�
Roadmap Recap .. 256�
Evolve: A View-based Storyboard Application .. 257�

Phase I: Creating Core Storyboarding Configurations .. 258�
Phase II: Setting Up the View Controllers ... 276�

■ CONTENTS

vii

Phase III: Establishing View Controller Content ... 287�
Phase IV: Working on Closure and Coding ... 300�

Digging the Code ... 322�
Storyboard View Controllers, iOS4 and Programmatically Creating Them. ... 323�

In the Chapter Ahead .. 324�

■Chapter 8: Debugging .. 325�
Xcode’s Debugging Landscape ... 326�

Xcode's Tools ... 326�
switch-mistake: A Lesson in the Art of Crashing .. 329�

Starting the Project .. 330�
Creating the Views ... 334�
Creating the Bug .. 343�
Comparing the Source Files ... 347�

Digging the Code ... 356�
Debugger Console .. 357�
Fix-it ... 357�
Documentation ... 358�
Static Analysis ... 359�

In the Chapter Ahead .. 359�

■Chapter 9: MapKit & Storyboarding .. 361�
A Little about Frameworks .. 362�
Important Things to Know ... 363�
Preinstalled MapKit Apps .. 363�

Find Yourself .. 364�
Search for a location .. 364�
Change the view. See traffic .. 365�

Cool and Popular MapKit Apps Inspire Us ... 369�
myStory_01: A Single–View Application ... 371�

Possible Prepping for the App .. 371�
Preliminaries ... 373�
A New Single View Template .. 374�

Preliminaries: Adding the Annotation File .. 376�
Preliminaries: Adding Frameworks .. 379�
Bring in the Images! ... 383�
Coding the myPos NSObject .. 389�
Coding the View Controller .. 393�
Dealing with the View Controller’s Implementation ... 395�
The Storyboard .. 401�

Digging the Code ... 404�
Protocols .. 404�
Memory Management of Storyboard Objects .. 405�

Digging My Students’ MapKit Code .. 406�
Parsing to MapKit from the Internet ... 406�
MapKit Parsing ... 409�
Three MapKit Final Projects: CS–201 iPhone Apps, Objective–C ... 412�

Zoom Out… Seeing the Big Picture .. 429�

■ CONTENTS

viii

■Chapter 10: MapKit & Tables with Storyboarding 431�
myStory_02: A Single-View Application ... 433�

Possible Prepping for the App .. 433�
Preliminaries .. 434�
A New Single View Template ... 436�
Bring in the Images! ... 438�
Organize Storyboard .. 440�
Adding the Table View Controller ... 442�
Coding myMasterTableViewController ... 451�

Part 2 .. 459�
Coding the myDetailViewController.m file ... 465�
Tweaking the Storyboard ... 474�

■Chapter 11: Storyboarding to Multimedia Platforms 487�
myiTunes: A Master-Detail Application ... 488�

Preliminaries .. 489�
A New Master-Detail Template .. 490�
Bring in the Images! ... 492�
Organize the Popover in Storyboard .. 493�
Coding the myiTunes App .. 502�
Coding DetailViewController .. 513�
Finalizing the Storyboard ... 517�

In Ending ... 520�

Index ... 521

ix

Foreword: About the Author

"Rory and I met in L.A. in 1983. He reminds me of one of my favorite film characters, Buckaroo
Banzai—always going in six directions at once. If you stop him and ask what he's doing, he'll
answer comprehensively and with amazing detail. Disciplined, colorful, and friendly, he has the
uncanny ability to explain the highly abstract in simple, organic terms. He always accomplishes
what he sets out to do, and he'll help you do the same.”

Why you’ll relate to Dr. Lewis
While attending Syracuse University as a computer-engineering student, Rory scrambled to pass
his classes and make enough money to support his wife and two young daughters. In 1990, he
landed a choice on-campus job as a proctor in the computer labs in the LC Smith College of
Engineering. Even though he was struggling with subjects in the Electrical Engineering program,
he was always there at the Help Desk. It was a daunting experience for Rory because his job was
only to help his fellow students with computer lab equipment questions, but he invariably found
his classmates asking deeper andharder questions: “Dude, did you understand the calculus
assignment? Can you help me?!”

These students assumed that, because Rory was the
proctor, he knew the answers. Afraid and full of self-doubt, he
sought a way to help them without revealing his inadequacies.
Rory learned to start with: “Let’s go back to the basics. Remember
that last week the professor presented us with an equation…?” By
going back to the fundamentals, restating and rebranding them,
Rory began to develop a technique that would, more often than
not, lead to working solutions. By the time his senior year rolled
around, there was often a line of students waiting at the Help
Desk on the nights Rory worked.

Fast-Forward 17 Years
Picture a long-haired, wacky professor walking through the campus of the University of Colorado
at Colorado Springs, dressed in a stunning contrast of old-schooland drop-out. As he walks into
the Engineering Building, he is greeted by students and faculty who smile and say hearty hellos,
all the while probably shaking their heads at his tweed jacket, Grateful Dead t-shirt, khaki pants,
and flip flops. As he walks down the hall of the Computer Science Department, there’s a line of
students standing outside his office. Reminiscent of the line of students that waited for him at the
Help Desk in those early years as a proctor in the computer lab, they turn and greet him, “Good
morning, Dr. Lewis!” Many of these students at UC-Colorado Springs are not even in his class, but
they know that Dr. Lewis will see them and help them anyway.

■ FOREWORD: ABOUT THE AUTHOR

x

Past—Present—Future
Dr. Lewis holds three academic degrees. He earned a Bachelor of Science in Computer
Engineering from Syracuse University. Syracuse’s LC Smith College of Engineering is one of the
country’s top schools. It is there that Intel, AMD, and Microsoft send their top employees to study
for their PhDs.

Upon completing his BS (with emphasis on the mathematics of electronic circuitry in
microprocessors), he went across the quad to the Syracuse University School of Law. During his
first summer at law school, Fulbright & Jaworski, the nation’s most prolific law firm, recruited
Rory to work in its Austin office, where some of the attorneys specialize in high-tech intellectual-
property patent litigation. As part of his clerking experience, Lewis worked on the infamous AMD
v. Intel case; he helped assess the algorithms of the mathematics of microprocessor electrical
circuitry for the senior partners.

During his second summer in law school, Skjerven, Morrill, MacPherson, Franklin, & Friel—
the other firm sharing the work on the AMD v. Intel case—recruited Rory to work with them at
their Silicon Valley branches (San Jose and San Francisco). After immersing himself in law for
several years and receiving his JD at Syracuse, Lewis realized his passion was for the mathematics
of computers, not the legal ramifications of hardware and software. He preferred a learning and
creative environment rather than the fighting and arguing intrinsic in law.

After three years away from academia, Rory Lewis moved south to pursue his PhD in
Computer Science at the University of North Carolina at Charlotte. There, he studied under Dr.
Zbigniew W. Ras, known worldwide for his innovations in data mining algorithms and methods,
distributed data mining, ontologies, and multimedia databases. While studying for his PhD,
Lewis taught computer science courses to computer engineering undergraduates, as well as e-
commerce and programming courses to MBA students.

Upon receiving his PhD in Computer Science, Rory accepted a tenure-track position in
Computer Science at the University of Colorado at Colorado Springs, where his research is in the
computational mathematics of neurosciences. Most recently, he co-wrote a grant proposal on the
mathematical analysis of the genesis of epilepsy with respect to the hypothalamus. However,
with the advent of Apple’s revolutionary iPhone and its uniquely flexible platform—and market—
for mini-applications, games, and personal computing tools, he grew excited and began
experimenting and programming for his own pleasure. Once his own fluency was established,
Lewis figured he could teach a class on iPhone apps that would include non-engineers. With his
insider knowledge as an iPhone beta tester, he began to integrate the parameters of the proposed
iPad platform into his lesson plans—even before the official release in April 2010.

The class was a resounding success and the feedback was overwhelmingly positive, from
students and colleagues alike. When approached about the prospect of converting his course into
a book to be published by Apress, Dr. Lewis jumped at the opportunity. He happily accepted an
offer to convert his course outlines, class notes, and videos into the book you are now holding in
your hands.

Why Write This Book?
The reasons Dr. Lewis wrote this book are the same reasons he originally decided to create a class
for both engineering and non-engineering majors: the challenge and the fun! According to Lewis,
the iPhone and iPad are “...some of the coolest, most powerful, and most technologically advanced
tools ever made—period!”

He is fascinated by the fact that, just under the appealing touch screen of high-resolution
images and fun little icons, the iPhone and iPad are programmed in Objective-C, an incredibly
difficult and advanced language. More and more, Lewis was approached by students and
colleagues who wanted to program apps for the iPhone and would ask his opinion on their ideas.
It seemed that, with every new update of the iPhone, not to mention the advent of the expanded
interface of the iPad, the floodgates of interest in programming apps were thrown wider and
wider. Wonderful and innovative ideas just needed the proper channel to flow into the
appropriate format and then out to the world.

■ FOREWORD: ABOUT THE AUTHOR

xi

Generally speaking, however, the people who write books about Objective-C write for people
who know Java, C#, or C++ at an advanced level. So, because there seemed to be no help for the
average person who, nevertheless, has a great idea for an iPhone/iPad app, Dr. Lewis decided to
launch such a class. He realized it would be wise to use his own notes for the first half of the
course, and then to explore the best existing resources he could find.

As he forged ahead with this plan, Lewis was most impressed with Beginning iPhone 3
Development: Exploring the iPhone SDK. This best-selling instructional book from Apress was
written by Dave Mark and Jeff Lamarche. Lewis concluded that their book would provide an
excellent, high-level target for his lessons...a “stepping stones” approach to comprehensive and
fluent programming for all Apple’s multi-touch devices.

After Dr. Lewis’s course had been successfully presented, and during a subsequent
conversation with a representative from Apress, Lewis happened to mention that he’d only
started using that book about half-way through the semester, as he had to bring his non-
engineering students up to speed first. The editor suggested converting his notes and outlines
into a primer—an introductory book tuned to the less-technical programming crowd. At that
point, it was only a matter of time and details—like organizing and revising Dr. Lewis’s popular
instructional videos to make them available to other non-engineers excited to program their own
iPhone and/or iPad apps.

So, that’s the story of how a wacky professor came to write this book. We hope you are
inspired to take this home and begin. Arm yourself with this knowledge and begin now to change
your life!

Ben Easton
Author, Teacher, Editor

xii

About the Contributing Authors

Ben Easton is a graduate of Washington & Lee University and has a B.A. in
Philosophy. His eclectic background includes music, banking, sailing, hang
gliding, and retail. Most of his work has involved education in one form or
another. Ben taught school for 17 years, mostly middle-school mathematics.
More recently, his experience as a software trainer and implementer
reawakened his long-time affinity for technical subjects. As a freelance writer,
he has written several science fiction stories and screenplays, as well as feature
articles for magazines and newsletters. Ben resides in Austin, Texas, and is
currently working on his first novel.

Brian Parks PhD Student, Computer Science and Anthony
Magee, MS student at UCCS work with Dr. Lewis and
assisted in studying the various versions of the beta Xcode.

Brian is in the Ph.D. program in Computer Science at
the University of Colorado at Colorado Springs, where he
regularly collaborates with Dr. Terrance Boult and Dr. Rory
Lewis. He received his B.S. in Computer Science from Lehigh
University, Pennsylvania.Brian specializes in software design
and development techniques with an eye toward software
engineering and architecture, especially with data-driven

applications. Brian is also an educator and an academic; focusing on software engineering and
design and, most recently, computer organization and assembly language programming while
research focuses on computer vision and its relationship with psychological theories of vision.

Anthony is currently finishing work towards a Masters degree in Computer Science at the
University of Colorado at Colorado Springs, where he also received his Bachelors degree.Anthony
is experienced in the design and development of software and has spearheaded the
implementation and release of several software applications over his career. He has specialized
in several fields as part of his collegiate and personal interests. These include theoretical and
applied mathematics, software design, user interface design, computer science education,
computer vision, and the list continues to expand.

Brian and Anthony are the managing partners of Synapse Software.

xiii

About the Technical Reviewer

Matthew Knott is a Learning Platform developer and SharePoint expert. He has
been programming since a young age and hasn't stopped learning since. An
experienced C and C# developer, Matthew has recently started developing iOS
apps to mobilize the Learning Platform. He lives in Wales, United Kingdom
with his wife and two children and likes to write on his blog (mattknott.com)
from time to time.

xiv

Acknowledgments

When I arrived in America in 1981 at the age of 20, I had no experience, money, or the knowledge
to even use an American payphone. Since then, it’s been a wonderful road leading to this book
and my life as an Assistant Professor at two University of Colorado campuses. I am such a lucky
man to have met so many wonderful people.

First, to my wife, Kera, who moved mountains to help with graphics, meals, dictations,
keeping me working, and sustaining a nominal level of sanity in our house. Thank you, Kera.

To my mother, Adeline, who was always there to encourage me, even in the darkest of times
when I almost dropped out of Electrical Engineering. To my sister, Vivi, who keeps me grounded,
and my late brother Murray, a constant reminder of how precious life is. To Keith and Nettie
Lewis, who helped me figure out those American payphones. To Ben Easton, Brian Bucci, and
Dennis Donahue, all of whom invited me into their families when I had nobody.

A special thanks to Dr. Zbigniew Ras, my PhD advisor, who became like a father to me, and to
Dr. Terry Boult, my mentor and partner in the Bachelor of Innovation program at UCCS.

Last, but not least, to Clay Andres at Apress—he walked me through this process and risked
his reputation by suggesting to a bunch of really intelligent people that I could author such a
book as this.

Many thanks to you all.

xv

Preface

WhatThis Book Will Do For You
Let me get this straight: you want to learn how to program for the iPhone or the iPad, and you
consider yourself to be pretty intelligent—but whenever you read computer code or highly
technical instructions, your brain seems to shut down. Do your eyes glaze over when reading gnarly
instructions? Does a little voice in your head chide you, “How about that! Your brain shut down six
lines ago, but you’re still scanning the page—pretending you’re not as dense as you feel. Great!”

See if you can relate to this…you’re having an issue with something pretty technical and you
decide to Google it and troubleshoot the problem. You open the top hitand somebody else has
asked the exact same question! You become excited as the page loads, but, alas, it’s only a bulletin
board (a chat site for all those geeks who yap at one another in unintelligible code). You see your
question followed by…but it’s too late! Your brain has already shut down, and you feel the
tension and frustration as knots form in your belly.

Sound familiar?
Yes? Then this book’s for you! My guess is that you’re probably standing in a bookstore or in the
airport, checking out a magazine stand for something that might excite you. Because you’re
reading this in some such upscale place, you can probably afford an iPhone, a Mac, a car, and
plane tickets. You’re probably intrigued by the burgeoning industry of handhelds and the
geometric rate at which memory and microprocessors are evolving…how quickly ideas can be
turned into startlingly new computing platforms, into powerful software applications, into
helpful tools and clever games…perhaps even into greenbacks! And now you are wondering if
you can get in on the action—using your intellect and technical savvy to serve the masses.

How do I know this about you?
Easy! Through years of teaching students to program, I know that if you’re still reading this, then
you’re both intelligent enough and sufficiently driven to step onto the playing field of
programming, especially for a device as sweet as the iPhone or as sexy as the iPad. If you identify
with and feel connected to the person I’ve described above, then I know you. We were introduced
to one another long ago.

You are an intelligent person who may have mental spasms when reading complex code—
even if you have some background in programming. And, even if you do have a pretty strong
background in various programming languages, you are a person who simply wants an easy, on-
point, no-frills strategy to learn how to program the iPhone and iPad. No problem! I can guide
you through whatever psychological traffic jams you typically experience and help you navigate
around any technical obstacles, real or imagined. I’ve done this a thousand times with my
students, and my methodology will work for you too.

■ PREFACE

xvi

The Approach I Take
I don’t try and explain everything in minute detail. Nor do I expect you to know every line of code
in your iPhone/iPad application at this stage. What I will do is show you, step by step, how to
accomplish key actions. My approach is simultaneously comprehensive and easy-going, and I
take pride in my ability to instruct students and interested learners along a wide spectrum of
knowledge and skill sets.

Essentially, I will lead you, at your own pace, to a point where you can code, upload, and
perhaps sell your first iPhone/iPad app, simple or complex. Good news: the most downloaded
apps are not complex. The most popular ones are simple, common-sense tools for life…finding
your car in a parking lot, or making better grocery lists, or tracking your fitness progress.
However, when you complete this book, you may want to graduate to other books in the Apress
and Friends of ED series. You have quite a few options here, and down the road I’ll advise you
regarding the best ways to move forward. Right now, though, you may want to read a little about
me so you will feel confident in taking me on as your immediate guide in this exciting app-
venture.

May you experience great joy and prosperity as you enter this amazing and magical world.

Peace!

Rory A. Lewis, PhD, JD

1

 Chapter

Before We Get Started
This introductory chapter will ensure that you have all of the required tools and
accessories to proceed fully and confidently through this book. Some of you may
already have Xcode, an up-to-date iOS simulator, and Interface Builder installed on your
Mac and you may believe that because you are solid on these points, you are ready to
jump right in. If so, you may want to jump ahead to Chapter 2 and start immediately on
your first program.

It will behoove you, though, to understand why I teach certain things and skip over
others. For those of you who have never programmed in Objective-C, it is quite a
challenge—even for my engineering students who know Java, C, and C#. Nevertheless,
with the appropriate preparation and mindset, you will accomplish programming in
Objective-C.

So—I urge you to read on. The time you will invest in this chapter will be well worth it in
peace of mind and confidence. Chapter 1 will help to structure the way that your brain
will file away all of the rich content that is to come.

Necessities and Accessories
In order to program for the iPhone and/or iPad, and to follow along with the exercises,
tutorials, and examples presented in this book, you’ll need to have 5 minimal
requirements. You may not completely understand them right now, but that’s OK—just
roll with me for a second. I’ll explain everything as we go through these steps. Briefly,
the 5 you need are:

� A Mac

� The correct operating system for your Mac called an "OS X"

� Registration as a developer (discussed in detail below)

� The correct operating system for your iPhone, called an iOS

� The correct Software Development Kit for your iPhone, called an SDK
that runs a program called Xcode.

1

CHAPTER 1: Before We Get Started 2

Let's go into some of these in a bit more detail.

First, you will need an Intel-based Macintosh running Lion (OS X 10.7.2 or later). If your
system was bought after 2006, you’re OK. I purposely program everything on a
MacBook bought in 2006. All of the videos on the net are screencast from either my
MacBook from 2006, or if I broadcast from my 2010 iMac, I first run it on my MacBook
bought in 2006. You don’t need the latest revved up Mac. If you haven’t bought one yet,
I suggest you get a basic, no-frills MacBook Air. If you do own an older Mac, then you
may be able to add some RAM. Make an appointment at the Genius Bar at an Apple
Store and ask them to increase the RAM as much as possible. Also, ask them explicitly:
"Can this old computer run Lion at least 10.7.2, iOS5, and Xcode 4.2 or later?"

If you do not have a Mac, then keep in mind that, as mentioned, I have made a point to
code and run every program in this book on Apple’s smallest and cheapest model, the
MacBook. Apple has discontinued the MacBook; they now sell the MacBook Air for
$999, which is more advanced than the Author's MacBook. You can purchase a
MacBook on eBay and other such sites. See Figure 1–1.

Figure 1–1. I use the cheapest 2006 Mac on the market, the MacBook, to perform all the coding and compiling in
this book. Essentially, there is no need at all to buy a more expensive or higher-end Mac to perform all the
exercises.

CHAPTER 1: Before We Get Started 3

Second, you will need the correct OS X. As I write this, it is OS X 10.7.2. We need to
make sure that you have the latest and greatest operating system (OS X) inside your
Mac. I cannot tell you the number of emails and forum questions that show that many of
you will think: “Ahh my code probably did not compile correctly because Dr. Lewis has a
different OS X or/and iOS on his machine …”

NOTE: The operating system that runs your computer (OS X) is different from the iPhone/iPad
Operating System, commonly known as “iOS.” Even if you think that everything is up to date, I
suggest that you follow along with me and make sure that your system has the latest OS X and

the latest iOS inside it. As you follow along with me and tackle all the programs that I teach you
in this book, there will be times when your code will not work the first time you run it. In fact,
most of the time your code will not work the first time you run it (or “compile it” as us geeky

guys say.) So! Let’s take care of this now.

Close every program running on your Mac, so that the only program running is “Finder”.
Go up to the little apple located on the upper left-hand corner of your Mac and select
“About This Mac,” as illustrated in Figure 1–2.

Figure 1–2. Go to your Desktop, click on the Apple, and select “About This Mac.”

Once you have selected this, you will see a window called “About This Mac,” as
illustrated in Figure 1–3.

CHAPTER 1: Before We Get Started 4

Figure 1–3. The “About This Mac” window, and Xcode version window. Here you can see that my MacBook is
using OS X 10.7.2. We will discuss iOS later in this chapter. If you have already installed Xcode (or after you install
Xcode), under “Xcode,” click on “About Xcode” and you will see what version you are running (as shown here on
the right).

Note again that I have OS X 10.7.2 and this is the operating system I will use for this book.
By the time you read this book, it will most likely have changed to a higher level. You need
to bear two things in mind here. First, you need to update to that latest OS X, as shown
below, and secondly, you need to go to the book’s online forum to see if there is anything
you need to know about changes in the new version of the OS X that may impact this
book. So, let’s look at how you need to update your system to the latest OS X.

With all of your programs closed except for “Finder,” go back up to the apple in the
upper left-hand corner of your Mac and select “Software Update …,” as illustrated in
Figure 1–4. Next, simply follow the instructions and the four screen prompts, as
illustrated in Figure 1–5.

CHAPTER 1: Before We Get Started 5

Figure 1–4. Go to your Desktop, click on the Apple and select “Software Update...”

CHAPTER 1: Before We Get Started 6

Figure 1–5. Top - Checking for new software; 2nd from the top - Select the option to download the new software;
2nd from the bottom - Wait for your new software to download; Bottom – Select “Restart” to have your Mac
properly install the new software.

If, by the time you are reading this book, you realize that the OS X, and/or the iOS make
my pictures appear dated, then do not freak out. I have a forum that is always online

CHAPTER 1: Before We Get Started 7

where I and many volunteers love to help others. We always update the forum with news
regarding recent updates of the OS X and the iOS. Visit the forum here:
www.rorylewis.com/ipad_forum/ or bit.ly/oLVwpY. See Figure 1–20.

Thirdly, you will need to become a registered developer via the iPhone/iPad Software
Development Kit (SDK) and download Xcode. If you are a student, it’s likely that your
professor has already taken care of this, and you may already be registered under your
professor’s name. If you are not a student, then you will need to follow these numbered
steps to sign up.

NOTE: Even if you absolutely do not want to be a developer, you can still download Xcode with
your purchase of Lion or buy it at the Mac store. I have yet to have a student last for more than a
week trying alternatives to this. The $100 allows you to have access to the Apple developer tool
kits, tutorials, example code, and help forums, and to receive a provisioning license to run your

apps on a physical iPhone or iPad. Lastly, you’re reading this book so you can make an app and
sell it on iTunes store and make $$—you need to pay the $100 for this alone. Buying a Mac,
Xcode, and this book—but not buying the $100 registered license—is like paying to learn to

drive a car, buying a car, but then never obtaining a driver’s license. Many of the tools that I

teach you to use in this book to debug assume you have a license. It’s your choice.

1. Go to developer.apple.com/programs/ios/ or bit.ly/quO4ow, which will bring

you to a page similar to the one shown in Figure 1–6. Click the Enroll Now button.

Figure 1–6. Click the “Enroll Now button”.

CHAPTER 1: Before We Get Started 8

2. Click the Continue button, as illustrated in Figure 1–7.

Figure 1–7. Click the Continue button.

3. Most people reading this book will select the “I need to create a new account for

…” option (arrow 1 in Figure 1–8). Next, click the Continue button as illustrated by

arrow 2 in Figure 1–8. If you already have an existing account, then you have been

through this process before. Go ahead with the process beginning with the “I

currently have an Apple ID ...” option, and I’ll meet you at step 6, where we will

log onto the iPhone/iPad development page and download the SDK.

CHAPTER 1: Before We Get Started 9

Figure 1–8. Click the “I need to create an Apple ID…” option to proceed.

4. You are probably going to be enrolling as an individual, so click the Individual link,

as illustrated in Figure 1–9. If you are enrolling as a company, click the Company

option to the right and follow the appropriate steps; I’ll meet you at step 6.

Figure 1–9. Click the Individual option.

CHAPTER 1: Before We Get Started 10

5. From here, you will enter all of your information, as shown in Figure 1–10, and you

will pay your fee of $99 for the Standard Program. This provides you with all of the

tools, resources, and technical support that you will need. (If you’re reading this

book, you really do not want to buy the Enterprise program at $299, as it is for

commercial in-house applications.) After paying, save your Apple ID and

Username; then receive and interact with your confirmation email appropriately.

Figure 1–10. Enter all of your information accordingly.

NOTE: Before we move onto Step 6, you will want to make sure that you have received your
confirmation email and have chosen a password to complete the last step of setting yourself up

as a bona fide Registered Apple Developer. Congratulations!

6. Use your Apple ID to log into the main iPhone/iPad development page at

developer.apple.com. This page has three icons for the three types of Apple

programmers. As shown by the arrow in Figure 1–11, click on the top icon—iOS

Dev Center—to get to the download page for iPhone/iPad Operating System

software.

CHAPTER 1: Before We Get Started 11

Figure 1–11. For now, click on the “iOS Dev Center” icon indicated by the arrow. Later, you may also want to
program apps for the Mac Computer or the Safari Web Browser.

NOTE: While we’re here, let's go over the other 2 download options. The icon below the iOS is for
people who want to download an environment to program wonderful things that run on a Mac.
The third and last icon is for people who want an environment to program apps that operate

inside Safari's web browser. Maybe one day you will want to connect your cool zany innovative

idea that has made thousands of dollars to Safari. Well, this is the place you will want to do that.

7. After logging in to iOSDev with your username and password, as described in

step 6, you will see a screen similar to that shown in Figure 1–12. The iOS Dev

Center contains all the tools necessary to build iPhone and iPad apps. Later on

you will spend time here, but for now we just want to go to the Developer Page of

the latest build of the iOS SDK. Locate the 'Downloads' icon indicated by the

arrow and click it. You may notice that this only takes you to the bottom of the

page, as illustrated in Figure 1–13. Whether you scrolled down or clicked down

here, just click on the "Download Xcode 4" button so that you can get to the

Xcode 4 and iOS SDK 4.3 page.

NOTE: Again, at the time I wrote this book, Xcode 4.2 and iOS SDK 5 were the latest versions.
The chance is great that by the time you read this book, these may have larger numbers. This is
not a problem; just go on to Step 8. If, by chance, something has really thrown us all a curve ball,
it will be discussed and solved for you in easy-to-read English at our forum located at

www.rorylewis.com/ipad_forum/ or bit.ly/oLVwpY.

CHAPTER 1: Before We Get Started 12

Figure 1–12. This takes you to the bottom of the page, as shown in Figure 1–13.

Figure 1–13. Click on the “Download Xcode 4” button and that will take you to the Xcode 4 Developer Page.

CHAPTER 1: Before We Get Started 13

8. I know you're probably thinking: "Gee, I just want to download it!' Remember that

there are thousands of downloads at Apple.com. This page, illustrated in Figure 1–14,

is called the Xcode 4 Developer Page and it has all of the relevant downloads for you.

For now, we want to click on the latest version. These figures show the latest version

at the time of this printing. It WILL be different by the time you read this in print. Right

now, the latest version available at this point is “Xcode 4.2 for Lion," so this is the

link that is indicated by the arrow. It will look similar at this point—click on it.

Figure 1–14. Click on the “Xcode 4.2 for Lion in the Mac App Store” link.

9. Your download will start and, depending upon your connection speed, it may take

somewhere between 2 to 15 minutes. Your screen should look something like the

one shown in Figure 1–15.

CHAPTER 1: Before We Get Started 14

Figure 1–15. Wait for the download to complete.

10. Once the download has completed, the Xcode and iOS SDK drive icon will appear

on your desktop and a window with your Xcode and iOS SDK.mpkg will appear,

as shown in Figure 1–16. Click on the "Xcode and iOS SDK.mpkg," as indicated

by the arrow in Figure 1–16.

CHAPTER 1: Before We Get Started 15

Figure 1–16. Click on the “Xcode and iOS SDK.mpkg” icon.

11. Once you have clicked on the Xcode and iOS SDK.mpkg icon, a security

verification window will open up. Click on the "Continue" button as shown by the

arrow in Figure 1–17. Next, you will see the "Install Xcode and iOS SDK" window,

as shown in left-hand image in Figure 1–18. Now click on "Continue," as indicated

by the arrow. After several minutes, the installation will be complete and you will

see a "The Installation was Successful" window appear. Click the "Close" button,

as indicated by the arrow in the right-hand image in Figure 1–18.

Figure 1–17. The security verification window. Click on the “Continue” button.

CHAPTER 1: Before We Get Started 16

Figure 1–18. The "Install Xcode and iOS SDK" window. Click on the “Continue” button.

12. Included with the Apple SDK that you’ve now downloaded is Apple’s

integrated development environment (IDE). This programming platform

contains a suite of tools, sub-applications, and boilerplate code that all

enable us to do our jobs more easily. We will use Xcode, Interface

Builder, and the iPhone/iPad Simulator extensively, so I advise you to

bring these icons to your dock (see Figure 1–19) as described in Step 13

below. This will save you tons of time searching for them.

Figure 1–19. Xcode, Interface Builder, and the iPhone/iPad Simulator—locked & loaded, ready to roll!

CHAPTER 1: Before We Get Started 17

13. Bring Xcode to your dock by choosing Macintosh HD �Developer � Applications �
Xcode.app and dragging it onto your dock, as illustrated in Figure 1–19. In the same

way, bring Interface Builder to your dock by choosing Macintosh HD � Developer �
Applications � Interface Builder.app and dragging it. Finally, bring the iPhone/iPad

Simulator to your dock by choosing Macintosh HD � Developer � Platforms �
iPhone/iPad Simulator Platform and dragging it. I've placed them together at the

center of my dock, as illustrated in Figure 1–19.

NOTE: Whenever I say “iPhone” or “iPad,” I am referring to any iPhone or iPad OS device. This
includes the iPod touch. In addition, when I say Macintosh HD, yours may have been named

something different.

What I Won’t Teach You
With your Xcode, Interface Builder, and iPhone/iPad Simulator tools installed and ready
to access easily, you’re ready to roll. But wait! You need to know where we’re going.

First, though, let me say something about where we won’t be going—what I will not be
covering. I will not attempt to teach you how every line of code works. Instead, I will take
a subsystem approach, indicating which pieces or sections of code will serve you in
which situations.

While this book is designed to impart to you, the reader and programmer, a
comprehensive understanding and ability, we will be dealing in molecules rather than
atoms or subatomic particles. The emphasis will be on how to recognize general
attributes, behaviors, and relationships of code so that you need not get bogged down
in the symbol-by-symbol minutiae. I will get you to a place where you can choose those
areas where you may want to specialize.

Computer Science: A Broad and Diverse Landscape
Consider this analogy: suppose that the iPhone/iPad is a car. Most of us drive cars in
the same way that we use computers. Just as I would not attempt to teach you how
every part of the car works if I were giving you driving lessons, I would not—and will
not—approach iPhone and iPad programming with fundamental computer engineering
as the first step.

Even great mechanics who work on cars every day rarely know the fundamental physics
and electronics behind the modern internal combustion engine, not to mention all the
auxiliary systems. They can drive a car, diagnose what’s wrong with it when it needs
servicing, and use their tools and machines (including computers) to repair and tune it
optimally. Similarly, clever programmers who create the apps for the iPhone and iPad
rarely know the fundamental coding and circuit board designs at the root of the Apple
platforms. Nevertheless, they can use these devices, they can envision a new niche in

CHAPTER 1: Before We Get Started 18

the broad spectrum of applications needs, and they can use their tools and
applications—residing on their desktops and laptops—to design, code, and deliver their
ideas to the market.

To continue with this analogy, programming the iPhone or iPad is like playing with the
engine of your car—customizing it to do the things you want it to do. Apple has
designed a computing engine every bit as fantastic as a V8 motor. Apple has also
provided a pretty cool chassis in which we can modify and rebuild our computing
engine. However, we have restrictions on how we can “pimp” our iPhone/iPad cars. For
those of you who have never pimped a car, I will demonstrate how to maximize creative
possibilities while honoring these restrictions.

I’m going to show you, without too much detail, how to swap oil filters, tires, seats, and
windows to convert your vehicle into an off-road car, a hot rod, a racing car, or a car
that can get us through the jungle. When you’ve mastered this book, you will know how
to focus on and modify the engine, the transmission, the steering, the power train, the
fuel efficiency, or the stereo system of the car.

Why Purgatory Exists In Objective-C
My Assumption: you’ve never worked on a car, and you’ve never gotten grease on your
hands, and you want to pimp one of the world’s most powerful automobiles—with a
complex V8 engine. I’m going to show you exactly how to do this, and we’re going to
have fun doing it!

First, you need to know a little about how we even came to have the souped-up car with
the V8—that is, the iPad. In 1971, Steve Jobs and Steve Wozniak met, and five years
later they formed Apple, producing one of the first commercially successful personal
computers. In 1979, Jobs visited Xerox PARC (Palo Alto Research Center), and secured
the Xerox Alto's features into their new project, then called the Lisa. Although the Alto
was not a commercial product, it was the first personal computer to use the desktop
metaphor and graphical user interface (GUI). The Lisa was the first Apple product with a
mouse and a GUI.

In early 1985, Jobs lost a power struggle with the Board of Directors at Apple, resigned
from the company, and founded NeXT, which was eventually bought out by Apple in
1997. During his time at NeXT, Jobs changed some critical features of the code on the
Macintosh (Mac) to talk in a new language—a very intense but beautiful language called
Objective-C. The power of this language was in its ability to efficiently use objects.
Rather than reprogramming code that was used in one portion of the application,
Objective-C reused these objects. Jobs’ brain was on overdrive at the time, and this
incredible code took this new language of Objective-C to new heights. His inspiration
was fused into the guts of the Mac by creating a metalanguage we call Cocoa. A
metalanguage is a language used to analyze or define another language. As I’ve
indicated, Objective-C is a very challenging beast, and you can think of Cocoa as the
linguistic taming of the beast, or at least the caging of the beast.

CHAPTER 1: Before We Get Started 19

As an “absolute beginner” to the world of programming, you cannot be expected to be
concerned with the subtleties of coding language distinctions. I am simply giving you an
overview here, so that you will have a rough historical context in which to place your
own experience. The main point I’m making here is that Objective-C and Cocoa are very
powerful tools, and both are relevant to the programming of the iPhone/iPad.

Houston, We Have a Problem
This is the essence of the challenge that intrigued me, and led to the design of my
original course. How can one teach non-engineering students, perhaps like you,
something that even the best engineering students struggle with? At the university level,
we typically have students first take introductory programming classes, and then
proceed to introductory object-oriented programming, such as C# or C++.

That being said, we are going to dive head on into Objective-C! At times, I’m going to
put blindfolds onto you; at other times, I’m going to cushion the blows. There will be
times when you may need to reread pages or rewind video examples a few times—so
that you can wrap your head around a difficult concept.

How We’ll Visit Purgatory Every Now and Again
At specific places in my courses, I know that half the class will immediately get it, a
quarter will have to sweat over it before they get it, and the remaining quarter will
struggle and give up. This third group will typically transfer out of engineering and take
an easier curriculum. I know where these places are, and I’m not going to tell you. I’ll
repeat that. I will not tell you.

Don’t worry, I won’t allow you to disturb a hornet’s nest (of Objective-C issues) and get
stung to death. Nor will I mark off those concepts that you may find difficult. I’m not
going to explain this now. Just accept it! If you just relax and follow my lead, you’ll get
through this book with flying colors.

When you do find yourself in one of those tough spots, persevere. You can always
reread the section, rewind the video examples, or—most importantly—go visit the
Forum where many people, including myself, are often online and ready to help you
immediately. We may refer you to somebody else's solution or we may help you
directly. So go to the forum, say "hello" to the crowd, and become immersed by first
seeking help from others and then going back to help others. The forum is located at:
www.rorylewis.com/ipad_forum/ or bit.ly/oLVwpY. See Figure 1–20.

CHAPTER 1: Before We Get Started 20

.

Figure 1–20. Visiting the Forum can help if you find yourself in a tough spot.

Looking Forward… Beginning iPhone 4 Development: Exploring the
iPhone SDK
Down the line, some of you may want to continue your iPhone and iPad programming
adventure by reading Dave Mark and Jeff Lamarche’s book, Beginning iPhone 4
Development: Exploring the iPhone SDK (Apress, 2009). Remember the analogy of
becoming a mechanic for an automobile with a V8 engine mounted on a basic chassis?
Their book presumes that the readers know what a carburetor is, know what a piston is,
and that they can mount racing tires and super fly rims on their friends’ pimped-up
wheels.

In other words, they assume that you understand the fundamentals of object-oriented
programming: that you know what objects, loops, and variables are, and that you are
familiar with the Objective-C programming language.

On the other hand, I assume that you don’t know, for example, what a “class” is, or what
a “member” or “void” is. I imagine that you have no idea how memory management
works on an iPhone/iPad and, furthermore, that you never had an interest—until now—in
understanding an array, or an SDK.

CHAPTER 1: Before We Get Started 21

What You Will Learn
When students start a challenging class, I have found that it works wonders to have
them create something really cool, and with relative ease. At each stage of this process,
I will typically present an example that you can read, see, and digest right away. Later
on, we will return to analyze some of the early steps and go into more detail. I will
explain how we accomplished some task or action the first time without even knowing it.
Then, by comparing the first time through with subsequent modifications, you will learn
how to tweak the program a little here, a little there. This way, you’ll stay on track—
motivated and inspired to absorb the next new batch of tricks, lessons, and methods.

Creating Cool and Wacky Apps: Why I Teach This Way
You’ve heard the bit about how we best remember things: doing is better than seeing,
which is better than hearing, and so on. Well, I know that students love humor—and
guess what! We remember funny stories and lessons much better than we remember
dull and boring ones. I have found that, without exception, when students work on code
that is fun and wacky, they tend to spend much more time solving it.

The more we apply ourselves mentally toward the solution of a problem, the more
neural connections are made in our brains. The more neurons we connect, the more
we remember and—most importantly—the less apt we are to waste time on ineffective
methods.

The more time we spend on a particular topic, the more chance there is that you will
experience gut feelings about whether a particular methodology for solving a project is
on track or not. So, as we proceed, be aware that I am employing humor to burn
computer science and Objective-C concepts and methods into your brain without your
exerting any conscious effort.

It is common for my students to contact me after receiving a difficult homework
assignment. First, they’ll send me a tweet asking if they can Skype me. One particular
night, I was playing chess with a colleague when I received a tweet asking if I was
available. “Of course,” I responded. I warned my colleague, also a professor at the
University of North Carolina, that students he knew were about to appear on Skype.
When they buzzed in, sure enough, they were four of my electrical engineering students,
wide-eyed and smiling. “Hey, Dr. Lewis, we finally got it, but Dude! The last method you
assigned...”

When we finished our conversation, and I turned off my Mac, it was 12:30 a.m. My
colleague asked, “Rory, I never called a professor this late in the evening—much less
after midnight! Shouldn’t they ask these questions during office hours?!” He was
probably right, but after thinking about it for a minute I replied, “I’m just happy that
they’re working on my wacky assignment!” As we set up the next chess game, he
murmured something about how I might be comfortable in the insanity ward.

CHAPTER 1: Before We Get Started 22

The point is that I want you to read this entire book. I want you to work all the examples
and to feel elation as you complete each assignment! I have done everything I can to
make this book enjoyable. If you choose to engage with the ideas contained herein, this
book will change your life!

By the way, successfully navigating these lessons will make you a certified geek.
Everybody around you will sense your growing ability and will witness your
transformation; as a result, they will seek you out to request that you write apps for
them.

Evangelizing to Your Grandmother… What You Coded Is Crucial!
It’s important that you not let complex code turn you inside-out. Just two minutes ago, a
student walked into my office—so confused that he couldn’t even tell me what it was he
didn’t know. He said something like, “My second order array worked fine in-line, but not
as a class or a method.” I said, “No, that’s too complex! Here’s an easier way of saying
it…”

I described how he had a long line of “stuff” going in one end and being spat out the
other—and it worked really well. But, when he put it in a method, he couldn’t see the
start of the long line of stuff; when he put it in a class, he couldn’t see any of the stuff!”

“Wow! I know what I did wrong, Dr. Lewis. Thank you!” Now, as I type this, he’s
explaining it to his two buddies who came in yesterday and tried to ask the same
question. Don’t worry. The confusion that drove these questions—such as the
distinctions between “classes” and “methods,” and other coding entities—will be
covered later in this book. All in good time!

If you can keep your feet on the ground and transform complex things into simpler
ideas, then you can remember them—and master them. Grasp this concept, and you
will be able to convert your far out ideas into code—and who knows where that will take
you! This is why I am so determined to impart to you the ability to convert things your
grandmother wants to be able to do into iPhone and iPad programming language.

How Does This All Work?
Before we start our first program in Chapter 2, it’s critical that you are able to step back
and know where we’ve been, where we are now, and where we will go next. In other
words, you may ask yourself: How do I convert an innovative idea for an iPhone or iPad
app into money in my back pocket? How does this work? Does it even work or are all
those crazy stories of people making massive amounts of money from iPhone and iPad
Apps untrue?

So, are these stories of Apps-to-Riches true? This is easy to answer. As of March 02,
2011, when Steve Jobs revealed the iPad 2, he announced that Apple had paid a
cumulative $2 billion to developers for apps sold in the App Store (see Figure 1–23, #9).
Note that only eight months earlier Apple announced that it had paid out $1 billion to
iPhone and iPad app developers since the App Store launched in July 2008.

CHAPTER 1: Before We Get Started 23

A sum of $2 billion has never been paid to programmers before. You are entering a
booming, epic event in computers and technology. Reading this book and learning how
to program apps is going to change your life. During this new post-PC era, Apple has
single-handedly created a never-before-seen environment for developers to take
advantage of these more personal and powerful machines. This vibrant community of
programmers that you are about to enter has helped push Apple’s count of apps up to
more than 350,000. But still you may ask: How does this work?

I have created map of how the innovative process works and you need to understand
this to know where you are going with this book. Looking at Figure 1–21, I want you to
start by looking at …err…YOU! Yes, that’s you there, at #1, sitting next to a bag of
money represented by #11, which is the 11th of 12 steps. Starting at #1, which is you
with your brilliant innovative idea, you take your idea to #2, which represents the OSX on
your Mac. Once you open your Mac, you are accessing the SDK (#3), which includes the
iPhone/iPad Simulator (#4), Interface Builder (#5) and Xcode (#6), all lying on a gray strip
that is part of your SDK iOS. These items (#4 to #6) will be explained in detail later; 90
percent of this book deals with the items in this strip. The only thing not covered here is
where you convert your idea into code by programming in Objective-C.

Figure 1–21. The iPhone and iPad app programming landscape

CHAPTER 1: Before We Get Started 24

NOTE: In Figure 1–21, the gray box contains the Interface Builder (#5) which technically is not
supposed to exist in these latest versions of Xcode. The problem is that it’s still there, just in the
background and we still use it extensively in Storyboarding (Chapter 7) onwards. So, be aware

that some will say Interface Builder is gone (they’re wrong) and that we are not using it (wrong
again. We do after Chapter 7). To the left of this area is where you’ve already been: Remember
that you have a Mac with an OSX (#2) purchased after 2006 and running Mac OS X 10.7.2 or

higher, and we’ve just walked through the process of downloading the iPhone and iPad SDK (#3)
(Figures 1–6 through 1–20). We have also extracted the iPhone/iPad Simulator (#4), Interface

Builder (#5) and Xcode (#6) and positioned them onto your dock (Figure 1–12).

In Chapter 2, we will start using Xcode (#6), Interface Builder (#5), and the iPhone/iPad
Simulator to turn you into a bona-fide geek! In your geeky state you will test your Apps
on real iPads (#7) and real iPhones (#8). Once you know that your code works
fanatabulously (that’s my geekdom word), you will upload your app to the App Store (#9)
where people with money (#10) will download your app by paying the App Store money.
The money that is received by the App Store is split up, with two-thirds of it going to you
and one-third going to Apple.

We’re going to run all of the programs we create by compiling them to one of several
possible locations—the icons for these are to the right of the central gray area. The
primary location will be the iPhone/iPad Simulator. The secondary locations will be your
local iPhone and/or your local iPad. Lastly, we could use iTunes to upload your iPhone
and/or iPad App to the App Store, where people can purchase it or download it for free.
This is where we are going.

The two central objects in Figure 1–21, as you now know, are where we will spend the
vast majority of our time within this book. We’ll be using Xcode to type in code, just like
the serious geeks do. I’ll show you how to operate all of its features, such as file
management, compilation, debugging, and error reporting. Interface Builder is the cool
way Apple allows us to drag and drop objects onto our iPhone/iPad apps. If you want a
button, for instance, you simply drag and drop it where you want it to be located on the
virtual iPhone or iPad.

Essentially, we’ll use Xcode to manage, write, run, and debug your app—to create the
content and functionality. We’ll use Interface Builder to drag and drop items onto your
interface until it looks like the colorful and cool application you envisioned—to give it the
style, look, and feel that suits your artistic tastes.

After we integrate all of the interface goodies with the code that we wrote in Xcode, we
might get advanced and tweak the parameters that deal with memory management and
efficiency. But that’s jumping too far ahead in our story.

CHAPTER 1: Before We Get Started 25

Our Road Map: Using Xcode and Interface Builder
Very often, authors of programming books do the same old thing. First, they present a
very simple, ubiquitous “Hello World” application and then they throttle the user with
intense code that loses a great many readers and students straight away. Utilizing
Objective-C (being run in Cocoa) along with the iPhone and iPad SDK, I’ve had to really
rethink this introductory process. I have identified four challenges here:

� Teaching you “Hello World” and then going into advanced
technologies and APIs would be counter-productive.

� It makes no sense to randomly choose one of the many ways to say
Hello to the world from your iPhone or iPad. They are all going to be
necessary to have in your toolkit at a later date.

� Trying to write a simple “Hello World” application in Objective-C is
more involved than the beginner is ready for, unless we break up the
process into stages or layers.

� Deciding how to progress slowly, get comfortable, and become
familiar with the nomenclature and the process, and then get to
Storyboarding and other more advanced concepts.

My solution to overcoming these issues is simple. I’ll show you how to say hello to the
world from your iPhone/iPad in not one, not two, but quite a few different ways. Each
time, we’ll go a little bit deeper, and we’ll have a blast as we do so.

Each time you travel down the road into the land of Xcode, you are immediately asked
what type of vehicle you’d like to drive. A Jeep? A race car? A convertible? By focusing
on basics, I am going to show you how to “drive” in Xcode. The objective here will be to
gain competence and confidence in whatever style of vehicle we must access. So, let’s
take a look at exactly what these different vehicles have to offer. Here, I would like you
to follow along with me.

Getting Ready For Your First iPhone/iPad Project
Assuming that you have already downloaded the SDK and installed Interface Builder,
Xcode, and the iPhone/iPad Simulator, open up your Mac and click the Xcode icon on
your dock. Your screen should look similar to Figure 1–22. Up pops the Welcome to
Xcode window; it includes all of your iPhone and iPad resources.

CHAPTER 1: Before We Get Started 26

Figure 1–22. After clicking the Xcode icon, you will see the “Welcome to Xcode” screen.

As indicated by arrow 1, make sure you keep the "Show this window when Xcode
launches" option checked. You'll find many valuable resources here that will come in
handy. I suggest that, after you have completed Chapter 4, you take a little time to
explore these resources—give them a test drive, so to speak. This practice will open all
kinds of creative doors for you.

Without actually starting a new project, let’s walk up to the showroom floor and check out
some of the models we might be driving. To open a new project in Xcode, click on the
Xcode icon. When it opens, you can do one of two things: either click on the number 2
and then number 3 arrows as indicated on Figure 1–22, or enter Command + Shift + N
(��N), simultaneously. This will open a new window that showcases the different types
of vehicles that you can drive in the land of Xcode.

CHAPTER 1: Before We Get Started 27

Figure 1–23. The new window that showcases the different types of vehicles that you can drive in the land of
Xcode.

Figure 1–23 displays the seven vehicle models: Master-Detail Application, OpenGL
Game, Page-Based Application, Single View Application, Tabbed Application, Utility
Application and Empty Application.

Early on, most of our travel in Xcode will be by one of the latter two styles shown.
Switching back to computer terms, View-based Application and Window-based
Application are the structures that we will utilize in the basic development cycle for the
iPhone/iPad. It is here that we will access cool gadgets and components.

Don’t worry: I haven’t forgotten our goal of creating a simple “Hello World” application.
We will say hello to the world while using a number of the six options, and you will
become familiar with each. Before we drive our car, let's make sure the key works in the
ignition—or in computer land, let's check that the iOS compiles a blank document and
brings up the iPhone/iPad Simulator. Click on Single View Application, as shown in
Figure 1–23. Looking at your screen, you should see something very similar to that of
Figure 1–24. First call it "test," as indicated by arrow 1, then make sure you select
iPhone as depicted by arrow 2, and then click on the "Next" button as indicated by
arrow 3.

CHAPTER 1: Before We Get Started 28

Figure 1–24. Let’s go for a test drive.

If your program does not default to saving it onto your Desktop, then navigate your way
to your Desktop and the click on the “Create” button, as illustrated in Figure 1–25.

Figure 1–25. Navigate to your Desktop and create your test app.

CHAPTER 1: Before We Get Started 29

Figure 1–26. The initial Integrated Development Environment (IDE) screen.

Figure 1–26 shows the initial view of Xcode 4’s integrated development environment
(IDE). We will not get tangled up in explaining everything right now. All I want you to do
is to click on any of the any of the files that end with an ".h" or an ".m". Now click on the
testViewController.h file, as indicated by the arrow in Figure 1–26. This will bring up
the screen shown in Figure 1–27, where I want you to run your blank app by clicking on
the "go" button as indicated by the arrow. Oh Yeah! The iPhone in the iPhone/iPad
Simulator pops up, as illustrated in Figure 1–28. Congratulations! You've loaded Xcode
and you've taken it for a test drive. It's time to realize that you're just about to embark
into a whole new world.

CHAPTER 1: Before We Get Started 30

Figure 1–27. Run it!

Figure 1–28. Your first test-drive.

CHAPTER 1: Before We Get Started 31

The Accompanying Screencasts
All figures shown in this book have been captured from my screen as I write the code—
in a screencast. For example, the helloWorld_001 example in Chapter 2 is located at
www.rorylewis.com/docs/02_iPad_iPhone/06_iphone_Movies/002_helloWorld_
002.htm or bit.ly/quO4ow.

It is not necessary to view the aforementioned screencast, since I have included all the
instructions in Chapter 2. However, I’ve heard students say that it’s fun to retrace what
they heard in the lesson. These video examples tend to be rather condensed. If you
would like to follow along with the screencasts, please note these recommendations:

� Stop the video when I get ahead of you. Rewind it and get back on
track with me.

� After you can complete the project in full, save the screencast to
another folder. Then, go through it again with fewer stops until you can
master it… and compile it.

� For the competitive among you, perhaps a goal is to execute the code
in time with me as I go. Generally, though, I want you to feel good and
comfortable with programming at a high level. It would behoove you to
practice this for all the examples in the book.

The Accompanying PDFs
I also provide a PDF version of the keynote slides that I give to my students at the
University of Colorado. These PDFs—which are not required, but merely supplemental—
show all the slides from this chapter. There are also links for those of you who want to
probe deeper into subject matter that is not covered in this book.

NOTE: You can access videos and supplementary materials at the www.apress.com web site.

Pretending Not to Know: The Art of De-Obfuscation
Before we begin in earnest, I want to reiterate that I am going to show you how to
program while knowing only the essentials. As we move forward, I will explain concepts
a little deeper. However, I will only do this once we’ve gotten your head wrapped around
the easy concepts. This is a new way of teaching, and I have had great success with it.

You may think I’ve completely lost my mind, but I ask you to follow my instructions
anyway. If you have a question that I don’t appear to address, trust me that it’s not
important at the time. We will cover it down the road!

CHAPTER 1: Before We Get Started 32

How We’ll Travel Through Each Step
This book is completely inclusive. Even though I provide video tutorials for the exercises
in this book, you don’t need any of it. You can read this book alone, without any Internet
connection, and everything that you need you can find within these pages.

So, now that you’ve finished checking your system parameters, signed up as an official
Apple developer, downloaded the SDK, extracted the essential tools, and configured
your dock, it is time to advance to Chapter 2 and create some code.

A LITTLE EXERCISE

Looking at Figure 1–28, you see that on the test drive we ended up with an iPhone popping up on the
iPhone/iPad Simulator. Well, what about the iPad? Well, that’s what I’d like you to do on your own. See if
you can get the iPad in the iPhone/iPad Simulator, as illustrated in Figure 1–29. The clues are seen in
Figure 1–24 and in Figure 1–29 where, under the test folder, is a brand new folder called test 2.

Figure 1–29. iPad2 in the iPhone/iPad Simulator.

33

 Chapter

Blast-Off!
The first program we shall attempt, as mentioned in Chapter 1, will be a basic and
generic “Hello World” application. This Blast-Off chapter emulates precisely what I have
found, through experience, to work very well in the lecture halls when teaching this
course. I use this simple, innocent, benign "Hello World App" as a basis to introduce
students to the most critical skill sets that they will use over and over again. As happens
with my own students, by the time you finish Chapter 2, you will know how to run your
first app in 3 different ways, according to each of the following sections:

2.1. iPhone Simulator.

2.2. iPad Simulator reading your iPhone environment (pseudo iPad).

2.3. iPad Simulator.

In my lectures, I want to keep the flow of adrenaline by continuously creating app after
app and getting that geeky feeling of conquering the world. Therefore, I leave §2.4 to 2.6
for a special Saturday class that is optional for students who want to create their own
business selling apps and making money. Likewise for you, the reader, I suggest that
you only do §2.1 to 2.3 and then go to Chapter 3, as this will keep the flow going. Our
first adventure with this new set of tools will be saying “Hello” to the world from the
View-based Application template in Xcode. Later, we will say “Hello” to the world from
the Navigation-based Application template, first in a very basic way and then with some
modifications.

Besides the information I present here in this book, including various screenshots, I also
offer you screencasts of myself going through each of the examples in this book.
Downloads for that will assist you in getting through this book, as will lecture notes, 3rd
party resources, and pertinent YouTube videos—all of which can be accessed by
clicking on the blue Xcode 4 icon located top center at: www.rorylewis.com.

2

CHAPTER 2: Blast-Off! 34

Running Your App on the iPhone Simulator
In this first example, we are going to click on a button that will have text appear above it
saying "Hello World."

Figure 2–1. Click the Xcode icon in your Dock to open it. You will be presented with the “Welcome to Xcode”
frame, as discussed in Chapter 1.

1. Before opening Xcode, first close all open programs so that you will be able to

optimize your processing capabilities and focus your undivided attention on this

new material. Press Command + Tab (����and then Command + Q (��� to

close everything, until only the Finder remains on your screen. Find and click the

Xcode icon in your Dock to open it. You will be presented with the Xcode

“Welcome” screen discussed in Chapter 1. See Figure 2–1.

CHAPTER 2: Blast-Off! 35

Figure 2–2. Name it hello_World_01 and use your name or company name for the Company Identifier. For the
Device, select iPhone.

2. Now open a new project in Xcode. The two ways to accomplish this are by using

keyboard shortcuts or by clicking your mouse. I strongly suggest that you use

keyboard shortcuts. These will save you time and make you feel like a pro. Be

aware that the best way to not get work as an iPhone and iPad app developer is

to use your mouse for functions that can be done via shortcuts. Using your

keyboard, press Command + Shift + N at the same time. These three keystrokes

appear in Figure 2–1 as ��N. (If you were using your mouse to open a new

project, you would choose Create a new Xcode project.) Select View-Based App

and then press Return (��. Name it helloWorld_01, enter your name, and select

iPhone, as depicted in Figure 2–2.

NOTE: My View-based Application template icon was highlighted by default; yours may not be.

Regardless, click on it, and save the new project to your desktop as helloWorld_01.

CHAPTER 2: Blast-Off! 36

Figure 2–3. Click the helloWorld_01 ViewController.xib to open the Interface Builder.

3. As soon as you save this project to your desktop, Xcode instantiates the

helloWorld_01 project environment, as indicated by the name on the top of the

window (see Figure 2–3). If this looks a bit scary, stay cool… don’t freak out! This

is Apple’s way of arranging all of the goodies that you will eventually use to write

complex apps. For now, just follow along and try to set aside all the questions you

may be asking. Xcode has created 6 files:

a. 2 classes that contain two files (a header file (.h) and an
implementation file (.m)). Two of them end in Appdelegate and two
of them end in ViewController. We will get back to this later. Right
now just know this: Each “class” is comprised of two files: a
header file and an implementation file.

b. 2 nib files (.xib).Don’t ask yourself what “nib” means yet. Just
open the file where you can see a visualization of your program. In
due time, you’ll get to know plenty about nibs.

As shown in Figure 2–3, double-click to open up the helloWorld_01
ViewController.xib (pronounced "nib") file that is located in the manila-colored

helloWorld_01 folder that is located inside of the blue Xcode folder located at the

top left-hand side of the Navigator Area of your Xcode environment.

CHAPTER 2: Blast-Off! 37

NOTE: There is a slight possibility that your Navigation Pane, which bears the folders seen in the
highlighted circle in Figure 2–3, is closed. This is not a problem. To open your utility area, go to
the upper left of the workspace window, which includes inspectors and libraries. Use the View

Selector in the toolbar to open and close the navigator, debug, and utility areas. You may also
need to again select the black folder icon called the Project Navigator located directly under the

“Run” button— it looks like the “play” button in iTunes.

Figure 2–4. Open the Utilities Pane by clicking on the Utilities Icon in the View Selector.

4. We need to open the utility area located to the right of the workspace window

(see Figure 2–4), which includes inspectors and libraries. Navigate to your View

Selector, which contains 3 icons, and select the far right icon called the Utilities

Icon.

CHAPTER 2: Blast-Off! 38

Figure 2–5. Drag out a label onto your canvas. Delete its text and center its content.

5. We now need to drag some goodies from the library onto our canvas. First,

however, let’s think about what we're going to do. We are going to click on a

button that will have text that will appear above it saying "Hello World!" Therefore,

we need something to click on; that will be a button and we need a label that will

contain the text that says "Hello World!" Easy! First drag a label onto your canvas,

as shown in Figure 2–5. Move it to a height that suits you and then move it

horizontally until the blue center line appears. At this point, you will let it go, nicely

centered in the middle of your canvas. Now, this label will eventually contain the

text "Hello World!" so drag the label's side handlebars out to the right and left to

make it a little larger, to about the same size shown in Figure 2–5. Now go to the

Text box and delete the text label so that it is blank, as shown in Figure 2–5.

Lastly, still looking at Figure 2–5, notice how my arrow is hovering over the

"centered text" icon. Do the same and click it so that when your "Hello World!"

text appears in the label, it will be nicely centered inside the centered label.

Beautiful. Now let's move onto the button.

CHAPTER 2: Blast-Off! 39

Figure 2–6. Drag a button onto the canvas.

6. Drag out a button and place it below your text, moving it left to right until the center

lines tell you it's centered. At that point, you let it go, as shown in Figure 2–6.

Immediately double click on it and type the text "Press Me" (see Figure 2–7).

Figure 2–7. Close the Utilities folder, save your work, and open the Assistant, as indicated by the arrow.

CHAPTER 2: Blast-Off! 40

7. We are finished loading our two items onto the canvas, so go to the Utilities

Folder again and close it by clicking on it, as shown in Figure 2–7. As you are

finished with this file, you may also want to save it by using the shortcut

Command + S, (�S).This is the preferred method of saving—rather than using

your mouse. Now we need to open up the Assistant in the Editor Selector, located

to the left of the View Selector. This is indicated by the arrow in Figure 2–7.

Figure 2–8. Control-drag from your Label to create an Outlet.

8. For those readers who once dabbled in Xcode before Xcode 4 came out, this next

section is the most radical and cool departure from all the previous versions of

Xcode. For those newbies, don't think twice about it; let’s just move forward in

blissful ignorance. We are going to be doing something here in Step 8 that is new,

called the Open URL contextual menu. We want to tell the label to print out text

that says "Hello World!" when we push the button. We call these things "outlets"

and we used to have to code these from scratch. In Xcode 4, however, we have

the source code on the right of our screen, with the graphical builder in the center,

and we can simply control-drag (holding the control key while dragging your

mouse) connections. First, add the squiggly brackets after the UIViewController

and hit return so it creates the end bracket and some space. Now, click on the

label on your canvas and control-drag over from your label to any place in-

between the two squiggly brackets of your @interface method, as shown in

Figure 2–8 (we're in the header file here). Once the black label appears saying

Insert Outlet, release your mouse.

CHAPTER 2: Blast-Off! 41

NOTE: The Assistant uses a split-pane editor, which is where much of the Xcode 4’s dazzle
appears. Remember that you can open the Assistant automatically by Option-clicking a file in the

project navigator or symbol navigator pane.

Figure 2–9. Make the IBOutlet a label.

9. As mentioned in Step 8, we want the connection type to be an Outlet—and the

people at Apple figured this is what you probably need—so by default, it appears

so we keep it selected. Don't worry about Object and File's Owner right now. You

can name the label anything you like, but for now, name it label as I have (see

Figure 2–9), so your code will look the same as mine when and if you compare

yours to my video, the images in this book, or the code you download from my

website. Don't worry about the UILabel for now either. Now hit return (�) and you

will see that the code IBOutlet UILabel *label; magically appears. You can see

it highlighted in the text below. We will discuss this in detail in "Digging the Code"

at the end of this chapter. For now, let’s move on.

#import <UIKit/UIKit.h>

@interface helloWorld_01ViewController : UIViewController {

 IBOutlet UILabel *label;
}

@end

CHAPTER 2: Blast-Off! 42

Figure 2–10. Control-drag from your button to create an Action.

10. Now we need to place some code behind the button we dragged onto the canvas

so it can do the "action" we want it to do. In our case, we want the button to tell

the label we connected in Step 9 to say stuff. We call this "declaring an action."

For now, we just need to associate the button with action code; we'll later define

exactly what these actions will be. So just as we did before with the label, click on

the button in your canvas and control-drag over from your button to just below

the closed squiggly bracket, as shown in Figure 2-10. Once the black label

appears saying Insert Outlet, Action… release your mouse.

CHAPTER 2: Blast-Off! 43

�

Figure 2–11. Creating your actions for your button.

11. As mentioned in Step 10, we want the connection type to be an action, so you will

need to change the connection type from an Outlet to an Action by selecting it

from the drop-down menu. Again, don't worry about Object and File's Owner right

now. Name it "button” and ignore everything else for now. This is illustrated in

Figure 2–11.

Figure 2–12. Completing your ViewController’s header file.

CHAPTER 2: Blast-Off! 44

12. Hit return (�) and you will see -(IBAction)button:(id)sender; which appears as

shown below and in Figure 2–12. Yes, we will discuss this in detail in "Digging the

Code" at the end of this chapter. Right now, let's keep moving.

#import <UIKit/UIKit.h>

@interface helloWorld_01ViewController : UIViewController {

 IBOutlet UILabel *label;
}
- (IBAction)button:(id)sender;

@end

Before moving on to Step 13, we need to look around and see where we're at.
Remember, back in Step 3, I said that we have 2 classes that contain two files (a header
file (.h)and an implementation file (.m)). Let me talk a little bit about the difference
between these two files: one with the .h suffix, the other with the .m suffix.

The ViewController manages the interactions your code has with the display, and it
manages the user’s interactions with your code. It contains a view, but it is not a view
itself. You only have a minimal understanding of the ViewController class, so far. What I
want you to get, though, is that, as mentioned in Step 3, every class consists of two
parts: the header (.h) file and the implementation(.m) file.

I want you to read this next part aloud, and I don’t care if you’re in the bookstore! OK?
“We tell the computer in a header file what types of commands we will execute in the
implementation file.” Now, let’s say it again in context with our code: “We tell the
computer in the helloWorld_01 ViewController.h file what types of commands we will
execute in the helloWorld_01 ViewController.m file.”

Well, admit it—that wasn’t so bad!

Let's get back to the example:

CHAPTER 2: Blast-Off! 45

Figure 2–13. Switch to the Standard Editor.

13. To move on to the implementation file from this point, get into the habit of first

switching views and going from the Assistant Editor (remember we did this in

Steps 2–7) to the Standard Editor. To do this, go to the Editor Selector located

to the left of the View Selector and click on the Standard Editor, as shown in

Figure 2–13.

Figure 2–14. Open your helloWorld_01 ViewController’s implementation file.

CHAPTER 2: Blast-Off! 46

14. Once in the Standard Editor, select your ViewController's implementation file, as

shown in Figure 2–14.

Recall how, in Step 10, we "declared an action" when we control-dragged the button
into our header file's code? Remember that in the header file we "declare" actions, while
in the implementation file we "implement" actions. Here in your ViewController's
implementation file, we are going to implement the actions that we want to happen
when somebody presses on the button. Specifically, we want it to say, in the label,
"Hello World!" "Mmm, how do we do this?" you may ask. Well, we need to type your
very first code to start your journey towards geekdom. Yup, you're going to code text.
Take a deep breath and follow along.

Looking at the text of your helloWorld_01 ViewController's implementation file, we see
that the clever people at Apple programmed Xcode to already write a number of
methods that need to happen in the background just to get your app with label and
buttons running on your iPhone. For now we will ignore these methods, starting at the
first one named dealloc, which deallocates memory and going down to the end until
we get to one named - (IBAction)button:(id)sender. Mmm… wait a minute, that’s
the code that appeared in Step 12, right? Right? Well, almost. That code ended with a
semicolon ";" because, in the header file, we declared this action. Xcode knows we now
need to implement this action in the implementation file, so it rewrites it for us, not as a
declaration but as a method. It does this by substituting the colon with squiggly
brackets. You need to remember this rule. You will use it over and over again.

NOTE: A declaration in .h becomes a method in the .m file by replacing the colon with squiggly

brackets!

After reaching the implementation of your action that you declared in the header, I want
you to place your cursor in between the two squiggly brackets, as indicated in the code
below. Click there and read below.

#import "helloWorld_01ViewController.h"
@implementation helloWorld_01ViewController
- (void)dealloc

- (IBAction)button:(id)sender {
}
@end

CHAPTER 2: Blast-Off! 47

Figure 2–15. As you enter the text “label.text” auto completion suggests code. If you agree with the selection,
then press the Tab (�) key and Xcode places the command into your code.

15. The code I want you to type is label.text = @"Hello World!" but it’s not that

straightforward because, as you type, something really cool happens. Xcode

figures out what you’re probably going to want to code in its auto completion

window, as illustrated in Figure 2–15. If you agree with the selection, then press

the Tab (�) key and Xcode places the completed, correctly typed and spelled

command into your code. If the one it suggests is not the correct one, but you see

the correct one a few commands down, just arrow down (�) until you reach the

correct selection and then press �. Cool, huh? After you have written

label.text, continue on to Step 16.

CHAPTER 2: Blast-Off! 48

Figure 2–16. Type in the text you want the label to say after the “@” directive.

16. Now we need to type @"Hello World!"; which is what we want to say. Your code

should look like that depicted in Figure 2–16. If you wanted to say "I can feel I'm
becoming a geek!" instead, then type label.text = @"I can feel I’m becoming
a geek!";.

Figure 2–17. Save your work: �S.

CHAPTER 2: Blast-Off! 49

17. Save your work �S, as shown in Figure 2–17. Please try not to use your mouse;

try to make a new habit by always pressing the Control+S (�S) every time you

want to save. This will make you feel and look really smart and geeky. You may

also want to check that your header files and nib files are also saved because,

during the course of reading these instructions, you may have had to go back and

change files. Well, you need to go back and save them. So go ahead and save

everything now. If the file is highlighted in gray, then it means you need to save

them too.

Figure 2–18. Run it!�R.

18. Press �R and run it, as described in Figure 2–18.

As Figure 2–19 shows, the iPhone simulator loads your very first app, waits for you to
press the button, and then says "Hello World!”.

CHAPTER 2: Blast-Off! 50

Figure 2–19. The iPhone simulator, loading and waiting for the user to press the button, and then saying “Hello
World!”

Congratulations, my friend! You have really done something very special today. I know
you may have cursed me a couple of times, or floundered here and there, but in getting
here you've just done something very special with your life. You've gone from being a
user to a coder. You've taken that very difficult leap from being a user of technology to a
coder of technology. We still have a few things to do, so take a break. Walk the dog; do
something that does not involve technology, even if it’s walking out to the street. Take a
minute to realize that you’re beginning a long journey. It will be difficult at times, but it’s
one wherein you can hold your head high and say: “Yeah, I code iPhone and iPad apps!”

Running your app on the iPad Simulator that reads
your iPhone environment
Two methods are available for running your iPhone app on the iPad simulator:

� First we'll change the environment from the iOS simulator, so, while
still in the iPhone simulator, I want you to click on Hardware � Device �
iPad so that we can see how your first app runs if it were being run on
an iPad (see Figure 2–20).The result is the display presented in Figure
2–21.

CHAPTER 2: Blast-Off! 51

Figure 2–20. Let’s see how your iPhone app runs on the iPhone simulator.

Figure 2–21. Initially it appears in the iPhone mode. Click on the zoom and view it full screen as shown here.

CHAPTER 2: Blast-Off! 52

� The second method is achieved by changing the output device from
within Xcode. To do this, I want you to close your iPhone simulator by
first making sure you're in the simulator and then entering Command +
Q (�Q). You should now be back in Xcode.

NOTE: If you're not, then it means you've had other programs up, which is something I asked
you to not do. In order for you to follow along exactly, you really need to keep your desktop and

running programs identical to how I am teaching you.

a. So now with Xcode open, change your scheme to the iPad
simulator by clicking on the Scheme drop-down menu on the
upper left hand portion of your ribbon and select iPad Simulator,
as shown in Figure 2–22. Right now it says iPad 4.3 Simulator, but
by the time you read this book it probably will be a higher number.

b. Now enter �R to run it. Again, you will come up with the same
instances displayed in Figure 2–21.

Figure 2–22. Second method of running your iPhone app in the iPad simulator.

CHAPTER 2: Blast-Off! 53

Running your App on the iPad Simulator

helloWorld_02 – iPad Simulator
At the beginning of this chapter, I made a deal with you. I said we were going to take a
very simple app and run it in all the different forms possible. Specifically, I said we would
run your first app on:

� §2.1. The iPhone Simulator: (� see Figure 2–19).

� §2.2. The iPad Simulator reading the iPhone environment (� see Figure 2–21).

� §2.3. The iPad Simulator.

At this point, you have already completed the first two goals of running it on the iPhone
simulator, with the latter being the iPad reading an iPhone app. But this is not really an
iPad app. A real iPad app is made specifically for the iPad and cannot be run on an
iPhone because all the graphics and sizes of screens are specifically designed for the
iPad and are too large to be viewed on the iPhone.

Looking at Figure 2–21, you can see that the first image on the left shows your iPhone
app inside the iPad and scaled exactly to the size of an iPhone. When you clicked the
zoom, it simply zoomed and expanded everything larger to fit inside the iPad. Well, this
is what I refer to in class as being "pseudoiPad,” as it’s not the real deal. So let’s go
ahead and show you how to make an app specifically for the iPad.

1. We will need to close your helloWorld_01 app in Xcode by entering �S to save it

and then �Q to quit Xcode. You should now be looking at your empty desktop,

except for the helloWorld_01 folder right under your Mac hard-drive icon. Good.

We are now going to run helloWorld_02, which will be exactly like helloWorld_01

except for a couple of steps.

2. Open up Xcode and enter Command + Shift + N at the same time. Recall that

these three keystrokes appear in Figure 2–1 as ��N. Select View-Based App

and then press Return (�). Now stop and look at Figure 2–23: in Figure 2–2, we

named it helloWorld_01. However in Figure 2–23, we name it helloWorld_02.

Most importantly, in Figure 2–23, we select iPad, NOT iPhone as we did in

Figure 2–2. With this done, I want you to try remember all of the steps we

performed in helloWorld_01 until you run it, whereupon you will come up to only

the right hand image of Figure 2–21.

CHAPTER 2: Blast-Off! 54

Figure 2–23. Open Xcode, select the Navigation-based Application template, and then save a new project file to
your desktop.

Huh? Yes that’s what I said: I make my students in the lecture hall redo helloWorld all
over again, but now as a "real" iPad app and I encourage them to try and not peek at
their lecture notes, to try doing it on their own. If you have to look at your notes, or this
book, that’s fine. But try to do it over and over again, until you can do this without
looking at any notes at all.

Running your App on Physical Devices

TIP: You may want to skip this section. Read the following carefully.

After you have set up your device and profiles, you can continue on with steps §2.4,
running your app on your iPhone, §2.5, running your app on your iPad based off of an
iPhone environment and §2.6, and running your app on your physical iPad.

Whatever your decision is, you will need to first do the following organizational chores.
Right now, on your beautiful clean open desktop, you only have two folders containing
your 2 helloWorld programs. We need to make a place to store all of your programs that
will make sense to you as you continue to read this book. Create a folder in your
Documents folder called My Programs, and then save the files named helloWorld_01
and helloWorld_02 there by dragging them to that folder. Now, with a fresh, clean

CHAPTER 2: Blast-Off! 55

empty desktop, close all programs. Press Command + Tab and then Command + Q to
close everything until only the Finder is left on your screen

NOTE: For students in my class or at other universities, I or your professor has already taken

care of this. If you are not a student and did not pay your $99 in step 5 in Chapter 1, or/and you

do not have an iPhone or iPad, then skip ahead to Chapter 3.

Digging the Code
At the ends of chapters, I include this section called "Digging the Code," wherein I start to
feed you insights into the meaning of much of the code that miraculously appeared or that
I just instructed you to type. What I have found, though, is that the human brain makes its
own associations if it keeps on doing something over and over again and certain
outcomes occur each time we repeat that action. I have found that if I first allow students
to fly through huge amounts of code in sheer ignorant bliss, it does a great deal of good
because it allows their brains to make connections that only they can make. So here in
"Digging the Code" I start feeding you little snippets, just the right ones that connect the
dots as to why we put this code here or that code there. Later, as we get towards the end
of the book, you will feel totally comfortable really digging the code and getting into it. For
Chapter 2, however, we have not repeated enough actions for you to make your own
associations. So, for now, take a deep breath and I'll see you in Chapter 3.

57

 Chapter

Keep on Truckin’
Now that you’ve gotten your feet wet from programming your first two iPhone and iPad
apps, I want you to tell yourself that you have to keep on truckin’ with more apps, more
practice, and create a more natural connection of synapses in your brain. Initially, many
traditional Computer Science colleagues of mine had disdain for my approach of blindly
hauling newbie programmers through code without explaining it all. Over the years, I’ve
learned exactly when to tell you what’s going on and when to just jostle you through the
code. Most importantly, you need to keep on truckin’ and keep your brain dialed into
Xcode.

This third “Hello World” application introduces you to some cool new concepts such as
Strings, Delegates, and slightly more complex code. Remember that this is Objective-C;
it’s a pretty complex and difficult language, so I will explain only what I deem necessary.
This brings up a difference between Chapter 3 and Chapter 2. Recall that in Chapter 2,
when I mentioned digging the code, I said: “For Chapter 2, however, we have not repeated
enough actions for you to make your own associations.” Well, here in Chapter 3, we start
really getting into digging the code. So let’s get on with the next application. When it’s
done, take a break, and then be ready to go back and review lines of your input, as we
focus on certain portions of the code, and look at how it all works together.

Besides the information I present here in this book, including various screenshots, I also
offer you screencasts, which are available at my website. You can use the short URL, go
to rorylewis.com, as indicated below when you click on the Xcode 4 icon, and then go to
either video tutorial or downloads:

� Short URL: ow.ly/50ksH

� Manual URL: www.rorylewis.com

helloWorld_03 – An Interactive View-Based App
In your first two programs, helloWorld_01 and helloWorld_02, you said “Hello” to the
world using a view-based platform that housed a button. This third app will also be a
view-based app, but a little complexity will be added to it. When a user interacts with
this third app of yours, they will first be prompted to enter their name into a Text Field

3

CHAPTER 3: Keep on Truckin’ 58

object. Once they have entered their name into the Text Field object, and they press the
Press Me button, text will appear saying that the name entered is in fact the person
saying “Hello World!”

Before you get started with the next method, you need to save helloWorld_01 and
helloWorld_02 in a folder of your choice that is not on the desktop. Create a folder in
your Documents folder called “My Programs,” and then save the file named
helloWorld_01 there by dragging the entire folder inside your My Programs folder. Now,
with a fresh, clean, empty desktop, close all other programs you may have running by
selecting programs. Press Command + Tab (��) and then Command + Q (��) to close
everything until only the Finder is left on your screen.

Figure 3–1. Open Xcode, select the View-based Application template, and then click the Next button.

1. Now, just as you did in the first example, launch Xcode and open a new project

by using your keyboard shortcut: ��N. Your screen should show the New

Project wizard as depicted in Figure 3–1. You may find that your View-based

Application template was highlighted by default because of the last example. If,

however, your View-based Application template is not selected, then click on the

View-based Application icon, and then click the Next button, as indicated in

Figure 3–1.

CHAPTER 3: Keep on Truckin’ 59

Figure 3–2. Name your project, make sure it’s for an iPhone, and then click on the Next button.

2. You are going to call this third project helloWorld_03, so type that in the Product

Name box, as shown in Figure 3–2. The Company Identifier should automatically

be defaulted to your Xcode license name. Remember that helloWorld_02 was

created for an iPad, so the Device Family on your computer may still be set to

iPad. Whatever the case, make sure that helloWorld_03 is set for the iPhone

family. In the event that your “Use Storyboard”, “Use Automatic Referencing

Counting” or “Include Unit Tests” are checked by default, uncheck them. Once

this is done and your screen looks like that shown in Figure 3–2, click the Next

button.

CHAPTER 3: Keep on Truckin’ 60

Figure 3–3. Drag a picture of yourself from the desktop into your Supporting Files folder.

3. For this homework assignment, my students are required to take a photo of

themselves, crop it into a 320 � 480 image, and then save it as a .png file. This

way, I can associate names with the correct faces in a faster manner. For those of

you who are reading this book and are not my students, go ahead and get a

picture of yourself, crop it to 320 � 480, and save it onto your desktop as a .png

file. If you do not have access to a graphics editor, then feel free to use the

picture I used for this project. You can download it at ow.ly/50ksH (scroll down to

the third video tutorial from the top, helloWorld_03, and click on the box icon). A

compressed file will be downloaded to your computer with the picture I used in

this example, named DrLewis.png. Place it onto your desktop. Once it is on your

desktop, press Command + Tab (��) until Xcode is highlighted. Release the ���

keys, at which point Xcode will now fill your screen again. Minimize Xcode slightly

so you can see the desktop with your picture, or for some of you, the picture of

me as illustrated in Figure 3–3. Grab it, drag it over to your Supporting Files folder,

and drop it inside the folder.�

CHAPTER 3: Keep on Truckin’ 61

NOTE: Just in case you noticed, along with the positive attributes associated with giving you the
exact code and images of me programming precise code that is taken directly from my online
tutorials, there comes a negative aspect: you seeing me make errors. In this case, I accidently

missed the Supporting Files folder. I said “Oops” and quickly dragged it from the helloWorld_03
folder into the Supporting Files folder, which is exactly when the image from Figure 3–3 was
snapped. In case you noticed this, ignore it. Just drop your file into the Supporting Files folder,

and let’s move on.

Figure 3–4. Complete importing your image by selecting the “copy items into destination …” option and clicking
on the Finish button.

CHAPTER 3: Keep on Truckin’ 62

4. One of the most common mistakes that I see students make happens at this

simple stage of Xcode management: they forget to check the “Copy items into

destination group’s folder if needed” checkbox. When you import a file into the

Supporting Files folder on your computer, if you do not check “Copy items into

destination group’s folder” everything will work fine, giving you a false sense of

security. In this case, even though Xcode is told that your supporting files, such

as the image in this example, reside in your Supporting Files folder, what's really

happening is that there’s a little note saying: “Dude, I take no responsibility for

this, the file is not here, it’s still on the owner’s desktop!” So you, the writer of

your code, go on doing your homework. Every time you run your code, and Xcode

calls to access a supporting file, this irresponsible “Pointer Reference” guy just

keeps saying, “It's not here—it's still on your desktop!” So you finish your

homework and everything works great. You smile as you zip up your work and

send it to me. I give you a zero and then you cry. Why? Well, the irresponsible

pointer reference is telling me that your reference files are on my desktop. Nope!

It’s not on my desktop, it’s on yours, and you get zero out of 10 for being

negligent and depending on a Pointer Reference dude rather than selecting the

“Copy items” check box. This way, you fire the Pointer Reference and have the

file in your program. This way, when you zip it up and send it to me, and I open up

your work to grade, it opens with all your relevant files in the exact place you

want. So after dragging your picture into the Supporting Files folder, check the

“Copy items into destination group” check box, as shown in Figure 3–4, and then

click Finish. Now you're in good standing, and will not be brought to tears by the

Pointer Reference dude.

NOTE: I can hear you asking “Why even give us this option then?” Here’s a simple answer that
covers most but not all bases. Let’s say that you were designing a game or program that has a
database of millions and millions of files, movies, characters, or possible responses that a player

may say, and this database was too large to fit on an iPhone or iPad. Here, you would not check
the “Copy items into destination group” box, and allow the Pointer Reference dude to say, “Yo, I
take no responsibility for any of this, it’s not really here, it’s at this URL located at

http://www.wherever.com.”

CHAPTER 3: Keep on Truckin’ 63

Creating the User Interface
OK, now we’re ready to start dragging and dropping items onto your View Design area,
the image that the user sees when they look at their iPhone.

Figure 3–5. Open your nib file.

5. In order to do this, you open up your nib file, just as you did in the two previous

apps. So, open up your nib file by going to your helloWorld_03 folder and

selecting the helloWorld_03ViewController.xib file, as illustrated in Figure 3–5.

CHAPTER 3: Keep on Truckin’ 64

Figure 3–6. Close the Navigator View.

6. You're going to need to have space in the Xcode 4 environment, so first, close

the Navigator View, because we do not need it for now, and then, open the

Utilities View, so we can see the tools and icons we need to dress up the View

Design area. In Figure 3–6, you can see that I am closing the Navigator View.

See Figure 3–34 for more details on Xcode 4 nomenclature.

CHAPTER 3: Keep on Truckin’ 65

Figure 3–7. Drag a UIImageView onto your View Design area.

7. With your Utilities pane open, as shown in Figure 3–7, go to the bottom section of

the panel and, making sure that you have selected the icons view (depicted by

four little squares on the icon above the right-hand arrow in Figure 3–7), drag a

UIImageView onto your View Design area. The reason we need a UIImageView is

because we need to have an image of you underneath the buttons and text labels.

That picture that you just dragged in needs to have a place where it can live. A

UIImageView is just the guy for this job. He is going to reside underneath all of

your buttons and embrace whatever picture you tell him to embrace.

CHAPTER 3: Keep on Truckin’ 66

Figure 3–8. Associate your selected image with your UIImageView.

8. Remember the image that you dropped into the Resources Folder back in

Figure 3–3? Well that’s the image that you will want the UIImageView to be, so

you just drag it onto your View Design area to encapsulate it. To do this, you

need to tell it to do so, and this is done by making sure that you have selected the

Attributes Inspector in the Inspector Bar (see the icon under “View” in

Figure 3–8, or as explained in Figure 3–33 at the end of this chapter). With the

Attributes Inspector open, click on the Image drop down menu, and

guess what you’ll see. You’ll see the name of the file you dragged into the

Resources Folder. Select it, and Voila! The image appears in your View Design

area. Isn’t that cool?

CHAPTER 3: Keep on Truckin’ 67

Figure 3–9. Drag a button onto your View Design area.

9. Drag a button from your Library onto your View Design area and place it at the

bottom, as illustrated in Figure 3–9. Make sure it’s nicely centered. Just to remind

you: when you click on this button, your code will invoke an action that will grab

the name of the person that the user entered into a Text Field object, and it will

output that person’s name in a label followed by the text, “Hello World!”

CHAPTER 3: Keep on Truckin’ 68

Figure 3–10. Type “Press Me” on the button, and then drag a Text Field object onto your View Design area.

10. Immediately after releasing your button, double click on it and type, “Press Me”,

just as you did in the two previous assignments. Now go back to your Library and

drag out a Text Field object onto your View Design area, placing it towards the

top (as illustrated in Figure 3–10) and nicely centered. Remember that the text that

the user types into here will be sent out to the label when they press the button

saying “Press Me.”

CHAPTER 3: Keep on Truckin’ 69

Figure 3–11. Center your Text Field object, enter the text “Enter Your Name” in the text field, and center the text.

11. After centering your Text Field object and expanding it in your View Design area,

as illustrated in Figure 3–11 (where it says “Enter Your Name”), click in the text

field, go over to your Utilities Inspector pane, and enter the text that you want the

user to see when they look inside the Text Field object. You want to tell the user

to enter their name here, so type “Enter Your Name” inside the text field box.

Also, center this text so that it is centered inside the text field box, and make sure

that the text field box is also centered in the View Design area.

CHAPTER 3: Keep on Truckin’ 70

Figure 3–12. The three steps that ensure that the text in the Text Field object clears the instant the user activates the
field. Also, note that a clear button icon is in the field, and “Done” appears on the Return Key (see Figure 3–32)

12. Once the user starts typing, you want your prompt text to disappear. To make

doubly sure that your text disappears, keep the clear button (the grey crossed

icon) active in the Text Field object, which allows the user to press it to

clear your text—just in case your professor uses a mouse to grade your

homework on the simulator and wants to make sure you know two ways to delete

the text in the Text Field object. You should also delete the word “Return”

on the keypad’s return key, and replace it with the text “Done.” I have illustrated

the aforementioned three steps in Figure 3–12.

CHAPTER 3: Keep on Truckin’ 71

Figure 3–13. Drag a Label object onto your View Design area.

13. Once the user has entered their name into the Text Field object, and they

press the button, you need to display the user’s name and text in a label. You

have yet to place a Label object onto the View Design area, so do it now, by

dragging it from the Library onto the View Design area, as illustrated in Figure

3–13.

CHAPTER 3: Keep on Truckin’ 72

Figure 3–14. Center and expand your Label object. Also, change the text color if necessary, and center the inside
of the Label object.

14. Place the Label object just below your Text Field object, and expand it, while still

keeping it centered, with respect to the View Design area. Do this by quickly

expanding one side and then expanding the other until the purple center line

appears. This is the fastest method of expanding and centering at the same time.

Next, center the text inside the Label object, and then, depending on the color of

the picture, change the text color to make sure it stands out. In case of Figure 3–14,

the color behind the text was black, so it was changed to white.

CHAPTER 3: Keep on Truckin’ 73

Connecting to the Code
OK, you are now through with dragging objects from the Library onto the View Design
area. Let’s connect these objects to your file’s owner, so you can associate it with code.

Figure 3–15. Open the Assistant Editor.

15. One of the really cool properties of Xcode 4 is that in the “olden” days, when

Xcode first came out, you had to enter Control + Command + Up Arrow (���) or

Control + Command + Down Arrow (���) to zip back and forth between files that

the clever people at Apple knew we would want to switch between. These

connected pages and files are called counterparts, but you don’t have to know

that because in Xcode 4, the Assistant Editor figures out cool ways to plop them

all there on the screen for you. Right now, you should start connecting code with

all of the goodies that you have brought onto the View. So, go to the Editor

Selector with your mouse, as shown in Figure 3–15, and select the Assistant

Editor, which looks like the chest of a person wearing a tuxedo. Here you’ll see

how the layout changes. Just for fun, you may want to select the button

immediately to the left of the Assistant Editor, called the Standard Editor, and

you’ll see that now you have one screen—just like in the old days. Anyway, with

the Assistant Editor selected, let’s move on.

CHAPTER 3: Keep on Truckin’ 74

NOTE: You can also use keyboard shortcuts to open up the Assistant Editor Option, Command +
Return (���) and Command + Return (��) to open up the Standard Editor. There are
thousands of keyboard shortcuts; some make it into superstardom and some never make it out

of books and blogs. These two shortcut keys are being mentioned because even though Xcode 4

is still young, I’m seeing myself and others starting to use these two commands naturally.

Figure 3–16. Control-Drag a connection from your text box in Interface Builder directly into your header file.

16. As you can see, you're back at a familiar screen that shows Interface Builder with

your header file centered in the middle. Here you want to associate Outlets and

Actions with the buttons and labels you dragged onto the View Design area. The

last two times you did this, you were told to drag from this to that. Now, however,

you are going to use a little bit more of the correct nomenclature, so that you can

sound a little more geeky. Click once inside the text box, and then control-drag

from the text box to your header file, placing it between the two curly braces. If

you were to control-drag over to an invalid destination then Xcode would not

display the insertion indicator, which is shown in Figure 3–16.

CHAPTER 3: Keep on Truckin’ 75

Figure 3–17. When the text box’s connection dialogue appears, specify what type of connection you plan to use
in your code.

17. When you see the insertion indicator appear as you control-drag over to the area

between the two curly braces, release the mouse button. Xcode displays the

dialog box, where you will want to tell it that this needs to be an outlet, so don’t

select anything as this is the default. This is illustrated in Figure 3–17. Later on,

why this is done and what this Outlet stuff is all about will be explained. Right

now, just make sure that you give it a name. In Figure 3–17, it was called textBox.

Once this is done, click on the Connect button, and see how the Outlet code

magically appears.

CHAPTER 3: Keep on Truckin’ 76

Figure 3–18. Control-drag a connection from your label in Interface Builder directly into your header file.

18. Click once inside the label and control-drag it into your header file, placing it

below your textBox outlet, inside the two curly braces. Drag until you see the

Display the Insertion indicator, as shown in Figure 3–18.

Figure 3–19. When the label’s connection dialogue appears, specify what type of connection you plan to use in
your code.

CHAPTER 3: Keep on Truckin’ 77

19. Just as you did with the textBox when you made it an outlet, you want to do the

same here when the label's dialogue box opens. Leave it as an outlet on the top

drop down and simply give it a name. In Figure 3–19, it was called “label.” When

you click Connect, it plants some very cool outlet code that you did not even have

to program! So you have two lines of code that were automatically added: one

when you dragged over the textBox, and the other when you dragged over the

label. Both of these will be outlets. Are you thinking that the button, like the other

ones, will be an action? This is correct. But getting back to these outlets—when

you look at this code, without understanding everything, all you need to know

about each of these lines of code, as seen in Figure 3–19, is the following:

IBOutlet UITextField *textBox;

This adds an outlet to a text box.

IBOutlet UILabel *label;

This adds an outlet to a label, just as you did in previous examples.

Figure 3–20. Control-drag from the button into your header file.

20. Click once on the button that says “Press Me” (as shown in Figure 3–20), and

control-drag towards the area below the @interface directive and its curly braces.

CHAPTER 3: Keep on Truckin’ 78

Figure 3–21. The insertion indicator now has three options.

21. Control-drag until you see the insertion indicator, as shown in Figure 3–21. Note

that as you drag over to this area, Xcode already knows that this could be one of

three options, not two, as shown in the insertion indicator for your label and text

box outlets. See how this also includes a third option: “Action.” Now, release the

mouse button when properly located after the curly braces.

Figure 3–22. Open the drop down menu and change the type of connection to an Action.

CHAPTER 3: Keep on Truckin’ 79

22. The first thing you need to do here is change the connection type in the top drop

down menu in the dialogue box from an outlet to an action. This is just like you

did before with the outlet. See Figure 3–22.

Figure 3–23. Name this action “button” and click on the Connect button.

23. After changing this button from an outlet to an action, as shown in Figure 3–23,

you still need to name it. In Figure 2-23, it is named button. Now, click on the

Connect button. You will now see code appear as follows

- (IBAction)button:(id)sender;

READ IT ALOUD

Looking at this code, let’s talk about it briefly. Don’t worry if you space out. What I will ask you to do is
what I make my students do in class, and that is to read the following out loud three times:

This is called a method and you could have named it “monkey” if you wanted to. If you did, it would look
like this

- (IBAction)monkey:(id)sender;

I only want you to know two things about this method you called “monkey.” First, that it has a return type,
and second, that it has an argument.

� monkey's return type: Our monkey method returns stuff to us, which is explained by
saying: "Method monkey's return type is an IBAction." Read the bold code louder.

- (IBAction)monkey:(id)sender;

CHAPTER 3: Keep on Truckin’ 80

� monkey's argument: monkey's argument is of type (id), which in your case, points
through the sender to the button you dragged into the header file in Figure 3–23.
Read the bold code louder.

- (IBAction)monkey:(id)sender;

OK, you can now take a nice deep breath. You are done with peaking under the hood for a while. You are
also done with the header file, and now you can move onto the implementation file.

Avoiding an Annoying Error
But before you move onto the implementation file, you have to do a little housekeeping.

Figure 3–24. Close the Assistant.

24. You can see in this 3rd tutorial that Xcode 4 has done some remarkable things.

However, as I write this book, a number of frustrated Xcode 4 programmers are

encountering an irritating error. Before you move to the next step, I will show you

how to avoid this error. (There is a chance that this quirky attribute of Xcode 4 will

have been fixed by the time you read this.) Close the Inspector, as shown in

Figure 3–24, and then open up the Utilities pane again.

CHAPTER 3: Keep on Truckin’ 81

Figure 3–25. Connect your text box to the delegate – Part 1: Activate textBox and start control-dragging.

25. The way you have been connecting objects from Interface Builder directly into

the code has been really cool, except that it seems that you cannot leave

everything to the clever folks at Apple to make all the connections for you—yet.

So, click once in the text box and control-drag to File’s Owner. If you do not

connect this to the delegate then you will get a very irritating error called a

SIGABRT, which means Xcode is going to abort because it cannot connect. It’s

really bad news, but the good news is that you can avoid it. Here’s how.

CHAPTER 3: Keep on Truckin’ 82

Figure 3–26. As you near File’s Owner, you will want to connect it to the delegate.

26. As you near File’s Owner, it presents you with a dark-gray contextual dialogue

that tells you that you’ve already connected File’s Owner to the button and the

delegate, but you know better—it’s still dangling there. You want to connect

textBox to the delegate. Move your mouse right over it and when it activates, let

go of the mouse. See Figure 3–26. With this done, you’ve connected all the

goodies you dragged onto the View with the header file. The geeky way to say

this would be to say: “Yo, dude, all my actions and outlets are now functionally

connected!” Sounds pretty good, huh? What’s more, you kind of understand what

you’ve been doing! You brought buttons, text boxes, and labels onto your View.

Then you wired them up to function as either outlets or actions. Now, all that’s left

is to dial in some code where necessary.

CHAPTER 3: Keep on Truckin’ 83

Setting up the Coding Environment
Before dialing in the code you need to do a little more housework.

Figure 3–27. Open the Navigator, and then go to Standard View and save everything.

27. First, let’s get your screen in a manner conducive for writing code, by clicking on

the Navigator (see the right arrow in Figure 3–27), and then on Standard View

(middle arrow, the left icon in the Editor section). With this done, please get in the

habit of saving things. Go over to your nib, header, and implementation files that

are now colored dark grey, click on each one, and save them by pressing

command + S (�S). Or use Apple+Option+S to save all. Please do not use your

mouse to save, as I will magically appear, take your book away, and declare that

you have failed in your endeavor to become a geek. If you decide to work for a

computer company after reading this book and they see you using your mouse to

save, they will laugh at you because geeky people do that to those who save with

a mouse. I’m serious!

CHAPTER 3: Keep on Truckin’ 84

Figure 3–28. Open the ViewController’s implementation file and delete unnecessary boilerplate code.

28. Click on the ViewController’s implementation file. That’s the one that ends with a

.m, as in helloWorld_03ViewController.m. Delete the viewDidUnload method, as

shown in Figure 3–28.

CHAPTER 3: Keep on Truckin’ 85

Creating a Programming Roadmap
You’re now ready to get into some code that does something useful.

Figure 3–29. The raw IBAction button method, before you start programming it.

29. There are two items of interest for you here: first, what and where you are

programming, and second, a roadmap that will guide you as you program your

first chunk of code:

� Looking at what you are programming: You can see in Figures
3–22 through 24, that you have the method
(IBAction)button:(id)sender{…}, which looks pretty similar to
the action instantiated when you dragged over an action
connected to your button from the interface builder to your
header file. The only difference is that in the implementation file
you need to implement what needs to happen when a person
presses this button. To do this, you substitute the semi-colon
with curly braces, and it’s in these curly braces that you are
going to instruct what exactly will happen when a person
presses this button.

CHAPTER 3: Keep on Truckin’ 86

NOTE: I’m going to explain this twice: first, as an overview and then again in a specific way that I
have developed for newbie Objective-C programmers. I will be doing this quite often in the book.

It really works well so bear with me and come along for the ride.

� Your roadmap: Looking at Figure 3–29, your road map states
that you will have two text strings that you should call Name and
Output. Name, NSString, receives text that the user enters into
textBox. Clear Output NSString, and then let it receive the text

from NSString. After placing it in front of “:says Hello World!”, it
sends this to Label so the viewer can see it. Lastly, clean out
Output NSString.

The code is divided into 5 steps:

1. Create strings to manage your text input and output

2. Manipulate the text around

3. Display your hard work

4. Housekeeping

5. Get rid of the keyboard

Step One: Create strings to manage your text input and output
First, you should type the two NSString statements in between the curly braces. What
you’re doing is creating two strings of text called NSStrings, that you will call Name and
Output. Make the contents of the NSString *Name contains the contents of the text that
the user types into the textBox. Next, make the NSString *Output contain nothing, or in
essence, clean it out by forcing “nil” into it. The “*” represent pointers that point to a
memory address that will contain the contents of each NSString.

- (IBAction)button:(id)sender {
 NSString *Name = textBox.text;
 NSString *Output = Nil;
}

Step Two: Manipulate the text around
Underneath the two NSString statements, type out the Output line as shown below.

- (IBAction)button:(id)sender {
 NSString *Name = textBox.text;
 NSString *Output = Nil;
 Output = [[NSString alloc] initWithFormat:@"%@ says: 'Hello World!", Name];
}

CHAPTER 3: Keep on Truckin’ 87

With this typed out, look at the %@ in the following code

@"%@ says: Hello World!", Name];

This is going to be written in progressively technical ways, such as:

� The %@ puts the stuff inside Name before the “says: Hello World!”.

� The %@ puts the text located at a place in memory pointed to by Name,
and then places that text from the memory before the “says: Hello
World!”.

� The %@ puts the text located in memory by pointer Name, and then
places that text from the memory before the “says: Hello World!”.

� The %@ places the string at *Name before the “says: Hello World!”.

OK, that wasn’t too bad. The descriptions went from totally non-geek text to gradually
getting a little more geeky each time. In class, we play games where I challenge
students to get in groups and try to do their own “road to geekdom” innovations. What
I'm going to ask you to do, before you do the next one, is explain the above progression
to a person close to you who knows nothing about computers. Read the four bullet
points to them. When they cannot get it, explain it to them in YOUR WORDS. You will
learn so much from this. Most of you will realize that they can already see that you’ve
started the transformation from dude to geek.

OK. So moving on, I want you to focus on the [[NSString alloc] initWithFormat:@ in
the line

[[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

Here it goes:

� The [[NSString alloc] initWithFormat:@ allocates the text saying
“somebody says: Hello World!” in a way that makes sense to human
beings.

� The [[NSString alloc] initWithFormat:@ allocates all those electrical
signals in the iPhone’s microprocessor using the code that the clever
people at Apple programmed in their initWithFormat code, that
converts the machine language representing “somebody says: Hello
World!” into text that makes sense to human beings.

� Once it has converted everything to say “somebody says: Hello
World!” into text, you store it in Output, as shown in the following code

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

Step Three: Display your hard work
Next, you need to get the text that is being held in Output onto the screen of the user's
iPad or iPhone. Students often tell me at this point that they think they’re done. Nope.
Your text is just lying there inside your microprocessor. You want it out on the screen so

CHAPTER 3: Keep on Truckin’ 88

the viewer can read it. Recall that you created a perfect place for it in Figure 3–13? Go
there, and meet me back here.

Cool huh! You need to put the text lying in Outlet into Label. So type in

label.text = Output;
What you’ve done here is accessed something that is called the “text property,” set it to
be whatever is in Outlet, and then dump it onto your screen inside Label.

- (IBAction)button:(id)sender {
 NSString *Name = textBox.text;
 NSString *Output = Nil;
 Output = [[NSString alloc] initWithFormat:@"%@ says: 'Hello World!", Name];
 label.text = Output;
}

Step Four: Housekeeping
You are not going into this now. But you need to stop memory leaks. One of the most
common reasons for the iTunes store to reject your app is because it has memory leaks.
This is too complex for now, and your brain is tired. Just know that the alloc you used
means that you now need to release the memory. So write a comment for your own
reminding, as you dig the code in later chapters.

//release the object”

Then, actually release it by typing

[Output release];

- (IBAction)button:(id)sender {
 NSString *Name = textBox.text;
 NSString *Output = Nil;
 Output = [[NSString alloc] initWithFormat:@"%@ says: 'Hello World!", Name];
 label.text = Output;
 [Output release];
}

Step Five: Get rid of the keyboard
Once the user enters their name and hits the Done button (see right hand image of
Figure 3–12), you need to add a little code to make sure the keyboard is dismissed.

You do this by implementing a special kind of delegate method called
textFieldShouldReturn. Right now, you do not have to worry about delegates, first
responders, and so on. All I want you to know is that this code reassigns the first
responder, your keyboard, and the text field that is active (typing in one’s name), which
saves it in your toolbag and reuses it every time you need to wipe out the keyboard.

- (BOOL) textFieldShouldReturn:(UITextField *)theTextField{
 [textBox resignFirstResponder];
 return YES;
}
@end

CHAPTER 3: Keep on Truckin’ 89

OK! You’re done with code!

I want you to feel proud of yourself! You’ve allowed me to guide you through some
treacherous waters of Objective-C code, and even if you’re not feeling like you’ve
absolutely wrapped your head around the code, no problem. Objective-C is an
incredibly difficult language and the fact that you’re still reading this means you’re doing
awesome. Remember that as you do more of this it all comes together and gets dialed
in beautifully. For those of you who have understood what you’ve done so far in the way
that I’m presenting it to you, congratulations!

Figure 3–30. Coding the delegate method textFieldShouldReturn.

30. Figure 3–30 shows the completed button method and the textFieldShouldReturn

method being typed in with Xcode’s code completion doing its work. Once this is

done you are finished coding. Yeah!

CHAPTER 3: Keep on Truckin’ 90

Figure 3–31. Make sure you will be running to the correct target.

31. First, let’s make sure that you have saved everything. Now, if you ran your last

app to your iPad or to your actual iPhone, then you will want to make sure that

you change the “target” to be the iPhone simulator, as shown in Figure 3–31.

Figure 3–32. Let’s run it!

CHAPTER 3: Keep on Truckin’ 91

32. You have worked really hard on this one, and now it’s time to see the fruits of

your work. Hit the Run button, as shown in Figure 3–32, and let’s see your app

come to life!

Figure 3–33. The four states of your app.

33. If you’re using your own picture then yours will obviously be in the background.

Starting on the left hand side of Figure 3–32 and moving to the right:

a. The first image shows the text box asking the user to enter their
name.

b. The instant one clicks in the text box, the text disappears and
the keypad appears.

c. The third image shows the state of your app once the user hits
the Done button.

d. The last image shows the final state of all your hard work,
which appears when the user hits the Press Me button.
Congratulations!

Digging the Code
In these reviews, we will go over some of the code we have written, and I will reference
familiar code and explain the processes in more detail. Here, I will introduce you to more

CHAPTER 3: Keep on Truckin’ 92

technical terms that you will use in future chapters and in communicating with other
programmers.

Consider this analogy: In helloWorld_01 and helloWorld_02 I taught you how to get into
a car, turn the ignition, press the accelerator, and steer as you moved forward. In
helloWorld_03, I guided you with similar directions, but as you drove toward your
destination, I explained how the car is a hybrid engine and that it has some gasoline
components and some electrical components. We talked about classes and methods,
strings, outlets, and actions.

Now you’ve arrived at our destination; you’ve completed helloWorld_03, and I will open
the hood and show you how, when you pressed the accelerator, it either pumped
gasoline into the engine, or sometimes used the electric motor. When you look under the
hood, I’ll show you where these components are located. However, by the time you
reach the end of the book, look under the hood, and dig the code, I will describe the
amount of gasoline being squirted into the pistons by the carburetors, the exact torque
and heat emission of the electric motor, and so on. Guess what—you’ll be able to
handle it!

One last comment about this section that is really important: Digging the Code is a
section that I encourage you to read without definitive understanding. It’s OK if you only
partially “get it.” Of course, if you happen to attain full comprehension of the subject in
all its details, well that’s great. What I suggest, however, is that you read these sections
at the end of each chapter loosely because:

� I have received hundreds of emails from readers from the first edition
of the book saying that knowing it was OK to blank out and not feel
pressured to understand the code really worked out for them.

� Also, my students love it when at the end of each class, I make them
turn off their Mac, put down their pens, Zen and zone out, and just
casually listen to me. I’ve had students knocking on my office telling
me in many colorful ways how the Zenning and zoning really worked
for them.

Note that my research is in neurological acute brain injuries, where I study the brain and
neural interconnectivity. This methodology of first connecting neurons and then infusing
the deeper connective associations when the brain is relaxed is one that I’ve developed
over the years. So, I want you to consider my former readers’ and students’ opinions
about this matter and absorb my theorem.

NOTE: Becoming an eloquent, knowledgeable, and financially thriving coder takes neurological
leaps, during states wherein your brain is open to absorbing new data without the hypothalamus
releasing anxiety hormones that pollute the ability of your neurons to create new connections,

which allows linking logic and code to ontological reasoning.

CHAPTER 3: Keep on Truckin’ 93

So Zen out, zone out, and read in a meditative state with no fear. When that voice says,
“You’re not understanding it all,” say: “That’s OK, Dr. Lewis said so, now go away!” You
will Zen and zone through:

� Nibs, Zibs, and Xibs

� Instances and Instantiation

� Methods

� Instance methods and class methods

� Header Files

� The Inspector Bar

� NSStrings

� Memory Management

Nibs, Zibs, and Xibs
Remember back in Figure 3–5, I instructed you to open your nib file. You could see that
it was written “xib”, and to make it more confusing, a minority of coders call them “zib”
files. Just ignore them, refer to xib files by pronouncing them as “nib.” At a recent
conference in Denver, 360iDev for iPhone Developers, it was clear most of the
presenters referred to .xib files as “nibs” not “zibs.” But no matter how we refer to
them, it’s important for us to understand what’s going on with these files. What are
they? Do we need them? Do you need to know how they work?

Do you recall, from Step 5, Figure 3–5, how you opened Interface Builder view when you
clicked on that nib file? It was here that you saw your view and began dropping and
dragging items onto your View Design area. What’s going on here?

It turns out that when you examine nib files at the level of Cocoa or Objective-C, you see
that they contain all the information necessary to activate the UI (User Interface) files,
transforming your code into a graphical iPhone or iPad work of art. It’s also possible to
join separate nib files together to create more complex interactions, as you’ll see later in
this book. But in order to follow along, you need to add two words to your vocabulary:
“Instances” and “Instantiation.”

� Instances: All the information that resides in these files is put there so
that it can create an instance of the buttons, the labels, the pictures,
and so forth that you’ve entered. This collection of commands is
plonked down and saved into your nib files to become the UI. The
code and the commands taken together become real, and they are
sensed by the user—seen or heard, or even felt.

CHAPTER 3: Keep on Truckin’ 94

� Instantiation: Remember in Step 29 and Figure 3–29, I explained that
you can see that you have the method -
(IBAction)button:(id)sender{…}, which looks pretty similar to the
action instantiated when you dragged over an action connected to
your button from the Interface Builder to your header file in Figures 3–
22 through 24? Well the term instantiate is sometimes used in a similar
fashion when you first save a new project. The computer instantiates—
makes real and shows you the evidence for—a project entity created
by assigning it a body of subfiles. In helloWorld_03, you saw how in
Step 27 I asked you to go over to your nib, header, and
implementation files that were colored dark grey? Well excuse me,
how did these files get here? Did you program them or make them?
Nope, Xcode instantiated these when you created your project. Xcode
gave your project “arms and legs”: two AppDelegate files and two
ViewController files.

NOTE: You are now manipulating these arm and legs to do cool stuff that we call apps, and sell

them on the iTunes store.

We say that we’ve “created an instance” of something when we’ve told the computer
how and when to grab some memory and set it aside for some particular process or
collection of processes such that, when the parameters are all met, the user has an
experience of this data (i.e., whatever was assigned in memory). Sometimes we refer to
these collections or files of descriptions and commands as classes, methods, or objects.
In this code-digging session, these terms might seem to run together and appear as
synonyms, but this is not the case. As you read on, you will come to understand each
term as a distinct coding tool or apparatus, each to be employed in a particular
situation, relating to other entities in a grammatically correct way.

When we say that you created an instance of the buttons and labels in your nib file, what
we’re really saying is that, when you run your code, a specific portion of your computer’s
memory, known by its address, will take care of things in order to generate the user
experience you have designed. Each time your application is launched on an iPhone or
iPad, the interface is recreated by the orchestrated commands residing in your nib files.
Consider the nib file associated with the action depicted in Figure 3–9. You dragged a
button from the Library into the View window, and thus you created an instance of this
button. If somebody were to ask you what that means, you might look them in the eye,
with a piercing and enigmatic look, and say:

“By creating an instance of this button, I have

instructed the computer to set aside memory in the

appropriate .xib file, which, upon the launching of my
app, will appear and interact with the user,

precisely as I have intended.”

CHAPTER 3: Keep on Truckin’ 95

Wow!

Methods
The next concept I would like to explore a little more deeply is that of methods. As I did
with nibs, I am only going to give you a high-level look this time. You’ve already used
methods pretty extensively, so I’m simply going to tell you what you did.

Looking at Figure 3–23, after you dragged the button onto your header file, you changed
it from an outlet to an action and clicked on the Connect button. Then you saw an
instantiation of code appear

- (IBAction)button:(id)sender

I then suggested that to make things clearer, you could have named the method monkey,
making it become

- (IBAction)monkey:(id)sender;

Here, you are instructing the computer to associate an action with a button.

� The first symbol in this piece of code is a minus sign (–). It means that
monkey is something we call an instance method.

� On the other hand, if you had entered a plus sign (+) there, as in +
(IBAction), we would have called it a class method.

One symbol announces (to the processor) an instance, while another symbol announces
a class. What these two statements have in common, though, is the method monkey.
Furthermore, just by the name alone, you can see that this is an action that will be
performed in Interface Builder. Yup, that’s what that IB in front of the Actions means.
See how Steve Jobs was really saying to himself when he designed Cocoa and
Objective-C on his NEXT computers, that he wanted Actions and called them
IBActions, so as to remind himself and other coders who used his code that when we
typed in IBAction it was for Actions used in Interface Builder.

Consider this analogy: a programmer says, “Here comes an app that will assist you in
drawing a nice, pretty house.” That is a header type of announcement. Then, the
programmer enters specific instructions for how the house will be constructed, how it
will sit on/against the landscape, what kind of weather is in the background, and so on.
“Draw a slightly curving horizon line one third from the bottom of the display, and

midway on this, place a rectangle that is 4 × 7, on top of which is a trapezoid with a
base length of…,” and so on. These specific, how-to instructions belong in the
implementation file, for they describe the actual actions—the method—of drawing the
house.

So, to connect your button to a method named hello, you added this code as shown in
Figure 3–24.

- (IBAction)hello:(id)sender;

CHAPTER 3: Keep on Truckin’ 96

This created an instance of your hello method. Then, you created a place in memory to
execute the code inside your hello method.

Header Files
Look at this code, not in terms of methods but instead from the dimension of it being a

header file and how it relates to its implementation file. I want you to go back to the

point in time after you dragged and dropped your items that I called “goodies” onto the

header file. Looking back at Figure 3–24, I want you to focus more on the bold text.

NOTE: When naming things in code, you will represent “User
Interface” with the initials UI. You will represent “Interface Builder” with the initials IB.

 Class name Parent class

@interface helloWorld_03ViewController : UIViewController {

 IBOutlet UITextField *textBox;
 IBOutlet UILabel *label; Instance variables
}

- (IBAction)button:(id)sender; method

@end

There are two things to note here. First, the @ symbol talks to the innermost part of
Xcode, which transforms your code into actions, and second, that it’s got something
essential and important to announce. In fact, we call any statement beginning with @ a
“directive.” This @interface directive tells Xcode that you have interface stuff concerning
helloWorld_03, and that the particulars will be enclosed within brackets {}.

Before you began dragging outlets into your code in Figure 3–16, notice how the
opening bracket, “{” was empty! You had not said anything yet, right? You knew what
you wanted to do, so you got the compiler’s attention with the @interface directive, by
creating your IBOutlets (Interface Builder Outlets) to write on your UILabels (User
Interface Labels) and to have a separate Action associated with your button.

CHAPTER 3: Keep on Truckin’ 97

The Inspector Bar
Back in Step 8, Figure 3–8, while briefly explaining the Inspector Bar, I said that we’d get
into it a little more. So as promised, here is some insight as to how the Inspector Bar is
set up.

Figure 3–34. Focusing in on the Inspector Bar.

In Figure 3–33, I’ve recreated how I illustrate the Inspector Bar in class on the marker
board. As you become familiar with the Xcode 4 environment, you will find yourself using
the Inspector Selector Bar to choose a workspace that you will need at any phase of
your coding. For now, let’s zoom in on the most intense view: the Utilities View. Clicking
on Utilities View, as shown in the top right-hand of Figure 3–33, you will see how I’ve
created a zoomed up version of the Inspector Selector Bar, with its submenus located to
the left of the panel. Starting at the top:

� File inspector: This is where one manages file attributes such as
name, type, and path within your project.

� Quick Help: Just what it says.

� Identity inspector: Gives access to deep stuff such as class names,
access, and labels.

� Attributes inspector: For adjusting attributes available to an object.

� Size inspector: Allows you to tinker with an interface object’s initial
size, position, and auto sizing.

CHAPTER 3: Keep on Truckin’ 98

� Connections inspector: Allows you to view the outlets and actions for
your interface objects.

� Bindings inspector: For configuring bindings for view objects.

� Effects inspector: To adjust animation protocol such as transitions,
fades, and other visual characteristics of selected objects.

� File templates: Common templates that you can drag from the library
to the project navigator.

� Code snippets: Like clip art but for coders—snippets of source code
that you can use by dragging into your files.

� Objects: You use these interface objects by directly dragging onto
your nib file in the Interface Builder editor window.

� Media files: Just as it says, they are graphics, icons, and sound files
that can be dragged directly to your nib file in the Interface Builder
editor window.

NSStrings
Going back and digging a little deeper into the NSString statement in your
implementation file, I went over this with sufficient detail while you wrote it. Here are five
terms that I want you to associate about NSStrings with:

� Output is your returned value

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

� On the right-hand side of the equal sign is the message

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

� NSString alloc is the receiver

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

� initWithFormat is the method name

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

� @"%@ says: Hello World!" and Name are the parameters

Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];

More on Memory Management
At the end of Step 29, Figure 3–29, in “Step Four: Housekeeping,” we spoke a little
about alloc and how you allocated memory and released it at critical times in your app.
I want you to have one last look at the implementation code you wrote for the button,
but view it in terms of memory leaks and management.

CHAPTER 3: Keep on Truckin’ 99

- (IBAction)button:(id)sender { alloc+1
 NSString *Name = textBox.text;
 NSString *Output = nil;
 Output = [[NSString alloc] initWithFormat:@"%@ says: Hello World!", Name];
 label.text = Output;
 //release the object
 [Output release]; release-1
 }

Looking above, you can see how you first allocated some memory for your string. This is
represented by the superscript +1, to show that you have gone up one level and are
allocating memory. Each time you go up one level, you need to also fall down one level
by releasing that memory as shown by the -1 at the release. It’s really easy— when you
alloc you need to release. In Objective-C, this is called reference counting. Where I see
students suffer is those times that after they alloc they will also perform a retain. If you
do find yourself having to retain some memory after you’ve allocated, then view it as
[alloc+1] + [retain+1], which means that you have gone two, not one, levels up. This
means that you need to release not once but twice. In summary:

� [alloc+1] needs + [release-1]

� [alloc+1] + [retain+1] needs [release-1] + [release-1]

Alright!
You’re still here! Awesome! Take a break for at least 6 hours, and don’t sweat over not
getting all of the code you’ve been digging around in here. Hope you Zenned and zoned
out beautifully. See you in Chapter 4.

101

 Chapter

Buttons & Labels with
Multiple Graphics
In this chapter, we’ll tackle our fourth program together, and it’s time to quicken the
pace a bit. As in Chapter 3, you’ll be able to simply view the screen shots and
implement the code if you remember most of the details—steps that have been
described repeatedly in the previous examples. You'll get fewer figures pertaining to
each step, yet more procedures; we will be using the short bursts of information
introduced in Chapter 3.

In addition, as in Chapter 3, once you have completed the program, we will do a code
review in the “Digging the Code” section. Initially, we will cover some of the same
aspects and concepts we discussed in that section in Chapter 3, and then we will zoom
in on some of the new code. Not only will we go a little deeper, but we will also expand
our horizons to consider other computing concepts that link up to this deeper level of
analysis.

You will probably also notice a change of style in Chapter 4, for we will be moving away
from the “elementary” language used in previous chapters. I will also be doing less
hand-holding for you with the images. I will start weaning you off arrows—all the
information is there, so if you cannot immediately find what I am referencing in the text,
you will need to think a little and find it. Think of it as an exercise to force your neurons
to make some associations by taking baby steps. So, let’s pick up the pace—a little
faster, a little more advanced, and using more of the technical nomenclature.

Most importantly, when we get to step 29, we will take twenty minutes of class time to
open the hood and really get our hands dirty delving into some critical code concepts
that you will need to wrap your head around in order to move on through the book.
Don't worry; I make it easy.

Again, if you don’t grasp every concept and technique fully, that is perfectly okay! Relax
and enjoy this next example. However, before we start our fourth app, we will take a
brief glance at our road map.

4

CHAPTER 4: Buttons & Labels with Multiple Graphics 102

Roadmap Recap
Thus far, we’ve gone through three examples where we said “Hello world!” from inside
the iPhone/iPad. You’ve had an opportunity to familiarize yourself with the creative
process in the context of programming apps: go in with an idea and come out with a
tangible, working product. Several times I asked you to ignore heavy-duty code that I
judged would be distracting or daunting. You may have also noticed that when you did
try to understand some of this thicker code, it made sense in a weird, wonderful, chaotic
way. Well, as we progress forward, we are going to make the “chaos” of the unknown
less unsettling.

Before dealing with this issue, let me also put you at ease by telling you that when it
comes to Objective-C, our programming language, I have yet to meet a single advanced
programmer who actually knows every symbol and command. Just as in other
industries, people tend to get very knowledgeable in their specific domains and
specializations (e.g., integrating Google Maps to a game or an app).

An analogy I like goes like this: Car mechanics used to be able to strip an engine down
completely and then build it back up—presumably better than it was. Nowadays, car
mechanics are very specialized, with only a handful knowing how to completely strip
down and rebuild a specific modern-day car. We get an expert in Ford hybrid engines,
or an expert in the Toyota Prius electrical circuitry, or a specialist in the drum brakes that
stop big rigs, and so on. There is nothing wrong with this!

This is similar to how you are proceeding. You have just gotten your hands greasy and
dirty by successfully programming three apps. Now, if all goes according to plan, you
are going to delve even deeper when you get to step 29 and walk toward the future,
brimming with confidence. I know from experience that the confidence of my students
can be derailed if they are intimidated or blown away by too much complexity or
technicality. I have found that students can handle bumps in the road if they know where
they are going, and if they know that the rough stretches won’t get too scary or
dangerous.

helloWorld_04: A View-based Application
Right this second—feel good about yourself! You are already quite deep into the Forest
of Objective-C. If you lose your way, remember that besides the information I present
here in this book, including various screenshots, I also offer you screencasts, available
at my website. You can use the short URL, go to rorylewis.com as indicated below
where you click on the Xcode 4 icon, and then go to either video tutorial or
downloads:

Short URL: http://ow.ly/50ksH

Manual URL: http://www.rorylewis.com �� video tutorial / downloads

CHAPTER 4: Buttons & Labels with Multiple Graphics 103

Figure 4–1. Create or download three .png image files: a bottom layer, a top layer, and a desktop icon. Save them
all to a beautiful, clean desktop.

1. As usual, let’s begin with a clean desktop and only four icons: your Macintosh HD

and three image files (shown as icons in Figure 4–1). As I’m sure you have

gathered by now, I think it’s essential to have an uncluttered desktop, and I want

to encourage you to continually hone your organizational mindset. Using our

familiar shortcuts, close all programs. You are welcome to download these

images (from either ow.ly/5l1w8 for the downloads page or from the videos page

at ow.ly/5l1wS), which will become key building blocks of this project, but we

really want to encourage you to find and prepare images of your own. That way,

you’ll have more passion about this assignment. You have two basic choices at

this point: download the images from the aforementioned links or prepare your

own. Assuming that you are willing to go through the effort of creating three

distinct photo files of your own choosing, pay attention to the following

guidelines.

CHAPTER 4: Buttons & Labels with Multiple Graphics 104

Figure 4–2. STAIR.png; this is the background image—or bottom layer.

2. The size of the first picture, STAIR.png, as shown in Figure 4-2, will be the iPhone

standard of 320 pixels in width by 460 pixels in height. This will be the bottom

layer of two images, so we’ll call it the background layer. Our background, then, is

a photograph of the stairs leading out the back of the Engineering building, here at

the University of Colorado at Colorado Springs. We will use this picture as a

backdrop for a picture of Immanuel Kant—the greatest philosopher of all time—a

man whose philosophy formed the basis of that of many of our founding

forefathers who framed the Constitution. More importantly to us, he was the man

who began mapping parallels between mathematical logic and words in speech.

When the program is run, the background will display and, once a button is

clicked, up will pop the photo of Immanuel Kant at the top of the stairs. Take a

quick peek at Figure 4-39. How nice—Immanuel Kant has decided to return to

University! This is our scenario then: You will find many times in programming that

you will want your user to see a familiar background, and then when a button is

pressed, somebody (or something) unusual or unexpected suddenly appears. This

helloWorld_04 will teach you this.

CHAPTER 4: Buttons & Labels with Multiple Graphics 105

Figure 4–3. This is the modified top-layer image, which will overlay the background.

3. In order to create the second image, which we’ll call the top layer, copy the

background layer photo, which, in my case, was STAIR.png. Then crop this copy

to create an image with these exact dimensions: 320 × 299 pixels. Yes, I know the

height is a strange number—but trust me! Now you have a roughly square copy of

the bottom two-thirds of your background photo. Next, paste onto this a partial

image—probably a cut-out of some interesting or unusual object. This will yield

something like the image in Figure 4–3: Immanuel Kant, in front of the background

scene. This modified top layer will, of course, be saved as a .png file. Thus, you

will end up with a prepared top layer that consists of the bottom section of the

original background photo, with some interesting person or object pasted over it.

You can probably guess that we’re going to program the computer to start with

the background image, and then, with some user input, insert the top layer—with

bottom edges matching up flush, of course. This will give the illusion that our

interesting guest, or object, suddenly materialized out of nowhere. Our top layer

will not affect the space near the upper part of the background; we are reserving

this region for the text that we will also direct the computer to insert. We go this

route because the iPhone and iPad do not support .png transparency.

Figure 4–4. This is the image for the screen icon!

4. The third image file is an icon of your choice. As in the previous chapter, you may

want to customize your icon. In my case, I took a portion of the photograph of

Immanuel Kant's face and put it into my “icon” file, as shown in Figure 4–4. Once

you have all three of these images—the bottom layer, the top layer, and the

icon—save them onto your desktop, which will make it look similar to that of my

desktop displayed in Figure 4-1.

CHAPTER 4: Buttons & Labels with Multiple Graphics 106

NOTE: Remember that icons for the iPhone have a recommended size of 57 x 57 pixels as
illustrated in Figure 4-4. However, note that if your app is an iPad-only specific app, then you will
want to make a cool, slightly larger icon of 72 × 72 pixels. Be sure to stay mindful of these

dimensions.

Figure 4–5. Enter ��N and select Single View Application from the New Project window.

5. Now, just as you did in the first example, launch Xcode and open a new project

by using your keyboard shortcut: ��N. Your screen should show the New

Project Wizard as depicted in Figure 4–5. You may find that your Single View
Application template was highlighted by default, because of the last example. If,

however, your View-based Application template is not selected, then click on the

View-based Application icon, and then click on the Next button, as indicated in

Figure 4–5.

You may be thinking that a view-based application template is usually used to

help us design an application with a single view, and that we should pick another

option—because we’ve just made two views, the image of the stairs and the

modified image of the stairs with Immanuel Kant in it. This reasoning would

appear to be sound because navigation-based applications yield data

CHAPTER 4: Buttons & Labels with Multiple Graphics 107

hierarchically, using multiple screens. That choice would seem to be the right one

for this project, except that this is actually not the case here.

We will be dealing with only one perspective onto which we will superimpose an

image, not a view. If we were going to have portions of our code in one navigation

pane, and other portions of our code in other navigation panes, then we probably

would choose a navigation-based application. In this current project, though, we

are going to manipulate one view in which we will superimpose images, rather

than navigate from one pane to another. In essence, we’ll be playing tricks with a

single view.

Figure 4–6. Name your project and define whether it's an iPhone or iPad project. .

6. Seeing as this is the fourth helloWorld, we will name it helloWord_04. When

making the video example, I accidently hit the caps lock key with my big fat

fingers, so mine is all caps, as you can see in Figure 4-6. I purposely kept all my

errors on so that the code looks exactly as it does on the video here:

ow.ly/5l2rb.

CHAPTER 4: Buttons & Labels with Multiple Graphics 108

NOTE: For the rest of this chapter, I will continue to call this app helloWorld_04, even though I
accidently left the caps lock key on. You have named yours helloWorld_04, so this is how we

will move forward.

Figure 4–7. Save it to the desktop.

7. Save your View-based Application to your desktop as “helloWorld_04.” See

Figure 4–7. This is going to be the last of our “Hello World!” apps. I’d like to

suggest that, once you’ve completed this program, you save all of these in a

Hello World folder inside your Code folder. You will probably find yourself going

back to these folders at some point to review the code.

Later in the book, when we go into the details of Objective-C and Cocoa, there is

a good chance that you’ll scratch your head and say, “Damn—that sounds

complicated, but I know I did this before. I want to go back and see how I

connected these files in those ‘Hello World!’ exercises I did at the beginning of

this book.”

CHAPTER 4: Buttons & Labels with Multiple Graphics 109

Figure 4–8. Drag your three images into the Supporting Files Folder.

8. Select all three of your images and drag them into your Supporting Files folder. I

hope you are now beginning to see that Xcode has instantiated a project named

helloWorld_04, as shown in Figure 4–8. As mentioned earlier, we’re moving on

from our elementary language and I will be throwing out some technical jargon

that is more specific. Note that when the folder highlights, it means that the object

is selected. Focus on where your cursor is—that is the point at which the folder

will react. Once it highlights, drop the object in by releasing the mouse.

Sometimes students get confused because it seems that the images should be

able to drop into the folder but it will not highlight. This is because the folder

opens, or highlights, only when you mouse carrying all of the pictures hovers over

the folder. So remember that when you are dragging objects over to the folders,

focus on where your mouse is and ignore everything else.

CHAPTER 4: Buttons & Labels with Multiple Graphics 110

Figure 4–9. Check the “Copy items into the destination group’s folder…” box.

9. After dropping the image into the Resources folder, you will be prompted to define

whether the image will always be associated with its position on your desktop or

whether it will be embedded with the code and carried along with the application

file, as shown in Figure 4–9.

We want it to be embedded, of course, so click the “Create groups for any added

folders” box. Also, check the “Create groups for any added folders” box. Then

click "Finish" (or press Enter).

CHAPTER 4: Buttons & Labels with Multiple Graphics 111

Figure 4–10. Open the plist file so that we can associate our icon picture.

10. We created an icon image file called icon.png. We want this one to show up on the

iPhone/iPad, rather than the generic icon. To do this, double-click on the info.plist

file in the Resources folder, as shown in Figure 4–10.

Figure 4–11. Select the Icon file’s value cell and enter the name of the picture you want to associate as the icon

CHAPTER 4: Buttons & Labels with Multiple Graphics 112

for your project.

11. Double-click on the Icon file’s value cell. In that space, enter the name of your icon

file: “icon” as illustrated in Figure 4-11. Now, save your work. The plist (property

list), by the way, is another area that we will explore later. For now, we’re ready to

move on to Interface Builder in order to connect and associate various pieces of

our puzzle.

Figure 4–12.Open your nib file.

12. Click on your nib file, as illustrated in Figure 4-12, because it’s time to start

building the objects we'll need for our project. You should be seeing a pattern

now—first we dump our images into the Resources folder, then we drag our

objects onto the View, and finally we link the objects up with code.

CHAPTER 4: Buttons & Labels with Multiple Graphics 113

Figure 4–13. Position the UIImageView onto the View screen, flush with the bottom.

13. Your top layer image will be placed over the base layer when the user pushes the

button. Therefore, we want to handle the base layer in the same manner as we

have in the past. Scroll down in your library to the Cocoa Touch item folder and

locate the Image View icons. Drag one onto your View frame, as illustrated in

Figure 4–13.

CHAPTER 4: Buttons & Labels with Multiple Graphics 114

Figure 4–14. Associate an image with UIImageView, which you’ve just dragged onto the View screen.

14. We want to connect 320 x 460 STAIR.png to our Image View so that it will appear.

Go to the Information tab of the Image View Attributes window, open the drop-

down window, and select the image, as shown in Figure 4–14.

CHAPTER 4: Buttons & Labels with Multiple Graphics 115

Figure 4–15. Drag a label onto the View.

15. Earlier, we decided that when the user presses the button, Immanuel Kant should

appear and announce, “Hello World, I’m back!” We decided that the method we

would employ would be a label instance variable—with a text property assigned

with “Hello World, I’m back!” So, drag out a label that will be our instance

variable, and we will assign the text “Hello World, I’m back!” onto the Base View

later. When you put the label onto the View, repeat the way that you adjusted the

size in the earlier assignments; i.e., widen it so it can fit this text. See Figure 4–15.

CHAPTER 4: Buttons & Labels with Multiple Graphics 116

Figure 4–16. Center the text and make it white.

16. Just as you’ve done before, center the text and change its color to white in the

Properties frame. Refer to Figure 4–16, and look over to the right-hand side to see

that the center text and white text properties have been selected.

CHAPTER 4: Buttons & Labels with Multiple Graphics 117

Figure 4–17. Drag a button onto your base layer.

17. We want the picture and the text to appear when a button is pressed, so we need

a button. Go ahead and drag one onto your base layer and in its title field enter

“Guess who’s on campus?” as shown in Figure 4–17. When users see a button

asking this question, they will be compelled to press it. When they do, we want

Immanuel Kant to appear, saying, “Hello World, I’m back!” You may want to

adjust the size of the button as we’ve done before. If you are inclined to make

your button fancier than the one I created on the video, you may want it to look

pretty cool and show some of the underlying image. While still in the Image View

Attributes window, scroll down and shift the Alpha slider to about 0.30. Jumping

ahead, you may want to start thinking about what we're doing in terms of the

code we will soon write. We're looking at two IBOutlets: a label and the

underlying base image. Each category “whispers” something to Interface Builder.

One says that we want a UILabel class to use text that the pointer *label points

to; the other says that the UIImageView class will put up an image located at a

place the pointer *uiImageView points to.

Well, what have we done so far in Interface Builder? We’ve installed the background
image and inserted a button that will trigger these two IBOutlets. Now, while still taking
a minute to think ahead about what happens each time we drag outlets onto our header
file, let's take a high altitude view of what we will be doing here:

CHAPTER 4: Buttons & Labels with Multiple Graphics 118

- (IBAction)someNameWeWillGiveTheButton:(id) sender

This line, in fact, invokes our two friends, our two IBOutlets for the label and
background image. For the label, with:

label.text = @"Hello World, I'm back!";

and the image, with:

UIImage *imageSource = [UIImage imageNamed: @"kantStair.png"];

To make the above all work in the implementation file, we will need to perform some
action on the header file. We have to set the label and the image up—we say we need to
declare them.

We will declare the label with:

IBOutlet UILabel *someNameWeWillGiveTheLabel

and we'll declare the image with:

IBOutlet UIImageView * someNameWeWillGiveTheImageView

Then, we will do something that we have not done yet and that I will explain at the end
of the chapter in the “Digging the Code” section. We will perform something we call
"Synthesis” on both of our IBOutlets. To do this we will run two “@property”
statements:

@property (nonatomic, retain) IBOutlet UILabel *someNameWeWillGiveTheLabel

and for the image:

@property (nonatomic, retain)IBOutlet UIImageView *someNameWeWillGiveTheImageView

Also, we will synthesize the above in our implementation file, with:

@synthesize label, uiImageView

OK, that was a quick mental journey into the future. So, that means we’re ready for
action. We've created a button that will call our two friends; all we need to do now is to
create the image and the label, and then associate them with the appropriate pieces of
the code.

CHAPTER 4: Buttons & Labels with Multiple Graphics 119

Figure 4–18. Write the button text.

18. We need the button to entice the user to press it. So we'll ask the user: "Guess

who's back in school?" by double clicking on the button and writing the text in the

button. You may notice that the button cleverly adjusts its size to accommodate the

text width. See Figure 4–18.

CHAPTER 4: Buttons & Labels with Multiple Graphics 120

Figure 4–19. Drag the second image view onto the View.

19. Let's think about this for a second now. When the button is pressed, we want the

kantStair.png image to appear on top of the background, STAIR.png. On what

does it arrive? It’s carried onto the screen by way of an Image View. Therefore, drag

an Image View onto the screen, as shown in Figure 4–19. After you have dragged

an Image View onto the screen, we want to place it flush to the bottom edge of

the iPhone/iPad screen. We don’t want the image floating in the middle of the

screen, but instead to appear as if it’s projecting from the bottom. Once you’ve

dragged the image to the screen, just let it go. We have not yet configured the

size or placement of the image. That’s next!

CHAPTER 4: Buttons & Labels with Multiple Graphics 121

Figure 4–20. Adjust the location of the second image view.

20. Go to the Image View Application dialog frame and then click on the View tab.

Here, you will see that the alignment option of Center is checked by default. We

want to change that to Bottom, as illustrated in Figure 4–20. Before moving onto

the next step, take a minute to align the label and button with each other, and in

context with the center of the screen, as depicted in Figure 4–20.

You are now done with dragging items out onto the View. We have our label, a button,
and two image views. Now let’s save everything and start putting some code behind
these items that we've dragged onto the view.

CHAPTER 4: Buttons & Labels with Multiple Graphics 122

Figure 4–21. Click on the Assistant.

21. You now want to start tweaking your screen view to accommodate code. Just as

we have done in the three earlier apps, we start moving from the Interface Builder

view to our coding view by clicking on the Assistant, as depicted in Figure 4–21.

CHAPTER 4: Buttons & Labels with Multiple Graphics 123

Figure 4–22. Show the Navigator

22. The second item we need to show after invoking the Assistant is the Navigator, as

illustrated in Figure 4–22.

CHAPTER 4: Buttons & Labels with Multiple Graphics 124

Figure 4–23. Control-drag a connection from your label in Interface Builder into your header file.

23. As shown in Figure 4–23, after clicking once on the label in your Interface Builder,

Control-drag it into your header file, located inside the squiggly brackets of the

@interface directive. Make sure that you keep on control-dragging out until you

see the insertion indicator, as shown in Figure 4–23.

CHAPTER 4: Buttons & Labels with Multiple Graphics 125

Figure 4–24. Let’s name the label outlet “label”.

24. As shown in Figure 4–24, when you've controlled-dragged your label out to the

@interface directive, drop it in by letting go of your mouse and then call it "label"

and leave it as an "outlet."

CHAPTER 4: Buttons & Labels with Multiple Graphics 126

Figure 4–25. Control-drag a connection from your second UIImageView in Interface Builder into your header
file.

25. After clicking once on the second UIImageView in your Interface Builder, control-

drag it until you see the insertion indicator as shown in Figure 4–25. Make sure

that when you control-drag into your header file, you go between the squiggly

brackets of the @interface directive—directly under the label Outlet you've just

created.

CHAPTER 4: Buttons & Labels with Multiple Graphics 127

Figure 4–26. Let’s name the second UIImageView outlet “Kant”.

26. As shown in Figure 4–26, when you've control-dragged from the second

UIImageView out to the @interface directive, drop it in by letting go of your mouse

and then call it "Kant" and leave it as an "outlet" connection type.

CHAPTER 4: Buttons & Labels with Multiple Graphics 128

Figure 4–27. Control-drag the button into your header file.

27. Click once on your button and control-drag to the area below the @interface

directive and its squiggly brackets. This is shown in Figure 4–27.

CHAPTER 4: Buttons & Labels with Multiple Graphics 129

Figure 4–28. Open the drop-down menu and change the type of connection to an Action.

28. Change the connection type in the top drop-down menu in the dialog box from an

Outlet to an Action. This is just like we did before. See Figure 4–28.

CHAPTER 4: Buttons & Labels with Multiple Graphics 130

Figure 4–29. This is how your code should appear, after you’ve completed the Synthesize and Button actions.

29. At this point, we are going to focus and think about what we're doing. In class, I

make sure that the students are 100% focused on this section. I force them to

rewrite this section in their own words. I also include this section on quizzes, mid-

term examinations, and the final examination. For readers at home, I will ask that

you read this when you have a fresh mind and that you re-read it and convert the

following into your own notes. Get up, get a pen and paper, and rewrite this

section in your own words—just like I make my students do in the lecture hall.

NOTE: Do not write this on your Mac because then you will start to cut and paste. Get up and

grab a pen and a piece of paper. This is critical.

We are going to write statements that I've alluded to earlier that we called "synthesize"
statements. However, to really grasp it, we need to dig a little deeper into outlets and
actions as well, so in this section we will talk about IBOutlets, pointers, properties of
management & control, and adding IBActions. However, before we get into this, let’s
look at what you have in your header file, what we will change, and then what we're
going to focus on.

This is what your code looks like so far (Figure 4-29):

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

CHAPTER 4: Buttons & Labels with Multiple Graphics 131

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

- (IBAction)buttonGuess:(id)sender;

@end

You will type the bold text into your code right now, without thinking about what you're
doing:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

Understanding IBOutlets
In previous chapters, we have already discussed the .m and .h extensions in detail.
We’ve been doing what most Cocoa and Objective-C programmers do—start off by
programming the header files. In geekspeak, you’d say; “After dragging out objects onto
the View, we opened the header and control-dragged our IBOutlets and IBActions into
the header file.” If anybody were to ask you on the forum to explain, you may tell them
to, “Click on the disclosure triangle in your Classes file and open the file with extension
ViewController.h!”

You’ve already programmed three previous header files, so you should be accustomed
to just flying over this portion of your code. However, this time we’re going to put on the
brakes and think about what we’re doing. For all our previous examples, we’ve only had
to use one IBOutlet, a thing that allows us to interact with the user. Let’s get more
technical and specific, for that statement is too elementary. Let’s dig deeper into what
an IBOutlet is so that, when we get to the “Digging the Code” section, you’ll be able to
really understand it.

Looking at the code in bold, let’s see if we can find our way to a deeper understanding
of these elements:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;

CHAPTER 4: Buttons & Labels with Multiple Graphics 132

 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

Look at the first line:

#import <UIKit/UIKit.h>

This is what permits us to use the IBOutlet keyword. We use #import to import the
UIKit, which is the user interface (UI) framework inside the huge body of core chunks of
code called IPhoneRuntime, which is a stripped-down version of the OS X operating
system found on a Mac. Of course, IPhoneRuntime is smaller, so it can fit onto an iPhone
or an iPad.

When we import the UIKit framework, it delivers to our toolbox the ability to use tons of
code Apple has already written for us—called classes—one of which is the very cool and
popular class that you’ve already used: IBOutlet. The IBOutlet keyword is a special
directive called an “instance variable” that tells Interface Builder to display items that
you want to appear on your user’s iPhone or iPad. In turn, Interface Builder uses these
“hints” to tell the compiler that you’ll be connecting objects to your .xib files. Interface
Builder doesn’t connect these outlets to anything, but it tells the compiler that you will
be adding them.

Keeping inventory of what we’ll be using: 1) the background image of the stairs; 2) the
top-layer image of Kant; 3) the text of what he will be “saying” upon his return to the
campus. In our exercise, we’ll be using two IBOutlets—one dealing with the text in our
label where Kant says "Hello World, I'm Back!" and the other with our second view
where Kant magically appears.

Knowing that we need two IBOutlets, we can visualize how it will look. We start by
focusing inside the brackets that follow @interfacetestViewController :
UIViewController. Our code will need to appear as follows:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

IBOutlet UILabel *label;
IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutletUIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

CHAPTER 4: Buttons & Labels with Multiple Graphics 133

As you can see, by only looking at the bold code and imagining that you have not
programmed anything else but the bold code, these IBOutlets are just placeholders;
one will produce text for what Kant says, and the other will produce a picture that is
superimposed on top of the background.

We know that when we shoot text out onto the iPhone or iPad screen we use the
UILabel class. This class draws multiple lines of static text. Therefore, go ahead and
type in UILabel next to your first IBOutlet, as shown in the following code. Now,
consider what we will need for the second IBOutlet. We know that we want to impose
the top layer image as shown in Figure 4–03. A good idea here would be to use the
UIImageView class because it provides us with code written by Apple that can display
either single images or a series of animated images. With this said, enter the
UIImageView class next to your second IBOutlet:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

IBOutletUILabel *label;
 IBOutletUIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

As you can see it now makes sense when we say that we have two IBOutlets:

� We let one call the UILabel class to control the text.

� We let the other call the UIImageView class to control the second
image.

Pointers
Now that we have the means to push text and an image onto the screen of the
iPhone/iPad, we need to specify which text and which image. We sometimes use
predefined code, created by the folks at Apple, which does what it does by virtue of
referencing or pointing to our resources—that is, our text and images. As you are
beginning to see, this is the context in which we will be using pointers.

In previous examples, we told you not to worry about that star thing (*). Well, now it’s
time to take a look at it. Let’s focus for a moment on how these (*) things—pointers—do
what they do. We need an indirect way to get our text and picture onto the screen. We
say “indirect” because you will not be writing the code to accomplish this—you will use
Apple’s code to retrieve these. You will call up pre-existing classes, and then these
classes will call up your text and your image. That is why we say this is an indirect means
of obtaining your stuff.

CHAPTER 4: Buttons & Labels with Multiple Graphics 134

Consider this little analogy. Suppose you make a citizen’s arrest of a burglar who breaks
into your house. You call the police and, when they arrive, you point to the criminal and
say, “Here’s the thief!” Then the policeman, not you, takes the criminal away to be
charged.

Now, you want to display text on your iPhone/iPad. You call UILabel, and when it
“arrives,” you point to your words and say, “Here’s the text.” Then the UILabel, not you,
deals with the text.

You will do likewise when you want to display an image on your iPhone/iPad. You call
UIImageView, and when it “arrives,” you point to your photograph or picture and say,
“Here’s the image.” Then, the UIImageView code, not you, deals with the picture.

Perhaps you’re asking yourself what the names of these pointers are, or need to be. The
good news is that you can give them whatever names you want. Let’s point the UILabel
to *label and the UIImageView to a pointer with the name of *Kant. So again, looking at
the code you've just written:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

Some of the clever people at Apple describe their reasoning for creating and coding
IBOutlets as giving a hint to Interface Builder as to what it should “expect” to do when
you tell it to lay out your interface.

� One IBOutlet whispers into Interface Builder’s ear that the UILabel
class is to use text indicated by the *label pointer.

� The other IBOutlet whispers into Interface Builder’s ear that the
UIImageView class is to use the image referenced by the *Kant pointer.

We’re not done yet. After we tell Interface Builder what to expect, we need to tell your
Mac’s microprocessor—through the compiler—that an important event is about to
descend upon it. One of the most important things your compiler wants to know is when
an object is coming its way. This is because objects are independent masses of
numbers and symbols that weigh upon the microprocessor and put significant demands
on it, and so the processor needs to be told by you, the programmer, when it needs to
catch the object and put it into a special place in memory.

Objects can come in a wide variety of flavors—as conceptually different as bird, guru,
soccer, and house. So, to allow the processor to handle its job when the time comes,

CHAPTER 4: Buttons & Labels with Multiple Graphics 135

we need to inform it that each object we will be using in our code has two specific and
unique parameters or features: property and type.

Don’t freak out! Providing this information is really easy, and it consists of two steps.

The first step is what we just covered: we give the compiler a head’s up about objects
we will be using by defining their two specific and unique features: property and type.
The second step is this: When the microprocessor receives this data, it utilizes this
information by synthesizing it.

� First, we declare that our object has a property with a specific type.

� Second, we instruct the computer to implement—or synthesize—this
information.

In other words, we tell the compiler about our object by declaring it, including specific
descriptive parameters of its properties. Then, we give the compiler the go-ahead to
implement our object by telling it to synthesize the object.

But how do we do this declaring and implementing? We use tools in our code called
directives. We signal directives by inserting @ before stating our directive. This means
that to declare what property our object has we put the @ symbol in front of the word
property to make it a property directive: @property.

When we see @property in our code, we know it’s a property directive. Similarly, when
we want to tell the compiler to process and synthesize; that is, to do its stuff on our
object, we put the @ symbol in front of our synthesis statement: @synthesize.

Saying the exact same thing we said before, but translated into geekspeak, we get:

� The @property directive declares that our object has a property with a
specific type.

� The @synthesize directive implements the methods we declared in the
@property directive

Easy, huh? OK, just two more points now, and then we’ll get back to our code.

Properties: Management & Control
The first elaboration I want to make is that we also need to specify whether this property
will be read-only or read-write. In other words, we need to specify whether it will always
stay the same or whether it can mutate into something new. In geekspeak, we call this
mutability. For the most part, we will use Apple code to handle the mutability of
properties with respect to our objects.

In order to instruct the Apple code to handle the mutability property, we’ll designate the
property as “nonatomic.” To apply this term meaningfully, try contrasting “nonatomic”
with “atomic.” Recall that “atomic” means powerful, and it implies the ability to go into
the microscopic world and to effect change. Therefore, “nonatomic” must mean not-so-
powerful, more superficial, and unmanipulable.

CHAPTER 4: Buttons & Labels with Multiple Graphics 136

If we designate a property (such as mutability) as nonatomic, we are basically saying,
“Apple, please handle our mutability and related stuff—I really don’t care. I’ll take your
word for it!” At a later date, you may want to take direct control of this property, and
then you would designate it as “atomic.” At this time, though, we will use the more
relaxed approach and let Apple handle the microscopic business. So, when it’s time to
choose one or the other designation, just use nonatomic!

The second elaboration I want to make at this point deals with memory management.
We need to address the issue of how to let the iPhone/iPad know, when we store an
object, whether it shall be read-only or read-write. In other words, we need to be able to
communicate to the computer the nature of the memory associated with an object—in
terms of who gets to change it, when, and how. Generally speaking, we will want to
control this information, and keep it in our own hands—that is, to retain it. As you move
through the remaining exercises in this book, we are going to keep the code in our own
hands; we will retain the right to manage our memory.

We can summarize the addition of these details to the property directives, and how we
would modify the code, as follows:

� The @property (nonatomic, retain) directive says the following:

� Mutability should be nonatomic. Apple, please handle this!

� Memory management is something we want to retain. We will
maintain control.

� The @synthesize directive implements the methods we declared in the
@property directive.

We have one more layer of complexity to add to this mix. We add those directives in two
different files. We define the @property directive with a statement in the header file, and
then we implement it by using the @synthesize directive in our implementation file.

� Header File: helloWorld_04_ViewController.h

@property (nonatomic, retain) //“our stuff”

� Implementation File: helloWorld_04_ViewController.m

@synthesize//“our stuff” we defined in @property in the header file.

We will need to write two of these for each of our two IBOutlets: one for the text, and
the other for the picture. In addition, because we’re still in the header file, we need to
repeat this when we synthesize it in the implementation file. OK, time to go ahead and
enter your code:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;

CHAPTER 4: Buttons & Labels with Multiple Graphics 137

@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

Yes, that seemed like a lot of explanation just to say: @property (nonatomic, retain).
Remember, though, that we’re deep in the trenches… we’re telling the computer that we
want Apple to take care of mutability, but that we want to retain control of the memory.
Later, we will synthesize these commands in the implementation file, for both
IBOutlets.

IBOutlets? Remember them? Oh yeah—let’s return to that part of your program. The
IBOutlet for the text is UILabel with pointer *label, so we entered the code to control
the text for the label as follows:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain)IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

The IBOutlet for the picture is UIImageView with pointer *uiImageView, so enter the
code for the picture:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain)IBOutlet UILabel *label;
@property (nonatomic, retain)IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

 IBOutlet UIImageView *uiImageView;

CHAPTER 4: Buttons & Labels with Multiple Graphics 138

Are we done with the header file yet? Not quite. We need to look at our IBActions.
We’ve analyzed our IBOutlets, both of them, but now we’re going to analyze the
IBAction we used for our… can you guess?

Adding IBActions
Yes, we needed a button! So we made an IBAction for our button, as shown in Figure
4–28. We could “go deep” again, into the code for the IBAction, but this has been a
challenging section. Let’s save the technical part of this element for “Digging the Code.”
Meanwhile, just enter the new code that is highlighted here. See if you can anticipate the
functions of the different pieces—or parameters—and we’ll see how close you are later.

This is what we will be focusing on:

#import <UIKit/UIKit.h>

@interface helloWorld_04ViewController : UIViewController {

 IBOutlet UILabel *label;
 IBOutlet UIImageView *Kant;
}

@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, retain) IBOutlet UIImageView *Kant;

- (IBAction)buttonGuess:(id)sender;

@end

GO OUT NOW, AND TAKE A BREAK.

CHAPTER 4: Buttons & Labels with Multiple Graphics 139

Figure 4–30. Leave the Assistant and click on the Standard editor.

30. We now need to redraw our user interface so that we can work on our

implementation file. We need to leave the Assistant editor and click on the

Standard editor, as shown in Figure 4–30.

CHAPTER 4: Buttons & Labels with Multiple Graphics 140

Figure 4–31. Show the Navigator.

31. We now need to show the Navigator, so we can jump from the header file into

the implementation file. Of course, we have many different ways to do this, but

for now just follow along, as this is the least complex means of doing this. See

Figure 4–31.

CHAPTER 4: Buttons & Labels with Multiple Graphics 141

Figure 4–32. Save your work and open the implementation file..

32. Right now, the Interface Builder is showing our .nib file. Save everything and

then go to your Navigator and click on the implementation file (.m), as shown in

Figure 4–32.

CHAPTER 4: Buttons & Labels with Multiple Graphics 142

Figure 4–33. With the implementation file open we can now code.

33. Now that you have your implementation file open, let's look at Figure 4–33 and

first think of a means for providing synthesis. We've gone over making the

@property directives for our label text and Kant image in the header file so that we

would then have code the @synthesis statements for these two IBOutlets in our

implementation file—so let’s do it. Type in your synthesis code as shown below:

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;

- (void)dealloc
{
 [label release];
 [Kant release];
 [super dealloc];
}
...

- (IBAction)buttonGuess:(id)sender {
}
@end

CHAPTER 4: Buttons & Labels with Multiple Graphics 143

Figure 4–34. Delete the viewDidLoad code.

34. We do not need the viewDidLoad code, since we are manipulating it a little

differently. Therefore, select it and then delete it, as shown in Figure 4–34.

CHAPTER 4: Buttons & Labels with Multiple Graphics 144

Figure 4–35. Write the first two lines of the buttonGuess method.

35. As indicated in Figure 4–35, we are now ready to program the code that will

execute when the user presses the button. In other words, we are now ready to

program the button's code. Scroll down until you get to the buttonGuess method

that exists, but is currently empty.

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;
...

- (IBAction)buttonGuess:(id)sender {

}

@end

When the user runs this app and presses the button, the image of Kant will appear
instantly on top of the background staircase. He is going to “say” something via the
embedded text. How about, “Hello World, I’m back!” To accomplish this, we need to
associate the label instance variable with a text property assigned with our desired text
as follows:

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;
...

- (IBAction)buttonGuess:(id)sender {

CHAPTER 4: Buttons & Labels with Multiple Graphics 145

label.text = @"Hello World I'm back!";
}

@end

Having completed the task of coding for the text, we now need to add the code that will
cause the image of Kant to appear. For this, we will use a class method called
imageNamed that will display the kantStair.png image, the top-layer photo we prepared
at the beginning of this project. Enter the line bolded in the following code, immediately
under the code you just entered for the text:

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;
...

- (IBAction)buttonGuess:(id)sender {
label.text = @"Hello World I'm back!";
UIImage *imageSource = [UIImage imageNamed:@"kantStair.png"];

}

@end

Our pointer’s name for the image is Kant, but right now the kant.png image file is in
UIImage’s assigned pointer called imageSource.

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;
...

- (IBAction)buttonGuess:(id)sender {
label.text = @"Hello World I'm back!";
UIImage *imageSource = [UIImage imageNamed:@"kantStair.png"];
}

@end

We need to assign this automatically assigned pointer imageSource to the image of Kant
as shown in the following code:

#import "helloWorld_04ViewController.h"

@implementation helloWorld_04ViewController
@synthesize label, Kant;
...

- (IBAction)buttonGuess:(id)sender {
label.text = @"Hello World I'm back!";
UIImage *imageSource = [UIImage imageNamed:@"kantStair.png"];
Kant.image = imageSource;
}

@end

CHAPTER 4: Buttons & Labels with Multiple Graphics 146

If this doesn’t quite make sense at the moment, that’s OK. There sure are a lot of entities
with “image” as part of their name, object, or association, and it is confusing. We’ll be
examining this topic more thoroughly as we move forward, so, right now, don’t lose any
sleep over it! Figure 4–36 illustrates how your code should appear at this point. Now
save your work by entering �S, and give yourself a pat on the back. You have worked
through the header and implementation files at a much deeper level than in previous
chapters. Even though you have walked through some of these technical functions
before, you braved them again while remaining open to a deeper understanding. You
also tackled a very difficult concept: synthesis.

Figure 4–36. With the code all written, let’s run it.

36. Now that we are through writing our code, let's run it and see if we have any

errors. See Figure 4–36.

CHAPTER 4: Buttons & Labels with Multiple Graphics 147

Figure 4–37. Error! Misspelled label.

37. As seen in Figure 4–37, we have errors. Clearly lavel should be label, so I

changed it to label. You, of course, type very much better than I do so this

means nothing to you—unless you have been diligently following each step in the

video. Nonetheless, with the typo fixed, let's save it and run it again.

Figure 4–38. Your screen as it runs.

CHAPTER 4: Buttons & Labels with Multiple Graphics 148

38. Figure 4–38 shows your screen with helloWorld_04 running with the button

clicked. Notice that the icons are still on the side, with the helloWorld_04 folder

below it.

Figure 4–39. The two helloWorld_04 views.

39. Figure 4–39 illustrates the two views of helloWorld_04. The first view is what we

will see when the app first opens. Your images will be different of course, if you

used your own, but apart from the background image your screen should look

very similar. The second image is what appears when the button is clicked. The

label text appears and the second image is superimposed on top of the

underlying image.

Digging the Code
In this section, let’s zoom into some of the key components that we encountered earlier
in this chapter. I want to talk a little more about IBOutlets and IBActions – specifically
how these include keywords… and even quasi-keywords. We’ll also touch on pointers
and their relationship to addresses in the code.

IBOutlets and IBActions
Earlier, we worked with IBOutlet and IBAction keywords, and now we’re going to talk
about a couple of related concepts. Strictly speaking, these are considered by many
programmers to be “quasi-keywords.”

The Appkit of Objective-C has converted original C language preprocessor directives,

CHAPTER 4: Buttons & Labels with Multiple Graphics 149

such as #define, into usable preprocessor directives. In geekspeak, we would
pronounce this as “pound-define.”

NOTE: In the US, the “#” sign is often called the “pound” sign, especially in Objective-C and

other programming contexts. In the United Kingdom, it is referred to as the “hash” character.
Many iPhone/iPad developers have recently begun to refer to the #define preprocessor

directive simply as the “define directive.”

The #define preprocessor directive tells the computer to substitute one thing for
another. That’s an easy concept, right? For example, if I were to program the computer
to substitute “100” every time it sees an instance of your name, our code in C would
look like this:

#define yourName 100

This would tell the computer to substitute “100” each time it processes yourName—a
variable that recognizes instances of your actual name.

Back to Xcode now, and our topic. In this context, the IBOutlet and IBAction quasi-
keywords aren’t really defined to be anything. In other words, they don’t do anything
substantial for the compiler, which is the core of the computer.

Quasi-keywords are flags, though, and they are important in the communication with the
Interface Builder. When it sees the IBOutlet and IBAction quasi-keywords, it gets some of
its internal code ready to perform specific tasks. It gets itself ready to deal with instance
variables and all the hooks and connections that we make in that programming arena.

More About Pointers
It’s difficult for many programming students to understand the concept of “pointers”—
also sometimes known as the concept of indirection. It’s not easy to explain this idea
because it’s one of the most sophisticated features of the C programming language.

Earlier in this chapter, I presented the analogy of seeing a criminal doing something, and
then calling the police and pointing the police to where he is—so they, not you, can arrest
the criminal. This analogy works for many students, but now let’s go a little deeper.

If you were to ask a Computer Science professor what a “pointer” is, he would probably
say something like “Pointers hold the address of a variable or a method.”

“The address?” you ask. Well, consider this new analogy in the way of explanation.

Have you ever seen a movie in which a detective or some frantic couple is traveling all
over the place, looking for clues to the treasure map, or the missing painting, or the
kidnapped daughter? Sometimes they will spot a fingerprint, or a receipt, or even an
envelope with a piece of paper containing a cryptic message—and these take the
people one step closer to their goal—of finding the missing objects themselves.

We can call these pointers; they indicate the next place to go—for the solution of the

CHAPTER 4: Buttons & Labels with Multiple Graphics 150

given problem. They don’t necessarily give the ultimate address, at which everything is
handled and resolved, but they give us intermediate addresses or places to continue
our work.

Thus, what the professor of Computer Science means is that pointers do not actually
contain the items to which they direct us; they contain the locations within the code—
the addresses—of the desired objects or actions or entities. This important feature
makes the C-family of languages very powerful.

This simple idea makes it very efficient to turn complex tasks into easy ones. Pointers
can pass values to types and arguments to functions, represent huge masses of
numbers, and manipulate how we manage memory in a computer. Many of you are
perhaps thinking that pointers are similar to variables in the world of algebra. Exactly!

In our first analogy, a pointer enabled an unarmed citizen to arrest a dangerous criminal
by using indirection—that is, by calling the police to come and solve the problem. (Yes,
the term “indirection” is an odd choice given that we are actually being directed toward
the goal.)

Consider the following example where we use a pointer to direct us to the amount you
have in your bank balance. To do this, let’s define a variable called bankBalance as follows:

int bankBalance = $1,000;

Now, let’s throw another variable into the mix and call it int_pointer. Let us also
assume that, for argument's sake, we have declared it. This will allow us to use
indirection to indirectly connect to the value of bankBalance by the declaration:

int *int_pointer;

The star, or asterisk, tells the family of C-languages that our variable int_pointer is
allowed to indirectly access the integer value of the amount of money in our variable
(placeholder): bankBalance.

To close, I want to remind you, and to acknowledge, that our digging around here is not
an exhaustive or rigorous exploration into these topics… just a fun tangent into some
related ideas. At this point, there is no reason for you to be bothered if you don’t fully
understand pointers. Seeds have been planted and that’s what counts for now!

You’ve Said “Hello!”… but now, INDIO!
We can divide most iPhone and iPad apps into four different functions: Interaction,
Navigation, Data, and I/O (Input/Output). We have seen enough apps to know that we
can interact with them; we can navigate from one screen to another; we can manipulate
and utilize data; and, we can provide input (type, paste, speak) and receive output
(images, sounds, text, fun!).

Before we zoom in again to approach a program from any one of these specific areas,
we need to first have a better grasp of how these different aspects of iPhone/iPad
programming work, look, and behave. We also need to learn about their limitations and
the pros and cons in terms of the projected or desired user experience and, because of

CHAPTER 4: Buttons & Labels with Multiple Graphics 151

the differences discussed above, whether the app is for the iPhone or the iPad. In
helloWorld_04, unbeknownst to you, we continued to delve deeper into INDIO—
Interaction, Navigation, Data, and I/O (input/output). Our code retrieved two images, by
different means, which will interact with the user. This exercise took us closer to the I/O
aspect of INDIO, which we have not quite wrapped our heads around because, simply
put, we’re not there yet.

Like a digital warrior, you are striding along a path into the forest of Objective-C, to a
place where you will need to be accustomed to vaulting over rivers, hunting tigers,
building fires in the rain, and so forth. So far, you’ve learned to start a fire with flint and
steel—in dry weather—and you’ve gotten pretty good at hopping over streams. This
lesson will teach you to vault over wider streams and, once there, to hunt tigers. Soon,
you’ll be equipped to fight the legendary demons of I/O in the daunting realm of INDIO.

As you gain a working knowledge of where any limitations and barriers exist, your
journey through these four domains—all parts of a vast “forest”—will be more powerful
and productive. A very important part of my job is to show you how to conduct yourself
safely through the Forest of INDIO. Some sections of the forest are more daunting than
others, but the good news is that you will be getting a nice, high-level view, as if from a
helicopter! After our aerial tour, we will parachute down to the forest floor, open Xcode,
and continue to explore the paths, the watering holes, and the shortcuts—to mark off
the unnecessary sections and to be on the lookout for wild animals.

Model-View-Controller
As mentioned previously, the programmers who developed Cocoa Touch used a
concept known as the Model-View-Controller (MVC) as the foundation for iPhone and
iPad app code. Here is the basic idea.

Model: This holds the data and classes that make your application run. It is the part of
the program where you might find sections of code I told you to ignore. This code can
also hold objects that represent items you may have in your app (e.g., pinballs, cartoon
figures, names in databases, appointments in your calendar).

View: This is the combination of all the goodies users see when they use your app. This
is where your users interact with buttons, sliders, controls, and other experiences they
can sense and appreciate. Here you may have a main view that is made up of a number
of other views.

Controller: The controller links the model and the view together while always keeping
track of what the user is doing. Think of this as the structural plan—the backbone—of
the app. This is how we coordinate what buttons the user presses and, if necessary,
how to change one view for another, all in response to the user’s input, reactions, data,
etc.

CHAPTER 4: Buttons & Labels with Multiple Graphics 152

Figure 4–40. The model, the view, and the controller (MVC).

Consider the following example that illustrates how you can use the MVC concept to
divide the functionality of your iPhone/iPad app into three distinct categories. Figure 4–
40 shows a representation of your app; I’ve called it “MVC Explained.” You can see that
the VIEW displays a representation—a label—of “Your very cool fantastic App Includes 3
layers: A, B and C.”

In the CONTROLLER section of the app, we see the three individual layers separated
out, Layer “A,” Layer “B,” and Layer “C.” Depending on which control mechanism the
user clicks in the VIEW domain, the display the user sees, the CONTROLLER returns the
appropriate response—the next view from the three prepared layers.

Your app will probably utilize data of some type, and this information will be stored in
the MODEL section of your program. The data could be phone numbers, players’
scores, GPS locations on a map, and so on.

As the user interacts with the VIEW section of the app, it may have to retrieve data from
your database. Let’s say your data contains the place your user parked her car. When
the user hits a particular button in your program, it may retrieve the GPS data from the
MODEL. If it’s a moving target, it may also track changes in the user’s position in
relation to a car in the parking lot. Lastly, the CONTROLLER may change the state (or
mode) of your data. Maybe one state shows telephone numbers, while another shows
GPS positions or the top ten scores in a game. The CONTROLLER is also where
animation takes place. What happens in the animation can affect and perhaps change
the state in your Model. This could be done by using various tools, such as UIKit
objects, to control and animate each layer, state, etc.

If this sounds complicated, bear in mind that you’ve already done much of this without
even knowing it! In Example 1, you had the user press a button and up popped a label

CHAPTER 4: Buttons & Labels with Multiple Graphics 153

saying “Hello World!” This shows how you have already built an interaction with a
ViewController. We will be delving further into these possibilities, of course. In Chapter
4, we will venture deeper into the Interaction quadrant of the Forest of INDIO, and allow
the user to add and delete table view items.

When we do this, I will do my best to keep you focused on the big picture when it comes
to interactions… via Navigation. Our goal will be to have the user move from less
specific information to more specific information with each new view.

In the Chapter Ahead
In Chapter 5, we will move into the next level of complexity: switch view applications. We will
examine how a team of characters or roles within your code will work together to direct an
outcome, or series of outcomes, that will give the user the sense of seamless flow.

You will learn about delegators and switch view controllers, classes and subclasses, and
“lazy loads.” We will get into the nitty-gritty of the .xib files, examine the concept of
memory deallocation, and learn about imbedded code comments. It’s getting curiouser
and curiouser…

Onward to the next chapter!

155

 Chapter

Touches
Here in our fifth app, we take a giant leap forward and really program some code. I want
to say this right now: even though this is a big leap forward, there is always an easy
ways out. Yes, I want you to do your very best to type in the all the code as you
diligently follow the steps. Yes, I even want you to carry on when you feel like giving up;
however, at this point, I want to clarify something with you, as I do with my students.

Redefining “Giving Up”
We need to talk about this for one page and I want you to read through this—you will
probably need to in order to prepare yourself for this chapter. In the past, you may have
associated “giving up” with totally relinquishing a dream you had. So let me share with
you my outlook on three terms: “giving up,” “dreams,” and “goals”. I want to talk about
these terms in the context of the following four points:

� A person can have a dream until the day he or she dies. For example,
one could dream of being a supernova geek who programs
phenomenal multi-million dollar apps. A person could have that dream
until the day he or she dies, even if he or she had never even touched
an iPhone or knew what the word “Xcode” meant. This is because the
equation that makes up a dream has no element of time.

� A goal, however, is simply a dream with an added element of time.
Think about it. When the element of time in your goal’s equation runs
out, you FAIL! It’s really simple. If you plan to become a supernova
geek and sell a million apps within 12 months and you cannot compile
“hello world” after 12 months, then you’ve FAILED!

5

CHAPTER 5: Touches 156

� The more we accomplish goals within our time constraints, the more
confident we become. That’s why a good professor sets baby steps
along the way to ensure that his or her students accomplish goals and
feel really good about themselves. That’s why good professors make
little programs that move students a little closer to their ultimate goals.
Each week, my students need to finish a set goal by programming an
app. If they do not send me that completed app within the time limit, I
fail them for that assignment! However, this is rare because rather than
give up when it gets really hard, I have some back up angels that help
my students succeed and meet their goals in time.

� Rather than give up when the going gets tough, you can

� First, watch me program this code in the video at
http://bit.ly/qp6aCS and simply follow along. I go a little fast to
keep the video short, but you can always pause it. In June 2011,
the average person paused the video 28.5 times (all viewers).The
average student of mine paused the video 11.3 times.

� Secondly, if watching the video does not result in total success,
you can download my code for this program at
http://bit.ly/r1isYn. Here, you can visually compare your
code with mine. I tell students to try visually comparing first; if
that doesn’t work, I have them paste my code into either Pages
or Word, and then paste their code into another similar
document. After this, they should GO AWAY from their
computers and check my code line by line against theirs.

� Thirdly, if the preceding steps don’t work, I don’t want you to
give up! I want you to paste my code into your code after you
have dragged your icons from the nib file into your header file.
This means that you still do steps 1 through to 30, which involve
mostly dragging and dropping. Then, paste the implementation
code into your implementation. When it compiles, I want you to
then try it again on your own before moving on to the next
chapter.

The preceding steps eliminate the possibility of you giving up on being a supernova
geek. I LOVE receiving emails from students and readers telling me how proud they are
of being geeks, and how they cannot believe that so many people are downloading and
buying their apps. I especially love it when they tell me that they never programmed
before in their lives, and how this book showed them they could program apps and not
give up. A wife and mother of four in Helena, Montana brought me to tears when she
told me that when her husband lost his job as a boiler maker, she bought my book and
never gave up—she supported her family for over a year until her husband found
another job. She still programs and sells apps.

Essentially, first and foremost, try your hardest to do it by just reading the chapter. If it’s
too much for you, then check out the video. If the video does not help, then download

CHAPTER 5: Touches 157

the code, move away from your computer, and check your code visually, line by line. As
a last resort, you can paste my code into yours after you drag-and-drop the other
elements into your code.

OK—let’s do it.

Roadmap Recap
Going back to the car mechanic analogy, we understand that nowadays, as mentioned
in the previous chapter, car mechanics are very specialized: only a handful know how to
completely strip down and rebuild a specific car. So far, we have been peering over the
shoulder of one such car mechanic, as he has changed and swapped specific
components inside the engine. Today, you will build a very basic lawnmower engine. It
will involve more steps than you’ve had to take thus far, but at the end of this chapter,
you will have taken a huge leap forward.

As you build your lawnmower engine, there will be times that you look down and see a
bigger mess of tools, nuts, and bolts than you have ever seen before. But hang in there.
Follow me as I ask you to stand up from time to time and look at that “mess” from my
point of view, not yours, and it will all make sense to you.

Touches: A View-Based Application
The touches app initially looks like the cover of this book. The lulu fruit however, can be
moved around with your fingertips after you touch it. There are also three buttons on the
top called Shrink, Move, and Change. The Shrink button is a special button; after you
press it, the lulu fruit icon shrinks and the text inside the button automatically changes to
Grow. Upon pressing the Grow button that used to be the Shrink button, the lulu fruit
grows back to its original size. If you like, you can quickly have a look at Figures 5–45,
5–46, and 5–47. You can also see the app working right at the beginning of the video
here: http://bit.ly/qp6aCS. Only look at the app working though—don’t follow the
video through the code, as I want to explain the code to you in a specific way.

CGAffineTransform Structs
We will also be working on animation code that the clever people at Apple wrote into a
bundle called a data structure. This is a critical tool coders use to perform animations of
their objects. The data structure can shrink an object, change its angle, move it, tilt it,
and make it do all sorts of other cool animations. All the code that Apple uses to perform
these animations is kept in vaults located in core animation data structures called
structs. Apple explains this by saying that the “CGAffineTransform data structure
represents a matrix used for affine transformations.” Huh? What does that mean? It
means that the CGAffine transforms all the critical points of an object you want to
animate into a property called a transform. This property is simply a matrix. Once the
object you want to animate is in this matrix, CGAffine is able to obey us when we

CHAPTER 5: Touches 158

instruct it to change our object’s position, angle, shape, scale, and so on. This is what
we’ll do to the lulu fruit icon.

Figure 5–1.The five background images and two lulu fruit icons downloaded from the repository

1. Do I even need to say this ? Close all programs, delete all trash, and drag all your

important files and folders to a proper destination so that you have a perfectly

clean desktop. Download the images from http://bit.ly/prqKsL and upon

unzipping the downloaded file, you will see seven images on your desktop. The

five background images are various versions of the cover of this book. The first

image will be the upper left-hand one in Figure 5–1, which is a picture of the front

of the book without the lulu fruit icon. One can see that the lulu fruit icon is

separate from the background pictures. The larger lulu fruit icon is the one that

will be on the user screen and will be animated via the CGAffineTransforms we

impose upon it. The smaller lulu fruit icon is the icon.png version. Our Change

button will scroll through all five background images. The Shrink button and Move

buttons will use CGAffine structs to animate the lulu fruit icon.

CHAPTER 5: Touches 159

NOTE: You can of course use your own images and icons. However, this is a long chapter even
without spending resources on creating your own images. In class I tell students to hand in this
homework assignment using my icons first. Later, they can use their own and if done on time

(within three days), they can hand in their homework again with their own icons for extra credit.

No students have done this yet.

Figure 5–2. The seven images opened on your desktop, ready to launch into Xcode

2. Your desktop should look similar to mine, as shown in Figure 5–2, with nothing but

the seven icons and your Mac hard drive on your desktop. Once everything is

clean and your images are stacked up and ready to go, YOU are ready to blast off!

CHAPTER 5: Touches 160

Figure 5–3. Enter ��N. Xcode 4.2 provides the option for a Single-View Application, which is the same as the
older versions of View-Based Application.

3. Like we have done before, launch Xcode and open a new project by using your

keyboard shortcut ��N. When you see the New Project wizard as depicted in

Figure 5–5, you will want to click the Single View Application template.

Once your New Project Window has opened and you have selected the Single

View Application, I want you to press return (“Enter”), or click the Next button.

CHAPTER 5: Touches 161

Figure 5–4. Call your project “touches.”

4. Call your project “touches,” and most importantly, remember to deselect the “Use

Storyboard” option. Once the project is correctly named and the storyboard

option is deselected, as shown in Figure 5–4, press Return or click Next.

CHAPTER 5: Touches 162

Figure 5–5. Select the option to save your project to your desktop.

5. Save your project to your desktop. You can probably guess by now that we make

sure that our current project is located on the desktop. After we’re done with it,

we place it an appropriate folder.

CHAPTER 5: Touches 163

Figure 5–6. Drag your images over to your Supporting Files folder.

6. Initially, when Xcode instantiates itself, it will create a large window that nearly

covers your entire desktop. Grab the bottom right-hand corner and shrink the

window just enough to see the seven images you downloaded from the repository

at http://www.rorylewis.com. As illustrated in Figure 5–6, drag all your images

over into your Supporting Files folder in Xcode.

CHAPTER 5: Touches 164

Figure 5–7. Check the “Copy items into the destination group’s folder …” box.

7. After dropping the image into the Resources folder, you will be prompted to define

whether the image will always be associated with its position on your desktop or

embedded with the code and carried along with the application file, as shown in

Figure 5–7. We want it to be embedded, of course, so click the “Copy items into

destination group’s folder …” box. Also, check the “Create groups for any added

folders” box. Then, click “Finish” (or press Enter).

CHAPTER 5: Touches 165

Figure 5–8. Drag your images into the trash.

8. After you have dumped all your images into Xcode appropriately, there is really no

need to keep them on your desktop or save them anywhere else. If you want to

use them again in another version or if this run through does not work, simply

open up the touches folder and they will all be there. There is no need to

duplicate the images. So go ahead and trash the images that remain on your

desktop, as shown in Figure 5–8.

CHAPTER 5: Touches 166

Figure 5–9. Let’s make your icon first.

9. First, let’s make the icon. Open up your plist while you are in the Supporting Files

folder and enter “icon.png” into the icon name, as shown in Figure 5–9. It’s not a

bad habit to immediately connect your icon into the plist right after dropping in all

your images. Once you leave this folder, you might forget to do it later.

CHAPTER 5: Touches 167

Figure 5–10. Click on your nib file, open up the Utilities View, and close the Navigator View.

10. Once you have associated your icon with icon.png or the name of your personal

icon (if you named it differently), I want you to open your

touchesViewControllernib file, as shown in Figure 5–10. As we have done before,

we need more space, so let’s also open the Utilities View, so we can see the tools

and icons we need to dress up the View design area. Secondly, close the Navigator

View, because for now, we do not need it.

CHAPTER 5: Touches 168

Figure 5–11. Drag a UIImageView onto your View design area.

11. With your Utilities pane open, drag a UIImageView onto your View design area, as

shown in Figure 5–11. The UIImageView will hold the current backgrounds you

downloaded named WallPaper_01 to wallPaper_05. Later, I will explain how you

will write code that will determine which of the five background images will be

housed on this UIImageView at any particular point in time. But we do know that the

Change button will fire up the code that will switch the background. So, you can

guess that the next thing we need to do is drag some buttons onto the view design

area.

NOTE: Xcoders also call the View design area the View screen and View frame. So, whether a
person says “View design area,”“View screen,” or “View frame,” all these terms mean the same

thing. I purposefully use the three terms interchangeably throughout this book.

CHAPTER 5: Touches 169

Figure 5–12. Drag three buttons onto your View design area.

12. As shown in Figure 5–12, start dragging three buttons onto the top of your View

frame. Keep them in line with one another. Keep the outer two buttons lined up

with the outer margins and keep the center button centered on the screen. The

blue indicator lines will tell you when you move your button close to the range of

each of the respective boundaries.

CHAPTER 5: Touches 170

Figure 5–13. Name your three buttons Shrink, Move, and Change.

13. Once you have positioned your three buttons onto your View frame, click the

buttons and name them. Name them Shrink, Move, and Change, as illustrated in

Figure 5–13.

CHAPTER 5: Touches 171

Figure 5–14. Drag a second UIImageView onto your View design area.

14. We now need another UIImageView to hold the lulu fruit icon that we can move

around with our finger, scale with a button, and move with a button, so add

another UIImageView onto your View frame, as shown in Figure 5–14.

CHAPTER 5: Touches 172

Figure 5–15. Associate the lulu fruit icon with the second UIImageView.

15. With the second UIImageView selected, go to the image drop- down menu in the

Attributes dialogue in your Utilities pane, as shown in Figure 5–15. Select the

luluIcon.png to associate it with your second UIImageView.

CHAPTER 5: Touches 173

Figure 5–16. Size and locate the luluIcon.png.

16. Once the luluIcon.png appears inside the second UIImageView, I want you to

leave the Attributes dialogue in your Utilities pane and click the Size inspector

(��5); make the width of the lulu icon a square consisting of 112 x 112 pixels.

Also, set the y-axis height to be 137 pixels down from the top of the View pane.

You can either center the icon manually (as I do) or do it in the x-axis box. This is

illustrated in Figure 5–16.

CHAPTER 5: Touches 174

Figure 5–17. Click the Assistant to bring up your touchesViewController header file.

17. We have completed dragging and positioning all the items necessary onto your nib.

Now we need to connect these items to your code, as we have done before. We

need to work on the touchesViewController header file. Click the Assistant button

and your screen will look similar to what is shown in Figure 5–17.

CHAPTER 5: Touches 175

Figure 5–18. Reposition your screen so you can work on the header file.

18. There are potentially two things here. First, depending on how large your screen is,

you may have to resize or position your View pane inside the nib so that you can

see all three of your buttons. Secondly, add curly brackets to the @property

directive, as illustrated in Figure 5–18.

NOTE: If you are in Version 4.0 or earlier, you will not need to add squiggly brackets to your
@interface directive, as they are automatically instantiated However, if you are using a
higher, more recent version of Xcode, then you will probably have to add the squiggly brackets,

as shown in Figure 5–18.

CHAPTER 5: Touches 176

Figure 5–19. Control-drag a connection from your icon in Interface Builder into your header file.

19. Typically, in the past, when we reached this juncture, I instructed you to just

blindly start control-dragging outlets and action into your @directive. Today,

however, we will first think about what we’re going to do, so we can fuse

synapses in your brain to understand how to create a robust header file. To recap

what you have done in the past, I fed you a ration of Outlets and actions using the

following very broad criteria:

� Outlets to connect nib file members with your UIImageViews
code, which the clever people at Apple wrote for us

� Actions to connect your buttons with code we wrote in the
implementation file

Now, we are going to grow up and move on. Remember how I mentioned that

when we click the Shrink button, it shrinks the lulu fruit icon and the text inside it

changes to Grow; then when we press the button again, it makes it grow? Well,

we need to use the code the folks at Apple wrote that allows us to do cool things

like change the colors, text, and other appearances inside a button.

NOTE: This code provided by Apple is located in a class called UIButton. When we use this
code, we say we are using an instance of UIButton. In short, we need an outlet for our Change

button, so we can change the text in it to go from Shrink to Grow.

CHAPTER 5: Touches 177

We will, of course, also need an outlet for the lulu fruit icon and the background

that will hold whatever WallPaper_0x.png is being used. So, we will need three

outlets. After we have correctly control-dragged our three outlets into the

@properties directive, it will look something like this:

IBOutlet UIImageView *some variable name;
IBOutlet UIImageView *some variable name;
IBOutlet UIButton *some variable name;

Yup! We need to give each of these outlets variable names. Let’s use myIcon for

the icon, myBackground for the background, and shrinkButton for the button that

shrinks the lulu fruit icon. You could use different names, but do that later. Follow

along with me now and it will look like this:

IBOutlet UIImageView *myIcon;
IBOutlet UIImageView *myBackground;
IBOutlet UIButton *shrinkButton;

Insofar as the actions for the three buttons are concerned, they stay the same. We

will still have three actions for our three buttons sitting right after and outside of

the @properties directive, and the code will look something like this:

- (IBAction)some variable name:(id)sender;
- (IBAction)some variable name:(id)sender;
- (IBAction)some variable name:(id)sender;

Yup! We need to give each of these actions variable names. Let’s use shrink for

the Shrink button, move for the Move button, and change for the Change button.

Again, you could use different variable names here, but for now just follow along

with me. It will look like this:

- (IBAction)shrink:(id)sender;
- (IBAction)move:(id)sender;
- (IBAction)change:(id)sender;

OK! So let’s get to it! Start off by control-dragging from your icon to the

@properties directive, as illustrated in Figure 5–19.

NOTE: You may have noticed that sometimes I say “Control-drag a connection from ____ in
Interface Builder into your header file,” and other times I say “Control-drag a connection from
_____ in Interface Builder into your @property directive.” This is not to confuse you; it’s to let

you know that they mean the same thing and you may work for, hire, or meet people who use

one or the other in their nomenclature.

CHAPTER 5: Touches 178

Figure 5–20. Keep the icon as an outlet and name it “myIcon.”

20. As depicted in Figure 5–20, when you reel the fishing line into your @property,

keep it as an outlet and name it myIcon.

CHAPTER 5: Touches 179

Figure 5–21. Control-drag a connection from anywhere on the Background into the @property directive.

21. Now, we need to connect the UIImageView we dragged into View Design Area with

the header file’s @property directive, as depicted in Figure 5–21.

CHAPTER 5: Touches 180

Figure 5–22. Keep the icon as an outlet and name it “myBackground.”

22. As depicted in Figure 5–22, when you reel the fishing line into your @property,

keep it as an outlet and name it myBackground.

CHAPTER 5: Touches 181

Figure 5–23. Control-drag a connection from your Shrink button in Interface Builder into your header file.

23. As shown in Figure 5–23, after clicking the Shrink button in your Interface Builder

once, control-drag into your header file, in-between the squiggly brackets of the

@interface directive. We have discussed in §19 why we are, for the first time,

connecting a button to the @property directive. If you skipped that section, I

strongly suggest you fully understand why we are connecting a button as an

outlet.

CHAPTER 5: Touches 182

Figure 5–24. Keep the button as an outlet and name it shrinkButton.

24. As shown in Figure 5–24, when you’ve control-dragged out to the @interface

directive, drop it in by letting go of your mouse and naming it shrinkButton—

leave it as an outlet.

Coding the Header File
After we understand that we’ve connected our outlets we would typically leave the
@interface directive, go outside of it, and connect our buttons as actions. In this case,
we need to do something we’ve never done before: set up a few more variables and
pointers. We will not go too deep into them, but I will emphasize why we need to do
this.

We need to keep track of our images. Specifically we need to

� Keep track of the current image being displayed in the background.
Remember we have five of them, so we’ll call the current background
currentBackground.

� We have to store these 5 background images somewhere. The typical
way we do this is store all five images in a list we call an array. This
means we will need to create an array. Let’s call our array bgArray.

CHAPTER 5: Touches 183

� We also need to know if the Shrink and Move buttons have been
pressed because that will change the state. This is explained in detail
later, but for now, the location and size of the icon changes and this
affects what can be done to it next. So, we’ll need to track two button
states: the state of the Shrink button and the state of the Move button.
Let’s call them hasShrunk and hasMoved.

� Remember when I spoke about how we will use the
CGAffineTransform class to help us manipulate our icon (see the
“CGAffineTransform structs” section)? Well, we need to use the
CGAffineTransform class to first move the lulu fruit icon when we press
the move button, and then change the size of the lulu fruit icon when
we press the shrink button. So, we need two CGAffineTransforms.
Let’s call one translate and the other size.

So we now have six items.

� An array we will call bgImages

� A way to keep track of the currentBackground

� The state of hasMoved

� The state of Shrunk

� A way to transform translate (the position of our lulu fruit icon)

� A way to transform size (the size of our lulu fruit icon)

Now that we have determined what we need and what we call them, we have one more
thing to do: associate them with an internal means of doing what we want them to do.
We have to associate them with a type. This is all very easy. Apple does it all for us. We
just need to know what tools to reach for in our Apple tool bag and attach to each of
these variables we have created.

� For the array, Apple has an NSArray that does the job beautifully.

� To keep track of the current background, let’s just give each of the
backgrounds a number of type integer (int).

� To keep track of the buttons, we just need to know whether they have
been pressed. A simple “yes” or “no” will be cool. Hmm, that’s
Boolean isn’t it? So we’ll associate Booleans with our hasMoved and
hasShrunk buttons.

� Lastly, we need to simply assign the CGAffineTransform class to our
translate and size variables.

To emphasize how we will associate these named types to our six items, I want you to
look at the following very carefully:

NSArray *bgImages;
int currentBackground;
bool hasMoved;

CHAPTER 5: Touches 184

bool hasShrunk;

CGAffineTransform translate;
CGAffineTransform size;

This means that we need to type the preceding code underneath your three IBOutlets
as follows:

@interface touchesViewController : UIViewController
{
 IBOutlet UIImageView *myIcon;
 IBOutlet UIImageView *myBackground;
 IBOutlet UIButton *shrinkButton;

 NSArray *bgImages;
 int currentBackground;
 bool hasMoved;
 bool hasShrunk;

 CGAffineTransform translate;
 CGAffineTransform size;

}

Figure 5–25. Create a few more items and then drag your first button.

25. Now and only now that we have correctly created and defined our variables do

we start to connect our buttons, as actions, to the space below the @directive.

Grab your Shrink button by clicking it and control-drag to the header file, right

under the @directive, as illustrated in Figure 5–25.

CHAPTER 5: Touches 185

Figure 5–26. Change the default type of your Shrink button to Action.

26. As shown in Figure 5–26, when you’ve control-dragged from the Shrink button to

the header file, drop it in and make sure to change the type from outlet to action.

CHAPTER 5: Touches 186

Figure 5–27.Name it shrink.

27. Once you have created the action for the shrink button, call it shrink. This is

shown In Figure 5–27.

CHAPTER 5: Touches 187

Figure 5–28. Control-drag and create actions for the remaining Move and Change buttons.

28. Now, on your own, control-drag first from the Move button and then from the

Change button to the header file. Make sure you change them into actions and

name them move and change. In Figure 5–28, you can see how it looks as we start

control- dragging from the move button to the header file.

CHAPTER 5: Touches 188

Figure 5–29. Make space for the getters and setters after checking that this is how your code appears.

29. Before moving on to creating the @properties for synthesis (getters and setters), I

would like you to make sure that your code looks like mine in Figure 5–29.

CHAPTER 5: Touches 189

Figure 5–30. After writing in your @properties, open the Navigator.

30. We now need to enter your @properties for synthesis, as explained in Chapter 4.

You need to synthesize your three IBOutlets and the array with an @property
with (nonatomic, retain) directives. Recall from Chapter 4 that when we make

the mutability nonatomic, we’re asking Apple to handle this! Also, the retain

means that with respect to memory management, we will maintain control. OK,

now write in the following code right above the three IBActions you entered for

your buttons, as shown in Figure 5–30.

@property (retain, nonatomic) UIImageView *myIcon;
@property (retain, nonatomic) UIImageView *myBackground;
@property (retain, nonatomic) NSArray *bgImages;
@property (retain, nonatomic) UIButton *shrinkButton;

With this done, we are now finished coding your header file. Before moving onto the
implementation file, I strongly encourage you to check every letter, space, semicolon,
empty line, and comma of your header code against mine. When you are done, let’s
move towards the implementation file. OK, so this is how your header file should look:

#import <UIKit/UIKit.h>
@interface touchesViewController : UIViewController
{

 IBOutlet UIImageView *myIcon;
 IBOutlet UIImageView *myBackground;
 IBOutlet UIButton *shrinkButton;

NSArray *bgImages;

CHAPTER 5: Touches 190

 int currentBackground;
 bool hasMoved;
 bool hasShrunk;

 CGAffineTransform translate;
 CGAffineTransform size;
 UIButton *move;
}

@property (retain, nonatomic) UIImageView *myIcon;
@property (retain, nonatomic) UIImageView *myBackground;
@property (retain, nonatomic) NSArray *bgImages;
@property (retain, nonatomic) UIButton *shrinkButton;
- (IBAction)shrink:(id)sender;
- (IBAction)move:(id)sender;
- (IBAction)change:(id)sender;

@end

Once you are confident that every line of your code matches mine, you need to start
getting your view area ready to do some huge coding. Start by opening the Navigator
panel, which pops up on the panel on the left-hand side of your screen, as illustrated in
Figure 5–30.

Figure 5–31. After opening the Navigator, close the Assistant and click the Standard editor.

CHAPTER 5: Touches 191

31. We no longer need to see either the nib or the Assistant. We just need wide open

spaces to code your implementation file. Now that you’ve opened the Navigator,

close the Assistant and open the Standard editor, as illustrated in Figure 5–31.

Now go into the navigation pane and click your implementation file:

touchesViewController.m.

Working in the Implementation File
In this section, I will teach you how to go about the first two tasks; one needs to be
performed immediately upon opening the implementation file. The first task is synthesis,
which is typically only one line that you will code. Second is the viewDidLoad method
that typically instantiates by itself; however, in more complex code, we need to add
code into the viewDidLoad method, as we will today.

Synthesis
I have made a point to encourage students and readers to grow into the habit of always
synthesizing in the implementation immediately after coding the @property directives in
the header files. You may have noticed that both in Chapter 4 and in this chapter, the
last code I wrote in the header file was the @property directives for synthesis. This is
because if you get into the habit of immediately performing synthesis on the items you
just coded in the header file, you will not forget to do it at all—you won’t have to waste
time going back and refreshing your memory as to what you were going to synthesize.

We just performed @synthesis on myIcon, myBackground, bgImages and shrinkButton.
This is what we need to synthesize first when we open up the header. What follows is
how I think about it; this makes it very easy.

@implementation touchesViewController
@synthesize items you just performed @properties on
- (void)didReceiveMemoryWarning
...
...
...

Now, by plugging that idea into this application, we get

@implementation touchesViewController
@synthesize myIcon, myBackground, bgImages, shrinkButton;
- (void)didReceiveMemoryWarning
...
...
...

viewDidLoad
The code inside the viewDidLoad method runs after machine language code reserves
some space in memory for your View. You will notice that the first thing called inside
viewDidLoad is its superclass, superviewDidLoad. Now before you freak out, just as rats

CHAPTER 5: Touches 192

are a subclass of rodents, viewDidLoad is a subclass of superviewDidLoad, so the first
thing Apple gets viewDidLoad to do is call all the code from its superclass. It’s here, at
this exact moment of time, that we need to perform some tasks.

- (void)viewDidLoad
{
 [super viewDidLoad];
Set all our button and backgrounds to the start state
Create an array with all our wallpapers inside of it
Set how much the shrink button will shrink the lulu fruit icon
Set how much the move button will move the lulu fruit icon
Set the background image to the current background image

}

Set Buttons and Backgrounds to the Start State

Let’s look at how to set all our buttons and backgrounds to their start state. This is to
create a clean slate before the program starts to run. In order to create a clean slate in
code, we need to set our state-changing variables to zero (or to nil). We have three such
variables that tell us whether a state has changes: hasMoved, hasShrunk, and
currentBackground. Remember that both hasMoved and hasShrunk are Booleans, so they
can either be “YES” or “NO.” The obvious start state for these is that they have not been
moved yet. So, we need to set both hasMoved and hasShrunk to “NO.” This leaves us
with currentBackground, which keeps track of which one of our five wallpapers is
currently In the background and viewed by the user. Recall that we assigned
currentBackground to be of type integer. This is easy: we simply set it to zero. See the
following bold print:

- (void)viewDidLoad
{
 [super viewDidLoad];
hasMoved = NO;
 hasShrunk = NO;
 currentBackground = 0;

Create an array with all our wallpapers inside of it
Set how much the shrink button will shrink the lulu fruit icon
Set how much the move button will move the lulu fruit icon
Set the background image to the current background image
}

Create Our Array with All Our Wallpapers Inside of It
Now, we need to create an array, which is just a list of things, and fill it up with our
wallpapers. The supernova geeky way to say this is as follows: “We need to create an
NSArray object and initialize it with some objects of type png.” That’s not too obtuse, is
it? Recall that we did declare the array in our header file. Often, students are so fearful of
arrays that they forget to declare them when they write their exam code. Recall in the
header file we wrote “NSArray *bgImages,” so we have declared an array and called it
bgImages. Right away, we know we need to write “bgImages = (the stuff that will

CHAPTER 5: Touches 193

make our array come to life).” There are many complex ways to use arrays, but we
will use the plain cheeseburger . . .or should I say . . . Apple methods using the NSArray
initializers. They are pretty much the same as the factory methods, only you do the
allocation yourself, which is in the form of NSArray.

name of your array = [[NSArray alloc] initWithObjects: @”your 1st object”, @” your 2nd
object “, @” your 3rd object “, nil];

This looks all cluttered, so looking at the end of it, you’ll see that all your objects are
separated by commas; then, we tell the array it has ended by putting that“”nil”” at the
end. Let’s do two things here. First, let’s plug the real name of our array—bgImages—into
the template, and then we’ll take the contents between these commas and place them
onto their own separate lines and see if this makes more sense.

bgImages array = [[NSArray alloc] initWithObjects:
@"your 1st object",
@" your 2nd object ",
@" your 3rd object ",
nil];

Pretty cool, huh?! This really spooky code is actually making sense to you! Yeah! OK,
we’re not quite there yet though. We need to do one more thing before we bring this
array to life. We need to wrap our heads around the UIImage class reference, which is an
object the folks at Apple wrote to display images. Our objects are images, but really,
they are filenames that contain images. We need to use the UIImage together with a
method called imageNamed that returns image objects connected to filenames. So, for
each file name, we need to use UIImage imageNamed. I have illustrated this as follows:

name of your array = [[NSArray alloc] initWithObjects:
[UIImage imageNamed:@ »WallPaper_01.png »],
[UIImage imageNamed:@ »WallPaper_02.png »],
[UIImage imageNamed:@ »WallPaper_03.png »],
[UIImage imageNamed:@ »WallPaper_04.png »],
[UIImage imageNamed:@ »WallPaper_05.png »],
nil];

With that code, we have created an array that contains our five images. All we need to
do now is insert it into our code. See the following bold print:

- (void)viewDidLoad
{
 [super viewDidLoad];
hasMoved = NO;
 hasShrunk = NO;
 currentBackground = 0;

bgImages = [[NSArray alloc] initWithObjects:
 [UIImage imageNamed:@ »WallPaper_01.png »],
 [UIImage imageNamed:@ »WallPaper_02.png »],
 [UIImage imageNamed:@ »WallPaper_03.png »],
 [UIImage imageNamed:@ »WallPaper_04.png »],
 [UIImage imageNamed:@ »WallPaper_05.png »],
 nil];

CHAPTER 5: Touches 194

Set how much the shrink button will shrink the lulu fruit icon
Set how much the move button will move the lulu fruit icon
Set the background image to the current background image
}

Set How Much We Will Shrink the Lulu Fruit Icon
It’s really easy to set how much we will shrink the lulu fruit icon when we press the
Shrink button. Remember when we discussed at the beginning of this chapter how
CGAffine is able to obey us when we instruct it change our object’s position, angle,
shape, scale, and so on? Well now we are going to use it. I have randomly decided to
shrink the lulu fruit icon by 25%. This means that we need to tell CGAffine two things:
first that we want to scale the image, and second, how much we want to scale it on the
x- and y-axes. We want to use CGAffine to scale the stuff we use . . . hmmm . . . let’s
guess . . . Ah! how about CGAffineTransformMakeScale? Yes! We’re correct. Ok, now for
the next assignment. To scale the image by 25%, we need to scale both the x- and y-
axes equally at 0.25; but before we enter this into the code, remember in our header file
we created a variable called size of type CGAffineTransform? Well we need to set the
size variable equal to the 25% shrinkage we tell the CGAffineTransformMakeScale code
to perform. This is illustrated by the following:

- (void)viewDidLoad
{
 [super viewDidLoad];
hasMoved = NO;
 hasShrunk = NO;
 currentBackground = 0;

bgImages = [[NSArray alloc] initWithObjects:
 [UIImage imageNamed:@"WallPaper_01.png"],
 [UIImage imageNamed:@ »WallPaper_02.png »],
 [UIImage imageNamed:@ »WallPaper_03.png »],
 [UIImage imageNamed:@ »WallPaper_04.png »],
 [UIImage imageNamed:@ »WallPaper_05.png »],
 nil];
size = CGAffineTransformMakeScale(.25, .25);
Set how much the move button will move the lulu fruit icon
Set the background image to the current background image
}

Set How Much We Will Move the Lulu Fruit Icon

In the same way that we made CGAffineTransformMakeScale tell our size variable to
hold the amount we will shrink the icon, we will now use Translation. This is a geeky
way of saying how much we will make it travel across the screen in
CGAffineTransformMakeTranslation to tell the move variable we created in our header
file of type CGAffineTransform to hold the amount we want to move it. I have randomly
chosen to only move our lulu fruit icon up 100 pixels on the y-axis. “Up” means we need

CHAPTER 5: Touches 195

to subtract pixels from the y-axis. We only want to subtract 100 pixels on the y-axis and
leave the x-axis alone (0,-100). This is illustrated as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];
hasMoved = NO;
 hasShrunk = NO;
 currentBackground = 0;

bgImages = [[NSArray alloc] initWithObjects:
 [UIImage imageNamed:@ »WallPaper_01.png »],
 [UIImage imageNamed:@ »WallPaper_02.png »],
 [UIImage imageNamed:@ »WallPaper_03.png »],
 [UIImage imageNamed:@ »WallPaper_04.png »],
 [UIImage imageNamed:@ »WallPaper_05.png »],
 nil];
size = CGAffineTransformMakeScale(.25, .25);
 translate = CGAffineTransformMakeTranslation(0,-100);
Set the background image to the current background image
}

Set the Background Image to the Current Background Image
The last job we need to do in the viewDidLoad is to set the background image to the
current background image. What does this mean!? I can just hear you saying this out
loud and scratching your head. Let’s think about this. We have created an array that
holds our five images. We will set each of those images with a number. When we press
the Change button, whatever number image is on our background, we will replace it with
the next one. We have set currentBackground to zero. So, the first time somebody
presses the Change button, it will use the code we have yet to code to change the
currentBackground from 0 to 0+1, which means that the current background will now be
the next background in the array.

NOTE: I am not going to explain the code at this point because most of us just paste it in when

we need to get the object at an index and place inside a variable we created.

This is how I want you to use it now and later on your own: your variable that contains
your image will be equal to [bgImagesobjectAtIndex: your variable that in our case
holds the back ground image]. Don’t think about this too much. Just use it as I have
illustrated in the following code.

- (void)viewDidLoad
{
 [super viewDidLoad];
hasMoved = NO;
 hasShrunk = NO;
 currentBackground = 0;

bgImages = [[NSArray alloc] initWithObjects:

CHAPTER 5: Touches 196

 [UIImage imageNamed:@ »WallPaper_01.png »],
 [UIImage imageNamed:@ »WallPaper_02.png »],
 [UIImage imageNamed:@ »WallPaper_03.png »],
 [UIImage imageNamed:@ »WallPaper_04.png »],
 [UIImage imageNamed:@ »WallPaper_05.png »],
 nil];
size = CGAffineTransformMakeScale(.25, .25);
 translate = CGAffineTransformMakeTranslation(0,-100);
 myBackground.image = [bgImages objectAtIndex:currentBackground];
}

Figure 5–32. Check that your code is complete in the implementation file.

32. With all of this completed, your viewDidLoad should look like mine, as illustrated in

Figure 5–32.

New Heading
We will be personally handling much of how we unload memory associated with our
views. We will handle this with our own handwritten code as we switch from one
background to the next, so we can delete some of the boilerplate code Apple
instantiated for us.

CHAPTER 5: Touches 197

Figure 5–33. Trim down your viewDidUnload.

33. As illustrated in Figure 5–33, go to your viewDidUnload and select all the code

from the beginning of [myIcon release] to the end of your shrinkButton = nil

and delete it all.

CHAPTER 5: Touches 198

Figure 5–34. Code your touchesMoved method.

34. Now we are going to code the touchesMoved method. Yes, I know you don’t even see

it yet! What I want you to do after deleting the appropriate code in your viewDidUnload
is scroll down through all the methods Apple instantiated for you. Scroll through your

viewWillAppear, viewDidAppear, viewWillDisappear, viewDidDisappear, and

shouldAutorotateToInterfaceOrientation. Now you will see three methods for our

three actions we created in the header file for our three buttons.

- (IBAction)shrink:(id)sender {
}
- (IBAction)move:(id)sender {
}
- (IBAction)change:(id)sender {
}

@end

This is really great because we will place all our code inside these methods, but hold on
. . .we’re missing the method that will handle our touching and moving the lulu fruit icon
with our fingertips! Yup, we need to create that from scratch. Right above the shrink
method, which is at the top, I want you to create about four blank lines and then simply
enter touches and code completion will bring up touchesMoved; press Enter, and then
enter touches again, and the code completion will bring up touches
withEvent:(UIEvent *)event{. Now you will have all four methods you need to code, as
illustrated by the following, where I have highlighted the four variables we created in the
header file.

CHAPTER 5: Touches 199

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
}
- (IBAction)shrink:(id)sender {
}
- (IBAction)move:(id)sender {
}
- (IBAction)change:(id)sender {
}
@end

Now we can enter the code inside our touchesMoved class. But let’s look at it from a high
altitude to start off with. What do we want the touchesMoved method to do? Well, this
may not seem obvious, but we simply want the touchesMoved method to do the
following:

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
Grab code that can sense all touches on the screen
Check if a touch on the screen is on the lulu fruit icon. If yes then
Check if icon was moved and shrunk using buttons if yes then
Keep shrunk size and move icon to its position before move button
Check if icon was moved and not shrunk using buttons if yes then
Move icon to its position before move button
Set icon to be at the current touch location
}

Part of my teaching method is that I do not always teach you everything. You’ve seen
this already when we blindly coded the first couple of hello worlds. At this point I’m
going to teach you how to use certain tools to perform tasks. I will not teach you how all
of these tools work right now, but I am going to teach you what tool to grab. At this
point, we need to get code that can sense all touches on the screen. I want you to just
remember that when you want the User Interface to do cool stuff with touches, we need
to first call code Apple wrote that senses and records all touches. So, type in UITouches
and one of the options the code completion will present is UITouch *touch = [[event
allTouches] anyObject], and this is the tool I want you to invoke before you do anything
with touches. Don’t think about how it works right now. Just know to call it at this point.
Refer to the bold print in the following example.

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [[event allTouches] anyObject];
Check if a touch on the screen is on the lulu fruit icon. If yes then
Check if icon was moved and shrunk using buttons if yes then
Keep shrunk size and move icon to its position before move button
Check if icon was moved and not shrunk using buttons if yes then
Move icon to its position before move button
Set icon to be at the current touch location
}

Now we need an if statement to check if a touch on the screen is on the lulu fruit icon.
We need to know that the iPhone looks at the rectangle that our object fits into, and see
if the person’s finger is within that rectangle. To do this, we use if
(CGRectContainsPoint([myIcon frame], [touch locationInView:nil])). You will only
need to type in if and CGRect, and then touch and code completion will fill in the rest.
We will nest two more if statements inside of this if statement. Notice how I have

CHAPTER 5: Touches 200

taken our road map tasks and nested them inside this if statement as illustrated in the
following:

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [[event allTouches] anyObject];
 if (CGRectContainsPoint([myIcon frame], [touch locationInView:nil]))
 {
Check if icon was moved and shrunk using buttons if yes then {
Keep shrunk size and move icon to its position before move button
}

Check if icon was moved and not shrunk using buttons if yes then {
Move icon to its position before move button
 }
Set icon to be at the current touch location
}
}

At this point, two nested conditions need to be inserted inside the if statement we just
created. But let’s think about this. All we want to do is test to see whether the lulu fruit
icon has been moved by the buttons, and if it has, regardless of whether it’s been
shrunk, we need to reset whether it was moved back to a state in which it hadn’t moved.
The two conditions that would have moved the lulu fruit icon are: when we moved it and
shrank it, or when we moved it and didn’t shrink it; either way, we want to change the
state to not being moved so that when the user’s finger touches the lulu fruit icon, we
can say, “You were not moved, but now you are being moved.” We cannot say, “You
were moved and now you’re being moved again.”

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [[event allTouches] anyObject];
 if (CGRectContainsPoint([myIcon frame], [touch locationInView:nil]))
 {
 if (hasMoved == YES && hasShrunk == YES) {
 myIcon.transform = CGAffineTransformTranslate(size, 0, 0);
 hasMoved = NO;
}

if (hasMoved == YES && hasShrunk == NO) {
 myIcon.transform = CGAffineTransformMakeTranslation(0,0);
 hasMoved = NO;
}

Set icon to be at the current touch location
}
}

NOTE: If you were watching the video, in the second if statement, I wrote myIcon.transform =
translate, not CGAffineTransformMakeTranslation(0,0); It does not make too much
difference, but it is better to use the latter. I did change it so in the code that you download, it will

also be the latter.

CHAPTER 5: Touches 201

The last thing we need to do is set the location of the icon to the exact position that the
finger is moving it at any moment. This is stock boilerplate code that you will use over
and over again to keep track of an object as one’s finger moves it around the screen.
We use the variable name.center = [touch locationInView:nil], as indicated in the
following code:

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
UITouch *touch = [[event allTouches] anyObject];
 if (CGRectContainsPoint([myIcon frame], [touch locationInView:nil]))
 {
 if (hasMoved == YES && hasShrunk == YES) {
 myIcon.transform = CGAffineTransformTranslate(size, 0, 0);
 hasMoved = NO;
}

 if (hasMoved == YES && hasShrunk == NO) {
 myIcon.transform = CGAffineTransformMakeTranslation(0,0);
 hasMoved = NO;
 }

myIcon.center = [touch locationInView:nil];
 }
}

We have now completed writing the touchesMoved method. Compare your code to

how mine looks in Figure 5–34.

Coding the Shrink Button
We now want to write the code we will invoke once the user presses the shrink button.

CHAPTER 5: Touches 202

Figure 5–35. Coding the shrink method

35. Remember, in the header file, we created an outlet that allowed us to change the

font from “Shrink” to “Grow” once somebody pressed the button? This is

because we cannot allow the lulu fruit to be shrunk twice in a row, or it would

virtually disappear! So, the first thing we need to do is change the text. The

second thing we need to do is keep track of the possible state of the Shrink and

Move buttons, so that we can tell the CGAffine to properly transform the lulu fruit

icon for us. The code looks something like this:

-(IBAction)shrink:(id)sender
{
if it has not been shrunk, keep the text saying Shrink, else change it to Grow
if it has not been shrunk or moved – do stuff
else if it has not been shrunk and has been moved – do stuff
else if it has been shrunk and moved – do stuff
else – do stuff
}

To change the text, we will use the setTitle and forState:UIControlStateNormal using
the following format: your variable namesetTitle:@"your text”
forState:UIControlStateNormal. We have called the outlet for our Shrink button,
shrinkButton, when we declared it many years ago in the header file. The text we will
use will be “Grow”" once it has been changed, and then “Shrink”" once it has been
changed again; this loop continues forever as illustrated by the following.

-(IBAction)shrink:(id)sender
{

CHAPTER 5: Touches 203

 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }
if it has not been shrunk or moved – do stuff
else if it has not been shrunk and has been moved – do stuff
else if it has been shrunk and moved – do stuff
else – do stuff
}

We write nested if statements by starting with an if and ending with and else; between
the beginning if and the ending else if, we stick in all the else ifs we need. In our
case, I have randomly chosen to arrange the if statements as follows: if ‘both NO'; else
if ‘NO and YES'; else if ‘both YES'; and finally else whatever remains, which is ‘YES and
NO'. Converting the aforementioned into code is illustrated as follows:

-(IBAction)shrink:(id)sender
{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }

if(hasShrunk == NO && hasMoved == NO)
{
– do stuff
}
else if(hasShrunk == NO && hasMoved == YES)
{
– do stuff
}
else if(hasShrunk == YES && hasMoved == YES)
{
– do stuff
}
else
{
– do stuff
}
}

Before we “do stuff” to the state of the lulu fruit icon within each nested if, we need to
perform, within each nested if, certain preliminary chores. We need to tell the
microprocessor how many seconds we want the ‘stuff’ to last, and then, after doing
whatever stuff we want to our lulu fruit icon (using CGAffineTransform), we need to
update its state. This is illustrated in the following non-code, in plain English:

-(IBAction)shrink:(id)sender
{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];

CHAPTER 5: Touches 204

 }

if(hasShrunk == NO && hasMoved == NO)
{
Start animation with duration of 1 second
– do stuff
Commit animations and update shrunk state
}
else if(hasShrunk == NO && hasMoved == YES)
{
Start animation with duration of 1 second
– do stuff
Commit animations and update shrunk state
}
else if(hasShrunk == YES && hasMoved == YES)
{
Start animation with duration of 1 second
– do stuff
Commit animations and update shrunk state
}
else
{
Start animation with duration of 1 second
– do stuff
Commit animations and update shrunk state
}
}

I will keep this non-code, plain English roadmap of these trivial chores in this state for a
while, so it does not clutter up the coding landscape as we focus on more important
elements. We now need to take a fairly high level approach to what we will do in each of
the four cases.

1. If: Both of the buttons have not been pressed and we press the Shrink button, we

will

� Shrink the lulu fruit icon.

2. Else if: The Shrink button has not been pressed, but we do press the Move

button, we will

� Keep the icon where we moved it, but go ahead and shrink the
lulu fruit icon.

3. Else If: Both the Shrink and Move buttons have been pressed, and we press the

Shrink button again, we will

� Grow the lulu fruit icon back up to its original state and move it
to its moved location.

� Recall that we have already coded the text inside the Shrink
button to change from Shrink to Grow.

CHAPTER 5: Touches 205

4. Else if: The Shrink button has been pressed, but the Move button has not been

pressed, we will

� Grow the lulu fruit icon back up to its original state and keep it in
its current location.

Keeping the preceding scenario in non-code, plain English, this is how it will be placed
inside the code:

-(IBAction)shrink:(id)sender

{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }

if(hasShrunk == NO && hasMoved == NO)
{
Start animation with duration of 1 second
Shrink icon
Commit animations and update shrunk state
}
else if(hasShrunk == NO && hasMoved == YES)
{
Start animation with duration of 1 second
Keep icon moved and shrink icon
Commit animations and update shrunk state
}
else if(hasShrunk == YES && hasMoved == YES)
{
Start animation with duration of 1 second
Keep icon moved and change icon back to normal size
Commit animations and update shrunk state
}
else
{
Start animation with duration of 1 second
Move icon back to normal size and location
Commit animations and update shrunk state
}
}

Now, we will change it to real code.

� In the first case, to shrink the lulu fruit icon, do the following:

� Set the transform of the lulu fruit icon to be the size that is
contained in our variable size.

� In the second case, to keep the icon moved where we moved it, but
still shrink it, we will do the following:

� Set the transform of the lulu fruit icon to be located at the place
where the transform method has moved it.

CHAPTER 5: Touches 206

� But now we’ve lost “size,” so we need to re- shrink it to .25 of its
state.

� In the third case, to grow the lulu fruit icon back up to its original state
and move it to its moved location, the following should be done:

� Set the transform of the lulu fruit icon to be located at the place
where the transform method has moved it.

� Now, bring it back up to its original size.

� In the last case, to grow the lulu fruit icon back up to its original state
and keep it in its current location, do the following:

� Bring it all back to its original state.

Placing the preceding examples into the code gives us the following:

-(IBAction)shrink:(id)sender
{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }

if(hasShrunk == NO && hasMoved == NO)
{
Start animation with duration of 1 second
myIcon.transform = size;
Commit animations and update shrunk state
}
else if(hasShrunk == NO && hasMoved == YES)
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformScale(translate,.25, .25);
Commit animations and update shrunk state
}
else if(hasShrunk == YES && hasMoved == YES)
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformScale(translate,1, 1);
Commit animations and update shrunk state
}
else
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformIdentity;
Commit animations and update shrunk state
}
}

We now need to think about how we will update the shrunk state of the lulu fruit icon. In
the first two cases, we did shrink the lulu icon, so we need to update the shrunk state to
YES. In the last two cases, it was not shrunk, so we should update the shrunk state as
being NO. See the following code:

CHAPTER 5: Touches 207

NOTE: If this does not make sense, then think about it by looking at the explanation of the

preceding code. Or just go along with it for now if your brain is tired—it’s OK— just follow along.

-(IBAction)shrink:(id)sender
{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }

if(hasShrunk == NO && hasMoved == NO)
{
Start animation with duration of 1 second
myIcon.transform = size;
Commit animations
hasShrunk = YES;
}
else if(hasShrunk == NO && hasMoved == YES)
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformScale(translate,.25, .25);
Commit animations
hasShrunk = YES;
}
else if(hasShrunk == YES && hasMoved == YES)
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformScale(translate,1, 1);
Commit animations
hasShrunk = NO;
}
else
{
Start animation with duration of 1 second
myIcon.transform = CGAffineTransformIdentity;
Commit animations
hasShrunk = NO;
}
}

Next, we will change the plain English chores within each nested if to actual code. We
clear the state of the animation and set the animation to 1 second (I randomly chose 1
second, you can choose something else). After we perform our actions on the lulu fruit,
we commit the actions. This is illustrated by the following code:

-(IBAction)shrink:(id)sender
{
 if (hasShrunk) {
 [shrinkButton setTitle:@"Shrink" forState:UIControlStateNormal];
 } else {
 [shrinkButton setTitle:@"Grow" forState:UIControlStateNormal];
 }

CHAPTER 5: Touches 208

if(hasShrunk == NO && hasMoved == NO)
{
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1.0];
myIcon.transform = size;
[UIView commitAnimations];
hasShrunk = YES;
}
else if(hasShrunk == NO && hasMoved == YES)
{
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1.0];
myIcon.transform = CGAffineTransformScale(translate,.25, .25);
[UIView commitAnimations];
hasShrunk = YES;
}
else if(hasShrunk == YES && hasMoved == YES)
{
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1.0];
myIcon.transform = CGAffineTransformScale(translate,1, 1);
[UIView commitAnimations];
hasShrunk = NO;
}
else
{
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1.0];
myIcon.transform = CGAffineTransformIdentity;
[UIView commitAnimations];
hasShrunk = NO;
}
}

Lastly, we add some spacing between the sections within each conditional statement,
and it should look very similar to my code in Figure 5–35.

Coding the Move Button
Programming the code that makes the Move button operate is exactly the same as the
code we used for the Shrink button, except that we do not change the text inside the
button, so leave that out.

CHAPTER 5: Touches 209

Figure 5–36. Coding the move method

36. We are then left with the same four states. Simply change all the cases of

“shrunk” to “moved” and it’s identical. Check your code against mine in

Figure 5–36.

NOTE: I suggest that you first cut and paste the first “if” statements from the shrink method then
swap out the shrinks and moves. After this, paste it three times; change the relevant cases of
“if” to “else if” and “else.” Lastly, change the scaling to moving in the

CGAffineTransformTranslates.

CHAPTER 5: Touches 210

Coding the Change Button
The only thing left to do now is to write the code that will change the backgrounds when
we press the Change button.

Figure 5–37. Code the change method.

37. We will essentially perform five jobs: increment the current background; make

sure the incrementation keeps the images contained in our array; initialize the

UIView; create animations for our backgrounds as they get loaded; and lastly,

commit and change the background. Our starting roadmap for our change

method is as follows:

-(IBAction)change:(id)sender
{
Increment background to the next background image
Check to see currentBackground doesn't go off the array
Initialize the UIView
Create animations
Commit and change
}

I have said before that each time we press the Change button, it will change the image
by changing the number of the background image. If wallPaper_01 is presently housed
in the background and we press Change, then we will increment it; meaning, we will add

CHAPTER 5: Touches 211

one and bring on wallPaper_02 as the next background. All this means is that each time
the Change button is pressed, before we do anything else, we need to increment the
currentBackground as follows:

-(IBAction)change:(id)sender
{
currentBackground++;
Check to see currentBackground doesn't go off the array
Initialize the UIView
Create animations
Commit and change
}

If we keep incrementing, then we will go beyond the number of images lined up in our
array. Therefore, we need to reset the count back to zero once we reach the number of
images in our array. This is illustrated by the following:

-(IBAction)change:(id)sender
{
currentBackground++;
if(currentBackground >= [bgImages count])
 currentBackground = 0;
Initialize the UIView
Create animations
Commit and change
}

To initialize the UIView, we need to do two things, but I’ve added a third task just to be
cool. We have to reset (reboot, set to zero—however you want to say it), the
beginAnimations method that those incredibly supercalifragilistic dudes at Apple wrote!
Then, we need to set how long each animation is going to be. As I mentioned when we
did the initializing before, I set the initializing in-between changes to 1 second. To be
cool, I incorporated a third task: determining how smoothly each animation will start and
end using the UIViewAnimationCurveEaseInOut method. This is illustrated by the
following:

-(IBAction)change:(id)sender
{
currentBackground++;
if(currentBackground >= [bgImages count])
currentBackground = 0;
[UIView beginAnimations:@"changeview" context:nil];
[UIView setAnimationDuration:1];
[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
Create animations
Commit and change
}

NOTE: To actually change the backgrounds, we need be careful how we wrap our heads around

this concept. Read this carefully and do your best to follow along.

CHAPTER 5: Touches 212

We divide the changing of each background into two steps.

1. First, we ask whether the current background’s numerical value, or tag, is the one

we’re dealing with. If it’s true, then we perform the code within the squiggly

brackets (shown in the next bullet).

2. We will then use the setAnimationTransition method to perform whatever other

method we have chosen. There are methods to curl up, curl down, move in from

the left or right, flip this way, do that, or do this. Or you can create your own

method . . . when you become an uber geek. Right now, I’m just using curls and

page flips, so I will call these transitions appropriately.

Looking at it a little more closely, for each animation, we use the form as follows:

if(currentBackground ==the # we want)
[UIView setAnimationTransition:
�UIViewAnimationTransition the animation we choose
� forView:self.view
� cache:YES];

Now repeating this method and using randomly chosen animations for each animation,
the code takes on the following form:

-(IBAction)change:(id)sender
{
currentBackground++;
if(currentBackground >= [bgImages count])
currentBackground = 0;
[UIView beginAnimations:@"changeview" context:nil];
[UIView setAnimationDuration:1];
[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
if(currentBackground == 1)
[UIView setAnimationTransition:
�UIViewAnimationTransitionFlipFromLeft
�orView:self.
�view cache:YES];

if(currentBackground == 2)
[UIView setAnimationTransition:
� UIViewAnimationTransitionCurlDown
�orView:self.
�view cache:YES];

if(currentBackground == 3)
[UIView setAnimationTransition:
� UIViewAnimationTransitionCurlUp
�orView:self.
�view cache:YES];

if(currentBackground == 4)
[UIView setAnimationTransition:
� UIViewAnimationTransitionFlipFromRight
�orView:self.

CHAPTER 5: Touches 213

�view cache:YES];

Commit and change

}

The last step, again as we did before we simply need to commit the change and execute
the code:

-(IBAction)change:(id)sender
{
currentBackground++;
if(currentBackground >= [bgImages count])
currentBackground = 0;
[UIView beginAnimations:@"changeview" context:nil];
[UIView setAnimationDuration:1];
[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
if(currentBackground == 1)
[UIView setAnimationTransition:
�UIViewAnimationTransitionFlipFromLeft
�orView:self.
�view cache:YES];

if(currentBackground == 2)
[UIView setAnimationTransition:
� UIViewAnimationTransitionCurlDown
�orView:self.
�view cache:YES];

if(currentBackground == 3)
[UIView setAnimationTransition:
� UIViewAnimationTransitionCurlUp
�orView:self.
�view cache:YES];

if(currentBackground == 4)
[UIView setAnimationTransition:
� UIViewAnimationTransitionFlipFromRight
�orView:self.
�view cache:YES];

[UIView commitAnimations];
myBackground.image = [bgImages �objectAtIndex:currentBackground];
}

Check your code against mine, as illustrated in Figure 5–37. We’re done! Can you
believe that? All you need to do is run it and your code will work beautifully . . . Ahh …
NOT! Not unless you’re a super geek!

Running the Code
Let me explain something. The odds that it will work are small and that’s OK! It’s OK that
your code does not work at first. Expecting your code to run beautifully the first time is

CHAPTER 5: Touches 214

similar to what my mother told me a couple of years ago. She called from across town at
5:00 o’clock in the afternoon and said, “Darling I’m just leaving now; I know it’s 5:00
o’clock, but I should be there soon because I hope there will not be too much traffic
today!” I could not believe what she had just said. I replied, “Mom, rather than expecting
to be here in 20 minutes hoping there will not be traffic only to be horribly let down, why
don’t you expect it to take one hour and enjoy that new Deva Premal meditation CD I
bought you? Relax and enjoy yourself!”

Likewise, expect there to be errors. Debugging our code is a HUGE part of being a
computer scientist and expecting not to see any is only going to let you down. If there
were no errors then you’d be lucky!

Figure 5–38. The opening screen

38. Once you run it, you can do four things: press one of the three buttons or move

the icon around on your screen. This initial view is seen in Figure 5–38.

CHAPTER 5: Touches 215

Figure 5–39. Some more views

39. Figure 5–39 shows three images. The first background displays where the Shrink

button is pressed and then it changes to Grow. On the third image, we see the

beginning of the flipping of the background to the next background.

Figure 5–40. Views of the change backgrounds

CHAPTER 5: Touches 216

40. Figure 5–40 illustrates the page curling to the fourth background and the lulu fruit

icon being moved by the touches function.

Digging the Code
Typically, I spend time digging the code that we flew over. However, this chapter was a
huge leap, and I could not justify leaving you to flip back to this section to understand
what was going on while you typed the code. As far as going deeper into the code is
concerned, there’s not much left to dig into—we did a pretty thorough job on it. In the
next Chapter, we will look at switch views; we will “quickly” run the code and then come
back to what we really did in the “Digging the Code” section. Let’s close this chapter
and give your brain a break.

In the Chapter Ahead
In Chapter 6, we will move into the next level of complexity: switch view applications. We will
examine how a team of characters or roles within your code will work together to direct an
outcome, or a series of outcomes, that will give the user the sense of seamless flow.

You will learn about delegators and switch view controllers, classes and subclasses, and
“lazy loads.” We will get into the nitty-gritty of the .xib files, examine the concept of
memory deallocation, and learn about imbedded code comments. It’s getting curiouser
and curiouser. . .

Onward to the next chapter!

217

 Chapter

Switches
After finishing the touches app in Chapter 5, you can say that you’ve coded Objective-C
apps without flinching! You are not alone if, while coding Chapter 5, you felt as though
you were struggling to make your way across a tough and rocky road. I say this because
all programmers have had to journey over this road. It’s absolutely OK to look back on
that chapter and think to yourself that you don’t remember what you did. Yes, that’s
normal, and I’m about to prove to you that it’s normal. First, I need to explain why you
are going to take time out at this point.

In my experience, when teaching students languages such as C, C++, C#, Assembly,
Machine Languages, Java, and the list goes on, many students drop out even when they
seem to be doing fine. In recent years, I began to catch students as they neared this
junction, and I would ask them why they were contemplating dropping out. They would
all tell me something similar to this: “I can see I did the homework but I’m scared I will
fail because it’s just not sinking in. I don’t grasp it.” About four years ago I tried an
experiment. When the students walked into the lecture hall they were in shock when I
told them to close their text books, close their laptops, and put away their books
because we were going to take a journey inside their brain and have a class on
neurology. In fact, we were going to scientifically illustrate why many felt they were
stupid, not getting it, and essentially feeling like a dork! The entire lecture hall collapsed
in laughter. At the end of the lecture that I now call “Don’t Freak Out! Let’s Have a Look
at Your Brain!” some students were crying and came up to me after class and thanked
me. Not a single student dropped out.

Right now I bet that you feel you have not retained anything from Chapter 5 and that you
feel a little overwhelmed and insecure in your geek abilities. Well, that’s OK—just read
on and you’ll see why you feel a little uneasy. Even if you do feel confident at this point,
you probably will falter at some point down the road as it gets harder, but I still want you
to read on. This is important, so I want you to really understand this.

Don’t Freak Out: Let’s Look at Your Brain!
One of the best ways to explain this is to ask you something that has nothing to do with
Objective-C and computer science. It's about childhood memories.

6

CHAPTER 6: Switches 218

Do you ever smell something you’ve not smelt before and without any warning your
brain immediately takes you back to a place in your early childhood? Yes, this happens
to all of us. After smelling this smell, you will suddenly see everything clearly in your
head: the walls, the people—it’s all crystal clear and sometimes it may overwhelm you
emotionally. You may feel blown away that you’ve not thought about those walls or
images for many years, and now suddenly they’re overwhelming your senses. Let me
explain why this happens. I will use my smell of old-fashioned soap to illustrate this, and
then show how this is related to the neural connectors you’ve just created.

Look at Figure 6–a. Under the first title, “ILLUSTRATION,” you will see a very simplified
illustration of how, once your brain receives a new input that it's never experienced
before, it creates a nucleus housed inside a cell body that retains that event. This is
connected to the rest of your brain by threads and axons. As you experience new events
that relate to this new event, a tree of synapses and neurons connect to this nucleus.
Some of these connections become quite full of what we call dendrites.

When I was a little boy in Durban, South Africa, I went down to where the servants were
washing laundry. Back in 1963, most families used old-fashioned ammonia-filled soap
that had a very distinct smell. This smell created a new nucleus in my baby brain. It
connected with the joyful songs the Zulu servants were singing as they hand-washed
the laundry. My brain also connected the imagery of the walls, the paint, and my dog
Samson. These connectors of the singing, the walls, the paint and the dog formed four
groups of connections to that new smell, as illustrated under “SYNTHESIZED” in Figure
6–a. Some groups immediately had more connections, such as songs, because I used
to sing many Zulu songs as a small boy. The next biggest group was probably that of
my dog. I’ve labeled the groups from 1 to 4 in order of size.

Many years later, in New York City, probably around 1993, I was rushing to keep an
appointment with a law professor who had said he would meet me for lunch at a little
restaurant. As I was running across 8th Avenue, I noticed some people cleaning the
sidewalk in front of another restaurant. They were using soap and water and scrubbing it
with these large straw brushes. Suddenly I smelt it. The smell I hadn’t smelt since the
time I was a three-year-old boy in that laundry room. I suddenly saw those servants, I
could hear their songs and laughter, and I could see my old dog Samson. I became
overwhelmed with that day, the people, the energy from so long ago, and I was so
overwhelmed with emotion I stopped running and started crying. When I reached the
restaurant, the law professor stood resplendent in his tweed suit and said: “Rory, it’s OK
that you’re a couple of minutes late. Oh my gosh, are you crying?”

CHAPTER 6: Switches 219

Figure 6–a. Don’t freak out: Let’s have a look at your brain.

So what happened? What happens when you experience similar events? Why does this
often happen with smell? Let’s first look at events in life, such as the first time you
realized that 1 + 1 = 2. Do you remember the first time you realized 1 + 1 = 2? Probably
not. This is because after you created a nucleus associating 1 + 1 = 2 there were trillions
of connectors going to 1 + 1 = 2. Every time you perform any function that related to
1 + 1 = 2 your brain makes a connection to the nucleus housing 1 + 1 = 2. Even as you
flip through this book and it goes from page n to page n+1, you make synaptic connectors
to dendrites and groups of associations connected to 1 + 1. Somewhere in those
trillions of 1 + 1 = 2 connectors are the visuals and sound effects of the room where you
realized this, but it is lost in the maze of trillions of other connectors.

That rare smell though, that’s different. Think about it. I have illustrated four groups
associated with that smell from when I was three. Over the next 30 years, following the
creation of that nucleus and the four groups linking it, there was never a connection
made. It just lay there. However, as I crossed 8th Avenue and smelt that smell, it
immediately invoked that same nucleus AND the contents of the four groups connected
to that event. These connectors were STRONG because they were not interconnected
with other complex relationships. This made the singing, the feeling I had towards my
dog, the laughter, and the other events come hurtling into me.

CHAPTER 6: Switches 220

Now go back to when you read Chapter 5 for a moment. Look at the “YOU RIGHT
NOW” illustration in Figure 6–a. You created a set of nuclei when you made your way
through Chapter 5. Let’s imagine, for purposes of illustration, that it was only one event
or one thing you learned while reading Chapter 5. The nucleus containing that
knowledge is housed in the light grey circle. You may, at the most, have created one
semblance of connectivity to some related thought or concept. That is why I connected
one small group to the Chapter 5 knowledge nucleus. More importantly, notice that I
have created five other groups of potential connectors to the Chapter 5: they are “rest of
the book,” “problem solving,” “teaching to others,” “real life application,” and “making
$$.” Right now it’s absolutely natural that these groups have no connectivity to the
nucleus of Chapter 5’s knowledge because you have not had time to create these
connections. For example, right now, as you read this chapter, you probably “feel” like
you have no connection to the knowledge you gained in Chapter 5. This is because
there is no connection to it as you read this. There is also zero connectivity to making $$
from what you learned in Chapter 5, nor to the other groups.

I carefully choose topics, innuendo, and semantics to optimize, as best I can,
connectivity between what I teach at the moment to what was taught in the past. By the
time you reach the end of this book, create your first app, and sell it in the store, your
brain will have begun to create many connectors to Chapter 5. I have illustrated this in
Figure 6–a under GEEKDOM. Something that connects a huge amount of synapses to
nuclei containing a difficult-to-understand concept is teaching others. It’s great to go
onto forums, such as mine at www.rorylewis.com/ipad_forum/ or bit.ly/oLVwpY, and
help out newbies with their questions (even if you are a newbie yourself) because it
creates many connections to that difficult concept, making you smarter. In essence,
helping others forces one to answer the same question in thousands of different ways.
So I strongly encourage you to go to the forum, ask questions, and then, as you become
wiser, help others.

So the first good news is that it’s OK to feel disconnected to what you coded in Chapter
5. It’s OK; you’ll make those connections as you move forward. The second piece of
good news is that Chapter 6 will not be as huge a leap as Chapter 5 was. Instead, you
are going to take a break from serious code and connect new ideas to the synapses that
you connected with code in Chapter 5. In fact, in both Chapter 6 and Chapter 7 there
will be very little code! Instead, I will connect cool new thoughts to the portion of your
brain that is associating code with ideas explored in Chapter 5. Once you have
established these connections in your brain, you will associate more code. In Chapter 6,
you will explore a popular method for navigating through iPhone apps using the platform
of a “tabbed application.” But for now, just relax and enjoy Chapter 6: Switches.

switch: A Tabbed Application
So far you have written code that allowed the user to poke or prod an iPhone or iPad in
certain ways to make it do interesting things. This is now going to change. In this
chapter, you will demonstrate how to create an iPhone app that allows you to do all of
these cool functions without overwhelming your user, by dividing the functionality into
several easy to locate tabs. This model, called the “tabbed model,” is so popular

CHAPTER 6: Switches 221

amongst app developers that Apple has included a basic tabbed application project in
the New Project options in Xcode. In other words, the people at Apple recognize how
much programmers like to use this model, so they created most of the code you need.
When you’re all done writing this app, you’ll have a display with two tabs at the bottom.
The content of the first tab will be an image that you set using Interface Builder with a
button overlaid on top of it. This button will cause Mobile Safari to open the Apress
Publishing Web Site. The content of the second tab will be a different image, but you
can set the image name and other attributes in the implementation file and only set up
enough of a framework in Interface Builder to make that possible.

Obtaining the Resources
You can watch a video of the wild and crazy, beaming-with-life, groovy PhD student
Brian Parks coding this switches app at bit.ly/mX4pkk and simply follow along with him.
You can also download the code to this project at bit.ly/vBSKMa where you can visually
compare your code with mine. Most importantly, you will either need to download the
three images at bit.ly/tIYl9Y or create your own two images and icon using the same
dimensions as mine: 320 � 480 pixels for the two large images, and, of course, 57 � 57
pixels for your icon.

Figure 6–1. Download the three images onto your squeaky clean desktop.

1. Start off by cleaning out your desktop so there is nothing on it. Then either create

your two 320 � 480 pixel images, one for each view, and then one icon, at 57 � 57

pixels, or download the three images used in the video, as illustrated in this book,

at bit.ly/vBSKMa. This is shown in Figure 6–1.

CHAPTER 6: Switches 222

Creating the App
Now let's create the app.

Figure 6–2. Start a Tabbed Application.

2. Start this app just like you’ve started all the apps so far: use ��N to start a new

project. Select “Tabbed Application” from the sheet that appears. This template

sets up a significant portion of the tab framework for you, so you can focus on

filling in the content and not worrying about the gory details of the interaction

model. Click “Next.” This is illustrated in Figure 6–2.

CHAPTER 6: Switches 223

Figure 6–3. Name the app “switch.”

3. As illustrated in Figure 6–3, name your app “switch” and ensure that both of the

checkboxes are unchecked. “Use Storyboard” drastically changes how a tabbed

application is set up and is explored in detail in Chapter 7. In this app, you’ll

specifically target the iPhone because tabs become cumbersome on the iPad.

CHAPTER 6: Switches 224

Adding the Images to the Project
At this stage, it’s probably a good idea to drag your imagery to use on the tabs, so you
won’t have to worry about it later.

Figure 6–4. Drag in your 3 images from the desktop.

4. Drag your images from the desktop into supporting files, and in the process

develop a very good habit for yourself. After dropping your images into the folder,

you will be presented with a dialog, as shown in Figure 6–5.

CHAPTER 6: Switches 225

Figure 6–5. Copy the items into the destination page’s folder.

5. Xcode recognizes that the images are not already part of this project, so it

strongly recommends that you let it add them for you. As mentioned before, it’s

also making sure that it has encapsulated your images inside itself, so if you go

elsewhere to run it then it will be able to find your images and display them. This

dialog also gives you the opportunity to change the actions it is about to perform,

but, in general, the assumptions it makes are correct, so accept Xcode’s

recommendations, as illustrated in Figure 6–5.

CHAPTER 6: Switches 226

Figure 6–6. Drag your icon to the app’s icon property.

6. Typically, you open the plist to include the icon. In this app, you see a new way

to associate an icon with your app. So, drag your icon file to the app’s properties.

Notice how Xcode takes care of putting it in the right place in your project and

setting up all the necessary linkages. This step is not critical if you don’t have an

appropriately sized .png readily available. You can always change the icon later.

Note that it only allows you to drop the correct sized icon into each specific box.

In Figure 6–6 you see the icon being dragged into the app’s icon property.

CHAPTER 6: Switches 227

Figure 6–7. Warning that you dropped the images into the wrong place.

7. Xcode displays a warning indicating that it will copy the icon from its current

location to the “correct” place, which is fine. As with the previous warning, simply

accept Xcode’s recommendations. You, of course, will not see this if you dropped

your images into the correct folder. This is illustrated in Figure 6–7.

Running the App
You do know that some of the readers of this book, and students from my former
classes, actually work at Apple developing iOS code and doing the very special things
you are about to see in this step. That’s why I love to say, “The clever people at Apple
have coded…” because these clever people at Apple include people just like you, who
began right here, reading the first version of this book. Right now, you probably just
want to see what the clever people have coded for the Tabbed Application.

CHAPTER 6: Switches 228

Figure 6–8. Run it so we can see what Apple has already coded for us.

8. Run the app by clicking the Run button or pressing �R, as illustrated in Figure 6–

8. If you’ve followed the instructions faithfully, you will see a “Build Succeeded”

message and the iOS Simulator will start.

CHAPTER 6: Switches 229

Figure 6–9. The first view to pop up will be the... First View.

9. As illustrated in Figure 6–9, after you run the app you will see how the iOS

Simulator pops up a First View. This is quite amazing. Those clever people at

Apple have coded so much hardcore stuff and cool things that it leaves very little

for you to do. Go ahead and play around with the app; click on the tabs to see

that there really are, in fact, two different sets of content being shown. Remember

that you haven’t even touched the .xib files or any of the code! However, this is

exactly the point where the magic of the Tabbed Application template ends and

your creative input begins.

CHAPTER 6: Switches 230

Figure 6–10. The Second View appears when you select the “Second” tab.

10. When you press the “Second” tab, located at the bottom of the screen, you will

see that “Second View” pops up. So the tabs are actually working perfectly. I’m

sure you will notice that while the Tabbed Application template sets up quite a bit

and has prefilled some content, it’s rather drab and uninteresting. Most

importantly, it doesn’t reflect anything that you might want it to do. Let’s fix that.

Customizing the Tabs
That Second View that you see in Figure 6–10 can be replaced, along with the first
introductory view, with code, or the next level of a game, or the details of an address tab
or recipe. For your purposes, simply insert a first image into the First View and a second
image into the Second View.

CHAPTER 6: Switches 231

Figure 6–11. Open up the First View nib file.

11. Switch back to Xcode and click the “Stop” button. Select the .xib file called

FirstViewController.xib, as shown in Figure 6–11. This shows what you saw in

the iOS Simulator, minus the actual tabs on the Tab Bar. Let’s set up your

environment to make it easier for you to edit the nib (.xib). If you don’t already have

the Utilities View visible, click the appropriate view button to make it visible at the

right side of the screen. You don’t need the Debug View right now, so you can hide

that. You don’t really need the Navigator at the moment, either, but some

developers (like Brian, the PhD student running this video) like to have it visible at all

times. That is your choice.

CHAPTER 6: Switches 232

Figure 6–12. Delete the UILabels.

12. To use your own images, you need to get rid of the ones Apple has provided.

Click each of the UILabels and delete them by pressing the Delete key while each

is selected. Your screen should resemble Figure 6–12. Many tabs do have text

content, but yours will not, so these UI elements are not necessary. This leaves

you with a blank view, as can be seen explicitly in the left side of the Standard

Editor.

CHAPTER 6: Switches 233

Figure 6–13. Drag a UIImage onto your view.

13. From the toolbox at the bottom of the Utilities View, find the image view

(UIImageView) icon and drag it into the main area. As you do so, it expands to the

same size as the area you can fill (in this case, the whole view). Use the guides to

line up the UIImageView with the borders of the simulated iPhone window. This is

illustrated in Figure 6–13.

CHAPTER 6: Switches 234

Figure 6–14. Associate your first images with the first UIImageView.

14. In the Utilities View, go to the Attributes Inspector (��4) and click the Image

drop-down, as shown in Figure 6–14. This list is populated with a list of images

that Xcode has found in our project: first.png and second.png are the circle and

square that Xcode has used as icons for each of the respective tabs, while

icon.png is our app icon, leaving two entries that correspond to the images you

dragged into the project in Figure 6–6. Select PIC01 and Xcode will show it in the

UIImageView.

CHAPTER 6: Switches 235

Figure 6–15. Select a View Mode.

15. As shown in Figure 6–15, you can now see PIC01 being displayed on the view,

and you should now see either PIC01, if you downloaded it from my site, or your

own first image. You know the image is the correct dimension for a tabbed view,

but it’s still a good habit to line it up to the top or bottom, so that it fits exactly. In

Figure 6–15, one can see Brian selecting a View Mode, placing PIC01 at the top of

the screen. I typically place it at the bottom. It makes no difference if your images

are perfectly sized. This is your choice, though, so get into the habit of selecting a

view mode that pleases you. I usually choose the bottom alignment because I

don’t want to cut off the bottom of the image. The other content view modes, and

what they mean, are described in more detail later in the chapter.

CHAPTER 6: Switches 236

Figure 6–16. Run it and see what happens.

16. Let’s see what you have now. As expected, you can see in Figure 6–16 that the

first tab looks exactly like the way you’ve set it up in Interface Builder.

CHAPTER 6: Switches 237

Figure 6–17. Second View still looks the same.

17. Of course, you haven’t changed anything on the second tab. Select Second View

and see that, as expected, it still looks exactly the same as shown in Figure 6–17.

Let’s add an image to this tab, but instead of telling Xcode which image to load

directly in Interface Builder, you can write a couple of lines of code that load the

image when the tab is shown.

CHAPTER 6: Switches 238

Figure 6–18. Control-drag a connection from your icon in Interface Builder into your header file.

18. Let’s start by fixing up the Second View in exactly the same way you dealt with

the first view. Select Second View in the Navigator and get your workspace set

up. Again, select each label and delete it from the interface so that you have a

clean UIView. This is illustrated in Figure 6–18.

CHAPTER 6: Switches 239

Figure 6–19. Open the SecondViewController.xib and drag a UIImageView into the interface.

19. You now need to work on the Second View. So open up the

SecondViewController.xib and drag a new image view (UIImageView) into the

interface just as you did for the first view in Figure 6–13, except now you are

resizing the boundaries, as illustrated in Figure 6–19. Note that up to this point

you haven’t done anything differently. However, instead of using the Attributes

Inspector to set the image and Content View Mode, you’ll now do something a

little different.

CHAPTER 6: Switches 240

Figure 6–20. Open the Assistant Editor.

20. Pull up the Assistant Editor to show the header (.h) file that corresponds to your

SecondViewController.xib file. This will allow you to indicate to Xcode how you

wish to communicate between your code (which you’ll write in a minute) and the

interface that you’ve just finished designing. This is illustrated in Figure 6–20.

CHAPTER 6: Switches 241

Figure 6–21. Control-drag an outlet into your header file.

21. Control-drag from the UIImageView in the main drawing area to anywhere

between the @interface and @end directives. As shown in Figure 6–21, Xcode will

display a translucent message reading “Insert Outlet or Outlet Collection.” Outlet

Collections are a more advanced topic, but you’ve seen Outlets before and that’s

exactly what you’re looking for.

CHAPTER 6: Switches 242

Figure 6–22. Name the outlet “myImage.”

22. Upon letting go of the mouse button and completing the control-drag, Xcode

presents you with a popover to get some additional information. You’ve already

determined you want an Outlet, so all that remains is to give it a name, say

“myImage,” as illustrated in Figure 6–22.

Coding the Second View
Now let’s write some code to make use of this new Outlet. To do so, select the file
SecondViewController.m in the Navigator and find the method definition for viewDidLoad.
It should look something like this:

- (void)viewDidLoad
{
[superviewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
}

Add the lines in bold below, so that the method reads as follows (be sure to change
myImage appropriately if you named your Outlet something different). Unless you named
your image PIC02, you will have to change the text in quotes to the name of your image
(without the “.png”):

- (void)viewDidLoad
{
 [superviewDidLoad];
// Do any additional setup after loading the view, typically from a nib.

CHAPTER 6: Switches 243

 [myImagesetImage:[UIImageimageNamed:@"PIC02"]];
 [myImagesetContentMode:UIViewContentModeBottom];
}

These two lines of code are more or less equivalent to the changes you made in the
Utilities View in Steps 14 and 15. The primary difference is that Steps 14 and 15 set
these attributes directly in the nib file at development time, while the code you’ve just
written sets these attributes at runtime, after the project has already been compiled onto
our device. You’ll look at the distinction between compile-time and runtime a little bit
more in this chapter’s “Digging the Code” section.

Figure 6–23. Time to write some code for the Second View.

23. When this is done, check Figure 6–23 against your code; they should look similar.

You can now close the Second View.

CHAPTER 6: Switches 244

Adding a Button
You want to make a button that links up to the apress.com site—just for illustrative
purposes of how to can include code in your view.

Figure 6–24. Drag a button onto the First View.

24. Let’s do this on the First View: open up the FirstViewController.xib file and

drag a button onto the image of me walking in the rain, as shown in Figure 6–24.

Don’t forget to type some text into the button. You can call the button that will

take you to the Apress web site “Apress Web Site.” You can name a button

whatever you like.

CHAPTER 6: Switches 245

Figure 6–25. Control-drag from the button into your header file.

25. You’ve dragged so many buttons from nib files onto header files that all I need to

say at this point is open the Assistant and control-drag an outlet onto your

header, as illustrated in Figure 6–25. See how smart you are!

Figure 6–26. Change the default Outlet to an Action.

26. You know that if the button is going to perform an action then it cannot be an Outlet.

Therefore, as illustrated in Figure 6–26, change the default Outlet to an Action.

CHAPTER 6: Switches 246

Figure 6–27. Name the Action “goToApress.”

27. You want this Action to take a user to apress.com when they hit the button. You

need to give the Action button a name, so let's call it goToApress, as illustrated in

Figure 6–27. Once done, click Connect or press Return.

CHAPTER 6: Switches 247

Coding the Button
You now need to code the button.

Figure 6–28. Let’s code the goToApress method.

28. Open up your implementation file, as shown in Figure 6–28. You will see that that

Xcode has also created a method stub for you (the framework for the method, but

with no actual code that does anything useful). Click in this method and enter the

following single line of code:

[[UIApplicationsharedApplication] openURL:[NSURL
�URLWithString:@"http://apress.com"]];

CHAPTER 6: Switches 248

Figure 6–29. Re-inspecting the code.

29. When you think about it, it’s really amazing that a seemingly complex operation

like opening Mobile Safari from within your own app could have been condensed

into a single statement by the people at Apple. So let’s dissect the code you’ve

just written, as shown in Figure 6–29.

In iOS, all apps are sandboxed into their own little piece of the system’s resources. The
topic of sandboxing is so complex that books can and have been written about the
subject, so I won’t go into detail here. Instead, it’s sufficient to understand that iOS isn’t
going to let your app just do whatever it wants, so you have to use certain APIs that
Apple has provided to tell the underlying system to do these things on your behalf.

In this case, send a message to the UIApplication class to obtain a reference to
sharedApplication—that is, an object representing your application’s gateway to the
rest of the system. This object has a method called openURL, which does exactly that
when passed an instance of NSURL.

In order to pass openURL an instance of NSURL, send the NSURL class the URLWithString
message, which transparently converts the string you provide into an instance of NSURL.

CHAPTER 6: Switches 249

Using the Button
It's time to test out the button.

Figure 6–30. Run it!

30. As shown in Figure 6–30, when you run the app and click the button saying

“Apress Web Site,” your app will call off to iOS and launch Mobile Safari, as

shown in Figure 6–31.

CHAPTER 6: Switches 250

Figure 6–31. The apress.com website on your iPhone!

31. Congratulations! You’ve successfully completed your sixth iPhone app! See

Figures 6–31 and 6–32.

CHAPTER 6: Switches 251

Figure 6–32. Your sixth iPhone app.

Digging the Code
In this chapter, you quickly flew by a few advanced topics in order to get through the
app. Let’s take a step back from the code you’ve written and have a more in-depth look
at some of these topics.

� In Step 15, you set a Content View Mode to alter how your image
would be scaled and cropped to fit in the UIImageView. Take a look at
what this means, and how each of the options differ from one another.

� In Step 24, I mentioned the difference between compile-time and
runtime. For the purposes of writing the app, it was sufficient to know
that the distinction led to two different ways of evoking the same
resulting behavior. Here, I’ll diverge into the philosophy of code and
talk about why you might want to use one strategy over another in a
given situation.

Content View Modes
In Step 15, you loaded an image into a UIImageView. If you used the images from the
companion web site, the image was mostly the right size (it was exactly the same size as
the full iPhone screen). Since the tab bar took up some of the available screen space,
the space available for the UIImageView was a little shorter than your image. Xcode
initially squished the image to make it fit. This view mode (the default) is called “Scale To

CHAPTER 6: Switches 252

Fill” (UIViewContentModeScaleToFill) because it scales the image in both X and Y
directions to fill the content frame.

Unless your images are exactly the same size as your UIImageView, this will result in
distortion. This might be tolerable if you are loading images that you have created
directly into your interfaces (either in Interface Builder or via the viewDidLoad method),
but that limits what your app can do. On the other hand, if you will be loading an image
of unknown or unrestricted dimensions, some of the other view modes will be more
appropriate. Have a look at Figure 6–33 for a list of the available view modes.

Figure 6–33. Xcode’s UIImageView Content View Modes.

Starting at the top of the list in Figure 6–33, following Scale To Fill, Aspect Fit and
Aspect Fill (UIViewContentModeScaleAspectFit and UIViewContentModeScaleAspectFill,
respectively) will probably be the most useful to you.

� Aspect Fit. This scales the content, maintaining aspect ratio, until the
largest dimension is equal to the corresponding dimension of the
image view. Thus, if you have a UIImageView similar to the one in this
chapter’s app and a photo that was taken in landscape orientation, the
image will be scaled so that the entire image is visible and empty
space will appear above and below the photo in the interface.

� Aspect Fill. This scales the image until the other dimension fills the
available space. This results in the entire view being filled with your
image, at the expense of trimming off some of the image. Using the
same example, this would cause the left and right edges of your photo
to be trimmed.

The nine view modes at the bottom of the list (Center through Bottom Right) do no
scaling at all on your image, and simply anchor the specified point in your image to the
corresponding point in the content frame. For instance, choosing “Top Left” will cause
the top left section of your image to be displayed so that the top edge is aligned with the
top of the UIImageView, and the left edge is likewise aligned. Any extra image beyond
the size of the content frame is cropped. In this app, you chose “Bottom” so that the
bottom edges were aligned, and the extra portion of the image at the top was cut off.

CHAPTER 6: Switches 253

The “Redraw” view mode provides a way to customize how your content scales and is a
far more advanced topic than this discussion.

Compile-time and Runtime
In Step 24, I mentioned the terms compile-time and runtime in passing, noting that the
distinction in that context was that the former meant you configured things in the
Interface Builder part of Xcode and the latter meant you did this configuration by writing
some code in your implementation file. That was a suitable definition of the terms at that
time, but they can be defined a little more formally now.

Compile-time indicates that something happens when your project is compiled, or built,
prior to being run on the simulator or on a real iOS device. These are things like the
definition of classes in .h and .m files, the organization and layout of UIViews in your nib
files, and the configuration you do in Xcode’s various inspectors. Everything that is set
at compile-time defines exactly the state your app will be in when it is started.

Runtime, on the other hand, describes the segment of time after your app has started
running. This is when all the code you’ve written is actually executed, effecting changes
in the state of the app from the way it was set up at compile time. In this chapter, you
specified the image for the second tab through a message in your implementation file.
Thus, the image to show was unspecified at compile time, but at runtime a series of
instructions was executed to display the desired image in the UIImageView you
provided.

Why is this difference significant? You proved, during the course of writing this app, that
you can do the exact same thing at runtime as you could at compile-time. However,
executing instructions to do what you wanted required several extra clicks and drags,
and a few more lines of code. If you already know how you’re going to configure
something at compile-time, the advantages of writing code to do the same thing will
diminish. However, if you want to dynamically change the properties of an object during
the execution of the app (last chapter’s app is a great example of this), it is obviously
impossible to set all aspects of the state at compile-time.

In short, compile-time defines the starting state of your app, while runtime describes the
actions that occur once your app begins running.

In the Chapter Ahead
In Chapter 7, you will move into the next level of complexity: Storyboarding.

Storyboarding is the new way Apple allows one to lay out how a user moves through an
app, in much the same way that a movie producer sets up a storyboard to show how a
movie will go from one scene to the next. Storyboarding has segues (pronounced
“segways”) that connect each view in your app with another. It is tempting to just go straight
to storyboarding, but it’s best to first learn a little about the code behind these buttons and
images, as you have done. So take a break, and then let’s move on to the land of
storyboarding.

255

 Chapter

Storyboards
This seventh chapter will introduce a new way to create an app quickly and visually.
First, some views will be laid out and you will see how they can be connected without
writing code, and you will get some neat transition animations for free. This new
technique was first brought to the public’s attention when Apple announced that they
would be introducing a new and never-before-seen feature called Storyboards, which
would be built into Xcode. It would allow the easy layout of workflow apps that use
navigation and tab bars to transition between views.

Apple went on to say that the new storyboards would manage the view controllers for
you, while visually creating an easy to manage geospatial view of your project. It would
specify the transitions and segues that are used when switching between views, without
having to code them by hand! Everyone waited with anticipation for the Beta to come
out and, when it did, everyone was blown away. It changed the entire coding landscape.

Storytelling
When you tell a story, you communicate with others. Whether young or old, everyone
loves a story. Storytelling is an integral part of daily communication with others. When
you communicate with a user, you are telling them how to travel a path you’ve created
that will bring them to a place where they will get what they want, be it a map, a song, a
recipe, the weather, where they parked their car, a phone number, a movie, or
something else. So why wasn’t this thought of before? Why was the creation of apps
seen as geeks programming code, while storytellers were seen as being something
different? I’m not sure of the answer, but as I began to think about it, I realized that this
was an incredible concept. Think of it. When Walt Disney began to think of the most
efficient means to organize and structure cartoons, back in the early 1920s, he came up
with the concept of storyboards. He would gather his artists together and they would
mount a series of boards with key scenes from a story, and then they would organize
these boards into a beautiful story. This technique became a huge success; it took over
the movie industry, and it is the blueprint for planning every modern film. You can see a
great movie that illustrates how Disney’s storyboarding took over the industry here:
bit.ly/oWg5mc.

7

CHAPTER 7: Storyboards 256

The new iOS5 Storyboard feature is much the same, except you are not necessarily
looking at pictures; you are looking at a geospatial representation of your app that
allows you to organize it beautifully. Before iOS5 came out, nib files were used to define
the user interface. There was no choice but to do this one view controller at a time. If
you had 16 view controllers, you would have to define the user interface 16 times. Not
only was this boring, but it became complex and confusing. Conversely, as you will soon
see, a storyboard file captures all your user interfaces in one geospatial view, and gives
you the ability to easily create and edit all your individual view controllers, and the
transitions between your view controllers. You can move them around like a deck of
cards, just like the guys at the Disney studios. It becomes easy to realize and edit the
flow of the overall user interface and experience in your app.

Roadmap Recap
You now know enough of what happens behind the scenes to install a new way of doing
things. It’s as if you’ve spent enough time tinkering around with lawnmower engines and
basic car engines that you can appreciate installing a brand new engine in your old car.
As you install this new engine, you know that inside this engine are pistons, spark plugs,
carburetors, and so on. You do not have to yank the engine open to know these items
exist; you can just install it and connect it to the chassis, the drive train, and the
electronics. In storyboarding, you are going to use a whole new method for designing
your app; you will simply have to connect it to your outlets, view controllers, and the
other elements of your app. You don’t have to open up storyboard and look inside, as
you know it works; you simply have to know how to connect things. So let’s do it!

Roadmap: Four Phases
This app has been divided into four phases. The most important phase is the first one
because it will be common for most of the potential uses for storyboarding. Because
Phase I is the lowest common denominator for so many of the future storyboards you
will find yourself doing, I focus on this quite a bit, and encourage you to perform
exercises that will enable you to quickly become efficient at storyboarding. Phase I sets
up the root of what will be done over and over again, and the three phases that follow
are specific to this particular app.

� Phase I sets up the core of most potential storyboarding
configurations.

� Phase II starts at Figure 7–22, and is comprised of setting up the view
controllers for Male, Female, and Geek.

� Phase III starts at Figure 7–34, and is comprised of establishing the
content of the view controllers.

� Phase IV starts at Figure 7–54, and is comprised of closure and
coding.

CHAPTER 7: Storyboards 257

Evolve: A View-based Storyboard Application
Once again, you will work with images that let you know where in the story you are. In
more technical terms, you will use images rather than code to represent a state in your
app. I encourage my students to use images because, if it does not work, then you
know it’s a bug in the high-level code that directs the user from state to state—not a
bug in the code for a particular state.

In this app, you will see a funny set of states that show the state of a male, a female, and
the other kind of human being—geeks. It will also show that when a man or a woman
evolves into a higher state of consciousness they become geeks! Then, to add another
state, for fun and to illustrate the purpose, it will be shown that when a geek evolves
they become an Über Geek! As funny as this is, it simply gives us a nice set of diverse
states that, in storyboarding, will be easy, but that in the old one-at-a-time nib
manipulation would have been substantially more complex.

First, download the images from here: bit.ly/p1L5cv where you can also download the
code or view the video. Once you have downloaded the .zip file containing the images,
unzip the folder, and store the images on your desktop.

I will not be holding your hand as tightly as I have thus far. Instead, I will assume that
you know how to perform some of the functions you have done repeatedly in this book.
Yes, I will be talking to you in a more technical manner.

CHAPTER 7: Storyboards 258

Phase I: Creating Core Storyboarding Configurations
Let's get going with Phase I, where you will build a core configuration.

Figure 7–1. Start by choosing a Single View Application skeleton. More views will be added later.

1. OK, let’s start a new project in Xcode by using your keyboard shortcut, ��N, and

selecting the Single View Application project type. The Single View Application will

be the starting place for this application, and likely many more of this book’s

applications, as well as your own.

CHAPTER 7: Storyboards 259

 Figure 7–2. Start with just an iPhone version of the app and the new storyboard feature selected to allow us to
jump directly into design and layout. I named it “MyStory.”

2. Let’s name this application “MyStory.” The Company Identifier is not relevant to us

at this time, so feel free to put something creative there. For simplicity, just target

the iPhone device family at this time. The brand new “Use Storyboard” option will

need to be checked. This will present you with a slightly different project layout

once you’ve saved the project. Go ahead and click the Next button.

CHAPTER 7: Storyboards 260

Figure 7–3. Drag the images that you downloaded earlier to the project’s "Supporting Files" directory in Xcode.

3. The first thing to do is add some image files to the project by dragging them from

the desktop to the project Supporting Files directory. This is just a logical

directory, and the files can actually go almost anywhere in the MyStory directory.

Be sure that these files are copied in the proceeding dialog box.

CHAPTER 7: Storyboards 261

Figure 7–4. Select the "MainStoryboard.storyboard" file and you will be presented with your only default
view.

4. Now, select the "MainStoryboard.storyboard" file in Xcode’s project file browser

on the left. This shows you something a little familiar, a UIView. But this is not just

a UIView, it also has an associated controller that is automatically created and

linked to the view. You can add more views shortly, but one important thing to

note here is that double clicking the grid pattern allows you to zoom in and out.

You must be in normal viewing mode to add visual elements to the views.

CHAPTER 7: Storyboards 262

Figure 7–5. Clicking this button returns you to normal viewing mode. The two buttons on either side allow you to
zoom in and out.

5. It’s important to become familiar with the viewing and zoom modes, as you will

constantly want to zoom in to edit a detailed view and then immediately zoom out

again to view the entire storyboard. Clicking the center equal sign button returns

you to the normal viewing mode. The two buttons on either side allow you to

zoom in and out.

CHAPTER 7: Storyboards 263

Figure 7–6. You need to bring up the Utilities Panel to add some new views to the project.

6. Bring up the Utilities Panel by clicking the button circled in red in Figure 7–6.

Having a larger screen makes working with Xcode easier, as more and more

panels and views take up valuable screen space.

CHAPTER 7: Storyboards 264

Figure 7–7. Select a Navigation Controller.

7. Once you have opened up the Utilities Panel, locate the "Navigation Controller"

(UINavigationController). Select it and start dragging the Navigation Controller

onto your Storyboard, as shown in Figure 7–7.

Figure 7–8. Drag a new Navigation Controller to the storyboard area; placement is not important at this point.
Two new views appear, with a link between them.

CHAPTER 7: Storyboards 265

8. As you drag the Navigation Controller onto the storyboard, you will see that

instead of just a single view, you get a connected pair of controllers that are

depicted as views. Drop it any place, as you are free to move it around as much

as you need. This is, in fact, the case for almost everything that you will do in

storyboards. You are not dealing just with views, you are actually seeing Apple

instantiate each UI element into a set of views and controllers that allow you to

build transitions. These transitions in Xcode are called segues (pronounced seg-

ways), as shown in Figure 7–8.

NOTE: A Segue (segway) is often articulated in music and performing arts realms when the
musicians move without interruption from one song, melody, or scene to another. We want a

smooth transition from one scene to another.

Figure 7–9. Keep this first Navigation Controller as a simple view controller.

9. You’re going to leave this first Navigation Controller alone for a now. The reason is

that this is the first view that the user will see, and all you want to happen here is

to have access to the code Apple has provided for the logic associated to the

blue navigation bar at the top of the view. Strictly speaking, the Root View

Controller on the right is actually the first view that your user will see, as the

Navigation Controller is pushed to the view stack. But for now, just arrange the

controllers in an orderly fashion.

CHAPTER 7: Storyboards 266

Figure 7–10. Drag a UIImageView to your first view controller.

10. In the app you will not have code in each state, as already mentioned; instead,

you will have images, either made or, preferably, downloaded from my site. By

now you know that images need to be parked in UIImageViews. So drag a

UIImageView to your first view controller, so that you can place the mystory.png

onto it. This is illustrated in Figure 7–10.

CHAPTER 7: Storyboards 267

Figure 7–11. Open the Utilities Panel and select the mystory.png.

11. From the UIImageView’s settings in the Attributes Inspector found in the Utilities

Panel, set the image to mystory.png, as illustrated in Figure 7–11.

CHAPTER 7: Storyboards 268

Figure 7–12. Drag a UIButtonView out to the main view controller so that you can have an actionable item in
order to push the next view controller to the stack.

12. As shown in Figure 7–12, you need to have a button on your main view controller,

so drag a Round Rect Button (UIButtonView) onto it, so that you can have an

actionable item to press, which will push the next view controller to the stack.

CHAPTER 7: Storyboards 269

Figure 7–13. Insert text into your button; I used “Show Navigation Controller.”

13. When the user presses this first button, you want it to take the user to the

navigation controller. Let’s tell the user this will happen if they press this button.

This is illustrated in Figure 7–13.

Figure 7–14. Start the actual linking.

CHAPTER 7: Storyboards 270

14. This step is really the heart of storyboarding. Let's think about this. You want your

user to be directed to the navigation controller when he or she presses the button

saying “Show Navigation Controller.” Rather than writing code, just link the button

to the navigation controller. To do so, place your mouse over the button, and then

control-drag and release over the Navigation Controller to create a transitional

link. This is the magic—no code is written to make this transition with animation,

as shown in Figure 7–14. It’s just free! A gift that was written by the remarkably

clever people at Apple that—if you don't mind me reminding you again—includes

students and readers of the first edition of this book! So hang in there!

Figure 7–15. Select the “performSegueWithIdentifier:” option.

15. Upon dropping the connector onto the navigation controller, it comes up with the

option performSegueWithIdentifier:sender:, which is the name of the method

that holds all the code you need for connecting these two items appropriately

using storyboarding. You may note that I have also added a section in Digging the

Code that describes how to add the performSegueWithIdentifier:sender
method programmatically. On the other hand, if you do not see this option, go to

step 16.

NOTE: You cannot create a segue by control-dragging from a UIView or the basic View
Controller. You need an actionable item to create a segue, and the UIButtonView is an easy

one to use.

CHAPTER 7: Storyboards 271

Figure 7–16. Rename the Root View Controller's title bar to something a little better, such as "Root".

16. You are now going to change the title of the Root View Controller to something

useful. I suggest “Root” because you don’t need to care about the aspect of the

Model View Controller (MVC) when using the app. This label is also an integral

part of the free naming of navigation buttons that you’ll see when you run the app.

This is illustrated in Figure 7–16. Naming these title bars is important for the user

to understand where they are in your program, and how they got there. Double

clicking the title bar, or typing in the Title section of the Attributes Panel, allows

you to edit this value. When the user travels back and forth through a Navigation

Controller, these labels appear in the title and the "back" button. You'll see this

shortly when you test the app for functionality.

CHAPTER 7: Storyboards 272

Figure 7–17. Phase 1 is almost completed—you just need styles for segues and transitions, and then a test run.

17. Before moving too far ahead, stop for a minute and catch your breath. You have

successfully created the foundation not only for this storyboard app, but also for the

methodology that you will use as the basis for many other apps, which is a view

controller connected to your Root Navigation Controller. Essentially, you have

created a view controller with a button that takes you to a navigation controller you

have named "Root," as shown in Figure 7–17. The rest of your storyboard will

blossom out from this root. Now, however, you will see segue styles, transition

styles, and you will do a test run over the next three steps. Once you reach step 20,

you will be asked to go back and run these first twenty steps.

CHAPTER 7: Storyboards 273

Figure 7–18. Select the segue you have just created and select a segue style.

18. Select the storyboard segue you created. Now let’s choose a style of segue to use.

In the Attributes Panel, you can select one of three style types of segue. "Push" is

the standard slide in from the right animation. "Modal" is a type you can use for a

segue that goes back and forth between two views. "Custom" requires that you

write your own type of segue. Mmm, let's do that later, huh? Anyway, I want you to

play around with these different styles, so that you become familiar with them.

Different students have different tastes. For now, just leave the defaults because

they work well, as illustrated in Figure 7–18.

CHAPTER 7: Storyboards 274

Figure 7–19. Select the transition of your choice.

19. Transitions are the animation types available for each style of segue. Again, just

stick with the default. I chose the Flip Horizontal style for no particular reason

other than it suits me. You can choose another style, if you want. Feel free to

experiment here, but keep usability in mind. It is very easy to get too flashy with

the animations. I often find that the popular apps, and smarter students, tend to

have less flash and more utility and efficiency.

CHAPTER 7: Storyboards 275

Figure 7–20. Run it to see what you achieved in Phase 1.

20. At this point, running the app will show you how little you actually had to do to get

a working app with some direction. So, as depicted in Figure 7–20, hit that "Run"

button and see what you have.

NOTE: You may want to emulate what I make my students do at this point. I make them erase
everything they have done so far, except for the five icons on their desktop. Then I make them

repeat these steps over and over again until they can 1) get up to this point, excluding steps 18
and 19; 2) run it; and 3) have it appear in the simulator within 50 seconds, without using the
book.

I STRONGLY encourage you to do this!

Just as a golfer needs to practice his swing to create muscle memory, you need to be able to get
to this point without even thinking. First, do it at your own pace with the book, and then go faster

and faster until you get below 50 seconds! Yeah!

CHAPTER 7: Storyboards 276

Figure 7–21. And, sure enough, clicking the button flips the view and shows us a blank view, with a navigation
bar at the top named “Root”.

21. After hitting the "Run" button, the simulator opens and voila! It works! You've

hardly done anything, and used no code, simply having shifted, dragged, and

connected a few items, and you now have a running app! Clicking the button flips

the view and shows a blank view, with a navigation bar at the top named “Root,”

as depicted in Figure 7–21. Beautiful!

Phase II: Setting Up the View Controllers
Of course, you want to make this app do something more interesting than what you now
have. Remember, in this evolving app you have three types of human—Men, Women
and Geeks—and they can all potentially evolve into Über Geeks. This means that you
need to have three views connected directly to your Navigation Controller. So, before
you begin to drag three view controllers onto the storyboard, let’s make sure:

� That you can see everything—enough for three horizontally placed
UIViewControllers.

� That your alignment on the grid can be kept so that your connection
lines don’t get silly looking later on, and therefore harder to follow.

CHAPTER 7: Storyboards 277

Figure 7–22. Zoom out and drag a new view controller onto the storyboard.

22. So, let's drop three more view controllers into the storyboard, to the right of the

Root View Controller. Another way to do this is to drop one and then, while

holding the option key, drag the first one to another position, which makes a

copy. This is a personal preference, but it sure makes you look like a

supercalifragilistic geek if you can do it. Anthony does a great job of this in the

video seen here: bit.ly/oMp984. Try to get your screen looking like the one in

Figure 7–22, which shows the first of the three UIViewControllers being dragged

onto the storyboard. Remember, if you're having trouble with the zoom, just click

the equal button in the zoom control area so that you can add other stuff to the

individual controllers.

CHAPTER 7: Storyboards 278

Figure 7–23. Your storyboard after all three view controllers are placed onto the storyboard.

23. As shown in Figure 7–23, this is how your screen should look after you have

dragged all three view controllers onto your storyboard. Note that they are

aligned, spaced equally apart, and locked into the grid.

NOTE: Objects not sticking? It will get frustrating if you continually try to drag objects to a view

and they never stick. So, be sure you return to the normal zoom level.

CHAPTER 7: Storyboards 279

Figure 7–24. Add a UIImageView.

24. Looking into the immediate future, you still need to place four images: one image

goes into your Root, and three images (representing Man, Woman, and Geek) are

placed onto the three UIViewControllers you just created. I should not have to

remind you that if you want to have an image appear on your app's view, you

need to park those pictures on UIImageViews. For now, though, let’s focus on the

Root, where you need an image and buttons for going to the three images. Drag

an Image View onto your Root, as shown in in Figure 7–24.

Figure 7–25. Set the image in the Attributes Panel.

CHAPTER 7: Storyboards 280

25. You now need to choose the NavControll.png image I created, which is now

located and selected from the Attributes Panel, as illustrated in Figure 7–25.

Again, you can select any image you want. But, before you spend too much time

creating your own image, keep the following note in mind.

NOTE: Remember that in the months to come, as you use storyboarding to create your apps, you
will not have an image here at all. Instead, you will have code representing a picker, a table, or a
level of a game, to name a few examples. For now, just use my image, but keep in mind that you

will later use greater things at this juncture of storyboarding.

Figure 7–26. Drag a UIButtonView to the navigation controller and duplicate it.

26. As shown in Figure 7–26, add a new UIButtonView to the view. You can use each

button's activation to move to another view. You can either drag three buttons, by

repeating the process three times, or practice using the option-drag technique

you tried once already. So, option-drag from the first button you have placed and

duplicate it twice, as you need three, and these will now only need relabeling.

Name these buttons “Male,” “Female,” and “Geek,” in descending order, and

resize them as you see fit.

CHAPTER 7: Storyboards 281

Figure 7–27. Create more segues from each button to the three view controllers.

27. You need to create segues from each of your three buttons to their associated

view controllers. So, just as before, control-drag from each button to another view

controller in order to create a segue link for each button. I connected “Male” to

the top, “Female” to the bottom, and “Geek” to the center, as it will make the link

lines look nice and organized. This is illustrated in Figure 7–27.

Figure 7–28. Connect to performSegueWithIdentifier:sender:.

CHAPTER 7: Storyboards 282

28. Just as you did in 7–15, when you drop the control drag from the Male button to

the Male view controller, you will get an option to select either modal, push, or

custom, where you will leave it as the default, or you will see an option for

performSegueWithIdentifier:sender: that holds all the code needed to connect

these two items appropriately using storyboarding. This is illustrated in Figure 7–

28.

Figure 7–29. Completed segue going to Male and segue to Geek in progress.

29. Figure 7-29 shows the completed segue that connects the Male button to the

Male view controller. Notice that I have placed the Geek's view controller in the

middle, so that you can extend beyond in a later stage of this app. This illustrates

how you may have one pattern or order for the user of your app, and another

order of view controllers on your storyboard. You will also find, I have no doubt,

that until you get a feel for how the segues show their visual connectivity, it will

take a while to make them look as elegant as those illustrated in Figure 7–29.

Don’t get frustrated, it just takes a little practice to learn how far out to place the

view controllers and how to make sure your grid alignment has symmetry

between all the objects.

CHAPTER 7: Storyboards 283

Figure 7–30. Last segue, from the Female’s button to its view controller.

30. OK, for this last connection, all I will say is that you should create a segue from

your Female button to its view controller. Figure 7–30 shows the first portion of

this step, but there are steps I am not repeating.

Figure 7–31. Zoom out and arrange the views.

CHAPTER 7: Storyboards 284

31. Initially, I did not think I would have to spend much time on arranging the

objects/views on the storyboard. However, after having some difficulty myself,

and then seeing the wonderful spaghetti messes that some of my students came

up with, I've decided to spend a little time coming up with some basic principles,

that if adhered to will prevent a chaotic and tangled mess. Zoom out, as I have,

and then move your objects around accordingly as you follow the three protocols

I've developed:

� Mutual Exclusivity: I've already mentioned the first tip, which is to
keep the order of your buttons mutually exclusive from the order of
your views. The buttons on the Navigation Controller go Male,
Female, and then Geek. Maintaining that order on the storyboard
would create problems, as it would violate some of the principles I
will mention below.

� Maintain Initial Momentum: If, for example, on the Woman view, at
the bottom of Figure 7–31, you have a fan of 10 segues to 10 views
that were all void of segues to the Geek branch, then keep those
Woman-based segues going downward.

� Looking at Figure 7–32, one can see a perfect example of how
NOT to maintain initial momentum. Not only are the segue
connections hidden, but they also overlap and disrupt the ability
to follow where the segues start and end.

� Minimize Segue Connection Angles: This is easier explained when
first seeing it visually: look at the Male and Female segue
connections from the Navigation Controller in Figure 7–31. Notice
how they first slope back and then slope forward, as compared to
the less angular connections from the Navigation Controller to the
same two Male and Female views depicted in Figure 7–32 and
onward. An easy way to adhere to this protocol is, once segue is
connected, to move the object it is connected to horizontally and
vertically, until the segue connection is almost perfectly horizontal or
vertical.

CHAPTER 7: Storyboards 285

Figure 7–32. Oops! Violation of the second principle of “maintaining initial momentum” protocol.

32. You really need to be careful how you place your objects because the GUI can

make things look very odd, as illustrated in Figure 7–32, which demonstrates a

violation of the protocol of "maintaining initial momentum." However, note that

because you moved the Male and Female to the top and bottom, respectively,

you can see that you have adhered to the protocol of minimizing segue

connection angles.

CHAPTER 7: Storyboards 286

Figure 7–33. Move Geeks forward.

33. In order to comply with both the "maintain initial momentum" and the "minimize

segue connection angles" protocols, move the Geeks object forward, as shown in

Figure 7–33. Once the Geeks object is moved forward, you will be in adherence to

all three protocols.

CHAPTER 7: Storyboards 287

Phase III: Establishing View Controller Content

Figure 7–34. Add a UIImageView to the Male view.

34. Your next step will be to add images to your Male, Female, and Geek view

controllers. Let's start at the top and drag an Image View onto the Male view, as

shown in Figure 7–34.

Figure 7–35. Select the image to use for Male from the Attribute panel.

CHAPTER 7: Storyboards 288

35. Associate the man.png image with the Male controller by selecting it from the

Attributes Panel, as shown in Figure 7–35.

Figure 7–36. Add a UIImageView to the Geek view.

36. You now need to drag the UIImageView and associate an image with it—just as

you did with Male—two more times. So let's do it: drag a UIImageView onto the

Geek view, as shown in Figure 7–34.

NOTE: Notice how the little icons in the segue lines depict the type of segue that will be

performed.

CHAPTER 7: Storyboards 289

Figure 7–37. Select the image to use for Geek from the Attribute panel.

37. Associate the Geek.png image with the Geek controller by selecting it from the

Attributes Panel, as shown in Figure 7–35.

Figure 7–38. Add a UIImageView and select the image for Female.

38. Yup! You can do this one on your own now. Add an UIImageView and associate

the female.png with it. This is shown in Figure 7–38.

CHAPTER 7: Storyboards 290

Figure 7–39. Name the Female controller bar title.

39. Naming the controller bar titles in storyboarding actually instantiates connectivity

under the hood, and this eliminates the need for you to code some of these

segues. This is explained in more detail in Digging the Code but, for now, just

accept that applying names in a storyboard controller bar title is in essence a

"freebie" with code. Do this with your Male, Female, and Geek controller bar titles.

In Figure 7–39 you can see the default value of the Female controller changing to

"Female."

Figure 7–40. Name the Geek controller bar title.

CHAPTER 7: Storyboards 291

40. Figure 7–40 shows the Geek controller bar title being renamed.

Figure 7–41. Name the Male controller bar title.

41. Figure 7–41 shows the Male controller bar title being renamed.

Figure 7–42. Run it! Let’s see if it all works correctly.

42. Figure 7–42 shows how you perform a quick run to see if the segue connections

and the images are all working correctly.

CHAPTER 7: Storyboards 292

Figure 7–43. Yes, it works!

43. Figure 7–43 illustrates how the app, without any coding, is working beautifully. All

the images show not one state, but the transition between two states connected

by the segue. From the view controller on the very left-hand side, you see four

images. The top image shows the click from the Navigation controller to Male.

The next image, to the right, shows the click on the bar controller going back to

the Navigation Controller. The remaining two images show segue transitions from

the Navigation Controller to Female and Geek, respectively.

NOTE: Because you did not change the segue type, you have the push effect for each of the

three segue transitions created.

CHAPTER 7: Storyboards 293

Figure 7–44. Now let’s “Evolve.”

44. You are now getting to the fun portion of this app that makes students laugh out

loud in class. You understand that in this world there are Males and Females (for

the most part!). In your app, you are going to show the world that evolution is still

happening. You are going to show the world that both Males and Females can

still evolve to a higher level of consciousness, and that, of course, is the state of

being known as … yes, you got it … Geek! So you need to add a segue going

from your Male and Female state to Geek. Mmm, do you know how you should

do this? How about adding a "Button Bar Item" to both the Male and Female

views’ navigation bars and giving them the title “Evolve”? Then, after this, you can

segue from these "Evolve" buttons to Geek. OK! Start off by dragging a "Bar

Button Item" onto the Male, as shown in Figure 7–44. Once you have dropped

your second Bar Button Item onto the Female, there is an important thing I want

you to remember about Bar Button Icons. These buttons act just like regular

UIButtonViews, but they look different, and they are designed to go in only one

place, a navigation bar.

NOTE: Bar Button Items act just like regular UIButtonViews, but they look different and
are designed to go in only one place, a navigation bar.

CHAPTER 7: Storyboards 294

Figure 7–45. Rename the Female Bar Button Item.

45. As illustrated in Figure 7–45, rename the Bar Button Item you dragged onto the

Female as "Evolve."

Figure 7–46. Rename the Female Bar Button Item.

46. As illustrated in Figure 7–46, click on the Bar Button Item you dragged onto the

Male. Now name it "Evolve."

CHAPTER 7: Storyboards 295

Figure 7–47. Control-drag from the Male’s Evolve button to the Geek view controller.

47. You want to segue from the Evolve button to Geek. Click on the Male's Evolve

button and control-drag to the Geek's view controller. What you have here is a

new way to get a segue to another view. Note that I kept the transitions linear for

simplicity. They can have loops or be entirely circular. This is illustrated, exactly as

shown on the video, in Figure 7–47.

Figure 7–48. Completed connection from the Male’s Evolve button to the Geek object.

CHAPTER 7: Storyboards 296

48. Figure 7–48 illustrates the completed connection from the Male's Evolve button to

the Geek object. You may notice that, at this point, you improve a violation of the

third protocol, which is the "minimize segue connection angles" protocol. So go

ahead and move it to the right until you minimize the angles.

Figure 7–49. Segue from the Female’s Evolve button to the Geek Object.

49. Now that you have connected the Male's Evolve button to the Geek object, do the

same for the Female. This is illustrated in Figure 7–49.

Figure 7–50. Just in case you forgot, or thought I forgot… Mmm!

CHAPTER 7: Storyboards 297

50. Figure 7–50 reminds you that I am no longer telling you every single step. For the

last three segues, if you come up with the option of modal, push, or custom, leave

it as the default, or, as you did before, use the

performSegueWithIdentifier:sender: that holds all the code needed to connect

these two items appropriately using storyboarding. If you have been doing it on

your own and forgot that I was not telling you to do each of these steps, then

you're doing great. If you struggled a bit during the last three

performSegueWithIdentifier:sender: let me remind you that I am letting the

leash go a little and allowing you to think of things on your own. I have designed

the book so that, as you become more confident, you can simply look at the

figure comments and fly. OK, let's move on!

Figure 7–51. Complying with the third storyboard protocol.

51. Getting back to what was said in step 48, move the Geek object out and make it

comply with the third protocol. This is illustrated in Figure 7–51. After a while, you

will not think of protocols one, two, or three, and you'll simply find yourself doing

a little rearranging here and there until you have a mouth-watering symmetrical

layout!

CHAPTER 7: Storyboards 298

Figure 7–52. One last UIViewController!

52. Now that you've been living in the geek world for a few chapters, you've probably

caught on to the fact that geeks know something of which normal people are

completely ignorant. Yup! There is an even higher state of humankind than a geek!

These special geeks, who evolve into a higher state of consciousness, are called

Über Geeks. Über Geeks are very rare and can only be recognized by geeks. But

this will be illustrated in your app. So, you essentially need to add another state of

human evolution beyond that of Geek! You need to add one last

UIViewController, which will demonstrate how to gain programmatic access to

the controller and its data. This is illustrated in Figure 7–52.

CHAPTER 7: Storyboards 299

Figure 7–53. You can use a simple invisible button over your background imagery as a simple hack to avoid
spending time working on a fancy button.

53. As you know, only geeks know that there is a state of human consciousness that

is higher than a Geek. The next state up, Über Geek, is invisible. So you need to

make an invisible button that only geeks will know segues to the higher Über

Geek state of consciousness. Mmm, I can just hear you thinking, "How do we

make an invisible button?!" Well, it’s all part of being a geek. Normal humans even

think that the geek symbol is the "Power" symbol! Geeks know it's really the geek

symbol. There are also secret ways of doing things, like running the universe and

all computers and gaining access to all kinds of cool things via invisible secret

doors and gateways. Today you are evolved enough to learn how to make an

invisible button. Read this carefully, and make sure you do not let non-geeks read

this, please! As shown in Figure 7–53, drag a seemingly innocent, benign round

rectangular button onto your Geek object.

CHAPTER 7: Storyboards 300

Phase IV: Working on Closure and Coding
You’re into the final phase now, so let's finish the app.

Figure 7–54. Cover the entire Geek symbol, for starters.

54. As illustrated in Figure 7–54, once your button is placed on the Geek object,

expand the button so it covers the entire Geek symbol.

Figure 7–55. Make that button vanish into thin air!

CHAPTER 7: Storyboards 301

55. You want to make it invisible, so, as illustrated in Figure 7–55, set the button type

to Custom and the GUI will immediately default to making the button invisible,

though still clickable for geeks!

Figure 7–56. Control-drag from the invisible button to the next View Controller.

56. Now that you’ve made your invisible button, you need to make a segue to the

next transition. Click where you know your invisible button is, and then control-

drag over to the new view controller, as illustrated in Figure 7–56.

Figure 7–57. This time, let’s add a Web View to the view.

CHAPTER 7: Storyboards 302

57. For this last state, you will, for learning purposes, have a little more than an image.

Let's insert a URL. To insert a URL, drag a Web View into the view. I go deeper

into the additional bells and whistles associated with UIWebView in the Digging the

Code section, but for now, drag a default UIWebView into the Über Geek's View

Controller. This is illustrated in figures 7–57 and 7–58.

Figure 7–58. Placement of the Web View.

58. Figure 7–58 illustrates how you place the Web View into the Über Geek's View

Controller.

NOTE: I always make the links first to avoid resizing things inside my views when the navigation

bar is added to the new view.

CHAPTER 7: Storyboards 303

Figure 7–59. Create a new class.

59. Recall how I said that in this example you will use images rather than code. Well,

that was true for everything you’ve done so far, but you need to see, at least

once, how to insert code behind one of these states. This is the reason I've

chosen a very simple URL with a couple of lines of code, which will at least

connect a few synapses in your brain about how to add code. So, for this new

Web View, you are going to create a new class, which you’ll connect to this last

view, and access some data in the view controller programmatically. Right-click

(or control click) the main directory in the project and select New File, as shown in

Figure 7–59. If you can do this on your own, then skip to step 61 and Figure 7–61.

If you need a little guidance, then continue to the next step.

CHAPTER 7: Storyboards 304

Figure 7–60. Select “New File”

60. Use your keyboard shortcut �N, or select New File, as illustrated in Figure 7–60.

Figure 7–61. Select a UIViewController subclass.

61. Select a UIViewController subclass, as shown in Figure 7–61. From a technical

standpoint, one can say that this corresponds to the same type as the object in

the GUI builder.

CHAPTER 7: Storyboards 305

Figure 7–62. Click Next.

62. As shown in Figure 7–62, click Next.

Figure 7–63. Name the new class ÜberView.

63. As shown in Figure 7–63, let's name the new class ÜberView, and click Save.

CHAPTER 7: Storyboards 306

Figure 7–64. Bring up the Assistant.

64. Bring up the Assistant so that you can see the storyboard and the header files at

the same time, as shown in Figure 7–64.

Figure 7–65. Bring up the storyboard file in the main editor.

65. Click the storyboard file again to bring it up in the main editor, as this will make

the associated headers appear in the right editor, as shown in Figure 7–65.

CHAPTER 7: Storyboards 307

Figure 7–66. Select the appropriate View Controller.

66. Unlike in previous apps, things are a little more complex now, so you need to help

the Assistant bring up the correct view. In order to tell the Assistant Editor what to

bring up, simply select the view controller that holds your Web View. This is

illustrated in Figure 7–66. Notice, in the column of View Controllers, they are

ordered according to the order of creation. You can see your Male, Female, and

Geek view controllers amongst the others you made, and then down at the

bottom is the one you just made, called "View Controller Scene" because you

have yet to name it. This is the view controller you want.

CHAPTER 7: Storyboards 308

Figure 7–67. Set the class of your view controller.

67. You now need to set the class of this new view controller to ÜberView in the

Attributes Panel, as shown in Figure 7–67.

Figure 7–68. Select the ÜberView.h file.

68. You need to create UIOutlets for your URL, so you need to have the Assistant

open the ÜberView.h file. You need to explain to the Assistant that this is what you

need because the Assistant Editor has more than one choice for what you might

want to edit. Furthermore, when things get a little complex, as they are here, it usually

gets it wrong, so you need to select the header file, as shown in Figure 7–68.

CHAPTER 7: Storyboards 309

Figure 7–69. Control-drag to your header file.

69. Now that you've set up your Assistant correctly, simply control-drag from your

UIWebView over the header file and drop it under Überview's @interface to let

Xcode do its work, as shown in Figure 7–69.

Figure 7–70. Name your Outlet.

CHAPTER 7: Storyboards 310

70. Of course, you need to keep it as an Outlet, meaning that all you need to do is

give it a name. You can name it anything you please, but if you want to check

your code against mine, then I suggest you name it what I named it, webView, as

shown in Figure 7–70.

Figure 7–71. Open the implementation file.

71. When you insert code into a state such as this, you will probably do a little more

than use a URL. You will need to bounce back and forth between your header and

implementation file, to say the least. So let's do it here, as we will want to add a

few bells. Back in the implementation file for the new controller class, you can

make your Web View do stuff. This is shown in Figure 7-71.

CHAPTER 7: Storyboards 311

Figure 7–72. Let’s code!

72. Uncomment the viewDidLoad method, as that is where you want to initiate your

web content loading code. See Figure 7–72.

Figure 7–73. Start with a NSURLRequest.

73. You need to delegate data flow for your URL request, so start with a

CHAPTER 7: Storyboards 312

NSURLRequest, which will automatically do this. See Digging the Code for

information on NSURLRequests. See Figure 7–73.

Figure 7–74. Add the URL to the request.

74. You need to add the URL address to the request and ask the webView object,

which you linked to with an Outlet, to load your request, as shown in Figure 7–74.

CHAPTER 7: Storyboards 313

Figure 7–75. IMPORTANT: The webView outlet linkage.

75. This is important. Somehow, students have a hard time getting this, so I've

illustrated this in both the video and the book. You need to associate the webView

outlet linkage in your header file with the conditions set forth in your

implementation file. I have illustrated this in Figure 7–75. Essentially, you want to

add the URL to the request and ask the UIWebView object, which you made an

IBOutlet for, to load your request. Below is the code for both the implementation

and header files. Study it, and make sure you understand the webView correlation

between the two files.

// Header:

#import <UIKit/UIKit.h>

@interface UberView : UIViewController {
 UIWebView *webView;
}

@property (nonatomic, strong) IBOutlet UIWebView *webView;

@end

//Implementation Files:
#import "UberView.h"

@implementation UberView
@synthesize webView;

CHAPTER 7: Storyboards 314

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil
{
 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
 if (self) {
 // Custom initialization
 }
 return self;
}

- (void)didReceiveMemoryWarning
{
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

#pragma mark - View lifecycle

/*
// Implement loadView to create a view hierarchy programmatically, without using a nib.
- (void)loadView
{
}
*/

// Implement viewDidLoad to do additional setup after loading the view, typically from a
nib.
- (void)viewDidLoad
{
 [super viewDidLoad];

 NSURLRequest* request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://www.synapsesoftware.net/about/two.html"]];
 [self.webView loadRequest:request];
}

- (void)viewDidUnload
{
 [self setWebView:nil];
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientatio
n
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

@end

CHAPTER 7: Storyboards 315

Figure 7–76. You want a proper Ü character ... but a Lion crossed your path!

76. As a geek, you likely want to have the proper “Ü” character in your last view

controller's navigation bar. Initially, in the video and in figures 7–76 through 7–85, I

explained exactly how to do this. It was a beautiful thing. But then something

happened along the way. Mac OS X Lion removed the need for this entirely; an

unexpected surprise. Now, you simply hold the u key until a little window appears,

and you make the selection you need. Similar variations are available for other

characters. You can explore these at your leisure. So, all these steps, between

figures 7–76 and 7–89, were going to be taken out, but then something else funny

happened. Many universities and community colleges had recently updated to

Mac Leopard and would not have a Lion license for another year, at least. So this

meant that there would be thousands of students left clueless as to how to create

the proper “Ü”. So, if you have Lion, hold the u key down until the correct letter

appears, and then go to Figure 7–86. If you do not have Lion, then follow along.

Start by opening the System Preferences app from the Apple menu, as shown in

Figure 7–76.

CHAPTER 7: Storyboards 316

Figure 7–77. Open the Language & Text preferences panel.

77. Open the Language & Text preferences panel in the top row, as shown in

Figure 7–77.

Figure 7–78. Select the Keyboard & Character Viewer.

78. In the Input Sources tab, select the Keyboard & Character Viewer from the source

list. Also, turn on the menu item, as shown near the bottom in Figure 7–78.

CHAPTER 7: Storyboards 317

Figure 7–79. Minimize this window to free up screen space.

79. Now, minimize this window to free up screen space. You’ll turn the menu item

back off later. See Figure 7–79.

Figure 7–80. Bring up the Character Viewer.

CHAPTER 7: Storyboards 318

80. Now, from the new icon that popped up in the menu bar, select Show Character

Viewer. A tiny keyboard shows up. As you type on your keyboard, the keys will be

highlighted, as shown in Figure 7–80.

Figure 7–81. You want the orange keys.

81. Holding the option key shows a plethora of symbols that you can type. The

orange keys are for special keys with marks above the characters in other

languages, such as “ö” or “ê”. Mmm, this is exactly what you want. See

Figure 7–81.

CHAPTER 7: Storyboards 319

Figure 7–82. Enter your Über Geek!

82. Back in Xcode, double-click the ÜberView’s title bar to edit it. Start by typing

option-u and watch the little keyboard below. Now you have two dots in a yellow

box. The next letter you type will have these marks above it. Type shift-u. Ta-da—

Ü. Finish it with “ber Geek,” as shown in Figure 7–83.

Figure 7–83. Voila! You now have a proper spelling for Über.

CHAPTER 7: Storyboards 320

83. Figure 7–83 shows the proper spelling of Über Geek.

Figure 7–84. Close the keyboard.

84. Figure 7–84 illustrates how you can close the keyboard just like any other window.

Figure 7–85. Hide the menu item.

85. As mentioned earlier, you may want to hide the menu item from the preference

panel that you minimized earlier, as shown in Figure 7–85.

CHAPTER 7: Storyboards 321

Figure 7–86. Save it!

86. Let’s save everything and test it out, as shown in Figure 7–86.

Figure 7–87. Run it!

87. Figure 7–87 illustrates the final step—running it.

CHAPTER 7: Storyboards 322

Figure 7–88. Try to keep track in your head—as you can see, Anthony lost his head, and then found another, and
then realized he had not lost his first head to begin with, and now he has two!

88. Well done!

Digging the Code
Yes, I know this has been quite exhausting. Students are completely worn out after this
class. I've tried to understand why this is so. When I tell them this is much easier than
programming, they look at me as if I've lost my head. With this in mind, I have decided
to do the next chapter as a recap, but using a business model so that two birds can be
killed with one stone, allowing you to practice what you learned in this chapter while
adding just enough of a twist that it allows business owners, and other innovative minds,
to see how to apply storyboarding to a financial model.

With this in mind, the Digging the Code section of this chapter will be kept as an
advanced reference, which you can come back to later when you try an advanced
version of storyboarding. So, either move straight on to Chapter 8 or just glance through
Digging the Code, without freaking out if you don’t absorb anything. Just let your brain
see what's here, zone out, take a break, and move on to the next chapter.

CHAPTER 7: Storyboards 323

Storyboard View Controllers, iOS4 and Programmatically
Creating Them.
The question I get asked the most by students, and folks on the web, is whether
storyboards will be compatible with iOS4. I am not sure why so many people want to
know this. Move forward, embrace new technology, and keep moving forward into new
territory. But the answer is NO! Storyboards never have been, and never will be,
compatible with iOS4 because they are based upon new runtime classes only available
in iOS5 and Lion. The next most popular question is whether one can program the
storyboard. Mmm, let's see, that is almost like saying, “OK, I have a car I can drive, but
can I get out and push it?”

I cannot understand why so many people want to change it, or try to get under the
hood. I could understand this if you had first mastered storyboarding and found huge
gaps that you want to get around. However, in this case, as I write this, storyboarding
has hardly been out very long, and people who have not done a single storyboarding
app want to know if they can change it. I am going to answer this question, though,
because by the time this book is released there is a chance that the latter will apply.

To answer this, you need to view storyboarding from the runtime point of view. The
transitions and segues between view controllers ought to be viewed in runtime. Here,
one will note that there is indeed a mechanism to instantiate segues programmatically.

� First, looking at how to program and tweak an existing segue
programmatically, you need to look at the code that exists between
the current view controller and the destination view controller. This is
where you will be able to trigger your segue programmatically, using
the performSegueWithIdentifier:sender: method of
UIViewController.

� Second, if you do not have a segue between your view controllers, but
you have defined your destination in your storyboard file, then you are
in luck. You can load the view controller programmatically with the
instantiateViewControllerWithIdentifier: method of UIStoryboard.
After you have done this, you can connect your view controller by
simply pushing it on a navigation stack. Warning—do not attempt to
access it through Interface Builder. I've seen some of my students’
Macs completely crash.

� Finally, if your storyboard is not connected to your destination view
controller, you can create it programmatically, however the author has
not explored this in depth in the Apple Dev site. It is there—I have no
idea why you would want to do this, but it is in the View Controller
Programming Guide for iOS.

CHAPTER 7: Storyboards 324

If you do want to understand storyboarding, it is important to remember two things:

� First, it inherits from, and conforms to, NSObject

� Second, its framework is from
/System/Library/Frameworks/UIKit.framework.

The important issue I want you to understand is that, right now, you can program
endlessly using what you already know about storyboarding. Keep in mind the basics,
and really understand these basics. Forget about programming storyboards
programmatically. Use it as it is, and understand the basics.

The first basic function of storyboards that you must know is that they all need to begin
with an initial view controller that represents the starting point of your app and connects
to your user interface. This will be the first screen your user sees. In your case, it was the
My Story View Controller. If you have a bug, you may want to check your transitions to
the initial view controller in a different storyboard file, which is the storyboard file
specified in the application’s Info.plist file, using the UIMainStoryboardFile key, which
is the initial view controller that is loaded and presented automatically when your
program begins.

In the Chapter Ahead
In Chapter 8, we will introduce you to the world of debugging. We will first take a broad
look at the debugging landscape. We will talk about some of the intimidating debugging
tools, what they mean, when you may use debugging in the future, and most importantly
how you can debug now using a very simple tool.

You will learn how to find a bug in code you wrote in a previous chapter. But more
importantly you will embrace the art of debugging rather than view it as an endless,
hopeless, bottomless pit.

Onward to the bugs that await us in the next chapter!

325

 Chapter

Debugging
As you begin the eighth chapter, you’ll start operating at a higher level. You may notice
that in this chapter I use a different approach to teach you about debugging. In order for
you to understand why this is an important chapter, I want you to consider the road that
led me to presenting this chapter and its exercises.

So, what's the beef with debugging?

In 1988, at the University of Montana in Bozeman, I found myself in my first computer
science class. It was fun getting out of the Electrical Engineering building every now and
again to dabble around in software. We'd rush over—sometimes in bitter, minus 20-
degree weather and blinding snow—to get to the Computer Science building across the
quad. During my class in Pascal, an old language we used to learn with FORTRAN in
order to get to the C Programming Language (which was a categorical imperative for all
the geeks at Bozeman), something amazing happened.

I was trying to compile an in-class exercise. But every time I tried to compile my code
that day, errors would appear in those glowing green numbers on the black screen.
Back in those days, there was no indication of how many errors had occurred, or what
or where they could be. It only said, “ERROR: FAILED TO COMPILE.” I could not fix it,
and suddenly my love for computer science began to plummet at a precipitous rate.
Upon seeing how upset I was, the TA immediately went to the front of the class, and in a
loud, piercing voice that got everyone’s attention, announced:

Listen, class. I don't want to see y'all getting weird and upset like Rory
over there. Your code will NEVER COMPILE THE FIRST TIME!! Do you
hearhhhh me? Your code will NEVER compile the first time, so just get
over it!

I'll never forget that—especially now, as I see so many young computer science and
engineering students drop out of computer science in their freshman year, right at the
point that debugging and arrays hit them.

I also remember something my uncle told me when I was just a kid in Durban, South
Africa, my place of birth. He was teaching me to surf in the huge, treacherous waves,

8

CHAPTER 8: Debugging 326

and he said that if I wanted to handle the ten- to twenty-foot surf, first I had to learn how
to “wipe out.”

Rory... you WILL wipe out. You WILL be held under the water for 15 to
20 seconds, so it is imperative that you learn how to survive a huge
wipe. That way, you'll be fearless out there!

Wow! I could not believe it took me years to associate these two analogous situations
and their lessons. After that, I started making my students go back to code that they
knew they could handle and having them program mistakes into it. Then, I’d have them
give it to a partner, and guide one another as each debugged the other’s code. Over the
years, debugging tools have evolved. In fact, debugging tools themselves have become
very complex and intimidating to students. With this in mind, I have created a segue for
you into learning to love debugging and feeling inspired to learn more complex
debugging tools. You are at a stage where you are going to write more code than you
ever have before. You WILL get errors, and I want you to be able to handle these tough
times. This is why I am going to teach you the first lesson of crashing and burning.

NOTE: You WILL crash. Let’s learn how to crash quickly, survive, and get back to flying!

Xcode’s Debugging Landscape
When you look at the debugging landscape, you will see a simple tool standing alone
among a bunch of complex-looking debugging programs. In this chapter, I am going to
use the simple debugging tool to teach you how to find a bug in the code you have
written. In the section entitled “Digging the Code,” I will elaborate on the more difficult
but very much stronger debugging tools—I’ll essentially bring them to your attention and
introduce you to how they work, when to use them, and how to learn more about them
when you reach a point in coding that is outside the domain of this book.

Xcode's Tools
Before you get started, I want to talk about some of the more advanced, sometimes
intimidating debugging tools that we will dismiss for now and check back on later.
Xcode has steadily been building up its debugging tools, and provides a very powerful
set of debugging environments you can use to find bugs and kill them in a way that will
not harm your code with careless extraction. In "Digging the Code," we'll take these
tools on a test drive with some images for reference. For now, I’ll just briefly introduce
them to you.

CHAPTER 8: Debugging 327

NOTE: For Xcode debugging tools to work, you must make sure that you install the iOS SDK
corresponding to the iOS release that you have running on your Mac. If they do not match,
debugging will not work. For example, if you have a device running iOS 4.2, but you do not have

the corresponding SDK installed on your computer—you will not be able to debug.

Xcode's Tools: Text Editor
The first tool is the text editor that gives you the ability to debug code directly within the
lines, as you may have noticed when your code does not compile and all those little red
exclamation signs pop up all over it! Text editor allows you to add and set breakpoints;
keep tabs on your “call stack”; access the value of variables by hovering the mouse
pointer over them; execute just a single line of code; and step into, out of, or over
function or method calls.

Xcode's Tools: Debugger Window
The second tool that comes along with Xcode is called the “debugger window.” When
you start to work with code that is really intense, or just lots of it, you will become
friends with the debugger window, because not only does it provide all the same
debugging features as the text editor using a traditional interface, but it allows you to
see your “call stack” and the variables associated with it. Suppose you had a stack
called “dog,” and your variables associated with that stack were breed, sex, age, and
name. If upon looking at your stack, you only saw sex, age, and name, then you'd
immediately know that breed was missing. This is a simple example analogous to saying
that what NASA does is shoot big pieces of metal into space, sometimes with people in
them. The debugger window is a cool, powerful instrument you may come to really
appreciate one day.

Xcode's Tools: GDB Console
The third tool, called the GDB console, comes wrapped in the Xcode IDE. It is a text-
based GNU debugger with more functionality than the debugger window and a decent
GUI that makes it easier to step through your code. In my experience, when you see
coders on the GDB console flying through iterations at lightning speed, it usually means
that they have been on GDB for a while. That, in turn, means that the coder is either at
the Über-Geek or Superkalifragilistic-Geek level!

Xcode's Tools: Console Output and Device Logs
The fourth debugging environment provided in Xcode simply interacts with stuff that you
already know goes on. I'm sure you’ve seen, when apps and programs sometimes
crash, that the iOS on your Mac produces log entries to your console that indicate drill-
down code when it crashes. You can produce console messages in your iOS

CHAPTER 8: Debugging 328

applications, too. Coders will often go to the NSLog function, because these console
logs helps coders debug at a lower level. The key phrase here is “lower level.” If you
wind up at an interview, they may ask you what you use to debug when you need to
look for a bug that apparently exists at a lower level. You’re answer for this should be:
“Of course, we all use the console output and device logs to see the lower level code via
the NSLog functionality.” Oh, yeah—they will love you!

Xcode's Tools: NSZombie
The fifth debugging tool provided by Xcode works specifically for memory leaks. Before
Xcode 4.2 we had to personally monitor what portions of our code were using our set
amount of memory. When we were finished with one piece of code, we had to release
the memory from that method or class so it could be used by the next section of code
being executed. With this said, though, it’s important to know when to enable
NSZombie on a section of code.

Turning on NSZombieEnabled allows us to view logs that tell us the status of our
memory—particularly our deallocated memory, as indicated below.

2011-09-10 20:01:12.8813 storyboard[2019:f2c] *** -[GSFont ascender]: message sent to
deallocated instance 0x127910

Xcode's Tools: Shark
The sixth debugging tool is quite popular and, like NSZombie, is specifically aimed at
debugging memory leaks. The difference is that it’s relatively fun to play with the user-
friendly shark GUI. Shark gives us access to system-level events like interrupts and
virtual memory. You can see how each thread talks to other threads in your code, and if
memory is dropped, leaked, or causes a “bottleneck” during that interaction. Shark is a
tool you will likely see in your work with Xcode, so remember that name for now.

Xcode's Tools: Unit Testing
The seventh and last tool provided by Xcode is what we call “unit testing.” Unit tests
comprise the platform or foundation of how an efficient project manager sets everything
up on a huge coding project so that a suite of tests will run on each line of code as it is
written to make sure everything works as expected.

If a project manager does not use unit testing and finds that his or her 30-person,
40,000-line Xcode project is not working... it’s almost too late to start debugging. Unit
testing is typically used by larger, well run Xcode companies. Just know that if you get
an interview with such a company, you should spend some time practicing unit testing
examples: at the interview they WILL ask you if you have unit testing experience, and it
will be awesome to say “Yes, dude! I'm all over unit testing.” Hmm, that may not be the
best response, but you get the idea. Unit testing is way out of the scope of this book,
but I will introduce it to you later, just so you can say you've all met each other!

CHAPTER 8: Debugging 329

Our Tool: FileMerge.app
Remember “learning to wipe out”? Well, FileMerge.app is what we will use to do this. I
used to think that giving my students and readers of my books access to the code of the
apps presented in this book would be all they needed to figure out what was wrong with
their code. However, I was wrong: simply downloading the code from my website to
their desktops was not enough to solve all of their problems. Being the geek that I am, I
love to keep track of things, and I can tell you that over the last year I have sent more
than 6,070 email responses containing a link to my source code to newbie geeks. Out of
the 6,070 people that received this email and downloaded my code, 4,208 of them
STILL could not debug their code! Clearly, I was doing something wrong, and I needed
to revise my pedagogy. SO, I did.

I present my answer in this chapter, which shows you how to download my source
code, use FileMerge.app to debug your code against my code, and find your mistake—
in other words, it teaches you how to wipe out (or in computer terms, “crash”).

In Chapter 7, I introduced storyboarding. It was fun dragging objects around the canvas
and connecting them with segues. Now, you will start putting a lot of code behind those
objects to make them shinier and more intelligent. And I do mean a LOT of code. You
need to know how to debug using FileMerge.app, comparing my code against yours.
This is a lesson I insist you take, even though you may think you're too cool for it.

switch-mistake: A Lesson in the Art of Crashing
You are going to revisit Chapter 6's switch code, but this time you will not code the
entire app, and most importantly you will force an error. Then, you will download my
code from the website, open up FileMerge.app, and debug your code. Now, you may
ask, why don't we just do switches in Chapter 6 and then pop back here and do the
debugging? The answer is threefold:

� First, as I said, you won’t be using all the code you wrote in Chapter
6's switches, and you need to do it in a different order. So, you need
to do it again from scratch, following step by step in this chapter.

� Second, the naming of the code will be different. I want you to have a
different name on the code you write in this chapter so your bug does
not pop up. I'll explain this later.

� Third, I just want you to practice redoing an app with which you
already feel comfortable. This way, your error and the debugging
becomes your primary focus.

CHAPTER 8: Debugging 330

Starting the Project
So, the first thing we need to do is clear off your desktop and download the source code
and the images from my website.

� Download the images here: bit.ly/raKxPe.

NOTE: I provide only minimal instructions on each step leading up to the point where you create

your bug. This is because you’ve already done this exercise, and now I'm taking the kid gloves

off.

Figure 8–1. A clean desktop with the three images downloaded, ready to open a new project

1. With a clean desktop containing only the three images downloaded, open a new

project by using the keyboard shortcut ��N. When you see the New Project

wizard as depicted in Figure 8–1, you will want to click the Tabbed Application

template.

CHAPTER 8: Debugging 331

 Figure 8–2. Name it “switch-mistake” and click “Next”.

2. As shown in Figure 8–2, name it “switch-mistake,” target it for the iPhone,

deselect the Use Storyboard option, and click Next or hit � on your keyboard.

CHAPTER 8: Debugging 332

Figure 8–3. Drag the icon to the App Icon box.

3. Drag the application icon, icon.png, from your desktop to the App Icon box, as

shown in Figure 8–3.

CHAPTER 8: Debugging 333

Figure 8–4. App Icon properly dropped into the box

4. Figure 8–4 shows the icon correctly dropped into the App Icon box. Note that you

usually determine which image will be your icon by using the plist. Here, you are

using the drag and drop method for the second time.

CHAPTER 8: Debugging 334

Creating the Views
Now that you have an icon, you can begin building the app.

Figure 8–5. Drag and drop the remaining two images into the project.

5. Drag and drop the two remaining images from your desktop into the Supporting
Files folder, as illustrated in Figure 8–5.

CHAPTER 8: Debugging 335

Figure 8–6. Create groups for added folders and add the icon image to your targets.

6. After you have dropped all your images into the project resources folder, make

sure to check your dialog box prompt. Make sure that Create groups for any
added folders is checked and that the project is selected under Add to targets.

This is shown in Figure 8–6.

CHAPTER 8: Debugging 336

Figure 8–7. Open FirstViewController.xib.

7. Open FirstViewController.xib, as shown in Figure 8–7.

CHAPTER 8: Debugging 337

Figure 8–8. Open the Utilities Inspector.

8. You need to grab stuff from the library, so open up the Utilities Inspector, as

shown in Figure 8–8.

Figure 8–9. Delete the default labels.

CHAPTER 8: Debugging 338

9. You need to clear out the First View to add your content, so delete the First View

label and the label with the text that starts: Loaded by the first view.... Figure 8–8

shows the latter label being deleted. The First View label has already been deleted

in Figure 8–9.

Figure 8–10. Drag a UIImageView onto your view design area.

10. With your Utilities panel open, drag a UIImageView onto your view design area, as

shown in Figure 8–10.

CHAPTER 8: Debugging 339

Figure 8–11. Associate PIC01.png with the First View.

11. With the first UIImageView selected, go to the image drop-down menu in the

Attributes dialog in your Utilities panel, as indicated in Figure 8–11. Select

PIC01.png and associate it with your first UIImageView.

Figure 8–12. Select “Bottom” for the View Mode.

CHAPTER 8: Debugging 340

12. As shown in Figure 8–12, now click Mode and select “Bottom” from the drop-

down menu.

Figure 8–13. Open the Second View Controller.

13. Open the Second View Controller, as illustrated in Figure 8–13.

CHAPTER 8: Debugging 341

Figure 8–14. Delete the Second View’s labels.

14. Figure 8–14 shows deleting the labels in the Second View, just as you did in the

First View.

Figure 8–15. Close the Utilities panel.

15. Close the Utilities panel, as shown in Figure 8–15.

CHAPTER 8: Debugging 342

Figure 8–16. Open the Assistant.

16. Open the Assistant, as illustrated in Figure 8–16.

Figure 8–17. Set up an outlet and call it “myImage.”

CHAPTER 8: Debugging 343

17. Control-drag onto the SecondViewController header file and set up an outlet

called “myImage,” as shown in Figure 8–17.

Creating the Bug
You need to enter code for the outlet you created and introduce the bug. Then you can
debug your app.

Figure 8–18. Open SecondViewController’s implementation file.

18. Open the Implementation file, as shown in Figure 8–18.

CHAPTER 8: Debugging 344

Figure 8–19. Click in your viewDidLoad method.

19. You’re going to make the First View load the image incorrectly. So, let’s code this

now. Go to the viewDidLoad method and click between the curly
brackets to start coding, as illustrated in Figure 8–19.

Once you open viewDidLoad, set the UIImage to PIC02 (recall that you already set the
First View to PIC01 in Interface Builder), you want to set the content, the image, to be
placed in scale to the bottom of the view. This is a mistake, of course, and functions as
the bug that you will track down later in the example. This error doesn’t exist in my app's
source code (and you didn’t insert it in Chapter 6), so we can use my app to track down
the problem by comparing the files.

This bug will not generate an error, but it will look “off” when you run it, just odd enough
to serve as a situation where you can efficiently find the bug you inserted and change it
to the correct code. The code inside viewDidLoad is as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [myImage setImage:[UIImage imageNamed:@"PIC02"]];
 [myImage setContentMode: UIViewContentModeScaleAspectFit;];
}

So, we will now pretend that “unbeknownst to you,” UIViewContentModeScaleAspectFit
is just going to make your life miserable. There will be shouting in the streets, children
will be separated from their mothers, people will stop calling you a geek, and you will go
to the forum at bit.ly/oLVwpY crying, “What happened to my code!?”

CHAPTER 8: Debugging 345

Just pretend, OK?

Figure 8–20. Let’s run it!

20. As depicted in Figure 8–20, when we run the app and view the First View, all is

well. But, then...

CHAPTER 8: Debugging 346

Figure 8–21. Uh-oh! We have a problem, Houston!

21. You have only ten minutes left to hand this assignment to Dr. Lewis. With the

Second View looking like this, you know your app will get a D. What will you do?

(See Figure 8–21.)

CHAPTER 8: Debugging 347

Comparing the Source Files
Now, you are going to look at the online code to see where you went wrong by
comparing your code with that of the online project.

Figure 8–22. Go to Dr. Lewis’s website with all the downloads.

22. To download the source code, go to bit.ly/oEQcu6. In the video, I kept my

browser minimized, so Figure 8–22 shows me maximizing my browser.

CHAPTER 8: Debugging 348

Figure 8–23. Download the source code here.

23. As shown in Figure 8–23, after going to bit.ly/oEQcu6, click the Xcode icon to

download the source code to your desktop. What you are thinking here is that if

you compare your code to the source code, you can find and fix the bug. Simple

enough with this file, but what if you were trying to find the problem in 30,000

lines of source code? You would not be able to just eyeball it to find the error.

Let's see how to get around that problem.

CHAPTER 8: Debugging 349

Figure 8–24. Unzip the source code.

24. As shown in Figure 8–24, when the source code arrives, preferably to your

desktop, unzip it and open the folder.

Figure 8–25. Open the folder so you can see the SecondViewController.m file.

CHAPTER 8: Debugging 350

25. After you have unzipped the folder containing the source code, you just want to

keep it there for now. Make sure you have your eye on the target, which is the

SecondViewController.m file, as illustrated in Figure 8–25.

Figure 8–26. Open a new Finder window.

26. As shown in Figure 8–26, you need to locate FileMerge.app. Press �N to open a

new window, because you need to keep the other folder containing the source

code open. That way, you will be able to drag that SecondViewController.m file

into FileMerge.app when you locate it inside this window.

CHAPTER 8: Debugging 351

Figure 8–27. Go to the Developer tool.

27. You need to go to the Developer tool to start navigating your way to

FileMerge.app, so hit ��G, enter “/Developer” in the pop up, and hit �� as

shown in Figure 8–27.

Figure 8–28. Navigate to FileMerge.app.

CHAPTER 8: Debugging 352

28. Once in the Developer folder, navigate to Applications � Utilities and open

FileMerge.app, as shown in Figure 8–28.

Figure 8–29. FileMerge.app opened

29. FileMerge.app does not have the spark and flare that one might have

imagined. It seems benign, but it does the job. Essentially, you want to drag

your SecondViewController.m file location into the Left panel, and then the

correct source code into the Right panel. The opened FileMerge.app is seen in

Figure 8–29.

CHAPTER 8: Debugging 353

Figure 8–30. Open your folder containing the Second View Controller.

30. Figure 8–30 illustrates the opened folder containing your SecondViewController

file. You need to drag your code into FileMerge, so open the folder containing

your code. Select the SecondViewController file and drag it into FileMerge.app.

Figure 8–31. Dragging your SecondViewController.m into the Left panel of FileMerge.app

31. Figure 8–31 shows the SecondViewController.m being dragged into the Left panel

of FileMerge.app. Do it.

CHAPTER 8: Debugging 354

Figure 8–32. SecondViewController.m properly located in the Left panel

32. As shown in Figure 8–32, when you drag SecondViewController.m into the Left

panel, it pulls out the address. Now, you need to pull the correct source code into

the Right panel.

Figure 8–33. Start dragging the correct source code into FileMerge.app.

CHAPTER 8: Debugging 355

33. Now, drag the correct source code from the unzipped folder that I made you keep

open into FileMerge.app. This is shown in Figure 8–33.

Figure 8–34. Compare.

34. Figure 8–34 shows both files correctly located in FileMerge.app. Click Compare

or hit ��to get it working.

Figure 8–35. FileMerge.app doing its thing.

CHAPTER 8: Debugging 356

35. As you can see in Figure 8–35, once FileMerge opens there are some lines of text

that clearly will be different, such as your name and my name, your date and my

date, and so on. However, down in the viewDidLoad method, you can see where

you made the mistake. It should be UIViewContentModeBottom instead of

UIViewContentModeScaleAspectFit. So, let’s change it!

Figure 8–36. All is well!

36. Once you have gone back into Xcode and correctly changed

UIViewContentModeScaleAspectFit to UIViewContentModeBottom, your app will run

perfectly, as shown in Figure 8–36.

Digging the Code
The most-used tool in Xcode, by far, is setting breakpoints in the Xcode editor. Running
your application and then seeing the state of your code at each breakpoint can illustrate
if a variable is being recognized, what it’s returning, and so forth. Breakpoints are very
powerful. To add a breakpoint at a line, double-click in the gutter of your code (located
to the left of that line), hold it, and click the “+” button. Check the Continue checkbox if
you don't want the debugger to actually stop code execution at that breakpoint.
Teaching breakpoints is described in many more advanced Apress Xcode books, such
as Pro iOS 5 Tools, shown in Figure 8–37.

CHAPTER 8: Debugging 357

Figure 8–37. Pro iOS 5 Tools

Pro iOS 5 Tools goes in depth into the subjects of the following review, such as the
Debugger Console, LLVM, and Organize. For now though, here is a brief overview that
glosses over more advanced tools that are not in the domain of this Absolute
Beginner book.

Debugger Console
The next most important and widely used coder’s tool is the Debugger Console window.
It is an efficient way for coders to communicate with the GDB. You can go to the
console window in Xcode from the Run menu by pressing ��R. You can also choose
Edit Active Scheme from the Scheme pop-up to select either the LLVM compiler or the
GDB under Run item in the left column. I prefer the LLVM compiler, because that's
where all the new Fix-it red flags do their job (see the next section). For most of the code
in this book, the LLVM will be adequate. Nonetheless, if you still would like to use GDB,
then go to the Info panel and choose the debugger you want to use from the Debugger
pop-up menu. To view output and type commands for GDB, first make sure that your
output window is open, and then make sure the middle bottom of the View group is
enabled.

Fix-it
Assuming that you will stay with the LLVM compiler, Fix-it scans your source text as you
type and marks syntax errors with a red underscore and a red flag in your gutter. You
can read the Fix-it message by clicking the symbol, and it will provide you with the
reasons why it thinks you have a possible syntax error. Often, on smaller errors, Fix-it
repairs your code automatically.

CHAPTER 8: Debugging 358

Documentation
The next tool that I see being widely used because of its easy access is Xcode's
documentation. All you do is open the Organizer window (��2), click the
Documentation button located in the toolbar, and then click the jump bar to navigate up
and down. See Figure 8–38.

Figure 8–38. Organizer

Xcode 4.2 also provides online help for the Xcode IDE. This can be accessed by clicking
on the disclosure triangle next to Xcode Help in the documentation navigator or by
choosing Help � Xcode Help. You will find that most of these online help documents come
along with a video. You will also want to know that many of the Xcode's help articles are
also available as contextual help, as explained at the Apple site here: bit.ly/oY2jG9.
What this means is that the help tutorials can be reached from the shortcut menus by
control-clicking any of the main UI areas in the workspace or Organizer window.

Quick Help in Xcode 4.2 and onward is more powerful than it ever was. At this stage, we
just plough through our tutorials, but you will find it useful as you evolve as a
programmer. Option-single-click to open Quick Help, as illustrated in Figure 8–39.

CHAPTER 8: Debugging 359

Figure 8–39. Quick Help

Static Analysis
Static analysis in Xcode 4.2 allows you to perform analysis on, debug, and edit your
code within the workspace window. Simply click the project you want to debug in your
project navigator and then choose Product � Analyze. The analyzer grinds through your
code, and then the navigator opens with a list of the issues it located. Blue rectangles
with arrows will point you to your bugs.

In the Chapter Ahead
In Chapter 9, you will experience learning to code an app for iPhone and iPad that
combines two potent iOS 5 tools: storyboarding and MapKits. It’s a simple app that has
massive teaching and learning curves behind it. The app you will build simply has a pin
drop on a previously disclosed longitudinal and latitudinal location. The important aspect
is linking up storyboarding and MapKits.

361

 Chapter

MapKit & Storyboarding
I have been looking forward to writing this chapter on the MapKit framework and
Storyboarding since I first conceived this book. This and the next two chapters will
represent the culmination of our work together. Our journey is almost over and it is fitting
that we finish with a bang. I am confident that integrating the MapKit framework,
Storyboarding, TableViews, and iTunes will not disappoint you. This is not a trivial
matter. Our journey over the last three chapters will be as follows: Chapter 9 will be
Storyboarding and the MapKit framework. Chapter 10 will be Storyboarding,
TableViews, and the MapKit framework. Finally, in Chapter 11, we will tackle
Storyboarding and the iTunes stores (the place where you will place your apps). We will
get more into Chapter 11 later, but suffice to say, I will show you how the most
compelling apps incorporate Storyboarding, the MapKit framework, TableViews, and the
Internet/iTunes store.

In this chapter, we will see that some of the coolest and most successful apps are
based on the MapKit framework. We will place this framework on top of the
Storyboarding platform and doing so will represent a tremendous accomplishment. The
major reason I saved these concepts for last is that the topics require some experience
to not overwhelm the student. Teaching this course to a lecture hall full of eager, and
mostly novice, programmers, I learned the hard way that when I succumbed to the
students’ enthusiasm and tried to teach MapKit midway through the semester, I
invariably led the entire class into a brick wall.

Even though MapKit provides us the means to write powerful and vivid apps, it also
demands that we be quite aware of and fully understand methods, classes, and
frameworks. Incorporating this application with Storyboarding further compounds this
challenge. Originally, the scope of this book didn’t include all of those concepts; but in
the end, there was no way I could write the book and leave out MapKit!

So, before we begin, we need to sit back and look at a few things. MapKit, as a toolbox, is
a challenging set of utilities and devices, but we will cover some of the basics and learn
how we can use them with Storyboarding to successfully and creatively navigate the
example in this chapter. We will first talk about frameworks and classes. Then, we will
see what MapKit can already do without us having to program anything at all. After that,
we will dig deeper to see what other programmers have done using MapKit and we will

9

CHAPTER 9: MapKit & Storyboarding 362

glean what we can from them. We've already looked at Storyboarding; but now we want
to add some truly innovative code. After honing our understanding of methods, and
once we have acquired a respectable grasp of frameworks, classes, and other Apple
goodies contained in MapKit, we’ll gently tackle the exercise.

In the latter half of the chapter, I will serve an extended dessert in the “Digging My
Students’ MapKit Code” section. Rather than finishing with an eclectic mix of technical
references, I will present three of my students’ efforts in MapKit–related projects. I am
hopeful that when we look at what these representative students were able to
accomplish very shortly after they passed my class, we will all feel even more inspired to
set our course for the next challenge.

My objective is to get us all to a place where we can say: I have programmed a basic
iPad MapKit app with Storyboarding, and I understand how to move forward with
confidence into the more advanced goal of coordinating Storyboarding, TableViews, and
the MapKit framework in Chapter 10.

A Little about Frameworks
When Steve Jobs was fired from Apple, he formed a business called NeXT. In the early
�90s, his company produced beautiful, black, streamlined computers that made me
drool with envy. A few of my professors owned a NeXT computer and I was aware of
their capabilities. The most profound aspect of this outfit was not that they cranked out
these black, streamlined boxes, but rather that they utilized a language called Objective–
C. Jobs had found that, even though it was difficult to program in this complex
language, the code it produced was able to “talk to” the microprocessor quite elegantly.
So, what does this have to do with MapKit?
What NeXT did was create frameworks of complex Objective–C code, which we can
regard much like the tools that a carpenter might have in his toolbox. When we use
MapKit, we are bringing into our own code a framework of map–related tools—just as a
carpenter may have one set of tools for cabinetry and another specially made set
specifically for making intricate furniture. These specialized tools will differ significantly
from the type of tools that a roofing carpenter might use.

To this end, we will bring two frameworks into Xcode that we have not used before. It
will be almost as if we had been learning techniques as a flooring and cabinetry
carpenter in Chapters 1–8; however, today we are going to the hardware store to get
outfitted for our next gig, which will be audio–video installations in walls and ceilings.
Therefore, before we continue on to the next program, we are going to have to go buy
two brand–new tools. One of our new tools, the CoreLocation framework, shows us
where we are geographically. The other tool, MapKit, enables us to interact with maps in
a number of different of ways.

As we know, the way users interact with the iPad and iPhone is completely unlike
anything ever seen before. Before the advent of these slick devices, 99% of all
interactions with computers were based upon the mouse and a keyboard. As we have
been learning from the examples we already programmed, we have used unique

CHAPTER 9: MapKit & Storyboarding 363

methods and classes to jump between screens and to sense when a user is pinching,
tapping, or scrolling on the screen. To this already formidable set of tools, we are now
going to add CoreLocation and MapKit frameworks.

Most of the programming we have explored up until now has been relatively transparent.
However, in this chapter, it won’t be quite so perceptible. We will have to really maintain
our concentration in order to keep track of and understand how MapKit knows where
we are on a map. We’ll examine how it follows our finger interactions and how it knows
where we are in terms of the various screens and views associated with maps.

One of the central areas of iPad/iPhone app development is event handling. Since this
section confused many of my previous students, I will consciously do my best to keep
us all focused on what we need to know from this area. If we get a firm grasp of the
concepts of frameworks and classes, we will not be burdened by being overly
concerned with event handling. We can get an idea of the scale of this topic by
considering that while part of our app is keeping track of interacting both with a map
and a GPS satellite, another portion of our code has to always be looking at when the
user is going to direct the program to a new event.

Important Things to Know
There are three important things to know about the foundation of Storyboard and map–
related applications in the iPad and iPhone arena. These two critical apps in Chapter 9 and
10 rely on four important tools: Storyboarding, MapKit, CoreLocation, and the
MKAnnotationView class reference. As I have already indicated, we are not going to involve
ourselves with how these sophisticated tools work so much as we are going to practice
the art of deciding when to reach for which tool in our newly expanded toolbox.

Among other things, these tools allow us to effortlessly create a beautiful flow of
technology with Storyboarding, display maps in our applications, use annotations, work
with Geocoding (which works with longitude and latitude), and interact with our location
(via CoreLocation).

When we want to interact effortlessly with Google Maps, we will use the Apple–provided
MapKit framework. When we want to obtain our location or do cool things using GPS–
satellite technology (with Google Maps)—we will use the CoreLocation framework. When
we want to put it all together and seamlessly integrate with our user—we will take all the
aforementioned technology and place it onto Storyboarding. Finally, when we want to
place pins on a map, create references, draw chevron marks, or insert an image of our
dog showing where he is on a map—we will call these annotations and, thus, use
MKAnnotationView.

Preinstalled MapKit Apps
In order to take maximum advantage of the new ideas presented in this chapter, and be
prepared to stretch and expand into a new level of creativity, we will first take a tour of
the existing apps, preinstalled on the iPad and iPhone. It is important that we become

CHAPTER 9: MapKit & Storyboarding 364

familiar with these so that we can more easily add bells and whistles to our own
creations—and that is on top of these ready–made “map apps,” as described at
Apple.com.

Find Yourself
Say we’re in an unfamiliar neighborhood looking for a nearby restaurant. With iPhone,
we can pinpoint our location on a map so we can figure out how to get there from where
we are. iPhone 4 finds our location quickly and accurately using a combination of GPS,
Wi–Fi, and cellular towers. As we move, iPhone automatically updates our location.
When we arrive, we can drop a pin to mark our location and share it with others via
email or MMS.

Figure 9–1. Find yourself—a powerful zooming map function on the iPhone/iPad.

Search for a location
We need a shot of espresso. Where’s the nearest cafe? iPhone with the MapKit
framework has the answer. Just type “coffee” in the search field within Maps and
suddenly nearby coffee houses appear on the map; all represented by pins. Searching
works with specific addresses and business names, too. When we find what we’re
looking for, we tap the pin to bring up more information, such as phone numbers, web
addresses, and more. The “pin” extracts all the annotations we programmed in our
MKAnnotationView.

CHAPTER 9: MapKit & Storyboarding 365

Figure 9–2. Search for a location—use this in conjunction with, or in lieu of, the visual map (with highlighted
route).

Change the view. See traffic
Maps on iPhone 4 look amazingly crisp and detailed on the high–resolution Retina
display. We can switch between map view, satellite view, and hybrid view. We can even
see a street view of a particular address. We can double–tap or pinch to zoom in and
out on a map. Maps on iPhone also provide us with live traffic information, as well as
indicating traffic speed along our route in easy–to–read green, yellow, and red highlights.

CHAPTER 9: MapKit & Storyboarding 366

Figure 9–3. Change the view and see traffic—shows the orientation with built–in compass (on Model 3GS)
directions that indicate which way we are looking.

We can forget printing out directions from our computer. With iPhone, we can view a list
of turn–by–turn directions or follow a highlighted map route and track our progress with
GPS. We can choose to see walking or driving directions, or even see what time the
next train or bus leaves with public transit directions. The Compass app works with the
built–in digital compass to tell us which direction our iPhone is facing. In addition, in the
Maps app, the compass rotates the onscreen map to match the direction we’re facing.

CHAPTER 9: MapKit & Storyboarding 367

Figure 9–4. Directions and seeing what direction we’re facing—one of the many possibilities when running
‘Maps’ on iPhone/iPad.

CHAPTER 9: MapKit & Storyboarding 368

Figure 9–5. FlightTrack uses the MapKit framework to track flights and then integrates with gate changes,
schedules, and the rest of the personal data on any given ticket.

CHAPTER 9: MapKit & Storyboarding 369

Cool and Popular MapKit Apps Inspire Us
A funny thing happened along the way to teaching MapKits and Storyboarding to my
students: Most thought they knew what MapKits were but actually, they had no idea
how awesome the MapKit framework really was. So, before we dive into this chapter,
we will take a few minutes to learn about the fantastic features of the MapKit framework.

CASE IN POINT: One of my former students recently started working at Apple on iOS 5. She did
exceptionally well in MapKits and, of all the departments within iOS 5 that she could have

worked in, they placed her in the MapKit framework. One of the first things she told me was how
huge this division was and how even though she loved MapKits—she had no idea that so many

teams with so many incredibly intelligent people were all working on one thing: MapKits!

I found that it really helped my students when, after showing them the prebuilt apps, we
spent some time reviewing some super–cool third–party MapKit apps—to inspire them
and get their brains storming. So, imagine you are sitting with us and taking this brief
tour as well. Here are 11 MapKit apps that caught my eye, some of which I use regularly.

� FlightTrack: This MapKit app lets us manage every aspect of our
domestic and international flights with real–time updates and beautiful,
zoomable maps. We can receive updates on gates, delays, and
cancellations so we can book an alternate flight. The app covers more
than 5000 airports and 1400 airlines. See Figure 9–5.

� Metro Paris Subway: Never get lost in the City of Light. Metro Paris
Subway is a comprehensive guide to traveling through Paris, including
official metro, RER, and bus maps and schedules. Complete with an
interactive map and route planner, Metro Paris Subway will have us
navigating like a real Parisian in no time. See Figure 9–6.

� MapMyRide: I use this MapKit app all the time. I simply turn it on and
start riding around on my bike. It tracks my speed, time, and mileage,
as well as the incline. It takes into account my age, gender, and body
weight; then it tells me how many calories I burned. (On a good day, I
can burn off two doughnuts!) The point is, this application calculates
all these things while I’m just riding along huffing and puffing! When I
get home, I can see the route on my computer. It does most of its
work by using and manipulating preinstalled MapKit apps.

� QuikMaps: This do–it–yourself map app allows you to doodle on the
map. It integrates with a number of places, including your website,
Google Earth, or even your GPS.

CHAPTER 9: MapKit & Storyboarding 370

� 360 Cities: The World In Virtual Reality: This shows 360–degree
panoramas of over 50 world cities and 6000 panoramas. It is the
perfect technology for real estate agents, tour guides, and
adventurers.

� Cool Maps: 7 Wonders of the World: This shows the seven wonders
of the ancient world, and the seven wonders of the modern world,
including natural wonders, underwater wonders, strange wonders, and
local wonders. I am very impressed with how slick the programmers
have made the touch and feel of the app.

� Blipstar: This app converts Internet business URL addresses to their
corresponding brick–and–mortar stores and presents it all on a cool
map.

� Twitter Spy: This app lets people see where the person who is
tweeting them is currently located. Yep—wacky and crazy, but true.

� Geo IP Tool: This app displays the longitude and latitude information
of businesses on the Web. Then it provides us with a choice of the
best ways to get there.

� Map Tunneling Tool: This one is just clever fun. Imagine where we
would come out if we began digging a hole straight down—from
wherever. Is the answer always China?

� Tall Eye: This app shows you where you will go if you walk directly, in
a straight line, around the earth, starting at one point and staying on a
specific bearing all the way around.

CHAPTER 9: MapKit & Storyboarding 371

Figure 9–6. Metro Paris Subway: Parsing GPS data from the trains in the subways helps us to know when a train
going in our direction will appear at the nearest train station.

myStory_01: A Single–View Application
In this exercise, we are going to begin with some boilerplate code and splash screens
and icons that suit our basic requirements. Then, we will modify it from there. We will
tour some of the same building blocks and files that we’ve seen throughout this book,
and we will be challenged to see what areas of the code are pretty much the same as
what we’ve already encountered and what areas are different—given the nature of this
application.

The ability to recognize patterns and see structures just under the surface is a powerful
aptitude that we all have, but we programmers cultivate ours to a heightened degree.
We will play a little game to see if we can anticipate some of the moves we will have to
take.

Possible Prepping for the App
We are going to consider a wide variety of components that we will use to build in to our
app. Before that, though, I want to make sure we all have a firm grasp of some important
terminology. For this project, we programmers need to recall some basic earth science
and geography so that our code will be as effective as possible.

CHAPTER 9: MapKit & Storyboarding 372

When we direct the computer to animate a pin dropping down, with annotations, onto a
specific location, giving “longitude” and “latitude,” we need to know what these terms
really mean. Lines of latitude are the imaginary lines that circle the globe “horizontally,”
running east to west (or west to east). These invisible lines are measured in degrees,
minutes, and seconds, north or south of the Equator. The Equator is the elliptical locus
of points on the Earth’s surface midway between the poles, which physically are real
points—defined by the Earth’s rotation on its axis. Lines of latitude are often referred to
as parallels. The North Pole is 90 degrees north latitude; the South Pole is 90 degrees
south latitude.

Lines of longitude, often called meridians, are imaginary “vertical” lines (ellipses) that
cross through the North and South Poles. They are also measured in degrees, minutes,
and seconds, east or west of the Prime Meridian, an arbitrary standard that runs through
Greenwich, England. Unlike the Equator, which goes all the way around the world—360
degrees, the Prime Meridian (0 degrees longitude) is a semi–circle (semi–ellipse),
extending from the North Pole to the South Pole; the other half of the arc is called the
International Date Line, and it is defined as 180 degrees east and/or 180 degrees west
longitude.

For our Chapter 9 app, the example I used to demonstrate the “pin drop” on location is
my office at the University of Colorado at Colorado Springs. We, of course, can use any
location we choose. We may want to use our own address, or a well–known landmark.
To do this, we must get the latitude and longitude values of that location—most likely
from Google Maps or a direct GPS reading. There are many sites on the Internet where
we can find these coordinates; Figure 9–7 illustrates one of them,
http://bit.ly/vGszNu.

Figure 9–7. Batchgeo (www.batchgeocode.com/lookup) is one of many Internet sites where one can enter an
address and receive its longitudinal and latitudinal coordinates.

CHAPTER 9: MapKit & Storyboarding 373

Here’s a thought—let’s start to the end of our process and think backwards for a
minute. Go ahead and jump forward in this chapter for a sneak peek at what the app will
look like—what results it will return if all goes well. In Figure 9–34, we see a picture of a
hybrid map showing a red pin that’s sitting on top of a building. That’s the Engineering
Building at the University of Colorado at Colorado Springs; the pin is located right above
my office. The next picture has what we call an annotation, which is the text. “Dr. Rory
Lewis” is the title, and “University of Colorado at Colorado Springs” is the subtitle.

Later in the tutorial, we will see that we need to be careful about the title and the
subtitle. We also control the color of the pin and we decide on the style of animation—
how the pin drops onto the map image.

This is a good place for a reminder of the title of this book: iPhone and iPad Apps for
Absolute Beginners. Take a deep breath! Even if we were all meeting our greatest
expectations of learning the most we ever have and even if we were all meeting our greatest
expectations of ourselves—learning so much complexity in such a short time, we would still
not be an expert in this challenging area of MapKit code! At this point, my humble goal is not
fluency, but reasonable familiarity and a sense of what lies ahead.

If that sounds right, let’s get on with it.

Preliminaries
As in previous chapters, please download and extract images and boilerplate code for
this chapter. Navigate to http://bit.ly/oDqzvY and download its contents. The images
include three icon files, two splash screens, and two files of boilerplate code. Later, I will
explain what these icons, splash screens, and boilerplates mean. Right now though, we
will just download it to our desktop. Then, we will extract the files onto our beautifully
clean desktop.

Sample code that I programmed on the video is available for download here:
http://bit.ly/qd6iDT. After extracting all the files, remember to delete the
011_myStory_01.zip and myStory_01 folders. This is to avoid overwriting files and/or
potential conflicts with the exercise code. To view the screencast of this chapter’s
exercise, go to http://bit.ly/owk24r.

CHAPTER 9: MapKit & Storyboarding 374

A New Single View Template
Let’s get started and choose the template.

Figure 9–8. Select the Single View Application icon, and then press Return or hit Next.

1. Open Xcode and enter ��N, as shown in Figure 9–8. Then click on the View–

based Application template. We will call it myStory_01 and then we will save it to

our desktop. A folder bearing that name appears on the desktop.

CHAPTER 9: MapKit & Storyboarding 375

Figure 9–9. Name your app myStory_01 making sure Storyboard and automatic referencing is on.

2. In order to follow along as closely as possible, because it will get complex

later, we will name our project “myStory_01.” To do so, select iPhone, not

iPad or Universal, leave the Class Prefix and Include Unit Tests options

alone and as shown in Figure 9–9. Check that the Storyboard and

Automatic Referencing option is on.

Figure 9–10. Create an Objective–C class for your annotations.

CHAPTER 9: MapKit & Storyboarding 376

Preliminaries: Adding the Annotation File
3. While we’re here setting up our project, we need to create an annotation file and

import some frameworks. Let’s start with the annotation file. As previously

mentioned, we need a means to control our annotation. For that, we will create an

Objective–C class that will control all the characteristics we want to display on this

annotation. Click the Classes folder and enter �N as shown in Figure 9–10. When

finished, click Next.

Figure 9–11. Name it myPos and make sure it’s an NSObject subclass.

4. Because this controller will be in charge of controlling annotations for our position,

let’s name it something that correlates to my position; how about name it “myPos.”

Also, make sure that it is not a subclass of UIView or any other subclass. Make sure

it’s a subclass of NSobject. This is shown in Figure 9–11.

CHAPTER 9: MapKit & Storyboarding 377

Figure 9–12. Save it inside you myStory_01 folder.

5. Make sure to save this inside the myStory_01 folder. This will make it much easier

to export and is simply a good habit to have when we start sharing classes and

objects with other programmers. See Figure 9–12.

CHAPTER 9: MapKit & Storyboarding 378

Figure 9–13. Move the newly created NSObjects into the correct folder.

6. As shown in Figure 9–13, our two newly created NSObjects named myPos.h and

myPos.m are located in the root directory of our project. We need to move them to

the correct place in the correct folder. I typically order the files I will be coding in the

sequence I will code them under the nib or storyboard files. We usually do not work

a lot with the AppDelegate files so I keep them on top and out of the way. Because I

will start coding the NSObjects that keep track of my position, we will put them

immediately under the Storyboard.

CHAPTER 9: MapKit & Storyboarding 379

Figure 9–14. Go to the myStory_01 root directory and select the Build Phases tab.

Preliminaries: Adding Frameworks
7. The first thing we need to do is add two frameworks: For a newbie, we

would say: “Frameworks are huge gobs of super code that is used for

specialized stuff. It is too big to be carried around all the time but if we

write an app that needs a framework—then we drag this framework into

our code.” Yeah, but we’re not a newbie anymore—we’re heading at a

fast and furious pace to becoming a bona fide geek, respected by others

left in the swamps of technology—so, let’s look at this. Yes, it is

specialized code. We will put it in a hierarchical directory that

encapsulates s dynamic shared libraries such as, nib files, image files,

localized strings, header files, and reference documentation in a single

package. In our app, we will use Corelocation and MapKit frameworks

and when we bring them into our app, the system loads them into

memory as needed and shares the one copy of the resource among all

applications whenever possible. So, we will go to our root directory and

click on the Build Phases tab as shown in Figure 9–14.

CHAPTER 9: MapKit & Storyboarding 380

Figure 9–15. Click on the Link Binaries with Libraries bar and click on the “+”.

8. As shown in Figure 9–15, click on the Link Binaries with Libraries bar and

click on the “+”.

Figure 9–16. Select the Corelocation Framework.

CHAPTER 9: MapKit & Storyboarding 381

9. We will either scroll through all our options or enter location in the search bar and

select Corelocation Frameworks. Then we will press Add or Enter/Return as shown

in Figure 9–16.

Figure 9–17. Select the MapKit Framework.

10. Repeating step 9, we will now do the same for MapKit. We will either scroll

through all of our options or enter location in the search bar and select MapKit

Framework. Then press Add or Enter/Return as shown in Figure 9–17.

CHAPTER 9: MapKit & Storyboarding 382

Figure 9–18. Move the imported Frameworks to the Frameworks folder.

11. As shown in Figure 9–18, we will grab our two newly imported Frameworks that

are by default stored in the root directory. We will then move those to our

frameworks folder. It is important that we create good habits and store all of our

Frameworks in the correct folder.

CHAPTER 9: MapKit & Storyboarding 383

Figure 9–19. Check your directories and files against mine.

12. Before we move on, we need to make sure that we check our project against the

example shown in Figure 9–19. We need to make sure that our NSObjects

myPos.h, myPos.m and that our Corelocation and MapKit Frameworks are placed

like those in the example. With this step completed, we will move on; place our

images and then start coding.

Bring in the Images!
We want to have five essential images for every app we make. For convenience, these
are included in the package available for download from my website at
http://bit.ly/oDqzvY. They include the essential icons and two splash screens. These
include the 57 by 57 px for the iPhone classic, the 72 x 72 px for the iPad, and the 114 x
114 px for the iPhone 4S Retina Display. I’ve also designed two splash screen images
that are available for your use. Splash screen images appear on the screen of the app
while the apps code loads. They usually only appear for less than a second, but they
give the user something cool to look at—and they set the tone for the super cool app
that is loading. You will need two splash screens because you have to accommodate
the various iPad and iPhone configurations the user using your app might have. The 640
by 960 px splash screen for iPads and iPhone Retinas and a 320 by 480 px for the
classic iPhone are included. After you have downloaded them, you can always use them
as a template for your future apps.

CHAPTER 9: MapKit & Storyboarding 384

NOTE: In this application, we are only using the iPhone. In the next chapter, when we design
myStory_02, we will use both the IPhone and the iPad where we can use all the icons. So, just

keep the extra iPad icon for later use when you design your own icons.

Figure 9–20. Drag in the icons.

13. Staying in the root directory after importing the frameworks, drag the icon images

into the icon boxes. Figure 9–20 shows the 57 x 57 px classic iPhone icon in its

box and the Retina icon being drug over to it.

CHAPTER 9: MapKit & Storyboarding 385

Figure 9–21. Drag in the icons.

14. Similar to step 13, after importing the icons, we now need to import our splash

screen images into their boxes. Figure 9–21 shows the iPhone Retina 320 by 480

px classic splash screen already in place with the classic iPhone 640 x 960 px

splash screen being dragged in. Once we are finished dragging these images in,

we are ready to start with the code.

CHAPTER 9: MapKit & Storyboarding 386

Figure 9–22. Drag in your icons so you can take them to the correct folder.

15. Before we start to code, we need to make sure that all our files are in the correct

folders. At this point, we know that Xcode will recognize the correct icons and

splash screens—but look where they are! They’re in the root directory again. Grab

them, as shown in Figure 9–22, and move them into the supporting files folder.

CHAPTER 9: MapKit & Storyboarding 387

Figure 9–23. Drop the project icons into the supporting files’ folder.

16. The supporting Files folder is probably not open. That’s OK. As we drag the icons

with our mouse, we will need to slow down as we hover over the supporting Files

folder so it will open up. Once it opens up, drop the files into the folder as shown

in Figure 9–23.

CHAPTER 9: MapKit & Storyboarding 388

Figure 9–24. Ready to paint …. erh …. code.

17. Take a good look at Figure 9–24. We are now ready to code. We need to get used

to wanting to see our coding canvas laid out before we ever start writing our

code. This is very much like a painter who will first buy a canvas, get paint,

turpentine, brushes, rags and a model of what will be painted before the first dab

is ever painted. This is what we’ve just done. We need to get used to first setting

everything up before we write our code.

NOTE: I cannot understand why some students invariably dive into the code immediately upon
receiving an in class assignment. I also always stop them immediately and make them prep as

we have done here and throughout this book. It is during this time while I bring in all my files and
create whatever new frameworks and NSObjects that I need that my mind goes into a semi
meditative state and I quietly plan out how I will write the code. During this time, my mind tries

out all kinds of different options and by the time I am finished prepping, I am completely ready to

code.

CHAPTER 9: MapKit & Storyboarding 389

Coding the myPos NSObject
Remember that myStory_01 is a lead–in or segue into myStory_02, which is where the
real action is. In fact, many MapKit apps will need a separate NSObject to keep track of
many positions. In this small app, we do not necessarily have to program the myPos.h
and myPos.m files at all. But you need to get used to always creating an NSObject myPos
to keep track of your position or an array of positions to feed into the annotations and
MapKit framework. So, follow along with me as I explain in detail what we will be doing
here. In myStory_02, I skip over some of these steps because I assume we all did our
homework and programmed myStory_01 many times until we could do it without this
book or any accompanying notes.

Figure 9–25. myPos.h as it looks upon opening it.

18. Click on the myPos.h file located in your myStory_01 folder inside the root folder.

Upon opening it, as shown in Figure 9–25, we see the following:

#import <Foundation/Foundation.h>
@interface myPos : NSObject
@end

� The first thing we do is add a MapKit framework for our annotations by
entering #import <MapKit/MkAnnotation.h> to the @interface myPos :
NSObject directive.

CHAPTER 9: MapKit & Storyboarding 390

� We also need to add <MKAnnotation>, which is a protocol. I explain
protocols in Digging the Code, but for now, it means we’ll have to
write our own annotation object that implements this protocol. Just
remember that an object that adopts this protocol must implement a
property we call the coordinate property. Which, of course, we will do.

� We also set our CLLocation Class Reference to incorporate the
geographical coordinates and altitude of our device with a variable
that we’ll name coordinate, as seen in Figure 9–26. We do that with
this line:

CLLocationCoordinate2D coordinate;

� Now, we need two NSString variables to hold our titles and subtitles,
which we will name *title and *subtitle as follows:

NSString *title;
NSString *subtitle;

� Finally, we create @property statements for the coordinate, title, and
subtitle, as shown in the code that follows. Once we have made these
additions, we will save our work as shown in Figure 9–26.

#import <Foundation/Foundation.h>
#import <MapKit/MkAnnotation.h>

@interface myPos : NSObject <MKAnnotation>
{
 CLLocationCoordinate2D coordinate;
 NSString *title;
 NSString *subtitle;
}

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSString *subtitle;

@end

CHAPTER 9: MapKit & Storyboarding 391

Figure 9–26. The MyPos.h incorporates the geographical coordinates and altitude of our device.

Figure 9–27. This is how our myPos implementation file looks when we open it.

CHAPTER 9: MapKit & Storyboarding 392

19. We are now ready to code the myPos implementation file. We will click on the

myPos.m file located in our myStory_01 folder inside the root folder. Figure 9–27

shows how the myPos.m file looks when we open it. Here we simply synthesize

our coordinate, title, and subtitle with a @synthesize statement, which includes

coordinate, title, and subtitle. Once done, our file should look similar to Figure

9–28. We will save our work on this file.

Figure 9–28. This is how the myPos implementation file looks after the synthesis.

CHAPTER 9: MapKit & Storyboarding 393

Figure 9–29. Open the view controller.

Coding the View Controller
We will start by declaring our classes, methods, and outlets in our ViewController.h file

and then implementing them in our ViewController.m file. I have included some

boilerplate code that we can drop into the implementation file. However, I am going go

over each line separately, so it will be better if you follow along without dropping in the

boilerplate code.

20. We will start, as always, with the header file. We will open up our header file by

clicking on ViewController.h inside the root folder below the myPos.m file or

thereabout. When we first open it up, it will look similar to Figure 9–29 and as

shown below.

#import <UIKit/UIKit.h>
@interface ViewController : UIViewController
@end

CHAPTER 9: MapKit & Storyboarding 394

� The first thing we need to do is tell our app that we have imported the
MapKit framework; we do this by #import <MapKit/MapKit.h> under
the line #import <UIKit/UIKit.h>. The next thing we will do is tell the
header file that we will be using the MKMapViewDelegate protocol. This
protocol defines a set of optional methods that our app will use to
receive map update records.

� Next, we will add the <MKMapViewDelegate> protocol for the controller
class.

� We are now able to add an outlet with a pointer to the MKMapView class.
We do this by typing in MKMapView *mapView, which declares an object
of type MKMapView.

� The last thing we need to do is define the @property, by entering.

@property (nonatomic, retain) IBOutlet MKMapView *mapView

NOTE Some people may say: “Whoah! You only declared the IBOutllet outside the interface!”
Well, actually, whether we stated IBOutlet MKMapView *mapView inside the interface or
“outside,” they really are both still inside and there is no need to declare it twice. I prefer to use

outlets on @properties because it makes memory management of the objects loaded from the
storyboard clearer. I go deeper into this in Memory Management of Storyboard Objects in Digging

the Code.

� Once done, save it. Our code should appear as follows and as shown
In Figure 9–30:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface ViewController : UIViewController <MKMapViewDelegate>
{
 MKMapView *mapView;
}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

@end

CHAPTER 9: MapKit & Storyboarding 395

Figure 9–30. A completed ViewController header file.

Dealing with the View Controller’s Implementation
As mentioned in the introduction to this chapter, controlling and working with the MapKit
and CoreLocation frameworks is not a trivial matter. Daunting as these areas can be, I
could not leave them out of this book. We proceed on the basis that we have learned by
now to look for familiar patterns, integrate what we can, and just follow directions when
things get a bit complicated�or beyond our immediate understanding!

Let’s think about this�after doing the necessary importing of our myPos header file and

����synthesis of the ViewController that we just set up in the header file—we need to do
two things:

� Set up the coordinates of my office into the viewDidLoad method; and
then,

� Make a pin drop down onto this exact latitude and longitude set forth
in the viewDidLoad and put an annotation on it that states this is the
office of Dr. Lewis.

In our case, we will set the map type to a Hybrid map. If we prefer, though, we may
choose to use a Satellite map or a Street map. Remember, at this point, we will bring in
the location of my office at the University of Colorado at Colorado Springs, we can go
ahead and use mine, or you can choose your own point.

CHAPTER 9: MapKit & Storyboarding 396

Figure 9–31. The ViewController’s implementation file before coding.

21. When you first open up the viewController.m file, you will see the default code as

shown in Figure 9–31. Let’s first bring in the header file and synthesis:

� Right under the #import "ViewController.h" We want to import our
mypos header file by coding

#import "myPos.h"

� Now, under the @implementation, we will add our synthesis of the
mapView:

@synthesize mapView;

� Now, we can either drop in the boiler plate code from the file called
viewDidLoad coord.rtf right over and in place of the comment // Do
any additional … in the viewDidLoad method under the [super
viewDidLoad]; as shown:

[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.

� The boilerplate code is as follows, but we will go step–by–step through
it.

[mapView setMapType:MKMapTypeStandard];
[mapView setZoomEnabled:YES];
[mapView setScrollEnabled:YES];
mapView.mapType=MKMapTypeHybrid;

CHAPTER 9: MapKit & Storyboarding 397

MKCoordinateRegion region = { {0.0, 0.0 }, { 0.0, 0.0 } };
region.center.latitude = 38.893432;
region.center.longitude = -104.800161;
region.span.longitudeDelta = 0.01f;
region.span.latitudeDelta = 0.01f;
[mapView setRegion:region animated:YES];
[mapView setDelegate:self];

myPos *ann = [[myPos alloc] init];
ann.title = @"Dr. Rory Lewis";
ann.subtitle = @"University of Colorado at Colorado Springs";
ann.coordinate = region.center;
[mapView addAnnotation:ann];

22. Now, going through this line by line;

� First, we make it standard and enable zoom and scroll:

[mapView setMapType:MKMapTypeStandard];
[mapView setZoomEnabled:YES];
[mapView setScrollEnabled:YES];

� Then, we do a reset on the previous coordinates by setting all
the coordinate regions to zeros.

MKCoordinateRegion region = { {0.0, 0.0 }, { 0.0, 0.0 } };

� Then, we enter coordinates of our place of interest—which, for
me, is my office at the University of Colorado at Colorado
Springs. I enter Region.center.latitude = 38.893432; (the
positive value denotes north of the Equator) and
region.center.longitude = -104.800161; (the negative sign
denotes west of the Prime Meridian).

region.center.latitude = 38.893432;
region.center.longitude = -104.800161;

� Related to these parameters, we need to set the latitude and
longitude Delta = 0.01f. If your math or physics is rusty, recall
that “delta” refers to the change, or difference, between two
values.

region.span.longitudeDelta = 0.01f;
region.span.latitudeDelta = 0.01f;

� I have chosen to animate the pin when it drops.

[mapView setRegion:region animated:YES];

� The next action is to set the view controller class as the delegate,
which is the role that will handle the interaction between the
frameworks of our mapView. We do this with:

[mapView setDelegate:self];

CHAPTER 9: MapKit & Storyboarding 398

NOTE: Regarding the dropped pin and the attached label: We need to make the annotation
object the holder of the information of our coordinates. Our annotation view is the type of view
associated with the annotation object. Our annotation object needs to comply with all the rules

we will set forth in our MKAnnotation protocol. In order to create this annotation object, we

must define a new class, which we did when we created the myPos classes.

� We now need to instantiate this myPos object and add it to our
map. To do this, we add the delegate function that will display
the annotations onto our map. We start by having myPos name a
pointer we’ll call ann.

myPos *ann = [[myPos alloc] init];

� Next, we set the title, and in my case, I chose to use my name.

ann.title = @"Dr. Rory Lewis";

� We handle the subtitle similarly: ann.subtitle = @"University
of Colorado at Colorado Springs".

ann.subtitle = @"University of Colorado at Colorado Springs";

� We also want the pin to drop in the center of the map:
ann.coordinate = region.center.

ann.coordinate = region.center;

� Reference all of the above with [mapView addAnnotation:ann].

[mapView addAnnotation:ann];

At this point, we will take advantage of the next boilerplate method of code that most
MapKit maps use. Unlike the viewDidLoad coord.rtf, the MKAnnotationView.rtf is a
chunk of code we all use. Read the note below:

NOTE: We seldom change chunks of code like viewDidLoad coord.rtf and by the time this book
is printed, it may be part of a new function or a new class. The reason is that when people start
using the same piece of code over and over, referring to it as “boilerplate code,” that’s about the
time Apple decides to make a new class or function out of it, and sets it to a specific name. So,

keep on using it and get the message through to Apple!

For now, there are a few things we all need to know about this code:

� It creates a delegate method that manages our annotation during
zooming and scrolling. In other words, it keeps track of where we
are—even when the user scrolls, zooms in, or zooms out of our map.

CHAPTER 9: MapKit & Storyboarding 399

� It creates a static identifier, which controls our “queue meaning.” If it
can’t dequeue our annotation, it will allocate one that we choose. I
have also included code that changes the pin color to red. In addition,
I have allowed callout views.

Paste the MKAnnotationView.rtf right after the – (void)viewDidLoad method and right
before the – (void)viewDidUnload method. After you have pasted it there, your
implementation file should look like the following.

#import "ViewController.h"
#import "myPos.h"

@implementation ViewController
@synthesize mapView;

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc., that aren't in use.
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 [mapView setMapType:MKMapTypeStandard];
 [mapView setZoomEnabled:YES];
 [mapView setScrollEnabled:YES];
 mapView.mapType=MKMapTypeHybrid;

 MKCoordinateRegion region = { {0.0, 0.0 }, { 0.0, 0.0 } };
 region.center.latitude = 38.893432;
 region.center.longitude = -104.800161;
 region.span.longitudeDelta = 0.01f;
 region.span.latitudeDelta = 0.01f;
 [mapView setRegion:region animated:YES];
 [mapView setDelegate:self];

 myPos *ann = [[myPos alloc] init];
 ann.title = @"Dr. Rory Lewis";
 ann.subtitle = @"University of Colorado at Colorado Springs";
 ann.coordinate = region.center;
 [mapView addAnnotation:ann];
}

- (MKAnnotationView *)mapView:(MKMapView *)mV viewForAnnotation:(id
<MKAnnotation>)annotation
{
 MKPinAnnotationView *pinView = nil;
 if(annotation != mapView.userLocation)
 {
 static NSString *defaultPinID = @"com.rorylewis";
 pinView = (MKPinAnnotationView *)[mapView
dequeueReusableAnnotationViewWithIdentifier:defaultPinID];
 if (pinView == nil)

CHAPTER 9: MapKit & Storyboarding 400

 pinView = [[MKPinAnnotationView alloc]
initWithAnnotation:annotation reuseIdentifier:defaultPinID];

 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.canShowCallout = YES;
 pinView.animatesDrop = YES;
 }
 else
 {
 [mapView.userLocation setTitle:@"I am here"];
 }

 return pinView;
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}
- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}
-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientatio
n
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

@end

CHAPTER 9: MapKit & Storyboarding 401

The Storyboard
Go ahead and open the Storyboard file. It will look similar to what you see in Figure 9–32.

Figure 9–32. Open Storyboarding

As I have already mentioned quite a few times, I specifically chose myStory_01 as a
segue to myStory_02, which will have a very complex Storyboard. In this app, I just want
you to deal with setting up the MapKit framework. In myStory_02, we will set up the
MapKit framework as we did here; then, we will set up a pretty tableView onto a
Storyboard. Doing it all at one time would not be practical and I do�know this. So, for
how—this segment of the Storyboarding will be relatively easy—just a couple of steps.
In myStory_02, this will not be the case. So, give your brain a break and follow along as
we set up this very simple, one–piece Storyboard.

CHAPTER 9: MapKit & Storyboarding 402

Figure 9–33. Drag a MKMapView onto the view.

23. With the Storyboard open—close the Inspector and open up the Utilities folder.

Then drag a Map View (MKMapView) onto your view as shown in Figure 9–33.

Figure 9–34. Open the Connection Inspector and control drag to the MKMapView.

CHAPTER 9: MapKit & Storyboarding 403

24. We need to connect the mapView to the MKMapView. In the Document Outline Bar,

select the View Controller and then click on the Connection Inspector and

control–drag from the mapView to the MKMapView.

(MKAnnotationView *)mapView:(MKMapView *):

25. That’s it! Run it. When we see a splash screen appear, we drop a pin right onto

my office or the location we chose. See Figure 9–35.

Figure 9–35. MapKIts and Storyboarding! Splash screen appears and then a pin drops onto a specified location!

Congratulations! Once again, we have successfully implemented an app of fair
complexity�and we started with a body of code that we merely modified. As we compare
our own Simulator to the images ahead, bask in the glow of accomplishment.

Then, perhaps after a brief rest, I hope that we might venture forward to see if some
student examples in the “Digging My Students’ MapKit Code” section whet our appetite
for further development and challenge.

CHAPTER 9: MapKit & Storyboarding 404

Figure 9–36. At this point, I have my students implement it in class on the iPad. Try it out. The zoom is really far
out as is shown here.

Digging the Code
Here, in Digging the Code, we will go over protocols, memory management of
Storyboard objects, parsing servers for MapKits, and reviewing some of my student’s
cool MapKit apps. Since it will open up new�doors, I suggest that, if anything, we all read
the parsing section well enough to be able to discuss and talk about it. When it comes
to parsing, many coders fall short during interviews and discussions.

Protocols
Protocols are a list of methods that are not officially part of a language, but that a class
can implement. We typically use protocols when we need to define methods for
implementation by other classes. The aforementioned is my view. Apple, on the other
hand, defines protocols a little differently. Apple officially states that protocols declare
methods available for implementation by any class. Protocols are useful in at least three
situations:

CHAPTER 9: MapKit & Storyboarding 405

� To declare methods that others are expected to implement,

� To declare the interface to an object while concealing its class,

� To capture similarities among classes not hierarchically related.

Memory Management of Storyboard Objects
In Objective–C, ivar stands for Instance Variable. Now, IBOutlets are part of the public
interface of a class and this is why I personally believe that it’s better to declare our
methods inside the @property implementation detail. Remember that IBOutlet ivars call
setters, if they exist; however, if no setter is found, the object loaded from the nib is
directly retained. This means that advertising the property as the IBOutlet at least
makes it clear that the property’s setter will always be used and follow whatever
memory management rule has been set for that property. Apple puts it this way:

“Objects in the nib file are created with a retain count of 1 and then
autoreleased. As it rebuilds the object hierarchy, UIKit reestablishes
connections between the objects using setValue:forKey:, which uses
the available setter method or retains the object by default if no setter
method is available. This means that (assuming you follow the pattern
shown in “Outlets”) any object for which you have an outlet remains
valid. If there are any top–level objects you do not store in outlets,
however, you must retain either the array returned by the
loadNibNamed:owner:options: method or the objects inside the array to
prevent those objects from being released prematurely.”

Simply put, if given the choice, as in step 20, to either do it the way we did it:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface ViewController : UIViewController <MKMapViewDelegate>
{
 MKMapView *mapView;
}

@property (nonatomic, retain) IBOutlet MKMapView *mapView;

@end

Or this way:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface ViewController : UIViewController <MKMapViewDelegate>
{
 IBOutlet MKMapView *mapView;

CHAPTER 9: MapKit & Storyboarding 406

}

@property (nonatomic, retain) MKMapView *mapView;

@end

The most interesting aspect of this is that if you simply drag your IBOutlet from the
Storyboard Interface Builder into your header file�Xcode will make these decisions for
you. It is “better” to use the first example and declare the IBOutlet in your @property, but
that’s only ‘style’ and you may work in an environment that uses the second method or
the ‘new’ method we used in the first few chapters of this book.

Do yourself a favor and just do it the way I showed you—the first way.

Digging My Students’ MapKit Code
When people come up to me and say, “Hey, Dr. Lewis, I have this really great idea for a
new app...,” it is amazing how often it involves using the MapKit framework. We have
seen how fun and sexy this stuff is, and ���now� you have likely also gathered that
delving into the code can turn into quite a complexity.
As a final buffet of tasty, high–calorie, high–tech fun, and flash, I am going to share some
final project scenarios with you. I certainly hope you actively follow along here, but I also
want to honor the fact that you’re done. You already succeeded in making it to the end
of Chapter 9. So, remember, this section is like one of those “bonus feature” DVDs that
Hollywood loves to include—at no extra cost. Relax and enjoy!

Parsing to MapKit from the Internet
A little background: I presented my class the MapKit session very much as I laid out the
first example of this chapter. Then, we moved into one of the coolest things there is with
MapKit—the ability to parse, or read live info� from the ether. This feature allows users to

“see” the info on their map. I’ll explain this to a degree before I present three student
final projects.

One of the most intriguing things we can do with MapKit is get real live information from
the Internet and configure it in a way that makes the Google Map on the user’s iPhone
come alive with live information (weather, traffic, geographical phenomena, taxis, planes,
and so on). For example, one of the most popular apps for the San Francisco Bay Area
is a program demonstrated in iPhone Cool Projects (Wolfgang Ante, et al., Apress, 2009)
(see Figure 9–28) called “Routesy Bay Area San Francisco Muni and BART,” written by
Steven Peterson.

Peterson parses all the data from the BART (Bay Area Rapid Transit,
http://www.bart.gov/) web server that keeps track of how close to schedule its trains
are, the location of the trains, and their speeds. The app parses all this data and makes
it useful and relevant to users at their specific locations in the San Francisco Bay Area. In
Figure 9–29, you will see their app’s red icon, and then several iPhone images. The left

CHAPTER 9: MapKit & Storyboarding 407

one shows all the places a user can catch buses and trains. The middle picture uses the
same code we used in our example with a core location to show a user’s current
location with a blue icon, and where a requested station is. The right image reports to
the user the relevant information on the best train given the context, the timing, etc. The
app provides data for the next three trains that will be arriving at the train station nearest
the user.

In essence, the MapKit code on the iPhone is, among other things, a parsing utility. It
retrieves live information from a server that most people don’t even know exists, and it
puts a stream of data to a novel and useful purpose.

Because of the immediate and practical results that users of Peterson’s app, and others
like it, can reap, I figured this would be a perfect theme to round out this book. I’ll first
go over some of my “Parsing with the MapKit framework” lecture notes. Then I will show
you several solid final projects created by my students on that basis.

With my students’ blessing, the code for their projects (as shown below)�is available for
download from my website. This gives you the opportunity to have the code on your
Mac while I simultaneously point out how you can modify it, learn the key features from
it, or just put it on your iPad and show the folks at the bar these cool apps.

CHAPTER 9: MapKit & Storyboarding 408

Figure 9–37. Apress’s iPhone Cool Projects.

Figure 9–38. App icon and examples of three action screens—parsing app: “Routesy Bay Area San Francisco
Muni and BART.” It combines data from the web and MapKit.

CHAPTER 9: MapKit & Storyboarding 409

The code for these three student Final Projects is located as follows:

� Stephen A. Moraco (Son):
http://www.rorylewis.com/xCode/011b_TrafficCam.zip

� Stephen M. Moraco (Father):
http://www.rorylewis.com/xCode/011a_APRSkit.zip

� Satish Rege: http://www.rorylewis.com/xCode/011c_MyTraffic.zip

MapKit Parsing
Remember, this is digging deep into the code at a level that is outside the scope of the
book. However, all of the following instructions are seen in my students’ code, which
you are welcome to download. For now, just read along and see if you can follow their
pattern of parsing, creating delegate objects, and so forth.

Before we look at their actual apps, consider a hypothetical scenario: Imagine there is a
Grateful Dead Server that broadcasts an update on every Deadhead’s geographical
location—at least those who allow themselves to be visible on the grid. This hypothetical
app allows a (serious) fan of the Grateful Dead to locate all the other Deadheads nearby
at any given time. These fans can meet and share bootlegs, hang out, and generally
relate on a plane that only other Grateful Dead disciples can appreciate.

Starting Point
If we were to create such an app, just as in the “Routesy” example, we would allow
users to see where they are by bringing up the Attributes Inspector and turning on a
Shows User Location switch. We would create a controller called DeadHeadsView that
creates an instance of a parser we’ll call Gratefuldead. Then, we would make it set itself
as the delegate so it receives the feedback and calls a getGratefuldead data method.

Getting Data from the Web
As our parser sifts through the XML on the Grateful Dead Server, we would want it to
grab Gratefuldead element data and create an instance of each Gratefuldead object.
So, for each instance it creates, it calls back to us with an addGratefuldead method. We
would need to implement our Gratefuldead and Parser methods on our
deadHeadsViewcontroller. We might find that it’s easier to think of our
GratefuldeadParser.h this way:

+ (id)GratefuldeadParser; // this creates it
- (void)getGratefuldeadData; // this activates it

CHAPTER 9: MapKit & Storyboarding 410

Add Methods to View Controller
Before adding implementation methods on our DeadHeadsView controller, we would need
to implement the protocol with GratefuldeadParser Delegate and import its header file
#import <GratefuldeadParser.h>. At this point, we’d be finished with the header, and
we’d move to the implementation file.

First, we’d copy the two implementation methods from GratefuldeadParser.h and paste
these two methods after the @synthesize statement:

@implementation DeadHeadsViewC0ntroller

@synthesize deadView

- (void)getGratefuldeadData:(Gratefuldead *)Gratefuldead;
-(void)parserFinished

Test the Parser Feed
To test the Grateful Dead Server, we would see if we could log some messages. Let’s
separate the two methods, delete the semicolons, add brackets, and then enter “log” as
shown:

- (void)getGratefuldeadData�Gratefuldead *)Gratefuldead {
NSLog(@"Hippie Message");
}

-(void)parserFinished{
NSLog(@"located a Dead Head at %@", Gratefuldead.place");
}

Start the Parser Method
Having implemented our delegate methods, we would need to do three things:

1. Code the parser method. Put it into a method we could call

(void)viewWillAppear. This would be called on by a view controller when its view

is about to be displayed. If we were to do it this way, note that we would always

want to call in our - (void)viewWillAppear method.

2. Create an instance of our parser that we would call GratefuldeadParser. With

this, we’d get GratefuldeadParser *parser = [GratefuldeadParser
gratefuldeadParser]. We want to make ourselves the delegate, which means

that, now, GratefuldeadParser parser.delegate = self.

3. Two actions in this step: first, tell the parser to get the Gratefuldead data:

[parser getGratefuldeadData];

CHAPTER 9: MapKit & Storyboarding 411

Second, handle its import:

 #import "GratefuldeadParser.h"

Then, when the – (void)viewWillAppear is invoked, it would create an instance of

GratefuldeadParser. As it receives the locations of all the Deadheads, it shows

us where they are!

Do you recall how we made sure that the user of the app would appear on the map as a
blue dot? I want you to think of the blue dot as just an annotation view. When added to
the deadView, it essentially asks its delegate for its location.

NOTE: If we return anything other than nil, then our annotation view, instead of

the blue one, will be used and then return that view.

So, looking at this, we return nil when the annotation does not equal the user’s current
location.

- (MKAnnotationView *)deadView:(MKDeadView *)deadView
 viewForAnnotation:(id <MKAnnotation>)annotation {
MKAnnotationView *view = nil;
return view;

But here’s the thing; we do not want to return nil for our Gratefuldead locations.
Conversely, we want to do cool things when our annotation is not equal to the deadView
userLocation property, which itself is an annotation:

if(annotation != deadView.userLocation) {

 // THIS IS WHERE WE DO OUR COOL STUFF
 // BECAUSE IT'S A DEADHEAD, NOT THE USER
 }

At this point, we use the dequeueReusableAnnotationViewWithIdentifier, delegate
method, which is available for reuse the instant they are off screen. It has a handy way
of storing annotations in a separate data structure and then automatically adding and
removing them from your map as the user’s events require it. Note that
dequeueReusableAnnotationViewWithIdentifier is about getting the reusable annotation
view from the map, and it has nothing to do with adding or removing annotations:

GratefuldeadAnnotation *eqAnn = (GratefuldeadAnnotation*)annotation;
view = [self.deadView dequeueReusableAnnotationViewWithIdentifier:@"GratefuldeadLoc"];
 if(nil == view) {
 view = [[[MKPinAnnotationView alloc] initWithAnnotation:eqAnn
 reuseIdentifier:@"GratefuldeadLoc"]
autorelease];
}

The annotation view goes and looks in its reuse queue to see if there are any views that
can be reused if (nil == view) { … If there are none, it returns nil��which means we
need to create a new one view = [[[MKPinAnnotationView alloc]
initWithAnnotation:eqAnn.

CHAPTER 9: MapKit & Storyboarding 412

There are many creative ways to make your annotations appear with animated chevrons,
bells and whistles, Grateful Dead beads, and so on. You can see what’s out there and
available to make the iCandy portion of your annotations however you might�wish.

In this regard, at this point of writing your code, the most important step is to review
your code for errors using your NSLog debugger; this will determine whether it connects
to a server of your choice. Once complete, it becomes an issue of parsing the XML.
Then, the final step is to shop for iCandy for the annotations.

Three MapKit Final Projects: CS–201 iPhone Apps,
Objective–C
The following are three apps that draw heavily on parsing information from the Internet.
The first two come from a father and son, both named Stephen Moraco, and the third is
from Satish Rege. They were all�kind enough to write unedited bios as to why they took
the class. They also included detailed lecture notes, the apps shown in this book, and
what they got out of the course.

BIOGRAPHICAL INFO FOR EXAMPLES 1 AND 2

Stephen A. Moraco (Son)
Stephen M. Moraco (Father)

Steve A. (Figure 9–39) is in his senior year in high school. He has been concurrently enrolled at UCCS and
has taken courses for dual credit (both high school and college). I, Stephen M. (Figure 9–40), am a
professional software engineer working for Agilent Technologies, Inc. Both of us have iPhones and have an
interest in learning to write applications for the iPhone. The UCCS course caught our attention as a way we
could learn this together. In fact, we really enjoyed Dr. Lewis’ CS201 classes, in which we toured the
iPhone SDK and practiced writing a number of applications. The discussions in class and then between the
two of us as we were driving home always had us excited about things we could do with the iPhone. Our
final projects came from these discussions. Dr. Lewis, thank you for offering this course. It provided, in our
case, a wonderful time of shared learning. We couldn’t have had a more enjoyable time.

Figure 9–39. Stephen A. Moraco (Son) Figure 9–40. Stephen M. Moraco (Father)

CHAPTER 9: MapKit & Storyboarding 413

Final Project—Example 1
Stephen M. Moraco’s app is one that is close to his heart. Being an amateur radio
hobbyist, he decided to parse Bob Bruning’s WB4APR site, where Bob had developed
an Automatic Position Reporting System (APRS). Very much like the example that I gave
in class, locating Deadheads, Stephen, the father, made an app that can locate all the
Amateur Radio Operators that are within a user–specified distance from where they are
at the time. I will not go over all of Stephen’s code because you can download it and go
over it carefully. The portions I think you should take note of are as follows: His
APRSmapViewController header file sets out the road map with 3 IBOutlets, 1 IBAction,
and a ViewController:

@property (nonatomic, retain) IBOutlet MKMapView *mapView;
@property (nonatomic, retain) APRSwebViewController *webBrowserController;
@property (nonatomic, retain) IBOutlet UISegmentedControl *ctlMapTypeChooser;
@property (nonatomic, retain) IBOutlet UIActivityIndicatorView *aiActivityInd;

-(IBAction)selectMapMode:(id)sender;

In the APRSkit_MoracoDadAppDelegate implementation file, he uses the following code to
give the user a chance to log in. See Figure 9–41 for the results. The particulars of this
step, seen in the - (void)applicationDidFinishLaunching method, also houses the
distance (radius) from the user that the system will search for matches:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 NSLog(@"MapAPRS_MoracoDadAppDelegate:applicationDidFinishLaunching - ENTRY");
 // Override point for customization after app launch

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];

 // preload our applcation defaults
 NSUserDefaults *upSettings = [NSUserDefaults standardUserDefaults];
 NSString *strDefaultCallsign = [upSettings stringForKey:kCallSignKey];
 if(strDefaultCallsign == nil)
 {
 strDefaultCallsign = strEmptyString;
 }
 self.callSign = strDefaultCallsign;
 //[strDefaultCallsign release];

 NSString *strDefaultSitePassword = [upSettings stringForKey:kSitePasswordKey];
 if(strDefaultSitePassword == nil)
 {
 strDefaultSitePassword = strEmptyString;
 }
 self.sitePassword = strDefaultSitePassword;

 NSString *strDefaultDistanceInMiles = [upSettings
stringForKey:kDistanceInMilesKey];
 if(strDefaultDistanceInMiles == nil)
 {
 strDefaultDistanceInMiles = @"30";

CHAPTER 9: MapKit & Storyboarding 414

 }
 self.distanceInMiles = strDefaultDistanceInMiles;
 //[strDefaultSitePassword release];
 // INCORRECT DECR [upSettings release];
}

Figure 9–41. CS–201 Final Project—Stephen M. Moraco’s APRS set–up screen where users enter their Amateur
Radio call signs and passwords.

One of the first things Stephen did when he went to the website was make a list of all
the attributes in the XML feed. The following list shows what he saw.

� Column–1 was the call sign, CALLSIGN

� Column–2 was the URL to Message traffic if available

� Column–3 was the URL to Weather page if available

� Column–4 was the Latitude

� Column–5 was the Longitude

� Column–6 was the distance from me (in miles)

� Column–7 was the DD:HH:MM:SS of the last report

CHAPTER 9: MapKit & Storyboarding 415

To account for this data, he made eight pointers in his APRSstationParser.m file. Note
that he has an extra one for possible unknown columns.

NSString *kCallSignCol = @"Callsign";
NSString *kMsgURLCol = @"MsgURL";
NSString *kWxURLCol = @"WxURL";
NSString *kLatitudeCol = @"Lat";
NSString *kLongitudeCol = @"Long";
NSString *kDistanceCol = @"Distance";
NSString *kLastReportCol = @"LastReport";
NSString *kUnknownCol = @"???";// re didn't recognize column #

Then, in the same file, he made case statements:

����case 1:
 m_strColumnName = kCallSignCol;
 break;
 case 2:
 m_strColumnName = kMsgURLCol;
 break;
 case 3:
 m_strColumnName = kWxURLCol;
 break;
 case 4:
 m_strColumnName = kLatitudeCol;
 break;
 case 5:
 m_strColumnName = kLongitudeCol;
 break;
 case 6:
 m_strColumnName = kDistanceCol;
 break;
 case 7:
 m_strColumnName = kLastReportCol;
 break;
 default:
 m_strColumnName = kUnknownCol;
 break;

Also, in the APRSkit_MoracoDadAppDelegate implementation file, the -
(void)recenterMap method scans all annotations to determine geographical center and,
just as we did in this chapter’s exercise, to calculate the region of the map to display.
Stephen does likewise after his three if statements. Figure 9–42 shows an image of the
pins dropping.

- (void)recenterMap {
 NSLog(@" - APRSpinViewController:recenterMap - ENTRY");
 NSArray *coordinates = [self.mapView
valueForKeyPath:@"annotations.coordinate"];
 CLLocationCoordinate2D maxCoord = {-90.0f, -180.0f};
 CLLocationCoordinate2D minCoord = {90.0f, 180.0f};
 for(NSValue *value in coordinates) {
 CLLocationCoordinate2D coord = {0.0f, 0.0f};
 [value getValue:&coord];
 if(coord.longitude > maxCoord.longitude) {
 maxCoord.longitude = coord.longitude;
 }

CHAPTER 9: MapKit & Storyboarding 416

 if(coord.latitude > maxCoord.latitude) {
 maxCoord.latitude = coord.latitude;
 }
 if(coord.longitude < minCoord.longitude) {
 minCoord.longitude = coord.longitude;
 }
 if(coord.latitude < minCoord.latitude) {
 minCoord.latitude = coord.latitude;
 }
 }�

Note that in the APRSstation class, Stephen represents the details parsed from the
APRS, which sets the location of the pins.

#import <CoreLocation/CoreLocation.h>

@interface APRSstation : NSObject {
 NSString *m_strCallsign;
 NSDate *m_dtLastReport;
 NSNumber *m_nDistanceInMiles;
 NSString *m_strMsgURL;
 NSString *m_strWxURL;
 NSString *m_strTimeSinceLastReport;
 CLLocation *m_locPosition;
 int m_nInstanceNbr;
}

@property(nonatomic, copy) NSString *callSign;
@property(nonatomic, copy) NSNumber *distanceInMiles;
@property(nonatomic, retain) NSDate *lastReport;
@property(nonatomic, copy) NSString *timeSinceLastReport;
@property(nonatomic, copy) NSString *msgURL;
@property(nonatomic, copy) NSString *wxURL;
@property(nonatomic, retain) CLLocation *position;

@end

CHAPTER 9: MapKit & Storyboarding 417

Figure 9–42. CS–201 Final Project—Stephen M. Moraco’s Animated pins drop down within the specified radius
of the user’s location. Here on the iPad simulator, the pins drop in the surrounding areas of Apple Headquarters.

Another cool thing Stephen did was to distinguish between the amateur radio stations
that have their own websites and those that do not. For the ones that have web sites, on
the annotation view, he includes a chevron which, when clicked, yields the web page.
See Figures 9–42 and 9–43. This code is directly under the switch cases in the
APRSstationParser.m file.

CHAPTER 9: MapKit & Storyboarding 418

Figure 9–43. CS–201 Final Project—Stephen M. Moraco’s app provides Annotations to appear when one clicks
on a pin and where a linked website is on the APRS server, a blue chevron appears where one may click to go to
the amateur radio station’s website. In this case, amateur radio station KJ6EXD–7 does have a website.

CHAPTER 9: MapKit & Storyboarding 419

Figure 9–44. CS–201 Final Project—Stephen M. Moraco’s App showing the KJ6EXD–7 website embedded in the
iPad.

In the APRSmapViewController implementation file, Stephen includes, among other things, a
bare–bones methodology to switch between map, satellite, and hybrid views. An example of
this is seen when we show the closest radio station to the user, which, in simulator mode is
Apple Headquarters. See Figure 9–44, where the view is in Hybrid mode.
-(IBAction)selectMapMode:(id)sender
{
 UISegmentedControl *scChooser = (UISegmentedControl *)sender;
 int nMapStyleIdx = [scChooser selectedSegmentIndex];
 NSLog(@"APRSmapViewController:selectMapMode - New Style=%d",nMapStyleIdx);

 switch (nMapStyleIdx) {
 case 0:
 self.mapView.mapType = MKMapTypeStandard;
 break;
 case 1:
 self.mapView.mapType = MKMapTypeSatellite;
 break;
 case 2:
 self.mapView.mapType = MKMapTypeHybrid;

CHAPTER 9: MapKit & Storyboarding 420

 break;
 default:
 NSLog(@"APRSmapViewController:selectMapMode - Unknown Selection?!");
 break;
 }
}

Figure 9–45. CS–201 Final Project—Stephen M. Moraco’s App showing the closest amateur radio station to
Apple Headquarters in the Hybrid map view.

Finally, as a finishing touch, which I always encourage students to complete; Stephen
included a nice About page in the AboutView nib. See Figure 9–45.

CHAPTER 9: MapKit & Storyboarding 421

Figure 9–46. CS–201 Final Project—Stephen M. Moraco’s App showing his “About Page” —totally cool!

NOTE: In order to run the code, you will need to have a password and username.

You have two options: 1) Acquire your own, or 2) Download any of these three

apps, which are essentially the same.

 http://itunes.apple.com/us/app/pocketpacket/id336500866?mt=8
 http://itunes.apple.com/us/app/ibcnu/id314134969?mt=8
 http://itunes.apple.com/us/app/aprs/id341511796?mt=8

Final Project—Example 2
Stephen A. Moraco is a gifted high school student who attended my class. His app
parses the National Weather Cam network at http://www.mhartman-wx.com/wcn/. This
can be seen in the TrafficCamParser implementation file static NSString *strURL
=http://www.mhartman-wx.com/wcn/wcn_db.txt.

CHAPTER 9: MapKit & Storyboarding 422

Figure 9–47. CS–201 Final Project—Stephen A. Moraco’s App launches with hundreds of pins plummeting from
the sky as they fill up a specified area around the user’s “current” location at Apple Headquarters.

He found that he needed to use an adapter to filter out bad meta tags in the
<head></head> sections. There was so much extraneous matter on the server it was
crashing the code. To take care of this, he had to make rules to replace "^" with
</field><field>, replace
's with blank space, replace "(" and
")
" with </field><field>, start and end with <CAM><field> and </field></CAM>
and remove tags, remove nonbreaking spaces. I’ve added numbering to help
you see the start of each line, as the word wrap confuses me, too!
1. NSString *strNoParaQueryResults = [strQueryResults

stringByReplacingOccurrencesOfString:@"("
withString:@"</field><field>"];

2. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@")
" withString:@"</field><field>"];

3. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"" withString:@""];

4. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@" " withString:@""];

5. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@">" withString:@">"];

CHAPTER 9: MapKit & Storyboarding 423

6. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"width=150" withString:@"width=\"150\""];

7. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"height=100" withString:@"height=\"100\""];

8. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"width=100" withString:@"width=\"100\""];

9. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"height=150" withString:@"height=\"150\""];

10. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"border=0" withString:@"border=\"0\""];

11. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"\"\"" withString:@"\""];

12. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@".jpg " withString:@".jpg\" "];

13. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"&" withString:@"and"];

14. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"" withString:@""];

15. strNoParaQueryResults = [strNoParaQueryResults
stringByReplacingOccurrencesOfString:@"</b<" withString:@"<"];

The TrafficCamAnnotation.h header files used is straightforward and simple, using the +
(id)annotationWithCam:(TrafficCam *)Cam; and - (id)initWithCam:(TrafficCam
*)Cam; pointers as described earlier for my hypothetical GratefuldeadParser.h. In this
case, + (id)annotationWithCam:(TrafficCam *)Cam; creates parsed file and -
(id)initWithCam:(TrafficCam *)Cam; initializes it. The result of all this hard work, taking
care of the non-useful code, is seen in the clean annotation. See Figure 9–47.

#import <MapKit/MapKit.h>
#import <CoreLocation/CoreLocation.h>

@class TrafficCam;

@interface TrafficCamAnnotation : NSObject <MKAnnotation> {
 CLLocationCoordinate2D Coordinate;
 NSString *Title;
 NSString *Subtitle;
 TrafficCam *Cam;
}

@property(nonatomic, assign) CLLocationCoordinate2D coordinate;
@property(nonatomic, retain) NSString *title;
@property(nonatomic, retain) NSString *subtitle;
@property(nonatomic, retain) TrafficCam *cam;

+ (id)annotationWithCam:(TrafficCam *)Cam;
- (id)initWithCam:(TrafficCam *)Cam;

@end

CHAPTER 9: MapKit & Storyboarding 424

Figure 9–48. CS–201 Final Project—Stephen A. Moraco’s App zoomed into the Colorado Springs area. The
annotation of North Academy at Shrider appears because the author clicked on that intersection.

Stephen also found he could not automatically use the camera video views. Working
around this challenge was not a trivial task in TrafficCamSettingsViewController.m.
One example was to allow orientations other than the default portrait orientation:
BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation
{
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

He had to arrange this code in order to have beautifully spaced video cam images fitting
nicely in the screen, as illustrated in Figure 9–48.

CHAPTER 9: MapKit & Storyboarding 425

Figure 9–49. CS–201 Final Project—Stephen A. Moraco’s App zoomed into the Colorado Springs area. The
annotation of North Academy at Shrider appears because the author clicked on that intersection.

BIOGRAPHICAL INFO FOR EXAMPLE 3

Satish Rege

Why do I want to be an iPhone developer? Simple—the iPhone imparts the computing, the
communicating, and the multimedia experience of a large computing system in the palm of your hand. It
provides rich resources and user interface primitives to express creative capabilities in a synergistic way.
These iPhone properties attracted me to want to learn iPhone development tools to express my own ideas.
Rory’s course was an excellent introduction that covered a multitude of iPhone capabilities and made them
easy to master.

Figure 9–50. Satish Rege

CHAPTER 9: MapKit & Storyboarding 426

Final Project—Example 3
Satish (Figure 9–42) always came up with simple eloquent code for all his homework
assignments. When I graded the weekly assignments, I realized�that Satish had the
knack of being able to put into 20 lines of code what others would often take three times
as much to do the same thing. For his final project, Satish’s app allows one to look up
ahead at the traffic at intersections to come, and, if there is a traffic jam at one
intersection, to recommend another.

At least in theory, that is how it works. Satish saved a lot of heartache by starting at one
location he knew would be a tough intersection: I–25�Northbound. He focused on
controller implementation files and then he rotates back and forth from there depending
on location in Colorado Springs. He has 27 cases for the 27 cameras in Colorado
Springs. Simple, elegant, beautiful.

Figure 9–51 shows the list. Figures 9–52 and 9–53 show two examples of the traffic
views.

//Choose the camera depending on your co-ordinate

 switch (cameraCordinate) {
 case 1:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=17"]; //Camera
- S Academy/ I-25 North
 break;
 case 2:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=18"]; //Camera
- HWY 85/87/I-25 N
 break;

>>>>>>
>>>>>>
>>>>>>
 case 26:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=33"]; //
Camera - Monument/ I-25 N
 break;
 case 27:
 url = [NSURL
URLWithString:@"http://www.springsgov.com/trafficeng/bImage.ASP?camID=49"]; //Camera
- CountyLine/ I-25 SE
 break;

CHAPTER 9: MapKit & Storyboarding 427

Figure 9–51. CS–201 Final Project—Rege’s app selects the traffic lights closest to the user as he or she is
driving down the street.

CHAPTER 9: MapKit & Storyboarding 428

Figure 9–52. CS–201 Final Project—Rege’s traffic monitoring app showing the embedded camera view.

CHAPTER 9: MapKit & Storyboarding 429

Figure 9–53. CS–201 Final Project—Satish Rege’s app showing another embedded camera view.

Zoom Out… Seeing the Big Picture
It’s important to know where we came from, where we are now, and where we are going
next. Not to get too metaphysical, but this chapter is a bit of a metaphor for our lives.
Where were you five years ago? Last year? One day before you bought this book?
Where do you intend to be six months from now?

That’s why this subject is so popular. People love to know where they are! People love
to know, and love to be shown how to get from “here” to “there.”

You know how men stereotypically refuse to stop and ask for directions? I know I do—it
is because I should just know where I’m going. When GPS came on the scene, I was
impressed. But when Apple included one, by way of ‘Maps,’ in my first iPhone, I was
totally blown away. All of a sudden, I had the ability to consult the oracle and maintain
my male ego at the same time!

CHAPTER 9: MapKit & Storyboarding 430

That’s power, that’s authority… and that’s the same revolution we all joined. Now that
you have completed this book, and successfully navigated through these exercises—
some easier, some tougher—you are well on your way in the world of programming.

As I stated earlier, my goals for you in this chapter were humble. However, as in any
really challenging and worthwhile pursuit, practice makes perfect. If you are exhausted,
but still excited about these ideas and possibilities, then I count that as full success—
both for you and for myself.

Some of you are perhaps thinking about topics that we did not cover in this book: the
accelerometer, cameras/videos, peer–to–peer protocol, RSS feeds, mail clients/POP
servers, etc. If these areas interest you, my hope is that your mind is already racing off in
these new directions. That means you do know where you are, and that you know where
you want to go. Life is good!

431

 Chapter

MapKit & Tables
with Storyboarding
There are five things I want you to bear in mind regarding this chapter:

� Continuation of Chapter 9: Chapter 10 takes what you learned in
Chapter 9 and injects it with steroids. You will need to go over what
you learned in Chapter 9 and go right into Chapter 10. In the lecture
hall, I make my students in class run Chapter 9 in twenty minutes,
that’s if they want a grade and then, immediately after emailing me a
screenshot of their completed project, we go right into Chapter 10.
May I suggest that, if you have taken a couple of days off after ending
Chapter 9, that you too make yourself repeat Chapter 9 a couple of
times until you can do it under twenty minutes. Even if you have to do
it 15 times, do it over and over again before trying this chapter.

� Non-trivial: When you’re done with Chapter 10, you will have really
accomplished something you can be proud of. Yes, on one hand
students shriek with laughter when we debate what level of geekdom a
student will be at a certain point, but the truth is that after you’ve
completed this app, you will be able to get work as an Objective-C
programmer, or at least be able to hold a decent conversation with an
interviewer who will not believe you classified yourself as an absolute
beginner. Neither did Apple when they hired a student of mine to work
in their iOS 5 development in Cupertino. Eight months earlier, she’d
never owned a Mac and was studying the first edition of this book, so
take this seriously; this chapter will be a defining chapter in your life.

10

CHAPTER 10: MapKit & Tables with Storyboarding 432

� Big Picture: As true as you are reading these words, there WILL be a
time when this code will bog you down and, if you were in my lecture
hall and I saw you overwhelmed and freaking out, I would walk up to
you and remind you of the Big Picture. Throughout this chapter, I will
bring you back to the Big Picture, which, in a nutshell, is a storyboard
containing a table that is populated with many city names. We go to
Google’s server and fetch the geospatial addresses of each of these
cities and, when the user taps on one of the cities listed in your table,
we travel along another segue that instantiates a MapKit that drops a
pin in the center of that city.

� Chapter Outline: Chapter 10 has very little preliminaries because I
want you to seamlessly keep your momentum from Chapter 9 right
into 10. I will explain where the help files and videos are, how to use
them if you choose to, and how these are different from previous help
files.

� DO NOT GIVE UP: Chapter 10 tests you and I want you to break
through. Listen to me when I say that nobody is going to do Chapter
10 in one try! You will have to start from scratch repeatedly. This issue
of starting over is, in fact, the key: After spending a little time
debugging, just start again from scratch. Please do not say to yourself:
“Oh I can’t get this, look I’ve tried this 5 times and I can’t get through
it!” It’s OK to fail and start again and I really want you to get through
this. I want to see you go to the forum and tell everybody you got
through Chapter 10! OK? Yeah!

NOTE: It has come to my attention that a few of my students do not pronounce the word segue
correctly. Here are some of the amazing renditions of this word I’ve heard from my students:

“Seeg”, “Seg-you”, “Zeeyoo”, “Suh-goo-wee”, and, of course, “Sega”, as in the game system!
Really! If you did not know it already Segue is pronounced as follows: “Seg-way”. That’s my way
of defining it. The proper and correct way, as defined by The Merriam-Webster Dictionary, is as

follows:

se·gue\ se-()gw�, s�-\

1 : proceed to what follows without pause—used as a direction in music

2 : perform the music that follows like that which has preceded—used as a direction in music

Origin of SEGUE: Italian, there follows, from seguire to follow, from Latin sequi — First Known

Use: circa 1740.

CHAPTER 10: MapKit & Tables with Storyboarding 433

myStory_02: A Single-View Application
In myStory_02, we divide the project into Parts 1 and 2. In Part 1, we use storyboarding
to create a simple table that is populated by an array of cities. The length of the list will
be whatever the “count” of the number of cities on the list is that you have or make up.
When a user selects one of the cities on the list, nothing really happens. However, it’s
important to know that your application works at this point before moving forward. You
can take a sneak peek at this by going to Figure 10–26. Then, in Part 2, we send the list
of cities that populate our table to the Google server where we parse the server for the
longitudinal and latitudinal addresses for each city. We store these address and, when
the user selects a city, we “go” from the table, through the segue, and onto a View with
a UIMapKit that instantiates a map of the city with a pin dropping into the city-center.

Possible Prepping for the App
Let’s prep ourselves with two sets of terminology: “Parsing” and “going up onto the
internet”. We will be using the word “parse” quite a lot and, even though I was reticent
to include parsing when I designed my course and this book, I decided on erring on
teaching you something that is so fundamental to be able to code in this day and age:
parsing is writing code that allows you to enter a server and extract only the terms you
want from your database. For example, the Google server may have 6,000 associated
pointers, links, and terms associated with the city of Durban, South Africa. We will parse
the Google server, ignoring everything except for the longitudinal and latitudinal address
of Durban. Think of the millions of application that need to go to a server somewhere
and extract only the information that the user wants? This is critical coding, and I’m
going to show you exactly how to do this (and make it look really cool on your iPad).

Of course you know that the Internet is not “up” in the air or a cloud. Yes, a certain
amount of data is sent up to satellites but then comes back down to earth and travels
through lines until it gets to a server. Having iPad and iPhone apps that can grab
important data from a particular server is critical. I once had a student who wrote a final
class project app that parsed the server of Colorado Springs’ traffic cameras located
here in Colorado. After parsing the correct images from the city server, he sent a couple
of snap shots per second of each intersection back to the iPhone app so the user could
“see ahead” at intersections and make decisions based on the amount of traffic at the
intersection. Beautiful! However, as bright as this student was, when standing in the
front of the lecture hall, he pointed to the sky when he described how he wrote the code
to parse the server. I asked him if he knew that the server was located only 4 miles from
campus. He looked at me and said: “So, it does not go up into the cloud?”

Even I point up at the clouds when I say go onto the internet but I want you to remember
that, when we parse the Google server, we don’t care where it is or how we got there.
We are only concerned with whether our code correctly parses the server for only the
information that is important to us.

CHAPTER 10: MapKit & Tables with Storyboarding 434

Preliminaries
This chapter’s download files are a little different from previous tutorials. Of course one
does not have to download anything. You can follow along with the book and run the
app perfectly sans the video, the source code, or the download files. I suggest you first
try to do it without the video, download files, or source code. However, if you feel
inclined to utilize the download files, you will want to pay attention to the following. The
download files contain 6 images and 9 boilerplate codes. They are set forth as shown in
Table 10–1:

Table 10–1. Download files.

Name of File When Used Description

01 Part
1myMasterTableViewController m

Coding Part 1 Private interface for our NSArray of cities.
This is not in the header: so it’s not public.

02 Part
1myMasterTableViewController m

Coding Part 1 Our NSArray of cities we insert into our
viewDidLoad method.

03 Part
1myMasterTableViewController m

Coding Part 1 Code to enable viewing of the city names in
each cell we insert into our tableView
method.

04 Part 2myPos h Coding Part 2 All of myPos.h

05 Part 2myPos m Coding Part 2 All of myPos.m

06 Part 2myDetailViewController h Coding Part 2 All of myDetailViewController.h

07 Part 2myDetailViewController m Coding Part 2 Top Matter: #imports, our configureView
private method, @implementation, and @
synthesize.

08 Part 2myDetailViewController m Coding Part 2 Our setDetailItem method to update the view,
our configureViewmethod to parse the
Google server and update the user interface
for the detail item and three connection
methods.

09 Part
2myMasterTableViewController m

Coding Part 2 The prepareForSegue method that we insert
into MasterTableViewController only for Part
2.

iPad 72 Not Used The 72 � 72 pixel iPad Icon: This is for your
convenience if you choose to do the
Universal approach and have it compile for
both the iPad and the iPhone.

CHAPTER 10: MapKit & Tables with Storyboarding 435

Name of File When Used Description

iPhone 57 Preliminaries The 57 � 57 pixel iPhone icon.

iPhone4 114 Preliminaries The 114 �114 pixel Retina iPhone icon.

splash Big Preliminaries The iPhone splash screen.

splash Preliminaries The 114 �114 pixel Retina iPhone splash
screen

These download files can be located at http://bit.ly/nvc3Xk. One can download the
sample code that I programmed on the video here: http://bit.ly/raKxPe. To view the
screencast of this chapter’s exercise, go to http://bit.ly/pEsztt.

THE BIG PICTURE

We will have many versions of the big picture in this chapter. First, we will view the code form “30,000”
feet, taking a very broad overall view of our landscape. Then, as we drill downward, we will always keep
track of the big picture. Here’s the first big picture:

1. Populate a table with a list of cities

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 436

A New Single View Template

Figure 10–1. Select the Single View Application icon, and press return or next.

1. As in myStory_01, we will use a Single View Application. So open Xcode and

enter ��N, as shown in Figure 10–1. After selecting the Single View Application,

press enter/return.

CHAPTER 10: MapKit & Tables with Storyboarding 437

Figure 10–2. Name your app myStory_02 making sure Storyboard and automatic referencing is on.

2. In order to follow along with me as closely as you can, name it “myStory_02”,

select “iPhone”, check the “Use Storyboard” and “Use Automatic Reference

Counting” but leave the “Class Prefix” and “Include Unit Tests” unchecked, as

shown in Figure 10–2. Automatic Referencing is really out of the scope of this

book but, in very basic terms, Automatic Reference Counting (ARC) is code that

invokes your Mac’s automatic memory management for Objective-C objects and

blocks. This frees the experienced programmer from the need to explicitly insert

retains and releases.

CHAPTER 10: MapKit & Tables with Storyboarding 438

Bring in the Images!

Figure 10–3. Drag in your graphics.

3. Just as we did in myStory_01 after going to my website at

http://bit.ly/oqnNM7 and downloading the images and boilerplate code onto

your desktop, drag in the 57 by 57 px for the iPhone classic, the 114 � 114 px for

the iPhone 4S Retina Display. Also bring in the 640 � 960px splash screen for

iPad and iPhone Retina displays and, as shown in Figure 10–3, drag in the 320 by

480px for the classic iPhone.

CHAPTER 10: MapKit & Tables with Storyboarding 439

Figure 10–4. Drag the images into the Supporting Files Folder.

4. Because we always want to keep thing nice and orderly and in their proper place,

you will see that the files holding the images you just dragged into Xcode are in

the root directory. We want to drag them into their proper location – the

Supporting Files folder. This is illustrated in Figure 10–4.

CHAPTER 10: MapKit & Tables with Storyboarding 440

Organize Storyboard
One of the most benign ways one can really get lost in Storyboarding is not focusing on
exactly how your structures connect and associate with your objects in Storyboarding. It
is so easy to look at the Storyboard canvas and believe everything is great while not
noticing that the wrong element is actually connected. So, make sure you follow along
exactly as I am here.

Figure 10–5. Select the Storyboard.

5. Select the storyboard, as shown in Figure 10–5.

CHAPTER 10: MapKit & Tables with Storyboarding 441

Figure 10–6. We do not want a View Controller here.

6. When Storyboard first opens up, you’ll see a View Controller, as shown in Figure

10–6. We are selecting the default view Controller because we need to delete it.

This is quite easy to grasp: we want a TableView with all its bells and whistles, the

ones that are not there if you merely add a table onto a View Controller. We will

make our own view Controller later. Right now, we need to delete the default View

Controller, so go ahead and do it, as shown in Figure 10–6.

THE BIG PICTURE

1. Populate a table with a list of cities

a. Create a Table View

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 442

Adding the Table View Controller

Figure 10–7. Drag a Table View Controller onto the canvas.

7. As mentioned, we need to have a fully loaded Table View to hold our array of

cities and interact with Storyboarding and MapKit. So drag a Table View

Controller onto the canvas, as shown in Figure 10–7.

CHAPTER 10: MapKit & Tables with Storyboarding 443

Figure 10–8. Selecting the Table View Cell - Cell

8. Something that is really cool and innovative about Storyboarding is that, we can

edit the Table View right here in Storyboarding. The tricky thing is that navigating

yourself around the canvas can be challenging.

a. In order to select the Table View Cell - Cell if you need to unclutter
your screen. First Close Navigator (Figure 10–8, arrow 1)

b. Then make sure that your Document Outline is open (Figure 10–8,
arrow 2)

c. Then, in your My Master Table View Controller Scene, select the
Table View Cell - Cell open (Figure 10–8, arrow 3a).

d. Now, it is true that you could select it by clicking the prototype cell
on the Storyboard (Figure 10–8, arrow 3b). However, I do NOT
want you to get into the habit of selecting objects on the canvas
because many experienced Objective-C coders have learned the
very hard way that sometimes the object we think we’ve selected
is actually under the object we actually selected. Many painful
hours later, or redoing the code and bugging endlessly, we found
our error. The other reason for not getting into the habit of
selecting on the Storyboard is that by making you open the
Document Outline and selecting the correct object in its pane, it
helps one visualize where we are.

CHAPTER 10: MapKit & Tables with Storyboarding 444

Figure 10–9. Name the Identifier “Cell” and save your work.

9. We are going to want to reuse the nib cells. In other words, rather than create a

massive list of cells, we’ll just use one and reuses it for whatever the number of

cities we have in our array. This means we need to give its Identifier a name that

we can reuse, so let’s just call it “Cell”, as shown in Figure 10–9.

THE BIG PICTURE

1. Populate a table with a list of cities

a. Create a Table View

b. Make the Table views Identifier be a cell

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 445

Figure 10–10. Delete the original view Controller.

10. We see that what we just built in the Storyboard was built with the original View

Controller. We need to build our own View Controller so delete both its header

and implementation files, as shown in Figure 10–10.

NOTE: Make sure that you delete the entire class, not just its references.

THE BIG PICTURE: EXPANDED STEPS 10 - 17

1. Populate a table with a list of cities

1.1. Create a Table View

1.2. Organize our classes

1.2.1. Delete the default ViewController

1.2.2. Create 3 Classes

1.2.2.1. Two UIViewController Subclasses

1.2.2.1.1. myMasterTableViewController

1.2.2.1.2 myDetailViewController

1.2.2.2. One Objective C class

1.2.2.2.1. myPos

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 446

Figure 10–11. Create the first of our two UIViewController subclasses.

11. Now that we’ve deleted the table’s default ViewController, we need a new

backing class file to hold our cities and code structures that will enable a table

to be populated with a list of cities. We will need two UIViewController

subclasses, one to do exactly this and another to grab all the data we need from

the Google server. We will also need a “My Position “ (myPos) Objective-C class

just like we did in myStory_01 to hold the current location. So let’s start building

these 3 classes: Enter�N and select a UIViewController subclass, as shown in

Figure 10–11.

THE BIG PICTURE

1. Populate a table with a list of cities

1.1. Create a Table View

1.2. Organize our classes

1.2.1. Delete the default ViewController

1.2.2. Create 3 Classes

1.2.2.1. Two UIViewController Subclasses

1.2.2.1.1. myMasterTableViewController

1.2.2.1.2. myDetailViewController

1.2.2.2. One Objective C class

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 447

Figure 10–12. Name it myMasterTableViewController.

12. We need to make sure that this new class we are creating is a subclass of

UITableViewController because we need it to know how to do table actions,

such as hold our cities in the table. So, after you name it

myMasterTableViewController, please make sure you make sure it’s a subclass

of UITableViewController because, if you don’t, you’ll be crying later. See

Figure 10–12.

Figure 10–13. Create the first of our two UIViewController subclasses.

CHAPTER 10: MapKit & Tables with Storyboarding 448

13. Once you have created your myMasterTableViewController, enter �N again and

select another UIViewController subclass, as shown in Figure 10–13.

Figure 10–14. Name thisUIViewController subclass myDetailViewController.

14. ThisUIViewController subclass is going to be more involved with parsing the

Google server and interacting between myPos and the View the user sees. So,

after naming it myDetailViewController, make sure it’s not a subclass of a

UITableViewController but rather a subclass of a UIViewController, as shown in

Figure 10–14.

Figure 10–15. Select an Objective-C class

CHAPTER 10: MapKit & Tables with Storyboarding 449

15. We’ve created our two UIViewController subclasses and now we need to create

our 3rd class, an Objective-C class. So let’s do it: enter �N again and select an

Objective -C class, as shown in Figure 10–22

THE BIG PICTURE

1. Populate a table with a list of cities

1.1. Create a Table View

1.2. Organize our classes

1.2.1. Delete the default ViewController

1.2.2. Create 3 Classes

1.2.2.1. Two UIViewController Subclasses

1.2.2.2. One Objective C class

1.2.2.2.1. myPos

2. Code a pin to drop to the center of a selected cities’ map

Figure 10–16. Name it myPos

16. Just as we did in myStory_01, this needs to be an NSObject subclass. Once

you’ve made sure of this and named it myPos, click next or press enter, as shown

in Figure 10–16. Let’s move on.

CHAPTER 10: MapKit & Tables with Storyboarding 450

Figure 10–17. Housekeeping part1: Drag the files into your myStory_02 folder.

17. These classes need to be placed into our myStory_02 file because, if you don’t

and you’re my student, you lose a letter grade for your project. If you’re not one of

my students and working for somebody, they will not look kindly upon you at all. If

you’re working for yourself and you do not organize your files, then God help you

because not only will your life become very miserable with huge amounts of

negative karma pouring all over you, but the folks in the iTunes store who ratify

your code will have zero respect for you if they see messy organization and then

your life will really be bad. Get the picture? This is shown in Figure 10–17.

CHAPTER 10: MapKit & Tables with Storyboarding 451

Figure 10–18. Housekeeping part 2: organize your header and implementation files.

18. After you have brought your files into your mySTory_02 folder, you will notice that

your .h and .m files are together. This is not good. You need to put each class’

header and implementation files together as shown in Figure 10–18

Coding myMasterTableViewController
In the video, I simply drop in the boilerplate code to save time. Here we will go through
each line so that you can learn. So if you have any problem with writing all this code,
please get over it. It’s the only way you can learn how to code. Rather than throwing a
bucket of paint onto the surface of a canvas, we are going talk about how each little
stroke of code makes a beautiful Mona Lisa. A beautiful app that makes you feel great
about yourself, teaches you how to write apps, and make money! OK, let’s get to it. We
need to do five things: create a private interface for our NSArray of cities, insert the
actual NSArray of cities, have the table return 1 section, have the number of rows equal
the number of cities, and enable viewing of the city names in each cell.

CHAPTER 10: MapKit & Tables with Storyboarding 452

Figure 10–19.This is how your myMasterTableViewController implementation file looks when you open it.

19. We are now ready to code the myMasterTableViewController implementation file.

Click on the myMasterTableViewController.m file located in your myStory_02

folder inside the root folder. Figure 10–19 shows how the

myMasterTableViewController.m file looks when we open it.

THE BIG PICTURE: CODING MYMASTERTABLEVIEWCONTROLLER: STEPS 20 TO 22

1. Populate a table with a list of cities

1.1. Create a Table View

1.2. Organize our classes

1.3. Code myMasterTableViewController.m

1.3.1. Create a Private interface for our NSArray of cities

1.3.2. Insert our NSArray of cities into viewDidLoad

1.3.3. Have the table return 1 section

1.3.4. Have the number of rows equal the number of cities

1.3.5. Enable viewing of the city names in each cell

1.4. Enable Storyboard to bring up the Table

1.4.1. Associate the Table View with myMasterTableViewController

2. Code a pin to drop to the center of a selected cities’ map

CHAPTER 10: MapKit & Tables with Storyboarding 453

Figure 10–20. Select and open myMasterTableViewController.m.

20. Figure 10–20 shows the boilerplate paste of the private interface for our NSArray

located in your download file “01 Part 1myMasterTableViewController.m”. We are

going to type it in though and talk about it. We need to do two things. First, we

are going to import the myDetailViewController header file and then create our

private interface that contains a list of cities. We’ll make it an NSArray with a

pointer that will contain our cities, as you will see further below in the code. For

now though, just remember that to make it a private member variable (we’re doing

it mainly as an exercise we could put this in the header file but then its public and

I want to show you how to make it private because often lists of things need to be

private). To make it private, we need to start with our @interface with name of the

class followed by closed brackets () and then end it with an @end, as shown

below

#import "myDetailViewController.h"

@interfacemyMasterTableViewController ()
{
NSArray* cities;
}
@end

CHAPTER 10: MapKit & Tables with Storyboarding 454

Figure 10–21. Create an array with a list of cities.

21. We need to allocate the array we are pointing to in our private array. In other

words, we need to create an array, which we have already called “cities” in our

private Interface. We are initializing the “cities” variable with a new array we will

construct. So let’s make cities be an NSArray that has objects in it. It goes on until

it sees the nil at the end of it. Feel free to enter your own cities if you like. See the

code below and the code in “02 Part myMasterTableViewController m” being

pasted In Figure 10–21.

cities = [NSArrayarrayWithObjects:@"New Delhi", @"Durban", @"Islamabad",
@"Johannesburg", @"Kathmandu", @"Dhaka", @"Paris", @"Rome", @"Colorado Springs", @"Rio
de Janeiro", @"Beijing", @"Canberra", @"Malaga", @"Ottawa", @"Santiago de Chile", nil];

CHAPTER 10: MapKit & Tables with Storyboarding 455

Figure 10–22. Finish coding myMasterTableViewController.m

22. We need to do three small tweaks to make sure our table can handle the list of

cities we gave it and pop it onto the TableView. We need to have the table return

1 section, have the number of rows equal the number of cities, and, finally, enable

viewing of the city names in each cell:

a. Have the table return 1 section: Go to
numberOfSectionsInTableView and add the return1 after the
comment. By default, it contains return 0 already. Be advised to
remove or change this. Otherwise, you may wind up with two
return statements and be very upset.

NOTE: The normal weight code is the default code that the clever people at Apple have already

coded for us. The bold text is what you will need to enter.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 // Return the number of sections.
 return 1;
}

b. We now need to modify the table view methods for our purposes.
We need to first have the number of rows equal the number of
cities. Go to numberOfRowsInSection and we’ll make the number of
rows be dynamic, which means that no matter the amount of cities
we put into the table, we’ll make the return be the count of the
total cities:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{

CHAPTER 10: MapKit & Tables with Storyboarding 456

 // Return the number of rows in the section.
 return [cities count];
}

c. Lastly we need to make sure that the city names show up in the
cell. We need to grab the appropriate city names that we will show
in each cell from the index and insert it into the textLabel. Go to
the bottom of tableViewcellForRowAtIndexPath and enter the
following.

NOTE: Right now I do not want you to be concerned about the meaning of each line of grey code
that Apple has coded on our behalf. At this point, I just want you to accept that it works and we

will continue.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier];
 }
 // Configure the cell...
 [cell.textLabel setText:[cities objectAtIndex:indexPath.row]];
 return cell;
}

Figure 10–23. Go back to Storyboard and select the Table View Controller.

CHAPTER 10: MapKit & Tables with Storyboarding 457

23. We need to associate the Table View with myMasterTableViewController. Go

back into Storyboard and select the Table View Controller in the Document

Outline, as shown in Figure 10–23.

THE BIG PICTURE: CODING MYMASTERTABLEVIEWCONTROLLER: STEPS 24 TO 26.

1. Populate a table with a list of cities

1.1. Create a Table View

1.2. Organize our classes

1.3. Code myMasterTableViewController.m

1.4. Enable Storyboard to bring up the Table

1.4.1. Associate the Table View with myMasterTableViewController

2. Code a pin to drop to the center of a selected cities’ map

Figure 10–24. Select myMasterTableViewController.

24. Select the Identity inspector in the Utilities. Then, in Custom Class, open the drop

down menu in Class and select myMasterTableViewController, as shown in Figure

10–24. This ensures that all the code we wrote in Steps 20-22 is now going grind

away underneath our Table View and make magic!

CHAPTER 10: MapKit & Tables with Storyboarding 458

Figure 10–25. Run It.

25. We need to run it. See Figure 10–25.

Figure 10–26. A beautiful Splash screen takes us to a populated table.

26. Make sure we see a splash screen appear and then a table populated with our list

of cities, as shown in Figure 10–26. Sure enough, we see a splash screen, Lulu

fruit and all. Then we see a table that is populated with our cities. It’s not doing

much at all when you click on it, but it’s there. We’re done with the first part of

myStory_02.

CHAPTER 10: MapKit & Tables with Storyboarding 459

THE BIG PICTURE

1. Populate a table with a list of cities (COMPLETED – see Figure 10–26)

2. Code a pin to drop to the center of a selected cities’ map (NEXT SECTION)

Part 2
Let’s take a deep breath and look around. If it was the lecture hall, I’d have you look at
the latest greatest “Fail” videos on YouTube or play a Grateful Dead song like Ripple.
Yes, the students know I’m completely whacko but, having had an acute brain injury and
epilepsy, I know a little bit about the brain and, as a human, I know we need to rest.

We’ve successfully populated our table with a list of cities. Now, in Part Two, we will
send that list of cities to Google, parse out the geospatial addresses of each city, store
them, and then shoot them out to the MapKit when a user selects a city on our list.

Looking at the big picture below, one can see that we need to add the MapKit
framework, do the code to make this work, and then tweak Storyboard to accept out
new code.

Figure 10–27. Click on Build Phases to so you can add the MapKit framework.

27. We need to add the MapKit framework just as we did on myStory_01. So go to

your root directory and click on the Build Phases tab, as shown in Figure 10–27.

CHAPTER 10: MapKit & Tables with Storyboarding 460

THE BIG PICTURE: OVERVIEW OF PART 2

1. Populate a table with a list of cities (COMPLETED)

2. Code a pin to drop to the center of a selected cities’ map

2.1. Add MapKit framework

2.2. Write code

2.3. Tweak Storyboard to accept our new code.

Figure 10–28. Enter “map” to locate the MapKits framework!

28. Now click on the Link Binaries with Libraries bar and click on the “+”. When the

pop-up window appears, enter map to search for the MapKit framework. Select it,

as shown in Figure 10–28, and click the Add button.

CHAPTER 10: MapKit & Tables with Storyboarding 461

Figure 10–29. Move the MapKit framework from the root folder to the Frameworks folder.

29. The MapKit framework appears in the root directory just as it did in Figure 9-18 in

myStory_01. Except there we also had Corelocation. Here we do not because

we’ll use Google’s. Again, you will need to drag it to where the framework

belongs, the Frameworks folder, as shown in Figure 10–29.

Figure 10–30. Open myPos header file and either code or paste in the proper code.

CHAPTER 10: MapKit & Tables with Storyboarding 462

30. We will now code the myPos header file. I highly encourage you to not simply paste

it into your header file as I did on the video. You will learn NOTHING by doing

that. Follow along with me and you will learn how to code. Remember that myPos

is handling the public interface and, in its header file, we need to set the two main

fields, which are the name and the geospatial address of our cities. The names of

the cities will be stored at the address pointed to by title. The geospatial

longitudinal and latitudinal addresses of each city will be handled by 2-

Dimensional location method and stored in a variable we’ll name coordinate.

NOTE: The CLLocationCoordinate2D is a structure that contains our geospatial coordinate
using the World Geodetic System (WGS 84) reference frame, which is takes it locations from the

core of the earth and know that it’s off by 2 centimeters!

When we first open the myPos.h file, we see the following:

#import <Foundation/Foundation.h>
@interface myPos : NSObject
@end

The first thing we do is add MapKit by entering #import <MapKit/MKAnnotation.h>. Next
we insert <MKAnnotation> after the given @interface myPos : NSObject. We use the
MKAnnotation protocol every time we need to use annotation-related information in a
map view. Next, we set our CLLocation class reference to incorporate the geospatial
coordinates and altitude of our device by entering CLLocationCoordinate2Dcoordinate,
which will use a variable I’ve called coordinate. We also need to store the name of the
city, which we will do in the title using NSString. Finally, we create @property statements
for both the location and title of each city. Your code for the myPos header file will now
look as shown in Figure 10–30 or as follows:

#import <Foundation/Foundation.h>
#import <MapKit/MKAnnotation.h>

@interface myPos : NSObject <MKAnnotation>
{
 CLLocationCoordinate2D _coordinate;
 NSString *_title;
}

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;

@end

NOTE: In the @property for our name of the city, which is a string we use (nonatomic, copy), I
just want you to remember that, without getting all screwed up in the details, as a general rule,

always use (nonatomic, copy) with strings.

CHAPTER 10: MapKit & Tables with Storyboarding 463

THE BIG PICTURE: CODING OVERVIEW

1. Populate a table with a list of cities (COMPLETED)

2. Code a pin to drop to the center of a selected cities’ map

2.1. Add MapKit framework

2.2. Write code

2.2.1. myPos for keeping track of selected cities and their coordinates

2.2.2. myDetailViewController to parse Google amongst other things

2.2.3. myMasterTableViewController to control the segue to MapKits.

2.3. Tweak Storyboard to accept our new code.

Figure 10–31. Now we open up the myPos Implementation file.

31. All we need to do in the implementation of the myPos header file is synthesize your

coordinate and titles. The final code is shown in Figure 10–31.

#import "myPos.h"
@implementation myPos

@synthesize coordinate=_coordinate;
@synthesize title=_title;

@end

CHAPTER 10: MapKit & Tables with Storyboarding 464

Figure 10–32. Open the myDetailViewController header file to paste or code it.

32. We now need to build the myDetailViewController class. Let’s first import our

MapKit and MapKit header file by entering #import <MapKit/MapKit.h> after the

#import <UIKit/UIKit.h>. Now, looking at @interface myDetailViewController,

we need to base it on the UIViewController and we are going support the

myDetailViewController class with protocols first for connecting datadelegates

and secondly for supporting map viewdelegates by coding

<NSURLConnectionDataDelegate, MKMapViewDelegate>. With this done, we assign

our local data to the NSMutableData as shown. Next we need to make a public

property for the detail item, which we will set to prepare for the segue that will

connect the table to the map view. Last, let’s set the @property for this by

entering @property (strong, nonatomic) id detailItem. Save it all and, before

moving on to the implementation of this code in the implementation file, please

check your code against Figure 10–32 or what is shown below.

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface myDetailViewController : UIViewController <NSURLConnectionDataDelegate,
MKMapViewDelegate> {
 NSMutableData* locData;
}

@property (strong, nonatomic) id detailItem;

@end

CHAPTER 10: MapKit & Tables with Storyboarding 465

Coding the myDetailViewController.m file
You are about to embark on the most advanced section of code I have used in the book.
This is the section that will most probably let you down and crash. Because of this, I am
open to you pasting a couple of the larger sections of code from my code. I want you to
keep your cool and just follow along. I will show you how to code this and where to
paste each specific set of boilerplate code. But first, let’s take another look at the big
picture.

THE BIG PICTURE: MYDETAILVIEWCONTROLLER.M EXPANDED.

1. Populate a table with a list of cities (COMPLETED)

2. Code a pin to drop to the center of a selected cities’ map

2.1. Add MapKit framework

2.2. Write code

2.2.1. myPos for keeping track of selected cities and their coordinates

2.2.2. myDetailViewController to parse Google amongst other things

2.2.2.1. Program the header file (completed)

2.2.2.2. Program the implementation file

2.2.2.2.1. Import the myPos header file

2.2.2.2.2. Create a private interface

2.2.2.2.3. Synthesize the detailItem

2.2.2.2.4. Code the detailItem method and update its view

2.2.2.2.5. Code the configureView method

2.2.2.2.5.1. Go to googleapis.com

2.2.2.2.5.2. Parse the longitudinal and latitudinal
cords.

2.2.2.2.5.3. Update the user interface for the detail item

2.2.2.2.5.4. Setup zoom and pin drop.

2.2.3. myMasterTableViewController to control the segue to MapKits.

2.3. Tweak Storyboard to accept our new code.

CHAPTER 10: MapKit & Tables with Storyboarding 466

Figure 10–33. Open up the myDetailViewController implementation file.

33. As one can see from looking at the Big Picture, the myDetailViewController is

going to contain a significant amount of code so let’s start by coding the code

found in the “07 Part 2myDetailViewController m” boiler plate code. Open the file,

as shown in Figure 10–33.

a. We first need to import the myPos.h file because, when we setup
the zoom and pin drop code, we use title and coordinate for the
myPos annotation.

#import "MyPos.h"

b. Next we need configure our view as a private method by using a
forward declaration of our method that you will code later. You can
see what I mean here by looking at the code before my comment
below // private method. We are declaring configureView. Do
you see it anywhere yet? Nope? That’s because we have yet to
code it. But we will. It’s private because it starts with the
@interface [name of this class] followed by a () and then ends
with an @end

@interface myDetailViewController ()
- (void)configureView; // private method
@end

c. Lastly, for this top section, we need to synthesize the property.

@synthesize detailItem=_detailItem;

This is all the code in the “06 Part 2myDetailViewController h” file and it should look as
follows:

#import "myDetailViewController.h"
#import "myPos.h"

CHAPTER 10: MapKit & Tables with Storyboarding 467

@interface myDetailViewController ()
- (void)configureView; // private method
@end

@implementation myDetailViewController

@synthesize detailItem=_detailItem;

Don’t be concerned if at this point you receive a warning about an incomplete interface,
we will be taking care of it right now. But before moving on, let’s look at the Big Picture
again. As one can see, we have just completed 2.2.2.2.1 thru to 2.2.2.2.3.in step 33. In
the next two steps (34 and 35), we will complete 2.2.2.2.4 thru to 2.2.2.2.5. (Everything
between “Code the configureView method” and “Setup zoom and pin drop”.)

THE BIG PICTURE

1. Populate a table with a list of cities (COMPLETED)

2. Code a pin to drop to the center of a selected cities’ map

2.1. Add MapKit framework

2.2. Write code

2.2.1. myPos for keeping track of selected cities and their coordinates

2.2.2. myDetailViewController to parse Google amongst other things

2.2.2.1. Program the header file (completed)

2.2.2.2. Program the implementation file

2.2.2.2.1. Import the myPos header file (Completed)

2.2.2.2.2. Create a private interface (Completed)

2.2.2.2.3. Synthesize the detailItem (Completed)

2.2.2.2.4. Code the detailItem method and update its view

2.2.2.2.5. Code the configureView method

2.2.2.2.5.1. Go to googleapis.com

2.2.2.2.5.2. Parse the longitudinal and latitudinal
cords.

2.2.2.2.5.3. Update the user interface for the detail item

2.2.2.2.5.4. Setup zoom and pin drop

2.2.3. myMasterTableViewController to control the segue to MapKits

2.3. Tweak Storyboard to accept our new code

CHAPTER 10: MapKit & Tables with Storyboarding 468

Figure 10–34. Place your cursor in-between @end and the end of shouldAutorotate.

34. We are now going to code a means to access the Google server, fetch data, and

bring it back to the iPhone or iPad. For parsing and other heavy-duty code, I like

to insert such code soon after the shouldAutorotateToInterfaceOrientation

method but of course before the @end of the class I am coding. In our case, we

have no choice but you will see that, in the myMasterDetailViewController when

we insert the segue method, this can be far from the bottom of the code. So place

your cursor as indicated and illustrated in Figure 10–34.

CHAPTER 10: MapKit & Tables with Storyboarding 469

Figure 10–35. Let’s parse the Google server.

35. I do not have a problem with you pasting the “08 Part 2myDetailViewController m”

boilerplate code that parses the Google server because we all use it over and

over. We all use and tweak it here and there. If you skipped my instruction in step

34, make you sure you know where to paste it. I will also go through the critical

sections that you need to know and tweak. The odds are that Apple will soon

make a class or framework to do this because we all use this code to parse

servers. After pasting the code where it need to be, let’s go through it.

a. Go back to where we began this last section of code. We first
need to import the myPos.h file because, when we setup the zoom
and pin drop code, we use title and coordinate for the myPos
annotation. The first method we see is the setDetailItem, as
shown below. We set the detailItem so it can be used and then,
once it’s stored locally, we’ll configure the view which, in other
words, means making a new map that will redraw itself when a
change is needed. The configureView is the huge method that is
next in the myDetailViewController.m

- (void)setDetailItem:(id)newDetailItem
{
if (_detailItem != newDetailItem) {
_detailItem = newDetailItem;

// Update the view.
 [selfconfigureView];
 }
}

CHAPTER 10: MapKit & Tables with Storyboarding 470

b. The next item we look at is the configureView method that is a
utility method and called internally. This is where the real action
happens. First, let’s look at how we get onto the server. We go to
the server associated with mapURI, which in our case is the API
geocode at Google, maps.googleapis.com. We’re going to ask it
for a city and make the code take care of the spaces, whether
denoted by a space or a “%20”

NSString* mapURI =
@"http://maps.googleapis.com/maps/api/geocode/json?address=city&sensor=false";
 mapURI = [mapURI stringByReplacingOccurrencesOfString:@"city"
withString:[self.detailItem description]];
 NSURL* mapURL = [NSURL URLWithString:[mapURI
stringByReplacingOccurrencesOfString:@" " withString:@"%20"]];

Well, you can see above that we’ve told the server that we want data but the issue is
how the server returns that data to us. This is where the NSURL protocols we’ll use do
the work but we have to call them by calling connection

NSURLConnection* connection = [NSURLConnection connectionWithRequest:[NSURLRequest
requestWithURL:mapURL] delegate:self];
 if (connection)
 locData = [NSMutableData data];

Here you can see how “connection” consists of three parts:

� connection:(NSURLConnection *)connection didReceiveResponse

� connection:(NSURLConnection *)connection didReceiveData

� connectionDidFinishLoading:(NSURLConnection *)connection

The connectionDidFinishLoading:(NSURLConnection *)connection is the method that
actually collects the longitudinal and latitudinal data from the Google server and stores
it.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {

NSRegularExpression* regex =
[NSRegularExpressionregularExpressionWithPattern:@"location.*?\\}"
options:NSRegularExpressionDotMatchesLineSeparators
error:nil];
NSString* dataString = [[NSStringalloc]
initWithData:locDataencoding:NSASCIIStringEncoding];
NSTextCheckingResult* locResult = [regex firstMatchInString:dataString
options:0range:NSMakeRange(0, [dataString length])];
NSString* locString = [dataString substringWithRange:[locResult range]];

NSRange latRange = [locString rangeOfString:@"\"lat\" : "];
NSString* lat = [[[locString substringWithRange:NSMakeRange(latRange.location +
latRange.length , 20)] stringByReplacingOccurrencesOfString:@","withString:@""]
stringByTrimmingCharactersInSet:[NSCharacterSetwhitespaceAndNewlineCharacterSet]];

NSRange lngRange = [locString rangeOfString:@"\"lng\" : "];
NSString* lng = [[locString substringWithRange:NSMakeRange(lngRange.location +
lngRange.length, 20)]
stringByTrimmingCharactersInSet:[NSCharacterSetwhitespaceAndNewlineCharacterSet]];

CHAPTER 10: MapKit & Tables with Storyboarding 471

// setup zoom and pin drop stuff
 [(MKMapView*)self.viewsetZoomEnabled:YES];
 [(MKMapView*)self.viewsetScrollEnabled:YES];
MKCoordinateRegion region;
 region.center.latitude = [lat floatValue];
 region.center.longitude = [lng floatValue];
 region.span.longitudeDelta = 0.01f;
 region.span.latitudeDelta = 0.01f;
 [(MKMapView*)self.viewsetRegion:region animated:YES];

MyPos* ann = [[MyPosalloc] init];
 ann.title = [self.detailItemdescription] ;
 ann.coordinate = region.center;
 [(MKMapView*)self.viewaddAnnotation:ann];
}

c. Since we also need to handle the map delegation as a protocol,
we have one more piece of code to handle here. Most of this, we
do not use, but it does drop the pin for us. In the lecture hall, I
make my students play around with changing the animation, the
pin color, and the setTitle. Suffice to say we just drop it in as you
too will find yourself doing. I encourage you to also play with at
least the pinView.pinColor = MKPinAnnotationColorRed, the
pinView.canShowCallout = YES, and the pinView.animatesDrop =
YES.

(MKAnnotationView *)mapView:(MKMapView *)mV
viewForAnnotation:(id<MKAnnotation>)annotation {
 MKPinAnnotationView *pinView = nil;
 if(annotation != ((MKMapView*)self.view).userLocation) {
 static NSString *defaultPinID = @"pinID";
 pinView = (MKPinAnnotationView *)[(MKMapView*)self.view
dequeueReusableAnnotationViewWithIdentifier:defaultPinID];
 if (pinView == nil)
 pinView = [[MKPinAnnotationView alloc] initWithAnnotation:annotation
reuseIdentifier:defaultPinID];
 pinView.pinColor = MKPinAnnotationColorRed;
 pinView.canShowCallout = YES;
 pinView.animatesDrop = YES;
 } else {
 [((MKMapView*)self.view).userLocation setTitle:@"I am here"];
 }
 return pinView;
}

@end

But the most important thing that I stress here is that you CANNOT be freaked out if you
do not know what every piece of the code does. You do not know what every single part
of your car’s engine does to drive it. Similarly, you have enough right here above to
know how to connect to a server, parse out what you want, and animate it as you like.
Enough said. Get over it and move on. If as you move on you find you need to parse a
server, go ahead, use this code, tinker around with it, and make it work.

CHAPTER 10: MapKit & Tables with Storyboarding 472

Figure 10–36. Select and delete the tableView method.

36. OK, we are through with the myDetailViewController and it’s now time to do

some housekeeping in the myMasterTableViewController. So, open it up and

scroll down to the bottom of the myMasterTableViewController.m until you get to

the tableView method. What I want you to see here is that this is the method we

used when we used the table View delegate before storyboarding. The thing is

that we now use storyboarding, so we no longer need it. Select it all, as shown in

Figure 10–36, and either comment it out or delete it. In the video, I delete it out.

CHAPTER 10: MapKit & Tables with Storyboarding 473

Figure 10–37. Create the prepareForSegue method.

37. Staying in the myMasterTableViewController implementation file, we need to look

ahead and imagine that we are just about to create a segue that leads from our

table to the MapKit, which in essence takes the place of the tableView method

we just deleted. We will need a method to handle this. Again, you can either

download the "09 Part 2myMasterTableViewController.m" boilerplate file or you

can code along with me. Go to the end of the

shouldAutorotateToInterfaceOrientation method, create a couple of blank line,

and let’s start coding or pasting the code in and following along.

a. The first thing to note here is that we have already imported the
myDetailViewController.h file in step 20.

b. Now we need to tell the myDetailViewController what city to
show and we do this with:

NSIndexPath *indexPath = [self.tableView indexPathForSelectedRow];

c. We need to also make it only tell myDetailViewController if we’re
going to navigate through the segue. But the problem is that we
need to tell the compiler the name of the segue it needs to keep a
look out for us but we’ve yet to give this segue a name. So let’s
give it a name now!

d. Let’s call it ShowMapDetail. We also need the code that we will
need to check if this segue is being used and then, if the segue
called ShowMapDetail is, in fact, being used.

CHAPTER 10: MapKit & Tables with Storyboarding 474

e. We know we are going to be going to a detailViewController so
we grab the city name from the current and selected row because
the user just clicked one.

f. We also set and create a detail item, the details of the city, as
follows:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 // ensure this is the Seque which is leading to the detail view
 if ([[segue identifier] isEqualToString:@"ShowMapDetail"])
 {
 // now setup detail controller so it can function...
 // get the Detail instance
 MyDetailViewController* detail = [segue destinationViewController];
 // get the selected row and city name from it
 NSIndexPath *indexPath = [self.tableView indexPathForSelectedRow];
 // inform Detail View of selected city
 [detail setDetailItem:[cities objectAtIndex:indexPath.row]];
 }
}

Tweaking the Storyboard
We now have written or pasted all the code we need to parse the Google server for the
geospatial specifics of each city we populated in our list on Part 1, and we also have the
code to route these coordinates through a segue, which does not exist yet, through to a
MapKit that will have a pin drop down into the middle of the selected city. In short, we
need something that will contain our MapKit Framework and, to do this, we will add a
navigation controller and a detail view. We will have to create a new View Controller and
bring it onto the canvas. Then we need to connect the Master View to the Detail View
and add a MapView to its Navigation. Looking at the big picture expanded, we see the
following below.

THE BIG PICTURE: STORYBOARD TWEAKING EXPANDED

1. Populate a table with a list of cities (COMPLETED)

2. Code a pin to drop to the center of a selected cities’ map

2.1. Add MapKit framework

2.2. Write code

2.3. Tweak Storyboard to accept our new code.

2.3.1. Add Navigation Controller

2.3.2. Add Detail View that will contain our MapKit Framework

2.3.3. Drag a View Controller onto the canvas

CHAPTER 10: MapKit & Tables with Storyboarding 475

2.3.4. Add a Push transition from the Master View to the Detail View -
Name it “Detail View”

2.3.5. Add a MapView to its Navigation: - Drag the Map view above the
View

2.3.6. Associate the Map View with the backing class of
myDetailViewController

2.3.6.1. Select the View Controller Detail View in the view Controller
Scene in the Document Outline

2.3.6.2. Select the Identity inspector in the Utilities

2.3.6.3. In Custom Class go to the drop down menu in Class

Figure 10–38. Open up the Storyboard for some final tweaking.

38. With this said, let’s open up the Storyboard, as shown in Figure 10–38

CHAPTER 10: MapKit & Tables with Storyboarding 476

Figure 10–39. Add a Navigation Controller.

39. We need to add a Navigation controller, so select Editor � Embed � Navigation

Controller, as shown in Figure 10–39.

Figure 10–40. The new Navigation Controller automatically connects to the Table View.

40. As we can see in Figure 10–40, the new navigation controller automatically

connects to our Table View. Make some space on your Storyboard by closing the

Navigator.

CHAPTER 10: MapKit & Tables with Storyboarding 477

Figure 10–41. Add Detail View that will contain our MapKit Framework.

41. Zoom out so you can see more of the canvas. Now scroll to the left so you have a

large area of blank canvas to the right of your Table View. Now grab a View

Controller and drag it onto the canvas to the right of the Table View, as shown in

Figure 10–41.

Figure 10–42. Create a segue.

CHAPTER 10: MapKit & Tables with Storyboarding 478

42. We now need to connect the Master View and the Detail View with a segue -

specifically with a push. To do this, I want you to select the cell in the Master View

and then control drag from the cell to the View, as shown in Figure 10–42.

Figure 10–43. Select Push.

43. After you have controlled dragged from the cell to the View, you will see a drop

down menu occur with three options of segue connectivity: Push, Modal, and

Custom. We want to select Push. This is shown in Figure 10–43.

Figure 10–44. Remember the name we gave the segue?

CHAPTER 10: MapKit & Tables with Storyboarding 479

44. We now need to give the segue that we just created the name we gave it in the

prepare for segue method in the myMasterTableViewController.m class. In case

you forgot the name you gave it, or even if you remember it, go back and copy the

name of the segue so that your brain can make the connections. This is illustrated

in Figure 10–44

Figure 10–45. Select the segue.

45. This may sound really unnecessary but students have the most difficult time

naming segues because they forget to first select it. I know it’s new but it’s

amazing how many forget to do this. For this reason, I’ve taken the time to

specifically include this image in the book. Select the segue, as shown in 10–45,

and then we will give it its name.

CHAPTER 10: MapKit & Tables with Storyboarding 480

Figure 10–46. Paste the name in the Identifier.

46. Once you have selected the segue connecting the UITableViewCell to the Detail

View Controller, paste the name in the Identifier box, as shown in Figure 10–46.

Figure 10–47. Drag a Map View onto the View.

47. We now have everything connected for the map to appear on the view except …

ahh - the Map View! Grab a Map View from the Library and drag it onto the View,

as shown in Figure 10–47.

CHAPTER 10: MapKit & Tables with Storyboarding 481

Figure 10–48. Select the Map View.

48. We now need to make the Map View become the Primary View. As you can see in

Figure 10–48, the View is above the Map View. In geek terms, we say that the

Map View is subordinate to the View and the View is currently the primary view.

Remember how I said that Views lying on top of one another can be very

confusing. Well, there’s a reason I’m investing three images into this point.

Figure 10–49. Drag Map View on top of the View.

CHAPTER 10: MapKit & Tables with Storyboarding 482

49. Right now, the Map View that we just dragged onto the View is subordinate to the

view. To make the view go away and have the Map View be the primary view,

select the View Controller in the view Controller Scene in the Document Outline

and then drag the Map View above the View, as shown in Figure 10–49.

Figure 10–50. Now Map View is the Primary View.

50. Once the Map View is above the View, the View disappears and the MapView will

be the Primary view. This is critical because nothing else will work if this doesn’t

happen! Make sure you can master this. Don’t move on unless your screen looks

like the screen in Figure 10–50.

CHAPTER 10: MapKit & Tables with Storyboarding 483

Figure 10–51. Associate the Map View with your myDetailViewController.

51. Remember the tons of work you did for the myDetailViewController.m? Well,

that’s all got to work underneath the Map View we have just created. Select the

View Controller Detail in the View Controller Scene in the Document Outline.

Select the Identity inspector in the Utilities. Then in the Custom Class, go to the

drop down menu in Class and select myDetailViewController, as shown in

Figure 10–51.

CHAPTER 10: MapKit & Tables with Storyboarding 484

Figure 10–52. Run it.

52. Run it.

CHAPTER 10: MapKit & Tables with Storyboarding 485

Figure 10–53. Splash goes to Table View, then selecting a city, Durban.

53. Yes, it is beautiful, isn’t it? All that hard work, huh? The Splash appears, then we

see the table we populated with cities but now we see the beautiful disclosures

on the right side of each cell that are telling us that if we click on the cell then

something very cool will happen. We then click on the cell and it segues in a Map

view, as shown in the right image in Figure 10–54.

CHAPTER 10: MapKit & Tables with Storyboarding 486

Figure 10–54. The pin drops and the annotation works.

54. Congratulations. The one thing I am going to have you do as an exercise is name

the Navigation Bar the “Detail View” and also call the Table View the “Master” in

the navigation bar. Go back to where you were in Figure 10–47 and simply double

click near the center of the navigation bar and name it whatever you like actually.

The reason I leave this out is because students often think that the name we give

the navigation bar actually has some effect on the code. I’ve seen quite a few

students changing the name on the navigation bars trying to debug their code.

Leaving the names out shows you that these names have zero affect at all.

These two series have been very long. There is nothing beyond the code that I want to
show you. In fact, there have been quite a few times that we have gone beyond the
scope of “Beginner”, let alone absolute beginner. So we will not dig down any more into
the code than what we have already done. Now take a break, relax, and glow in the
satisfaction!

487

 Chapter

Storyboarding to
Multimedia Platforms
This is the last chapter of the book and I have been looking forward to writing this
chapter for a long time. This is the capstone app if you will. The app that teaches you
how to market your restaurant, business, or whatever you like to various multimedia
platforms. I chose to promote a band for this app because it includes iTunes and many
of my students struggle with iTunes. We will take care of that right here. In the lecture
hall, I first walk through the app with the students as they imagine they are in a distant
place and time and they’ve discovered a band called The Beatles. They then market that
band on the Web, YouTube, and iTunes. In the second half of this project, the students
create their own business that they market in a similar but much more creative manner.

Unfortunately, due to copyright issues, it is not permissible to show pictures of the
Beatles in a book that is not authorized by the Beatles. For the purposes of this book,
I’ve created some dummy sites on the web with pictures of myself playing guitar and
iTunes sites where I have songs from many years ago (1997). I will show you where to
get the Beatles URLs (public domain) and how to make the site (first for the Beatles as I
do in class) and then how to find other bands or other types of media to pretend to
promote. Hopefully, you will have your own business, such as a restaurant, bead shop,
consulting service, or whatever, that you can then make a promotional app of and shoot
it up to the iTunes store so that people can download it for free.

How does this work? Remember back in Figure 1-21, I explained the exact process of
how one can make money from an app on the Internet? Well, here I teach you how to
market your business and set your app up, possibly for free to begin with. Let’s say you
have a babysitting business. After you learn how to manage the Beatles website, you
can make an app for the babysitting business and shoot it up to the app store for free
downloads. In the old days, we used to hand out cards – now we hand out apps. You let
parents and potential parents of your babysitting store know that they can download
your babysitting business’ app for free and, with a password that only works for a
limited time (and only if they are a potential parent), view their baby on a live webcam
any time of day. They can see other children being taken care of by your staff. They can

11

CHAPTER 11: Storyboarding to Multimedia Platforms 488

get updates on snow days, on birthdays, and pay their bills online all through your app.
By word of mouth, those parents will tell other parents how great your business is based
solely on how convenient and cool your app was.

The same applies to other businesses; you just need to be creative. Innovativeness is
your department but hey! You had to have a huge streak of innovation to buy this book
and, if you’re still reading this, you’re well into the realm of Geekdom so I have full faith
that you have everything you need to make a wonderful app for your business, another
person’s business, or yourself. All you need is the technical know-how and I will teach
you that right here, right now, so let’s go!

myiTunes: A Master-Detail Application
myiTunes is based upon one of the more daunting methods of creating a storyboarding
app: the Master-Detail Application. However, Master-Detail Applications empower the
iPad iOS 5’s split view and popover together with incredible storyboarding technology.
More so, as if this were not enough, we also throw into the mix the ability to access
iTunes, Facebook, Google+, pages that have videos, and, of course, the two iPad splash
screens with cool icons that all add up to a beautiful, marketable app just waiting to
boost you, your business, or another person’s business up into the stratosphere—
loudly!

iTunes has some controversial, quirky, and not so user-friendly means of accessing its
iTunes music store. I will go through this step by step, including the ability to look up
bands, videos, and podcasts. There are some other multimedia platforms I do not cover
in the example because that would be overload, but I will show you exactly how to
convert your media from images to video and so forth. I also include the code to access
these other forms of multimedia and the boilerplate code that you download. So, even
though we do not use all these types of media in the boilerplate, they are there for you to
use as you so choose.

One thing about terminology before we proceed: we will be talking about split views and
popovers in this app. These are the supercool tables and drop-down menus that,
depending how you hold your iPad, invoke a table for the user to use. The split view
shows 2 panels, side-by-side. In landscape mode, the master view is 320px wide.
However, when you go to portrait orientation, the split view appears as a popover that
looks like it’s lying on top of the existing view. It looks like a drop-down menu sitting on
top of what was underneath it (see Figure 11–25). It cannot be that it works like a dialog
box or drop-down menu. One student recently asked me: “Dr. Lewis, can we pimp out
the popover!?” Hmmm… nope! You cannot tweak, pimp out, and change much. But the
issue is whether you want to or not, and the answer is ‘probably not’. Popovers are
sophisticated, elegant, and show the user that you, the developer who programmed
them, are awesome!

So let’s get on with the preliminaries so we can make a start on our app.

CHAPTER 11: Storyboarding to Multimedia Platforms 489

Preliminaries
This chapter’s download files are similar in nature to Chapter 10’s boilerplates and
images. Except that, as mentioned before, I include code that we do not use in this app
but that you may want to use when you create your own app using alternative or
additional media. It’s all there for you to use. On the video and in the code, there is a
substantial amount of code prewritten by me. However, I explain it all in intense detail in
this chapter so I suggest that you try and code it all by yourself. If you find you need to
use the boilerplate code after a while, then go ahead and use it, but please first try doing
it on your own. If you do have to use the boilerplate code, then go ahead and try typing
in the code line by line after you had success running the boilerplate code. If you cannot
make it work, even using the boilerplate code, then download my exact Xcode file and,
after making my code run, see exactly where you missed something.

These download files can be found at http://bit.ly/sL26vN. One can download the
sample code that I programmed on the video here: http://bit.ly/uN1uV1. To view the
screencast of this chapter’s exercise, go to http://bit.ly/tPatpA. If you need more
help, go to the forum at http://bit.ly/oLVwpY.

THE BIG PICTURE

Just as we did in Chapter 10 when we began to write larger sets of code, we will use “The Big Picture”
with its many views. First, we will view the code from “30,000” feet, taking a very broad overall view of
our landscape. Then, as we drill downward, we will always keep track of the big picture.

1. Set up the popover in the storyboard

2. Code the interaction to the multimedia platforms

3. Tweak the popover to grab the platforms correctly

CHAPTER 11: Storyboarding to Multimedia Platforms 490

A New Master-Detail Template

Figure 11–1. Select the Master-Detail Application icon, and press return or next.

1. We will use a Master-Detail Application. So open Xcode and enter ��N, as

shown in Figure 11–1. After selecting the Master-Detail Application, press

enter/return.

CHAPTER 11: Storyboarding to Multimedia Platforms 491

Figure 11–2. Name your app myiTunes making sure Storyboard and automatic referencing is on.

2. In order to follow along with me as closely as you can, name it “myiTunes,” select

“iPad,” check the “Use Storyboard,” and “Use Automatic Reference Counting,”

but leave the “Class Prefix” and “Include Unit Tests” unchecked as shown in

Figure 11–2.

CHAPTER 11: Storyboarding to Multimedia Platforms 492

Bring in the Images!

Figure 11–3. Drag in your graphics.

3. Just as we did in myStory_01 after going to my website at

http://bit.ly/uN1uV1 and downloading the images and boilerplate code onto

your desktop, drag in the 72 � 72 px iPad icon, iPad 72, into the App Icon box,

drag the 769 � 1004 px Default-Portrait iPad splash screen into the Launch

’Images Landscape box, and drag the 1024 � 748 px Default-Landscape iPad

splash screen into the Launch Images’ Portrait box as shown in Figure 11–3.

CHAPTER 11: Storyboarding to Multimedia Platforms 493

Figure 11–4. Drag the images into the Supporting Files Folder.

4. Because we always want to keep things nice, orderly, and in their proper place,

you will see that the files holding the images you just dragged into Xcode are in

the root directory. We want to drag them into their proper location: the Supporting

Files folder. This is illustrated in Figure 11–4.

Organize the Popover in Storyboard
The first thing we will do is set up the popover in the storyboard. I am going to be fairly
inventive and artful but not go overboard with beautiful popover bells and whistles
because I do not want to take away from my two goals: teaching you to set up the
storyboard and teaching you to write the code behind the storyboard. However, once
you complete this project, you will have opened the door to all the rooms where you can
later tinker around. But, for right now, let’s keep it simple.

CHAPTER 11: Storyboarding to Multimedia Platforms 494

Figure 11–5. Select Storyboard and close the Navigator.

5. Select MainStoryboard.storyboard and close the Navigator as shown in

Figure 11–5.

Figure 11–6. We do not want a View Controller here.

CHAPTER 11: Storyboarding to Multimedia Platforms 495

6. Before we get too far, I want you to take a look at Figure 11–14 and take a look at

all the Table views and their levels located in the left hand side bar called the

Document Outline inside the box called Master View Controller - Master Scene.

Compare how populated it is compared to our lone Table view in our Master View

Controller - Master Scene. That’s quite a lot of work there.

There are two ways to populate these Table Views with what you want. They are

the “long boring” way and the “organized and very efficient” way. We plan ahead

and we do this by sticking to a simple rule:

Create one Table view with all its sub-attributes. Then, once you have one
done exactly the way you want it, duplicate the entire set.

We are selecting the default view Controller because we need to delete it. As far

as the big picture is concerned, we will create one group exactly as we want it to

be, as indicated by 1.1 in “The Big Picture”.

So go ahead and open the Documents Outline and select Table View in my

Master View Controller–Master scene as shown in Figure 11–6.

THE BIG PICTURE

1. Set up the popover in the storyboard

1.1. Create a Group

1.1.1. Set up the attributes of each Table View Cell – Cell in the group

1.2. Duplicate the Group as required

1.3. Label all the cells

2. Code the interaction to the multimedia platforms

3. Tweak the popover to grab the platforms correctly

CHAPTER 11: Storyboarding to Multimedia Platforms 496

Figure 11–7. Create a grouped-style set of static cells.

7. Open the Attributes Inspector in the Utilities pane and then go down and ensure

Static Cells from the Content drop-down menu. Next select “Grouped” Style to

give us space for headers for separation as shown in Figure 11–7.

Figure 11–8. Selecting the Table View Cell - Cell

CHAPTER 11: Storyboarding to Multimedia Platforms 497

8. This can be benign but tricky so pay attention to this very simple step: go back to

the Documents Outline and, inside your Master View Controller – Master scene,

go down two levels from the Table View you have just been working on. As shown

in Figure 11–8, you should now be at the Table View Cell—Cell. If you select the

wrong level, you will only realize you’re lost when you’re very lost.

Figure 11–9. Create subtitles for each Table View Cell – Cell.

9. We want to create subtitles in each Table View Cell—Cell because they tell us,

and most importantly the user, what we will see or where we will be going if we

select this option. So, go back to the Attributes Inspector in the utilities pane and

then go down and select Subtitle from the Style as shown in Figure 11–9.

NOTE: As we travel here for the first time while we set up the cells, note that there are many fun
and awesome tricks you can use when you travel back here again. I mentioned that we will be
opening “doors” that lead into rooms with lots of bells and whistles. This is one of them! Keep

looking around as we travel to these different rooms.

CHAPTER 11: Storyboarding to Multimedia Platforms 498

Figure 11–10. Create disclosure indicators for each Table View Cell – Cell.

10. Looking at Figure 11–10, we can now see that, under Detail in our cell, there is a

Subtitle. This is exactly what we want. Now, while we’re here, why don’t we also

add disclosure indicators “>” that give the user a sense of the direction that they

will be travelling in when they select a particular cell? Yup, that’s a great idea! Go

to the Accessory section just under the Style section you were in and select

Disclosure Indicator as shown in Figure 11–10

CHAPTER 11: Storyboarding to Multimedia Platforms 499

Figure 11–11. Go back up one level to the Table View Section.

11. Ahh… look at that beautiful Disclosure and subtitle we’ve just created in Figure

11–11. Beautiful! Before we get too lost, look at The Big Picture and see that we

are about to embark on setting up the Table View Section (1.1.2.). Go back to the

Documents Outline and select the Table View Section as shown in Figure 11–11.

THE BIG PICTURE

1. Set up the popover in the storyboard

1.1. Create a Group

1.1.1. Set up the attributes of each Table View Cell – Cell in the group

1.1.1.1. Static Cells, Grouped Style, subtitles, and disclosure indicators

1.1.2. Set up the Table View Section

1.1.2.1. Create a header and create 2 rows

1.2. Duplicate the Group as required

1.2.1. Go to the Master scene and make 4 sections

1.3. Label all the cells

2. Code the interaction to the multimedia platforms

3. Tweak the popover to grab the platforms correctly

CHAPTER 11: Storyboarding to Multimedia Platforms 500

Figure 11–12. Name the first group “Artist” and create two rows.

12. Keep in mind that we have yet to label any of our Table View Cell—Cells yet. I

only do this in step 1.3 in The Big Picture, which is the last step for two reasons.

First, it takes time and, second, we will change them. However, in this instance,

we need to go to the Header in the Attributes inspector and simply give it a

“dummy” label that will give us something, anything, to edit when we duplicate

these cells. So, go ahead and label this group with the name of our first group,

which will be Artists. Then, create 2 rows as shown in Figure 11–12 because we

will only have two rows of cells in each group. You may want more. You will

always want to err on the side of creating more cells because then you can delete

them very easily, but if you have to recreate cells, you often will have to spend

time formatting them.

CHAPTER 11: Storyboarding to Multimedia Platforms 501

Figure 11–13. Only now do we create all of our sections.

13. We have now created one group exactly as we want it. So now go back to the original

Table View where we began and make 4 sections as shown in Figure 11–13.

Figure 11–14. Name the cells and headers.

CHAPTER 11: Storyboarding to Multimedia Platforms 502

14. Of course you will do things differently when you create your own but for now let’s

name our four groups: Artists, Albums on iTunes, Songs, and Pictures. These 4

groups will facilitate our “Band’s” (I will give you the Beatles links when we get to

the code) presence on the Web, and iTunes, under Artists, then Albums. For the

Beatles, there will be many albums. For our example, we’re only using 2, and

likewise for Songs and Pictures. Note that in the subtitles, some are telling the

user that they will go to iTunes and some are telling the user they will go to the

Internet. Name all the cells as shown in Figure 11–14. Remember that you can

simply double-click on the cell to create a name.

Coding the myiTunes App
I really want to keep this really, really, really simple! Two broad things will be done when
we code: first create code that hooks up to what we want to happen when each cell is
pressed and then make sure our views connect correctly with the WebViews.

THE BIG PICTURE

1. Set up the popover in the storyboard

2. Code the interaction to the multimedia platforms

2.1. MasterView Controller

2.1.1. Code for each cell that is selected

2.2. DetailView Controller

2.2.1. Connecting the views to the WebViews

3. Tweak the popover to grab the platforms correctly

CHAPTER 11: Storyboarding to Multimedia Platforms 503

Figure 11–15. Create a NSURL to hook up to iTunes.

15. We start by looking at the MasterViewController so let’s first make sure that our

header allows us to do all the things we need to do in our implementation file.

Save everything, close the utilities, open the navigator, and open up the

MasterViewController.h. We start by creating an NSURL to connect to iTunes.

I’ve named this pointer iTunesURL as shown in Figure 11–22. Before we simply

blurt out that we want an NSURL *iTunesURL, we need to bring in a protocol that

will define this method. In our case, we specifically need to define a method that

delegates or gives to us all the good stuff necessary for a UIWebView object that

will handle the iTunes web content we want loaded. As we did before in

myStory_02, we will use the UIWebViewDelegate Protocol Reference

<UIWebViewDelegate>. Please make sure that you also create the @property as

shown below.

#import <UIKit/UIKit.h>
@class myDetailViewController;
@interface myMasterViewController : UITableViewController <UIWebViewDelegate>
{
 NSURL *iTunesURL;
}

@property (strong, nonatomic) myDetailViewController *detailViewController;
@property (strong, nonatomic) NSURL *iTunesURL;
@end

CHAPTER 11: Storyboarding to Multimedia Platforms 504

Figure 11–16. Paste the first Boilerplate.

16. Open up the MasterViewController implementation file and then select all the

contents of the first Boilerplate file (Boilerplate 01). After that, paste the contents

in-between the #import "myDetailViewController.h" line and the

@implementation MasterViewController line as shown in Figure 11–16. This code

is nothing else but forward declarations of private methods I’ve written to

accommodate the various types of media we link to in this app and media that

you may use in later apps. Specifically we have 3:

a. LocateArtistPageInSafari

b. LocateArtistPageInItunes, a LocateMoviePageInItunes (we do not
use this one but I thought you may like to have it at your disposal)
and

c. StartExternalAppWithURL:(NSURL *)theURL).

Once you paste the first boilerplate in, it should look as follows:

#import "MasterViewController.h"
#import "myDetailViewController.h"
////////////// START BOILERPLATE 1 ////////////////////
@interface MasterViewController (PrivateMethods)
// forward declarations for private methods
-(void)LocateArtistPageInSafari;
-(void)LocateArtist2PageInSafari;
-(void)LocateArtist3PageInSafari;
-(void)LocateArtistPageInItunes;
-(void)LocateMoviePageInItunes;
-(void)LocateAlbumPageInItunes;
-(void)LocateTrackInItunes;

CHAPTER 11: Storyboarding to Multimedia Platforms 505

-(void)DeselectRow;
-(void)StartExternalAppWithURL:(NSURL *)theURL;
@end

////////////// END BOILERPLATE 1 ////////////////////
@implementation myMasterViewController
@synthesize detailViewController = _detailViewController;

Figure 11–17. Synthesize the iTunesURL.

17. We cannot get too wrapped up in the header protocol and forget that we need to

synthesize the iTunesURL we set up in our header file. This is shown in Figure 11–

23 and also below.

////////////// END BOILERPLATE 1 ////////////////////
@implementation MasterViewController
@synthesize detailViewController = _detailViewController;
@synthesize iTunesURL;
- (void)awakeFromNib
{
 self.clearsSelectionOnViewWillAppear = NO;
 self.contentSizeForViewInPopover = CGSizeMake(320.0, 600.0);
 [super awakeFromNib];
}

CHAPTER 11: Storyboarding to Multimedia Platforms 506

Figure 11–18. Insert boilerplate 2.

18. The viewDidLoad that comes along with the Master-Detail default Instantiation is

not exactly what we need. There are two ways to do this and I prefer the first way,

which is to code it yourself. Here you will see why we need to add onto it. For

those of you who may feel you’re being overwhelmed, that’s cool too. Hang in

there and let me go over how to tweak the viewDidLoad. After that, we’ll show you

how to use the boilerplate. As you know, the grey lettering is the code that is

automatically instantiated. Essentially I’ve added an “If” statement. Mmm…. what

is this if statement doing? All we’re doing here is saying that we have code here

that is specific to the iPad, and we want to make sure that the interface that’s

being used on the current device is the correct one.

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 self.detailViewController = (DetailViewController
*)[[self.splitViewController.viewControllers lastObject] topViewController];
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0 inSection:0]
animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController.webView.delegate = self;
 }
}

Now, for those of you who feel a little more comfortable pasting in the boilerplate code ,
open boilerplate 02 and select everything. Then select all of viewDidLoad and paste it
over it so that it looks similar to what is shown in Figure 11–18 and as shown here:

- (void)didReceiveMemoryWarning

CHAPTER 11: Storyboarding to Multimedia Platforms 507

{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc that aren't in use.
}

#pragma mark - View lifecycle
////////////// START BOILERPLATE 2 ////////////////////
- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
 self.detailViewController = (DetailViewController
*)[[self.splitViewController.viewControllers lastObject] topViewController];
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0 inSection:0]
animated:NO scrollPosition:UITableViewScrollPositionMiddle];
 self.detailViewController.webView.delegate = self;
 }
}

////////////// END BOILERPLATE 2 ////////////////////
- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;

Figure 11–19. Boilerplate 3

CHAPTER 11: Storyboarding to Multimedia Platforms 508

19. We now need to delete everything from shouldAutorotateToInterface
Orientation down to the @end. Once it is deleted, select all the contents of

boilerplate 3, as shown in Figure 11–19, and paste it in its place. This code is the

crux of it all so let’s go through it now. Let’s start by looking at The Big Picture to

see that we have completed 2.1.1.1 through to 2.1.1.2. We need to make sure our

app still runs regardless of the orientation of the iPad (split view, in landscape,

and popover in portrait) and have a set of cases of events that we will trigger if a

cell is selected. We have eight cells so we will have eight cases ranging from 0

through to 7. We will then program our private methods to deal with special

circumstances.

NOTE: Since we are first coding the MasterViewController, Xcode will give you some

warnings and error signs at this point. Ignore them for now.

THE BIG PICTURE

1. Set up the popover in the storyboard

2. Code the interaction to the multimedia platforms

2.1. MasterView Controller

2.1.1. Code for each cell that is selected

2.1.1.1. Header Material

2.1.1.2. viewDidLoad

2.1.1.3. Set orientations

2.1.1.4. Case statements

2.1.1.5. Private methods

2.2. DetailView Controller

2.2.1. Connecting the views to the WebViews

3. Tweak the popover to grab the platforms correctly

The original shouldAutorotateToInterfaceOrientation is shown in grey below and we’ll
only use it if it’s an iPad.

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation
{
 // Return YES for supported orientations
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
 } else {

CHAPTER 11: Storyboarding to Multimedia Platforms 509

 return YES;
 }
}

We need to do a couple of things now. We need to convert our section and row
numbers from a linear index to rows when counting from top to bottom. For those of you
who are looking carefully at each line of code, I need to point out that the next two lines
assume that the 1st section is 2 rows and all others are 1.

NSInteger nSelectedRowIdx = (indexPath.section > 0) ? indexPath.section+1 : 0;
//now 0,2,3,4
nSelectedRowIdx += indexPath.row;
//now 0,1,2,3,4

If you’re happy that this all relates each case to a specific line (the top line in each cell),
then that’s OK too. Just use this every time you do it. In fact, just paste it in and change
the case statements below and you will be fine.

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath
{
 NSInteger nSelectedRowIdx = indexPath.section *2 + indexPath.row;
 switch (nSelectedRowIdx) {

Now we need to make the case statements that will tag along the rows we have ordered
sequentially. We have four sections: ARTIST, ALBUMS IN ITUNES, SONGS, and
PICTURES. We need to have two selections called cases within each of them, so let’s
lay it out in The Big Picture for a minute.

THE BIG PICTURE

1. Set up the popover in the storyboard

2. Code the interaction to the multimedia platforms

2.1. MasterView Controller

2.1.1. Code for each cell that is selected

2.1.1.1. Header Material

2.1.1.2. viewDidLoad

2.1.1.3. Set orientations

2.1.1.4. Case statements

2.1.1.4.1. ARTISTS

2.1.1.4.1.1. Case 0

2.1.1.4.1.2. Case 1

2.1.1.4.2. ALBUMS

2.1.1.4.2.1. Case 2

2.1.1.4.2.2. Case 3

CHAPTER 11: Storyboarding to Multimedia Platforms 510

2.1.1.4.3. SONGS

2.1.1.4.3.1. Case 4

2.1.1.4.3.2. Case 5

2.1.1.4.4. PICTURES

2.1.1.4.4.1. Case 6

2.1.1.4.4.2. Case 7

2.1.1.5. Private methods (Helper routines to process redirects prior to
handing off to application open)

2.1.1.5.1.

2.2. DetailView Controller

2.2.1. Connecting the views to the WebViews

3. Tweak the popover to grab the platforms correctly

Accordingly, the code is as follows:

 case 0: // in Safari (Artist)
 [self LocateArtistPageInSafari];
 break;

 case 1: // in iTunes (Artist)
 //[self LocateArtistPageInItunes];
 {
 NSURL *urlInItunes = [NSURL URLWithString:@"http://itunes.apple.com/�
us/artist/rory-lewis/id65902515?uo=4"];
 [self StartExternalAppWithURL:urlInItunes];
 }
 break;
 case 2: // in iTunes (Songs)
 //[self LocateArtistPageInItunes];
 {
 NSURL *urlInItunes = [NSURL URLWithString:@"http://itunes.apple.com/�
us/album/songs-for-friday/id408548641?uo=4"];
 [self StartExternalAppWithURL:urlInItunes];
 }
 break;
 case 3: // in iTunes (Songs)
 //[self LocateArtistPageInItunes];
 {
 NSURL *urlInItunes = [NSURL URLWithString:@"http://itunes.apple.com/us/�
album/heroines/id461113548?uo=4"];
 [self StartExternalAppWithURL:urlInItunes];
 }
 break;
 case 4: // in iTunes (Songs)
 //[self LocateArtistPageInItunes];
 {
 NSURL *urlInItunes = [NSURL URLWithString:@"http://itunes.apple.com/us/�
album/elvis-presley/id461113548?i=461113566&uo=4"];

CHAPTER 11: Storyboarding to Multimedia Platforms 511

 [self StartExternalAppWithURL:urlInItunes];
 }
 break;
 case 5: // in iTunes (Songs)
 //[self LocateArtistPageInItunes];
 {
 NSURL *urlInItunes = [NSURL URLWithString:@"http://itunes.apple.com/�
us/album/hippie-paradise/id408548641?i=408549591&uo=4"];
 [self StartExternalAppWithURL:urlInItunes];
 }
 break;
 case 6: // in Safari (Artist)
 [self LocateArtist2PageInSafari];
 break;

 case 7: // in Safari (Artist)
 [self LocateArtist3PageInSafari];
 break;

 }

 //[self DeselectRow];
}

We now need to create our helper routines to process redirects prior to handing off to
the open application. Specifically, we need to process a LinkShare/TradeDoubler/DGM
URL to something iPhone can handle, if you choose to use a universal app on your own
that does include the iPhone. For more information you can go to http://developer
.apple.com/library/ios/#qa/qa1629/_index.htm.

- (void)openReferralURL:(NSURL *)referralURL {
 //NSURLConnection *connection =
 (void)[[NSURLConnection alloc] initWithRequest:[NSURLRequest
requestWithURL:referralURL] delegate:self startImmediately:YES];
}

Now we save the most recent URL for a safety measure (just in case multiple redirects
occur). Note that iTunesURL is an NSURL property in this class declaration:

- (NSURLRequest *)connection:(NSURLConnection *)connection willSendRequest:(NSURLRequest
*)request redirectResponse:(NSURLResponse *)response {
 self.iTunesURL = [response URL];
 NSLog(@"RxURL [%@]",[self.iTunesURL absoluteString]);
 return request;
}

OK, no more redirects. So we use the last URL that we saved:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 [self StartExternalAppWithURL:self.iTunesURL];
}

This is a little technical, but we need to have an iTMS link (a special kind of url/link
protocol used for iTunes’ links and URLs) to get out there into the ether. We have this
little method called StartExternalAppWithURL in order to allow our iTMS links:

-(void)StartExternalAppWithURL:(NSURL *)theURL
{

CHAPTER 11: Storyboarding to Multimedia Platforms 512

 NSLog(@"UsingURL [%@]",[theURL absoluteString]);
 [[UIApplication sharedApplication] openURL:theURL];
 [self DeselectRow];
}

Almost done. We just need to deselect our last selected table cell so, when our view
reappears, it will not still be selected. We do this after our external app start has been
requested because this object is NOT informed of view leaving OR the app restarting
from the background when it is resumed without adding additional plumbing.

-(void)DeselectRow
{
 // Unselect the selected row if any
 NSIndexPath* selection = [self.tableView indexPathForSelectedRow];
 if (selection) {
 [self.tableView deselectRowAtIndexPath:selection animated:YES];
 }
 [self.tableView reloadData];
}

Last bit—three Artist pages in Safari (case 0) and the cases for 6 and 7.

-(void)LocateArtistPageInSafari
{
 NSURL *urlInSafari = [NSURL URLWithString:@"http://bit.ly/poi91o"];
 // if we have an iPAD...
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 // then open page in detail view (UIWebView)
 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:urlInSafari];
 [self.detailViewController.webView loadRequest:urlRequest];
 } else {
 // else we have an iPhone/iPod Touch so open in external safari
 [self StartExternalAppWithURL:urlInSafari];
 }
}

-(void)LocateArtist2PageInSafari
{
 NSURL *urlInSafari = [NSURL URLWithString:@"http://on.fb.me/nFwQj6"];
 // if we have an iPAD...
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 // then open page in detail view (UIWebView)
 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:urlInSafari];
 [self.detailViewController.webView loadRequest:urlRequest];
 } else {
 // else we have an iPhone/iPod Touch so open in external safari
 [self StartExternalAppWithURL:urlInSafari];
 }
}

-(void)LocateArtist3PageInSafari
{
 NSURL *urlInSafari = [NSURL URLWithString:@"http://bit.ly/nxY8AZ"];
 // if we have an iPAD...
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad) {
 // then open page in detail view (UIWebView)
 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:urlInSafari];
 [self.detailViewController.webView loadRequest:urlRequest];

CHAPTER 11: Storyboarding to Multimedia Platforms 513

 } else {
 // else we have an iPhone/iPod Touch so open in external safari
 [self StartExternalAppWithURL:urlInSafari];
 }
}

@end

Coding DetailViewController
That was something else, wasn’t it!? Just as an aside, something that will make you
laugh. When I first began to get my head wrapped around storyboarding for my class,
we were working on the beta version and it kept changing every week. Not only had I
never seen a storyboard before, but the code was changing constantly and I had to
teach it in front of the lecture hall. I had many sleepless nights. But here is the deal. If
you master this app and storyboarding, you are well on your way to huge success in
programming. You do not have to know all of the above, you can simply learn when to
use it. In our DetailViewController, we need to set up our UIWebview but first let’s have
a look at The Big Picture.

THE BIG PICTURE

1. Set up the popover in the storyboard

2. Code the interaction to the multimedia platforms

2.1. MasterView Controller

2.2. DetailView Controller

2.2.1. Connecting the views to the WebViews

3. Tweak the popover to grab the platforms correctly

CHAPTER 11: Storyboarding to Multimedia Platforms 514

Figure 11–20. Select and open the DetailViewController header file.

20. Save your MasterViewController and open the DetailViewController.h file as

shown in Figure 11–20. Then add the code shown below. Note that when we go

back to tweak the storyboard, we will connect this to our UIWebView.

#import <UIKit/UIKit.h>
@interface DetailViewController : UIViewController <UISplitViewControllerDelegate>
@property (strong, nonatomic) id detailItem;
@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;
@property (strong, nonatomic) IBOutlet UIWebView *webView;
@end

CHAPTER 11: Storyboarding to Multimedia Platforms 515

Figure 11–21. Synthesize the webView in the implementation file.

21. Now open your DetailViewController.m file and synthesize the webView as shown

in Figure 11–21 and here:

#import "DetailViewController.h"
@interface DetailViewController ()
@property (strong, nonatomic) UIPopoverController *masterPopoverController;
- (void)configureView;
@end

@implementation DetailViewController
@synthesize detailItem = _detailItem;
@synthesize detailDescriptionLabel = _detailDescriptionLabel;
@synthesize masterPopoverController = _masterPopoverController;
@synthesize webView = _webView;
#pragma mark - Managing the detail item

CHAPTER 11: Storyboarding to Multimedia Platforms 516

Figure 11–22. Select Boilerplate 4.

22. We now need to redo our shouldAutorotateToInterfaceOrientation method to

take care of the Portrait and Landscape issues as mentioned before. Go ahead

and delete the shouldAutorotateToInterface
Orientation and either write these few lines of code or paste in its place the

contents of Boilerplate 4.

////////////// START BOILERPLATE 4 ////////////////////
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)�
interfaceOrientation
{
 // Return YES for supported orientations
 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
 } else {
 return YES;
 }
}
////////////// END BOILERPLATE 4 ////////////////////

CHAPTER 11: Storyboarding to Multimedia Platforms 517

Figure 11–23. Go back to Storyboard and select the Table View Cell – Cell and drag a Web View onto the Detail
View.

23. Save everything and go back into storyboard, close the Navigator, open up the

Utilities and, in the Utilities, open up the Library. Our Table View Cell is where our

web views will be shown so we need a web view located there. Go back to

Storyboard and select the Table View Cell – Cell and drag a Web View onto the

Detail View as shown in Figure 11–23.

Finalizing the Storyboard
We are almost done. The only thing we need to still do is connect something that was
not there when we began – the webView – UIWebView connection in the code. Now that
it’s there, we need to go back into storyboard and connect them.

CHAPTER 11: Storyboarding to Multimedia Platforms 518

Figure 11–24. Select myMasterTableViewController.

24. Now go back to the Documents Outline and, inside the Detail View Controller -
Detail Scene, grab the Web View and drag it up over the Navigation Item -
Detail above the View into your Detail View Controller - Detail. Now your View

disappears just as we did in myStory_02. Keeping the Detail View Controller -
Detail selected as shown in the upper left-hand side in Figure 11–24, go back

over to your Connection Inspector and control-drag from the webView to the

UIWebView as shown in Figure 11–24. Save it.

NOTE: Now connect your iPad to your Mac and, rather than selecting iPad simulator, select iOS
Device. You can run it on the simulator if you like but iTunes cannot run inside the simulator
so all the iTunes links will not work. Once you have connected your iPad to your Mac, press run.

CHAPTER 11: Storyboarding to Multimedia Platforms 519

Figure 11–25. From the icon through to the Popover

25. Once your app has completed building, which may take up to 17 seconds, you

will see the icon appear as shown in Figure 11–25. Once you press the icon, you

will immediately see the popover screen. The first time you select it, it will not

show anything underneath. However, once you select a page and then select the

popover again, it keeps the underlying image below the popover as shown in

Figure 11–26.

Figure 11–26. A beautiful Splash screen presents itself while the screen loads.

CHAPTER 11: Storyboarding to Multimedia Platforms 520

26. Once we select a cell, the splash screen appears while the page loads from the

Internet or from iTunes. Here, in the right hand image, we see the popover placed

on top of the first image.

Figure 11–27. Orientation working with iTunes

27. We need to have a little patience with orientation correcting itself with iTunes. This

is something Apple needs to work on. Just be patient. Figure 11–27 shows the 2nd

selection on the left hand side and the first iTunes selection on the right hand side.

In Ending
This has been a wonderful journey, but it’s really only the start. As I’ve gone through this
second edition, I cannot help but think of all the fresh minds that will read these
exercises and struggle through them, then break through to create awesome apps and
make money! How many more of my students and readers of this book will work at
Apple!? Wow! It’s been a great motivation for me to think about this.

On a sad note, as I was finishing this book, Steve Jobs passed away. God bless you,
Steve.

I hope to see you all on the forum. I do not answer questions submitted to me by email
but I will answer those exact same questions if you post them on the forum
(http://bit.ly/oLVwpY) because then everybody can share my answers. I would also
like to encourage you to help. No matter how much of a beginner you are, get into the
forum and help others. Helping others speeds up your journey.

Peace.

Dr. Lewis

 521

Index

■ Special Characters
and Numerics�

- (minus sign), 95
(pound sign) symbol, 149
#define, 149
%@ symbol, 86–88, 98–99
* symbol, 133
*label pointer, 137
*uiImageView, 117, 137
{ } (curly braces), 74–78, 85–86
+ (plus sign) symbol, 95
7 Wonders of the World app, 370
360 Cities app, 371

■ A
About page, APRS Map app, 420–421
About This Mac option, 3–4
actions

adding buttons to tabs in switches
app, 245–246

adding to touchesViewController
header file, 176–182

connecting buttons as, 182–190
creating, 42
naming, 177

alloc, 86–88, 98–99
Amateur Radio Operators locator app,

412–421
analyzer, for debugging, 359
animation code, touches app, 157,

210–213
annotations

coding, 398

creating Objective-C class for,
375–378

files, for MapKit framework, 376–378
map, 363, 373
styles of, 412
varying uses in app, 412

app programming landscape, 23
Appdelegate, 36
Appkit, 148
Apple ID option, 8
Apple, use of MapKits, 369
applications

7 Wonders of the World app, 370
360 Cities app, 371
About page, APRS Map app,

420–421
Amateur Radio Operators locator

app, 412–421
animation code, touches app, 157,

210–213
app programming landscape, 23
Appdelegate, 36
Appkit, 148
Apple ID option, 8
Apple, use of MapKits, 369
APRS Map app, 412–421
background images, touches app,

168
coding Change button, 210, 213
setting integer to zero, 192

Blipstar app, 370
Bottom view mode, switch-mistake

app, 340
bugs, in switch-mistake app,

343–346

Index 522

CGAffineTransform structs, and
touches app, 157–182

Change button, touches app,
210–213

adding actions to header file, 187
naming, 170

Compass app, 366
Cool Maps 7 Wonders of the World

app, 370
data structure, touches app, 157
Female button, MyStory app,

280–281, 283
Female controller, MyStory app

adding evolve button, 293–297
adding images to, 289
naming bar titles, 290

FileMerge.app, 329, 352–356
First View, Tabbed Application,

228–229, 232–236
FlightTrack app, 368–369
Geek button, MyStory app, 280–281
Geek controller, MyStory app

adding images to, 288–289
linking evolve button to, 293–297
naming bar titles, 290

Geo IP Tool app, 370
Grow button, touches app, 157, 202
header file, for touches app, 182
helloWorld_03 app, 57–99

.xib files in, 93–96
header files in, 96–99
methods in, 95–96
nibs in, 93–96
roadmap for, 85–91
saving, 83–84
user interface for, 63–82

helloWorld_04 app, 102–148
IBActions in, 138, 148–149
IBOutlets in, 131–133, 148–149
pointers in, 133–135, 149–150
properties in, 135–138

Image View Application, 121
invisible buttons, MyStory app,

300–301
iPad Simulator, running apps on,

50–54

iPhone Simulator, running apps on,
34–50

Male button, MyStory app, 280–282
Male controller, MyStory app

adding evolve button, 293–297
adding images to, 288
naming bar titles, 291

Map Tunneling Tool app, 370
for MapKit framework, 412–426

example 1, 413–420
example 2, 421–424
example 3, 426
myStory_01 app, 371–373
preinstalled apps, 363–366
third-party apps, 369–370

MapMyRide app, 369
Maps app, 366
Master-Detail application template,

490–491
Metro Paris Subway app, 369, 371
Move button, in touches app,

208–209
Move button, touches app

adding actions to header file, 187
naming, 170
tracking state of, 183

multimedia platforms, myiTunes
application, 487–520

coding, 502–517
images, 492–493
Master-Detail application

template, 490–491
preliminaries, 489
storyboard, 493–502, 517–520

myDetailViewController
implementation file, in
myStory_02 app, 465–473

myiTunes application, 488–520
coding, 502–517
images, 492–493
Master-Detail application

template, 490–491
preliminaries, 489
storyboard, 493–502, 517–520

MyStory app, 255–324
overview, 256

Index 523

storyboarding configuration for,
258–276

view controllers for, 276–286,
300–322

myStory_01 app, 371–373
myStory_02 app, 433–458

files for, 434–435
images for, 438–439
myDetailViewController

implementation file, 465–473
myMasterTableViewController

implementation file, 451–458
overview, 433
single view template, 436–437
storyboard in, 440–441, 474–486
table view controller for, 442–451

Navigation-based Application
template, 33, 54

platforms, myiTunes application,
487–520

coding, 502–517
images, 492–493
Master-Detail application

template, 490–491
preliminaries, 489
storyboard, 493–502, 517–520

QuikMaps app, 369
radio operators locator app,

412–421
Root View Controller, MyStory app,

270, 272
Round Rect Button, MyStory app,

268
Routesy Bay Area San Francisco

Muni and BART app, 406, 408
running apps

on iPad Simulator, 50–54
on iPhone Simulator, 34–50
on physical devices, 55
switch app, 227–230

saving, app files, 83–84
Second View controller,

switch-mistake app, 340
Second View, Tabbed Application,

230, 237–242

Shrink button, touches app, 157,
201–208

adding action to header file,
184–186

adding to header file, 181–182
creating scaling for, 194
naming, 170
tracking state of, 183

Single View Application template,
106, 160, 258, 374

single view template, in myStory_02
app, 436–437

strings, in helloWorld_03 app, 86
structs, touches app, 157
switch app, 217–253

buttons in, 244–250
and Content View Modes,

251–253
creating app, 222–223
images for, 221, 224–227
running, 227–230
tabs in, customizing, 230–242
views in, 242–243

switch-mistake app, 329–356
bug in, 343–346
comparing source files, 347–356
creating project, 330–333
views in, 334–343

Tabbed Application template, 222,
330

tabs, in switch app, 230–242
Tall Eye app, 370
test app, creating, 28
touches app, 155–216

and CGAffineTransform structs,
157–182

header file for, 182–191
implementation file for, 191–213
running, 213–216

traffic camera app, 421–425
traffic monitoring app, 425–429
transitions, MyStory app, 274
Twitter Spy app, 370
Über Geek controller, MyStory app,

298, 302, 314
UIViewControllers, MyStory app, 279

Index 524

View-Based App option, 53
View-based Application icon, 58
View-based Application template,

35, 58, 106
view controllers, MyStory app

adding Web View to, 302
placement of, 282
setting class of, 308

viewDidLoad, switches app, 242
Web View, MyStory app, 302–314

APRS Map app, 412–421
ARC (Automatic Reference Counting),

437
arguments, 79
arrays

creating with list of cities, 454–456
touches app, 182–183
of wallpapers, 192–193

arrow down key, 47
Aspect Fill View Mode, Xcode, 252
Aspect Fit View Mode, Xcode, 252
Assistant Editor, 39–41, 45, 73,

122–123, 139
Attributes Inspector, 66, 97
Attributes Panel, setting images in, 280
Automatic Reference Counting (ARC),

437

■ B
background images, touches app, 168

coding Change button, 210, 213
setting integer to zero, 192

background layer, 104–105
bankBalance variable, 150
Bar Button Items, 293
Base View, 115
Batchgeo, 372
beginAnimations method, 211
Beginning iPhone 4 Development,

Exploring the iPhone SDK, 20
Bindings inspector, 98
Blipstar app, 370
boiler plate code, 396, 400, 489, 504,

506

Bottom view mode, switch-mistake
app, 340

Bottom View Mode, Xcode, 252
brain, connecting information in,

217–220
breakpoints, 358
bugs, in switch-mistake app, 343–346
Build Phases tab, root directory, 379,

459
button text, writing, 119
buttonGuess method, 131–134,

137–138, 142, 144–145
buttons

adding onto canvas, 39
adding to View Design area, 67
MyStory app, 268, 280, 283,

300–301
in switch app, 244–250
touches app

adding actions, to header file,
184–187

adding actions, to
touchesViewController header
file, 176, 182

adding outlets, to
touchesViewController header
file, 176, 182

changing text for, 202
coding Change button, 210–213
coding Move button, 208–209
creating scaling for Shrink button,

194
dragging to View design area in

Xcode, 169
if statements for, 203–208
naming, 170
tracking state of, 183

■ C
canvas

adding buttons to, 39
adding labels to, 38

cells
creating disclosure indicators for,

498

Index 525

creating subtitles for, 497
naming, 502

centered text icon, 38
CGAffineTransform class, 157, 183, 194
CGAffineTransform structs, and

touches app, 157–182
CGAffineTransformMakeScale method,

194
CGAffineTransformMakeTranslation

method, 194–195
Change button, touches app, 210–213

adding actions to header file, 187
naming, 170

Change view and see traffic function,
365–366

class of view controller, setting, 308
classes, 132
Classes file, 131
CLLocation Class Reference, 390
CLLocationCoordinate2D, 462
Cocoa Touch item folder, 113
Code folder, 108
Code snippets, 98
coding

for MapKit framework, 404–406
apps, 412–426
memory management of

Storyboard objects, 405–406
myPos file NSObject object,

389–392
parsing, 406–412
protocols, 404–405
view controller, 393–399

myiTunes application, 502–517
Command + Q shortcut, 34, 52, 55, 58
Command + Return shortcut, 74
Command + S shortcut, 40, 83, 146
Command + Shift + N shortcut, 35
Command + Tab shortcut, 34, 55, 60
Company Identifier, 59
Company option, 9
Compass app, 366
compile-time, vs. runtime, 253
Connect button, 75, 79, 95
connectionDidFinishLoading, 470
Connections inspector, 98

Content View Modes, 235, 251–253
Control + Command + Down Arrow

shortcut, 73
Control + Command + Up Arrow

shortcut, 73
controller bar titles in storyboarding,

naming, 290–291
CONTROLLER section, 152
Control+S shortcut, 49
Cool Maps 7 Wonders of the World

app, 370
coordinates, coding, 397
Copy items check box, 62
copy items into destination option, 61
Copy items into the destination group's

folder check box, 110
CoreLocation framework

overview, 364
selecting, 381
storing in frameworks folder, 382

counterparts, 73
Create groups for any added folders

check box, 110
curly braces, 74–78, 85–86

■ D
data structure, touches app, 157
dealloc method, 46
Debugger Console window, for

debugging, 357
debugger window, for debugging, 327
debugging, 325–359

switch-mistake app, 329–356
comparing source files, 347–356
creating bug, 343–346
creating views, 334–343
starting project, 330–333

tools for, 326–329
analyzer, 359
Debugger Console window, 357
debugger window, 327
documentation, 358
FileMerge.app, 329
Fix-it, 357
GDB console, 327

Index 526

logs, 327–328
NSZombie, 328
Shark, 328
text editor, 327
unit testing, 328

delegate method, 398
delegate, setting view controller class

as, 397
deleting images from desktop, 165
DetailViewController controller, coding,

513–517
Developer Page, 11–13
Developer tool, 351
directives, 135
disclosure indicators for cells, creating,

498
Disney's storyboarding, 255
Display the Insertion indicator, 76
documentation, for debugging, 358
Download Xcode 4 button, 11–12
downloading

lulu fruit icon, 158–159
myiTunes app files, 489
myStory 01 code, 373
myStory 02 code files, 434
MyStory app code, 257
source code for debugging, 347–348
switches app code, 221
touches app code, 156

dreams, 155

■ E
editing Table View Controllers, 443
Editor Selector, 40, 45, 73
Effects inspector, 98
Enroll Now button, 7
Enterprise program, 10
event handling, overview, 363

■ F
Female button, MyStory app, 280–281,

283
Female controller, MyStory app

adding evolve button, 293–297

adding images to, 289
naming bar titles, 290

Field object, 70–72
File inspector, 97
File templates, 98
FileMerge.app, 329, 352–356
files

header files, 36, 40, 43–44, 46,
96–99

and Inspector Bar, 97–98
and memory leaks, 98–99
and NSStrings, 98
for touches app, 182

implementation files, 36, 44–46
for touches app, 191–213
for view controllers, 395–399

Media files, 98
nib files, 36, 49, 93–96, 112, 141
organization of, 450–451
saving, app files, 83–84
Supporting Files folder, 60–62, 109
.xib files, 36, 93–96, 132, 153

creating, 462
nonatomic, 189
retain, 189
synthesizing, 191

File's Owner, 41, 43, 81–82
Find Yourself function, 364
Finder program, 3–4
Finish button, 61
First View label, deleting, 338
First View, Tabbed Application,

228–229, 232–236
FirstViewController.xib file, 244, 336
Fix-it, for debugging, 357
FlightTrack app, 368–369
folder highlights, 109
Forum, 19–20
framework, MapKit, 361–430

adding, 459–460
to frameworks folder, 461
to myPos header file, 462

apps for
myStory_01, 371–373
preinstalled, 363–366
third-party, 369–370

Index 527

coding, 404–406
apps for MapKit framework,

412–426
MapKit parsing, 406–412
memory management of

Storyboard objects, 405–406
protocols, 404–405

preliminaries for, 373
template for, 374–403

annotation file, 376–378
coding, 389–399
frameworks, 379–383
images, 383–388
Storyboard file, 401–403

■ G
GDB console, for debugging, 327
Geek button, MyStory app, 280–281
Geek controller, MyStory app

adding images to, 288–289
linking evolve button to, 293–297
naming bar titles, 290

Geo IP Tool app, 370
goals, 155–156
Google server, parsing, 468–471
graphical user interface (GUI), 18
Grow button, touches app, 157, 202
GUI (graphical user interface), 18

■ H
.h (header) file, 44
hash character, 149
header files, 36, 40, 43–44, 46, 96–99

and Inspector Bar, 97–98
and memory leaks, 98–99
and NSStrings, 98
for touches app, 182

header (.h) file, 44
hello method, 95
Hello World folder, 108
helloWorld_01 file, 35–36, 53–54
helloWorld_02 file, 53–54
helloWorld_03 app, 57–99

.xib files in, 93–96

header files in, 96–99
and Inspector Bar, 97–98
and memory leaks, 98–99
and NSStrings, 98

methods in, 95–96
nibs in, 93–96
roadmap for, 85–91

avoiding memory leaks, 88
dismissing keyboard, 88–91
displaying text, 87–88
manipulating text, 86–87
strings in, 86

saving, 83–84
user interface for

connecting to code, 73–82
overview, 63–72

helloWorld_03ViewController.xib file, 63
helloWorld_04 app, 102–148

IBActions in, 138, 148–149
IBOutlets in, 131–133, 148–149
pointers in, 133–135, 149–150
properties in, 135–138

help for Xcode IDE, online, 358
highlighting folders, 109
history, of Objective-C, 18–19

■ I
I need to create a new account for

option, 8
I/O (input/output), 151
IB (Interface Builder), 96
IBActions, 79, 85, 88, 95, 99, 130–131,

138, 148–149
IBOutlets (Interface Builder Outlets), 96,

117–118, 131–133, 148–149,
405–406

icon file, 102–103, 105–106, 111–112
icon.png file, 111
icons

myStory 01 app
importing, 384
moving to correct folders,

386–387
switches app, 226–227
touches app, creating for, 166

Index 528

IDE (integrated development
environment), 16, 29

Identity inspector, 97
if statements

for buttons in touches app, 203–208
for lulu fruit icon in touches app,

199–200, 203–208
Image View Application, 121
Image View Attributes window, 114, 117
Image View icons, 113
imageNamed method, 118, 145, 193
images

copying to Xcode, 164–165
for MapKit framework, 383–388
for myiTunes application, 492–493
MyStory app

adding to view controllers, 287
copying to Xcode, 260
placing on UIViewControllers,

279
setting in Attributes Panel, 280

for myStory_02 app, 438–439
for switch app

adding to project, 224–227
obtaining, 221

switches app
adding to tabs, 230–242
copying to Xcode, 224–225
downloading, 221

imageSource pointer, 118, 145
implementation files, 36, 44–46

for touches app, 191–213
array of wallpapers, 192–193
CGAffineTransformMakeScale

method, 194
CGAffineTransformMakeTranslati

on method, 194–195
change button, 210–213
move button, 208–209
setting background image,

195–196
shrink button, 201–208
synthesis in, 191
touchesMoved method, 196–201
viewDidLoad method, 191–192

for view controllers, 395–399

Include Unit Tests option, 59
INDIO (Interaction, Navigation, Data,

and I/O), 150–153
indirection concept, 149
individual links, 9
Individual option, 9
Information tab, 114
initial momentum, maintaining, 284
initWithFormat, 86–88, 98–99
input/output (I/O), 151
insertion indicator, 74–75, 78
Inspector Bar, 66, 93, 97–98
Inspector Selector Bar, 97
Install Xcode and iOS SDK window,

15–16
The Installation was Successful

window, 15
instances, creating, 93–94
instantiateViewControllerWithIdentifier,

method, 323
instantiation, 93–94
integrated development environment

(IDE), 16, 29
Interaction, Navigation, Data, and I/O

(INDIO), 150–153
Interface Builder (IB), 96
Interface Builder Outlets (IBOutlets), 96,

117–118, 131–133, 148–149,
405–406

Interface Builder view, 93
Internet, parsing from, 406–409
int_pointer variable, 150
invisible buttons, MyStory app, 300–301
iOS Dev Center, 10–11
iOS SDK drive icon, 14
iOS4, and storyboards, 323–324
iPad Simulator, running apps on, 50–54
iPhone Cool Projects, 406, 408
iPhone/iPad development page, 8, 10
iPhone/iPad Operating System

software, 10
iPhone/iPad Simulator, 16–17, 23–25,

27, 29, 32
iPhone Simulator, running apps on,

34–50
IPhoneRuntime, 132

Index 529

■ J
Jobs, Steve, 18, 22

■ K
Kant image, 142
Kant outlet, 104–106, 117, 127, 132,

134, 137, 142, 145
kantStair.png, 118, 120, 145
keyboard

dismissing, 88–91
shortcuts, 35

Keyboard & Character Viewer, 316–319

■ L
label instance variable, 115, 144
Label object, 71–72
label Outlet, 126
labels

adding onto canvas, 38
adding to View Design area, 71
misspelled, 147

label.text, 47–48
Lamarche, Jeff, 20
Language & Text preferences panel,

316–319
latitude, 372, 397
lines of latitude, 372, 397
lines of longitude, 372, 397
linking buttons to navigation controllers,

270
LLVM compiler, 357
logs, for debugging, 327–328
longitude, lines of, 372, 397
lulu fruit icon

associating with UIImageView,
171–172

CGAffineTransforms for, 183
creating if statement for, 199–200
creating outlet for, 177
downloading, 158–159
if statements for, 203–208

luluIcon.png, sizing, 173

■ M
MacBook Air, 2
Macintosh HD icon, 103
MainStoryboard.storyboard file, 261
maintaining initial momentum, 284
Male button, MyStory app, 280–282
Male controller, MyStory app

adding evolve button, 293–297
adding images to, 288
naming bar titles, 291

Map Tunneling Tool app, 370
Map View, 480–482
MapKit framework, 361–430

adding, 459–460
to frameworks folder, 461
to myPos header file, 462

apps for
myStory_01, 371–373
preinstalled, 363–366
third-party, 369–370

coding, 404–406
apps for MapKit framework,

412–426
MapKit parsing, 406–412
memory management of

Storyboard objects, 405–406
protocols, 404–405

preliminaries for, 373
template for, 374–403

annotation file, 376–378
coding, 389–399
frameworks, 379–383
images, 383–388
Storyboard file, 401–403

MapMyRide app, 369
Maps app, 366
mapView, connecting to MKMapView,

403
Mark, Dave, 20
Master-Detail application template,

490–491
MasterViewController, 503–513
Media files, 98
memory leaks

avoiding, 88
and header files, 98–99

Index 530

tools for, 328
memory management, 136, 405–406
meridians, 372
methods, 79, 95–96
Metro Paris Subway app, 369, 371
minus sign (-), 95
misspelled labels, 147
MKAnnotation protocol, 390
MKMapView, connecting to mapView,

403
MKMapViewDelegate protocol, 394
MODEL section, 152
Model-View-Controller (MVC), 151–153
monkey method, 79, 95
Moraco, Stephen A., 412–421, 425
Moraco, Stephen M., 412–421
Move button, touches app, 208–209

adding actions to header file, 187
naming, 170
tracking state of, 183

multimedia platforms, myiTunes
application, 487–520

coding, 502–517
images, 492–493
Master-Detail application template,

490–491
preliminaries, 489
storyboard, 493–502, 517–520

mutability, 135–137
mutual exclusivity, 284
MVC (Model-View-Controller), 151–153
My Programs folder, 58
myDetailViewController class, 464, 483
myDetailViewController implementation

file, in myStory_02 app,
465–473

myiTunes application, 488–520
coding

DetailViewController controller,
513–517

overview, 502–512
images, 492–493
Master-Detail application template,

490–491
preliminaries, 489

storyboard
finalizing, 517–520
organizing popover in, 493–502

myMasterTableViewController,
451–458, 472

myPos file, NSObject object, 389–392
myPos header file, 462–463
myPos.h file, 389–392, 469–471
MyStory app, 255–324

overview, 256
storyboarding configuration for,

258–276
view controllers for, 276–286,

300–322
myStory_01 app, 371–373
myStory_02 app, 433–458

files for, 434–435
images for, 438–439
myDetailViewController

implementation file, 465–473
myMasterTableViewController

implementation file, 451–458
overview, 433
single view template, 436–437
storyboard in, 440–441, 474–486
table view controller for, 442–451

■ N
N shortcut, 53, 58, 106
Name string, 86
naming

cells, 502
navigation bar, 486
outlets, 177

navigation bar, renaming, 486
Navigation-based Application template,

33, 54
Navigation Controller

adding, 476
MyStory app, 264–265, 270, 280

Navigation Pane, 37
Navigator View, 64, 123, 140–141
neurology, learning and, 217–220
New Project wizard, 58, 106, 160–162
Next button, 58–59

Index 531

nib files, 36, 49, 93–96, 112, 141
nonatomic directives, 189
nonatomic property, 118, 131–138
NSArray object, 192
NSObject object, myPos file, 389–392
NSString statement, 86–88, 98–99
NSURL class, 248
NSURLRequests, 312
NSZombie, for debugging, 328

■ O
Objective-C class, 362

creating, 375–378, 449
history of, 18–19

objects, 98, 134
online help for Xcode IDE, 358
openURL method, 248
operating system (OS), 1, 3–4
organization, of files, 450–451
orientation, 516
OS (operating system), 1, 3–4
Outlet code, 75
outlets

adding images to tabs in switches
app, 241–242

adding to touchesViewController
header file, 176–182

creating, 40
using on @properties, 394

Output NSString, 86
Output string, 86

■ P
PARC (Palo Alto Research Center), 18
Parent class, 96
parser feeds, testing, 410
parser method, starting, 410–412
parsing, 409–412

adding methods to view controller,
410

getting data from web, 409
Google server, 468–471
from Internet, 406–409
overview, 433

starting parser method, 410–412
starting point, 409
testing parser feed, 410

PDFs, for this book, 31
performSegueWithIdentifier, 282, 297
Peterson, Steven, 406
platforms, myiTunes application,

487–520
coding, 502–517
images, 492–493
Master-Detail application template,

490–491
preliminaries, 489
storyboard, 493–502, 517–520

plist file, 111
plus sign (+) symbol, 95
.png file, 60
Pointer Reference, 62
pointers, 133–135, 149–150
popovers, 519

organizing in storyboard, 493–502
overview, 488

pound sign (#) symbol, 149
prepping before coding, importance of,

388
Press Command + Tab, 58
Press Me button, 58, 68, 77
private member variables, 453
Pro iOS 5 Tools, 357
Product Name box, 59
programming landscape, 23
project, adding images to, 224–227
Project Navigator icon, 37
properties, 135–138
Properties frame, 116
protocols, 404–405

MKAnnotation, 390
MKMapViewDelegate, 394

pseudoiPad, 53

■ Q
Quick Help, Xcode, 97, 358–359
QuikMaps app, 369

Index 532

■ R
radio operators locator app, 412–421
read-only objects, 136
read-write objects, 136
Redraw View Mode, Xcode, 253
Rege, Satish, 425–429
requirements, 1–17
resources, Beginning iPhone 4

Development, 20
Resources Folder, 66, 110–112
retain directives, 99, 118, 131–134,

136–138, 189
Return shortcut, 35, 53, 70
return type, 79
Root View Controller, MyStory app,

270, 272
Round Rect Button, MyStory app, 268
Routesy Bay Area San Francisco Muni

and BART app, 406, 408
Run button, 91
running apps

on iPad Simulator, 50–54
on iPhone Simulator, 34–50
on physical devices, 55
switch app, 227–230

runtime, vs. compile-time, 253

■ S
Safari, 11
sandboxing, 248
saving, app files, 83–84
saving work, 49
Scale To Fill View Mode, Xcode, 251
Scheme drop-down menu, 52
screencasts, 31, 102
SDK (Software Development Kit), 1, 7
Search for location function, 364
Second View controller, switch-mistake

app, 340
Second View, Tabbed Application, 230,

237–242
SecondViewController.m file, 350
SecondViewController.xib file, 239
security verification window, 15

segues, 265, 270, 273, 281, 283–284,
293

creating, 478–480
pronunciation and definition of, 432
ShowMapDetail, 473

setAnimationTransition method, 212
Shark, for debugging, 328
shortcuts

Command + Q shortcut, 34, 52, 55,
58

Command + Return shortcut, 74
Command + S shortcut, 40, 83, 146
Command + Shift + N shortcut, 35
Command + Tab shortcut, 34, 55, 60
Control + Command + Down Arrow

shortcut, 73
Control + Command + Up Arrow

shortcut, 73
Control+S shortcut, 49
N shortcut, 53, 58, 106
Return shortcut, 35, 53, 70

Show this window when Xcode
launches option, 26

ShowMapDetail segue, 473
Shrink button, touches app, 157,

201–208
adding action to header file,

184–186
adding to header file, 181–182
creating scaling for, 194
naming, 170
tracking state of, 183

SIGABRT error, 81
Single View Application template, 106,

160, 258, 374
single view template, in myStory_02

app, 436–437
Size inspector, 97, 173
software, checking for new, 6
Software Development Kit (SDK), 1, 7
Software Update option, 4–5
splash screen images, 520

importing, 385, 438
moving to correct folders, 386–387
overview, 383

split views, overview, 488

Index 533

squiggly brackets, 40, 46
STAIR.png, 104–105, 114, 120
Standard Editor, 45–46, 73–74, 139
Standard program, 10
Standard View, 83
start state, setting, 192
statements, writing, 130
static analysis, for debugging, 359
static cells, creating grouped, 496
static identifier, 399
Storyboard file, for MapKit framework,

401–403
Storyboarding, overview, 253
storyboards

finalizing, 517–520
and iOS4, 323–324
in myStory_02 app, 440–441,

474–486
organizing popover in, 493–502
overview, 323–324

strings, in helloWorld_03 app, 86
structs, touches app, 157
subtitles, creating for Table View Cell,

497
superviewDidLoad superclass, 191
Supporting Files folder, 60–62, 109
switch app, 217–253

buttons in, 244–250
and Content View Modes, 251–253
creating app, 222–223
images for

adding to project, 224–227
obtaining, 221

running, 227–230
tabs in, customizing, 230–242
views in, 242–243

switch-mistake app, 329–356
bug in, 343–346
comparing source files, 347–356
creating project, 330–333
views in, 334–343

symbol navigator pane, 41
symbols, 95–96
synthesis, 118, 191
synthesisc concept, 146
synthesize statments, 130

■ T
Tab key, 47
Tabbed Application template, 222, 330
Table View Controller

associating with
myMasterTableViewController,
457–458

for myStory_02 app, 442–451
Table Views, populating, 495
tabs, in switch app, 230–242
Tall Eye app, 370
templates

File templates, 98
for MapKit framework, 374–403

annotation file, 376–378
coding, 389–399
frameworks, 379–383
images, 383–388
Storyboard file, 401–403

Master-Detail application, 490–491
Navigation-based Application

template, 33, 54
Single View Application template,

106, 160, 258, 374
single view template, in myStory_02

app, 436–437
Tabbed Application template, 222,

330
View-based Application template,

35, 58, 106
test app, creating, 28
testViewController.h file, 29
text

buttons, changing with state, 202
displaying, 87–88
editor, for debugging, 327
manipulating, 86–87

Text Field object, 58, 67–70
text property, 88
textBox, 75–77, 81–82, 86, 88, 96, 99
textFieldShouldReturn method, 88–89
toolbag, 88
tools, for debugging, 326–329

analyzer, 359
Debugger Console window, 357
debugger window, 327

Index 534

documentation, 358
FileMerge.app, 329
Fix-it, 357
GDB console, 327
logs, 327–328
NSZombie, 328
Shark, 328
text editor, 327
unit testing, 328

top layer, 103, 105, 113, 133
Top Left View Mode, Xcode, 252
touches app, 155–216

and CGAffineTransform structs,
157–182

header file for, 182–191
implementation file for, 191–213

array of wallpapers, 192–193
CGAffineTransformMakeScale

method, 194
CGAffineTransformMakeTranslati

on method, 194–195
change button, 210–213
move button, 208–209
setting background image,

195–196
shrink button, 201–208
synthesis in, 191
touchesMoved method, 196–201
viewDidLoad method, 191–192

running, 213–216
touchesMoved method, 196–201
touchesViewController header file

coding, 182–190
connecting items to code, 174–182

touchesViewController.m file, 191–194
touchesViewControllernib file, 167
traffic camera app, 421–425
traffic monitoring app, 425–429
transitions, MyStory app, 274
Twitter Spy app, 370

■ U
Ü character, creating, 315–320
Über Geek controller, MyStory app,

298, 302, 314

UIButton class, 182
UIButtonView, 280
UIImage, using with imageNamed

method, 193
UIImageViews class, 65, 113, 117, 126,

131, 133, 136, 138, 171–172
MyStory app, 279
overview, 266–267
switch-mistake app, 339
switches app, 233–234

UIKit class, 130–134, 136–138, 152
UILabel class, 41, 44, 117–118, 131,

133–134, 136–138
UINavigationController, 264
UIView

coding Change button, 211
for MyStory app, 261

UIViewAnimationCurveEaseInOut
method, 211

UIViewController class, 40–41, 44,
131–132, 134, 137, 304,
446–448

UIViewControllers, MyStory app, 279
unit testing, for debugging, 328
Use Automatic Referencing Counting

option, 59
Use Storyboard option, 59
user interface, for helloWorld_03 app

connecting to code, 73–82
overview, 63–72

Utilities folder, 39
Utilities Icon, 37
Utilities Inspector pane, 69, 337
Utilities Pane, 37, 65, 80, 263
Utilities View, 64, 97

■ V
videos

myiTunes app files, 489
myStory 01, 373
MyStory app, 257
switches app, 221
touches app, 156

View-Based App option, 53
View-based Application icon, 58

Index 535

View-based Application template, 35,
58, 106

view controllers, 393–394
adding methods to, 410
adding to storyboard, 274–278
implementation file for, 395–399
MyStory app, 276–286, 300–322

adding Web View to, 302
placement of, 282
setting class of, 308

View Design area, 63–65, 67–69, 72–74,
93

View frame, 113
View Modes, Xcode, 235, 251
View screen, 113–114
VIEW section, 152
View Selector option, 37, 40, 45
ViewController class, 36, 43–46, 84,

131, 136, 153
ViewController.h file, 44, 131, 136
ViewController.m file, 44
ViewController.xib file, 36
viewDidLoad method, 143, 344–346

myStory 01 app, 395
touches app, 191–192

viewDidLoad, switches app, 242
viewDidUnload method, 84, 197
viewing controls, Xcode, 262
views

APRS Map app, 419
in switch app, 242–243
in switch-mistake app, 334, 343

■ W
wallpapers, arrays of, 192–193
web browser, Safari, 11

web, getting data for parsing from, 409
Web View, MyStory app, 302–314
webView outlet linkage, 313
Welcome to Xcode screen, 25–26, 34
work, saving, 49
Wozniak, Steve, 18
writing statements, 130

■ X
Xcode

iOS SDK.mpkg, 14–15
for Lion link, 13
shrinking size of, 163
touches app, 160

Xcode folder, 36
Xcode icon, 14, 34
.xib files, 36, 93–96, 132, 153

creating, 462
nonatomic, 189
retain, 189
synthesizing, 191

■ Y
yourName variable, 149

■ Z
zoom modes, Xcode, 262

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Foreword: About the Author
	Why you’ll relate to Dr. Lewis
	Fast-Forward 17 Years
	Past—Present—Future
	Why Write This Book?

	About the Contributing Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	WhatThis Book Will Do For You
	Sound familiar?
	How do I know this about you?

	The Approach I Take

	Chapter 1 Before We Get Started
	Necessities and Accessories
	What I Won’t Teach You
	Computer Science: A Broad and Diverse Landscape
	Why Purgatory Exists In Objective-C
	Houston, We Have a Problem
	How We’ll Visit Purgatory Every Now and Again
	Looking Forward… Beginning iPhone 4 Development: Exploring the iPhone SDK

	What You Will Learn
	Creating Cool and Wacky Apps: Why I Teach This Way
	Evangelizing to Your Grandmother… What You Coded Is Crucial!

	How Does This All Work?
	Our Road Map: Using Xcode and Interface Builder
	Getting Ready For Your First iPhone/iPad Project
	The Accompanying Screencasts
	The Accompanying PDFs
	Pretending Not to Know: The Art of De-Obfuscation
	How We’ll Travel Through Each Step

	Chapter 2: Blast-Off!
	Running Your App on the iPhone Simulator
	Running your app onthe iPad Simulator that reads your iPhone environment
	Running your App on the iPad Simulator
	Running your App on Physical Devices
	Digging the Code

	Chapter 3: Keep on Truckin'
	helloWorld_03 - An Interactive View-Based App
	Creating the User Interface
	Connecting to the Code
	Avoiding an Annoying Error
	Setting up the Coding Environment
	Creating a Programming Roadmap
	Step One: Create strings to manage your text input and output
	Step Two: Manipulate the text around
	Step Three: Display your hard work
	Step Four: Housekeeping
	Step Five: Get rid of the keyboard

	Digging the Code
	Nibs, Zibs, and Xibs
	Methods
	Header Files
	The Inspector Bar
	NSStrings
	More on Memory Management

	Alright!

	Chapter 4: Buttons & Labels with Multiple Graphics
	Roadmap Recap
	helloWorld_04: A View-based Application
	Understanding IBOutlets
	Pointers
	Properties: Management & Control
	Adding IBActions

	Digging the Code
	IBOutlets and IBActions
	More About Pointers
	You've Said "Hello!" but now, INDIO!
	Model-View-Controller

	In the Chapter Ahead

	Chapter 5: Touches
	Redefining "Giving Up"
	Roadmap Recap
	Touches: A View-Based Application
	CGAffineTransform Structs
	Coding the Header File
	Working in the Implementation File
	Synthesis
	viewDidLoad
	Set Buttons and Backgrounds to the Start State

	Create Our Array with All Our Wallpapers Inside of It
	Set How Much We Will Shrink the Lulu Fruit Icon
	Set How Much We Will Move the Lulu Fruit Icon

	Set the Background Image to the Current Background Image
	New Heading
	Coding the Shrink Button
	Coding the Move Button
	Coding the Change Button

	Running the Code

	Digging the Code
	In the Chapter Ahead

	Chapter 6: Switches
	Don't Freak Out: Let's Look at Your Brain!
	switch: A Tabbed Application
	Obtaining the Resources
	Creating the App
	Adding the Images to the Project
	Running the App
	Customizing the Tabs
	Coding the Second View
	Adding a Button
	Coding the Button
	Using the Button

	Digging the Code
	Content View Modes
	Compile-time and Runtime

	In the Chapter Ahead

	Chapter 7: Storyboards
	Storytelling
	Roadmap Recap
	Roadmap: Four Phases

	Evolve: A View-based Storyboard Application
	Phase I: Creating Core Storyboarding Configurations
	Phase II: Setting Up the View Controllers
	Phase III: Establishing View Controller Content
	Phase IV: Working on Closure and Coding

	Digging the Code
	Storyboard View Controllers, iOS4 and Programmatically Creating Them

	In the Chapter Ahead

	Chapter 8: Debugging
	Xcode's Debugging Landscape
	Xcode's Tools
	Xcode's Tools: Text Editor
	Xcode's Tools: Debugger Window
	Xcode's Tools: GDB Console
	Xcode's Tools: Console Output and Device Logs
	Xcode's Tools: NSZombie
	Xcode's Tools: Shark
	Xcode's Tools: Unit Testing
	Our Tool: FileMerge.app

	switch-mistake: A Lesson in the Art of Crashing
	Starting the Project
	Creating the Views
	Creating the Bug
	Comparing the Source Files

	Digging the Code
	Debugger Console
	Fix-it
	Documentation
	Static Analysis

	In the Chapter Ahead

	Chapter 9: MapKit & Storyboarding
	ALittle about Frameworks
	Important Things to Know
	Preinstalled MapKit Apps
	Find Yourself
	Search for a location
	Change the view. See traffic

	Cool and Popular MapKit Apps Inspire Us
	myStory_01: A Single-View Application
	Possible Prepping for the App

	Preliminaries
	A New Single View Template
	Preliminaries: Adding the Annotation File
	Preliminaries: Adding Frameworks
	Bring in the Images!
	Coding the myPos NSObject
	Coding the View Controller
	Dealing with the View Controller's Implementation
	The Storyboard

	Digging the Code
	Protocols
	Memory Management of Storyboard Objects

	Digging My Students' MapKit Code
	Parsing to MapKit from the Internet
	MapKit Parsing
	Starting Point
	Getting Data from the Web
	Add Methods to View Controller
	Test the Parser Feed
	Start the Parser Method

	Three MapKit Final Projects: CS-201 iPhone Apps, Objective-C
	Final Project—Example 1
	Final Project—Example 2
	Final Project—Example 3

	Zoom Out... Seeing the Big Picture

	Chapter 10: MapKit & Tables with Storyboarding
	myStory_02: A Single-View Application
	Possible Prepping for the App
	Preliminaries
	A New Single View Template
	Bring in the Images!
	Organize Storyboard
	Adding the Table View Controller
	Coding myMasterTableViewController

	Part 2
	Coding the myDetailViewController.m file
	Tweaking the Storyboard

	Chapter 11: Storyboarding to Multimedia Platforms
	myiTunes: A Master-Detail Application
	Preliminaries
	A New Master-Detail Template
	Bring in the Images!
	Organize the Popover in Storyboard
	Coding the myiTunes App
	Coding DetailViewController
	Finalizing the Storyboard

	In Ending

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

