
C H A P T E R 7

■ ■ ■

137

Python and MongoDB

Python is by far one of the easier programming languages to learn and master. It’s an especially great
language to start with if you are relatively new to programming. And you’ll pick it up that much more
quickly if you’re already quite familiar with programming.

Python can be used to quickly develop an application while ensuring the code itself remains
perfectly readable. With that in mind, this chapter will show you how to write simple yet elegant, clear,
and powerful code that works with MongoDB through the Python driver (AKA, the PyMongo driver).

First, you’ll look at the Connection() function, which enables you to establish a connection to the
database. Second, you’ll learn how to write documents, or dictionaries, as well as how to insert them.
Third, you’ll learn how to use either the find() or find_one() command to retrieve documents using the
Python driver. Both of these commands optionally take a rich set of query modifiers to narrow down
your search and make your query a little easier to implement. Fourth, you’ll learn about the wide variety
of operators that exist for performing updates. Finally, you’ll take a look at how to use PyMongo to delete
your data at the document or even the database level. As an added bonus, you’ll learn how to use DBRef
module to refer to data stored elsewhere.

Throughout the chapter, you’ll see many practical code examples that illustrate the examples
discussed. The code itself will be preceded with a greater than (>) symbol to indicate the command gets
written in the Python shell. The query code will be styled in bold, whereas the resulting output will be
rendered in plaintext. Let’s get started.

Working with Documents in Python
As mentioned in earlier chapters, MongoDB uses BSON-styled documents, and PHP uses associative
arrays. In a similar vein, Python has what it calls dictionaries. If you’ve already played around with the
MongoDB console, we’re confident you are absolutely going to love Python. After all, the syntax is so
similar that the learning curve for the language syntax will be negligible.

We’ve already covered the structure of a MongoDB document in the preceding chapter, so we won’t
get into that again now. Instead, let’s examine what a document looks like in the Python shell:

item = {
 "Type" : "Laptop",
 "ItemNumber" : "1234EXD",
 "Status" : "In use",
 "Location" : {
 "Department" : "Development",
 "Building" : "2B",
 "Floor" : 12,
 "Desk" : 120101,
 "Owner" : "Anderson, Thomas"
 },
 "Tags" : ["Laptop","Development","In Use"]
}

CHAPTER 7 ■ PYTHON AND MONGODB

138

While you should keep the Python term dictionary in mind, in most cases this chapter will refer to
its MongoDB equivalent, document. After all, most of the time, we will be working with MongoDB
documents.

Using PyMongo Modules
The Python driver works with modules. You can treat these much as you treat the classes in the PHP
driver. Each module within the PyMongo driver is responsible for a set of operations. There’s an
individual module for each of the following tasks (and quite a few more): establishing connections,
working with databases, leveraging collections, manipulating the cursor, working with the DBRef module,
converting the Object ID, and running server-side JavaScript code.

This chapter will walk you through the most basic yet useful set of operations needed to work with
the PyMongo driver. Step-by-step, you learn how to use commands with simple and easy-to-understand
pieces of code that you can copy and paste directly into your Python shell (or script). From there, it’s a
short step to managing your MongoDB database.

■ Note Commands will be styled in bold in code and have a prefix that is preceded by three greater than
symbols (>>>). This convention indicates that the line introduces a new command that is typed into the shell.
Code that starts with three dots (...) indicates that the code is continued from the preceding line. The resulting
output will not be styled.

Connecting and Disconnecting
Establishing a connection to the database requires that you first import the PyMongo driver into Python
itself. This is an absolute prerequisite; otherwise, none of the modules will be loaded, and your code will
fail.

To import the driver, type the following command in your shell:

>>> import pymongo

Once the driver has been loaded and is known to the Python shell, you can start loading the module
you want to work with. The Connection module enables you to establish connections. Type the following
statement in the shell to load the Connection module:

>>> from pymongo import Connection

Once your MongoDB service is up and running (this is mandatory if you wish to connect), then you
can go ahead and establish a connection to the service by calling the Connection function.

If no additional parameters are given, then the function assumes you want to connect to the service
on the localhost (the default port number for the localhost is 27017). The following line establishes the
connection:

>>> c = Connection()

CHAPTER 7 ■ PYTHON AND MONGODB

139

You can see the connection coming in through the MongoDB service shell. Once you establish a
connection, you can use the c dictionary to refer to the connection, just as you did in the shell with db
and in PHP with $c. Next, select the database that you want to work with, storing that database under the
db dictionary. You can do this just as you would in the MongoDB shell—in this example, you use the
inventory database:

>>> db = c.inventory
>>> db
Database(Connection('localhost', 27017), u'inventory')

The output in the preceding example shows that you that you are connected to the localhost and
that you are using the inventory database.

Now that the database has been selected, you can select your MongoDB collection in the exact same
way. Because you’ve already stored the database name under the db dictionary, you can use that to select
the collection’s name, which is called items in this case:

>>> collection = db.items

Inserting Data
All that remains is to define the document by storing it in a dictionary. Let’s take the preceding example
and insert that into the shell:

>>> item = {
... "Type" : "Laptop",
... "ItemNumber" : "1234EXD",
... "Status" : "In use",
... "Location" : {
... "Department" : "Development",
... "Building" : "2B",
... "Floor" : 12,
... "Desk" : 120101,
... "Owner" : "Anderson, Thomas"
... },
... "Tags" : ["Laptop","Development","In Use"]
... }

Once you define the document, you can insert it using the same insert function that is available in
the MongoDB shell:

>>> collection.insert(item)
ObjectId('4c57207b4abffe0e0c000000')

That’s all there is to it: you define the document and insert it using the insert function.
There’s one more interesting trick you can take advantage of when inserting documents: inserting

multiple documents at the same time. You can do this by specifying both documents in a single
dictionary, and then inserting that document afterwards. The result will return two Object IDs; pay
careful attention to how the brackets are used in the following example:

>>> two = [{
... "Type" : "Laptop",
... "ItemNumber" : "2345FDX",

CHAPTER 7 ■ PYTHON AND MONGODB

140

... "Status" : "In use",

... "Location" : {

... "Department" : "Development",

... "Building" : "2B",

... "Floor" : 12,

... "Desk" : 120102,

... "Owner" : "Smith, Simon"

... },

... "Tags" : ["Laptop","Development","In Use"]

... },

... {

... "Type" : "Laptop",

... "ItemNumber" : "3456TFS",

... "Status" : "In use",

... "Location" : {

... "Department" : "Development",

... "Building" : "2B",

... "Floor" : 12,

... "Desk" : 120103,

... "Owner" : "Walker, Jan"

... },

... "Tags" : ["Laptop","Development","In Use"]

... }]
>>> collection.insert(two)
[ObjectId('4c57234c4abffe0e0c000001'), ObjectId('4c57234c4abffe0e0c000002')]

Finding Your Data
PyMongo provides two functions for finding your data: find_one(), which finds a single document in
your collection that matches specified criteria; and find(), which can find multiple documents based on
the supplied parameters (if you do not specify any parameters, find() returns all documents in the
collection). Let’s look at some examples.

Finding a Single Document
As just mentioned, you use the find_one() function to find a single document. The function is similar to
the findOne() function in the MongoDB shell, so mastering how it works shouldn’t present much of a
challenge for you. By default, this function will return the first document in your collection if it is
executed without any parameters, as in the following example:

>>> collection.find_one()
 {
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'1234EXD',
 u'Location':{
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Anderson, Thomas',

CHAPTER 7 ■ PYTHON AND MONGODB

141

 u'Desk': 120101
 },
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Type': u'Laptop'
 }

You can specify additional parameters to ensure that the first document returned matches your
query. The query parameters need to be written just as they would if you were defining them in the shell;
that is, you need to specify a key and its value (or a number of values). For instance, assume you want to
find a document for which an ItemNumber has the value of 3456TFS. The following query accomplishes
that, returning the output as shown:

>>> collection.find_one({"ItemNumber" : "3456TFS"})
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'3456TFS',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Walker, Jan',
 u'Desk': 120103
 },
 '_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Type': u'Laptop'
}

If the search criteria are relatively common for a document, you can also specify additional query
operators. For example, imagine querying for {"Department" : "Development"}, which would return
more than one result. We’ll look at such an example momentarily; however, first let’s determine how to
return multiple documents, rather than just one. This may actually be a little different than you suspect.

Finding Multiple Documents
You need to use the find() function to return more than a single document. You’ve probably used this
command in MongoDB hundreds of times by this point in the book, so you’re probably feeling rather
comfortable with it. The concept is the same in Python: you specify the query parameters between the
brackets to find the actual information.

Getting the results back to your screen, however, works a little differently. Just as when working with
PHP and in the shell, querying for a set of documents will return a cursor instance to you. Unlike when
typing in the shell, however, you can’t simply type in db.items.find() to have all results presented to
you. Instead, you need to retrieve all documents using the cursor. The following example shows how to
display all documents from the items collection (note that you previously defined collection to match
the collection’s name; the results are left out for the sake of clarity):

>>> for doc in collection.find():
... doc
...

Pay close attention to the indentation before the word doc. If this indentation is not used, then an
error message will be displayed stating that an expected indented block didn’t occur. It’s one of Python’s
strengths that it uses such an indentation method for block delimiters because this approach keeps the
code well ordered. Rest assured, you’ll get used to this Pythonic coding convention relatively quickly. If

CHAPTER 7 ■ PYTHON AND MONGODB

142

you do happen to forget about the indentation, however, you’ll see an error message that looks
something like this:

File "<stdin>", line 2
 doc
 ^
IndentationError: expected an indented block

Next, let’s look at how to specify a query operator using the find() function. The methods used for
this are identical to the ones seen previously in the book:

>>> for doc in collection.find({"Location.Owner" : "Walker, Jan"}):
... doc
...
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'3456TFS',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Walker, Jan',
 u'Desk': 120103
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Type': u'Laptop'
}

Using Dot Notation
Dot notation is used to search for matching elements in an embedded object. The preceding snippet
actually shows an example of how to do this. When using this technique, you simply specify the key
name for an item within the embedded object to search for it, as in the following example:

>>> for doc in collection.find({"Location.Department" : "Development"}):
... doc
...

The preceding example returns any document that has the Development department set. When
searching for information in a simple array (for instance, the tags applied), you only need to fill in any of
the matching tags:

>>> for doc in collection.find({"Tags" : "Laptop"}):
... doc
...

Returning Fields
If your documents are relatively large, and you do not want to return all key/value information stored in
a document, you can include an additional parameter in the find() function to specify that only a

CHAPTER 7 ■ PYTHON AND MONGODB

143

certain set of fields need to be returned. You do this by providing a list of field names after the search
criteria.

The following example returns the only current owner’s name, the item number, and the object ID
(this will always be returned, even if you tell it to not show up):

>>> for doc in collection.find({'Status' : 'In use'} , {'ItemNumber' : 'true',
'Location.Owner':'true'}):
... doc
...
{

u'ItemNumber': u'1234EXD',
u'_id': ObjectId('4c57207b4abffe0e0c000000'),
u'Location': {

u'Owner': u'Anderson, Thomas'
}

}
{

u'ItemNumber': u'2345FDX',
u'_id': ObjectId('4c57234c4abffe0e0c000001'),
u'Location': {

u'Owner': u'Smith, Simon'
}

}
{

u'ItemNumber': u'3456TFS',
u'_id': ObjectId('4c57234c4abffe0e0c000002'),
u'Location': {

u'Owner': u'Walker, Jan'
}

}

I suspect you’ll agree this approach to specifying criteria is quite handy.

Simplifying Queries with Sort, Limit, and Skip
The sort(), limit(), and skip() functions will make implementing your queries much easier.
Individually, each of these functions has its charms, but combining them makes them even better and
more powerful. You can use the sort() function to sort the results by a specific key; the limit() function
to limit the total number of results returned; and the skip() function to skip the first n number of items
found before returning the remainder of the documents that match your query.

Let’s look at a set of individual examples, beginning with the sort() function. To save some space,
the following example includes another parameter to ensure only a few fields are returned:

>>> for doc in collection.find ({"Status" : "In use"},
... {"ItemNumber":"true", "Location.Owner" : "True"})
... .sort("ItemNumber"):
... doc
...
{

u'ItemNumber': u'1234EXD',
u'_id': ObjectId('4c57207b4abffe0e0c000000'),
u'Location': {

u'Owner': u'Anderson, Thomas'

CHAPTER 7 ■ PYTHON AND MONGODB

144

}
}
{

u'ItemNumber': u'2345FDX',
u'_id': ObjectId('4c57234c4abffe0e0c000001'),
u'Location': {

u'Owner': u'Smith, Simon'
}

}
{

u'ItemNumber': u'3456TFS',
u'_id': ObjectId('4c57234c4abffe0e0c000002'),
u'Location': {

u'Owner': u'Walker, Jan'
}

}

Next, let’s look at the limit() function in action. In this case, you tell the function to return only the

ItemNumber from the first two items it finds in the collection (note that no search criteria are specified in
this example):

>>> for doc in collection.find({}, {"ItemNumber" : "true"}).limit(2):
... doc
...
{u'ItemNumber': u'1234EXD', u'_id': ObjectId('4c57207b4abffe0e0c000000')}
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c57234c4abffe0e0c000001')}

You can use the skip() function to skip a few items before returning a set of documents, as in the

following example:

>>> for doc in collection.find({}, {"ItemNumber" : "true"}).skip(2):
... doc
...
{u'ItemNumber': u'3456TFS', u'_id': ObjectId('4c57234c4abffe0e0c000002')}

You can also combine the three functions to select only a certain amount of items found, while

simultaneously specifying a specific number of items to skip and sorting them:

>>> for doc in collection.find({'Status' : 'In use'},
... {'ItemNumber':'true', 'Location.Owner':'true'})
... .limit(2).skip(1).sort("ItemNumber"):
... doc
...
{

u'ItemNumber': u'2345FDX',
u'_id': ObjectId('4c57234c4abffe0e0c000001'),
u'Location': {

u'Owner': u'Smith, Simon'
}

CHAPTER 7 ■ PYTHON AND MONGODB

145

}
{

u'ItemNumber': u'3456TFS',
u'_id': ObjectId('4c57234c4abffe0e0c000002'),
u'Location': {

u'Owner': u'Walker, Jan'
}

}

What you just did—limiting the results returned and skipping a certain number of items—is
generally known as paging. You can accomplish this in a slightly more simplistic way with the $slice
operator, which will be covered later in this chapter.

Aggregating Queries
As previously noted, MongoDB comes with a powerful set of aggregation tools (see Chapter 4 for more
information on these tools). The cool part: you can use all these tools with the Python driver. These tools
make it possible to using the count() function to perform a count on your data; using the distinct()
function to get a list of distinct values with no duplicates; and, last but not least, use the map_reduce()
function to group your data and batch manipulate the results or simply to perform counts.

This set of commands, used separately or together, enables you to effectively query for the
information you need to know—and nothing else.

Counting Items with Count()
You can use the count() function if all you want is to perform a count on the total number of items
matching your criteria,. The function doesn’t return all the information the way the find() function
does; instead, it returns an integer value with the total of items found.

Let’s have a look at some simple examples. Let’s begin by returning the total number of documents
in the entire collection, without specifying any criteria.

>>> collection.find({}).count()
3

You can also specify these count queries more precisely, as in this example:

>>> collection.find({"Status" : "In use", "Location.Owner" : "Walker, Jan"}).count()
1

The count() function can be great when all you need is a quick count of the total number of
documents that match your criteria.

Counting Unique Items with Distinct()
The count() function is a great way to get the total number of items returned. However, sometimes you
might accidentally add duplicates to your collection because you simply forget to remove or change an
old document, and you want to get an accurate count that shows no duplicates. This is where the
distinct() function can help you out. This function ensures that only unique items will be returned.
Let’s set up an example by adding another item to the collection with an ItemNumber used previously:

>>> dup = ({
 "ItemNumber" : "2345FDX",

CHAPTER 7 ■ PYTHON AND MONGODB

146

 "Status" : "Not used",
 "Type" : "Laptop",
 "Location" : {
 "Department" : "Storage",
 "Building" : "1A"
 },
 "Tags" : ["Not used","Laptop","Storage"]
})
>>> collection.insert(dup)
ObjectId('4c592eb84abffe0e0c000004')

When you use the count() function at this juncture, the number of unique items won’t be correct:

>>> collection.find({}).count()
4

Instead, you can use the distinct() function to ensure that any duplicates get ignored:

>>> collection.distinct("ItemNumber")
[u'1234EXD', u'2345FDX', u'3456TFS']

Grouping Data with map_reduce()
The map_reduce() function is great for grouping your data by a certain tag and performing counts or
other type of manipulation on it. The map_reduce() function is called from the Code module; therefore it
needs to be invoked first. Let’s have a look at a practical example that counts the occurrence of each tag
and returns the results.

Begin by loading the Code module; you do this the same way you loaded the Connection module at
the beginning of this chapter:

>>> from pymongo.code import Code

Now you’re ready to define the map dictionary itself. You tell this object to format the data it finds as
a set of keys and values. The following example uses the Tags key, setting the value of it to 1 because you
want every item to count as just one object (this helps keep things simple). Naturally, you can change
this number if you want to, but let’s leave it as-is for now. The following snippet defines the map
dictionary:

>>> map = Code("function() {"
... "this.Tags.forEach(function(t) {"
... " emit(t, 1);"
... "});"
... "}")

You’ve defined the map dictionary; next, you need to specify the reduce dictionary, so you can
accomplish the actual grouping. This requires an initial counter called Total, which you set to 0. This is
your default value. If you want to start off with 20 tags each, then you can change this value from 0 to 20.

The following code specifies the reduce dictionary:

>>> reduce = Code("function (key, values) {"
... " var Total = 0;"
... " for (var i = 0; i < values.length; i++) {"
... " Total += values[i];"
... " }"
... " return Total;"
... "}")

CHAPTER 7 ■ PYTHON AND MONGODB

147

Now that the map and reduce dictionaries have been defined, you can go ahead and invoke the
map_reduce() command, specifying map and reduce as its parameters. The results will be returned in a
cursor, which you will need to treat like any other cursor to return the contents, as in the following
example:

>>> result = collection.map_reduce(map, reduce)
>>> for tag in result.find():
... tag
...
{u'_id': u'Development', u'value': 3.0}
{u'_id': u'In Use', u'value': 3.0}
{u'_id': u'Laptop', u'value': 4.0}
{u'_id': u'Not used', u'value': 1.0}
{u'_id': u'Storage', u'value': 1.0}

You can also use additional parameters as desired. For instance, you can use the out parameter to
define the output collection; the query parameter to define your query; or the limit parameter to limit
the total number of results returned. The next example applies these parameters. You don’t need to
redefine the map or reduce dictionaries this time, so you can skip ahead to executing the map_reduce
command itself:

>>> result = collection.map_reduce(map, reduce, query={"Status" : "In use"}, limit=4,
out="Tags")
>>> for tag in result.find():
... tag
...
{u'_id': u'Development', u'value': 3.0}
{u'_id': u'In Use', u'value': 3.0}
{u'_id': u'Laptop', u'value': 3.0}

Specifying an Index with Hint()
You can use the hint() function to specify which index ought to be used when querying for data. Using
this function helps you to increase the query’s performance. In Python, the hint() function also
executes on the cursor. However, you should keep in mind that the hint name you specify in Python
needs to be the same as the one you passed to the create_index() function.

In the next example, you will create an index first, and then search for the data that specifies the
index. Before you can sort in ascending order, however, you will need to use the import() function to
import the ASCENDING method. Finally, you need to execute the create_index() function:

>>> from pymongo import ASCENDING
>>> collection.create_index([("ItemNumber", ASCENDING)])
u'ItemNumber_1'

>>> for doc in collection.find({"Location.Owner" : "Walker, Jan"}) .hint([("ItemNumber",
ASCENDING)]):
... doc
...
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'3456TFS',
 u'Location': {

CHAPTER 7 ■ PYTHON AND MONGODB

148

 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Walker, Jan',
 u'Desk': 120103
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Type': u'Laptop'
}

Using indexes can help you significantly increase performance when the size of your collections
keeps growing (see Chapter 10 for more details on performance tuning).

Refining Queries with Conditional Operators
You can use conditional operators to refine your query. Python includes more than a half dozen
conditional operators; these are identical to the conditional operators you’ve seen in the previous
chapters. The following sections walk you through the conditional operators available in Python, as well
as how you can use them to refine your queries in Python.

Using the $lt, $gt, $lte, and $gte Operators
Let’s begin by looking at the $lt, $gt, $lte, and $gte conditional operators. You can use the $lt operator
to search for any numerical information that is less than n. The operator only takes one parameter: the
number n, which specifies the limit. The following example finds any entries that have a desk number
lower than 120102. Note that the n parameter itself is not included:

>>> for doc in collection.find({"Location.Desk" : {"$lt" : 120102} }):
... doc
...
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'1234EXD',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Anderson, Thomas',
 u'Desk': 120101
 },
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Type': u'Laptop'
}

In a similar vein, you can use the $gt operator to find any items with a value higher than n. Again,
note that the n parameter itself is not included:

>>> for doc in collection.find({"Location.Desk" : {"$gt" : 120102} }):
... doc
...
{

CHAPTER 7 ■ PYTHON AND MONGODB

149

 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'3456TFS',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Walker, Jan',
 u'Desk': 120103
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Type': u'Laptop'
}

If you want to include the value of the n parameters in your results, then you can use either the $lte
or $gte operators to find any values less than or equal to n or greater than or equal to n, respectively. The
following examples illustrate how to use these operators:

>>> for doc in collection.find({"Location.Desk" : {"$lte" : 120102} }):
... doc
...
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'1234EXD',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Anderson, Thomas',
 u'Desk': 120101
 },
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Type': u'Laptop'
}
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'2345FDX',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Smith, Simon',
 u'Desk': 120102
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000001'),
 u'Type': u'Laptop'
}

>>> for doc in collection.find({"Location.Desk" : {"$gte" : 120102} }):
... doc
...
{

CHAPTER 7 ■ PYTHON AND MONGODB

150

 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'2345FDX',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Smith, Simon',
 u'Desk': 120102
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000001'),
 u'Type': u'Laptop'
}
{
 u'Status': u'In use',
 u'Tags': [u'Laptop', u'Development', u'In Use'],
 u'ItemNumber': u'3456TFS',
 u'Location': {
 u'Department': u'Development',
 u'Building': u'2B',
 u'Floor': 12,
 u'Owner': u'Walker, Jan',
 u'Desk': 120103
 },
 u'_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Type': u'Laptop'
}

Searching for Non-Matching Values with $ne
You can use the $ne (not equals) operator to search for any documents in a collection that do not match
specified criteria. This operator requires one parameter, the key and value information that a document
should not have for the result to return a match:

>>> collection.find({"Status" : {"$ne" : "In use"}}).count()
1

Specifying an Array of Matches with $in
The $in operator lets you specify an array of possible matches; the SQL equivalent of this operator is IN.

For instance, assume you’re looking for only two different kinds of development computers: not
used or with Development. Also assume that you want to limit the results to two items, returning only the
ItemNumber:

>>> for doc in collection.find({"Tags" : {"$in" : ["Not used","Development"]}} ,
{"ItemNumber":"true"}).limit(2):
... doc
...
{u'ItemNumber': u'1234EXD', u'_id': ObjectId('4c57207b4abffe0e0c000000')}
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c57234c4abffe0e0c000001')}

CHAPTER 7 ■ PYTHON AND MONGODB

151

Specifying Against an Array of Matches with $nin
You use the $nin operator exactly as you use the $in operator; the difference is that this operator
excludes any documents that match any of the values specified in the given array. For example, the
following query finds any items that are currently not used in the Development department:

>>> for doc in collection.find({"Tags" : {"$nin" : ["Development"]}}, {"ItemNumber":"true"}):
... doc
...
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c592eb84abffe0e0c000004')}

Finding Documents that Match an Array’s Values
Whereas the $in operator can be used to find any document that matches any of the values specified in
an array, the $all operator lets you find any document that matches all of the values specified in an
array. The syntax to accomplish this looks exactly the same:

>>> for doc in collection.find({"Tags" : {"$all" : ["Storage","Not used"]}},
{"ItemNumber":"true"}):
... doc
...
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c592eb84abffe0e0c000004')}

Specifying Multiple Expressions to Match with $or
You can use the $or operator to specify multiple values that a document can have to qualify as a match.
This is similar to the $in operator; the difference is that the $or operator lets you specify the key, as well
as the value. You can also combine the $or operator with another key/value combination. Let’s look at a
few examples.

This example returns all documents that either have the location set to Storage or have the owner
set to Anderson, Thomas:

>>> for doc in collection.find({"$or" : [{ "Location.Department" : "Storage" },
... { "Location.Owner" : "Anderson, Thomas"}] }):
... doc
...

You can also combine the preceding code with another key/value pair, as in this example:

>>> for doc in collection.find({ "Location.Building" : "2B", "$or" : [{ "Location.Department"
: "Storage" },
... { "Location.Owner" : "Anderson, Thomas"}] }):
... doc
...

The $or operator basically allows you to conduct two searches simultaneously and combine the
resulting output, even if the individual searches have nothing in common with each other.

CHAPTER 7 ■ PYTHON AND MONGODB

152

Retrieving Items from an Array with $slice
You can use the $slice operator to retrieve a certain number of items from a given array in your
document. This operator provides functionality similar to the skip() and limit() functions; the
difference is that those two functions work on full documents, whereas the $slice operator works on an
array in a single document.

Before looking at an example, let’s add a new document that will enable us to take a better look at
this operator. Assume that your company is maniacally obsessed with tracking its chair inventory,
tracking chairs wherever they might go. Naturally, every chair has its own history of desks to which it
once belonged. The $slice example operator is great for tracking that kind of inventory.

Begin by adding the following document:

>>> chair = ({
... "Status" : "Not used",
... "Tags" : ["Chair","Not used","Storage"],
... "ItemNumber" : "6789SID",
... "Location" : {
... "Department" : "Storage",
... "Building" : "2B"
... },
... "PreviousLocation" :
... ["120100","120101","120102","120103","120104","120105",
... "120106","120107","120108","120109","120110"]
... })

>>> collection.insert(chair)
ObjectId('4c5973554abffe0e0c000005')

Now assume you want to see all the information available for the chair returned in the preceding
example, with one caveat: you don’t want to see all the previous location information, but only the first
three desks it belonged to:

>>> collection.find_one({"ItemNumber" : "6789SID"}, {"PreviousLocation" : {"$slice" : 3} })
{
 u'Status': u'Not used',
 u'PreviousLocation': [u'120100', u'120101', u'120102'],
 u'Tags': [u'Chair', u'Not used', u'Storage'],
 u'ItemNumber': u'6789SID',
 u'Location': {
 u'Department': u'Storage',
 u'Building': u'2B'
 },
 u'_id': ObjectId('4c5973554abffe0e0c000005')
}

Similarly, you can see its three most recent locations by making the integer value negative:

>>> collection.find_one({"ItemNumber" : "6789SID"}, {"PreviousLocation" : {"$slice" : -3} })
{
 u'Status': u'Not used',
 u'PreviousLocation': [u'120108', u'120109', u'120110'],
 u'Tags': [u'Chair', u'Not used', u'Storage'],
 u'ItemNumber': u'6789SID',
 u'Location': {

CHAPTER 7 ■ PYTHON AND MONGODB

153

 u'Department': u'Storage',
 u'Building': u'2B'
 },
 u'_id': ObjectId('4c5973554abffe0e0c000005')
}

Or, you could skip the first five locations for the chair and limit the number of results returned to
three (pay special attention to the brackets, here):

>>> collection.find_one({"ItemNumber" : "6789SID"}, {"PreviousLocation" : {"$slice" : [5, 3] }
})
{
 u'Status': u'Not used',
 u'PreviousLocation': [u'120105', u'120106', u'120107'],
 u'Tags': [u'Chair', u'Not used', u'Storage'],
 u'ItemNumber': u'6789SID',
 u'Location': {
 u'Department': u'Storage',
 u'Building': u'2B'
 },
 u'_id': ObjectId('4c5973554abffe0e0c000005')
}

You probably get the idea. The preceding example might seem a tad unusual, but inventory control
systems often veer into the unorthodox; and the $slice operator is intrinsically good at helping you
account for unusual or complex circumstances. For example, the $slice operator might prove an
especially effective tool for implementing the paging system for a website’s Comments section, as you
see in the next chapter.

Conducting Searches with Regular Expression
One useful tool for conducting searches is Regular Expression. The default Regular Expression module
for Python is called re. Performing a search with the re module requires that you first load the module,
as in this example:

>>> import re

After you load the module, you can specify the Regular Expression query in the value field of your
search criteria. The following example shows how to search for any document where ItemNumber has a
value that contains a 4 (for the sake of keeping things simple, this example returns only the values in
ItemNumber):

>>> for doc in collection.find({"ItemNumber" : re.compile("4")}, {"ItemNumber" : "true"}):
... doc
...
{u'ItemNumber': u'1234EXD', u'_id': ObjectId('4c57207b4abffe0e0c000000')}
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c57234c4abffe0e0c000001')}
{u'ItemNumber': u'2345FDX', u'_id': ObjectId('4c592eb84abffe0e0c000004')}
{u'ItemNumber': u'3456TFS', u'_id': ObjectId('4c57234c4abffe0e0c000002')}

You can further define a Regular Expression. At this stage, your query is case sensitive, and it will
match any document that has a 4 in the value of ItemNumber, regardless of its position. However, assume
you want to find a document where the value of ItemNumber ends with FS, is preceded by an unknown
value, and can contain no additional data after the FS:

CHAPTER 7 ■ PYTHON AND MONGODB

154

>>> for doc in collection.find({"ItemNumber" : re.compile(".FS$")}, {"ItemNumber" : "true"}):
... doc
...
{u'ItemNumber': u'3456TFS', u'_id': ObjectId('4c57234c4abffe0e0c000002')}

You can also to search for information in a case-insensitive way, but first you must add another
function, as in this example:

>>> for doc in collection.find({"Location.Owner" : re.compile("^anderson.", re.IGNORECASE)},
... {"ItemNumber" : "true", "Location.Owner" : "true"}):
... doc
...
{
 u'ItemNumber': u'1234EXD',
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Location': {
 u'Owner': u'Anderson, Thomas'
 }
}

Regular Expression can be an extremely powerful tool, as long as you utilize it properly. For more
details on how the re module works and which functions it includes, please refer to the module’s official
documentation at http://docs.python.org/library/re.html.

Modifying the Data
So far you’ve learned how to use conditional operators and Regular Expression in Python to query for
information in your database. In the next part of this chapter, we’ll examine how to use Python to
modify the existing data in your collections. We can use Python to accomplish this task in several
different ways. The upcoming sections will build on the previously used query operators to find the
documents that ought to match your modifications. In a couple cases, you may need to skip back to
earlier parts of this chapter to brush up on particular aspects of using query operators—but that’s a
normal part of the learning process, and it will reinforce the lessons taught so far.

Updating Your Data
The way you use Python’s update() function doesn’t vary much from how you use the identically named
function in the MongoDB shell or the PHP driver. In this case, you provide two mandatory parameters to
update your data: arg and doc. The arg parameter specifies the key/value information used to match a
document, while the doc parameter contains the updated information. You can also specify four
optional parameters. The following list covers Python’s list of parameters to update information,
including what they do:

• arg: Specifies the search arguments (key/value information) that a document
must contain to qualify for the update. These arguments can be either a dictionary
or a set of key/value information that is stored in a SON object.

• doc: Comprises either a dictionary or a SON object that contains the information
to update the matching document with.

• upsert (optional): If set to true, performs an upsert.

CHAPTER 7 ■ PYTHON AND MONGODB

155

• manipulate (optional): If set to true, indicates the document will be manipulated
before performing the update using all instances of the SONManipulator.

• safe (optional): If set to true, performs a check to see whether the update
succeeded.

• multi (optional): If set to true, updates any matching document, rather than just
the first document it finds (the default action). It is recommended that you always
set this to true or false, rather than relying on the default behavior (which could
always change in the future).

If you do not specify any of the modifier operators when updating a document, then by default all
information in the document will be replaced with whatever data you inserted in the doc parameter. It is
best to avoid relying on the default behavior; instead, you should use the aforementioned operators to
specify your desired updates explicitly (you’ll learn how to do this momentarily).

You can see why it’s best to use conditional operators with the update() command by looking at a
case where you don’t use any conditional operators with the command:

// Define the updated data
>>> update = ({
 "Type" : "Chair",
 "Status" : "In use",
 "Tags" : ["Chair","In use","Marketing"],
 "ItemNumber" : "6789SID",
 "Location" : {
 "Department" : "Marketing",
 "Building" : "2B",
 "DeskNumber" : 131131,
 "Owner" : "Martin, Lisa"
 }
})

// Now, perform the update
>>> collection.update({"ItemNumber" : "6789SID"}, update)

// Confirm the update was successful
>>> collection.find_one({"Type" : "Chair"})
{
 u'Status': u'In use',
 u'Tags': [u'Chair', u'In use', u'Marketing'],
 u'ItemNumber': u'6789SID',
 u'Location': {
 u'Department': u'Marketing',
 u'Building': u'2B',
 u'DeskNumber': 131131,
 u'Owner': u'Martin, Lisa'
 },
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Type': u'Chair'
}

One big minus about the preceding example: it’s somewhat lengthy, and it updates only a few fields.
Next, we’ll look at what the modifier operators can be used to accomplish.

CHAPTER 7 ■ PYTHON AND MONGODB

156

Modifier Operators
Chapter 4 detailed how the MongoDB shell includes a large set of modifier operators that you can use to
manipulate your data more easily, but without needing to rewrite the entire document to change a single
field’s value (as seen in the preceding example).

The modifier operators let you do everything from changing one existing value in a document, to
inserting an entire array, to removing all entries from multiple items specified in an array. As a group,
these operators make it easy to modify data. Now let’s take a look at what the operators do and how you
use them.

Increasing an Integer Value with $inc
You use the $inc operator to increase an integer value in a document by the given number, n. The
following example shows how to increase the integer value of Location.Desknumber by 20:

>>> collection.update({"ItemNumber" : "6789SID"}, {"$inc" : {"Location.DeskNumber" : 20}})

Next, check to see whether the update was successful:

>>> collection.find_one({"Type" : "Chair"}, {"Location" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Location': {
 u'Department': u'Marketing',
 u'Building': u'2B',
 u'Owner': u'Martin, Lisa',
 u'DeskNumber': 131151
 }
}

Note that the $inc operator only works on integer values (i.e., numeric values), but not on any string
values or even numeric values added as a string (e.g., "123" vs. 123).

Changing an Existing Value with $set
You use the $set operator to change an existing value in any matching document. This is an operator
you’ll use frequently. The next example changes the value from "Building" in any item currently
matching the key/value "Location.Department / Development".

You use $set to perform the update, ensuring that all documents are updated and all upserts are
performed:

CHAPTER 7 ■ PYTHON AND MONGODB

157

>>> collection.update({"Location.Department" : "Development"},
... {"$set" : {"Location.Building" : "3B"} },
... upsert = True, multi = True)

Next, use the find_one() command to confirm all went well:

>>> collection.find_one({"Location.Department" : "Development"}, {"Location.Building" : True})
{
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Location': {u'Building': u'3B'}
}

Removing a Key/Value Field with $unset
Likewise, you use the $unset operator to remove a key/value field from a document, as shown in the
following example:

>>> collection.update({"Status" : "Not used", "ItemNumber" : "2345FDX"},
... {"$unset" : {"Location.Building" : 1 } })

Next, use the find_one() command to confirm all went well:

>>> collection.find_one({"Status" : "Not used", "ItemNumber" : "2345FDX"}, {"Location" :
"True"})
{
 u'_id': ObjectId('4c592eb84abffe0e0c000004'),
 u'Location': {u'Department': u'Storage'}
}

Adding a Value to an Array with $push
The $push operator lets you add a value to an array, assuming the array exists. If the array does not exist,
then it will be created with the value specified.

■ Warning If you use $push to update an existing field that isn’t an array, an error message will pop up.

Now you’re ready to add a value to an already existing array and confirm whether all went well.
First, perform the update:

>>> collection.update({"Location.Owner" : "Anderson, Thomas"},
... {"$push" : {"Tags" : "Anderson"} }, multi = True)

Now, execute find_one() to confirm whether the update(s) went well:

>>> collection.find_one({"Location.Owner" : "Anderson, Thomas"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c57207b4abffe0e0c000000'),
 u'Tags': [u'Laptop', u'Development', u'In Use', u'Anderson']
}

CHAPTER 7 ■ PYTHON AND MONGODB

158

Adding Multiple Values to an Array with $pushAll
The $pushAll operator is similar to the $push operator, with one essential difference: it lets you add
multiple values to an existing array. Again, the array must already exist, or you will receive an error. The
following example uses $pushAll in conjunction with Regular Expression to perform a search; this
enables you to apply a change to all matching queries:

>>> collection.update({"Location.Owner" : re.compile("^Walker,")},
... {"$pushAll" : {"Tags" : ["Walker","Warranty"] } })

Next, execute find_one() to see whether all went well:

>>> collection.find_one({"Location.Owner" : re.compile("^Walker,")}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c57234c4abffe0e0c000002'),
 u'Tags': [u'Laptop', u'Development', u'In Use', u'Walker', u'Warranty']
}

Adding a Value to an Existing Array with $addToSet
The $addToSet operator also lets you add a value to an already existing array. The difference is that this
method checks whether the array already exists before attempting the update (the $push and $pushAll
operators do not check for this condition).

This operator only takes one additional value; however, it’s also good to know that you can combine
this operator with the $each operator. Let’s look at two examples. First, let’s perform the update using
the $addToSet operator on any object matching "Type : Chair" and then check whether all went well
using the find_one() function:

>>> collection.update({"Type" : "Chair"}, {"$addToSet" : {"Tags" : "Warranty"} }, multi =
True)

>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'Chair', u'In use', u'Marketing', u'Warranty']
}

You can also use the $each statement to add multiple tags. Note that you perform this search using a
Regular Expression. Also, one of the tags in the list has been previously added; fortunately, it won’t be
added again because this is what $addToSet specifically prevents:

// Use the $each operator to add multiple tags, including one that was already added
>>> collection.update({"Type" : "Chair", "Location.Owner" : re.compile("^Martin,")},
... {"$addToSet" : { "Tags" : {"$each" : ["Martin","Warranty","Chair","In use"] } } })

Now it’s time to check whether all went well; specifically, you want to verify that the duplicate
Warranty tag has not been added again:

>>> collection.find_one({"Type" : "Chair", "Location.Owner" : re.compile("^Martin,")}, {"Tags"
: "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'Chair', u'In use', u'Marketing', u'Warranty', u'Martin']
}

CHAPTER 7 ■ PYTHON AND MONGODB

159

Removing an Element from an Array with $pop
So far, you’ve seen how to use the update() function to add values to an existing document. Now let’s
turn this around and look at how to remove data instead. We’ll begin by look into the $pop operator.

This operator allows you to delete either the first or last value from an array, but nothing in between.
The following example removes the first value in the Tags array from the first document it finds that
matches the "Type" : "Chair" criteria; the example then uses the find_one() command to confirm all
went well with the update:

>>> collection.update({"Type" : "Chair"}, {"$pop" : {"Tags" : -1}})

>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty', u'Martin']
}

Giving the Tags array a positive value instead removes the last occurrence in an array, as in the
following example:

>>> collection.update({"Type" : "Chair"}, {"$pop" : {"Tags" : 1}})

Next, execute the find_one() function again to confirm that all went well:

>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty']
}

Removing a Specific Value with $pull
The $pull operator lets you remove each occurrence of a specific value from an array, regardless of how
many times the value occurs; as long as the value is the same, it will be removed.

Let’s look at an example. Begin by using the $push operator to add identical tags with the value
Double to the Tags array:

>>> collection.update({"Type" : "Chair"}, {"$push" : {"Tags" : "Double"} }, multi = False)
>>> collection.update({"Type" : "Chair"}, {"$push" : {"Tags" : "Double"} }, multi = False)

Next, ensure that the tag was added twice by executing the find_one() command. Once you confirm
the tag exists twice, use the $pull operator to remove both instances of the tag:

>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty', u'Double', u'Double']
}

>>> collection.update({"Type" : "Chair"}, {"$pull" : {"Tags" : "Double"} }, multi = False)

To confirm all went well, execute find_one() command again, this time making sure that the result
no longer lists Double tag:

CHAPTER 7 ■ PYTHON AND MONGODB

160

>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty']
}

You can use the $pullAll operator to perform the same action; the difference is that the $pullAll
operator lets you remove multiple tags. Again, let’s look at an example. First, you need to add multiple
items into the Tags array again and confirm that they have been added:

>>> collection.update({"Type" : "Chair"}, {"$addToSet" : { "Tags" : {"$each" :
["Bacon","Spam"] } } })
>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty', u'Bacon', u'Spam']
}

Now you can use $pullAll operator to remove the multiple tags. The following example shows how
to use this operator; the example also executes a find_one() command immediately afterward to
confirm that the Bacon and Spam tags have been removed:

>>> collection.update({"Type" : "Chair"}, {"$pullAll" : {"Tags" : ["Bacon","Spam"] } }, multi
= False)
>>> collection.find_one({"Type" : "Chair"}, {"Tags" : "True"})
{
 u'_id': ObjectId('4c5973554abffe0e0c000005'),
 u'Tags': [u'In use', u'Marketing', u'Warranty']
}

Saving Documents Quickly with Save()
You can use the save() function to quickly add a document through the upsert method. For this to work,
you must also define the value of the _id field. If the document you want to save already exists, then the
document will be updated; if it does not exist already, then it will be created.

Let’s look at an example that saves a dictionary called Desktop. Begin by specifying the dictionary by
typing it into the shell with an identifier, after which you can save it with the save() function. Executing
the save() function returns the Object ID from the document once the save is successful:

>>> Desktop = ({
 "Status" : "In use",
 "Tags" : ["Desktop","In use","Marketing","Warranty"],
 "ItemNumber" : "4532FOO",
 "Location" : {
 "Department" : "Marketing",
 "Building" : "2B",
 "Desknumber" : 131131,
 "Owner" : "Martin, Lisa",
 }
})
>>> collection.save(Desktop)
ObjectId('4c5ddbe24abffe0f34000001')

CHAPTER 7 ■ PYTHON AND MONGODB

161

Now assume you realize that you forgot to specify a key/value pair in the dictionary. You can easily
add this information to the dictionary by defining the dictionary’s name, followed by its key between
brackets, and then including the desired contents. Once you do this, you can perform the upsert by
simply saving the entire dictionary again; doing so returns the Object ID again from the document:

>>> Desktop["Type"] = "Desktop"
>>> collection.save(Desktop)
ObjectId('4c5ddbe24abffe0f34000001')

As you can see, the value of the Object ID returned is unchanged.

Modifying a Document Atomically
You can use the findAndModify() function to modify a document atomically and return the results. The
Python driver currently does not have a helper method for this function, however, so it needs to be
executed as a database command (see Chapter 4 for more information on atomic updates).

The findAndModify() function can be used to update only a single document—and nothing more.
You should also keep in mind the fact that the document returned will not include the modifications
made by default; getting this information requires that you specify an additional argument.

The findAndModify() function can be used with seven parameters, and you must include either the
update parameter or the remove parameter. The following list covers all the available parameters,
explaining what they are and what they do:

• query: Specifies a filter for the query. If this isn’t specified, then all documents in
the collection will be seen as possible candidates, after which the first document it
encounters will be updated or removed.

• sort: Sorts the matching documents in a specified order.

• remove: If set to true, removes the first matching document.

• update: Specifies the information to update the document with. Note that any of
the modifying operators specified previously can be used for this.

• new: If set to true, returns the updated document rather than the selected
document. This is not set by default, however, which might be a bit confusing
sometimes.

• fields: Specifies the fields you would like to see returned, rather than the entire
document. This works identically to the find() function. Note that the _id field
will always be returned.

• upsert (optional): If set to true, performs an upsert.

Putting the Parameters to Work
You know what the parameters do; now it’s time to use them in a real-world example in conjunction
with the findAndModify() function. Begin by using the findAndModify() function to search for any
document that has a key/value pair of "Type" : "Desktop"—and then update each document that
matches the query by setting an additional key/value pair of "Status" : "In repair". Finally, you want
to ensure that the updated document(s) gets returned, rather than the old document(s) matching the
query:

>>> db.command("findandmodify", "items", query = {"Type" : "Desktop"},
... update = {"$set" : {"Status" : "In repair"} }, new = True)

CHAPTER 7 ■ PYTHON AND MONGODB

162

{
 u'ok': 1.0,
 u'value': {
 u'Status': u'In repair',
 u'Tags': [u'Desktop', u'In use', u'Marketing', u'Warranty'],
 u'ItemNumber': u'4532FOO',
 u'Location': {
 u'Department': u'Marketing',
 u'Building': u'2B',
 u'Owner': u'Martin, Lisa',
 u'Desknumber': 131131
 },
 u'_id': ObjectId('4c5dda114abffe0f34000000'),
 u'Type': u'Desktop'
 }
}

Let’s look at another example. This time, you will use findAndModify() to remove a document; in
this case, the output will show which document was removed:

>>> db.command("findandmodify", "items", query = {"Type" : "Desktop"},
... sort = {"ItemNumber" : -1}, remove = True)
{
 u'ok': 1.0,
 u'value': {
 u'Status': u'In use',
 u'Tags': [u'Desktop', u'In use', u'Marketing', u'Warranty'],
 u'ItemNumber': u'4532FOO',
 u'Location': {
 u'Department': u'Marketing',
 u'Building': u'2B',
 u'Owner': u'Martin, Lisa',
 u'Desknumber': 131131
 },
 u'_id': ObjectId('4c5ddbe24abffe0f34000001'),
 u'Type': u'Desktop'
 }
}

Deleting Data
In most cases, you will use the Python driver to add or modify your data. However, it’s also important to
understand how to delete data. The Python driver provides several methods for deleting data. First, you
can use the remove() function to delete a single document from a collection. Second, you can use the
drop() or drop_collection() function to delete an entire collection. Finally, you can use the
drop_database() function to drop an entire database (it seems unlikely you’ll be using this function
frequently!).

Nevertheless, we will take a closer look at each of these functions, looking at examples for all of
them.

Let’s begin by looking at the remove() function. This function allows you to specify an argument as a
parameter that will be used to find and delete any matching documents in your current collection. In
this example, you use the remove() function to remove each document that has a key/value pair of
"Status" : "In use"; afterward, you use the find_one command to confirm the results:

CHAPTER 7 ■ PYTHON AND MONGODB

163

>>> collection.remove({"Status" : "In use"})
>>> collection.find_one({"Status" : "In use"})
>>>

You need to be careful what kind of criteria you specify with this function. Usually, you should
execute a find() first, so you can see exactly which documents will get removed. Alternatively, you can
use the Object ID to remove an item.

If you get tired of an entire collection, you can look into using either the drop() or the
drop_collection() function to remove it. Both functions work the same way (one is just an alias for the
other, really); specifically, both expect only one parameter, the collection’s name:

>>> db.items.drop()

Last (and far from least because of its potential destructiveness), the drop_database() function
enables you to delete an entire database. You call this function using the Connection module, as in the
following example:

>>> c.drop_database("inventory")

Creating a Link Between Two Documents
Database references can be used to create a link between two documents that reside in different
locations. For example, you might create one collection for all employees and another collection for all
the items—and then use the DBRef() function to create a reference between the employees and the
location of the items, rather than typing them in manually for each item.

As you may recall from the previous chapters, you can reference data in one of two ways. First, you
can add a simple reference (manual referencing) that uses the _id field from one document to store a
reference to it in another. Second, you can use the DBRef module, which brings a few more options with
it than you get with manual referencing.

Let’s create a manual reference first. Begin by saving a document. For example, assume you want to
save the information for a person into a specific collection. The following example defines a jan
dictionary and saves it into the people collection to get back an Object ID:

>>> jan = {
... "First Name" : "Jan",
... "Last Name" : "Walker",
... "Display Name" : "Walker, Jan",
... "Department" : "Development",
... "Building" : "2B",
... "Floor" : 12,
... "Desk" : 120103,
... "E-Mail" : "jw@example.com"
... }

>>> people = db.people
>>> people.insert(jan)
ObjectId('4c5e5f104abffe0f34000002')

After you add an item and get its ID back, you can use this information to link the item to another
document in another collection:

>>> laptop = {
... "Type" : "Laptop",

CHAPTER 7 ■ PYTHON AND MONGODB

164

... "Status" : "In use",

... "ItemNumber" : "12345ABC",

... "Tags" : ["Warranty","In use","Laptop"],

... "Owner" : jan["_id"]

... }
>>> items = db.items
>>> items.insert(laptop)
ObjectId('4c5e6f6b4abffe0f34000003')

Now assume you want to find out the owner’s information. In this case, all you have to do is query
for the Object ID given in the Owner field; obviously, this is only possible if you know which collection the
data is stored in.

But assume that you don’t know where this information is stored. It was for handling precisely such
scenarios that the DBRef() function was created. You can use this function even when you do not know
which collection holds the original data. This fact means you don’t have to worry so much about the
collection names when searching for the information.

The DBRef() function takes three arguments; it can take a fourth argument that you can use to
specify additional keyword arguments. Here’s a list of the three main arguments and what they let you
do:

• collection (mandatory): Specifies the collection the original data resides in (e.g.,
people).

• id (mandatory): Specifies the _id value of the document that should be referred to.

• database (optional): Specifies the name of the database to reference.

The DBRef module must be loaded before you can use the DBRef method, so let’s load the module
before going any further:

>>> from pymongo.dbref import DBRef

At this point, you’re ready to look at a practical example that leverages the DBRef() function. In the
following example, you insert a person into the people collection and add an item to the items collection,
using DBRef to reference the owner:

>>> mike = {
... "First Name" : "Mike",
... "Last Name" : "Wazowski",
... "Display Name" : "Wazowski, Mike",
... "Department" : "Entertainment",
... "Building" : "2B",
... "Floor" : 10,
... "Desk" : 120789,
... "E-Mail" : "mw@monsters.inc"
... }

>>> people.save(mike)
ObjectId('4c5e73714abffe0f34000004')

At this point, nothing interesting has happened. Yes, you added a document, but you did so without
adding a reference to it. However, you do have the Object ID of the document, so now you can add your
next document to the collection, and then use DBRef() to point the owner field at the value of the
previously inserted document. Pay special attention to the syntax of the DBRef() function; in particular,
you should note how the first parameter given is the collection name where your previously specified

CHAPTER 7 ■ PYTHON AND MONGODB

165

document resides, while the second parameter is nothing more than a reference to the _id key in the
mike dictionary:

>>> laptop = {
... "Type" : "Laptop",
... "Status" : "In use",
... "ItemNumber" : "2345DEF",
... "Tags" : ["Warranty","In use","Laptop"],
... "Owner" : DBRef('people', mike["_id"])
... }

>>> items.save(laptop)
ObjectId('4c5e740a4abffe0f34000005')

As you probably noticed, this code isn’t massively different from the code you used to create a
manual reference. However, we recommend that you use the DBRef method just in case you need to
reference specific information, rather than embedding it. Adopting this approach gives you the
additional flexibility of not having to look up the collection’s name whenever you query for the
referenced information.

Retrieving the Information
You know how to reference information with DBRef(); now let’s assume that you want to retrieve the
previously referenced information. You can accomplish this using the Python driver’s dereference()
function. All you need to do is define the field previously specified that contains the referenced
information as an argument, and then press the Return key.

Next, let’s walk through the process of referencing and retrieving information from one document
to another from start to finish. Let’s begin by finding the document that contains the referenced data,
and then retrieving that document for display. The first step is to create a query that finds a random
document with the reference information in it:

>>> items.find_one({"ItemNumber" : "2345DEF"})
{
 u'Status': u'In use',
 u'Tags': [u'Warranty', u'In use', u'Laptop'],
 u'ItemNumber': u'2345DEF',
 u'Owner': DBRef(u'people', ObjectId('4c5e73714abffe0f34000004')),
 u'_id': ObjectId('4c5e740a4abffe0f34000005'),
 u'Type': u'Laptop'
}

Next, you want to store this item under a person dictionary:

>>> person = items.find_one({"ItemNumber" : "2345DEF"})

At this point, you can use the dereference() function to dereference the Owner field to the
person["Owner"] field as an argument. This is possible because the Owner field is linked to the data you
want to retrieve:

>>> db.dereference(person["Owner"])

{
 u'Building': u'2B',

CHAPTER 7 ■ PYTHON AND MONGODB

166

 u'Floor': 10,
 u'Last Name': u'Wazowski',
 u'Desk': 120789,
 u'E-Mail': u'mw@monsters.inc',
 u'First Name': u'Mike',
 u'Display Name': u'Wazowski, Mike',
 u'Department': u'Entertainment',
 u'_id': ObjectId('4c5e73714abffe0f34000004')
}

That wasn’t so bad! The point to take away from this example is that DBRef provides a great way for
storing data you want to reference. Additionally, DBRef permits some flexibility in how you specify the
collection and database names. You’ll find yourself using this feature frequently if you want to keep your
database tidy, especially in cases where the data really shouldn’t be embedded.

Summary
In this chapter, we’ve explored the basics of how MongoDB’s Python driver (PyMongo) can be used for
the most frequently used operations. Along the way, we’ve covered how to search for, store, update, and
delete data.

We’ve also looked at how to reference documents contained in another collection using two
methods: manual referencing and DBRef. When looking at these approaches, we’ve seen how their syntax
is remarkably similar, but the DBRef approach provides a bit more robustness in terms of its
functionality, so is preferable in most circumstances.

The next chapter will delve into how MongoDB’s innate flexibility can be used to leverage the PHP
driver to create a simple web application.

�

	Chapter 7 Python and MongoDB
	Working with Documents in Python
	Using PyMongo Modules
	Connecting and Disconnecting
	Inserting Data
	Finding Your Data
	Finding a Single Document
	Finding Multiple Documents
	Using Dot Notation
	Returning Fields
	Simplifying Queries with Sort, Limit, and Skip
	Aggregating Queries
	Counting Items with Count()
	Counting Unique Items with Distinct()
	Grouping Data with map_reduce()

	Specifying an Index with Hint()
	Refining Queries with Conditional Operators
	Using the $lt, $gt, $lte, and $gte Operators
	Searching for Non-Matching Values with $ne
	Specifying an Array of Matches with $in
	Specifying Against an Array of Matches with $nin
	Finding Documents that Match an Array’s Values
	Specifying Multiple Expressions to Match with $or
	Retrieving Items from an Array with $slice

	Conducting Searches with Regular Expression

	Modifying the Data
	Updating Your Data
	Modifier Operators
	Increasing an Integer Value with $inc
	Changing an Existing Value with $set
	Removing a Key/Value Field with $unset
	Adding a Value to an Array with $push
	Adding Multiple Values to an Array with $pushAll
	Adding a Value to an Existing Array with $addToSet
	Removing an Element from an Array with $pop
	Removing a Specific Value with $pull

	Saving Documents Quickly with Save()
	Modifying a Document Atomically
	Putting the Parameters to Work

	Deleting Data
	Creating a Link Between Two Documents
	Retrieving the Information

	Summary

