

429

429

 Chapter

Super Jumper: A 2D
OpenGL ES Game
Time to put all we’ve learned together into a game. As discussed in Chapter 3, there are

a couple of very popular genres in the mobile space we can choose from. For our next

game I decided to go the more casual route. We’ll implement a jump-’em-up game

similar to Abduction or Doodle Jump. As with Mr. Nom, we start by defining our game

mechanics.

Core Game Mechanics
I’d suggest you quickly install Abduction on your Android phone or look up videos of it

on the Web. From this example we can condense the core game mechanics of our

game, which will be called Super Jumper. Here are some details:

� The protagonist is constantly jumping upward, moving from platform

to platform. The game world spans multiple screens vertically.

� Horizontal movement can be controlled by tilting the phone to the left

or right.

� When the protagonist leaves one of the horizontal screen boundaries,

he reenters the screen on the opposite side.

� Platforms can be static or moving horizontally.

� Some platforms will be pulverized randomly when the protagonist hits

them.

� Along the way up, the protagonist can collect items to score points.

� Besides coins, there are also springs on some platforms that will make

the protagonist jump higher.

9

M. Zechner, Beginning Android Games

© Mario Zechner 2011

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 430

� Evil forces populate the game world, moving horizontally. When our

protagonist hits one of them, he dies and the game is over.

� When our protagonist falls below the bottom edge of the screen, the

game is over as well.

� At the top of the level is some sort of goal. When the protagonist hits

that goal, a new level begins.

While the list is longer than the one we created for Mr. Nom, it doesn’t seem a lot more

complex. Figure 9–1 shows an initial mock-up of the core principles. This time I went

straight to Paint.NET for creating the mock-up. Let’s come up with a backstory.

Figure 9–1. Our initial game mechanics mock-up, showing the protagonist, platforms, coins, evil forces, and goal
at the top of the level

A Backstory and Art Style
We are going to be totally creative here and come up with the following unique story for

our game.

Bob, our protagonist, suffers from chronic jumperitis. He is doomed to jump every time

he touches the ground. Even worse, his beloved princess, which shall remain nameless,

was kidnapped by an evil army of flying killer squirrels and placed in a castle in the sky.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 431

Bob’s condition proves beneficial after all, and he begins the hunt for his loved one,

battling the evil squirrel forces.

This classic video game story lends itself well to an 8-bit graphics style that can be

found in games such as the original Super Mario Brothers on the NES. The mock-up in

Figure 9–1 shows the final game graphics for all the elements of our game. Bob, coins,

squirrels, and pulverized platforms are of course animated. We’ll also use music and

sound effects that fit our visual style.

Screens and Transitions
We are now able to define our screens and transitions. We’ll follow the same formula we

used in Mr. Nom:

� We’ll have a main screen with a logo; PLAY, HIGHSCORES, and HELP

menu items; and a button to disable and enable sound.

� We’ll have a game screen that will ask the player to get ready and

handle running, paused, game-over, and next-level states gracefully.

The only new addition to what we used in Mr. Nom will be the next-

level state of the screen, which will be triggered once Bob hits the

castle. In that case a new level will be generated, and Bob will start at

the bottom of the world again, keeping his score.

� We’ll have a high-scores screen that will show the top five scores the

player has achieved so far.

� We’ll have help screens that present the game mechanics and goals to

the player. We’ll be sneaky and leave out a description of how to

control the player. Kids these days should be able to handle the

complexity we faced back in the ’80s and early ’90s, when games

didn’t tell you how to play them.

That is more or less the same as what we had in Mr. Nom. Figure 9–2 shows all screens

and transitions. Note that we don’t have any buttons on the game screen or its

subscreens, except for the pause button. Users will intuitively touch the screen when

asked to be ready.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 432

Figure 9–2. All the screens and transitions of Super Jumper

With that out of our way, we can now think about our world’s size and units, as well as

how that maps to the graphical assets.

Defining the Game World
The classic chicken-and-egg problem haunts us again. You learned in the last chapter

that we have a correspondence between world units (e.g., meters) and pixels. Our

objects are defined physically in world space. Bounding shapes and positions are given

in meters, velocities are given in meters per second. The graphical representations of

our objects are defined in pixels, though, so we have to have some sort of mapping. We

overcome this problem by first defining a target resolution for our graphical assets. As

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 433

with Mr. Nom we will use a target resolution of 320�480 pixels (aspect ratio of 1.5). The

next thing we have to do is establish a correspondence between pixels and meters in

our world. The mock-up in Figure 9–1 gives us a sense of how much screen space

different objects use, as well as their proportions relative to each other. I usually choose

a mapping of 32 pixels to 1 meter for 2D games. So let’s overlay our mock-up, which is

320�380 pixels in size with a grid where each cell is 32�32 pixels. In our world space

this would map to 1�1 meter cells. Figure 9–3 shows our mock-up and the grid.

Figure 9–3. The mock-up overlaid with a grid. Each cell is 32×32 pixels and corresponds to a 1×1-meter area in
the game world.

Figure 9–3 is of course a little bit cheated. I arranged the graphics in a way so that they

line up nicely with the grid cells. In the real game we’ll place the objects at noninteger

positions.

So what can we make of Figure 9–3? First of all we can directly estimate the width and

height of each object in our world in meters. Here are the values we’ll use for the

bounding rectangles of our objects:

� Bob is 0.8�0.8 meters; he does not entirely span a complete cell.

� A platform is 2�0.5 meters, taking up two cells horizontally and half a

cell vertically.

� A coin is 0.8�0.5 meters. It nearly spans a cell vertically and takes up

roughly half a cell horizontally.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 434

� A spring is 0.5�0.5 meters, talking up half a cell in each direction. The

spring is actually a little bit taller than it is wide. We make its bounding

shape square so that the collision testing is a little bit more forgiving.

� A squirrel is 1�0.8 meters.

� A castle is 0.8�0.8 meters.

With those sizes we also have the sizes of the bounding rectangles of our objects for

collision detection. We can adjust them if they turn out to be a little too big or small

depending on how the game plays out with those values.

Another thing we can derive from Figure 9–3 is the size of our view frustum. It will show

us 10�15 meters of our world.

The only thing left to define are the velocities and accelerations we have in the game.

This is highly dependent on how we want our game to feel. Usually you’d have to do

some experimentation to get those values right. Here’s what I came up with after a few

iterations of tuning:

� The gravity acceleration vector is (0,–13) m/s�, slightly more than what

we have here on earth and what we used in our cannon example.

� Bob’s initial jump velocity vector is (0,11) m/s. Note that the jump

velocity only affects the movement on the y-axis. The horizontal

movement will be defined by the current accelerometer readings.

� Bob’s jump velocity vector will be 1.5 times his normal jump velocity

when he hits a spring. That’s equivalent to (0,16.5) m/s. Again, this

value is purely derived from experimentation.

� Bob’s horizontal movement speed is 20 m/s. Note that that’s a

directionless speed, not a vector. I’ll explain in a minute how that

works together with the accelerometer.

� The squirrels will patrol from the left to the right and back

continuously. They’ll have a constant movement speed of 3 m/s.

Expressed as a vector that’s either (–3,0) m/s if the squirrel moves to

the left or (3,0) m/s if the squirrel moves to the right.

So how will Bob’s horizontal movement work? The movement speed we defined before

is actually Bob’s maximum horizontal speed. Depending on how much the player tilts

her phone, Bob’s horizontal movement speed will be between 0 (no tilt) and 20 m/s (fully

tilted to one side).

We’ll use the value of the accelerometer’s x-axis since our game will run in portrait

mode. When the phone is not tilted, the axis will report an acceleration of 0 m/s�. When

fully tilted to the left so that the phone is in landscape orientation, the axis will report

roughly –10 m/s�. When fully tilted to the right the axis will report an acceleration of

roughly 10 m/s�. All we need to do is normalize the accelerometer reading by dividing it

by the maximum absolute value (10) and then multiply Bob’s maximum horizontal speed

by that. Bob will thus travel 20 m/s to the left or right when the phone is fully tilted to one

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 435

side and less if the phone is tilted less. Bob can move around the screen twice per

second when the phone is fully tilted.

We’ll update this horizontal movement velocity each frame based on the current

accelerometer value on the x-axis, and combine it with Bob’s vertical velocity, which is

derived from the gravity acceleration and his current vertical velocity, as we did for the

cannonball in the earlier examples.

One essential aspect of the world is the portion we see of it. Since Bob will die when he

leaves the screen on the bottom edge, our camera also plays a role in the game

mechanics. While we’ll use a camera for rendering and move it upward when Bob

jumps, we won’t use it in our world simulation classes. Instead we record Bob’s highest

y-coordinate so far. If he’s below that value minus half the view frustum height, we know

he has left the screen. We thus don’t have a completely clean separation between the

model (our world simulation classes) and the view, since we need to know the view

frustum’s height to determine whether Bob is dead or not. We can live with this, I’d say.

Let’s have a look at the assets we need.

Creating the Assets
Our new game has two types of graphical assets: UI elements and actual game, or

world, elements. Let’s start with the UI elements.

The UI Elements
The first thing to notice is that the UI elements (buttons, logos, etc.) do not depend on

our pixel-to-world unit mapping. As in Mr. Nom we design them to fit a target

resolution—in our case 320�480 pixels. Looking at Figure 9–2 we can determine which

UI elements we have.

The first UI elements we create are the buttons we need for the different screens. Figure

9–4 shows all the buttons of our game.

Figure 9–4. Various buttons, each 64×64 pixels in size

I always like to create all graphical assets in a grid with cells having sizes of 32�32 or

64�64 pixels. The buttons in Figure 9–4 are laid out in a grid with each cell having 64�64

pixels. The buttons in the top row are used on the main menu screen to signal whether

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 436

sound is enabled or not. The arrow at the bottom left is used in a couple of screens to

navigate to the next screen. The button in the bottom right is used in the game screen

when the game is running to allow the user to pause the game.

You might wonder why there’s no arrow pointing to the right. Remember that with our

fancy sprite batcher we can easily flip things we draw by specifying negative width

and/or height values. We’ll use that trick for a couple of graphical assets to save some

memory.

Next up are the elements we need on the main menu screen. There we have a logo, the

menu entries, and the background. Figure 9–5 shows all those elements.

Figure 9–5. The background image, the main menu entries, and the logo

The background image is used not only on the main menu screen, but on all screens. It

is the same size as our target resolution, 320�480 pixels. The main menu entries make

up 300�110 pixels. The black background you see in Figure 9–5 is there since white on

white wouldn’t look all that good. In the actual image, the background is made up of

transparent pixels, of course. The logo is 274�142 pixels with some transparent pixels at

the corners.

Next up are the help screen images. Instead of compositing each of them with a couple

of elements, I was lazy and made them all full-screen images of size 320�480 instead.

That will reduce the size of our drawing code a little while not adding at lot to our

program’s size. You can see all of the help screens in Figure 9–2. The only thing we’ll

composite these images with is the arrow button.

For the high-scores screen we’ll reuse the portion of the main menu entries image that

says HIGHSCORES. The actual scores are rendered with a special technique we’ll look

into later on in this chapter. The rest of that screen is again composed of the

background image and a button.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 437

The game screen has a few more textual UI elements, namely the READY? label, the

menu entries for the paused state (RESUME and QUIT), and the GAME OVER label.

Figure 9–6 shows them in all their glory.

Figure 9–6. The READY?, RESUME, QUIT, and GAME OVER labels

Handling Text with Bitmap Fonts
So, how do we render the other textual elements in the game screen? With the same

technique we used in Mr. Nom to render the scores. Instead of just having numbers, we

also have characters now. We use an image atlas where each subimage represents on

character (e.g., 0 or a). This image atlas is called a bitmap font. Figure 9–7 shows the

bitmap font we’ll use.

Figure 9–7. A bitmap font

The black background and the grid in figure 9–7 are of course not part of the actual

image. Bitmap fonts are a very old technique to render text on the screen in a game.

They usually contain images for a range of ASCII characters. One such character image

is referred to as a glyph. ASCII is one of the predecessors of Unicode. There are 128

characters in the ASCII character set, as shown in Figure 9–8.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 438

Figure 9–8. ASCII characters and their decimal, hexadecimal, and octal values

Out of those 128 characters, 96 are printable (characters 32 to 127). Our bitmap font

only contains printable characters. The first row in the bitmap font contains the

characters 32 to 47, the next row contains the characters 48 to 63, and so on. ASCII is

only useful if you want to store and display text that uses the standard Latin alphabet.

There’s an extended ASCII format that uses the values 128 to 255 to encode other

common characters of Western languages, such as ö or é. More expressive character

sets (e.g., for Chinese or Arabic) are represented via Unicode, and can’t be encoded via

ASCII. For our game, the standard ASCII character set suffices, though.

So how do we render text with a bitmap font? That turns out to be really easy. First we

create 96 texture regions, each mapping to a glyph in the bitmap font. We can store

those texture regions in an array like this:

TextureRegion[] glyphs = new TextureRegion[96];

Java strings are encoded in 16-bit Unicode. Luckily for us, the ASCII characters we have

in our bitmap font have the same values in ASCII and Unicode. To fetch the region for a

character in a Java string, we just need to do this:

int index = string.charAt(i) – 32;

This gives us a direct index into the texture region array. We just subtract the value for

the space character (32) from the current character in the string. If the index is smaller

than zero or bigger than 95, we have a Unicode character that is not in our bitmap font.

Usually we just ignore such a character.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 439

To render multiple characters in a line, we need to know how much space there should

be between characters. The bitmap font in Figure 9–7 is a so-called fixed-width font.

That means that each glyph has the same width. Our bitmap font glyphs have a size of

16�20 pixels each. When we advance our rendering position from character to character

in a string, we just need to add 20 pixels. The number of pixels we move the drawing

position from character to character is called advance. For our bitmap font it is fixed, but

in general it is variable depending on the character we draw. A more complex form of

advance takes both the current character we are about to draw and the next character

into consideration for calculating the advance. This technique is called kerning, if you

want to look it up on the Web. We’ll only use fixed-width bitmap fonts, as they make our

lives considerably easier.

So, how did I generate that ASCII bitmap font? I used one of the many tools available on

the Web for generating bitmap fonts. The one I used is called Codehead’s Bitmap Font

Generator and is freely available. You can select a font file on your hard drive and

specify the height of the font, and the generator will produce an image from it for the

ASCII character set. The tool has a lot more options I can’t discuss here. I recommend

checking it out yourself and playing around with it a little.

We’ll draw all the remaining strings in our game with this technique. Later you’ll see a

concrete implementation of a bitmap font class. Let’s get on with our assets.

With the bitmap font we now have assets for all our graphical UI elements. We will

render them via a SpriteBatcher using a camera that sets up a view frustum that directly

maps to our target resolution. This way we can specify all the coordinates in pixel

coordinates.

The Game Elements
What’s left are the actual game objects. Those are dependent on our pixel-to-world unit

mappings, as discussed earlier. To make the creation of those as easy as possible, I

used a little trick: I started each drawing with a grid of 32�32 pixels per cell. All the

objects are centered in one or more such cells, so that they correspond easily with the

physical sizes they have in our world. Let’s start with Bob, depicted in Figure 9–9.

Figure 9–9. Bob and his five animation frames.

Figure 9–9 shows two frames for jumping, two frames for falling, and one frame for

being dead. The image is 160�32 pixels in size, and each animation frame is 32�32

pixels in size. The background pixels are transparent.

Bob can be in three states: jumping, falling, and being dead. We have animation frames

for each of these states. Granted, the difference between the two jumping frames is

minor—only his forelock is wiggling. We’ll create an Animation instance for each of the

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 440

three animations of Bob and use them for rendering according to his current state. We

also don’t have duplicate frames for Bob heading left. As with the arrow button, we’ll

just specify a negative width with the SpriteBatcher.drawSprite() call to flip Bob’s

image horizontally.

Figure 9–10 depicts the evil squirrel. We have two animation frames again, so the

squirrel appears to by flapping its evil wings.

Figure 9–10. An evil flying squirrel and its two animation frames.

The image in figure 9–10 is 64�32 pixels, and each frame is 32�32 pixels.

The coin animation in Figure 9–11 is special. Our keyframe sequence will not be 1, 2, 3,

1, but 1, 2, 3, 2, 1. Otherwise the coin would go from its collapsed state in frame 3 to its

fully extended state in frame 1. We can conserve a little space by reusing the second

frame.

Figure 9–11. The coin and its animation frames.

The image in figure 9–11 is 96�32 pixels, and each frame is 32�32 pixels.

Not a lot has to be said about the spring image in Figure 9–12. The spring just sits there

happily in the center of the image.

Figure 9–12. The spring. The image is 32×32 pixels.

The castle in Figure 9–13 is also not animated. It is bigger than the other objects (64�64

pixels).

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 441

Figure 9–13. The castle

The platform in Figure 9–14 (64x64 pixels) has four animation frames. According to our

game mechanics, some platforms will be pulverized when Bob hits them. We’ll play

back the full animation of the platform in that case once. For static platforms we’ll just

use the first frame.

Figure 9–14. The platform and its animation frames.

Texture Atlas to the Rescue
That’s all the graphical assets we have in our game. Now, we already talked about how

textures need to have power-of-two widths and heights. Our background image and all

the help screens have a size of 320�480 pixels. We’ll store those in 512�512-pixel

images so we can load them as textures. That’s already six textures.

Do we create separate textures for all the other images as well? No. We create a single

texture atlas. It turns out that everything else fits nicely in a single 512�512 pixel atlas,

which we can load as a single texture—something that will make the GPU really happy,

since we only need to bind one texture for all game elements, except the background

and help screen images. Figure 9–15 shows the atlas.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 442

Figure 9–15. The mighty texture atlas.

The image in figure 9–15 is 512�512 pixels in size. The grids and red outlines are not

part of the image, and the background pixels are transparent. This is also true for the

black background pixels of the UI labels and the bitmap font. The grid cells are 32�32

pixels in size.

I placed all the images in the atlas at corners with coordinates that are multiples of 32.

This makes creating TextureRegions easier.

Music and Sound
We also need sound effects and music. Since our game is an 8-bit retro-style game, it’s

fitting to use so-called chip tunes. Chip tunes are sound effects and music generated by

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 443

a synthesizer. The most famous chip tunes were generated by Nintendo’s NES, SNES

and GameBoy. For the sound effects I used a tool called sfxr, by Tomas Pettersson (or

rather the Flash version, called as3sfxr). It can be found at

www.superflashbros.net/as3sfxr. Figure 9–16 shows its user interface.

Figure 9–16. as3sfxr, a Flash port of sfxr, by Tomas Pettersson

I created sound effects for jumping, hitting a spring, hitting a coin, and hitting a squirrel. I

also created a sound effect for clicking UI elements. All I did was mash the buttons to

the left of as3sfxr for each category until I found a fitting sound effect.

Music for games is usually a little bit harder to come by. There are a few sites on the

Web that feature 8-bit chip tunes fitting for a game like Super Jumper. We’ll use a single

song called “New Song,” by Geir Tjelta. The song can be found at

www.freemusicarchive.org. It’s licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives (aka Music Sharing) license. This means we can use it in

noncommercial projects such as our open source Super Jumper game as long as we

give attribution to Geir and don’t modify the original piece. When you scout the Web for

music to be used in your games, always make sure that you adhere to the license.

People put a lot of work into those songs. If the license doesn’t fit your project (e.g., if it

is a commercial one), then you can’t use it.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 444

Implementing Super Jumper
Implementing Super Jumper will be pretty easy. We can reuse our complete framework

from the previous chapter and follow the architecture we had in Mr. Nom on a high level.

This means we’ll have a class for each screen, and each of these classes will implement

the logic and presentation expected from that screen. Besides that, we’ll also have our

standard project setup with a proper manifest file, all our assets in the assets/ folder, an

icon for our application, and so on. Let’s start with our main Assets class.

The Assets Class
In Mr. Nom we already had an Assets class that consisted only of a metric ton of Pixmap

and Sound references held in static member variables. We’ll do the same in Super

Jumper. This time we’ll add a little loading logic, though. Listing 9–1 shows the code.

Listing 9–1. Assets.java, Which Holds All Our Assets Except for the Help Screen Textures

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Font;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGame;

public class Assets {
 public static Texture background;
 public static TextureRegion backgroundRegion;

 public static Texture items;
 public static TextureRegion mainMenu;
 public static TextureRegion pauseMenu;
 public static TextureRegion ready;
 public static TextureRegion gameOver;
 public static TextureRegion highScoresRegion;
 public static TextureRegion logo;
 public static TextureRegion soundOn;
 public static TextureRegion soundOff;
 public static TextureRegion arrow;
 public static TextureRegion pause;
 public static TextureRegion spring;
 public static TextureRegion castle;
 public static Animation coinAnim;
 public static Animation bobJump;
 public static Animation bobFall;
 public static TextureRegion bobHit;
 public static Animation squirrelFly;
 public static TextureRegion platform;
 public static Animation brakingPlatform;
 public static Font font;

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 445

 public static Music music;
 public static Sound jumpSound;
 public static Sound highJumpSound;
 public static Sound hitSound;
 public static Sound coinSound;
 public static Sound clickSound;

The class holds references to all the Texture, TextureRegion, Animation, Music, and

Sound instances we need throughout our game. The only thing we don’t load here are

the images for the help screens.

 public static void load(GLGame game) {
 background = new Texture(game, "background.png");
 backgroundRegion = new TextureRegion(background, 0, 0, 320, 480);

 items = new Texture(game, "items.png");
 mainMenu = new TextureRegion(items, 0, 224, 300, 110);
 pauseMenu = new TextureRegion(items, 224, 128, 192, 96);
 ready = new TextureRegion(items, 320, 224, 192, 32);
 gameOver = new TextureRegion(items, 352, 256, 160, 96);
 highScoresRegion = new TextureRegion(Assets.items, 0, 257, 300, 110 / 3);
 logo = new TextureRegion(items, 0, 352, 274, 142);
 soundOff = new TextureRegion(items, 0, 0, 64, 64);
 soundOn = new TextureRegion(items, 64, 0, 64, 64);
 arrow = new TextureRegion(items, 0, 64, 64, 64);
 pause = new TextureRegion(items, 64, 64, 64, 64);

 spring = new TextureRegion(items, 128, 0, 32, 32);
 castle = new TextureRegion(items, 128, 64, 64, 64);
 coinAnim = new Animation(0.2f,
 new TextureRegion(items, 128, 32, 32, 32),
 new TextureRegion(items, 160, 32, 32, 32),
 new TextureRegion(items, 192, 32, 32, 32),
 new TextureRegion(items, 160, 32, 32, 32));
 bobJump = new Animation(0.2f,
 new TextureRegion(items, 0, 128, 32, 32),
 new TextureRegion(items, 32, 128, 32, 32));
 bobFall = new Animation(0.2f,
 new TextureRegion(items, 64, 128, 32, 32),
 new TextureRegion(items, 96, 128, 32, 32));
 bobHit = new TextureRegion(items, 128, 128, 32, 32);
 squirrelFly = new Animation(0.2f,
 new TextureRegion(items, 0, 160, 32, 32),
 new TextureRegion(items, 32, 160, 32, 32));
 platform = new TextureRegion(items, 64, 160, 64, 16);
 brakingPlatform = new Animation(0.2f,
 new TextureRegion(items, 64, 160, 64, 16),
 new TextureRegion(items, 64, 176, 64, 16),
 new TextureRegion(items, 64, 192, 64, 16),
 new TextureRegion(items, 64, 208, 64, 16));

 font = new Font(items, 224, 0, 16, 16, 20);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 446

 music = game.getAudio().newMusic("music.mp3");
 music.setLooping(true);
 music.setVolume(0.5f);
 if(Settings.soundEnabled)
 music.play();
 jumpSound = game.getAudio().newSound("jump.ogg");
 highJumpSound = game.getAudio().newSound("highjump.ogg");
 hitSound = game.getAudio().newSound("hit.ogg");
 coinSound = game.getAudio().newSound("coin.ogg");
 clickSound = game.getAudio().newSound("click.ogg");
 }

The load()�method, which will be called once at the start of our game, is responsible for

populating all the static members of the class. It loads the background image and

creates a corresponding TextureRegion for it. Next it loads the texture atlas and creates

all the necessary TextureRegions and Animations. Compare the code to Figure 9–15 and

the other figures in the last section. The only noteworthy thing about the code for

loading graphical assets is the creation of the coin Animation instance. As discussed, we

reuse the second frame at the end of the animation frame sequence. All the animations

use a frame time of 0.2 seconds.

We also create an instance of the Font class, which we have not discussed yet. It will

implement the logic to render text with the bitmap font embedded in the atlas. The

constructor takes the Texture, which contains the bitmap font glyphs, the pixel

coordinates of the top-left corner of the area that contains the glyphs, the number of

glyphs per row, and the size of each glyph in pixels.

We also load all the Music and Sound instances in that method. As you can see, we work

with our old friend the Settings class again. We can reuse it from the Mr. Nom project

pretty much as is, with one slight modification, as you’ll see in a minute. Note that we

set the Music instance to be looping and its volume to 0.5 so it is a little quieter than the

sound effects. The music will only start playing if the user hasn’t previously disabled the

sound, which is stored in the Settings class, as in Mr. Nom.

 public static void reload() {
 background.reload();
 items.reload();
 if(Settings.soundEnabled)
 music.play();
 }

Next we have a mysterious method called reload(). Remember that the OpenGL ES

context will get lost when our application is paused. We have to reload the textures

when the application is resumed, and that’s exactly what this method does. We also

resume the music playback in case sound is enabled.

 public static void playSound(Sound sound) {
 if(Settings.soundEnabled)
 sound.play(1);
 }
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 447

The final method of this class is a helper method we’ll use in the rest of the code to play

back audio. Instead of having to check whether sound is enabled everywhere, we

encapsulate that check in this method.

Let’s have a look at the modified Settings class.

The Settings Class
Not a lot has changed. Listing 9–2 shows the code of our slightly modified Settings

class.

Listing 9–2. Settings.java, Our Slightly Modified Settings Class, Stolen from Mr. Nom

package com.badlogic.androidgames.jumper;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {
 public static boolean soundEnabled = true;
 public final static int[] highscores = new int[] { 100, 80, 50, 30, 10 };
 public final static String file = ".superjumper";

 public static void load(FileIO files) {
 BufferedReader in = null;
 try {
 in = new BufferedReader(new InputStreamReader(files.readFile(file)));
 soundEnabled = Boolean.parseBoolean(in.readLine());
 for(int i = 0; i < 5; i++) {
 highscores[i] = Integer.parseInt(in.readLine());
 }
 } catch (IOException e) {
 // :(It's ok we have defaults
 } catch (NumberFormatException e) {
 // :/ It's ok, defaults save our day
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 }
 }
 }

 public static void save(FileIO files) {
 BufferedWriter out = null;
 try {
 out = new BufferedWriter(new OutputStreamWriter(
 files.writeFile(file)));

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 448

 out.write(Boolean.toString(soundEnabled));
 out.write("\n");
 for(int i = 0; i < 5; i++) {
 out.write(Integer.toString(highscores[i]));
 out.write("\n");
 }

 } catch (IOException e) {
 } finally {
 try {
 if (out != null)
 out.close();
 } catch (IOException e) {
 }
 }
 }

 public static void addScore(int score) {
 for(int i=0; i < 5; i++) {
 if(highscores[i] < score) {
 for(int j= 4; j > i; j--)
 highscores[j] = highscores[j-1];
 highscores[i] = score;
 break;
 }
 }
 }
}

The only difference from the Mr. Nom version of this class is the file we read and write

the settings from and to. Instead of .mrnom we now use the file .superjumper.

The Main Activity
We need an Activity as the main entry point of our game. We’ll call it SuperJumper.

Listing 9–3 shows its code.

Listing 9–3. SuperJumper.java, the Main Entry Point Class

package com.badlogic.androidgames.jumper;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;

public class SuperJumper extends GLGame {
 boolean firstTimeCreate = true;

 @Override
 public Screen getStartScreen() {
 return new MainMenuScreen(this);
 }

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 449

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 super.onSurfaceCreated(gl, config);
 if(firstTimeCreate) {
 Settings.load(getFileIO());
 Assets.load(this);
 firstTimeCreate = false;
 } else {
 Assets.reload();
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if(Settings.soundEnabled)
 Assets.music.pause();
 }
}

We derive from GLGame and implement the getStartScreen() method, which returns a

MainMenuScreen instance. The other two methods are a little less obvious.

We override onSurfaceCreate(), which is called each time the OpenGL ES context is re-

created (compare with the code of GLGame in Chapter 6). If the method is called for the

first time we use the Assets.load() method to load all assets for the first time, and also

load the settings from the settings file on the SD card, if available. Otherwise all we need

to do is reload the textures and start playback of the music via the Assets.reload()

method. We also override the onPause() method to pause the music in the case it is

playing.

We do both of these things so that we don’t have to repeat them in the resume() and

pause() methods of our screens.

Before we dive into the screen implementations, let’s have a look at our new Font class.

The Font Class
We are going to use bitmap fonts to render arbitrary (ASCII) text. We already discussed

how this works on a high level, so let’s look at the code in Listing 9–4.

Listing 9–4. Font.java, a Bitmap Font–Rendering Class

package com.badlogic.androidgames.framework.gl;

public class Font {
 public final Texture texture;
 public final int glyphWidth;
 public final int glyphHeight;
 public final TextureRegion[] glyphs = new TextureRegion[96];

The class stores the texture containg the font’s glyph, the width and height of a single

glyph, and an array of TextureRegions—one for each glyph. The first element in the array

holds the region for the space glyph, the next one holds the region for the exclamation

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 450

mark glyph, and so on. In other words, the first element corresponds to the ASCII

character with the code 32, and the last element corresponds to the ASCII character

with the code 127.

 public Font(Texture texture,
 int offsetX, int offsetY,
 int glyphsPerRow, int glyphWidth, int glyphHeight) {
 this.texture = texture;
 this.glyphWidth = glyphWidth;
 this.glyphHeight = glyphHeight;
 int x = offsetX;
 int y = offsetY;
 for(int i = 0; i < 96; i++) {
 glyphs[i] = new TextureRegion(texture, x, y, glyphWidth, glyphHeight);
 x += glyphWidth;
 if(x == offsetX + glyphsPerRow * glyphWidth) {
 x = offsetX;
 y += glyphHeight;
 }
 }
 }

In the constructor we store the configuration of the bitmap font and generate the glyph

regions. The offsetX and offsetY parameters specify the top-left corner of the bitmap

font area in the texture. In our texture atlas, that’s the pixel at (224,0). The parameter

glyphsPerRow tells us how many glyphs there are per row, and the parameters

glyphWidth and glyphHeight specify the size of a single glyph. Since we use a fixed-

width bitmap font, that size is the same for all glyphs. The glyphWidth is also the value

by which we will advance when rendering multiple glyphs.

 public void drawText(SpriteBatcher batcher, String text, float x, float y) {
 int len = text.length();
 for(int i = 0; i < len; i++) {
 int c = text.charAt(i) - ' ';
 if(c < 0 || c > glyphs.length - 1)
 continue;

 TextureRegion glyph = glyphs[c];
 batcher.drawSprite(x, y, glyphWidth, glyphHeight, glyph);
 x += glyphWidth;
 }
 }
}

The drawText() method takes a SpriteBatcher instance, a line of text, and the x and y

positions to start drawing the text at. The x- and y-coordinates specify the center of the

first glyph. All we do is get the index for each character in the string, check whether we

have a glyph for it, and if so, render it via the SpriteBatcher. We then increment the x-

coordinate by the glyphWidth so we can start rendering the next character in the string.

You might wonder why we don’t need to bind the texture containing the glyphs. We

assume that this is done before a call to drawText(). The reason is that the text

rendering might be part of a batch, in which case the texture must already be bound.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 451

Why unnecessarily bind it again in the drawText() method? Remember, OpenGL ES

loves nothing more than minimal state changes.

Of course, we can only handle fixed-width fonts with this class. If we want to support

more general fonts, we also need to have information about the advance of each

character. One solution would be to use kerning as described in the section “Handling

Text with Bitmap Fonts”. We are happy with our simple solution, though.

GLScreen
In the examples in the last two chapters, we always got the reference to GLGraphics by

casting. Let’s fix this with a little helper class called GLScreen, which will do the dirty

work for us and store the reference to GLGraphics in a member. Listing 9–5 shows the

code.

Listing 9–5. GLScreen.java, a Little Helper Class

package com.badlogic.androidgames.framework.impl;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Screen;

public abstract class GLScreen extends Screen {
 protected final GLGraphics glGraphics;
 protected final GLGame glGame;

 public GLScreen(Game game) {
 super(game);
 glGame = (GLGame)game;
 glGraphics = ((GLGame)game).getGLGraphics();
 }

}

We store the GLGraphics and GLGame instances. Of course, this will crash if the Game

instance passed as a parameter to the constructor is not a GLGame. But we’ll make sure it

is. All the screens of Super Jumper will derive from this class.

The Main Menu Screen
This is the screen that is returned by SuperJumper.getStartScreen(), so it’s the first

screen the player will see. It renders the background and UI elements and simply waits

there for us to touch any of the UI elements. Based on which element was hit, we either

change the configuration (sound enabled/disabled) or transition to a new screen. Listing

9–6 shows the code.

Listing 9–6. MainMenuScreen.java: The Main Menu Screen

package com.badlogic.androidgames.jumper;

import java.util.List;

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 452

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class MainMenuScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle soundBounds;
 Rectangle playBounds;
 Rectangle highscoresBounds;
 Rectangle helpBounds;
 Vector2 touchPoint;

The class derives from GLScreen so we can acess the GLGraphics instance more easily.

There are a couple of members in this class. The first one is a Camera2D instance called

guiCam. We also need a SpriteBatcher to render our background and UI elements. We’ll

use Rectangles to determine if the user touched a UI element. Since we use a Camera2D,

we also need a Vector2 instance to transform the touch coordinates to world

coordinates.

 public MainMenuScreen(Game game) {
 super(game);
 guiCam = new Camera2D(glGraphics, 320, 480);
 batcher = new SpriteBatcher(glGraphics, 100);
 soundBounds = new Rectangle(0, 0, 64, 64);
 playBounds = new Rectangle(160 - 150, 200 + 18, 300, 36);
 highscoresBounds = new Rectangle(160 - 150, 200 - 18, 300, 36);
 helpBounds = new Rectangle(160 - 150, 200 - 18 - 36, 300, 36);
 touchPoint = new Vector2();
 }

In the constructor we simply set up all the members. And here’s a surprise. The

Camera2D instance will allow us to work in our target resolution of 320�480 pixels. All we

need to do is set the view frustum width and height to the proper values. The rest is

done by OpenGL ES on the fly. Note, however, that the origin is still in the bottom-left

corner and the y-axis is pointing upward. We’ll use such a GUI camera in all screens that

have UI elements so we can lay them out in pixels instead of world coordinates. Of

course, we cheat a little on screens that are not 320�480 pixels wide, but we already did

that in Mr. Nom, so we don’t need to feel bad about it. The Rectangles we set up for

each UI element are thus given in pixel coordinates.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 453

 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type == TouchEvent.TOUCH_UP) {
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(playBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new GameScreen(game));
 return;
 }
 if(OverlapTester.pointInRectangle(highscoresBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HighscoresScreen(game));
 return;
 }
 if(OverlapTester.pointInRectangle(helpBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HelpScreen(game));
 return;
 }
 if(OverlapTester.pointInRectangle(soundBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.soundEnabled = !Settings.soundEnabled;
 if(Settings.soundEnabled)
 Assets.music.play();
 else
 Assets.music.pause();
 }
 }
 }
 }

Next is the update() method. We loop through the TouchEvents returned by our Input

instance and check for touch-up events. In case we have such an event we first

translate the touch coordinates to world coordinates. Since the camera is set up in a

way so that we work in our target resolution, this transformation boils down to simply

flipping the y-coordinate on a 320�480 pixel screen. On larger or smaller screens we just

transform the touch coordinates to the target resolution. Once we have our world touch

point, we can check it against the rectangles of the UI elements. If PLAY,

HIGHSCORES, or HELP was hit, we transition to the respective screen. In case the

sound button was pressed we change the setting and either resume or pause the music.

Also note that we play the click sound in case a UI element was pressed via the

Assets.playSound() method.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 454

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(160, 240, 320, 480, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);

 batcher.drawSprite(160, 480 - 10 - 71, 274, 142, Assets.logo);
 batcher.drawSprite(160, 200, 300, 110, Assets.mainMenu);
 batcher.drawSprite(32, 32, 64, 64,
Settings.soundEnabled?Assets.soundOn:Assets.soundOff);

 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 }

The present() method shouldn’t really need any explanation at this point. We clear the

screen, set up the projection matrices via the camera, and render the background and

UI elements. Since the UI elements have transparent backgrounds, we enable blending

temporarily to render them. The background does not need blending, so we don’t use it

to conserve some GPU cycles. Again, note that the UI elements are rendered in a

coordinate system with the origin in the lower left of the screen and the y-axis pointing

upward.

 @Override
 public void pause() {
 Settings.save(game.getFileIO());
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

The last method that actually does something is the pause() method. Here we make

sure that the settings are saved to the SD card since the user can change the sound

settings on this screen.

The Help Screens
We have a total of five help screens that all work the same: load the help screen image,

render it along with the arrow button, and wait for a touch of the arrow button to move

to the next screen. The only thing the screens differ in is the image they each load and

the screen they transition to. For this reason I’ll only present you with the code of the

first help screen, which transitions to the second one. The image files for the help

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 455

screens are named help1.png and so on, up to help5.png. The respective screen

classes are called HelpScreen, Help2Screen, and so on. The last screen, Help5Screen,

transitions to the MainMenuScreen again.

package com.badlogic.androidgames.jumper;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class HelpScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle nextBounds;
 Vector2 touchPoint;
 Texture helpImage;
 TextureRegion helpRegion;

We have a couple of members, again holding a camera, a SpriteBatcher, the rectangle

for the arrow button, a vector for the touch point, and a Texture and TextureRegion for

the help image.

 public HelpScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 320, 480);
 nextBounds = new Rectangle(320 - 64, 0, 64, 64);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 1);
 }

In the constructor we set up all members pretty much the same way we did in the

MainMenuScreen.

 @Override
 public void resume() {
 helpImage = new Texture(glGame, "help1.png");
 helpRegion = new TextureRegion(helpImage, 0, 0, 320, 480);
 }

 @Override
 public void pause() {
 helpImage.dispose();
 }

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 456

In the resume() method we load the actual help screen texture and create a

corresponding TextureRegion for rendering with the SpriteBatcher. We do the loading

in this method, as the OpenGL ES context might be lost. The textures for the

background and the UI elements are handled by the Assets and SuperJumper classes, as

discussed before. We don’t need to deal with them in any of our screens. Additionally

we dispose of the help image texture in the pause()�method again to clean up memory.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(event.type == TouchEvent.TOUCH_UP) {
 if(OverlapTester.pointInRectangle(nextBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new HelpScreen2(game));
 return;
 }
 }
 }
 }

Next up is the update() method, which simply checks whether the arrow button was

pressed, in which case we transition to the next help screen. We also play the click sound.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(helpImage);
 batcher.drawSprite(160, 240, 320, 480, helpRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(320 - 32, 32, -64, 64, Assets.arrow);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 }

 @Override
 public void dispose() {
 }
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 457

In the present() method we clear the screen, set up the matrices, render the help image

in one batch, and then render the arrow button. Of course, we don’t need to render the

background image here, as the help image already contains that.

The other help screens are analogous as outlined before.

The High-Scores Screen
Next on our list is the high-scores screen. Here we’ll use part of the main menu UI labels

(the HIGHSCORES portion) and render the high scores stored in Settings via the Font

instance we store in the Assets class. Of course, we have an arrow button so the player

can get back to the main menu. Listing 9–7 shows the code.

Listing 9–7. HighscoresScreen.java: The High-Scores Screen

package com.badlogic.androidgames.jumper;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class HighscoreScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Rectangle backBounds;
 Vector2 touchPoint;
 String[] highScores;
 float xOffset = 0;

As always, we have a couple of members for the camera, the SpriteBatcher, bounds for

the arrow button, and so on. In the highscores array we store the formatted strings for

each high score we present to the player. The xOffset member is a value we compute to

offset the rendering of each line so that the lines are centered horizontally.

 public HighscoreScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 320, 480);
 backBounds = new Rectangle(0, 0, 64, 64);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 100);
 highScores = new String[5];
 for(int i = 0; i < 5; i++) {
 highScores[i] = (i + 1) + ". " + Settings.highscores[i];

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 458

 xOffset = Math.max(highScores[i].length() * Assets.font.glyphWidth,
xOffset);
 }
 xOffset = 160 - xOffset / 2;
 }

In the constructor we set up all members as usual and compute that xOffset value. We

do so by evaluating the size of the longest string out of the five strings we create for the

five high scores. Since our bitmap font is fixed-width, we can easily calculate the

number of pixels needed for a single line of text by multiplying the number of characters

with the glyph width. This will of course not account for nonprintable characters or

characters outside of the ASCII character set. Since we know that we won’t be using

those, we can get away with this simple calculation. The last line in the constructor then

subtracts half of the longest line width from 160 (the horizontal center of our target

screen of 320�480 pixels) and adjusts it further by subtracting half of the glyph width.

This is needed since the Font.drawText() method uses the glyph centers instead of one

of the corner points.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(event.type == TouchEvent.TOUCH_UP) {
 if(OverlapTester.pointInRectangle(backBounds, touchPoint)) {
 game.setScreen(new MainMenu(game));
 return;
 }
 }
 }
 }

The update()�method just checks whether the arrow button was pressed, in which case

it plays the click sound and transitions back to the main menu screen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(160, 240, 320, 480, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 459

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(160, 360, 300, 33, Assets.highScoresRegion);

 float y = 240;
 for(int i = 4; i >= 0; i--) {
 Assets.font.drawText(batcher, highScores[i], xOffset, y);
 y += Assets.font.glyphHeight;
 }

 batcher.drawSprite(32, 32, 64, 64, Assets.arrow);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 }

 @Override
 public void resume() {
 }

 @Override
 public void pause() {
 }

 @Override
 public void dispose() {
 }
}

The present() method is again very straightforward. We clear the screen, set the

matrices, render the background, render the highscores portion of the main menu labels,

and then render the five high-score lines using the xOffset we calculated in the

constructor. Now we can see why the Font does not do any texture binding: we can

batch the five calls to Font.drawText(). Of course, we have to make sure that the

SpriteBatcher instance can batch as many sprites (or glyphs in this case) as are needed

for rendering our texts. We made sure it can when creating it in the constructor with a

maximum batch size of 100 sprites (glyphs).

Time to look at the classes of our simulation.

The Simulation Classes
Before we can dive into the game screen we need to create our simulation classes. We’ll

follow the same pattern as in Mr. Nom, with a class for each game object and an all-

knowing superclass called World that ties together the loose ends and makes our game

world tick. We’ll need classes for

� Bob

� Squirrels

� Springs

� Coins

� Platforms

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 460

Bob, squirrels, and platforms can move, so we’ll base their classes on the

DynamicGameObject we created in the last chapter. Springs and coins are static, so those

will derive from the GameObject class. The tasks of each of our simulation classes are as

follows:

� Store the position, velocity, and bounding shape of the object.

� Store the state and length of time that the object has been in that state

(state time) if needed.

� Provide an update() method that will advance the object if needed

according to its behavior.

� Provide methods to change an object’s state (e.g., tell Bob he’s dead

or hit a spring).

The World class will then keep track of multiple instances of these objects, update them

each frame, check collisions between objects and Bob, and carry out the collision

responses (e.g., let Bob die, collect a coin, etc.). We will go through each class, from

simplest to most complex.

The Spring Class
Let’s start with the Spring class in Listing 9–8.

Listing 9–8. Spring.java, the Spring Class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

public class Spring extends GameObject {
 public static float SPRING_WIDTH = 0.3f;
 public static float SPRING_HEIGHT = 0.3f;

 public Spring(float x, float y) {
 super(x, y, SPRING_WIDTH, SPRING_HEIGHT);
 }
}

The Spring class derives from the GameObject class: we only need a position and

bounding shape since a spring does not move.

Next we define two constants that are publically accessible: the spring width and height

in meters. We already estimated those values previously, and we just reuse them here.

The final piece is the constructor, which takes the x- and y-coordinates of the spring’s

center. With this we call the constructor of the superclass GameObject, which takes the

position as well as the width and height of the object to construct a bounding shape

from (a Rectangle centered around the given position). With this information our Spring

is fully defined, having a position and bounding shape to collide against.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 461

The Coin Class
Next up is the class for coins in Listing 9–9.

Listing 9–9. Coin.java, the Coin Class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

public class Coin extends GameObject {
 public static final float COIN_WIDTH = 0.5f;
 public static final float COIN_HEIGHT = 0.8f;
 public static final int COIN_SCORE = 10;

 float stateTime;
 public Coin(float x, float y) {
 super(x, y, COIN_WIDTH, COIN_HEIGHT);
 stateTime = 0;
 }

 public void update(float deltaTime) {
 stateTime += deltaTime;
 }
}

The Coin class is pretty much the same as the Spring class, with only one difference: we

keep track of the duration the coin has been alive already. This information is needed

when we want to render the coin later on, using an Animation. We did the same thing for

our cavemen in the last example of the last chapter. It is a technique we’ll use for all our

simulation classes. Given a state and a state time, we can select an Animation, as well

as which keyframe of that Animation to use for rendering. The coin only has a single

state, so we only need to keep track of the state time. For that we have the update()

method, which will increase the state time by the delta time passed to it.

The constants defined at the top of the class specify a coin’s width and height as we

defined it before, as well as the number of points Bob earns if he hits a coin.

The Castle Class
Next up we have a class for the castle at the top of our world. Listing 9–10 shows the

code.

Listing 9–10. Castle.java, the Castle Class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.GameObject;

public class Castle extends GameObject {
 public static float CASTLE_WIDTH = 1.7f;
 public static float CASTLE_HEIGHT = 1.7f;

 public Castle(float x, float y) {

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 462

 super(x, y, CASTLE_WIDTH, CASTLE_HEIGHT);
 }

}

Not too complex. All we need to store is the position and bounds of the castle. The size

of a castle is defined by the constants CASTLE_WIDTH�and CASTLE_HEIGHT, using the

values we discussed earlier.

The Squirrel Class
Next is the Squirrel class in Listing 9–11.

Listing 9–11. Squirrel.java, the Squirrel Class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Squirrel extends DynamicGameObject {
 public static final float SQUIRREL_WIDTH = 1;
 public static final float SQUIRREL_HEIGHT = 0.6f;
 public static final float SQUIRREL_VELOCITY = 3f;

 float stateTime = 0;

 public Squirrel(float x, float y) {
 super(x, y, SQUIRREL_WIDTH, SQUIRREL_HEIGHT);
 velocity.set(SQUIRREL_VELOCITY, 0);
 }

 public void update(float deltaTime) {
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 bounds.lowerLeft.set(position).sub(SQUIRREL_WIDTH / 2, SQUIRREL_HEIGHT / 2);

 if(position.x < SQUIRREL_WIDTH / 2) {
 position.x = SQUIRREL_WIDTH / 2;
 velocity.x = SQUIRREL_VELOCITY;
 }
 if(position.x > World.WORLD_WIDTH - SQUIRREL_WIDTH / 2) {
 position.x = World.WORLD_WIDTH - SQUIRREL_WIDTH / 2;
 velocity.x = -SQUIRREL_VELOCITY;
 }
 stateTime += deltaTime;
 }
}

Squirrels are moving objects so we let the class derive from DynamicGameObject, which

gives us a velocity and acceleration vector as well. The first thing we do is define a

squirrel’s size, as well as its velocity. Since a squirrel is animated we also keep track of

its state time. A squirrel has a single state, like a coin: moving horizontally. Whether it

moves to the left or right can be decided based on the velocity vector’s x-component,

so we don’t need to store a separate state member for that.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 463

In the constructor we of course call the superclass’s constructor with the initial position

and size of the squirrel. We also set the velocity vector to (SQUIRREL_VELOCITY,0). All

squirrels will thus move to the right in the beginning.

The update() method updates the position and bounding shape of the squirrel based on

the velocity and delta time. It’s our standard Euler integration step, which we talked

about and used a lot in the last chapter. We also check whether the squirrel hit the left or

right edge of the world. If that’s the case we simply invert its velocity vector so it starts

moving in the oposite direction. Our world’s width is fixed at a value of 10 meters, as

discussed earlier. The last thing we do is update the state time based on the delta time

so that we can decide which of the two animation frames we need to use for rendering

that squirrel later on.

The Platform Class
The Platform class is shown in Listing 9–12.

Listing 9–12. Platform.java, the Platform Class

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Platform extends DynamicGameObject {
 public static final float PLATFORM_WIDTH = 2;
 public static final float PLATFORM_HEIGHT = 0.5f;
 public static final int PLATFORM_TYPE_STATIC = 0;
 public static final int PLATFORM_TYPE_MOVING = 1;
 public static final int PLATFORM_STATE_NORMAL = 0;
 public static final int PLATFORM_STATE_PULVERIZING = 1;
 public static final float PLATFORM_PULVERIZE_TIME = 0.2f * 4;
 public static final float PLATFORM_VELOCITY = 2;

Platforms are a little bit more complex, of course. Let’s go over the constants defined in

the class. The first two constants define the width and height of a platform, as discussed

earlier. A platform has a type; it can be either a static platform or a moving platform. We

denote this via the constants PLATFORM_TYPE_STATIC and�PLATFORM_TYPE_MOVING. A

platform can also be in one of two states: it can be in a normal state—that is, either

sitting there statically or moving—or it can be pulverized. The state is encoded via one

of the constants PLATFORM_STATE_NORMAL or PLATFORM_STATE_PULVERIZING. Pulverization

is of course a process limited in time. We therefore define the time it takes for a platform

to be completely pulverized, which is 0.8 seconds. This value is simply derived from the

number of frames in the Animation of the platform and the duration of each frame—one

of the little quirks we have to accept while trying to follow the MVC pattern. Finally we

define the speed of moving platforms to be 2 m/s, as discussed earlier. A moving

platform will behave exactly like a squirrel in that it just travels in one direction until it hits

the world’s horizontal boundaries, in which case it just inverts its direction.

 int type;
 int state;
 float stateTime;

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 464

 public Platform(int type, float x, float y) {
 super(x, y, PLATFORM_WIDTH, PLATFORM_HEIGHT);
 this.type = type;
 this.state = PLATFORM_STATE_NORMAL;
 this.stateTime = 0;
 if(type == PLATFORM_TYPE_MOVING) {
 velocity.x = PLATFORM_VELOCITY;
 }
 }

To store the type, the state, and the state time of the Platform instance, we need three

members. These get initialized in the constructor based on the type of the Platform,

which is a parameter of the constructor, along with the platform center’s position.

 public void update(float deltaTime) {
 if(type == PLATFORM_TYPE_MOVING) {
 position.add(velocity.x * deltaTime, 0);
 bounds.lowerLeft.set(position).sub(PLATFORM_WIDTH / 2, PLATFORM_HEIGHT / 2);

 if(position.x < PLATFORM_WIDTH / 2) {
 velocity.x = -velocity.x;
 position.x = PLATFORM_WIDTH / 2;
 }
 if(position.x > World.WORLD_WIDTH - PLATFORM_WIDTH / 2) {
 velocity.x = -velocity.x;
 position.x = World.WORLD_WIDTH - PLATFORM_WIDTH / 2;
 }
 }

 stateTime += deltaTime;
 }

The update() method will move the platform and check for the out-of-world condition,

acting accordingly by inverting the velocity vector. This is exactly the same thing we did

in the Squirrel.update() method. We also update the state time at the end of the

method.

 public void pulverize() {
 state = PLATFORM_STATE_PULVERIZING;
 stateTime = 0;
 velocity.x = 0;
 }
}

The final method of this class is called pulverize(). It switches the state from

PLATFORM_STATE_NORMAL to PLATFORM_STATE_PULVERIZING and resets the state time and

velocity. This means that moving platforms will stop moving. The method will be called if

the World class detects a collision between Bob and the Platform, and decides to

pulverize the Platform based on a random number. We’ll talk about that in a bit.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 465

The Bob Class
First we need to talk about Bob. The Bob class is shown in Listing 9–13.

Listing 9–13. Bob.java

package com.badlogic.androidgames.jumper;

import com.badlogic.androidgames.framework.DynamicGameObject;

public class Bob extends DynamicGameObject{
 public static final int BOB_STATE_JUMP = 0;
 public static final int BOB_STATE_FALL = 1;
 public static final int BOB_STATE_HIT = 2;
 public static final float BOB_JUMP_VELOCITY = 11;
 public static final float BOB_MOVE_VELOCITY = 20;
 public static final float BOB_WIDTH = 0.8f;
 public static final float BOB_HEIGHT = 0.8f;

We start with a couple of constants again. Bob can be in one of three states: jumping

upward, falling downward, or being hit. He also has a vertical jump velocity, which is

only applied on the y-axis, and a horizontal move velocity, which is only applied on the

x-axis. The final two constants define Bob’s width and height in the world. Of course, we

also have to store Bob’s state and state time.

 int state;
 float stateTime;

 public Bob(float x, float y) {
 super(x, y, BOB_WIDTH, BOB_HEIGHT);
 state = BOB_STATE_FALL;
 stateTime = 0;
 }

The constructor just calls the superclass’s constructor so that Bob’s center position and

bounding shape are initialized correctly, and the initializes the state and stateTime

member variables.

public void update(float deltaTime) {
 velocity.add(World.gravity.x * deltaTime, World.gravity.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 bounds.lowerLeft.set(position).sub(bounds.width / 2, bounds.height / 2);

 if(velocity.y > 0 && state != BOB_STATE_HIT) {
 if(state != BOB_STATE_JUMP) {
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }
 }

 if(velocity.y < 0 && state != BOB_STATE_HIT) {
 if(state != BOB_STATE_FALL) {
 state = BOB_STATE_FALL;
 stateTime = 0;
 }
 }

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 466

 if(position.x < 0)
 position.x = World.WORLD_WIDTH;
 if(position.x > World.WORLD_WIDTH)
 position.x = 0;

 stateTime += deltaTime;
 }

The update()�method starts off by updating Bob’s position and bounding shape based

on gravity and his current velocity. Note that the velocity is a composite of the gravity

and Bob’s own movement due to jumping and moving horizontally. The next two big

conditional blocks set Bob’s state to either BOB_STATE_JUMPING or BOB_STATE_FALLING,

and reinitialize his state time depending on the y component of his velocity. If it is

greater than zero Bob is jumping, and if it is smaller than zero Bob is falling. We only do

this if Bob hasn’t been hit and if he isn’t already in the correct state. Otherwise we’d

always reset the state time to zero, which wouldn’t play nice with Bob’s animation later

on. We also wrap Bob from one edge of the world to the other if he leaves the world to

the left or right. Finally we update the stateTime member again.

Where does Bob get his velocity from apart from gravity? That’s where the other

methods come in.

 public void hitSquirrel() {
 velocity.set(0,0);
 state = BOB_STATE_HIT;
 stateTime = 0;
 }

 public void hitPlatform() {
 velocity.y = BOB_JUMP_VELOCITY;
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }

 public void hitSpring() {
 velocity.y = BOB_JUMP_VELOCITY * 1.5f;
 state = BOB_STATE_JUMP;
 stateTime = 0;
 }
}

The method hitSquirrel() is called by the World class in case Bob hit a squirrel. If

that’s the case Bob stops moving by himself and enters the BOB_STATE_HIT state. Only

gravity will apply to Bob from this point on; the player can’t control him anymore and he

doesn’t interact with platforms anymore. That’s similar to the behavior Super Mario

exhibits when he gets hit by an enemy. He just falls down.

The hitPlatform()�method is also called by the World class. It will be invoked when Bob

hits a platform while falling downward. If that’s the case, then we set his y velocity to

BOB_JUMP_VELOCITY, and we also set his state and state time accordingly. From this point

on Bob will move upward until gravity wins again, making Bob fall down.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 467

The last method, hitSpring(), is invoked by the World class if Bob hits a spring. It does

the same as the hitPlatform() method, with one exception: the initial upward velocity is

set to 1.5 times BOB_JUMP_VELOCITY. This means that Bob will jump a little higher when

hitting a spring compared to when hitting a platform.

The World Class
The last class we have to discuss is the World class. It’s a little longer, so we’ll split it up.

Listing 9–14 shows the first part of the code.

Listing 9–14. Excerpt from World.java: Constants, Members, and Initialization

package com.badlogic.androidgames.jumper;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Vector2;

public class World {
 public interface WorldListener {
 public void jump();
 public void highJump();
 public void hit();
 public void coin();
 }

The first thing we define is an interface called WorldListener. What does it do? We need

it to solve a little MVC problem: when do we play sound effects? We could just add

invocations of Assets.playSound() to the respective simulation classes, but that’s not

very clean. Instead we’ll let a user of the World class register a WorldListener, which will

be called when Bob jumps from a platform, jumps from a spring, gets hit by a squirrel, or

collects a coin. We will later register a listener that plays back the proper sound effects

for each of those events, keeping the simulation classes clean from any direct

dependencies on rendering and audio playback.

 public static final float WORLD_WIDTH = 10;
 public static final float WORLD_HEIGHT = 15 * 20;
 public static final int WORLD_STATE_RUNNING = 0;
 public static final int WORLD_STATE_NEXT_LEVEL = 1;
 public static final int WORLD_STATE_GAME_OVER = 2;
 public static final Vector2 gravity = new Vector2(0, -12);

Next we define a couple of constants. The WORLD_WIDTH and WORLD_HEIGHT specify the

extents of our world horizontally and vertically. Remember that our view frustum will

show a region of 10�15 meters of our world. Given the constants defined here, our

world will span 20 view frustums or screens vertically. Again, that’s a value I came up

with by tuning. We’ll get back to it when we discuss how we generate a level. The world

can also be in one of three states: running, waiting for the next level to start, or the

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 468

game-over state—when Bob falls too far (outside of the view frustum). We also define

our gravity acceleration vector as a constant here.

 public final Bob bob;
 public final List<Platform> platforms;
 public final List<Spring> springs;
 public final List<Squirrel> squirrels;
 public final List<Coin> coins;
 public Castle castle;
 public final WorldListener listener;
 public final Random rand;

 public float heightSoFar;
 public int score;
 public int state;

Next up are all the members of the World class. It keeps track of Bob; all the Platforms,

Springs, Squirrels, and Coins; and the Castle. Additionally it has a reference to a

WorldListener and an instance of Random, which we’ll use to generate random numbers

for various purposes. The last three members keep track of the highest height Bob has

reached so far, as well as the World’s state and the score achieved.

 public World(WorldListener listener) {
 this.bob = new Bob(5, 1);
 this.platforms = new ArrayList<Platform>();
 this.springs = new ArrayList<Spring>();
 this.squirrels = new ArrayList<Squirrel>();
 this.coins = new ArrayList<Coin>();
 this.listener = listener;
 rand = new Random();
 generateLevel();

 this.heightSoFar = 0;
 this.score = 0;
 this.state = WORLD_STATE_RUNNING;
 }

The constructor initializes all members and also stores the WorldListener passed as a

parameter. Bob is placed in the middle of the world horizontally and a little bit above the

ground at (5,1). The rest is pretty much self-explanatory, with one exception: the

generateLevel() method.

Generating the World
You might have wondered already how we actually create and place the objects in our

world. We use a method called procedural generation. We come up with a simple

algorithm that will generate a random level for us. Listing 9–15 shows the code.

Listing 9–15. Exceprt from World.java: The generateLevel() Method

private void generateLevel() {
 float y = Platform.PLATFORM_HEIGHT / 2;
 float maxJumpHeight = Bob.BOB_JUMP_VELOCITY * Bob.BOB_JUMP_VELOCITY
 / (2 * -gravity.y);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 469

 while (y < WORLD_HEIGHT - WORLD_WIDTH / 2) {
 int type = rand.nextFloat() > 0.8f ? Platform.PLATFORM_TYPE_MOVING
 : Platform.PLATFORM_TYPE_STATIC;
 float x = rand.nextFloat()
 * (WORLD_WIDTH - Platform.PLATFORM_WIDTH)
 + Platform.PLATFORM_WIDTH / 2;

 Platform platform = new Platform(type, x, y);
 platforms.add(platform);

 if (rand.nextFloat() > 0.9f
 && type != Platform.PLATFORM_TYPE_MOVING) {
 Spring spring = new Spring(platform.position.x,
 platform.position.y + Platform.PLATFORM_HEIGHT / 2
 + Spring.SPRING_HEIGHT / 2);
 springs.add(spring);
 }

 if (y > WORLD_HEIGHT / 3 && rand.nextFloat() > 0.8f) {
 Squirrel squirrel = new Squirrel(platform.position.x
 + rand.nextFloat(), platform.position.y
 + Squirrel.SQUIRREL_HEIGHT + rand.nextFloat() * 2);
 squirrels.add(squirrel);
 }

 if (rand.nextFloat() > 0.6f) {
 Coin coin = new Coin(platform.position.x + rand.nextFloat(),
 platform.position.y + Coin.COIN_HEIGHT
 + rand.nextFloat() * 3);
 coins.add(coin);
 }

 y += (maxJumpHeight - 0.5f);
 y -= rand.nextFloat() * (maxJumpHeight / 3);
 }

 castle = new Castle(WORLD_WIDTH / 2, y);
}

Let me outline the general idea of the algorithm in plain words:

1. Start at the bottom of the world at y = 0.

2. While we haven’t reached the top of the world yet, do the following:

a. Create a platform, either moving or stationary at the current y

position with a random x position.

b. Fetch a random number between 0 and 1, and if it is greater than

0.9 and if the platform is not moving, create a spring on top of the

platform.

c. If we are above the first third of the level, fetch a random number,

and if it is above 0.8, create a squirrel offset randomly from the

platform’s position.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 470

d. Fetch a random number, and if it is greater than 0.6, create a coin

offset randomly from the platform’s position.

e. Increase y by the maximum normal jump height of Bob, decrease

it a tiny bit randomly—but only so far that it doesn’t fall below the

last y value—and goto 2

3. Place the castle at the last y position, centered horizontally.

The big secret of this procedure is how we increase the y position for the next platform

in step 2e. We have to make sure that each subsequent platform is reachable by Bob by

jumping from the current platform. Bob can only jump as high as gravity allows, given

his initial jump velocity of 11 m/s vertically. How can we calculate how high Bob will

jump? With the following formula:

height = velocity × velocity / (2 × gravity) = 11 × 11 / (2 × 13) ~= 4.6m

This means we should have a distance of 4.6 meters vertically between each platform so

that Bob can still reach it. To make sure all platforms are reachable, we use a value

that’s a little bit less than the maximum jump height. This guarantees that Bob will

always be able to jump from one platform to the next. The horizontal placement of

platforms is random again. Given Bob’s horizontal movement speed of 20 m/s, we can

be more than sure that he will not only be able to reach a platform vertically but also

horizontally.

The other objects are created based on chance. The method Random.nextFloat()

returns a random number between 0 and 1 on each invocation, where each number has

the same probability of occuring. Squirrels are only generated when the random number

we fetch from Random is greater than 0.8. This means that we’ll generate a squirrel with a

probability of 20 percent (1 – 0.8). The same is true for all other randomly created

objects. By tuning this values we can have more or fewer objects in our world.

Updating the World
Once we have generated our world we can update all objects in it and check for

collisions. Listing 9–16 shows the update methods of the World class.

Listing 9–16. Excerpt from World.java: The Update Methods

public void update(float deltaTime, float accelX) {
 updateBob(deltaTime, accelX);
 updatePlatforms(deltaTime);
 updateSquirrels(deltaTime);
 updateCoins(deltaTime);
 if (bob.state != Bob.BOB_STATE_HIT)
 checkCollisions();
 checkGameOver();
}

The method update()�is the one called by our game screen later on. It receives the delta

time and acceleration on the x-axis of the accelerometer as an argument. It is responsible

for calling the other update methods as well as performing the collision checks and game-

over check. We have an update method for each object type in our world.

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 471

private void updateBob(float deltaTime, float accelX) {
 if (bob.state != Bob.BOB_STATE_HIT && bob.position.y <= 0.5f)
 bob.hitPlatform();
 if (bob.state != Bob.BOB_STATE_HIT)
 bob.velocity.x = -accelX / 10 * Bob.BOB_MOVE_VELOCITY;
 bob.update(deltaTime);
 heightSoFar = Math.max(bob.position.y, heightSoFar);
}

The updateBob()�method is responsible for updating Bob’s state. The first thing it does is

check whether Bob is hitting the bottom of the world, in which case Bob is instructed to

jump. This means that at the start of each level Bob is allowed to jump off the ground of

our world. As soon as the ground is out of sight, this won’t work anymore, of course.

Next we update Bob’s horizontal velocity based on the value of the x-axis of the

accelerometer we get as an argument. As discussed, we normalize this value from a

range of –10 to 10 to a range of –1 to 1 (full left tilt to full right tilt), and the multiply it by

Bob’s standard movement velocity. Next we tell Bob to update himself by calling the

Bob.update()�method. The last thing we do is keep track of the highest y position Bob

has reached so far. We need this to determine whether Bob has fallen too far later on.

private void updatePlatforms(float deltaTime) {
 int len = platforms.size();
 for (int i = 0; i < len; i++) {
 Platform platform = platforms.get(i);
 platform.update(deltaTime);
 if (platform.state == Platform.PLATFORM_STATE_PULVERIZING
 && platform.stateTime > Platform.PLATFORM_PULVERIZE_TIME) {
 platforms.remove(platform);
 len = platforms.size();
 }
 }
}

Next we update all the platforms in updatePlatforms(). We loop through the list of

platforms and call each platform’s update() method with the current delta time. In case

the platform is in the process of pulverization, we check for how long that has been

going on. If the platform is in the PLATFORM_STATE_PULVERIZING state for more than

PLATFORM_PULVERIZE_TIME, we simply remove the platform from our list of platforms.

private void updateSquirrels(float deltaTime) {
 int len = squirrels.size();
 for (int i = 0; i < len; i++) {
 Squirrel squirrel = squirrels.get(i);
 squirrel.update(deltaTime);
 }
}

private void updateCoins(float deltaTime) {
 int len = coins.size();
 for (int i = 0; i < len; i++) {
 Coin coin = coins.get(i);
 coin.update(deltaTime);
 }
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 472

In the�updateSquirrels()�method we update each Squirrel instance via its update()�

method, passing in the current delta time. We do the same for coins in the

updateCoins() method.

Collision Detection and Response
Looking back at our original World.update() method, we can see that the next thing we

do is check for collisions between Bob and all the other objects he can collide with in

the world. We only do this if Bob is in a state not equal to BOB_STATE_HIT, in which case

he just continues to fall down due to gravity. Let’s have a look at those collision-

checking methods in Listing 9–17.

Listing 9–17. Excerpt from World.java: The Collision-Checking Methods

private void checkCollisions() {
 checkPlatformCollisions();
 checkSquirrelCollisions();
 checkItemCollisions();
 checkCastleCollisions();
}

The checkCollisions()�method is more or less another master method, which simply

invokes all the other collision-checking methods. Bob can collide with a couple of things

in the world: platforms, squirrels, coins, springs, and the castle. For each of those object

types, we have a separate collision-checking method. Remember that we invoke this

method and the slave methods after we have updated the positions and bounding

shapes of all objects in our world. Think of it as a snapshot of the state of our world at

the given point in time. All we do is observe this still image and see whether anything

overlaps. We can then take action and make sure that the objects that collide react to

those overlaps or collisions in the next frame by manipulating their states, positions,

velocities, and so on.

private void checkPlatformCollisions() {
 if (bob.velocity.y > 0)
 return;

 int len = platforms.size();
 for (int i = 0; i < len; i++) {
 Platform platform = platforms.get(i);
 if (bob.position.y > platform.position.y) {
 if (OverlapTester
 .overlapRectangles(bob.bounds, platform.bounds)) {
 bob.hitPlatform();
 listener.jump();
 if (rand.nextFloat() > 0.5f) {
 platform.pulverize();
 }
 break;
 }
 }
 }
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 473

In the checkPlatformCollisions()�method we test for overlap between Bob and any of

the platforms in our world. We break out of that method early in case Bob is currently on

his way up. This way Bob can pass through platforms from below. For Super Jumper

that’s good behavior; in a game like Super Mario Brothers we’d probably want Bob to

fall down if he hits a block from below. Next we loop through all platforms and check

whether Bob is above the current platform. If he is, we test whether his bounding

rectangle overlaps the bounding rectangle of the platform, in which case we tell Bob that

he hit a platform via a call to Bob.hitPlatform(). Looking back at that method, we see

that it will trigger a jump and set Bob’s states accordingly. Next we call the

WorldListener.jump()�method to inform the listener that Bob has just started to jump

again. We’ll use this later on to play back a corresponding sound effect in the listener.

The last thing we do is fetch a random number, and if it is above 0.5 we tell the platform

to pulverize itself. It will be alive for another PLATFORM_PULVERIZE_TIME seconds (0.8) and

will then be removed in the updatePlatforms() method shown earlier. When we render

that platform, we’ll use its state time to determine which of the platform animation

keyframes to play back.

private void checkSquirrelCollisions() {
 int len = squirrels.size();
 for (int i = 0; i < len; i++) {
 Squirrel squirrel = squirrels.get(i);
 if (OverlapTester.overlapRectangles(squirrel.bounds, bob.bounds)) {
 bob.hitSquirrel();
 listener.hit();
 }
 }
}

The method checkSquirrelCollisions() tests Bob’s bounding rectangle against the

bounding rectangle of each squirrel. If Bob hits a squirrel, we tell him to enter the

BOB_STATE_HIT state, which will make him fall down without the player being able to

control him any further. We also tell the WorldListener about it so he can play back a

sound effect, for example.

private void checkItemCollisions() {
 int len = coins.size();
 for (int i = 0; i < len; i++) {
 Coin coin = coins.get(i);
 if (OverlapTester.overlapRectangles(bob.bounds, coin.bounds)) {
 coins.remove(coin);
 len = coins.size();
 listener.coin();
 score += Coin.COIN_SCORE;
 }

 }

 if (bob.velocity.y > 0)
 return;

 len = springs.size();
 for (int i = 0; i < len; i++) {
 Spring spring = springs.get(i);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 474

 if (bob.position.y > spring.position.y) {
 if (OverlapTester.overlapRectangles(bob.bounds, spring.bounds)) {
 bob.hitSpring();
 listener.highJump();
 }
 }
 }
}

The checkItemCollisions()�method checks Bob against all coins in the world and

against all springs. In case Bob hits a coin we remove the coin from our world, tell the

listener that a coin was collected, and increase the current score by COIN_SCORE. In case

Bob is falling downward, we also check Bob against all springs in the world. In case he

hit one we till him about it so that he’ll perform a higher jump than usual. We also inform

the listener of this event.

private void checkCastleCollisions() {
 if (OverlapTester.overlapRectangles(castle.bounds, bob.bounds)) {
 state = WORLD_STATE_NEXT_LEVEL;
 }
}

The final method checks Bob against the castle. If Bob hits it, we set the world’s state to

WORLD_STATE_NEXT_LEVEL, signaling any outside entity (such as our game screen) that we

should transition to the next level, which will again be a randomly generated instance of

World.

Game Over, Buddy!
The last method in the World class, which is invoked in the last line of the

World.update() method, is shown in Listing 9–18.

Listing 9–18. The Rest of World.java: The Game Over–Checking Method

 private void checkGameOver() {
 if (heightSoFar - 7.5f > bob.position.y) {
 state = WORLD_STATE_GAME_OVER;
 }
 }
}

Remember how we defined the game-over state: Bob must leave the bottom of the view

frustum. The view frustum is of course governed by a Camera2D instance, which has a

position. The y-coordinate of that position is always equal to the biggest y-coordinate

Bob has had so far, so the camera will somewhat follow Bob on his way upward. Since

we want to keep the rendering and simulation code separate, we don’t have a reference

to the camera in our world, though. We thus keep track of Bob’s highest y-coordinate in

updateBob() and store that value in heightSoFar. We know that our view frustum will

have a height of 15 meters. Thus we also know that if Bob’s y-coordinate is below

heightSoFar – 7.5, then he has left the view frustum on the bottom edge. That’s when

Bob is declared to be dead. Of course, this is a tiny bit hackish, as it is based on the

assumption that the view frustum’s height will always be 15 meters and that the camera

will always be at the highest y-coordinate Bob has been able to reach so far. If we’d

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 475

allowed zooming or used a different camera-following method, this would not hold true

anymore. Instead of overcomplicating things, we’ll just leave it as is, though. You will

often face such decisions in game development, as it is hard at times to keep everything

clean from a software engineering point of view (as evidenced by our overuse of public

or package private members).

You may be wondering why we don’t use the SpatialHashGrid class we developed in

the last chapter. I’ll show you the reason in a minute. Let’s get our game done by

implementing the GameScreen class first.

The Game Screen
We are nearing the completion of Super Jumper. The last thing we need to implement is

the game screen, which will present the actual game world to the player and allow it to

interact with it. The game screen consists of five subscreens, as shown in Figure 9–2.

We have the ready screen, the normal running screen, the next-level screen, the game-

over screen, and the pause screen. The game screen in Mr. Nom was similar to this; it

only lacked a next-level screen, as there was only one level. We will use the same

approach as in Mr. Nom: we’ll have separate update and present methods for all

subscreens that update and render the game world, as well as the UI elements that are

part of the subscreens. Since the game screen code is a little longer, we’ll split it up into

multiple listings here. Listing 9–19 shows the first part of the game screen.

Listing 9–19. Excerpt from GameScreen.java: Members and Constructor

package com.badlogic.androidgames.jumper;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.FPSCounter;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;
import com.badlogic.androidgames.jumper.World.WorldListener;

public class GameScreen extends GLScreen {
 static final int GAME_READY = 0;
 static final int GAME_RUNNING = 1;
 static final int GAME_PAUSED = 2;
 static final int GAME_LEVEL_END = 3;
 static final int GAME_OVER = 4;

 int state;
 Camera2D guiCam;
 Vector2 touchPoint;

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 476

 SpriteBatcher batcher;
 World world;
 WorldListener worldListener;
 WorldRenderer renderer;
 Rectangle pauseBounds;
 Rectangle resumeBounds;
 Rectangle quitBounds;
 int lastScore;
 String scoreString;

The class starts off with a couple of constants defining the five states that the screen

can be in. Next we have the members. We have a camera for rendering the UI elements,

as well as a vector so we can transform touch coordinates to world coordinates (as in

the other screens, to a view frustum of 320�480 units, our target resolution). Next we

have a SpriteBatcher, a World instance, and a WorldListener. The WorldRenderer class

is something we’ll look into in a minute. It basically just takes a World and renders it.

Note that it takes a reference to the SpriteBatcher as well as the World as parameters of

its constructors. This means we’ll use the same SpriteBatcher to render the UI elements

of the screen, as well as the game world. The rest of the members are Rectangles for

different UI elements (such as the RESUME and QUIT menu entries on the paused

subscreen) and two members for keeping track of the current score. We want to avoid

creating a new string every frame when rendering the score so that we make the

garbage collector happy.

 public GameScreen(Game game) {
 super(game);
 state = GAME_READY;
 guiCam = new Camera2D(glGraphics, 320, 480);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 1000);
 worldListener = new WorldListener() {
 @Override
 public void jump() {
 Assets.playSound(Assets.jumpSound);
 }

 @Override
 public void highJump() {
 Assets.playSound(Assets.highJumpSound);
 }

 @Override
 public void hit() {
 Assets.playSound(Assets.hitSound);
 }

 @Override
 public void coin() {
 Assets.playSound(Assets.coinSound);
 }
 };
 world = new World(worldListener);
 renderer = new WorldRenderer(glGraphics, batcher, world);
 pauseBounds = new Rectangle(320- 64, 480- 64, 64, 64);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 477

 resumeBounds = new Rectangle(160 - 96, 240, 192, 36);
 quitBounds = new Rectangle(160 - 96, 240 - 36, 192, 36);
 lastScore = 0;
 scoreString = "score: 0";
 }

In the constructor we initialize all the member variables. The only interesting thing here is

the WorldListener we implement as an anonymous inner class. It’s registered with the

World instance and will play back sound effects according to the event that gets

reported to it.

Updating the GameScreen
Next we have the update methods, which will make sure any user input is processed

correctly and will also update the World instance if necessary. Listing 9–20 shows the

code.

Listing 9–20. Excerpt from GameScreen.java: The Update Methods

@Override
public void update(float deltaTime) {
 if(deltaTime > 0.1f)
 deltaTime = 0.1f;

 switch(state) {
 case GAME_READY:
 updateReady();
 break;
 case GAME_RUNNING:
 updateRunning(deltaTime);
 break;
 case GAME_PAUSED:
 updatePaused();
 break;
 case GAME_LEVEL_END:
 updateLevelEnd();
 break;
 case GAME_OVER:
 updateGameOver();
 break;
 }
}

We have the GLScreen.update() method as the master method again, which calls one of

the other update methods depending on the current state of the screen. Note that we

limit the delta time to 0.1 seconds. Why do we do that? In Chapter 6 we talked about a

bug in the direct ByteBuffers on Android version 1.5, which generates garbage. We will

have that problem in Super Jumper as well on Android 1.5 devices. Every now and then

our game will be interrupted for a couple of hundred milliseconds by the garbage

collector. This would be reflected in a delta time of a couple of hundred milliseconds,

which would make Bob sort of teleport from one place to another instead of smoothly

moving there. That’s annoying for the player and it also has an effect on our collision

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 478

detection. Bob could tunnel through a platform without ever overlapping with it due to

him moving a large distance in a single frame. By limiting the delta time to a sensible

maximum value of 0.1 seconds, we can compensate for those effects.

private void updateReady() {
 if(game.getInput().getTouchEvents().size() > 0) {
 state = GAME_RUNNING;
 }
}

The updateReady() method is invoked in the paused subscreen. All it does is wait for a

touch event, in which case it will change the state of the game screen to the

GAME_RUNNING state.

private void updateRunning(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(pauseBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_PAUSED;
 return;
 }
 }

 world.update(deltaTime, game.getInput().getAccelX());
 if(world.score != lastScore) {
 lastScore = world.score;
 scoreString = "" + lastScore;
 }
 if(world.state == World.WORLD_STATE_NEXT_LEVEL) {
 state = GAME_LEVEL_END;
 }
 if(world.state == World.WORLD_STATE_GAME_OVER) {
 state = GAME_OVER;
 if(lastScore >= Settings.highscores[4])
 scoreString = "new highscore: " + lastScore;
 else
 scoreString = "score: " + lastScore;
 Settings.addScore(lastScore);
 Settings.save(game.getFileIO());
 }
}

In the updateRunning() method, we first check whether the user touched the pause

button in the upper-right corner. If that’s the case, then the game is put into the

GAME_PAUSED state. Otherwise we update the World instance with the current delta time

and the x-axis value of the accelerometer, which are responsible for moving Bob

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 479

horizontally. After the world is updated we check whether our score string needs

updating. We also check whether Bob has reached the castle, in which case we enter

the GAME_NEXT_LEVEL state, which will show the message in the top left screen in Figure

9–2, and will wait for a touch event to generate the next level. In case the game is over,

we set the score string to either score: #score or new highscore: #score, depending on

whether the score achieved is a new high score. We then add the score to the Settings

and tell it to save all the settings to the SD card. Additionally we set the game screen to

the GAME_OVER state.

private void updatePaused() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 touchPoint.set(event.x, event.y);
 guiCam.touchToWorld(touchPoint);

 if(OverlapTester.pointInRectangle(resumeBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_RUNNING;
 return;
 }

 if(OverlapTester.pointInRectangle(quitBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 return;

 }
 }
}

In the updatePaused() method we check whether the user has touched the RESUME or

QUIT UI elements and react accordingly.

private void updateLevelEnd() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;
 world = new World(worldListener);
 renderer = new WorldRenderer(glGraphics, batcher, world);
 world.score = lastScore;
 state = GAME_READY;
 }
}

In the updateLevelEnd()�method we check for a touch-up event; if there has been one,

we create a new World and WorldRenderer instance. We also tell the World to use the

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 480

score achieved so far and set the game screen to the GAME_READY state, which will again

wait for a touch event.

private void updateGameOver() {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 int len = touchEvents.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;
 game.setScreen(new MainMenuScreen(game));
 }
}

In the updateGameOver() method, we again just check for a touch event, in which case

we simply transition to back to the main menu, as indicated in Figure 9–2.

Rendering the GameScreen
After all those updates, the game screen will be asked to render itself via a call to

GameScreen.present(). Let’s have a look at that method in Listing 9–21.

Listing 9–21. Excerpt from GameScreen.java: The Rendering Methods

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 renderer.render();

 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 batcher.beginBatch(Assets.items);
 switch(state) {
 case GAME_READY:
 presentReady();
 break;
 case GAME_RUNNING:
 presentRunning();
 break;
 case GAME_PAUSED:
 presentPaused();
 break;
 case GAME_LEVEL_END:
 presentLevelEnd();
 break;
 case GAME_OVER:
 presentGameOver();
 break;
 }
 batcher.endBatch();
 gl.glDisable(GL10.GL_BLEND);
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 481

Rendering of the game screen is done in two steps. We first render the actual game

world via the WorldRenderer class, and then render all the UI elements on top of the

game world depending on the current state of the game screen. The render() method

does just that. As with our update methods, we again have a separate rendering method

for all the subscreens.

private void presentReady() {
 batcher.drawSprite(160, 240, 192, 32, Assets.ready);
}

The presentRunning() method just displays the pause button in the top-right corner, as

well as the score string in the top-left corner.

private void presentRunning() {
 batcher.drawSprite(320 - 32, 480 - 32, 64, 64, Assets.pause);
 Assets.font.drawText(batcher, scoreString, 16, 480-20);
}

In the presentRunning()�method we simply render the pause button and the current

score string.

private void presentPaused() {
 batcher.drawSprite(160, 240, 192, 96, Assets.pauseMenu);
 Assets.font.drawText(batcher, scoreString, 16, 480-20);
}

The presentPaused()�method displays the pause menu UI elements and the score again.

private void presentLevelEnd() {
 String topText = "the princess is ...";
 String bottomText = "in another castle!";
 float topWidth = Assets.font.glyphWidth * topText.length();
 float bottomWidth = Assets.font.glyphWidth * bottomText.length();
 Assets.font.drawText(batcher, topText, 160 - topWidth / 2, 480 - 40);
 Assets.font.drawText(batcher, bottomText, 160 - bottomWidth / 2, 40);
}

The presentLevelEnd() method renders the string THE PRINCESS IS … at the top of the

screen and the string IN ANOTHER CASTLE! at the bottom of the screen, as shown in

Figure 9–2. We perform some calculations to center those strings horizontally.

private void presentGameOver() {
 batcher.drawSprite(160, 240, 160, 96, Assets.gameOver);
 float scoreWidth = Assets.font.glyphWidth * scoreString.length();
 Assets.font.drawText(batcher, scoreString, 160 - scoreWidth / 2, 480-20);
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 482

The presentGameOver() method displays the game-over UI element as well the score

string. Remember that the score screen is set in the updateRunning() method to either

score: #score or new highscore: #value.

Finishing Touches
That’s basically our game screen class. The rest of its code is given in Listing 9–22.

Listing 9–22. The Rest of GameScreen.java: The pause(), resume(), and dispose() Methods

 @Override
 public void pause() {
 if(state == GAME_RUNNING)
 state = GAME_PAUSED;
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

We just make sure our game screen is paused when the user decides to pause the

application.

The last thing we have to implement is the WorldRenderer class.

The WorldRenderer Class
This class should be no surprise. It simply uses the SpriteBatcher we pass to it in the

constructor and renders the world accordingly. Listing 9–23 shows the beginning of the

code.

Listing 9–23. Excerpt from WorldRenderer.java: Constants, Members, and Constructor

package com.badlogic.androidgames.jumper;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class WorldRenderer {
 static final float FRUSTUM_WIDTH = 10;
 static final float FRUSTUM_HEIGHT = 15;
 GLGraphics glGraphics;
 World world;
 Camera2D cam;

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 483

 SpriteBatcher batcher;

 public WorldRenderer(GLGraphics glGraphics, SpriteBatcher batcher, World world) {
 this.glGraphics = glGraphics;
 this.world = world;
 this.cam = new Camera2D(glGraphics, FRUSTUM_WIDTH, FRUSTUM_HEIGHT);
 this.batcher = batcher;
 }

As always we start off by defining some constants. In this case it’s the view frustum’s

width and height, which we define as 10 and 15 meters. We also have a couple of

members—namely a GLGraphics instance, a camera, and the SpriteBatcher reference

we get from the game screen.

The constructor takes a GLGraphics instance, a SpriteBatcher, and the World the

WorldRenderer should draw as parameters. We set up all members accordingly. Listing

9–24 shows the actual rendering code.

Listing 9–24. The Rest of WorldRenderer.java: The Actual Rendering Code

 public void render() {
 if(world.bob.position.y > cam.position.y)
 cam.position.y = world.bob.position.y;
 cam.setViewportAndMatrices();
 renderBackground();
 renderObjects();
 }

The�render()�method splits up rendering into two batches: one for the background

image and another one for all the objects in the world. It also updates the camera

position based on Bob’s current y-coordinate. If he’s above the camera’s y-coordinate,

the camera position is adjusted accordingly. Note that we use a camera that works in

world units here. We only set up the matrices once for both the background and the

objects.

 public void renderBackground() {
 batcher.beginBatch(Assets.background);
 batcher.drawSprite(cam.position.x, cam.position.y,
 FRUSTUM_WIDTH, FRUSTUM_HEIGHT,
 Assets.backgroundRegion);
 batcher.endBatch();
 }

The renderBackground() method simply renders the background so that it follows the

camera. It does not scroll, but instead is always rendered so that it fills the complete

screen. We also don’t use any blending for rendering the background so we can

squeeze out a little bit more performance.

 public void renderObjects() {
 GL10 gl = glGraphics.getGL();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 renderBob();
 renderPlatforms();

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 484

 renderItems();
 renderSquirrels();
 renderCastle();
 batcher.endBatch();
 gl.glDisable(GL10.GL_BLEND);
 }

The renderObjects() method is responsible for rendering the second batch. This time

we use blending, as all our objects have transparent background pixels. All the objects

are rendered in a single batch. Looking back at the constructor of GameScreen, we see

that the SpriteBatcher we use can cope with 1,000 sprites in a single batch—more than

enough for our world. For each object type we have a separate rendering method.

 private void renderBob() {
 TextureRegion keyFrame;
 switch(world.bob.state) {
 case Bob.BOB_STATE_FALL:
 keyFrame = Assets.bobFall.getKeyFrame(world.bob.stateTime,
Animation.ANIMATION_LOOPING);
 break;
 case Bob.BOB_STATE_JUMP:
 keyFrame = Assets.bobJump.getKeyFrame(world.bob.stateTime,
Animation.ANIMATION_LOOPING);
 break;
 case Bob.BOB_STATE_HIT:
 default:
 keyFrame = Assets.bobHit;
 }

 float side = world.bob.velocity.x < 0? -1: 1;
 batcher.drawSprite(world.bob.position.x, world.bob.position.y, side * 1, 1,
keyFrame);
 }

The method renderBob() is responsible for rendering Bob. Based on Bob’s state and

state time, we select a keyframe out of the total of five keyframes we have for Bob (see

Figure 9–9 earlier in the chapter). Based on Bob’s velocity’s x-component, we also

determine which side Bob is facing. Based on that, we multiply his by with either 1 or –1

to flip the texture region accordingly. Remember, we only have keyframes for a Bob

looking to the right. Note also that we don’t use BOB_WIDTH or�BOB_HEIGHT to specify the

size of the rectangle we draw for Bob. Those sizes are the sizes of the bounding shapes,

which are not necessarily the sizes of the rectangles we render. Instead we use our 1�1-

meter-to-32�32-pixel mapping. That’s something we’ll do for all sprite rendering; we’ll

either use a 1�1 rectangle (Bob, coins, squirrels, springs), a 2�0.5 rectangle (platforms),

or a 2�2 rectangle (castle).

 private void renderPlatforms() {
 int len = world.platforms.size();
 for(int i = 0; i < len; i++) {
 Platform platform = world.platforms.get(i);
 TextureRegion keyFrame = Assets.platform;
 if(platform.state == Platform.PLATFORM_STATE_PULVERIZING) {
 keyFrame = Assets.brakingPlatform.getKeyFrame(platform.stateTime,
Animation.ANIMATION_NONLOOPING);

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 485

 }

 batcher.drawSprite(platform.position.x, platform.position.y,
 2, 0.5f, keyFrame);
 }
 }

The method renderPlatforms()�loops through all the platforms in the world and selects a

TextureRegion based on the platform’s state. A platform can either be pulverized or not

pulverized. In the latter case, we simply use the first keyframe, and in the former case we

fetch a keyframe from the pulverization animation based on the platform’s state time.

 private void renderItems() {
 int len = world.springs.size();
 for(int i = 0; i < len; i++) {
 Spring spring = world.springs.get(i);
 batcher.drawSprite(spring.position.x, spring.position.y, 1, 1,
Assets.spring);
 }

 len = world.coins.size();
 for(int i = 0; i < len; i++) {
 Coin coin = world.coins.get(i);
 TextureRegion keyFrame = Assets.coinAnim.getKeyFrame(coin.stateTime,
Animation.ANIMATION_LOOPING);
 batcher.drawSprite(coin.position.x, coin.position.y, 1, 1, keyFrame);
 }
 }

The method renderItems() renders springs and coins. For springs we just use the one

TextureRegion we defined in Assets, and for coins we again select a keyframe from the

animation based on a coin’s state time.

 private void renderSquirrels() {
 int len = world.squirrels.size();
 for(int i = 0; i < len; i++) {
 Squirrel squirrel = world.squirrels.get(i);
 TextureRegion keyFrame = Assets.squirrelFly.getKeyFrame(squirrel.stateTime,
Animation.ANIMATION_LOOPING);
 float side = squirrel.velocity.x < 0?-1:1;
 batcher.drawSprite(squirrel.position.x, squirrel.position.y, side * 1, 1,
keyFrame);
 }
 }

The method renderSquirrels() renders squirrels. We again fetch a keyframe based on

the squirrel’s state time, figure out which direction it faces, and manipulate the width

accordingly when rendering it with the SpriteBatcher. This is necessary since we only

have a left-facing version of the squirrel in the texture atlas.

 private void renderCastle() {
 Castle castle = world.castle;
 batcher.drawSprite(castle.position.x, castle.position.y, 2, 2, Assets.castle);
 }
}

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 486

The last method is called renderCastle(), and simply draws the castle with the

TextureRegion we defined in the Assets class.

That was pretty simple, wasn’t it? We only have two batches to render: one for the

background and one for the objects. Taking a step back we see that we render a third

batch for all the UI elements of the game screen as well. That’s three texture changes

and three times uploading new vertices to the GPU. We could theoretically merge the UI

and object batches, but that would be cumbersome and would introduce some hacks

into our code. According to our optimization guidelines from Chapter 6, we should have

lightning-fast rendering. Let’s see whether that’s true.

We are finally done. Our second game, Super Jumper, is now ready to be played.

To Optimize or Not to Optimize
It’s time to benchmark our new game. The only place we really need to deal with speed

is the game screen. I simply placed an FPSCounter instance in the GameScreen class and

called its FPSCounter.logFrame()�method at the end of the GameScreen.render()

method. Here are the results on a Hero, a Droid, and a Nexus One:

Hero (1.5):
01-02 20:58:06.417: DEBUG/FPSCounter(8251): fps: 57
01-02 20:58:07.427: DEBUG/FPSCounter(8251): fps: 57
01-02 20:58:08.447: DEBUG/FPSCounter(8251): fps: 57
01-02 20:58:09.447: DEBUG/FPSCounter(8251): fps: 56

Droid (2.1.1):
01-02 21:03:59.643: DEBUG/FPSCounter(1676): fps: 61
01-02 21:04:00.659: DEBUG/FPSCounter(1676): fps: 59
01-02 21:04:01.659: DEBUG/FPSCounter(1676): fps: 60
01-02 21:04:02.666: DEBUG/FPSCounter(1676): fps: 60

Nexus One (2.2.1):
01-02 20:54:05.263: DEBUG/FPSCounter(1393): fps: 61
01-02 20:54:06.273: DEBUG/FPSCounter(1393): fps: 61
01-02 20:54:07.273: DEBUG/FPSCounter(1393): fps: 60
01-02 20:54:08.283: DEBUG/FPSCounter(1393): fps: 61

Sixty frames per second out of the box is pretty good, I’d say. The Hero struggles a little,

of course, due to its less-than-stellar CPU. We could use the SpatialHashGrid to speed

up the simulation of our world a little. I’ll leave that as an exercise to you, dear reader.

There’s no real necessity for doing so, though, as the Hero will always be fraught with

problems (as will any other 1.5 device, for that matter). What’s worse is the hiccups due

to garbage collection every now and then on the Hero. We know the reason (a bug in

direct ByteBuffer), but we can’t really do anything about it. Let’s hope Android version

1.5 will die a quick death soon.

I took the preceding measurements with sound disabled in the main menu. Let’s try

again with audio playback turned on:

Hero (1.5):
01-02 21:01:22.437: DEBUG/FPSCounter(8251): fps: 43

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 487

01-02 21:01:23.457: DEBUG/FPSCounter(8251): fps: 48
01-02 21:01:24.467: DEBUG/FPSCounter(8251): fps: 49
01-02 21:01:25.487: DEBUG/FPSCounter(8251): fps: 49

Droid (2.1.1):
01-02 21:10:49.979: DEBUG/FPSCounter(1676): fps: 54
01-02 21:10:50.979: DEBUG/FPSCounter(1676): fps: 56
01-02 21:10:51.987: DEBUG/FPSCounter(1676): fps: 54
01-02 21:10:52.987: DEBUG/FPSCounter(1676): fps: 56

Nexus One (2.2.1):
01-02 21:06:06.144: DEBUG/FPSCounter(1470): fps: 61
01-02 21:06:07.153: DEBUG/FPSCounter(1470): fps: 61
01-02 21:06:08.173: DEBUG/FPSCounter(1470): fps: 62
01-02 21:06:09.183: DEBUG/FPSCounter(1470): fps: 61

Ouch. The Hero has significantly lower performance when we play back our background

music. The audio also takes its toll on the Droid. The Nexus One doesn’t really care,

though. What can we do about it? Nothing really. The big culprit is not so much the

sound effects but the background music. Streaming and decoding an MP3 or OGG file

takes away CPU cycles from our game; that’s just how the world works. Just remember

to factor that into your performance measurements.

Summary
We’ve created our second game with the power of OpenGL ES. Due to our nice

framework, it was actually a breeze to implement. The use of a texture atlas and the

SpriteBatcher made for some very good performance. We also discussed how to

render fixed-width ASCII bitmap fonts. Good initial design of our game mechanics and a

clear definition of the relationship between world units and pixel units makes developing

a game a lot easier. Imagine the nightmare we’d have if we tried to do everything in

pixels. All our calculations would be riddled with divisions—something the CPUs of less-

powerful Android devices don’t like all that much. We also took great care to separate

our logic from the presentation. All in all, I’d call Super Jumper a success.

Now it’s time to turn the knobs to 11. Let’s get our feet wet with some 3D graphics

programming.

	Chapter 9 Super Jumper: A 2D OpenGL ES Game
	Core Game Mechanics
	A Backstory and Art Style
	Screens and Transitions
	Defining the Game World
	Creating the Assets
	The UI Elements
	Handling Text with Bitmap Fonts
	The Game Elements
	Texture Atlas to the Rescue
	Music and Sound

	Implementing Super Jumper
	The Assets Class
	The Settings Class
	The Main Activity
	The Font Class
	GLScreen
	The Main Menu Screen
	The Help Screens
	The High-Scores Screen
	The Simulation Classes
	The Spring Class
	The Coin Class
	The Castle Class
	The Squirrel Class
	The Platform Class
	The Bob Class
	The World Class
	Generating the World
	Updating the World
	Collision Detection and Response
	Game Over, Buddy!

	The Game Screen
	Updating the GameScreen
	Rendering the GameScreen
	Finishing Touches

	The WorldRenderer Class

	To Optimize or Not to Optimize
	Summary

