
 

 

351 

351 

   Chapter 

2D Game Programming 
Tricks 
Chapter 7 demonstrated that OpenGL ES offers us quite a lot of features to exploit for 

2D graphics programming, such as easy rotation and scaling, and automatic stretching 

of our view frustum to the viewport. It also offers performance benefits over using the 

Canvas. 

Now it’s time to look at some of the more advanced topics of 2D game programming. 

Some of these concepts we used intuitively when we wrote Mr. Nom, including time-

based state updates and image atlases. A lot of what’s to come is indeed very intuitive 

as well, and chances are high that you’d have come up with the same solution sooner or 

later. But it doesn’t hurt to learn about these things explicitly. 

We will look at a handful of crucial concepts for 2D game programming. Some of them 

will be graphics related, and others will deal with how we represent and simulate our 

game world. All of these have one thing in common: they rely on a little linear algebra 

and trigonometry. Fear not, the level of math we need to write games like Super Mario 

Brothers is not exactly mind blowing. Let’s begin by reviewing some concepts of 2D 

linear algebra and trigonometry. 

Before We Begin 
As with the previous “theoretical” chapters, we are going to create a couple of examples 

to get a feel for what’s happening. For this chapter we’ll reuse what we developed in the 

last chapter, mainly the GLGame, GLGraphics, Texture, and Vertices classes, along with 

the rest of the framework classes.  

Our demo project consists of a starter called GameDev2DStarter, which presents a list of 

tests to run. We can reuse the code of the GLBasicsStarter and simply replace the class 

names of the tests. We also have to add each of the tests to the manifest in the form of 

<activity> elements.  
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Each of the tests is again an instance of the Game interface, and the actual test logic is 

implemented in the form of a Screen contained in the Game implementation of the test, as 

in the previous chapter. I will only present the relevant portions of the Screen to 

conserve some pages. The naming conventions are again�XXXTest and XXXScreen for the 

GLGame and Screen implementation of each test.  

With that out of our way, let’s talk about vectors. 

In the Beginning There Was the Vector 
In the last chapter I told you that vectors shouldn’t be mixed up with positions. This is 

not entirely true, as we can (and will) represent a position in some space via a vector. A 

vector can actually have many interpretations:  

� Position: We already used this in the previous chapters to encode the 

coordinates of our entities relative to the origin of the coordinate 

system.  

� Velocity and acceleration: These are physical quantities we’ll talk about 

in the next section. While we are used to thinking about velocity and 

acceleration as being a single value, they should actually be 

represented as 2D or 3D vectors. They encode not only the speed of 

an entity (e.g., a car driving at 100 kilometers per hour), but also the 

direction the entity is traveling in. Note that this kind of vector 

interpretation does not state that the vector is given relative to the 

origin. This makes sense since the velocity and direction of a car is 

independent of its position. Think of a car traveling northwest on a 

straight highway at 100 kilometers per hour. As long as its speed and 

direction don’t change, the velocity vector won’t change either.  

� Directions and distances: Directions are similar to velocities but lack 

physical quantities in general. We can use such a vector interpretation 

to encode states such as this entity is pointing southeast. Distances 

just tell us the how far away and in what direction a position is from 

another position. 

Figure 8–1 shows these interpretations in action. 

 

Figure 8–1. Bob, with position, velocity, direction, and distance expressed as vectors 
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Figure 8–1 is of course not exhaustive. Vectors can have a lot more interpretations. For 

our game development needs, however, these four basic interpretations suffice.  

One thing that’s left out from Figure 8–1 is what units the vector components have. We 

always have to make sure that those are sensible (e.g., Bob’s velocity could be in meters 

per second, so he travels 2 meters to the left and 3 meters up in 1 second). The same is 

true for positions and distances, which we could also express in meters, for example. 

The direction of Bob is a special case, though—it is unitless. This will come in handy if 

we want to specify the general direction of an object while keeping the direction’s 

physical features separate. We could do this for the velocity of Bob, storing the direction 

of his velocity as a direction vector and his speed as a single value. Single values are 

also known as scalars. For this, the direction vector must be of length 1, as we’ll discuss 

later on. 

Working with Vectors 
The power of vectors stems from the fact that we can easily manipulate and combine 

them. Before we can do that, though, we need to define how we represent vectors: 

v = (x,y) 

Now, that wasn’t a big surprise; we’ve done that a gazillion times already. Every vector 

has an x and a y component in our 2D space (yes, we’ll be staying in two dimensions in 

this chapter). We can also add two vectors: 

c = a + b = (a.x, a.y) + (b.x, b.y) = (a.x + b.x, a.y + b.y) 

All we need to do is add the components together to arrive at the final vector. Try it out 

with the vectors given in Figure 8–1. Say we take Bob’s position, p = (3,2), and add his 

velocity, v = (–2,3). We arrive at a new position, p' = (3 + –2, 2 + 3) = (1,5). Don’t get 

confused by the apostrophe behind the p here, it’s just there to denote that we have a 

new vector p. Of course, this little operation only makes sense when the units of the 

position and velocity fit together. In this case we assume the position is given in meters 

(m) and the velocity is given in meters per second (m/s), which fits perfectly fine.  

Of course, we can also subtract vectors: 

c = a – b = (a.x, a.y) – (b.x, b.y) = (a.x – b.x, a.y – b.y) 

Again, all we do is combine the components of the two vectors. Note, however, that the 

order in which we subtract one vector from the other is important. Take the rightmost 

image in Figure 8–1, for example. We have a green Bob at pg = (1,4) and a red Bob at pr 

= (6,1), where pg and pr stand for position green and red respectively.. When we take 

the distance vector from green Bob to red Bob, we calculate the following:  

d = pg – pr = (1, 4) – (6, 1) = (-5, 3) 

Now that is strange. That vector is actually pointing from red Bob to green Bob! To get 

the direction vector from green Bob to red Bob, we have to reverse the order of 

subtraction: 

d = pr – pg = (6, 1) – (1, 4) = (5, -3) 
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If we want to find the distance vector from a position a to a position b, we use the 

following general formula: 

d = b – a 

In other words, we always subtract the start position from the end position. That’s a little 

confusing at first, but if you think about it, it makes absolute sense. Try it out on some 

graph paper! 

We can also multiply a vector by a scalar (remember, a scalar is just a single value): 

a' = a * scalar = (a.x * scalar, a.y * scalar) 

We multiply each of the components of the vector by the scalar. This allows us to scale 

the length of a vector. Take the direction vector in Figure 8–1 as an example. It’s 

specified as d = (0,–1). If we multiply it with the scalar�s = 2, we effectively double its 

length: d � s = (0,–1 � 2) = (0,–2). We can of course make it smaller as well, by using a 

scalar less than 1—for example, d multiplied by s = 0.5 creates a new vector d' = (0,–

0.5).  

Speaking of length, we can also calculate the length of a vector (in the units it’s given in): 

|a| = sqrt(a.x*a.x + a.y*a.y) 

The |a| notation just tells us that this represents the length of the vector. If you didn’t 

sleep through your linear algebra class at school, you might recognize the formula for 

the vector length. It’s the Pythagorean theorem applied to our fancy 2D vector. The x 

and y components of the vector form two sides of a right triangle, and the third side is 

the length of the vector. Figure 8–2 illustrates this. 

 

Figure 8–2. Pythagoras would love vectors too 

The vector length is always positive or zero, given the properties of the square root. If 

we apply this to the distance vector between the red and green Bob, we can figure out 

that they are  
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|pr – pg| = sqrt(5*5 + -3*-3) = sqrt(25 + 9) = sqrt(34) ~= 5.83m 

apart from each other (if their positions are given in meters). Note that if we calculated 

|pg – pr|, we’d arrive at the same value, as the length is independent of the direction of 

the vector. This new knowledge also has another implication: when we multiply a vector 

with a scalar, its length changes accordingly. Given a vector d = (0,–1) with an original 

length of 1 unit, we can multiply it by 2.5 and arrive at a new vector with a length of 2.5 

units. 

We discussed that direction vectors usually don’t have any units associated with them. 

We can make them have a unit by multiplying them with a scalar—for example, we can 

multiply a direction vector d = (0,1) with a speed constant s = 100 m/s to get a velocity 

vector v = (0 � 100,1 � 100) = (0,100). It’s therefore always a good idea to let our 

direction vectors have a length of 1. Vectors with a length of 1 are called unit vectors. 

We can make any vector a unit vector by dividing each of its components by its length: 

d' = (d.x/|d|, d.y/|d|) 

Remember that |d| just means the length of the vector d. Let’s try it out. Say we want a 

direction vector that points exactly northeast: d = (1,1). It might seem that this vector is 

already unit length, as both components are 1, right? Wrong: 

|d| = sqrt(1*1 + 1*1) = sqrt(2) ~= 1.44 

We can easily fix that by making the vector a unit vector: 

d' = (d.x/|d|, d.y/|d|) = (1/|d|, 1/|d|) ~= (1/1.44, 1/1.44) = (0.69, 0.69) 

This is also called normalizing a vector, which just means that we make it have a length 

of 1. With this little trick we can create a unit-length direction vector out of a distance 

vector, for example. Of course, we have to watch out for zero-length vectors, as we’d 

have division by zero in that case! 

A Little Trigonometry 
Let’s turn to trigonometry for a minute. There are two essential functions in trigonometry: 

cosine and sine. Each takes a single argument: an angle. We are used to specifying 

angles in degrees (e.g., 45° or 360°). In most math libraries, trigonometry functions 

expect the angle in radians, though. We can easily convert between degrees and radians 

with the following equations: 

degreesToRadians(angleInDegrees) = angleInDegrees / 180 * pi 
radiansToDegrees(angle) = angleInRadians / pi * 180 

Here, pi is our beloved superconstant, with an approximate value of 3.14159265. pi 

radians equal 180 degrees, so that’s how the preceding functions come to be.  

So what do cosine and sine actually calculate given an angle? They calculate the x and y 

components of a unit-length vector relative to the origin. Figure 8–3 illustrates this. 
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Figure 8–3. Cosine and sine produce a unit vector with its endpoint lying on the unit circle 

Given an angle, we can therefore easily create a unit-length direction vector like this: 

v = (cos(angle), sin(angle)) 

We can go the other way around as well, and calculate the angle of a vector with 

respect to the x-axis: 

angle = atan2(v.y, v.x) 

The atan2 function is actually an artificial construct. It uses the arcus tangent function 

(which is the inverse of the tangent function, which is another fundamental function in 

trigonometry) to construct an angle in the range of –180 degrees to 180 degrees (or –pi to 

pi, if the angle is returned in radians). The internals are a little involved and do not matter 

all that much for our discussion. The arguments are the y and x components of our vector. 

Note that the vector does not have to be a unit vector for the atan2 function to work. Also 

note that the y component is most often given first, and then the x component—but this 

depends on the math library we use. This is a common source for errors.  

Let’s try a few examples. Given a vector v = (cos(97°),sin(97°)), the result of 

atan2(sin(97°),cos(97°)) is 97°. Great, that was easy. Using a vector v = (1,–1), we get 

atan2(–1,1) = –45°. So if our vector’s y component is negative, we’ll get a negative angle 

in the range 0° to –180°. We can fix this by adding 360° (or 2pi) if the output of atan2 is 

negative. In the preceding example, we’d then get 315°.  

The final operation we want to be able to apply to our vectors is rotating them by some 

angle. The derivation of the equations that follow are again a little involved. Luckily we 

can just use them as is without knowing about orthogonal base vectors (hint: that’s the 

key phrase to search for on the Web if you want to know what’s going on under the 

hood). Here’s the magical pseudocode: 

v.x' = cos(angle) * v.x - sin(angle) * v.y 
v.y' = sin(angle) * v.x + cos(angle) * v.y 

Woah, that was less complicated then expected. This will rotate any vector 

counterclockwise around the origin, no matter what interpretation we have of the vector.  
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Together with vector addition, subtraction, and multiplication by a scalar, we can 

actually implement all the OpenGL matrix operations ourselves. This is one part of the 

solution to further increase the performance of our BobTest in the last chapter. We’ll talk 

about this in one of the following sections. For now, let’s concentrate on what we 

discussed and transfer it to code.  

Implementing a Vector Class 
We want to create an easy-to-use vector class for 2D vectors. Let’s call it Vector2. It 

should have two members, for holding the x and y components of the vector. 

Additionally it should have a couple of nice methods that allow us to the following: 

� Add and subtract vectors 

� Multiply the vector components with a scalar 

� Measure the length of a vector 

� Normalize a vector 

� Calculate the angle between a vector and the x-axis 

� Rotate the vector 

Java lacks operator overloading, so we have to come up with a mechanism that makes 

working with the Vector2 class less cumbersome. Ideally we should have something like 

the following: 

Vector2 v = new Vector2(); 
v.add(10,5).mul(10).rotate(54); 

We can easily achieve this by letting each of the Vector2 methods return a reference to 

the vector itself. Of course, we also want to overload methods like Vector2.add() so 

that we can either pass in two floats or an instance of another Vector2. Listing 8–1 

shows our Vector2 class in its full glory. 

Listing 8–1. Vector2.java: Implementing Some Nice 2D Vector Functionality 

package com.badlogic.androidgames.framework.math; 
 
import android.util.FloatMath; 
 
public class Vector2 { 
    public static float TO_RADIANS = (1 / 180.0f) * (float) Math.PI; 
    public static float TO_DEGREES = (1 / (float) Math.PI) * 180; 
    public float x, y; 
 
    public Vector2() { 
    } 
 
    public Vector2(float x, float y) { 
        this.x = x; 
        this.y = y; 
    } 
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    public Vector2(Vector2 other) { 
        this.x = other.x; 
        this.y = other.y; 
    } 

We put that class in the package com.badlogic.androidgames.framework.math, where 

we’ll house any other math-related classes as well.  

We start off by defining two static constants, TO_RADIANS and TO_DEGREES. To convert an 

angle given in radians, we just need to multiply it by TO_DEGREES; to convert an angle 

given in degrees to radians, we multiply it by TO_RADIANS. You can double-check this by 

looking at the two previously defined equations that govern degree-to-radian 

conversion. With this little trick we can shave off a division to speed things up a little. 

Next we define the two members x and y that store the components of the vector and a 

couple of constructors—nothing too complex: 

    public Vector2 cpy() { 
        return new Vector2(x, y); 
    } 

We also have a cpy() method that will create a duplicate instance of the current vector 

and return it. This might come in handy if we want to manipulate a copy of a vector, 

preserving the value of the original vector. 

    public Vector2 set(float x, float y) { 
        this.x = x; 
        this.y = y; 
        return this; 
    } 
 
    public Vector2 set(Vector2 other) { 
        this.x = other.x; 
        this.y = other.y; 
        return this; 
    } 

The set() methods allow us to set the x and y components of a vector, based on either 

two float arguments or another vector. The methods return a reference to this vector, so 

we can chain operations as discussed previously. 

    public Vector2 add(float x, float y) { 
        this.x += x; 
        this.y += y; 
        return this; 
    } 
 
    public Vector2 add(Vector2 other) { 
        this.x += other.x; 
        this.y += other.y; 
        return this; 
    } 
 
    public Vector2 sub(float x, float y) { 
        this.x -= x; 
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        this.y -= y; 
        return this; 
    } 
 
    public Vector2 sub(Vector2 other) { 
        this.x -= other.x; 
        this.y -= other.y; 
        return this; 
    } 

The�add() and�sub() methods come in two flavors: in once case they work with two float 

arguments, and in the other case they take another Vector2 instance. All four methods 

return a reference to this vector so we can chain operations.  

    public Vector2 mul(float scalar) { 
        this.x *= scalar; 
        this.y *= scalar; 
        return this; 
    } 

The�mul() method just multiplies the x and y components of the vector with the given 

scalar value, and again returns a reference to the vector itself for chaining. 

    public float len() { 
        return FloatMath.sqrt(x * x + y * y); 
    } 

The len() method calculates the length of the vector exactly like we defined it 

previously. Note that we use the FastMath class instead of the usual Math class that Java 

SE provides. This is a special Android API class that works with floats instead of 

doubles, and is a little bit faster than the Math equivalent.  

    public Vector2 nor() { 
        float len = len(); 
        if (len != 0) { 
            this.x /= len; 
            this.y /= len; 
        } 
        return this; 
    } 

The nor() method normalizes the vector to unit length. We use the len() method 

internally to calculate the length first. If it is zero, we can bail out early and avoid a 

division by zero. Otherwise we divide each component of the vector by its length to 

arrive at a unit-length vector. For chaining we return the reference to this vector again. 

    public float angle() { 
        float angle = (float) Math.atan2(y, x) * TO_DEGREES; 
        if (angle < 0) 
            angle += 360; 
        return angle; 
    } 

The angle() method calculates the angle between the vector and the x-axis using the 

atan2() method, as discussed previously. We have to use the Math.atan2() method, as 
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the FastMath class doesn’t have that method. The returned angle is given in radians, so 

we convert it to degrees by multiplying it by TO_DEGREES. If the angle is less than zero, we 

add 360 degrees to it so we can return a value in the range 0 to 360 degrees. 

    public Vector2 rotate(float angle) { 
        float rad = angle * TO_RADIANS; 
        float cos = FloatMath.cos(rad); 
        float sin = FloatMath.sin(rad); 
 
        float newX = this.x * cos - this.y * sin; 
        float newY = this.x * sin + this.y * cos; 
 
        this.x = newX; 
        this.y = newY; 
 
        return this; 
    } 

The rotate() method simply rotates the vector around the origin by the give angle. 

Since the FastMath.cos() and FastMath.sin() methods expect the angle to be given in 

radians, we first convert from degrees to radians. Next we use the previously defined 

equations to calculate the new x and y components of the vector, and finally return the 

vector itself again for chaining.  

    public float dist(Vector2 other) { 
        float distX = this.x - other.x; 
        float distY = this.y - other.y; 
        return FloatMath.sqrt(distX * distX + distY * distY); 
    } 
 
    public float dist(float x, float y) { 
        float distX = this.x - x; 
        float distY = this.y - y; 
        return FloatMath.sqrt(distX * distX + distY * distY); 
    } 
} 

Finally we have two methods that calculate the distance between this and another 

vector.  

And that’s our shiny Vector2 class, which we’ll use to represent positions, velocities, 

distances, and directions in the code that follows. To get a feeling for our new class, 

let’s use it in a simple example.  

A Simple Usage Example 
Here’s my proposal for a simple test: 

� We’ll create a sort of cannon represented by a triangle that has a fixed 

position in our world. The center of the triangle will be at (2.4,0.5).  

� Each time we touch the screen, we want to rotate the triangle to face 

the touch point. 
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� Our view frustum will show us the region of our world between (0,0) 

and (4.8,3.2). We do not operate in pixel coordinates, but instead 

define our own coordinate system, were one unit equals one meter. 

Also, we’ll be working in landscape mode. 

There are a couple of things we need to think about. We already know how to define a 

triangle in model space—we can use a Vertices instance for this. Our cannon should 

point to the right at an angle of 0 degrees in its default orientation. Figure 8–4 shows the 

cannon triangle in model space. 

 

Figure 8–4. The cannon triangle in model space 

When we render that triangle, we simply use glTranslatef() to move it to its place in 

the world at (2.4,0.5).  

We also want to rotate the cannon so that its tip points in the direction of the point on 

the screen that we last touched. For this we need to figure out where the last touch 

event was touching our world. The GLGame.getInput().getTouchX() and getTouchY() 

methods will return the touch point in screen coordinates, with the origin in the top-left 

corner. We also said that the Input instance will not scale the events to a fixed 

coordinate system, as it did in Mr. Nom. Instead we will get the coordinates (479,319) 

when touching the bottom-right corner of the (landscape-oriented) screen on a Hero, 

and (799,479) on a Nexus One. We need to convert these touch coordinates to our 

world coordinates. We already did that in the touch handlers in Mr. Nom and the Canvas-

based game framework; the only difference this time is that our coordinate system 

extents are a little smaller and our world’s y-axis is pointing upward. Here’s the 

pseudocode showing how we can achieve the conversion in the general case, which is 

nearly the same as in the touch handlers of Chapter 5: 

worldX = (touchX / Graphics.getWidth()) * viewFrustmWidth 
worldY = (1 - touchY / Graphics.getHeight()) * viewFrustumHeight 

We normalize the touch coordinates to the range (0,1) by dividing them by the screen 

resolution. In the case of the y-coordinate, we subtract the normalized y-coordinate of 

the touch event from 1 to flip the y-axis. All that’s left is scaling the x- and y-coordinates 

by the view frustum’s width and height—in our case that’s 4.8 and 3.2. From worldX and 
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worldY we can then construct a Vector2 that stores the position of the touch point in our 

world’s coordinates. 

The last thing we need to do is calculate the angle to rotate the canon with. Let’s look at 

Figure 8–5, which shows our cannon and a touch point in world coordinates. 

 

Figure 8–5. Our cannon in its default state, pointing to the right (angle = 0°), a touch point, and the angle we 
need to rotate the cannon by. The rectangle is the area of the world that our view frustum will show on the 
screen: (0,0) to (4.8,3.2). 

All we need to do is create a distance vector from the cannon’s center at (2.4,0.5) to the 

touch point (and remember, we have to subtract the cannon’s center from the touch 

point, not the other way around). Once we have that distance vector we can calculate 

the angle with the Vector2.angle() method. This angle can then be used to rotate our 

model via glRotatef(). 

Let’s code that. Listing 8–2 shows the relevant portion of our CannonScreen, part of the 

CannonTest class. 

Listing 8–2. Excerpt from CannonTest.java; Touching the Screen Will Rotate the Cannon 

class CannonScreen extends Screen { 
    float FRUSTUM_WIDTH = 4.8f; 
    float FRUSTUM_HEIGHT = 3.2f; 
    GLGraphics glGraphics; 
    Vertices vertices; 
    Vector2 cannonPos = new Vector2(2.4f, 0.5f); 
    float cannonAngle = 0; 
    Vector2 touchPos = new Vector2(); 

We start off with two constants that define our frustum’s width and height, as discussed 

earlier. Next we have a GLGraphics instance, as well as a Vertices instance. We also 

store the cannon’s position in a Vector2 and its angle in a float. Finally we have another 

Vector2, which we’ll use to calculate the angle between a vector from the origin to the 

touch point and the x-axis.  

Why do we store the Vector2 instances as class members? We could instantiate them 

every time we need them, but that would make the garbage collector angry. In general 



CHAPTER 8:  2D Game Programming Tricks 363 

we should try to instantiate all the Vector2 instances once and reuse them as often as 

possible. 

    public CannonScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame) game).getGLGraphics(); 
        vertices = new Vertices(glGraphics, 3, 0, false, false); 
        vertices.setVertices(new float[] { -0.5f, -0.5f,  
                                            0.5f, 0.0f,  
                                           -0.5f, 0.5f }, 0, 6); 
    } 

In the constructor, we fetch the GLGraphics instance and create the triangle according to 

Figure 8–4.  

    @Override 
    public void update(float deltaTime) { 
        List<TouchEvent> touchEvents = game.getInput().getTouchEvents(); 
        game.getInput().getKeyEvents(); 
 
        int len = touchEvents.size(); 
        for (int i = 0; i < len; i++) { 
            TouchEvent event = touchEvents.get(i); 
 
            touchPos.x = (event.x / (float) glGraphics.getWidth()) 
                    * FRUSTUM_WIDTH; 
            touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) 
                    * FRUSTUM_HEIGHT; 
            cannonAngle = touchPos.sub(cannonPos).angle(); 
        } 
    } 

Next up is the update() method. We simply loop over all TouchEvents and calculate the 

angle for the cannon. This is done in a couple of steps. First we transform the screen 

coordinates of the touch event to the world coordinate system, as discussed earlier. We 

store the world coordinates of the touch event in the touchPoint member. We then 

subtract the position of the cannon from the touchPoint vector, which will result in the 

vector depicted in Figure 8–5. We then calculate the angle between this vector and the 

x-axis. And that’s all there is to it! 

    @Override 
    public void present(float deltaTime) { 
 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1); 
        gl.glMatrixMode(GL10.GL_MODELVIEW); 
        gl.glLoadIdentity(); 
 
        gl.glTranslatef(cannonPos.x, cannonPos.y, 0); 
        gl.glRotatef(cannonAngle, 0, 0, 1); 
        vertices.bind(); 
        vertices.draw(GL10.GL_TRIANGLES, 0, 3); 
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        vertices.unbind(); 
    } 

The present() method does the same boring things it did before. We set the viewport, 

clear the screen, set up the orthographic projection matrix using our frustum’s width and 

height, and tell OpenGL ES that all subsequent matrix operations will work on the 

model-view matrix. We also load an identity matrix to the model-view matrix to “clear” it. 

Next we multiply the (identity) model-view matrix with a translation matrix, which will 

move the vertices of our triangle from model space to world space. We also call 

glRotatef() with the angle we calculated in the update() method so that our triangle 

gets rotated in model space before it is translated. Remember, transformations are 

applied in reverse order—the last specified transform is applied first. Finally we bind the 

vertices of the triangle, render it, and unbind it. 

    @Override 
    public void pause() { 
 
    } 
 
    @Override 
    public void resume() { 
 
    } 
 
    @Override 
    public void dispose() { 
 
    } 
} 

Now we have a triangle that will follow our every touch. Figure 8–6 shows the output 

after touching the upper-left corner of the screen. 

 

Figure 8–6. Our triangle cannon reacting to a touch event in the upper-left corner 

Note that it doesn’t really matter whether we render a triangle at the cannon position or 

a rectangle texture mapped to an image of a cannon—OpenGL ES doesn’t really care. 

We also have all the matrix operations in the present() method again. The truth of the 
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matter is that it is easier to keep track of OpenGL ES states this way, and often we will 

use multiple view frustums in one present() call (e.g., one setting up a world in meters 

for rendering our world and another setting up a world in pixels for rendering UI 

elements). The impact on performance is not all that big, as described in the last 

chapter, so it’s OK to do it this way most of the time. Just remember that we could 

optimize this if the need arises. 

Vectors will be our best friends from now on. We’ll use them to specify virtually 

everything in our world. We will also do some very basic physics with vectors. What’s a 

cannon good for if it can’t shoot, right? 

A Little Physics in 2D 
In this section we’ll use a very simple and limited version of physics. Games are all 

about being good fakes. They cheat wherever possible to get rid of potentially heavy 

calculations. The behavior of objects in a game need not be 100 percent physically 

accurate, it just needs to be good enough to look believable. Sometimes we don’t event 

want physically accurate behavior (e.g., one set of objects should fall downward and 

another, crazier, set of objects should fall upward).  

Even a game like the original Super Mario Brothers uses at least some basic principles 

of Newtonian physics. These principles are really simple and easy to implement. We will 

only talk about the absolute minimum required to implement a very simple physics 

model for our game objects.  

Newton and Euler, Best Friends Forever 
We are mostly concerned with motion physics of so-called point masses, which refers to 

the change in position, velocity, and acceleration of an object over time. Point mass 

means that we approximate all our objects with an infinitesimally small point that has an 

associated mass. We do not deal with things like torque—the rotational velocity of an 

object around its center of mass—because that is a rather complex problem domain 

about which more than one complete book has been written. Let’s just look at these 

three properties of an object: 

� The position of an object is simply a vector in some space—in our 

case a 2D space. We represent it as a vector. Usually the position is 

given in meters. 

� The velocity of an object is its change in position per second. Velocity 

is given as a 2D velocity vector, which is a combination of the unit-

length direction vector the object is heading in and the speed that the 

object will move at, given in meters per seconds. Note that the speed 

just governs the length of the velocity vector; if we normalize the 

velocity vector by the speed, we get a nice unit-length direction vector. 
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� The acceleration of an object is its change in velocity per second. We 

can either represent this as a scalar that only affects the speed of the 

velocity (the length of the velocity vector), or as a 2D vector, so that we 

can have different acceleration in the x- and y-axes. Here we’ll choose 

the latter, as it allows us to use things such as ballistics more easily. 

Acceleration is usually given in meters per second per second (m/s�). 

No, that’s not a typo—we change the velocity by some amount given 

in meters per second, each second. 

When we know these properties of an object for a given point in time, we can integrate 

them to simulate the object’s path through the world over time. This may sound scary, 

but we already did this with Mr. Nom and our Bob test. In those cases we just didn’t use 

acceleration; we set the velocity to a fixed vector. Here’s how we can integrate the 

acceleration, velocity and position of an object in general: 

Vector2 position = new Vector2(); 
Vector2 velocity = new Vector2(); 
Vector2 acceleration = new Vector2(0, -10); 
while(simulationRuns) { 
   float deltaTime = getDeltaTime(); 
   velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime); 
   position.add(velocity.x * deltaTime, velocity.y * deltaTime); 
} 

This is called numerical Euler integration, and is the most intuitive of the integration 

methods used in games. We start off with a position at (0,0), a velocity given as (0,0), 

and an acceleration of (0,–10), which means that the velocity will increase by 1 meter per 

second on the y-axis. There will be no movement on the x-axis. Before we enter the 

integration loop, our object is standing still. Within the loop we first update the velocity 

based on the acceleration multiplied by the delta time, and then update the position 

based on the velocity times the delta time. That’s all there is to the big, scary word 

integration. 

NOTE: As usual, that’s not even half of the story. Euler integration is an “unstable” integration 
method and should be avoided when possible. Usually one would employ a variant of the so-
called verlet integration, which is just a bit more complex. For our purposes, the easier Euler 

integration is sufficient though. 

Force and Mass 
You might wonder where the acceleration comes from. That’s a good question with 

many answers. The acceleration of a car comes from its engine. The engine applies a 

force to the car that causes it to accelerate. But that’s not all. Our car will also 

accelerate toward the center of earth due to gravity. The only thing that keeps it from 

falling through the center of the earth is the ground it can’t pass through. The ground 

cancels out this gravitational force. The general idea is this: 

force = mass × acceleration 
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We can rearrange this to the following equation: 

acceleration = force / mass 

Force is given in the SI unit Newton (guess who came up with this). If we specify 

acceleration as a vector, then we also have to specify the force as a vector. A force can 

thus have a direction. For example, the gravitational force pulls downward in the 

direction (0,–1). The acceleration is also dependent on the mass of an object. The more 

mass an object has, the more force we need to apply to make it accelerate as fast as an 

object of less weight. This is a direct consequence of the preceding equations. 

For simple games we can, however, ignore the mass and force, and just work with 

velocity and acceleration directly. In the preceding pseudocode, we set the acceleration 

to (0,–10) m/s per second (again, not a typo), which is roughly the acceleration an object 

will experience when it is falling toward earth, no matter its mass (ignoring things like air 

resistance). It’s true, ask Galileo!  

Playing Around, Theoretically 
So let’s use our preceding example to play with an object falling toward earth. Let’s 

assume that we let the loop iterate ten times and that getDeltaTime() will always return 

0.1 seconds. We’ll get the following positions and velocities for each iteration: 

time=0.1, position=(0.0,-0.1), velocity=(0.0,-1.0) 
time=0.2, position=(0.0,-0.3), velocity=(0.0,-2.0) 
time=0.3, position=(0.0,-0.6), velocity=(0.0,-3.0) 
time=0.4, position=(0.0,-1.0), velocity=(0.0,-4.0) 
time=0.5, position=(0.0,-1.5), velocity=(0.0,-5.0) 
time=0.6, position=(0.0,-2.1), velocity=(0.0,-6.0) 
time=0.7, position=(0.0,-2.8), velocity=(0.0,-7.0) 
time=0.8, position=(0.0,-3.6), velocity=(0.0,-8.0) 
time=0.9, position=(0.0,-4.5), velocity=(0.0,-9.0) 
time=1.0, position=(0.0,-5.5), velocity=(0.0,-10.0) 

After 1 second, our object falls 5.5 meters and has a velocity of (0,–10) m/s, straight 

down to the core of the earth (until it hits the ground, of course).  

Our object will increase its downward speed without end, as we don’t factor in air 

resistance. (As I said before, we can easily cheat our own system.) We can just enforce a 

maximum velocity by checking the current velocity length, which equals the speed of 

our object.  

All-knowing Wikipedia tells us that a human in free fall can have a maximum, or terminal, 

velocity of roughly 125 miles per hour. Converting that to meters per second (125 � 1.6 

� 1000 / 3600), we get 55.5 m/s. To make our simulation more realistic, we can modify 

the loop as follows: 

while(simulationRuns) { 
   float deltaTime = getDeltaTime(); 
   if(velocity.len() < 55.5) 
      velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime); 
   position.add(velocity.x * deltaTime, velocity.y * deltaTime); 

} 
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As long as the speed of our object (the length of the velocity vector) is smaller than 55.5 

m/s, we increase the velocity by the acceleration. When we’ve reached the terminal 

velocity, we simply don’t increase it by the acceleration anymore. That simple capping of 

velocities is a trick used heavily in many games.  

We could add some wind to the equation by adding another acceleration in the x 

direction, say (–1,0) m/s�. For this we just need to add up the gravitational acceleration 

and the wind acceleration before we add it to the velocity: 

Vector2 gravity = new Vector2(0,-10); 
Vector2 wind = new Vector2(-1,0); 
while(simulationRuns) { 
   float deltaTime = getDeltaTime(); 
   acceleration.set(gravity).add(wind); 
   if(velocity.len() < 55.5) 
      velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime); 
   position.add(velocity.x * deltaTime, velocity.y * deltaTime); 
} 

We can also ignore acceleration altogether and let our objects have a fixed velocity. We 

did exactly this in the BobTest earlier. We changed the velocity of each Bob only if he hit 

an edge, and we did so instantly.  

Playing Around, Practically 
The possibilities, even with this simple model, are endless. Let’s extend our little 

CannonTest so we can actually shoot a cannonball. Here’s what we want to do: 

� As long as the user drags his finger over the screen, the canon will 

follow it. That’s how we’ll specify the angle at which we’ll shoot the 

ball. 

� As soon as we receive a touch-up event, we’ll fire a cannonball in the 

direction the cannon is pointing. The initial velocity of the cannonball 

will be a combination of the cannon’s direction and the speed the 

cannonball will have from the start. The speed is equal to the distance 

between the cannon and the touch point. The further away we touch, 

the faster the cannonball will fly. 

� The cannonball will fly for as long as there’s no new touch-up event. 

� We’ll double the size of our view frustum to (0,0) to (9.6, 6.4) so that 

we can see more of our world. Additionally we’ll place the cannon at 

(0,0). Note that all units of our world are now given in meters. 

� We’ll render the cannonball as a red rectangle of the size 0.2�0.2 

meters, or 20x20 centimeters. Close enough to a real cannonball, I 

guess. The pirates among you may choose a more realistic size, of 

course. 
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Initially the position of the cannonball will be (0,0)—the same as the cannon’s position. 

The velocity will also be (0,0). Since we apply gravity in each update, the cannonball will 

just fall straight downward.  

Once a touch-up event is received, we set the ball’s position back to (0,0) and its initial 

velocity to (Math.cos(cannonAngle),Math.sin(cannonAngle)). This will ensure that our 

cannonball flies in the direction the cannon is pointing. We also set the speed by simply 

multiplying the velocity by the distance between the touch point and the cannon. The 

closer the touch point to the cannon, the more slowly the cannonball will fly.  

Sounds easy enough, so let’s implement it. I copied over the code from the CannonTest 

to a new file, called CannonGravityTest.java. I renamed the classes contained in that file 

to CannonGravityTest and CannonGravityScreen. Listing 8–3 shows the 

CannonGravityScreen. 

Listing 8–3. Excerpt from CannonGravityTest 

class CannonGravityScreen extends Screen {         
    float FRUSTUM_WIDTH = 9.6f; 
    float FRUSTUM_HEIGHT = 6.4f; 
    GLGraphics glGraphics; 
    Vertices cannonVertices; 
    Vertices ballVertices; 
    Vector2 cannonPos = new Vector2(); 
    float cannonAngle = 0; 
    Vector2 touchPos = new Vector2(); 
    Vector2 ballPos = new Vector2(0,0); 
    Vector2 ballVelocity = new Vector2(0,0);             
    Vector2 gravity = new Vector2(0,-10); 

Not a lot has changed. We simply double the size of the view frustum, and reflect that by 

setting�FRUSTUM_WIDTH and�FRUSTUM_HEIGHT to 9.6 and 6.2, respectively. This means that 

we can see a rectangle of 9.2�6.2 meters of our world. Since we also want to draw the 

cannonball, I added another Vertices instance, called ballVertices, that will hold the 

four vertices and six indices of the rectangle of the cannonball. The new members 

ballPos and ballVelocity store the position and velocity of the cannonball, and the 

member gravity is the gravitational acceleration, which will stay at a constant (0,–10) 

m/s� over the lifetime of our program. 

    public CannonGravityScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame) game).getGLGraphics(); 
        cannonVertices = new Vertices(glGraphics, 3, 0, false, false); 
        cannonVertices.setVertices(new float[] { -0.5f, -0.5f,  
                                            0.5f, 0.0f,  
                                           -0.5f, 0.5f }, 0, 6); 
        ballVertices = new Vertices(glGraphics, 4, 6, false, false); 
        ballVertices.setVertices(new float[] { -0.1f, -0.1f, 
                                                0.1f, -0.1f, 
                                                0.1f,  0.1f, 
                                               -0.1f,  0.1f }, 0, 8); 
        ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);                                  
    } 
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In the constructor we simply create the additional Vertices instance for the rectangle of 

the cannonball. We again define it in model space with the vertices (–0.1,–0.1), (0.1,–0.1), 

(0.1,0.1), and (–0.1,0.1). We use indexed drawing, so we also specify six vertices in this 

case. 

    @Override 
    public void update(float deltaTime) { 
        List<TouchEvent> touchEvents = game.getInput().getTouchEvents(); 
        game.getInput().getKeyEvents(); 
 
        int len = touchEvents.size(); 
        for (int i = 0; i < len; i++) { 
            TouchEvent event = touchEvents.get(i); 
 
            touchPos.x = (event.x / (float) glGraphics.getWidth()) 
                    * FRUSTUM_WIDTH; 
            touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) 
                    * FRUSTUM_HEIGHT; 
            cannonAngle = touchPos.sub(cannonPos).angle();                        
             
            if(event.type == TouchEvent.TOUCH_UP) { 
                float radians = cannonAngle * Vector2.TO_RADIANS; 
                float ballSpeed = touchPos.len(); 
                ballPos.set(cannonPos); 
                ballVelocity.x = FloatMath.cos(radians) * ballSpeed; 
                ballVelocity.y = FloatMath.sin(radians) * ballSpeed; 
            } 
        } 
                                       
        ballVelocity.add(gravity.x * deltaTime, gravity.y * deltaTime); 
        ballPos.add(ballVelocity.x * deltaTime, ballVelocity.y * deltaTime); 
    } 

The update() method has also only changed slightly. The calculation of the touch point 

in world coordinates and the angle of the cannon are still the same. The first addition is 

the if statement inside the event-processing loop. In case we get a touch-up event, we 

prepare our cannonball to be shot. We first transform the cannon’s aiming angle to 

radians, as we’ll use FastMath.cos() and FastMath.sin() later on. Next we calculate the 

distance between the cannon and the touch point. This will be the speed of our 

cannonball. We then set the ball’s position to the cannon’s position. Finally we calculate 

the initial velocity of the cannonball. We use sine and cosine, as discussed in the 

previous section, to construct a direction vector from the cannon’s angle. We multiply 

this direction vector by the cannonball’s speed to arrive at our final cannonball velocity. 

This is interesting, as the cannonball will have this velocity from the start. In the real 

world, the cannonball would of course accelerate from 0 m/s to whatever it can reach 

given air resistance, gravity, and the force applied to it by the cannon. We can cheat 

here, though, as that acceleration would happen in a very tiny time window (a couple 

hundred milliseconds). The last thing we do in the update() method is update the 

velocity of the cannonball, and based on that, adjust its position. 
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@Override 
    public void present(float deltaTime) { 
 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1); 
        gl.glMatrixMode(GL10.GL_MODELVIEW); 
         
        gl.glLoadIdentity(); 
        gl.glTranslatef(cannonPos.x, cannonPos.y, 0); 
        gl.glRotatef(cannonAngle, 0, 0, 1); 
        gl.glColor4f(1,1,1,1); 
        cannonVertices.bind(); 
        cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3); 
        cannonVertices.unbind(); 
         
        gl.glLoadIdentity(); 
        gl.glTranslatef(ballPos.x, ballPos.y, 0); 
        gl.glColor4f(1,0,0,1); 
        ballVertices.bind(); 
        ballVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
        ballVertices.unbind(); 
    } 

In the present() method, we simply add the rendering of the cannonball rectangle. We 

do this after rendering the cannon’s triangle, which means that we have to “clean” the 

model-view matrix before we can render the rectangle. We do this with 

glLoadIdentity()��and then use glTranslatef() to convert the cannonball’s rectangle 

from model space to world space at the ball’s current position. 

    @Override 
    public void pause() { 
 
    } 
 
    @Override 
    public void resume() { 
 
    } 
 
    @Override 
    public void dispose() { 
 
    }         
} 

If you run the example and touch the screen a couple of times, you’ll get a pretty good 

feel for how the cannonball will fly. Figure 8–7 shows the output (which is not all that 

impressive, since it is a still image). 
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Figure 8–7. A triangle cannon that shoots red rectangles. Impressive! 

That’s enough physics for our purposes. With this simple model, we can simulate much 

more than cannonballs. Super Mario, for example, could be simulated much in the same 

way. If you have ever played Super Mario Brothers, then you will notice that Mario takes 

a little bit of time before he reaches his maximum velocity when running. This can be 

implemented with a very fast acceleration and velocity capping, as in the preceding 

pseudocode. Jumping can be implemented in much the same way as we shot the 

cannonball. Mario’s current velocity would be adjusted by an initial jump velocity on the 

y-axis (remember that we can add velocities like any other vectors). If there were no 

ground beneath his feet, we would apply gravitational acceleration so that he would 

actually fall back to the ground. The velocity in the x direction is not influenced by what’s 

happening on the y-axis. We could still press left and right to change the velocity on the 

x-axis. The beauty of this simple model is that it allows us to implement very complex 

behavior with very little code. We’ll actually use a similar this type of physics when we 

write our next game. 

Just shooting a cannonball is not a lot of fun. We want to be able to hit objects with the 

cannonball. For this we need something called collision detection, which we’ll 

investigate in the next section. 

Collision Detection and Object Representation in 2D 
Once we have moving objects in our world, we want them to interact as well. One such 

mode of interaction is simple collision detection. Two objects are said to be colliding 

when they overlap in some way. We already did a little bit of collision detection in Mr. 

Nom when we checked whether Mr. Nom bit himself or ate an ink stain. 

Collision detection is accompanied by collision response: once we determine that two 

objects have collided, we need to respond to that collision by adjusting the position 

and/or movement of our objects in a sensible manner. For example, when Super Mario 

jumps on a Goomba, the Goomba goes to Goomba heaven and Mario performs another 

little jump. A more elaborate example is the collision and response of two or more 
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billiard balls. We won’t go into this kind of collision response, as it is overkill for our 

purposes. Our collision responses will usually only consist of changing the state of an 

object (e.g., letting an object explode or die, collecting a coin and setting the score, 

etc.). This type of response is game dependent, so we won’t talk about it in this section.  

So how do we figure out whether two objects have collided? First we need to think 

about when to check for collisions. If our objects follow some sort of simple physics 

model, as discussed in the last section, we could check for collisions after we move all 

our objects for the current frame and time step.  

Bounding Shapes 
Once we have the final positions for our objects, we can perform the collision tests, 

which boil down to testing for overlap. But what overlaps? Each of our objects needs to 

have some mathematically defined form or shape that bounds it. The correct term in this 

case is bounding shape. Figure 8–8 shows a couple of choices we have for bounding 

shapes.  

 

Figure 8–8. Various bounding shapes around Bob 

The properties of the three types of bounding shapes in Figure 8–8 are as follows: 

� Triangle mesh: This bounds the object as tightly as possible by 

approximating its silhouette with a couple of triangles. It requires the 

most storage space, and it’s hard to construct and expensive to test 

against. It gives the most precise results, though. We won’t 

necessarily use the same triangles for rendering, but instead just store 

them for collision detection. The mesh can be stored as a list of 

vertices, where each subsequent three vertices form a triangle. To 

conserve memory, we could also use indexed vertex lists.  
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� Axis-aligned bounding box: This bounds the object via a rectangle that 

is axis aligned, which means that the bottom and top edges are 

always aligned with the x-axis, and the left and right edges are aligned 

with the y-axis. This is also fast to test against, but less precise than a 

triangle mesh. A bounding box is usually stored in the form of the 

position of its lower-left corner plus its width and height. (In the case of 

2D, these are also referred to as bounding rectangles). 

� Bounding circle: This bounds the object with the smallest circle that 

can contain the object. It’s very fast to test against, but it is the least 

precise bounding shape of them all. The circle is usually stored in the 

form of its center position and its radius. 

Every object in our game gets a bounding shape that encloses it, in addition to its 

position, scale, and orientation. Of course, we need to adjust the bounding shape’s 

position, scale, and orientation according to the object’s position, scale, and orientation 

when we move the object, say, in a physics integration step.  

Adjusting for position changes is easy: we simple move the bounding shape 

accordingly. In the case of the triangle mesh we just move each vertex, in the case of 

the bounding rectangle we move the lower-left corner, and in the case of the bounding 

circle we just move the center.  

Scaling a bound shape is a little harder. We need to define the point around which we 

scale. Usually this is the object’s position, which is often given as the center of the 

object. If we use this convention, then scaling is easy as well. For the triangle mesh we 

scale the coordinates of each vertex; for the bounding rectangle we scale its width, 

height, and lower-left corner position; and for the bounding circle we scale its radius (the 

circle center is equal to the object’s center).  

Rotating a bounding shape is also dependent on the definition of a point around which 

to rotate. Using the convention just mentioned (where the object center is the rotation 

point), rotation becomes easy as well. In the case of the triangle mesh, we simple rotate 

all vertices around the object’s center. In the case of the bounding circle, we do not 

have to do anything, as the radius will stay the same no matter how we rotate our 

object. The bounding rectangle is a little bit more involved. We need to construct all four 

corner points, rotate them, and then find the axis-aligned bounding rectangle that 

encloses those four points. Figure 8–9 shows the three bounding shapes after rotation.  

 

Figure 8–9. Rotated bounding shapes with the center of the object as the rotation point  
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While rotating a triangle mesh or a bounding circle is rather easy, the results for the axis-

aligned bounding box are not all that satisfying. Notice that the bounding box of the 

original object fits tighter than its rotated version. This leads us to the question of how 

we got our bounding shapes for Bob in the first place. 

Constructing Bounding Shapes 
In this example, I simply constructed the bounding shapes by hand based on Bob’s 

image. But Bob’s image is given in pixels, and our world might operate in, say, meters. 

The solutions to this problem involve normalization and model space. Imagine the two 

triangles we’d use for Bob in model space when we’d render him with OpenGL. The 

rectangle is centered at the origin in model space and has the same aspect ratio 

(width/height) as Bob’s texture image (e.g., 32�32 pixels in the texture map as 

compared to 2�2 meters in model space). Now we can apply Bob’s texture and figure 

out where in model space the points of the bounding shape are. Figure 8–10 shows how 

we can construct the bounding shapes around Bob in model space. 

 

Figure 8–10. Bounding shapes around Bob in model space 

This process may seem a little cumbersome, but the steps involved are not all that hard. 

The first thing we have to remember is how texture mapping works. We specify the 

texture coordinates for each vertex of Bob’s rectangle (which is composed of two 

triangles) in texture space. The upper-left corner of the texture image in texture space is 

at (0,0), and the lower-left corner is at (1,1), no matter the actual width and height of the 

image in pixels. To convert from the pixel space of our image to texture space, we can 

thus use this simple transformation: 

u = x / imageWidth 
v = y / imageHeight 

where u and v are the texture coordinates of the pixel given by x and y in image space. 

The imageWidth and imageHeight are set to the image’s dimensions in pixels (32�32 in 

Bob’s case). Figure 8–11 shows how the center of Bob’s image maps to texture space. 



CHAPTER 8:  2D Game Programming Tricks 376 

 

Figure 8–11. Mapping a pixel from image space to texture space 

The texture is applied to a rectangle that we define in model space. In Figure 8–10 we 

have an example with the upper-left corner at (–1,1) and the lower-right corner at (1,–1). 

We use meters as the units in our world, so the rectangle has a width and height of 2 

meters each. Additionally we know that the upper-left corner has the texture coordinates 

(0,0) and the lower-right corner has the texture coordinates (1,1), so we map the 

complete texture to Bob. This won’t always be the case, as you’ll see in one of the next 

sections.  

So let’s come up with a generic way to map from texture to model space. We can make 

our lives a little easier by constraining our mapping to only axis-aligned rectangles in 

texture and model space. This means we assume that an axis-aligned rectangular region 

in texture space is mapped to an axis-aligned rectangle in model space. For the 

transformation we need to know the width and height of the rectangle in model space 

and the width and height of the rectangle in texture space. In our Bob example we have 

a 2�2 rectangle in model space and a 1�1 rectangle in texture space (since we map the 

complete texture to the rectangle). We also need to know the coordinates of the upper-

left corner of each rectangle in its respective space. For the model space rectangle, 

that’s (–1,1), and for the texture space rectangle it’s (0,0) (again, since we map the 

complete texture, not just a portion). With this information and the u- and v-coordinates 

of the pixel we want to map to model space, we can do the transformation with these 

two equations: 

mx = (u – minU) / (tWidth) × mWidth + minX 
my = (1 – ((v – minV) / (tHeight)) × mHeight - minY 

The variables u and v are the coordinates we calculated in the last transformation from 

pixel to texture space. The variables minU and minV are the coordinates of the top-left 

corner of the region we map from texture space. The variables tWidth and tHeight are 

the width and height of our texture space region. The variables mWidth and mHeight are 

the width and height of our model space rectangle. The variables minX and minY are—

you guessed it—the coordinates of the top-left corner of the rectangle in model space. 

Finally we have mx and my, which are the transformed coordinates in model space.  

These equations take the u- and v-coordinates, map them to the range 0 to 1, and then 

scale and position them in model space. Figure 8–12 shows a texel in texture space and 
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how it is mapped to a rectangle in model space. On the sides you see tWidth and 

tHeight, and mWidth and mHeight, respectively. The top-left corner of each rectangle 

corresponds to (minU, minV) in texture space and (minX, minY) in model space.  

 

Figure 8–12. Mapping from texture space to model space 

Substituting the first two equations we can directly go from pixel space to model space: 

mx = ((x/imageWidth) – minU) / (tWidth) * mWidth + minX 
my = (1 – (((y/imageHeight) – minV) / (tHeight)) * mHeight – minY 

We can use these two equations to calculate the bounding shapes of our objects based 

on the image we map to their rectangles via texture mapping. In the case of the triangle 

mesh, this can get a little tedious; the bounding rectangle and bounding circle cases are 

a lot easier. Usually we don’t go this hard route, but instead try to create our textures so 

that at least the bounding rectangles have the same aspect ratio as the rectangle we 

render for the object via OpenGL ES. This way we can construct the bounding rectangle 

from the object’s image dimension directly. The same is true for the bounding circle. I 

just wanted to show you how you can construct an arbitrary bounding shape given an 

image that gets mapped to a rectangle in model space.  

You should now know how to construct a nicely fitting bounding shape for your 2D 

objects. But remember, we define those bounding shape sizes manually, when we 

create our graphical assets and define the units and sizes of our objects in the game 

world. We then use these sizes in our code to collide objects with each other. 

Game Object Attributes 
Bob just got fatter. In addition to the mesh we use for rendering (the rectangle mapping 

to Bob’s image texture), we now have a second data structure holding his bounds in 

some form. It is crucial to realize that while we model the bounds after the mapped 

version of Bob in model space, the actual bounds are independent of the texture region 

we map Bob’s rectangle to. Of course, we try to have as close a match to the outline of 

Bob’s image in the texture as possible when we create the bounding shape. It does not 

matter, however, whether the texture image is 32�32 or 128�128 pixels. An object in our 

world thus has three attribute groups: 
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� Its position, orientation, scale, velocity, and acceleration. With these 

we can apply our physics model from the previous section. Of course, 

some objects might be static, and thus will only have position, 

orientation, and scale. Often we can even leave out orientation and 

scale. The position of the object usually coincides with the origin in 

model space, as in Figure 8–10. This makes some calculations easier.  

� Its bounding shape (usually constructed in model space around the 

object’s center), which coincides with its position and is aligned with 

the object’s orientation and scale, as shown in Figure 8–10. This gives 

our object a boundary and defines its size in the world. We can make 

this shape as complex as we want. We could, for example, make it a 

composite of several bounding shapes. 

� Its graphical representation. As shown in Figure 8–12, we still use two 

triangles to form a rectangle for Bob and texture-map his image onto 

the rectangle. The rectangle is defined in model space but does not 

necessarily equal the bounding shape, as shown in Figure 8–10. The 

graphical rectangle of Bob that we send to OpenGL ES is slightly 

larger than Bob’s bounding rectangle.  

This separation of attributes allows us to apply our Model-View-Controller (MVC) pattern 

again.  

� On the model side we simply have Bob’s physical attributes, 

composed of his position, scale, rotation, velocity, acceleration, and 

bounding shape. Bob’s position, scale, and orientation govern where 

his bounding shape is located in world space.  

� The view just takes Bob’s graphical representation (e.g., the two 

texture-mapped triangles defined in model space) and renders them at 

their world space position according to Bob’s position, rotation, and 

scale. Here we can use the OpenGL ES matrix operations as we did 

previously.  

� The controller is responsible for updating Bob’s physical attributes 

according to user input (e.g., a left button press could move him to the 

left), and according to physical forces, such as gravitational 

acceleration (like we applied to the cannonball in the previous section). 

Of course, there’s some correspondence between Bob’s bounding shape and his 

graphical representation in the texture, as we base the bounding shape on that graphical 

representation. Our MVC pattern is thus not entirely clean, but we can live with that.  

Broad-Phase and Narrow-Phase Collision Detection 
We still don’t know how to check for collisions between our objects and their bounding 

shapes. There are two phases of collision detection: 
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Broad phase: In this phase we try to figure out which objects can potentially collide. 

Imagine having 100 objects that could each collide with each other. We’d need to 

perform 100 � 100 / 2 overlap tests if we chose to naively test each object against 

each other object. This naïve overlap testing approach is of O(n�) asymptotic 

complexity, meaning it would take n� steps to complete (it actually finished in half 

that many steps, but the asymptotic complexity leaves out any constants). In a 

good, non-brute-force broad phase, we try to figure out which pairs of objects are 

actually in danger of colliding. Other pairs (e.g., two objects that are too far apart for 

a collision to happen) will not be checked. We can reduce the computational load 

this way, as narrow-phase testing is usually pretty expensive. 

Narrow phase: Once we know which pairs of objects can potentially collide, we test 

whether they really collide or not by doing an overlap test of their bounding shapes.  

Let’s focus on the narrow phase first and leave the broad phase for later.  

Narrow Phase 
Once we are done with the broad phase, we have to check whether the bounding 

shapes of the potentially colliding objects overlap. I mentioned earlier that we have a 

couple of options for bounding shapes. Triangle meshes are the most computationally 

expensive and cumbersome to create. It turns out that we can get away with bounding 

rectangles and bounding circles in most 2D games, so that’s what we’ll concentrate on 

here.  

Circle Collision 
Bounding circles are the cheapest way to check whether two objects collide. Let’s 

define a simple Circle class. Listing 8–4 shows the code. 

Listing 8–4. Circle.java, a Simple Circle Class 

package com.badlogic.androidgames.framework.math; 
 
public class Circle { 
    public final Vector2 center = new Vector2(); 
    public float radius; 
 
    public Circle(float x, float y, float radius) { 
        this.center.set(x,y); 
        this.radius = radius; 
    } 
} 

We just store the center as a Vector2 and the radius as a simple float. How can we 

check whether two circles overlap? Look at Figure 8–13. 
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Figure 8–13.Two circles overlapping (left), and two circles not overlapping (right) 

It’s really simple and computationally efficient. All we need to do is figure out the 

distance between the two centers. If the distance is greater then the sum of the two 

radii, then we know the two circles do not overlap. In code this will look as follows: 

public boolean overlapCircles(Circle c1, Circle c2) { 
    float distance = c1.center.dist(c2.center); 
    return distance <= c1.radius + c2.radius; 
} 

We first measure the distance between the two centers and then check if the distance is 

smaller or equal to the sum of the radii. 

We have to take a square root in the Vector2.dist()�method. That’s unfortunate, as 

taking the square root is a costly operation. Can we make this faster? Yes we can—all 

we need to do is reformulate our condition: 

sqrt(dist.x × dist.x + dist.y × dist.y) <= radius1 + radius2  

We can get rid of the square root by exponentiating both sides of the inequality, as 

follows: 

dist.x × dist.x + dist.y × dist.y <= (radius1 + radius2) × (radius1 + radius2)  

We trade the square root for an additional addition and multiplication on the right side. 

That’s a lot better. Let’s create a�Vector2.distSquared() function that will return the 

squared distance between two vectors: 

public float distSquared(Vector2 other) { 
    float distX = this.x - other.x; 
    float distY = this.y - other.y;         
    return distX*distX + distY*distY; 
}        

The overlapCircles()�method then becomes the following: 

public boolean overlapCircles(Circle c1, Circle c2) { 
    float distance = c1.center.distSquared(c2.center); 
    float radiusSum = c1.radius + c2.radius; 
    return distance <= radiusSum * radiusSum; 
} 
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Rectangle Collision 
Let’s move on to rectangles. First we need a class that can represent a rectangle. We 

previously said we want a rectangle to be defined by its lower-left corner position plus 

its width and height. We do just that in Listing 8–5. 

Listing 8–5. Rectangle.java, a Rectangle Class 

package com.badlogic.androidgames.framework.math; 
 
public class Rectangle { 
    public final Vector2 lowerLeft; 
    public float width, height; 
     
    public Rectangle(float x, float y, float width, float height) { 
        this.lowerLeft = new Vector2(x,y); 
        this.width = width; 
        this.height = height; 
    } 
} 

We store the lower-left corner’s position in a Vector2 and the width and height in two 

floats. How can we check whether two rectangles overlap? Figure 8–14 should give you 

a hint. 

 

Figure 8–14. Lots of overlapping and nonoverlapping rectangles 

The first two cases of partial overlap and nonoverlap are easy. The last one is a surprise. 

A rectangle can of course be completely contained in another rectangle. That can 

happen in the case of circles as well. However, our circle overlap test will return the 

correct result if one circle is contained in the other circle.  

Checking for overlap in the rectangle case looks complex at first. However, we can 

create a very simple test if we invoke a little logic. Here’s the simplest method to check 

for overlap between two rectangles: 

public boolean overlapRectangles(Rectangle r1, Rectangle r2) { 
    if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width && 
       r1.lowerLeft.x + r1.width > r2.lowerLeft.x && 
       r1.lowerLeft.y < r2.lowerLeft.y + r2.height && 
       r1.lowerLeft.y + r1.height > r2.lowerLeft.y) 
        return true; 
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    else 
        return false; 
} 

This looks a little bit confusing at first sight, so let’s go over each condition. The first 

condition states that the left edge of the first rectangle must be to the left of the right 

edge of the second rectangle. The next condition states that the right edge of the first 

rectangle must be to the right of the left edge of the second rectangle. The other two 

conditions state the same for the top and bottom edges of the rectangles. If all these 

conditions are met, then the two rectangles overlap. Double-check this with Figure 8–14. 

It also covers the containment case. 

Circle/Rectangle Collision 
Can we check for overlap between a circle and a rectangle? Yes we can. However, it is 

a little more involved. Take a look at Figure 8–15. 

 

Figure 8–15. Overlap-testing a circle and a rectangle by finding the closest point on/in the rectangle to the circle 

The overall strategy for testing for overlap between a circle and a rectangle goes like 

this: 

� Find the closest x-coordinate on or in the rectangle to the circle’s 

center. This coordinate can either be a point on the left or right edge of 

the rectangle, unless the circle center is contained in the rectangle, in 

which case the closest x-coordinate is the circle center’s x-coordinate. 

� Find the closest y-coordinate on or in the rectangle to the circle’s 

center. This coordinate can either be a point on the top or bottom 

edge of the rectangle, unless the circle center is contained in the 

rectangle, in which case the closest y-coordinate is the circle center’s 

y-coordinate. 

� If the point composed of the closest x- and y-coordinates is within the 

circle, the circle and rectangle overlap. 

While not depicted in Figure 8–15, this method also works for circles that 

completely contain the rectangle. Let’s code it up: 

public boolean overlapCircleRectangle(Circle c, Rectangle r) { 
    float closestX = c.center.x; 
    float closestY = c.center.y; 
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    if(c.center.x < r.lowerLeft.x) { 
        closestX = r.lowerLeft.x;  
    }  
    else if(c.center.x > r.lowerLeft.x + r.width) { 
        closestX = r.lowerLeft.x + r.width; 
    } 
       
    if(c.center.y < r.lowerLeft.y) { 
        closestY = r.lowerLeft.y; 
    }  
    else if(c.center.y > r.lowerLeft.y + r.height) { 
        closestY = r.lowerLeft.y + r.height; 
    } 
     
    return c.center.distSquared(closestX, closestY) < c.radius * c.radius;            
} 

The description looked a lot scarier than the implementation. We determine the closest 

point on the rectangle to the circle, and then simply check whether the point lies inside 

the circle. If that’s the case, there is an overlap between the circle and the rectangle.  

Note that I added an overloaded distSquared() method to Vector2 that takes two float 

arguments instead of another Vector2. I did the same for the dist()�function. 

Putting It All Together 
Checking whether a point lies inside a circle or rectangle can be useful too. Let’s code 

up two more methods and put them into a class called OverlapTester, together with the 

other three methods we just defined. Listing 8–6 shows the code. 

Listing 8–6. OverlapTester.java; Testing Overlap Between Circles, Rectangles, and Points 

package com.badlogic.androidgames.framework.math; 
 
public class OverlapTester { 
    public static boolean overlapCircles(Circle c1, Circle c2) { 
        float distance = c1.center.distSquared(c2.center); 
        float radiusSum = c1.radius + c2.radius; 
        return distance <= radiusSum * radiusSum; 
    } 
     
    public static boolean overlapRectangles(Rectangle r1, Rectangle r2) { 
        if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width && 
           r1.lowerLeft.x + r1.width > r2.lowerLeft.x && 
           r1.lowerLeft.y < r2.lowerLeft.y + r2.height && 
           r1.lowerLeft.y + r1.height > r2.lowerLeft.y) 
            return true; 
        else 
            return false; 
    } 
     
    public static boolean overlapCircleRectangle(Circle c, Rectangle r) { 
        float closestX = c.center.x; 
        float closestY = c.center.y; 
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        if(c.center.x < r.lowerLeft.x) { 
            closestX = r.lowerLeft.x;  
        }  
        else if(c.center.x > r.lowerLeft.x + r.width) { 
            closestX = r.lowerLeft.x + r.width; 
        } 
           
        if(c.center.y < r.lowerLeft.y) { 
            closestY = r.lowerLeft.y; 
        }  
        else if(c.center.y > r.lowerLeft.y + r.height) { 
            closestY = r.lowerLeft.y + r.height; 
        } 
         
        return c.center.distSquared(closestX, closestY) < c.radius * c.radius;            
    } 
     
    public static boolean pointInCircle(Circle c, Vector2 p) { 
        return c.center.distSquared(p) < c.radius * c.radius; 
    } 
     
    public static boolean pointInCircle(Circle c, float x, float y) { 
        return c.center.distSquared(x, y) < c.radius * c.radius; 
    } 
     
    public static boolean pointInRectangle(Rectangle r, Vector2 p) { 
        return r.lowerLeft.x <= p.x && r.lowerLeft.x + r.width >= p.x && 
               r.lowerLeft.y <= p.y && r.lowerLeft.y + r.height >= p.y; 
    } 
     
    public static boolean pointInRectangle(Rectangle r, float x, float y) { 
        return r.lowerLeft.x <= x && r.lowerLeft.x + r.width >= x && 
               r.lowerLeft.y <= y && r.lowerLeft.y + r.height >= y; 
    } 
} 

Sweet, now we have a fully functional 2D math library we can use for all our little physics 

models and collision detection. Let’s talk about the broad phase in a little more detail 

now. 

Broad Phase 
So how can we achieve the magic that the broad phase promises us? Look at Figure 8–16, 

which shows a typical Super Mario Brothers scene. 
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Figure 8–16. Super Mario and his enemies. Boxes around objects are their bounding rectangles; the big boxes 
make up a grid imposed on the world. 

Can you already guess what we could do to eliminate some checks? The blue grid in 

Figure 8–16 represents cells we partition our world with. Each cell has the exact same 

size, and the whole world is covered in cells. Mario is currently in two of those cells, and 

the other objects Mario could potentially collide with are in different cells. We thus don’t 

need to check for any collisions, as Mario is not in the same cells as any of the other 

objects in the scene. All we need to do is the following: 

� Update all objects in the world based on our physics and controller 

step. 

� Update the position of each bounding shape of each object according 

to the object’s position. We can of course also include the orientation 

and scale as well here.  

� Figure out which cell or cells each object is contained in based on its 

bounding shape, and add it to the list of objects contained in those 

cells.  

� Check for collisions, but only between object pairs that can collide (e.g., 

Goombas don’t collide with other Goombas) and are in the same cell.  

This is called a spatial hash grid broad phase, and it is very easy to implement. The first 

thing we have to define is the size of each cell. This is highly dependent on the scale and 

units we use for our game’s world.  
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An Elaborate Example 
Let’s develop the spatial hash grid broad phase based on our last cannonball example. 

We will completely rework it to incorporate everything covered in this section so far. In 

addition to the cannon and the ball, we also want to have targets to fire at. We’ll make 

our lives easy and just use squares of size 0.5�0.5 meters as targets. These squares 

don’t move; they’re static. Our cannon is static as well. The only thing that moves is the 

cannonball itself. We can generally categorize objects in our game world as static 

objects or dynamic objects. So let’s devise a class that can represent such objects.  

GameObject, DynamicGameObject, and Cannon 
Let’s start with the static case, or base case, in Listing 8–7. 

Listing 8–7. GameObject.java, a Static Game Object with a Position and Bounds 

package com.badlogic.androidgames.gamedev2d; 
 
import com.badlogic.androidgames.framework.math.Rectangle; 
import com.badlogic.androidgames.framework.math.Vector2; 
 
public class GameObject { 
    public final Vector2 position; 
    public final Rectangle bounds; 
     
    public GameObject(float x, float y, float width, float height) { 
        this.position = new Vector2(x,y); 
        this.bounds = new Rectangle(x-width/2, y-height/2, width, height); 
    } 
} 

Every object in our game has a position that coincides with its center. Additionally we let 

each object have a single bounding shape—a rectangle in this case. In our constructor 

we set the position and bounding rectangle (which is centered around the center of the 

object) according to the parameters.  

For dynamic objects, that is, objects which move, we also need to keep track of their 

velocity and acceleration (if they’re actually accelerated by themselves—e.g., via an 

engine or thruster). Listing 8–8 shows the code for the DynamicGameObject class. 

Listing 8–8. DynamicGameObject.java: Extending the GameObject with a Velocity and Acceleration Vector 

package com.badlogic.androidgames.gamedev2d; 
 
import com.badlogic.androidgames.framework.math.Vector2; 
 
public class DynamicGameObject extends GameObject { 
    public final Vector2 velocity; 
    public final Vector2 accel; 
     
    public DynamicGameObject(float x, float y, float width, float height) { 
        super(x, y, width, height); 
        velocity = new Vector2(); 
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        accel = new Vector2(); 
    } 
} 

We just extend the GameObject class to inherit the position and bounds members. 

Additionally we create vectors for the velocity and acceleration. A new dynamic game 

object will have zero velocity and acceleration after it has been initialized. 

In our cannonball example we have the cannon, the cannonball, and the targets. The 

cannonball is a DynamicGameObject, as it moves according to our simple physics model. 

The targets are static and can be implemented by using the standard GameObject. The 

cannon itself can also be implemented via the GameObject class. We will derrive a Cannon 

class from the GameObject class and add a field storing the cannon’s current angle. 

Listing 8–9 shows the code. 

Listing 8–9. Cannon.java: Extending the GameObject with an Angle 

package com.badlogic.androidgames.gamedev2d; 
 
public class Cannon extends GameObject { 
    public float angle; 
     
    public Cannon(float x, float y, float width, float height) { 
        super(x, y, width, height); 
        angle = 0; 
    } 
} 

That nicely encapsulates all the data needed to represent an object in our cannon world. 

Every time we need a special kind of object, like the cannon, we can simply derive from 

GameObject if it is a static object, or DynamicGameObject if it has a velocity and 

acceleration.  

NOTE: The overuse of inheritance can lead to severe headaches and very ugly code architecture. 
Do not use it just for the sake of using it. The simple class hierarchy just used is OK, but we 

shouldn’t let it go a lot deeper (e.g., by extending Cannon). There are alternative representations 
of game objects that do away with all inheritance by composition. For our purposes, simple 
inheritance is more than enough, though. If you are interested in other representations, search 

for “composites” or “mixins” on the Web. 

The Spatial Hash Grid 
Our cannon will be bounded by a rectangle of 1�1 meters, the cannonball will have a 

bounding rectangle of 0.2�0.2 meters, and the targets will each have a bounding 

rectangle of 0.5�0.5 meters. The bounding rectangles are centered around each object’s 

positions to make our lives a little easier.  

When our cannon example starts up, we’ll simply place a number of targets at random 

positions. Here’s how we could set up the objects in our world: 
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Cannon cannon = new Cannon(0, 0, 1, 1); 
DynamicGameObject ball = new DynamicGameObject(0, 0, 0.2f, 0.2f); 
GameObject[] targets = new GameObject[NUM_TARGETS]; 
for(int i = 0; i < NUM_TARGETS; i++) { 
    targets[i] = new GameObject((float)Math.random() * WORLD_WIDTH,  
                                (float)Math.random() * WORLD_HEIGHT, 
                                0.5f, 0.5f);   
} 

The constants WORLD_WIDTH and WORLD_HEIGHT define the size of our game world. 

Everything should happen inside the rectangle bounded by (0,0) and 

(WORLD_WIDTH,WORLD_HEIGHT). Figure 8–17 shows a little mock-up of our game world so 

far. 

 

Figure 8–17. A mock-up of our game world 

Our world will look like this later on, but for now, let’s overlay a spatial hash grid. How 

big should the cells of the hash grid be? There’s no silver bullet, but I tend to choose it 

to be five times bigger than the biggest object in the scene. In our example, the biggest 

object is the cannon, but we do not collide anything with the cannon. So let’s base the 

grid size on the next biggest objects in our scene, the targets. These are 0.5�0.5 meters 

in size. A grid cell should thus have a size of 2.5�2.5 meters. Figure 8–18 shows the grid 

overlaid onto our world. 
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Figure 8–18. Our cannon world overlaid with a spatial hash grid consisting of 12 cells 

We have a fixed number of cells—in the case of the cannon world, 12 cells to be exact. 

We give each cell a unique number, starting at the bottom-left cell, which gets the ID 0. 

Note that the top cells actually extend outside of our world. This is not a problem; we 

just need to make sure all our objects stay inside the boundaries of our world.  

What we want to do is figure out which cell(s) an object belongs to. Ideally we want to 

calculate the IDs of the cells the object is contained in. This allows us to use the 

following simple data structure to store our cells: 

List<GameObject>[] cells; 

That’s right, we represent each cell as a list of GameObjects. The spatial hash grid itself is 

then just composed of an array of lists of GameObjects.  

Let’s think about how we can figure out the IDs of the cells an object is contained in. 

Figure 8–18 shows a couple of targets that span two cells. In fact, a small object can 

span up to four cells, and an object bigger than a grid cell can span even more than four 

cells. We can make sure this never happens by choosing our grid cell size to be a 

multiple of the size of the biggest object in our game. That leaves us with the possibility 

of one object being contained in at most four cells.  

To calculate the cell IDs for an object, we can simply take the four corner points of its 

bounding rectangle and check which cell each corner point is in. Determining the cell 

that a point is in is easy—we just need to divide its coordinates by the cell width first. 

Say we have a point at (3,4) and a cell size of 2.5�2.5 meters. The point would be in the 

cell with ID 5 in Figure 8–18.  

We can divide each the point’s coordinates by the cell size to get 2D integer coordinates 

, as follows: 

cellX = floor(point.x / cellSize) = floor(3 / 2.5) = 1 
cellY = floor(point.y / cellSize) = floor(4 / 2.5) = 1 

And from these cell coordinates, we can easily get the cell ID: 
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cellId = cellX + cellY × cellsPerRow = 1 + 1 × 4 = 5  

The constant cellsPerRow is simply the number of cells we need to cover our world with 

cells on the x-axis: 

cellsPerRow = ceil(worldWidth / cellSize) = ceil(9.6 / 2.5) = 4 

We can calculate the number of cells needed per column like this: 

cellsPerColumn = ceil(worldHeight / cellSize) = ceil(6.4 / 2.5) = 3 

Based on this we can implement the spatial hash grid rather easily. We set up it up by 

giving it the world’s size and the desired cell size. We assume that all the action is 

happening in the positive quadrant of the world. This means that all x- and y-

coordinates of points in the world will be positive. That’s a constraint we can accept.  

From the parameters, the spatial hash grid can figure out how many cells it needs 

(cellsPerRow � cellsPerColumn). We can also add a simple method to insert an object 

into the grid that will use the object’s boundaries to determine the cells it is contained in. 

The object will then be added to each cell’s list of objects that it contains. In case one of 

the corner points of the bounding shape of the object is outside of the grid, we’ll just 

ignore that corner point.  

We will reinsert every object into the spatial hash grid each frame after we update its 

position. However, there are objects in our cannon world that don’t move, so inserting 

them anew each frame is very wasteful. We’ll thus make a distinction between dynamic 

objects and static objects by storing two lists per cell. One will be updated each frame 

and only hold moving objects, and the other will be static and only modified when a new 

static object is inserted.  

Finally we need a method that returns a list of objects in the cells of an object we’d like 

to collide with other objects. All this method will do is check which cells the object in 

question is in, retrieve the list of dynamic and static objects in those cells, and return 

them to the caller. We’ll of course have to make sure that we don’t return any 

duplicates, which can happen if an object is in multiple cells. 

Listing 8–10 shows the code (well, most of it). We’ll discuss the 

SpatialHashGrid.getCellIds() method in a minute, as it is a little involved. 

Listing 8–10. Excerpt from SpatialHashGrid.java: A Spatial Hash Grid Implementation 

package com.badlogic.androidgames.framework.gl; 
 
import java.util.ArrayList; 
import java.util.List; 
 
import com.badlogic.androidgames.gamedev2d.GameObject; 
 
import android.util.FloatMath; 
 
public class SpatialHashGrid { 
    List<GameObject>[] dynamicCells; 
    List<GameObject>[] staticCells; 
    int cellsPerRow; 
    int cellsPerCol; 
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    float cellSize; 
    int[] cellIds = new int[4]; 
    List<GameObject> foundObjects; 

As discussed we store two cell lists, one for dynamic and one for static objects. We also 

store the cells per row and column so we can later decide whether a point we check is 

inside or outside of the world. The cell size needs to be stored as well. The cellIds array 

is a working array that we’ll use to temporarily store the four cell IDs a GameObject is 

contained in. If it is only contained in one cell, then only the first element of the array will 

be set to the cell ID of the cell that contains the object entirely. If the object is contained 

in two cells, then the first two elements of that array will hold the cell ID, and so on. To 

indicate the number of cell IDs we set all “empty” elements of the array to –1. The 

foundObjects list is also a working list, which we’ll return upon a call to 

getPotentialColliders(). Why do keep those two members instead of instantiating a 

new array and list each time one is needed? Remember the garbage collector monster. 

    @SuppressWarnings("unchecked") 
    public SpatialHashGrid(float worldWidth, float worldHeight, float cellSize) { 
        this.cellSize = cellSize; 
        this.cellsPerRow = (int)FloatMath.ceil(worldWidth/cellSize); 
        this.cellsPerCol = (int)FloatMath.ceil(worldHeight/cellSize); 
        int numCells = cellsPerRow * cellsPerCol; 
        dynamicCells = new List[numCells]; 
        staticCells = new List[numCells]; 
        for(int i = 0; i < numCells; i++) { 
            dynamicCells[i] = new ArrayList<GameObject>(10); 
            staticCells[i] = new ArrayList<GameObject>(10); 
        } 
        foundObjects = new ArrayList<GameObject>(10); 
    } 

The constructor of that class takes the world’s size and the desired cell size. From those 

arguments we calculate how many cells are needed, and instantiate the cell arrays and 

the lists holding the objects contained in each cell. We also initialize the foundObjects 

list here. All the ArrayLists we instantiate will have an initial capacity of ten GameObjects. 

We do this to avoid memory allocations. The assumption is that it is unlikely that one 

single cell will contain more than ten GameObjects. As long as that is true, the arrays 

don’t need to be resized. 

    public void insertStaticObject(GameObject obj) { 
        int[] cellIds = getCellIds(obj); 
        int i = 0; 
        int cellId = -1; 
        while(i <= 3 && (cellId = cellIds[i++]) != -1) { 
            staticCells[cellId].add(obj); 
        } 
    } 
     
    public void insertDynamicObject(GameObject obj) { 
        int[] cellIds = getCellIds(obj); 
        int i = 0; 
        int cellId = -1; 
        while(i <= 3 && (cellId = cellIds[i++]) != -1) { 
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            dynamicCells[cellId].add(obj); 
        } 
    } 

Next up are the methods�insertStaticObject() and�insertDynamicObject(). They 

calculate the IDs of the cells that the object is contained in via a call to getCellIds(), 

and insert the object into the appropriate lists accordingly. The getCellIds() method 

will actually fill the cellIds member array. 

    public void removeObject(GameObject obj) { 
        int[] cellIds = getCellIds(obj); 
        int i = 0; 
        int cellId = -1; 
        while(i <= 3 && (cellId = cellIds[i++]) != -1) { 
            dynamicCells[cellId].remove(obj); 
            staticCells[cellId].remove(obj); 
        } 
    } 

We also have a removeObject() method, which we’ll use to figure out what cells the 

object is in and then delete it from the dynamic and static lists accordingly. This will be 

needed when a game object dies, for example. 

    public void clearDynamicCells(GameObject obj) { 
        int len = dynamicCells.length; 
        for(int i = 0; i < len; i++) { 
            dynamicCells[i].clear(); 
        } 
    }    

The clearDynamicCells()�method will be used to clear all dynamic cell lists. We need to 

call this each frame before we reinsert the dynamic objects, as discussed earlier.  

    public List<GameObject> getPotentialColliders(GameObject obj) { 
        foundObjects.clear(); 
        int[] cellIds = getCellIds(obj); 
        int i = 0; 
        int cellId = -1; 
        while(i <= 3 && (cellId = cellIds[i++]) != -1) { 
            int len = dynamicCells[cellId].size(); 
            for(int j = 0; j < len; j++) { 
                GameObject collider = dynamicCells[cellId].get(j); 
                if(!foundObjects.contains(collider)) 
                    foundObjects.add(collider); 
            } 
             
            len = staticCells[cellId].size(); 
            for(int j = 0; j < len; j++) { 
                GameObject collider = staticCells[cellId].get(j); 
                if(!foundObjects.contains(collider)) 
                    foundObjects.add(collider); 
            } 
        } 
        return foundObjects; 
    } 
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Finally there’s the getPotentialColliders()�method. It takes an object and returns a list 

of neighboring objects that are contained in the same cells as that object. We use the 

working list foundObjects to store the list of found objects. Again, we do not want to 

instantiate a new list each time this method is called. All we do is figure out which cells 

the object passed to the method is in. We then simply add all dynamic and static 

objects found in those cells to the foundObjects list and make sure that there are no 

duplicates. Using foundObjects.contains()�to check for duplicates is of course a little 

suboptimal. But given that the number of found objects will never be large, it is OK to 

use it in this case. If you run into performance problems, then this is your number one 

candidate to optimize. Sadly, that’s not trivial, however. We could use a Set, of course, 

but that allocates new objects internally each time we add an object to it. For now, we’ll 

just leave it as it is, knowing that we can come back to it should anything go wrong 

performance-wise. 

The method I left out is SpatialHashGrid.getCellIds(). Listing 8–11 shows its code. 

Don’t be afraid, it just looks menacing. 

Listing 8–11. The Rest of SpatialHashGrid.java: Implementing getCellIds() 

    public int[] getCellIds(GameObject obj) { 
        int x1 = (int)FloatMath.floor(obj.bounds.lowerLeft.x / cellSize); 
        int y1 = (int)FloatMath.floor(obj.bounds.lowerLeft.y / cellSize); 
        int x2 = (int)FloatMath.floor((obj.bounds.lowerLeft.x + obj.bounds.width) / 
cellSize); 
        int y2 = (int)FloatMath.floor((obj.bounds.lowerLeft.y + obj.bounds.height) / 
cellSize); 
         
        if(x1 == x2 && y1 == y2) { 
            if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol) 
                cellIds[0] = x1 + y1 * cellsPerRow; 
            else 
                cellIds[0] = -1; 
            cellIds[1] = -1; 
            cellIds[2] = -1; 
            cellIds[3] = -1; 
        } 
        else if(x1 == x2) { 
            int i = 0; 
            if(x1 >= 0 && x1 < cellsPerRow) { 
                if(y1 >= 0 && y1 < cellsPerCol) 
                    cellIds[i++] = x1 + y1 * cellsPerRow; 
                if(y2 >= 0 && y2 < cellsPerCol) 
                    cellIds[i++] = x1 + y2 * cellsPerRow; 
            } 
            while(i <= 3) cellIds[i++] = -1; 
        } 
        else if(y1 == y2) { 
            int i = 0; 
            if(y1 >= 0 && y1 < cellsPerCol) { 
                if(x1 >= 0 && x1 < cellsPerRow) 
                    cellIds[i++] = x1 + y1 * cellsPerRow; 
                if(x2 >= 0 && x2 < cellsPerRow) 
                    cellIds[i++] = x2 + y1 * cellsPerRow; 
            } 
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            while(i <= 3) cellIds[i++] = -1;                        
        } 
        else { 
            int i = 0; 
            int y1CellsPerRow = y1 * cellsPerRow; 
            int y2CellsPerRow = y2 * cellsPerRow; 
            if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol) 
                cellIds[i++] = x1 + y1CellsPerRow; 
            if(x2 >= 0 && x2 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol) 
                cellIds[i++] = x2 + y1CellsPerRow; 
            if(x2 >= 0 && x2 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol) 
                cellIds[i++] = x2 + y2CellsPerRow; 
            if(x1 >= 0 && x1 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol) 
                cellIds[i++] = x1 + y2CellsPerRow; 
            while(i <= 3) cellIds[i++] = -1; 
        } 
        return cellIds; 
    } 

} 

The first four lines of this method just calculate the cell coordinates of the bottom-left 

and top-right corners of the object’s bounding rectangle. We already discussed this 

calculation earlier. To understand the rest of this method, we have to think about how an 

object can overlap grid cells. There are four possibilities: 

� The object is contained in a single cell. The bottom-left and top-right 

corners of the bounding rectangle thus both have the same cell 

coordinates. 

� The object overlaps two cells horizontally. The bottom-left corner is in 

one cell and the top-right corner is in the cell to the right. 

� The object overlaps two cells vertically. The bottom-left corner is in 

one cell and the top-right corner is in the cell above. 

� The object overlaps four cells. The bottom-left corner is in one cell, the 

bottom-right corner is in the cell to the right, the top-right corner is in 

the cell above that, and the top-left corner is in the cell above the first 

cell.  

All this method does is make a special case for each of these possibilities. The first if 

statement checks for the single-cell case, the second if statement checks for the 

horizontal double-cell case, the third if statement checks for the vertical double-cell 

case, and the else block handles the case of the object overlapping four grid cells. In 

each of the four blocks we make sure that we only set the cell ID if the corresponding 

cell coordinates are within the world. And that’s all there is to this method. 

Now, the method looks like it would take a lot of computational power. And indeed it 

does, but less than its size would suggest. The most common case will be the first one, 

and processing that is pretty cheap. Can you see opportunities to optimize this method 

further? 
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Putting It All Together 
Let’s put all the knowledge we gathered in this section together to form a nice little 

example. We’ll extend the cannon example of the last section as discussed a few pages 

back. We’ll use a Cannon object for the cannon, a DynamicGameObject for the cannonball, 

and a number of GameObjects for the targets. Each target will have a size of 0.5�0.5 

meters and be placed randomly in the world.  

We want to be able to shoot those targets. For this we need collision detection. We 

could just loop over all targets and check them against the cannonball, but that would 

be boring. We’ll use our fancy new SpatialHashGrid class to speed up finding the 

potentially colliding targets for the current ball position. We won’t insert the ball or the 

cannon into the grid, though, as that wouldn’t really gain us anything.  

Since this example is already pretty big, we’ll split it up into multiple listings. We’ll call 

the test CollisionTest and the corresponding screen CollisionScreen. As always, we’ll 

only look at the screen. Let’s start with the members and the constructor, in Listing 8–

12. 

Listing 8–12. Excerpt from CollisionTest.java: Members and Constructor 

class CollisionScreen extends Screen { 
    final int NUM_TARGETS = 20; 
    final float WORLD_WIDTH = 9.6f; 
    final float WORLD_HEIGHT = 4.8f; 
    GLGraphics glGraphics;         
    Cannon cannon; 
    DynamicGameObject ball; 
    List<GameObject> targets; 
    SpatialHashGrid grid; 
     
    Vertices cannonVertices; 
    Vertices ballVertices; 
    Vertices targetVertices; 
     
    Vector2 touchPos = new Vector2(); 
    Vector2 gravity = new Vector2(0,-10); 
 
    public CollisionScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame)game).getGLGraphics(); 
         
        cannon = new Cannon(0, 0, 1, 1); 
        ball = new DynamicGameObject(0, 0, 0.2f, 0.2f); 
        targets = new ArrayList<GameObject>(NUM_TARGETS); 
        grid = new SpatialHashGrid(WORLD_WIDTH, WORLD_HEIGHT, 2.5f); 
        for(int i = 0; i < NUM_TARGETS; i++) { 
            GameObject target = new GameObject((float)Math.random() * WORLD_WIDTH,  
                                               (float)Math.random() * WORLD_HEIGHT, 
                                               0.5f, 0.5f);   
            grid.insertStaticObject(target); 
            targets.add(target); 
        }                         
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        cannonVertices = new Vertices(glGraphics, 3, 0, false, false); 
        cannonVertices.setVertices(new float[] { -0.5f, -0.5f,  
                                                  0.5f, 0.0f,  
                                                 -0.5f, 0.5f }, 0, 6); 
         
        ballVertices = new Vertices(glGraphics, 4, 6, false, false);             
        ballVertices.setVertices(new float[] { -0.1f, -0.1f, 
                                                0.1f, -0.1f, 
                                                0.1f,  0.1f, 
                                               -0.1f,  0.1f }, 0, 8); 
        ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 
         
        targetVertices = new Vertices(glGraphics, 4, 6, false, false); 
        targetVertices.setVertices(new float[] { -0.25f, -0.25f, 
                                                  0.25f, -0.25f, 
                                                  0.25f,  0.25f, 
                                                 -0.25f,  0.25f }, 0, 8); 
        targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);  
    } 

We brought over a lot from the CannonGravityScreen. We start off with a couple of 

constant definitions, governing the number of targets and our world’s size. Next we have 

the GLGraphics instance, as well as the objects for the cannon, the ball, and the targets, 

which we store in a list. We also have a SpatialHashGrid, of course. For rendering our 

world we need a few meshes: one for the cannon, one for the ball, and one we’ll use to 

render each target. Remember that we only had a single rectangle in BobTest to render 

the 100 Bobs to the screen. We’ll reuse that principle here as well, instead of having a 

single Vertices instance holding the triangles (rectangles) of our targets. The last two 

members are the same as in the CannonGravityTest. We use them to shoot the ball and 

apply gravity when the user touches the screen.  

The constructor just does all the things we discussed already. We instantiate our world 

objects and meshes. The only interesting thing is that we also add the targets as static 

objects to the spatial hash grid.  

Let’s check out the next method of the CollisionTest class, in Listing 8–13. 

Listing 8–13. Excerpt from CollisionTest.java: The update() Method 

@Override 
public void update(float deltaTime) { 
    List<TouchEvent> touchEvents = game.getInput().getTouchEvents(); 
    game.getInput().getKeyEvents(); 
 
    int len = touchEvents.size(); 
    for (int i = 0; i < len; i++) { 
        TouchEvent event = touchEvents.get(i); 
         
        touchPos.x = (event.x / (float) glGraphics.getWidth())* WORLD_WIDTH; 
        touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT; 
 
        cannon.angle = touchPos.sub(cannon.position).angle();                        
         
        if(event.type == TouchEvent.TOUCH_UP) { 
            float radians = cannon.angle * Vector2.TO_RADIANS; 
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            float ballSpeed = touchPos.len() * 2; 
            ball.position.set(cannon.position); 
            ball.velocity.x = FloatMath.cos(radians) * ballSpeed; 
            ball.velocity.y = FloatMath.sin(radians) * ballSpeed; 
            ball.bounds.lowerLeft.set(ball.position.x - 0.1f, ball.position.y - 0.1f); 
        } 
    } 
                                   
    ball.velocity.add(gravity.x * deltaTime, gravity.y * deltaTime); 
    ball.position.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime); 
    ball.bounds.lowerLeft.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime); 
     
    List<GameObject> colliders = grid.getPotentialColliders(ball); 
    len = colliders.size();  
    for(int i = 0; i < len; i++) { 
        GameObject collider = colliders.get(i); 
        if(OverlapTester.overlapRectangles(ball.bounds, collider.bounds)) { 
            grid.removeObject(collider); 
            targets.remove(collider); 
        } 
    } 
} 

As always, we first fetch the touch and key events, and only iterate over the touch 

events. The handling of touch events is nearly the same as in the CannonGravityTest. 

The only difference is that we use the Cannon object instead of the vectors we had in the 

old example, and we also reset the ball’s bounding rectangle when the cannon is made 

ready to shoot on a touch-up event.  

The next change is how we update the ball. Instead of straight vectors, we use the 

members of the DynamicGameObject that we instantiated for the ball. We neglect the 

DynamicGameObject.acceleration member and instead add our gravity to the ball’s 

velocity. We also multiply the ball’s speed by 2 so that the cannonball flies a little faster. 

The interesting thing is that we update not only the ball’s position, but also the bounding 

rectangle’s lower-left corner’s position. This is crucial, as otherwise our ball would move 

but its bounding rectangle wouldn’t. Why don’t we just use the ball’s bounding rectangle 

to store the ball’s position? We might want to have multiple bounding shapes attached 

to an object. Which bounding shape would then hold the actual position of the object? 

Separating these two things is thus beneficial, and introduces only a little computational 

overhead. We could of course optimize this a little by only multiplying the velocity with 

the delta time once. The overhead would then boil down to two more additions—a small 

price to pay for the flexibility we gain.  

The final portion of this method is our collision detection code. All we do is find the 

targets in the spatial hash grid that are in the same cells as our cannonball. We use the 

SpatialHashGrid.getPotentialColliders() method for this. Since the cells the ball is 

contained in are evaluated in that method directly, we do not need to insert the ball into 

the grid. Next we loop through all the potential colliders and check if there really is an 

overlap between the ball’s bounding rectangle and a potential collider’s bounding 

rectangle. If there is, we simply remove the target from the target list. Remember, we 

only added targets as static objects to the grid. 
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And those are our complete game mechanics. The last piece of the puzzle is the actual 

rendering, which shouldn’t really surprise you. See the code in Listing 8–14. 

Listing 8–14. Excerpt from CollisionTest.java: The present() Method 

@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL(); 
    gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
    gl.glMatrixMode(GL10.GL_PROJECTION); 
    gl.glLoadIdentity(); 
    gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1); 
    gl.glMatrixMode(GL10.GL_MODELVIEW); 
     
    gl.glColor4f(0, 1, 0, 1); 
    targetVertices.bind(); 
    int len = targets.size(); 
    for(int i = 0; i < len; i++) {                
        GameObject target = targets.get(i); 
        gl.glLoadIdentity(); 
        gl.glTranslatef(target.position.x, target.position.y, 0); 
        targetVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
    targetVertices.unbind(); 
     
    gl.glLoadIdentity(); 
    gl.glTranslatef(ball.position.x, ball.position.y, 0); 
    gl.glColor4f(1,0,0,1); 
    ballVertices.bind(); 
    ballVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
    ballVertices.unbind();   
     
    gl.glLoadIdentity(); 
    gl.glTranslatef(cannon.position.x, cannon.position.y, 0); 
    gl.glRotatef(cannon.angle, 0, 0, 1); 
    gl.glColor4f(1,1,1,1); 
    cannonVertices.bind(); 
    cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3); 
    cannonVertices.unbind();                     
} 

Nothing new here. As always, we set the projection matrix and viewport, and clear the 

screen first. Next we render all targets, reusing the rectangular model stored in 

targetVertices. This is essentially the same thing we did in BobTest, but this time we 

render targets instead. Next we render the ball and the cannon, as we did in the 

CollisionGravityTest.  

The only thing to note here is that I changed the drawing order so that the ball will 

always be above the targets and the cannon will always be above the ball. I also colored 

the targets green with a call to glColor4f().  

The output of this little test is exactly the same as in Figure 8–17, so I’ll spare you the 

repetition. When you fire the cannonball, it will plow through the field of targets. Any 

target that gets hit by the ball will be removed from the world.  
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This example could actually be a nice game if we polish it up a little and add some 

motivating game mechanics. Can you think of additions? I suggest you play around with 

the example a little to get a feeling for all the new tools we have developed over the 

course of the last couple of pages.  

There are a few more things I’d like to discuss in this chapter: cameras, texture atlases, 

and sprites. These use graphics-related tricks that are independent of our model of the 

game world. Let’s get going! 

A Camera in 2D 
Up until now, we haven’t had the concept of a camera in our code; we’ve only had the 

definition of our view frustum via glOrthof(), like this: 

gl.glMatrixMode(GL10.GL_PROJECTION); 
gl.glLoadIdentity(); 
gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1); 

From Chapter 6 we know that the first two parameters define the x-coordinates of the 

left and right edges of our frustum in the world, the next two parameters define the y-

coordinates of the bottom and top edges of the frustum, and the last two parameters 

define the near and far clipping planes. Figure 8–19 shows that frustum again. 

 

Figure 8–19. The view frustum for our 2D world, again 

So we only see the region (0,0,1) to (FRUSTUM_WIDTH, FRUSTUM_HEIGHT,–1) of our world. 

Wouldn’t it be nice if we could move the frustum? Say, to the left? Of course that would 

be nice, and it is dead simple as well: 

gl.glOrthof(x, x + FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1); 

In this case, x is just some offset we can define. We can of course also move on the x- 

and y-axes: 
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gl.glOrthof(x, x + FRUSTUM_WIDTH, y, y + FRUSTUM_HEIGHT, 1, -1); 

Figure 8–20 shows what that means. 

 

Figure 8–20. Moving the frustum around 

By this we simply specify the bottom-left corner of our view frustum in the world space. 

This is already sufficient to implement a freely movable 2D camera. But we can do 

better. What about not specifying the bottom-left corner of the view frustum with x and 

y, but instead specifying the center of the view frustum? That way we could easily center 

our view frustum on an object at a specific location—say, the cannonball from our 

preceding example:  

gl.glOrthof(x – FRUSTUM_WIDTH / 2, x + FRUSTUM_WIDTH / 2, y – FRUSTUM_HEIGHT / 2, y + 
FRUSTUM_HEIGHT / 2, 1, -1); 

Figure 8–21 shows what this looks like. 

 

Figure 8–21. Specifying the view frustum in terms of its center 

That’s still not all we can do with glOrthof(). What about zooming? Let’s think about 

this for a little while. We know that via glViewportf()�we can tell OpenGL ES what 
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portion of our screen to render the contents of our view frustum to. OpenGL ES will 

automatically stretch and scale the output to align with the viewport. Now, if we make 

the width and height of our view frustum smaller, we will simply show a smaller region of 

our world on the screen. That’s zooming in. If we make the frustum bigger, we’ll show 

more of our world—that’s zooming out. We can therefore introduce a zoom factor and 

multiply it by our frustum’s width and height to zoom in an out. A factor of 1 will show us 

the world as in Figure 8–21, using the normal frustum width and height. A factor smaller 

than 1 will zoom in on the center of our view frustum. And a factor bigger than 1 will 

zoom out, showing us more of our world (e.g., setting the zoom factor to 2 will show us 

twice as much of our world). Here’s how we can use glOrthof()�to do that for us: 

gl.glOrthof(x – FRUSTUM_WIDTH / 2 * zoom, x + FRUSTUM_WIDTH / 2 * zoom, y – 
FRUSTUM_HEIGHT / 2 * zoom, y + FRUSTUM_HEIGHT / 2 * zoom, 1, -1); 

Dead simple! We can now create a camera class that has a position it is looking at (the 

center of the view frustum), a standard frustum width and height, and a zoom factor that 

makes the frustum smaller or bigger, thereby showing us either less of our world 

(zooming in) or more of our world (zooming out). Figure 8–22 shows a view frustum with 

a zoom factor of 0.5 (the inner gray box), and one with a zoom factor of 1 (the outer, 

transparent box). 

 

Figure 8–22. Zooming by manipulating the frustum size 

To make our lives complete we should add one more thing. Imagine that we touch the 

screen and want to figure out what point in our 2D world we touched. We already did 

this a couple of times in our iteratively improving cannon examples. With a view frustum 

configuration that does not factor in the camera’s position and zoom, as in Figure 8–19, 

we had the following equations (see the update() method of our cannon examples): 

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH; 
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT; 
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We first normalize the touch x- and y-coordinates to the range 0 to 1 by dividing by the 

screen’s width and height, and then we scale them so that they are expressed in terms 

of our world space by multiplying them with the frustum’s width and height. All we need 

to do is factor in the position of the view frustum as well as the zoom factor. Here’s how 

we do that: 

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH + x – FRUSTUM_WIDTH / 2; 
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT + y – FRUSTUM_HEIGHT / 2; 

Here, x and y are our camera’s position in world space.  

The Camera2D Class 
Let’s put all this together into a single class. We want it to store the camera’s position, 

the standard frustum width and height, and the zoom factor. We also want a 

convenience method that sets the viewport (always use the whole screen) and projection 

matrix correctly. Additionally we want a method that can translate touch coordinates to 

world coordinates. Listing 8–15 shows our new Camera2D class. 

Listing 8–15. Camera2D.java, Our Shiny New Camera Class for 2D Rendering 

package com.badlogic.androidgames.framework.gl; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
import com.badlogic.androidgames.framework.math.Vector2; 
 
public class Camera2D { 
    public final Vector2 position; 
    public float zoom; 
    public final float frustumWidth; 
    public final float frustumHeight; 
    final GLGraphics glGraphics; 

As discussed, we store the camera’s position, frustum width and height, and zoom 

factor as members. The position and zoom factor are public, so we can easily 

manipulate them. We also need a reference to GLGraphics so we can get the up-to-date 

width and height of the screen in pixels for transforming touch coordinates to world 

coordinates.  

    public Camera2D(GLGraphics glGraphics, float frustumWidth, float frustumHeight) { 
        this.glGraphics = glGraphics; 
        this.frustumWidth = frustumWidth; 
        this.frustumHeight = frustumHeight; 
        this.position = new Vector2(frustumWidth / 2, frustumHeight / 2); 
        this.zoom = 1.0f; 
    } 

In the constructor we take a GLGraphics instance and the frustum’s width and height at the 

zoom factor 1 as parameters. We store them and initialize the position of the camera to 

look at the center of the box bounded by (0,0,1) and (frustumWidth, frustumHeight,–1), as 

in Figure 8–19. The initial zoom factor is set to 1. 
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    public void setViewportAndMatrices() { 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(position.x - frustumWidth * zoom / 2,  
                    position.x + frustumWidth * zoom/ 2,  
                    position.y - frustumHeight * zoom / 2,  
                    position.y + frustumHeight * zoom/ 2,  
                    1, -1); 
        gl.glMatrixMode(GL10.GL_MODELVIEW); 
        gl.glLoadIdentity(); 
    } 

The setViewportAndMatrices() method sets the viewport to span the whole screen, and 

sets the projection matrix in accordance with our camera’s parameters, as discussed 

previously. At the end of the method we tell OpenGL ES that all further matrix operations 

are targeting the model view matrix and load an identity matrix. We will call this method 

each frame so we can start from a clean slate. No more direct OpenGL ES calls to set 

up our viewport and projection matrix. 

    public void touchToWorld(Vector2 touch) { 
        touch.x = (touch.x / (float) glGraphics.getWidth()) * frustumWidth * zoom; 
        touch.y = (1 - touch.y / (float) glGraphics.getHeight()) * frustumHeight * zoom; 
        touch.add(position).sub(frustumWidth * zoom / 2, frustumHeight * zoom / 2); 
    } 
} 

The touchToWorld() method takes a Vector2 instance containing touch coordinates and 

transforms the vector to world space. This is the same thing we just discussed; the only 

difference is that we use our fancy Vector2 class.  

An Example 
Let’s use the Camera2D class in our cannon example. I copied the CollisionTest file and 

renamed it Camera2DTest. I also renamed the GLGame class inside the file Camera2DTest, 

and renamed the CollisionScreen class Camera2DScreen. We’ll just discuss the little 

changes we have to make to use our new Camera2D class.  

The first thing we do is add a new member to the Camera2DScreen class: 

Camera2D camera; 

We initialize this member in the constructor as follows: 

camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT); 

We just pass in our GLGraphics instance and the world’s width and height, which we 

previously used as the frustum’s width and height in our call to glOrthof(). All we need 

to do now is replace our direct OpenGL ES calls in the present()�method, which looked 

like this: 

gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
gl.glMatrixMode(GL10.GL_PROJECTION); 
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gl.glLoadIdentity(); 
gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1); 
gl.glMatrixMode(GL10.GL_MODELVIEW); 

We replace them with this: 

gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
camera.setViewportAndMatrices(); 

We still have to clear the framebuffer, of course, but all the other direct OpenGL ES calls 

are nicely hidden inside the Camera2D.setViewportAndMatrices() method. If you run that 

code, you’ll see that nothing has changed. Everything works like before—all we did was 

make things a little nicer and more flexible. 

We can also simplify the update() method of the test a little. Since we added the 

Camera2D.touchToWorld()�method to the camera class, we might as well use it. We can 

replace this snippet from the update method: 

touchPos.x = (event.x / (float) glGraphics.getWidth())* WORLD_WIDTH; 
touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT; 

with this: 

camera.touchToWorld(touchPos.set(event.x, event.y)); 

Neat, everything is nicely encapsulated now. But it would be very boring if we didn’t use 

the features of our camera class to their full extent. Here’s the plan: we want to have the 

camera look at the world in the “normal” way as long as the cannonball does not fly. 

That’s easy; we’re already doing that. We can determine whether the cannonball flies or 

not by checking whether the y-coordinate of its position is less than or equal to zero. 

Since we always apply gravity to the cannonball, it will of course fall even if we don’t 

shoot it, so that’s a cheap way to check matters.  

Our new addition will come into effect when the cannonball is flying (when the y-

coordinate is greater than zero). We want the camera to follow the cannonball. We can 

achieve this by simply setting the camera’s position to the cannonball’s position. That 

will always keep the cannonball in the center of the screen. We also want to try out our 

zooming functionality. Therefore well increase the zoom factor depending on the y-

coordinate of the cannonball. The further away from zero, the higher the zoom factor. 

This will make the camera zoom out if the cannonball has a higher y-coordinate. Here’s 

what we need to add at the end of the update() method in our test’s screen: 

if(ball.position.y > 0) { 
    camera.position.set(ball.position); 
    camera.zoom = 1 + ball.position.y / WORLD_HEIGHT;  
} else { 
    camera.position.set(WORLD_WIDTH / 2, WORLD_HEIGHT / 2); 
    camera.zoom = 1; 
} 

As long as the y-coordinate of our ball is greater then zero, the camera will follow it and 

zoom out. We just add a value to the standard zoom factor of 1. That value is just the 

relation between the ball’s y-position and the world’s height. If the ball’s y-coordinate is 

at WORLD_HEIGHT, the zoom factor will be 2, so we we’ll see more of our world. The way I 

did this is really arbitrary; you could come up with any formula that you want here—
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there’s nothing magical about it. In case the ball’s position is less than or equal to zero, 

we show the world normally, as we did in the previous examples.  

Texture Atlas: Because Sharing Is Caring 
Up until this point we have only ever used a single texture in our programs. What if we 

not only want to render Bob, but other superheroes or enemies or explosions or coins as 

well? We could have multiple textures, each holding the image of one object type. But 

OpenGL ES wouldn’t like that much, since we’d need to switch textures for every object 

type we render (e.g., bind Bob’s texture, render Bobs, bind the coin texture, render 

coins, etc.). We can do better by putting multiple images into a single texture. And that’s 

a texture atlas: a single texture containing multiple images. We only need to bind that 

texture once, and we can then render any entity types for which there is an image in the 

atlas. That saves some state change overhead and increases our performance. Figure 

8–23 shows such a texture atlas. 

 

Figure 8–23. A texture atlas 

There are three objects in Figure 8–23: a cannon, a cannonball, and Bob. The grid is not 

part of the texture; it’s only there to illustrate how I usually create my texture atlases.  

The texture atlas is 64�64 pixels in size, and each grid is 32�32 pixels. The cannon 

takes up two cells, the cannonball a little less than one-quarter of a cell, and Bob a 

single cell. Now, if you look back at how we defined the bounds (and graphical 

rectangles) of the cannon, cannonball, and targets, you will notice that the relation of 

their sizes to each other is very similar to what we have in the grid here. The target is 

0.5�0.5 meters in our world, and the cannon is 0.2�0.2 meters. In our texture atlas, Bob 

takes up 32�32 pixels and the cannonball a little under 16�16 pixels. The relationship 

between the texture atlas and the object sizes in our world should be clear: 32 pixels in 

the atlas equals 0.5 meters in our world. Now, the cannon was 1�1 meters in our original 
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example, but we can of course change that. According to our texture atlas, in which the 

cannon takes up 64�32 pixels, we should let our cannon have a size of 1�0.5 meters in 

our world. Wow, that is exceptionally easy isn’t it?  

So why did I choose 32 pixels to match 1 meter in our world? Remember that textures 

must have power-of-two widths and heights. Using a power-of-two pixel unit like 32 to 

map to 0.5 meters in our world is a convenient way for the artist to cope with the 

restriction on texture sizes. It also makes it easier to get the size relations of different 

objects in our world right in the pixel art as well.  

Note that there’s nothing keeping you from using more pixels per world unit. You could 

choose 64 pixels or 50 pixels to match 0.5 meters in our world just fine. So what’s a 

good pixel-to-meters size, then? That again depends on the screen resolution our game 

will run at. Let’s do some calculations. 

Our cannon world is bounded by (0,0) in the bottom-left corner and (9.6,4.8) in the top-

left corner. This is mapped to our screen. Let’s figure out how many pixels per world unit 

we have on the screen of a Hero (480�320 pixels in landscape mode): 

pixelsPerUnitX = screenWidth / worldWidth = 480 / 9.6 =  50 pixels / meter 
pixelsPerUnitY = screenHeight / worldHeight = 320 / 6.4 = 50 pixels / meter 

Our cannon, which will now take up 1�0.5 meters in the world, will thus use 50x25 pixels 

on the screen. We’d use a 64�32-pixel region from our texture, so we’d actually 

downscale the texture image a little when rendering the cannon. That’s totally fine—

OpenGL ES will do this automatically for us. Depending on the minification filter we set 

for the texture, the result will either be crisp and pixelated (GL_NEAREST) or a little 

smoothed out (GL_LINEAR). If we wanted a pixel-perfect rendering on the Hero, we’d 

need to scale our texture images a little. We could use a grid size of 25�25 pixels 

instead of 32�32. However, if we just resized the atlas image (or rather redraw 

everything by hand), we’d have a 50�50-pixel image—a no-go with OpenGL ES. We’d 

have to add padding to the left and bottom to obtain a 64�64 image (since OpenGL ES 

requires power-of-two widths and heights). I’d say we are totally fine with OpenGL ES 

scaling our texture image down on the Hero.  

How’s the situation on higher-resolution devices like the Nexus One (800�480 in 

landscape mode)? Let’s perform the calculations for this screen configuration via the 

following equations: 

pixelsPerUnitX = screenWidth / worldWidth = 800 / 9.6 =  83 pixels / meter 
pixelsPerUnitY = screenHeight / worldHeight = 480 / 6.4 = 75 pixels / meter 

We have different pixels per unit on the x- and y-axes because the aspect ratio of our 

view frustum (9.6 / 6.4 = 1.5) is different from the screen’s aspect ratio (800 / 480 = 

1.66). We already talked about this in Chapter 4 when we outlined a couple of solutions. 

Back then we targeted a fixed pixel size and aspect ratio; now we’ll adopt that scheme 

and target a fixed frustum width and height for our example. In the case of the Nexus 

One, the cannon, the cannonball, and Bob would get scaled up a little and stretched, 

due to the higher resolution and different aspect ratio. We accept this fact since we want 

all players to see the same region of our world. Otherwise, players with higher aspect 

ratios could have the advantage of being able to see more of the world.  
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So, how do we use such a texture atlas? We just remap our rectangles. Instead of using 

all of the texture, we just use portions of it. To figure out the texture coordinates of the 

corners of the images contained in the texture atlas, we can reuse the equations from 

one of the last examples. Here’s a quick refresher: 

u = x / imageWidth 
v = y / imageHeight 

Here, u and v are the texture coordinates and x and y are the pixel coordinates. Bob’s 

top-left corner in pixel coordinates is at (32,32). If we plug that into the preceding 

equation, we get (0.5,0.5) as texture coordinates. We can do the same for any other 

corners we need, and based on this set the correct texture coordinates for the vertices 

of our rectangles.  

An Example 
Let’s add this texture atlas to our previous example to make it look more beautiful. Bob 

will be out target. 

We just copy the Camera2DTest�and modify it a little. I placed the copy in a file called 

TextureAtlasTest.java and renamed the two classes contained in it accordingly 

(TextureAtlasTest and TextureAtlasScreen).  

The first thing we do is add a new member to the TextureAtlasScreen: 

Texture texture; 

Instead of creating a Texture in the constructor, we create it in the resume() method. 

Remember that textures will get lost when our application comes back from a paused 

state, so we have to re-create them in the resume() method: 

@Override 
public void resume() { 
    texture = new Texture(((GLGame)game), "atlas.png"); 
} 

I just put the image in Figure 8–23 in the assets/ folder of our project and named it 

atlas.png. (It of course doesn’t contain the gridlines shown in the figure.) 

Next we need to change the definitions of the vertices. We have one Vertices instance 

for each entity type (cannon, cannonball, and Bob) holding a single rectangle of four 

vertices and six indices, making up three triangles. All we need to do is add texture 

coordinates to each of the vertices in accordance with the texture atlas. We also change 

the cannon from being represented as a triangle to being represented by a rectangle of 

size 1�0.5 meters. Here’s what we replace the old vertex creation code in the 

constructor with: 

cannonVertices = new Vertices(glGraphics, 4, 6, false, true); 
cannonVertices.setVertices(new float[] { -0.5f, -0.25f, 0.0f, 0.5f,  
                                          0.5f, -0.25f, 1.0f, 0.5f, 
                                          0.5f,  0.25f, 1.0f, 0.0f, 
                                         -0.5f,  0.25f, 0.0f, 0.0f },  
                                         0, 16); 
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cannonVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 
 
ballVertices = new Vertices(glGraphics, 4, 6, false, true);             
ballVertices.setVertices(new float[] { -0.1f, -0.1f, 0.0f, 0.75f, 
                                        0.1f, -0.1f, 0.25f, 0.75f, 
                                        0.1f,  0.1f, 0.25f, 0.5f, 
                                       -0.1f,  0.1f, 0.0f, 0.5f },  
                                        0, 16); 
ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 
 
targetVertices = new Vertices(glGraphics, 4, 6, false, true); 
targetVertices.setVertices(new float[] { -0.25f, -0.25f, 0.5f, 1.0f, 
                                          0.25f, -0.25f, 1.0f, 1.0f, 
                                          0.25f,  0.25f, 1.0f, 0.5f, 
                                         -0.25f,  0.25f, 0.5f, 0.5f },  
                                         0, 16); 
targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 

Each of our meshes is now composed of four vertices, each having a 2D position and 

texture coordinates. We added six indices to the mesh, specifying the two triangles we 

want to render. We also made the cannon a little smaller on the y-axis. It now has size of 

1�0.5 meters instead of 1�1 meters. This is also reflected in the construction of the 

Cannon object earlier in the constructor: 

cannon = new Cannon(0, 0, 1, 0.5f); 

Since we don’t do any collision detection with the cannon itself, it doesn’t really matter 

what size we set in that constructor, though. We just do it for consistency.  

The last thing we need to change is our render method. Here it is in its full glory: 

@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL(); 
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
    camera.setViewportAndMatrices(); 
     
    gl.glEnable(GL10.GL_BLEND); 
    gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); 
    gl.glEnable(GL10.GL_TEXTURE_2D); 
    texture.bind(); 
                 
    targetVertices.bind(); 
    int len = targets.size(); 
    for(int i = 0; i < len; i++) {                
        GameObject target = targets.get(i); 
        gl.glLoadIdentity(); 
        gl.glTranslatef(target.position.x, target.position.y, 0); 
        targetVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
    targetVertices.unbind(); 
     
    gl.glLoadIdentity(); 
    gl.glTranslatef(ball.position.x, ball.position.y, 0);             
    ballVertices.bind(); 
    ballVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
    ballVertices.unbind();   
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    gl.glLoadIdentity(); 
    gl.glTranslatef(cannon.position.x, cannon.position.y, 0); 
    gl.glRotatef(cannon.angle, 0, 0, 1);             
    cannonVertices.bind(); 
    cannonVertices.draw(GL10.GL_TRIANGLES, 0, 6); 
    cannonVertices.unbind();                     
} 

Here, we enable blending and set a proper blending function, and enable texturing and 

bind our atlas texture. We also slightly adapt the cannonVertices.draw() call, which now 

renders two triangles instead of one. That’s all there is to it. Figure 8–24 of our face-

lifting operation. 

 

Figure 8–24. Beautifying the cannon example with a texture atlas 

There are a few more things we need to know about texture atlases: 

� When we use GL_LINEAR as the minification and/or magnification filter, 

there might be artifacts when two images within the atlas are touching 

each other. This is due to the texture mapper actually fetching the four 

nearest texels from a texture for a pixel on the screen. When it does 

that for the border of an image, it will also fetch texels from the 

neighboring image in the atlas. We can eliminate this problem by 

introducing an empty border of 2 pixels between our images. Even 

better, we can duplicate the border pixel of each image. The first 

solution is of course easier—just make sure your texture stays a power 

of two. 
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� There’s no need to lay out all the images in the atlas in a fixed grid. We 

could put arbitrarily sized images in the atlas as tightly as possible. All 

we need to know is where one image starts and ends in the atlas so 

we can calculate proper texture coordinates for it. Packing arbitrarily 

sized images is a nontrivial problem, however. There are a couple of 

tools on the Web that can help you with creating a texture atlas; just 

do a search and you’ll be hit by a plethora of options. 

� Often we cannot group all images of our game into a single texture. 

Remember that there’s a maximum texture size that varies from device 

to device. We can safely assume that all devices support a texture size 

of 512�512 pixels (or even 1024�1024). So, we just have multiple 

texture atlases. You should try to group objects that will be seen on 

the screen together in one atlas, though—say, all the objects of level 1 

in one atlas, all the objects of level 2 in another, all the UI elements in 

another, and so on. Think about the logical grouping before finalizing 

your art assets. 

� Remember how we drew numbers dynamically in Mr. Nom? We used 

a texture atlas for that. In fact, we can perform all dynamic text 

rendering via a texture atlas. Just put all the characters you need for 

your game into an atlas and render them on demand via multiple 

rectangles mapping to the appropriate characters in the atlas. There 

are tools you can find on the Web that will generate such a so-called 

bitmap font for you. For our purposes in the coming chapters, we will 

stick to the approach we used in Mr. Nom, though: static text gets 

prerendered as a whole, and only dynamic text (e.g., numbers in high 

scores) will get rendered via an atlas.  

You might have noticed that Bobs disappear a little before they are actually hit by the 

cannonball graphically. That’s because our bounding shapes are a little too big. We have 

some whitespace around Bob and the cannonball in the border. What’s the solution? 

We just make the bounding shapes a little smaller. I want you to get a feel for this, so 

manipulate the source until the collision feels right. You will often find such fine-tuning 

“opportunities” while developing a game. Fine tuning is probably one of the most crucial 

parts apart from good level design. Getting things to feel right can be hard, but is highly 

satisfactory once you achieved the level of perfection of Super Mario Brothers. Sadly, 

this is nothing I can teach you, as it is dependent on the look and feel of your game. 

Consider it the magic sauce that sets good and bad games apart.  

NOTE: To handle the disappearance issue just mentioned, make the bounding rectangles a little 
smaller than their graphical representations to allow for some overlap before a collision is 

triggered. 
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Texture Regions, Sprites, and Batches: Hiding 
OpenGL ES 
Our code so far for the cannon example is made up of a lot of boilerplate, some of which 

can be reduced. One such area is the definition of the Vertices instances. It’s tedious to 

always have seven lines of code just to define a single textured rectangle. Another area 

we could improve is the manual calculation of texture coordinates for images in a texture 

atlas. Finally, there’s a lot of code involved when we want to render our 2D rectangles 

that’s highly repetitive. I also hinted at a better way of rendering many objects than 

having one draw call per object. We can solve all these issues by introducing a few new 

concepts: 

� Texture regions: We worked with texture regions in the last example. A 

texture region is a rectangular area within a single texture (e.g., the 

area that contains the cannon in our atlas). We want a nice class that 

can encapsulate all the nasty calculations for translating pixel 

coordinates to texture coordinates.  

� Sprites: A sprite is a lot like one of our game objects. It has a position 

(and possibly orientation and scale), as well as a graphical extent. We 

render a sprite via a rectangle, just as we render Bob or the cannon. In 

fact, the graphical representations of Bob and the other objects can 

and should be considered sprites. A sprite also maps to a region in a 

texture. That’s where texture regions come into. While it is tempting to 

combine sprites with game directly, we keep them separated, 

following the Model-View-Controller pattern. This clean seperation 

between graphics and mode code makes for a better design. 

� Sprite batchers: A sprite batcher is responsible for rendering multiple 

sprites in one go. To do this, the sprite batcher needs to know each 

sprite’s position, size, and texture region. The sprite batcher will be our 

magic ingredient to get rid of multiple draw calls and matrix operations 

per object. 

These concepts are highly interconnected; we’ll discuss them next.  

The TextureRegion Class 
Since we’ve worked with texture regions already, it should be straightforward to figure 

out what we need. We know how to convert from pixel coordinates to texture 

coordinates. We want to have a class where we can specify pixel coordinates of an 

image in a texture atlas that then stores the corresponding texture coordinates for the 

atlas region for further processing (e.g., when we want to render a sprite). Without 

further ado, Listing 8–16 shows our TextureRegion class. 
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Listing 8–16. TextureRegion.java: Converting Pixel Coordinates to Texture Coordinates 

package com.badlogic.androidgames.framework.gl; 
 
public class TextureRegion {     
    public final float u1, v1; 
    public final float u2, v2; 
    public final Texture texture; 
     
    public TextureRegion(Texture texture, float x, float y, float width, float height) { 
        this.u1 = x / texture.width; 
        this.v1 = y / texture.height; 
        this.u2 = this.u1 + width / texture.width; 
        this.v2 = this.v1 + height / texture.height;         
        this.texture = texture; 
    } 
} 

The TextureRegion stores the texture coordinates of the top-left corner (u1,v1) and 

bottom-right corner (u2,v2) of the region in texture coordinates. The constructor takes a 

Texture and the top-left corner, as well as the width and height of the region, in pixel 

coordinates. To construct a texture region for the Cannon, we could do this: 

TextureRegion cannonRegion = new TextureRegion(texture, 0, 0, 64, 32); 

Similarly we could construct a region for Bob: 

TextureRegion bobRegion = new TextureRegion(texture, 32, 32, 32, 32); 

And so on and so forth. We could use this in the example code that we’ve already 

created, and use the TextureRegion.u1, v1, u2, and v2 members for specifying the 

texture coordinates of the vertices of our rectangles. But we won’t do that, since we 

want to get rid of these tedious definitions altogether. That’s what we’ll use the sprite 

batcher for.  

The SpriteBatcher Class 
As already discussed, a sprite can be easily defined by its position, size, and texture 

region (and optionally, its rotation and scale). It is simply a graphical rectangle in our 

world space. To make things easier we’ll stick to the conventions of the position being in 

the center of the sprite and the rectangle constructed around that center. Now, we could 

have a Sprite class and use it like this: 

Sprite bobSprite = new Sprite(20, 20, 0.5f, 0.5f, bobRegion); 

That would construct a new sprite with its center at (20,20) in the world, extending 0.25 

meters to each side, and using the bobRegion TextureRegion. But we could do this 

instead: 

spriteBatcher.drawSprite(bob.x, bob.y, BOB_WIDTH, BOB_HEIGHT, bobRegion); 

Now that looks a lot better. We don’t need to construct yet another object to represent 

the graphical side of our object. Instead we draw an instance of Bob on demand. We 

could also have an overloaded method:  
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spriteBatcher.drawSprite(cannon.x, cannon.y, CANNON_WIDTH, CANNON_HEIGHT, cannon.angle, 
cannonRegion); 

That would draw the cannon, rotated by its angle. So how can we implement the sprite 

batcher? Where are the Vertices instances? Let’s think about how the batcher could 

work.  

What is batching anyway? In the graphics community, batching is defined as collapsing 

multiple draw calls into a single draw call. This makes the GPU happy, as discussed in 

the previous chapter. A sprite batcher offers one way to make this happen. Here’s how: 

�  The batcher has a buffer that is empty initially (or becomes empty 

after we signal it to be cleared). That buffer will hold vertices. It is a 

simple float array in our case. 

� Each time we call the SpriteBatcher.drawSprite()�method we add 

four vertices to the buffer, based on the position, size, orientation, and 

texture region that were specified as arguments. This also means that 

we have to manually rotate and translate the vertex positions without 

the help of OpenGL ES. Fear not, though, the code of our Vector2 

class will come in handy here. This is the key to eliminating all the 

draw calls. 

� Once we have specified all the sprites we want to render, we tell the 

sprite batcher to actually submit the vertices for all the rectangles of 

the sprites to the GPU in one go, and then call the actual OpenGL ES 

drawing method to render all the rectangles. For this, we’ll transfer the 

contents of the float array to a Vertices instance and use it to render 

the rectangles.  

NOTE: We can only batch sprites that use the same texture. However, it’s not a huge problem 

since we’ll use texture atlases anyway. 

The usual usage pattern of a sprite batcher looks like this: 

batcher.beginBatch(texture); 
// call batcher.drawSprite() as often as needed, referencing regions in the texture 
batcher.endBatch(); 

The call to SpriteBatcher.beginBatch() will tell the batcher two things: it should clear 

its buffer and use the texture we pass in. We will bind the texture within this method for 

convenience.  

Next we render as many sprites that reference regions within this texture as we need to. 

This will fill the buffer, adding four vertices per sprite. 

The call to SpriteBatcher.endBatch() signals to the sprite batcher that we are done 

rendering the batch of sprites and that it should now upload the vertices to the GPU for 

actual rendering. We are going to use indexed rendering with a Vertices instance, so 

we’ll also need to specify indices, in addition to the vertices in the float array buffer. 

However, since we are always rendering rectangles, we can generate the indices 
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beforehand once in the constructor of the SpriteBatcher. For this we need to know how 

many sprites the batcher should be able to draw maximally per batch. By putting a hard 

limited on the number of sprites that can be rendered per batch, we don’t need to grow 

any arrays of other buffers; we can just allocate these arrays and buffers once in the 

constructor.  

The general mechanics are rather simple. The SpriteBatcher.drawSprite() method may 

seem like a mystery, but it’s not a big problem (if we leave out rotation and scaling for a 

moment). All we need to do is calculate the vertex positions and texture coordinates as 

defined by the parameters. We have done this manually already in previous examples—

for instance, when we defined the rectangles for the cannon, the cannonball, and Bob. 

We’ll do more or less the same in the SpriteBatcher.drawSprite() method, only 

automatically based on the parameters of the method. So let’s check out the 

SpriteBatcher. Listing 8–17 shows the code. 

Listing 8–17. Excerpt from SpriteBatcher.java, Without Rotation and Scaling 

package com.badlogic.androidgames.framework.gl; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import android.util.FloatMath; 
 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
import com.badlogic.androidgames.framework.math.Vector2; 
 
public class SpriteBatcher {         
    final float[] verticesBuffer; 
    int bufferIndex; 
    final Vertices vertices; 
    int numSprites;     

Let’s look at the members first. The member verticesBuffer is the temporary float array 

we store the vertices of the sprites of the current batch in. The member bufferIndex 

indicates where in the float array we should start to write the next vertices. The member 

vertices is the Vertices instance is used to render the batch. It also stores the indices 

we’ll define in a minute. The member numSprites holds the number drawn so far in the 

current batch. 

    public SpriteBatcher(GLGraphics glGraphics, int maxSprites) {                 
        this.verticesBuffer = new float[maxSprites*4*4];         
        this.vertices = new Vertices(glGraphics, maxSprites*4, maxSprites*6, false, 
true); 
        this.bufferIndex = 0; 
        this.numSprites = 0; 
                 
        short[] indices = new short[maxSprites*6]; 
        int len = indices.length; 
        short j = 0; 
        for (int i = 0; i < len; i += 6, j += 4) { 
                indices[i + 0] = (short)(j + 0); 
                indices[i + 1] = (short)(j + 1); 
                indices[i + 2] = (short)(j + 2); 
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                indices[i + 3] = (short)(j + 2); 
                indices[i + 4] = (short)(j + 3); 
                indices[i + 5] = (short)(j + 0); 
        } 
        vertices.setIndices(indices, 0, indices.length);                 
    }        

Moving to the constructor, we see that we have two arguments: the GLGraphics instance 

we need for creating the Vertices instance, and the maximum number of sprites the 

batcher should be able to render in one batch. The first thing we do in the constructor is 

create the float array. We have four vertices per sprite, and each vertex takes up four 

floats (two for the x- and y-coordinates and another two for the texture coordinates). We 

can have maxSprites sprites maximally, so that’s 4 � 4 � maxSprites floats that we need 

for the buffer. Next we create the Vertices instance. We need it to store maxSprites � 4 

vertices and maxSprites � 6 indices at most. We also tell the Vertices instance that we 

have not only positional attributes, but also texture coordinates for each vertex. We then 

initialize the bufferIndex and numSprites members to zero. Then we create the indices 

for our Vertices instance. We need to do this only once, as the indices will never 

change. The first sprite in a batch will always have the indices 0, 1, 2, 2, 3, 0; the next 

sprite will have 4, 5, 6, 6, 7, 4; and so on. We can precompute those and store them in 

the Vertices instance. This way we only need to set them once, instead of once for each 

sprite.  

    public void beginBatch(Texture texture) { 
        texture.bind(); 
        numSprites = 0; 
        bufferIndex = 0; 
    } 

Next up is the�beginBatch() method. It binds the texture and resets the numSprites and 

bufferIndex members so the first sprite’s vertices will get inserted at the front of the 

verticesBuffer float array. 

    public void endBatch() { 
        vertices.setVertices(verticesBuffer, 0, bufferIndex); 
        vertices.bind(); 
        vertices.draw(GL10.GL_TRIANGLES, 0, numSprites * 6); 
        vertices.unbind(); 
    } 

The next method is endBatch(); we’ll call it to finalize and draw the current batch. It first 

transfers the vertices defined for this batch from the float array to the Vertices instance. 

All that’s left is binding the Vertices instance, drawing numSprites � 2 triangles, and 

unbinding the Vertices instance again. Since we use indexed rendering, we specify the 

number of indices to use—which is six indices per sprite times numSprites. That’s all 

there is to rendering. 

    public void drawSprite(float x, float y, float width, float height, TextureRegion 
region) { 
        float halfWidth = width / 2; 
        float halfHeight = height / 2; 
        float x1 = x - halfWidth; 
        float y1 = y - halfHeight; 
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        float x2 = x + halfWidth; 
        float y2 = y + halfHeight; 
         
        verticesBuffer[bufferIndex++] = x1; 
        verticesBuffer[bufferIndex++] = y1; 
        verticesBuffer[bufferIndex++] = region.u1; 
        verticesBuffer[bufferIndex++] = region.v2; 
         
        verticesBuffer[bufferIndex++] = x2; 
        verticesBuffer[bufferIndex++] = y1; 
        verticesBuffer[bufferIndex++] = region.u2; 
        verticesBuffer[bufferIndex++] = region.v2; 
         
        verticesBuffer[bufferIndex++] = x2; 
        verticesBuffer[bufferIndex++] = y2; 
        verticesBuffer[bufferIndex++] = region.u2; 
        verticesBuffer[bufferIndex++] = region.v1; 
         
        verticesBuffer[bufferIndex++] = x1; 
        verticesBuffer[bufferIndex++] = y2; 
        verticesBuffer[bufferIndex++] = region.u1; 
        verticesBuffer[bufferIndex++] = region.v1; 
         
        numSprites++; 
    }  

The next method is the workhorse of the SpriteBatcher. It takes the x- and y-

coordinates of the center of the sprite, its width and height, and the TextureRegion it 

maps to. The method’s responsibility is to add four vertices to the float array starting at 

the current bufferIndex. These four vertices form a texture-mapped rectangle . We 

calculate the position of the bottom-left corner (x1,y1) and the top-right corner (x2,y2), 

and use these four variables to construct the vertices, together with the texture 

coordinates from the TextureRegion. The vertices are added in counterclockwise order, 

starting at the bottom-left vertex. Once they are added to the float array, we increment 

the numSprites counter and wait for either another sprite to be added or for the batch to 

be finalized.  

And that is all there is to do. We just eliminated a lot of drawing methods by simply 

buffering pretransformed vertices in a float array and rendering them in one go. That will 

increase our 2D sprite-rendering performance considerably compared to the method we 

were using before. Fewer OpenGL ES state changes and fewer drawing calls make the 

GPU happy. 

There’s one more thing we need to implement: a SpriteBatcher.drawSprite()�method 

that can draw a rotated sprite All we need to do is construct the four corner vertices 

without adding the position, rotate them around the origin, add the position of the sprite 

so that the vertices are placed in the world space, and then proceed as in the previous 

drawing method. We could use Vector2.rotate() for this, but that would mean some 

functional overhead. We therefore reproduce the code in Vector2.rotate() and optimize 

where possible. The final method of the SpriteBatcher looks like Listing 8–18.  
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Listing 8–18. The Rest of SpriteBatcher.java: A Method to Draw Rotated Sprites 

    public void drawSprite(float x, float y, float width, float height, float angle, 
TextureRegion region) { 
        float halfWidth = width / 2; 
        float halfHeight = height / 2; 
         
        float rad = angle * Vector2.TO_RADIANS; 
        float cos = FloatMath.cos(rad); 
        float sin = FloatMath.sin(rad); 
                 
        float x1 = -halfWidth * cos - (-halfHeight) * sin; 
        float y1 = -halfWidth * sin + (-halfHeight) * cos; 
        float x2 = halfWidth * cos - (-halfHeight) * sin; 
        float y2 = halfWidth * sin + (-halfHeight) * cos; 
        float x3 = halfWidth * cos - halfHeight * sin; 
        float y3 = halfWidth * sin + halfHeight * cos; 
        float x4 = -halfWidth * cos - halfHeight * sin; 
        float y4 = -halfWidth * sin + halfHeight * cos; 
         
        x1 += x; 
        y1 += y; 
        x2 += x; 
        y2 += y; 
        x3 += x; 
        y3 += y; 
        x4 += x; 
        y4 += y; 
         
        verticesBuffer[bufferIndex++] = x1; 
        verticesBuffer[bufferIndex++] = y1; 
        verticesBuffer[bufferIndex++] = region.u1; 
        verticesBuffer[bufferIndex++] = region.v2; 
         
        verticesBuffer[bufferIndex++] = x2; 
        verticesBuffer[bufferIndex++] = y2; 
        verticesBuffer[bufferIndex++] = region.u2; 
        verticesBuffer[bufferIndex++] = region.v2; 
         
        verticesBuffer[bufferIndex++] = x3; 
        verticesBuffer[bufferIndex++] = y3; 
        verticesBuffer[bufferIndex++] = region.u2; 
        verticesBuffer[bufferIndex++] = region.v1; 
         
        verticesBuffer[bufferIndex++] = x4; 
        verticesBuffer[bufferIndex++] = y4; 
        verticesBuffer[bufferIndex++] = region.u1; 
        verticesBuffer[bufferIndex++] = region.v1; 
         
        numSprites++; 
    } 
} 

We do the same as in the simpler drawing method, except that we construct all four 

corner points instead of only the two opposite ones. This is needed for the rotation. The 

rest is the same as before.  
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What about scaling? We do not explicitly need another method, since scaling a sprite 

only requires scaling its width and height. We can do that outside the two drawing 

methods, so there’s no need to have another bunch of methods for scaled drawing of 

sprites.  

And that’s the big secret behind lighting-fast sprite rendering with OpenGL ES.  

Using the SpriteBatcher Class 
Let’s incorporate the TextureRegion and SpriteBatcher classes in our cannon example. 

I copied the TextureAtlas example and renamed it SpriteBatcherTest. The classes 

contained in it are called SpriteBatcherTest and SpriteBatcherScreen.  

The first thing I did was get rid of the Vertices members in the screen class. We don’t 

need them anymore, since the SpriteBatcher will do all the dirty work for us. Instead I 

added the following members: 

TextureRegion cannonRegion; 
TextureRegion ballRegion; 
TextureRegion bobRegion; 
SpriteBatcher batcher; 

We now have a TextureRegion for each of the three objects in our atlas, as well as a 

SpriteBatcher.  

Next I modified the constructor of the screen. I got rid of all the Vertices instantiation 

and initialization code, and replaced it with a single line of code: 

batcher = new SpriteBatcher(glGraphics, 100); 

That will set out batcher member to a fresh SpriteBatcher instance that can render 100 

sprites in one batch.  

The TextureRegions get initialized in the resume()�method, as they depend on the 

Texture: 

@Override 
public void resume() { 
    texture = new Texture(((GLGame)game), "atlas.png"); 
    cannonRegion = new TextureRegion(texture, 0, 0, 64, 32); 
    ballRegion = new TextureRegion(texture, 0, 32, 16, 16); 
    bobRegion = new TextureRegion(texture, 32, 32, 32, 32); 
} 

No surprises there. The last thing we need to change is the present()�method. You’ll be 

surprised how clean it’s looking now. Here it is: 

@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL(); 
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
    camera.setViewportAndMatrices(); 
     
    gl.glEnable(GL10.GL_BLEND); 
    gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); 
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    gl.glEnable(GL10.GL_TEXTURE_2D); 
     
    batcher.beginBatch(texture); 
     
    int len = targets.size(); 
    for(int i = 0; i < len; i++) {                
        GameObject target = targets.get(i); 
        batcher.drawSprite(target.position.x, target.position.y, 0.5f, 0.5f, bobRegion);                 
    } 
                 
    batcher.drawSprite(ball.position.x, ball.position.y, 0.2f, 0.2f, ballRegion); 
    batcher.drawSprite(cannon.position.x, cannon.position.y, 1, 0.5f, cannon.angle, 
cannonRegion);             
    batcher.endBatch(); 
} 

That is super sweet. The only OpenGL ES calls we issue now are for clearing the screen, 

enabling blending and texturing, and setting the blend function. The rest is pure 

SpriteBatcher and Camera2D goodness. Since all our objects share the same texture 

atlas, we can render them in a single batch. We call�batcher.beginBatch() with the atlas 

texture, render all the Bob targets using the simple drawing method, render the ball 

(again with the simple drawing method), and finally render the cannon using the drawing 

method that can rotate a sprite. We end the method by calling batcher.endBatch(), 

which will actually transfer the geometry of our sprites to the GPU and render 

everything. 

Measuring Performance 
So how much faster is the SpriteBatcher method than the method we used in BobTest? 

I added an FPSCounter to the code and timed it on a Hero, a Droid, and a Nexus One, as 

we did in the case of BobTest. I also increased the number of targets to 100 and set the 

maximum number of sprites the SpriteBatcher can render to 102, since we render 100 

targets, 1 ball, and 1 cannon. Here are the results: 

Hero (1.5): 
12-27 23:51:09.400: DEBUG/FPSCounter(2169): fps: 31 
12-27 23:51:10.440: DEBUG/FPSCounter(2169): fps: 31 
12-27 23:51:11.470: DEBUG/FPSCounter(2169): fps: 32 
12-27 23:51:12.500: DEBUG/FPSCounter(2169): fps: 32 
 
Droid (2.1.1): 
12-27 23:50:23.416: DEBUG/FPSCounter(8145): fps: 56 
12-27 23:50:24.448: DEBUG/FPSCounter(8145): fps: 56 
12-27 23:50:25.456: DEBUG/FPSCounter(8145): fps: 56 
12-27 23:50:26.456: DEBUG/FPSCounter(8145): fps: 55 
 
Nexus One (2.2.1): 
12-27 23:46:57.162: DEBUG/FPSCounter(754): fps: 61 
12-27 23:46:58.171: DEBUG/FPSCounter(754): fps: 61 
12-27 23:46:59.181: DEBUG/FPSCounter(754): fps: 61 
12-27 23:47:00.181: DEBUG/FPSCounter(754): fps: 60 

Before we come to any conclusions, let’s test the old method as well. Since our example 

is not equivalent to the old BobTest, I also modified the TextureAtlasTest, which is the 



CHAPTER 8:  2D Game Programming Tricks 420 

same as our current example—the only difference being that it uses the old BobTest 

method for rendering. Here are the results: 

Hero (1.5): 
12-27 23:53:45.950: DEBUG/FPSCounter(2303): fps: 46 
12-27 23:53:46.720: DEBUG/dalvikvm(2303): GC freed 21811 objects / 524280 bytes in 135ms 
12-27 23:53:46.970: DEBUG/FPSCounter(2303): fps: 40 
12-27 23:53:47.980: DEBUG/FPSCounter(2303): fps: 46 
12-27 23:53:48.990: DEBUG/FPSCounter(2303): fps: 46 
 
Droid (2.1.1): 
12-28 00:03:13.004: DEBUG/FPSCounter(8277): fps: 52 
12-28 00:03:14.004: DEBUG/FPSCounter(8277): fps: 52 
12-28 00:03:15.027: DEBUG/FPSCounter(8277): fps: 53 
12-28 00:03:16.027: DEBUG/FPSCounter(8277): fps: 53 
 
Nexus One (2.2.1): 
12-27 23:56:09.591: DEBUG/FPSCounter(873): fps: 61 
12-27 23:56:10.591: DEBUG/FPSCounter(873): fps: 60 
12-27 23:56:11.601: DEBUG/FPSCounter(873): fps: 61 
12-27 23:56:12.601: DEBUG/FPSCounter(873): fps: 60 
 

The Hero performs a lot worse with our new SpriteBatcher method as compared to the 

old way of using glTranslate()�and similar methods. The Droid actually benefits from 

the new SpriteBatcher method, and the Nexus One doesn’t really care what we use. If 

we’d increased the number of targets by another 100, you’d see that the SpriteBatcher 

method would also be faster on the Nexus One. 

So what’s up with the Hero? The problem in BobTest was that we called too many 

OpenGL ES methods, so why is it performing worse now that we’re fewer OpenGL ES 

method calls? 

Working Around a Bug in FloatBuffer 
The reason for this isn’t obvious at all. Our SpriteBatcher puts a float array into a direct 

ByteBuffer each frame when we call Vertices.setVertices(). The method boils down 

to calling FloatBuffer.put(float[]), and that’s the culprit of our performance hit here. 

While desktop Java implements that FloatBuffer method via a real bulk memory move, 

the Harmony version calls�FloatBuffer.put(float) for each element in the array. And 

that’s extremely unfortunate, as that method is a JNI method, which has a lot of 

overhead (much like the OpenGL ES methods, which are also JNI methods).  

There are a couple of solutions. IntBuffer.put(int[]) does not suffer from this 

problem, for example. We could replace the FloatBuffer in our Vertices class with an 

IntBuffer and modify�Vertices.setVertices() so that it first transfers the floats from 

the float array to a temporary int array and then copies the contents of that int array to 

the IntBuffer. This solution was proposed by Ryan McNally, a fellow game developer, 

who also reported the bug on the Android bug tracker. It produces a five-times 

performance increase on the Hero, and a little less on other Android devices. 
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I modified the Vertices class to include this fix. For this I changed the vertices member 

to be an IntBuffer. I also added a new member called tmpBuffer, which is an int[] 

array. The tmpBuffer array is initialized in the constructor of Vertices as follows: 

this.tmpBuffer = new int[maxVertices * vertexSize / 4]; 

We also get an IntBuffer view from the ByteBuffer in the constructor instead of a 

FloatBuffer: 

vertices = buffer.asIntBuffer(); 

And the Vertices.setVertices() method looks like this now: 

public void setVertices(float[] vertices, int offset, int length) { 
    this.vertices.clear(); 
    int len = offset + length; 
    for(int i=offset, j=0; i < len; i++, j++)  
        tmpBuffer[j] = Float.floatToRawIntBits(vertices[i]); 
    this.vertices.put(tmpBuffer, 0, length); 
    this.vertices.flip(); 
} 

So, all we do is first transfer the contents of the vertices parameter to the tmpBuffer. 

The static method�Float.floatToRawIntBits() reinterprets the bit pattern of a float as 

an int. We then just need to copy the contents of the int array to the IntBuffer, formerly 

known as a FloatBuffer. Does it improve performance? Running the SpriteBatcherTest 

produces the following output now on the Hero, Droid, and Nexus One: 

Hero (1.5): 
12-28 00:24:54.770: DEBUG/FPSCounter(2538): fps: 61 
12-28 00:24:54.770: DEBUG/FPSCounter(2538): fps: 61 
12-28 00:24:55.790: DEBUG/FPSCounter(2538): fps: 62 
12-28 00:24:55.790: DEBUG/FPSCounter(2538): fps: 62 
 
Droid (2.1.1): 
12-28 00:35:48.242: DEBUG/FPSCounter(1681): fps: 61 
12-28 00:35:49.258: DEBUG/FPSCounter(1681): fps: 62 
12-28 00:35:50.258: DEBUG/FPSCounter(1681): fps: 60 
12-28 00:35:51.266: DEBUG/FPSCounter(1681): fps: 59 
 
Nexus One (2.2.1): 
12-28 00:27:39.642: DEBUG/FPSCounter(1006): fps: 61 
12-28 00:27:40.652: DEBUG/FPSCounter(1006): fps: 61 
12-28 00:27:41.662: DEBUG/FPSCounter(1006): fps: 61 
12-28 00:27:42.662: DEBUG/FPSCounter(1006): fps: 61 

Yes, I double-checked; this is not a typo. The Hero really achieves 60 FPS now. A 

workaround consisting of five lines of code increases our performance by 50 percent. 

The Droid also benefited from this fix a little.  

The problem is fixed in the latest release of Android version 2.3. However, it will be quite 

some time before most phones run this version, so we should keep this workaround for 

the time being.  
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NOTE: There’s another, even faster workaround. It involves a custom JNI method that does the 
memory move in native code. You can find it if you search for the “Android Game Development 
Wiki” on the Net. I use this most of the time instead of the pure Java workaround. However, 

including JNI methods is a bit more complex, which is why I described the pure-Java 

workaround here. 

Sprite Animation 
If you’ve ever played a 2D video game, you know that we are still missing one vital 

component: sprite animation. The animation consists of so-called keyframes, which 

produce the illusion of movement. Figure 8–25 shows a nice animated sprite by Ari 

Feldmann (part of his royalty-free SpriteLib). 

 

Figure 8–25. A walking caveman, by Ari Feldmann (grid not in original) 

The image is 256�64 pixels in size, and each keyframe is 64�64 pixels. To produce 

animation, we just draw a sprite using the first keyframe for some amount of time—say, 

0.25 seconds—then we switch to the next keyframe, and so on. When we reach the last 

frame we have two options: we can stay at the last keyframe or start at the beginning 

again (and perform what is called a looping animation). 

We can easily do this with our TextureRegion and SpriteBatcher classes. Usually we’d 

not only have a single animation like in Figure 8–25, but many more in a single atlas. 

Besides the walk animation, we could have a jump animation, an attack animation, and 

so on. For each animation we need to know the frame duration, which tells us how long 

we keep using a single keyframe of the animation before we switch to the next frame.  
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The Animation Class 
From this we can define the requirements for an Animation class, which stores the data 

for a single animation, such as the walk animation in Figure 8–25: 

� An Animation holds a number of TextureRegions, which store where in 

the texture atlas each keyframe is located. The order of the 

TextureRegions is the same as that used for playing back the 

animation. 

� The Animation also stores the frame duration that has to pass before 

we switch to the next frame.  

� The Animation should provide us with a method to which we pass the 

time we’ve been in the state that the Animation represents (e.g., 

walking left), and that will return the appropriate TextureRegion. The 

method should take into consideration whether we want the Animation 

to loop or to stay at the last frame when the end is reached.  

This last bullet point is important because it allows us to store a single Animation 

instance to be used by multiple objects in our world. An object just keeps track of its 

current state (e.g., whether it is walking, shooting, or jumping, and how long it has been 

in that state). When we render this object, we use the state to select the animation we 

want to play back, and the state time to get the correct TextureRegion from the 

Animation. Listing 8–19 shows the code of our new Animation class. 

Listing 8–19. Animation.java, a Simple Animation Class 

package com.badlogic.androidgames.framework.gl; 
 
public class Animation { 
    public static final int ANIMATION_LOOPING = 0; 
    public static final int ANIMATION_NONLOOPING = 1; 
     
    final TextureRegion[] keyFrames; 
    final float frameDuration; 
     
    public Animation(float frameDuration, TextureRegion ... keyFrames) { 
        this.frameDuration = frameDuration; 
        this.keyFrames = keyFrames; 
    } 
     
    public TextureRegion getKeyFrame(float stateTime, int mode) { 
        int frameNumber = (int)(stateTime / frameDuration); 
         
        if(mode == ANIMATION_NONLOOPING) { 
            frameNumber = Math.min(keyFrames.length-1, frameNumber);             
        } else { 
            frameNumber = frameNumber % keyFrames.length; 
        } 
        return keyFrames[frameNumber]; 
    } 
} 



CHAPTER 8:  2D Game Programming Tricks 424 

We first define two constants to be used with the getKeyFrame()�method. The first one 

says the animation should be looping, and the other one says that is should stop at the 

last frame.  

Next we define two members: an array holding the TextureRegions and a float storing 

the frame duration. 

We pass the frame duration and the TextureRegions that hold the keyframes to the 

constructor, which simply stores them. We could make a defensive copy of the 

keyFrames array, but that would allocate a new object, which would make the garbage 

collector a little mad. 

The interesting piece is the getKeyFrame()�method. We pass in the time that the object 

has been in the state that the animation represents, as well as the mode, either 

Animation.ANIMATION_LOOPING or Animation.NON_LOOPING. We first calculate how many 

frames have already been played for the given state based on the stateTime. In case the 

animation shouldn’t be looping, we simply clamp the frameNumber to the last element in 

the TextureRegion array. Otherwise, we take the modulus, which will automatically 

create the looping effect we desire (e.g., 4 % 3 = 1). All that’s left is returning the proper 

TextureRegion. 

An Example 
Let’s create an example called AnimationTest with a corresponding screen called 

AnimationScreen. As always we’ll only discuss the screen itself.  

We want to render a number of cavemen, all walking to the left. Our world will be the 

same size as our view frustum, which has the size 4.8�3.2 meters (this is really arbitrary; 

we could use any size). A caveman is a DynamicGameObject with a size of 1�1 meters. 

We will derive from DynamicGameObject and create a new class called Caveman, which will 

store an additional member that keeps track of how long the caveman has been walking 

already. Each caveman will move 0.5 m/s either to the left or to the right. We’ll also add 

an update() method to the Caveman class to update the caveman’s position based on 

the delta time and his velocity. If a caveman reaches the left or right edge of our world, 

we set him to the other side of the world. We’ll use the image in Figure 8–25 and create 

TextureRegions and an Animation instance accordingly. For rendering we’ll use a 

Camera2D instance and a SpriteBatcher because they are fancy. Listing 8–20 shows the 

code of the Caveman class. 

Listing 8–20. Excerpt from AnimationTest, Showing the Inner Caveman Class. 

static final float WORLD_WIDTH = 4.8f; 
static final float WORLD_HEIGHT = 3.2f; 
     
static class Caveman extends DynamicGameObject { 
    public float walkingTime = 0; 
     
    public Caveman(float x, float y, float width, float height) { 
        super(x, y, width, height); 
        this.position.set((float)Math.random() * WORLD_WIDTH, 
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                          (float)Math.random() * WORLD_HEIGHT); 
        this.velocity.set(Math.random() > 0.5f?-0.5f:0.5f, 0); 
        this.walkingTime = (float)Math.random() * 10; 
    }         
     
    public void update(float deltaTime) { 
        position.add(velocity.x * deltaTime, velocity.y * deltaTime); 
        if(position.x < 0) position.x = WORLD_WIDTH; 
        if(position.x > WORLD_WIDTH) position.x = 0; 
        walkingTime += deltaTime; 
    } 
} 

The two constants WORLD_WIDTH and WORLD_HEIGHT are part of the enclosing 

AnimationTest class and are used by the inner classes. Our world is 4.8�3.2 meters in 

size.  

Next up is the inner Caveman class, which extends DynamicGameObject, since we will 

move cavemen based on velocity. We define an additional member that keeps track of 

how long the caveman is walking already. In the constructor we place the caveman at a 

random position and let him either walk left or right. We also initialize the walkingTime 

member to a number between 0 and 10; this way our cavemen won’t walk in sync. 

The update() method advances the caveman based on his velocity and the delta time. 

In case he leaves the world, we reset him to either the left or right edge. We also add the 

delta time to the walkingTime to keep track of how long he’s been walking.  

Listing 8–21 shows the AnimationScreen class. 

Listing 8–21. Excerpt from AnimationTest.java: The AnimationScreen Class 

class AnimationScreen extends Screen { 
    static final int NUM_CAVEMEN = 10; 
    GLGraphics glGraphics; 
    Caveman[] cavemen; 
    SpriteBatcher batcher; 
    Camera2D camera; 
    Texture texture; 
    Animation walkAnim; 

Our screen class has the usual suspects as members. We have a GLGraphics instance, a 

Caveman array, a SpriteBatcher, a Camera2D, the Texture containing the walking 

keyframes, and an Animation instance. 

    public AnimationScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame)game).getGLGraphics(); 
        cavemen = new Caveman[NUM_CAVEMEN]; 
        for(int i = 0; i < NUM_CAVEMEN; i++) { 
            cavemen[i] = new Caveman((float)Math.random(), (float)Math.random(), 1, 1); 
        } 
        batcher = new SpriteBatcher(glGraphics, NUM_CAVEMEN); 
        camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT); 
    } 
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In the constructor we create the Caveman instances, as well as the SpriteBatcher and 

Camera2D. 

    @Override 
    public void resume() { 
        texture = new Texture(((GLGame)game), "walkanim.png"); 
        walkAnim = new Animation( 0.2f, 
                                  new TextureRegion(texture, 0, 0, 64, 64), 
                                  new TextureRegion(texture, 64, 0, 64, 64), 
                                  new TextureRegion(texture, 128, 0, 64, 64), 
                                  new TextureRegion(texture, 192, 0, 64, 64)); 
    } 

In the resume() method we load the texture atlas containing the animation keyframes 

from the asset file walkanim.png, which is the same as in Figure 8–25. Afterward, we 

create the Animation instance, setting the frame duration to 0.2 seconds and passing in 

a TextureRegion for each of the keyframes in the texture atlas. 

    @Override 
    public void update(float deltaTime) { 
        int len = cavemen.length; 
        for(int i = 0; i < len; i++) { 
            cavemen[i].update(deltaTime); 
        } 
    } 

The�update()�method just loops over all Caveman instances and calls their 

Caveman.update() method with the current delta time. This will make the cavemen move 

and update their walking times.  

    @Override 
    public void present(float deltaTime) { 
        GL10 gl = glGraphics.getGL(); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        camera.setViewportAndMatrices(); 
         
        gl.glEnable(GL10.GL_BLEND); 
        gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); 
        gl.glEnable(GL10.GL_TEXTURE_2D); 
         
        batcher.beginBatch(texture); 
        int len = cavemen.length; 
        for(int i = 0; i < len; i++) { 
            Caveman caveman = cavemen[i]; 
            TextureRegion keyFrame = walkAnim.getKeyFrame(caveman.walkingTime, 
Animation.ANIMATION_LOOPING); 
            batcher.drawSprite(caveman.position.x, caveman.position.y, 
caveman.velocity.x < 0?1:-1, 1, keyFrame); 
        } 
        batcher.endBatch(); 
    } 
 
    @Override 
    public void pause() { 
    }        
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    @Override 
    public void dispose() { 
    }         
} 

Finally we have the present()�method. We start off by clearing the screen and setting 

the viewport and projection matrix via our camera. Next we enable blending and texture 

mapping, and set the blend function. We start rendering by telling the sprite batcher that 

we want to start a new batch using the animation texture atlas. Next we loop through all 

the cavemen and render them. For each caveman we first fetch the correct keyframe 

from the Animation instance based on the caveman’s walking time. We specify that the 

animation should be looping. Then we draw the caveman with the correct texture region 

at his position.  

But what do we do with the width parameter here? Remember that our animation 

texture only contains keyframes for the “walk left” animation. We want to flip the texture 

horizontally in case the caveman is walking to the right, which we can do by simply 

specifying a negative width. If you don’t trust me, go back to the SpriteBatcher code 

and check whether this works. We essentially flip the rectangle of the sprite by 

specifying a negative width. We could do the same vertically as well by specifying a 

negative height. 

Figure 8–26 shows our walking cavemen. 

 

Figure 8–26. Cavemen walking 

And that is all there is to know to produce a nice 2D game with OpenGL ES. Note how 

we still separate the game logic and the presentation from each other. A caveman does 

not need to know that he is actually being rendered. He therefore doesn’t keep any 
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rendering-related members, such as an Animation instance or a Texture. All we need to 

do is keep track of the state of the caveman and how long he’s been in that state. 

Together with his position and size, we can then render him easily by using our little 

helper classes.  

Summary 
You should now be well equipped to create almost any 2D game you want. We 

discussed vectors and how to work with them, resulting in a nice, reusable Vector2 

class. We also looked into basic physics for creating things like ballistic cannonballs. 

Collision detection is also a vital part of most games, and you should now know how to 

do it correctly and efficiently via a SpatialHashGrid. We explored a way to keep our 

game logic and objects separated from the rendering by creating GameObject and 

DynamicGameObject classes that keep track of the state and shape of objects. We 

covered how easy it is to implement the concept of a 2D camera via OpenGL ES, all 

based on a single method called glOrthof(). We discussed texture atlases, why we 

need them, and how we can use them. We expanded on the concept by introducing 

texture regions, sprites, and how we can render them efficiently via a SpriteBatcher. 

Finally we looked into sprite animation, which turns out to be extremely simple to 

implement.  

In the next chapter, we’ll create a new game with all the new tools we have. You’ll be 

surprised how easy that will be. 
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