

351

351

 Chapter

2D Game Programming
Tricks
Chapter 7 demonstrated that OpenGL ES offers us quite a lot of features to exploit for

2D graphics programming, such as easy rotation and scaling, and automatic stretching

of our view frustum to the viewport. It also offers performance benefits over using the

Canvas.

Now it’s time to look at some of the more advanced topics of 2D game programming.

Some of these concepts we used intuitively when we wrote Mr. Nom, including time-

based state updates and image atlases. A lot of what’s to come is indeed very intuitive

as well, and chances are high that you’d have come up with the same solution sooner or

later. But it doesn’t hurt to learn about these things explicitly.

We will look at a handful of crucial concepts for 2D game programming. Some of them

will be graphics related, and others will deal with how we represent and simulate our

game world. All of these have one thing in common: they rely on a little linear algebra

and trigonometry. Fear not, the level of math we need to write games like Super Mario

Brothers is not exactly mind blowing. Let’s begin by reviewing some concepts of 2D

linear algebra and trigonometry.

Before We Begin
As with the previous “theoretical” chapters, we are going to create a couple of examples

to get a feel for what’s happening. For this chapter we’ll reuse what we developed in the

last chapter, mainly the GLGame, GLGraphics, Texture, and Vertices classes, along with

the rest of the framework classes.

Our demo project consists of a starter called GameDev2DStarter, which presents a list of

tests to run. We can reuse the code of the GLBasicsStarter and simply replace the class

names of the tests. We also have to add each of the tests to the manifest in the form of

<activity> elements.

8

M. Zechner, Beginning Android Games

© Mario Zechner 2011

CHAPTER 8: 2D Game Programming Tricks 352

Each of the tests is again an instance of the Game interface, and the actual test logic is

implemented in the form of a Screen contained in the Game implementation of the test, as

in the previous chapter. I will only present the relevant portions of the Screen to

conserve some pages. The naming conventions are again�XXXTest and XXXScreen for the

GLGame and Screen implementation of each test.

With that out of our way, let’s talk about vectors.

In the Beginning There Was the Vector
In the last chapter I told you that vectors shouldn’t be mixed up with positions. This is

not entirely true, as we can (and will) represent a position in some space via a vector. A

vector can actually have many interpretations:

� Position: We already used this in the previous chapters to encode the

coordinates of our entities relative to the origin of the coordinate

system.

� Velocity and acceleration: These are physical quantities we’ll talk about

in the next section. While we are used to thinking about velocity and

acceleration as being a single value, they should actually be

represented as 2D or 3D vectors. They encode not only the speed of

an entity (e.g., a car driving at 100 kilometers per hour), but also the

direction the entity is traveling in. Note that this kind of vector

interpretation does not state that the vector is given relative to the

origin. This makes sense since the velocity and direction of a car is

independent of its position. Think of a car traveling northwest on a

straight highway at 100 kilometers per hour. As long as its speed and

direction don’t change, the velocity vector won’t change either.

� Directions and distances: Directions are similar to velocities but lack

physical quantities in general. We can use such a vector interpretation

to encode states such as this entity is pointing southeast. Distances

just tell us the how far away and in what direction a position is from

another position.

Figure 8–1 shows these interpretations in action.

Figure 8–1. Bob, with position, velocity, direction, and distance expressed as vectors

CHAPTER 8: 2D Game Programming Tricks 353

Figure 8–1 is of course not exhaustive. Vectors can have a lot more interpretations. For

our game development needs, however, these four basic interpretations suffice.

One thing that’s left out from Figure 8–1 is what units the vector components have. We

always have to make sure that those are sensible (e.g., Bob’s velocity could be in meters

per second, so he travels 2 meters to the left and 3 meters up in 1 second). The same is

true for positions and distances, which we could also express in meters, for example.

The direction of Bob is a special case, though—it is unitless. This will come in handy if

we want to specify the general direction of an object while keeping the direction’s

physical features separate. We could do this for the velocity of Bob, storing the direction

of his velocity as a direction vector and his speed as a single value. Single values are

also known as scalars. For this, the direction vector must be of length 1, as we’ll discuss

later on.

Working with Vectors
The power of vectors stems from the fact that we can easily manipulate and combine

them. Before we can do that, though, we need to define how we represent vectors:

v = (x,y)

Now, that wasn’t a big surprise; we’ve done that a gazillion times already. Every vector

has an x and a y component in our 2D space (yes, we’ll be staying in two dimensions in

this chapter). We can also add two vectors:

c = a + b = (a.x, a.y) + (b.x, b.y) = (a.x + b.x, a.y + b.y)

All we need to do is add the components together to arrive at the final vector. Try it out

with the vectors given in Figure 8–1. Say we take Bob’s position, p = (3,2), and add his

velocity, v = (–2,3). We arrive at a new position, p' = (3 + –2, 2 + 3) = (1,5). Don’t get

confused by the apostrophe behind the p here, it’s just there to denote that we have a

new vector p. Of course, this little operation only makes sense when the units of the

position and velocity fit together. In this case we assume the position is given in meters

(m) and the velocity is given in meters per second (m/s), which fits perfectly fine.

Of course, we can also subtract vectors:

c = a – b = (a.x, a.y) – (b.x, b.y) = (a.x – b.x, a.y – b.y)

Again, all we do is combine the components of the two vectors. Note, however, that the

order in which we subtract one vector from the other is important. Take the rightmost

image in Figure 8–1, for example. We have a green Bob at pg = (1,4) and a red Bob at pr

= (6,1), where pg and pr stand for position green and red respectively.. When we take

the distance vector from green Bob to red Bob, we calculate the following:

d = pg – pr = (1, 4) – (6, 1) = (-5, 3)

Now that is strange. That vector is actually pointing from red Bob to green Bob! To get

the direction vector from green Bob to red Bob, we have to reverse the order of

subtraction:

d = pr – pg = (6, 1) – (1, 4) = (5, -3)

CHAPTER 8: 2D Game Programming Tricks 354

If we want to find the distance vector from a position a to a position b, we use the

following general formula:

d = b – a

In other words, we always subtract the start position from the end position. That’s a little

confusing at first, but if you think about it, it makes absolute sense. Try it out on some

graph paper!

We can also multiply a vector by a scalar (remember, a scalar is just a single value):

a' = a * scalar = (a.x * scalar, a.y * scalar)

We multiply each of the components of the vector by the scalar. This allows us to scale

the length of a vector. Take the direction vector in Figure 8–1 as an example. It’s

specified as d = (0,–1). If we multiply it with the scalar�s = 2, we effectively double its

length: d � s = (0,–1 � 2) = (0,–2). We can of course make it smaller as well, by using a

scalar less than 1—for example, d multiplied by s = 0.5 creates a new vector d' = (0,–

0.5).

Speaking of length, we can also calculate the length of a vector (in the units it’s given in):

|a| = sqrt(a.x*a.x + a.y*a.y)

The |a| notation just tells us that this represents the length of the vector. If you didn’t

sleep through your linear algebra class at school, you might recognize the formula for

the vector length. It’s the Pythagorean theorem applied to our fancy 2D vector. The x

and y components of the vector form two sides of a right triangle, and the third side is

the length of the vector. Figure 8–2 illustrates this.

Figure 8–2. Pythagoras would love vectors too

The vector length is always positive or zero, given the properties of the square root. If

we apply this to the distance vector between the red and green Bob, we can figure out

that they are

CHAPTER 8: 2D Game Programming Tricks 355

|pr – pg| = sqrt(5*5 + -3*-3) = sqrt(25 + 9) = sqrt(34) ~= 5.83m

apart from each other (if their positions are given in meters). Note that if we calculated

|pg – pr|, we’d arrive at the same value, as the length is independent of the direction of

the vector. This new knowledge also has another implication: when we multiply a vector

with a scalar, its length changes accordingly. Given a vector d = (0,–1) with an original

length of 1 unit, we can multiply it by 2.5 and arrive at a new vector with a length of 2.5

units.

We discussed that direction vectors usually don’t have any units associated with them.

We can make them have a unit by multiplying them with a scalar—for example, we can

multiply a direction vector d = (0,1) with a speed constant s = 100 m/s to get a velocity

vector v = (0 � 100,1 � 100) = (0,100). It’s therefore always a good idea to let our

direction vectors have a length of 1. Vectors with a length of 1 are called unit vectors.

We can make any vector a unit vector by dividing each of its components by its length:

d' = (d.x/|d|, d.y/|d|)

Remember that |d| just means the length of the vector d. Let’s try it out. Say we want a

direction vector that points exactly northeast: d = (1,1). It might seem that this vector is

already unit length, as both components are 1, right? Wrong:

|d| = sqrt(1*1 + 1*1) = sqrt(2) ~= 1.44

We can easily fix that by making the vector a unit vector:

d' = (d.x/|d|, d.y/|d|) = (1/|d|, 1/|d|) ~= (1/1.44, 1/1.44) = (0.69, 0.69)

This is also called normalizing a vector, which just means that we make it have a length

of 1. With this little trick we can create a unit-length direction vector out of a distance

vector, for example. Of course, we have to watch out for zero-length vectors, as we’d

have division by zero in that case!

A Little Trigonometry
Let’s turn to trigonometry for a minute. There are two essential functions in trigonometry:

cosine and sine. Each takes a single argument: an angle. We are used to specifying

angles in degrees (e.g., 45° or 360°). In most math libraries, trigonometry functions

expect the angle in radians, though. We can easily convert between degrees and radians

with the following equations:

degreesToRadians(angleInDegrees) = angleInDegrees / 180 * pi
radiansToDegrees(angle) = angleInRadians / pi * 180

Here, pi is our beloved superconstant, with an approximate value of 3.14159265. pi

radians equal 180 degrees, so that’s how the preceding functions come to be.

So what do cosine and sine actually calculate given an angle? They calculate the x and y

components of a unit-length vector relative to the origin. Figure 8–3 illustrates this.

CHAPTER 8: 2D Game Programming Tricks 356

Figure 8–3. Cosine and sine produce a unit vector with its endpoint lying on the unit circle

Given an angle, we can therefore easily create a unit-length direction vector like this:

v = (cos(angle), sin(angle))

We can go the other way around as well, and calculate the angle of a vector with

respect to the x-axis:

angle = atan2(v.y, v.x)

The atan2 function is actually an artificial construct. It uses the arcus tangent function

(which is the inverse of the tangent function, which is another fundamental function in

trigonometry) to construct an angle in the range of –180 degrees to 180 degrees (or –pi to

pi, if the angle is returned in radians). The internals are a little involved and do not matter

all that much for our discussion. The arguments are the y and x components of our vector.

Note that the vector does not have to be a unit vector for the atan2 function to work. Also

note that the y component is most often given first, and then the x component—but this

depends on the math library we use. This is a common source for errors.

Let’s try a few examples. Given a vector v = (cos(97°),sin(97°)), the result of

atan2(sin(97°),cos(97°)) is 97°. Great, that was easy. Using a vector v = (1,–1), we get

atan2(–1,1) = –45°. So if our vector’s y component is negative, we’ll get a negative angle

in the range 0° to –180°. We can fix this by adding 360° (or 2pi) if the output of atan2 is

negative. In the preceding example, we’d then get 315°.

The final operation we want to be able to apply to our vectors is rotating them by some

angle. The derivation of the equations that follow are again a little involved. Luckily we

can just use them as is without knowing about orthogonal base vectors (hint: that’s the

key phrase to search for on the Web if you want to know what’s going on under the

hood). Here’s the magical pseudocode:

v.x' = cos(angle) * v.x - sin(angle) * v.y
v.y' = sin(angle) * v.x + cos(angle) * v.y

Woah, that was less complicated then expected. This will rotate any vector

counterclockwise around the origin, no matter what interpretation we have of the vector.

CHAPTER 8: 2D Game Programming Tricks 357

Together with vector addition, subtraction, and multiplication by a scalar, we can

actually implement all the OpenGL matrix operations ourselves. This is one part of the

solution to further increase the performance of our BobTest in the last chapter. We’ll talk

about this in one of the following sections. For now, let’s concentrate on what we

discussed and transfer it to code.

Implementing a Vector Class
We want to create an easy-to-use vector class for 2D vectors. Let’s call it Vector2. It

should have two members, for holding the x and y components of the vector.

Additionally it should have a couple of nice methods that allow us to the following:

� Add and subtract vectors

� Multiply the vector components with a scalar

� Measure the length of a vector

� Normalize a vector

� Calculate the angle between a vector and the x-axis

� Rotate the vector

Java lacks operator overloading, so we have to come up with a mechanism that makes

working with the Vector2 class less cumbersome. Ideally we should have something like

the following:

Vector2 v = new Vector2();
v.add(10,5).mul(10).rotate(54);

We can easily achieve this by letting each of the Vector2 methods return a reference to

the vector itself. Of course, we also want to overload methods like Vector2.add() so

that we can either pass in two floats or an instance of another Vector2. Listing 8–1

shows our Vector2 class in its full glory.

Listing 8–1. Vector2.java: Implementing Some Nice 2D Vector Functionality

package com.badlogic.androidgames.framework.math;

import android.util.FloatMath;

public class Vector2 {
 public static float TO_RADIANS = (1 / 180.0f) * (float) Math.PI;
 public static float TO_DEGREES = (1 / (float) Math.PI) * 180;
 public float x, y;

 public Vector2() {
 }

 public Vector2(float x, float y) {
 this.x = x;
 this.y = y;
 }

CHAPTER 8: 2D Game Programming Tricks 358

 public Vector2(Vector2 other) {
 this.x = other.x;
 this.y = other.y;
 }

We put that class in the package com.badlogic.androidgames.framework.math, where

we’ll house any other math-related classes as well.

We start off by defining two static constants, TO_RADIANS and TO_DEGREES. To convert an

angle given in radians, we just need to multiply it by TO_DEGREES; to convert an angle

given in degrees to radians, we multiply it by TO_RADIANS. You can double-check this by

looking at the two previously defined equations that govern degree-to-radian

conversion. With this little trick we can shave off a division to speed things up a little.

Next we define the two members x and y that store the components of the vector and a

couple of constructors—nothing too complex:

 public Vector2 cpy() {
 return new Vector2(x, y);
 }

We also have a cpy() method that will create a duplicate instance of the current vector

and return it. This might come in handy if we want to manipulate a copy of a vector,

preserving the value of the original vector.

 public Vector2 set(float x, float y) {
 this.x = x;
 this.y = y;
 return this;
 }

 public Vector2 set(Vector2 other) {
 this.x = other.x;
 this.y = other.y;
 return this;
 }

The set() methods allow us to set the x and y components of a vector, based on either

two float arguments or another vector. The methods return a reference to this vector, so

we can chain operations as discussed previously.

 public Vector2 add(float x, float y) {
 this.x += x;
 this.y += y;
 return this;
 }

 public Vector2 add(Vector2 other) {
 this.x += other.x;
 this.y += other.y;
 return this;
 }

 public Vector2 sub(float x, float y) {
 this.x -= x;

CHAPTER 8: 2D Game Programming Tricks 359

 this.y -= y;
 return this;
 }

 public Vector2 sub(Vector2 other) {
 this.x -= other.x;
 this.y -= other.y;
 return this;
 }

The�add() and�sub() methods come in two flavors: in once case they work with two float

arguments, and in the other case they take another Vector2 instance. All four methods

return a reference to this vector so we can chain operations.

 public Vector2 mul(float scalar) {
 this.x *= scalar;
 this.y *= scalar;
 return this;
 }

The�mul() method just multiplies the x and y components of the vector with the given

scalar value, and again returns a reference to the vector itself for chaining.

 public float len() {
 return FloatMath.sqrt(x * x + y * y);
 }

The len() method calculates the length of the vector exactly like we defined it

previously. Note that we use the FastMath class instead of the usual Math class that Java

SE provides. This is a special Android API class that works with floats instead of

doubles, and is a little bit faster than the Math equivalent.

 public Vector2 nor() {
 float len = len();
 if (len != 0) {
 this.x /= len;
 this.y /= len;
 }
 return this;
 }

The nor() method normalizes the vector to unit length. We use the len() method

internally to calculate the length first. If it is zero, we can bail out early and avoid a

division by zero. Otherwise we divide each component of the vector by its length to

arrive at a unit-length vector. For chaining we return the reference to this vector again.

 public float angle() {
 float angle = (float) Math.atan2(y, x) * TO_DEGREES;
 if (angle < 0)
 angle += 360;
 return angle;
 }

The angle() method calculates the angle between the vector and the x-axis using the

atan2() method, as discussed previously. We have to use the Math.atan2() method, as

CHAPTER 8: 2D Game Programming Tricks 360

the FastMath class doesn’t have that method. The returned angle is given in radians, so

we convert it to degrees by multiplying it by TO_DEGREES. If the angle is less than zero, we

add 360 degrees to it so we can return a value in the range 0 to 360 degrees.

 public Vector2 rotate(float angle) {
 float rad = angle * TO_RADIANS;
 float cos = FloatMath.cos(rad);
 float sin = FloatMath.sin(rad);

 float newX = this.x * cos - this.y * sin;
 float newY = this.x * sin + this.y * cos;

 this.x = newX;
 this.y = newY;

 return this;
 }

The rotate() method simply rotates the vector around the origin by the give angle.

Since the FastMath.cos() and FastMath.sin() methods expect the angle to be given in

radians, we first convert from degrees to radians. Next we use the previously defined

equations to calculate the new x and y components of the vector, and finally return the

vector itself again for chaining.

 public float dist(Vector2 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 return FloatMath.sqrt(distX * distX + distY * distY);
 }

 public float dist(float x, float y) {
 float distX = this.x - x;
 float distY = this.y - y;
 return FloatMath.sqrt(distX * distX + distY * distY);
 }
}

Finally we have two methods that calculate the distance between this and another

vector.

And that’s our shiny Vector2 class, which we’ll use to represent positions, velocities,

distances, and directions in the code that follows. To get a feeling for our new class,

let’s use it in a simple example.

A Simple Usage Example
Here’s my proposal for a simple test:

� We’ll create a sort of cannon represented by a triangle that has a fixed

position in our world. The center of the triangle will be at (2.4,0.5).

� Each time we touch the screen, we want to rotate the triangle to face

the touch point.

CHAPTER 8: 2D Game Programming Tricks 361

� Our view frustum will show us the region of our world between (0,0)

and (4.8,3.2). We do not operate in pixel coordinates, but instead

define our own coordinate system, were one unit equals one meter.

Also, we’ll be working in landscape mode.

There are a couple of things we need to think about. We already know how to define a

triangle in model space—we can use a Vertices instance for this. Our cannon should

point to the right at an angle of 0 degrees in its default orientation. Figure 8–4 shows the

cannon triangle in model space.

Figure 8–4. The cannon triangle in model space

When we render that triangle, we simply use glTranslatef() to move it to its place in

the world at (2.4,0.5).

We also want to rotate the cannon so that its tip points in the direction of the point on

the screen that we last touched. For this we need to figure out where the last touch

event was touching our world. The GLGame.getInput().getTouchX() and getTouchY()

methods will return the touch point in screen coordinates, with the origin in the top-left

corner. We also said that the Input instance will not scale the events to a fixed

coordinate system, as it did in Mr. Nom. Instead we will get the coordinates (479,319)

when touching the bottom-right corner of the (landscape-oriented) screen on a Hero,

and (799,479) on a Nexus One. We need to convert these touch coordinates to our

world coordinates. We already did that in the touch handlers in Mr. Nom and the Canvas-

based game framework; the only difference this time is that our coordinate system

extents are a little smaller and our world’s y-axis is pointing upward. Here’s the

pseudocode showing how we can achieve the conversion in the general case, which is

nearly the same as in the touch handlers of Chapter 5:

worldX = (touchX / Graphics.getWidth()) * viewFrustmWidth
worldY = (1 - touchY / Graphics.getHeight()) * viewFrustumHeight

We normalize the touch coordinates to the range (0,1) by dividing them by the screen

resolution. In the case of the y-coordinate, we subtract the normalized y-coordinate of

the touch event from 1 to flip the y-axis. All that’s left is scaling the x- and y-coordinates

by the view frustum’s width and height—in our case that’s 4.8 and 3.2. From worldX and

CHAPTER 8: 2D Game Programming Tricks 362

worldY we can then construct a Vector2 that stores the position of the touch point in our

world’s coordinates.

The last thing we need to do is calculate the angle to rotate the canon with. Let’s look at

Figure 8–5, which shows our cannon and a touch point in world coordinates.

Figure 8–5. Our cannon in its default state, pointing to the right (angle = 0°), a touch point, and the angle we
need to rotate the cannon by. The rectangle is the area of the world that our view frustum will show on the
screen: (0,0) to (4.8,3.2).

All we need to do is create a distance vector from the cannon’s center at (2.4,0.5) to the

touch point (and remember, we have to subtract the cannon’s center from the touch

point, not the other way around). Once we have that distance vector we can calculate

the angle with the Vector2.angle() method. This angle can then be used to rotate our

model via glRotatef().

Let’s code that. Listing 8–2 shows the relevant portion of our CannonScreen, part of the

CannonTest class.

Listing 8–2. Excerpt from CannonTest.java; Touching the Screen Will Rotate the Cannon

class CannonScreen extends Screen {
 float FRUSTUM_WIDTH = 4.8f;
 float FRUSTUM_HEIGHT = 3.2f;
 GLGraphics glGraphics;
 Vertices vertices;
 Vector2 cannonPos = new Vector2(2.4f, 0.5f);
 float cannonAngle = 0;
 Vector2 touchPos = new Vector2();

We start off with two constants that define our frustum’s width and height, as discussed

earlier. Next we have a GLGraphics instance, as well as a Vertices instance. We also

store the cannon’s position in a Vector2 and its angle in a float. Finally we have another

Vector2, which we’ll use to calculate the angle between a vector from the origin to the

touch point and the x-axis.

Why do we store the Vector2 instances as class members? We could instantiate them

every time we need them, but that would make the garbage collector angry. In general

CHAPTER 8: 2D Game Programming Tricks 363

we should try to instantiate all the Vector2 instances once and reuse them as often as

possible.

 public CannonScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();
 vertices = new Vertices(glGraphics, 3, 0, false, false);
 vertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);
 }

In the constructor, we fetch the GLGraphics instance and create the triangle according to

Figure 8–4.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth())
 * FRUSTUM_WIDTH;
 touchPos.y = (1 - event.y / (float) glGraphics.getHeight())
 * FRUSTUM_HEIGHT;
 cannonAngle = touchPos.sub(cannonPos).angle();
 }
 }

Next up is the update() method. We simply loop over all TouchEvents and calculate the

angle for the cannon. This is done in a couple of steps. First we transform the screen

coordinates of the touch event to the world coordinate system, as discussed earlier. We

store the world coordinates of the touch event in the touchPoint member. We then

subtract the position of the cannon from the touchPoint vector, which will result in the

vector depicted in Figure 8–5. We then calculate the angle between this vector and the

x-axis. And that’s all there is to it!

 @Override
 public void present(float deltaTime) {

 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

 gl.glTranslatef(cannonPos.x, cannonPos.y, 0);
 gl.glRotatef(cannonAngle, 0, 0, 1);
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, 3);

CHAPTER 8: 2D Game Programming Tricks 364

 vertices.unbind();
 }

The present() method does the same boring things it did before. We set the viewport,

clear the screen, set up the orthographic projection matrix using our frustum’s width and

height, and tell OpenGL ES that all subsequent matrix operations will work on the

model-view matrix. We also load an identity matrix to the model-view matrix to “clear” it.

Next we multiply the (identity) model-view matrix with a translation matrix, which will

move the vertices of our triangle from model space to world space. We also call

glRotatef() with the angle we calculated in the update() method so that our triangle

gets rotated in model space before it is translated. Remember, transformations are

applied in reverse order—the last specified transform is applied first. Finally we bind the

vertices of the triangle, render it, and unbind it.

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

Now we have a triangle that will follow our every touch. Figure 8–6 shows the output

after touching the upper-left corner of the screen.

Figure 8–6. Our triangle cannon reacting to a touch event in the upper-left corner

Note that it doesn’t really matter whether we render a triangle at the cannon position or

a rectangle texture mapped to an image of a cannon—OpenGL ES doesn’t really care.

We also have all the matrix operations in the present() method again. The truth of the

CHAPTER 8: 2D Game Programming Tricks 365

matter is that it is easier to keep track of OpenGL ES states this way, and often we will

use multiple view frustums in one present() call (e.g., one setting up a world in meters

for rendering our world and another setting up a world in pixels for rendering UI

elements). The impact on performance is not all that big, as described in the last

chapter, so it’s OK to do it this way most of the time. Just remember that we could

optimize this if the need arises.

Vectors will be our best friends from now on. We’ll use them to specify virtually

everything in our world. We will also do some very basic physics with vectors. What’s a

cannon good for if it can’t shoot, right?

A Little Physics in 2D
In this section we’ll use a very simple and limited version of physics. Games are all

about being good fakes. They cheat wherever possible to get rid of potentially heavy

calculations. The behavior of objects in a game need not be 100 percent physically

accurate, it just needs to be good enough to look believable. Sometimes we don’t event

want physically accurate behavior (e.g., one set of objects should fall downward and

another, crazier, set of objects should fall upward).

Even a game like the original Super Mario Brothers uses at least some basic principles

of Newtonian physics. These principles are really simple and easy to implement. We will

only talk about the absolute minimum required to implement a very simple physics

model for our game objects.

Newton and Euler, Best Friends Forever
We are mostly concerned with motion physics of so-called point masses, which refers to

the change in position, velocity, and acceleration of an object over time. Point mass

means that we approximate all our objects with an infinitesimally small point that has an

associated mass. We do not deal with things like torque—the rotational velocity of an

object around its center of mass—because that is a rather complex problem domain

about which more than one complete book has been written. Let’s just look at these

three properties of an object:

� The position of an object is simply a vector in some space—in our

case a 2D space. We represent it as a vector. Usually the position is

given in meters.

� The velocity of an object is its change in position per second. Velocity

is given as a 2D velocity vector, which is a combination of the unit-

length direction vector the object is heading in and the speed that the

object will move at, given in meters per seconds. Note that the speed

just governs the length of the velocity vector; if we normalize the

velocity vector by the speed, we get a nice unit-length direction vector.

CHAPTER 8: 2D Game Programming Tricks 366

� The acceleration of an object is its change in velocity per second. We

can either represent this as a scalar that only affects the speed of the

velocity (the length of the velocity vector), or as a 2D vector, so that we

can have different acceleration in the x- and y-axes. Here we’ll choose

the latter, as it allows us to use things such as ballistics more easily.

Acceleration is usually given in meters per second per second (m/s�).

No, that’s not a typo—we change the velocity by some amount given

in meters per second, each second.

When we know these properties of an object for a given point in time, we can integrate

them to simulate the object’s path through the world over time. This may sound scary,

but we already did this with Mr. Nom and our Bob test. In those cases we just didn’t use

acceleration; we set the velocity to a fixed vector. Here’s how we can integrate the

acceleration, velocity and position of an object in general:

Vector2 position = new Vector2();
Vector2 velocity = new Vector2();
Vector2 acceleration = new Vector2(0, -10);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

This is called numerical Euler integration, and is the most intuitive of the integration

methods used in games. We start off with a position at (0,0), a velocity given as (0,0),

and an acceleration of (0,–10), which means that the velocity will increase by 1 meter per

second on the y-axis. There will be no movement on the x-axis. Before we enter the

integration loop, our object is standing still. Within the loop we first update the velocity

based on the acceleration multiplied by the delta time, and then update the position

based on the velocity times the delta time. That’s all there is to the big, scary word

integration.

NOTE: As usual, that’s not even half of the story. Euler integration is an “unstable” integration
method and should be avoided when possible. Usually one would employ a variant of the so-
called verlet integration, which is just a bit more complex. For our purposes, the easier Euler

integration is sufficient though.

Force and Mass
You might wonder where the acceleration comes from. That’s a good question with

many answers. The acceleration of a car comes from its engine. The engine applies a

force to the car that causes it to accelerate. But that’s not all. Our car will also

accelerate toward the center of earth due to gravity. The only thing that keeps it from

falling through the center of the earth is the ground it can’t pass through. The ground

cancels out this gravitational force. The general idea is this:

force = mass × acceleration

CHAPTER 8: 2D Game Programming Tricks 367

We can rearrange this to the following equation:

acceleration = force / mass

Force is given in the SI unit Newton (guess who came up with this). If we specify

acceleration as a vector, then we also have to specify the force as a vector. A force can

thus have a direction. For example, the gravitational force pulls downward in the

direction (0,–1). The acceleration is also dependent on the mass of an object. The more

mass an object has, the more force we need to apply to make it accelerate as fast as an

object of less weight. This is a direct consequence of the preceding equations.

For simple games we can, however, ignore the mass and force, and just work with

velocity and acceleration directly. In the preceding pseudocode, we set the acceleration

to (0,–10) m/s per second (again, not a typo), which is roughly the acceleration an object

will experience when it is falling toward earth, no matter its mass (ignoring things like air

resistance). It’s true, ask Galileo!

Playing Around, Theoretically
So let’s use our preceding example to play with an object falling toward earth. Let’s

assume that we let the loop iterate ten times and that getDeltaTime() will always return

0.1 seconds. We’ll get the following positions and velocities for each iteration:

time=0.1, position=(0.0,-0.1), velocity=(0.0,-1.0)
time=0.2, position=(0.0,-0.3), velocity=(0.0,-2.0)
time=0.3, position=(0.0,-0.6), velocity=(0.0,-3.0)
time=0.4, position=(0.0,-1.0), velocity=(0.0,-4.0)
time=0.5, position=(0.0,-1.5), velocity=(0.0,-5.0)
time=0.6, position=(0.0,-2.1), velocity=(0.0,-6.0)
time=0.7, position=(0.0,-2.8), velocity=(0.0,-7.0)
time=0.8, position=(0.0,-3.6), velocity=(0.0,-8.0)
time=0.9, position=(0.0,-4.5), velocity=(0.0,-9.0)
time=1.0, position=(0.0,-5.5), velocity=(0.0,-10.0)

After 1 second, our object falls 5.5 meters and has a velocity of (0,–10) m/s, straight

down to the core of the earth (until it hits the ground, of course).

Our object will increase its downward speed without end, as we don’t factor in air

resistance. (As I said before, we can easily cheat our own system.) We can just enforce a

maximum velocity by checking the current velocity length, which equals the speed of

our object.

All-knowing Wikipedia tells us that a human in free fall can have a maximum, or terminal,

velocity of roughly 125 miles per hour. Converting that to meters per second (125 � 1.6

� 1000 / 3600), we get 55.5 m/s. To make our simulation more realistic, we can modify

the loop as follows:

while(simulationRuns) {
 float deltaTime = getDeltaTime();
 if(velocity.len() < 55.5)
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);

}

CHAPTER 8: 2D Game Programming Tricks 368

As long as the speed of our object (the length of the velocity vector) is smaller than 55.5

m/s, we increase the velocity by the acceleration. When we’ve reached the terminal

velocity, we simply don’t increase it by the acceleration anymore. That simple capping of

velocities is a trick used heavily in many games.

We could add some wind to the equation by adding another acceleration in the x

direction, say (–1,0) m/s�. For this we just need to add up the gravitational acceleration

and the wind acceleration before we add it to the velocity:

Vector2 gravity = new Vector2(0,-10);
Vector2 wind = new Vector2(-1,0);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 acceleration.set(gravity).add(wind);
 if(velocity.len() < 55.5)
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

We can also ignore acceleration altogether and let our objects have a fixed velocity. We

did exactly this in the BobTest earlier. We changed the velocity of each Bob only if he hit

an edge, and we did so instantly.

Playing Around, Practically
The possibilities, even with this simple model, are endless. Let’s extend our little

CannonTest so we can actually shoot a cannonball. Here’s what we want to do:

� As long as the user drags his finger over the screen, the canon will

follow it. That’s how we’ll specify the angle at which we’ll shoot the

ball.

� As soon as we receive a touch-up event, we’ll fire a cannonball in the

direction the cannon is pointing. The initial velocity of the cannonball

will be a combination of the cannon’s direction and the speed the

cannonball will have from the start. The speed is equal to the distance

between the cannon and the touch point. The further away we touch,

the faster the cannonball will fly.

� The cannonball will fly for as long as there’s no new touch-up event.

� We’ll double the size of our view frustum to (0,0) to (9.6, 6.4) so that

we can see more of our world. Additionally we’ll place the cannon at

(0,0). Note that all units of our world are now given in meters.

� We’ll render the cannonball as a red rectangle of the size 0.2�0.2

meters, or 20x20 centimeters. Close enough to a real cannonball, I

guess. The pirates among you may choose a more realistic size, of

course.

CHAPTER 8: 2D Game Programming Tricks 369

Initially the position of the cannonball will be (0,0)—the same as the cannon’s position.

The velocity will also be (0,0). Since we apply gravity in each update, the cannonball will

just fall straight downward.

Once a touch-up event is received, we set the ball’s position back to (0,0) and its initial

velocity to (Math.cos(cannonAngle),Math.sin(cannonAngle)). This will ensure that our

cannonball flies in the direction the cannon is pointing. We also set the speed by simply

multiplying the velocity by the distance between the touch point and the cannon. The

closer the touch point to the cannon, the more slowly the cannonball will fly.

Sounds easy enough, so let’s implement it. I copied over the code from the CannonTest

to a new file, called CannonGravityTest.java. I renamed the classes contained in that file

to CannonGravityTest and CannonGravityScreen. Listing 8–3 shows the

CannonGravityScreen.

Listing 8–3. Excerpt from CannonGravityTest

class CannonGravityScreen extends Screen {
 float FRUSTUM_WIDTH = 9.6f;
 float FRUSTUM_HEIGHT = 6.4f;
 GLGraphics glGraphics;
 Vertices cannonVertices;
 Vertices ballVertices;
 Vector2 cannonPos = new Vector2();
 float cannonAngle = 0;
 Vector2 touchPos = new Vector2();
 Vector2 ballPos = new Vector2(0,0);
 Vector2 ballVelocity = new Vector2(0,0);
 Vector2 gravity = new Vector2(0,-10);

Not a lot has changed. We simply double the size of the view frustum, and reflect that by

setting�FRUSTUM_WIDTH and�FRUSTUM_HEIGHT to 9.6 and 6.2, respectively. This means that

we can see a rectangle of 9.2�6.2 meters of our world. Since we also want to draw the

cannonball, I added another Vertices instance, called ballVertices, that will hold the

four vertices and six indices of the rectangle of the cannonball. The new members

ballPos and ballVelocity store the position and velocity of the cannonball, and the

member gravity is the gravitational acceleration, which will stay at a constant (0,–10)

m/s� over the lifetime of our program.

 public CannonGravityScreen(Game game) {
 super(game);
 glGraphics = ((GLGame) game).getGLGraphics();
 cannonVertices = new Vertices(glGraphics, 3, 0, false, false);
 cannonVertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);
 ballVertices = new Vertices(glGraphics, 4, 6, false, false);
 ballVertices.setVertices(new float[] { -0.1f, -0.1f,
 0.1f, -0.1f,
 0.1f, 0.1f,
 -0.1f, 0.1f }, 0, 8);
 ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);
 }

CHAPTER 8: 2D Game Programming Tricks 370

In the constructor we simply create the additional Vertices instance for the rectangle of

the cannonball. We again define it in model space with the vertices (–0.1,–0.1), (0.1,–0.1),

(0.1,0.1), and (–0.1,0.1). We use indexed drawing, so we also specify six vertices in this

case.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth())
 * FRUSTUM_WIDTH;
 touchPos.y = (1 - event.y / (float) glGraphics.getHeight())
 * FRUSTUM_HEIGHT;
 cannonAngle = touchPos.sub(cannonPos).angle();

 if(event.type == TouchEvent.TOUCH_UP) {
 float radians = cannonAngle * Vector2.TO_RADIANS;
 float ballSpeed = touchPos.len();
 ballPos.set(cannonPos);
 ballVelocity.x = FloatMath.cos(radians) * ballSpeed;
 ballVelocity.y = FloatMath.sin(radians) * ballSpeed;
 }
 }

 ballVelocity.add(gravity.x * deltaTime, gravity.y * deltaTime);
 ballPos.add(ballVelocity.x * deltaTime, ballVelocity.y * deltaTime);
 }

The update() method has also only changed slightly. The calculation of the touch point

in world coordinates and the angle of the cannon are still the same. The first addition is

the if statement inside the event-processing loop. In case we get a touch-up event, we

prepare our cannonball to be shot. We first transform the cannon’s aiming angle to

radians, as we’ll use FastMath.cos() and FastMath.sin() later on. Next we calculate the

distance between the cannon and the touch point. This will be the speed of our

cannonball. We then set the ball’s position to the cannon’s position. Finally we calculate

the initial velocity of the cannonball. We use sine and cosine, as discussed in the

previous section, to construct a direction vector from the cannon’s angle. We multiply

this direction vector by the cannonball’s speed to arrive at our final cannonball velocity.

This is interesting, as the cannonball will have this velocity from the start. In the real

world, the cannonball would of course accelerate from 0 m/s to whatever it can reach

given air resistance, gravity, and the force applied to it by the cannon. We can cheat

here, though, as that acceleration would happen in a very tiny time window (a couple

hundred milliseconds). The last thing we do in the update() method is update the

velocity of the cannonball, and based on that, adjust its position.

CHAPTER 8: 2D Game Programming Tricks 371

@Override
 public void present(float deltaTime) {

 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);

 gl.glLoadIdentity();
 gl.glTranslatef(cannonPos.x, cannonPos.y, 0);
 gl.glRotatef(cannonAngle, 0, 0, 1);
 gl.glColor4f(1,1,1,1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3);
 cannonVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(ballPos.x, ballPos.y, 0);
 gl.glColor4f(1,0,0,1);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();
 }

In the present() method, we simply add the rendering of the cannonball rectangle. We

do this after rendering the cannon’s triangle, which means that we have to “clean” the

model-view matrix before we can render the rectangle. We do this with

glLoadIdentity()��and then use glTranslatef() to convert the cannonball’s rectangle

from model space to world space at the ball’s current position.

 @Override
 public void pause() {

 }

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

 }
}

If you run the example and touch the screen a couple of times, you’ll get a pretty good

feel for how the cannonball will fly. Figure 8–7 shows the output (which is not all that

impressive, since it is a still image).

CHAPTER 8: 2D Game Programming Tricks 372

Figure 8–7. A triangle cannon that shoots red rectangles. Impressive!

That’s enough physics for our purposes. With this simple model, we can simulate much

more than cannonballs. Super Mario, for example, could be simulated much in the same

way. If you have ever played Super Mario Brothers, then you will notice that Mario takes

a little bit of time before he reaches his maximum velocity when running. This can be

implemented with a very fast acceleration and velocity capping, as in the preceding

pseudocode. Jumping can be implemented in much the same way as we shot the

cannonball. Mario’s current velocity would be adjusted by an initial jump velocity on the

y-axis (remember that we can add velocities like any other vectors). If there were no

ground beneath his feet, we would apply gravitational acceleration so that he would

actually fall back to the ground. The velocity in the x direction is not influenced by what’s

happening on the y-axis. We could still press left and right to change the velocity on the

x-axis. The beauty of this simple model is that it allows us to implement very complex

behavior with very little code. We’ll actually use a similar this type of physics when we

write our next game.

Just shooting a cannonball is not a lot of fun. We want to be able to hit objects with the

cannonball. For this we need something called collision detection, which we’ll

investigate in the next section.

Collision Detection and Object Representation in 2D
Once we have moving objects in our world, we want them to interact as well. One such

mode of interaction is simple collision detection. Two objects are said to be colliding

when they overlap in some way. We already did a little bit of collision detection in Mr.

Nom when we checked whether Mr. Nom bit himself or ate an ink stain.

Collision detection is accompanied by collision response: once we determine that two

objects have collided, we need to respond to that collision by adjusting the position

and/or movement of our objects in a sensible manner. For example, when Super Mario

jumps on a Goomba, the Goomba goes to Goomba heaven and Mario performs another

little jump. A more elaborate example is the collision and response of two or more

CHAPTER 8: 2D Game Programming Tricks 373

billiard balls. We won’t go into this kind of collision response, as it is overkill for our

purposes. Our collision responses will usually only consist of changing the state of an

object (e.g., letting an object explode or die, collecting a coin and setting the score,

etc.). This type of response is game dependent, so we won’t talk about it in this section.

So how do we figure out whether two objects have collided? First we need to think

about when to check for collisions. If our objects follow some sort of simple physics

model, as discussed in the last section, we could check for collisions after we move all

our objects for the current frame and time step.

Bounding Shapes
Once we have the final positions for our objects, we can perform the collision tests,

which boil down to testing for overlap. But what overlaps? Each of our objects needs to

have some mathematically defined form or shape that bounds it. The correct term in this

case is bounding shape. Figure 8–8 shows a couple of choices we have for bounding

shapes.

Figure 8–8. Various bounding shapes around Bob

The properties of the three types of bounding shapes in Figure 8–8 are as follows:

� Triangle mesh: This bounds the object as tightly as possible by

approximating its silhouette with a couple of triangles. It requires the

most storage space, and it’s hard to construct and expensive to test

against. It gives the most precise results, though. We won’t

necessarily use the same triangles for rendering, but instead just store

them for collision detection. The mesh can be stored as a list of

vertices, where each subsequent three vertices form a triangle. To

conserve memory, we could also use indexed vertex lists.

CHAPTER 8: 2D Game Programming Tricks 374

� Axis-aligned bounding box: This bounds the object via a rectangle that

is axis aligned, which means that the bottom and top edges are

always aligned with the x-axis, and the left and right edges are aligned

with the y-axis. This is also fast to test against, but less precise than a

triangle mesh. A bounding box is usually stored in the form of the

position of its lower-left corner plus its width and height. (In the case of

2D, these are also referred to as bounding rectangles).

� Bounding circle: This bounds the object with the smallest circle that

can contain the object. It’s very fast to test against, but it is the least

precise bounding shape of them all. The circle is usually stored in the

form of its center position and its radius.

Every object in our game gets a bounding shape that encloses it, in addition to its

position, scale, and orientation. Of course, we need to adjust the bounding shape’s

position, scale, and orientation according to the object’s position, scale, and orientation

when we move the object, say, in a physics integration step.

Adjusting for position changes is easy: we simple move the bounding shape

accordingly. In the case of the triangle mesh we just move each vertex, in the case of

the bounding rectangle we move the lower-left corner, and in the case of the bounding

circle we just move the center.

Scaling a bound shape is a little harder. We need to define the point around which we

scale. Usually this is the object’s position, which is often given as the center of the

object. If we use this convention, then scaling is easy as well. For the triangle mesh we

scale the coordinates of each vertex; for the bounding rectangle we scale its width,

height, and lower-left corner position; and for the bounding circle we scale its radius (the

circle center is equal to the object’s center).

Rotating a bounding shape is also dependent on the definition of a point around which

to rotate. Using the convention just mentioned (where the object center is the rotation

point), rotation becomes easy as well. In the case of the triangle mesh, we simple rotate

all vertices around the object’s center. In the case of the bounding circle, we do not

have to do anything, as the radius will stay the same no matter how we rotate our

object. The bounding rectangle is a little bit more involved. We need to construct all four

corner points, rotate them, and then find the axis-aligned bounding rectangle that

encloses those four points. Figure 8–9 shows the three bounding shapes after rotation.

Figure 8–9. Rotated bounding shapes with the center of the object as the rotation point

CHAPTER 8: 2D Game Programming Tricks 375

While rotating a triangle mesh or a bounding circle is rather easy, the results for the axis-

aligned bounding box are not all that satisfying. Notice that the bounding box of the

original object fits tighter than its rotated version. This leads us to the question of how

we got our bounding shapes for Bob in the first place.

Constructing Bounding Shapes
In this example, I simply constructed the bounding shapes by hand based on Bob’s

image. But Bob’s image is given in pixels, and our world might operate in, say, meters.

The solutions to this problem involve normalization and model space. Imagine the two

triangles we’d use for Bob in model space when we’d render him with OpenGL. The

rectangle is centered at the origin in model space and has the same aspect ratio

(width/height) as Bob’s texture image (e.g., 32�32 pixels in the texture map as

compared to 2�2 meters in model space). Now we can apply Bob’s texture and figure

out where in model space the points of the bounding shape are. Figure 8–10 shows how

we can construct the bounding shapes around Bob in model space.

Figure 8–10. Bounding shapes around Bob in model space

This process may seem a little cumbersome, but the steps involved are not all that hard.

The first thing we have to remember is how texture mapping works. We specify the

texture coordinates for each vertex of Bob’s rectangle (which is composed of two

triangles) in texture space. The upper-left corner of the texture image in texture space is

at (0,0), and the lower-left corner is at (1,1), no matter the actual width and height of the

image in pixels. To convert from the pixel space of our image to texture space, we can

thus use this simple transformation:

u = x / imageWidth
v = y / imageHeight

where u and v are the texture coordinates of the pixel given by x and y in image space.

The imageWidth and imageHeight are set to the image’s dimensions in pixels (32�32 in

Bob’s case). Figure 8–11 shows how the center of Bob’s image maps to texture space.

CHAPTER 8: 2D Game Programming Tricks 376

Figure 8–11. Mapping a pixel from image space to texture space

The texture is applied to a rectangle that we define in model space. In Figure 8–10 we

have an example with the upper-left corner at (–1,1) and the lower-right corner at (1,–1).

We use meters as the units in our world, so the rectangle has a width and height of 2

meters each. Additionally we know that the upper-left corner has the texture coordinates

(0,0) and the lower-right corner has the texture coordinates (1,1), so we map the

complete texture to Bob. This won’t always be the case, as you’ll see in one of the next

sections.

So let’s come up with a generic way to map from texture to model space. We can make

our lives a little easier by constraining our mapping to only axis-aligned rectangles in

texture and model space. This means we assume that an axis-aligned rectangular region

in texture space is mapped to an axis-aligned rectangle in model space. For the

transformation we need to know the width and height of the rectangle in model space

and the width and height of the rectangle in texture space. In our Bob example we have

a 2�2 rectangle in model space and a 1�1 rectangle in texture space (since we map the

complete texture to the rectangle). We also need to know the coordinates of the upper-

left corner of each rectangle in its respective space. For the model space rectangle,

that’s (–1,1), and for the texture space rectangle it’s (0,0) (again, since we map the

complete texture, not just a portion). With this information and the u- and v-coordinates

of the pixel we want to map to model space, we can do the transformation with these

two equations:

mx = (u – minU) / (tWidth) × mWidth + minX
my = (1 – ((v – minV) / (tHeight)) × mHeight - minY

The variables u and v are the coordinates we calculated in the last transformation from

pixel to texture space. The variables minU and minV are the coordinates of the top-left

corner of the region we map from texture space. The variables tWidth and tHeight are

the width and height of our texture space region. The variables mWidth and mHeight are

the width and height of our model space rectangle. The variables minX and minY are—

you guessed it—the coordinates of the top-left corner of the rectangle in model space.

Finally we have mx and my, which are the transformed coordinates in model space.

These equations take the u- and v-coordinates, map them to the range 0 to 1, and then

scale and position them in model space. Figure 8–12 shows a texel in texture space and

CHAPTER 8: 2D Game Programming Tricks 377

how it is mapped to a rectangle in model space. On the sides you see tWidth and

tHeight, and mWidth and mHeight, respectively. The top-left corner of each rectangle

corresponds to (minU, minV) in texture space and (minX, minY) in model space.

Figure 8–12. Mapping from texture space to model space

Substituting the first two equations we can directly go from pixel space to model space:

mx = ((x/imageWidth) – minU) / (tWidth) * mWidth + minX
my = (1 – (((y/imageHeight) – minV) / (tHeight)) * mHeight – minY

We can use these two equations to calculate the bounding shapes of our objects based

on the image we map to their rectangles via texture mapping. In the case of the triangle

mesh, this can get a little tedious; the bounding rectangle and bounding circle cases are

a lot easier. Usually we don’t go this hard route, but instead try to create our textures so

that at least the bounding rectangles have the same aspect ratio as the rectangle we

render for the object via OpenGL ES. This way we can construct the bounding rectangle

from the object’s image dimension directly. The same is true for the bounding circle. I

just wanted to show you how you can construct an arbitrary bounding shape given an

image that gets mapped to a rectangle in model space.

You should now know how to construct a nicely fitting bounding shape for your 2D

objects. But remember, we define those bounding shape sizes manually, when we

create our graphical assets and define the units and sizes of our objects in the game

world. We then use these sizes in our code to collide objects with each other.

Game Object Attributes
Bob just got fatter. In addition to the mesh we use for rendering (the rectangle mapping

to Bob’s image texture), we now have a second data structure holding his bounds in

some form. It is crucial to realize that while we model the bounds after the mapped

version of Bob in model space, the actual bounds are independent of the texture region

we map Bob’s rectangle to. Of course, we try to have as close a match to the outline of

Bob’s image in the texture as possible when we create the bounding shape. It does not

matter, however, whether the texture image is 32�32 or 128�128 pixels. An object in our

world thus has three attribute groups:

CHAPTER 8: 2D Game Programming Tricks 378

� Its position, orientation, scale, velocity, and acceleration. With these

we can apply our physics model from the previous section. Of course,

some objects might be static, and thus will only have position,

orientation, and scale. Often we can even leave out orientation and

scale. The position of the object usually coincides with the origin in

model space, as in Figure 8–10. This makes some calculations easier.

� Its bounding shape (usually constructed in model space around the

object’s center), which coincides with its position and is aligned with

the object’s orientation and scale, as shown in Figure 8–10. This gives

our object a boundary and defines its size in the world. We can make

this shape as complex as we want. We could, for example, make it a

composite of several bounding shapes.

� Its graphical representation. As shown in Figure 8–12, we still use two

triangles to form a rectangle for Bob and texture-map his image onto

the rectangle. The rectangle is defined in model space but does not

necessarily equal the bounding shape, as shown in Figure 8–10. The

graphical rectangle of Bob that we send to OpenGL ES is slightly

larger than Bob’s bounding rectangle.

This separation of attributes allows us to apply our Model-View-Controller (MVC) pattern

again.

� On the model side we simply have Bob’s physical attributes,

composed of his position, scale, rotation, velocity, acceleration, and

bounding shape. Bob’s position, scale, and orientation govern where

his bounding shape is located in world space.

� The view just takes Bob’s graphical representation (e.g., the two

texture-mapped triangles defined in model space) and renders them at

their world space position according to Bob’s position, rotation, and

scale. Here we can use the OpenGL ES matrix operations as we did

previously.

� The controller is responsible for updating Bob’s physical attributes

according to user input (e.g., a left button press could move him to the

left), and according to physical forces, such as gravitational

acceleration (like we applied to the cannonball in the previous section).

Of course, there’s some correspondence between Bob’s bounding shape and his

graphical representation in the texture, as we base the bounding shape on that graphical

representation. Our MVC pattern is thus not entirely clean, but we can live with that.

Broad-Phase and Narrow-Phase Collision Detection
We still don’t know how to check for collisions between our objects and their bounding

shapes. There are two phases of collision detection:

CHAPTER 8: 2D Game Programming Tricks 379

Broad phase: In this phase we try to figure out which objects can potentially collide.

Imagine having 100 objects that could each collide with each other. We’d need to

perform 100 � 100 / 2 overlap tests if we chose to naively test each object against

each other object. This naïve overlap testing approach is of O(n�) asymptotic

complexity, meaning it would take n� steps to complete (it actually finished in half

that many steps, but the asymptotic complexity leaves out any constants). In a

good, non-brute-force broad phase, we try to figure out which pairs of objects are

actually in danger of colliding. Other pairs (e.g., two objects that are too far apart for

a collision to happen) will not be checked. We can reduce the computational load

this way, as narrow-phase testing is usually pretty expensive.

Narrow phase: Once we know which pairs of objects can potentially collide, we test

whether they really collide or not by doing an overlap test of their bounding shapes.

Let’s focus on the narrow phase first and leave the broad phase for later.

Narrow Phase
Once we are done with the broad phase, we have to check whether the bounding

shapes of the potentially colliding objects overlap. I mentioned earlier that we have a

couple of options for bounding shapes. Triangle meshes are the most computationally

expensive and cumbersome to create. It turns out that we can get away with bounding

rectangles and bounding circles in most 2D games, so that’s what we’ll concentrate on

here.

Circle Collision
Bounding circles are the cheapest way to check whether two objects collide. Let’s

define a simple Circle class. Listing 8–4 shows the code.

Listing 8–4. Circle.java, a Simple Circle Class

package com.badlogic.androidgames.framework.math;

public class Circle {
 public final Vector2 center = new Vector2();
 public float radius;

 public Circle(float x, float y, float radius) {
 this.center.set(x,y);
 this.radius = radius;
 }
}

We just store the center as a Vector2 and the radius as a simple float. How can we

check whether two circles overlap? Look at Figure 8–13.

CHAPTER 8: 2D Game Programming Tricks 380

Figure 8–13.Two circles overlapping (left), and two circles not overlapping (right)

It’s really simple and computationally efficient. All we need to do is figure out the

distance between the two centers. If the distance is greater then the sum of the two

radii, then we know the two circles do not overlap. In code this will look as follows:

public boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.dist(c2.center);
 return distance <= c1.radius + c2.radius;
}

We first measure the distance between the two centers and then check if the distance is

smaller or equal to the sum of the radii.

We have to take a square root in the Vector2.dist()�method. That’s unfortunate, as

taking the square root is a costly operation. Can we make this faster? Yes we can—all

we need to do is reformulate our condition:

sqrt(dist.x × dist.x + dist.y × dist.y) <= radius1 + radius2

We can get rid of the square root by exponentiating both sides of the inequality, as

follows:

dist.x × dist.x + dist.y × dist.y <= (radius1 + radius2) × (radius1 + radius2)

We trade the square root for an additional addition and multiplication on the right side.

That’s a lot better. Let’s create a�Vector2.distSquared() function that will return the

squared distance between two vectors:

public float distSquared(Vector2 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 return distX*distX + distY*distY;
}

The overlapCircles()�method then becomes the following:

public boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.distSquared(c2.center);
 float radiusSum = c1.radius + c2.radius;
 return distance <= radiusSum * radiusSum;
}

CHAPTER 8: 2D Game Programming Tricks 381

Rectangle Collision
Let’s move on to rectangles. First we need a class that can represent a rectangle. We

previously said we want a rectangle to be defined by its lower-left corner position plus

its width and height. We do just that in Listing 8–5.

Listing 8–5. Rectangle.java, a Rectangle Class

package com.badlogic.androidgames.framework.math;

public class Rectangle {
 public final Vector2 lowerLeft;
 public float width, height;

 public Rectangle(float x, float y, float width, float height) {
 this.lowerLeft = new Vector2(x,y);
 this.width = width;
 this.height = height;
 }
}

We store the lower-left corner’s position in a Vector2 and the width and height in two

floats. How can we check whether two rectangles overlap? Figure 8–14 should give you

a hint.

Figure 8–14. Lots of overlapping and nonoverlapping rectangles

The first two cases of partial overlap and nonoverlap are easy. The last one is a surprise.

A rectangle can of course be completely contained in another rectangle. That can

happen in the case of circles as well. However, our circle overlap test will return the

correct result if one circle is contained in the other circle.

Checking for overlap in the rectangle case looks complex at first. However, we can

create a very simple test if we invoke a little logic. Here’s the simplest method to check

for overlap between two rectangles:

public boolean overlapRectangles(Rectangle r1, Rectangle r2) {
 if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width &&
 r1.lowerLeft.x + r1.width > r2.lowerLeft.x &&
 r1.lowerLeft.y < r2.lowerLeft.y + r2.height &&
 r1.lowerLeft.y + r1.height > r2.lowerLeft.y)
 return true;

CHAPTER 8: 2D Game Programming Tricks 382

 else
 return false;
}

This looks a little bit confusing at first sight, so let’s go over each condition. The first

condition states that the left edge of the first rectangle must be to the left of the right

edge of the second rectangle. The next condition states that the right edge of the first

rectangle must be to the right of the left edge of the second rectangle. The other two

conditions state the same for the top and bottom edges of the rectangles. If all these

conditions are met, then the two rectangles overlap. Double-check this with Figure 8–14.

It also covers the containment case.

Circle/Rectangle Collision
Can we check for overlap between a circle and a rectangle? Yes we can. However, it is

a little more involved. Take a look at Figure 8–15.

Figure 8–15. Overlap-testing a circle and a rectangle by finding the closest point on/in the rectangle to the circle

The overall strategy for testing for overlap between a circle and a rectangle goes like

this:

� Find the closest x-coordinate on or in the rectangle to the circle’s

center. This coordinate can either be a point on the left or right edge of

the rectangle, unless the circle center is contained in the rectangle, in

which case the closest x-coordinate is the circle center’s x-coordinate.

� Find the closest y-coordinate on or in the rectangle to the circle’s

center. This coordinate can either be a point on the top or bottom

edge of the rectangle, unless the circle center is contained in the

rectangle, in which case the closest y-coordinate is the circle center’s

y-coordinate.

� If the point composed of the closest x- and y-coordinates is within the

circle, the circle and rectangle overlap.

While not depicted in Figure 8–15, this method also works for circles that

completely contain the rectangle. Let’s code it up:

public boolean overlapCircleRectangle(Circle c, Rectangle r) {
 float closestX = c.center.x;
 float closestY = c.center.y;

CHAPTER 8: 2D Game Programming Tricks 383

 if(c.center.x < r.lowerLeft.x) {
 closestX = r.lowerLeft.x;
 }
 else if(c.center.x > r.lowerLeft.x + r.width) {
 closestX = r.lowerLeft.x + r.width;
 }

 if(c.center.y < r.lowerLeft.y) {
 closestY = r.lowerLeft.y;
 }
 else if(c.center.y > r.lowerLeft.y + r.height) {
 closestY = r.lowerLeft.y + r.height;
 }

 return c.center.distSquared(closestX, closestY) < c.radius * c.radius;
}

The description looked a lot scarier than the implementation. We determine the closest

point on the rectangle to the circle, and then simply check whether the point lies inside

the circle. If that’s the case, there is an overlap between the circle and the rectangle.

Note that I added an overloaded distSquared() method to Vector2 that takes two float

arguments instead of another Vector2. I did the same for the dist()�function.

Putting It All Together
Checking whether a point lies inside a circle or rectangle can be useful too. Let’s code

up two more methods and put them into a class called OverlapTester, together with the

other three methods we just defined. Listing 8–6 shows the code.

Listing 8–6. OverlapTester.java; Testing Overlap Between Circles, Rectangles, and Points

package com.badlogic.androidgames.framework.math;

public class OverlapTester {
 public static boolean overlapCircles(Circle c1, Circle c2) {
 float distance = c1.center.distSquared(c2.center);
 float radiusSum = c1.radius + c2.radius;
 return distance <= radiusSum * radiusSum;
 }

 public static boolean overlapRectangles(Rectangle r1, Rectangle r2) {
 if(r1.lowerLeft.x < r2.lowerLeft.x + r2.width &&
 r1.lowerLeft.x + r1.width > r2.lowerLeft.x &&
 r1.lowerLeft.y < r2.lowerLeft.y + r2.height &&
 r1.lowerLeft.y + r1.height > r2.lowerLeft.y)
 return true;
 else
 return false;
 }

 public static boolean overlapCircleRectangle(Circle c, Rectangle r) {
 float closestX = c.center.x;
 float closestY = c.center.y;

CHAPTER 8: 2D Game Programming Tricks 384

 if(c.center.x < r.lowerLeft.x) {
 closestX = r.lowerLeft.x;
 }
 else if(c.center.x > r.lowerLeft.x + r.width) {
 closestX = r.lowerLeft.x + r.width;
 }

 if(c.center.y < r.lowerLeft.y) {
 closestY = r.lowerLeft.y;
 }
 else if(c.center.y > r.lowerLeft.y + r.height) {
 closestY = r.lowerLeft.y + r.height;
 }

 return c.center.distSquared(closestX, closestY) < c.radius * c.radius;
 }

 public static boolean pointInCircle(Circle c, Vector2 p) {
 return c.center.distSquared(p) < c.radius * c.radius;
 }

 public static boolean pointInCircle(Circle c, float x, float y) {
 return c.center.distSquared(x, y) < c.radius * c.radius;
 }

 public static boolean pointInRectangle(Rectangle r, Vector2 p) {
 return r.lowerLeft.x <= p.x && r.lowerLeft.x + r.width >= p.x &&
 r.lowerLeft.y <= p.y && r.lowerLeft.y + r.height >= p.y;
 }

 public static boolean pointInRectangle(Rectangle r, float x, float y) {
 return r.lowerLeft.x <= x && r.lowerLeft.x + r.width >= x &&
 r.lowerLeft.y <= y && r.lowerLeft.y + r.height >= y;
 }
}

Sweet, now we have a fully functional 2D math library we can use for all our little physics

models and collision detection. Let’s talk about the broad phase in a little more detail

now.

Broad Phase
So how can we achieve the magic that the broad phase promises us? Look at Figure 8–16,

which shows a typical Super Mario Brothers scene.

CHAPTER 8: 2D Game Programming Tricks 385

Figure 8–16. Super Mario and his enemies. Boxes around objects are their bounding rectangles; the big boxes
make up a grid imposed on the world.

Can you already guess what we could do to eliminate some checks? The blue grid in

Figure 8–16 represents cells we partition our world with. Each cell has the exact same

size, and the whole world is covered in cells. Mario is currently in two of those cells, and

the other objects Mario could potentially collide with are in different cells. We thus don’t

need to check for any collisions, as Mario is not in the same cells as any of the other

objects in the scene. All we need to do is the following:

� Update all objects in the world based on our physics and controller

step.

� Update the position of each bounding shape of each object according

to the object’s position. We can of course also include the orientation

and scale as well here.

� Figure out which cell or cells each object is contained in based on its

bounding shape, and add it to the list of objects contained in those

cells.

� Check for collisions, but only between object pairs that can collide (e.g.,

Goombas don’t collide with other Goombas) and are in the same cell.

This is called a spatial hash grid broad phase, and it is very easy to implement. The first

thing we have to define is the size of each cell. This is highly dependent on the scale and

units we use for our game’s world.

CHAPTER 8: 2D Game Programming Tricks 386

An Elaborate Example
Let’s develop the spatial hash grid broad phase based on our last cannonball example.

We will completely rework it to incorporate everything covered in this section so far. In

addition to the cannon and the ball, we also want to have targets to fire at. We’ll make

our lives easy and just use squares of size 0.5�0.5 meters as targets. These squares

don’t move; they’re static. Our cannon is static as well. The only thing that moves is the

cannonball itself. We can generally categorize objects in our game world as static

objects or dynamic objects. So let’s devise a class that can represent such objects.

GameObject, DynamicGameObject, and Cannon
Let’s start with the static case, or base case, in Listing 8–7.

Listing 8–7. GameObject.java, a Static Game Object with a Position and Bounds

package com.badlogic.androidgames.gamedev2d;

import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class GameObject {
 public final Vector2 position;
 public final Rectangle bounds;

 public GameObject(float x, float y, float width, float height) {
 this.position = new Vector2(x,y);
 this.bounds = new Rectangle(x-width/2, y-height/2, width, height);
 }
}

Every object in our game has a position that coincides with its center. Additionally we let

each object have a single bounding shape—a rectangle in this case. In our constructor

we set the position and bounding rectangle (which is centered around the center of the

object) according to the parameters.

For dynamic objects, that is, objects which move, we also need to keep track of their

velocity and acceleration (if they’re actually accelerated by themselves—e.g., via an

engine or thruster). Listing 8–8 shows the code for the DynamicGameObject class.

Listing 8–8. DynamicGameObject.java: Extending the GameObject with a Velocity and Acceleration Vector

package com.badlogic.androidgames.gamedev2d;

import com.badlogic.androidgames.framework.math.Vector2;

public class DynamicGameObject extends GameObject {
 public final Vector2 velocity;
 public final Vector2 accel;

 public DynamicGameObject(float x, float y, float width, float height) {
 super(x, y, width, height);
 velocity = new Vector2();

CHAPTER 8: 2D Game Programming Tricks 387

 accel = new Vector2();
 }
}

We just extend the GameObject class to inherit the position and bounds members.

Additionally we create vectors for the velocity and acceleration. A new dynamic game

object will have zero velocity and acceleration after it has been initialized.

In our cannonball example we have the cannon, the cannonball, and the targets. The

cannonball is a DynamicGameObject, as it moves according to our simple physics model.

The targets are static and can be implemented by using the standard GameObject. The

cannon itself can also be implemented via the GameObject class. We will derrive a Cannon

class from the GameObject class and add a field storing the cannon’s current angle.

Listing 8–9 shows the code.

Listing 8–9. Cannon.java: Extending the GameObject with an Angle

package com.badlogic.androidgames.gamedev2d;

public class Cannon extends GameObject {
 public float angle;

 public Cannon(float x, float y, float width, float height) {
 super(x, y, width, height);
 angle = 0;
 }
}

That nicely encapsulates all the data needed to represent an object in our cannon world.

Every time we need a special kind of object, like the cannon, we can simply derive from

GameObject if it is a static object, or DynamicGameObject if it has a velocity and

acceleration.

NOTE: The overuse of inheritance can lead to severe headaches and very ugly code architecture.
Do not use it just for the sake of using it. The simple class hierarchy just used is OK, but we

shouldn’t let it go a lot deeper (e.g., by extending Cannon). There are alternative representations
of game objects that do away with all inheritance by composition. For our purposes, simple
inheritance is more than enough, though. If you are interested in other representations, search

for “composites” or “mixins” on the Web.

The Spatial Hash Grid
Our cannon will be bounded by a rectangle of 1�1 meters, the cannonball will have a

bounding rectangle of 0.2�0.2 meters, and the targets will each have a bounding

rectangle of 0.5�0.5 meters. The bounding rectangles are centered around each object’s

positions to make our lives a little easier.

When our cannon example starts up, we’ll simply place a number of targets at random

positions. Here’s how we could set up the objects in our world:

CHAPTER 8: 2D Game Programming Tricks 388

Cannon cannon = new Cannon(0, 0, 1, 1);
DynamicGameObject ball = new DynamicGameObject(0, 0, 0.2f, 0.2f);
GameObject[] targets = new GameObject[NUM_TARGETS];
for(int i = 0; i < NUM_TARGETS; i++) {
 targets[i] = new GameObject((float)Math.random() * WORLD_WIDTH,
 (float)Math.random() * WORLD_HEIGHT,
 0.5f, 0.5f);
}

The constants WORLD_WIDTH and WORLD_HEIGHT define the size of our game world.

Everything should happen inside the rectangle bounded by (0,0) and

(WORLD_WIDTH,WORLD_HEIGHT). Figure 8–17 shows a little mock-up of our game world so

far.

Figure 8–17. A mock-up of our game world

Our world will look like this later on, but for now, let’s overlay a spatial hash grid. How

big should the cells of the hash grid be? There’s no silver bullet, but I tend to choose it

to be five times bigger than the biggest object in the scene. In our example, the biggest

object is the cannon, but we do not collide anything with the cannon. So let’s base the

grid size on the next biggest objects in our scene, the targets. These are 0.5�0.5 meters

in size. A grid cell should thus have a size of 2.5�2.5 meters. Figure 8–18 shows the grid

overlaid onto our world.

CHAPTER 8: 2D Game Programming Tricks 389

Figure 8–18. Our cannon world overlaid with a spatial hash grid consisting of 12 cells

We have a fixed number of cells—in the case of the cannon world, 12 cells to be exact.

We give each cell a unique number, starting at the bottom-left cell, which gets the ID 0.

Note that the top cells actually extend outside of our world. This is not a problem; we

just need to make sure all our objects stay inside the boundaries of our world.

What we want to do is figure out which cell(s) an object belongs to. Ideally we want to

calculate the IDs of the cells the object is contained in. This allows us to use the

following simple data structure to store our cells:

List<GameObject>[] cells;

That’s right, we represent each cell as a list of GameObjects. The spatial hash grid itself is

then just composed of an array of lists of GameObjects.

Let’s think about how we can figure out the IDs of the cells an object is contained in.

Figure 8–18 shows a couple of targets that span two cells. In fact, a small object can

span up to four cells, and an object bigger than a grid cell can span even more than four

cells. We can make sure this never happens by choosing our grid cell size to be a

multiple of the size of the biggest object in our game. That leaves us with the possibility

of one object being contained in at most four cells.

To calculate the cell IDs for an object, we can simply take the four corner points of its

bounding rectangle and check which cell each corner point is in. Determining the cell

that a point is in is easy—we just need to divide its coordinates by the cell width first.

Say we have a point at (3,4) and a cell size of 2.5�2.5 meters. The point would be in the

cell with ID 5 in Figure 8–18.

We can divide each the point’s coordinates by the cell size to get 2D integer coordinates

, as follows:

cellX = floor(point.x / cellSize) = floor(3 / 2.5) = 1
cellY = floor(point.y / cellSize) = floor(4 / 2.5) = 1

And from these cell coordinates, we can easily get the cell ID:

CHAPTER 8: 2D Game Programming Tricks 390

cellId = cellX + cellY × cellsPerRow = 1 + 1 × 4 = 5

The constant cellsPerRow is simply the number of cells we need to cover our world with

cells on the x-axis:

cellsPerRow = ceil(worldWidth / cellSize) = ceil(9.6 / 2.5) = 4

We can calculate the number of cells needed per column like this:

cellsPerColumn = ceil(worldHeight / cellSize) = ceil(6.4 / 2.5) = 3

Based on this we can implement the spatial hash grid rather easily. We set up it up by

giving it the world’s size and the desired cell size. We assume that all the action is

happening in the positive quadrant of the world. This means that all x- and y-

coordinates of points in the world will be positive. That’s a constraint we can accept.

From the parameters, the spatial hash grid can figure out how many cells it needs

(cellsPerRow � cellsPerColumn). We can also add a simple method to insert an object

into the grid that will use the object’s boundaries to determine the cells it is contained in.

The object will then be added to each cell’s list of objects that it contains. In case one of

the corner points of the bounding shape of the object is outside of the grid, we’ll just

ignore that corner point.

We will reinsert every object into the spatial hash grid each frame after we update its

position. However, there are objects in our cannon world that don’t move, so inserting

them anew each frame is very wasteful. We’ll thus make a distinction between dynamic

objects and static objects by storing two lists per cell. One will be updated each frame

and only hold moving objects, and the other will be static and only modified when a new

static object is inserted.

Finally we need a method that returns a list of objects in the cells of an object we’d like

to collide with other objects. All this method will do is check which cells the object in

question is in, retrieve the list of dynamic and static objects in those cells, and return

them to the caller. We’ll of course have to make sure that we don’t return any

duplicates, which can happen if an object is in multiple cells.

Listing 8–10 shows the code (well, most of it). We’ll discuss the

SpatialHashGrid.getCellIds() method in a minute, as it is a little involved.

Listing 8–10. Excerpt from SpatialHashGrid.java: A Spatial Hash Grid Implementation

package com.badlogic.androidgames.framework.gl;

import java.util.ArrayList;
import java.util.List;

import com.badlogic.androidgames.gamedev2d.GameObject;

import android.util.FloatMath;

public class SpatialHashGrid {
 List<GameObject>[] dynamicCells;
 List<GameObject>[] staticCells;
 int cellsPerRow;
 int cellsPerCol;

CHAPTER 8: 2D Game Programming Tricks 391

 float cellSize;
 int[] cellIds = new int[4];
 List<GameObject> foundObjects;

As discussed we store two cell lists, one for dynamic and one for static objects. We also

store the cells per row and column so we can later decide whether a point we check is

inside or outside of the world. The cell size needs to be stored as well. The cellIds array

is a working array that we’ll use to temporarily store the four cell IDs a GameObject is

contained in. If it is only contained in one cell, then only the first element of the array will

be set to the cell ID of the cell that contains the object entirely. If the object is contained

in two cells, then the first two elements of that array will hold the cell ID, and so on. To

indicate the number of cell IDs we set all “empty” elements of the array to –1. The

foundObjects list is also a working list, which we’ll return upon a call to

getPotentialColliders(). Why do keep those two members instead of instantiating a

new array and list each time one is needed? Remember the garbage collector monster.

 @SuppressWarnings("unchecked")
 public SpatialHashGrid(float worldWidth, float worldHeight, float cellSize) {
 this.cellSize = cellSize;
 this.cellsPerRow = (int)FloatMath.ceil(worldWidth/cellSize);
 this.cellsPerCol = (int)FloatMath.ceil(worldHeight/cellSize);
 int numCells = cellsPerRow * cellsPerCol;
 dynamicCells = new List[numCells];
 staticCells = new List[numCells];
 for(int i = 0; i < numCells; i++) {
 dynamicCells[i] = new ArrayList<GameObject>(10);
 staticCells[i] = new ArrayList<GameObject>(10);
 }
 foundObjects = new ArrayList<GameObject>(10);
 }

The constructor of that class takes the world’s size and the desired cell size. From those

arguments we calculate how many cells are needed, and instantiate the cell arrays and

the lists holding the objects contained in each cell. We also initialize the foundObjects

list here. All the ArrayLists we instantiate will have an initial capacity of ten GameObjects.

We do this to avoid memory allocations. The assumption is that it is unlikely that one

single cell will contain more than ten GameObjects. As long as that is true, the arrays

don’t need to be resized.

 public void insertStaticObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 staticCells[cellId].add(obj);
 }
 }

 public void insertDynamicObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {

CHAPTER 8: 2D Game Programming Tricks 392

 dynamicCells[cellId].add(obj);
 }
 }

Next up are the methods�insertStaticObject() and�insertDynamicObject(). They

calculate the IDs of the cells that the object is contained in via a call to getCellIds(),

and insert the object into the appropriate lists accordingly. The getCellIds() method

will actually fill the cellIds member array.

 public void removeObject(GameObject obj) {
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 dynamicCells[cellId].remove(obj);
 staticCells[cellId].remove(obj);
 }
 }

We also have a removeObject() method, which we’ll use to figure out what cells the

object is in and then delete it from the dynamic and static lists accordingly. This will be

needed when a game object dies, for example.

 public void clearDynamicCells(GameObject obj) {
 int len = dynamicCells.length;
 for(int i = 0; i < len; i++) {
 dynamicCells[i].clear();
 }
 }

The clearDynamicCells()�method will be used to clear all dynamic cell lists. We need to

call this each frame before we reinsert the dynamic objects, as discussed earlier.

 public List<GameObject> getPotentialColliders(GameObject obj) {
 foundObjects.clear();
 int[] cellIds = getCellIds(obj);
 int i = 0;
 int cellId = -1;
 while(i <= 3 && (cellId = cellIds[i++]) != -1) {
 int len = dynamicCells[cellId].size();
 for(int j = 0; j < len; j++) {
 GameObject collider = dynamicCells[cellId].get(j);
 if(!foundObjects.contains(collider))
 foundObjects.add(collider);
 }

 len = staticCells[cellId].size();
 for(int j = 0; j < len; j++) {
 GameObject collider = staticCells[cellId].get(j);
 if(!foundObjects.contains(collider))
 foundObjects.add(collider);
 }
 }
 return foundObjects;
 }

CHAPTER 8: 2D Game Programming Tricks 393

Finally there’s the getPotentialColliders()�method. It takes an object and returns a list

of neighboring objects that are contained in the same cells as that object. We use the

working list foundObjects to store the list of found objects. Again, we do not want to

instantiate a new list each time this method is called. All we do is figure out which cells

the object passed to the method is in. We then simply add all dynamic and static

objects found in those cells to the foundObjects list and make sure that there are no

duplicates. Using foundObjects.contains()�to check for duplicates is of course a little

suboptimal. But given that the number of found objects will never be large, it is OK to

use it in this case. If you run into performance problems, then this is your number one

candidate to optimize. Sadly, that’s not trivial, however. We could use a Set, of course,

but that allocates new objects internally each time we add an object to it. For now, we’ll

just leave it as it is, knowing that we can come back to it should anything go wrong

performance-wise.

The method I left out is SpatialHashGrid.getCellIds(). Listing 8–11 shows its code.

Don’t be afraid, it just looks menacing.

Listing 8–11. The Rest of SpatialHashGrid.java: Implementing getCellIds()

 public int[] getCellIds(GameObject obj) {
 int x1 = (int)FloatMath.floor(obj.bounds.lowerLeft.x / cellSize);
 int y1 = (int)FloatMath.floor(obj.bounds.lowerLeft.y / cellSize);
 int x2 = (int)FloatMath.floor((obj.bounds.lowerLeft.x + obj.bounds.width) /
cellSize);
 int y2 = (int)FloatMath.floor((obj.bounds.lowerLeft.y + obj.bounds.height) /
cellSize);

 if(x1 == x2 && y1 == y2) {
 if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[0] = x1 + y1 * cellsPerRow;
 else
 cellIds[0] = -1;
 cellIds[1] = -1;
 cellIds[2] = -1;
 cellIds[3] = -1;
 }
 else if(x1 == x2) {
 int i = 0;
 if(x1 >= 0 && x1 < cellsPerRow) {
 if(y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x1 + y1 * cellsPerRow;
 if(y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x1 + y2 * cellsPerRow;
 }
 while(i <= 3) cellIds[i++] = -1;
 }
 else if(y1 == y2) {
 int i = 0;
 if(y1 >= 0 && y1 < cellsPerCol) {
 if(x1 >= 0 && x1 < cellsPerRow)
 cellIds[i++] = x1 + y1 * cellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow)
 cellIds[i++] = x2 + y1 * cellsPerRow;
 }

CHAPTER 8: 2D Game Programming Tricks 394

 while(i <= 3) cellIds[i++] = -1;
 }
 else {
 int i = 0;
 int y1CellsPerRow = y1 * cellsPerRow;
 int y2CellsPerRow = y2 * cellsPerRow;
 if(x1 >= 0 && x1 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x1 + y1CellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow && y1 >= 0 && y1 < cellsPerCol)
 cellIds[i++] = x2 + y1CellsPerRow;
 if(x2 >= 0 && x2 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x2 + y2CellsPerRow;
 if(x1 >= 0 && x1 < cellsPerRow && y2 >= 0 && y2 < cellsPerCol)
 cellIds[i++] = x1 + y2CellsPerRow;
 while(i <= 3) cellIds[i++] = -1;
 }
 return cellIds;
 }

}

The first four lines of this method just calculate the cell coordinates of the bottom-left

and top-right corners of the object’s bounding rectangle. We already discussed this

calculation earlier. To understand the rest of this method, we have to think about how an

object can overlap grid cells. There are four possibilities:

� The object is contained in a single cell. The bottom-left and top-right

corners of the bounding rectangle thus both have the same cell

coordinates.

� The object overlaps two cells horizontally. The bottom-left corner is in

one cell and the top-right corner is in the cell to the right.

� The object overlaps two cells vertically. The bottom-left corner is in

one cell and the top-right corner is in the cell above.

� The object overlaps four cells. The bottom-left corner is in one cell, the

bottom-right corner is in the cell to the right, the top-right corner is in

the cell above that, and the top-left corner is in the cell above the first

cell.

All this method does is make a special case for each of these possibilities. The first if

statement checks for the single-cell case, the second if statement checks for the

horizontal double-cell case, the third if statement checks for the vertical double-cell

case, and the else block handles the case of the object overlapping four grid cells. In

each of the four blocks we make sure that we only set the cell ID if the corresponding

cell coordinates are within the world. And that’s all there is to this method.

Now, the method looks like it would take a lot of computational power. And indeed it

does, but less than its size would suggest. The most common case will be the first one,

and processing that is pretty cheap. Can you see opportunities to optimize this method

further?

CHAPTER 8: 2D Game Programming Tricks 395

Putting It All Together
Let’s put all the knowledge we gathered in this section together to form a nice little

example. We’ll extend the cannon example of the last section as discussed a few pages

back. We’ll use a Cannon object for the cannon, a DynamicGameObject for the cannonball,

and a number of GameObjects for the targets. Each target will have a size of 0.5�0.5

meters and be placed randomly in the world.

We want to be able to shoot those targets. For this we need collision detection. We

could just loop over all targets and check them against the cannonball, but that would

be boring. We’ll use our fancy new SpatialHashGrid class to speed up finding the

potentially colliding targets for the current ball position. We won’t insert the ball or the

cannon into the grid, though, as that wouldn’t really gain us anything.

Since this example is already pretty big, we’ll split it up into multiple listings. We’ll call

the test CollisionTest and the corresponding screen CollisionScreen. As always, we’ll

only look at the screen. Let’s start with the members and the constructor, in Listing 8–

12.

Listing 8–12. Excerpt from CollisionTest.java: Members and Constructor

class CollisionScreen extends Screen {
 final int NUM_TARGETS = 20;
 final float WORLD_WIDTH = 9.6f;
 final float WORLD_HEIGHT = 4.8f;
 GLGraphics glGraphics;
 Cannon cannon;
 DynamicGameObject ball;
 List<GameObject> targets;
 SpatialHashGrid grid;

 Vertices cannonVertices;
 Vertices ballVertices;
 Vertices targetVertices;

 Vector2 touchPos = new Vector2();
 Vector2 gravity = new Vector2(0,-10);

 public CollisionScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();

 cannon = new Cannon(0, 0, 1, 1);
 ball = new DynamicGameObject(0, 0, 0.2f, 0.2f);
 targets = new ArrayList<GameObject>(NUM_TARGETS);
 grid = new SpatialHashGrid(WORLD_WIDTH, WORLD_HEIGHT, 2.5f);
 for(int i = 0; i < NUM_TARGETS; i++) {
 GameObject target = new GameObject((float)Math.random() * WORLD_WIDTH,
 (float)Math.random() * WORLD_HEIGHT,
 0.5f, 0.5f);
 grid.insertStaticObject(target);
 targets.add(target);
 }

CHAPTER 8: 2D Game Programming Tricks 396

 cannonVertices = new Vertices(glGraphics, 3, 0, false, false);
 cannonVertices.setVertices(new float[] { -0.5f, -0.5f,
 0.5f, 0.0f,
 -0.5f, 0.5f }, 0, 6);

 ballVertices = new Vertices(glGraphics, 4, 6, false, false);
 ballVertices.setVertices(new float[] { -0.1f, -0.1f,
 0.1f, -0.1f,
 0.1f, 0.1f,
 -0.1f, 0.1f }, 0, 8);
 ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

 targetVertices = new Vertices(glGraphics, 4, 6, false, false);
 targetVertices.setVertices(new float[] { -0.25f, -0.25f,
 0.25f, -0.25f,
 0.25f, 0.25f,
 -0.25f, 0.25f }, 0, 8);
 targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);
 }

We brought over a lot from the CannonGravityScreen. We start off with a couple of

constant definitions, governing the number of targets and our world’s size. Next we have

the GLGraphics instance, as well as the objects for the cannon, the ball, and the targets,

which we store in a list. We also have a SpatialHashGrid, of course. For rendering our

world we need a few meshes: one for the cannon, one for the ball, and one we’ll use to

render each target. Remember that we only had a single rectangle in BobTest to render

the 100 Bobs to the screen. We’ll reuse that principle here as well, instead of having a

single Vertices instance holding the triangles (rectangles) of our targets. The last two

members are the same as in the CannonGravityTest. We use them to shoot the ball and

apply gravity when the user touches the screen.

The constructor just does all the things we discussed already. We instantiate our world

objects and meshes. The only interesting thing is that we also add the targets as static

objects to the spatial hash grid.

Let’s check out the next method of the CollisionTest class, in Listing 8–13.

Listing 8–13. Excerpt from CollisionTest.java: The update() Method

@Override
public void update(float deltaTime) {
 List<TouchEvent> touchEvents = game.getInput().getTouchEvents();
 game.getInput().getKeyEvents();

 int len = touchEvents.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = touchEvents.get(i);

 touchPos.x = (event.x / (float) glGraphics.getWidth())* WORLD_WIDTH;
 touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT;

 cannon.angle = touchPos.sub(cannon.position).angle();

 if(event.type == TouchEvent.TOUCH_UP) {
 float radians = cannon.angle * Vector2.TO_RADIANS;

CHAPTER 8: 2D Game Programming Tricks 397

 float ballSpeed = touchPos.len() * 2;
 ball.position.set(cannon.position);
 ball.velocity.x = FloatMath.cos(radians) * ballSpeed;
 ball.velocity.y = FloatMath.sin(radians) * ballSpeed;
 ball.bounds.lowerLeft.set(ball.position.x - 0.1f, ball.position.y - 0.1f);
 }
 }

 ball.velocity.add(gravity.x * deltaTime, gravity.y * deltaTime);
 ball.position.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime);
 ball.bounds.lowerLeft.add(ball.velocity.x * deltaTime, ball.velocity.y * deltaTime);

 List<GameObject> colliders = grid.getPotentialColliders(ball);
 len = colliders.size();
 for(int i = 0; i < len; i++) {
 GameObject collider = colliders.get(i);
 if(OverlapTester.overlapRectangles(ball.bounds, collider.bounds)) {
 grid.removeObject(collider);
 targets.remove(collider);
 }
 }
}

As always, we first fetch the touch and key events, and only iterate over the touch

events. The handling of touch events is nearly the same as in the CannonGravityTest.

The only difference is that we use the Cannon object instead of the vectors we had in the

old example, and we also reset the ball’s bounding rectangle when the cannon is made

ready to shoot on a touch-up event.

The next change is how we update the ball. Instead of straight vectors, we use the

members of the DynamicGameObject that we instantiated for the ball. We neglect the

DynamicGameObject.acceleration member and instead add our gravity to the ball’s

velocity. We also multiply the ball’s speed by 2 so that the cannonball flies a little faster.

The interesting thing is that we update not only the ball’s position, but also the bounding

rectangle’s lower-left corner’s position. This is crucial, as otherwise our ball would move

but its bounding rectangle wouldn’t. Why don’t we just use the ball’s bounding rectangle

to store the ball’s position? We might want to have multiple bounding shapes attached

to an object. Which bounding shape would then hold the actual position of the object?

Separating these two things is thus beneficial, and introduces only a little computational

overhead. We could of course optimize this a little by only multiplying the velocity with

the delta time once. The overhead would then boil down to two more additions—a small

price to pay for the flexibility we gain.

The final portion of this method is our collision detection code. All we do is find the

targets in the spatial hash grid that are in the same cells as our cannonball. We use the

SpatialHashGrid.getPotentialColliders() method for this. Since the cells the ball is

contained in are evaluated in that method directly, we do not need to insert the ball into

the grid. Next we loop through all the potential colliders and check if there really is an

overlap between the ball’s bounding rectangle and a potential collider’s bounding

rectangle. If there is, we simply remove the target from the target list. Remember, we

only added targets as static objects to the grid.

CHAPTER 8: 2D Game Programming Tricks 398

And those are our complete game mechanics. The last piece of the puzzle is the actual

rendering, which shouldn’t really surprise you. See the code in Listing 8–14.

Listing 8–14. Excerpt from CollisionTest.java: The present() Method

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);

 gl.glColor4f(0, 1, 0, 1);
 targetVertices.bind();
 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 gl.glLoadIdentity();
 gl.glTranslatef(target.position.x, target.position.y, 0);
 targetVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 targetVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(ball.position.x, ball.position.y, 0);
 gl.glColor4f(1,0,0,1);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(cannon.position.x, cannon.position.y, 0);
 gl.glRotatef(cannon.angle, 0, 0, 1);
 gl.glColor4f(1,1,1,1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 3);
 cannonVertices.unbind();
}

Nothing new here. As always, we set the projection matrix and viewport, and clear the

screen first. Next we render all targets, reusing the rectangular model stored in

targetVertices. This is essentially the same thing we did in BobTest, but this time we

render targets instead. Next we render the ball and the cannon, as we did in the

CollisionGravityTest.

The only thing to note here is that I changed the drawing order so that the ball will

always be above the targets and the cannon will always be above the ball. I also colored

the targets green with a call to glColor4f().

The output of this little test is exactly the same as in Figure 8–17, so I’ll spare you the

repetition. When you fire the cannonball, it will plow through the field of targets. Any

target that gets hit by the ball will be removed from the world.

CHAPTER 8: 2D Game Programming Tricks 399

This example could actually be a nice game if we polish it up a little and add some

motivating game mechanics. Can you think of additions? I suggest you play around with

the example a little to get a feeling for all the new tools we have developed over the

course of the last couple of pages.

There are a few more things I’d like to discuss in this chapter: cameras, texture atlases,

and sprites. These use graphics-related tricks that are independent of our model of the

game world. Let’s get going!

A Camera in 2D
Up until now, we haven’t had the concept of a camera in our code; we’ve only had the

definition of our view frustum via glOrthof(), like this:

gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glOrthof(0, FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);

From Chapter 6 we know that the first two parameters define the x-coordinates of the

left and right edges of our frustum in the world, the next two parameters define the y-

coordinates of the bottom and top edges of the frustum, and the last two parameters

define the near and far clipping planes. Figure 8–19 shows that frustum again.

Figure 8–19. The view frustum for our 2D world, again

So we only see the region (0,0,1) to (FRUSTUM_WIDTH, FRUSTUM_HEIGHT,–1) of our world.

Wouldn’t it be nice if we could move the frustum? Say, to the left? Of course that would

be nice, and it is dead simple as well:

gl.glOrthof(x, x + FRUSTUM_WIDTH, 0, FRUSTUM_HEIGHT, 1, -1);

In this case, x is just some offset we can define. We can of course also move on the x-

and y-axes:

CHAPTER 8: 2D Game Programming Tricks 400

gl.glOrthof(x, x + FRUSTUM_WIDTH, y, y + FRUSTUM_HEIGHT, 1, -1);

Figure 8–20 shows what that means.

Figure 8–20. Moving the frustum around

By this we simply specify the bottom-left corner of our view frustum in the world space.

This is already sufficient to implement a freely movable 2D camera. But we can do

better. What about not specifying the bottom-left corner of the view frustum with x and

y, but instead specifying the center of the view frustum? That way we could easily center

our view frustum on an object at a specific location—say, the cannonball from our

preceding example:

gl.glOrthof(x – FRUSTUM_WIDTH / 2, x + FRUSTUM_WIDTH / 2, y – FRUSTUM_HEIGHT / 2, y +
FRUSTUM_HEIGHT / 2, 1, -1);

Figure 8–21 shows what this looks like.

Figure 8–21. Specifying the view frustum in terms of its center

That’s still not all we can do with glOrthof(). What about zooming? Let’s think about

this for a little while. We know that via glViewportf()�we can tell OpenGL ES what

CHAPTER 8: 2D Game Programming Tricks 401

portion of our screen to render the contents of our view frustum to. OpenGL ES will

automatically stretch and scale the output to align with the viewport. Now, if we make

the width and height of our view frustum smaller, we will simply show a smaller region of

our world on the screen. That’s zooming in. If we make the frustum bigger, we’ll show

more of our world—that’s zooming out. We can therefore introduce a zoom factor and

multiply it by our frustum’s width and height to zoom in an out. A factor of 1 will show us

the world as in Figure 8–21, using the normal frustum width and height. A factor smaller

than 1 will zoom in on the center of our view frustum. And a factor bigger than 1 will

zoom out, showing us more of our world (e.g., setting the zoom factor to 2 will show us

twice as much of our world). Here’s how we can use glOrthof()�to do that for us:

gl.glOrthof(x – FRUSTUM_WIDTH / 2 * zoom, x + FRUSTUM_WIDTH / 2 * zoom, y –
FRUSTUM_HEIGHT / 2 * zoom, y + FRUSTUM_HEIGHT / 2 * zoom, 1, -1);

Dead simple! We can now create a camera class that has a position it is looking at (the

center of the view frustum), a standard frustum width and height, and a zoom factor that

makes the frustum smaller or bigger, thereby showing us either less of our world

(zooming in) or more of our world (zooming out). Figure 8–22 shows a view frustum with

a zoom factor of 0.5 (the inner gray box), and one with a zoom factor of 1 (the outer,

transparent box).

Figure 8–22. Zooming by manipulating the frustum size

To make our lives complete we should add one more thing. Imagine that we touch the

screen and want to figure out what point in our 2D world we touched. We already did

this a couple of times in our iteratively improving cannon examples. With a view frustum

configuration that does not factor in the camera’s position and zoom, as in Figure 8–19,

we had the following equations (see the update() method of our cannon examples):

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH;
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT;

CHAPTER 8: 2D Game Programming Tricks 402

We first normalize the touch x- and y-coordinates to the range 0 to 1 by dividing by the

screen’s width and height, and then we scale them so that they are expressed in terms

of our world space by multiplying them with the frustum’s width and height. All we need

to do is factor in the position of the view frustum as well as the zoom factor. Here’s how

we do that:

worldX = (touchX / Graphics.getWidth()) × FRUSTUM_WIDTH + x – FRUSTUM_WIDTH / 2;
worldY = (1 – touchY / Graphics.getHeight()) × FRUSTUM_HEIGHT + y – FRUSTUM_HEIGHT / 2;

Here, x and y are our camera’s position in world space.

The Camera2D Class
Let’s put all this together into a single class. We want it to store the camera’s position,

the standard frustum width and height, and the zoom factor. We also want a

convenience method that sets the viewport (always use the whole screen) and projection

matrix correctly. Additionally we want a method that can translate touch coordinates to

world coordinates. Listing 8–15 shows our new Camera2D class.

Listing 8–15. Camera2D.java, Our Shiny New Camera Class for 2D Rendering

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector2;

public class Camera2D {
 public final Vector2 position;
 public float zoom;
 public final float frustumWidth;
 public final float frustumHeight;
 final GLGraphics glGraphics;

As discussed, we store the camera’s position, frustum width and height, and zoom

factor as members. The position and zoom factor are public, so we can easily

manipulate them. We also need a reference to GLGraphics so we can get the up-to-date

width and height of the screen in pixels for transforming touch coordinates to world

coordinates.

 public Camera2D(GLGraphics glGraphics, float frustumWidth, float frustumHeight) {
 this.glGraphics = glGraphics;
 this.frustumWidth = frustumWidth;
 this.frustumHeight = frustumHeight;
 this.position = new Vector2(frustumWidth / 2, frustumHeight / 2);
 this.zoom = 1.0f;
 }

In the constructor we take a GLGraphics instance and the frustum’s width and height at the

zoom factor 1 as parameters. We store them and initialize the position of the camera to

look at the center of the box bounded by (0,0,1) and (frustumWidth, frustumHeight,–1), as

in Figure 8–19. The initial zoom factor is set to 1.

CHAPTER 8: 2D Game Programming Tricks 403

 public void setViewportAndMatrices() {
 GL10 gl = glGraphics.getGL();
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glOrthof(position.x - frustumWidth * zoom / 2,
 position.x + frustumWidth * zoom/ 2,
 position.y - frustumHeight * zoom / 2,
 position.y + frustumHeight * zoom/ 2,
 1, -1);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }

The setViewportAndMatrices() method sets the viewport to span the whole screen, and

sets the projection matrix in accordance with our camera’s parameters, as discussed

previously. At the end of the method we tell OpenGL ES that all further matrix operations

are targeting the model view matrix and load an identity matrix. We will call this method

each frame so we can start from a clean slate. No more direct OpenGL ES calls to set

up our viewport and projection matrix.

 public void touchToWorld(Vector2 touch) {
 touch.x = (touch.x / (float) glGraphics.getWidth()) * frustumWidth * zoom;
 touch.y = (1 - touch.y / (float) glGraphics.getHeight()) * frustumHeight * zoom;
 touch.add(position).sub(frustumWidth * zoom / 2, frustumHeight * zoom / 2);
 }
}

The touchToWorld() method takes a Vector2 instance containing touch coordinates and

transforms the vector to world space. This is the same thing we just discussed; the only

difference is that we use our fancy Vector2 class.

An Example
Let’s use the Camera2D class in our cannon example. I copied the CollisionTest file and

renamed it Camera2DTest. I also renamed the GLGame class inside the file Camera2DTest,

and renamed the CollisionScreen class Camera2DScreen. We’ll just discuss the little

changes we have to make to use our new Camera2D class.

The first thing we do is add a new member to the Camera2DScreen class:

Camera2D camera;

We initialize this member in the constructor as follows:

camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT);

We just pass in our GLGraphics instance and the world’s width and height, which we

previously used as the frustum’s width and height in our call to glOrthof(). All we need

to do now is replace our direct OpenGL ES calls in the present()�method, which looked

like this:

gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());
gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
gl.glMatrixMode(GL10.GL_PROJECTION);

CHAPTER 8: 2D Game Programming Tricks 404

gl.glLoadIdentity();
gl.glOrthof(0, WORLD_WIDTH, 0, WORLD_HEIGHT, 1, -1);
gl.glMatrixMode(GL10.GL_MODELVIEW);

We replace them with this:

gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
camera.setViewportAndMatrices();

We still have to clear the framebuffer, of course, but all the other direct OpenGL ES calls

are nicely hidden inside the Camera2D.setViewportAndMatrices() method. If you run that

code, you’ll see that nothing has changed. Everything works like before—all we did was

make things a little nicer and more flexible.

We can also simplify the update() method of the test a little. Since we added the

Camera2D.touchToWorld()�method to the camera class, we might as well use it. We can

replace this snippet from the update method:

touchPos.x = (event.x / (float) glGraphics.getWidth())* WORLD_WIDTH;
touchPos.y = (1 - event.y / (float) glGraphics.getHeight()) * WORLD_HEIGHT;

with this:

camera.touchToWorld(touchPos.set(event.x, event.y));

Neat, everything is nicely encapsulated now. But it would be very boring if we didn’t use

the features of our camera class to their full extent. Here’s the plan: we want to have the

camera look at the world in the “normal” way as long as the cannonball does not fly.

That’s easy; we’re already doing that. We can determine whether the cannonball flies or

not by checking whether the y-coordinate of its position is less than or equal to zero.

Since we always apply gravity to the cannonball, it will of course fall even if we don’t

shoot it, so that’s a cheap way to check matters.

Our new addition will come into effect when the cannonball is flying (when the y-

coordinate is greater than zero). We want the camera to follow the cannonball. We can

achieve this by simply setting the camera’s position to the cannonball’s position. That

will always keep the cannonball in the center of the screen. We also want to try out our

zooming functionality. Therefore well increase the zoom factor depending on the y-

coordinate of the cannonball. The further away from zero, the higher the zoom factor.

This will make the camera zoom out if the cannonball has a higher y-coordinate. Here’s

what we need to add at the end of the update() method in our test’s screen:

if(ball.position.y > 0) {
 camera.position.set(ball.position);
 camera.zoom = 1 + ball.position.y / WORLD_HEIGHT;
} else {
 camera.position.set(WORLD_WIDTH / 2, WORLD_HEIGHT / 2);
 camera.zoom = 1;
}

As long as the y-coordinate of our ball is greater then zero, the camera will follow it and

zoom out. We just add a value to the standard zoom factor of 1. That value is just the

relation between the ball’s y-position and the world’s height. If the ball’s y-coordinate is

at WORLD_HEIGHT, the zoom factor will be 2, so we we’ll see more of our world. The way I

did this is really arbitrary; you could come up with any formula that you want here—

CHAPTER 8: 2D Game Programming Tricks 405

there’s nothing magical about it. In case the ball’s position is less than or equal to zero,

we show the world normally, as we did in the previous examples.

Texture Atlas: Because Sharing Is Caring
Up until this point we have only ever used a single texture in our programs. What if we

not only want to render Bob, but other superheroes or enemies or explosions or coins as

well? We could have multiple textures, each holding the image of one object type. But

OpenGL ES wouldn’t like that much, since we’d need to switch textures for every object

type we render (e.g., bind Bob’s texture, render Bobs, bind the coin texture, render

coins, etc.). We can do better by putting multiple images into a single texture. And that’s

a texture atlas: a single texture containing multiple images. We only need to bind that

texture once, and we can then render any entity types for which there is an image in the

atlas. That saves some state change overhead and increases our performance. Figure

8–23 shows such a texture atlas.

Figure 8–23. A texture atlas

There are three objects in Figure 8–23: a cannon, a cannonball, and Bob. The grid is not

part of the texture; it’s only there to illustrate how I usually create my texture atlases.

The texture atlas is 64�64 pixels in size, and each grid is 32�32 pixels. The cannon

takes up two cells, the cannonball a little less than one-quarter of a cell, and Bob a

single cell. Now, if you look back at how we defined the bounds (and graphical

rectangles) of the cannon, cannonball, and targets, you will notice that the relation of

their sizes to each other is very similar to what we have in the grid here. The target is

0.5�0.5 meters in our world, and the cannon is 0.2�0.2 meters. In our texture atlas, Bob

takes up 32�32 pixels and the cannonball a little under 16�16 pixels. The relationship

between the texture atlas and the object sizes in our world should be clear: 32 pixels in

the atlas equals 0.5 meters in our world. Now, the cannon was 1�1 meters in our original

CHAPTER 8: 2D Game Programming Tricks 406

example, but we can of course change that. According to our texture atlas, in which the

cannon takes up 64�32 pixels, we should let our cannon have a size of 1�0.5 meters in

our world. Wow, that is exceptionally easy isn’t it?

So why did I choose 32 pixels to match 1 meter in our world? Remember that textures

must have power-of-two widths and heights. Using a power-of-two pixel unit like 32 to

map to 0.5 meters in our world is a convenient way for the artist to cope with the

restriction on texture sizes. It also makes it easier to get the size relations of different

objects in our world right in the pixel art as well.

Note that there’s nothing keeping you from using more pixels per world unit. You could

choose 64 pixels or 50 pixels to match 0.5 meters in our world just fine. So what’s a

good pixel-to-meters size, then? That again depends on the screen resolution our game

will run at. Let’s do some calculations.

Our cannon world is bounded by (0,0) in the bottom-left corner and (9.6,4.8) in the top-

left corner. This is mapped to our screen. Let’s figure out how many pixels per world unit

we have on the screen of a Hero (480�320 pixels in landscape mode):

pixelsPerUnitX = screenWidth / worldWidth = 480 / 9.6 = 50 pixels / meter
pixelsPerUnitY = screenHeight / worldHeight = 320 / 6.4 = 50 pixels / meter

Our cannon, which will now take up 1�0.5 meters in the world, will thus use 50x25 pixels

on the screen. We’d use a 64�32-pixel region from our texture, so we’d actually

downscale the texture image a little when rendering the cannon. That’s totally fine—

OpenGL ES will do this automatically for us. Depending on the minification filter we set

for the texture, the result will either be crisp and pixelated (GL_NEAREST) or a little

smoothed out (GL_LINEAR). If we wanted a pixel-perfect rendering on the Hero, we’d

need to scale our texture images a little. We could use a grid size of 25�25 pixels

instead of 32�32. However, if we just resized the atlas image (or rather redraw

everything by hand), we’d have a 50�50-pixel image—a no-go with OpenGL ES. We’d

have to add padding to the left and bottom to obtain a 64�64 image (since OpenGL ES

requires power-of-two widths and heights). I’d say we are totally fine with OpenGL ES

scaling our texture image down on the Hero.

How’s the situation on higher-resolution devices like the Nexus One (800�480 in

landscape mode)? Let’s perform the calculations for this screen configuration via the

following equations:

pixelsPerUnitX = screenWidth / worldWidth = 800 / 9.6 = 83 pixels / meter
pixelsPerUnitY = screenHeight / worldHeight = 480 / 6.4 = 75 pixels / meter

We have different pixels per unit on the x- and y-axes because the aspect ratio of our

view frustum (9.6 / 6.4 = 1.5) is different from the screen’s aspect ratio (800 / 480 =

1.66). We already talked about this in Chapter 4 when we outlined a couple of solutions.

Back then we targeted a fixed pixel size and aspect ratio; now we’ll adopt that scheme

and target a fixed frustum width and height for our example. In the case of the Nexus

One, the cannon, the cannonball, and Bob would get scaled up a little and stretched,

due to the higher resolution and different aspect ratio. We accept this fact since we want

all players to see the same region of our world. Otherwise, players with higher aspect

ratios could have the advantage of being able to see more of the world.

CHAPTER 8: 2D Game Programming Tricks 407

So, how do we use such a texture atlas? We just remap our rectangles. Instead of using

all of the texture, we just use portions of it. To figure out the texture coordinates of the

corners of the images contained in the texture atlas, we can reuse the equations from

one of the last examples. Here’s a quick refresher:

u = x / imageWidth
v = y / imageHeight

Here, u and v are the texture coordinates and x and y are the pixel coordinates. Bob’s

top-left corner in pixel coordinates is at (32,32). If we plug that into the preceding

equation, we get (0.5,0.5) as texture coordinates. We can do the same for any other

corners we need, and based on this set the correct texture coordinates for the vertices

of our rectangles.

An Example
Let’s add this texture atlas to our previous example to make it look more beautiful. Bob

will be out target.

We just copy the Camera2DTest�and modify it a little. I placed the copy in a file called

TextureAtlasTest.java and renamed the two classes contained in it accordingly

(TextureAtlasTest and TextureAtlasScreen).

The first thing we do is add a new member to the TextureAtlasScreen:

Texture texture;

Instead of creating a Texture in the constructor, we create it in the resume() method.

Remember that textures will get lost when our application comes back from a paused

state, so we have to re-create them in the resume() method:

@Override
public void resume() {
 texture = new Texture(((GLGame)game), "atlas.png");
}

I just put the image in Figure 8–23 in the assets/ folder of our project and named it

atlas.png. (It of course doesn’t contain the gridlines shown in the figure.)

Next we need to change the definitions of the vertices. We have one Vertices instance

for each entity type (cannon, cannonball, and Bob) holding a single rectangle of four

vertices and six indices, making up three triangles. All we need to do is add texture

coordinates to each of the vertices in accordance with the texture atlas. We also change

the cannon from being represented as a triangle to being represented by a rectangle of

size 1�0.5 meters. Here’s what we replace the old vertex creation code in the

constructor with:

cannonVertices = new Vertices(glGraphics, 4, 6, false, true);
cannonVertices.setVertices(new float[] { -0.5f, -0.25f, 0.0f, 0.5f,
 0.5f, -0.25f, 1.0f, 0.5f,
 0.5f, 0.25f, 1.0f, 0.0f,
 -0.5f, 0.25f, 0.0f, 0.0f },
 0, 16);

CHAPTER 8: 2D Game Programming Tricks 408

cannonVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

ballVertices = new Vertices(glGraphics, 4, 6, false, true);
ballVertices.setVertices(new float[] { -0.1f, -0.1f, 0.0f, 0.75f,
 0.1f, -0.1f, 0.25f, 0.75f,
 0.1f, 0.1f, 0.25f, 0.5f,
 -0.1f, 0.1f, 0.0f, 0.5f },
 0, 16);
ballVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

targetVertices = new Vertices(glGraphics, 4, 6, false, true);
targetVertices.setVertices(new float[] { -0.25f, -0.25f, 0.5f, 1.0f,
 0.25f, -0.25f, 1.0f, 1.0f,
 0.25f, 0.25f, 1.0f, 0.5f,
 -0.25f, 0.25f, 0.5f, 0.5f },
 0, 16);
targetVertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6);

Each of our meshes is now composed of four vertices, each having a 2D position and

texture coordinates. We added six indices to the mesh, specifying the two triangles we

want to render. We also made the cannon a little smaller on the y-axis. It now has size of

1�0.5 meters instead of 1�1 meters. This is also reflected in the construction of the

Cannon object earlier in the constructor:

cannon = new Cannon(0, 0, 1, 0.5f);

Since we don’t do any collision detection with the cannon itself, it doesn’t really matter

what size we set in that constructor, though. We just do it for consistency.

The last thing we need to change is our render method. Here it is in its full glory:

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 texture.bind();

 targetVertices.bind();
 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 gl.glLoadIdentity();
 gl.glTranslatef(target.position.x, target.position.y, 0);
 targetVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 }
 targetVertices.unbind();

 gl.glLoadIdentity();
 gl.glTranslatef(ball.position.x, ball.position.y, 0);
 ballVertices.bind();
 ballVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 ballVertices.unbind();

CHAPTER 8: 2D Game Programming Tricks 409

 gl.glLoadIdentity();
 gl.glTranslatef(cannon.position.x, cannon.position.y, 0);
 gl.glRotatef(cannon.angle, 0, 0, 1);
 cannonVertices.bind();
 cannonVertices.draw(GL10.GL_TRIANGLES, 0, 6);
 cannonVertices.unbind();
}

Here, we enable blending and set a proper blending function, and enable texturing and

bind our atlas texture. We also slightly adapt the cannonVertices.draw() call, which now

renders two triangles instead of one. That’s all there is to it. Figure 8–24 of our face-

lifting operation.

Figure 8–24. Beautifying the cannon example with a texture atlas

There are a few more things we need to know about texture atlases:

� When we use GL_LINEAR as the minification and/or magnification filter,

there might be artifacts when two images within the atlas are touching

each other. This is due to the texture mapper actually fetching the four

nearest texels from a texture for a pixel on the screen. When it does

that for the border of an image, it will also fetch texels from the

neighboring image in the atlas. We can eliminate this problem by

introducing an empty border of 2 pixels between our images. Even

better, we can duplicate the border pixel of each image. The first

solution is of course easier—just make sure your texture stays a power

of two.

CHAPTER 8: 2D Game Programming Tricks 410

� There’s no need to lay out all the images in the atlas in a fixed grid. We

could put arbitrarily sized images in the atlas as tightly as possible. All

we need to know is where one image starts and ends in the atlas so

we can calculate proper texture coordinates for it. Packing arbitrarily

sized images is a nontrivial problem, however. There are a couple of

tools on the Web that can help you with creating a texture atlas; just

do a search and you’ll be hit by a plethora of options.

� Often we cannot group all images of our game into a single texture.

Remember that there’s a maximum texture size that varies from device

to device. We can safely assume that all devices support a texture size

of 512�512 pixels (or even 1024�1024). So, we just have multiple

texture atlases. You should try to group objects that will be seen on

the screen together in one atlas, though—say, all the objects of level 1

in one atlas, all the objects of level 2 in another, all the UI elements in

another, and so on. Think about the logical grouping before finalizing

your art assets.

� Remember how we drew numbers dynamically in Mr. Nom? We used

a texture atlas for that. In fact, we can perform all dynamic text

rendering via a texture atlas. Just put all the characters you need for

your game into an atlas and render them on demand via multiple

rectangles mapping to the appropriate characters in the atlas. There

are tools you can find on the Web that will generate such a so-called

bitmap font for you. For our purposes in the coming chapters, we will

stick to the approach we used in Mr. Nom, though: static text gets

prerendered as a whole, and only dynamic text (e.g., numbers in high

scores) will get rendered via an atlas.

You might have noticed that Bobs disappear a little before they are actually hit by the

cannonball graphically. That’s because our bounding shapes are a little too big. We have

some whitespace around Bob and the cannonball in the border. What’s the solution?

We just make the bounding shapes a little smaller. I want you to get a feel for this, so

manipulate the source until the collision feels right. You will often find such fine-tuning

“opportunities” while developing a game. Fine tuning is probably one of the most crucial

parts apart from good level design. Getting things to feel right can be hard, but is highly

satisfactory once you achieved the level of perfection of Super Mario Brothers. Sadly,

this is nothing I can teach you, as it is dependent on the look and feel of your game.

Consider it the magic sauce that sets good and bad games apart.

NOTE: To handle the disappearance issue just mentioned, make the bounding rectangles a little
smaller than their graphical representations to allow for some overlap before a collision is

triggered.

CHAPTER 8: 2D Game Programming Tricks 411

Texture Regions, Sprites, and Batches: Hiding
OpenGL ES
Our code so far for the cannon example is made up of a lot of boilerplate, some of which

can be reduced. One such area is the definition of the Vertices instances. It’s tedious to

always have seven lines of code just to define a single textured rectangle. Another area

we could improve is the manual calculation of texture coordinates for images in a texture

atlas. Finally, there’s a lot of code involved when we want to render our 2D rectangles

that’s highly repetitive. I also hinted at a better way of rendering many objects than

having one draw call per object. We can solve all these issues by introducing a few new

concepts:

� Texture regions: We worked with texture regions in the last example. A

texture region is a rectangular area within a single texture (e.g., the

area that contains the cannon in our atlas). We want a nice class that

can encapsulate all the nasty calculations for translating pixel

coordinates to texture coordinates.

� Sprites: A sprite is a lot like one of our game objects. It has a position

(and possibly orientation and scale), as well as a graphical extent. We

render a sprite via a rectangle, just as we render Bob or the cannon. In

fact, the graphical representations of Bob and the other objects can

and should be considered sprites. A sprite also maps to a region in a

texture. That’s where texture regions come into. While it is tempting to

combine sprites with game directly, we keep them separated,

following the Model-View-Controller pattern. This clean seperation

between graphics and mode code makes for a better design.

� Sprite batchers: A sprite batcher is responsible for rendering multiple

sprites in one go. To do this, the sprite batcher needs to know each

sprite’s position, size, and texture region. The sprite batcher will be our

magic ingredient to get rid of multiple draw calls and matrix operations

per object.

These concepts are highly interconnected; we’ll discuss them next.

The TextureRegion Class
Since we’ve worked with texture regions already, it should be straightforward to figure

out what we need. We know how to convert from pixel coordinates to texture

coordinates. We want to have a class where we can specify pixel coordinates of an

image in a texture atlas that then stores the corresponding texture coordinates for the

atlas region for further processing (e.g., when we want to render a sprite). Without

further ado, Listing 8–16 shows our TextureRegion class.

CHAPTER 8: 2D Game Programming Tricks 412

Listing 8–16. TextureRegion.java: Converting Pixel Coordinates to Texture Coordinates

package com.badlogic.androidgames.framework.gl;

public class TextureRegion {
 public final float u1, v1;
 public final float u2, v2;
 public final Texture texture;

 public TextureRegion(Texture texture, float x, float y, float width, float height) {
 this.u1 = x / texture.width;
 this.v1 = y / texture.height;
 this.u2 = this.u1 + width / texture.width;
 this.v2 = this.v1 + height / texture.height;
 this.texture = texture;
 }
}

The TextureRegion stores the texture coordinates of the top-left corner (u1,v1) and

bottom-right corner (u2,v2) of the region in texture coordinates. The constructor takes a

Texture and the top-left corner, as well as the width and height of the region, in pixel

coordinates. To construct a texture region for the Cannon, we could do this:

TextureRegion cannonRegion = new TextureRegion(texture, 0, 0, 64, 32);

Similarly we could construct a region for Bob:

TextureRegion bobRegion = new TextureRegion(texture, 32, 32, 32, 32);

And so on and so forth. We could use this in the example code that we’ve already

created, and use the TextureRegion.u1, v1, u2, and v2 members for specifying the

texture coordinates of the vertices of our rectangles. But we won’t do that, since we

want to get rid of these tedious definitions altogether. That’s what we’ll use the sprite

batcher for.

The SpriteBatcher Class
As already discussed, a sprite can be easily defined by its position, size, and texture

region (and optionally, its rotation and scale). It is simply a graphical rectangle in our

world space. To make things easier we’ll stick to the conventions of the position being in

the center of the sprite and the rectangle constructed around that center. Now, we could

have a Sprite class and use it like this:

Sprite bobSprite = new Sprite(20, 20, 0.5f, 0.5f, bobRegion);

That would construct a new sprite with its center at (20,20) in the world, extending 0.25

meters to each side, and using the bobRegion TextureRegion. But we could do this

instead:

spriteBatcher.drawSprite(bob.x, bob.y, BOB_WIDTH, BOB_HEIGHT, bobRegion);

Now that looks a lot better. We don’t need to construct yet another object to represent

the graphical side of our object. Instead we draw an instance of Bob on demand. We

could also have an overloaded method:

CHAPTER 8: 2D Game Programming Tricks 413

spriteBatcher.drawSprite(cannon.x, cannon.y, CANNON_WIDTH, CANNON_HEIGHT, cannon.angle,
cannonRegion);

That would draw the cannon, rotated by its angle. So how can we implement the sprite

batcher? Where are the Vertices instances? Let’s think about how the batcher could

work.

What is batching anyway? In the graphics community, batching is defined as collapsing

multiple draw calls into a single draw call. This makes the GPU happy, as discussed in

the previous chapter. A sprite batcher offers one way to make this happen. Here’s how:

� The batcher has a buffer that is empty initially (or becomes empty

after we signal it to be cleared). That buffer will hold vertices. It is a

simple float array in our case.

� Each time we call the SpriteBatcher.drawSprite()�method we add

four vertices to the buffer, based on the position, size, orientation, and

texture region that were specified as arguments. This also means that

we have to manually rotate and translate the vertex positions without

the help of OpenGL ES. Fear not, though, the code of our Vector2

class will come in handy here. This is the key to eliminating all the

draw calls.

� Once we have specified all the sprites we want to render, we tell the

sprite batcher to actually submit the vertices for all the rectangles of

the sprites to the GPU in one go, and then call the actual OpenGL ES

drawing method to render all the rectangles. For this, we’ll transfer the

contents of the float array to a Vertices instance and use it to render

the rectangles.

NOTE: We can only batch sprites that use the same texture. However, it’s not a huge problem

since we’ll use texture atlases anyway.

The usual usage pattern of a sprite batcher looks like this:

batcher.beginBatch(texture);
// call batcher.drawSprite() as often as needed, referencing regions in the texture
batcher.endBatch();

The call to SpriteBatcher.beginBatch() will tell the batcher two things: it should clear

its buffer and use the texture we pass in. We will bind the texture within this method for

convenience.

Next we render as many sprites that reference regions within this texture as we need to.

This will fill the buffer, adding four vertices per sprite.

The call to SpriteBatcher.endBatch() signals to the sprite batcher that we are done

rendering the batch of sprites and that it should now upload the vertices to the GPU for

actual rendering. We are going to use indexed rendering with a Vertices instance, so

we’ll also need to specify indices, in addition to the vertices in the float array buffer.

However, since we are always rendering rectangles, we can generate the indices

CHAPTER 8: 2D Game Programming Tricks 414

beforehand once in the constructor of the SpriteBatcher. For this we need to know how

many sprites the batcher should be able to draw maximally per batch. By putting a hard

limited on the number of sprites that can be rendered per batch, we don’t need to grow

any arrays of other buffers; we can just allocate these arrays and buffers once in the

constructor.

The general mechanics are rather simple. The SpriteBatcher.drawSprite() method may

seem like a mystery, but it’s not a big problem (if we leave out rotation and scaling for a

moment). All we need to do is calculate the vertex positions and texture coordinates as

defined by the parameters. We have done this manually already in previous examples—

for instance, when we defined the rectangles for the cannon, the cannonball, and Bob.

We’ll do more or less the same in the SpriteBatcher.drawSprite() method, only

automatically based on the parameters of the method. So let’s check out the

SpriteBatcher. Listing 8–17 shows the code.

Listing 8–17. Excerpt from SpriteBatcher.java, Without Rotation and Scaling

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import android.util.FloatMath;

import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector2;

public class SpriteBatcher {
 final float[] verticesBuffer;
 int bufferIndex;
 final Vertices vertices;
 int numSprites;

Let’s look at the members first. The member verticesBuffer is the temporary float array

we store the vertices of the sprites of the current batch in. The member bufferIndex

indicates where in the float array we should start to write the next vertices. The member

vertices is the Vertices instance is used to render the batch. It also stores the indices

we’ll define in a minute. The member numSprites holds the number drawn so far in the

current batch.

 public SpriteBatcher(GLGraphics glGraphics, int maxSprites) {
 this.verticesBuffer = new float[maxSprites*4*4];
 this.vertices = new Vertices(glGraphics, maxSprites*4, maxSprites*6, false,
true);
 this.bufferIndex = 0;
 this.numSprites = 0;

 short[] indices = new short[maxSprites*6];
 int len = indices.length;
 short j = 0;
 for (int i = 0; i < len; i += 6, j += 4) {
 indices[i + 0] = (short)(j + 0);
 indices[i + 1] = (short)(j + 1);
 indices[i + 2] = (short)(j + 2);

CHAPTER 8: 2D Game Programming Tricks 415

 indices[i + 3] = (short)(j + 2);
 indices[i + 4] = (short)(j + 3);
 indices[i + 5] = (short)(j + 0);
 }
 vertices.setIndices(indices, 0, indices.length);
 }

Moving to the constructor, we see that we have two arguments: the GLGraphics instance

we need for creating the Vertices instance, and the maximum number of sprites the

batcher should be able to render in one batch. The first thing we do in the constructor is

create the float array. We have four vertices per sprite, and each vertex takes up four

floats (two for the x- and y-coordinates and another two for the texture coordinates). We

can have maxSprites sprites maximally, so that’s 4 � 4 � maxSprites floats that we need

for the buffer. Next we create the Vertices instance. We need it to store maxSprites � 4

vertices and maxSprites � 6 indices at most. We also tell the Vertices instance that we

have not only positional attributes, but also texture coordinates for each vertex. We then

initialize the bufferIndex and numSprites members to zero. Then we create the indices

for our Vertices instance. We need to do this only once, as the indices will never

change. The first sprite in a batch will always have the indices 0, 1, 2, 2, 3, 0; the next

sprite will have 4, 5, 6, 6, 7, 4; and so on. We can precompute those and store them in

the Vertices instance. This way we only need to set them once, instead of once for each

sprite.

 public void beginBatch(Texture texture) {
 texture.bind();
 numSprites = 0;
 bufferIndex = 0;
 }

Next up is the�beginBatch() method. It binds the texture and resets the numSprites and

bufferIndex members so the first sprite’s vertices will get inserted at the front of the

verticesBuffer float array.

 public void endBatch() {
 vertices.setVertices(verticesBuffer, 0, bufferIndex);
 vertices.bind();
 vertices.draw(GL10.GL_TRIANGLES, 0, numSprites * 6);
 vertices.unbind();
 }

The next method is endBatch(); we’ll call it to finalize and draw the current batch. It first

transfers the vertices defined for this batch from the float array to the Vertices instance.

All that’s left is binding the Vertices instance, drawing numSprites � 2 triangles, and

unbinding the Vertices instance again. Since we use indexed rendering, we specify the

number of indices to use—which is six indices per sprite times numSprites. That’s all

there is to rendering.

 public void drawSprite(float x, float y, float width, float height, TextureRegion
region) {
 float halfWidth = width / 2;
 float halfHeight = height / 2;
 float x1 = x - halfWidth;
 float y1 = y - halfHeight;

CHAPTER 8: 2D Game Programming Tricks 416

 float x2 = x + halfWidth;
 float y2 = y + halfHeight;

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v1;

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v1;

 numSprites++;
 }

The next method is the workhorse of the SpriteBatcher. It takes the x- and y-

coordinates of the center of the sprite, its width and height, and the TextureRegion it

maps to. The method’s responsibility is to add four vertices to the float array starting at

the current bufferIndex. These four vertices form a texture-mapped rectangle . We

calculate the position of the bottom-left corner (x1,y1) and the top-right corner (x2,y2),

and use these four variables to construct the vertices, together with the texture

coordinates from the TextureRegion. The vertices are added in counterclockwise order,

starting at the bottom-left vertex. Once they are added to the float array, we increment

the numSprites counter and wait for either another sprite to be added or for the batch to

be finalized.

And that is all there is to do. We just eliminated a lot of drawing methods by simply

buffering pretransformed vertices in a float array and rendering them in one go. That will

increase our 2D sprite-rendering performance considerably compared to the method we

were using before. Fewer OpenGL ES state changes and fewer drawing calls make the

GPU happy.

There’s one more thing we need to implement: a SpriteBatcher.drawSprite()�method

that can draw a rotated sprite All we need to do is construct the four corner vertices

without adding the position, rotate them around the origin, add the position of the sprite

so that the vertices are placed in the world space, and then proceed as in the previous

drawing method. We could use Vector2.rotate() for this, but that would mean some

functional overhead. We therefore reproduce the code in Vector2.rotate() and optimize

where possible. The final method of the SpriteBatcher looks like Listing 8–18.

CHAPTER 8: 2D Game Programming Tricks 417

Listing 8–18. The Rest of SpriteBatcher.java: A Method to Draw Rotated Sprites

 public void drawSprite(float x, float y, float width, float height, float angle,
TextureRegion region) {
 float halfWidth = width / 2;
 float halfHeight = height / 2;

 float rad = angle * Vector2.TO_RADIANS;
 float cos = FloatMath.cos(rad);
 float sin = FloatMath.sin(rad);

 float x1 = -halfWidth * cos - (-halfHeight) * sin;
 float y1 = -halfWidth * sin + (-halfHeight) * cos;
 float x2 = halfWidth * cos - (-halfHeight) * sin;
 float y2 = halfWidth * sin + (-halfHeight) * cos;
 float x3 = halfWidth * cos - halfHeight * sin;
 float y3 = halfWidth * sin + halfHeight * cos;
 float x4 = -halfWidth * cos - halfHeight * sin;
 float y4 = -halfWidth * sin + halfHeight * cos;

 x1 += x;
 y1 += y;
 x2 += x;
 y2 += y;
 x3 += x;
 y3 += y;
 x4 += x;
 y4 += y;

 verticesBuffer[bufferIndex++] = x1;
 verticesBuffer[bufferIndex++] = y1;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x2;
 verticesBuffer[bufferIndex++] = y2;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v2;

 verticesBuffer[bufferIndex++] = x3;
 verticesBuffer[bufferIndex++] = y3;
 verticesBuffer[bufferIndex++] = region.u2;
 verticesBuffer[bufferIndex++] = region.v1;

 verticesBuffer[bufferIndex++] = x4;
 verticesBuffer[bufferIndex++] = y4;
 verticesBuffer[bufferIndex++] = region.u1;
 verticesBuffer[bufferIndex++] = region.v1;

 numSprites++;
 }
}

We do the same as in the simpler drawing method, except that we construct all four

corner points instead of only the two opposite ones. This is needed for the rotation. The

rest is the same as before.

CHAPTER 8: 2D Game Programming Tricks 418

What about scaling? We do not explicitly need another method, since scaling a sprite

only requires scaling its width and height. We can do that outside the two drawing

methods, so there’s no need to have another bunch of methods for scaled drawing of

sprites.

And that’s the big secret behind lighting-fast sprite rendering with OpenGL ES.

Using the SpriteBatcher Class
Let’s incorporate the TextureRegion and SpriteBatcher classes in our cannon example.

I copied the TextureAtlas example and renamed it SpriteBatcherTest. The classes

contained in it are called SpriteBatcherTest and SpriteBatcherScreen.

The first thing I did was get rid of the Vertices members in the screen class. We don’t

need them anymore, since the SpriteBatcher will do all the dirty work for us. Instead I

added the following members:

TextureRegion cannonRegion;
TextureRegion ballRegion;
TextureRegion bobRegion;
SpriteBatcher batcher;

We now have a TextureRegion for each of the three objects in our atlas, as well as a

SpriteBatcher.

Next I modified the constructor of the screen. I got rid of all the Vertices instantiation

and initialization code, and replaced it with a single line of code:

batcher = new SpriteBatcher(glGraphics, 100);

That will set out batcher member to a fresh SpriteBatcher instance that can render 100

sprites in one batch.

The TextureRegions get initialized in the resume()�method, as they depend on the

Texture:

@Override
public void resume() {
 texture = new Texture(((GLGame)game), "atlas.png");
 cannonRegion = new TextureRegion(texture, 0, 0, 64, 32);
 ballRegion = new TextureRegion(texture, 0, 32, 16, 16);
 bobRegion = new TextureRegion(texture, 32, 32, 32, 32);
}

No surprises there. The last thing we need to change is the present()�method. You’ll be

surprised how clean it’s looking now. Here it is:

@Override
public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

CHAPTER 8: 2D Game Programming Tricks 419

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(texture);

 int len = targets.size();
 for(int i = 0; i < len; i++) {
 GameObject target = targets.get(i);
 batcher.drawSprite(target.position.x, target.position.y, 0.5f, 0.5f, bobRegion);
 }

 batcher.drawSprite(ball.position.x, ball.position.y, 0.2f, 0.2f, ballRegion);
 batcher.drawSprite(cannon.position.x, cannon.position.y, 1, 0.5f, cannon.angle,
cannonRegion);
 batcher.endBatch();
}

That is super sweet. The only OpenGL ES calls we issue now are for clearing the screen,

enabling blending and texturing, and setting the blend function. The rest is pure

SpriteBatcher and Camera2D goodness. Since all our objects share the same texture

atlas, we can render them in a single batch. We call�batcher.beginBatch() with the atlas

texture, render all the Bob targets using the simple drawing method, render the ball

(again with the simple drawing method), and finally render the cannon using the drawing

method that can rotate a sprite. We end the method by calling batcher.endBatch(),

which will actually transfer the geometry of our sprites to the GPU and render

everything.

Measuring Performance
So how much faster is the SpriteBatcher method than the method we used in BobTest?

I added an FPSCounter to the code and timed it on a Hero, a Droid, and a Nexus One, as

we did in the case of BobTest. I also increased the number of targets to 100 and set the

maximum number of sprites the SpriteBatcher can render to 102, since we render 100

targets, 1 ball, and 1 cannon. Here are the results:

Hero (1.5):
12-27 23:51:09.400: DEBUG/FPSCounter(2169): fps: 31
12-27 23:51:10.440: DEBUG/FPSCounter(2169): fps: 31
12-27 23:51:11.470: DEBUG/FPSCounter(2169): fps: 32
12-27 23:51:12.500: DEBUG/FPSCounter(2169): fps: 32

Droid (2.1.1):
12-27 23:50:23.416: DEBUG/FPSCounter(8145): fps: 56
12-27 23:50:24.448: DEBUG/FPSCounter(8145): fps: 56
12-27 23:50:25.456: DEBUG/FPSCounter(8145): fps: 56
12-27 23:50:26.456: DEBUG/FPSCounter(8145): fps: 55

Nexus One (2.2.1):
12-27 23:46:57.162: DEBUG/FPSCounter(754): fps: 61
12-27 23:46:58.171: DEBUG/FPSCounter(754): fps: 61
12-27 23:46:59.181: DEBUG/FPSCounter(754): fps: 61
12-27 23:47:00.181: DEBUG/FPSCounter(754): fps: 60

Before we come to any conclusions, let’s test the old method as well. Since our example

is not equivalent to the old BobTest, I also modified the TextureAtlasTest, which is the

CHAPTER 8: 2D Game Programming Tricks 420

same as our current example—the only difference being that it uses the old BobTest

method for rendering. Here are the results:

Hero (1.5):
12-27 23:53:45.950: DEBUG/FPSCounter(2303): fps: 46
12-27 23:53:46.720: DEBUG/dalvikvm(2303): GC freed 21811 objects / 524280 bytes in 135ms
12-27 23:53:46.970: DEBUG/FPSCounter(2303): fps: 40
12-27 23:53:47.980: DEBUG/FPSCounter(2303): fps: 46
12-27 23:53:48.990: DEBUG/FPSCounter(2303): fps: 46

Droid (2.1.1):
12-28 00:03:13.004: DEBUG/FPSCounter(8277): fps: 52
12-28 00:03:14.004: DEBUG/FPSCounter(8277): fps: 52
12-28 00:03:15.027: DEBUG/FPSCounter(8277): fps: 53
12-28 00:03:16.027: DEBUG/FPSCounter(8277): fps: 53

Nexus One (2.2.1):
12-27 23:56:09.591: DEBUG/FPSCounter(873): fps: 61
12-27 23:56:10.591: DEBUG/FPSCounter(873): fps: 60
12-27 23:56:11.601: DEBUG/FPSCounter(873): fps: 61
12-27 23:56:12.601: DEBUG/FPSCounter(873): fps: 60

The Hero performs a lot worse with our new SpriteBatcher method as compared to the

old way of using glTranslate()�and similar methods. The Droid actually benefits from

the new SpriteBatcher method, and the Nexus One doesn’t really care what we use. If

we’d increased the number of targets by another 100, you’d see that the SpriteBatcher

method would also be faster on the Nexus One.

So what’s up with the Hero? The problem in BobTest was that we called too many

OpenGL ES methods, so why is it performing worse now that we’re fewer OpenGL ES

method calls?

Working Around a Bug in FloatBuffer
The reason for this isn’t obvious at all. Our SpriteBatcher puts a float array into a direct

ByteBuffer each frame when we call Vertices.setVertices(). The method boils down

to calling FloatBuffer.put(float[]), and that’s the culprit of our performance hit here.

While desktop Java implements that FloatBuffer method via a real bulk memory move,

the Harmony version calls�FloatBuffer.put(float) for each element in the array. And

that’s extremely unfortunate, as that method is a JNI method, which has a lot of

overhead (much like the OpenGL ES methods, which are also JNI methods).

There are a couple of solutions. IntBuffer.put(int[]) does not suffer from this

problem, for example. We could replace the FloatBuffer in our Vertices class with an

IntBuffer and modify�Vertices.setVertices() so that it first transfers the floats from

the float array to a temporary int array and then copies the contents of that int array to

the IntBuffer. This solution was proposed by Ryan McNally, a fellow game developer,

who also reported the bug on the Android bug tracker. It produces a five-times

performance increase on the Hero, and a little less on other Android devices.

CHAPTER 8: 2D Game Programming Tricks 421

I modified the Vertices class to include this fix. For this I changed the vertices member

to be an IntBuffer. I also added a new member called tmpBuffer, which is an int[]

array. The tmpBuffer array is initialized in the constructor of Vertices as follows:

this.tmpBuffer = new int[maxVertices * vertexSize / 4];

We also get an IntBuffer view from the ByteBuffer in the constructor instead of a

FloatBuffer:

vertices = buffer.asIntBuffer();

And the Vertices.setVertices() method looks like this now:

public void setVertices(float[] vertices, int offset, int length) {
 this.vertices.clear();
 int len = offset + length;
 for(int i=offset, j=0; i < len; i++, j++)
 tmpBuffer[j] = Float.floatToRawIntBits(vertices[i]);
 this.vertices.put(tmpBuffer, 0, length);
 this.vertices.flip();
}

So, all we do is first transfer the contents of the vertices parameter to the tmpBuffer.

The static method�Float.floatToRawIntBits() reinterprets the bit pattern of a float as

an int. We then just need to copy the contents of the int array to the IntBuffer, formerly

known as a FloatBuffer. Does it improve performance? Running the SpriteBatcherTest

produces the following output now on the Hero, Droid, and Nexus One:

Hero (1.5):
12-28 00:24:54.770: DEBUG/FPSCounter(2538): fps: 61
12-28 00:24:54.770: DEBUG/FPSCounter(2538): fps: 61
12-28 00:24:55.790: DEBUG/FPSCounter(2538): fps: 62
12-28 00:24:55.790: DEBUG/FPSCounter(2538): fps: 62

Droid (2.1.1):
12-28 00:35:48.242: DEBUG/FPSCounter(1681): fps: 61
12-28 00:35:49.258: DEBUG/FPSCounter(1681): fps: 62
12-28 00:35:50.258: DEBUG/FPSCounter(1681): fps: 60
12-28 00:35:51.266: DEBUG/FPSCounter(1681): fps: 59

Nexus One (2.2.1):
12-28 00:27:39.642: DEBUG/FPSCounter(1006): fps: 61
12-28 00:27:40.652: DEBUG/FPSCounter(1006): fps: 61
12-28 00:27:41.662: DEBUG/FPSCounter(1006): fps: 61
12-28 00:27:42.662: DEBUG/FPSCounter(1006): fps: 61

Yes, I double-checked; this is not a typo. The Hero really achieves 60 FPS now. A

workaround consisting of five lines of code increases our performance by 50 percent.

The Droid also benefited from this fix a little.

The problem is fixed in the latest release of Android version 2.3. However, it will be quite

some time before most phones run this version, so we should keep this workaround for

the time being.

CHAPTER 8: 2D Game Programming Tricks 422

NOTE: There’s another, even faster workaround. It involves a custom JNI method that does the
memory move in native code. You can find it if you search for the “Android Game Development
Wiki” on the Net. I use this most of the time instead of the pure Java workaround. However,

including JNI methods is a bit more complex, which is why I described the pure-Java

workaround here.

Sprite Animation
If you’ve ever played a 2D video game, you know that we are still missing one vital

component: sprite animation. The animation consists of so-called keyframes, which

produce the illusion of movement. Figure 8–25 shows a nice animated sprite by Ari

Feldmann (part of his royalty-free SpriteLib).

Figure 8–25. A walking caveman, by Ari Feldmann (grid not in original)

The image is 256�64 pixels in size, and each keyframe is 64�64 pixels. To produce

animation, we just draw a sprite using the first keyframe for some amount of time—say,

0.25 seconds—then we switch to the next keyframe, and so on. When we reach the last

frame we have two options: we can stay at the last keyframe or start at the beginning

again (and perform what is called a looping animation).

We can easily do this with our TextureRegion and SpriteBatcher classes. Usually we’d

not only have a single animation like in Figure 8–25, but many more in a single atlas.

Besides the walk animation, we could have a jump animation, an attack animation, and

so on. For each animation we need to know the frame duration, which tells us how long

we keep using a single keyframe of the animation before we switch to the next frame.

CHAPTER 8: 2D Game Programming Tricks 423

The Animation Class
From this we can define the requirements for an Animation class, which stores the data

for a single animation, such as the walk animation in Figure 8–25:

� An Animation holds a number of TextureRegions, which store where in

the texture atlas each keyframe is located. The order of the

TextureRegions is the same as that used for playing back the

animation.

� The Animation also stores the frame duration that has to pass before

we switch to the next frame.

� The Animation should provide us with a method to which we pass the

time we’ve been in the state that the Animation represents (e.g.,

walking left), and that will return the appropriate TextureRegion. The

method should take into consideration whether we want the Animation

to loop or to stay at the last frame when the end is reached.

This last bullet point is important because it allows us to store a single Animation

instance to be used by multiple objects in our world. An object just keeps track of its

current state (e.g., whether it is walking, shooting, or jumping, and how long it has been

in that state). When we render this object, we use the state to select the animation we

want to play back, and the state time to get the correct TextureRegion from the

Animation. Listing 8–19 shows the code of our new Animation class.

Listing 8–19. Animation.java, a Simple Animation Class

package com.badlogic.androidgames.framework.gl;

public class Animation {
 public static final int ANIMATION_LOOPING = 0;
 public static final int ANIMATION_NONLOOPING = 1;

 final TextureRegion[] keyFrames;
 final float frameDuration;

 public Animation(float frameDuration, TextureRegion ... keyFrames) {
 this.frameDuration = frameDuration;
 this.keyFrames = keyFrames;
 }

 public TextureRegion getKeyFrame(float stateTime, int mode) {
 int frameNumber = (int)(stateTime / frameDuration);

 if(mode == ANIMATION_NONLOOPING) {
 frameNumber = Math.min(keyFrames.length-1, frameNumber);
 } else {
 frameNumber = frameNumber % keyFrames.length;
 }
 return keyFrames[frameNumber];
 }
}

CHAPTER 8: 2D Game Programming Tricks 424

We first define two constants to be used with the getKeyFrame()�method. The first one

says the animation should be looping, and the other one says that is should stop at the

last frame.

Next we define two members: an array holding the TextureRegions and a float storing

the frame duration.

We pass the frame duration and the TextureRegions that hold the keyframes to the

constructor, which simply stores them. We could make a defensive copy of the

keyFrames array, but that would allocate a new object, which would make the garbage

collector a little mad.

The interesting piece is the getKeyFrame()�method. We pass in the time that the object

has been in the state that the animation represents, as well as the mode, either

Animation.ANIMATION_LOOPING or Animation.NON_LOOPING. We first calculate how many

frames have already been played for the given state based on the stateTime. In case the

animation shouldn’t be looping, we simply clamp the frameNumber to the last element in

the TextureRegion array. Otherwise, we take the modulus, which will automatically

create the looping effect we desire (e.g., 4 % 3 = 1). All that’s left is returning the proper

TextureRegion.

An Example
Let’s create an example called AnimationTest with a corresponding screen called

AnimationScreen. As always we’ll only discuss the screen itself.

We want to render a number of cavemen, all walking to the left. Our world will be the

same size as our view frustum, which has the size 4.8�3.2 meters (this is really arbitrary;

we could use any size). A caveman is a DynamicGameObject with a size of 1�1 meters.

We will derive from DynamicGameObject and create a new class called Caveman, which will

store an additional member that keeps track of how long the caveman has been walking

already. Each caveman will move 0.5 m/s either to the left or to the right. We’ll also add

an update() method to the Caveman class to update the caveman’s position based on

the delta time and his velocity. If a caveman reaches the left or right edge of our world,

we set him to the other side of the world. We’ll use the image in Figure 8–25 and create

TextureRegions and an Animation instance accordingly. For rendering we’ll use a

Camera2D instance and a SpriteBatcher because they are fancy. Listing 8–20 shows the

code of the Caveman class.

Listing 8–20. Excerpt from AnimationTest, Showing the Inner Caveman Class.

static final float WORLD_WIDTH = 4.8f;
static final float WORLD_HEIGHT = 3.2f;

static class Caveman extends DynamicGameObject {
 public float walkingTime = 0;

 public Caveman(float x, float y, float width, float height) {
 super(x, y, width, height);
 this.position.set((float)Math.random() * WORLD_WIDTH,

CHAPTER 8: 2D Game Programming Tricks 425

 (float)Math.random() * WORLD_HEIGHT);
 this.velocity.set(Math.random() > 0.5f?-0.5f:0.5f, 0);
 this.walkingTime = (float)Math.random() * 10;
 }

 public void update(float deltaTime) {
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
 if(position.x < 0) position.x = WORLD_WIDTH;
 if(position.x > WORLD_WIDTH) position.x = 0;
 walkingTime += deltaTime;
 }
}

The two constants WORLD_WIDTH and WORLD_HEIGHT are part of the enclosing

AnimationTest class and are used by the inner classes. Our world is 4.8�3.2 meters in

size.

Next up is the inner Caveman class, which extends DynamicGameObject, since we will

move cavemen based on velocity. We define an additional member that keeps track of

how long the caveman is walking already. In the constructor we place the caveman at a

random position and let him either walk left or right. We also initialize the walkingTime

member to a number between 0 and 10; this way our cavemen won’t walk in sync.

The update() method advances the caveman based on his velocity and the delta time.

In case he leaves the world, we reset him to either the left or right edge. We also add the

delta time to the walkingTime to keep track of how long he’s been walking.

Listing 8–21 shows the AnimationScreen class.

Listing 8–21. Excerpt from AnimationTest.java: The AnimationScreen Class

class AnimationScreen extends Screen {
 static final int NUM_CAVEMEN = 10;
 GLGraphics glGraphics;
 Caveman[] cavemen;
 SpriteBatcher batcher;
 Camera2D camera;
 Texture texture;
 Animation walkAnim;

Our screen class has the usual suspects as members. We have a GLGraphics instance, a

Caveman array, a SpriteBatcher, a Camera2D, the Texture containing the walking

keyframes, and an Animation instance.

 public AnimationScreen(Game game) {
 super(game);
 glGraphics = ((GLGame)game).getGLGraphics();
 cavemen = new Caveman[NUM_CAVEMEN];
 for(int i = 0; i < NUM_CAVEMEN; i++) {
 cavemen[i] = new Caveman((float)Math.random(), (float)Math.random(), 1, 1);
 }
 batcher = new SpriteBatcher(glGraphics, NUM_CAVEMEN);
 camera = new Camera2D(glGraphics, WORLD_WIDTH, WORLD_HEIGHT);
 }

CHAPTER 8: 2D Game Programming Tricks 426

In the constructor we create the Caveman instances, as well as the SpriteBatcher and

Camera2D.

 @Override
 public void resume() {
 texture = new Texture(((GLGame)game), "walkanim.png");
 walkAnim = new Animation(0.2f,
 new TextureRegion(texture, 0, 0, 64, 64),
 new TextureRegion(texture, 64, 0, 64, 64),
 new TextureRegion(texture, 128, 0, 64, 64),
 new TextureRegion(texture, 192, 0, 64, 64));
 }

In the resume() method we load the texture atlas containing the animation keyframes

from the asset file walkanim.png, which is the same as in Figure 8–25. Afterward, we

create the Animation instance, setting the frame duration to 0.2 seconds and passing in

a TextureRegion for each of the keyframes in the texture atlas.

 @Override
 public void update(float deltaTime) {
 int len = cavemen.length;
 for(int i = 0; i < len; i++) {
 cavemen[i].update(deltaTime);
 }
 }

The�update()�method just loops over all Caveman instances and calls their

Caveman.update() method with the current delta time. This will make the cavemen move

and update their walking times.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 camera.setViewportAndMatrices();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(texture);
 int len = cavemen.length;
 for(int i = 0; i < len; i++) {
 Caveman caveman = cavemen[i];
 TextureRegion keyFrame = walkAnim.getKeyFrame(caveman.walkingTime,
Animation.ANIMATION_LOOPING);
 batcher.drawSprite(caveman.position.x, caveman.position.y,
caveman.velocity.x < 0?1:-1, 1, keyFrame);
 }
 batcher.endBatch();
 }

 @Override
 public void pause() {
 }

CHAPTER 8: 2D Game Programming Tricks 427

 @Override
 public void dispose() {
 }
}

Finally we have the present()�method. We start off by clearing the screen and setting

the viewport and projection matrix via our camera. Next we enable blending and texture

mapping, and set the blend function. We start rendering by telling the sprite batcher that

we want to start a new batch using the animation texture atlas. Next we loop through all

the cavemen and render them. For each caveman we first fetch the correct keyframe

from the Animation instance based on the caveman’s walking time. We specify that the

animation should be looping. Then we draw the caveman with the correct texture region

at his position.

But what do we do with the width parameter here? Remember that our animation

texture only contains keyframes for the “walk left” animation. We want to flip the texture

horizontally in case the caveman is walking to the right, which we can do by simply

specifying a negative width. If you don’t trust me, go back to the SpriteBatcher code

and check whether this works. We essentially flip the rectangle of the sprite by

specifying a negative width. We could do the same vertically as well by specifying a

negative height.

Figure 8–26 shows our walking cavemen.

Figure 8–26. Cavemen walking

And that is all there is to know to produce a nice 2D game with OpenGL ES. Note how

we still separate the game logic and the presentation from each other. A caveman does

not need to know that he is actually being rendered. He therefore doesn’t keep any

CHAPTER 8: 2D Game Programming Tricks 428

rendering-related members, such as an Animation instance or a Texture. All we need to

do is keep track of the state of the caveman and how long he’s been in that state.

Together with his position and size, we can then render him easily by using our little

helper classes.

Summary
You should now be well equipped to create almost any 2D game you want. We

discussed vectors and how to work with them, resulting in a nice, reusable Vector2

class. We also looked into basic physics for creating things like ballistic cannonballs.

Collision detection is also a vital part of most games, and you should now know how to

do it correctly and efficiently via a SpatialHashGrid. We explored a way to keep our

game logic and objects separated from the rendering by creating GameObject and

DynamicGameObject classes that keep track of the state and shape of objects. We

covered how easy it is to implement the concept of a 2D camera via OpenGL ES, all

based on a single method called glOrthof(). We discussed texture atlases, why we

need them, and how we can use them. We expanded on the concept by introducing

texture regions, sprites, and how we can render them efficiently via a SpriteBatcher.

Finally we looked into sprite animation, which turns out to be extremely simple to

implement.

In the next chapter, we’ll create a new game with all the new tools we have. You’ll be

surprised how easy that will be.

	Chapter 8 2D Game Programming Tricks
	Before We Begin
	In the Beginning There Was the Vector
	Working with Vectors
	A Little Trigonometry
	Implementing a Vector Class
	A Simple Usage Example

	A Little Physics in 2D
	Newton and Euler, Best Friends Forever
	Force and Mass
	Playing Around, Theoretically
	Playing Around, Practically

	Collision Detection and Object Representation in 2D
	Bounding Shapes
	Constructing Bounding Shapes
	Game Object Attributes
	Broad-Phase and Narrow-Phase Collision Detection
	Narrow Phase
	Circle Collision
	Rectangle Collision
	Circle/Rectangle Collision
	Putting It All Together

	Broad Phase

	An Elaborate Example
	GameObject, DynamicGameObject, and Cannon
	The Spatial Hash Grid
	Putting It All Together

	A Camera in 2D
	The Camera2D Class
	An Example

	Texture Atlas: Because Sharing Is Caring
	An Example

	Texture Regions, Sprites, and Batches: Hiding OpenGL ES
	The TextureRegion Class
	The SpriteBatcher Class
	Using the SpriteBatcher Class
	Measuring Performance
	Working Around a Bug in FloatBuffer

	Sprite Animation
	The Animation Class
	An Example

	Summary

