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   Chapter 

OpenGL ES: A Gentle 
Introduction 
Mr. Nom was a great success. Due to our good initial design and the game framework 

we wrote, actually implementing Mr. Nom was a breeze. Best of all, the game runs 

smoothly even on low-end devices. Of course, Mr. Nom is not a very complex or 

graphically intense game, so using the Canvas API for rendering was a good idea. 

However, once you want to do something more complex—say, something like Replica 

Island—you will hit a wall: Canvas just can’t keep up with the visual complexity of such a 

game. And if you want to go fancy-pants 3D, Canvas won’t help you either. So what can 

we do? 

This is where OpenGL ES comes to the rescue. In this chapter we’ll first briefly look at 

what OpenGL ES actually is and does. We’ll then focus on using OpenGL ES for 2D 

graphics, without having to dive into the more mathematically complex realms of using 

the API for 3D graphics (we’ll get to that in a later chapter). We’ll take baby steps at first, 

as OpenGL ES can get quite involved. So, let’s get to know OpenGL ES. 

What Is OpenGL ES and Why Should I Care? 
OpenGL ES is an industry standard for (3D) graphics programming. It is especially 

targeted at mobile and embedded devices. It is maintained by the Khronos Group, 

which is a conglomerate of companies including ATI, NVIDIA, and Intel, who together 

define and extend the standard.  

Speaking of standards, there are currently three incremental versions of OpenGL ES: 1.0, 

1.1, and 2.0. The first two are the ones we are concerned with in this book. All Android 

devices support OpenGL ES 1.0, and most also support 1.1, which adds some new 

features to the 1.0 specification. OpenGL ES 2.0, however, breaks compatibility with the 

1.x versions. You can use either 1.x or 2.0, but not both at the same time. The reason for 

this is that the 1.x versions use a programming model called fixed-function pipeline, while 

2.0 lets you programmatically define parts of the rendering pipeline via so-called shaders. 
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Many of the second-generation devices already support OpenGL ES 2.0; however, the 

Java bindings are currently not in a usable state (unless you target the new Android 2.3). 

OpenGL ES 1.x is more than good enough for most games, though, so we will stick to it 

here.  

NOTE: The emulator only supports OpenGL ES 1.0. The implementation is a little shoddy, though, 

so never rely on the emulator for testing. Use a real device. 

OpenGL ES is an API that comes in the form of a set of C header files provided by the 

Khronos group, along with a very detailed specification of how the API defined in those 

headers should behave. This includes things such as how pixels and lines have to be 

rendered. Hardware manufacturers then take this specification and implement it for their 

GPU on top of the GPU driver. The quality of these implementations varies a little; some 

companies strictly adhere to the standard (PowerVR) while others seem to have difficulty 

sticking to the standard. This can sometimes result in GPU-dependent bugs in the 

implementation that have nothing to do with Android itself, but with the hardware drivers 

provided by the manufacturers. I’ll point out any device-specific issues along our way 

into OpenGL ES land.  

NOTE: OpenGL ES is more or less a sibling of the more feature-rich desktop OpenGL standard. It 
deviates from the latter in that some of the functionality is reduced or completely removed. 
Nevertheless, it is possible to write an application that can run with both specifications, which is 

great if you want to port your game to the desktop as well. 

So what does OpenGL ES actually do? The short answer is that’s it’s a lean and mean 

triangle-rendering machine. The long answer is a little bit more involved.  

The Programming Model: An Analogy 
OpenGL ES is in general a 3D graphics programming API. As such it has a pretty nice 

and (hopefully) easy-to-understand programming model that we can illustrate with a 

simple analogy. 

Think of OpenGL ES as working like a camera. To take a picture you have to first go to 

the scene you want to photograph. Your scene is composed of objects—say, a table 

with more objects on it. They all have a position and orientation relative to your camera, 

as well as different materials and textures. Glass is translucent and a little reflective, a 

table is probably made out of wood, a magazine has the latest photo of some politician 

on it, and so on. Some of the objects might even move around (e.g., a fruit fly you can’t 

get rid of). Your camera also has some properties, such as focal length, field of view, 

image resolution and size the photo will be taken at, and its own position and orientation 

within the world (relative to some origin). Even if both objects and the camera are 

moving, when you press the button to take the photo you catch a still image of the 

scene (for now we’ll neglect the shutter speed, which might cause a blurry image). For 
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that infinitely small moment everything stands still and is well defined, and the picture 

reflects exactly all those configurations of positions, orientations, textures, materials, 

and lighting. Figure 7–1 shows an abstract scene with a camera, a light, and three 

objects with different materials. 

 

Figure 7–1. An abstract scene 

Each object has a position and orientation relative to the scene’s origin. The camera, 

indicated by the eye, also has a position in relation to the scene’s origin. The pyramid in 

Figure 7–1 is the so-called view volume or view frustum, which shows how much of the 

scene the camera captures and how the camera is oriented. The little white ball with the 

rays is our light source in the scene, which also has a position relative to the origin.  

We can directly map this scene to OpenGL ES, but to do so we need to define a couple 

of things: 

� Objects (aka models): These are generally composed of two four: their 

geometry, as well as their color, texture, and material. The geometry is 

specified as a set of triangles. Each triangle is composed of three 

points in 3D space, so we have x-, y-, and z coordinates defined 

relative to the coordinate system origin, as in Figure 7–1. Note that the 

z-axis points toward us. The color is usually specified as an RGB 
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triple, as we are already used to. Textures and materials are little bit 

more involved. We’ll get to those later on. 

� Lights: OpenGL ES offers us a couple of different light types with 

various attributes. They are just mathematical objects with a position 

and/or direction in 3D space, plus attributes such as color. 

� Camera: This is also a mathematical object that has a position and 

orientation in 3D space. Additionally it has parameters that govern how 

much of the image we see, similar to a real camera. All this things 

together define a view volume, or view frustum (indicated as the 

pyramid with the top cut off in Figure 7–1). Anything inside this 

pyramid can be seen by the camera; anything outside will not make it 

into the final picture. 

� Viewport: This defines the size and resolution of the final image. Think 

of it as the type of film you put into your analog camera or the image 

resolution you get for pictures taken with your digital camera. 

Given all this, OpenGL ES can construct a 2D bitmap of our scene from the point of view 

of the camera. Notice that we define everything in 3D space. So how can OpenGL ES 

map that to two dimensions? 

Projections 
This 2D mapping is done via something called projection. We already mentioned that 

OpenGL ES is mainly concerned with triangles. A single triangle has three points defined 

in 3D space. To render such a triangle to the framebuffer, OpenGL ES needs to know 

the coordinates of these 3D points within the pixel-based coordinate system of the 

framebuffer. Once it knows those three corner-point coordinates, it can simply draw the 

pixels in the framebuffer that are inside the triangle. We could even write our own little 

OpenGL ES implementation by projecting 3D points to 2D, and simply draw lines 

between them via the Canvas. 

There are two kinds of projections that are commonly used in 3D graphics. : 

� Parallel, or orthographic, projection: If you have ever played with a 

CAD application you might already know about these. A parallel 

projection doesn’t care how far an object is away from the camera; the 

object will always have the same size in the final image. This type of 

projection is typically used for rendering 2D graphics in OpenGL ES. 

� Perspective projections: These are what we are used to when using 

our eyes. Objects further away from us will appear smaller on our 

retina. This type of projection is typically used when we do 3D 

graphics with OpenGL ES. 

In both cases we need something called a projection plane. This is nearly exactly the 

same as the retina of our eyes. It’s where the light is actually registered to form the final 

image. While a mathematical plane is infinite, our retina is limited in area. Our OpenGL 
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ES “retina” is equal to the rectangle at the top of the view frustum in Figure 7–1. This 

part of the view frustum is where OpenGL ES will project the points to. It is called the 

near clipping plane and has its own little 2D coordinate system. Figure 7–2 shows that 

near clipping plane again, from the point of view of the camera, with the coordinate 

system superimposed.  

 

Figure 7–2. The near clipping plane (also known as the projection plane) and its coordinate system. 

Note that the coordinate system is by no means fixed. We can manipulate it so that we 

can work in any projected coordinate system we like (e.g., we could instruct OpenGL 

ESto let the origin be in the bottom-left corner, and let the visible area of the “retina” be 

480 units on the x-axis and 320 units on the y-axis). Sounds familiar? Yes, OpenGL ES 

allows us to specify any coordinate system we want for the projected points. 

Once we specify our view frustum, OpenGL ES then takes each point of a triangle and 

shoots a ray from it through the projection plane. The difference between a parallel and 

a perspective projection is how the direction of those rays is constructed. Figure 7–3 

shows the difference between the two, viewed from above. 
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Figure 7–3. A perspective projection (left) and a parallel projection (right) 

A perspective projection shoots the rays from the triangle points through the camera (or 

eye, in this case). Objects further away will thus appear smaller on the projection plane. 

When we use a parallel projection, the rays are shot perpendicular to the projection 

plane. In this case an object will keep its size on the projection plane no matter how far 

away it is. 

Our projection plane is called a near clipping plane in OpenGL ES lingo, as pointed out 

earlier. All of the sides of the view frustum have similar names. The one furthest away 

from the camera is called the far clipping plane. The others are called the left, right, top, 

and bottom clipping planes. Anything outside or behind those planes will not be 

rendered. Objects that are partially within the view frustum will be clipped from these 

planes, meaning that the parts outside the view frustum get cut away. That’s where the 

name clipping plane comes from. 

You might be wondering why the view frustum of the parallel projection case in Figure 7–3 

is rectangular. It turns out that the projection is actually governed by how we define our 

clipping planes. In the case of a perspective projection, the left, right, top, and bottom 

clipping planes are not perpendicular to the near and far planes (see Figure 7–3, which 

only shows the left and right clipping planes. In the case of the parallel projection, these 
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planes are perpendicular, which tells OpenGL ES to render everything at the same size 

no matter how far away it is from the camera. 

Normalized Device Space and the Viewport 
Once OpenGL ES has figured out the projected points of a triangle on the near clipping 

plane, it can finally translate them to pixel coordinates in the framebuffer. For this, it 

must first transform the points to so-called normalized device space. This equals the 

coordinate system depicted in Figure 7–2. Based on these normalized device space 

coordinates OpenGL ES calculates the final framebuffer pixel coordinates via the 

following simple formulas: 

pixelX = (norX + 1) / (viewportWidth + 1) + norX 
pixelY = (norY + 1) / (viewportHeight +1) + norY 

where norX and norY are the normalized device coordinates of a 3D point, and 

viewportWidth and viewportHeight are the size of the viewport in pixels on the x- and y-

axes. We don’t have to worry about the normalized device coordinates all that much, as 

OpenGL will do the transformation for us automagically. What we do care about, though, 

are the viewport and the view frustum. 

Matrices 
Later you will see how to specify a view frustum, and thus a projection. OpenGL ES 

expresses projections in the form of so-called matrices. For our purposes we don’t need 

to know the internals of matrices. We only need to know what they do to the points we 

define in our scene. Here’s the executive summary of matrices: 

� A matrix encodes transformations to be applied to a point. A 

transformation can be a projection, a translation (in which the point is 

moved around), a rotation around another point and axis, or a scale, 

among other thing. 

� By multiplying such a matrix with a point, we apply the transformation 

to the point. For example, multiplying a point with a matrix that 

encodes a translation by 10 units on the x-axis will move the point 10 

units on the x-axis and thereby modify its coordinates. 

� We can concatenate transformations stored in separate matrices into 

a single matrix by multiplying the matrices. When we multiply this 

single concatenated matrix with a point, all the transformations stored 

in that matrix will be applied to that point. The order in which the 

transformations are applied is dependent on the order in which we 

multiplied the matrices with each other. 
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� There’s a special matrix called an identity matrix. If we multiply a 

matrix or a point with it, nothing will happen. Think of multiplying a 

point or matrix by an identity matrix as multiplying a number by 1. It 

simply has no effect. The relevance of the identity matrix will become 

clear once we learn how OpenGL ES handles matrices (see the section 

“Matrix Modes and Active Matrices”). A classic hen and egg problem. 

NOTE: When I talk about points in this context, I actually mean 3D vectors. 

OpenGL ES has three different matrices that it applies to the points of our models:  

� Model-view matrix: We can use this matrix to move, rotate, or scale the points of 

our triangles around (this is the model part of the model-view matrix). This matrix 

is also used to specify the position and orientation of our camera (this is the 

view part).  

� Projection matrix: The name says it all—this matrix encodes a projection, and 

thus the view frustum of our camera.  

� Texture matrix: This matrix allow us to manipulate so-called texture coordinates 

(which we’ll discuss later). However, we’ll avoid using this matrix in this book 

since this part of OpenGL ES is broken on a couple of devices thanks to buggy 

drivers. 

The Rendering Pipeline 
OpenGL ES keeps track of these three matrices. Each time we set one of the matrices, it 

will remember it until we change the matrix again. In OpenGL ES speak, this is called a 

state. OpenGL keeps track of more than just the matrix states, though; it also keeps 

track of whether we want it to alpha-blend triangles, whether we want lighting to be 

taken into account, which texture should be applied to our geometry, and so on. In fact, 

OpenGL ES is one huge state machine. We set its current state, feed it the geometries 

of our objects, and tell it to render an image for us. Let’s see how a triangle passes 

through this mighty triangle-rendering machine. Figure 7–4 shows a very high-level, 

simplified view of the OpenGL ES pipeline: 

 

Figure 7–4. The way of the triangle 
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The way of the a triangle through this pipeline looks as follows: 

1. Our brave triangle is first transformed by the model-view matrix. This 

means that all its points are multiplied with this matrix. This 

multiplication will effectively move the triangle’s points around in the 

world. 

2. The output of this is then multiplied by the projection matrix, effectively 

transforming the 3D points onto the 2D projection plane.  

3. In between these two steps (or parallel to them), the currently set lights 

and materials are also applied to our triangle, giving it its color.  

4. Once all that is done, the projected triangle is clipped to our “retina” and 

transformed to framebuffer coordinates.  

5. As a final step, OpenGL fills in the pixels of the triangle based on the 

colors from the lighting stage, textures to be applied to the triangle, and 

the blending state, in which each pixel of the triangle might or might not 

be combined with the pixel in the framebuffer.  

All we need to learn is how to throw geometry and textures at OpenGL ES, and set the 

states used by each of the preceding steps. Before we can do that, though, we need to 

check out how Android grants us access to OpenGL ES. 

NOTE: While the high-level description of the OpenGL ES pipeline is mostly correct, it is heavily 
simplified and leaves out some details that will become important in a later chapter. Another 

thing to note is that when OpenGL ES performs projections, it doesn’t actually project onto a 2D 
coordinate system. Instead it projects into something called a homogenous coordinate system, 
which is actually four dimensional. This is a very involved mathematical topic, so for the sake of 

simplicity, we’ll just stick to the simplified belief that OpenGL ES projects to 2D coordinates.  

Before We Begin 
In the rest of this chapter, we’ll write a lot of small examples, as we did in Chapter 4 

when discussing the Android API basics. We’ll use the same starter class as we did in 

Chapter 4, which shows us a list of test Activitys we can start. The only things that will 

change are the names of the Activitys we instantiate via reflection, and the package 

they are located in. All the examples of the rest of this chapter will be in the package 

com.badlogic.androidgames.glbasics. The rest of the code will stay the same. Our new 

starter Activity will be called GLBasicsStarter. We will also copy over all the source 

code from Chapter 5, which contains our framework classes, as we of course want to 

reuse those. Finally, we will write some new framework and helper classes, which will go 

in the com.badlogic.androidgames.framework package and subpackages. 
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We also have a manifest file again. As each of the following little examples will be an 

Activity, we also have to make sure it has an entry in the manifest. All the examples will 

use a fixed orientation (either portrait or landscape, depending on the example), and will 

tell Android that they can handle keyboard, keyboardHidden, and orientationChange 

events.  

With that out of our way, let the fun begin! 

GLSurfaceView: Making Things Easy Since 2008 
The first thing we need is some type of View that will allow us to draw via OpenGL ES. 

Luckily there’s such a View in the Android API. It’s called GLSurfaceView, and it’s a 

descendent of the SurfaceView class, which we already used for drawing the world of 

Mr. Nom.  

We also need a separate main loop thread again so that we don’t bog down the UI 

thread. Surprise: GLSurfaceView already sets up such a thread for us! All we need to do 

is implement a listener interface called GLSurfaceView.Renderer and register it with the 

GLSurfaceView. The interface has three methods: 

interface Renderer { 
    public void onSurfaceCreated(GL10 gl, EGLConfig config); 
             
    public void onSurfaceChanged(GL10 gl, int width, int height);         
             
    public void onDrawFrame(GL10 gl);     
} 

The onSurfaceCreated() method is called each time the GLSurfaceView surface is 

created. This happens the first time we fire up the Activity and each time we come 

back to the Activity from a paused state. The method takes two parameters, a GL10 

instance and an EGLConfig. The GL10 instance allows us to issue commands to OpenGL 

ES. The EGLConfig just tells us about the attributes of the surface, such as the color 

depth and so on. We usually ignore it. We will set up our geometries and textures in the 

onSurfaceCreated() method.  

The onSurfaceChanged() method is called each time the surface is resized. We get the 

new width and height of the surface in pixels as parameters, along with a GL10 instance 

if we want to issue OpenGL ES commands.  

The onDrawFrame() method is where the fun happens. It is similar in spirit to our 

Screen.render() method, which gets called as often as possible by the rendering thread 

that the GLSurfaceView sets up for us. In this method we perform all our rendering. 

Besides registering a Renderer listener, we also have to call 

GLSurfaceView.onPause()/onResume() in our Activity’s onPause()/onResume() methods. 

The reason for this is simple. The GLSurfaceView will start up the rendering thread in its 

onResume() method and tear it down in its onPause() method. This means that our 

listener will not be called while our Activity is paused, since the rendering thread which 

calls our listener will also be paused. 
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And here comes the only bummer: each time our Activity is paused, the surface of the 

GLSurfaceView will be destroyed. When the Activity is resumed again (and 

GLSurfaceView.onResume() is called by us), the GLSurfaceView instantiates a new 

OpenGL ES rendering surface for us, and informs us of this by calling our listener’s 

onSurfaceCreated()�method. This would all be well if not for a single problem: all the 

OpenGL ES states we set so far will be lost. This also includes things such as textures 

and so on, which we’ll have to reload in that case. This problem is known as a context 
loss. The word context stems from the fact that OpenGL ES associates a so-called 

context with each surface we create, which holds the current states. When we destroy 

that surface, the context is lost as well. It’s not all that bad, though, given that we design 

our games properly to handle this context loss. 

NOTE: Actually, it’s EGL that is responsible for the context and surface creation and destruction. 
EGL is another Khronos Group standard; it defines how an operating system’s UI works together 

with OpenGL ES, and how the operating system grants OpenGL ES access to the underlying 
graphics hardware. This includes surface creation as well as context management. Since 

GLSurfaceView handles all the EGL stuff for us, we can safely ignore it in almost all cases. 

Following tradition, let’s write a small example that will clear the screen with a random 

color each frame. Listing 7–1 shows the code. 

Listing 7–1. GLSurfaceViewTest.java; Screen-Clearing Madness 

package com.badlogic.androidgames.glbasics; 
 
import java.util.Random; 
 
import javax.microedition.khronos.egl.EGLConfig; 
import javax.microedition.khronos.opengles.GL10; 
 
import android.app.Activity; 
import android.opengl.GLSurfaceView; 
import android.opengl.GLSurfaceView.Renderer; 
import android.os.Bundle; 
import android.util.Log; 
import android.view.Window; 
import android.view.WindowManager; 
 
public class GLSurfaceViewTest extends Activity { 
    GLSurfaceView glView; 
 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        requestWindowFeature(Window.FEATURE_NO_TITLE); 
        getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, 
                WindowManager.LayoutParams.FLAG_FULLSCREEN); 
        glView = new GLSurfaceView(this); 
        glView.setRenderer(new SimpleRenderer()); 
        setContentView(glView); 
    } 
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We keep a reference to a GLSurfaceView instance as a member of the class. In the 

onCreate() method, we make our application go full-screen, create the GLSurfaceView, 

set our Renderer implementation, and make the GLSurfaceView the content view of our 

Activity. 

    @Override 
    public void onResume() { 
        super.onPause(); 
        glView.onResume(); 
    } 
 
    @Override 
    public void onPause() { 
        super.onPause(); 
        glView.onPause(); 
    } 

In the onResume() and onPause() methods, we call the supermethods as well as the 

respective GLSurfaceView methods. These will start up and tear down the rendering 

thread of the GLSurfaceView, which in turn will trigger the callback methods of our 

Renderer implementation at appropriate times. 

    static class SimpleRenderer implements Renderer { 
        Random rand = new Random(); 
 
        @Override 
        public void onSurfaceCreated(GL10 gl, EGLConfig config) { 
            Log.d("GLSurfaceViewTest", "surface created"); 
        } 
 
        @Override 
        public void onSurfaceChanged(GL10 gl, int width, int height) { 
            Log.d("GLSurfaceViewTest", "surface changed: " + width + "x" 
                    + height); 
        } 
 
        @Override 
        public void onDrawFrame(GL10 gl) { 
            gl.glClearColor(rand.nextFloat(), rand.nextFloat(), 
                    rand.nextFloat(), 1); 
            gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        } 
    } 
} 

The final piece of the code is our Renderer implementation. It’s just logs some 

information in the onSurfaceCreated() and onSurfaceChanged() methods. The really 

interesting part is the onDrawFrame() method. 

As said earlier, the GL10 instance gives us access to the OpenGL ES API. The 10 in GL10 

indicates that it offers us all the functions defined in the OpenGL ES 1.0 standard. For 

now we can be happy with that. All the methods of that class map to a corresponding C 

function, as defined in the standard. Each method begins with the prefix gl, an old 

tradition of OpenGL ES.  
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The first OpenGL ES method we call is glClearColor(). You probably already know 

what that will do. It sets the color to be used when we issue a command to clear the 

screen. Colors in OpenGL ES are almost always RGBA colors where each component 

has a range between 0 and 1. There are ways to define a color in, say, RGB565, but for 

now let’s stick to the floating-point representation. We could set the color used for 

clearing only once and OpenGL ES would remember it. The color we set with 

glClearColor() is one of OpenGL ES’s states.  

The next call actually clears the screen with the clear color we just specified. The 

method glClear() takes a single argument that specifies which buffer to clear. OpenGL 

ES does not only have the notation of a framebuffer that holds pixels, but also other 

types of buffers. We’ll get to know them in Chapter 10, but for now all we care about is 

the framebuffer that holds our pixels. OpenGL ES calls that the color buffer. To tell 

OpenGL ES that we want to clear that exact buffer, we specify the constant 

GL10.GL_COLOR_BUFFER_BIT.  

OpenGL ES has a lot of constants, which are all defined as static public members of the 

GL10 interface. Like the methods, each constant has the prefix GL_.  

And that was our first OpenGL ES application. I’ll spare you the impressive screenshot, 

since you probably know what it looks like.  

NOTE: Thou shall never call OpenGL ES from another thread! First and last commandment! The 
reason is that OpenGL ES is designed to be used in single threaded environments only and is not 

thread-safe. It can be made to somewhat work on multiple threads, but many drivers have 

problems with this and there’s no real benefit to doing so. 

GLGame: Implementing the Game Interface  
In the previous chapter, we implemented the AndroidGame class, which ties together all 

the submodules for audio, file I/O, graphics, and user input handling. We want to reuse 

most of this for our upcoming 2D OpenGL ES game, so let’s implement a new class 

called GLGame that implements the Game interface we defined earlier. 

The first thing you will notice is that we can’t possibly implement the Graphics interface 

with our current knowledge of OpenGL ES. Here’s a surprise: we won’t implement it. 

OpenGL does not lend itself well to the programming model of our Graphics interface. 

Instead we’ll implement a new class, GLGraphics, which will keep track of the GL10 

instance we get from the GLSurfaceView. Listing 7–2 shows the code. 

Listing 7–2. GLGraphics.java; Keeping Track of the GLSurfaceView and the GL10 Instance 

package com.badlogic.androidgames.framework.impl; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import android.opengl.GLSurfaceView; 
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public class GLGraphics { 
    GLSurfaceView glView; 
    GL10 gl; 
     
    GLGraphics(GLSurfaceView glView) { 
        this.glView = glView; 
    } 
     
    public GL10 getGL() { 
        return gl; 
    } 
     
    void setGL(GL10 gl) { 
        this.gl = gl; 
    } 
     
    public int getWidth() { 
        return glView.getWidth(); 
    } 
     
    public int getHeight() { 
        return glView.getHeight(); 
    } 
} 

This class has just a few getters and setters. Note that we will use this class in the 

rendering thread set up by the GLSurfaceView. As such, it might be problematic to call 

methods of a View, which lives mostly on the UI thread. In this case it’s OK, though, as 

we only query for the GLSurfaceView’s width and height, so we get away with it. 

The GLGame class is a bit more involved. It borrows most of its code from the 

AndroidGame class. The only thing that is a little bit more complex is the synchronization 

between the rendering and UI threads. Let’s have a look at it in Listing 7–3. 

Listing 7–3. GLGame.java, the Mighty OpenGL ES Game Implementation 

package com.badlogic.androidgames.framework.impl; 
 
import javax.microedition.khronos.egl.EGLConfig; 
import javax.microedition.khronos.opengles.GL10; 
 
import android.app.Activity; 
import android.content.Context; 
import android.opengl.GLSurfaceView; 
import android.opengl.GLSurfaceView.Renderer; 
import android.os.Bundle; 
import android.os.PowerManager; 
import android.os.PowerManager.WakeLock; 
import android.view.Window; 
import android.view.WindowManager; 
 
import com.badlogic.androidgames.framework.Audio; 
import com.badlogic.androidgames.framework.FileIO; 
import com.badlogic.androidgames.framework.Game; 
import com.badlogic.androidgames.framework.Graphics; 
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import com.badlogic.androidgames.framework.Input; 
import com.badlogic.androidgames.framework.Screen; 
 
public abstract class GLGame extends Activity implements Game, Renderer { 
    enum GLGameState { 
        Initialized, 
        Running, 
        Paused, 
        Finished, 
        Idle 
    } 
     
    GLSurfaceView glView;     
    GLGraphics glGraphics; 
    Audio audio; 
    Input input; 
    FileIO fileIO; 
    Screen screen; 
    GLGameState state = GLGameState.Initialized; 
    Object stateChanged = new Object(); 
    long startTime = System.nanoTime(); 
    WakeLock wakeLock; 

The class extends the Activity class and implements the Game and 

GLSurfaceView.Renderer interface. It has an enum called GLGameState that keeps track 

of the state the GLGame instance is currently in. We’ll see how those are used in a bit.  

The members of the class consist of a GLSurfaceView and GLGraphics instance. The 

class also has Audio, Input, FileIO, and Screen instances, which we need for writing our 

game, just as in the AndroidGame class. The state member keeps track of the state via 

one of the GLGameState enums. The stateChanged member is an object we’ll use to 

synchronize the UI thread and the rendering thread. Finally we have a member to keep 

track of the delta time and a WakeLock we’ll use to keep the screen from dimming. 

    @Override  
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        requestWindowFeature(Window.FEATURE_NO_TITLE); 
        getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, 
                             WindowManager.LayoutParams.FLAG_FULLSCREEN); 
        glView = new GLSurfaceView(this); 
        glView.setRenderer(this); 
        setContentView(glView); 
         
        glGraphics = new GLGraphics(glView); 
        fileIO = new AndroidFileIO(getAssets()); 
        audio = new AndroidAudio(this); 
        input = new AndroidInput(this, glView, 1, 1); 
        PowerManager powerManager = (PowerManager) 
getSystemService(Context.POWER_SERVICE); 
        wakeLock = powerManager.newWakeLock(PowerManager.FULL_WAKE_LOCK, "GLGame");         
    } 

In the onCreate()�we perform the usual setup routine. We make the Activity go full-

screen and instantiate the GLSurfaceView, setting it as the content View. We also 
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instantiate all the other classes that implement framework interfaces, such as the 

AndroidFileIO or AndroidInput classes. Note that we reuse the classes we used in the 

AndroidGame class, except for AndroidGraphics. Another important point is that we no 

longer let the AndroidInput class scale the touch coordinates to a target resolution, as in 

AndroidGame. The scale values are both 1, so we will get the real touch coordinates. It 

will become clear later on why we do that. The last thing we do is create the WakeLock 

instance.  

    public void onResume() { 
        super.onResume(); 
        glView.onResume(); 
        wakeLock.acquire(); 
    } 

In the onResume()�method we let the GLSurfaceView start the rendering thread with a call 

to its onResume()�method. We also acquire the WakeLock. 

    @Override 
    public void onSurfaceCreated(GL10 gl, EGLConfig config) {         
        glGraphics.setGL(gl); 
         
        synchronized(stateChanged) { 
            if(state == GLGameState.Initialized) 
                screen = getStartScreen(); 
            state = GLGameState.Running; 
            screen.resume(); 
            startTime = System.nanoTime(); 
        }         
    } 

The next thing that will be called is the onSurfaceCreate() method. The method is 

invoked on the rendering thread, of course. Here we can see how the state enums are 

used. If the application is started for the first time, the state will be 

GLGameState.Initialized. In this case we call the getStartScreen() method to return 

the starting screen of the game. If the game is not in an initialized state, but was already 

been running, we know that we have just resumed from a paused state. In any case we 

set the state to GLGameState.Running and call the current Screen’s resume() method. We 

also keep track of the current time so we can calculate the delta time later on. 

The synchronization is necessary, since the members we manipulate within the 

synchronized block could be manipulated in the onPause()�method on the UI thread. 

That’s something we have to prevent, so we use an object as a lock. We could have also 

used the GLGame instance itself here, or a proper lock. 

    @Override 
    public void onSurfaceChanged(GL10 gl, int width, int height) {         
    } 

The�onSurfaceChanged()�method is basically just a stub. There’s nothing for us to do 

here. 

    @Override 
    public void onDrawFrame(GL10 gl) {                 
        GLGameState state = null; 
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        synchronized(stateChanged) { 
            state = this.state; 
        } 
         
        if(state == GLGameState.Running) { 
            float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f; 
            startTime = System.nanoTime(); 
             
            screen.update(deltaTime); 
            screen.present(deltaTime); 
        } 
         
        if(state == GLGameState.Paused) { 
            screen.pause();             
            synchronized(stateChanged) { 
                this.state = GLGameState.Idle; 
                stateChanged.notifyAll(); 
            } 
        } 
         
        if(state == GLGameState.Finished) { 
            screen.pause(); 
            screen.dispose(); 
            synchronized(stateChanged) { 
                this.state = GLGameState.Idle; 
                stateChanged.notifyAll(); 
            }             
        } 
    } 

The onDrawFrame() method is were the bulk of all the work is performed. It is called by 

the rendering thread as often as possible. Here we check which state our game is 

currently in and react accordingly. As the state can be set on the�onPause()�method on 

the UI thread, we have to synchronize the access to it.  

If the game is running we calculate the delta time and tell the current Screen to update 

and present itself.  

If the game is paused we tell the current Screen to pause itself as well. We then change 

the state to�GLGameState.Idle, indicating that we have received the pause request from 

the UI thread. Since we wait for this to happen in the onPause()�method in the UI thread, 

we notify the UI thread that it can now really pause the application. This notification is 

necessary, as we have to make sure that the rendering thread is paused/shut down 

properly in case our Activity is paused or closed on the UI thread.  

If the Activity is being closed (and not paused), we react to GLGameState.Finished. In 

this case we tell the current Screen to pause and dispose of itself, and then send 

another notification to the UI thread, which waits for the rendering thread to properly 

shut things down. 

    @Override  
    public void onPause() {         
        synchronized(stateChanged) { 
            if(isFinishing())             
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                state = GLGameState.Finished; 
            else 
                state = GLGameState.Paused; 
            while(true) { 
                try { 
                    stateChanged.wait(); 
                    break; 
                } catch(InterruptedException e) {  
                } 
            } 
        } 
        wakeLock.release(); 
        glView.onPause();   
        super.onPause(); 
    }   

The onPause()�method is our usual Activity notificaton method that’s called on the UI 

thread when the Activity is paused. Depending on whether the application is closed or 

paused, we set the state accordingly and wait for the rendering thread to process the 

new state. This is achieved with the standard Java wait/notify mechanism.  

Finally we release the WakeLock and tell the GLSurfaceView and the Activity to pause 

themselves, effectivley shutting down the rendering thread and destroying the OpenGL 

ES surface, which triggers the dreaded OpenGL ES context loss mentioned earlier.  

    public GLGraphics getGLGraphics() { 
        return glGraphics; 
    }   

The getGLGraphics()�method is a new method that is only accessible via the GLGame 

class. It returns the instance of GLGraphics we store so that we can get access to the 

GL10 interface in our Screen implementations later on. 

    @Override 
    public Input getInput() { 
        return input; 
    } 
 
    @Override 
    public FileIO getFileIO() { 
        return fileIO; 
    } 
 
    @Override 
    public Graphics getGraphics() { 
        throw new IllegalStateException("We are using OpenGL!"); 
    } 
 
    @Override 
    public Audio getAudio() { 
        return audio; 
    } 
 
    @Override 
    public void setScreen(Screen screen) { 
        if (screen == null) 
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            throw new IllegalArgumentException("Screen must not be null"); 
 
        this.screen.pause(); 
        this.screen.dispose(); 
        screen.resume(); 
        screen.update(0); 
        this.screen = screen; 
    } 
 
    @Override 
    public Screen getCurrentScreen() { 
        return screen; 
    } 
} 

The rest of the class works as before. In case we accidentially try to access the standard 

Graphics instance, we throw an exception, though, as it is not supported by GLGame. 

Instead we’ll work with the GLGraphics method we get via the GLGame.getGLGraphics() 

method. 

Why did we go through all the pain of synchronizing with the rendering thread? Well, it 

will make our Screen implementations live entirely on the rendering thread. All the 

methods of Screen will be executed there, which is necessary if we want to access 

OpenGL ES functionaility. Remeber, we can only access OpenGL ES on the rendering 

thread. 

Let’s round this out with an example. Listing 7–4 shows how our first example in this 

chapter looks when using GLGame and Screen. 

Listing 7–4. GLGameTest.java; More Screen Clearing, Now with 100 Percent More GLGame 

package com.badlogic.androidgames.glbasics; 
 
import java.util.Random; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import com.badlogic.androidgames.framework.Game; 
import com.badlogic.androidgames.framework.Screen; 
import com.badlogic.androidgames.framework.impl.GLGame; 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
 
public class GLGameTest extends GLGame { 
    @Override 
    public Screen getStartScreen() { 
        return new TestScreen(this); 
    } 
 
    class TestScreen extends Screen { 
        GLGraphics glGraphics; 
        Random rand = new Random(); 
 
        public TestScreen(Game game) { 
            super(game); 
            glGraphics = ((GLGame) game).getGLGraphics(); 
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        } 
 
        @Override 
        public void present(float deltaTime) { 
            GL10 gl = glGraphics.getGL(); 
            gl.glClearColor(rand.nextFloat(), rand.nextFloat(), 
                    rand.nextFloat(), 1); 
            gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        } 
 
        @Override 
        public void update(float deltaTime) { 
        } 
 
        @Override 
        public void pause() { 
        } 
 
        @Override 
        public void resume() { 
        } 
 
        @Override 
        public void dispose() { 
        } 
    } 
} 

This is the same program as in our last example, except that we now derive from GLGame 

instead of Activity, and we provide a Screen implementation instead of a 

GLSurfaceView.Renderer implementation. 

In the following examples, we’ll only have a look at the relevant parts of each example’s 

Screen implementation. The overall structure of our examples will stay the same. Of 

course, we have to add the example GLGame implementations to our starter Activity, as 

well as to the manifest file. 

With that out of our way, let’s render our first triangle. 

Look Mom, I Got a Red Triangle! 
You already learned that OpenGL ES needs a couple of things set before we can tell it to 

draw some geometry. The two things we are most concerned about are the projection 

matrix (and with it our view frustum) and the viewport, which governs the size of our 

output image and the position of our rendering output in the framebuffer.  

Defining the Viewport 
OpenGL ES uses the viewport as a way to translate the coordinates of points projected 

to the near clipping plane to framebuffer pixel coordinates. We can tell OpenGL ES to 

use only a portion of our framebuffer, or all of it, with the following method: 
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GL10.glViewport(int x, int y, int width, int height) 

The x- and y-coordinates specify the top-left corner of the viewport in the framebuffer, 

and width and height specify the viewport’s size in pixels. Note that OpenGL ES 

assumes the framebuffer coordinate system to have its origin in the lower left of the 

screen. Usually we set x and y to zero and width and height to our screen resolution, as 

we are using full-screen mode. We could instruct OpenGL ES to only use a portion of 

the framebuffer with this method. It would then take the rendering output and 

automatically stretch it to that portion. 

NOTE: While this method looks like it sets up a 2D coordinate system for us to render to, it 
actually does not. It only defines the portion of the framebuffer OpenGL ES uses to output the 

final image. Our coordinate system is defined via the projection and model-view matrices. 

Defining the Projection Matrix 
The next thing we need to define is the projection matrix. As we are only concerned with 

2D graphics in this chapter, we want to use a parallel projection. How do we do that? 

Matrix Modes and Active Matrices 
We already discussed that OpenGL ES keeps track of three matrices: the projection 

matrix, the model-view matrix, and the texture matrix (which we’ll continue to ignore). 

OpenGL ES offers us a couple of specific methods to modify these matrices. Before we 

can use these methods, however, we have to tell OpenGL ES which matrix we want to 

manipulate. This is done with the following method: 

GL10.glMatrixMode(int mode) 

The mode parameter can be GL10.GL_PROJECTION, GL10.GL_MODELVIEW, or 

GL10.GL_TEXTURE. It should be clear which of these constants will make which matrix 

active. Any subsequent calls to the matrix manipulation methods will target the matrix 

we set with this method until we change the active matrix again via another call to this 

method. This matrix mode is one of OpenGL ES’s states (which will get lost when we 

lose the context if our application is paused and resumed). To manipulate the projection 

matrix with any subsequent calls, we can call the method like this: 

gl.glMatrixMode(GL10.GL_PROJECTION); 

Orthographic Projection with glOrthof 
OpenGL ES offers us the following method for setting the active matrix to an 

orthographic (parallel) projection matrix: 

GL10.glOrthof(int left, int right, int bottom, int top, int near, int far) 
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Hey, that looks a lot like it has something to do with our view frustum’s clipping planes. 

And indeed it does. So what values do we specify here?  

OpenGL ES has a standard coordinate system, as depicted in Figure 7–4. The positive 

x-axis points to the right, the positive y-axis points upward, and the positive z-axis 

points toward us. With�glOrthof() we define the view frustum of our parallel projection 

in this coordinate system. If you look back at Figure 7–3, you can see that the view 

frustum of a parallel projection is a box. We can interpret the parameters for glOrthof() 

as specifying two of these corners of our view frustum box. Figure 7–5 illustrates this. 

 

Figure 7–5. An orthographic view frustum 

The front side of our view frustum will be directly mapped to our viewport. In the case of 

a full-screen viewport from, say, (0,0) to (480,320) (e.g., landscape mode on a Hero), the 

bottom-left corner of the front side would map to the bottom-left corner of our screen, 

and the top-right corner of the front side would map to the top-left corner of our screen. 

OpenGL will perform the stretching automatically for us. 

Since we want to do 2D graphics, we will specify the corner points (left, bottom, near) 

and (right, top, far) (see figure 7–5) in a way that allows us to work in a sort of pixel 

coordinate system, as we did with the Canvas and Mr. Nom. Here’s how we could set up 

such a coordinate system: 

gl.glOrthof(0, 480, 0, 320, 1, -1); 
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Figure 7–6 shows the view frustum. 

 

Figure 7–6. Our parallel projection view frustum for 2D rendering with OpenGL ES 

Our view frustum is pretty thin, but that’s OK because we’ll only be working in 2D. The 

visible part of our coordinate system goes from (0,0,1) to (480,320,–1). Any points we 

specify within this box will be visible on the screen as well. The points will be projected 

onto the front side of this box, which is our beloved near clipping plane. The projection 

will then get stretched out onto the viewport, whatever dimensions it has. Say we have a 

Nexus One with a resolution of 800�480 pixels in landscape mode. When we specify our 

view frustum as just mentioned, we can work in a 480�320 coordinate system, and 

OpenGL will stretch it to the 800�480 framebuffer (if we specified that the viewport 

covers the complete framebuffer). Best of all, there’s nothing keeping us from using 

crazier view frustums. We could also use one with the corners (–1,–1,100) and (2,2,–

100). Everything we specify that falls inside this box will be visible and get stretched 

automatically. Pretty nifty.  

Note that we also set the near and far clipping planes. Since we are going to neglect the 

z-coordinate completely in this chapter, you might be tempted to use zero for both near 

and far. However, that’s a bad idea for various reasons. To play it safe, we grant the 

view frustum a little buffer in the z-axis. All our geometries’ points will be defined in the 

x-y plane with z set to zero, though—2D all the way. 
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NOTE: You might have noticed that the y-axis is pointing upward now, and the origin is in the 
lower-left corner of our screen. While the Canvas, the UI framework, and many other 2D-
rendering APIs use the y-down, origin-top-left convention, it is actually more convenient to use 

this “new” coordinate system for game programming. For example, if Super Mario is jumping, 
wouldn’t you expect his y-coordinate to increase instead of decrease while he’s on his way up? 
Want to work in the other coordinate system? Fine, just swap the bottom and top parameters of 

glOrthof(). Also, while the illustration of the view frustum is mostly correct from a geometric 
point of view, the near and far clipping planes are actually interpreted a little differently by 
glOrthof(). Since that is a little involved, we’ll just pretend the preceding illustrations are 

correct, though. 

A Helpful Snippet 
Here’s a small snippet that will be used in all of our examples in this chapter. It clears 

the screen with black, sets the viewport to span the whole framebuffer, and sets up the 

projection matrix (and thereby the view frustum) so we can work in a comfortable 

coordinate system with the origin in the lower-left corner of the screen and the y-axis 

pointing upward: 

gl.glClearColor(0,0,0,1); 
gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
gl.glMatrixMode(GL10.GL_PROJECTION); 
gl.glLoadIdentity(); 
gl.glOrthof(0, 320, 0, 480, 1, -1); 

Wait, what does glLoadIdentity() do in there? Well, most of the methods OpenGL ES 

offers us to manipulate the active matrix don’t actually set the matrix. Instead they 

construct a temporary matrix from whatever parameters they take and multiply it with 

the current matrix. The glOrthof() method is no exception. For example, if we called 

glOrthof() each frame, we’d multiply the projection matrix to death with itself. So 

instead of doing that, we make sure we have a clean identity matrix in place before we 

multiply the projection matrix. Remember, multiplying a matrix by the identity matrix will 

output the matrix itself again. And that’s what glLoadIdentity() is for. Think of it as first 

loading the value 1 and then multiplying it with whatever we have (in our case, the 

projection matrix produced by glOrthof()).  

Note that our coordinate system now goes from (0,0,1) to (320,480,–1)—that’s for 

portrait mode rendering. 

Specifying Triangles 
Next up we have to figure out how we can tell OpenGL ES about the triangles we want it 

to render. First let’s define what a triangle is made of: 
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� A triangle is made of three points. 

� Each point is called a vertex. 

� A vertex has a position in 3D space. 

� A position in 3D space is given as three floats, specifying the x-, y-, 

and z-coordinates.  

� A vertex can have additional attributes, such as a color or texture 

coordinates (which we’ll talk about later). These can be represented as 

floats as well.  

OpenGL ES expects to send our triangle definitions in the form of arrays. However, 

given that OpenGL ES is actually a C API, we can’t just use standard Java arrays. 

Instead we have to use Java NIO buffers, which are just memory blocks of consecutive 

bytes.  

A Small NIO Buffer Digression 
To be totally exact, we need to use direct NIO buffers. This means that the memory is 

not allocated in the virtual machine’s heap memory, but in native heap memory. To 

construct such a direct NIO buffer, we can use the following code snippet: 

ByteBuffer buffer = ByteBuffer.allocateDirect(NUMBER_OF_BYTES); 
buffer.order(ByteOrder.nativeOrder()); 

This will allocate a ByteBuffer that can hold NUMBER_OF_BYTES bytes in total, and make 

sure that the byte order is equal to the byte order used by the underlying CPU. A NIO 

buffer has three attributes: 

� Capacity: The number of elements the buffer can hold in total 

� Position: The current position to which the next element would be 

written to or read from 

� Limit: The index of the last element that has been defined plus one 

The capacity of a buffer is actually its size. In the case of a ByteBuffer, it is given in 

bytes. The position and limit attributes can be thought of as defining a segment within 

the buffer starting at position and ending at limit (exclusive).  

Since we want to specify our vertices as floats, it would be nice not to have to cope with 

bytes. Luckily we can convert the ByteBuffer instance to a FloatBuffer instance which 

allows us just that: working with floats. 

FloatBuffer floatBuffer = buffer.asFloatBuffer(); 

Capacity, position, and limit are given in floats in the case of a FloatBuffer. Our usage 

pattern of these buffers will be pretty limited—it goes like this: 

float[] vertices = { ... definitions of vertex positions etc  ...; 
floatBuffer.clear(); 
floatBuffer.put(vertices); 
floatBuffer.flip(); 
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We first define our data in a standard Java float array. Before we put that float array into 

the buffer, we tell the buffer to clear itself via the clear() method. This doesn’t actually 

erase any data, but sets the position to zero and the limit to the capacity. Next we use 

the�FloatBuffer.put(float[] array) method to copy the content of the complete array 

to the buffer, beginning at the buffer’s current position. After the copying, the position of 

the buffer will be increased by the length of the array. Next, the call to the�put() method 

then appends the additional data to the data of the last array we copied to the buffer. 

The final call to FloatBuffer.flip() just swaps the position and limit.  

For this example, let’s assume that our vertices array is five floats in size and that our 

FloatBuffer has enough capacity to store those five floats. After the call to�

FloatBuffer.put()��the position of the buffer will be 5 (indices 0 to 4 are taken up by the 

five floats from our array). The limit will still be equal to whatever the capacity of the 

buffer is. After the call to FloatBuffer.flip(), the position will be set to 0 and the limit 

will be set to 5. Any party interested in reading the data from the buffer will then know 

that it should read the floats from index 0 to 4 (remember that the limit is exclusive). And 

that’s exactly what OpenGL ES needs to know as well. Note, however, that it will happily 

ignore the limit. Usually we have to tell it the number of elements to read in addition to 

passing the buffer to it. There’s no error checking done, so watch out. 

Sometimes it is useful to set the position of the buffer manually after we have filled it. 

This can be done via a call to the following method: 

FloatBuffer.position(int position) 

This will come in handy later on, when we temporarily set the position of a filled buffer to 

something other than zero for OpenGL ES to start reading at a specific position.  

Sending Vertices to OpenGL ES 
So how do we define the positions of the three vertices of our first triangle? Easy—

assuming our coordinate system is (0,0,1) to (320,480,–1), as we defined it in the 

preceding code snippet, we can do the following: 

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4); 
byteBuffer.order(ByteOrder.nativeOrder());             
FloatBuffer vertices = byteBuffer.asFloatBuffer(); 
vertices.put(new float[] {    0.0f,   0.0f, 
                            319.0f,   0.0f, 
                            160.0f, 479.0f  }); 
vertices.flip(); 

The first three lines should be familiar already. The only interesting part is how many 

bytes we allocate. We have three vertices, each composed of a position given as x- and 

y-coordinates. Each coordinate is a float, and thus takes up 4 bytes. That’s three 

vertices times two coordinates times four bytes, for a total of 24 bytes for our triangle.  

NOTE: We can specify vertices with x- and y-coordinates only, and OpenGL ES will automatically 

set the z-coordinate to zero for us.  
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Next we put a float array holding our vertex positions into the buffer. Our triangle starts 

at the bottom-left corner (0,0), goes to the right edge of the view frustum/screen (319,0), 

and then goes to the middle of the top edge of the view frustum/screen. Being the good 

NIO buffer users we are, we also call the�flip() method on our buffer. Thus, the position 

will be 0 and the limit will be 6 (remember, FloatBuffer limits and positions are given in 

floats, not bytes).  

Once we have our NIO buffer ready, we can tell OpenGL ES to draw it with its current 

state (e.g., viewport and projection matrix). This can be done with the following snippet: 

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
gl.glVertexPointer( 2, GL10.GL_FLOAT, 0, vertices); 
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3); 

The call to glEnableClientState() is a bit of a relic. It tells OpenGL ES that the vertices 

we are going to draw have a position. This is a bit silly for two reasons:  

� The constant is called GL10.GL_VERTEX_ARRAY, which is a bit confusing. 

It would make more sense if it were called GL10.GL_POSITION_ARRAY.  

� There’s no way to draw anything that has no position, so the call to 

this method is a little bit superfluous. We do it anyway, though, to 

make OpenGL ES happy. 

In the call to�glVertexPointer() we tell OpenGL ES where it can find the vertex 

positions, and give it some additional information. The first parameter tells OpenGL ES 

that each vertex position is composed of two coordinates, x and y. If we would have 

specified x, y, and z, we would have passed 3 to the method. The second parameter 

tells OpenGL ES the data type we used to store each coordinate. In this case it’s 

GL10.GL_FLOAT, indicating that we used floats encoded as 4 bytes each. The third 

parameter, stride, tells OpenGL how far apart each of our vertex positions are from 

each other in bytes. In the preceding case, stride is zero, as the positions are tightly 

packed (vertex 1 (x,y), vertex 2(x,y), etc.). The final parameter is our FloatBuffer, for 

which there are two things to remember:  

� The FloatBuffer represents a memory block in the native heap, and 

thus has a starting address.  

� The position of the FloatBuffer is an offset from that starting address.  

OpenGL ES will take the buffer’s starting address and add the buffer’s positions to arrive 

at the float in the buffer that it will start reading the vertices from when we tell it to draw 

the contents of the buffer. The vertex pointer (which again should be called the position 

pointer) is a state of OpenGL ES. As long as we don’t change it (and the context isn’t 

lost), OpenGL ES will remember and use it for all subsequent calls that need vertex 

positions.  

Finally there’s the call to glDrawArrays(). It will draw our triangle. The first parameter 

specifies what type of primitive we are going to draw. In this case we say that we want 

to render a list of triangles, which is specified via GL10.GL_TRIANGLES. The next 

parameter is an offset relative to the first vertex the vertex pointer points to. The offset is 

measured in vertices, not bytes or floats. If we’d have specified more than one triangle, 
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we could use this offset to render only a subset of our triangle list. The final argument 

tells OpenGL ES how many vertices it should use for rendering. In our case that’s three 

vertices. Note that we always have to specify a multiple of 3 if we draw 

GL10.GL_TRIANGLES. Each triangle is composed of three vertices, so that makes sense. 

For other primitive types the rules are a little different. 

Once we issue the glVertexPointer() command, OpenGL ES will transfer the vertex 

positions to the GPU and store them there for all subsequent rendering commands. 

Each time we tell OpenGL ES to render vertices, it takes their positions from the data we 

last specified via glVertexPointer().  

Each of our vertices might have more attributes than just its position. One other attribute 

might be a vertex’s color. We usually refer to those attributes as vertex attributes.  

You might wonder how OpenGL ES knows what color our triangle should have, as we 

have only specified positions. It turns out that OpenGL ES has sensible defaults for any 

vertex attribute that we don’t specify. Most of these defaults can be set directly. For 

example, if we want to set a default color for all vertices that we draw, we can use the 

following method: 

GL10.glColor4f(float r, float g, float b, float a) 

This method will set the default color to be used for all vertices for which we didn’t 

specify a color. The color is given as RGBA values in the range 0.0 to 1.0, as was the 

case for the clear color earlier. The default color OpenGL ES starts with is (1,1,1,1)—that 

is, fully opaque white.  

And that is all the code we need to render a triangle with a custom parallel projection with 

OpenGL ES. That’s a mere 16 lines of code for clearing the screen, setting the viewport 

and projection matrix, creating an NIO buffer that we store our vertex positions in, and 

drawing the triangle. Now compare that to the six pages it took me to explain this to you. I 

could have of course left out the details and used coarser language. The problem is that 

OpenGL ES is a pretty complex beast at times, and to avoid getting an empty screen, it’s 

best to learn what it is all about rather than just copying and pasting code.  

Putting It Together 
To round this section out, let’s put all this together via a nice GLGame and Screen 

implementation. Listing 7–5 shows the complete example. 

Listing 7–5. FirstTriangleTest.java 

package com.badlogic.androidgames.glbasics; 
 
import java.nio.ByteBuffer; 
import java.nio.ByteOrder; 
import java.nio.FloatBuffer; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import com.badlogic.androidgames.framework.Game; 
import com.badlogic.androidgames.framework.Screen; 
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import com.badlogic.androidgames.framework.impl.GLGame; 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
 
public class FirstTriangleTest extends GLGame { 
    @Override 
    public Screen getStartScreen() { 
        return new FirstTriangleScreen(this); 
    } 

The FirstTriangleTest class derives from GLGame, and thus has to implement the 

Game.getStartScreen() method. In that method we create a new FirstTriangleScreen, 

which will then be frequently called to update and present itself by the GLGame. Note that 

when this method is called, we are already in the main loop—or rather the 

GLSurfaceView rendering thread—so we can use OpenGL ES methods in the constructor 

of the FirstTriangleScreen class. Let’s have a closer look at that Screen 

implementation: 

    class FirstTriangleScreen extends Screen { 
        GLGraphics glGraphics; 
        FloatBuffer vertices; 
     
        public FirstTriangleScreen(Game game) { 
            super(game); 
            glGraphics = ((GLGame)game).getGLGraphics(); 
             
            ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * 2 * 4); 
            byteBuffer.order(ByteOrder.nativeOrder());             
            vertices = byteBuffer.asFloatBuffer(); 
            vertices.put( new float[] {    0.0f,   0.0f, 
                                         319.0f,   0.0f, 
                                         160.0f, 479.0f}); 
            vertices.flip();                        
        } 

The FirstTriangleScreen class holds two members: a GLGraphics instance and our 

trusty FloatBuffer, which stores the 2D positions of the three vertices of our triangle. In 

the constructor we fetch the GLGraphics instance from the GLGame and create and fill the 

FloatBuffer according to our previous code snippet. Since the Screen constructor gets 

a Game instance, we have to cast it to a GLGame instance so we can use the 

GLGame.getGLGraphics()�method.  

        @Override 
        public void present(float deltaTime) { 
            GL10 gl = glGraphics.getGL(); 
            gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
            gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
            gl.glMatrixMode(GL10.GL_PROJECTION); 
            gl.glLoadIdentity(); 
            gl.glOrthof(0, 320, 0, 480, 1, -1); 
             
            gl.glColor4f(1, 0, 0, 1); 
            gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
            gl.glVertexPointer( 2, GL10.GL_FLOAT, 0, vertices); 
            gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3); 
        } 
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The present() method then reflects what we just discussed: we set the viewport, clear 

the screen, set the projection matrix so that we can work in our custom coordinate 

system, set the default vertex color (red in this case), specify that our vertices will have 

positions, tell OpenGL ES where it can find those vertex positions, and finally render our 

awesome little red triangle. 

         
        @Override 
        public void update(float deltaTime) { 
            game.getInput().getTouchEvents(); 
            game.getInput().getKeyEvents(); 
        } 
     
        @Override 
        public void pause() { 
             
        } 
     
        @Override 
        public void resume() { 
             
        } 
     
        @Override 
        public void dispose() { 
             
        }  
    } 
} 

The rest of the class is just boilerplate code. In the update() method we make sure that 

our event buffers don’t get filled up. The rest of the code does nothing.  

NOTE: From here on we’ll only focus on the Screen classes themselves, as the enclosing 
GLGame derivatives, such as FirstTriangleTest, will always be the same. We’ll also reduce 
the code size a little by leaving out any empty or boilerplate methods of the Screen class. The 

following examples will all just differ in terms of members, constructors, and present methods.  

Figure 7–7 shows the output of the preceding example. 
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Figure 7–7. Our first sexy triangle 

So here’s what we did wrong in this example in terms of OpenGL ES best practices: 

� We set the same states to the same values over and over again 

without any need. State changes in OpenGL ES are expensive—some 

a little bit more, some a little bit less. We should always try to reduce 

the number of state changes we make in a single frame. 

� The viewport and projection matrix will never change once we set 

them. We could move that code to the resume()�method, which is only 

called once each time the OpenGL ES surface gets (re)-created, thus 

also handling OpenGL ES context loss. 

� We could also move setting the color used for clearing and setting the 

default vertex color to the resume() method. These two colors won’t 

change either. 

� We could move the glEnableClientState()�and glVertexPointer() 

methods to the resume() method. 

� The only things that we need to call each frame are glClear() and 

glDrawArrays(). Both use the current OpenGL ES states, which will 

stay the same as long as we don’t change them and as long as we 

don’t lose the context due to the Activity being paused and resumed.  

If we had put these optimizations into practice, we would have only two OpenGL ES 

calls in our main loop. For the sake of clarity, we’ll refrain from using these kind of 
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minimal state change optimizations for now. When we start writing our first OpenGL ES 

game, though, we’ll have to follow those practices as best as we can to guarantee good 

performance. 

Let‘s add some more attributes to our triangle’s vertices, starting with color. 

NOTE: Very, very alert readers might have noticed that the triangle in Figure 7–7 is actually 
missing a pixel in the bottom-right corner. This may look like a typical off-by-one error, but it’s 
actually due to the way OpenGL ES rasterizes (draws the pixels of) the triangle. There’s a specific 

triangle rasterization rule that is responsible for that artifact. Worry not—we are mostly 
concerned with rendering 2D rectangles (composed of two triangles), where this effect will 

vanish. 

Specifying Per Vertex Color 
In the last example we set a global default color for all vertices we draw via glColor4f(). 

Sometimes we want to have more granular control (e.g., we want to set a color per 

vertex). OpenGL ES offers us this functionality, and it’s really easy to use. All we have to 

do is add RGBA float components to each vertex and tell OpenGL ES where it can find 

the color for each vertex, similar to how we told it where it can find the position for each 

vertex. Let’s start by adding the colors to each vertex: 

int VERTEX_SIZE = (2 + 4) * 4; 
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE); 
byteBuffer.order(ByteOrder.nativeOrder()); 
FloatBuffer vertices = byteBuffer.asFloatBuffer(); 
vertices.put( new float[] {   0.0f,   0.0f, 1, 0, 0, 1, 
                            319.0f,   0.0f, 0, 1, 0, 1, 
                            160.0f, 479.0f, 0, 0, 1, 1}); 
vertices.flip(); 

We first have to allocate a ByteBuffer for our three vertices. How big should that 

ByteBuffer be? We have two coordinates and four (RGBA) color components per vertex, 

so that’s six floats in total. Each float value takes up 4 bytes, so a single vertex uses 24 

bytes. We store this information in VERTEX_SIZE. When we call 

ByteBuffer.allocateDirect(), we just multiply VERTEX_SIZE�by the number of vertices 

we want to store in the ByteBuffer. The rest is pretty self-explanatory. We get a 

FloatBuffer view to our ByteBuffer and put() the vertices into the ByteBuffer. Each 

row of the float array holds the x- and y-coordinates, and the R, G, B, and A 

components of a vertex, in that order.  

If we want to render this, we have to tell OpenGL ES that our vertices not only have a 

position, but also a color attribute. We start off, as before, by calling 

glEnableClientState(): 

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
gl.glEnableClientState(GL10.GL_COLOR_ARRAY); 
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Now that OpenGL ES knows that it can expect position and color information for each 

vertex, we have to tell it where it can find that information: 

vertices.position(0); 
gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
vertices.position(2);             
gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 

We start of by setting the position of our FloatBuffer, which holds our vertices to 0. The 

position thus points to the x-coordinate of our first vertex in the buffer. Next we call 

glVertexPointer(). The only difference from the previous example is that we now also 

specify the vertex size (remember, it’s given in bytes). OpenGL ES will then start reading 

in vertex positions from the position in the buffer we told it to start from. For the second 

vertex position it will add VERTEX_SIZE bytes to the first position’s address, and so on.  

Next we set the position of the buffer to the R component of the first vertex and call 

glColorPointer(), which tells OpenGL ES where it can find the colors of our vertices. 

The first argument is the number of components per color. This is always four, as 

OpenGL ES demands an R, G, B, and A component per vertex from us. The second 

parameter specifies the type of each component. As with the vertex coordinates, we use 

GL10.GL_FLOAT again to indicate that each color component is a float in the range 

between 0 and 1. The third parameter is the stride between vertex colors. It’s of course 

the same as the stride between vertex positions. The final parameter is our vertices 

buffer again.  

Since we called vertices.position(2)�before the�glColorPointer() call, OpenGL ES 

knows that the first vertex color can be found starting from the third float in the buffer. If 

we wouldn’t have set the position of the buffer to 2, OpenGL ES would have started 

reading in the colors from position 0. That would have been bad, as that’s where the x-

coordinate of our first vertex is. Figure 7–8 shows where OpenGL ES will read our vertex 

attributes from, and how it jumps from one vertex to the next for each attribute. 

 

Figure 7–8. Our vertices FloatBuffer, start addresses for OpenGL ES to read position/color from, and stride to be 
used to jump to the next position/color. 
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To draw our triangle, we again call glDrawElements(), which tells OpenGL ES to draw a 

triangle using the first three vertices of our FloatBuffer: 

gl.glDrawElements(GL10.GL_TRIANGLES, 0, 3); 

Since we enabled the GL10.GL_VERTEX_ARRAY and GL10.GL_COLOR_ARRAY, OpenGL ES 

knows that it should use the attributes specified by glVertexPointer() and 

glColorPointer(). It will ignore the default color, as we provide our own per-vertex 

colors.  

NOTE: The way we just specified our vertices’ positions and colors is called interleaving. This 
means that we pack the attributes of a vertex in one continuous memory block. There’s another 
way we could have achieved this: noninterleaved vertex arrays. We’d have used two 
FloatBuffers, one for the positions and one for the colors. However, interleaving performs a 

lot better due to memory locality, so we won’t discuss noninterleaved vertex arrays here. 

Putting it all together into a new GLGame and Screen implementation should be a breeze 

by now. Listing 7–6 shows an excerpt from the file ColoredTriangleTest.java. I left out 

the boilerplate code. 

Listing 7–6. Excerpt from ColoredTriangleTest.java; Interleaving Position and Color Attributes 

class ColoredTriangleScreen extends Screen { 
    final int VERTEX_SIZE = (2 + 4) * 4; 
    GLGraphics glGraphics; 
    FloatBuffer vertices;         
 
    public ColoredTriangleScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame) game).getGLGraphics(); 
 
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE); 
        byteBuffer.order(ByteOrder.nativeOrder()); 
        vertices = byteBuffer.asFloatBuffer(); 
        vertices.put( new float[] {   0.0f,   0.0f, 1, 0, 0, 1, 
                                    319.0f,   0.0f, 0, 1, 0, 1, 
                                    160.0f, 479.0f, 0, 0, 1, 1}); 
        vertices.flip(); 
    } 
 
    @Override 
    public void present(float deltaTime) { 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, 320, 0, 480, 1, -1); 
         
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
        gl.glEnableClientState(GL10.GL_COLOR_ARRAY); 
         
        vertices.position(0); 
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        gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
        vertices.position(2);             
        gl.glColorPointer(4, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
         
        gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3); 
    } 

Cool, that still looks pretty straightforward. All we changed compared to the previous 

example is adding the four color components to each vertex in our FloatBuffer and 

enabling the GL10.GL_COLOR_ARRAY. The best thing about it is that any additional vertex 

attributes we add in the subsequent examples will work the same way. We just tell 

OpenGL ES to not use the default value for that specific attribute but instead look up the 

attributes in our FloatBuffer, starting at a specific position and moving from vertex to 

vertex by VERTEX_SIZE bytes. 

Now, we could also turn off the GL10.GL_COLOR_ARRAY so that OpenGL ES uses the 

default vertex color again, which we can specify via�glColor4f() as we did previously. 

For this we can call 

gl.glDisableClientState(GL10.GL_COLOR_ARRAY); 

OpenGL ES will just turn off the feature to read the colors from our FloatBuffer. If we 

already set a color pointer via glColorPointer(), OpenGL ES will remember the pointer, 

though. We just told it to not use it. 

To round this example out, let’s have a look at the output of the preceding program. 

Figure 7–9 shows a screenshot. 

 

Figure 7–9. Per-vertex colored triangle 
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Woah, this is pretty neat. We didn’t make any assumptions about how OpenGL ES will 

use the three colors we specified (red for the bottom-left vertex, green for the bottom-

right vertex, and blue for the top vertex). It turns out that it will interpolate the colors 

between the vertices for us. With this we can easily create nice gradients. However, 

colors alone will not make us happy for very long. We want to draw images with 

OpenGL ES. And that’s where so-called texture mapping comes into play. 

Texture Mapping: Wallpapering Made Easy 
When we wrote Mr. Nom we loaded some bitmaps and directly drew them to the 

framebuffer—no rotation involved, just a little bit of scaling, which is pretty easy to 

achieve. In OpenGL ES we are mostly concerned with triangles, which can have any 

orientation or scale we want them to have. So how can we render bitmaps with OpenGL 

ES? 

Easy, just load up the bitmap to OpenGL ES (and for that matter to the GPU, which has 

its own dedicated RAM), add a new attribute to each of our triangle’s vertices, and tell 

OpenGL ES to render our triangle and apply the bitmap (also known as texture in 

OpenGL ES speak) to the triangle. Let’s first look at what these new vertex attributes 

actually specify. 

Texture Coordinates 
To map a bitmap to a triangle we need to add so-called texture coordinates to each 

vertex of the triangle. What is a texture coordinate? It specifies a point within the texture 

(our uploaded bitmap) to be mapped to one of the triangle’s vertices. Texture 

coordinates are usually 2D. 

While we call our positional coordinates x, y, and z, texture coordinates are usually 

called u and v or s and t, depending on the circle of graphics programmers you are a 

part of. OpenGL ES calls them s and t, so that’s what we’ll stick to. If you read 

resources on the Web that use the u/v nomenclature, don’t get confused: it’s the same 

as s and t. So what does the coordinate system look like? Figure 7–10 shows Bob in the 

texture coordinate system after we uploaded him to OpenGL ES. 
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Figure 7–10. Bob, uploaded to OpenGL ES, shown in the texture coordinate system 

There are a couple of interesting things going on here. First of all, s equals the x-

coordinate in a standard coordinate system, and t is equal to the y-coordinate. The s-

axis points to the right, and the t-axis points downward. The origin of the coordinate 

system coincides with the top-left corner of Bob’s image. The bottom-right corner of the 

image maps to (1,1).  

So, what happened to pixel coordinates? It turns out that OpenGL ES doesn’t like them 

a lot. Instead, any image we upload, no matter its width and height in pixels, will be 

embedded into this coordinate system. The top-left corner of the image will always be at 

(0,0), the bottom-right corner will always be at (1,1)—even if, say, the width is twice as 

large as the height. We call these normalized coordinates, and they actually makes our 

lives easier at times. So how can we map Bob to our triangle? Easy, we just give each 

vertex of the triangle a texture coordinate pair in Bob’s coordinate system. Figure 7–11 

shows a few configurations. 

 

Figure 7–11. Three different triangles mapped to Bob. The names v1, v2, and v3 each specify a vertex of the 
triangle. 

We can map our triangle’s vertices to the texture coordinate system however we want. 

Note that the orientation of the triangle in the positional coordinate system does not 

have to be the same as in the texture coordinate system. The coordinate systems are 
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completely decoupled. So let’s see how we can add those texture coordinates to our 

vertices: 

Int VERTEX_SIZE = (2 + 2) * 4; 
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE); 
byteBuffer.order(ByteOrder.nativeOrder()); 
vertices = byteBuffer.asFloatBuffer(); 
vertices.put( new float[] {    0.0f,   0.0f, 0.0f, 1.0f, 
                             319.0f,   0.0f, 1.0f, 1.0f, 
                             160.0f, 479.0f, 0.5f, 0.0f}); 
vertices.flip();   

That was easy. All we have to do is to make sure that we have enough room in our 

buffer, and then append the texture coordinates to each vertex. The preceding code 

corresponds to the rightmost mapping in Figure 7–10. Note that our vertex positions are 

still given in the usual coordinate system we defined via our projection. If we wanted to, 

we could also add the color attributes to each vertex, as in the previous example. 

OpenGL ES would then mix the interpolated vertex colors with the colors from the pixels 

of the texture that the triangle maps to on the fly. Of course, we’d need to adjust the size 

of our buffer, as well as the VERTEX_SIZE constant, accordingly (e.g., (2 + 4 + 2) � 4). To 

tell OpenGL ES that our vertices have texture coordinates, we again use 

glEnableClientState()�together with the glTexCoordPointer()method, which behaves 

exactly the same as glVertexPointer() and glColorPointer()�(can you see a pattern 

here?).  

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
 
vertices.position(0); 
gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
vertices.position(2); 
gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 

Nice, that looks very familiar. So, the remaining question is how we can upload the 

texture to OpenGL ES and tell it to map it to our triangle. Naturally that’s a little bit more 

involved. But fear not, it’s still pretty easy. 

Uploading Bitmaps 
First we have to load our bitmap. We already know how to do that on Android: 

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgb888.png")); 

Here we load Bob in an RGB888 configuration. The next thing we need to do is tell 

OpenGL ES that we want to create a new texture. OpenGL ES has the notion of objects 

for a couple of things, such as textures. To create a texture object, we can call the 

following method: 

GL10.glGenTextures(int numTextures, int[] ids, int offset) 

The first parameter specifies how many texture objects we want to create. Usually we 

only want to create one. The next parameter is an int array to which OpenGL ES will 
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write the IDs of the generated texture objects. The final parameter just tells OpenGL ES 

where in the array it should start writing the IDs to.  

You already learned that OpenGL ES is a C API. Naturally it can’t return a Java object to 

us for a new texture. Instead it gives us an ID, or handle, to that texture. Each time we 

want OpenGL ES to do something with that specific texture, we specify its ID. So here’s 

a more complete code snippet showing how to generate a single new texture object and 

get its ID: 

int textureIds[] = new int[1]; 
gl.glGenTextures(1, textureIds, 0); 
int textureId = textureIds[0]; 

The texture object is still empty, which means it doesn’t have any image data yet. Let’s 

upload our bitmap. For this we have to first bind the texture. To bind something in 

OpenGL ES means that we want OpenGL ES to use that specific object for all 

subsequent calls until we change the binding again. Here we want to bind a texture 

object for which the method glBindTexture() is available. Once we have bound a 

texture, we can manipulate its attributes, such as its image data. Here’s how we can 

upload Bob to our new texture object: 

gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);     
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); 

First we bind the texture object with glBindTexture(). The first parameter specifies the 

type of texture we want to bind. Our image of Bob is 2D, so we use GL10.GL_TEXTURE_2D. 

There are other texture types, but we don’t have a need for them in this book. We’ll 

always specify�GL10.GL_TEXTURE_2D for the methods that need to know the texture type 

we want to work with. The second parameter of that method is our texture ID. Once the 

method returns, all subsequent methods that work with a 2D texture will work with our 

texture object.  

The next method call invokes a method of the GLUtils class, a class provided by the 

Android framework. Usually the task of uploading a texture image is pretty involved; this 

little helper class eases the pain for us a lot. All we need to do is specify the texture type 

(GL10.GL_TEXTURE_2D) the mip mapping level (we’ll look at that in Chapter 11; it defaults 

to zero), the bitmap we want to upload, and another argument, which has to be set to 

zero in all cases. After this call our texture object has image data attached to it. 

NOTE: The texture object and its image data are actually held in video RAM, not in our usual 
RAM. The texture object (and the image data) will get lost when the OpenGL ES context is 
destroyed (e.g., when our activity is paused and resumed). This means that we have to re-create 

the texture object and reupload our image data every time the OpenGL ES context is (re)-created. 

If we don’t do this, all we’ll see is a white triangle. 
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Texture Filtering 
There’s one last thing we need to define before we can use the texture object. It has to 

do with the fact that our triangle might take up more or fewer pixels on the screen than 

there are pixels in the mapped region of the texture. For example, the image of Bob in 

Figure 7–10 has a size of 128�128 pixels. Our triangle maps to half that image, so uses 

(128�128) / 2 pixels from the texture (which are also called texels). When we draw the 

triangle to the screen with the coordinates we defined in the preceding snippet, it will 

take up (320�480) / 2 pixels. That’s a lot more pixels we use on the screen than we fetch 

from the texture map. It can of course also be the other way around: we use fewer pixels 

on the screen than from the mapped region of the texture. The first case is called 

magnification, and the second minification. For each case we need to tell OpenGL ES 

how it should upscale or downscale the texture. The up- and downscaling are also 

referd to as minification and magnification filters in OpenGL ES lingo. These filters are 

attributes of our texture object, much like the image data itself. To set them we have to 

first make sure that the texture object is bound via a call to glBindTexture(). If that’s the 

case, we can set them like this: 

gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST); 
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_NEAREST); 

Both times we use the method GL10.glTexParameterf(), which sets an attribute of the 

texture. In the first call we specify the minification filter; in the second we call the 

magnification filter. The first parameter to that method is the texture type, which defaults 

to GL10.GL_TEXTURE_2D for us. The second argument tells the method which attributes 

we want to set—in our case, the GL10.GL_TEXTURE_MIN_FILTER and the 

GL10.GL_TEXTURE_MAG_FILTER. The last parameter specifies the type of filter that should 

be used. We have two options here: GL10.GL_NEAREST and GL10.GL_LINEAR.  

The first filter type will always choose the nearest texel in the texture map to be mapped 

to a pixel. The second filter type will sample the four nearest texels for a pixel of the 

triangle and average them to arrive at the final color. We use the first type of filter if we 

want to have a pixelated look and the second if we want a smoothed look. Figure 7–12 

shows the difference between the two types of filters. 
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Figure 7–12. GL10.GL_NEAREST vs. GL10.GL_LINEAR. The first filter type makes for a pixelated look; the second 
one smoothes things out a little. 

Our texture object is now fully defined: we created an ID, set the image data, and 

specified the filters to be used in case our rendering is not pixel perfect. It is a common 

practice to unbind the texture once we are done defining it. We should also recycle the 

Bitmap we loaded, as we no longer need it. Why waste memory? That can be achieved 

with the following snippet: 

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0); 
bitmap.recycle(); 

0 is a special ID that tells OpenGL ES that it should unbind the currently bound object. If 

we want to use the texture for drawing our triangles, we need to bind it again, of course. 

Disposing of Textures 
It is also useful to know how to delete a texture object from video RAM if we no longer 

need it (like we use Bitmap.recycle() to release the memory of a bitmap). This can be 

achieved with the following snippet: 

gl.glBindTexture(GL10.GL_TEXTURE_2D, 0); 
int textureIds = { textureid }; 
gl.glDeleteTextures(1, textureIds, 0); 

Note that we first have to make sure that the texture object is not currently bound before 

we can delete it. The rest is similar to how we used�glGenTextures()�to create a texture 

object.  
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A Helpful Snippet 
For reference, here’s the complete snippet to create a texture object, load image data, 

and set the filters on Android: 

Bitmap bitmap = BitmapFactory.decodeStream(game.getFileIO().readAsset("bobrgb888.png")); 
int textureIds[] = new int[1]; 
gl.glGenTextures(1, textureIds, 0); 
int textureId = textureIds[0]; 
gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);     
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); 
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST); 
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_NEAREST);                 
gl.glBindTexture(GL10.GL_TEXTURE_2D, 0); 
bitmap.recycle(); 

Not so bad after all. The most important part of all this is to actually recycle the Bitmap 

once we are done. Otherwise we’d waste memory. Our image data is safely stored in 

video RAM in the texture object (until the context is lost and we need to reload it again). 

Enabling Texturing 
There’s one more thing before we can draw our triangle with the texture. We need to 

bind the texture, and we need to tell OpenGL ES that it should actually apply the texture 

to all triangles we render. Whether texture mapping is performed or not is another state 

of OpenGL ES, which we can enable and disable with the following methods: 

GL10.glEnable(GL10.GL_TEXTURE_2D); 
GL10.glDisable(GL10.GL_TEXTURE_2D); 

These look vaguely familiar. When we enabled/disabled vertex attributes in the previous 

sections, we used glEnableClientState()/glDisableClientState(). As I said earlier, 

those are relics from the infancy of OpenGL itself. There’s a reason why those are not 

merged with glEnable()/glDisable(), but we won’t go into that here. Just remember to 

use glEnableClientState()/glDisableClientState() to enable and disable vertex 

attributes, and use glEnable()/glDisable() for any other states of OpenGL, such as 

texturing.  

Putting It Together 
With that out of our way, we can now write a small example that puts all of this together. 

Listing 7–7 shows an excerpt of the�TexturedTriangleTest.java source file, listing only 

the relevant parts of the TexturedTriangleScreen class contained in it.  

Listing 7–7. Excerpt from TexturedTriangleTest.java; Texturing a Triangle 

class TexturedTriangleScreen extends Screen { 
    final int VERTEX_SIZE = (2 + 2) * 4;         
    GLGraphics glGraphics; 
    FloatBuffer vertices; 
    int textureId; 
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    public TexturedTriangleScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame) game).getGLGraphics(); 
 
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(3 * VERTEX_SIZE); 
        byteBuffer.order(ByteOrder.nativeOrder()); 
        vertices = byteBuffer.asFloatBuffer(); 
        vertices.put( new float[] {    0.0f,   0.0f, 0.0f, 1.0f, 
                                     319.0f,   0.0f, 1.0f, 1.0f, 
                                     160.0f, 479.0f, 0.5f, 0.0f}); 
        vertices.flip();             
        textureId = loadTexture("bobrgb888.png"); 
    } 
     
    public int loadTexture(String fileName) { 
        try { 
            Bitmap bitmap = 
BitmapFactory.decodeStream(game.getFileIO().readAsset(fileName)); 
            GL10 gl = glGraphics.getGL(); 
            int textureIds[] = new int[1]; 
            gl.glGenTextures(1, textureIds, 0); 
            int textureId = textureIds[0]; 
            gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);     
            GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); 
            gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, 
GL10.GL_NEAREST); 
            gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, 
GL10.GL_NEAREST);                 
            gl.glBindTexture(GL10.GL_TEXTURE_2D, 0); 
            bitmap.recycle(); 
            return textureId; 
        } catch(IOException e) { 
            Log.d("TexturedTriangleTest", "couldn't load asset 'bobrgb888.png'!"); 
            throw new RuntimeException("couldn't load asset '" + fileName + "'"); 
        } 
    } 
 
    @Override 
    public void present(float deltaTime) { 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, 320, 0, 480, 1, -1); 
 
        gl.glEnable(GL10.GL_TEXTURE_2D); 
        gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId); 
         
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
        gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
         
        vertices.position(0); 
        gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
        vertices.position(2); 
        gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
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        gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 3); 
    } 

I took the freedom to put the texture loading into a method called�loadTexture(), which 

simply takes the filename of a bitmap to be loaded. The method returns the texture 

object ID generated by OpenGL ES, which we’ll use in the present() method to bind the 

texture.  

The definition of our triangle shouldn’t be a big surprise; we just added texture 

coordinates to each vertex.  

The present() method does what it always does: it clears the screen and sets the 

projection matrix. Next we enable texture mapping via a call to glEnable() and bind our 

texture object. The rest is just what we did before: enabling the vertex attributes we 

want to use, telling OpenGL ES where it can find them and what strides to use, and 

finally drawing the triangle with a call to glDrawArrays(). Figure 7–13 shows the output 

of the preceding code. 

 

Figure 7–13. Texture mapping Bob onto our triangle 

There’s one last thing I haven’t mentioned yet, and it’s of great importance:  

All bitmaps we load must have a width and height that is a power of two. 

Stick to it or else things will explode.  
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So what does this actually mean? The image of Bob that we used in our example has a 

size of 128�128 pixels. The value 128 is 2 to the power of 7 (2�2�2�2�2�2�2). Other 

valid image sizes would be 2�8, 32�16, 128�256, and so on. There’s also a limit to how 

big our images can be. Sadly, it varies depending on the hardware our application is 

running on. The OpenGL ES 1.x standard doesn’t specify a minimally supported texture 

size to my knowledge. However, from my experience it seems that 512�512-pixel 

textures work on all current Android devices (and most likely will work on all future 

devices as well). I’d even go so far to say that 1024�1024 is OK as well.  

Another issue that we have pretty much ignored so far is the color depth of our textures. 

Luckily the method GLUtils.texImage2D(), which we used to upload our image data to 

the GPU, handles this for us pretty well. OpenGL ES can cope with color depths like 

RGBA8888, RGB565, and so on. We should always strive to use the lowest possible 

color depth to decrease bandwidth. For this we can employ the�BitmapFactory.Options 

class, as in previous chapters, to load a RGB888 Bitmap to a RGB565 Bitmap in 

memory, for example. Once we have loaded our Bitmap instance with the color depth we 

want it to have, GLUtils.texImage2D() takes over and makes sure that OpenGL ES gets 

the image data in the correct format. Of course, you should always check whether the 

reduction in color depth has a negative impact on the visual fidelity of your game. 

A Texture Class 
To reduce the code needed for subsequent examples, I wrote a little helper class called 

Texture. It will load a bitmap from an asset and create a texture object from it. It also has a 

few convenience methods to bind the texture and dispose of it. Listing 7–8 shows the code. 

Listing 7–8. Texture.java, a Little OpenGL ES Texture Class 

package com.badlogic.androidgames.framework.gl; 
 
import java.io.IOException; 
import java.io.InputStream; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import android.graphics.Bitmap; 
import android.graphics.BitmapFactory; 
import android.opengl.GLUtils; 
 
import com.badlogic.androidgames.framework.FileIO; 
import com.badlogic.androidgames.framework.impl.GLGame; 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
 
public class Texture { 
    GLGraphics glGraphics; 
    FileIO fileIO; 
    String fileName; 
    int textureId; 
    int minFilter; 
    int magFilter;     
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    public Texture(GLGame glGame, String fileName) { 
        this.glGraphics = glGame.getGLGraphics(); 
        this.fileIO = glGame.getFileIO(); 
        this.fileName = fileName; 
        load(); 
    } 
     
    private void load() { 
        GL10 gl = glGraphics.getGL(); 
        int[] textureIds = new int[1]; 
        gl.glGenTextures(1, textureIds, 0); 
        textureId = textureIds[0]; 
         
        InputStream in = null; 
        try { 
            in = fileIO.readAsset(fileName); 
            Bitmap bitmap = BitmapFactory.decodeStream(in); 
            gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId); 
            GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); 
            setFilters(GL10.GL_NEAREST, GL10.GL_NEAREST);             
            gl.glBindTexture(GL10.GL_TEXTURE_2D, 0); 
        } catch(IOException e) { 
            throw new RuntimeException("Couldn't load texture '" + fileName +"'", e); 
        } finally { 
            if(in != null) 
                try { in.close(); } catch (IOException e) { } 
        } 
    } 
     
    public void reload() { 
        load(); 
        bind(); 
        setFilters(minFilter, magFilter);         
        glGraphics.getGL().glBindTexture(GL10.GL_TEXTURE_2D, 0); 
    } 
     
    public void setFilters(int minFilter, int magFilter) { 
        this.minFilter = minFilter; 
        this.magFilter = magFilter; 
        GL10 gl = glGraphics.getGL(); 
        gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, minFilter); 
        gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, magFilter); 
    }     
     
    public void bind() { 
        GL10 gl = glGraphics.getGL(); 
        gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId); 
    } 
     
    public void dispose() { 
        GL10 gl = glGraphics.getGL(); 
        gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId); 
        int[] textureIds = { textureId }; 
        gl.glDeleteTextures(1, textureIds, 0); 
    } 
} 
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The only interesting thing about this class is the reload() method, which we can use 

when the OpenGL ES context is lost. Also note that the setFilters()�method will only 

work if the Texture is actually bound. Otherwise it will set the filters of the currently 

bound texture. 

We could also write a little helper method for our vertices buffer. But before we can do 

this we have to discuss one more thing: indexed vertices. 

Indexed Vertices: Because Reuse Is Good for You 
Up until this point, we have always defined lists of triangles, where each triangle has its 

own set of vertices. We have actually only ever drawn a single triangle, but adding more 

would not have been a big deal.  

There are cases, however, where two or more triangles can share some vertices. Let’s 

think about how we’d render a rectangle with our current knowledge. We’d simply define 

two triangles that would have two vertices with the same positions, colors, and texture 

coordinates. We can do better. Figure 7–14 shows the old way and the new way of 

rendering a rectangle. 

 

Figure 7–14. Rendering a rectangle as two triangles with six vertices (left), and rendering it with four vertices 
(right) 

Instead of duplicating vertex v1 and v2 with vertex v4 and v6, we only define these 

vertices once. We still render two triangles in this case, but we tell OpenGL ES explicitly 

which vertices to use for each triangle (e.g., use v1, v2, and v3 for the first triangle and 

v3, v4, and v1 for the second one). Which vertices to use for each triangle is defined via 

indices into our vertices array. The first vertex in our array has index 0, the second vertex 

has index 1, and so on. For the preceding rectangle, we’d have a list of indices like this: 

short[] indices = { 0, 1, 2, 
                    2, 3, 0  }; 

Incidentally, OpenGL ES wants us to specify the indices as shorts (which is not entirely 

correct; we could also use bytes). However, as with the vertex data, we can’t just pass a 

short array to OpenGL ES. It wants a direct ShortBuffer. We already know how to 

handle that: 

ByteBuffer byteBuffer = ByteBuffer.allocate(indices.length * 2); 
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byteBuffer.order(ByteOrder.nativeOrder()); 
ShortBuffer shortBuffer = byteBuffer.asShortBuffer(); 
shortBuffer.put(indices); 
shortBuffer.flip(); 

A short needs 2 bytes of memory, so we allocate indices.length � 2 bytes for our 

ShortBuffer. We set the order to native again and get a ShortBuffer view so we can 

handle the underlying ByteBuffer more easily. All that’s left is putting our indices into the 

ShortBuffer and flipping it so the limit and position are set correctly.  

If we wanted to draw Bob as a rectangle with two indexed triangles, we could define our 

vertices like this: 

ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX_SIZE); 
byteBuffer.order(ByteOrder.nativeOrder()); 
vertices = byteBuffer.asFloatBuffer(); 
vertices.put(new float[] {  100.0f, 100.0f, 0.0f, 1.0f, 
                            228.0f, 100.0f, 1.0f, 1.0f, 
                            228.0f, 229.0f, 1.0f, 0.0f, 
                            100.0f, 228.0f, 0.0f, 0.0f }); 
vertices.flip(); 

The order of the vertices is exactly the same as in the right part of Figure 7–13. We tell 

OpenGL ES that we have positions and texture coordinates for our vertices and where it 

can find these vertex attributes via the usual calls to glEnableClientState() and 

glVertexPointer()/glTexCoordPointer(). The only thing that is different is the method 

we call to actually draw the two triangles: 

gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT, indices); 

It is very similar to glDrawArrays(), actually. The first parameter specifies the type of 

primitive we want to render—in this case a list of triangles. The next parameter specifies 

how many vertices we want to use, which equals six in our case. The third parameter 

specifies what type the indices have—we specify unsigned short. Note that Java has no 

unsigned types, though. However, given the one-complement encoding of signed 

numbers, it’s OK to use a ShortBuffer that actually holds signed shorts. The last 

parameter is our ShortBuffer holding the six indices. 

So, what will OpenGL ES do? It knows that we want to render triangles. It knows that we 

want to render two triangles, as we specified six vertices to be rendered. But instead of 

fetching six vertices sequentially from the vertices array, it goes sequentially through the 

index buffer and uses the vertices indexed by it.  

Putting It Together 
When we put it all together, we arrive at the code in Listing 7–9. 

Listing 7–9. Excerpt from IndexedTest.java; Drawing Two Indexed Triangles 

class IndexedScreen extends Screen { 
    final int VERTEX_SIZE = (2 + 2) * 4; 
    GLGraphics glGraphics; 
    FloatBuffer vertices;    
    ShortBuffer indices; 
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    Texture texture; 
 
    public IndexedScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame) game).getGLGraphics(); 
                     
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4 * VERTEX_SIZE); 
        byteBuffer.order(ByteOrder.nativeOrder()); 
        vertices = byteBuffer.asFloatBuffer(); 
        vertices.put(new float[] {  100.0f, 100.0f, 0.0f, 1.0f, 
                                    228.0f, 100.0f, 1.0f, 1.0f, 
                                    228.0f, 228.0f, 1.0f, 0.0f, 
                                    100.0f, 228.0f, 0.0f, 0.0f }); 
        vertices.flip(); 
         
        byteBuffer = ByteBuffer.allocateDirect(6 * 2); 
        byteBuffer.order(ByteOrder.nativeOrder()); 
        indices = byteBuffer.asShortBuffer(); 
        indices.put(new short[] { 0, 1, 2, 
                                  2, 3, 0 }); 
        indices.flip(); 
         
        texture = new Texture((GLGame)game, "bobrgb888.png"); 
    }          
 
    @Override 
    public void present(float deltaTime) { 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());             
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, 320, 0, 480, 1, -1); 
 
        gl.glEnable(GL10.GL_TEXTURE_2D); 
        texture.bind(); 
         
        gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);             
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
         
        vertices.position(0); 
        gl.glVertexPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices);                                    
        vertices.position(2); 
        gl.glTexCoordPointer(2, GL10.GL_FLOAT, VERTEX_SIZE, vertices); 
         
        gl.glDrawElements(GL10.GL_TRIANGLES, 6, GL10.GL_UNSIGNED_SHORT, indices); 
    } 

Note the use of our awesome Texture class, which brings down the code size 

considerably. Figure 7–15 shows the output, and Bob in all his glory. 
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Figure 7–15. Bob, indexed 

Now, this is pretty close already to how we worked with Canvas. We have a lot more 

flexibility as well, since we are not limited to axis-aligned rectangles anymore.  

This example has covered all we need to know about vertices for now. We saw that 

every vertex must have at least a position, and can have additional attributes, such as a 

color given as four RGBA float values and texture coordinates. We also saw that we can 

reuse vertices via indexing in case we want to avoid duplication. This gives us a little 

performance boost, since OpenGL ES does not have to multiply more vertices by the 

projection and model-view matrices than absolutely necessary (which is again not 

entirely correct, but let’s stick to this interpretation).  

A Vertices Class 
Let’s make our code easier to write by creating a Vertices class that can hold a 

maximum number of vertices and, optionally, indices to be used for rendering. It should 

also take care of enabling all the states needed for rendering, as well as cleaning up the 

states after rendering has finished, so that other code can rely on a clean set of OpenGL 

ES states. Listing 7–10 shows our easy-to-use Vertices class.  

Listing 7–10. Vertices.java; Encapsulating (Indexed) Vertices 

package com.badlogic.androidgames.framework.gl; 
 
import java.nio.ByteBuffer; 
import java.nio.ByteOrder; 
import java.nio.FloatBuffer; 



CHAPTER 7:  OpenGL ES: A Gentle Introduction 319 

import java.nio.ShortBuffer; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
 
public class Vertices { 
    final GLGraphics glGraphics; 
    final boolean hasColor; 
    final boolean hasTexCoords; 
    final int vertexSize; 
    final FloatBuffer vertices; 
    final ShortBuffer indices; 

The Vertices class has a reference to the GLGraphics instance, so we can get ahold of 

the GL10 instance when we need it. We also store whether the vertices have colors and 

texture coordinates. This gives us great flexibility, as we can choose the minimal set of 

attributes we need for rendering. We also store a FloatBuffer that holds our vertices 

and a ShortBuffer that holds the optional indices. 

    public Vertices(GLGraphics glGraphics, int maxVertices, int maxIndices, boolean 
hasColor, boolean hasTexCoords) { 
        this.glGraphics = glGraphics; 
        this.hasColor = hasColor; 
        this.hasTexCoords = hasTexCoords; 
        this.vertexSize = (2 + (hasColor?4:0) + (hasTexCoords?2:0)) * 4; 
         
        ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize); 
        buffer.order(ByteOrder.nativeOrder()); 
        vertices = buffer.asFloatBuffer(); 
         
        if(maxIndices > 0) { 
            buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8); 
            buffer.order(ByteOrder.nativeOrder()); 
            indices = buffer.asShortBuffer(); 
        } else { 
            indices = null; 
        }             
    } 

In the constructor, we specify how many vertices and indices our Vertices instance can 

hold maximally, as well as whether the vertices have colors or texture coordinates. 

Inside the constructor, we then set the members accordingly, and instantiate the 

buffers. Note that the ShortBuffer will be set to null if maxIndices is zero. Our rendering 

will be performed nonindexed in that case. 

    public void setVertices(float[] vertices, int offset, int length) { 
        this.vertices.clear(); 
        this.vertices.put(vertices, offset, length); 
        this.vertices.flip(); 
    } 
     
    public void setIndices(short[] indices, int offset, int length) { 
        this.indices.clear(); 
        this.indices.put(indices, offset, length); 
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        this.indices.flip(); 
    } 

Next up are the setVertices() and setIndices() methods. The latter will throw a 

NullPointerException in case the Vertices instance does not store indices. All we do is 

clear the buffers and copy the contents of the arrays. 

    public void draw(int primitiveType, int offset, int numVertices) { 
        GL10 gl = glGraphics.getGL(); 
         
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
        vertices.position(0); 
        gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
         
        if(hasColor) { 
            gl.glEnableClientState(GL10.GL_COLOR_ARRAY); 
            vertices.position(2); 
            gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices); 
        } 
         
        if(hasTexCoords) { 
            gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
            vertices.position(hasColor?6:2); 
            gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
        } 
         
        if(indices!=null) { 
            indices.position(offset); 
            gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, 
indices); 
        } else { 
            gl.glDrawArrays(primitiveType, offset, numVertices); 
        } 
         
        if(hasTexCoords) 
            gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
     
        if(hasColor) 
            gl.glDisableClientState(GL10.GL_COLOR_ARRAY); 
    } 
} 

The final method of the Vertices class is draw(). It takes the type of the primitive (e.g., 

GL10.GL_TRIANGLES), the offset into the vertices buffer (or the indices buffer if we use 

indices), and the number of vertices to use for rendering. Depending on whether the 

vertices have colors and texture coordinates, we enable the relevant OpenGL ES states 

and tell OpenGL ES where to find the data. We do the same for the vertex positions, of 

course, which are always needed. Depending on whether indices are used or not, we 

either call glDrawElements() or glDrawArrays() with the parameters passed to the 

method. Note that the offset parameter can also be used in case of indexed rendering: 

we simply set the position of the indices buffer accordingly so that OpenGL ES starts 

reading the indices from that offset instead of the first index of the indices buffer. The 

last thing we do in the draw() method is clean up the OpenGL ES state a little. We call 

glDisableClientState() with either GL10.GL_COLOR_ARRAY or 
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GL10.GL_TEXTURE_COORD_ARRAY in case our vertices have these attributes. We need to do 

this, as another instance of Vertices might not use those attributes. If we rendered that 

other Vertices instance, OpenGL ES would still look for colors and/or texture 

coordinates.  

We could replace all the tedious code in the constructor of our preceding example with 

the following snippet: 

Vertices vertices = new Vertices(glGraphics, 4, 6, false, true); 
vertices.setVertices(new float[] { 100.0f, 100.0f, 0.0f, 1.0f, 
                                   228.0f, 100.0f, 1.0f, 1.0f, 
                                   228.0f, 228.0f, 1.0f, 0.0f, 
                                   100.0f, 228.0f, 0.0f, 0.0f }, 0, 16); 
vertices.setIndices(new short[] { 0, 1, 2, 2, 3, 0 }, 0, 6); 

Likewise, we could replace all the calls for setting up our vertex attribute arrays and 

rendering with a single call to the following: 

vertices.draw(GL10.GL_TRIANGLES, 0, 6); 

Together with our Texture class we have a pretty nice basis for all our 2D OpenGL ES 

rendering now. One of the things we are still missing to be able to completely reproduce 

all our Canvas rendering abilities is, though, blending. Let’s have a look at that. 

Alpha Blending: I Can See Through You 
Alpha blending in OpenGL ES is pretty easy to enable. We only need two method calls: 

gl.glEnable(GL10.GL_BLEND); 
gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); 

The first method call should be familiar: it just tells OpenGL ES that it should apply alpha 

blending to all triangles we render from this point on. The second method is a little bit 

more involved. It specifies how the source and destination color should be combined. If 

you remember what we discussed in Chapter 3, the way a source color and a 

destination color are combined is governed by a simple blending equation. The method 

glBlendFunc() just tells OpenGL ES which kind of equation to use. The preceding 

parameters specify that we want the source color to be mixed with the destination color 

exactly as specified in the blending equation in Chapter 3. This is equal to how the 

Canvas blended Bitmaps for us.  

Blending in OpenGL ES is pretty powerful and complex, and there’s a lot more to it. For 

our purposes, we can ignore all those details, though, and just use the preceding 

blending function whenever we want to blend our triangles with the framebuffer—the 

same way we blended Bitmaps with the Canvas. 

The second question is where the source and destination colors come from. The latter is 

easy to explain: it’s the color of the pixel in the framebuffer we are going to overwrite 

with the triangle we draw. The source color is actually a combination of two colors: 

The vertex color: This is the color we either specify via glColor4f() for all vertices or 

on a per-vertex basis by adding a color attribute to each vertex.  
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The texel color: As mentioned before, a texel is a pixel from a texture. When our 

triangle is rendered with a texture mapped to it, OpenGL ES will mix the texel colors 

with the vertex colors for each pixel of a triangle. 

So if our triangle is not texture mapped, the source color for blending is equal to the 

vertex color. If the triangle is texture mapped, the source color for each of the triangle’s 

pixels is a mixture of the vertex color and the texel color. We could specify how the 

vertex and texel colors are combined by using the glTexEnv() method. The default is to 

modulate the vertex color by the texel color, which basically means that the two colors 

are multiplied with each other component-wise (vertex r � texel r, and so on). For all our 

use cases in this book, this is exactly what we want, so we won’t go into glTexEnv(). 

There are also some very specialized cases where you might want to change how the 

vertex and texel colors are combined. As with glBlendFunc(), we’ll ignore the details 

and just use the default.  

When we load a texture image that doesn’t have an alpha channel, OpenGL ES will 

automatically assume an alpha value of 1 for each pixel. If we load an image in 

RGBA8888 format, OpenGL ES will happily use the supplied alpha values for blending.  

For vertex colors we always have to specify an alpha component, either by using 

glColor4f(), where the last argument is the alpha value, or by specifying the four 

components per vertex, where again the last component is the alpha value.  

Let’s put this into practice with a little example. We want to draw�Bob twice: once by 

using the image bobrgb888.png, which does not have an alpha channel per pixel, and a 

second time by using the image bobargb8888.png, which has alpha information. Note 

that the PNG image actually stores the pixels in ARGB8888 format instead of 

RGBA8888. Luckily the GLUtils.texImage2D() method we use to upload the image data 

for a texture will do the conversion for us automatically. Listing 7–11 shows the code of 

our little experiment, using the Texture and Vertices classes. 

Listing 7–11. Excerpt from BlendingTest.java; Blending in Action 

class BlendingScreen extends Screen { 
    GLGraphics glGraphics; 
    Vertices vertices; 
    Texture textureRgb; 
    Texture textureRgba; 
     
    public BlendingScreen(Game game) { 
        super(game); 
        glGraphics = ((GLGame)game).getGLGraphics(); 
         
        textureRgb = new Texture((GLGame)game, "bobrgb888.png"); 
        textureRgba = new Texture((GLGame)game, "bobargb8888.png"); 
         
        vertices = new Vertices(glGraphics, 8, 12, true, true); 
        float[] rects = new float[] { 
                100, 100, 1, 1, 1, 0.5f, 0, 1, 
                228, 100, 1, 1, 1, 0.5f, 1, 1, 
                228, 228, 1, 1, 1, 0.5f, 1, 0, 
                100, 228, 1, 1, 1, 0.5f, 0, 0, 
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                100, 300, 1, 1, 1, 1, 0, 1, 
                228, 300, 1, 1, 1, 1, 1, 1, 
                228, 428, 1, 1, 1, 1, 1, 0, 
                100, 428, 1, 1, 1, 1, 0, 0                     
        }; 
        vertices.setVertices(rects, 0, rects.length); 
        vertices.setIndices(new short[] {0, 1, 2, 2, 3, 0, 
                                         4, 5, 6, 6, 7, 4 }, 0, 12);                         
    } 

Our little BlendingScreen implementation holds a single Vertices instance where we’ll 

store the two rectangles, as well as two Texture instances—one holding the RGBA8888 

image of Bob and the other one storing the RGB888 version of Bob. In the constructor 

we load both textures from the files bobrgb888.png and bobargb8888.png, and rely on the 

Texture class and GLUtils.texImag2D() to convert the ARGB8888 PNG to RGBA8888, 

as needed by OpenGL ES. Next up, we define our vertices and indices. The first 

rectangle, consisting of four vertices, maps to the RGB888 texture of Bob. The second 

rectangle maps to the RGBA8888 version of Bob and is rendered 200 units above the 

RGB888 Bob rectangle. Note that the vertices of the first rectangle all have the color 

(1,1,1,0.5f) while the vertices of the second rectangle have the color (1,1,1,1). 

    @Override 
    public void present(float deltaTime) { 
        GL10 gl = glGraphics.getGL(); 
        gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
        gl.glClearColor(1,0,0,1); 
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
        gl.glMatrixMode(GL10.GL_PROJECTION); 
        gl.glLoadIdentity(); 
        gl.glOrthof(0, 320, 0, 480, 1, -1); 
         
        gl.glEnable(GL10.GL_BLEND); 
        gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); 
         
        gl.glEnable(GL10.GL_TEXTURE_2D); 
        textureRgb.bind(); 
        vertices.draw(GL10.GL_TRIANGLES, 0, 6 ); 
         
        textureRgba.bind(); 
        vertices.draw(GL10.GL_TRIANGLES, 6, 6 ); 
    } 

In our present()�method we clear the screen with red and set the projection matrix, as 

we are used to doing. Next we enable alpha blending and set the correct blend 

equation. Finally we enable texture mapping and render the two rectangles. The first 

rectangle is rendered with the RGB888 texture bound, and the second rectangle is 

rendered with the RGBA8888 texture bound. We store both rectangles in the same 

Vertices instance and thus use offsets with the vertices.draw() methods. Figure 7–16 

shows the output of this little gem. 
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Figure 7–16. Bob, vertex color blended (bottom) and texture blended (top) 

In the case of RGB888 Bob, the blending is performed via the alpha values in the per-

vertex colors. Since we set those to 0.5f, Bob is 50 percent translucent.  

In the case of RGBA8888 Bob, the per-vertex colors all have an alpha value of 1. 

However, since the background pixels of that texture have alpha values of 0, and since 

the vertex colors and the texel colors are modulated, the background of this version of 

Bob disappears. If we’d have set the per-vertex colors’ alpha values to 0.5f as well, then 

Bob himself would also have been 50 percent as translucent as his clone in the bottom 

of the screen. Figure 7–17 shows what that would have looked like. 

 

Figure 7–17. An alternative version of RGBA8888 Bob using per-vertex alpha of 0.5f (top of the screen) 
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And that’s basically all we need to know about blending with OpenGL ES in 2D.  

However, there is one more very important thing I’d like to point out: Blending is 
expensive! Seriously, don’t overuse it. Current mobile GPUs are not all that good at 

blending massive amounts of pixels. You should only use blending if absolutely 

necessary.  

More Primitives: Points, Lines, Strips, and Fans 
When I told you that OpenGL ES was a big, nasty triangle-rendering machine, I was not 

being 100 percent honest. In fact, OpenGL ES can also render points and lines. Best of 

all: these are also defined via vertices, and thus all of the above also applies to them 

(texturing, per-vertex colors, etc.). All we need to do to render these primitives is use 

something other than GL10.GL_TRIANGLES when we call 

glDrawArrays()/glDrawElements(). We can also perform indexed rendering with these 

primitives, although that’s a bit redundant (in the case of points at least). Figure 7–18 

shows a list of all the primitive types OpenGL ES offers us. 

 

Figure 7–18. All the primitives OpenGL ES can render 

Let’s go through all of these primitives really quickly: 

Point: With a point, each vertex is its own primitive. 

Line: A line is made up of two vertices. As with triangles, we can just have 2 � n 

vertices to define n lines. 

Line strip: All the vertices are interpreted as belonging to one long line. 

Line loop: This is similar to a line strip, with the difference that OpenGL ES will 

automatically draw an additional line from the last vertex to the first vertex. 

Triangle: This we already know. Each triangle is made up of three vertices. 
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Triangle strip: Instead of specifying three vertices, we just specify number of 
triangles + 1 vertices. OpenGL ES will then construct the first triangle from vertices 

(v1,v2,v3), the next triangle from vertices (v2,v3,v4), and so on.  

Triangle fan: This has one base vertex (v1) that is shared by all triangles. The first 

triangle will be (v1,v2,v3), the next triangle (v1,v3,v4), and so on.  

Triangle strips and fans are a little bit less flexible than pure triangle lists. But they can 

give a little performance boost, as fewer vertices have to be multiplied by the projection 

and model-view matrices. We’ll stick to triangle lists in all our code, though, as they are 

easier to use and can be made to achieve similar performance by using indices.  

Points and lines are a little bit strange in OpenGL ES. When we use a pixel-perfect 

orthographic projection (e.g., our screen resolution is 320�480 pixels and our 

glOrthof() call uses those exact values), we still don’t get pixel-perfect rendering in all 

cases. The positions of the point and line vertices have to be offset by 0.375f due to 

something called the diamond exit rule. Keep that in mind if you want to render pixel-

perfect points and lines. We already saw that something similar applies to triangles. 

However, given that we usually draw rectangles in 2D, we don’t run into that problem. 

Given that all you have to do to render primitives other than 

GL10.GL_TRIANGLES is to use one of the other constants in Figure 7–17, I’ll 

spare you an example program. We’ll stick to triangle lists for the most part, 

especially when doing 2D graphics programming. 

Let’s now dive into one more thing OpenGL ES offers us: the almighty model-

view matrix. 

2D Transformations: Fun with the Model-View 
Matrix 
All we have done so far is define static geometries in the form of triangle lists. There was 

nothing moving, rotating, or scaling. Also, even when the vertex data itself stayed the 

same (e.g., the width and height of a rectangle composed of two triangles along with 

texture coordinates and color), we still had to duplicate the vertices if we wanted to draw 

the same rectangle at different places. Look back at Listing 7–11 and ignore the color 

attributes of the vertices for now. The two rectangles only differ in their y-coordinates by 

200 units. If we had a way to move those vertices without actually changing their values 

we could get away with defining the rectangle of Bob only once, and simply drawing him 

at different locations. And that’s exactly what we can use the model-view matrix for. 

World and Model Space 
To understand how this works we have to literally think outside of our little orthographic 

view frustum box. Our view frustum is in a special coordinate system called the world 
space. This is the space where all our vertices are going to end up eventually. 
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Up until now we have specified all vertex positions in absolute coordinates relative to the 

origin of this world space (compare with Figure 7–5). What we really want is to make the 

definition of the positions of our vertices independent from this world space coordinate 

system. We can achieve this by giving each of our models (e.g., Bob’s rectangle, a 

spaceship, etc.) its own coordinate system. 

This is what we usually call model space, the coordinate system within which we define 

the positions of our model’s vertices. Figure 7–19 illustrates this concept in 2D, and the 

same rules apply to 3D as well (just add a z-axis).  

 

Figure 7–19. Defining our model in model space, reusing it, and rendering it at different locations in the world 
space 

In Figure 7–19 we have a single model, defined via a Vertices instance—for example, 

like this: 

Vertices vertices = new Vertices(glGraphics, 4, 12, false, false); 
vertices.setVertices(new float[] { -50, -50,  
                                    50, -50,  
                                    50,  50,  
                                   -50,  50 }, 0, 8); 
vertices.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 

For our discussion we just leave out any vertex colors or texture coordinates. Now, 

when we render this model without any further modifications, it will be placed around 

the origin in the world space in our final image. If we want to render it at a different 

position—say, its center being at (200,300) in world space—we could redefine the vertex 

positions like this: 
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vertices.setVertices(new float[] { -50 + 200, -50 + 300,  
                                    50 + 200, -50 + 300,  
                                    50 + 200,  50 + 300,  
                                   -50 + 200,  50 + 300 }, 0, 8); 

On the next call to vertices.draw(), the model would be rendered with its center at 

(200,300). But this is a tad bit tedious isn’t it?  

Matrices Again 
Remember when we briefly talked about matrices earlier? We discussed how matrices 

can encode transformations such as translations (moving stuff around), rotations, and 

scaling. The projection matrix we use to project our vertices onto the projection plane 

encodes a special type of transformation: a projection.  

Matrices are the key to solving our previous problem more elegantly. Instead of manually 

moving our vertex positions around by redefining them, we simply set a matrix that 

encodes a translation. Since the projection matrix of OpenGL ES is already occupied by 

our orthographics projection matrix we specified via glOrthof(), we use a different 

OpenGL ES matrix: the model-view matrix. Here’s how we could render our model with 

its origin moved to a specific location in eye/world space: 

gl.glMatrixMode(GL10.GL_MODELVIEW); 
gl.glLoadIdentity(); 
gl.glTranslatef(200, 300, 0); 
vertices.draw(GL10.GL_TRIANGLES, 0, 6); 

We have to first tell OpenGL ES which matrix we want to manipulate. In our case that’s 

the model-view matrix, which is specified by the constant GL10.GL_MODELVIEW. Next we 

make sure that the model-view matrix is set to an identity matrix. Basically we just 

overwrite anything that was in there already—we sort of clear the matrix. The next call is 

where the magic happens.  

The method glTranslatef()�takes three arguments: the translation on the x-, y-, and z-

axes. Since we want the origin of our model to be placed at (200,300) in eye/world 

space, we specify a translation by 200 units on the x-axis and a translation by 300 units 

on the y-axis. As we are working in 2D, we simply ignore the z-axis and set the 

translation component to zero. We didn’t specify a z-coordinate for our vertices, so 

these will default to zero. Adding zero to zero equals zero, so our vertices will stay in the 

x-y plane.  

From this point on, the model-view matrix of OpenGL ES encodes a translation by 

(200,300,0), which will be applied to all vertices that pass through the OpenGL ES 

pipeline. If you refer back to Figure 7–4, you’ll see that OpenGL ES will multiply each 

vertex with the model-view matrix first and then apply the projection matrix. Up until this 

point, the model-view matrix was set to an identity matrix (the default of OpenGL ES). It 

therefore did not have an effect on our vertices. Our little glTranslatef() call changes 

this, and will move all vertices first before they are projected. 
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Of course, this is done on the fly; the values in our Vertices instance do not change at 

all. We would have noticed any permanent change to your Vertices instance as by that 

logic the projection matrix would have changed it already. 

An First Example Using Translation 
What can we use this for? Say we want to render 100 Bobs at different positions in our 

world. Additionally we want them to move around on the screen and change direction 

each time they hit an edge of the screen (or rather a plane of our parallel projection view 

frustum, which coincides with the extents of our screen). We could do this by having one 

large Vertices instance that holds the vertices of the 100 rectangles—one for each 

Bob—and recalculate the vertex positions each frame. The easier method is to have one 

small Vertices instance that only holds a single rectangle (the model of Bob) and reuse 

it by translating it with the model-view matrix on the fly. Let’s define our Bob model: 

Vertices bobModel = new Vertices(glGraphics, 4, 12, false, true); 
bobModel.setVertices(new float[] { -16, -16, 0, 1,   
                                    16, -16, 1, 1,  
                                    16,  16, 1, 0, 
                                   -16,  16, 0, 0, }, 0, 8); 
bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 

So, each Bob is 32�32 units in size. We also texture map him (we’ll use bobrgb888.png 

to see the extents of each Bob).  

Bob Becomes a Class 
Let’s define a simple Bob class. It will be responsible for holding a Bob’s position and 

advancing his position in his current direction based on the delta time, just like we 

advanced Mr. Nom (with the difference that we don’t move in a grid anymore). The 

update() method will also make sure that Bob doesn’t escape our view volume bounds. 

Listing 7–12 shows the Bob class. 

Listing 7–12. Bob.java 

package com.badlogic.androidgames.glbasics; 
 
import java.util.Random; 
 
class Bob { 
    static final Random rand = new Random(); 
    public float x, y; 
    float dirX, dirY; 
 
    public Bob() { 
        x = rand.nextFloat() * 320; 
        y = rand.nextFloat() * 480; 
        dirX = 50; 
        dirY = 50; 
    } 
 
    public void update(float deltaTime) { 



CHAPTER 7:  OpenGL ES: A Gentle Introduction 330 

        x = x + dirX * deltaTime; 
        y = y + dirY * deltaTime; 
 
        if (x < 0) { 
            dirX = -dirX; 
            x = 0; 
        } 
 
        if (x > 320) { 
            dirX = -dirX; 
            x = 320; 
        } 
 
        if (y < 0) { 
            dirY = -dirY; 
            y = 0; 
        } 
 
        if (y > 480) { 
            dirY = -dirY; 
            y = 480; 
        } 
    } 
}  

Every Bob will place himself at a random location in the world when we construct him. All 

the Bobs will initially move in the same direction: 50 units to the right and 50 units 

upward per second (as we multiply by the deltaTime). In the update() method we simply 

advance Bob in his current direction in a time-based manner, and then check if he left 

the view frustum bounds. If that’s the case we invert his direction and make sure he’s 

still in the view frustum.  

Now let’s assume we are instantiating 100 Bobs, like this: 

Bob[] bobs = new Bob[100]; 
for(int i = 0; i < 100; i++) { 
    bobs[i] = new Bob(); 
} 

To render each of these Bobs, we’d do something like this (assuming we’ve already 

cleared the screen, set the projection matrix, and bound the texture): 

gl.glMatrixMode(GL10.GL_MODELVIEW); 
for(int i = 0; i < 100; i++) { 
    bob.update(deltaTime); 
    gl.glLoadIdentity(); 
    gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
    bobModel.render(GL10.GL_TRIANGLES, 0, 6); 
} 

That is pretty sweet, isn’t it? For each Bob, we call his update() method, which will 

advance his position and make sure he stays within the bounds of our little world. Next 

we load an identity matrix into the model-view matrix of OpenGL ES so we have a clean 

slate. We then use the current Bob’s x- and y-coordinates in a call to glTransltef(). 

When we then render the Bob model in the next call, all the vertices will be offset by the 

current Bob’s position—exactly what we wanted. 
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Putting It Together 
Let’s make this a full-blown example. Listing 7–13 shows the code. 

Listing 7–13. BobTest.java; 100 Moving Bobs! 

package com.badlogic.androidgames.glbasics; 
 
import javax.microedition.khronos.opengles.GL10; 
 
import com.badlogic.androidgames.framework.Game; 
import com.badlogic.androidgames.framework.Screen; 
import com.badlogic.androidgames.framework.gl.FPSCounter; 
import com.badlogic.androidgames.framework.gl.Texture; 
import com.badlogic.androidgames.framework.gl.Vertices; 
import com.badlogic.androidgames.framework.impl.GLGame; 
import com.badlogic.androidgames.framework.impl.GLGraphics; 
 
public class BobTest extends GLGame { 
 
    @Override 
    public Screen getStartScreen() { 
        return new BobScreen(this); 
    } 
     
    class BobScreen extends Screen { 
        static final int NUM_BOBS = 100; 
        GLGraphics glGraphics; 
        Texture bobTexture; 
        Vertices bobModel; 
        Bob[] bobs; 

Our BobScreen class holds a�Texture (loaded from bobrbg888.png), a Vertices instance 

holding the model of Bob (a simple textured rectangle), and an array of Bob instances. 

We also define a little constant named NUM_BOBS so we can modify the number of Bobs 

we want to have on the screen.  

        public BobScreen(Game game) { 
            super(game); 
            glGraphics = ((GLGame)game).getGLGraphics(); 
             
            bobTexture = new Texture((GLGame)game, "bobrgb888.png"); 
             
            bobModel = new Vertices(glGraphics, 4, 12, false, true); 
            bobModel.setVertices(new float[] { -16, -16, 0, 1,   
                                                16, -16, 1, 1,  
                                                16,  16, 1, 0, 
                                               -16,  16, 0, 0, }, 0, 16); 
            bobModel.setIndices(new short[] {0, 1, 2, 2, 3, 0}, 0, 6); 
 
             
            bobs = new Bob[100]; 
            for(int i = 0; i < 100; i++) { 
                bobs[i] = new Bob(); 
            }             
        } 
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The constructor just loads the texture, creates the model, and instantiates NUM_BOBS Bob 

instances. 

@Override 
        public void update(float deltaTime) {          
            game.getInput().getTouchEvents(); 
            game.getInput().getKeyEvents(); 
             
            for(int i = 0; i < NUM_BOBS; i++) { 
                bobs[i].update(deltaTime); 
            } 
        } 

The update() method is where we let our Bobs update themselves. We also make sure 

our input event buffers are emptied. 

@Override 
        public void present(float deltaTime) { 
            GL10 gl = glGraphics.getGL(); 
            gl.glClearColor(1,0,0,1); 
            gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
            gl.glMatrixMode(GL10.GL_PROJECTION); 
            gl.glLoadIdentity(); 
            gl.glOrthof(0, 320, 0, 480, 1, -1); 
             
            gl.glEnable(GL10.GL_TEXTURE_2D); 
            bobTexture.bind(); 
             
            gl.glMatrixMode(GL10.GL_MODELVIEW); 
            for(int i = 0; i < NUM_BOBS; i++) { 
                gl.glLoadIdentity(); 
                gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
                gl.glRotatef(45, 0, 0, 1); 
                gl.glScalef(2, 0.5f, 0); 
                bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
            }             
        } 

In the render()�method we clear the screen, set the projection matrix, enable texturing, 

and bind the texture of Bob. The last couple of lines are responsible for actually 

rendering each Bob instance. Since OpenGL ES remembers its states, we have to set the 

active matrix only once (in this case we are going to modify the model-view matrix in the 

rest of the code). We then loop through all the Bobs, set the model-view matrix to a 

translation matrix based on the position of the current Bob, and render the model, which 

will be translated by the model view-matrix automatically. 

 
        @Override 
        public void pause() {             
        } 
 
        @Override 
        public void resume() {             
        } 
 
        @Override 
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        public void dispose() {             
        } 
    } 
} 

That’s it. Best of all, we employed the MVC pattern we used in Mr. Nom again. It really 

lends itself well to game programming. The logical side of Bob is completely decoupled 

from his appearance, which is nice, as we can easily replace his appearance with 

something more complex. Figure 7–20 shows the output of our little program after 

running for a few seconds.  

 

Figure 7–20. That’s a lot of Bobs. 

That’s not the end of all our fun with transformations yet. If you remember what I said a 

couple of pages ago, you’ll know what’s coming: rotations and scaling. 

More Transformations 
Besides the glTranslatef()�method, OpenGL ES also offers us two methods for 

transformations: glRotatef()�and glScalef().  
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Rotation 
Here’s the signature of glRotatef(): 

GL10.glRotatef(float angle, float axisX, float axisY, float axisZ); 

The first parameter is the angle in degrees we want to rotate our vertices by. But what 

do the rest of the parameters mean? 

When we rotate something, we rotate it around an axis. What is an axis? Well, we already 

know three axes: the x-axis, the y-axis, and the z-axis. We can express these three axes 

as so-called vectors. The positive x-axis would be described as (1,0,0), the positive y-axis 

would be (0,1,0) and the positive z-axis would be (0,0,1). As you can see, a vector actually 

encodes a direction, in our case in 3D space. Bob’s direction is also a vector, but in 2D 

space. Vectors can also encode positions, like Bob’s position in 2D space. 

To define the axis around which we want to rotate the model of Bob, we need to go 

back to 3D space, actually. Figure 7–21 shows the model of Bob (with a texture applied 

for orientation) as defined in the previous code in 3D space. 

 

Figure 7–21. Bob in 3D 

Since we haven’t defined z-coordinates for Bob’s vertices, he is embedded in the x-y 

plane of our 3D space (which is actually the model space, remember?). If we want to 

rotate Bob, we can do it around any axis we can think of: the x-, y-, or z-axis, or even a 

totally crazy axis like (0.75,0.75,0.75). However, for our 2D graphics programming 

needs, it makes sense to rotate Bob in the x-y plane. Hence, we’ll use the positive z-axis 

as our rotation axis, which can be defined as (0,0,1). The rotation will be 

counterclockwise around the z-axis. A call to glRotatef(), like this, would cause the 

vertices of Bob’s model to be rotated as shown in Figure 7–22: 

gl.glRotatef(45, 0, 0, 1); 
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Figure 7–22. Bob, rotated around the z-axis by 45 degrees 

Scaling 
We can also scale Bob’s model with glScalef(), like this: 

glScalef(2, 0.5f, 1); 

which, given Bob’s original model pose, would result in the new orientation depicted in 

Figure 7–23. 

 

Figure 7–23. Bob, scaled by a factor of 2 on the x-axis and a factor of 0.5 on the y-axis. Ouch. 

Combining Transformations 
Now, we also discussed that we can combine the effect of multiple matrices by 

multiplying them together to form a new matrix. All the methods—glTranslatef(), 

glScalef(), glRotatef(), and�glOrthof()—actually do just that. They multiply the 

current active matrix by the temporary matrix they create internally based on the 

parameters we pass to them. So let’s combine the rotation and scaling of Bob: 

gl.glRotatef(45, 0, 0, 1); 
gl.glScalef(2, 0.5f, 1); 
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This would make Bob’s model look like Figure 7–24 (remember, we are still in model 

space). 

 

Figure 7–24. Bob, first scaled and then rotated (still not looking happy) 

What would happen if we applied the transformations the other way around, like this: 

gl.glScalef(2, 0.5, 0); 
gl.glRotatef(45, 0, 0, 1) 

Figure 7–25 gives you the answer. 

 

Figure 7–25. Bob, first rotated, and then scaled 

Wow, this is not the Bob we used to know. What happened here? If you look at the code 

snippets, you’d actually expect Figure 7–24 to look like Figure 7–25, and Figure 7–25 to 

look like Figure 7–24. In the first snippet we apply the rotation first, and then scale Bob, 

right? 

Wrong. The way OpenGL ES multiplies matrices with each other dictates the order in 

which the transformations the matrices encode are applied to a model. The last matrix 

we multiply the currently active matrix with will be the first that gets applied to the 
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vertices. So if we want to scale, rotate, and translate Bob, in that exact order, we have 

to call the methods like this: 

glTranslatef(bobs[i].x, bobs[i].y, 0); 
glRotatef(45, 0, 0, 1); 
glScalef(2, 0.5f, 1); 

If we changed the loop in our�BobScreen.present() method to the following code: 

gl.glMatrixMode(GL10.GL_MODELVIEW); 
for(int i = 0; i < NUM_BOBS; i++) { 
    gl.glLoadIdentity(); 
    gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
    gl.glRotatef(45, 0, 0, 1); 
    gl.glScalef(2, 0.5f, 0); 
    bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
} 

the output would look like Figure 7–25. 

  

Figure 7–26. A hundred Bobs, scaled, rotated, and translated (in that order) to their positions in world space 

I always mixed up the order of these matrix operations when I started out with OpenGL 

on the desktop. To remember how to do it correctly, I eventually arrived at a mnemonic 

device called it the LASFIA principle: last specified, first applied. (Yeah, my mnemonics 

aren’t all that great huh?)  

The easiest way to get comfortable with model-view transformations is to use them 

heavily. I suggest you take the BobTest.java source file, modify the inner loop for some 
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time, and observe the effects. Note that you can specify as many transformations as you 

want for rendering each model. Add more rotations, translations, and scaling. Go crazy. 

With this last example we basically know everything we need to know about OpenGL ES 

to write 2D games. Or do we? 

Optimizing for Performance 
When we run this example on a beefy second-generation device like a Droid or a Nexus 

One, everything will run smooth as silk. If we run it on a Hero, everything will start to 

stutter and look pretty unpleasant. But hey, didn’t I say OpenGL ES was the silver bullet 

for fast graphics rendering? Well, yes it is. But only if we do things the way OpenGL ES 

wants us to do them. 

Measuring Frame Rate 
BobTest provides a perfect example to start with some optimizations. Before we can do 

that, though, we need a way to assess performance. Manual visual inspection (“doh, it 

looks like it stutters a little”) is not precise enough. A better way to measure how fast our 

program performs is to count the number of frames we render per second. If you 

remember Chapter 3, we talked about something called the vertical synchronization, or 

vsync for short. This is enabled on all Android devices that are on the market so far, and 

limits the maximum frames per second (FPS) we can achieve to 60. We know our code 

is good enough when we run at that frame rate.  

NOTE: While 60 FPS would be nice to have, in reality it is pretty hard to achieve such 
performance. Devices like the Nexus One and the Droid have a lot of pixels to fill, even if we’re 
just clearing the screen. We’ll be happy if our game renders the world at more than 30 FPS in 

general. More frames don’t hurt, though. 

Let’s write a little helper class that counts the FPS and outputs that value periodically. 

Listing 7–14 shows the code of a class called FPSCounter. 

Listing 7–14. FPSCounter.java; Counting Frames and Logging Them to LogCat Each Second 

package com.badlogic.androidgames.framework.gl; 
 
import android.util.Log; 
 
public class FPSCounter { 
    long startTime = System.nanoTime(); 
    int frames = 0; 
     
    public void logFrame() { 
        frames++; 
        if(System.nanoTime() - startTime >= 1000000000) { 
            Log.d("FPSCounter", "fps: " + frames); 
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            frames = 0; 
            startTime = System.nanoTime(); 
        } 
    } 
}  

We can put an instance of this class in our BobScreen class and call the logFrame() 

method once in the BobScreen.present() method. I just did this, and here is the output 

for a Hero (running Android 1.5), a Droid (running Android 2.2), and a Nexus One 

(running Android 2.2.1). 

Hero:  
12-10 03:27:05.230: DEBUG/FPSCounter(17883): fps: 22 
12-10 03:27:06.250: DEBUG/FPSCounter(17883): fps: 22 
12-10 03:27:06.820: DEBUG/dalvikvm(17883): GC freed 21818 objects / 524280 bytes in 
132ms 
12-10 03:27:07.270: DEBUG/FPSCounter(17883): fps: 20 
12-10 03:27:08.290: DEBUG/FPSCounter(17883): fps: 23 
 
Droid:  
12-10 03:29:44.825: DEBUG/FPSCounter(8725): fps: 39 
12-10 03:29:45.864: DEBUG/FPSCounter(8725): fps: 38 
12-10 03:29:46.879: DEBUG/FPSCounter(8725): fps: 38 
12-10 03:29:47.879: DEBUG/FPSCounter(8725): fps: 39 
12-10 03:29:48.887: DEBUG/FPSCounter(8725): fps: 40 
 
Nexus One: 
12-10 03:28:05.923: DEBUG/FPSCounter(930): fps: 43 
12-10 03:28:06.933: DEBUG/FPSCounter(930): fps: 43 
12-10 03:28:07.943: DEBUG/FPSCounter(930): fps: 44 
12-10 03:28:08.963: DEBUG/FPSCounter(930): fps: 44 
12-10 03:28:09.973: DEBUG/FPSCounter(930): fps: 44 
12-10 03:28:11.003: DEBUG/FPSCounter(930): fps: 43 
12-10 03:28:12.013: DEBUG/FPSCounter(930): fps: 44 

Upon first inspection we can see the following: 

� The Hero is twice as slow as the Droid and the Nexus One. 

� The Nexus One is slightly faster than the Droid. 

� We generate garbage on the Hero in our process (17883). 

Now, the last item on that list is somewhat puzzling. We run the same code on all three 

devices. And upon further inspection, we do not allocate any temporary objects in either 

the present() or update() method. So what’s happening on the Hero? 

The Curious Case of the Hero on Android 1.5 
It turns out that there is a bug in Android 1.5. Well, it’s not a bug, it’s just some 

extremely sloppy programming. Remember that we use direct NIO buffers for our 

vertices and indices. These are actually memory blocks in native heap memory. Each 

time we call glVertexPointer(), glColorPointer(), or any other of the glXXXPointer()�

methods, OpenGL ES will try to fetch the native heap memory address of that buffer to 

look up the vertices to transfer the data to video RAM. The problem on Android 1.5 is 
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that each time we request the memory address from a direct NIO buffer, it will generate 

a temporary object called PlatformAddress. Since we have a lot of calls to the 

glXXXPointer() and glDrawElements() methods (remember, the latter fetches the 

address from a direct ShortBuffer), Android allocates a metric ton of temporary 

PlatformAdress instances, and there’s nothing we can do about it. (Well, there’s actually 

a workaround, but for now we won’t discuss it). Let’s just accept the fact that using NIO 

buffers on Android 1.5 is horribly broken and move on. 

What’s Making My OpenGL ES Rendering So Slow? 
That the Hero is slower than the second-generation devices is no big surprise. 

However, the PowerVR chip in the Droid is slightly faster than the Adreno chip 

in the Nexus One, so the preceding results are a little bit strange at first sight. 

On further inspection we can probably attribute the difference not to the GPU 

power but to the fact that we call many OpenGL ES methods each frame, 

which are costly Java Native Interface methods. This means that they actually 

call into C code, which costs more than calling a Java method on Dalvik. The 

Nexus One has a JIT compiler and can optimize a little bit there. So let’s just 

assume that the difference stems from the JIT compiler (which is probably not 

entirely correct).  

Now let’s examine what’s bad for OpenGL ES: 

� Changing states a lot per frame (e.g., blending, enabling/disabling 

texture mapping, etc.) 

� Changing matrices a lot per frame. 

� Binding textures a lot per frame. 

� Changing the vertex, color, and texture coordinate pointers a lot per 

frame. 

It all boils down to changing state really. Why is this costly? GPUs work like an assembly 

line in a factory. While the front of the line processes new incoming pieces, the end of 

the line finishes off pieces already processed by previous stages of the line. Let’s try it 

with a little car factory analogy.  

The production line has a few states, such as the tools that are available to factory 

workers, the type of bolts that are used to assemble parts of the cars, the color the cars 

get painted with, and so on. Yes, real car factories have multiple assembly lines, but 

let’s just pretend there’s only one. Now, each stage of the line will be busy as long as we 

don’t change any of the states. As soon as we change a single state, however, the line 

will stall until all the cars currently being assembled are finished off. Only then can we 

actually change the state and assemble cars with the new paint/bolts/whatever.  

The key insight is that a call to glDrawElements() or glDrawArrays() is not immediately 

executed. Instead the command is put into a buffer that is processed asynchronously by 

the GPU. This means that the calls to the drawing methods will not block. It’s therefore a 

bad idea to measure the time a call to glDrawElements() takes, as the actual work might 
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be performed in the future. That’s why we measure FPS instead. When the framebuffer 

is swapped (yes, we use double-buffering with OpenGL ES as well), OpenGL ES will 

make sure that all pending operations will be executed.  

So translating the car factory analogy to OpenGL ES means the following. While new 

triangles enter the command buffer via a call to glDrawElements() or glDrawArrays(), 

the GPU pipeline might finish off the rendering of currently processed triangles from 

earlier calls to the render methods (e.g., a triangle can be currently processed in the 

rasterization state of the pipeline). This has the following implications: 

� Changing the currently bound texture is expensive. Any triangles in the 

command buffer that have not been processed yet and that use the 

texture must be rendered first. The pipeline will stall. 

� Changing the vertex, color, and texture coordinate pointers is 

expensive. Any triangles in the command buffer that haven’t been 

rendered yet and use the old pointers must be rendered first. The 

pipeline will stall. 

� Changing blending state is expensive. Any triangles in the command 

buffer that need/don’t need blending and haven’t been rendered yet 

must be rendered first. The pipeline will stall. 

� Changing the model-view or projection matrix is expensive. Any 

triangles in the command buffer that haven’t been processed yet and 

to which the old matrices should be applied must be rendered first. 

The pipeline will stall. 

The quintessence of all this is reduce your state changes—all of them.  

Removing Unnecessary State Changes 
So let’s look at the present() method of BobTest and see what we can 

change. Here’s the snippet for reference (I added the FPSCounter in, and we 

also use glRotatef() and glScalef()): 

@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL(); 
    gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
    gl.glClearColor(1,0,0,1); 
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT); 
    gl.glMatrixMode(GL10.GL_PROJECTION); 
    gl.glLoadIdentity(); 
    gl.glOrthof(0, 320, 0, 480, 1, -1); 
          
    gl.glEnable(GL10.GL_TEXTURE_2D); 
    bobTexture.bind(); 
            
    gl.glMatrixMode(GL10.GL_MODELVIEW); 
    for(int i = 0; i < NUM_BOBS; i++) { 
        gl.glLoadIdentity(); 
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        gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
        gl.glRotatef(45, 0, 0, 1); 
        gl.glScalef(2, 0.5f, 1); 
        bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
    fpsCounter.logFrame(); 
} 

The first thing we could do is to move the calls to�glViewport() and glClearColor(), as 

well as the method calls that set the projection matrix to the�BobScreen.resume()�

method. The clear color will never change, the viewport and the projection matrix won’t 

change either. Why not put the code to setup all persistent OpenGL states like the 

viewport or projection matrix in the constructor of BobScreen? Well, we need to battle 

context loss. All OpenGL ES state modifications we perform will get lost, and when our 

screen’s�resume()�method is called, we know that the context has been recreated and is 

thus missing all the states we might have set before. We can also put the call the 

glEnable() and the texture-binding call into the resume()�method. After all, we want 

texturing to be enabled all the time, and we also only want to use that single Bob 

texture. For good measure we also call texture.reload()�in the resume() method so 

that our texture image data is also reloaded in the case of a context loss. So here are 

our modified present() and resume() methods: 

@Override 
public void resume() { 
    GL10 gl = glGraphics.getGL(); 
    gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight()); 
    gl.glClearColor(1, 0, 0, 1); 
    gl.glMatrixMode(GL10.GL_PROJECTION); 
    gl.glLoadIdentity(); 
    gl.glOrthof(0, 320, 0, 480, 1, -1);            
     
    bobTexture.reload();             
    gl.glEnable(GL10.GL_TEXTURE_2D); 
    bobTexture.bind(); 
} 
 
@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL();             
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT);                         
     
    gl.glMatrixMode(GL10.GL_MODELVIEW); 
    for(int i = 0; i < NUM_BOBS; i++) { 
        gl.glLoadIdentity(); 
        gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
        gl.glRotatef(45, 0, 0, 1); 
        gl.glScalef(2, 0.5f, 0); 
        bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
     
    fpsCounter.logFrame(); 
} 
 

Running this “improved” version gives the following performance on the three devices: 
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Hero:  
12-10 04:41:56.750: DEBUG/FPSCounter(467): fps: 23 
12-10 04:41:57.770: DEBUG/FPSCounter(467): fps: 23 
12-10 04:41:58.500: DEBUG/dalvikvm(467): GC freed 21821 objects / 524288 bytes in 133ms 
12-10 04:41:58.790: DEBUG/FPSCounter(467): fps: 19 
12-10 04:41:59.830: DEBUG/FPSCounter(467): fps: 23 
 
Droid:  
12-10 04:45:26.906: DEBUG/FPSCounter(9116): fps: 39 
12-10 04:45:27.914: DEBUG/FPSCounter(9116): fps: 41 
12-10 04:45:28.922: DEBUG/FPSCounter(9116): fps: 41 
12-10 04:45:29.937: DEBUG/FPSCounter(9116): fps: 40 
 
Nexus One: 
12-10 04:37:46.097: DEBUG/FPSCounter(2168): fps: 43 
12-10 04:37:47.127: DEBUG/FPSCounter(2168): fps: 45 
12-10 04:37:48.147: DEBUG/FPSCounter(2168): fps: 44 
12-10 04:37:49.157: DEBUG/FPSCounter(2168): fps: 44 
12-10 04:37:50.167: DEBUG/FPSCounter(2168): fps: 44 

So all the devices have already benefited a tiny bit by our optimizations. Of course, the 

effect is not exactly huge. This can be attributed to the fact that when we originally 

called all those methods at the beginning of the frame, there were no triangles in the 

pipeline yet.  

Reducing Texture Size Means Fewer Pixels to Be Fetched 
So what else could be changed? Something that is not all that obvious. Our Bob 

instances are 32�32 units in size. We use a projection plane that is 320�480 units in 

size. On a Hero, that will give us pixel-perfect rendering. On a Nexus One or a Droid, a 

single unit in our coordinate system would take up a little under a pixel. In any case our 

texture is actually 128�128 pixels in size. We don’t need that much resolution, so let’s 

resize the texture image bobrgb888.png to 32�32 pixels. We’ll call the new image 

bobrgb888-32x32.png. Using this smaller texture, we get the following FPS for each 

device: 

Hero: 
12-10 04:48:03.940: DEBUG/FPSCounter(629): fps: 23 
12-10 04:48:04.950: DEBUG/FPSCounter(629): fps: 23 
12-10 04:48:05.860: DEBUG/dalvikvm(629): GC freed 21812 objects / 524256 bytes in 134ms 
12-10 04:48:05.990: DEBUG/FPSCounter(629): fps: 21 
12-10 04:48:07.030: DEBUG/FPSCounter(629): fps: 24 
 
Droid: 
12-10 04:51:11.601: DEBUG/FPSCounter(9191): fps: 56 
12-10 04:51:12.609: DEBUG/FPSCounter(9191): fps: 56 
12-10 04:51:13.625: DEBUG/FPSCounter(9191): fps: 55 
12-10 04:51:14.641: DEBUG/FPSCounter(9191): fps: 55 
 
Nexus One: 
12-10 04:48:18.067: DEBUG/FPSCounter(2238): fps: 53 
12-10 04:48:19.077: DEBUG/FPSCounter(2238): fps: 56 
12-10 04:48:20.077: DEBUG/FPSCounter(2238): fps: 53 
12-10 04:48:21.097: DEBUG/FPSCounter(2238): fps: 54 
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Wow, that makes a huge difference on the second-generation devices. It turns out that 

the GPUs of those devices hate nothing more than having to scan over a large amount 

of pixels. This is true for fetching texels from a texture as well as actually rendering 

triangles to the screen. The rate at which those GPUs can fetch texels and render pixels 

to the framebuffer is called the fill rate. All the second-generation GPUs are heavily fill-

rate limited, so we should try to use textures that are as small as possible (or map our 

triangles only to a small portion of them), and not render extremely huge triangles to the 

screen. We should also look out for overlap: the fewer overlapping triangles, the better. 

NOTE: Actually, overlap is not an extremely big problem with GPUs such as the PowerVR SGX 
350 on the Droid. These GPUs have a special mechanism, called tile-based deferred rendering, 
that can eliminate a lot of that overlap under certain conditions. We should still care about pixels 

that will never be seen on the screen, though. 

The Hero did only slightly benefit from the decrease in texture image size. So what could 

be the culprit here? 

Reducing Calls to OpenGL ES/JNI Methods 
The first suspects are the many OpenGL ES calls we issue per frame when we render 

the model for each Bob. First of all, we have four matrix operations per Bob. If we don’t 

need rotation or scaling, we can bring that down to two calls. Here are the FPS numbers 

for each device when we only use�glLoadIdentity() and glTranslatef() in the inner 

loop: 

Hero: 
12-10 04:57:49.610: DEBUG/FPSCounter(766): fps: 27 
12-10 04:57:49.610: DEBUG/FPSCounter(766): fps: 27 
12-10 04:57:50.650: DEBUG/FPSCounter(766): fps: 28 
12-10 04:57:50.650: DEBUG/FPSCounter(766): fps: 28 
12-10 04:57:51.530: DEBUG/dalvikvm(766): GC freed 22910 objects / 568904 bytes in 128ms 
 
Droid: 
12-10 05:08:38.604: DEBUG/FPSCounter(1702): fps: 56 
12-10 05:08:39.620: DEBUG/FPSCounter(1702): fps: 57 
12-10 05:08:40.628: DEBUG/FPSCounter(1702): fps: 58 
12-10 05:08:41.644: DEBUG/FPSCounter(1702): fps: 57 
 
Nexus One: 
12-10 04:58:01.277: DEBUG/FPSCounter(2509): fps: 54 
12-10 04:58:02.287: DEBUG/FPSCounter(2509): fps: 54 
12-10 04:58:03.307: DEBUG/FPSCounter(2509): fps: 55 
12-10 04:58:04.317: DEBUG/FPSCounter(2509): fps: 55 

Well, it improved the performance on the Hero quite a bit, and the Droid and Nexus One 

also benefited a little from removing the two matrix operations. Of course, there’s a little 

bit of cheating involved: if we need to rotate and scale our Bobs, there’s no way around 

issuing those two additional calls. However, when all we do is 2D rendering, there’s a 
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neat little trick we can use that will get rid of all matrix operations (we’ll look into this in 

the next chapter). 

OpenGL ES is a C API provided to Java via a JNI wrapper. This means that any OpenGL 

ES method we call has to cross that JNI wrapper to call the actual C native function. 

This is somewhat costly on earlier Android versions, but has gotten better with more 

recent versions. As shown, the impact is not all that huge, especially if the actual 

operations take up more time than issuing the call itself.  

The Concept of Binding Vertices 
So is there anything else we can improve? Let’s look at our current present() method 

one more time (with removed�glRotatef() and glScalef()): 

public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL();             
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT);                         
     
    gl.glMatrixMode(GL10.GL_MODELVIEW); 
    for(int i = 0; i < NUM_BOBS; i++) { 
        gl.glLoadIdentity(); 
        gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
        bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
     
    fpsCounter.logFrame(); 
} 

That looks pretty much optimal, doesn’t it? Well, in fact it is not optimal. First, we can 

also move the gl.glMatrixMode()�call to the resume() method. But that won’t have a 

huge impact on performance, as we already saw. The second thing that can be 

optimized is a little subtler. 

We use the Vertices class to store and render the model of our Bobs. Remember the 

Vertices.draw() method? Here it is one more time: 

public void draw(int primitiveType, int offset, int numVertices) { 
    GL10 gl = glGraphics.getGL(); 
     
    gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
    vertices.position(0); 
    gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
     
    if(hasColor) { 
        gl.glEnableClientState(GL10.GL_COLOR_ARRAY); 
        vertices.position(2); 
        gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices); 
    } 
     
    if(hasTexCoords) { 
        gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
        vertices.position(hasColor?6:2); 
        gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
    } 
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    if(indices!=null) { 
        indices.position(offset); 
        gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, indices); 
    } else { 
        gl.glDrawArrays(primitiveType, offset, numVertices); 
    } 
     
    if(hasTexCoords) 
        gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
 
    if(hasColor) 
        gl.glDisableClientState(GL10.GL_COLOR_ARRAY); 
} 

Now look at preceding the loop again. Notice something? For each Bob, we enable the 

same vertex attributes over and over again via glEnableClientState(). We actually only 

need to set those once, as each Bob uses the same model, which always uses the same 

vertex attributes. The next big problems are the calls to glXXXPointer()�for each Bob. 

Since those pointers are also OpenGL ES states, we only need to set them once as well, 

as they will never change once set. So how can we fix that? Let’s rewrite the 

Vertices.draw() method a little:  

public void bind() { 
    GL10 gl = glGraphics.getGL(); 
     
    gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); 
    vertices.position(0); 
    gl.glVertexPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
     
    if(hasColor) { 
        gl.glEnableClientState(GL10.GL_COLOR_ARRAY); 
        vertices.position(2); 
        gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices); 
    } 
     
    if(hasTexCoords) { 
        gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
        vertices.position(hasColor?6:2); 
        gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices); 
    } 
} 
 
public void draw(int primitiveType, int offset, int numVertices) {         
    GL10 gl = glGraphics.getGL(); 
     
    if(indices!=null) { 
        indices.position(offset); 
        gl.glDrawElements(primitiveType, numVertices, GL10.GL_UNSIGNED_SHORT, indices); 
    } else { 
        gl.glDrawArrays(primitiveType, offset, numVertices); 
    }         
} 
 
public void unbind() { 
    GL10 gl = glGraphics.getGL(); 
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    if(hasTexCoords) 
        gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); 
 
    if(hasColor) 
        gl.glDisableClientState(GL10.GL_COLOR_ARRAY); 
} 

Can you see what we’ve done here? We can treat our vertices and all those pointers just 

like we treat a texture. We “bind” the vertex pointers via a single call to Vertices.bind(). 

From this point onward every�Vertices.draw() call will work with those “bound” 

vertices, just like the draw call will also use the currently bound texture. Once we are 

done rendering stuff with that Vertices instance, we call Vertices.unbind() to disable 

any vertex attributes that another Vertices instance might not need. Keeping our 

OpenGL ES state clean is a good thing. Here’s how our present() method looks now (I 

moved the glMatrixMode(GL10.GL_MODELVIEW) call to resume() as well): 

@Override 
public void present(float deltaTime) { 
    GL10 gl = glGraphics.getGL();             
    gl.glClear(GL10.GL_COLOR_BUFFER_BIT);                         
                 
    bobModel.bind(); 
    for(int i = 0; i < NUM_BOBS; i++) { 
        gl.glLoadIdentity(); 
        gl.glTranslatef(bobs[i].x, bobs[i].y, 0); 
        bobModel.draw(GL10.GL_TRIANGLES, 0, 6); 
    } 
    bobModel.unbind(); 
     
    fpsCounter.logFrame(); 
} 

This effectively calls the glXXXPointer() and glEnableClientState() methods only once 

per frame. We thus save nearly 100 � 6 calls to OpenGL ES. That should have a huge 

impact on performance, right? Right. 

Hero:  
12-10 05:16:59.710: DEBUG/FPSCounter(865): fps: 51 
12-10 05:17:00.720: DEBUG/FPSCounter(865): fps: 46 
12-10 05:17:01.720: DEBUG/FPSCounter(865): fps: 47 
12-10 05:17:02.610: DEBUG/dalvikvm(865): GC freed 21815 objects / 524272 bytes in 131ms 
12-10 05:17:02.740: DEBUG/FPSCounter(865): fps: 44 
12-10 05:17:03.750: DEBUG/FPSCounter(865): fps: 50 
 
Droid: 
12-10 05:22:27.519: DEBUG/FPSCounter(2040): fps: 57 
12-10 05:22:28.519: DEBUG/FPSCounter(2040): fps: 57 
12-10 05:22:29.526: DEBUG/FPSCounter(2040): fps: 57 
12-10 05:22:30.526: DEBUG/FPSCounter(2040): fps: 55 
 
Nexus One: 
12-10 05:18:31.915: DEBUG/FPSCounter(2509): fps: 56 
12-10 05:18:32.935: DEBUG/FPSCounter(2509): fps: 56 
12-10 05:18:33.935: DEBUG/FPSCounter(2509): fps: 55 
12-10 05:18:34.965: DEBUG/FPSCounter(2509): fps: 54 
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All three devices are nearly on par now. The Droid performs the best, followed by the 

Nexus One. Our little Hero performs great as well. We are up to 50 FPS from 22 FPS in 

the nonoptimized case. That’s an increase in performance by 100 percent. We can be 

proud of ourselves. Our optimized Bob test is pretty much optimal.  

Our new bindable Vertices class has of course a few restrictions now: 

� We can only set the vertex and index data when the Vertices instance 

is not bound, as the upload of that information is performed in 

Vertices.bind(). 

� We can’t bind two Vertices instances at once. This means that we 

can only render with a single Vertices instance at any point in time. 

That’s usually not a big problem, though, and given the impressive 

increase in performance, we will live with it. 

In Closing 
There’s one more optimization we can apply that is suited for 2D graphics programming 

with flat geometry, such as with rectangles. We’ll look into that in the next chapter. The 

keyword to search for is batching, which means reducing the number of 

glDrawElements()/glDrawArrays() calls. An equivalent for 3D graphics exists as well, 

called instancing, but that’s not possible to do with OpenGL ES 1.x. 

I want to mention two more things before we close this chapter. First of all, when you 

run either BobText or OptimizedBobTest (which contains the superoptimized code we just 

developed), notice that the Bobs wobble around the screen somewhat. This is due to 

the fact that their positions are passed to glTranslatef() as floats. The problem with 

pixel-perfect rendering is that OpenGL ES is really sensitive to vertex positions with 

fractional parts in their coordinates. We can’t really work around this problem; the effect 

will be less pronounced or even nonexistent in a real game, as we’ll see when we 

implement our next game. We can hide the effect to some extent by using a more 

diverse background, among other things. 

The second thing I want to point out is how we interpret the FPS measurements. As you 

can see from the preceding output, the FPS fluctuate a little. This can be attributed to 

background processes that run alongside our application. We will never have all of the 

system resources for our game, so we have to learn to live with this issue. When you are 

optimizing your program, don’t fake the environment by killing all background 

processes. Run the application on a phone that is in a normal state, as you’d use it 

yourself during the day. This will reflect the same experience that a user will have.  

Our nice achievement concludes this chapter. As a word of warning, only start 

optimizing your rendering code after you have it working, and only then after you 

actually have a performance problem. Premature optimization is often a cause for having 

to rewrite your entire rendering code, as it may become unmaintainable. 
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Summary 
OpenGL ES is a huge beast. We managed to boil all that down to a size that makes it 

easily usable for our game programming needs. We discussed what OpenGL ES is (a 

lean, mean triangle-rendering machine) and how it works. We then explored how to 

make use of OpenGL ES functionality by specifying vertices, how to create textures, and 

how to use states such as blending for some nice effects. We also looked a little bit into 

projections and how they are connected to matrices. While we didn’t discuss what a 

matrix does internally, we explored how to use them to rotate, scale, and translate 

reusable models from model space to world space. When we use OpenGL ES for 3D 

programming later, you’ll notice that you’ve already learned 90 percent of what you need 

to know. All we’ll do is change the projection and add a z-coordinate to our vertices. 

(Well, there are a few more things, but on a high level that’s actually it). Before that, 

though, we’ll write a nice 2D game with OpenGL ES. In the next chapter, you’ll get to 

know some of the 2D programming techniques we might need for that. 
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