

185

185

 Chapter

An Android Game
Development Framework
We’ve been through four chapters already and haven’t written a single line of game

code. The reason I’ve put you through all this boring theory and let you implement silly

little test programs is simple: if you want to write games, you have to know exactly

what’s going on. You can’t just copy and paste together code from all over the Web and

hope that it will magically form the next first-person shooter hit. You should now have a

firm grasp on how to design a simple game from the ground up, how to structure a nice

API for 2D game development, and which Android APIs provide the functionality to

implement your ideas.

To make Mr. Nom a reality, we have to do two things: implement the game framework

interfaces and classes we designed in Chapter 3, and based on that, code up the game

mechanics of Mr. Nom. Let’s start with the game framework by merging what we

designed in Chapter 3 with what we discussed in Chapter 4. Ninety percent of the code

should be familiar to you already, since we did most of it in the tests in the last chapter.

Plan of Attack
In Chapter 3 we laid out a very minimal and clean design for a game framework that

abstracts away all the platform specifics and let’s us concentrate on what we are here

for: game development. We’ll implement all these interfaces and abstract classes now,

in a bottom-up fashion, from easiest to hardest. The interfaces of Chapter 3 are located

in the package com.badlogic.androidgames.framework. We’ll put our implementation in

the package com.badlogic.androidgames.framework.impl, indicating that this holds the

actual implementation of the framework for Android. We’ll prefix all our interface

implementations with Android so that we can distinguish them from the interfaces. Let’s

start off with the easiest part: file I/O.

5

M. Zechner, Beginning Android Games

© Mario Zechner 2011

CHAPTER 5: An Android Game Development Framework 186

The code of this and the next chapter will be merged into a single Eclipse project. For

now, just create a new Android project in Eclipse following the steps in the last chapter.

How you name your default activity at this point doesn’t matter for now.

The AndroidFileIO Class
The original FileIO interface was lean and mean. It only contained three methods: one

to get an InputStream for an asset, another to get an InputStream for a file on the

external storage, and a third that returns an OutputStream for a file on the external

storage. In Chapter 4 you learned how we can open assets and files on the external

storage with the Android APIs. Listing 5–1 shows you the implementation of the FileIO

interface we’ll use based on the knowledge from Chapter 4.

Listing 5–1. AndroidFileIO.java; Implementing the FileIO Interface

package com.badlogic.androidgames.framework.impl;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import android.content.res.AssetManager;
import android.os.Environment;

import com.badlogic.androidgames.framework.FileIO;

public class AndroidFileIO implements FileIO {
 AssetManager assets;
 String externalStoragePath;

 public AndroidFileIO(AssetManager assets) {
 this.assets = assets;
 this.externalStoragePath = Environment.getExternalStorageDirectory()
 .getAbsolutePath() + File.separator;
 }

 @Override
 public InputStream readAsset(String fileName) throws IOException {
 return assets.open(fileName);
 }

 @Override
 public InputStream readFile(String fileName) throws IOException {
 return new FileInputStream(externalStoragePath + fileName);
 }

 @Override
 public OutputStream writeFile(String fileName) throws IOException {
 return new FileOutputStream(externalStoragePath + fileName);
 }
}

CHAPTER 5: An Android Game Development Framework 187

Everything’s straightforward. We implement the FileIO interface, store an AssetManager

along with the path of the external storage, and implement the three methods based on

this. We pass through any IOExceptions that get thrown so we’ll know if anything is fishy

on the calling side.

Our Game interface implementation will hold an instance of this class and return it via

Game.getFileIO(). This also means that our Game implementation will need to pass in the

AssetManager later on for the AndroidFileIO instance to work.

Note that we do not check for the external storage to be available. If it’s not available, or

if we forgot to add the proper permission to the manifest file, we’ll get an exception, so

error checking is done implicitly. So we can move on to the next pieces of our

framework: audio.

AndroidAudio, AndroidSound, and AndroidMusic:
Crash, Bang, Boom!
We designed three interfaces in Chapter 3 for all our audio needs: Audio, Sound, and

Music. Audio is responsible for creating Sound and Music instances from asset files. Sound

let’s us playback sound effects completely stored in RAM, and Music streams bigger

music files from disk to the audio card. In Chapter 4 you learned what Android APIs we

need to implement this. We start off with the implementation of AndroidAudio, as shown

in Listing 5–2.

Listing 5–2. AndroidAudio.java; Implementing the Audio Interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.app.Activity;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.media.AudioManager;
import android.media.SoundPool;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;

public class AndroidAudio implements Audio {
 AssetManager assets;
 SoundPool soundPool;

The AndroidAudio implementation has an AssetManager and a SoundPool instance. The

AssetManager is needed so that we can load sound effects from asset files into the

SoundPool on a call to AndroidAudio.newSound(). The SoundPool itself is also managed

by the AndroidAudio instance.

 public AndroidAudio(Activity activity) {
 activity.setVolumeControlStream(AudioManager.STREAM_MUSIC);

CHAPTER 5: An Android Game Development Framework 188

 this.assets = activity.getAssets();
 this.soundPool = new SoundPool(20, AudioManager.STREAM_MUSIC, 0);
 }

In the constructor we pass in the Activity of our game for two reasons: it allows us to

set the volume control to the media stream (remember we always want to do that), and it

gives us an AssetManager instance, which we happily store in the corresponding

member of the class. The SoundPool is configured to be able to play back 20 sound

effects in parallel—enough for our needs.

 @Override
 public Music newMusic(String filename) {
 try {
 AssetFileDescriptor assetDescriptor = assets.openFd(filename);
 return new AndroidMusic(assetDescriptor);
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load music '" + filename + "'");
 }
 }

The newMusic() method creates a new AndroidMusic instance. The constructor of that

class takes an AssetFileDescriptor, from which it creates a MediaPlayer internally

(more on that in a bit). The AssetManager.openFd() method throws an IOException in

case something goes wrong. We catch it and rethrow it as a RuntimeException. Why not

hand the IOException to the caller? First, it would clutter the calling code considerably,

so we would rather throw a RuntimeException, which does not have to be caught

explicitly. Second, we load the music from an asset file. It will only fail if we actually

forget to add the music file to the assets/ directory or if our music file contains bogus

bytes. These would constitute unrecoverable errors, as we need that Music instance for

our game to function properly. To avoid that, we’ll employ the strategy of throwing a

RuntimeException instead of checked exceptions in a few more places in our game

framework.

 @Override
 public Sound newSound(String filename) {
 try {
 AssetFileDescriptor assetDescriptor = assets.openFd(filename);
 int soundId = soundPool.load(assetDescriptor, 0);
 return new AndroidSound(soundPool, soundId);
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load sound '" + filename + "'");
 }
 }
}

Finally, the newSound() method loads a sound effect from an asset into the SoundPool

and returns an AndroidSound instance. The constructor of that instance takes a

SoundPool and the ID of the sound effect the SoundPool assigned to it. We again throw

any checked exception and rethrow it as an unchecked RuntimeException.

CHAPTER 5: An Android Game Development Framework 189

NOTE: We do not release the SoundPool in any of the methods. The reason for this is that there
will always be a single Game instance holding a single Audio instance that holds a single
SoundPool instance. The SoundPool instance will thus be alive as long as the activity (and

with it our game) is alive. It will be destroyed automatically as soon as the activity drops dead.

Next up is the AndroidSound class, which implements the Sound interface. Listing 5–3

shows you its implementation.

Listing 5–3. AndroidSound.java; Implementing the Sound Interface

package com.badlogic.androidgames.framework.impl;

import android.media.SoundPool;

import com.badlogic.androidgames.framework.Sound;

public class AndroidSound implements Sound {
 int soundId;
 SoundPool soundPool;

 public AndroidSound(SoundPool soundPool, int soundId) {
 this.soundId = soundId;
 this.soundPool = soundPool;
 }

 @Override
 public void play(float volume) {
 soundPool.play(soundId, volume, volume, 0, 0, 1);
 }

 @Override
 public void dispose() {
 soundPool.unload(soundId);
 }
}

No surprises here. We simply store the SoundPool and the ID of the loaded sound effect

for later playback and disposal via the play() and dispose() methods. It doesn’t get any

easier. All hail to the Android API.

Finally we have to implement the AndroidMusic class returned by

AndroidAudio.newMusic(). Listing 5–4 shows the code for that class. It looks a little

more complex than before. That’s due to the state machine that the MediaPlayer really

uses, which will throw exceptions like mad if we call methods in certain states.

Listing 5–4. AndroidMusic.java; Implementing the Music Interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;

CHAPTER 5: An Android Game Development Framework 190

import android.media.MediaPlayer.OnCompletionListener;

import com.badlogic.androidgames.framework.Music;

public class AndroidMusic implements Music, OnCompletionListener {
 MediaPlayer mediaPlayer;
 boolean isPrepared = false; package com.badlogic.androidgames.framework.impl;

import java.io.IOException;

import android.content.res.AssetFileDescriptor;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnCompletionListener;

import com.badlogic.androidgames.framework.Music;

public class AndroidMusic implements Music, OnCompletionListener {
 MediaPlayer mediaPlayer;
 boolean isPrepared = false;

The AndroidMusic class stores a MediaPlayer instance along with a boolean called

isPrepared. Remember, we can only call MediaPlayer.start()/stop()/pause() when the

MediaPlayer is prepared. This member helps us keep track of the MediaPlayer’s state.

The AndroidMusic class implements not only the Music interface, but also the

OnCompletionListener interface. In Chapter 3 we briefly defined this interface as a

means to get informed about when a MediaPlayer has stopped playing back a music

file. If this happens, then the MediaPlayer needs to be prepared again before we can

invoke any of the other methods on it. The method

OnCompletionListener.onCompletion() might be called in a separate thread, and since

we set the isPrepared member in this method, we have to make sure that it is safe from

concurrent modifications.

 public AndroidMusic(AssetFileDescriptor assetDescriptor) {
 mediaPlayer = new MediaPlayer();
 try {
 mediaPlayer.setDataSource(assetDescriptor.getFileDescriptor(),
 assetDescriptor.getStartOffset(),
 assetDescriptor.getLength());
 mediaPlayer.prepare();
 isPrepared = true;
 mediaPlayer.setOnCompletionListener(this);
 } catch (Exception e) {
 throw new RuntimeException("Couldn't load music");
 }
 }

In the constructor we create and prepare the MediaPlayer from the AssetFileDescriptor

that gets passed in, and we set the isPrepared flag, along with registering the

AndroidMusic instance as an OnCompletionListener with the MediaPlayer. If anything

goes wrong, we again throw an unchecked RuntimeException.

 @Override
 public void dispose() {

CHAPTER 5: An Android Game Development Framework 191

 if (mediaPlayer.isPlaying())
 mediaPlayer.stop();
 mediaPlayer.release();
 }

The dispose() method first checks if the MediaPlayer is still playing, and if so, stops it.

Otherwise the call to MediaPlayer.release() would throw a runtime exception.

 @Override
 public boolean isLooping() {
 return mediaPlayer.isLooping();
 }

 @Override
 public boolean isPlaying() {
 return mediaPlayer.isPlaying();
 }

 @Override
 public boolean isStopped() {
 return !isPrepared;
 }

The methods isLooping(), isPlaying(), and isStopped() are straightforward. The first

two use methods provided by the MediaPlayer; the last one uses the isPrepared flag,

which indicates if the MediaPlayer is stopped—something MediaPlayer.isPlaying()

does not necessarily tell us, as it returns false in case the MediaPlayer is paused but

not stopped.

 @Override
 public void play() {
 if (mediaPlayer.isPlaying())
 return;

 try {
 synchronized (this) {
 if (!isPrepared)
 mediaPlayer.prepare();
 mediaPlayer.start();
 }
 } catch (IllegalStateException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

The play() method is a little involved. If we are already playing, we simply return from

the function. Next we have a mighty try...catch block within which we first check if the

MediaPlayer is already prepared based on our flag, and prepare it if needed. If all goes

well, we call the MediaPlayer.start() method, which will start the playback. All this is

done in a synchronized block, as we use the isPrepared flag, which might get set on a

CHAPTER 5: An Android Game Development Framework 192

separate thread due to our implementing the OnCompletionListener interface. In case

something goes wrong, we again throw an unchecked RuntimeException.

@Override
 public void setLooping(boolean isLooping) {
 mediaPlayer.setLooping(isLooping);
 }

 @Override
 public void setVolume(float volume) {
 mediaPlayer.setVolume(volume, volume);
 }

The setLooping() and setVolume() methods can be called in any state of the

MediaPlayer, and just delegate to the respective MediaPlayer methods.

@Override
 public void stop() {
 mediaPlayer.stop();
 synchronized (this) {
 isPrepared = false;
 }
 }

The stop() method stops the MediaPlayer and sets the isPrepared flag in a

synchronized block again.

@Override
 public void onCompletion(MediaPlayer player) {
 synchronized (this) {
 isPrepared = false;
 }
 }
}

Finally there’s the OnCompletionListener.onCompletion() method that the AndroidMusic

class implements. All it does is set the isPrepared flag in a synchronized block so the

other methods don’t start throwing exceptions out of the blue.

Next we’ll move on to our input-related classes.

AndroidInput and AccelerometerHandler
The Input interface we designed in Chapter 3 grants us access to the accelerometer,

the touchscreen and the keyboard in polling and event modes via a couple of

convenient methods. Putting all the code for an implementation of that interface into a

single file is a bit nasty, though, so we will outsource all the input event handling into

handler classes. The Input implementation will then use those handlers to pretend that it

is actually performing all the work.

CHAPTER 5: An Android Game Development Framework 193

AccelerometerHandler: Which Side Is Up?
Let’s start with the easiest of all handlers: the AccelerometerHandler. Listing 5–5 shows

you its code.

Listing 5–5. AccelerometerHandler.java; Performing All the Accelerometer Handling

package com.badlogic.androidgames.framework.impl;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

public class AccelerometerHandler implements SensorEventListener {
 float accelX;
 float accelY;
 float accelZ;

 public AccelerometerHandler(Context context) {
 SensorManager manager = (SensorManager) context
 .getSystemService(Context.SENSOR_SERVICE);
 if (manager.getSensorList(Sensor.TYPE_ACCELEROMETER).size() != 0) {
 Sensor accelerometer = manager.getSensorList(
 Sensor.TYPE_ACCELEROMETER).get(0);
 manager.registerListener(this, accelerometer,
 SensorManager.SENSOR_DELAY_GAME);
 }
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // nothing to do here
 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 accelX = event.values[0];
 accelY = event.values[1];
 accelZ = event.values[2];
 }

 public float getAccelX() {
 return accelX;
 }

 public float getAccelY() {
 return accelY;
 }

 public float getAccelZ() {
 return accelZ;
 }
}

CHAPTER 5: An Android Game Development Framework 194

Unsurprisingly, the class implements the SensorEventListener interface, which we used

in Chapter 4. The class stores three members, holding the acceleration on each of the

three accelerometer axes.

The constructor takes a Context, from which it gets a SensorManager instance to set up

the event listening. The rest of the code is equivalent to what we did in the last chapter.

Note that if no accelerometer is installed, the handler will happily return zero

acceleration on all axes throughout its life. We thus don’t need any extra error-checking

or exception-throwing code.

The next two methods, onAccuracyChanged() and onSensorChanged(), should also be

familiar. In the first we don’t do anything, as there’s nothing much to report. In the

second one we fetch the accelerometer values from the provided SensorEvent and store

them in the handler’s members.

The final three methods simply return the current acceleration for each axis.

Note that we do not need to perform any synchronization here, even though the

onSensorChanged() method might be called in a different thread. The Java memory

model guarantees that writes and reads to and from primitive types such as boolean, int,

or byte are atomic. In this case it’s OK to rely on this fact, as we don’t do anything more

complex than assigning a new value. We’d need to have proper synchronization if this

were not the case (e.g., if we did something with the member variables in the

onSensorChanged() method.

The Pool Class: Because Reuse is Good for You!
What’s the worst thing that can happen to us as Android developers? World-stopping

garbage collection! If you look at the Input interface definition in Chapter 3, you’ll find

the methods getTouchEvents() and getKeyEvents(). These return lists of TouchEvents

and KeyEvents. In our keyboard and touch event handlers, we’ll constantly create

instances of these two classes and store them in lists internal to the handlers. The

Android input system fires a lot of those events when a key is pressed or a finger is

touching the screen, so we’d constantly create new instances that will get collected by

the garbage collector in short intervals. In order to avoid this, we will implement a

concept known as instance pooling. Instead of creating new instances of a class

frequently, we’ll simply reuse previously created instances. The Pool class is a

convenient way to implement that behavior. Let’s have a look at its code in Listing 5–6.

Listing 5–6. Pool.java; Playing Well with the Garbage Collector

package com.badlogic.androidgames.framework;

import java.util.ArrayList;
import java.util.List;

public class Pool<T> {

Here come generics: the first thing to recognize is that this class is a generically typed

class, much like collection classes, such as ArrayList or HashMap. Generics allow us to

CHAPTER 5: An Android Game Development Framework 195

store any type of object in our Pool without having to cast like mad. So what does the

Pool class do?

 public interface PoolObjectFactory<T> {
 public T createObject();
 }

The first thing that’s defined is an interface called PoolObjectFactory, which is again

generic. It has a single method, createObject(), which will return a shiny new object

that has the generic type of the Pool/PoolObjectFactory instance.

 private final List<T> freeObjects;
 private final PoolObjectFactory<T> factory;
 private final int maxSize;

The Pool class has three members: an ArrayList to store pooled objects, a

PoolObjectFactory that is used to generate new instances of the type the class holds,

and a member that stores the maximum number of objects the Pool can hold. The last

bit is needed so that our Pool does not grow indefinitely; otherwise we might run into an

out-of-memory exception.

 public Pool(PoolObjectFactory<T> factory, int maxSize) {
 this.factory = factory;
 this.maxSize = maxSize;
 this.freeObjects = new ArrayList<T>(maxSize);
 }

The constructor of the Pool class takes a PoolObjectFactory and the maximum number

of objects it should store. We store both parameters in the respective members and

instantiate a new ArrayList with the capacity set to the maximum number of objects.

 public T newObject() {
 T object = null;

 if (freeObjects.size() == 0)
 object = factory.createObject();
 else
 object = freeObjects.remove(freeObjects.size() - 1);

 return object;
 }

The newObject() method is responsible for either handing us a brand-new instance of

the type that the Pool holds via the PoolObjectFactory.newObject() method, or

returning a pooled instance in case there’s one in the freeObjects ArrayList. If we use

this method, we’ll get recycled objects as long as the Pool has some stored in the

freeObjects list. Otherwise the method will create a new one via the factory.

 public void free(T object) {
 if (freeObjects.size() < maxSize)
 freeObjects.add(object);
 }
}

CHAPTER 5: An Android Game Development Framework 196

The free() method lets us reinsert objects we no longer use. All it does is insert the

object into the freeObjects list if it is not filled to capacity yet. If the list is full, the object

is not added, and is likely to be consumed by the garbage collector the next time it

executes.

So how can we use that class? Let’s look at some pseudocode usage of the Pool class

in conjunction with touch events:

PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 @Override
 public TouchEvent createObject() {
 return new TouchEvent();
 }
};
Pool<TouchEvent> touchEventPool = new Pool<TouchEvent>(factory, 50);
TouchEvent touchEvent = touchEventPool.newObject();
… do something here …
touchEventPool.free(touchEvent);

We first define a PoolObjectFactory that creates TouchEvent instances. Next we

instantiate the Pool, telling it to use our factory and that it should maximally store 50

TouchEvents. When we want a new TouchEvent from the Pool, we call the Pool’s

newObject() method. Initially the Pool is empty, so it will ask the factory to create a

brand-new TouchEvent instance. When we no longer need the TouchEvent, we can

reinsert it into the Pool by calling the Pool’s free() method. The next time we call the

newObject() method, we will get the same TouchEvent instance again, recycling it so the

garbage collector doesn’t get mad at us. That class will come in handy in a couple of

places. Just note that you have to take care if you reuse objects: it’s easy to not fully

reinitialize them when they’re fetched from the Pool.

KeyboardHandler: Up, Up, Down, Down, Left, Right . . .
The KeyboardHandler has to fulfill a couple of tasks. First it must hook up with the View

from which keyboard events are to be received. Next it must store the current state of

each key for polling. It must also keep a list of KeyEvent instances, which we designed in

Chapter 3 for event-based input handling. Finally it must properly synchronize all this, as

it will receive events on the UI thread while being polled from our main game loop, which

is executed on a different thread. Quite a lot of work. As a little refresher, let me show

you the KeyEvent class again, which we defined in Chapter 3 as part of the Input

interface:

public static class KeyEvent {
 public static final int KEY_DOWN = 0;
 public static final int KEY_UP = 1;

 public int type;
 public int keyCode;
 public char keyChar;
}

CHAPTER 5: An Android Game Development Framework 197

It simply defines two constants encoding the key event type along with three members,

holding the type, key code, and Unicode character of the event. With this we can

implement our handler.

Listing 5–7 shows the implementation of the handler with the Android APIs discussed

earlier and our new Pool class.

Listing 5–7. KeyboardHandler.java: Handling Keys Since 2010

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.View;
import android.view.View.OnKeyListener;

import com.badlogic.androidgames.framework.Input.KeyEvent;
import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class KeyboardHandler implements OnKeyListener {
 boolean[] pressedKeys = new boolean[128];
 Pool<KeyEvent> keyEventPool;
 List<KeyEvent> keyEventsBuffer = new ArrayList<KeyEvent>();
 List<KeyEvent> keyEvents = new ArrayList<KeyEvent>();

The KeyboardHandler class implements the OnKeyListener interface so that it can

receive key events from a View. Next up are the members.

The first member is an array holding 128 booleans. We’ll store the current state (pressed

or not) of each key in this array. It is indexed by the key code of a key. Luckily for us, the

android.view.KeyEvent.KEYCODE_XXX constants (which encode the key codes) are all in

the range between 0 and 127, so we can store them in this garbage collector–friendly

form. Note that by an unlucky accident our KeyEvent class shares its name with the

Android KeyEvent class, instances of which get passed to our

OnKeyEventListener.onKeyEvent() method. This slight confusion is limited to this

handler code only. As there’s hardly a better name for a key event than KeyEvent, we

chose to live with this short-lived confusion.

The next member is a Pool that holds instances of our KeyEvent class. We don’t want to

make the garbage collector angry, so we recycle all the KeyEvent objects we create.

The third member stores the KeyEvents that have not yet been consumed by our game.

Each time we get a new key event on the UI thread we’ll add it to this list.

The last member stores the KeyEvents we’ll return upon a call to

KeyboardHandler.getKeyEvents(). We’ll see why we have to double-buffer the key

events in a minute.

 public KeyboardHandler(View view) {
 PoolObjectFactory<KeyEvent> factory = new PoolObjectFactory<KeyEvent>() {
 @Override
 public KeyEvent createObject() {

CHAPTER 5: An Android Game Development Framework 198

 return new KeyEvent();
 }
 };
 keyEventPool = new Pool<KeyEvent>(factory, 100);
 view.setOnKeyListener(this);
 view.setFocusableInTouchMode(true);
 view.requestFocus();
 }

The constructor has a single parameter consisting of the View we want to receive key

events from. We create the Pool instance with a proper PoolObjectFactory, register the

handler as an OnKeyListener with the View, and finally make sure that the View will

receive key events by making it the focused View.

 @Override
 public boolean onKey(View v, int keyCode, android.view.KeyEvent event) {
 if (event.getAction() == android.view.KeyEvent.ACTION_MULTIPLE)
 return false;

 synchronized (this) {
 KeyEvent keyEvent = keyEventPool.newObject();
 keyEvent.keyCode = keyCode;
 keyEvent.keyChar = (char) event.getUnicodeChar();
 if (event.getAction() == android.view.KeyEvent.ACTION_DOWN) {
 keyEvent.type = KeyEvent.KEY_DOWN;
 if(keyCode > 0 && keyCode < 127)
 pressedKeys[keyCode] = true;
 }
 if (event.getAction() == android.view.KeyEvent.ACTION_UP) {
 keyEvent.type = KeyEvent.KEY_UP;
 if(keyCode > 0 && keyCode < 127)
 pressedKeys[keyCode] = false;
 }
 keyEventsBuffer.add(keyEvent);
 }
 return false;
 }

Next up is our implementation of the OnKeyListener.onKey() interface method, which

gets called each time the View receives a new key event. We start by ignoring any

(Android) key events that encode a KeyEvent.ACTION_MULTIPLE event. These are not

relevant in our context. We follow that up with a tasty synchronized block. Remember

that the events are received on the UI thread and read on the main loop thread, so we

have to make sure none of our members are accessed in parallel.

Within the synchronized block we first fetch a KeyEvent instance (of our KeyEvent

implementation) from the Pool. This will either get us a recycled instance or a brand-new

one, depending on the state of the Pool. Next we set the KeyEvent’s keyCode and

keyChar members based on the contents of the Android KeyEvent that got passed to the

method. We then decode the type of the Android KeyEvent and set the type of our

KeyEvent as well as the element in the pressedKey array accordingly. Finally we add our

KeyEvent to the keyEventBuffer list we defined earlier.

CHAPTER 5: An Android Game Development Framework 199

 public boolean isKeyPressed(int keyCode) {
 if (keyCode < 0 || keyCode > 127)
 return false;
 return pressedKeys[keyCode];
 }

Next we have the isKeyPressed() method, which basically implements the semantics of

Input.isKeyPressed(). We pass in an integer specifying the key code (one of the

Android KeyEvent.KEYCODE_XXX constants) and return whether that key is pressed or not.

We do so by looking up the state of the key in the pressedKey array after some range

checking. Remember that we set the elements of this array in the previous method,

which gets called on the UI thread. As we are again working with primitive types, there’s

no need for synchronization.

 public List<KeyEvent> getKeyEvents() {
 synchronized (this) {
 int len = keyEvents.size();
 for (int i = 0; i < len; i++)
 keyEventPool.free(keyEvents.get(i));
 keyEvents.clear();
 keyEvents.addAll(keyEventsBuffer);
 keyEventsBuffer.clear();
 return keyEvents;
 }
 }
}

The last method of our handler is called getKeyEvents(), and implements the semantics

of the Input.getKeyEvents() method. We start off with a juicy synchronized block again,

remembering that this method will be called from a different thread.

Next we do something very mysterious. We loop through the keyEvents array and insert

all the KeyEvents stored in it into our Pool. Remember that we fetch instances from the

Pool in the onKey() method on the UI thread. Here we reinsert them into the Pool. But

isn’t the keyEvents list empty? Yes, but only the first time we invoke that method. To

understand why that is, you have to grasp the rest of the method first.

After our mysterious Pool insertion loop, we clear the keyEvents list and fill it with the

events in our keyEventsBuffer list. Finally we clear the keyEventsBuffer list and return

the newly filled keyEvents list to the caller. What is happening here?

Let me illustrate it by giving you a simple example. We’ll examine what happens to the

keyEvents and keyEventsBuffer lists, as well as our Pool each time a new event arrives

on the UI thread or the game is fetching the events in the main thread:

UI thread: onKey() ->
 keyEvents = { }, keyEventsBuffer = {KeyEvent1}, pool = { }
Main thread: getKeyEvents() ->
 keyEvents = {KeyEvent1}, keyEventsBuffer = { }, pool { }
UI thread: onKey() ->
 keyEvents = {KeyEvent1}, keyEventsBuffer = {KeyEvent2}, pool { }
Main thread: getKeyEvents() ->
 keyEvents = {KeyEvent2}, keyEventsBuffer = { }, pool = {KeyEvent1}
UI thread: onKey() ->

CHAPTER 5: An Android Game Development Framework 200

 keyEvents = {KeyEvent2}, keyEventsBuffer = {KeyEvent1}, pool = { }

1. First we get a new event in the UI thread. There’s nothing in the Pool

yet, so a new KeyEvent instance (KeyEvent1) is created and inserted into

the keyEventsBuffer list.

2. Next we call getKeyEvents() on the main thread. It takes KeyEvent1 from

the keyEventsBuffer list and puts it into the keyEvents list it returns to

the caller.

3. We get another event on the UI thread. We still have nothing in the Pool,

so a new KeyEvent instance (KeyEvent2) is created and inserted into the

keyEventsBuffer list.

4. The main thread calls getKeyEvents() again. Now something interesting

happens. Upon entry into the method, the keyEvents list still holds

KeyEvent1. The mysterious insertion loop will place that event into our

Pool. It then clears the keyEvents list and inserts any KeyEvent into the

keyEventsBuffer, in this case KeyEvent2. We just recycled a key event.

5. Finally another key event arrives on the UI thread. This time we have a

free KeyEvent in our Pool, which we’ll happily reuse. Look mom, no

garbage collection!

This mechanism comes with one caveat, though: we have to call

KeyboardHandler.getKeyEvents() frequently or else the keyEvents list will fill up quickly,

and no objects will be returned to the Pool. As long as we remember this, all is well.

Touch Handlers
And now fragmentation hits us. In the last chapter we talked a little about the fact that

multitouch is supported on Android versions greater than 1.6 only. All the nice constants

we used in our multitouch code (e.g., MotionEvent.ACTION_POINTER_ID_MASK) are not

available to us on Android 1.5 or 1.6. While we can use them in our code just fine if we

set the build target of our project to an Android version that has this API, the application

will crash on any device running Android 1.5 or 1.6. We want our games to run on all

currently available Android versions, so how do we solve this problem?

We employ a simple trick. We write two handlers, one using the single-touch API of

Android 1.5 and another using the multitouch API of Android 2.0 and above. As long as

we don’t execute the code of the multitouch handler on a device with a lower Android

version than 2.0, we are safe. The code won’t get loaded by the VM, and it won’t throw

exceptions like crazy. All we need to do is to find out which Android version the device is

running and instantiate the proper handler. You’ll see how that works when we discuss

the AndroidInput class. For now let’s concentrate on the two handlers.

CHAPTER 5: An Android Game Development Framework 201

The TouchHandler Interface
In order to be able to use our two handler classes interchangeably, we need to define a

common interface. Listing 5–8 shows this interface, called TouchHandler.

Listing 5–8. TouchHandler.java, to Be Implemented for Android 1.5 and 1.6.

package com.badlogic.androidgames.framework.impl;

import java.util.List;

import android.view.View.OnTouchListener;

import com.badlogic.androidgames.framework.Input.TouchEvent;

public interface TouchHandler extends OnTouchListener {
 public boolean isTouchDown(int pointer);

 public int getTouchX(int pointer);

 public int getTouchY(int pointer);

 public List<TouchEvent> getTouchEvents();
}

All TouchHandlers must also implement the OnTouchListener interface, which we use to

register the handler with a View. The methods of the interface correspond to the

respective methods in the Input interface defined in Chapter 3. The first three are for

polling the state of a specific pointer, and the last one is for getting TouchEvents so we

can do event-based input handling. Note that the polling methods take a pointer ID.

The SingleTouchHandler Class
In the case of our single-touch handler, we’ll ignore any IDs other than zero. As a

refresher, let’s recall the TouchEvent class defined in Chapter 3 as part of the Input

interface:

public static class TouchEvent {
 public static final int TOUCH_DOWN = 0;
 public static final int TOUCH_UP = 1;
 public static final int TOUCH_DRAGGED = 2;

 public int type;
 public int x, y;
 public int pointer;
}

Like the KeyEvent class, it defines a couple of constants encoding the touch event’s

type, along with the x- and y-coordinates in the coordinate system of the View and the

pointer ID.

Listing 5–9 shows the implementation of the TouchHandler interface for Android 1.5 and

1.6.

CHAPTER 5: An Android Game Development Framework 202

Listing 5–9. SingleTouchHandler.java; Good with Single Touch, Not So Good with Multitouch

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class SingleTouchHandler implements TouchHandler {
 boolean isTouched;
 int touchX;
 int touchY;
 Pool<TouchEvent> touchEventPool;
 List<TouchEvent> touchEvents = new ArrayList<TouchEvent>();
 List<TouchEvent> touchEventsBuffer = new ArrayList<TouchEvent>();
 float scaleX;
 float scaleY;

We start off by letting the class implement the TouchHandler interface, which also means

that we have to implement the OnTouchListener interface. Next are a couple of members

that should look familiar. We have three members storing the current state of the

touchscreen for one finger, followed by a Pool and two lists holding TouchEvents. This is

exactly the same thing we had in the KeyboardHandler. We also have two members,

scaleX and scaleY. We’ll talk about those in a minute. We’ll use these to cope with

different screen resolutions.

NOTE: Of course, we could have made that more elegant by letting the KeyboardHandler and
SingleTouchHandler derive from a base class that handles all this pooling and

synchronization stuff. It would have complicated the explanation even more, though, so instead

we’ll just write a few more lines of code.

public SingleTouchHandler(View view, float scaleX, float scaleY) {
 PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 @Override
 public TouchEvent createObject() {
 return new TouchEvent();
 }
 };
 touchEventPool = new Pool<TouchEvent>(factory, 100);
 view.setOnTouchListener(this);

 this.scaleX = scaleX;
 this.scaleY = scaleY;
 }

CHAPTER 5: An Android Game Development Framework 203

In the constructor we register the handler as an OnTouchListener and set up the Pool we

use to recycle TouchEvents. We also store the scaleX and scaleY parameters that are

passed to the constructor (and ignore them for now).

@Override
 public boolean onTouch(View v, MotionEvent event) {
 synchronized(this) {
 TouchEvent touchEvent = touchEventPool.newObject();
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 touchEvent.type = TouchEvent.TOUCH_DOWN;
 isTouched = true;
 break;
 case MotionEvent.ACTION_MOVE:
 touchEvent.type = TouchEvent.TOUCH_DRAGGED;
 isTouched = true;
 break;
 case MotionEvent.ACTION_CANCEL:
 case MotionEvent.ACTION_UP:
 touchEvent.type = TouchEvent.TOUCH_UP;
 isTouched = false;
 break;
 }

 touchEvent.x = touchX = (int)(event.getX() * scaleX);
 touchEvent.y = touchY = (int)(event.getY() * scaleY);
 touchEventsBuffer.add(touchEvent);

 return true;
 }
 }

The onTouch() method does the same thing as the onKey() method of our

KeyboardHandler, the only difference being that we now handle TouchEvents, not

KeyEvents. All the synchronization, pooling, and MotionEvent handling are already known

to us. The only interesting thing is that we actually multiply the reported x- and y-

coordinates of a touch event by scaleX and scaleY. Remember this, as we’ll take a look

at it again later on.

@Override
 public boolean isTouchDown(int pointer) {
 synchronized(this) {
 if(pointer == 0)
 return isTouched;
 else
 return false;
 }
 }

 @Override
 public int getTouchX(int pointer) {
 synchronized(this) {
 return touchX;
 }
 }

CHAPTER 5: An Android Game Development Framework 204

 @Override
 public int getTouchY(int pointer) {
 synchronized(this) {
 return touchY;
 }
 }

The methods isTouchDown(), getTouchX(), and getTouchY() allow us to poll the

touchscreen state based on the members that we set in the onTouch() method. The only

noticeable thing about them is that they’ll only return useful data for a pointer ID with a

value zero, as we only support single-touch screens with this class.

@Override
 public List<TouchEvent> getTouchEvents() {
 synchronized(this) {
 int len = touchEvents.size();
 for(int i = 0; i < len; i++)
 touchEventPool.free(touchEvents.get(i));
 touchEvents.clear();
 touchEvents.addAll(touchEventsBuffer);
 touchEventsBuffer.clear();
 return touchEvents;
 }
 }
}

The final method, SingleTouchHandler.getTouchEvents(), should be familiar to you, and

works similarly to the KeyboardHandler.getKeyEvents() methods. Remember that we

need to call this method frequently so that the touchEvents list doesn’t get filled up.

The MultiTouchHandler
For multitouch handling, we have a class called MultiTouchHandler, as shown in Listing

5–10.

Listing 5–10. MultiTouchHandler.java (More of the Same)

package com.badlogic.androidgames.framework.impl;

import java.util.ArrayList;
import java.util.List;

import android.view.MotionEvent;
import android.view.View;

import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.Pool;
import com.badlogic.androidgames.framework.Pool.PoolObjectFactory;

public class MultiTouchHandler implements TouchHandler {
 boolean[] isTouched = new boolean[20];
 int[] touchX = new int[20];
 int[] touchY = new int[20];
 Pool<TouchEvent> touchEventPool;

CHAPTER 5: An Android Game Development Framework 205

 List<TouchEvent> touchEvents = new ArrayList<TouchEvent>();
 List<TouchEvent> touchEventsBuffer = new ArrayList<TouchEvent>();
 float scaleX;
 float scaleY;

We again let the class implement the TouchHandler interface and have a couple of

members to store the current state and events. Instead of storing the state for a single

pointer, we simply store the state of 20 pointers. We also have those mysterious scaleX

and scaleY members again.

public MultiTouchHandler(View view, float scaleX, float scaleY) {
 PoolObjectFactory<TouchEvent> factory = new PoolObjectFactory<TouchEvent>() {
 @Override
 public TouchEvent createObject() {
 return new TouchEvent();
 }
 };
 touchEventPool = new Pool<TouchEvent>(factory, 100);
 view.setOnTouchListener(this);

 this.scaleX = scaleX;
 this.scaleY = scaleY;
 }

The constructor is exactly the same as the constructor of the SingleTouchHandler: we

create a Pool for TouchEvent instances register the handler as an OnTouchListener, and

store the scaling values.

@Override
 public boolean onTouch(View v, MotionEvent event) {
 synchronized (this) {
 int action = event.getAction() & MotionEvent.ACTION_MASK;
 int pointerIndex = (event.getAction() & MotionEvent.ACTION_POINTER_ID_MASK)
>> MotionEvent.ACTION_POINTER_ID_SHIFT;
 int pointerId = event.getPointerId(pointerIndex);
 TouchEvent touchEvent;

 switch (action) {
 case MotionEvent.ACTION_DOWN:
 case MotionEvent.ACTION_POINTER_DOWN:
 touchEvent = touchEventPool.newObject();
 touchEvent.type = TouchEvent.TOUCH_DOWN;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[pointerId] = (int) (event
 .getX(pointerIndex) * scaleX);
 touchEvent.y = touchY[pointerId] = (int) (event
 .getY(pointerIndex) * scaleY);
 isTouched[pointerId] = true;
 touchEventsBuffer.add(touchEvent);
 break;

 case MotionEvent.ACTION_UP:
 case MotionEvent.ACTION_POINTER_UP:
 case MotionEvent.ACTION_CANCEL:
 touchEvent = touchEventPool.newObject();

CHAPTER 5: An Android Game Development Framework 206

 touchEvent.type = TouchEvent.TOUCH_UP;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[pointerId] = (int) (event
 .getX(pointerIndex) * scaleX);
 touchEvent.y = touchY[pointerId] = (int) (event
 .getY(pointerIndex) * scaleY);
 isTouched[pointerId] = false;
 touchEventsBuffer.add(touchEvent);
 break;

 case MotionEvent.ACTION_MOVE:
 int pointerCount = event.getPointerCount();
 for (int i = 0; i < pointerCount; i++) {
 pointerIndex = i;
 pointerId = event.getPointerId(pointerIndex);

 touchEvent = touchEventPool.newObject();
 touchEvent.type = TouchEvent.TOUCH_DRAGGED;
 touchEvent.pointer = pointerId;
 touchEvent.x = touchX[pointerId] = (int) (event
 .getX(pointerIndex) * scaleX);
 touchEvent.y = touchY[pointerId] = (int) (event
 .getY(pointerIndex) * scaleY);
 touchEventsBuffer.add(touchEvent);
 }
 break;
 }

 return true;
 }
 }

The onTouch() method looks as intimidating as in our test example in the last chapter.

All we do is marry that test code with our event pooling and synchronization here (things

we’ve already talked about in detail). The only real difference to the

SingleTouchHandler.onTouch() method is that we handle multiple pointers and set the

TouchEvent.pointer member accordingly (instead of just to zero).

@Override
 public boolean isTouchDown(int pointer) {
 synchronized (this) {
 if (pointer < 0 || pointer >= 20)
 return false;
 else
 return isTouched[pointer];
 }
 }

 @Override
 public int getTouchX(int pointer) {
 synchronized (this) {
 if (pointer < 0 || pointer >= 20)
 return 0;
 else
 return touchX[pointer];

CHAPTER 5: An Android Game Development Framework 207

 }
 }

 @Override
 public int getTouchY(int pointer) {
 synchronized (this) {
 if (pointer < 0 || pointer >= 20)
 return 0;
 else
 return touchY[pointer];
 }
 }

The polling methods isTouchDown(), getTouchX(), and getTouchY() should look familiar

as well. We perform some error checking and then fetch the corresponding pointer state

from one of the member arrays that we fill in the onTouch() method.

@Override
 public List<TouchEvent> getTouchEvents() {
 synchronized (this) {
 int len = touchEvents.size();
 for (int i = 0; i < len; i++)
 touchEventPool.free(touchEvents.get(i));
 touchEvents.clear();
 touchEvents.addAll(touchEventsBuffer);
 touchEventsBuffer.clear();
 return touchEvents;
 }
 }
}

The final method, getTouchEvents(), is again exactly the same as the corresponding

method of SingleTouchHandler.getTouchEvents().

Equipped with all those handlers, we can now implement the Input interface.

AndroidInput: The Great Coordinator
The Input implementation of our game framework ties together all the handlers we just

developed. Any method calls will be delegated to the corresponding handler. The only

interesting part of this implementation is where we choose which TouchHandler

implementation we use based on the Android version the device is running. Listing 5–11

shows you the implementation, called AndroidInput.

Listing 5–11. AndroidInput.java; Handling the Handlers with Style

package com.badlogic.androidgames.framework.impl;

import java.util.List;

import android.content.Context;
import android.os.Build.VERSION;
import android.view.View;

import com.badlogic.androidgames.framework.Input;

CHAPTER 5: An Android Game Development Framework 208

public class AndroidInput implements Input {
 AccelerometerHandler accelHandler;
 KeyboardHandler keyHandler;
 TouchHandler touchHandler;

We start off by letting the class implement the Input interface we defined in Chapter 3.

Next we find three members: an AccelerometerHandler, a KeyboardHandler, and a

TouchHandler.

public AndroidInput(Context context, View view, float scaleX, float scaleY) {
 accelHandler = new AccelerometerHandler(context);
 keyHandler = new KeyboardHandler(view);
 if(Integer.parseInt(VERSION.SDK) < 5)
 touchHandler = new SingleTouchHandler(view, scaleX, scaleY);
 else
 touchHandler = new MultiTouchHandler(view, scaleX, scaleY);
 }

These members get initialized in the constructor, which takes a Context, a View, and

those scaleX and scaleY parameters that we can happily ignore again. The

AccelerometerHandler gets instantiated via the Context parameter, and the

KeyboardHandler needs the View that gets passed in.

To decide which TouchHandler to use, we simply check the Android version the

application runs on. This can be done via the VERSION.SDK string, a constant provided by

the Android API. Why it is a string is unclear, as it directly encodes the SDK version

numbers we use in our manifest file. We therefore need to make it an integer to do some

comparisons. The first Android version to support the multitouch API was version 2.0,

which corresponds to SDK version 5. If the current device runs an Android version

below that, we instantiate the SingleTouchHandler; otherwise we use the

MultiTouchHandler. And that’s all the fragmentation we have to care about at an API

level. When we start doing OpenGL rendering, we’ll hit a few more of these

fragmentation issues—but don’t worry, they can be as easily resolved as the touch API

problems.

@Override
 public boolean isKeyPressed(int keyCode) {
 return keyHandler.isKeyPressed(keyCode);
 }

 @Override
 public boolean isTouchDown(int pointer) {
 return touchHandler.isTouchDown(pointer);
 }

 @Override
 public int getTouchX(int pointer) {
 return touchHandler.getTouchX(pointer);
 }

 @Override
 public int getTouchY(int pointer) {
 return touchHandler.getTouchY(pointer);

CHAPTER 5: An Android Game Development Framework 209

 }

 @Override
 public float getAccelX() {
 return accelHandler.getAccelX();
 }

 @Override
 public float getAccelY() {
 return accelHandler.getAccelY();
 }

 @Override
 public float getAccelZ() {
 return accelHandler.getAccelZ();
 }

 @Override
 public List<TouchEvent> getTouchEvents() {
 return touchHandler.getTouchEvents();
 }

 @Override
 public List<KeyEvent> getKeyEvents() {
 return keyHandler.getKeyEvents();
 }
}

The rest of this class is more than self-explanatory. Each method call is delegated to the

appropriate handler, which does the actual work. And with this, we have finished the

input API of our little game framework. Next we’ll move on to graphics.

AndroidGraphics and AndroidPixmap: Double
Rainbow
It’s time to get back to our most beloved topic: graphics programming. In Chapter 3 we

defined two interfaces, Graphics and Pixmap; we are now going to implement them

based on what you learned in Chapter 4. But there’s one thing we have postponed until

now: how to handle different screen sizes and resolutions.

Handling Different Screen Sizes and Resolutions
Android has supported different screen resolutions since version 1.6; it can handle

resolutions ranging from 240! 320 pixels to a much beefier 480! 854 pixels on some new

devices (in portrait mode; for landscape mode, just swap the values). In the last chapter

we already saw the effect of these different screen resolutions and physical screen

sizes: drawing with absolute coordinates and sizes given in pixels will produce

unexpected results. Figure 5–1 shows you once more what happens when we render a

100! 100-pixel rectangle with the upper-left corner at (219,379) on 480! 800 and

320! 480 screens.

CHAPTER 5: An Android Game Development Framework 210

Figure 5–1. A 100×100-pixel rectangle drawn at (219,379) on a 480×800 screen (left) and a 320×480 screen
(right)

This difference is bad for two reasons. First, we can’t just draw our game assuming a

fixed resolution. The second reason is subtler ,however. In Figure 5–1, I silently assumed

that both screens have the same density (i.e., that each pixel has the same physical size

on both devices), but this is hardly the case in reality.

Density
Density is usually specified in pixels per inch or pixels per centimeter (you’ll sometimes

also hear dots per inch, which is not technically exact). The Nexus One has a 480! 800-

pixel screen with a physical size of 8! 4.8 centimeters. The HTC Hero has a 320! 480-

pixel screen with a physical size of 6.5! 4.5 centimeters. That’s 100 pixels per centimeter

on both axes on the Nexus One, and roughly 71 pixels per centimeter on both axes on

the Hero. We can calculate the pixels per centimeter easily like this:

pixels per centimeter (on x-axis) = width in pixels / width in centimeters

or this:

pixels per centimeter (on y-axis) = height in pixels / height in centimeters

Usually we only need to calculate this on a single axis, as the physical pixels are square

(well, they’re actually three pixels, but we’ll just ignore that here).

How big would our 100! 100-pixel rectangle be in centimeters? On the Nexus One we’d

have a 1! 1-centimeter rectangle, while on the Hero we’d have a 1.4! 1.4-centimeter

rectangle. That’s something we would need to account for if we had, for example, things

CHAPTER 5: An Android Game Development Framework 211

like buttons that should be big enough for the average thumb on all screen sizes.

However, while this example makes it look like this issue could present a huge problem,

it usually doesn’t. We just need to make sure that our buttons have a good size on high-

density screens (e.g., the Nexus One). They will automatically be big enough on lower-

density screens.

Aspect Ratio
There’s also another problem we have to cope with, though: aspect ratio. The aspect

ratio of a screen is the ratio between the width and height, either in pixels or

centimeters. We can calculate that like this:

pixel aspect ratio = width in pixels / height in pixels

or this:

physical aspect ratio = width in centimeters / height in centimeters

When we use width and height here, we usually mean the width and height in landscape

mode. The Nexus One has a pixel and physical aspect ratio of ~1.66. The Hero has a

pixel and physical aspect ratio of 1.5. What does this mean? On the Nexus One we have

more pixels available on the x-axis in landscape mode relative to the height than we

have on the Hero. Figure 5–2 illustrates what this means with screenshots from Replica

Island on both devices.

NOTE: In this book we’ll use the metric system. I know that it might be a bit hard to get
comfortable with if you are used to inches and pounds. However, as we will also do a little

physics later on, which is usually defined in the metric system, it’s best get used to it now. Just

remember that 1 inch is roughly 2.54 centimeters.

CHAPTER 5: An Android Game Development Framework 212

Figure 5–2. Replica Island on the Nexus One (top) and the HTC Hero (bottom)

The Nexus One displays a tiny bit more of the world on the x-axis. Everything stays the

same on the y-axis though. Hmm, what did the creator of Replica Island do here?

Coping with Different Aspect Ratios
Replica Island performs a cheap but very useful magic trick in order to deal with the

aspect ratio problem. The game was originally designed for everything to fit on a

480! 320-pixel screen, including all the sprites (e.g., the robot and the doctor), the tiles

of the world, and the UI elements (e.g., the buttons at the bottom left and the status info

at the top of the screen). When the game is rendered on a Hero, each pixel in the sprite

bitmaps maps to exactly one pixel on the screen. On a Nexus One, everything is scaled

up while rendering, so 1 pixel of a sprite actually takes up 1.5 pixels on the screen. In

other words, a 32! 32-pixel sprite will be 48! 48 pixels big on the screen. This scaling

factor can be easily calculated by

scaling factor (on x-axis) = screen width in pixels / target width in pixels

and

scaling factor (on y-axis) = screen height in pixels / target height in pixels

CHAPTER 5: An Android Game Development Framework 213

The target width and height equal the screen resolution that the graphical assets were

designed for; in Replica Island, that’s 480! 320 pixels. For the Nexus One, this means

that we have a scaling factor of 1.66 on the x-axis and a scaling factor of 1.5 on the y-

axis. But why are the scaling factors on the two axes different?

This is due to the two screen resolutions having different aspect ratios. If we simply

stretch a 480! 320-pixel image to an 800! 480-pixel image, the original image will be

stretched on the x-axis. For most games, this won’t make too big of an impact, so we

can simply draw our graphical assets for a specific target resolution and stretch them to

the actual screen resolution on the fly while rendering (remember the

Bitmap.drawBitmap() method).

For some games, however, you might want to get a little fancier. Figure 5–3 shows

Replica Island simply scaled up from 480! 320 to 800! 480 pixels, and overlaid with a

faint image of how it actually looks.

Figure 5–3. Replica Island stretched from 480×320 to 800×480 pixels, overlaid with a faint image of how it is
actually rendered on a 800×480-pixel display

Replica Island does something very intelligent here: it performs normal stretching on the

y-axis with the scaling factor we just calculated (1.5). But instead of using the x-axis

scaling factor (1.66), which would make the image look squished, it uses the y-axis

scaling factor. This neat little trick allows all objects on the screen keep their aspect

ratio. A 32! 32-pixel sprite becomes 48! 48 pixels instead of 53! 48 pixels. However, this

also means that our coordinate system is no longer bounded between (0,0) and

(479,319). Instead it now goes from (0,0) to (533,319). And this is why we see more of

the world of Replica Island on a Nexus One than on an HTC Hero.

CHAPTER 5: An Android Game Development Framework 214

Note, however, that using this fancy method might not be appropriate for some games.

For example, having the world size depend on the screen aspect ratio could give an

unfair advantage to players with wider screens. This would be the case in a game like

Starcraft 2. Also, if you want the entire game world to fit onto a single screen (like in Mr.

Nom), it would be better to use the simpler, stretching method. With the fancier version,

we’d have blank space left over on wider screens.

A Simpler Solution
Replica Island has one advantage: it does all this stretching and scaling via OpenGL ES,

which is hardware accelerated. So far we’ve only discussed how to draw to a Bitmap

and a View via the Canvas class, which doesn’t involve hardware acceleration on the

GPU, but slow number-crunching on the CPU.

We’ll therefore perform a simple trick: we’ll create a framebuffer in the form of a Bitmap

instance that has our target resolution. This way we don’t have to worry about the actual

screen resolution when designing our graphical assets or when rendering them via code.

We just pretend that the screen resolution is the same on all devices. All our draw calls

will target this “virtual” framebuffer Bitmap via a Canvas instance. When we’re done

rendering a frame of our game, we’ll simply draw this framebuffer Bitmap to our

SurfaceView via a call to the Canvas.drawBitmap() method, which allows us to draw a

Bitmap stretched.

If we want to use the same technique as Replica Island, we just need to adjust the size

of our framebuffer on the bigger axis (i.e., on the x-axis in landscape mode, and on the

y-axis in portrait mode). We also have to make sure that we fill the extra pixels we get so

there’s no blank space.

The Implementation
So let’s summarize all this by forming a simple plan of attack:

� We design all our graphic assets for a fixed target resolution (320! 480

in Mr. Nom’s case).

� We create a Bitmap the same size as our target resolution and direct

all our drawing calls to it, effectively working in a fixed-coordinate

system.

� When we are done drawing a frame of our game, we draw our

framebuffer Bitmap stretched to the SurfaceView. On devices with a

lower screen resolution the image will be scaled down, and on devices

with a higher resolution it will be scaled up.

� We have to make sure that all the UI elements the user interacts with

are big enough at all screen densities when we do our scaling trick.

This is something we can do in the graphic asset–design phase using

the sizes of actual devices in combination with the formulas shown

previously.

CHAPTER 5: An Android Game Development Framework 215

Now that we know how we will handle different screen resolutions and densities, I can

also explain the scaleX and scaleY variables we met when we implemented the

SingleTouchHandler and MultiTouchHandler a few pages earlier.

All our game code will be tuned to work with our fixed target resolution (320! 480 pixels).

If we receive touch events on a device that has a higher or lower resolution, the x- and

y-coordinates of those events will be defined in the View’s coordinate system, not in our

target resolution coordinate system. Thus we have to transform the coordinates from

their original system to our system based on the scaling factors. Here’s how we do that:

transformed touch x = real touch x * (target pixels on x axis / real pixels on x axis)
transformed touch y = real touch y * (target pixels on y axis / real pixels on y axis)

Let’s calculate a simple example for a target resolution of 320! 480 pixels and a device

with a resolution of 480! 800 pixels. If we touch the middle of the screen, we’ll receive an

event with the coordinates (240,400). Using the two preceding formulas, we arrive at the

following, which is exactly in the middle of our target coordinate system:

transformed touch x = 240 * (320 / 480) = 160
transformed touch y = 400 * (480 / 800) = 240

Let’s do another one, assuming a real resolution of 240! 320, again touching the middle

of the screen, at (120,160):

transformed touch x = 120 * (320 / 240) = 160
transformed touch y = 160 * (480 / 320) = 240

Hurray, it works in both directions. If we multiply the real touch event coordinates by the

target factor divided by the real factor, we don’t have to care about all this transforming

in our actual game code. All the touch coordinates will be expressed in our fixed–target

coordinate system.

With that out of our way, let’s implement the last few classes of our game framework.

AndroidPixmap: Pixels for the People
According to the design of our Pixmap interface from Chapter 3, there’s not much to

implement. Listing 5–12 shows the code.

Listing 5–12. AndroidPixmap.java, a Pixmap Implementation Wrapping a Bitmap

package com.badlogic.androidgames.framework.impl;

import android.graphics.Bitmap;

import com.badlogic.androidgames.framework.Graphics.PixmapFormat;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidPixmap implements Pixmap {
 Bitmap bitmap;
 PixmapFormat format;

 public AndroidPixmap(Bitmap bitmap, PixmapFormat format) {
 this.bitmap = bitmap;

CHAPTER 5: An Android Game Development Framework 216

 this.format = format;
 }

 @Override
 public int getWidth() {
 return bitmap.getWidth();
 }

 @Override
 public int getHeight() {
 return bitmap.getHeight();
 }

 @Override
 public PixmapFormat getFormat() {
 return format;
 }

 @Override
 public void dispose() {
 bitmap.recycle();
 }
}

All we do is store the Bitmap instance that we wrap, along with its format, which is

stored as a PixmapFormat enumeration value, as defined in Chapter 3. Additionally we

implement the required methods of the Pixmap interface so we can query the width and

height of the Pixmap and its format, and also ensure that the pixels can get dumped from

RAM. Note that the bitmap member is package private, so we can access it in

AndroidGraphics, which we’ll implement now.

AndroidGraphics: Serving Our Drawing Needs
The Graphics interface we designed in Chapter 3 is also pretty lean and mean. It will

draw pixels, lines, rectangles, and Pixmaps to the framebuffer. As discussed, we’ll use a

Bitmap as our framebuffer and direct all drawing calls to it via a Canvas. It is also

responsible for creating Pixmap instances from asset files. We’ll thus also need an

AssetManager again. Listing 5–13 shows the code for our implementation of that

interface, AndroidGraphics.

Listing 5–12. AndroidGraphics.java; Implementing the Graphics Interface

package com.badlogic.androidgames.framework.impl;

import java.io.IOException;
import java.io.InputStream;

import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.graphics.BitmapFactory;
import android.graphics.BitmapFactory.Options;
import android.graphics.Canvas;

CHAPTER 5: An Android Game Development Framework 217

import android.graphics.Paint;
import android.graphics.Paint.Style;
import android.graphics.Rect;

import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Pixmap;

public class AndroidGraphics implements Graphics {
 AssetManager assets;
 Bitmap frameBuffer;
 Canvas canvas;
 Paint paint;
 Rect srcRect = new Rect();
 Rect dstRect = new Rect();

The class implements the Graphics interface. It has an AssetManager member that we’ll

use to load Bitmap instances, a Bitmap member that represents our artificial framebuffer,

a Canvas member that we’ll use to draw to the artificial framebuffer, a Paint we need for

drawing, and two Rect members we’ll need for implementing the

AndroidGraphics.drawPixmap() methods. These last three members are there so that we

don’t have to create new instances of these classes on every draw call. That would

make the garbage collector run wild.

 public AndroidGraphics(AssetManager assets, Bitmap frameBuffer) {
 this.assets = assets;
 this.frameBuffer = frameBuffer;
 this.canvas = new Canvas(frameBuffer);
 this.paint = new Paint();
 }

In the constructor we get an AssetManager and Bitmap representing our artificial

framebuffer from the outside. We store these in the respective members and additionally

create the Canvas instance that will draw to the artificial framebuffer, as well as the

Paint, which we’ll use for some of the drawing methods.

 @Override
 public Pixmap newPixmap(String fileName, PixmapFormat format) {
 Config config = null;
 if (format == PixmapFormat.RGB565)
 config = Config.RGB_565;
 else if (format == PixmapFormat.ARGB4444)
 config = Config.ARGB_4444;
 else
 config = Config.ARGB_8888;

 Options options = new Options();
 options.inPreferredConfig = config;

 InputStream in = null;
 Bitmap bitmap = null;
 try {
 in = assets.open(fileName);
 bitmap = BitmapFactory.decodeStream(in);
 if (bitmap == null)

CHAPTER 5: An Android Game Development Framework 218

 throw new RuntimeException("Couldn't load bitmap from asset '"
 + fileName + "'");
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load bitmap from asset '"
 + fileName + "'");
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 }
 }
 }

 if (bitmap.getConfig() == Config.RGB_565)
 format = PixmapFormat.RGB565;
 else if (bitmap.getConfig() == Config.ARGB_4444)
 format = PixmapFormat.ARGB4444;
 else
 format = PixmapFormat.ARGB8888;

 return new AndroidPixmap(bitmap, format);
 }

The newPixmap() method tries to load a Bitmap from an asset file, using the

PixmapFormat specified. We start off by translating the PixmapFormat into one of the

constants of the Android Config class we used in Chapter 4. Next we create a new

Options instance and set our preferred color format. We then try to load the Bitmap from

the asset via the BitmapFactory. We throw a RuntimeException if something goes wrong.

Otherwise we check what format the BitmapFactory decided to load the Bitmap with and

translate that into a PixmapFormat enumeration value. Remember that the BitmapFactory

might decide to ignore our desired color format, so we have to check afterward what it

decoded the image to. Finally we construct a new AndroidBitmap instance based on the

Bitmap we loaded and its PixmapFormat, and return it to the caller.

 @Override
 public void clear(int color) {
 canvas.drawRGB((color & 0xff0000) >> 16, (color & 0xff00) >> 8,
 (color & 0xff));
 }

The clear() method simply extracts the red, green, and blue components of the

specified 32-bit ARGB color parameter and calls the Canvas.drawRGB() method, which

will clear our artificial framebuffer with that color. This method ignores any alpha value of

the specified color, so we don’t have to extract it.

 @Override
 public void drawPixel(int x, int y, int color) {
 paint.setColor(color);
 canvas.drawPoint(x, y, paint);
 }

CHAPTER 5: An Android Game Development Framework 219

The drawPixel() method draws a pixel to our artificial framebuffer via the

Canvas.drawPoint() method. We first set the color of our paint member variable and

pass that to the drawing method in addition to the x- and y-coordinates of the pixel.

 @Override
 public void drawLine(int x, int y, int x2, int y2, int color) {
 paint.setColor(color);
 canvas.drawLine(x, y, x2, y2, paint);
 }

The drawLine() method draws the given line to the artificial framebuffer, again using the

paint member to specify the color when calling the Canvas.drawLine() method.

 @Override
 public void drawRect(int x, int y, int width, int height, int color) {
 paint.setColor(color);
 paint.setStyle(Style.FILL);
 canvas.drawRect(x, y, x + width - 1, y + width - 1, paint);
 }

The drawRect() method first sets the Paint member’s color and style attributes so that

we can draw a filled, colored rectangle. In the actual Canvas.drawRect() call, we then

have to transform the x, y, width, and height parameters to the coordinates of the top-

left and bottom-right corners of the rectangle. For the top-left corner we simply use the x

and y parameters. For the bottom-right-corner coordinates, we add the width and height

to x and y and subtract 1. For example, imagine if we were to render a rectangle with an

x and y of (10,10) and a width and height of 2 and 2. If we don’t subtract 1, the resulting

rectangle on the screen would be 3! 3 pixels in size.

 @Override
 public void drawPixmap(Pixmap pixmap, int x, int y, int srcX, int srcY,
 int srcWidth, int srcHeight) {
 srcRect.left = srcX;
 srcRect.top = srcY;
 srcRect.right = srcX + srcWidth - 1;
 srcRect.bottom = srcY + srcHeight - 1;

 dstRect.left = x;
 dstRect.top = y;
 dstRect.right = x + srcWidth - 1;
 dstRect.bottom = y + srcHeight - 1;

 canvas.drawBitmap(((AndroidPixmap) pixmap).bitmap, srcRect, dstRect,
 null);
 }

The drawPixmap() method, which allows drawing a portion of a Pixmap, first sets up the

source and destination Rect members that get used in the actual drawing call. As with

drawing a rectangle, we have to translate the x- and y-coordinates together with the

width and height to the top-left and bottom-right corners. We again have to subtract 1,

or else we’ll overshoot by 1 pixel. Next we perform the actual drawing via the

Canvas.drawBitmap() method, which will automatically do blending as well if the Pixmap

we draw has a PixmapFormat.ARGB4444 or PixmapFormat.ARGB8888 color depth. Note that

we have to cast the Pixmap parameter to an AndroidPixmap in order to be able to fetch

CHAPTER 5: An Android Game Development Framework 220

the bitmap member for drawing with the Canvas. That’s a little bit nasty, but we can be

sure that the Pixmap instance passed in is actually an AndroidPixmap.

@Override
 public void drawPixmap(Pixmap pixmap, int x, int y) {
 canvas.drawBitmap(((AndroidPixmap)pixmap).bitmap, x, y, null);
 }

The second drawPixmap() method just draws the complete Pixmap to the artificial

framebuffer at the given coordinates. We again do some casting to get to the Bitmap

member of the AndroidPixmap.

@Override
 public int getWidth() {
 return frameBuffer.getWidth();
 }

 @Override
 public int getHeight() {
 return frameBuffer.getHeight();
 }
}

Finally we have the methods getWidth() and getHeight(), which simply return the size

of the artificial framebuffer the AndroidGraphics instance stores and renders to

internally.

There’s one more class we need to implement related to graphics:

AndroidFastRenderView.

AndroidFastRenderView: Loop, Strech, Loop, Stretch
The name of this class should already give away what lies ahead. In the last chapter we

discussed using a SurfaceView to perform continuous rendering in a separate thread

that could also house our game’s main loop. We developed a very simple class called

FastRenderView, which derived from the SurfaceView class, we made sure we play nice

with the activity life cycle, and we set up a thread in which we constantly rendered to the

SurfaceView via a Canvas.

We’ll reuse this FastRenderView class and augment it to do a few more things:

� It will keep a reference to a Game instance from which it can get the

active Screen. We will constantly call the Screen.update() and

Screen.present() methods from within the FastRenderView thread.

� It will keep track of the delta time between frames that gets passed to

the active Screen.

� It will take the artificial framebuffer that the AndroidGraphics instance

draws to and draw it to the SurfaceView, scaled if necessary.

Listing 5–13 shows the implementation of the AndroidFastRenderView class.

CHAPTER 5: An Android Game Development Framework 221

Listing 5–13. AndroidFastRenderView.java, a Threaded SurfaceView Executing Our Game Code

package com.badlogic.androidgames.framework.impl;

import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class AndroidFastRenderView extends SurfaceView implements Runnable {
 AndroidGame game;
 Bitmap framebuffer;
 Thread renderThread = null;
 SurfaceHolder holder;
 volatile boolean running = false;

This should look very familiar. We just need to add two more members: an AndroidGame

instance and a Bitmap instance representing our artificial framebuffer. The other

members are the same as in our FastRenderView from Chapter 3.

 public AndroidFastRenderView(AndroidGame game, Bitmap framebuffer) {
 super(game);
 this.game = game;
 this.framebuffer = framebuffer;
 this.holder = getHolder();
 }

In the constructor we simply call the base class’s constructor with the AndroidGame

parameter (which is an Activity; more on that in a bit) and store the parameters in the

respective members. We also get a SurfaceHolder again, as we did previously.

 public void resume() {
 running = true;
 renderThread = new Thread(this);
 renderThread.start();
 }

The resume() method is an exact copy of the FastRenderView.resume() method, so we

don’t need to go over that again. It just makes sure that our thread plays nice with the

activity life cycle.

 public void run() {
 Rect dstRect = new Rect();
 long startTime = System.nanoTime();
 while(running) {
 if(!holder.getSurface().isValid())
 continue;

 float deltaTime = (System.nanoTime()-startTime) / 1000000000.0f;

CHAPTER 5: An Android Game Development Framework 222

 startTime = System.nanoTime();

 game.getCurrentScreen().update(deltaTime);
 game.getCurrentScreen().present(deltaTime);

 Canvas canvas = holder.lockCanvas();
 canvas.getClipBounds(dstRect);
 canvas.drawBitmap(framebuffer, null, dstRect, null);
 holder.unlockCanvasAndPost(canvas);
 }
 }

The run() method has a few more bells and whistles. The first addition is the tracking of

the delta time between each frame. We use System.nanoTime() for this, which returns

the current time in nanoseconds as a long.

NOTE: A nanosecond is one-billionth of a second.

In each loop iteration, we start off by taking the difference between the last loop

iteration’s start time and the current time. To make working with that delta time easier,

we convert it to seconds. Next we save the current time stamp, which we’ll use in the

next loop iteration to calculate the next delta time. With the delta time at hand, we call

the current Screen’s update() and present() methods, which will update the game logic

and render things to the artificial framebuffer. Finally we get ahold of the Canvas for the

SurfaceView and draw the artificial framebuffer. The scaling is performed automatically

in case the destination rectangle we pass to the Canvas.drawBitmap() method is smaller

or bigger than the framebuffer.

Note that we’ve used a shortcut here to get a destination rectangle that stretches over

the whole SurfaceView via the Canvas.getClipBounds() method. It will set the top and

left members of dstRect to 0 and 0, and the bottom and right members to the actual

screen dimensions (480! 800 in portrait mode on a Nexus One). The rest of the method

is exactly the same as what we had in our FastRenderView test. It just makes sure that

the thread stops when the activity is paused or destroyed.

public void pause() {
 running = false;
 while(true) {
 try {
 renderThread.join();
 break;
 } catch (InterruptedException e) {
 // retry
 }
 }
 }
}

The last method of this class, pause(), is again exactly the same as the

FastRenderView.pause() method. It simply terminates the rendering/main loop thread

and waits for it to completely die before returning.

CHAPTER 5: An Android Game Development Framework 223

We are nearly done with our framework. The last piece of the puzzle is the

implementation of the Game interface.

AndroidGame: Tying Everything Together
Our little game development framework is nearly complete. All we need to do is tie together

the loose ends by implementating the Game interface we designed in Chapter 3, using the

classes we created in the previous sections of this chapter. Here’s a list of responsibilities:

� Perform window management. In our context, that means setting up

an activity and an AndroidFastRenderView, and handling the activity life

cycle in a clean way.

� Use and manage a WakeLock so that the screen does not get dimmed.

� Instantiate and hand out references to Graphics, Audio, FileIO, and

Input to interested parties.

� Manage Screens and integrate them with the activity life cycle.

Our general goal is it to have a single class called AndroidGame from which we

can derive. All we want to do is implement the Game.getStartScreen() method

later on to start off our game, like this:

public class MrNom extends AndroidGame {
 @Override
 public Screen getStartScreen() {
 return new MainMenu(this);
 }
}

I hope you can see why it pays off to design a nice little framework before diving

headfirst into programming the actual game. We can reuse this framework for all future

games that are not to graphically intensive. So let’s discuss Listing 5–14, which shows

the AndroidGame class.

Listing 5–14. AndroidGame.java; Tying Everything Together

package com.badlogic.androidgames.framework.impl;

import android.app.Activity;
import android.content.Context;
import android.content.res.Configuration;
import android.graphics.Bitmap;
import android.graphics.Bitmap.Config;
import android.os.Bundle;
import android.os.PowerManager;
import android.os.PowerManager.WakeLock;
import android.view.Window;
import android.view.WindowManager;

import com.badlogic.androidgames.framework.Audio;
import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.Game;

CHAPTER 5: An Android Game Development Framework 224

import com.badlogic.androidgames.framework.Graphics;
import com.badlogic.androidgames.framework.Input;
import com.badlogic.androidgames.framework.Screen;

public abstract class AndroidGame extends Activity implements Game {
 AndroidFastRenderView renderView;
 Graphics graphics;
 Audio audio;
 Input input;
 FileIO fileIO;
 Screen screen;
 WakeLock wakeLock;

The class definition starts off by letting AndroidGame extend the Activity class and

implement the Game interface. Next we define a couple of members that should be

familiar. The first member is the AndroidFastRenderView, which we’ll draw to, and which

will manage our main loop thread for us. The Graphics, Audio, Input, and FileIO

members will be set to instances of AndroidGraphics, AndroidAudio, AndroidInput, and

AndroidFileIO—no big surprise there. The next member holds the currently active

Screen. Finally there’s a member that holds a WakeLock, which we’ll use to keep the

screen from dimming.

@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 boolean isLandscape = getResources().getConfiguration().orientation ==
Configuration.ORIENTATION_LANDSCAPE;
 int frameBufferWidth = isLandscape ? 480 : 320;
 int frameBufferHeight = isLandscape ? 320 : 480;
 Bitmap frameBuffer = Bitmap.createBitmap(frameBufferWidth,
 frameBufferHeight, Config.RGB_565);

 float scaleX = (float) frameBufferWidth
 / getWindowManager().getDefaultDisplay().getWidth();
 float scaleY = (float) frameBufferHeight
 / getWindowManager().getDefaultDisplay().getHeight();

 renderView = new AndroidFastRenderView(this, frameBuffer);
 graphics = new AndroidGraphics(getAssets(), frameBuffer);
 fileIO = new AndroidFileIO(getAssets());
 audio = new AndroidAudio(this);
 input = new AndroidInput(this, renderView, scaleX, scaleY);
 screen = getStartScreen();
 setContentView(renderView);

 PowerManager powerManager = (PowerManager)
getSystemService(Context.POWER_SERVICE);
 wakeLock = powerManager.newWakeLock(PowerManager.FULL_WAKE_LOCK, "GLGame");
 }

CHAPTER 5: An Android Game Development Framework 225

The onCreate() method, which is the familiar startup method of the Activity class,

starts off by calling the base class’s onCreate() method, as it is required. Next we make

the Activity full-screen, as we did in a couple of tests in the previous chapter already.

In the next few lines we set up our artificial framebuffer. Depending on the orientation of

the activity, we either want to use a 320! 480 framebuffer (portrait mode) or a 480! 320

framebuffer (landscape mode). To determine what screen orientation the Activity uses,

we fetch the orientation member from a class called Configuration, which we get via a

call to getResources().getConfiguration(). Based on the value of that member, we

then set the framebuffer size and instantiate a Bitmap, which we’ll hand to the

AndroidFastRenderView and AndroidGraphics instances a little later.

NOTE: The Bitmap instance has an RGB565 color format. This way we don’t waste memory,

and all our drawing is a little faster.

We also calculate the scaleX and scaleY values that the SingleTouchHandler and

MultiTouchHandler classes will use to transform the touch event coordinates to our

fixed-coordinate system.

Next we instantiate the AndroidFastRenderView, AndroidGraphics, AndroidAudio,

AndroidInput, and AndroidFileIO with the necessary constructor arguments. Finally we

call the getStartScreen() method, which our actual game will implement, and set the

AndroidFastRenderView as the content view of the Activity. All these helper classes we

just instantiated will do some more work in the background, of course. The

AndroidInput class will tell the touch handler it selected to hook up with the

AndroidFastRenderView, for example.

 @Override
 public void onResume() {
 super.onResume();
 wakeLock.acquire();
 screen.resume();
 renderView.resume();
 }

Next up is the onResume() method of the Activity class, which we override. As usual,

the first thing we do is call the superclass method because we are good citizens in

Android land. Next we acquire the WakeLock and make sure the current Screen gets

informed of the fact that the game (and thereby the activity) has just been resumed.

Finally we tell the AndroidFastRenderView to resume the rendering thread, which will also

kick off our game’s main loop, in which we tell the current Screen to update and present

itself in each iteration.

 @Override
 public void onPause() {
 super.onPause();
 wakeLock.release();
 renderView.pause();
 screen.pause();

 if (isFinishing())

CHAPTER 5: An Android Game Development Framework 226

 screen.dispose();
 }

The onPause() method first calls the superclass method again. Next it releases the

WakeLock and makes sure that the rendering thread is terminated. If we didn’t terminate

the thread before calling the current Screen’s onPause(), we could run into concurrency

issues since the UI thread and the main loop thread would both access the Screen at the

same time. Once we are sure the main loop thread is no longer alive, we tell the current

Screen that it should pause itself. In case the Activity is going to be destroyed, we also

inform the Screen of that event so it can do any cleanup work necessary.

 @Override
 public Input getInput() {
 return input;
 }

 @Override
 public FileIO getFileIO() {
 return fileIO;
 }

 @Override
 public Graphics getGraphics() {
 return graphics;
 }

 @Override
 public Audio getAudio() {
 return audio;
 }

The getInput(), getFileIO(), getGraphics(), and getAudio() methods should need no

explanation. We simply return the respective instances to the caller. The caller will

always be one of our Screen implementations of our game later on.

 @Override
 public void setScreen(Screen screen) {
 if (screen == null)
 throw new IllegalArgumentException("Screen must not be null");

 this.screen.pause();
 this.screen.dispose();
 screen.resume();
 screen.update(0);
 this.screen = screen;
 }

The setScreen() method we inherit from the Game interface looks simple at first glance.

We start off with some old-school null-checking, as we can’t allow a null Screen. Next

we tell the current Screen to pause and dispose of itself so it can make room for the new

Screen. The new Screen is asked to resume itself and update itself once with a delta time

of zero. Finally we set the Screen member to the new Screen.

CHAPTER 5: An Android Game Development Framework 227

Let’s think about who will call this method, and when. When we designed Mr. Nom, we

identified all the transitions between various Screen instances. We’ll usually call the

AndroidGame.setScreen() method in the update() method of one of these Screen

instances.

Say we have a main menu Screen where we check if the Play button is pressed in the

update() method. If that is the case, we’ll want to transition to the next Screen, and we

can do so by calling the AndroidGame.setScreen() method from within the

MainMenu.update() method with a brand-new instance of that next Screen. The MainMenu

screen will get back control after the call to AndroidGame.setScreen(), and should

immediately return to the caller, as it is no longer the active Screen. In this case the caller

is the AndroidFastRenderView in the main loop thread. If you check the portion of the

main loop responsible for updating and rendering the active Screen, you’ll see that the

update() method would be called on the MainMenu class, but the present() method

would be called on the new current Screen. This would be bad, as we defined the Screen

interface in a way that guarantees that the resume() and update() methods will be called

at least once before the Screen is asked to present itself. And that’s why we call these

two methods in the AndroidGame.setScreen() method on the new Screen. All is taken

care of for us by the mighty AndroidGame class.

public Screen getCurrentScreen() {
 return screen;
 }
}

The last method is called getCurrentScreen(). It simply returns the currently active

Screen.

We’ve now created an easy-to-use Android game development framework. All we need

to do now is implement the Screens of our game. We can also reuse the framework for

any future games we can think of, as long as they do not need immense graphics

power. If we need that, we have to start using OpenGL ES. However, we only need to

replace the graphics part of our framework for that. All the other classes for audio, input,

and file I/O can be reused.

Summary
In this chapter, we implemented a full-fledged 2D Android game development

framework from scratch that we can reuse for all our future games (as long as they are

graphically modest). Great care was taken to achieve a good, extensible design. We

could take this code we have and replace the rendering portions with OpenGL ES,

making Mr. Nom go 3D.

With all this boilerplate code in place, let’s concentrate on what we are here for: writing

games!

	Chapter 5 An Android Game Development Framework
	Plan of Attack
	The AndroidFileIO Class
	AndroidAudio, AndroidSound, and AndroidMusic:Crash, Bang, Boom!
	AndroidInput and AccelerometerHandler
	AccelerometerHandler: Which Side Is Up?
	The Pool Class: Because Reuse is Good for You!
	KeyboardHandler: Up, Up, Down, Down, Left, Right . . .
	Touch Handlers
	The TouchHandler Interface
	The SingleTouchHandler Class
	The MultiTouchHandler

	AndroidInput: The Great Coordinator

	AndroidGraphics and AndroidPixmap: Double Rainbow
	Handling Different Screen Sizes and Resolutions
	Density
	Aspect Ratio
	Coping with Different Aspect Ratios
	A Simpler Solution
	The Implementation

	AndroidPixmap: Pixels for the People
	AndroidGraphics: Serving Our Drawing Needs
	AndroidFastRenderView: Loop, Strech, Loop, Stretch

	AndroidGame: Tying Everything Together
	Summary

