

577

577

 Chapter

Droid Invaders: the Grand
Finale
We are finally ready to create the last game of this book. This time we are going to

develop a simple action/arcade game. We’ll adapt an old classic and give it a nice 3D

look, using the techniques we talked about in the last two chapters.

Core Game Mechanics
As you might have guessed from the title of this chapter we are about to implement a

variation of Space Invaders, a 2D game in its original form (illustrated in Figure 12–1).

Figure 12–1.The original Space Invaders arcade game

Here’s a little surprise: we’ll stay in 2D as well for the most part. All our objects will have

3D bounds in the form of bounding spheres and positions in 3D space. However,

12

M. Zechner, Beginning Android Games

© Mario Zechner 2011

CHAPTER 12: Droid Invaders: the Grand Finale 578

movement will only happen in the x/z plane, which makes some things a little easier.

Figure 12–2 shows you our adapted 3D Space Invaders world. The mock-up was

created with Wings3D.

Figure 12–2. Our 3D game field mock-up

Let’s define the game mechanics:

� We have a ship flying in the bottom of the playfield capable of

navigating on the x-axis only.

� The movement is limited to the boundaries of the playfield. When the

ship reaches the left or right boundary of the game field, it simply

stops moving.

� We want to give the player the option of either using the accelerometer

to navigate the ship or on-screen buttons for left and right movement.

� The ship can fire one shot per second. The player shoots by pressing

an on-screen button.

� At the bottom of the game field there are three shields, each

composed of five cubes.

� Invaders start off with the configuration shown in Figure 12–2, and

then move to the left for some distance, then some distance in the

positive z-direction, and then to the right for some distance. There will

be 32 invaders in total, making up four rows of eight invaders.

� Invaders will shoot randomly.

� When a shot hits the ship, the ship explodes and loses one life.

� When a shot hits a shield, the shield disappears permanently.

CHAPTER 12: Droid Invaders: the Grand Finale 579

� When a shot hits an invader, it explodes. The score is increased by 10

points.

� When all invaders are destroyed a new wave of invaders appears,

moving slightly faster than the last wave.

� When an invader directly collides with a ship the game is over.

� When the ship has lost all its lives the game is over.

That’s not an overwhelming list, is it? All operations can essentially be performed in 2D

(in the x/z instead of the x/y plane). We’ll still use 3D bounding spheres though. Maybe

you want to extend the game to real 3D after we are done with its first iteration. Let’s

move on to the back story.

A Backstory and Art Style
We’ll call the game Droid Invaders in reference to Android and Space Invaders. That’s

cheap, but we don’t plan on producing an AAA title for now. In the tradition of classic

shooters like Doom, the backstory will be minimal. It goes like this:

Invaders from outer space attack Earth. You are the sole person
capable of fending off the evil forces.

That was good enough for Doom and Quake, so it’s good enough for Droid Invaders as well.

The art style will be a little retro when it comes to the GUI, using the same old-fashioned

font we used in Chapter 9 for Super Jumper. The game world itself will be displayed in

fancy 3D with textured and lighted 3D models. Figure 12–3 shows what the game screen

will look like.

Figure 12–3. The Droid Invaders mockup. Fancy!

The music will be a rock/metal mixture, and sound effects will match the scenario.

CHAPTER 12: Droid Invaders: the Grand Finale 580

Screens and Transitions
Since we have already implemented help screens and high-score screens twice, in

Chapter 6’s Mr. Nom and in Chapter 9’s Super Jumper, we’ll refrain from doing so for

Droid Invaders; it’s always the same principle, and a player should immediately know

what to do once presented with the game screen, anyway. Instead, we’ll add a settings

screen that allows the player to select the type of input (multitouch or accelerometer)

and disable or enable sound. Here’s the list of screens of Droid Invaders:

� A main screen with a logoand Play and Settings options.

� A game screen that will immediately start with the game (no more

ready signal!) and also handle paused states as well as display a

“Game Over” text once the ship has no more lives.

� A settings screen that displays three icons representing the

configuration options (multitouch, accelerometer, and sound).

That’s again very similar to what we had in the previous two games. Figure 12–4 shows

all the screens and transitions.

Figure 12–4. Screens and transitions of Droid Invaders

CHAPTER 12: Droid Invaders: the Grand Finale 581

Defining the Game World
One of the joys of working in 3D is that we are free from the shackles of pixels. We can

define our world in whatever units we want. The game mechanics we outlined dictate a

limited playing field, so let’s start by defining that field. Figure 12–5 shows you the

playing field area in our game’s world.

Figure 12–5. The playing field

Everything in our world will happen inside this boundary in the x/z plane. Coordinates

will be limited on the x-axis from –14 to 14 and on the z-axis from 0 to –15. The ship will

be able to move along the bottom edge of the playing field, from (–14,0,0) to (14,0,0).

Next we should define the sizes of all objects in our world:

� The ship will have a radius of 0.5 units.

� The invaders have a slightly bigger radius of 0.75 units. This makes

them easier to hit.

� The shield blocks each have a radius of 0.5 units.

� The shots each have a radius of 0.1 units.

How did I arrive at those values? I simply divided the game world up in cells of 1 unit by

1 unit and thought about how big each game element has to be in relation to the size of

the playing field. Usually you arrive at those measures through a little experimentation or

by taking real-world units like meters. In Droid Invaders we don’t use meters but

nameless units.

The radii we just defined can be directly translated to bounding spheres of course. In

case of the shield blocks and ship we cheat a little, as those are clearly not spherical.

Thanks to the 2D properties of our world we get away with this little trick, though. In

case of the invaders the sphere is actually a pretty good approximation.

CHAPTER 12: Droid Invaders: the Grand Finale 582

We also have to define the velocities of our moving objects:

� The ship can move with a maximum velocity of 20 units per second.

As in Super Jumper, we’ll usually have a lower velocity as it is

dependent on the phone’s tilt.

� The invaders move with 1 unit per second initially. Each wave will

increase this speed slightly.

� The shots move with 10 units per second.

With these definitions we can already start implementing the logic of our game world. It

turns out, however, that creating the assets is directly related to the units we defined

here.

Creating the Assets
As in the previous games we have two kinds of graphical assets: UI elements such as

logos or buttons, and the models of the different types of objects of our game.

The UI Assets
We’ll again create our UI assets relative to some target resolution. Our game will be run

in landscape mode, so we simply choose a target resolution of 480�320 pixels. The

screens in Figure 12–4 already show all the elements we have in our UI: a logo, different

menu items, a couple of buttons, and some text. For the text we’ll reuse the font we

used in Super Jumper. We’ve already done the compositing of all these things in

previous games, and you’ve learned that putting them into a texture atlas can be rather

beneficial for performance. So here is the texture atlas we’ll use for Droid Invaders,

containing all the UI elements as well as the font we’ll use for all the screens in the

game, shown in Figure 12–6.

CHAPTER 12: Droid Invaders: the Grand Finale 583

Figure 12–6. The UI element atlas with buttons, the logo, and our font. It is stored in the file items.png, 512×512
pixels

It’s essentially the same concept as we used in Super Jumper. We also have a

background that will be rendered in all screens. Figure 12–7 shows the image.

Figure 12–7. The background, stored in background.jpg. 512×512 pixels

As you can see back in Figure 12–4, we’ll only use the top-left region of this image to

render a full frame (480�320 pixels).

CHAPTER 12: Droid Invaders: the Grand Finale 584

That’s all the UI elements we need. Let’s look at our 3D models and their textures.

The Game Assets
As I said in Chapter 11, this book can’t possibly go into detail how to create 3D models

with software like Wings3D. If you want to create your own models, you’ll have to

choose an application to work with and plow through some tutorials, often freely

available on the net. For the models of Droid Invaders I used Wings3D and simply

exported them to the OBJ format we can load with our framework. All models are

composed of triangles only and have texture coordinates and normals. For some of

them we don’t need texture coordinates, but it doesn’t hurt to have them.

The ship model and its texture are illustrated in Figure 12–8.

Figure 12–8. The ship model in Wings3D (ship.obj) and its texture (ship.png, 256×256 pixels)

The crucial thing is that the ship in Figure 12–8 does roughly have the “radius” we

outlined in the previous section. We don’t need to scale anything or transform sizes and

positions from one coordinate system to the other. The ship’s model is defined with the

same units as its bounding sphere!

Figure 12–9 shows you the invader model and its texture.

CHAPTER 12: Droid Invaders: the Grand Finale 585

Figure 12–9. The invader model (invader.obj) and its texture (invader.png, 256×256 pixels)

The invader model follows the same principles as the ship model. We have one OBJ file

storing the vertex positions, texture coordinates, normals and faces, and a texture

image.

The shield blocks and shots are modeled as cubes and are stored in the files shield.obj

and shot.obj. Although they have texture coordinates assigned, we don’t actually use

texture mapping when rendering them. We just draw them as (translucent) objects with a

specific color (blue in the case of the shield blocks, yellow for the shots).

Finally there are the explosions (see Figure 12–3 again). How do we model those? We

don’t. We’ll do what we did in 2D and simply draw a rectangle with a proper z-position

in our 3D world, texture mapping it with one frame from a texture image containing an

explosion animation. It’s the same principle we used for the animated objects in Super

Jumper. The only difference is that we will draw the rectangle at a z-position smaller

than zero (wherever the exploding object is located). We can even abuse the

SpriteBatcher class to do this! Hurray for OpenGL ES. Figure 12–10 shows you the

texture.

CHAPTER 12: Droid Invaders: the Grand Finale 586

Figure 12–10. The explosion animation texture (explode.png, 256×256 pixels)

Each frame of the animation is 64�64 pixels in size. All we need to do is generate

TextureRegions for each frame and put them into an Animation instance we can use to

fetch the correct frame for a given animation time, just as we did for the squirrels or Bob

in Super Jumper.

Sound and Music
For the sound effects I used sfxr again. The explosion sound effect I found on the web.

It’s a public domain sound effect so we can use it in Droid Invaders. The music I

recorded myself. With real instruments. Yes, I’m that old-school. Here’s the list of audio

files of Droid Invaders.

� click.ogg, a click sound used for the menu items/buttons

� shot.ogg, a shot sound

� explosion.ogg, an explosion

� music.mp3, the rock/metal song I wrote for Droid Invaders

CHAPTER 12: Droid Invaders: the Grand Finale 587

Plan of Attack
With our game mechanics, design, and assets in place we can start coding. As usual

we’ll create a new project, copy over all of our framework code, make sure we have a

proper manifest and icons, and so on. By now you should have a pretty good grasp of

how to set things up. All the code of Droid Invaders will be placed in the package

com.badlogic.androidgames.droidinvaders. The assets are stored in the assets/

directory of the Android project. We’ll use the exact same general structure that we used

in Super Jumper: a default activity deriving from GLGame, a couple of GLScreen instances

implementing the different screens and transitions as shown in Figure 12–4, classes for

loading assets and storing settings as well as the classes for our game objects and a

rendering class that can draw our game world in 3D. Let’s start with the Assets class.

The Assets Class
Well, we’ve done this before, so don’t expect any surprises. Listing 12–1 shows you the

code of the Assets class.

Listing 12–1. Assets.java, Loading and Storing Assets as Always

package com.badlogic.androidgames.droidinvaders;

import com.badlogic.androidgames.framework.Music;
import com.badlogic.androidgames.framework.Sound;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.Font;
import com.badlogic.androidgames.framework.gl.ObjLoader;
import com.badlogic.androidgames.framework.gl.Texture;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.gl.Vertices3;
import com.badlogic.androidgames.framework.impl.GLGame;

public class Assets {
 public static Texture background;
 public static TextureRegion backgroundRegion;
 public static Texture items;
 public static TextureRegion logoRegion;
 public static TextureRegion menuRegion;
 public static TextureRegion gameOverRegion;
 public static TextureRegion pauseRegion;
 public static TextureRegion settingsRegion;
 public static TextureRegion touchRegion;
 public static TextureRegion accelRegion;
 public static TextureRegion touchEnabledRegion;
 public static TextureRegion accelEnabledRegion;
 public static TextureRegion soundRegion;
 public static TextureRegion soundEnabledRegion;
 public static TextureRegion leftRegion;
 public static TextureRegion rightRegion;

CHAPTER 12: Droid Invaders: the Grand Finale 588

 public static TextureRegion fireRegion;
 public static TextureRegion pauseButtonRegion;
 public static Font font;

We have a couple of members storing the texture of the UI elements as well as the

background image. We also store a couple of TextureRegions as well as a Font. This

covers all our UI needs.

 public static Texture explosionTexture;
 public static Animation explosionAnim;
 public static Vertices3 shipModel;
 public static Texture shipTexture;
 public static Vertices3 invaderModel;
 public static Texture invaderTexture;
 public static Vertices3 shotModel;
 public static Vertices3 shieldModel;

We also have textures and Vertices3 instances that store the models and textures of

our game’s objects. We also have an Animation instance that holds the frames of the

explosion animation.

 public static Music music;
 public static Sound clickSound;
 public static Sound explosionSound;
 public static Sound shotSound;

Finally we have a couple of Music and Sound instances storing the game’s audio.

 public static void load(GLGame game) {
 background = new Texture(game, "background.jpg", true);
 backgroundRegion = new TextureRegion(background, 0, 0, 480, 320);
 items = new Texture(game, "items.png", true);
 logoRegion = new TextureRegion(items, 0, 256, 384, 128);
 menuRegion = new TextureRegion(items, 0, 128, 224, 64);
 gameOverRegion = new TextureRegion(items, 224, 128, 128, 64);
 pauseRegion = new TextureRegion(items, 0, 192, 160, 64);
 settingsRegion = new TextureRegion(items, 0, 160, 224, 32);
 touchRegion = new TextureRegion(items, 0, 384, 64, 64);
 accelRegion = new TextureRegion(items, 64, 384, 64, 64);
 touchEnabledRegion = new TextureRegion(items, 0, 448, 64, 64);
 accelEnabledRegion = new TextureRegion(items, 64, 448, 64, 64);
 soundRegion = new TextureRegion(items, 128, 384, 64, 64);
 soundEnabledRegion = new TextureRegion(items, 190, 384, 64, 64);
 leftRegion = new TextureRegion(items, 0, 0, 64, 64);
 rightRegion = new TextureRegion(items, 64, 0, 64, 64);
 fireRegion = new TextureRegion(items, 128, 0, 64, 64);
 pauseButtonRegion = new TextureRegion(items, 0, 64, 64, 64);
 font = new Font(items, 224, 0, 16, 16, 20);

The load() method starts of by creating the UI-related stuff. It’s just some texture

loading and region creation as usual.

 explosionTexture = new Texture(game, "explode.png", true);
 TextureRegion[] keyFrames = new TextureRegion[16];
 int frame = 0;
 for (int y = 0; y < 256; y += 64) {

CHAPTER 12: Droid Invaders: the Grand Finale 589

 for (int x = 0; x < 256; x += 64) {
 keyFrames[frame++] = new TextureRegion(explosionTexture, x, y, 64, 64);
 }
 }
 explosionAnim = new Animation(0.1f, keyFrames);

Next we create the Texture for the explosion animation along with the TextureRegions

for each frame and the Animation instance. We simply loop from the top left to the

bottom right in 64-pixel increments and create one TextureRegion per frame. All the

regions are then fed to an Animation instance, whose frame duration is 0.1 second.

 shipTexture = new Texture(game, "ship.png", true);
 shipModel = ObjLoader.load(game, "ship.obj");
 invaderTexture = new Texture(game, "invader.png", true);
 invaderModel = ObjLoader.load(game, "invader.obj");
 shieldModel = ObjLoader.load(game, "shield.obj");
 shotModel = ObjLoader.load(game, "shot.obj");

Next we load the models and textures for the ship, the invaders, the shield blocks, and

the shots. Pretty simple with our mighty ObjLoader, isn’t it? Note that we use

mipmapping for the Textures.

 music = game.getAudio().newMusic("music.mp3");
 music.setLooping(true);
 music.setVolume(0.5f);
 if (Settings.soundEnabled)
 music.play();

 clickSound = game.getAudio().newSound("click.ogg");
 explosionSound = game.getAudio().newSound("explosion.ogg");
 shotSound = game.getAudio().newSound("shot.ogg");
 }

Finally we load the music and sound effects of the game. You can see a reference to the

Settings class, which is essentially the same as in Super Jumper and Mr. Nom. This

method will be called once when our game is started in the DroidInvaders class we’ll

implement in a minute. Once all assets are loaded we can forget about most of them,

except for the Textures, which we need to reload if the game is paused and then

resumed.

 public static void reload() {
 background.reload();
 items.reload();
 explosionTexture.reload();
 shipTexture.reload();
 invaderTexture.reload();
 if (Settings.soundEnabled)
 music.play();
 }

That’s where the reload() method comes in. We’ll call this method in the

DroidInvaders.onResume() method so that our textures will be reloaded and the music

will be unpaused.

 public static void playSound(Sound sound) {
 if (Settings.soundEnabled)

CHAPTER 12: Droid Invaders: the Grand Finale 590

 sound.play(1);
 }
}

Finally we have the same convenience method we had in Super Jumper that will ease

the pain of playing back a sound effect a little. When the user disabled sound we just

don’t play anything in this method.

NOTE Although this method of loading and managing assets is easy to implement, it can become
a mess if you have more than a handful of assets. Another issue is that sometimes not all assets
will fit into memory all at once. For simple games like the ones we’ve developed in his book the
method is fine. I often use it in my games as well. For larger games you have to consider a more

elaborate asset management strategy.

The Settings Class
As with the Assets class we can again reuse what we have written for the previous

games to some extent. We now store an additional boolean that tells us whether the

user wants to use the touchscreen or the accelerometer for moving the ship. We also

drop the high-score support, as we don’t keep track of those. As an exercise you can of

course reintroduce both the high-score screen and the saving of those scores to the SD

card. Listing 12–2 shows you the code.

Listing 12–2. Settings.java, Same Old, Same Old

package com.badlogic.androidgames.droidinvaders;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import com.badlogic.androidgames.framework.FileIO;

public class Settings {
 public static boolean soundEnabled = true;
 public static boolean touchEnabled = true;
 public final static String file = ".droidinvaders";

We store whether sounds are enabled as well as whether the user wants to use touch

input to navigate the ship or not. The settings will be stored in the file .droidinvaders on

the SD card.

 public static void load(FileIO files) {
 BufferedReader in = null;
 try {
 in = new BufferedReader(new InputStreamReader(files.readFile(file)));
 soundEnabled = Boolean.parseBoolean(in.readLine());
 touchEnabled = Boolean.parseBoolean(in.readLine());

CHAPTER 12: Droid Invaders: the Grand Finale 591

 } catch (IOException e) {
 // :(It's ok we have defaults
 } catch (NumberFormatException e) {
 // :/ It's ok, defaults save our day
 } finally {
 try {
 if (in != null)
 in.close();
 } catch (IOException e) {
 }
 }
 }

There is nothing in this section we need to go into really; we’ve done this before. We try

to read the two booleans from the file on the SD card. If that fails, we fall back to the

default values.

 public static void save(FileIO files) {
 BufferedWriter out = null;
 try {
 out = new BufferedWriter(new OutputStreamWriter(
 files.writeFile(file)));
 out.write(Boolean.toString(soundEnabled));
 out.write("\n");
 out.write(Boolean.toString(touchEnabled));
 } catch (IOException e) {
 } finally {
 try {
 if (out != null)
 out.close();
 } catch (IOException e) {
 }
 }
 }
}

Saving is again very boring. We just store whatever we have and if that fails ignore the

error silently. This is another good place for improvement, as you’ll probably want to let

the user know that something went wrong.

The Main Activity
As usual we have a main activity that derives from the GLGame class. It is responsible for

loading the assets through a call to Assets.load() on startup as well as pausing and

resuming the music when the activity is paused or resumed. As the start screen we just

return the MainMenuScreen, which we will implement shortly. One thing to remember is

the definition of the activity in the manifest file. Make sure you have the orientation set to

landscape! Listing 12–3 shows you the code.

Listing 12–3. DroidInvaders.java, the Main Activity

package com.badlogic.androidgames.droidinvaders;

import javax.microedition.khronos.egl.EGLConfig;

CHAPTER 12: Droid Invaders: the Grand Finale 592

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Screen;
import com.badlogic.androidgames.framework.impl.GLGame;

public class DroidInvaders extends GLGame {
 boolean firstTimeCreate = true;

 @Override
 public Screen getStartScreen() {
 return new MainMenuScreen(this);
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 super.onSurfaceCreated(gl, config);
 if (firstTimeCreate) {
 Settings.load(getFileIO());
 Assets.load(this);
 firstTimeCreate = false;
 } else {
 Assets.reload();
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if (Settings.soundEnabled)
 Assets.music.pause();
 }
}

That’s exactly the same as in Super Jumper. On a call to getStartScreen() we return a

new instance of the MainMenuScreen we’ll write next. In onSurfaceCreated() we make

sure our assets are reloaded and in onPause() we pause the music if it is playing.

As you can see, there are a lot of things that get repeated once we have a good idea

how to approach implementing a simple game. Think about how you could reduce the

boilerplate code even more by moving things to the framework!

The Main Menu Screen
We’ve already written many trivial screens in the previous games. Droid Invaders also

has some of these. The principle is always the same: offer some UI elements to click

and trigger transitions or configuration changes and display some information. The main

menu screen presents only the logo and the Play and Settings options shown in Figure

12–4. Touching one of these buttons triggers a transition to the GameScreen or the

SettingsScreen. Listing 12–4 shows the code.

CHAPTER 12: Droid Invaders: the Grand Finale 593

Listing 12–4. MainMenuScreen.java, the Main Menu Screen

package com.badlogic.androidgames.droidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class MainMenuScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Vector2 touchPoint;
 Rectangle playBounds;
 Rectangle settingsBounds;

As usual we need a camera to set up our viewport and virtual target resolution of

480�320 pixels. We use a SpriteBatcher to render the UI elements and background

image. The Vector2 and Rectangle instances will help us to decide whether a touch hit a

button or not.

 public MainMenuScreen(Game game) {
 super(game);

 guiCam = new Camera2D(glGraphics, 480, 320);
 batcher = new SpriteBatcher(glGraphics, 10);
 touchPoint = new Vector2();
 playBounds = new Rectangle(240 - 112, 100, 224, 32);
 settingsBounds = new Rectangle(240 - 112, 100 - 32, 224, 32);
 }

In the constructor we setup the camera and SpriteBatcher as we always do. We also

instantiate the Vector2 and the Rectangles, using the position and width and height of

the two elements on screen in our 480�320 target resolution.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for(int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if(event.type != TouchEvent.TOUCH_UP)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if(OverlapTester.pointInRectangle(playBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new GameScreen(game));

CHAPTER 12: Droid Invaders: the Grand Finale 594

 }
 if(OverlapTester.pointInRectangle(settingsBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new SettingsScreen(game));
 }
 }
 }

In the update() method we fetch the touch events and check for “touch-up” events. If

there is such an event we transform its real coordinates to the coordinate system the

camera sets up. All that’s left is checking the touch point against the two rectangles

bounding the menu entries. If one of them is hit we play the click sound and transition to

the respective screen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 240, 384, 128, Assets.logoRegion);
 batcher.drawSprite(240, 100, 224, 64, Assets.menuRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 }

The present() method does the same thing we did in most screens of Super Jumper.

We clear the screen and set up the projection matrix via our camera. We enable

texturing and then immediately render the background via the SpriteBatcher and

TextureRegion defined in the Assets class. The menu items have translucent areas, so

we enable blending before we render them.

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

CHAPTER 12: Droid Invaders: the Grand Finale 595

The rest of the class consists of boilerplate methods that don’t do anything. Texture

reloading is done in the DroidInvaders activity, so there isn’t anything left to take care of

in the MainMenuScreen.

The Settings Screen
The settings screen offers the player to change the input method as well as enable or

disable audio. We indicate this by three different icons (see Figure 12–4). Touching either

the hand or the tilted phone will enable the respective input method. The icon for the

currently active input method will have a gold color. For the audio icon we do the same

as in the previous games.

The choices of the user are reflected by setting the respective boolean values in the

Settings class. We also make sure that these settings are instantly saved to the SD card

each time on of them changes via a call to Settings.save(). Listing 12–5 shows you the

code.

Listing 12–5. SettingsScreen.java, the Settings Screen

package com.badlogic.androidgames.droidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class SettingsScreen extends GLScreen {
 Camera2D guiCam;
 SpriteBatcher batcher;
 Vector2 touchPoint;
 Rectangle touchBounds;
 Rectangle accelBounds;
 Rectangle soundBounds;
 Rectangle backBounds;

As usual we have a camera and SpriteBatcher to render our UI elements and the

background. For checking whether a touch event hit a button, we also store a vector

and rectangles for the three buttons on screen.

 public SettingsScreen(Game game) {
 super(game);
 guiCam = new Camera2D(glGraphics, 480, 320);
 batcher = new SpriteBatcher(glGraphics, 10);
 touchPoint = new Vector2();

CHAPTER 12: Droid Invaders: the Grand Finale 596

 touchBounds = new Rectangle(120 - 32, 160 - 32, 64, 64);
 accelBounds = new Rectangle(240 - 32, 160 - 32, 64, 64);
 soundBounds = new Rectangle(360 - 32, 160 - 32, 64, 64);
 backBounds = new Rectangle(32, 32, 64, 64);
 }

In the constructor we again just set up all the members of the screen. No rocket surgery

involved here.

 @Override
 public void update(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type != TouchEvent.TOUCH_UP)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if (OverlapTester.pointInRectangle(touchBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.touchEnabled = true;
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(accelBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.touchEnabled = false;
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(soundBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 Settings.soundEnabled = !Settings.soundEnabled;
 if (Settings.soundEnabled) {
 Assets.music.play();
 } else {
 Assets.music.pause();
 }
 Settings.save(game.getFileIO());
 }
 if (OverlapTester.pointInRectangle(backBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The update() method fetches the touch events and checks whether a “touch-up” event

has been registered. If so, it transforms the touch coordinates to the camera’s

coordinate system. With these coordinates it tests the various rectangles to decide what

action to take.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 guiCam.setViewportAndMatrices();

CHAPTER 12: Droid Invaders: the Grand Finale 597

 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();

 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 280, 224, 32, Assets.settingsRegion);
 batcher.drawSprite(120, 160, 64, 64,
 Settings.touchEnabled ? Assets.touchEnabledRegion : Assets.touchRegion);
 batcher.drawSprite(240, 160, 64, 64,
 Settings.touchEnabled ? Assets.accelRegion
 : Assets.accelEnabledRegion);
 batcher.drawSprite(360, 160, 64, 64,
 Settings.soundEnabled ? Assets.soundEnabledRegion : Assets.soundRegion);
 batcher.drawSprite(32, 32, 64, 64, Assets.leftRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 }

The render() method also does the same thing as the MainMenuScreen.render()

method. We render the background and buttons with texturing and blending where

needed. Based on the current settings we decide which TextureRegion to use to render

the three settings buttons.

 @Override
 public void pause() {
 }

 @Override
 public void resume() {
 }

 @Override
 public void dispose() {
 }
}

The rest of the class is again composed of a few boilerplate methods with no

functionality whatsoever.

Before we can create the GameScreen we have to first implement the logic and rendering

of our world. Model-View-Controller to the rescue.

CHAPTER 12: Droid Invaders: the Grand Finale 598

 The Simulation Classes
As usual we’ll create a single class for each object in our world. We have the following:

� A ship

� Invaders

� Shots

� Shield Blocks

The orchestration is performed by an all-knowing World class. As you saw in the last

chapter, there’s really not such a huge difference between 2D and 3D when it comes to

object representation. Instead of GameObject and DynamicObject, we’ll now use

GameObject3D and DynamicObject3D. The only difference is that we use Vector3 instances

instead of Vector2 instances to store positions, velocities, and accelerations, and that

we use bounding spheres instead of bounding rectangles to represent the shapes of our

objects. All that’s left to do is implement the behavior of the different objects in our

world.

The Shield Class
From our game mechanics definition we know the size and behavior of our shield

blocks. They just sit there in our world at some location, waiting to be annihilated by a

shot either from our ship or an invader. There’s not a lot of logic in them, so the code is

rather concise. Listing 12–6 shows you a shield block’s internals.

Listing 12–6. Shield.java, the Shield Block Class

package com.badlogic.androidgames.droidinvaders;

import com.badlogic.androidgames.framework.GameObject3D;

public class Shield extends GameObject3D {
 static float SHIELD_RADIUS = 0.5f;

 public Shield(float x, float y, float z) {
 super(x, y, z, SHIELD_RADIUS);
 }
}

We defined the shield’s radius and initialize its position and bounding sphere according

to the constructor parameters. That’s all there is to it!

The Shot Class
The shot class is equally simplistic. It derives from DynamicGameObject3D, as it is actually

moving. Listing 12–7 shows you the code.

CHAPTER 12: Droid Invaders: the Grand Finale 599

Listing 12–7. Shot.java, the Shot Class

package com.badlogic.androidgames.droidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

public class Shot extends DynamicGameObject3D {
 static float SHOT_VELOCITY = 10f;
 static float SHOT_RADIUS = 0.1f;

 public Shot(float x, float y, float z, float velocityZ) {
 super(x, y, z, SHOT_RADIUS);
 velocity.z = velocityZ;
 }

 public void update(float deltaTime) {
 position.z += velocity.z * deltaTime;
 bounds.center.set(position);
 }
}

We again define some constants, namely the shot velocity and its radius. The

constructor takes a shot’s initial position as well as its velocity on the z-axis. Wait, didn’t

we just define the velocity as a constant? Yes, but that would let our shot travel in the

direction of the positive z-axis only. That’s OK for shots fired by the invaders, but the

shots of our ship must travel in the opposite direction. When we create a shot (outside of

this class) we know which direction the shot should travel in. So the shot has its velocity

set by its creator.

The update() method just does the usual point-mass physics. We don’t have any

acceleration involved and thus only need to add the constant velocity multiplied by the

delta time to the shot’s position. The crucial part is that we also update the position of

the bounding sphere’s center in accordance with the shot’s position. Otherwise the

bounding sphere would not move along with our shot.

The Ship Class
The Ship class is responsible for updating the ship’s position, keeping it within the

bounds of the game field and keeping track of the state it is in. It can either be alive or

exploding. In both cases we keep track of the amount of time the ship has been in that

state. This state time can then be later used to do animations, for example, just as we

did it in Super Jumper and its WorldRenderer class. The ship will get its current velocity

from the outside based on the user input, either accelerometer readings as we did it for

Bob, or based on a constant depending on what on-screen buttons are being pressed.

Additionally, the ship will keep track of the number of lives it has and offer us a way to

tell it that it has been killed. Listing 12–8 shows you the code.

Listing 12–8. Ship.java, the Ship Class

package com.badlogic.androidgames.droidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

CHAPTER 12: Droid Invaders: the Grand Finale 600

public class Ship extends DynamicGameObject3D {
 static float SHIP_VELOCITY = 20f;
 static int SHIP_ALIVE = 0;
 static int SHIP_EXPLODING = 1;
 static float SHIP_EXPLOSION_TIME = 1.6f;
 static float SHIP_RADIUS = 0.5f;

We start off with a couple of constants defining the maximum ship velocity, two states

(alive and exploding), the amount of time it takes the ship to fully explode, and the ship’s

bounding sphere radius. We also let the class derive from DynamicGameObject3D since it

has a position and bounding sphere as well as a velocity. The acceleration vector stores

in a DynamicGameObject3D will again be unused.

 int lives;
 int state;
 float stateTime = 0;

Next we have the members, consisting of two integers to keep track of the number of

lives the ship has and its states (either SHIP_ALIVE or SHIP_EXPLODING). The last member

keeps track of how many seconds the ship has been in its current state.

 public Ship(float x, float y, float z) {
 super(x, y, z, SHIP_RADIUS);
 lives = 3;
 state = SHIP_ALIVE;
 }

The constructor performs the usual super class constructor call and initializes some of

the members. Our ship will have a total of three lives.

 public void update(float deltaTime, float accelY) {
 if (state == SHIP_ALIVE) {
 velocity.set(accelY / 10 * SHIP_VELOCITY, 0, 0);
 position.add(velocity.x * deltaTime, 0, 0);
 if (position.x < World.WORLD_MIN_X)
 position.x = World.WORLD_MIN_X;
 if (position.x > World.WORLD_MAX_X)
 position.x = World.WORLD_MAX_X;
 bounds.center.set(position);
 } else {
 if (stateTime >= SHIP_EXPLOSION_TIME) {
 lives--;
 stateTime = 0;
 state = SHIP_ALIVE;
 }
 }
 stateTime += deltaTime;
 }

The update() method is pretty simple. It takes the delta time as well as the current

accelerometer reading on the y-axis of the device (remember, we are in landscape

mode, so the accelerometer y-axis is our screen’s x-axis). If the ship is alive, we set its

velocity based on the accelerometer value (which will be in the range –10 to 10) just as

CHAPTER 12: Droid Invaders: the Grand Finale 601

we did for Bob in Super Jumper. Additionally, we update its position based on the

current velocity. Next we check whether the ship has left the boundaries of the playing

field, using two constants we’ll define in our World class later on. When the position is

fixed up we can finally update the center of the bounding sphere of the ship.

In case the ship is exploding we check for how long that’s been the case. After 1.6

seconds in the exploding state the ship is finished exploding, loses one life, and goes

back to the alive state.

Finally we just update the stateTime member based on the given delta time.

 public void kill() {
 state = SHIP_EXPLODING;
 stateTime = 0;
 velocity.x = 0;
 }
}

The last kill() method will be called by the World class if it determines a collision

between the ship and a shot or an invader. It will set the state to exploding, reset the

state time and make sure that the ship’s velocity is zero on all axes (we never set the y-

and z-component of the velocity vector, since we only move on the x-axis).

The Invader Class
Invaders are just floating in space according to a predefined pattern. Figure 12–11

shows you this pattern.

Figure 12–11. Movement of the invaders. Left, down, right, down, left, down, right, down…

An invader follows an extremely simplistic movement pattern. From its initial position it

first moves to the right for some distance. Next it moves downward (which means in the

CHAPTER 12: Droid Invaders: the Grand Finale 602

direction of the positive z-axis on our playing field), again for a specified distance. Once

done with that it will start moving to the right, basically backtracking to the same x-

coordinate it was before it started moving left.

The left and right movement distances are always the same, except in the beginning.

Figure 12–11 illustrates the movement of the top-left invader. Its first left movement is

shorter than all subsequent movements to the left or right. The horizontal movement

distance is half the playing field width, 14 units in our case. For the first horizontal

movement the distance an invader has to travel is half of that, 7 units.

What we have to do is keep track of the direction an invader is moving in and how far he

has moved in that direction already. If he reaches the movement distance for the given

movement state (14 units for horizontal movement, 1 unit for vertical movement) it

switches to the next movement state. All invaders will have their movement distance set

to half the playing field’s width initially. Look again at Figure 12–11 to make sure why

that works! This will make the invaders sort of bounce off the edges of the playing field

to the left and right.

Invaders also have a constant velocity. Well, actually the velocity will increase each time

we generate a new wave of invaders in case all invaders of the current wave are dead.

We can achieve this by simply multiplying this default velocity by some constant which

is set from outside, namely the World class responsible for updating all invaders.

Finally, we also have to keep track of the state of the invader, which can again be either

alive or exploding. We’ll use the same mechanism as in case of the ship, with a state

and a state time. Listing 12–9 shows you the code.

Listing 12–9. Invader.java, the Invader Class

package com.badlogic.androidgames.droidinvaders;

import com.badlogic.androidgames.framework.DynamicGameObject3D;

public class Invader extends DynamicGameObject3D {
 static final int INVADER_ALIVE = 0;
 static final int INVADER_DEAD = 1;
 static final float INVADER_EXPLOSION_TIME = 1.6f;
 static final float INVADER_RADIUS = 0.75f;
 static final float INVADER_VELOCITY = 1;
 static final int MOVE_LEFT = 0;
 static final int MOVE_DOWN = 1;
 static final int MOVE_RIGHT = 2;

We start with some constants, defining the state of an invader, the duration of its

explosion, its radius and default velocity, as well as three constants that allow us to keep

track of what direction the invader is currently moving in.

 int state = INVADER_ALIVE;
 float stateTime = 0;
 int move = MOVE_LEFT;
 boolean wasLastStateLeft = true;
 float movedDistance = World.WORLD_MAX_X / 2;

CHAPTER 12: Droid Invaders: the Grand Finale 603

We keep track of an invader’s state, state time, movement direction, and movement

distance, which we set to half the playing field width initially. We also keep track of

whether the last horizontal movement was to the left or not. This allows us to decide

which direction the invader should go once it has finished its vertical movement on the

z-axis.

 public Invader(float x, float y, float z) {
 super(x, y, z, INVADER_RADIUS);
 }

The constructor just performs the usual setup of the invader’s position and bounding

ship via the super class constructor.

 public void update(float deltaTime, float speedMultiplier) {
 if (state == INVADER_ALIVE) {
 movedDistance += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (move == MOVE_LEFT) {
 position.x -= deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > World.WORLD_MAX_X) {
 move = MOVE_DOWN;
 movedDistance = 0;
 wasLastStateLeft = true;
 }
 }
 if (move == MOVE_RIGHT) {
 position.x += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > World.WORLD_MAX_X) {
 move = MOVE_DOWN;
 movedDistance = 0;
 wasLastStateLeft = false;
 }
 }
 if (move == MOVE_DOWN) {
 position.z += deltaTime * INVADER_VELOCITY * speedMultiplier;
 if (movedDistance > 1) {
 if (wasLastStateLeft)
 move = MOVE_RIGHT;
 else
 move = MOVE_LEFT;
 movedDistance = 0;
 }
 }

 bounds.center.set(position);
 }

 stateTime += deltaTime;
 }

The update() method takes the current delta time and speed multiplier used to make

new waves of invaders move faster. We only perform the movement if the invader is

alive, of course.

We start off by calculating how many units the invader will travel in this update and

increase the movedDistance member accordingly. If it moves to the left we update the

CHAPTER 12: Droid Invaders: the Grand Finale 604

position directly by subtracting the movement velocity to the x-coordinate of the

position multiplied by the delta time and speed multiplier. If it has moved far enough we

tell it to start moving vertically, by setting the move member to MOVE_DOWN. We also set

the wasLastStateLeft to true so that we know that after the down movement is finished

we have to move to the right.

We do exactly the same for handling movement to the right. The only difference is that

we subtract the movement velocity from the position’s x-coordinate and set the

wasLastStateLeft to false once the movement distance has been reached.

If we move downward we manipulate the z-coordinate of the invader’s position and

again check how far we’ve been moving in that direction. If we reached the movement

distance for downward movement we switch the movement state to either MOVE_LEFT or

MOVE_RIGHT depending on the last horizontal movement direction encoded in

wasLastStateLeft member. Once we are done updating the invaders position we can

set the position of the bounding sphere, as we did for the ship. Finally we update the

current state time and consider the update to be done.

 public void kill() {
 state = INVADER_DEAD;
 stateTime = 0;
 }
}

The kill() method serves the same purpose as the kill() method of the Ship class. It

allows us to tell the invader that it should start dying now. All we do is set its state to

INVADER_DEAD and reset its state time. The invader will then not move anymore but only

update its state time based on the current delta time.

The World Class
The World class is the mastermind in all of this. It stores the ship, the invaders, and the

shots and is responsible for updating them and checking collisions. It’s exactly the same

thing as in Super Jumper with some minor differences. The initial placement of the

shield blocks as well as the invaders is also a responsibility of the World class. We also

create a WorldListener interface to inform any outside parties of events within the world,

such as an explosion or a shot that’s been fired. This will allow us to play sound effects,

just like in Super Jumper. Let’s go through its code one method at a time. Listing 12–10

shows you the code.

Listing 12–10. World.java, the World Class, Tying Everything Together

package com.badlogic.androidgames.droidinvaders;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import com.badlogic.androidgames.framework.math.OverlapTester;

public class World {

CHAPTER 12: Droid Invaders: the Grand Finale 605

 public interface WorldListener {
 public void explosion();

 public void shot();
 }

We want outside parties to know when an explosion took place or a shot was fired. For

this we define a listener interface, which we can implement and register with a World

instance that will be called when one of these events happen. Exactly like in Super

Jumper, just with different events.

 final static float WORLD_MIN_X = -14;
 final static float WORLD_MAX_X = 14;
 final static float WORLD_MIN_Z = -15;

We also have a couple of constants that define the extents of our world, as discussed in

the “Defining the Game World” section.

 WorldListener listener;
 int waves = 1;
 int score = 0;
 float speedMultiplier = 1;
 final List<Shot> shots = new ArrayList<Shot>();
 final List<Invader> invaders = new ArrayList<Invader>();
 final List<Shield> shields = new ArrayList<Shield>();
 final Ship ship;
 long lastShotTime;
 Random random;

The world keeps track of a couple of things. We have a listener that we’ll invoke when

an explosion happens or a shot is fired. We also keep track of how many waves of

invaders the player already has destroyed. The score member keeps track of the current

score, and the speedMultiplier allows us to speed up the movement of the invaders

(remember the Invaders.update() method). We also store lists of shots, invaders, and

shield blocks currently alive in our world. Finally we have an instance of a Ship and also

store the last time a shot was fired by the ship. We will store this time in nanoseconds as

returned by System.nanoTime(), hence the long data type. The Random instance will come

in handy when we want to decide whether an invader should fire a shot or not.

 public World() {
 ship = new Ship(0, 0, 0);
 generateInvaders();
 generateShields();
 lastShotTime = System.nanoTime();
 random = new Random();
 }

In the constructor we create the Ship at its initial position, generate the invaders and

shields, and initialize the rest of the members.

 private void generateInvaders() {
 for (int row = 0; row < 4; row++) {
 for (int column = 0; column < 8; column++) {
 Invader invader = new Invader(-WORLD_MAX_X / 2 + column * 2f,
 0, WORLD_MIN_Z + row * 2f);

CHAPTER 12: Droid Invaders: the Grand Finale 606

 invaders.add(invader);
 }
 }
 }

The generateInvaders() method just creates a grid of eight by four invaders, arranged

as in Figure 12–11.

 private void generateShields() {
 for (int shield = 0; shield < 3; shield++) {
 shields.add(new Shield(-10 + shield * 10 - 1, 0, -3));
 shields.add(new Shield(-10 + shield * 10 + 0, 0, -3));
 shields.add(new Shield(-10 + shield * 10 + 1, 0, -3));
 shields.add(new Shield(-10 + shield * 10 - 1, 0, -2));
 shields.add(new Shield(-10 + shield * 10 + 1, 0, -2));
 }
 }

The generateShields() class does pretty much the same: instantiating three shields

composed of five shield blocks each, laid out as in Figure 12–2.

 public void setWorldListener(WorldListener worldListener) {
 this.listener = worldListener;
 }

We also have a setter method to set the listener of the World.

 public void update(float deltaTime, float accelX) {
 ship.update(deltaTime, accelX);
 updateInvaders(deltaTime);
 updateShots(deltaTime);

 checkShotCollisions();
 checkInvaderCollisions();

 if (invaders.size() == 0) {
 generateInvaders();
 waves++;
 speedMultiplier += 0.5f;
 }
 }

The update() method is surprisingly simple. It takes the current delta time as well as the

reading on the accelerometer’s y-axis, which we’ll pass to Ship.update(). Once the ship

has updated we call updateInvaders() and updateShots(), which are responsible for

updating those two types of objects. After all objects in the world have been updated we

can start checking for a collision. The checkShotCollision() method [??] will check

collisions between any shots and the ship and/or invaders.

Finally, we check whether all invaders are dead, in which case we regenerate a new

wave of invaders. For the love of the garbage collector we could have reused the old

Invader instances, for example via a Pool. However, to keep it simple we just create new

instances. The same is true for shots as well, by the way. Given the small number of

objects we create in one game session, the GC is unlikely to fire. If you want to make the

CHAPTER 12: Droid Invaders: the Grand Finale 607

GC really happy, just use a Pool to reuse dead invaders and shots. Also note that we

increase the speed multiplier here!

 private void updateInvaders(float deltaTime) {
 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 invader.update(deltaTime, speedMultiplier);

 if (invader.state == Invader.INVADER_ALIVE) {
 if (random.nextFloat() < 0.001f) {
 Shot shot = new Shot(invader.position.x,
 invader.position.y,
 invader.position.z,
 Shot.SHOT_VELOCITY);
 shots.add(shot);
 listener.shot();
 }
 }

 if (invader.state == Invader.INVADER_DEAD &&
 invader.stateTime > Invader.INVADER_EXPLOSION_TIME) {
 invaders.remove(i);
 i--;
 len--;
 }
 }
 }

The updateInvaders() method has a couple of responsibilities. It loops through all

invaders and calls their update() method. Once an Invader instance is updated we

check whether it is alive. In that case we give it a chance to fire a shot by generating a

random number. If that number is below 0.001 a shot is fired. This means that each

invader has a 0.1% change of firing a shot each frame. If that happens we instantiate a

new shot, set its velocity so that it moves in the direction of the positive z-axis, and

inform that listener of that event. If the Invader is dead and is done exploding, we simply

remove it from our current list of invaders.

 private void updateShots(float deltaTime) {
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 shot.update(deltaTime);
 if (shot.position.z < WORLD_MIN_Z ||
 shot.position.z > 0) {
 shots.remove(i);
 i--;
 len--;
 }
 }
 }

The updateShots() method is simple as well. We loop through all shots, update them

and check whether each one has left the playing field, in which case we remove it from

our shots list.

CHAPTER 12: Droid Invaders: the Grand Finale 608

 private void checkInvaderCollisions() {
 if (ship.state == Ship.SHIP_EXPLODING)
 return;

 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 if (OverlapTester.overlapSpheres(ship.bounds, invader.bounds)) {
 ship.lives = 1;
 ship.kill();
 return;
 }
 }
 }

In the checkInvaderCollisions() method we check whether any of the invaders has

collided with the ship. That’s a pretty simple affair since all we need to do is loop

through all invaders and check for overlap between each one’s bounding sphere and the

ship’s bounding sphere. According to our game mechanics definition, the game ends if

the ship collides with an invader. That’s why we set the ship’s lives to 1 before we call

the Ship.kill() method. After that call the ship’s live member is set to 0, which we’ll

use in another method to check for the game-over state.

 private void checkShotCollisions() {
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 boolean shotRemoved = false;

 int len2 = shields.size();
 for (int j = 0; j < len2; j++) {
 Shield shield = shields.get(j);
 if (OverlapTester.overlapSpheres(shield.bounds, shot.bounds)) {
 shields.remove(j);
 shots.remove(i);
 i--;
 len--;
 shotRemoved = true;
 break;
 }
 }
 if (shotRemoved)
 continue;

 if (shot.velocity.z < 0) {
 len2 = invaders.size();
 for (int j = 0; j < len2; j++) {
 Invader invader = invaders.get(j);
 if (OverlapTester.overlapSpheres(invader.bounds,
 shot.bounds)
 && invader.state == Invader.INVADER_ALIVE) {
 invader.kill();
 listener.explosion();
 score += 10;
 shots.remove(i);

CHAPTER 12: Droid Invaders: the Grand Finale 609

 i--;
 len--;
 break;
 }
 }
 } else {
 if (OverlapTester.overlapSpheres(shot.bounds, ship.bounds)
 && ship.state == Ship.SHIP_ALIVE) {
 ship.kill();
 listener.explosion();
 shots.remove(i);
 i--;
 len--;
 }
 }
 }
 }

The checkShotCollisions() method is a little bit more complex. It loops through each

Shot instance and checks for overlap between it and a shield block, an invader or the

ship. Shield blocks can be hit by shots either fired by the ship or an invader. An invader

can only be hit by a shot fired by the ship. And the ship can only be hit by a shot fired by

an invader. To distinguish whether a shot was fired by a ship or invader, all we need to

do is look at its z-velocity. If it is positive it moves toward the ship and was therefore

fired by an invader. If it is negative it was fired by the ship.

 public boolean isGameOver() {
 return ship.lives == 0;
 }

The isGameOver() method just tells an outside party if the ship has lost all its lives.

 public void shoot() {
 if (ship.state == Ship.SHIP_EXPLODING)
 return;

 int friendlyShots = 0;
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 if (shots.get(i).velocity.z < 0)
 friendlyShots++;
 }

 if (System.nanoTime() - lastShotTime > 1000000000 || friendlyShots == 0) {
 shots.add(new Shot(ship.position.x, ship.position.y,
 ship.position.z, -Shot.SHOT_VELOCITY));
 lastShotTime = System.nanoTime();
 listener.shot();
 }
 }
}

Finally there’s the shoot() method. It will be called from outside each time the Fire

button is pressed by the user. In the game mechanics section we said that a shot can be

fired by the ship every second or if there’s no ship shot on the field yet. The ship can’t

CHAPTER 12: Droid Invaders: the Grand Finale 610

fire if it explodes of course so that’s the first thing we check. Next we run through all the

Shots and check if one of them is a ship shot. If that’s not the case we can immediately

shoot. Otherwise we check when the last shot was fired. If more than a second has

passed since the last shot, we fire a new one. This time we set the velocity to –

Shot.SHOT_VELOCITY so that the shot moves in the direction of the negative z-axis

toward the invaders. As always we also invoke the listener to inform it of the event.

And that’s all the classes making up our game world! Compare that to what we had in

Super Jumper. The principles are nearly the same and the code looks quite similar.

Droid Invaders is of course a very simple game so we can get away with simple

solutions like using bounding spheres for everything. For many simple 3D games that’s

all we need, though. On to the last two bits of our game: the GameScreen and the

WorldRenderer class!

The GameScreen Class
Once the game transitions to the GameScreen class the player can immediately start

playing without having to state that she is ready. The only states we have to care for are

tthese:

� The running state where we render the background, the world, and the

UI elements as in Figure 12–4.

� The paused state where we render the background, the world, and the

paused menu, again as in Figure 12–4.

� The game-over state, where we render pretty much the same thing.

We’ll again follow the same method we used in Super Jumper and have different

update() and present() methods for each of the three states.

The only interesting part of this class is how we handle the user input to move the ship.

We want our player to be able to control the ship with either on-screen buttons or the

accelerometer. We can read the Settings.touchEnabled field to figure out what the user

wants in that regard. Depending on which input method is active, we either render the

on-screen buttons or not and also have to pass the proper accelerometer values to the

World.update() method for the ship to move.

With the on-screen buttons we of course don’t use the accelerometer values but instead

just pass a constant artificial acceleration value to the World.update() method. It has to

be in the range –10 (left) to 10 (right). After a little experimentation I arrived at a value of –

5 for left movement and 5 for right movement via the on-screen buttons.

The last interesting bit of this class is the way we combine rendering the 3D game world

and the 2D UI elements. Let’s take a look at the code of the GameScreen class in Listing

12–11.

CHAPTER 12: Droid Invaders: the Grand Finale 611

Listing 12–11. GameScreen.java, the Game Screen

package com.badlogic.androidgames.droidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.droidinvaders.World.WorldListener;
import com.badlogic.androidgames.framework.Game;
import com.badlogic.androidgames.framework.Input.TouchEvent;
import com.badlogic.androidgames.framework.gl.Camera2D;
import com.badlogic.androidgames.framework.gl.FPSCounter;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.impl.GLScreen;
import com.badlogic.androidgames.framework.math.OverlapTester;
import com.badlogic.androidgames.framework.math.Rectangle;
import com.badlogic.androidgames.framework.math.Vector2;

public class GameScreen extends GLScreen {
 static final int GAME_RUNNING = 0;
 static final int GAME_PAUSED = 1;
 static final int GAME_OVER = 2;

As usual we have a couple of constants encoding the screen’s current state.

 int state;
 Camera2D guiCam;
 Vector2 touchPoint;
 SpriteBatcher batcher;
 World world;
 WorldListener worldListener;
 WorldRenderer renderer;
 Rectangle pauseBounds;
 Rectangle resumeBounds;
 Rectangle quitBounds;
 Rectangle leftBounds;
 Rectangle rightBounds;
 Rectangle shotBounds;
 int lastScore;
 int lastLives;
 int lastWaves;
 String scoreString;
 FPSCounter fpsCounter;

The members of the GameScreen are also business as usual. We have a member keeping

track of the state, a camera, a vector for the touch point, a SpriteBatcher for rendering

the 2D UI elements, the World instance along with the WorldListener, the WorldRenderer

(which we are going to write in a minute), and a couple of Rectangles for checking

whether a UI element was touched. In addition, three integers keep track of the last

number of lives, waves, and score, so that we don’t have to update the scoreString

each time to reduce GC activity. Finally, there is an FPSCounter so we can later figure out

how well our game performs.

 public GameScreen(Game game) {
 super(game);

CHAPTER 12: Droid Invaders: the Grand Finale 612

 state = GAME_RUNNING;
 guiCam = new Camera2D(glGraphics, 480, 320);
 touchPoint = new Vector2();
 batcher = new SpriteBatcher(glGraphics, 100);
 world = new World();
 worldListener = new WorldListener() {
 @Override
 public void shot() {
 Assets.playSound(Assets.shotSound);
 }

 @Override
 public void explosion() {
 Assets.playSound(Assets.explosionSound);
 }
 };
 world.setWorldListener(worldListener);
 renderer = new WorldRenderer(glGraphics);
 pauseBounds = new Rectangle(480 - 64, 320 - 64, 64, 64);
 resumeBounds = new Rectangle(240 - 80, 160, 160, 32);
 quitBounds = new Rectangle(240 - 80, 160 - 32, 160, 32);
 shotBounds = new Rectangle(480 - 64, 0, 64, 64);
 leftBounds = new Rectangle(0, 0, 64, 64);
 rightBounds = new Rectangle(64, 0, 64, 64);
 lastScore = 0;
 lastLives = world.ship.lives;
 lastWaves = world.waves;
 scoreString = "lives:" + lastLives + " waves:" + lastWaves + " score:"
 + lastScore;
 fpsCounter = new FPSCounter();
 }

In the constructor we just set up all those members as we are accustomed to doing. The

WorldListener is responsible for playing the correct sound in case of an event in our

world. The rest is exactly the same as in Super Jumper, just slightly adapted to the

somewhat different UI elements of course.

 @Override
 public void update(float deltaTime) {
 switch (state) {
 case GAME_PAUSED:
 updatePaused();
 break;
 case GAME_RUNNING:
 updateRunning(deltaTime);
 break;
 case GAME_OVER:
 updateGameOver();
 break;
 }
 }

The update() method delegates the real updating to one of the other three update

methods, depending on the current state of the screen.

CHAPTER 12: Droid Invaders: the Grand Finale 613

 private void updatePaused() {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type != TouchEvent.TOUCH_UP)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));
 if (OverlapTester.pointInRectangle(resumeBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_RUNNING;
 }

 if (OverlapTester.pointInRectangle(quitBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The updatePaused() method loops through any available touch events and checks

whether one of the two menu entries was pressed (Resume or Quit). In each case we play

the click sound. Nothing new here.

 private void updateRunning(float deltaTime) {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type != TouchEvent.TOUCH_DOWN)
 continue;

 guiCam.touchToWorld(touchPoint.set(event.x, event.y));

 if (OverlapTester.pointInRectangle(pauseBounds, touchPoint)) {
 Assets.playSound(Assets.clickSound);
 state = GAME_PAUSED;
 }
 if (OverlapTester.pointInRectangle(shotBounds, touchPoint)) {
 world.shot();
 }
 }

 world.update(deltaTime, calculateInputAcceleration());
 if (world.ship.lives != lastLives || world.score != lastScore
 || world.waves != lastWaves) {
 lastLives = world.ship.lives;
 lastScore = world.score;
 lastWaves = world.waves;
 scoreString = "lives:" + lastLives + " waves:" + lastWaves
 + " score:" + lastScore;
 }
 if (world.isGameOver()) {
 state = GAME_OVER;
 }
 }

CHAPTER 12: Droid Invaders: the Grand Finale 614

The updateRunning() method is responsible for two things: to check whether the pause

button was pressed and react accordingly, and to update the world based on the user

input. The first piece of the puzzle is trivial, so let’s look at the world updating

mechanism. As you can see we delegate the acceleration value calculation to a method

called calculateInputAcceleration(). Once the world is updated we check whether any

of the three states (lives, waves, or score) have changed and update the scoreString

accordingly. Finally we check whether the game is over, in which case we enter the

GameOver state.

 private float calculateInputAcceleration() {
 float accelX = 0;
 if (Settings.touchEnabled) {
 for (int i = 0; i < 2; i++) {
 if (game.getInput().isTouchDown(i)) {
 guiCam.touchToWorld(touchPoint.set(game.getInput()
 .getTouchX(i), game.getInput().getTouchY(i)));
 if (OverlapTester.pointInRectangle(leftBounds, touchPoint)) {
 accelX = -Ship.SHIP_VELOCITY / 5;
 }
 if (OverlapTester.pointInRectangle(rightBounds, touchPoint)) {
 accelX = Ship.SHIP_VELOCITY / 5;
 }
 }
 }
 } else {
 accelX = game.getInput().getAccelY();
 }
 return accelX;
 }

The calculateInputAcceleration() is where we actually interpret the user input. If touch

is enabled we check whether the left or right on-screen movement buttons were pressed

and set the acceleration value accordingly to either –5 (left) or 5. If the accelerometer is

used we simply return its current value on the y-axis (remember, we are in landscape

mode).

 private void updateGameOver() {
 List<TouchEvent> events = game.getInput().getTouchEvents();
 int len = events.size();
 for (int i = 0; i < len; i++) {
 TouchEvent event = events.get(i);
 if (event.type == TouchEvent.TOUCH_UP) {
 Assets.playSound(Assets.clickSound);
 game.setScreen(new MainMenuScreen(game));
 }
 }
 }

The updateGameOver() method is again trivial and just checks for a touch event, in which

case we transition to the MainMenuScreen.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

CHAPTER 12: Droid Invaders: the Grand Finale 615

 guiCam.setViewportAndMatrices();

 gl.glEnable(GL10.GL_TEXTURE_2D);
 batcher.beginBatch(Assets.background);
 batcher.drawSprite(240, 160, 480, 320, Assets.backgroundRegion);
 batcher.endBatch();
 gl.glDisable(GL10.GL_TEXTURE_2D);

 renderer.render(world, deltaTime);

 switch (state) {
 case GAME_RUNNING:
 presentRunning();
 break;
 case GAME_PAUSED:
 presentPaused();
 break;
 case GAME_OVER:
 presentGameOver();
 }

 fpsCounter.logFrame();
 }

The present() method is actually pretty simple as well. As always we start off by

clearing the framebuffer. We also clear the z-buffer since we are going to render some

3D objects for which we need z-testing. Next we set up the projection matrix so that we

can render our 2D background image, just as we did in the MainMenuScreen or

SettingsScreen. Once that is done, we tell the WorldRenderer to render our game world.

Finally we delegate the rendering of the UI elements depending on the current state.

Note that the WorldRenderer.render() method is responsible for setting up all things

needed to render the 3D world!

 private void presentPaused() {
 GL10 gl = glGraphics.getGL();
 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 batcher.drawSprite(240, 160, 160, 64, Assets.pauseRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentPaused() method just renders the scoreString via the Font instance we

store in the Assets as well as the Pause menu. Note that at this point we have already

rendered the background image as well as the 3D world. All the UI elements will thus

overlay the 3D world.

 private void presentRunning() {
 GL10 gl = glGraphics.getGL();

CHAPTER 12: Droid Invaders: the Grand Finale 616

 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(480- 32, 320 - 32, 64, 64, Assets.pauseButtonRegion);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 if(Settings.touchEnabled) {
 batcher.drawSprite(32, 32, 64, 64, Assets.leftRegion);
 batcher.drawSprite(96, 32, 64, 64, Assets.rightRegion);
 }
 batcher.drawSprite(480 - 40, 32, 64, 64, Assets.fireRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentRunning() method is also pretty straightforward. We render the scoreString

first. If touch input is enabled we then render the left and right movement buttons.

Finally we render the Fire button and reset any OpenGL ES states we’ve changed

(texturing and blending).

 private void presentGameOver() {
 GL10 gl = glGraphics.getGL();
 guiCam.setViewportAndMatrices();
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glEnable(GL10.GL_TEXTURE_2D);

 batcher.beginBatch(Assets.items);
 batcher.drawSprite(240, 160, 128, 64, Assets.gameOverRegion);
 Assets.font.drawText(batcher, scoreString, 10, 320-20);
 batcher.endBatch();

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_BLEND);
 }

The presentGameOver() method is more of the same. Just some string and UI rendering.

 @Override
 public void pause() {
 state = GAME_PAUSED;
 }

Finally we have the pause() method, which simply puts the GameScreen into the paused

state.

 @Override
 public void resume() {

 }

 @Override
 public void dispose() {

CHAPTER 12: Droid Invaders: the Grand Finale 617

 }
}

The rest is again just some empty stubs so that we fulfill the GLGame interface definition.

On to our final class: the WorldRenderer!

The WorldRender Class
Let’s recall what we have to render in 3D:

� Our ship, using the ship model and texture and applying lighting.

� The invaders, using the invader model and texture, again with lighting.

� Any shots on the playfield, based on the shot model, this time without

texturing but with lighting.

� The shield blocks, based on the shield block model, again without

texturing but with lighting and transparency (see Figure 12–3).

� Explosions instead of the ship or invader model in case the ship or an

invader is exploding. The explosion is not lit, of course.

We know how to code the first four items on this list. But what about the explosions?

It turns out that we can abuse the SpriteBatcher. Based on the state time of the

exploding ship or invader, we can fetch a TextureRegion from the Animation instance

holding the explosion animation (see Assets class). The SpriteBatcher can only render

textured rectangles in the x/y plane, so we have to find a way to move such a rectangle

to an arbitrary position in space (where the exploding ship or invader is). We can easily

achieve this by using glTranslatef() on the model-view matrix before rendering the

rectangle via the SpriteBatcher!

The rendering setup for the other objects is pretty straightforward. We have a directional

light coming from the top right and an ambient light to light all objects a little bit no

matter their orientation. The camera is located a little bit above and behind the ship and

will look at a point a little bit ahead of the ship. We’ll use our LookAtCamera for this. To let

the camera follow the ship we just need to keep the x-coordinate of its position and

look-at point in sync with the ship’s x-coordinate.

For some extra eye-candy we’ll rotate the invaders around the y-axis. We’ll also rotate

the ship around the z-axis based on its current velocity so that it appears to be leaning

to the side it moves toward.

Let’s put this into code! Listing 12–12 shows you the final class of Droid Invaders.

Listing 12–12. WorldRenderer.java, the World Renderer

package com.badlogic.androidgames.droidinvaders;

import java.util.List;

import javax.microedition.khronos.opengles.GL10;

CHAPTER 12: Droid Invaders: the Grand Finale 618

import com.badlogic.androidgames.framework.gl.AmbientLight;
import com.badlogic.androidgames.framework.gl.Animation;
import com.badlogic.androidgames.framework.gl.DirectionalLight;
import com.badlogic.androidgames.framework.gl.LookAtCamera;
import com.badlogic.androidgames.framework.gl.SpriteBatcher;
import com.badlogic.androidgames.framework.gl.TextureRegion;
import com.badlogic.androidgames.framework.impl.GLGraphics;
import com.badlogic.androidgames.framework.math.Vector3;

public class WorldRenderer {
 GLGraphics glGraphics;
 LookAtCamera camera;
 AmbientLight ambientLight;
 DirectionalLight directionalLight;
 SpriteBatcher batcher;
 float invaderAngle = 0;

The WorldRenderer keeps track of a GLGraphics instance from which we’ll fetch the

GL10 instance. We also have a LookAtCamera, an AmbientLight, and a DirectionLight

and a SpriteBatcher. Finally, we have a member to keep track of the current rotation

angle we’ll use for all invaders.

 public WorldRenderer(GLGraphics glGraphics) {
 this.glGraphics = glGraphics;
 camera = new LookAtCamera(67, glGraphics.getWidth()
 / (float) glGraphics.getHeight(), 0.1f, 100);
 camera.getPosition().set(0, 6, 2);
 camera.getLookAt().set(0, 0, -4);
 ambientLight = new AmbientLight();
 ambientLight.setColor(0.2f, 0.2f, 0.2f, 1.0f);
 directionalLight = new DirectionalLight();
 directionalLight.setDirection(-1, -0.5f, 0);
 batcher = new SpriteBatcher(glGraphics, 10);
 }

In the constructor we set up all members as usual. The camera has a field of view of 67

degrees, a near clipping plane distance of 0.1 units, and a far clipping plane distance of

100 units. The view frustum will thus easily contain all of our game world. We position it

above and behind the ship and let it look at (0,0,–4). The ambient light is just a faint gray,

and the directional light is white and comes from the top-right side. Finally, we

instantiate the SpriteBatcher so that we can render the explosion rectangles.

 public void render(World world, float deltaTime) {
 GL10 gl = glGraphics.getGL();
 camera.getPosition().x = world.ship.position.x;
 camera.getLookAt().x = world.ship.position.x;
 camera.setMatrices(gl);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glEnable(GL10.GL_LIGHTING);
 gl.glEnable(GL10.GL_COLOR_MATERIAL);
 ambientLight.enable(gl);
 directionalLight.enable(gl, GL10.GL_LIGHT0);

CHAPTER 12: Droid Invaders: the Grand Finale 619

 renderShip(gl, world.ship);
 renderInvaders(gl, world.invaders, deltaTime);

 gl.glDisable(GL10.GL_TEXTURE_2D);

 renderShields(gl, world.shields);
 renderShots(gl, world.shots);

 gl.glDisable(GL10.GL_COLOR_MATERIAL);
 gl.glDisable(GL10.GL_LIGHTING);
 gl.glDisable(GL10.GL_DEPTH_TEST);
 }

In the render() method we start off by setting the camera’s x-coordinate to the ship’s x-

coordinate. We of course also set the x-coordinate of the camera’s look-at point

accordingly. This way, the camera will follow the ship. Once the position and look-at

point are updated we can set the projection and model-view matrix via a call to

LookAtCamera.setMatrices().

Next we set up all the states we need for rendering. We’ll need depth-testing, texturing,

lighting, and the color material functionality so that we don’t have to specify a material

for the objects via glMaterial(). The next two statements activate the ambient and

directional light. With these calls we have everything set up so that we can start

rendering our objects.

The first thing we render is the ship, via a call to renderShip(). Next we render the

invaders with a call to renderInvaders().

Since the shield blocks and shots don’t need texturing we simply disable that to save

some computations. Once texturing is turned off, we render the shots and shields via

calls to renderShots() and renderShields().

Finally we disable the other states we set so that we return a clean OpenGL ES state to

whoever called us.

 private void renderShip(GL10 gl, Ship ship) {
 if (ship.state == Ship.SHIP_EXPLODING) {
 gl.glDisable(GL10.GL_LIGHTING);
 renderExplosion(gl, ship.position, ship.stateTime);
 gl.glEnable(GL10.GL_LIGHTING);
 } else {
 Assets.shipTexture.bind();
 Assets.shipModel.bind();
 gl.glPushMatrix();
 gl.glTranslatef(ship.position.x, ship.position.y, ship.position.z);
 gl.glRotatef(ship.velocity.x / Ship.SHIP_VELOCITY * 90, 0, 0, -1);
 Assets.shipModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shipModel.getNumVertices());
 gl.glPopMatrix();
 Assets.shipModel.unbind();
 }
 }

CHAPTER 12: Droid Invaders: the Grand Finale 620

The renderShip() method starts off by checking the state of the ship. If it is exploding

we disable lighting, call renderExplosion() to render an explosion at the position of the

ship, and enable lighting again.

If the ship is alive we bind its texture and model, push the model-view matrix, move it to

its position and rotate it around the z-axis based on its velocity, and draw its model.

Finally, we pop the model-view matrix again (leaving only the camera’s view) and unbind

the ship model’s vertices.

 private void renderInvaders(GL10 gl, List<Invader> invaders, float deltaTime) {
 invaderAngle += 45 * deltaTime;

 Assets.invaderTexture.bind();
 Assets.invaderModel.bind();
 int len = invaders.size();
 for (int i = 0; i < len; i++) {
 Invader invader = invaders.get(i);
 if (invader.state == Invader.INVADER_DEAD) {
 gl.glDisable(GL10.GL_LIGHTING);
 Assets.invaderModel.unbind();
 renderExplosion(gl, invader.position, invader.stateTime);
 Assets.invaderTexture.bind();
 Assets.invaderModel.bind();
 gl.glEnable(GL10.GL_LIGHTING);
 } else {
 gl.glPushMatrix();
 gl.glTranslatef(invader.position.x, invader.position.y,
 invader.position.z);
 gl.glRotatef(invaderAngle, 0, 1, 0);
 Assets.invaderModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.invaderModel.getNumVertices());
 gl.glPopMatrix();
 }
 }
 Assets.invaderModel.unbind();
 }

The renderInvaders() method is pretty much the same as the renderShip() method.

The only difference is that we loop through the list of invaders and bind the texture and

mesh before we do so. This reduces the number of binds considerably and speeds up

the rendering a little. For each invader we then check its state again and render either an

explosion or the normal invader model. Since we bind the model and texture outside the

for loop, we have to unbind and rebind them before we can render an explosion instead

of an invader.

 private void renderShields(GL10 gl, List<Shield> shields) {
 gl.glEnable(GL10.GL_BLEND);
 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);
 gl.glColor4f(0, 0, 1, 0.4f);
 Assets.shieldModel.bind();
 int len = shields.size();
 for (int i = 0; i < len; i++) {
 Shield shield = shields.get(i);
 gl.glPushMatrix();
 gl.glTranslatef(shield.position.x, shield.position.y,

CHAPTER 12: Droid Invaders: the Grand Finale 621

 shield.position.z);
 Assets.shieldModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shieldModel.getNumVertices());
 gl.glPopMatrix();
 }
 Assets.shieldModel.unbind();
 gl.glColor4f(1, 1, 1, 1f);
 gl.glDisable(GL10.GL_BLEND);
 }

The renderShields() method renders, you guessed it, the shield blocks. We apply the

same principle as in the case of rendering the invaders. We only bind the model once.

Since we have no texture we don’t need to bind one. However, we need to enable

blending. Another thing we do is set the global vertex color to blue, with the alpha

component set to 0.4. This will make the shield blocks a little transparent.

 private void renderShots(GL10 gl, List<Shot> shots) {
 gl.glColor4f(1, 1, 0, 1);
 Assets.shotModel.bind();
 int len = shots.size();
 for (int i = 0; i < len; i++) {
 Shot shot = shots.get(i);
 gl.glPushMatrix();
 gl.glTranslatef(shot.position.x, shot.position.y, shot.position.z);
 Assets.shotModel.draw(GL10.GL_TRIANGLES, 0,
 Assets.shotModel.getNumVertices());
 gl.glPopMatrix();
 }
 Assets.shotModel.unbind();
 gl.glColor4f(1, 1, 1, 1);
 }

Rendering the shots in renderShots() is the same as rendering the shields, except that

we don’t use blending and use a different vertex color (yellow).

 private void renderExplosion(GL10 gl, Vector3 position, float stateTime) {
 TextureRegion frame = Assets.explosionAnim.getKeyFrame(stateTime,
 Animation.ANIMATION_NONLOOPING);

 gl.glEnable(GL10.GL_BLEND);
 gl.glPushMatrix();
 gl.glTranslatef(position.x, position.y, position.z);
 batcher.beginBatch(Assets.explosionTexture);
 batcher.drawSprite(0, 0, 2, 2, frame);
 batcher.endBatch();
 gl.glPopMatrix();
 gl.glDisable(GL10.GL_BLEND);
 }
}

Finally we have the mysterious renderExplosion() method. We get the position at which

we want to render the explosion as well as the state time of the object that is exploding.

The latter is used to fetch the correct TextureRegion from the explosion Animation, just

as we did for Bob in Super Jumper.

CHAPTER 12: Droid Invaders: the Grand Finale 622

The first thing we do is fetch the explosion animation frame based on the state time.

Next we enable blending, since the explosion has transparent pixels we don’t want to

render. We push the current model-view matrix and call glTranslatef() so that anything

we render after that call will be positioned at the given location. Then we tell the

SpriteBatcher that we are about to render a rectangle using the explosion texture.

The next call is where the magic happens. We tell the SpriteBatcher to render a

rectangle at (0,0,0) (the z-coordinate is not given but implicitly zero, remember?), with a

width and height of 2 units. Because we used glTranslatef(), that rectangle will not be

centered around the origin but instead be centered around the position we specified to

glTranslatef(), which is exactly the position of the ship or invader that exploded.

Finally we pop the model-view matrix and disable blending again.

That’s it. Twelve classes forming a full 3D game parroting the classic Space Invaders.

Try it out. When you come back we’ll have a look at the performance characteristics.

Optimizations
Before we think about optimizing the game we have to evaluate how well it performs.

We put an FPSCounter in the GameScreen class, so let’s look at its output on a Hero, a

Droid, and a Nexus One.

Hero (Android 1.5):
02-17 00:59:04.180: DEBUG/FPSCounter(457): fps: 25
02-17 00:59:05.220: DEBUG/FPSCounter(457): fps: 26
02-17 00:59:06.260: DEBUG/FPSCounter(457): fps: 26
02-17 00:59:07.280: DEBUG/FPSCounter(457): fps: 26

Nexus One (Android 2.2.1):
02-17 01:05:40.679: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:41.699: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:42.729: DEBUG/FPSCounter(577): fps: 41
02-17 01:05:43.729: DEBUG/FPSCounter(577): fps: 40

Droid (Android 2.1.1):
02-17 01:47:44.096: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:45.112: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:46.127: DEBUG/FPSCounter(1758): fps: 47
02-17 01:47:47.135: DEBUG/FPSCounter(1758): fps: 46

The Hero struggles quite a bit, but the game is playable at 25fps. The Nexus One

achieves around 47 frames per second, and the Droid also reaches 47, which is pretty

playable. Can we do better?

In terms of state changes we are not all that bad. We could reduce some redundant

changes here and there, for example some glEnable()/glDisable() calls. But from

previous optimization attempts we know that that won’t shave off a lot of overhead.

On the Hero there’s one thing we could do: disable lighting. Once we remove the

respective glEnable()/glDisable() calls in WorldRenderer.render() as well as

WorldRenderer.renderShip() and WorldRenderer.renderInvaders(), the Hero achieves

the following frame rate:

CHAPTER 12: Droid Invaders: the Grand Finale 623

Hero (Android 1.5):
02-17 01:14:44.580: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:45.600: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:46.610: DEBUG/FPSCounter(618): fps: 31
02-17 01:14:47.630: DEBUG/FPSCounter(618): fps: 31

That’s quite a bit of improvement and all we had to do is turn off lighting. Special-casing

the rendering code for a certain device is possible but we’d like to avoid that. Is there

anything else we can do?

The way we render explosions is a little bit suboptimal in the case of an exploding

invader. We change the model and texture bindings in the middle of rendering all

invaders, which will make the graphics pipeline a little unhappy. However, explosions

don’t happen often and don’t take a long time (1.6 seconds). The measurements just

shown were taking without any explosions on screen, so that’s not the culprit.

The truth is that we render too many objects per frame, causing significant call-overhead

and stalling the pipeline a little. With our current knowledge of OpenGL ES there’s

nothing we can really do about that. However, given that the game “feels” rather

playable on all devices, it is not an absolute must to try to achieve 60 frames per

second. The Droid and Nexus One notoriously have a hard time rendering even mildly

complex 3D scenes at 60 frames per second. So the last lesson to take away from this

is: do not get crazy if your game does not run at 60 frames per second. If it is smooth

visually and plays well, you can do even with 30 frames per second.

NOTE Common other optimization strategies involve using culling, vertex buffer objects, and
other more advanced topics we won’t look into. I tried adding these as well to our Droid Invaders.

The effect: zero. None of the devices could benefit from those optimizations. That does not mean
these techniques are useless. That depends on a lot of factors and their side-effects, and it’s
hard to predict how certain configurations will behave. If you are interested, just search for those

terms on the web and try the techniques out yourself!

Summary
In this chapter we completed our third game, a full-blown 3D Space Invaders clone. We

employed all the nice little techniques and tricks we learned along our way through this

book, and the final outcome was rather satisfying. Of course, those are not AAA games.

In fact, none of them is enjoyable for a long time. That’s where you come in. Get

creative, extend those games, and make them fun! You have the tools at your disposal.

	Chapter 12 Droid Invaders: the Grand Finale
	Core Game Mechanics
	A Backstory and Art Style
	Screens and Transitions
	Defining the Game World
	Creating the Assets
	The UI Assets
	The Game Assets
	Sound and Music

	Plan of Attack
	The Assets Class
	The Settings Class
	The Main Activity
	The Main Menu Screen
	The Settings Screen
	The Simulation Classes
	The Shield Class
	The Shot Class
	The Ship Class
	The Invader Class
	The World Class

	The GameScreen Class
	The WorldRender Class
	Optimizations
	Summary

