

525

525

 Chapter

3D Programming Tricks
3D programming is an incredibly complex and wide field. This chapter explores some

topics that are the absolute minimum requirement to write a simple 3D game:

 We’ll revisit our friend the vector and attach one more coordinate.

 Lighting is a vital part of any 3D game. We’ll look at how to perform

simple lighting with OpenGL ES.

 Defining objects programmatically is cumbersome. We’ll look at a

simple 3D file format so we can load and render 3D models created

with 3D modeling software.

 In Chapter 8 we discussed object representation and collision

detection. We’ll look at how to go about that in 3D.

 We’ll also briefly revisit some of the physics concepts we explored in

Chapter 10[OK?], this time in a 3D context.

Let’s start with 3D vectors.

Before We Begin
As always, we’ll create a couple of simple example programs in this chapter. To do that

we just create a new project and copy over all the source code of our framework we’ve

developed so far.

As previous chapters we’ll have a single test starter activity, which presents us the tests

in form of a list. We’ll call it GLAdvancedStarter and make it our default activity. Simply

copy over the GL3DBasicsStarter and replace the class names of the tests. We also

need to add each of the test activities to the manifest with a proper <activity> element.

Each of the tests will extend GLGame as usual; the actual code will be implemented as a

GLScreen that we’ll hook up with the GLGame instance. To conserve space I’ll only present

you with the relevant portions of the GLScreen implementations. All the tests and the

starter activity reside in the package com.badlogic.androidgames.gladvanced Some of

11

M. Zechner, Beginning Android Games

© Mario Zechner 2011

CHAPTER 11: 3D Programming Tricks 526

the classes will be part of our framework and go into the respective framework

packages.

Vectors in 3D
In Chapter 8 we discussed vectors and their interpretation in 2D. As you might have

guessed, all the things we discussed there hold in 3D space as well. All we do is add

one more coordinate to our vector, namely the z-coordinate.

The operations we looked at with vectors in 2D can be easily transferred to 3D space.

We specify vectors in 3D with a statement like this:

v = (x, y, z)

Addition in 3D is carried out as follows:

c = a + b = (a.x, a.y, b.z) + (b.x, b.y, b.z) = (a.x + b.x, a.y + b.y, a.z + b.z)

Subtraction works exactly the same way:

c = a - b = (a.x, a.y, b.z) - (b.x, b.y, b.z) = (a.x - b.x, a.y - b.y, a.z - b.z)

Multiplying a vector by a scalar works like this:

a’ = a × scalar = (a.x × scalar, a.y × scalar, a.z × scalar)

Measuring the length of a vector in 3D is also quite simple; we just add the z-coordinate

to the Pythagorean equation:

|a| = sqrt(a.x × a.x + a.y × a.y + a.z × a.z)

And based on this we can also normalize our vectors to unit length again:

a’ = (a.x / |a|, a.y / |a|, a.z / |a|)

All the interpretations of vectors we talked about in Chapter 8 hold in 3D as well:

 Positions are just denoted by a normal vector’s x-, y- and z-coordinate.

 Velocities and accelerations can also be represented as 3D vectors.

Each component then represents a certain quantity of the attribute on

one axis, such as meters per second in case of velocity or meters per

second per second for acceleration.

 We can represent directions (or axes) as simple 3D unit vectors. We did

that in Chapter 8 when we used the rotation facilities of OpenGL ES.

 We can measure distances by subtracting the starting vector from the

end vector and measuring the resulting vector’s length.

One more operation that can be rather useful is rotating a 3D vector around a 3D axis.

We used this principle via the OpenGL ES glRotatef() method earlier. However, we

can’t use it to rotate one of the vectors that we’ll use to store positions or directions of

our game objects, because it only works on vertices we submit to the GPU. Luckily

there’s a Matrix class in the Android API that allows us to emulate what OpenGL ES

CHAPTER 11: 3D Programming Tricks 527

does on the GPU. Let’s write a Vector3 class that implements all of these features.

Listing 11–1 shows you the code, which I’ll again explain along the way.

Listing 11–1. Vector3.java, a Vector in 3D

package com.badlogic.androidgames.framework.math;

import android.opengl.Matrix;
import android.util.FloatMath;

public class Vector3 {
 private static final float[] matrix = new float[16];
 private static final float[] inVec = new float[4];
 private static final float[] outVec = new float[4];
 public float x, y, z;

The class starts with a couple of private static final float arrays. We’ll need them later on

when we implement the new rotate() method of our Vector3 class. Just remember that

the matrix member has 16 elements and the inVec and outVec each have 4 elements.

The x, y and z members defined next should be self-explanatory. They store the actual

components of the vector:

 public Vector3() {
 }

 public Vector3(float x, float y, float z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public Vector3(Vector3 other) {
 this.x = other.x;
 this.y = other.y;
 this.z = other.z;
 }

 public Vector3 cpy() {
 return new Vector3(x, y, z);
 }

 public Vector3 set(float x, float y, float z) {
 this.x = x;
 this.y = y;
 this.z = z;
 return this;
 }

 public Vector3 set(Vector3 other) {
 this.x = other.x;
 this.y = other.y;
 this.z = other.z;
 return this;
 }

CHAPTER 11: 3D Programming Tricks 528

Like Vector2, our Vector3 class has a couple of constructors and setters and a cpy()

method, so we can easily clone vectors or set them from components calculated in our

program.

 public Vector3 add(float x, float y, float z) {
 this.x += x;
 this.y += y;
 this.z += z;
 return this;
 }

 public Vector3 add(Vector3 other) {
 this.x += other.x;
 this.y += other.y;
 this.z += other.z;
 return this;
 }

 public Vector3 sub(float x, float y, float z) {
 this.x -= x;
 this.y -= y;
 this.z -= z;
 return this;
 }

 public Vector3 sub(Vector3 other) {
 this.x -= other.x;
 this.y -= other.y;
 this.z -= other.z;
 return this;
 }

 public Vector3 mul(float scalar) {
 this.x *= scalar;
 this.y *= scalar;
 this.z *= scalar;
 return this;
 }

The various add(), sub() and mul() methods are just an extension of what we had in our

Vector2 class with an additional z-coordinate. They implement what we discussed a few

pages ago. Straightforward, right?

 public float len() {
 return FloatMath.sqrt(x * x + y * y + z * z);
 }

 public Vector3 nor() {
 float len = len();
 if (len != 0) {
 this.x /= len;
 this.y /= len;
 this.z /= len;
 }
 return this;
 }

CHAPTER 11: 3D Programming Tricks 529

The len() and nor() methods are also essentially the same as in the Vector2 class. All

we do is incorporate the new z-coordinate into the calculations.

 public Vector3 rotate(float angle, float axisX, float axisY, float axisZ) {
 inVec[0] = x;
 inVec[1] = y;
 inVec[2] = z;
 inVec[3] = 1;
 Matrix.setIdentityM(matrix, 0);
 Matrix.rotateM(matrix, 0, angle, axisX, axisY, axisZ);
 Matrix.multiplyMV(outVec, 0, matrix, 0, inVec, 0);
 x = outVec[0];
 y = outVec[1];
 z = outVec[2];
 return this;
 }

And here’s our new rotate() method. As indicated earlier, it makes use of Android’s

Matrix class. The Matrix class basically consists of a couple of static methods, like

Matrix.setIdentityM() or Matrix.rotateM(). These operate on float arrays, like the

ones we defined earlier. A matrix is stored as 16 float values, and a vector is expected to

have four elements. I won’t go into detail about the inner workings of the class; all we

need is a way to emulate the matrix capabilities of OpenGL ES on the Java side, and

that’s exactly what this class offers us. All the methods work on a matrix and operate in

exactly the same way as glRotatef(), glTranslatef() or glIdentityf() in OpenGL ES.

The method starts off setting the vector’s components to the inVec array we defined

earlier. Next, we call Matrix.setIdentityM() on the matrix member of our class. This

will “clear” the matrix. With OpenGL ES we used glIdentityf() to do the same thing

with matrices residing on the GPU. Next we call Matrix.rotateM(). It takes the float

array holding the matrix, an offset into that array, the angle we want to rotate by in

degrees, and the (unit length) axis we want to rotate around. This method is equivalent

to glRotatef(). It will multiply the given matrix by a rotation matrix. Finally we call
Matrix.multiplyMV(), which will multiply our vector stored in inVec by the matrix. This

applies all the transformations stored in the matrix to the vector. The result will be output

in outVec. The rest of the method just grabs the resulting new components from the

outVec array and stores them in the Vector3’s members.

NOTE You can use the Matrix class to do a lot more than just rotating vectors. It operates in

exactly the same way as OpenGL ES in its effects on the passed-in matrix.

 public float dist(Vector3 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 float distZ = this.z - other.z;
 return FloatMath.sqrt(distX * distX + distY * distY + distZ * distZ);
 }

 public float dist(float x, float y, float z) {
 float distX = this.x - x;
 float distY = this.y - y;

CHAPTER 11: 3D Programming Tricks 530

 float distZ = this.z - z;
 return FloatMath.sqrt(distX * distX + distY * distY + distZ * distZ);
 }

 public float distSquared(Vector3 other) {
 float distX = this.x - other.x;
 float distY = this.y - other.y;
 float distZ = this.z - other.z;
 return distX * distX + distY * distY + distZ * distZ;
 }

 public float distSquared(float x, float y, float z) {
 float distX = this.x - x;
 float distY = this.y - y;
 float distZ = this.z - z;
 return distX * distX + distY * distY + distZ * distZ;
 }
}

Finally we have the usual dist() and distSquared() methods to calculate the distance

between two vectors in 3D.

Note that I left out the angle() method from Vector2. While it is possible to measure the

angle between two vectors in 3D it’s not giving us an angle in the range 0 to 360. Usually

we get away with just evaluating the angle between two vectors in the x/y, z/y and x/z

plane by using only two components of each vector and applying the Vector2.angle()
method. We won’t need this functionality for our last game, so we’ll return to the topic at

that point.

I think you’ll agree that we don’t need an explicit example of using this class. We can

just invoke it the way we did with the Vector2 class in Chapter 8. On to the next topic:

lighting in OpenGL ES.

Lighting in OpenGL ES
Lighting in OpenGL ES is a useful feature that can give our 3D games a nice touch. To

use this functionality we have to have an idea of the OpenGL ES lighting model.

How Lighting Works
Let’s think about how lighting works for a moment. The first thing we need is a light

source, to emit light. We also need an object that can be lit. Finally we need a sensor,

like our eyes or a camera, which will catch the photons that are sent out by the light

source and reflected back by the object. Lighting changes the perceived color of an

object depending on the following:

 The light source’s type

 The light source’s color or intensity

 The light source’s position and direction relative to the lit object

 The object’s material and texture

CHAPTER 11: 3D Programming Tricks 531

The intensity with which light is reflected by an object can depend on various factors.

We are mostly concerned with the angle at which a light ray hits a surface. The more

perpendicular a light ray is to a surface it hits, the greater the intensity with which the

light will be reflected by the object. Figure 11–1 illustrates this.

Figure 11–1. The more perpendicular a light ray is to a surface, the greater the intensity of the reflected light.

Once a light ray hits a surface, it is reflected in two different ways. Most of the light is

reflected diffusely, which means that the reflected light rays are scattered randomly by

irregularities of the object’s surface. Some reflections are specular, which means that

the light rays are bouncing back as if they hit a perfect mirror. Figure 11–2 shows the

difference between diffuse and specular reflection.

Figure 11–2:.Diffuse and specular reflection

Specular reflection will manifest itself as highlights on objects. Whether an object will

cast specular reflections depends on its material. Objects with rough or uneven surfaces

like skin or fabric are unlikely to have specular highlights. Objects that have a smooth

surface, like glass or a marble, do exhibit these lighting artifacts. Of course glass or

marble surface aren’t really smooth in an absolute sense either. Relative to materials like

wood or human skin they are though.

When light hits a surface, its reflection [OK?] also changes color depending, on the

chemical constitution of the lit object. The objects we see as red, for example, are those

that reflect only the red portions of light. The object “swallows” all other frequencies. A

black object is one that swallows almost all of the light that is shone on it.

OpenGL ES allows us to simulate this real-world behavior by specifying light sources

and materials of objects.

CHAPTER 11: 3D Programming Tricks 532

Light Sources
We are surrounded by all kind of light sources. The sun constantly throws photons at us.

Our monitors emit light, surrounding us with that nice blue glow at night. Light bulbs and

headlights keep us from bumping or driving into things in the dark. OpenGL ES allows

you to create four types of light sources:

 Ambient light: Ambient light is not a light source per se but rather the

result of photons coming from other light sources bouncing around in

our world. All these stray photons combined make for a certain default

level of illumination that is directionless and illuminates all objects

equally.

 Point lights: These have a position in space and emit light in all

directions. A light bulb is a point light, for example.

 Directional lights: These are expressed as directions in OpenGL ES

and are assumed to be infinitely far away. The sun can be idealized as

a directional light source. We can assume that the light rays coming

from the sun all hit the earth with the same angle because of the

distance between the earth and the sun.

 Spotlights: These are similar to point lights in that they have an

explicit position in space. Additionally the have a direction in which

they shine and create a light cone that is limited to some radius. A

street lamp is a spotlight.

We’ll only look into ambient, point, and directional lights. Spotlights are often hard to get

right with limited GPUs like on Android devices, because of the way OpenGL ES

calculates the lighting. You’ll see why that is in a minute.

Besides a light source’s position and direction, OpenGL ES lets us also specify the color

or intensity of a light. This is expressed as an RGBA color. However, OpenGL ES

requires us to actually specify four different colors per light source instead of just one.

 Ambient: This is the intensity/color that contributes to the overall

shading of an object. An object will be uniformly lit with this color, no

matter its position or orientation relative to the light source.

 Diffuse: This is the intensity/color an object will be lit with when

calculating the diffuse reflection. Sides of an object that do not face

the light source won’t be lit, just as in real-life.

 Specular: This intensity/color is similar to the diffuse color. However, it

will only affect spots on the object that have a certain orientation

toward the viewer and the light source.

 Emissive: This is totally confusing and has very little use in real-word

applications, so we won’t go into it.

CHAPTER 11: 3D Programming Tricks 533

Usually we’ll only set the diffuse and specular intensities of a light source and leave the

other two at their defaults. We’ll also use the same RGBA color for both the diffuse and

specular intensity most of the time.

Materials
Every object in our world has a material. The material defines how the light that is hitting

an object will be reflected and modify the color of the reflected light. OpenGL ES lets us

specify the same four RGBA colors for a material as for a light source:

 Ambient: This is the color that’s combined with the ambient color of

any light source in the scene.

 Diffuse: This is the color that’s combined with the diffuse color of any

light source.

 Specular: This is the color that’s combined with the specular color of

any light source for specular highlight points on an objects surface.

 Emissive: We again ignore this as it has little use in our context.

Figure 11–3 illustrates the first three types of material/light source properties: ambient,

diffuse, and specular.

Figure 11–3. Different material/light types. Left: ambient only. Middle: diffuse only. Right: ambient and diffuse
with specular highlight.

In Figure 11–3 we can see the contributions of the different material and light properties.

Ambient light illuminates the object uniformly. Diffuse light will be reflected depending

on the angle the light rays hit the object; areas that directly face the light source will be

brighter, and areas that can’t be reached by light rays are dark. In the rightmost image

we see the combination of ambient, diffuse, and specular light. The specular light

manifests itself as a white highlight on the sphere.

How OpenGL ES Calculates Lighting: Vertex Normals
You know that the intensity of the reflected light bouncing back from an object depends

on the angle it hits the surface of the object. OpenGL ES uses this fact to calculate

lighting. It does so by using vertex normals, which we have to define in our code, just as

we define texture coordinates or vertex colors. Figure 11–4 shows a sphere with its

vertex normals.

CHAPTER 11: 3D Programming Tricks 534

Figure 11–4:.A sphere and its vertex normals

Normals are simply unit-length vectors that point in the direction a surface is facing. In

our case a surface is a triangle. Instead of specifying a surface normal, though, we have

to specify a vertex normal. The difference between a surface normal and a vertex normal

is that the vertex normal might not have to point in the same direction as the surface

normal. We can clearly see this in Figure 11–4, where each vertex normal is actually the

average of the normals of the triangles that vertex belongs to. This averaging makes for

a smooth shading of the object.

When we render an object with vertex normals and lighting enabled, OpenGL ES will

determine the angle between each vertex and light source. With this angle it can

calculate the vertex’s color based on the ambient, diffuse, and specular properties of the

material of the object and the light source. The end result is a color for each vertex of an

object that is then interpolated over each triangle in combination with the calculated

colors of the other vertices. This interpolated color will then be combined with any

texture maps we apply to the object.

This sounds scary but it really isn’t that bad. All we need to do is enable lighting and

specify the light sources, the material for the object we want to render, and the vertex

normals, in addition to the other vertex attributes we usually specify, like position or

texture coordinates. Let’s have a look how to implement all that with OpenGL ES.

In Practice
We’ll now go through all the necessary steps to get lighting to work with OpenGL ES.

Along the way we’ll create a few little helper classes that make working with light

sources a bit easier. We’ll put those in the com.badlogic.androidgames.framework.gl

package.

Enabling and Disabling Lighting
As with all OpenGL ES states, we first have to enable the functionality in question. We

do that with this:

gl.glEnable(GL10.GL_LIGHTING);

CHAPTER 11: 3D Programming Tricks 535

Once enabled, lighting will be applied to all objects we render. We’ll have to specify the

light sources and materials as well as the vertex normals to achieve meaningful results,

of course. Once we are done with rendering all the objects that should be lit we can

disable lighting again:

gl.glDisable(GL10.GL_LIGHTING);

Specifying Light Sources
OpenGL ES offers us four types of light sources: ambient lights, point lights, directional

lights and spot lights. We’ll take a look at how to define the first three. In order for spot

lights to be effective and look good, we’d need to have a very high triangle count for

each of our objects’ models. That’s prohibitive on most current mobile devices.

OpenGL ES lets us have eight light sources in a scene at most, plus a global ambient

light. Each of the eight light sources has an identifier, from GL10.GL_LIGHT0 up to

GL10.GL_LIGHT7. If we want to manipulate the properties of one of these light sources we

do so by specifying the respective ID of that light source.

Light sources have to be enabled with this syntax:

gl.glEnable(GL10.GL_LIGHT0);

OpenGL ES will then take the properties of that light source with ID zero and apply it to

all rendered objects accordingly. If we want to disable a light source we can do it with a

statement like this:

gl.glDisable(GL10.GL_LIGHT0);

Ambient light is a special case as it does not have an identifier. There is only one

ambient light ever in an OpenGL ES scene. Let’s have a look at that.

Ambient Light
Ambient light is a special type of light, as I explained already. It has no position or

direction but only a color by which all objects in the scene will be uniformly lit. OpenGL

ES lets us specify the global ambient light as follows:

float[] ambientColor = { 0.2f, 0.2f, 0.2f, 1.0f };
gl.glLightModelfv(GL10.GL_LIGHT_MODEL_AMBIENT, color, 0);

The ambientColor array holds the RGBA values of the ambient light’s color encoded as

floats in the range 0 to 1. The glLightModelfv() method takes a constant as the first

parameter specifying that we want to set the ambient light’s color, the float array holding

the color and an offset into the float array from which the method should start reading

the RGBA values. Let’s put this into a lovely little class. Listing 11–2 shows the code.

Listing 11–2. AmbientLight.java, a Simple Abstraction of OpenGL ES Global Ambient Light

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

CHAPTER 11: 3D Programming Tricks 536

public class AmbientLight {
 float[] color = {0.2f, 0.2f, 0.2f, 1};

 public void setColor(float r, float g, float b, float a) {
 color[0] = r;
 color[1] = g;
 color[2] = b;
 color[3] = a;
 }

 public void enable(GL10 gl) {
 gl.glLightModelfv(GL10.GL_LIGHT_MODEL_AMBIENT, color, 0);
 }
}

All we do is store the ambient light’s color in a float array and provide two methods: one

to set the color and another to make OpenGL ES use the ambient light color we defined.

By default we use a gray ambient light color.

Point Lights
Point lights have a position as well as an ambient, diffuse, and specular color/intensity

(we leave out the emissive color/intensity). To specify the different colors we can do the

following:

gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_AMBIENT, ambientColor, 0);
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_DIFFUSE, diffuseColor, 0);
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_SPECULAR, specularColor, 0);

The first parameter is the light identifier; in this case we use the fourth light. The next

parameter specifies the attribute of the light we want to modify. The third parameter is

again a float array holding the RGBA values, and the final parameter is an offset into

that array. Specifying the position is as easy:

float[] position = {x, y, z, 1};
gl.glLightfv(GL10.GL_LIGHT3, GL10.GL_POSITION, position, 0);

We again specify the attribute we want to modify (in this case the position), along with a

four-element array storing the x-, y- and z-coordinate of the light in our world. Note that

the fourth element of the array must be set to 1 for a positional light source! Let’s put

this into a helper class. Listing 11–3 shows you the code.

Listing 11–3. PointLight.java, a Simple Abstraction of OpenGL ES Point Lights

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class PointLight {
 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };
 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };
 float[] position = { 0, 0, 0, 1 };
 int lastLightId = 0;

CHAPTER 11: 3D Programming Tricks 537

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;
 specular[3] = a;
 }

 public void setPosition(float x, float y, float z) {
 position[0] = x;
 position[1] = y;
 position[2] = z;
 }

 public void enable(GL10 gl, int lightId) {
 gl.glEnable(lightId);
 gl.glLightfv(lightId, GL10.GL_AMBIENT, ambient, 0);
 gl.glLightfv(lightId, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glLightfv(lightId, GL10.GL_SPECULAR, specular, 0);
 gl.glLightfv(lightId, GL10.GL_POSITION, position, 0);
 lastLightId = lightId;
 }

 public void disable(GL10 gl) {
 gl.glDisable(lastLightId);
 }
}

Our helper class stores the ambient, diffuse, and specular color components of the light

as well as the position (with the fourth element set to 1). Additionally, we store the last

light identifier used for this light so we can offer a disable() method that will turn off the

light if necessary. For each light attribute we have a nice setter method. We also have an

enable() method, which takes a GL10 instance and a light identifier (like

GL10.GL_LIGHT6). It enables the light, sets its attributes, and stores the light identifier

used. The disable() method just disables the light using the lastLightId member set in

enable().

We use sensible defaults for the ambient, diffuse, and specular colors in the initializers

of the member arrays. The light will be white and will not produce any specular

highlights, because the specular color is black.

CHAPTER 11: 3D Programming Tricks 538

Directional Lights
A directional light is nearly identical to a point light. The only difference is that it has a

direction instead of a position. The way the direction is expressed is a little confusing.

Instead of using a direction vector, OpenGL ES expects us to define a point in the world.

The direction is then calculated by taking the direction vector from the point to the origin

of the world. The following snippet would produce a directional light that comes from the

right side of the world:

float[] dirPos = {1, 0, 0, 0};
gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, dirPos, 0);

We can translate that to a direction vector:

dir = -dirPos = {-1, 0, 0, 0}

The rest of the attributes, like the ambient or diffuse color, are identical to those of a

point light. Listing 11–4 shows you the code of a little helper class for diffuse lights.

Listing 11–4. DirectionLight.java, a Simple Abstraction of OpenGL ES Directional Lights

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class DirectionalLight {
 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };
 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };
 float[] direction = { 0, 0, -1, 0 };
 int lastLightId = 0;

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;
 specular[3] = a;
 }

 public void setDirection(float x, float y, float z) {
 direction[0] = -x;
 direction[1] = -y;
 direction[2] = -z;

CHAPTER 11: 3D Programming Tricks 539

 }

 public void enable(GL10 gl, int lightId) {
 gl.glEnable(lightId);
 gl.glLightfv(lightId, GL10.GL_AMBIENT, ambient, 0);
 gl.glLightfv(lightId, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glLightfv(lightId, GL10.GL_SPECULAR, specular, 0);
 gl.glLightfv(lightId, GL10.GL_POSITION, direction, 0);
 lastLightId = lightId;
 }

 public void disable(GL10 gl) {
 gl.glDisable(lastLightId);
 }
}

Our helper class is nearly identical to the PointLight class. The only difference is that

the direction array has its fourth element set to 1. We also have a setDirection()

method instead of a setPosition() method. The setDirection() method allows us to

specify a direction, like (–1, 0, 0) so that the light comes from the right side. Inside the

method we just negate all the vector components so that we transform the direction to

the format OpenGL ES expects from us.

Specifying Materials
A material is defined by[OK?] a couple of attributes. As with anything OpenGL ES, a

material is a state and will be active until we change it again or the OpenGL ES context

is lost. To set the currently active material attributes we can do the following:

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, ambientColor, 0);
gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, diffuseColor, 0);
gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, specularColor, 0);

As usual we have an ambient, a diffuse, and a specular RGBA color to specify. This is

again done via four-element float arrays just as we did with light source attributes.

Putting this together into a little helper class is again very easy. Listing 11–5 shows you

the code.

Listing 11–5. Material.java, a Simple Abstraction of OpenGL ES Materials

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

public class Material {
 float[] ambient = { 0.2f, 0.2f, 0.2f, 1.0f };
 float[] diffuse = { 1.0f, 1.0f, 1.0f, 1.0f };
 float[] specular = { 0.0f, 0.0f, 0.0f, 1.0f };

 public void setAmbient(float r, float g, float b, float a) {
 ambient[0] = r;
 ambient[1] = g;
 ambient[2] = b;
 ambient[3] = a;
 }

CHAPTER 11: 3D Programming Tricks 540

 public void setDiffuse(float r, float g, float b, float a) {
 diffuse[0] = r;
 diffuse[1] = g;
 diffuse[2] = b;
 diffuse[3] = a;
 }

 public void setSpecular(float r, float g, float b, float a) {
 specular[0] = r;
 specular[1] = g;
 specular[2] = b;
 specular[3] = a;
 }

 public void enable(GL10 gl) {
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT, ambient, 0);
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE, diffuse, 0);
 gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_SPECULAR, specular, 0);
 }
}

No big surprises here, either. We just store the three components of the material and

provide setters and an enable() method which sets the material.

OpenGL ES has one more trick up its sleeve when it comes to materials. Usually one

wouldn’t use glMaterialfv() but instead something called color material. This means

that instead of the ambient and diffuse color specified via glMaterialfv() OpenGL ES

will take the vertex color of our models as the ambient and diffuse material color. To

enable this nice feature we just have to call it:

gl.glEnable(GL10.GL_COLOR_MATERIAL);

I usually use this instead of a full-blown material class as shown earlier, because

ambient and diffuse colors are often the same. Since I also don’t use specular highlights

in most of my demos and games, I can get away with just enabling color materials and

not using any glMaterialfv() calls at all. Whether to use the Material class or color

materials is totally up to you.

Specifying Normals
For lighting to work in OpenGL ES we have to specify vertex normals for each vertex of

a model. A vertex normal must be a unit length vector pointing in the (average) facing

direction of the surface(s) a vertex belongs to. Figure 11–5 illustrates vertex normals for

our cube.

CHAPTER 11: 3D Programming Tricks 541

Figure 11–5. Vertex normals for each vertex of our cube

A vertex normal is just another vertex attribute, like position or color. In order to upload

vertex normals, we have to modify our Vertices3 class one more time. To tell OpenGL

ES where it can find the normals for each vertex we use the glNormalPointer() method,

just like we used the glVertexPointer() or glColorPointer() methods previously.

Listing 11–6 shows our final revised Vertices3 class.

Listing 11–6. Vertices3.java, the Final Version with Support for Normals

package com.badlogic.androidgames.framework.gl;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;
import java.nio.ShortBuffer;

import javax.microedition.khronos.opengles.GL10;

import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Vertices3 {
 final GLGraphics glGraphics;
 final boolean hasColor;
 final boolean hasTexCoords;
 final boolean hasNormals;
 final int vertexSize;
 final IntBuffer vertices;
 final int[] tmpBuffer;
 final ShortBuffer indices;

Among the members, the only new addition is the hasNormals boolean, which keeps

track of whether the vertices have normals or not.

 public Vertices3(GLGraphics glGraphics, int maxVertices, int maxIndices,
 boolean hasColor, boolean hasTexCoords, boolean hasNormals) {
 this.glGraphics = glGraphics;
 this.hasColor = hasColor;
 this.hasTexCoords = hasTexCoords;

CHAPTER 11: 3D Programming Tricks 542

 this.hasNormals = hasNormals;
 this.vertexSize = (3 + (hasColor ? 4 : 0) + (hasTexCoords ? 2 : 0) + (hasNormals
? 3 : 0)) * 4;
 this.tmpBuffer = new int[maxVertices * vertexSize / 4];

 ByteBuffer buffer = ByteBuffer.allocateDirect(maxVertices * vertexSize);
 buffer.order(ByteOrder.nativeOrder());
 vertices = buffer.asIntBuffer();

 if (maxIndices > 0) {
 buffer = ByteBuffer.allocateDirect(maxIndices * Short.SIZE / 8);
 buffer.order(ByteOrder.nativeOrder());
 indices = buffer.asShortBuffer();
 } else {
 indices = null;
 }
 }

In the constructor we now also take a hasNormals parameter. We have to modify the

calculation of the vertexSize member as well, adding three floats per vertex if normals

are available.

 public void setVertices(float[] vertices, int offset, int length) {
 this.vertices.clear();
 int len = offset + length;
 for (int i = offset, j = 0; i < len; i++, j++)
 tmpBuffer[j] = Float.floatToRawIntBits(vertices[i]);
 this.vertices.put(tmpBuffer, 0, length);
 this.vertices.flip();
 }

 public void setIndices(short[] indices, int offset, int length) {
 this.indices.clear();
 this.indices.put(indices, offset, length);
 this.indices.flip();
 }

As you can see, the methods setVertices() and setIndices() stay the same.

 public void bind() {
 GL10 gl = glGraphics.getGL();

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 vertices.position(0);
 gl.glVertexPointer(3, GL10.GL_FLOAT, vertexSize, vertices);

 if (hasColor) {
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
 vertices.position(3);
 gl.glColorPointer(4, GL10.GL_FLOAT, vertexSize, vertices);
 }

 if (hasTexCoords) {
 gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
 vertices.position(hasColor ? 7 : 3);
 gl.glTexCoordPointer(2, GL10.GL_FLOAT, vertexSize, vertices);
 }

CHAPTER 11: 3D Programming Tricks 543

 if (hasNormals) {
 gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
 int offset = 3;
 if (hasColor)
 offset += 4;
 if (hasTexCoords)
 offset += 2;
 vertices.position(offset);
 gl.glNormalPointer(GL10.GL_FLOAT, vertexSize, vertices);
 }
 }

In the bind() method just shown, we do the usual ByteBuffer tricks, this time

incorporating normals via the glNormalPointer() method as well. To calculate the offset

for the normal pointer we have to take into account whether colors and texture

coordinates are given.

 public void draw(int primitiveType, int offset, int numVertices) {
 GL10 gl = glGraphics.getGL();

 if (indices != null) {
 indices.position(offset);
 gl.glDrawElements(primitiveType, numVertices,
 GL10.GL_UNSIGNED_SHORT, indices);
 } else {
 gl.glDrawArrays(primitiveType, offset, numVertices);
 }
 }

You can see that the draw() method is again unmodified; all the magic happens in the

bind() method.

 public void unbind() {
 GL10 gl = glGraphics.getGL();
 if (hasTexCoords)
 gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

 if (hasColor)
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);

 if (hasNormals)
 gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);
 }
}

Finally, we also modify the unbind() method a little bit. We disable the normal pointer if

normals have been, cleaning up the OpenGL ES state properly.

Using this modified Vertices3 version is as easy as before. Here’s a small example:

float[] vertices = { -0.5f, -0.5f, 0, 0, 0, 1,
 0.5f, -0.5f, 0, 0, 0, 1,
 0.0f, 0.5f, 0, 0, 0, 1 };
Vertices3 vertices = new Vertices3(glGraphics, 3, 0, false, false, true);
vertices.setVertices(vertices);

CHAPTER 11: 3D Programming Tricks 544

We create a float array to hold three vertices, each having a position (the first three

floats on each line) and a normal (the last three floats on each line). In this case we have

a triangle in the x/y plane with its normals pointing in the direction of the positive z-axis.

All that’s left is creating the Vertices3 instance and setting the vertices. Easy, right?

Binding, drawing, and unbinding work exactly the same as with the old version. We can,

of course, also add vertex colors and texture coordinates as previously.

Putting it All Together
Let’s put all this together. We want to draw a scene with a global ambient light, a point

light, and a directional light all illuminating a cube centered at the origin. For good

measure we’ll also throw in a call to gluLookAt() to position our camera in the world.

Figure 11–6 shows the setup of our world.

Figure 11–6. Our first lit scene

As with all of our examples, we create a class called LightTest, which extends GLGame

as usual. It returns a new LightScreen instance from its getStartScreen() method. The

LightScreen class extends GLScreen and is shown in Listing 11–7.

Listing 11–7. Excerpt from LightTest.java, Lighting with OpenGL ES

class LightScreen extends GLScreen {
 float angle;
 Vertices3 cube;
 Texture texture;
 AmbientLight ambientLight;
 PointLight pointLight;
 DirectionalLight directionalLight;
 Material material;

We start off with a couple of members. The angle member stores the current rotation of

the cube around the y-axis. The Vertices3 member stores the vertices of the cube

CHAPTER 11: 3D Programming Tricks 545

model, which we are going to define in a bit. Additionally, we store an AmbientLight,

PointLight and DirectionalLight instance as well as a Material.

 public LightScreen(Game game) {
 super(game);

 cube = createCube();
 texture = new Texture(glGame, "crate.png“);
 ambientLight = new AmbientLight();
 ambientLight.setColor(0, 0.2f, 0, 1);
 pointLight = new PointLight();
 pointLight.setDiffuse(1, 0, 0, 1);
 pointLight.setPosition(3, 3, 0);
 directionalLight = new DirectionalLight();
 directionalLight.setDiffuse(0, 0, 1, 1);
 directionalLight.setDirection(1, 0, 0);
 material = new Material();
 }

Next is the constructor. Here we create the cube model’s vertices and load the crate

texture, just as we did in the previous chapter. We also instantiate all the lights and the

material and set their attributes. The ambient light color is a light green, and the point

light is red and sits at (3,3,0) in our world. The directional light has a blue diffuse color

and comes from the left. For the material we use the default values (a little ambient,

white for diffuse, and black for specular).

 @Override
 public void resume() {
 texture.reload();
 }

In the resume() method we make sure that our texture is (re)loaded in case of a context

loss.

 private Vertices3 createCube() {
 float[] vertices = { -0.5f, -0.5f, 0.5f, 0, 1, 0, 0, 1,
 0.5f, -0.5f, 0.5f, 1, 1, 0, 0, 1,
 0.5f, 0.5f, 0.5f, 1, 0, 0, 0, 1,
 -0.5f, 0.5f, 0.5f, 0, 0, 0, 0, 1,

 0.5f, -0.5f, 0.5f, 0, 1, 1, 0, 0,
 0.5f, -0.5f, -0.5f, 1, 1, 1, 0, 0,
 0.5f, 0.5f, -0.5f, 1, 0, 1, 0, 0,
 0.5f, 0.5f, 0.5f, 0, 0, 1, 0, 0,

 0.5f, -0.5f, -0.5f, 0, 1, 0, 0, -1,
 -0.5f, -0.5f, -0.5f, 1, 1, 0, 0, -1,
 -0.5f, 0.5f, -0.5f, 1, 0, 0, 0, -1,
 0.5f, 0.5f, -0.5f, 0, 0, 0, 0, -1,

 -0.5f, -0.5f, -0.5f, 0, 1, -1, 0, 0,
 -0.5f, -0.5f, 0.5f, 1, 1, -1, 0, 0,
 -0.5f, 0.5f, 0.5f, 1, 0, -1, 0, 0,
 -0.5f, 0.5f, -0.5f, 0, 0, -1, 0, 0,

 -0.5f, 0.5f, 0.5f, 0, 1, 0, 1, 0,

CHAPTER 11: 3D Programming Tricks 546

 0.5f, 0.5f, 0.5f, 1, 1, 0, 1, 0,
 0.5f, 0.5f, -0.5f, 1, 0, 0, 1, 0,
 -0.5f, 0.5f, -0.5f, 0, 0, 0, 1, 0,

 -0.5f, -0.5f, -0.5f, 0, 1, 0, -1, 0,
 0.5f, -0.5f, -0.5f, 1, 1, 0, -1, 0,
 0.5f, -0.5f, 0.5f, 1, 0, 0, -1, 0,
 -0.5f, -0.5f, 0.5f, 0, 0, 0, -1, 0 };
 short[] indices = { 0, 1, 2, 2, 3, 0,
 4, 5, 6, 6, 7, 4,
 8, 9, 10, 10, 11, 8,
 12, 13, 14, 14, 15, 12,
 16, 17, 18, 18, 19, 16,
 20, 21, 22, 22, 23, 20,
 24, 25, 26, 26, 27, 24 };
 Vertices3 cube = new Vertices3(glGraphics, vertices.length / 8, indices.length,
false, true, true);
 cube.setVertices(vertices, 0, vertices.length);
 cube.setIndices(indices, 0, indices.length);
 return cube;
 }

The createCube() method is mostly the same as the one we used in previous examples.

This time, however, we add normals to each vertex as shown in Figure 11–4. Apart from

that nothing really changed.

 @Override
 public void update(float deltaTime) {
 angle += deltaTime * 20;
 }

In the update() method we simply increase the rotation angle of the cube.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClearColor(0.2f, 0.2f, 0.2f, 1.0f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 67, glGraphics.getWidth()
 / (float) glGraphics.getHeight(), 0.1f, 10f);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, 0, 1, 3, 0, 0, 0, 0, 1, 0);

 gl.glEnable(GL10.GL_LIGHTING);

 ambientLight.enable(gl);
 pointLight.enable(gl, GL10.GL_LIGHT0);
 directionalLight.enable(gl, GL10.GL_LIGHT1);
 material.enable(gl);

 gl.glEnable(GL10.GL_TEXTURE_2D);

CHAPTER 11: 3D Programming Tricks 547

 texture.bind();

 gl.glRotatef(angle, 0, 1, 0);
 cube.bind();
 cube.draw(GL10.GL_TRIANGLES, 0, 6 * 2 * 3);
 cube.unbind();

 pointLight.disable(gl);
 directionalLight.disable(gl);

 gl.glDisable(GL10.GL_TEXTURE_2D);
 gl.glDisable(GL10.GL_DEPTH_TEST);
 }

And here it gets interesting. The first couple of lines are our boilerplate code for clearing

the color and depth buffer, enabling depth testing, and setting the viewport.

Next we set the projection matrix to a perspective projection matrix via

gluPerspective() and also use gluLookAt() for the model view matrix so that we have a

camera set up as in Figure 11–6.

Next we enable lighting itself. At this point no lights are defined yet, so we do that in the

next couple of lines by calling the enable() methods of the lights as well as the material.

As usual we also enable texturing and bind our crate texture. Finally, we call

glRotatef() to rotate our cube and then render its vertices with well-placed calls to the

Vertices3 instance.

To round off the method, we disable the point and directional lights (remember, the

ambient light is a global state) as well as texturing and depth testing. And that’s all there

is to lighting in OpenGL ES!

 @Override
 public void pause() {
 }

 @Override
 public void dispose() {
 }
}

The rest of the class is just empty; we don’t have to do anything special in case of a

pause.

Figure 11–7 shows you the output of our example.

CHAPTER 11: 3D Programming Tricks 548

Figure 11–7. Our scene from Figure 11–6 rendered with OpenGL ES

Some Notes on Lighting in OpenGL ES
While lighting can add some nice eye candy, it has its limits and pitfalls. Here’s a few

things you should take to heart.

 Lighting is expensive, especially on low-end devices. Use it with care.

The more light sources you enable the more computational power is

required to render the scene.

 When specifying the position/direction of point/directional lights, you

must do it after you have loaded the camera matrices and before you

multiply the model-view matrix with any matrices to move and rotate

objects around! This is crucial. If you don’t follow this method, you will

have some inexplicable lighting artifacts.

 When you use glScalef() to change the size of a model, its normals

will also be scaled. This is bad, because OpenGL ES expects unit-

length normals. To work around this issue you can use the command

glEnable(GL10.GL_NORMALIZE) or in some circumstances

glEnable(GL10.GL_RESCALE_NORMAL). I’d suggest sticking to the former,

as the later has some restrictions and caveats. The problem is that

normalizing or rescaling normals is computationally heavy. Not scaling

your lit objects is best for performance.

Mipmapping
If you’ve played around with our previous examples and let the cube move further away

from the camera, you might have noticed that the texture starts to looks grainy and full

of little artifacts the smaller the cube gets. This effect is called aliasing, a prominent

effect in all types of signal processing. Figure 11–8 shows you the effect on the right

side and the result of applying a technique called mipmapping on the left side.

CHAPTER 11: 3D Programming Tricks 549

Figure 11–8. Aliasing artifacts on the right; the results of mipmapping on the left

I won’t go into the details of why aliasing happens; all you need to know is how to make

objects look better. That’s where mipmapping comes in. [Au: OK? CE]

They key to fixing aliasing problems is to use lower-resolution images for parts of an

object that are smaller on screen or further away from the view point. This is usually

called a mipmap pyramid or chain. Given an image in its default resolution, say 256! 256

pixels, we create smaller versions of it, dividing the sides by two for each level of the

mipmap pyramid. Figure 11–9 shows the crate texture with the various mipmap levels.

Figure 11–9. A mipmap chain

To make a texture mipmapped in OpenGL ES we have to do two things:

CHAPTER 11: 3D Programming Tricks 550

 Set the minification filter to one of the GL_XXX_MIPMAP_XXX constants,

usually GL_LINEAR_MIPMAP_NEAREST.

 Create the images for each mipmap chain level by resizing the original

image and upload them to OpenGL ES. The mipmap chain is attached

to a single texture, not multiple textures.

To resize the base image for the mipmap chain we can simply use the Bitmap and

Canvas classes the Android API provides us with. Let us modify the Texture class a little.

Listing 11–8 shows you the code.

Listing 11–8. Texture.java, Our Final Version of the Texture Class

package com.badlogic.androidgames.framework.gl;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.khronos.opengles.GL10;

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Rect;
import android.opengl.GLUtils;

import com.badlogic.androidgames.framework.FileIO;
import com.badlogic.androidgames.framework.impl.GLGame;
import com.badlogic.androidgames.framework.impl.GLGraphics;

public class Texture {
 GLGraphics glGraphics;
 FileIO fileIO;
 String fileName;
 int textureId;
 int minFilter;
 int magFilter;
 public int width;
 public int height;
 boolean mipmapped;

We add only one new member, called mipmapped, which stores whether the texture has a

mipmap chain or not.

 public Texture(GLGame glGame, String fileName) {
 this(glGame, fileName, false);
 }

 public Texture(GLGame glGame, String fileName, boolean mipmapped) {
 this.glGraphics = glGame.getGLGraphics();
 this.fileIO = glGame.getFileIO();
 this.fileName = fileName;
 this.mipmapped = mipmapped;
 load();
 }

CHAPTER 11: 3D Programming Tricks 551

For compatibility we leave the old constructor in which calls the new constructor. The

new constructor takes a third argument that lets us specify whether we want the texture

to be mipmapped or not.

 private void load() {
 GL10 gl = glGraphics.getGL();
 int[] textureIds = new int[1];
 gl.glGenTextures(1, textureIds, 0);
 textureId = textureIds[0];

 InputStream in = null;
 try {
 in = fileIO.readAsset(fileName);
 Bitmap bitmap = BitmapFactory.decodeStream(in);
 if (mipmapped) {
 createMipmaps(gl, bitmap);
 } else {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
 setFilters(GL10.GL_NEAREST, GL10.GL_NEAREST);
 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 width = bitmap.getWidth();
 height = bitmap.getHeight();
 bitmap.recycle();
 }
 } catch (IOException e) {
 throw new RuntimeException("Couldn't load texture '" + fileName
 + "'", e);
 } finally {
 if (in != null)
 try {
 in.close();
 } catch (IOException e) {
 }
 }
 }

The load() method stays pretty much the same as well. The only addition is the call to

createMipmaps() in case the texture should be mipmapped. Non-mipmapped Texture

instances are created as before.

 private void createMipmaps(GL10 gl, Bitmap bitmap) {
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 width = bitmap.getWidth();
 height = bitmap.getHeight();
 setFilters(GL10.GL_LINEAR_MIPMAP_NEAREST, GL10.GL_LINEAR);

 int level = 0;
 int newWidth = width;
 int newHeight = height;
 while (true) {
 GLUtils.texImage2D(GL10.GL_TEXTURE_2D, level, bitmap, 0);
 newWidth = newWidth / 2;
 newHeight = newHeight / 2;
 if (newWidth <= 0)
 break;

CHAPTER 11: 3D Programming Tricks 552

 Bitmap newBitmap = Bitmap.createBitmap(newWidth, newHeight,
 bitmap.getConfig());
 Canvas canvas = new Canvas(newBitmap);
 canvas.drawBitmap(bitmap,
 new Rect(0, 0, bitmap.getWidth(), bitmap.getHeight()),
 new Rect(0, 0, newWidth, newHeight), null);
 bitmap.recycle();
 bitmap = newBitmap;
 level++;
 }

 gl.glBindTexture(GL10.GL_TEXTURE_2D, 0);
 bitmap.recycle();
 }

The createMipmaps() method is pretty straightforward. We start off by binding the

texture so that we can manipulate its attributes. The first thing we do is to keep track of

the bitmap’s width and height and set the filters. Note that we use

GL_LINEAR_MIPMAP_NEAREST for the minification filter. If we don’t use that filter

mipmapping will not work, and OpenGL ES will fall back to normal filtering, only using

the base image.

The while loop is straightforward. We upload the current bitmap as the image for the

current level. We start at level 0, the base level with the original image. Once the image

for the current level is uploaded we create a smaller version of it, dividing its width and

height by 2. If the new width is less than or equal to zero we can break out of the infinite

loop as we have uploaded an image for each mipmap level (the last image has a size of

1! 1 pixels). We use the Canvas class to resize the image and store the result in

newBitmap. We then recycle the old bitmap so we clean up any memory it used and set

the newBitmap as the current bitmap. This process is repeated until the image is smaller

than 1! 1 pixels.

Finally we unbind the texture and recycle the last bitmap that got created in the loop.

 public void reload() {
 load();
 bind();
 setFilters(minFilter, magFilter);
 glGraphics.getGL().glBindTexture(GL10.GL_TEXTURE_2D, 0);
 }

 public void setFilters(int minFilter, int magFilter) {
 this.minFilter = minFilter;
 this.magFilter = magFilter;
 GL10 gl = glGraphics.getGL();
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
 minFilter);
 gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
 magFilter);
 }

 public void bind() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 }

CHAPTER 11: 3D Programming Tricks 553

 public void dispose() {
 GL10 gl = glGraphics.getGL();
 gl.glBindTexture(GL10.GL_TEXTURE_2D, textureId);
 int[] textureIds = { textureId };
 gl.glDeleteTextures(1, textureIds, 0);
 }
}

The rest of the class is the same as in the previous version. The only difference in usage

is how we call the constructor. And since that is perfectly simple, we won’t write an

example just for mipmapping. We’ll use mipmapping on all our textures used for 3D

objects. In 2D mipmapping has less use. A few final notes on mipmapping:

 Mipmapping can increase performance quite a bit if the objects you

draw using a mipmapped texture are small. The reason for this is that

the GPU has to fetch fewer texels from smaller images in the mipmap

pyramid. It’s therefore wise to always use mipmapped textures on

object that might get small.

 A mipmapped texture takes up 33% more memory than an equivalent

non-mipmapped version. This trade-off is usually fine.

 Mipmapping works only with square textures in OpenGL ES 1.x. This

is crucial to remember. If your objects stay white even though they are

textured with a nice image you can be pretty sure that you forgot

about this limitation.

NOTE Once again, because this is really important. Mipmapping will only work with square

textures! A 512×256 pixel image will not work.

Simple Cameras
In the previous chapter we talked about two ways to create a camera. The first one, the

Euler camera, was similar to what is used in first-person shooters. The second one, the

look-at camera, is used for cinematic camera work or for following an object. Let’s

create two helper classes that we can use in our games.

The First-Person or Euler Camera
The first-person or Euler camera is defined by the following attributes:

 The field of view in degrees.

 The viewport aspect ratio.

 The near and far clipping planes.

 A position in 3D space.

CHAPTER 11: 3D Programming Tricks 554

 An angle around the y-axis (yaw).

 An angle around the x-axis (pitch). This is limited to the range –90 to

+90 degrees. Think how far you can tilt your own head and try to go

beyond those angles! I’m not responsible for any injuries.

The first three attributes are used to define the perspective projection matrix. We did this

already with calls to gluPerspective() in all of your 3D examples.

The other three attributes define the position and orientation of the camera in our world.

We will construct a matrix from this as outlined in the previous chapter. Let’s put all this

together into a simple class. Listing 11–9 shows you the code.

Additionally we want to be able to move the camera in the direction it is heading. For

this we need a unit length direction vector, which we can add to the position vector of

the camera. We can create such a vector with the help of the Matrix class the Android

API offers us. Let’s think about this for a moment.

In its default configuration our camera will look down the negative z-axis. So its direction

vector is (0, 0,–1). When we specify a yaw or pitch angle, this direction vector will be

rotated accordingly. To figure out the direction vector we just need to multiply it with a

matrix that will rotate the default direction vector just as OpenGL ES will rotate the

vertices of our models.

Let’s have a look at how all this works in code. Listing 11–9 shows you the EulerCamera

class.

Listing 11–9. EulerCamera.java, a Simple First Person Camera Based on Euler Angles Around the x- and y-Axes

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLU;
import android.opengl.Matrix;

import com.badlogic.androidgames.framework.math.Vector3;

public class EulerCamera {
 final Vector3 position = new Vector3();
 float yaw;
 float pitch;
 float fieldOfView;
 float aspectRatio;
 float near;
 float far;

The first three members hold the position and rotation angles of the camera. The other

four members hold the parameters used for calculating the perspective projection

matrix. By default our camera is located at the origin of the world, looking down the

negative z-axis.

 public EulerCamera(float fieldOfView, float aspectRatio, float near, float far){
 this.fieldOfView = fieldOfView;

CHAPTER 11: 3D Programming Tricks 555

 this.aspectRatio = aspectRatio;
 this.near = near;
 this.far = far;
 }

The constructor takes four parameters that define the perspective projection. We leave

the camera position and rotation angles as they are.

 public Vector3 getPosition() {
 return position;
 }
 public float getYaw() {
 return yaw;
 }

 public float getPitch() {
 return pitch;
 }

The getter methods just return the camera orientation and position.

 public void setAngles(float yaw, float pitch) {
 if (pitch < -90)
 pitch = -90;
 if (pitch > 90)
 pitch = 90;
 this.yaw = yaw;
 this.pitch = pitch;
 }

 public void rotate(float yawInc, float pitchInc) {
 this.yaw += yawInc;
 this.pitch += pitchInc;
 if (pitch < -90)
 pitch = -90;
 if (pitch > 90)
 pitch = 90;
 }

The setAngles() method allows us to directly specify the yaw and pitch of the camera.

Note that we limit the pitch to be in the range –90 to 90. We can’t rotate our own head

further than that, so our camera shouldn’t be able to do that either.

The rotate() method is nearly identical to the setAngles() method. Instead of setting

the angles it increases them by the parameters. This will be useful when we implement a

little touchscreen-based control scheme in the next example.

 public void setMatrices(GL10 gl) {
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, fieldOfView, aspectRatio, near, far);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glRotatef(-pitch, 1, 0, 0);
 gl.glRotatef(-yaw, 0, 1, 0);
 gl.glTranslatef(-position.x, -position.y, -position.z);
 }

CHAPTER 11: 3D Programming Tricks 556

The setMatrices() method just sets the projection and model-view matrices as

discussed earlier. The projection matrix is set via gluPerspective() based on the

parameters given to the camera in the constructor. The model-view matrix performs the

“prophet-mountain” trick by applying a rotation around the x- and y-axes as well as a

translation. All involved factors are negated to achieve the effect that the camera

remains at the origin of the world looking down the negative z-axis. We thus rotate and

translate the objects around the camera, not the other way around.

final float[] matrix = new float[16];
 final float[] inVec = { 0, 0, -1, 1 };
 final float[] outVec = new float[4];
 final Vector3 direction = new Vector3();

 public Vector3 getDirection() {
 Matrix.setIdentityM(matrix, 0);
 Matrix.rotateM(matrix, 0, yaw, 0, 1, 0);
 Matrix.rotateM(matrix, 0, pitch, 1, 0, 0);
 Matrix.multiplyMV(outVec, 0, matrix, 0, inVec, 0);
 direction.set(outVec[0], outVec[1], outVec[2]);
 return direction;
 }
}

Finally we have the mysterious getDirection() method. It is accompanied by a couple

of final members that we use for the calculations inside the method. We do this so that

we don’t allocate new float arrays and Vector3 instances each time the method is called.

Consider those members to be temporary working variables.

Inside the method we first set up a transformation matrix that contains the rotation

around the x- and y-axes. We don’t need to include the translation, since we only want a

direction vector, not a position vector. The direction of the camera is independent of its

location in the world. The Matrix methods we invoke should be self-explanatory. The

only strange thing is that we actually apply them in reverse order without negating the

arguments. We do the opposite in the setMatrices() method. That’s because we are

now actually transforming a point the same way we’d transform our virtual camera,

which does not have to be located at the origin and oriented so that it looks down the

negative z-axis. The vector we rotate is (0,0,–1), stored in inVec. That’s the default

direction of our camera if not rotation is applied. All the matrix multiplications do is

rotate this direction vector by the camera’s pitch and roll so that it points in the direction

the camera is heading toward. The last thing we do is set a Vector3 instance based on

the result of the matrix-vector multiplication and return that to the caller. We can use this

unit-length direction vector later on to move the camera in the direction it is heading.

Equipped with this little helper class we can write a tiny example program that allows us

to move through a world of crates.

An Euler Camera Example
We now want to use the EulerCamera class in a little program. We want to be able to

rotate it up and down and left and right based on swiping the touchscreen with a finger.

CHAPTER 11: 3D Programming Tricks 557

We also want it to move forward when a button is pressed. Our world should be

populated by a couple of crates. Figure 11–10 shows you the initial setup of our scene.

Figure 11–10. A simple scene with 25 crates, a point light, and an Euler camera in its initial position and
orientation

The camera will be located at (0,1,3). We also have a white point light at (3,3,-3). The

crates are positioned in a grid from -4 to 4 on the x-axis and 0 to -8 on the z-axis, with a

2-unit distance between the centers.

How will we rotate the camera via swipes? We want the camera to rotate around the y-

axis when we swipe horizontally. That is equivalent to turning our head left and right. We

also want the camera to rotate around the x-axis when we swipe vertically. That's

equivalent to tilting our head up and down. We also want to be able to combine these

two swipe motions. The most straightforward way to achieve this is to check for whether

a finger is on the screen, and if so measure the difference on each axis to the last known

position of that finger on the screen. We can then derive a change in rotation on both

axes by using the difference in x for the y-axis rotation and the difference in y for the x-

axis rotation.

We also want the camera to be able to move forward by pressing an on-screen button.

That’s simple; we just need to call EulerCamera.getDirection() and multiply its

result[OK?] by the speed we want the camera to move with and the delta time, so that

we once again perform time-based movement. The only thing that we need to do is

draw the button (I decided to draw a 64! 64 button in the bottom-left corner of the

screen) and check whether it is currently touched by a finger.

To simplify our implementation we’ll only allow the user to either swipe-rotate or move.

We could use the multitouch facilities for this but that would complicate our

implementation quite a bit.

With this plan of attack let us look at EulerCameraScreen, a GLScreen implementation

contained in a GLGame implementation called EulerCameraTest (just the usual test

structure). Listing 11–10 shows the code.

CHAPTER 11: 3D Programming Tricks 558

Listing 11–10. Excerpt from EulerCameraTest.java, the EulerCameraScreen

class EulerCameraScreen extends GLScreen {
 Texture crateTexture;
 Vertices3 cube;
 PointLight light;
 EulerCamera camera;
 Texture buttonTexture;
 SpriteBatcher batcher;
 Camera2D guiCamera;
 TextureRegion buttonRegion;
 Vector2 touchPos;
 float lastX = -1;
 float lastY = -1;

We start off with a couple of members. The first two store the texture for the crate as

well as the vertices of the texture cube. We’ll generate the vertices with the
createCube() method from the last example.

The next member is a PointLight, which we are already familiar with, as well as an

instance of our new EulerCamera class.

Next up are a couple of members we need to render the button. We use a separate

64! 64 image called button.png for that button. To render it we also need a

SpriteBatcher as well as a Camera2D instance and a TextureRegion. This means that

we are going to combine 3D and 2D rendering in this example! The last three members

are used to keep track of the current touchPos in the UI coordinate system (which is

fixed to 480! 320) as well as store the last known touch positions. We’ll use the value –1

for lastX and lastY to indicate that no valid last touch position is known yet.

 public EulerCameraScreen(Game game) {
 super(game);

 crateTexture = new Texture(glGame, "crate.png", true);
 cube = createCube();
 light = new PointLight();
 light.setPosition(3, 3, -3);
 camera = new EulerCamera(67, glGraphics.getWidth() /
(float)glGraphics.getHeight(), 1, 100);
 camera.getPosition().set(0, 1, 3);

 buttonTexture = new Texture(glGame, "button.png");
 batcher = new SpriteBatcher(glGraphics, 1);
 guiCamera = new Camera2D(glGraphics, 480, 320);
 buttonRegion = new TextureRegion(buttonTexture, 0, 0, 64, 64);
 touchPos = new Vector2();
 }

In the constructor we load the crate texture and create the cube vertices as we did in the

last example. We also create a PointLight and set its position to (3,3,–3). The

EulerCamera is created with the standard parameters, a 67-degree field of view, the

aspect ratio of the current screen resolution, a near clipping plane distance of 1, and a

far clipping plane distance of 100. Finally we set the camera position to (0,1,3) as shown

in Figure 11–10.

CHAPTER 11: 3D Programming Tricks 559

In the rest of the constructor we just load the button texture and create a SpriteBatcher,

a Camera2D, and TextureRegion instance needed for rendering the button. Finally we

create a Vector2 instance so that we can transform real touch coordinates to the

coordinate system of the Camera2D we use for UI rendering, just as we did in Super

Jumper in Chapter 9.

 private Vertices3 createCube() {
 // same as in previous example
 }

 @Override
 public void resume() {
 crateTexture.reload();
 }

The createCube() and resume() methods are exactly the same as in the previous

example, so I don’t repeat all the code here.

 @Override
 public void update(float deltaTime) {
 game.getInput().getTouchEvents();
 float x = game.getInput().getTouchX(0);
 float y = game.getInput().getTouchY(0);
 guiCamera.touchToWorld(touchPos.set(x, y));

 if(game.getInput().isTouchDown(0)) {
 if(touchPos.x < 64 && touchPos.y < 64) {
 Vector3 direction = camera.getDirection();
 camera.getPosition().add(direction.mul(deltaTime));
 } else {
 if(lastX == -1) {
 lastX = x;
 lastY = y;
 } else {
 camera.rotate((x - lastX) / 10, (y - lastY) / 10);
 lastX = x;
 lastY = y;
 }
 }
 } else {
 lastX = -1;
 lastY = -1;
 }
 }

The update() method is where all the swipe rotation and movement happens, based on

touch events. The first thing we do is empty the touch event buffer via a call to

Input.getTouchEvents(). Next we fetch the current touch coordinates for the first finger

on the screen. Note that if no finger is currently touching the screen, the methods we

invoke will return the last known position of the finger with index zero. We also transform

the real touch coordinates to the coordinate system of our 2D UI so that we can easily

check whether the button in the bottom left corner is pressed.

CHAPTER 11: 3D Programming Tricks 560

Equipped with all these values, we then check whether a finger is actually touching the

screen. If so, we first check whether it is touching the button, which spans the

coordinates (0,0) to (64,64) in the 2D UI system. If that is the case, we fetch the current

direction of the camera and add it to its position, multiplied by the current delta time.

Since the direction vector is a unit-length vector, this means that the camera will move

one unit per second.

If the button is not touched, we interpret the touch as a swipe gesture. For this to work

we need to have a valid last known touch coordinate. The first time the user puts his

finger down the lastX and lastY members will have a value of –1, indicating that we

can’t create a difference between the last and current touch coordinates, since we only

have a single data point. So we just store the current touch coordinates and return from

the update() method. If we recorded touch coordinates the last time update() was

invoked, we simply take the difference on the x- and y-axes between the current and the

last touch coordinates. We directly translate these into increments of the rotation angles.

To make the rotation a little slower we divide the differences by 10. The only thing left is

calling the EulerCamera.rotate() method, which will adjust the rotation angles

accordingly.

Finally, if no finger is currently touching the screen we set the lastX and lastY members

to –1 to indicate that we have to await the first touch event before we can do any swipe

gesture processing.

 @Override
 public void present(float deltaTime) {
 GL10 gl = glGraphics.getGL();
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glViewport(0, 0, glGraphics.getWidth(), glGraphics.getHeight());

 camera.setMatrices(gl);

 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glEnable(GL10.GL_TEXTURE_2D);
 gl.glEnable(GL10.GL_LIGHTING);

 crateTexture.bind();
 cube.bind();
 light.enable(gl, GL10.GL_LIGHT0);

 for(int z = 0; z >= -8; z-=2) {
 for(int x = -4; x <=4; x+=2) {
 gl.glPushMatrix();
 gl.glTranslatef(x, 0, z);
 cube.draw(GL10.GL_TRIANGLES, 0, 6 * 2 * 3);
 gl.glPopMatrix();
 }
 }

 cube.unbind();

 gl.glDisable(GL10.GL_LIGHTING);
 gl.glDisable(GL10.GL_DEPTH_TEST);

 gl.glEnable(GL10.GL_BLEND);

CHAPTER 11: 3D Programming Tricks 561

 gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA);

 guiCamera.setViewportAndMatrices();
 batcher.beginBatch(buttonTexture);
 batcher.drawSprite(32, 32, 64, 64, buttonRegion);
 batcher.endBatch();

 gl.glDisable(GL10.GL_BLEND);
 gl.glDisable(GL10.GL_TEXTURE_2D);
 }

The present() method is surprisingly simple, thanks to the work we put into all those

little helper classes. We start off with the usual things like clearing the screen and setting

the viewport. Next we tell the EulerCamera to set the projection and model-view matrix.

From this point on we can render anything that should be 3D on screen. Before we do

that, we enable depth testing, texturing, and lighting. Next we bind the crate texture and

the cube vertices and also enable the point light. Note that we bind the texture and cube

vertices only once, since we are going to reuse them for all the crates we render. That’s

the same trick we used in our BobTest in Chapter 8 to speed up rendering by reducing

state changes.

The next piece of code just draws the 25 cubes in the grid formation via a simple nested

for loop. Since we have to multiply the model-view matrix with a translation matrix to

put the cube vertices at a specific position, we must also use glPushMatrix() and

glPopMatrix() so that we don’t destroy the camera matrix that’s also stored in the

model-view matrix.

Once we are done with rendering our cubes, we unbind the cube vertices and disable

lighting and depth testing. This is crucial since we are now going to render the 2D UI

overlay with the button. Since the button is actually circular, we also enable blending to

make the edges of the texture transparent.

Rendering the button works the same as when we rendered the UI elements in Super

Jumper. We tell the Camera2D to set the viewport and matrices (we wouldn’t really need

to set the viewport here again; feel free to “optimize” this method) and tell the

SpriteBatcher that we are going to render a sprite. We render the complete button

texture at (32,32) in our 480! 320 coordinate system that we set up via the guiCamera.

Finally, we just disable the last few states we enabled previously, blending and texturing.

 @Override
 public void pause() {

 }

 @Override
 public void dispose() {
 }
}

The rest of the class is again just some stub methods for pause() and dispose(). Figure

11–11 shows the output of this little program.

CHAPTER 11: 3D Programming Tricks 562

Figure 11–11. A simple example of first-person-shooter controls, without multitouch for simplicity

Pretty nice, right? It also doesn’t take a lot of code, either, thanks to the wonderful job

our helper classes do for us. Now, adding multi-touch support would be awesome of

course. Here’s a hint: instead of using polling, as in the example just seen, use the

actual touch events. On a “touch down” event, check whether the button was hit. If so,

mark the pointer ID associated with it as not being able to produce swipe gestures until

a corresponding “touch up” event is signaled. Touch events from all other pointer IDs

can be interpreted as swipe gestures!

A Look-At Camera
The second type of camera usually found in games is a simple look-at camera. It is

defined by the following:

 A position in space.

 An up vector. Think of this as an arrow coming out of the top of your

skull, pointing in the direction of the top of your skull.

 A look-at position in space or alternatively a direction vector. We’ll use

the former.

 A field of view in degrees.

 A viewport aspect ratio.

 A near and far clipping plane distance.

The only difference from the Euler camera is the way we encode the orientation of the

camera. In this case we specify the orientation by the up vector and the look-at position.

Let’s write a helper class for this type of camera. Listing 11–11 shows you the code.

CHAPTER 11: 3D Programming Tricks 563

Listing 11–11. LookAtCamera.java, a Simple Look-At Camera Without Bells and Whistles

package com.badlogic.androidgames.framework.gl;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLU;

import com.badlogic.androidgames.framework.math.Vector3;

public class LookAtCamera {
 final Vector3 position;
 final Vector3 up;
 final Vector3 lookAt;
 float fieldOfView;
 float aspectRatio;
 float near;
 float far;

 public LookAtCamera(float fieldOfView, float aspectRatio, float near, float far) {
 this.fieldOfView = fieldOfView;
 this.aspectRatio = aspectRatio;
 this.near = near;
 this.far = far;

 position = new Vector3();
 up = new Vector3(0, 1, 0);
 lookAt = new Vector3(0,0,-1);
 }

 public Vector3 getPosition() {
 return position;
 }

 public Vector3 getUp() {
 return up;
 }

 public Vector3 getLookAt() {
 return lookAt;
 }

 public void setMatrices(GL10 gl) {
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, fieldOfView, aspectRatio, near, far);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 GLU.gluLookAt(gl, position.x, position.y, position.z, lookAt.x, lookAt.y,
lookAt.z, up.x, up.y, up.z);
 }
}

No real surprises here. We just store the position, up, and lookAt values as Vector3

instances along with the perspective projection parameters we also had in the

EulerCamera. Additionally, we provide a couple of getters so we can modify the

CHAPTER 11: 3D Programming Tricks 564

attributes of the camera. The only interesting method is setMatrices(). But even that is

an old hat for us. We first set the projection matrix to a perspective projection matrix,

based on the field of view, aspect ratio, and near and far clipping plane distances. Then

we set the model-view matrix to contain the camera position and orientation matrix via

gluLookAt() as discussed in the previous chapter. This will actually produce a matrix

very similar to the matrix we “handcrafted” in the EulerCamera example. It will also

rotate the objects around the camera instead of the other way around. However, the

nice interface of the gluLookAt() method shields us from all those silly things like

inverting positions or angles.

We could in fact use this camera just like an EulerCamera. All we need to do is create a

direction vector by subtracting the camera’s position from its look-at point and

normalizing it. Then we just rotate this direction vector by the yaw and pitch angles.

Finally we set the new look-at to the position of the camera and add the direction vector.

Both methods would produce exactly the same transformation matrix. It’s just two

different ways to handle camera orientation.

We’ll refrain from writing an explicit example for the LookAtCamera, as the interface is

perfectly simple. We’ll use it in our last game in this book, were we let it follow a neat

little space ship! If you want to play around with it a little, add it to the LightTest we

wrote earlier or modify the EulerCameraTest in such a way that the LookAtCamera can be

used like a first-person-shooter camera, as outlined in the previous paragraph.

Loading Models
Defining models like our cube in code is very cumbersome to say the least. A better way

to create such models is to use special software that allows WYSIWYG creation of

complex forms and objects. There’s a plethora of software available for that task:

 Blender, an open source project used in many game and movie

productions. Very capable and flexible but also a little bit intimidating.

 Wings3D, my weapon of choice and also open-source. I use it for

simple low-poly (read: not many triangles) modeling of static objects.

It’s very simplistic but gets the job done.

 3D Studio Max, one of the de facto standards in the industry. It’s a

commercial product but there are student versions available.

 Maya, another industry favorite. It’s also a commercial product but has

some pricing options that might fit smaller purses.

That’s just a selection of the more popular options out in the wild. Teaching you how to

use one of these is well outside the scope of this book. However, no matter what

software you use, at some point you will save your work to some kind of format. One

such format is Wavefront OBJ, a very old plain-text format that can be easily parsed and

translated to one of our Vertices3 instances.

CHAPTER 11: 3D Programming Tricks 565

The Wavefront OBJ Format
We will implement a loader for a subset of this format. Our loader will support models

that are composed of triangles only and optionally may contain texture coordinates and

normals. The OBJ format also supports storing arbitrary convex polygons, but we won’t

go into that. Whether you simply find an OBJ model, or create your own, just make sure

that it is triangulated, meaning that it’s composed of triangles only.

The OBJ format is-line based. Here are the parts of the syntax we are going to process:

 v x y z: The v indicates that the line encodes a vertex position, while

x, y, and z are the coordinates encoded as floating-point numbers.

 vn i j k: The n indicates that the line encodes a vertex normal, with i,

j, and k being the x-, y- and z-components of the vertex normal.

 vt u v: The vt indicates that the line encodes a texture coordinate

pair, with u and v being the texture coordinates.

 f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3: The f indicates that the line

encodes a triangle. Each of the v/vt/vn blocks contains the indices of

the position, texture coordinates, and vertex normal of a single vertex

of the triangle. The indices are relative to the vertex positions, texture

coordinates, and vertex normal defined previously by the other three

line formats. The vt and vn indices can be left out, indicating that there

are no texture coordinates or normal for a specific vertex of a triangle.

We will ignore any line that does not start with v, vn, vt, or f; we will also output an error

if any of the permissible lines don’t follow the formatting just described. Items within a

single line are delimited by whitespaces, which can include spaces, tabs, and so on.

NOTE The OBJ format can store a lot more information that we are going to parse her. We can
get away with only parsing the syntax shown here and ignoring anything else as long as the

models are triangulated and have normal and texture coordinates.

Here’s a very simple example, a texture triangle with normals in OBJ format:

v -0.5 -0.5 0
v 0.5 -0.5 0
v 0 0.5 0
vn 0 0 1
vn 0 0 1
vn 0 0 1
vt 0 1
vt 1 1
vt 0.5 0
f 1/1/1 2/2/2 3/3/3

Note that the vertex positions, texture coordinates and normals do not have to be

defined in such a nice order. They could be intertwined if the software that saved the file

chose to do so.

CHAPTER 11: 3D Programming Tricks 566

The indices given in an f statement are one based, rather than zero-based (as in the

case of a Java array). Some software even outputs negative indices at times. This is

permitted by the OBJ format specification but is a major pain. We have to keep track

how many vertex positions, texture coordinates, or vertex normals we have loaded so

far and then add that negative index to the respective number of positions, vertex

coordinates, or normals depending on what vertex attribute that index points at.

Implementing an OBJ Loader
Our plan of attack will be to load the file completely into memory and create a string per

line. We will also create temporary float arrays for all the vertex positions, texture

coordinates and normals we are going to load. Their size will be equal to the number of

lines in the OBJ file times the number of components per attribute; that is, two for

texture coordinates or three for normals. By this we overshoot the necessary amount of

memory needed to store the data, but that’s still better than allocating new arrays every

time we have filled them up.

We also do the same for the indices that define each triangle. While the OBJ format is

indeed an indexed format, we can’t use those indices directly with our Vertices3 class.

The reason for this is that a vertex attribute might be reused by multiple vertices, so

there’s a one-to-many relationship that is not allowed in OpenGL ES. Therefore we’ll use a

non-indexed Vertices3 instance and simply duplicate vertices. For our needs that’s OK.

Let’s see how we can implement all this. Listing 11–12 shows the code.

Listing 11–12. ObjLoader.java, a Simple Class for Loading a Subset of the OBJ Format

package com.badlogic.androidgames.framework.gl;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import com.badlogic.androidgames.framework.impl.GLGame;

public class ObjLoader {
 public static Vertices3 load(GLGame game, String file) {
 InputStream in = null;
 try {
 in = game.getFileIO().readAsset(file);
 List<String> lines = readLines(in);

 float[] vertices = new float[lines.size() * 3];
 float[] normals = new float[lines.size() * 3];
 float[] uv = new float[lines.size() * 2];

 int numVertices = 0;
 int numNormals = 0;
 int numUV = 0;
 int numFaces = 0;

CHAPTER 11: 3D Programming Tricks 567

The first thing we do is open an InputStream to the asset file specified by the file

parameter. We then read in all lines of that file in a method called readLines() (defined

in the code that follows). Based on the number of lines, we allocate float arrays that will

store the x-, y- and z-coordinates of each vertex’s position, the x-, y- and z-component

of each vertex’s normal, and the u- and v-components of each vertex’s texture

coordinates. Since we don’t know how many vertices there are in the file, we just

allocate more space than needed for the arrays. Each vertex attribute is stored in

subsequent elements of the three arrays. The position of the first read vertex is in

vertices[0], vertices[1], and vertices[2], and so on. We also keep track of the

indices in the triangle definitions for each of the three attributes of a vertex. Additionally

we have a couple of counters to keep track of how many things we have already loaded.

 for (int i = 0; i < lines.size(); i++) {
 String line = lines.get(i);

Next we have a for loop that iterates through all the lines in the files.

 if (line.startsWith("v ")) {
 String[] tokens = line.split("[]+");
 vertices[vertexIndex] = Float.parseFloat(tokens[1]);
 vertices[vertexIndex + 1] = Float.parseFloat(tokens[2]);
 vertices[vertexIndex + 2] = Float.parseFloat(tokens[3]);
 vertexIndex += 3;
 numVertices++;
 continue;
 }

If the current line is a vertex position definition, we split the line by whitespaces, read the

x-, y- and z-coordinate, and store it in the vertices array:

 if (line.startsWith("vn ")) {
 String[] tokens = line.split("[]+");
 normals[normalIndex] = Float.parseFloat(tokens[1]);
 normals[normalIndex + 1] = Float.parseFloat(tokens[2]);
 normals[normalIndex + 2] = Float.parseFloat(tokens[3]);
 normalIndex += 3;
 numNormals++;
 continue;
 }

 if (line.startsWith("vt")) {
 String[] tokens = line.split("[]+");
 uv[uvIndex] = Float.parseFloat(tokens[1]);
 uv[uvIndex + 1] = Float.parseFloat(tokens[2]);
 uvIndex += 2;
 numUV++;
 continue;
 }

We do the same for normals and texture coordinates:

 if (line.startsWith("f ")) {
 String[] tokens = line.split("[]+");

 String[] parts = tokens[1].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);

CHAPTER 11: 3D Programming Tricks 568

 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;

 parts = tokens[2].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);
 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;

 parts = tokens[3].split("/");
 facesVerts[faceIndex] = getIndex(parts[0], numVertices);
 if (parts.length > 2)
 facesNormals[faceIndex] = getIndex(parts[2], numNormals);
 if (parts.length > 1)
 facesUV[faceIndex] = getIndex(parts[1], numUV);
 faceIndex++;
 numFaces++;
 continue;
 }
 }

In this code, each vertex of a triangle (here called a face, as that is the term used in the

OBJ format) is defined by a triplet of indices into the vertex position, texture coordinate,

and normal arrays. The texture coordinate and normal indices can be omitted, so we

keep track of this. The indices can also be negative, in which case we have to add them

to the number of positions/texture coordinates/normals loaded so far. That’s what the

getIndex() method does for us.

 float[] verts = new float[(numFaces * 3)
 * (3 + (numNormals > 0 ? 3 : 0) + (numUV > 0 ? 2 : 0))];

Once we have loaded all vertex positions, texture coordinates, normals, and triangles we

can start assembling a float array holding the vertices in the format expected by a

Vertices3 instance. The number of floats needed to store these vertices can be easily

derived from the number of triangles we loaded and whether normal and texture

coordinates are given.

 for (int i = 0, vi = 0; i < numFaces * 3; i++) {
 int vertexIdx = facesVerts[i] * 3;
 verts[vi++] = vertices[vertexIdx];
 verts[vi++] = vertices[vertexIdx + 1];
 verts[vi++] = vertices[vertexIdx + 2];

 if (numUV > 0) {
 int uvIdx = facesUV[i] * 2;
 verts[vi++] = uv[uvIdx];
 verts[vi++] = 1 - uv[uvIdx + 1];
 }

 if (numNormals > 0) {

CHAPTER 11: 3D Programming Tricks 569

 int normalIdx = facesNormals[i] * 3;
 verts[vi++] = normals[normalIdx];
 verts[vi++] = normals[normalIdx + 1];
 verts[vi++] = normals[normalIdx + 2];
 }
 }

To fill the verts array we just loop over all the triangles, fetch the vertex attribute for

each vertex of a triangle and put them into the verts array in the layout we usually use

for a Vertices3 instance.

 Vertices3 model = new Vertices3(game.getGLGraphics(), numFaces * 3,
 0, false, numUV > 0, numNormals > 0);
 model.setVertices(verts, 0, verts.length);
 return model;

The last thing we do is instantiate the Vertices3 instance and set the vertices.

 } catch (Exception ex) {
 throw new RuntimeException("couldn't load '" + file + "'", ex);
 } finally {
 if (in != null)
 try {
 in.close();
 } catch (Exception ex) {

 }
 }
 }

The rest of the method just does some exception handling and closing of the

InputStream.

 static int getIndex(String index, int size) {
 int idx = Integer.parseInt(index);
 if (idx < 0)
 return size + idx;
 else
 return idx - 1;
 }

The getIndex() method takes one of the indices given for an attribute of a vertex in a

triangle definition, as well as the number of attributes loaded so far, and returns an index

suitable to reference the attribute in one of our working arrays.

 static List<String> readLines(InputStream in) throws IOException {
 List<String> lines = new ArrayList<String>();

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String line = null;
 while ((line = reader.readLine()) != null)
 lines.add(line);
 return lines;
 }
}

CHAPTER 11: 3D Programming Tricks 570

Finally there’s the readLines() method, which just reads in each line of a file and returns

all these lines as a List of strings.

To load a OBJ file from an asset we can use the ObjLoader as follows:

Vertices3 model = ObjLoader.load(game, “mymodel.obj”);

Pretty straightforward after all this index juggling, right? To render this Vertices3

instance we need to know how many vertices it has, though. Let’s extend the Vertices3

class one more time, adding two methods to return the number of vertices as well as the

number of indices currently defined in the instance. Listing 11–13 shows you the code.

Listing 11–13. An excerpt from Vertices3.java, Fetching the Number of Vertices and Indices

public int getNumIndices() {
 return indices.limit();
}

public int getNumVertices() {
 return vertices.limit() / (vertexSize / 4);
}

For the number of indices we just return the limit of the ShortBuffer storing the indices.

For the number of vertices we do the same. However, since the limit is reported in the

number of floats defined in the FloatBuffer, we have to divide it by the vertex size.

Since we store that in number of bytes in vertexSize, we divide that member by 4.

Using the OBJ Loader
To demonstrate the OBJ loader, I’ve rewritten the last example and created a new test

called ObjTest along with an ObjScreen. I copied over all the code from the previous

example and only changed a single line in the constructor of ObjScreen:

cube = ObjLoader.load(glGame, "cube.obj");

So, instead of using the createCube() method (which I removed), we are now directly

loading a model from an OBJ file called cube.obj. I created a replica of the cube we

previously specified programmatically in createCube() in Wings3D. It has the same

vertex positions, texture coordinates and normals as the handcrafted version. It should

come as no surprise that when you run ObjTest it will look exactly like our

EulerCameraTest. I’ll therefore spare you the obligatory screenshot.

CHAPTER 11: 3D Programming Tricks 571

Some Notes on Loading Models
For the game we are going to write in the next chapter[OK?] our loader is sufficient, but

it is far from robust. There are some caveats:

 String processing in Android is inherently slow. The OBJ format is a

plain-text format and as such needs a lot of parsing. This will have a

negative influence on load times. You can work around this issue by

converting your OBJ models to a custom binary format. You could for

example just serialize the verts array that we fill in the

ObjLoader.load() method.

 The OBJ format has a lot more features that we don’t exploit. If you

want to extend our simple loader look up the format specification on

the web. It should be easy to add additional functionality.

 An OBJ file is usually accompanied by what’s called a material file.

This file defines the colors and textures to be used by groups of

vertices in the OBJ file. We will not need this functionality as we know

which texture to use for a specific OBJ file. For a more robust loader

you’ll want to look into the material file specification as well.

A Little Physics in 3D
In Chapter 8 we developed a very simple point-mass-based physics model in 2D. Here’s

the good news: everything works the same in 3D!

 Positions are now 3D vectors instead of 2D vectors. We just add a z-

coordinate.

 Velocities are still expressed in meters per second on each axis. We

just add one more component for the z-axis!

 Accelerations are also still expressed in meters per second per second

on each axis. Again, we just add another coordinate.

The pseudocode in Chapter 8 describing a physics simulation update looked like this:

Vector2 position = new Vector2();
Vector2 velocity = new Vector2();
Vector2 acceleration = new Vector2(0, -10);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime);
}

We can translate this into 3D space by simply exchanging the Vector2 instances with

Vector3 instances:

Vector3 position = new Vector3();
Vector3 velocity = new Vector3();

CHAPTER 11: 3D Programming Tricks 572

Vector3 acceleration = new Vector3(0, -10, 0);
while(simulationRuns) {
 float deltaTime = getDeltaTime();
 velocity.add(acceleration.x * deltaTime, acceleration.y * deltaTime, acceleration.z *
deltaTime);
 position.add(velocity.x * deltaTime, velocity.y * deltaTime, velocity.z * deltaTime);
}

And that is all there is to it. This simple physics model is again sufficient for many simple

3D games. In the final game of this book we will not even use any acceleration, because

of the nature of the objects in the game.

More complex physics in 3D (and 2D) are, of course, harder to implement. For this

purpose you’d usually use a third-party library instead of reinventing the wheel yourself.

The problem on Android is that Java-based solutions will be much too slow due to the

heavy computations involved. There are some solutions for 2D physics for Android that

wrap native C++ libraries like Box2D via the Java Native Interface (JNI), providing the

native API to a Java application. For 3D physics there’s a library called Bullet. However,

there don’t exist any usable JNI bindings for this library yet. Those topics are well

outside of the scope of this book, though, and in many cases we don’t need any

sophisticated rigid-body physics.

Collision Detection and Object Representation in 3D
In Chapter 8 we discussed the relation between object representation and collision

detection. We strive to make our game-world objects as independent from their

graphical representation as possible. Instead we’d like to define them in terms of their

bounding shape, position, and orientation. Position and orientation are not much of a

problem: we can express the former as a Vector3 and the later as the rotation around

the x-, y- and z-axes (minding the potential gimbal lock problem mentioned in the last

chapter. Let’s take a look at bounding shapes.

Bounding Shapes in 3D
In terms of bounding shapes we again have a ton of options. Figure 11–12 shows some

of the more popular bounding shapes in 3D programming.

Figure 11–12. Various bounding shapes. From left to right: triangle mesh, axis aligned bounding box, bounding
sphere

CHAPTER 11: 3D Programming Tricks 573

 Triangle Mesh: This bounds the object as tightly as possible.

However, colliding two objects based on their triangle meshes is

computationally heave.

 Axis Aligned Bounding Box: This bounds the object loosely. It is a lot

less computationally intensive than a triangle mesh.

 Bounding Sphere: This bounds the object even less well. It is the

fastest way to check for collisions.

Another problem with triangle meshes and bounding boxes is that we have to reorient

them whenever we rotate or scale the object, just as in 2D. Bounding spheres on the

other hand don’t need any modification if we rotate an object. If we scale an object, we

just need to scale the radius of the sphere, which is a simple multiplication.

Bounding Sphere Overlap Testing
The mathematics of triangle mesh and bounding box collision detection can be pretty

involved. For our next game, bounding spheres will do just fine. There’s also a little trick

we can apply which we already used in Super Jumper: to make the bounding sphere fit

a little better we make it smaller than the graphical representation. Figure 11–13 shows

you how that could look in case of the space ship.

Figure 11–13. Making the bounding sphere smaller to better fit an object

That’s of course a very cheap trick, but it turns out that in many situations it is more than

sufficient to keep up the illusion of mostly correct collision detection.

So how do we collide two spheres with each other? Or rather, how do we test for

overlap? It works exactly the same as in the case of circles! All we need to do is

measure the distance from the center of one sphere to the center of the other sphere. If

that distance is smaller than the two radii of the spheres added together, then we have a

collision. Let’s create a simple Sphere class. Listing 11–13 shows you the code.

CHAPTER 11: 3D Programming Tricks 574

Listing 11–13. Sphere.java, a Simple Bounding Sphere

package com.badlogic.androidgames.framework.math;

public class Sphere {
 public final Vector3 center = new Vector3();
 public float radius;

 public Sphere(float x, float y, float z, float radius) {
 this.center.set(x,y,z);
 this.radius = radius;
 }
}

That’s the same code as in the Circle class. All we changed is the vector holding the

center, which is now a Vector3 instead of a Vector2.

Let’s also extend our OverlapTester class with methods to check for overlap of two

spheres and to test whether a point is inside a sphere. Listing 11–14 shows the code.

Listing 11–14. Excerpt from OverlapTester.java, Adding Sphere-Testing Methods

public static boolean overlapSpheres(Sphere s1, Sphere s2) {
 float distance = s1.center.distSquared(s2.center);
 float radiusSum = s1.radius + s2.radius;
 return distance <= radiusSum * radiusSum;
}

public static boolean pointInSphere(Sphere c, Vector3 p) {
 return c.center.distSquared(p) < c.radius * c.radius;
}

public static boolean pointInSphere(Sphere c, float x, float y, float z) {
 return c.center.distSquared(x, y, z) < c.radius * c.radius;
}

That’s again exactly the same code as in the case of Circle overlap testing. We just use

the center of the spheres, which is a Vector3 instead of a Vector2 as in the case of a

Circle.

NOTE Entire books have been filled on the topic of 3D collision detection. If you want to dive
deep into that rather interesting world, I suggest the book Real-time Collision Detection by
Christer Ericson (Morgan Kaufmann, 2005). It should be on the shelf of any self-respecting game

developer!

GameObject3D and DynamicGameObject3D
Now that we have a nice bounding shape for our 3D objects, we can easily write the

equivalent of the GameObject and DynamicGameObject classes we used in 2D. We just

replace any Vector2 with a Vector3 instance and use the Sphere class instead of the

Rectangle class. Listing 11–15 shows you the GameObject3D class.

CHAPTER 11: 3D Programming Tricks 575

Listing 11–15. GameObject3D, Representing a Simple Object with a Position and Bounds

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Sphere;
import com.badlogic.androidgames.framework.math.Vector3;

public class GameObject3D {
 public final Vector3 position;
 public final Sphere bounds;

 public GameObject3D(float x, float y, float z, float radius) {
 this.position = new Vector3(x,y,z);
 this.bounds = new Sphere(x, y, z, radius);
 }
}

This code is so trivial, you probably don’t need any explanation. The only hitch is that we

have to store the same position twice: once as the position member in the GameObject3D

class, and again within the position member of the Sphere instance that’s contained in

the GameObject3D class. That’s a tiny bit ugly, but for the sake of clarity we’ll stick to this.

Deriving a DynamicGameObject3D class from this class is simple as well. Listing 11–16

shows you the code.

Listing 11–16. DynamicGameObject3D.java, the Dynamic Equivalent to GameObject3D

package com.badlogic.androidgames.framework;

import com.badlogic.androidgames.framework.math.Vector3;

public class DynamicGameObject3D extends GameObject {
 public final Vector3 velocity;
 public final Vector3 accel;

 public DynamicGameObject3D(float x, float y, float z, float radius) {
 super(x, y, z, radius);
 velocity = new Vector3();
 accel = new Vector3();
 }
}

We again just replace any Vector2 with a Vector3 and smile happily.

In 2D we had to think hard about the relationship between the graphical representation

of our objects (given in pixels) and the units used within the model of our world. In 3D we

can break free from this! The vertices of our 3D models that we load from, say, an OBJ

file can be defined in whatever unit system we want. We no longer need to transform

pixels to world units and vice versa. This makes working in 3D a little. We just need to

train our artist so that she provides us with models that are properly scaled to the unit

system of our world.

CHAPTER 11: 3D Programming Tricks 576

Summary
Again we uncovered a lot of mysteries in the world of game programming. We talked a

little bit about vectors in 3D, which turned out to be as simple to use as their 2D

counterparts. The general theme: we just add a z-coordinate! We also took a look at

lighting in OpenGL ES. With the helper classes we wrote to represent materials and light

sources, it is pretty simple to set up the lighting in a scene. For better performance and

fewer graphical artifacts we also implemented simple mipmapping as part of our

Texture class. We also explored implementing simple Euler and look-at cameras with

very little code and a little help from the Matrix class. Since creating 3D meshes by hand

in code is tedious, we also looked at one of the most simple and popular 3D file formats:

Wavefront OBJ. We revisited our simple physics model and transferred it to the realm of

3D, which turned out to be as simple as creating 3D vectors. The last point on our

agenda was to figure out how to cope with bounding shapes and object representation

in 3D. Given our modest needs we arrived at very simple solutions for both problems,

which are very similar or even identical to those we used in 2D.

While there is a lot more to 3D programming than I can present here, you now have a

pretty good idea about what is needed to write a 3D game. The big realization is that

there is indeed not a lot of difference between a 2D game and a 3D game (up to a

certain degree of complexity, of course). We don’t have to be afraid of 3D anymore! In

Chapter 12 we’ll use our new knowledge to write the final game of this book: Droid

Invaders!

	Chapter 11 3D Programming Tricks
	Before We Begin
	Vectors in 3D
	Lighting in OpenGL ES
	How Lighting Works
	Light Sources
	Materials
	How OpenGL ES Calculates Lighting: Vertex Normals
	In Practice
	Enabling and Disabling Lighting
	Specifying Light Sources
	Ambient Light
	Point Lights
	Directional Lights

	Specifying Materials
	Specifying Normals
	Putting it All Together

	Some Notes on Lighting in OpenGL ES

	Mipmapping
	Simple Cameras
	The First-Person or Euler Camera
	An Euler Camera Example
	A Look-At Camera

	Loading Models
	The Wavefront OBJ Format
	Implementing an OBJ Loader
	Using the OBJ Loader
	Some Notes on Loading Models

	A Little Physics in 3D
	Collision Detection and Object Representation in 3D
	Bounding Shapes in 3D
	Bounding Sphere Overlap Testing
	GameObject3D and DynamicGameObject3D

	Summary

