
C H A P T E R 8

■ ■ ■

131

Some Pattern Principles

Although design patterns simply describe solutions to problems, they tend to emphasize solutions that
promote reusability and flexibility. To achieve this, they manifest some key object-oriented design
principles. We will encounter some of them in this chapter and in more detail throughout the rest of the
book.

This chapter will cover

• Composition: How to use object aggregation to achieve greater flexibility than you
could with inheritance alone

• Decoupling: How to reduce dependency between elements in a system

• The power of the interface: Patterns and polymorphism

• Pattern categories: The types of pattern that this book will cover

The Pattern Revelation
I first started working with objects in the Java language. As you might expect, it took a while before some
concepts clicked. When it did happen, though, it happened very fast, almost with the force of revelation.
The elegance of inheritance and encapsulation bowled me over. I could sense that this was a different
way of defining and building systems. I got polymorphism, working with a type and switching
implementations at runtime.

All the books on my desk at the time focused on language features and the very many APIs available
to the Java programmer. Beyond a brief definition of polymorphism, there was little attempt to examine
design strategies.

Language features alone do not engender object-oriented design. Although my projects fulfilled
their functional requirements, the kind of design that inheritance, encapsulation, and polymorphism
had seemed to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build new classes for every
eventuality. The structure of my systems made it hard to convey messages from one tier to another
without giving intermediate classes too much awareness of their surroundings, binding them into the
application and making them unusable in new contexts.

It wasn’t until I discovered Design Patterns, otherwise known as the Gang of Four book, that I
realized I had missed an entire design dimension. By that time, I had already discovered some of the
core patterns for myself, but others contributed to a new way of thinking.

I discovered that I had overprivileged inheritance in my designs, trying to build too much
functionality into my classes. But where else can functionality go in an object-oriented system?

I found the answer in composition. Software components can be defined at runtime by combining
objects in flexible relationships. The Gang of Four boiled this down into a principle: “favor composition

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

132

over inheritance.” The patterns described ways in which objects could be combined at runtime to
achieve a level of flexibility impossible in an inheritance tree alone.

Composition and Inheritance
Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit flexibility,
however, especially when classes take on multiple responsibilities.

The Problem
As you know, child classes inherit the methods and properties of their parents (as long as they are
protected or public elements). You can use this fact to design child classes that provide specialized
functionality.

Figure 8–1 presents a simple example using the UML.

Figure 8–1. A parent class and two child classes

The abstract Lesson class in Figure 8–1 models a lesson in a college. It defines abstract cost() and
chargeType() methods. The diagram shows two implementing classes, FixedPriceLesson and
TimedPriceLesson, which provide distinct charging mechanisms for lessons.

Using this inheritance scheme, I can switch between lesson implementations. Client code will know
only that it is dealing with a Lesson object, so the details of cost will be transparent.

What happens, though, if I introduce a new set of specializations? I need to handle lectures and
seminars. Because these organize enrollment and lesson notes in different ways, they require separate
classes. So now I have two forces that operate upon my design. I need to handle pricing strategies and
separate lectures and seminars.

Figure 8–2 shows a brute-force solution.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

133

Figure 8–2. A poor inheritance structure

Figure 8–2 shows a hierarchy that is clearly faulty. I can no longer use the inheritance tree to manage
my pricing mechanisms without duplicating great swathes of functionality. The pricing strategies are
mirrored across the Lecture and Seminar class families.

At this stage, I might consider using conditional statements in the Lesson super class, removing
those unfortunate duplications. Essentially, I remove the pricing logic from the inheritance tree
altogether, moving it up into the super class. This is the reverse of the usual refactoring where you
replace a conditional with polymorphism. Here is an amended Lesson class:

abstract class Lesson {
 protected $duration;
 const FIXED = 1;
 const TIMED = 2;
 private $costtype;

 function __construct($duration, $costtype=1) {
 $this->duration = $duration;
 $this->costtype = $costtype;
 }

 function cost() {
 switch ($this->costtype) {
 CASE self::TIMED :
 return (5 * $this->duration);
 break;
 CASE self::FIXED :
 return 30;
 break;
 default:
 $this->costtype = self::FIXED;
 return 30;
 }
 }

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

134

 function chargeType() {
 switch ($this->costtype) {
 CASE self::TIMED :
 return "hourly rate";
 break;
 CASE self::FIXED :
 return "fixed rate";
 break;
 default:
 $this->costtype = self::FIXED;
 return "fixed rate";
 }
 }

 // more lesson methods...
}

class Lecture extends Lesson {
 // Lecture-specific implementations ...
}

class Seminar extends Lesson {
 // Seminar-specific implementations ...
}

Here's how I might work with these classes:

$lecture = new Lecture(5, Lesson::FIXED);

print "{$lecture->cost()} ({$lecture->chargeType()})\n";

$seminar= new Seminar(3, Lesson::TIMED);

print "{$seminar->cost()} ({$seminar->chargeType()})\n";

And here's the output:

30 (fixed rate)

15 (hourly rate)

You can see the new class diagram in Figure 8–3.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

135

Figure 8–3. Inheritance hierarchy improved by removing cost calculations from subclasses

I have made the class structure much more manageable but at a cost. Using conditionals in this
code is a retrograde step. Usually, you would try to replace a conditional statement with polymorphism.
Here, I have done the opposite. As you can see, this has forced me to duplicate the conditional statement
across the chargeType() and cost() methods.

I seem doomed to duplicate code.

Using Composition
I can use the Strategy pattern to compose my way out of trouble. Strategy is used to move a set of
algorithms into a separate type. By moving cost calculations, I can simplify the Lesson type. You can see
this in Figure 8–4.

Figure 8–4. Moving algorithms into a separate type

I create an abstract class, CostStrategy, which defines the abstract methods cost() and
chargeType(). The cost() method requires an instance of Lesson, which it will use to generate cost data. I
provide two implementations for CostStrategy. Lesson objects work only with the CostStrategy type, not
a specific implementation, so I can add new cost algorithms at any time by subclassing CostStrategy.
This would require no changes at all to any Lesson classes.

Here’s a simplified version of the new Lesson class illustrated in Figure 8–4:

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

136

abstract class Lesson {
 private $duration;
 private $costStrategy;

 function __construct($duration, CostStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

 function cost() {
 return $this->costStrategy->cost($this);
 }

 function chargeType() {
 return $this->costStrategy->chargeType();
 }

 function getDuration() {
 return $this->duration;
 }

 // more lesson methods...
}

class Lecture extends Lesson {
 // Lecture-specific implementations ...
}

class Seminar extends Lesson {
 // Seminar-specific implementations ...
}

The Lesson class requires a CostStrategy object, which it stores as a property. The Lesson::cost()
method simply invokes CostStrategy::cost(). Equally, Lesson::chargeType() invokes
CostStrategy::chargeType(). This explicit invocation of another object’s method in order to fulfill a
request is known as delegation. In my example, the CostStrategy object is the delegate of Lesson. The
Lesson class washes its hands of responsibility for cost calculations and passes on the task to a
CostStrategy implementation. Here, it is caught in the act of delegation:

 function cost() {
 return $this->costStrategy->cost($this);
 }

Here is the CostStrategy class, together with its implementing children:

abstract class CostStrategy {
 abstract function cost(Lesson $lesson);
 abstract function chargeType();
}

class TimedCostStrategy extends CostStrategy {
 function cost(Lesson $lesson) {
 return ($lesson->getDuration() * 5);
 }
 function chargeType() {

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

137

 return "hourly rate";
 }
}

class FixedCostStrategy extends CostStrategy {
 function cost(Lesson $lesson) {
 return 30;
 }

 function chargeType() {
 return "fixed rate";
 }
}

I can change the way that any Lesson object calculates cost by passing it a different CostStrategy
object at runtime. This approach then makes for highly flexible code. Rather than building functionality
into my code structures statically, I can combine and recombine objects dynamically.

$lessons[] = new Seminar(4, new TimedCostStrategy());
$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {
 print "lesson charge {$lesson->cost()}. ";
 print "Charge type: {$lesson->chargeType()}\n";
}

lesson charge 20. Charge type: hourly rate

lesson charge 30. Charge type: fixed rate

As you can see, one effect of this structure is that I have focused the responsibilities of my classes.
CostStrategy objects are responsible solely for calculating cost, and Lesson objects manage lesson data.

So, composition can make your code more flexible, because objects can be combined to handle
tasks dynamically in many more ways than you can anticipate in an inheritance hierarchy alone. There
can be a penalty with regard to readability, though. Because composition tends to result in more types,
with relationships that aren’t fixed with the same predictability as they are in inheritance relationships,
it can be slightly harder to digest the relationships in a system.

Decoupling
You saw in Chapter 6 that it makes sense to build independent components. A system with highly
interdependent classes can be hard to maintain. A change in one location can require a cascade of
related changes across the system.

The Problem
Reusability is one of the key objectives of object-oriented design, and tight coupling is its enemy. You
can diagnose tight coupling when you see that a change to one component of a system necessitates
many changes elsewhere. You shouldy aspire to create independent components so that you can make
changes without a domino effect of unintended consequences. When you alter a component, the extent

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

138

to which it is independent is related to the likelihood that your changes will cause other parts of your
system to fail.

You saw an example of tight coupling in Figure 8–2. Because the costing logic was mirrored across
the Lecture and Seminar types, a change to TimedPriceLecture would necessitate a parallel change to the
same logic in TimedPriceSeminar. By updating one class and not the other, I would break my system—
without any warning from the PHP engine. My first solution, using a conditional statement, produced a
similar dependency between the cost() and chargeType() methods.

By applying the Strategy pattern, I distilled my costing algorithms into the CostStrategy type,
locating them behind a common interface and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly into a
platform or environment. Let’s say that you are building a system that works with a MySQL database, for
example. You might use functions such as mysql_connect() and mysql_query() to speak to the database
server.

Should you be required to deploy the system on a server that does not support MySQL, you could
convert your entire project to use SQLite. You would be forced to make changes throughout your code,
though, and face the prospect of maintaining two parallel versions of your application.

The problem here is not the system’s dependency on an external platform. Such a dependency is
inevitable. You need to work with code that speaks to a database. The problem comes when such code is
scattered throughout a project. Talking to databases is not the primary responsibility of most classes in a
system, so the best strategy is to extract such code and group it together behind a common interface. In
this way, you promote the independence of your classes. At the same time, by concentrating your
gateway code in one place, you make it much easier to switch to a new platform without disturbing your
wider system. This process, the hiding of implementation behind a clean interface, is known as
encapsulation.

PEAR solves this problem with the PEAR::MDB2 package (which has superceded PEAR::DB). This
provides a single point of access for multiple databases. More recently the bundled PDO extension has
brought this model into the PHP language itself.

The MDB2 class provides a static method called connect() that accepts a Data Source Name (DSN)
string. According to the makeup of this string, it returns a particular implementation of a class called
MDB2_Driver_Common. So for the string "mysql://", the connect() method returns a MDB2_Driver_mysql
object, while for a string that starts with "sqlite://", it would return an MDB2_Driver_sqlite object. You
can see the class structure in Figure 8–5.

Figure 8–5. The PEAR::MDB2 package decouples client code from database objects.

The PEAR::MDB2 package, then, lets you decouple your application code from the specifics of your
database platform . As long as you use uncontroversial SQL, you should be able to run a single system
with MySQL, SQLite, MSSQL, and others without changing a line of code (apart from the DSN, of course,
which is the single point at which the database context must be configured). In fact, the PEAR::MDB2
package can also help manage different SQL dialects to some extent—one reason you might still choose
to use it, despite the speed and convenience of PDO.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

139

Loosening Your Coupling
To handle database code flexibly, you should decouple the application logic from the specifics of the
database platform it uses. You will see lots of opportunities for this kind of component separation of
components in your own projects.

Imagine for example that the Lesson system must incorporate a registration component to add new
lessons to the system. As part of the registration procedure, an administrator should be notified when a
lesson is added. The system's users can't agree whether this notification should be sent by mail, or by
text message. In fact, they're so argumentative, that you suspect they might want to switch to a new
mode of communication in the future. What's more, they want to be notified of all sorts of things. So that
a change to the notification mode in one place, will mean a similar alteration in many other places.

If you've hardcoded calls to a Mailer class, or a Texter class, then your system is tightly coupled to a
particular notification mode. Just as it would be tightly coupled to a database platform by the use of a
specialized database API.

Here is some code that hides the implementation details of a notifier from the system that uses it.

class RegistrationMgr {

 function register(Lesson $lesson) {

 // do something with this Lesson

 // now tell someone

 $notifier = Notifier::getNotifier();

 $notifier->inform("new lesson: cost ({$lesson->cost()})");

 }

}

abstract class Notifier {

 static function getNotifier() {

 // acquire concrete class according to

 // configuration or other logic

 if (rand(1,2) == 1) {

 return new MailNotifier();

 } else {

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

140

 return new TextNotifier();

 }

 }

 abstract function inform($message);

}

class MailNotifier extends Notifier {

 function inform($message) {

 print "MAIL notification: {$message}\n";

 }

}

class TextNotifier extends Notifier {

 function inform($message) {

 print "TEXT notification: {$message}\n";

 }

}

I create RegistrationMgr, a sample client for my Notifier classes. The Notifier class is abstract, but it
does implement a static method: getNotifier() which fetches a concrete Notifier object (TextNotifier
or MailNotifier). In a real project, the choice of Notifier would be determined by a flexible mechanism,
such as a configuration file. Here, I cheat and make the choice randomly. MailNotifier and
TextNotifier do nothing more than print out the message they are passed along with an identifier to
show which one has been called.

Notice how the knowledge of which concrete Notifier should be used has been focused in the
Notifier::getNotifier() method. I could send notifier messages from a hundred different parts of my
system, and a change in Notifier would only have to be made in that one method.

Here is some code that calls the RegistrationMgr,

$lessons1 = new Seminar(4, new TimedCostStrategy());

$lessons2 = new Lecture(4, new FixedCostStrategy());

$mgr = new RegistrationMgr();

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

141

$mgr->register($lessons1);

$mgr->register($lessons2);

and the output from a typical run

TEXT notification: new lesson: cost (20)
MAIL notification: new lesson: cost (30)

Figure 8–6 shows these classes.

Figure 8–6. The Notifier class separates client code from Notifier implementations.

Notice how similar the structure in Figure 8–6 is to that formed by the MDB2 components shown in
Figure 8–5

Code to an Interface, Not to an Implementation
This principle is one of the all-pervading themes of this book. You saw in Chapter 6 (and in the last
section) that you can hide different implementations behind the common interface defined in a
superclass. Client code can then require an object of the superclass’s type rather than that of an
implementing class, unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones I built into Lesson::cost() and
Lesson::chargeType(), are a common signal that polymorphism is needed. They make code hard to
maintain, because a change in one conditional expression necessitates a change in its twins. Conditional
statements are occasionally said to implement a “simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, I remove
duplication. I also make it much easier should I need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general types in
your methods’ parameters. By requiring more specific types, you could limit the flexibility of your code
at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a matter of
judgment. Make your choice too general, and your method may become less safe. If you require the
specific functionality of a subtype, then accepting a differently equipped sibling into a method could be
risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of polymorphism.
Take a look at this altered extract from the Lesson class:

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

142

 function __construct($duration,
 FixedPriceStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

There are two issues arising from the design decision in this example. First, the Lesson object is now
tied to a specific cost strategy, which closes down my ability to compose dynamic components. Second,
the explicit reference to the FixedPriceStrategy class forces me to maintain that particular
implementation.

By requiring a common interface, I can combine a Lesson object with any CostStrategy
implementation:

 function __construct($duration, CostStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

I have, in other words, decoupled my Lesson class from the specifics of cost calculation. All that
matters is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate your
objects. When I say that a Lesson object can be combined with any CostStrategy interface at runtime, I
beg the question, “But where does the CostStrategy object come from?”

When you create an abstract super class, there is always the issue as to how its children should be
instantiated. Which child do you choose and according to which condition? This subject forms a
category of its own in the Gang of Four pattern catalog, and I will examine it further in the next chapter.

The Concept That Varies
It’s easy to interpret a design decision once it has been made, but how do you decide where to start?

The Gang of Four recommend that you “encapsulate the concept that varies.” In terms of my lesson
example, the varying concept is the cost algorithm. Not only is the cost calculation one of two possible
strategies in the example, but it is obviously a candidate for expansion: special offers, overseas student
rates, introductory discounts, all sorts of possibilities present themselves.

I quickly established that subclassing for this variation was inappropriate, and I resorted to a
conditional statement. By bringing my variation into the same class, I underlined its suitability for
encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and assess
their suitability for encapsulation in a new type. Each alternative in a suspect conditional may be
extracted to form a class extending a common abstract parent. This new type can then be used by the
class or classes from which it was extracted. This has the effect of

• Focusing responsibility

• Promoting flexibility through composition

• Making inheritance hierarchies more compact and focused

• Reducing duplication

So how do you spot variation? One sign is the misuse of inheritance. This might include inheritance
deployed according to multiple forces at one time (lecture/seminar, fixed/timed cost). It might also
include subclassing on an algorithm where the algorithm is incidental to the core responsibility of the
type. The other sign of variation suitable for encapsulation is, of course, a conditional expression.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

143

Patternitis
One problem for which there is no pattern is the unnecessary or inappropriate use of patterns. This has
earned patterns a bad name in some quarters. Because pattern solutions are neat, it is tempting to apply
them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming (XP) methodology offers a couple of principles that might apply here.
The first is “You aren’t going to need it” (often abbreviated to YAGNI). This is generally applied to
application features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, separating
application logic from presentation and persistence layers. I use all sorts of core and enterprise patterns
in conjunction with one another.

When I am asked to build a feedback form for a small business web site, however, I may simply use
procedural code in a single page script. I do not need enormous amounts of flexibility, I won’t be
building on the initial release. I don’t need to use patterns that address problems in larger systems.
Instead, I apply the second XP principle: “Do the simplest thing that works.”

When you work with a pattern catalog, the structure and process of the solution are what stick in the
mind, consolidated by the code example. Before applying a pattern, though, pay close attention to the
problem, or “when to use it,” section, and read up on the pattern’s consequences. In some contexts, the
cure may be worse than the disease.

The Patterns
This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few of the key
patterns in use at the moment, providing PHP implementations and discussing them in the broad
context of PHP programming.

The patterns described will be drawn from key catalogs including Design Patterns, Patterns of
Enterprise Application Architecture by Martin Fowler (Addison-Wesley, 2003) and Core J2EE Patterns by
Alur et al. (Prentice Hall PTR, 2001). I use the Gang of Four’s categorization as a starting point, dividing
patterns as follows.

Patterns for Generating Objects
These patterns are concerned with the instantiation of objects. This is an important category given the
principle “code to an interface.” If you are working with abstract parent classes in your design, then you
must develop strategies for instantiating objects from concrete subclasses. It is these objects that will be
passed around your system.

Patterns for Organizing Objects and Classes
These patterns help you to organize the compositional relationships of your objects. More simply, these
patterns show how you combine objects and classes.

Task-Oriented Patterns
These patterns describe the mechanisms by which classes and objects cooperate to achieve objectives.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

144

Enterprise Patterns
I look at some patterns that describe typical Internet programming problems and solutions. Drawn
largely from Patterns of Enterprise Application Architecture and Core J2EE Patterns, the patterns deal with
presentation, and application logic.

Database Patterns
An examination of patterns that help with storing and retrieving data and with mapping objects to and
from databases.

Summary
In this chapter, I examined some of the principles that underpin many design patterns. I looked at the
use of composition to enable object combination and recombination at runtime, resulting in more
flexible structures than would be available using inheritance alone. I introduced you to decoupling, the
practice of extracting software components from their context to make them more generally applicable.
I reviewed the importance of interface as a means of decoupling clients from the details of
implementation.

In the coming chapters, I will examine some design patterns in detail.

	Chapter 8 Some Pattern Principles
	The Pattern Revelation
	Composition and Inheritance
	The Problem
	Using Composition

	Decoupling
	The Problem
	Loosening Your Coupling

	Code to an Interface, Not to an Implementation
	The Concept That Varies
	Patternitis
	The Patterns
	Patterns for Generating Objects
	Patterns for Organizing Objects and Classes
	Task-Oriented Patterns
	Enterprise Patterns
	Database Patterns

	Summary

