
C H A P T E R 13

■ ■ ■

275

Database Patterns

Most web applications of any complexity handle persistence to a greater or lesser extent. Shops must
recall their products and their customer records. Games must remember their players and the state of
play. Social networking sites must keep track of your 238 friends and your unaccountable liking for boy-
bands of the ’80s and ’90s. Whatever the application, the chances are it’s keeping score behind the
scenes. In this chapter, I look at some patterns that can help.

This chapter will cover

• The Data Layer interface: Patterns that define the points of contact between the
storage layer and the rest of the system

• Object watching: Keeping track of objects, avoiding duplicates, automating save
and insert operations

• Flexible queries: Allowing your client coders to construct queries without thinking
about the underlying database

• Creating lists of found objects: Building iterable collections

• Managing your database components: The welcome return of the Abstract Factory
pattern

The Data Layer
In discussions with clients, it’s usually the presentation layer that dominates. Fonts, colors, and ease of
use are the primary topics of conversation. Amongst developers it is often the database that looms large.
It’s not the database itself that concerns us; we can trust that to do its job unless we’re very unlucky. No,
it’s the mechanisms we use to translate the rows and columns of a database table into data structures
that cause the problems. In this chapter, I look at code that can help with this process.

Not everything presented here sits in the Data layer itself. Rather I have grouped some of the
patterns that help to solve persistence problems. All of these patterns are described by one or more of
Clifton Nock, Martin Fowler, and Alur et al.

Data Mapper
If you thought I glossed over the issue of saving and retrieving Venue objects from the database in the
“Domain Model” section of Chapter 12, here is where you might find at least some answers. The Data
Mapper pattern is described by both Alur et al in Core J2EE Patterns (as Data Access Object) and Martin
Fowler in Patterns of Enterprise Application Architecture (in fact, Data Access Object is not an exact

CHAPTER 13 ■ DATABASE PATTERNS

276

match, as it generates data transfer objects, but since such objects are designed to become the real thing
if you add water, the patterns are close enough).

As you might imagine, a data mapper is a class that is responsible for handling the transition from
database to object.

The Problem
Objects are not organized like tables in a relational database. As you know, database tables are grids
made up of rows and columns. One row may relate to another in a different (or even the same) table by
means of a foreign key. Objects, on the other hand, tend to relate to one another more organically. One
object may contain another, and different data structures will organize the same objects in different
ways, combining and recombining objects in new relationships at runtime. Relational databases are
optimized to manage large amounts of tabular data, whereas classes and objects encapsulate smaller
focussed chunks of information.

This disconnect between classes and relational databases is often described as the object-relational
impedance mismatch (or simply impedance mismatch).

So how do you make that transition? One answer is to give a class (or a set of classes) responsibility
for just that problem, effectively hiding the database from the domain model and managing the
inevitable rough edges of the translation.

Implementation
Although with careful programming, it may be possible to create a single Mapper class to service multiple
objects, it is common to see an individual Mapper for a major class in the Domain Model.

Figure 13–1 shows three concrete Mapper classes and an abstract superclass.

Figure 13–1. Mapper classes

CHAPTER 13 ■ DATABASE PATTERNS

277

In fact, since the Space objects are effectively subordinate to Venue objects, it may be possible to
factor the SpaceMapper class into VenueMapper. For the sake of these exercises, I’m going to keep them
separate.

As you can see, the classes present common operations for saving and loading data. The base class
stores common functionality, delegating responsibility for handling object-specific operations to its
children. Typically, these operations include actual object generation and constructing queries for
database operations.

The base class often performs housekeeping before or after an operation, which is why Template
Method is used for explicit delegation (calls from concrete methods like insert() to abstract ones like
doInsert(), etc.). Implementation determines which of the base class methods are made concrete in this
way, as you will see later in the chapter.

Here is a simplified version of a Mapper base class:

namespace woo\mapper;
//...

abstract class Mapper {
 protected static $PDO;
 function __construct() {

 if (! isset(self::$PDO)) {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (is_null($dsn)) {
 throw new \woo\base\AppException("No DSN");
 }
 self::$PDO = new \PDO($dsn);
 self::$PDO->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
 }
 }

 function find($id) {
 $this->selectStmt()->execute(array($id));
 $array = $this->selectStmt()->fetch();
 $this->selectStmt()->closeCursor();
 if (! is_array($array)) { return null; }
 if (! isset($array['id'])) { return null; }
 $object = $this->createObject($array);
 return $object;
 }

 function createObject($array) {
 $obj = $this->doCreateObject($array);
 return $obj;
 }

 function insert(\woo\domain\DomainObject $obj) {
 $this->doInsert($obj);
 }

 abstract function update(\woo\domain\DomainObject $object);
 protected abstract function doCreateObject(array $array);
 protected abstract function doInsert(\woo\domain\DomainObject $object);
 protected abstract function selectStmt();
}

CHAPTER 13 ■ DATABASE PATTERNS

278

The constructor method uses an ApplicationRegistry to get a DSN for use with the PDO extension.
A standalone singleton or a request-scoped registry really come into their own for classes like this. There
isn’t always a sensible path from the control layer to a Mapper along which data can be passed. Another
way of managing mapper creation would be to hand it off to the Registry class itself. Rather than
instantiate it, the mapper would expect to be provided with a PDO object as a constructor argument.

namespace woo\mapper;
//...
abstract class Mapper {
 protected $PDO;
 function __construct(\PDO $pdo) {
 $this->pdo = $pdo;
 }
}

Client code would acquire a new VenueMapper from Registry using \woo\base\Request
Registry::getVenueMapper(). This would instantiate a mapper, generating the PDO object too. For
subsequent requests, the method would return the cached mapper. The trade-off here is that you make
Registry much more knowledgeable about your system, but your mappers remain ignorant of global
configuration data.

The insert() method does nothing but delegate to doInsert(). This would be something that I
would factor out in favor of an abstract insert() method were it not for the fact that I know that the
implementation will be useful here in due course.

find() is responsible for invoking a prepared statement (provided by an implementing child class)
and acquiring row data. It finishes up by calling createObject(). The details of converting an array to an
object will vary from case to case, of course, so the details are handled by the abstract doCreateObject()
method. Once again, createObject() seems to do nothing but delegate to the child implementation, and
once again, I’ll soon add the housekeeping that makes this use of the Template Method pattern worth
the trouble.

Child classes will also implement custom methods for finding data according to specific criteria (I
will want to locate Space objects that belong to Venue objects, for example).

You can take a look at the process from the child’s perspective here:

namespace woo\mapper;
//...

class VenueMapper extends Mapper {
 function __construct() {
 parent::__construct();
 $this->selectStmt = self::$PDO->prepare(
 "SELECT * FROM venue WHERE id=?");
 $this->updateStmt = self::$PDO->prepare(
 "update venue set name=?, id=? where id=?");
 $this->insertStmt = self::$PDO->prepare(
 "insert into venue (name)
 values(?)");
 }

 function getCollection(array $raw) {
 return new SpaceCollection($raw, $this);
 }
 protected function doCreateObject(array $array) {
 $obj = new \woo\domain\Venue($array['id']);
 $obj->setname($array['name']);

CHAPTER 13 ■ DATABASE PATTERNS

279

 return $obj;
 }

 protected function doInsert(\woo\domain\DomainObject $object) {
 print "inserting\n";
 debug_print_backtrace();
 $values = array($object->getName());
 $this->insertStmt->execute($values);
 $id = self::$PDO->lastInsertId();
 $object->setId($id);
 }

 function update(\woo\domain\DomainObject $object) {
 print "updating\n";
 $values = array($object->getName(), $object->getId(), $object->getId());
 $this->updateStmt->execute($values);
 }

 function selectStmt() {
 return $this->selectStmt;
 }
}

Once again, this class is stripped of some of the goodies that are still to come. Nonetheless, it does
its job. The constructor prepares some SQL statements for use later on. These could be made static and
shared across VenueMapper instances, or as described earlier, a single Mapper object could be stored in a
Registry, thereby saving the cost of repeated instantiation. These are refactorings I will leave to you!

The Mapper class implements find(), which invokes selectStmt() to acquire the prepared SELECT
statement. Assuming all goes well, Mapper invokes VenueMapper::doCreateObject(). It’s here that I use
the associative array to generate a Venue object.

From the point of view of the client, this process is simplicity itself:

$mapper = new \woo\mapper\VenueMapper();
$venue = $mapper->find(12);
print_r($venue);

The print_r() method is a quick way of confirming that find() was successful. In my system (where
there is a row in the venue table with ID 12), the output from this fragment is as follows:

woo\domain\Venue Object
(
 [name:woo\domain\Venue:private] => The Eyeball Inn
 [spaces:woo\domain\Venue:private] =>
 [id:woo\domain\DomainObject:private] => 12
)

The doInsert() and update() methods reverse the process established by find(). Each accepts a
DomainObject, extracts row data from it, and calls PDOStatement::execute() with the resulting
information. Notice that the doInsert() method sets an ID on the provided object. Remember that
objects are passed by reference in PHP, so the client code will see this change via its own reference.

Another thing to note is that doInsert() and update() are not really type safe. They will accept any
DomainObject subclass without complaint. You should perform an instanceof test and throw an
Exception if the wrong object is passed. This will guard against the inevitable bugs.

CHAPTER 13 ■ DATABASE PATTERNS

280

Once again, here is a client perspective on inserting and updating:

$venue = new \woo\domain\Venue();
$venue->setName("The Likey Lounge-yy");
// add the object to the database
$mapper->insert($venue);
// find the object again – just prove it works!
$venue = $mapper->find($venue->getId());
print_r($venue);
// alter our object
$venue->setName("The Bibble Beer Likey Lounge-yy");
// call update to enter the amended data
$mapper->update($venue);
// once again, go back to the database to prove it worked
$venue = $mapper->find($venue->getId());
print_r($venue);

Handling Multiple Rows
The find() method is pretty straightforward, because it only needs to return a single object. What do you
do, though, if you need to pull lots of data from the database? Your first thought may be to return an
array of objects. This will work, but there is a major problem with the approach.

If you return an array, each object in the collection will need to be instantiated first, which, if you
have a result set of 1,000 objects, may be needlessly expensive. An alternative would be to simply return
an array and let the calling code sort out object instantiation. This is possible, but it violates the very
purpose of the Mapper classes.

There is one way you can have your cake and eat it. You can use the built-in Iterator interface.
The Iterator interface requires implementing classes to define methods for querying a list. If you do

this, your class can be used in foreach loops just like an array. There are some people who say that
iterator implementations are unnecessary in a language like PHP with such good support for arrays. Tish
and piffle! I will show you at least three good reasons for using PHP’s built-in Iterator interface in this
chapter.

Table 13–1 shows the methods that the Iterator interface requires.

Table 13–1. Methods Defined by the Iterator Interface

Name Description

rewind() Send pointer to start of list.

current() Return element at current pointer position.

key() Return current key (i.e., pointer value).

next() Return element at current pointer and advance pointer.

valid() Confirm that there is an element at the current pointer position.

In order to implement an Iterator, you need to implement its methods and keep track of your place

within a dataset. How you acquire that data, order it, or otherwise filter it is hidden from the client.

CHAPTER 13 ■ DATABASE PATTERNS

281

Here is an Iterator implementation that wraps an array but also accepts a Mapper object in its
constructor for reasons that will become apparent:

namespace woo\mapper;
//...

abstract class Collection implements \Iterator {
 protected $mapper;
 protected $total = 0;
 protected $raw = array();

 private $result;
 private $pointer = 0;
 private $objects = array();

 function __construct(array $raw=null, Mapper $mapper=null) {
 if (! is_null($raw) && ! is_null($mapper)) {
 $this->raw = $raw;
 $this->total = count($raw);
 }
 $this->mapper = $mapper;
 }

 function add(\woo\domain\DomainObject $object) {
 $class = $this->targetClass();
 if (! ($object instanceof $class)) {
 throw new Exception("This is a {$class} collection");
 }
 $this->notifyAccess();
 $this->objects[$this->total] = $object;
 $this->total++;
 }

 abstract function targetClass();

 protected function notifyAccess() {
 // deliberately left blank!
 }
 private function getRow($num) {
 $this->notifyAccess();
 if ($num >= $this->total || $num < 0) {
 return null;
 }
 if (isset($this->objects[$num])) {
 return $this->objects[$num];
 }

 if (isset($this->raw[$num])) {
 $this->objects[$num]=$this->mapper->createObject($this->raw[$num]);
 return $this->objects[$num];
 }
 }

 public function rewind() {

CHAPTER 13 ■ DATABASE PATTERNS

282

 $this->pointer = 0;
 }

 public function current() {
 return $this->getRow($this->pointer);
 }

 public function key() {
 return $this->pointer;
 }

 public function next() {
 $row = $this->getRow($this->pointer);
 if ($row) { $this->pointer++; }
 return $row;
 }

 public function valid() {
 return (! is_null($this->current()));
 }
}

The constructor expects to be called with no arguments or with two (the raw data that may
eventually be transformed into objects and a mapper reference).

Assuming that the client has set the $raw argument (it will be a Mapper object that does this), this is
stored in a property together with the size of the provided dataset. If raw data is provided an instance of
the Mapper is also required, since it’s this that will convert each row into an object.

If no arguments were passed to the constructor, the class starts out empty, though note that there is
the add() method for adding to the collection.

The class maintains two arrays: $objects and $raw. If a client requests a particular element, the
getRow() method looks first in $objects to see if it has one already instantiated. If so, that gets returned.
Otherwise, the method looks in $raw for the row data. $raw data is only present if a Mapper object is also
present, so the data for the relevant row can be passed to the Mapper::createObject() method you
encountered earlier. This returns a DomainObject object, which is cached in the $objects array with the
relevant index. The newly created DomainObject object is returned to the user.

The rest of the class is simple manipulation of the $pointer property and calls to getRow(). Apart,
that is, from the notifyAccess() method, which will become important when you encounter the Lazy
Load pattern.

You may have noticed that the Collection class is abstract. You need to provide specific
implementations for each domain class:

namespace woo\mapper;
//...

class VenueCollection
 extends Collection
 implements \woo\domain\VenueCollection {

 function targetClass() {
 return "\woo\domain\Venue";
 }
}

CHAPTER 13 ■ DATABASE PATTERNS

283

The VenueCollection class simply extends Collection and implements a targetClass() method.
This, in conjunction with the type checking in the super class’s add() method, ensures that only Venue
objects can be added to the collection. You could provide additional checking in the constructor as well
if you wanted to be even safer.

Clearly, this class should only work with a VenueMapper. In practical terms, though, this is a
reasonably type-safe collection, especially as far as the Domain Model is concerned.

There are parallel classes for Event and Space objects, of course.
Note that VenueCollection implements an interface: woo\domain\VenueCollection. This is part of the

Separated Interface trick I will describe shortly. In effect, it allows the domain package to define its
requirements for a Collection independently of the mapper package. Domain objects hint for
woo\domain\VenueCollection objects and not woo\mapper\VenueCollection objects, so that, at a later
date, the mapper implementation might be removed. It could then be replaced with an entirely different
implementing class without many changes within the domain package.

Here is the \woo\domain\VenueCollection interface, together with its siblings.

namespace woo\domain;

interface VenueCollection extends \Iterator {
 function add(DomainObject $venue);
}

interface SpaceCollection extends \Iterator {
 function add(DomainObject $space);
}

interface EventCollection extends \Iterator {
 function add(DomainObject $event);
}

Figure 13–2 shows some Collection classes.

Figure 13–2. Managing multiple rows with collections

CHAPTER 13 ■ DATABASE PATTERNS

284

Because the Domain Model needs to instantiate Collection objects, and because I may need to
switch the implementation at some point (especially for testing purposes), I provide a factory class in the
Domain layer for generating Collection objects on a type-by-type basis. Here’s how I get an empty
VenueCollection object:

$collection = \woo\domain\HelperFactory::getCollection("woo\\domain\\Venue");
$collection->add(new \woo\domain\Venue(null, "Loud and Thumping"));
$collection->add(new \woo\domain\Venue(null, "Eeezy"));
$collection->add(new \woo\domain\Venue(null, "Duck and Badger"));

foreach($collection as $venue) {
 print $venue->getName()."\n";
}

With the implementation I have built here, there isn’t much else you can do with this collection, but
adding elementAt(), deleteAt(), count(), and similar methods is a trivial exercise. (And fun, too! Enjoy!)

The DomainObject superclass is a good place for convenience methods that acquire collections.

// namespace woo\domain;
// ...

// DomainObject

 static function getCollection($type) {
 return HelperFactory::getCollection($type);
 }

 function collection() {
 return self::getCollection(get_class($this));
 }

The class supports two mechanisms for acquiring a Collection object: static and instance. In both
cases, the methods simply call HelperFactory::getCollection() with a class name. You saw the static
getCollection() method used in the Domain Model example Chapter 12. Figure 13–3 shows the
HelperFactory. Notice that it can be used to acquire both collections and mappers.

A variation on the structure displayed in Figure 13–3 would have you create interfaces within the
domain package for Mapper and Collection which, of course would need to be implemented by their
mapper counterparts. In this way, domain objects can be completely insulated from the mapper package
(except within the HelperFactory itself, of course). This basic pattern, which Fowler calls Separated
Interface, would be useful if you knew that some users might need to switch out the entire mapper
package and replace it with an equivalent. If I were to implement Separated Interface, getFinder()
would commit to return an instance of a Finder interface, and my Mapper objects would implement this.
However, in most instances, you can leave this refinement as a possible future refactor. In these
examples, getFinder() returns Mapper objects pure and simple.

In light of all this, the Venue class can be extended to manage the persistence of Space objects. The
class provides methods for adding individual Space objects to its SpaceCollection or for switching in an
entirely new SpaceCollection.

CHAPTER 13 ■ DATABASE PATTERNS

285

Figure 13–3. Using a factory object as an intermediary to acquire persistence tools

// Venue
// namespace woo\domain;
// ...

 function setSpaces(SpaceCollection $spaces) {
 $this->spaces = $spaces;
 }

 function getSpaces() {
 if (! isset($this->spaces)) {
 $this->spaces = self::getCollection("woo\\domain\\Space");
 }
 return $this->spaces;
 }

 function addSpace(wSpace $space) {
 $this->getSpaces()->add($space);
 $space->setVenue($this);
 }

The setSpaces() operation is really designed to be used by the VenueMapper class in constructing the
Venue. It takes it on trust that all Space objects in the collection refer to the current Venue. It would be
easy enough to add checking to the method. This version keeps things simple though. Notice that I only
instantiate the $spaces property when getSpaces() is called. Later on, I’ll demonstrate how you can
extend this lazy instantiation to limit database requests.

The VenueMapper needs to set up a SpaceCollection for each Venue object it creates.

// VenueMapper

CHAPTER 13 ■ DATABASE PATTERNS

286

// namespace woo\mapper;
// ...

 protected function doCreateObject(array $array) {
 $obj = new w\woo\domain\Venue($array['id']);
 $obj->setname($array['name']);
 $space_mapper = new SpaceMapper();
 $space_collection = $space_mapper->findByVenue($array['id']);
 $obj->setSpaces($space_collection);
 return $obj;
 }

The VenueMapper::doCreateObject() method gets a SpaceMapper and acquires a SpaceCollection
from it. As you can see, the SpaceMapper class implements a findByVenue() method. This brings us to the
queries that generate multiple objects. For the sake of brevity, I omitted the Mapper::findAll() method
from the original listing for woo\mapper\Mapper. Here it is restored:

//Mapper
// namespace woo\mapper;
// ...

 function findAll() {
 $this->selectAllStmt()->execute(array());
 return $this->getCollection(
 $this->selectAllStmt()->fetchAll(PDO::FETCH_ASSOC));
 }

This method calls a child method: selectAllStmt(). Like selectStmt(), this should contain a
prepared statement object primed to acquire all rows in the table. Here’s the PDOStatement object as
created in the SpaceMapper class:

// SpaceMapper::__construct()
 $this->selectAllStmt = self::$PDO->prepare(
 "SELECT * FROM space");
//...
 $this->findByVenueStmt = self::$PDO->prepare(
 "SELECT * FROM space where venue=?");

I included another statement here, $findByVenueStmt, which is used to locate Space objects specific
to an individual Venue.

The findAll() method calls another new method, getCollection(), passing it its found data. Here is
SpaceMapper::getCollection():

 function getCollection(array $raw) {
 return new SpaceCollection($raw, $this);
 }

A full version of the Mapper class should declare getCollection() and selectAllStmt() as abstract
methods, so all mappers are capable of returning a collection containing their persistent domain
objects. In order to get the Space objects that belong to a Venue, however, I need a more limited
collection. You have already seen the prepared statement for acquiring the data; now, here is the
SpaceMapper::findByVenue() method, which generates the collection:

 function findByVenue($vid) {
 $this->findByVenueStmt->execute(array($vid));
 return new SpaceCollection(

CHAPTER 13 ■ DATABASE PATTERNS

287

 $this->findByVenueStmt->fetchAll(), $this);
 }

The findByVenue() method is identical to findAll() except for the SQL statement used. Back in the
VenueMapper, the resulting collection is set on the Venue object via Venue::setSpaces().

So Venue objects now arrive fresh from the database, complete with all their Space objects in a neat
type-safe list. None of the objects in that list are instantiated before being requested.

Figure 13–4 shows the process by which a client class might acquire a SpaceCollection and how the
SpaceCollection class interacts with SpaceMapper::createObject() to convert its raw data into an object
for returning to the client.

Figure 13–4. Acquiring a SpaceCollection and using it to get a Space object

Consequences
The drawback with the approach I took to adding Space objects to Venue ones is that I had to take two
trips to the database. In most instances, I think that is a price worth paying. Also note that the work in
Venue::doCreateObject() to acquire a correctly populated SpaceCollection could be moved to
Venue::getSpaces() so that the secondary database connection would only occur on demand. Here’s
how such a method might look:

// Venue
// namespace woo\domain;
// ...

 function getSpaces() {
 if (! isset($this->spaces)) {
 $finder = self::getFinder('woo\\domain\\Space');
 $this->spaces = $finder->findByVenue($this->getId());
 }
 return $this->spaces;
 }

If efficiency becomes an issue, however, it should be easy enough to factor out SpaceMapper
altogether and retrieve all the data you need in one go using an SQL join.

CHAPTER 13 ■ DATABASE PATTERNS

288

Of course, your code may become less portable as a result of that, but efficiency optimization always
comes at a price!

Ultimately, the granularity of your Mapper classes will vary. If an object type is stored solely by
another, then you may consider only having a Mapper for the container.

The great strength of this pattern is the strong decoupling it effects between the Domain layer and
database. The Mapper objects take the strain behind the scenes and can adapt to all sorts of relational
twistedness.

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved in creating
concrete Mapper classes. However, there is a large amount of boilerplate code that can be automatically
generated. A neat way of generating the common methods for Mapper classes is through reflection. You
can query a domain object, discover its setter and getter methods (perhaps in tandem with an argument
naming convention), and generate basic Mapper classes ready for amendment. This is how all the Mapper
classes featured in this chapter were initially produced.

One issue to be aware of with mappers is the danger of loading too many objects at one time. The
Iterator implementation helps us here, though. Because a Collection object only holds row data at
first, the secondary request (for a Space object) is only made when a particular Venue is accessed and
converted from array to object. This form of lazy loading can be enhanced even further, as you shall see.

You should be careful of ripple loading. Be aware as you create your mapper that the use of another
one to acquire a property for your object may be the tip of a very large iceberg. This secondary mapper
may itself use yet more in constructing its own object. If you are not careful, you could find that what
looks on the surface like a simple find operation sets off tens of other similar operations.

You should also be aware of any guidelines your database application lays down for building
efficient queries and be prepared to optimize (on a database-by-database basis if necessary). SQL
statements that apply well to multiple database applications are nice; fast applications are much nicer.
Although introducing conditionals (or strategy classes) to manage different versions of the same queries
is a chore, and potentially ugly in the former case, don’t forget that all this mucky optimization is neatly
hidden away from client code.

Identity Map
Do you remember the nightmare of pass-by-value errors in PHP 4? The sheer confusion that ensued
when two variables that you thought pointed to a single object turned out to refer to different but
cunningly similar ones? Well, the nightmare has returned.

The Problem
Here's some test code created to try out the Data Mapper example:

$venue = new \woo\domain\Venue();
$venue->setName("The Likey Lounge");
$mapper->insert($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);
$venue->setName("The Bibble Beer Likey Lounge");
$mapper->update($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);

The purpose of this code was to demonstrate that an object that you add to the database could also
be extracted via a Mapper and would be identical. Identical, that is, in every way except for being the same
object. I cheated this problem by assigning the new Venue object over the old. Unfortunately, you won’t

CHAPTER 13 ■ DATABASE PATTERNS

289

always have that kind of control over the situation. The same object may be referenced at several
different times within a single request. If you alter one version of it and save that to the database, can
you be sure that another version of the object (perhaps stored already in a Collection object) won’t be
written over your changes?

Not only are duplicate objects risky in a system, they also represent a considerable overhead. Some
popular objects could be loaded three or four times in a process, with all but one of these trips to the
database entirely redundant.

Fortunately, fixing this problem is relatively straightforward.

Implementation
An identity map is simply an object whose task it is to keep track of all the objects in a system, and
thereby help to ensure that nothing that should be one object becomes two.

In fact, the Identity Map itself does not prevent this from happening in any active way. Its role is to
manage information about objects. Here is a simple Identity Map:

namespace woo\domain;
//...

class ObjectWatcher {
 private $all = array();
 private static $instance;

 private function __construct() { }

 static function instance() {
 if (! self::$instance) {
 self::$instance = new ObjectWatcher();
 }
 return self::$instance;
 }

 function globalKey(DomainObject $obj) {
 $key = get_class($obj).".".$obj->getId();
 return $key;
 }

 static function add(DomainObject $obj) {
 $inst = self::instance();
 $inst->all[$inst->globalKey($obj)] = $obj;
 }

 static function exists($classname, $id) {
 $inst = self::instance();
 $key = "$classname.$id";
 if (isset($inst->all[$key])) {
 return $inst->all[$key];
 }
 return null;
 }
}

Figure 13–5 shows how an Identity Map object might integrate with other classes you have seen.

CHAPTER 13 ■ DATABASE PATTERNS

290

Figure 13–5. Identity Map

The main trick with an Identity Map is, pretty obviously, identifying objects. This means that you
need to tag each object in some way. There are a number of different strategies you can take here. The
database table key that all objects in the system already use is no good because the ID is not guaranteed
to be unique across all tables.

You could also use the database to maintain a global key table. Every time you created an object,
you would iterate the key table’s running total and associate the global key with the object in its own
row. The overhead of this is relatively slight, and it would be easy to do.

As you can see, I have gone for an altogether simpler approach. I concatenate the name of the
object’s class with its table ID. There can be no two objects of type woo\domain\Event with an ID of 4, so
my key of woo\domain\Event.4 is safe enough for my purposes.

The globalKey() method handles the details of this. The class provides an add() method for adding
new objects. Each object is labeled with its unique key in an array property, $all.

The exists() method accepts a class name and an $id rather than an object. I don’t want to have to
instantiate an object to see whether or not it already exists! The method builds a key from this data and
checks to see if it indexes an element in the $all property. If an object is found, a reference is duly returned.

There is only one class where I work with the ObjectWatcher class in its role as an Identity Map. The
Mapper class provides functionality for generating objects, so it makes sense to add the checking there.

// Mapper
namespace woo\mapper;
// ...

 private function getFromMap($id) {
 return \woo\domain\ObjectWatcher::exists
 ($this->targetClass(), $id);
 }

 private function addToMap(\woo\domain\DomainObject $obj) {
 return \woo\domain\ObjectWatcher::add($obj);
 }

 function find($id) {
 $old = $this->getFromMap($id);
 if ($old) { return $old; }
 // work with db
 return $object;
 }

CHAPTER 13 ■ DATABASE PATTERNS

291

 function createObject($array) {
 $old = $this->getFromMap($array['id']);
 if ($old) { return $old; }
 // construct object
 $this->addToMap($obj);
 return $obj;
 }

 function insert(\woo\domain\DomainObject $obj) {
 // handle insert. $obj will be updated with new id
 $this->addToMap($obj);
 }

The class provides two convenience methods: addToMap() and getFromMap(). These save the bother
of remembering the full syntax of the static call to ObjectWatcher. More importantly, they call down to
the child implementation (VenueMapper, etc.) to get the name of the class currently awaiting
instantiation.

This is achieved by calling targetClass(), an abstract method that is implemented by all concrete
Mapper classes. It should return the name of the class that the Mapper is designed to generate. Here is the
SpaceMapper class’s implementation of targetClass():

 protected function targetClass() {
 return "woo\\domain\\Space";
 }

Both find() and createObject() first check for an existing object by passing the table ID to
getFromMap(). If an object is found, it is returned to the client and method execution ends. If, however,
there is no version of this object in existence yet, object instantiation goes ahead. In createObject(), the
new object is passed to addToMap() to prevent any clashes in the future.

So why am I going through part of this process twice, with calls to getFromMap() in both find() and
createObject()? The answer lies with Collections. When these generate objects, they do so by calling
createObject(). I need to make sure that the row encapsulated by a Collection object is not stale and
ensure that the latest version of the object is returned to the user.

Consequences
As long as you use the Identity Map in all contexts in which objects are generated from or added to the
database, the possibility of duplicate objects in your process is practically zero.

Of course, this only works within your process. Different processes will inevitably access versions of
the same object at the same time. It is important to think through the possibilities for data corruption
engendered by concurrent access. If there is a serious issue, you may need to consider a locking strategy.
You might also consider storing objects in shared memory or using an external object caching system
like Memcached. You can learn about Memcached at http://danga.com/memcached/ and about PHP
support for it at http://www.php.net/memcache.

Unit of Work
When do you save your objects? Until I discovered the Unit of Work pattern (written up by David Rice in
Martin Fowler’s Patterns of Enterprise Application Architecture), I sent out save orders from the
Presentation layer upon completion of a command. This turned out to be an expensive design decision.

The Unit of Work pattern helps you to save only those objects that need saving.

CHAPTER 13 ■ DATABASE PATTERNS

292

The Problem
One day, I echoed my SQL statements to the browser window to track down a problem and had a shock.
I found that I was saving the same data over and over again in the same request. I had a neat system of
composite commands, which meant that one command might trigger several others, and each one was
cleaning up after itself.

Not only was I saving the same object twice, I was saving objects that didn’t need saving.
This problem then is similar in some ways to that addressed by Identity Map. That problem

involved unnecessary object loading; this problem lies at the other end of the process. Just as these
issues are complementary, so are the solutions.

Implementation
To determine what database operations are required, you need to keep track of various events that befall
your objects. Probably the best place to do that is in the objects themselves.

You also need to maintain a list of objects scheduled for each database operation (insert, update,
delete). I am only going to cover insert and update operations here. Where might be a good place to
store a list of objects? It just so happens that I already have an ObjectWatcher object, so I can develop
that further:

// ObjectWatcher
// ...
 private $all = array();
 private $dirty = array();
 private $new = array();
 private $delete = array(); // unused in this example
 private static $instance;
// ...
 static function addDelete(DomainObject $obj) {

 $self = self::instance();

 $self->delete[$self->globalKey($obj)] = $obj;

 }

 static function addDirty(DomainObject $obj) {
 $inst = self::instance();
 if (! in_array($obj, $inst->new, true)) {
 $inst->dirty[$inst->globalKey($obj)] = $obj;
 }
 }

 static function addNew(DomainObject $obj) {
 $inst = self::instance();
 // we don't yet have an id
 $inst->new[] = $obj;
 }

 static function addClean(DomainObject $obj) {
 $self = self::instance();
 unset($self->delete[$self->globalKey($obj)]);
 unset($self->dirty[$self->globalKey($obj)]);

CHAPTER 13 ■ DATABASE PATTERNS

293

 $self->new = array_filter($self->new,
 function($a) use ($obj) { return !($a === $obj); }
);
 }

 function performOperations() {
 foreach ($this->dirty as $key=>$obj) {
 $obj->finder()->update($obj);
 }
 foreach ($this->new as $key=>$obj) {
 $obj->finder()->insert($obj);
 }
 $this->dirty = array();
 $this->new = array();
 }

The ObjectWatcher class remains an Identity Map and continues to serve its function of tracking all
objects in a system via the $all property. This example simply adds more functionality to the class.

You can see the Unit of Work aspects of the ObjectWatcher class in Figure 13–6.

Figure 13–6. Unit of Work

Objects are described as “dirty” when they have been changed since extraction from the database. A
dirty object is stored in the $dirty array property (via the addDirty() method) until the time comes to
update the database. Client code may decide that a dirty object should not undergo update for its own
reasons. It can ensure this by marking the dirty object as clean (via the addClean() method). As you
might expect, a newly created object should be added to the $new array (via the addNew() method).
Objects in this array are scheduled for insertion into the database. I am not implementing delete
functionality in these examples, but the principle should be clear enough.

The addDirty() and addNew() methods each add an object to their respective array properties.
addClean(), however, removes the given object from the $dirty array, marking it as no longer pending
update.

When the time finally comes to process all objects stored in these arrays, the performOperations()
method should be invoked (probably from the controller class, or its helper). This method loops through
the $dirty and $new arrays either updating or adding the objects.

The ObjectWatcher class now provides a mechanism for updating and inserting objects. The code is
still missing a means of adding objects to the ObjectWatcher object.

Since it is these objects that are operated upon, they are probably best placed to perform this
notification. Here are some utility methods I can add to the DomainObject class. Notice also the
constructor method.

// DomainObject
namespace woo\domain;
//...

CHAPTER 13 ■ DATABASE PATTERNS

294

 abstract class DomainObject {
 private $id = -1;

 function __construct($id=null) {
 if (is_null($id)) {
 $this->markNew();
 } else {
 $this->id = $id;
 }
 }

 function markNew() {
 ObjectWatcher::addNew($this);
 }

 function markDeleted() {
 ObjectWatcher::addDelete($this);
 }

 function markDirty() {
 ObjectWatcher::addDirty($this);
 }

 function markClean() {
 ObjectWatcher::addClean($this);
 }

 function setId($id) {
 $this->id = $id;
 }

 function getId() {
 return $this->id;
 }

 function finder() {
 return self::getFinder(get_class($this));
 }

 static function getFinder($type) {
 return HelperFactory::getFinder($type);
 }
 //...

Before looking at the Unit of Work code, it is worth noting that the Domain class here has finder()
and getFinder() methods. These work in exactly the same way as collection() and getCollection(),
querying a simple factory class, HelperFactory, in order to acquire Mapper objects when needed. This
relationship was illustrated in Figure 13–3.

As you can see, the constructor method marks the current object as new (by calling markNew()) if no
$id property has been passed to it. This qualifies as magic of a sort and should be treated with some
caution. As it stands, this code slates a new object for insertion into the database without any
intervention from the object creator. Imagine a coder new to your team writing a throwaway script to
test some domain behavior. No sign of persistence code there, so all should be safe enough, shouldn’t it?
Now imagine these test objects, perhaps with interesting throwaway names, making their way into

CHAPTER 13 ■ DATABASE PATTERNS

295

persistent storage. Magic is nice, but clarity is nicer. It may be better to require client code to pass some
kind of flag into the constructor in order to queue the new object for insertion.

I also need to add some code to the Mapper class:

// Mapper
 function createObject($array) {
 $old = $this->getFromMap($array['id']);
 if ($old) { return $old; }
 $obj = $this->doCreateObject($array);
 $this->addToMap($obj);
 $obj->markClean();
 return $obj;
 }

Because setting up an object involves marking it new via the constructor’s call to
ObjectWatcher::addNew(), I must call markClean(), or every single object extracted from the database will
be saved at the end of the request, which is not what I want.

The only thing remaining to do is to add markDirty() invocations to methods in the Domain Model
classes. Remember, a dirty object is one that has been changed since it was retrieved from the database.
This is the one aspect of this pattern that has a slightly fishy odor. Clearly, it’s important to ensure that
all methods that mess up the state of an object are marked dirty, but the manual nature of this task
means that the possibility of human error is all too real.

Here are some methods in the Space object that call markDirty():

namespace woo\domain;

//...

class Space extends DomainObject {

//...

 function setName($name_s) {
 $this->name = $name_s;
 $this->markDirty();
 }

 function setVenue(Venue $venue) {
 $this->venue = $venue;
 $this->markDirty();
 }

Here is some code for adding a new Venue and Space to the database, taken from a Command class:

 $venue = new \woo\domain\Venue(null, "The Green Trees");
 $venue->addSpace(
 new \woo\domain\Space(null, 'The Space Upstairs'));
 $venue->addSpace(
 new \woo\domain\Space(null, 'The Bar Stage'));

 // this could be called from the controller or a helper class
 \woo\domain\ObjectWatcher::instance()->performOperations();

I have added some debug code to the ObjectWatcher, so you can see what happens at the end of the
request:

CHAPTER 13 ■ DATABASE PATTERNS

296

inserting The Green Trees
inserting The Space Upstairs
inserting The Bar Stage

Because a high-level controller object usually calls the performOperations() method, all you need to
do in most cases is create or modify an object, and the Unit of Work class (ObjectWatcher) will do its job
just once at the end of the request.

Consequences
This pattern is very useful, but there are a few issues to be aware of. You need to be sure that all modify
operations actually do mark the object in question as dirty. Failing to do this can result in hard-to-spot
bugs.

You may like to look at other ways of testing for modified objects. Reflection sounds like a good
option there, but you should look into the performance implications of such testing— the pattern is
meant to improve efficiency, not undermine it.

Lazy Load
Lazy Load is one of those core patterns most Web programmers learn for themselves very quickly,
simply because it’s such an essential mechanism for avoiding massive database hits, which is something
we all want to do.

The Problem
In the example that has dominated this chapter, I have set up a relationship between Venue, Space, and
Event objects. When a Venue object is created, it is automatically given a SpaceCollection object. If I were
to list every Space object in a Venue, this would automatically kick off a database request to acquire all the
Events associated with each Space. These are stored in an EventCollection object. If I don’t wish to view
any events, I have nonetheless made several journeys to the database for no reason. With many venues,
each with two or three spaces, and with each space managing tens, perhaps hundreds, of events, this is a
costly process.

Clearly, we need to throttle back this automatic inclusion of collections in some instances.
Here is the code in SpaceMapper that acquires Event data:

 protected function doCreateObject(array $array) {
 $obj = new \woo\domain\Space($array['id']);
 $obj->setname($array['name']);
 $ven_mapper = new VenueMapper();
 $venue = $ven_mapper->find($array['venue']);
 $obj->setVenue($venue);
 $event_mapper = new EventMapper();
 $event_collection = $event_mapper->findBySpaceId($array['id']);
 $obj->setEvents($event_collection);
 return $obj;
 }

The doCreateObject() method first acquires the Venue object with which the space is associated.
This is not costly, because it is almost certainly already stored in the ObjectWatcher object. Then the
method calls the EventMapper::findBySpaceId() method. This is where the system could run into
problems.

CHAPTER 13 ■ DATABASE PATTERNS

297

Implementation
As you may know, a Lazy Load means to defer acquisition of a property until it is actually requested by a
client.

As you have seen, the easiest way of doing this is to make the deferral explicit in the containing
object. Here’s how I might do this in the Space object:

 // Space
 function getEvents() {
 if (is_null($this->events)) {
 $this->events = self::getFinder('woo\\domain\\Event')
 ->findBySpaceId($this->getId());
 }
 return $this->events;
 }

This method checks to see whether or not the $events property is set. If it isn’t set, then the method
acquires a finder (that is, a Mapper) and uses its own $id property to get the EventCollection with which
it is associated. Clearly, for this method to save us a potentially unnecessary database query, I would also
need to amend the SpaceMapper code so that it does not automatically preload an EventCollection object
as it does in the preceding example!

This approach will work just fine, although it is a little messy. Wouldn’t it be nice to tidy the mess
away?

This brings us back to the Iterator implementation that goes to make the Collection object. I
amalready hiding one secret behind that interface (the fact that raw data may not yet have been used to
instantiate a domain object at the time a client accesses it). Perhaps I can hide still more.

The idea here is to create an EventCollection object that defers its database access until a request is
made of it. This means that a client object (such as Space, for example) need never know that it is holding
an empty Collection in the first instance. As far as a client is concerned, it is holding a perfectly normal
EventCollection.

Here is the DeferredEventCollection object:

namespace woo\mapper;
//...

class DeferredEventCollection extends EventCollection {
 private $stmt;
 private $valueArray;
 private $run=false;

 function __construct(Mapper $mapper, \PDOStatement $stmt_handle,
 array $valueArray) {
 parent::__construct(null, $mapper);
 $this->stmt = $stmt_handle;
 $this->valueArray = $valueArray;
 }

 function notifyAccess() {
 if (! $this->run) {
 $this->stmt->execute($this->valueArray);
 $this->raw = $this->stmt->fetchAll();
 $this->total = count($this->raw);
 }
 $this->run=true;

CHAPTER 13 ■ DATABASE PATTERNS

298

 }
}

As you can see, this class extends a standard EventCollection. Its constructor requires EventMapper
and PDOStatement objects and an array of terms that should match the prepared statement. In the first
instance, the class does nothing but store its properties and wait. No query has been made of the
database.

You may remember that the Collection base class defines the empty method called notifyAccess()
that I mentioned in the “Data Mapper” section. This is called from any method whose invocation is the
result of a call from the outside world.

DeferredEventCollection overrides this method. Now if someone attempts to access the Collection,
the class knows it is time to end the pretense and acquire some real data. It does this by calling the
PDOStatement::execute() method. Together with PDOStatement::fetch(), this yields an array of fields
suitable for passing along to Mapper::createObject().

Here is the method in EventMapper that instantiates a DeferredEventCollection:

// EventMapper
namespace woo\mapper;
// ...
function findBySpaceId($s_id) {
 return new DeferredEventCollection(
 $this,
 $this->selectBySpaceStmt, array($s_id));
 }

Consequences
Lazy loading is a good habit to get into, whether or not you explicitly add deferred loading logic to your
domain classes.

Over and above type safety, the particular benefit of using a collection rather than an array for your
properties is the opportunity this gives you to retrofit lazy loading should you need it.

Domain Object Factory
The Data Mapper pattern is neat, but it does have some drawbacks. In particular a Mapper class takes a
lot on board. It composes SQL statements; it converts arrays to objects and, of course, converts objects
back to arrays, ready to add data to the database. This versatility makes a Mapper class convenient and
powerful. It can reduce flexibility to some extent, however. This is especially true when a mapper must
handle many different kinds of query or where other classes need to share a Mapper’s functionality. For
the remainder of this chapter, I will decompose Data Mapper, breaking it down into a set of more
focused patterns. These finer-grained patterns combine to duplicate the overall responsibilities
managed in Data Mapper, and some or all can be used in conjunction with that pattern. They are well
defined by Clifton Nock in Data Access Patterns (Addison Wesley 2003), and I have used his names where
overlaps occur.

Let’s start with a core function: the generation of domain objects.

The Problem
You have already encountered a situation in which the Mapper class displays a natural fault line. The
createObject() method is used internally by Mapper, of course, but Collection objects also need it to
create domain objects on demand. This requires us to pass along a Mapper reference when creating a

CHAPTER 13 ■ DATABASE PATTERNS

299

Collection object. While there’s nothing wrong with allowing callbacks (as you have seen in the Visitor
and Observer patterns,), it’s neater to move responsibility for domain object creation into its own type.
This can then be shared by Mapper and Collection classes alike.

The Domain Object Factory is described in Data Access Patterns.

Implementation
Imagine a set of Mapper classes, broadly organized so that each faces its own domain object. The Domain
Object Factory pattern simply requires that you extract the createObject() method from each Mapper
and place it in its own class in a parallel hierarchy. Figure 13–7 shows these new classes:

Figure 13–7. Domain Object Factory classes

Domain Object Factory classes have a single core responsibility, and as such, they tend to be simple:

namespace woo\mapper;
// ...

abstract class DomainObjectFactory {
 abstract function createObject(array $array);
}

Here’s a concrete implementation:

namespace woo\mapper;
// ...
class VenueObjectFactory extends DomainObjectFactory {
 function createObject(array $array) {
 $obj = new \woo\domain\Venue($array['id']);
 $obj->setname($array['name']);
 return $obj;
 }
}

Of course, you might also want to cache objects to prevent duplication and prevent unnecessary
trips to the database as I did within the Mapper class. You could move the addToMap() and getFromMap()

CHAPTER 13 ■ DATABASE PATTERNS

300

methods here, or you could build an observer relationship between the ObjectWatcher and your
createObject() methods. I’ll leave the details up to you. Just remember, it’s up to you to prevent clones
of your domain objects running amok in your system!

Consequences
The Domain Object Factory decouples database row data from object field data. You can perform any
number of adjustments within the createObject() method. This process is transparent to the client,
whose responsibility it is to provide the raw data.

By snapping this functionality away from the Mapper class, it becomes available to other
components. Here’s an altered Collection implementation, for example:

namespace woo\mapper;
// ...

abstract class Collection {
 protected $dofact;
 protected $total = 0;
 protected $raw = array();

 // ...

 function __construct(array $raw=null, ➥
\woo\mapper\DomainObjectFactory $dofact=null) {
 if (! is_null($raw) && ! is_null($dofact)) {
 $this->raw = $raw;
 $this->total = count($raw);
 }
 $this->dofact = $dofact;
 }
// ...

The DomainObjectFactory can be used to generate objects on demand:

 if (isset($this->raw[$num])) {
 $this->objects[$num]=$this->dofact->createObject($this->raw[$num]);
 return $this->objects[$num];
 }

Because Domain Object Factories are decoupled from the database, they can be used for testing
more effectively. I might, for example, create a mock DomainObjectFactory to test the Collection code.
It’s much easier to do this than it would be to emulate an entire Mapper object (you can read more about
mock and stub objects in Chapter 18).

One general effect of breaking down a monolithic component into composable parts is an
unavoidable proliferation of classes. The potential for confusion should not be underestimated. Even
when every component and its relationship with its peers is logical and clearly defined, I often find it
challenging to chart packages containing tens of similarly named components.

This is going to get worse before it gets better. Already, I can see another fault line appearing in Data
Mapper. The Mapper::getCollection() method was convenient, but once again, other classes might
want to acquire a Collection object for a domain type, without having to go to a database facing class.
So I have two related abstract components: Collection and DomainObjectFactory. According to the
domain object I am working with, I will require a different set of concrete implementations:
VenueCollection and VenueDomainObjectFactory, for example, or SpaceCollection and
SpaceDomainObjectFactory. This problem leads us directly to the Abstract Factory pattern of course.

CHAPTER 13 ■ DATABASE PATTERNS

301

Figure 13–8 shows the PersistenceFactory class. I’ll be using this to organize the various components
that make up the next few patterns.

Figure 13–8. Using the Abstract Factory pattern to organize related components

The Identity Object
The mapper implementation I have presented here suffers from a certain inflexibility when it comes to
locating domain objects. Finding an individual object is no problem. Finding all relevant domain objects
is just as easy. Anything in between, though, requires you to add a special method to craft the query
(EventMapper::findBySpaceId() is a case in point).

An identity object (also called a Data Transfer Object by Alur et al.) encapsulates query criteria,
thereby decoupling the system from database syntax.

The Problem
It’s hard to know ahead of time what you or other client coders are going to need to search for in a
database. The more complex a domain object, the greater the number of filters you might need in
your query. You can address this problem to some extent by adding more methods to your Mapper
classes on a case-by-case basis. This is not very flexible, of course, and can involve duplication as you

CHAPTER 13 ■ DATABASE PATTERNS

302

are required to craft many similar but differing queries both within a single Mapper class and across
the mappers in your system.

An identity object encapsulates the conditional aspect of a database query in such a way that
different combinations can be combined at runtime. Given a domain object called Person, for example, a
client might be able to call methods on an identity object in order to specify a male, aged above 30 and
below 40, who is under 6 feet tall. The class should be designed so conditions can combined flexibly
(perhaps you’re not interested in your target’s height, or maybe you want to remove the lower age limit).
An identity object limits a client coder’s options to some extent. If you haven’t written code to
accommodate an income field, then this cannot be factored into a query without adjustment. The ability
to apply different combinations of conditions does provide a step forward in flexibility, however. Let’s
see how this might work:

Implementation
An identity object will typically consist of a set of methods you can call to build query criteria. Having set
the object’s state, you can pass it on to a method responsible for constructing the SQL statement.

Figure 13–9 shows a typical set of IdentityObject classes.

Figure 13–9. Managing query criteria with identity objects

You can use a base class to manage common operations and to ensure that your criteria objects
share a type. Here’s an implementation which is simpler even than the classes shown in Figure 13–9:

namespace woo\mapper;
//...

class IdentityObject {
 private $name = null;
 function setName($name) {
 $this->name=$name;
 }

 function getName() {
 return $this->name;
 }

CHAPTER 13 ■ DATABASE PATTERNS

303

}

class EventIdentityObject
 extends IdentityObject {
 private $start = null;
 private $minstart = null;

 function setMinimumStart($minstart) {
 $this->minstart = $minstart;
 }

 function getMinimumStart() {
 return $this->minstart;
 }

 function setStart($start) {
 $this->start = $start;
 }

 function getStart() {
 return $this->start;
 }
}

Nothing’s too taxing here. The classes simply store the data provided and give it up on request.
Here’s some code that might use SpaceIdentityObject to build a WHERE clause:

$idobj = new EventIdentityObject();
$idobj->setMinimumStart(time());
$idobj->setName("A Fine Show");
$comps = array();
$name = $idobj->getName();
if (! is_null($name)) {
 $comps[] = "name = '{$name}'";
}
$minstart = $idobj->getMinimumStart();
if (! is_null($minstart)) {
 $comps[] = "start > {$minstart}";
}

$start = $idobj->getStart();
if (! is_null($start)) {
 $comps[] = "start = '{$start}'";
}

$clause = " WHERE " . implode(" and ", $comps);

This model will work well enough, but it does not suit my lazy soul. For a large domain object, the
sheer number of getters and setters you would have to build is daunting. Then, following this model,
you’d have to write code to output each condition in the WHERE clause. I couldn’t even be bothered to
handle all cases in my example code (no setMaximumStart() method for me), so imagine my joy at
building identity objects in the real world.

Luckily, there are various strategies you can deploy to automate both the gathering of data and the
generation of SQL. In the past, for example, I have populated associative arrays of field names in the
base class. These were themselves indexed by comparison types: greater than, equal, less than or equal

CHAPTER 13 ■ DATABASE PATTERNS

304

to. The child classes provide convenience methods for adding this data to the underlying structure. The
SQL builder can then loop through the structure to build its query dynamically. I’m sure implementing
such a system is just a matter of coloring in, so I’m going to look at a variation on it here.

I will use a fluent interface. That is a class whose setter methods return object instances, allowing
your users to chain objects together in fluid, language-like way. This will satisfy my laziness, but still, I
hope, give the client coder a flexible way of defining criteria.

I start by creating woo\mapper\Field, a class designed to hold comparison data for each field that will
end up in the WHERE clause:

namespace woo\mapper;

class Field {
 protected $name=null;
 protected $operator=null;
 protected $comps=array();
 protected $incomplete=false;

 // sets up the field name (age, for example)
 function __construct($name) {
 $this->name = $name;
 }

 // add the operator and the value for the test
 // (> 40, for example) and add to the $comps property
 function addTest($operator, $value) {
 $this->comps[] = array('name' => $this->name,
 'operator' => $operator, 'value' => $value);
 }

 // comps is an array so that we can test one field in more than one way
 function getComps() { return $this->comps; }

 // if $comps does not contain elements, then we have
 // comparison data and this field is not ready to be used in
 // a query
 function isIncomplete() { return empty($this->comps); }
}

This simple class accepts and stores a field name. Through the addTest() method the class builds an
array of operator and value elements. This allows us to maintain more than one comparison test for a
single field. Now, here’s the new IdentityObject class:

namespace woo\mapper;

class IdentityObject {
 protected $currentfield=null;
 protected $fields = array();
 private $and=null;
 private $enforce=array();

 // an identity object can start off empty, or with a field
 function __construct($field=null, array $enforce=null) {
 if (! is_null($enforce)) {
 $this->enforce = $enforce;
 }

CHAPTER 13 ■ DATABASE PATTERNS

305

 if (! is_null($field)) {
 $this->field($field);
 }
 }

 // field names to which this is constrained
 function getObjectFields() {
 return $this->enforce;
 }

 // kick off a new field.
 // will throw an error if a current field is not complete
 // (ie age rather than age > 40)
 // this method returns a reference to the current object
 // allowing for fluent syntax
 function field($fieldname) {
 if (! $this->isVoid() && $this->currentfield->isIncomplete()) {
 throw new \Exception("Incomplete field");
 }
 $this->enforceField($fieldname);
 if (isset($this->fields[$fieldname])) {
 $this->currentfield=$this->fields[$fieldname];
 } else {
 $this->currentfield = new Field($fieldname);
 $this->fields[$fieldname]=$this->currentfield;
 }
 return $this;
 }

 // does the identity object have any fields yet
 function isVoid() {
 return empty($this->fields);
 }

 // is the given fieldname legal?
 function enforceField($fieldname) {
 if (! in_array($fieldname, $this->enforce) &&
 ! empty($this->enforce)) {
 $forcelist = implode(', ', $this->enforce);
 throw new \Exception("{$fieldname} not a legal field ($forcelist)");
 }
 }

 // add an equality operator to the current field
 // ie 'age' becomes age=40
 // returns a reference to the current object (via operator())
 function eq($value) {
 return $this->operator("=", $value);
 }

 // less than
 function lt($value) {
 return $this->operator("<", $value);
 }

CHAPTER 13 ■ DATABASE PATTERNS

306

 // greater than
 function gt($value) {
 return $this->operator(">", $value);
 }

 // does the work for the operator methods
 // gets the current field and adds the operator and test value
 // to it
 private function operator($symbol, $value) {
 if ($this->isVoid()) {
 throw new \Exception("no object field defined");
 }
 $this->currentfield->addTest($symbol, $value);
 return $this;
 }

 // return all comparisons built up so far in an associative array
 function getComps() {
 $ret = array();
 foreach ($this->fields as $key => $field) {
 $ret = array_merge($ret, $field->getComps());
 }
 return $ret;
 }
}

The easiest way to work out what’s going on here is to start with some client code and work
backward.

$idobj->field("name")->eq("The Good Show")
 ->field("start")->gt(time())
 ->lt(time()+(24*60*60));

I begin by creating the IdentityObject. Calling add() causes a Field object to be created and
assigned as the $currentfield property. Notice that add() returns a reference to the identity object.
This allows us to hang more method calls off the back of the call to add(). The comparison methods eq(),
gt(), and so forth each call operator(). This checks that there is a current Field object to work with, and
if so, it passes along the operator symbol and the provided value. Once again, eq() returns an object
reference, so that I can add new tests or call add() again to begin work with a new field.

Notice the way that the client code is almost sentence-like: field "name" equals "The Good Show" and
field "start" is greater than the current time, but less than a day away.

Of course, by losing those hard-coded methods, I also lose some safety. This is what the $enforce
array is designed for. Subclasses can invoke the base class with a set of constraints:

namespace woo\mapper;

class EventIdentityObject extends IdentityObject {
 function __construct($field=null) {
 parent::__construct($field,
 array('name', 'id','start','duration', 'space'));
 }
}

CHAPTER 13 ■ DATABASE PATTERNS

307

The EventIdentityObject class now enforces a set of fields. Here’s what happens if I try to work with
a random field name:

PHP Fatal error: Uncaught exception 'Exception' with message 'banana not a ➥
legal field (name, id, start, duration, space)'...

Consequences
Identity objects allow client coders to define search criteria without reference to a database query. They
also save you from having to build special query methods for the various kinds of find operation your
user might need.

Part of the point of an identity object is to shield users from the details of the database. It’s
important, therefore, that if you build an automated solution like the fluent interface in the preceding
example, the labels you use should refer explicitly to your domain objects and not to the underlying
column names. Where these differ, you should construct a mechanism for aliasing between them.

Where you use specialized entity objects, one for each domain object, it is useful to use an abstract
factory (like PersistenceFactory described in the previous section) to serve them up along with other
domain object related objects.

Now that I can represent search criteria, I can use this to build the query itself.

The Selection Factory and Update Factory Patterns
I have already pried a few responsibilities from the Mapper classes. With these patterns in place a Mapper
does not need to create objects or collections. With query criteria handled by Identity Objects, it must no
longer manage multiple variations on the find() method. The next stage is to remove responsibility for
query creation.

The Problem
Any system that speaks to a database must generate queries, but the system itself is organized around
domain objects and business rules rather than the database. Many of the patterns in this chapter can be
said to bridge the gap between the tabular database and the more organic, treelike structures of the
domain. There is, however, a moment of translation—the point at which domain data is transformed
into a form that a database can understand. It is at this point that the true decoupling takes place.

Implementation
Of course, you have seen some of this functionality before in the Data Mapper pattern. In this
specialization, though, I can benefit from the additional functionality afforded by the identity object
pattern. This will tend to make query generation more dynamic, simply because the potential number of
variations is so high.

Figure 13–10 shows my simple selection and update factories.

CHAPTER 13 ■ DATABASE PATTERNS

308

Figure 13–10. Selection and update factories

Selection and update factories are, once again, typically organized so that they parallel the domain
objects in a system (possibly mediated via identity objects). Because of this, they are also candidates for
my PersistenceFactory: the Abstract Factory I maintain as a one-stop shop for domain object
persistence tools. Here is an implementation of a base class for update factories:

namespace woo\mapper;

abstract class UpdateFactory {

 abstract function newUpdate(\woo\domain\DomainObject $obj);

 protected function buildStatement($table, array $fields, array $conditions=null) {
 $terms = array();
 if (! is_null($conditions)) {
 $query = "UPDATE {$table} SET ";

CHAPTER 13 ■ DATABASE PATTERNS

309

 $query .= implode (" = ?,", array_keys($fields))." = ?";
 $terms = array_values($fields);
 $cond = array();
 $query .= " WHERE ";
 foreach ($conditions as $key=>$val) {
 $cond[]="$key = ?";
 $terms[]=$val;
 }
 $query .= implode(" AND ", $cond);
 } else {
 $query = "INSERT INTO {$table} (";
 $query .= implode(",", array_keys($fields));
 $query .= ") VALUES (";
 foreach ($fields as $name => $value) {
 $terms[]=$value;
 $qs[]='?';
 }
 $query .= implode(",", $qs);
 $query .= ")";
 }
 return array($query, $terms);
 }
}

In interface terms, the only thing that this class does is define the newUpdate() method. This will
return an array containing a query string, and a list of terms to apply to it. The buildStatement() method
does the generic work involved in building the update query, with the work specific to individual domain
objects handled by child classes. buildStatement() accepts a table name, an associative array of fields
and their values, and a similar associative array of conditions. The method combines these to create the
query. Here’s a concrete UpdateFactory class:

namespace woo\mapper;
//...

class VenueUpdateFactory extends UpdateFactory {

 function newUpdate(\woo\domain\DomainObject $obj) {
 // not type checking removed
 $id = $obj->getId();
 $cond = null;
 $values['name'] = $obj->getName();
 if ($id > -1) {
 $cond['id'] = $id;
 }
 return $this->buildStatement("venue", $values, $cond);
 }
}

In this implementation, I work directly with a DomainObject. In systems where one might operate on
many objects at once in an update, I could use an identity object to define the set on which I would like
to act. This would form the basis of the $cond array, which here only holds id data.

newUpdate() distills the data required to generate a query. This is the process by which object data is
transformed to database information.

CHAPTER 13 ■ DATABASE PATTERNS

310

Notice that the newUpdate() method will accept any DomainObject. This is so that all UpdateFactory
classes can share an interface. It would be a good idea to add some further type checking to ensure the
wrong object is not passed in.

You can see a similar structure for SelectionFactory classes. Here is the base class:

namespace woo\mapper;

//...

abstract class SelectionFactory {
 abstract function newSelection(IdentityObject $obj);

 function buildWhere(IdentityObject $obj) {
 if ($obj->isVoid()) {
 return array("", array());
 }
 $compstrings = array();
 $values = array();
 foreach ($obj->getComps() as $comp) {
 $compstrings[] = "{$comp['name']} {$comp['operator']} ?";
 $values[] = $comp['value'];
 }
 $where = "WHERE " . implode(" AND ", $compstrings);
 return array($where, $values);
 }
}

Once again, this class defines the public interface in the form of an abstract class. newSelection()
expects an IdentityObject. Also requiring an IdentityObject but local to the type is the utility method
buildWhere(). This uses the IdentityObject::getComps() method to acquire the information necessary
to build a WHERE clause, and to construct a list of values, both of which it returns in a two element array.

Here is a concrete SelectionFactory class:

namespace woo\mapper;

//...

class VenueSelectionFactory extends SelectionFactory {

 function newSelection(IdentityObject $obj) {
 $fields = implode(',', $obj->getObjectFields());
 $core = "SELECT $fields FROM venue";
 list($where, $values) = $this->buildWhere($obj);
 return array($core." ".$where, $values);
 }
}

This builds the core of the SQL statement and then calls buildWhere() to add the conditional clause.
In fact, the only thing that differs from one concrete SelectionFactory to another in my test code is the
name of the table. If I don’t find that I require unique specializations soon, I will refactor these
subclasses out of existence and use a single concrete SelectionFactory. This would query the table name
from the PersistenceFactory.

CHAPTER 13 ■ DATABASE PATTERNS

311

Consequences
The use of a generic identity object implementation makes it easier to use a single parameterized
SelectionFactory class. If you opt for hard-coded identity objects—that is, identity objects which consist
of a list of getter and setter methods—you are more likely to have to build an individual
SelectionFactory per domain object.

One of the great benefits of query factories combined with identity objects is the range of queries
you can generate. This can also cause caching headaches. These methods generate queries on the fly,
and it’s difficult to know when you’re duplicating effort. It may be worth building a means of comparing
identity objects so that you can return a cached string without all that work. A similar kind of database
statement pooling might be considered at a higher level too.

Another issue with the combination of patterns I have presented in the latter part of this chapter is
the fact that they’re flexible, but they’re not that flexible. By this, I mean they are designed to be
extremely adaptable within limits. There is not much room for exceptional cases here, though. Mapper
classes, while more cumbersome to create and maintain, are very accommodating of any kind of
performance kludge or data juggling you might need to perform behind their clean APIs. These more
elegant patterns suffer from the problem that, with their focused responsibilities and emphasis on
composition, it can be hard to cut across the cleverness and do something dumb but powerful.

Luckily, I have not lost my higher level interface—there’s still a controller level where I can head
cleverness off at the pass if necessary.

What’s Left of Data Mapper Now?
So, I have stripped object, query, and collection generation from Data Mapper, to say nothing of the
management of conditionals. What could possibly be left of it? Well, something that is very much like a
mapper is needed in vestigial form. I still need an object that sits above the others I have created and
coordinates their activities. It can help with caching duties and handle database connectivity (although
the database-facing work could be delegated still further). Clifton Nock calls these data layer controllers
domain object assemblers.

Here is an example:

namespace woo\mapper;

//...

class DomainObjectAssembler {
 protected static $PDO;

 function __construct(PersistenceFactory $factory) {
 $this->factory = $factory;
 if (! isset(self::$PDO)) {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (is_null($dsn)) {
 throw new \woo\base\AppException("No DSN");
 }
 self::$PDO = new \PDO($dsn);
 self::$PDO->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
 }
 }

 function getStatement($str) {
 if (! isset($this->statements[$str])) {
 $this->statements[$str] = self::$PDO->prepare($str);

CHAPTER 13 ■ DATABASE PATTERNS

312

 }
 return $this->statements[$str];
 }

 function findOne(IdentityObject $idobj) {
 $collection = $this->find($idobj);
 return $collection->next();
 }

 function find(IdentityObject $idobj) {
 $selfact = $this->factory->getSelectionFactory();
 list ($selection, $values) = $selfact->newSelection($idobj);
 $stmt = $this->getStatement($selection);
 $stmt->execute($values);
 $raw = $stmt->fetchAll();
 return $this->factory->getCollection($raw);
 }

 function insert(\woo\domain\DomainObject $obj) {
 $upfact = $this->factory->getUpdateFactory();
 list($update, $values) = $upfact->newUpdate($obj);
 $stmt = $this->getStatement($update);
 $stmt->execute($values);
 if ($obj->getId() < 0) {
 $obj->setId(self::$PDO->lastInsertId());
 }
 $obj->markClean();
 }
}

As you can see, this is not an abstract class. Instead of itself breaking down into specializations, it
uses the PersistenceFactory to ensure that it gets the correct components for the current domain object.

Figure 13–11 shows the high-level participants I built up as I factored out Mapper.
Aside from making the database connection and performing queries, the class manages

SelectionFactory and UpdateFactory objects. In the case of selections, it also works either with a
Collection class or directly with a DomainObjectFactory to generate return values.

From a client’s point of view, acquiring a DomainObjectFactory is easy. It’s simply a matter of getting
the correct concrete PersistenceFactory object:

$factory = \woo\mapper\PersistenceFactory::getFactory("woo\\domain\\Venue");
$finder = new \woo\mapper\DomainObjectAssembler($factory);

Although, of course, it would be even easier to add a getFinder() method to the PersistenceFactory
itself and transform the previous example into a one-liner like this:

$finder = \woo\mapper\PersistenceFactory::getFinder('woo\\domain\\Venue');

I’ll leave that to you, however.

CHAPTER 13 ■ DATABASE PATTERNS

313

Figure 13–11. Some of the persistence classes developed in this chapter

A client coder might then go on to acquire a collection of Venue objects:

$idobj = $factory->getIdentityObject()->field('name')
 ->eq('The Eyeball Inn');
$collection = $finder->find($idobj);

foreach($collection as $venue) {
 print $venue->getName()."\n";
}

Summary
As always, the patterns you choose to use will depend on the nature of your problem. I naturally
gravitate toward a Data Mapper working with an identity object. I like neat automated solutions, but I
also need to know I can break out of the system and go manual when I need to, while maintaining a
clean interface and a decoupled database layer. I may need to optimize an SQL query, for example, or
use a join to acquire data across multiple tables. Even if you’re using a complex pattern-based third-
party framework, you may find that the fancy object-relational mapping on offer does not do quite what
you want. One test of a good framework, and of a good home-grown system, is the ease with which you
can plug your own hack into place without degrading the overall integrity of the system as a whole. I love
elegant, beautifully composed solutions, but I’m also a pragmatist!

Once again, I have covered a lot in this chapter. We examined the following patterns:

CHAPTER 13 ■ DATABASE PATTERNS

314

• Data Mapper: Create specialist classes for mapping Domain Model objects to and
from relational databases.

• Identity Map: Keep track of all the objects in your system to prevent duplicate
instantiations and unnecessary trips to the database.

• Unit of Work: Automate the process by which objects are saved to the database,
ensuring that only objects that have been changed are updated and only those
that have been newly created are inserted.

• Lazy Load: Defer object creation, and even database queries, until they are
actually needed.

• Domain Object Factory: Encapsulate object creation functionality.

• Identity Object: Allow clients to construct query criteria without reference to the
underlying database.

• Query (Selection and Update) Factory: Encapsulate the logic for constructing SQL
queries.

• Domain Object Assembler: Construct a controller that manages the high-level
process of data storage and retrieval.

In the next chapter, we take a welcome break from code, and I’ll introduce some of the wider
practices that can contribute to a successful project.

	Chapter 13 Database Patterns
	The Data Layer
	Data Mapper
	The Problem
	Implementation
	Handling Multiple Rows

	Consequences

	Identity Map
	The Problem
	Implementation
	Consequences

	Unit of Work
	The Problem
	Implementation
	Consequences
	Lazy Load
	The Problem
	Implementation
	Consequences

	Domain Object Factory
	The Problem
	Implementation
	Consequences

	The Identity Object
	The Problem
	Implementation
	Consequences

	The Selection Factory and Update Factory Patterns
	The Problem
	Implementation
	Consequences

	What’s Left of Data Mapper Now?
	Summary

