

i

PHP Objects, Patterns,
and Practice

Third Edition

■ ■ ■

Matt Zandstra

ii

PHP Objects, Patterns, and Practice, Third Edition

Copyright © 2010 by Matt Zandstra

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2925-4

ISBN-13 (electronic): 978-1-4302-2926-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman, Matt Wade
Technical Reviewer: Wes Hunt
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham
Copy Editor: Tracy Brown Collins
Compositor: MacPS, LLC
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Anna Ischenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

iii

Contents at a Glance

■Contents at a Glance...iii�
■Contents .. v�

■About the Author ... xvii�
■About the Technical Reviewer.. xviii�
■Acknowledgments .. xix�

■ Introduction to the Third Edition ... xx
Part 1: Introduction...1
■Chapter 1: PHP: Design and Management ...3
Part 2: Objects ..9
■Chapter 2: PHP and Objects...11
■Chapter 3: Object Basics ...15
■Chapter 4: Advanced Features...41
■Chapter 5: Object Tools..71
■Chapter 6: Objects and Design ..99
Part 3: Patterns...121
■Chapter 7: What Are Design Patterns? Why Use Them?..123
■Chapter 8: Some Pattern Principles ..131
■Chapter 9: Generating Objects...145
■Chapter 10: Patterns for Flexible Object Programming...169
■Chapter 11: Performing and Representing Tasks..189
■Chapter 12: Enterprise Patterns ..221
■Chapter 13: Database Patterns..275
Part 4: Practice...315
■Chapter 14: Good (and Bad) Practice ..317
■Chapter 15: An Introduction to PEAR and Pyrus..323
■Chapter 16: Generating Documentation with phpDocumentor ..347
■Chapter 17: Version Control with Subversion..361
■Chapter 18: Testing with PHPUnit..379
■Chapter 19: Automated Build with Phing ..407
■Chapter 20: Continuous Integration...427
Part 5: Conclusion...451
■Chapter 21: Objects, Patterns, Practice ..453
■Appendix A: Bibliography ..463
■Appendix B: A Simple Parser...467
■ Index..219

v

Contents

■Contents at a Glance ..iii�
■Contents ..v�

■About the Author ... xvii�
■About the Technical Reviewer.. xviii�
■Acknowledgments.. xix�

■Introduction to the Third Edition ... xx

Part 1: Introduction ..1

■Chapter 1: PHP: Design and Management...3

The Problem.. 3

PHP and Other Languages .. 4

About This Book .. 5
Objects ...6
Patterns..6
Practice ..6
What’s New in the Third Edition...7

Summary... 7

Part 2: Objects..9

■Chapter 2: PHP and Objects ..11

The Accidental Success of PHP Objects ... 11
In the Beginning: PHP/FI ..11
Syntactic Sugar: PHP 3 ..11
PHP 4 and the Quiet Revolution ...12�

■ CONTENTS

vi

Change Embraced: PHP 5 ..13

Into the Future .. 14

Advocacy and Agnosticism: The Object Debate.. 14

Summary... 14

■Chapter 3: Object Basics ...15

Classes and Objects.. 15
A First Class ...15
A First Object (or Two) ...16

Setting Properties in a Class.. 17

Working with Methods .. 19
Creating a Constructor Method ..21

Arguments and Types ... 22
Primitive Types ..22
Taking the Hint: Object Types ..25

Inheritance .. 27
The Inheritance Problem..27
Working with Inheritance...31
Public, Private, and Protected: Managing Access to Your Classes ..35

Summary... 39

■Chapter 4: Advanced Features ..41

Static Methods and Properties.. 41

Constant Properties .. 44

Abstract Classes ... 45

Interfaces .. 47

Late Static Bindings: The static Keyword.. 48

Handling Errors ... 51
Exceptions..52

Final Classes and Methods ... 57

Working with Interceptors .. 58

Defining Destructor Methods .. 62

 ■ CONTENTS

vii

Copying Objects with __clone() .. 63

Defining String Values for Your Objects .. 65

Callbacks, Anonymous Functions and Closures ... 66

Summary... 70

■Chapter 5: Object Tools ...71

PHP and Packages .. 71
PHP Packages and Namespaces..71
Autoload ...80

The Class and Object Functions.. 81
Looking for Classes..82
Learning About an Object or Class...83
Learning About Methods ..84
Learning About Properties ...85
Learning About Inheritance..85
Method Invocation..86

The Reflection API... 87
Getting Started ...87
Time to Roll Up Your Sleeves ...88
Examining a Class ..90
Examining Methods..91
Examining Method Arguments...93
Using the Reflection API...94

Summary... 97

■Chapter 6: Objects and Design ..99

Defining Code Design.. 99

Object-Oriented and Procedural Programming... 100
Responsibility...103
Cohesion ..104
Coupling ...104
Orthogonality..104

Choosing Your Classes.. 105

■ CONTENTS

viii

Polymorphism ... 106

Encapsulation ... 107

Forget How to Do It ... 108

Four Signposts .. 109
Code Duplication ..109
The Class Who Knew Too Much...109
The Jack of All Trades..109
Conditional Statements..110

The UML.. 110
Class Diagrams ..110
Sequence Diagrams...117

Summary... 119

Part 3: Patterns ..121

■Chapter 7: What Are Design Patterns? Why Use Them?....................................123

What Are Design Patterns? ... 123

A Design Pattern Overview ... 125
Name..125
The Problem...125
The Solution ...126
Consequences..126

The Gang of Four Format .. 126

Why Use Design Patterns?.. 127
A Design Pattern Defines a Problem ..127
A Design Pattern Defines a Solution ..127
Design Patterns Are Language Independent..127
Patterns Define a Vocabulary...127
Patterns Are Tried and Tested ...128
Patterns Are Designed for Collaboration..128
Design Patterns Promote Good Design ..128

PHP and Design Patterns .. 129

Summary... 129

 ■ CONTENTS

ix

■Chapter 8: Some Pattern Principles ..131

The Pattern Revelation.. 131

Composition and Inheritance .. 132
The Problem...132
Using Composition ...135

Decoupling .. 137
The Problem...137
Loosening Your Coupling ...139

Code to an Interface, Not to an Implementation ... 141

The Concept That Varies ... 142

Patternitis.. 143

The Patterns.. 143
Patterns for Generating Objects...143
Patterns for Organizing Objects and Classes ...143
Task-Oriented Patterns ..143
Enterprise Patterns ..144
Database Patterns..144

Summary... 144

■Chapter 9: Generating Objects ..145

Problems and Solutions in Generating Objects... 145

The Singleton Pattern ... 149
The Problem...149
Implementation ..150
Consequences..152

Factory Method Pattern .. 152
The Problem...153
Implementation ..155
Consequences..157

Abstract Factory Pattern ... 157
The Problem...158
Implementation ..159

■ CONTENTS

x

Consequences..161
Prototype..162
The Problem...163
Implementation ..163

But That’s Cheating! ... 166

Summary... 167

■Chapter 10: Patterns for Flexible Object Programming169

Structuring Classes to Allow Flexible Objects... 169

The Composite Pattern.. 169
The Problem...170
Implementation ..172
Consequences..175
Composite in Summary..178

The Decorator Pattern... 179
The Problem...179
Implementation ..181
Consequences..185

The Facade Pattern... 185
The Problem...185
Implementation ..186
Consequences..187

Summary... 187

■Chapter 11: Performing and Representing Tasks ...189

The Interpreter Pattern.. 189
The Problem...189
Implementation ..190
Interpreter Issues...197

The Strategy Pattern ... 198
The Problem...198
Implementation ..199

The Observer Pattern .. 202

 ■ CONTENTS

xi

Implementation ..204

The Visitor Pattern .. 210
The Problem...210
Implementation ..211
Visitor Issues..215

The Command Pattern .. 216
The Problem...216
Implementation ..216

Summary... 220

■Chapter 12: Enterprise Patterns..221

Architecture Overview... 221
The Patterns...222
Applications and Layers...222

Cheating Before We Start.. 225
Registry ..225
Implementation ..226

The Presentation Layer ... 235
Front Controller ..235
Application Controller...245
Page Controller ..257
Template View and View Helper ..262

The Business Logic Layer ... 264
Transaction Script..265
Domain Model ..269

Summary... 273

■Chapter 13: Database Patterns ...275

The Data Layer .. 275

Data Mapper ... 275
The Problem...276
Implementation ..276
Consequences..287

■ CONTENTS

xii

Identity Map .. 288
The Problem...288
Implementation ..289
Consequences..291

Unit of Work .. 291
The Problem...292
Implementation ..292
Consequences..296
Lazy Load ...296
The Problem...296
Implementation ..297
Consequences..298

Domain Object Factory.. 298
The Problem...298
Implementation ..299
Consequences..300

The Identity Object .. 301
The Problem...301
Implementation ..302
Consequences..307

The Selection Factory and Update Factory Patterns ... 307
The Problem...307
Implementation ..307
Consequences..311

What’s Left of Data Mapper Now? .. 311

Summary... 313

Part 4: Practice ..315

■Chapter 14: Good (and Bad) Practice ..317

Beyond Code ... 317

Borrowing a Wheel... 317

Playing Nice .. 319

 ■ CONTENTS

xiii

Giving Your Code Wings .. 319

Documentation.. 320

Testing .. 321

Continuous Integration.. 322

Summary... 322

■Chapter 15: An Introduction to PEAR and Pyrus ...323

What Is PEAR?... 323

Phar Out with Pyrus .. 324

Installing a Package... 326
PEAR Channels...327

Using a PEAR Package.. 329
Handling PEAR Errors...331

Creating Your Own PEAR Package.. 334
package.xml...334
Package Elements..334
The contents Element ...336
Dependencies ..339
Tweaking Installation with phprelease ...340
Preparing a Package for Shipment ..341
Setting Up Your Own Channel ..341

Summary... 346

■Chapter 16: Generating Documentation with phpDocumentor..........................347

Why Document?.. 347

Installation .. 348

Generating Documentation ... 349

DocBlock Comments... 350

Documenting Classes ... 352

File-Level Documentation ... 353

Documenting Properties ... 353

Documenting Methods.. 355

■ CONTENTS

xiv

Creating Links in Documentation.. 356

Summary... 359

■Chapter 17: Version Control with Subversion ...361

Why Use Version Control?... 361

Getting Subversion.. 362

Configuring a Subversion Repository.. 363
Creating a Repository...363

Beginning a Project... 364

Updating and Committing ... 368

Adding and Removing Files and Directories ... 371
Adding a File ..371
Removing a File ...372
Adding a Directory ...372
Removing Directories...373

Tagging and Exporting a Release ... 373
Tagging a Project ...373
Exporting a Project...374

Branching a Project... 374

Summary... 378

■Chapter 18: Testing with PHPUnit ...379

Functional Tests and Unit Tests.. 379

Testing by Hand .. 380

Introducing PHPUnit .. 382
Creating a Test Case ..382
Assertion Methods ...383
Testing Exceptions...384
Running Test Suites ...385
Constraints...386
Mocks and Stubs ...388
Tests Succeed When They Fail ..391

 ■ CONTENTS

xv

Writing Web Tests ... 394
Refactoring a Web Application for Testing...394
Simple Web Testing ...397
Introducing Selenium...398

A Note of Caution .. 403

Summary... 405

■Chapter 19: Automated Build with Phing ..407

What Is Phing? .. 407

Getting and Installing Phing .. 408

Composing the Build Document.. 408
Targets ...410
Properties...412
Types..416
Tasks..421

Summary... 425

■Chapter 20: Continuous Integration ..427

What Is Continuous Integration? ... 427
Preparing a Project for CI ...428

CruiseControl and phpUnderControl.. 436
Installing CruiseControl ..436
Installing phpUnderControl...438
Installing Your Project ..440

Summary... 450

Part 5: Conclusion ..451

■Chapter 21: Objects, Patterns, Practice ..453

Objects .. 453
Choice ..454
Encapsulation and Delegation..454
Decoupling ...454
Reusability ...455
Aesthetics ..455

■ CONTENTS

xvi

Patterns... 455
What Patterns Buy Us ..456
Patterns and Principles of Design ..456

Practice... 458
Testing ...459
Documentation...459
Version Control...459
Automated Build...459
Continuous Integration...460
What I Missed ..460

Summary... 460

■Appendix A: Bibliography..463

Books .. 463

Articles.. 464

Sites .. 464

■Appendix B: A Simple Parser ..467

The Scanner.. 467

The Parser... 474

■Index ...487

�

 ■ CONTENTS

xvii

About the Author

■ Matt Zandstra has worked as a web programmer, consultant, and writer for over a decade. He is a
senior developer at Yahoo, and a freelance coder and writer. Matt is the author of Teach Yourself PHP in
24 Hours (SAMS) and a contributor to DHTML Unleashed (SAMS). He has written articles for Linux
Magazine, Zend.com, IBM DeveloperWorks, and php|architect Magazine, among others. He works
primarily with PHP and Java, designing and building web and command-line applications.

Matt lives in Liverpool with his wife, Louise, and two children, Holly and Jake.

■ CONTENTS

xviii

About the Technical Reviewer

■ Wes Hunt is a web-application developer and consultant at 4th Dimension
Development, which builds web solutions for organizations from small to the
enterprise level. For over a decade, he has used Java and PHP to deliver everything
plus the kitchen sink for clients. His latest passion is leveraging Flex with a PHP
back-end to produce RIAs for clients. Wes uses development patterns and best
practices in order to spend more time enjoying the outdoors near his home in
Montana.

 ■ CONTENTS

xix

Acknowledgments

When you first have an idea for a book (in my case, while drinking good coffee in a Brighton cafe), it is
the subject matter alone that grips you. In the enthusiasm of the moment, it is easy to forget the scale of
the undertaking. I soon rediscovered the sheer hard work a book demands, and I learned once again that
it’s not something you can do alone. At every stage of this book’s development, I have benefited from
enormous support.

In fact, my thanks must predate the book’s conception. The themes of this book first saw the light of
day in a talk I gave for a Brighton initiative called Skillswap (www.skillswap.org) run by Andy Budd. It
was Andy’s invitation to speak that first planted the seeds of the idea in my mind. For that, I still owe
Andy a pint and much thanks.

By chance, attending that meeting was Jessey White-Cinis, another Apress author, who put me in
touch with Martin Streicher, who commissioned the book for Apress straightaway.

My thanks go out to both Jessey and Martin for seeing potential in the slightest of beginnings.
Once again the Apress team has provided enormous support in the face of a very tight deadline, and

my tendency to go quiet as I moved with my family to a new continent in the middle of the project.
Thanks to Steven Metsker for his kind permission to re-implement in PHP a brutally simplified

version of the parser API he presented in his book Building Parsers in Java.
Writing to a deadline is not conducive to family life, and so I must send my thanks and love to my

wife, Louise, and to our children, Holly and Jake. I have missed you all.
Since the publication of the first edition, I have been lucky to receive much enthusiastic and

constructive feedback from readers. I’m sorry that I haven’t been able to reply to everyone individually,
but I’d like to take this opportunity to thank all correspondents for your messages.

The soundtrack to the writing of the first edition was provided by John Peel. John was a broadcaster
who waged a 40-year war on the bland and mass-produced in music simply by championing everything
original and eclectic he could lay his hands on. John died suddenly in October 2004, leaving listeners
around the world bereft. He had an extraordinary impact on many lives, and I would like to add my
thanks here.

■ CONTENTS

xx

Introduction to the Third Edition

When I first had the idea for PHP Objects, Patterns, and Practice, I felt I was swimming against the tide.
Many pattern implementations in PHP felt like glorified workarounds due to limitations in the
language. These days, though, it can be hard to keep up with pace of innovation in PHP objects,
design, and project practice.

If that's a problem, well, it's the kind you want to have. Especially if you have the tools at hand to
navigate the risks and opportunities that present themselves.

PHP continues to tick items off the object-oriented developer's wish list. Since the last edition of
this book, we have seen namespaces make it into the language, late static binding, anonymous
functions, and closures (if those don't yet mean anything to you, don't worry, they're all covered by
this book). PHP is an active language, constantly evolving to meet the needs of its users.

For a developer, this presents some interesting challenges. Not least, the tension between a stable
codebase and the desire to take advantage of the goodies that every new release brings. With a good
suite of tests, preferably run automatically, tools for collaboration, and an easily installed system, you
can improve the design of your code, play with new features, and be fairly sure that you're not
breaking stuff.

And that's where this book comes in, I hope. I want to explore what's exciting, both in the
language and in the wider world of object-oriented design. At the same time, I want to take in the
tools and practices you can use to safeguard your project from the hordes of bugs that lurk beyond
sight whenever you make a change.

As well as new language features, this edition benefits from coverage of web testing with Selenium,
and the ultimate tool of tools: a Continuous Integration server that runs tests, builds your system, and
applies diagnostic tools to your project.

How real is a web application? It exists as lines of code, of course, bits stored on a computer. It

exists in its execution on a server. But really, for the developer, an application first lives in the
imagination. It is a structure made up of parts that interlock more or less elegantly. Then, if we're
lucky, it is realized and deployed, and it really comes alive at the moment someone uses it. There,
right there, is where the magic of coding lives.

That's what this book is really about. It's about taking an idea and shaping it, and the pleasure to
be found in the process. It's about the shapes of a system in your imagination, and the satisfaction
when these shapes are expressed in code. And then again when the system actually works. It's about
the freedom that tests give you to take risks, and the risks that your imagination inspires you to take.
It's the moment that something you wrote becomes real in the eyes of another.

P A R T 1

■ ■ ■

1

Introduction

C H A P T E R 1

■ ■ ■

3

PHP: Design and Management

When PHP 5 was released early in 2004, among the most important features it introduced was enhanced
support for object-oriented programming. This stimulated much interest in objects and design within
the PHP community. In fact, this was an intensification of a process that began when version 4 first
made object-oriented programming with PHP a serious reality.

In this chapter, I look at some of the needs that coding with objects can address. I very briefly
summarize the evolution of patterns and related practices in the Java world. I look at signs that indicate
a similar process is occurring among PHP coders.

I also outline the topics covered by this book.
I will look at

• The evolution of disaster: A project goes bad.

• Design and PHP: How object-oriented design techniques are taking root in the
PHP community.

• This book: Objects. Patterns. Practice.

The Problem
The problem is that PHP is just too easy. It tempts you to try out your ideas, and flatters you with good
results. You write much of your code straight into your web pages, because PHP is designed to support
that. You add utility functions (such as database access code) to files that can be included from page to
page, and before you know it you have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site looks fantastic. It
performs well, your clients are happy, and your users are spending money.

Trouble strikes when you go back to the code to begin a new phase. Now you have a larger team,
some more users, a bigger budget. Yet without warning, things begin to go wrong. It’s as if your project
has been poisoned.

Your new programmer is struggling to understand code that is second nature to you, though
perhaps a little byzantine in its twists and turns. She is taking longer than you expected to reach full
strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you must update 20 or
more web pages as a result.

One of your coders saves his version of a file over major changes you made to the same code some
time earlier. The loss is not discovered for three days, by which time you have amended your own local
copy. It takes a day to sort out the mess, holding up a third developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server. The project has
to be installed by hand, and you discover that file paths, database names, and passwords are hard-coded
into many source files. You halt work during the move because you don’t want to overwrite the

CHAPTER 1 ■ PHP: DESIGN AND MANAGEMENT

4

configuration changes the migration requires. The estimated two hours becomes eight as it is revealed
that someone did something clever involving the Apache module ModRewrite, and the application now
requires this to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes in as you are
about to leave the office. The client phones minutes later to complain. Her report is similar to the first,
but a little more scrutiny reveals that it is a different bug causing similar behavior. You remember the
simple change back at the start of the phase that necessitated extensive modifications throughout the
rest of the project.

You realize that not all the required modifications are in place. This is either because they were
omitted to start with or because the files in question were overwritten in merge collisions. You hurriedly
make the modifications needed to fix the bugs. You’re in too much of a hurry to test the changes, but
they are a simple matter of copy and paste, so what can go wrong?

The next morning you arrive at the office to find that a shopping basket module has been down all
night. The last-minute changes you made omitted a leading quotation mark, rendering the code
unusable. Of course, while you were asleep, potential customers in other time zones were wide awake
and ready to spend money at your store. You fix the problem, mollify the client, and gather the team for
another day’s firefighting.

This everyday tale of coding folk may seem a little over the top, but I have seen all these things
happen over and over again. Many PHP projects start their life small and evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in early as
database queries, authentication checks, form processing, and more are copied from page to page. Every
time a change is required to one of these blocks of code, it must be made everywhere the code is found,
or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows obscure bugs to go
undiscovered until deployment. The changing nature of a client’s business often means that code
evolves away from its original purpose until it is performing tasks for which it is fundamentally unsuited.
Because such code has often evolved as a seething intermingled lump, it is hard, if not impossible, to
switch out and rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and fixing a system
like this can fund expensive espresso drinks and DVD box sets for six months or more. More seriously,
though, problems of this sort can mean the difference between a business’s success or failure.

PHP and Other Languages
PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As you will see in
the next chapter, PHP started life as a set of macros for managing personal home pages. With the advent
of PHP 3 and, to a greater extent, PHP 4, the language rapidly became the successful power behind large
enterprise Web sites. In many ways, though, the legacy of PHP’s beginnings carried through into script
design and project management. In some quarters, PHP retained an unfair reputation as a hobbyist
language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining currency in other
coding communities. An interest in object-oriented design galvanized the Java community. You may
think that this is a redundancy, since Java is an object-oriented language. Java provides a grain that is
easier to work with than against, of course, but using classes and objects does not in itself make a
particular design approach.

The concept of the design pattern, as a way of describing a problem together with the essence of its
solution, was first discussed in the ’70s. Perhaps aptly, the idea originated in the field of architecture, and
not computer science. By the early ’90s, object-oriented programmers were using the same technique to
name and describe problems of software design. The seminal book on design patterns, Design Patterns:
Elements of Reusable Object-Oriented Software, by the affectionately nicknamed Gang of Four, was
published in 1995, and is still indispensable today. The patterns it contains are a required first step for
anyone starting out in this field, which is why most of the patterns in this book are drawn from it.

CHAPTER 1 ■ PHP: DESIGN AND MANAGEMENT

5

The Java language itself deployed many core patterns in its API, but it wasn’t until the late ’90s that
design patterns seeped into the consciousness of the coding community at large. Patterns quickly
infected the computer sections of High Street bookstores, and the first flame wars began on mailing lists
and forums.

Whether you think that patterns are a powerful way of communicating craft knowledge or largely
hot air (and, given the title of this book, you can probably guess where I stand on that issue), it is hard to
deny that the emphasis on software design they have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was eXtreme Programming (XP), championed
by Kent Beck. XP is an approach to projects that encourages flexible, design-oriented, highly focused
planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s success. Tests
should be automated, run often, and preferably designed before their target code is written.

XP also dictates that projects should be broken down into small (very small) iterations. Both code
and requirements should be scrutinized at all times. Architecture and design should be a shared and
constant issue, leading to the frequent revision of code.

If XP is the militant wing of the design movement, then the moderate tendency is well represented
by one of the best books about programming I have ever read: The Pragmatic Programmer by Andrew
Hunt and David Thomas, which was published in 2000.

XP is deemed a tad cultish by some, but it grew out of two decades of object-oriented practice at the
highest level and its principles were widely cannibalized. In particular, code revision, known as
refactoring, was taken up as a powerful adjunct to patterns. Refactoring has evolved since the ’80s, but it
was codified in Martin Fowler’s catalog of refactorings, Refactoring: Improving the Design of Existing
Code, which was published in 1999 and defined the field.

Testing too became a hot issue with the rise to prominence of XP and patterns. The importance of
automated tests was further underlined by the release of the powerful JUnit test platform, which became
a key weapon in the Java programmer’s armory. A landmark article on the subject, “Test Infected:
Programmers Love Writing Tests” by Kent Beck and Erich Gamma
(http://junit.sourceforge.net/doc/testinfected/testing.htm), gives an excellent introduction to the
topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency and, crucially,
enhanced support for objects. These enhancements made fully object-oriented projects a possibility.
Programmers embraced this feature, somewhat to the surprise of Zend founders Zeev Suraski and Andi
Gutmans, who had joined Rasmus Lerdorf to manage PHP development. As you shall see in the next
chapter, PHP’s object support was by no means perfect, but with discipline and careful use of syntax,
one could really think in objects and PHP at the same time.

Nevertheless, design disasters like the one depicted at the start of this chapter remained common.
Design culture was some way off, and almost nonexistent in books about PHP. Online, though, the
interest was clear. Leon Atkinson wrote a piece about PHP and patterns for Zend in 2001 , and Harry
Fuecks launched his journal at www.phppatterns.com (now largely mothballed, it seems) in 2002.
Pattern-based framework projects such as BinaryCloud began to emerge, as well as tools for automated
testing and documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for object-
oriented programming. The Zend 2 Engine provided greatly improved object support. Equally
important, it sent a signal that objects and object-oriented design were now central to the PHP project.

Over the years, PHP 5 has continued to evolve and improve, incorporating important new features
such as namespaces and closures. During this time, it has secured its reputation as the best choice for
server side web programming.

About This Book
This book does not attempt to break new ground in the field of object-oriented design; in that respect it
perches precariously upon the shoulders of giants. Instead, I examine, in the context of PHP, some well-
established design principles and some key patterns (particularly those inscribed in Design Patterns, the

CHAPTER 1 ■ PHP: DESIGN AND MANAGEMENT

6

classic Gang of Four book). Finally, I move beyond the strict limits of code to look at tools and
techniques that can help to ensure the success of a project. Aside from this introduction and a brief
conclusion, the book is divided into three main parts: objects, patterns, and practice.

Objects
I begin Part 2 with a quick look at the history of PHP and objects, charting their shift from afterthought in
PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little or no knowledge of
objects. For this reason, I start from first principles to explain objects, classes, and inheritance. Even at
this early stage, I look at some of the object enhancements that PHP 5 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more advanced object-
oriented features. I also devote a chapter to the tools that PHP provides to help you work with objects
and classes.

It is not enough, though, to know how to declare a class, and to use it to instantiate an object. You
must first choose the right participants for your system and decide the best ways for them to interact.
These choices are much harder to describe and to learn than the bald facts about object tools and
syntax. I finish Part 2 with an introduction to object-oriented design with PHP.

Patterns
A pattern describes a problem in software design and provides the kernel of a solution. “Solution” here
does not mean the kind of cut-and-paste code you might find in a cookbook (excellent though
cookbooks are as resources for the programmer). Instead, a design pattern describes an approach that
can be taken to solve a problem. A sample implementation may be given, but it is less important than
the concept it serves to illustrate.

Part 3 begins by defining design patterns and describing their structure. I also look at some of the
reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An understanding of these can
help in analyzing a pattern’s motivation, and can usefully be applied to all programming. I discuss some
of these principles. I also examine the Unified Modeling Language (UML), a platform-independent way
of describing classes and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and useful patterns.
I describe the problem that each pattern addresses, analyze the solution, and present an
implementation example in PHP.

Practice
Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 4, I look at the
tools available to help you create a framework that ensures the success of your project. If the rest of the
book is about the practice of design and programming, Part 4 is about the practice of managing your
code. The tools I examine can form a support structure for a project, helping to track bugs as they occur,
promoting collaboration among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 4 with an introductory
chapter that gives an overview of problems and solutions in this area.

Many programmers are guilty of giving in to the impulse to do everything themselves. The PHP
community maintains PEAR, a repository of quality-controlled packages that can be stitched into
projects with ease. I look at the trade-offs between implementing a feature yourself and deploying a
PEAR package.

CHAPTER 1 ■ PHP: DESIGN AND MANAGEMENT

7

While I’m on the topic of PEAR, I look at the installation mechanism that makes the deployment of a
package as simple as a single command. Best suited for stand-alone packages, this mechanism can be
used to automate the installation of your own code. I show you how to do it.

Documentation can be a chore, and along with testing, it is probably the easiest part of a project to
jettison when deadlines loom. I argue that this is probably a mistake, and show you PHPDocumentor, a
tool that helps you turn comments in your code into a set of hyperlinked HTML documents that
describe every element of your API.

Almost every tool or technique discussed in this book directly concerns or is deployed using PHP.
The one exception to this rule is Subversion. Subversion is a version control system that enables many
programmers to work together on the same codebase without overwriting one another’s work. It lets you
grab snapshots of your project at any stage in development, see who has made which changes, and split
the project into mergeable branches. Subversion will save your project one day.

Two facts seem inevitable. First, bugs often recur in the same region of code, making some work
days an exercise in déjà vu. Second, often improvements break as much as, or more than, they fix.
Automated testing can address both of these issues, providing an early warning system for problems in
your code. I introduce PHPUnit, a powerful implementation of the so-called xUnit test platform
designed first for Smalltalk but ported now to many languages, notably Java. I look in particular at
PHPUnit’s features and more generally at the benefits, and some of the costs, of testing.

PEAR provides a build tool that is ideal for installing self-enclosed packages. For a complete
application, however, greater flexibility is required. Applications are messy. They may need files to be
installed in nonstandard locations, or want to set up databases, or need to patch server configuration. In
short, applications need stuff to be done during installation. Phing is a faithful port of a Java tool called
Ant. Phing and Ant interpret a build file and process your source files in any way you tell them to. This
usually means copying them from a source directory to various target locations around your system, but
as your needs get more complex, Phing scales effortlessly to meet them.

Testing and build are all very well, but you have to install and run your tests, and keep on doing so in
order to reap the benefits. It’s easy to become complacent and let things slide if you don’t automate your
builds and tests. I look at some tools and techniques that are lumped together in the category
“continuous integration” that will help you do just that.

What’s New in the Third Edition
PHP is a living language, and as such it’s under constant review and development. This new edition has
been reviewed and thoroughly updated to take account of changes and new opportunities. I cover new
features such as closures, for example. The second edition examined an experimental version of
namespaces, which has since been rendered obsolete by the release of PHP 5.3, with its own namespace
support. I have, of course, updated this edition to address this.

I have updated the chapter on version control to cover Subversion rather than CVS. This reflects the
general migration to the newer platform I have perceived since this book was first published. I also
include a new chapter on continuous integration, both a practice and a set of tools that allows
developers to automate and monitor their build and test strategies..

Summary
This is a book about object-oriented design and programming. It is also about tools for managing a PHP
codebase from collaboration through to deployment.

These two themes address the same problem from different but complementary angles. The aim is
to build systems that achieve their objectives and lend themselves well to collaborative development.

A secondary goals lies in the aesthetics of software systems. As programmers, we build machines
that have shape and action. We invest many hours of our working day, and many days of our lives,
writing these shapes into being. We want the tools we build, whether individual classes and objects,

CHAPTER 1 ■ PHP: DESIGN AND MANAGEMENT

8

software components, or end products, to form an elegant whole. The process of version control, testing,
documentation, and build does more than support this objective, it is part of the shape we want to
achieve. Just as we want clean and clever code, we want a codebase that is designed well for developers
and users alike. The mechanics of sharing, reading, and deploying the project should be as important as
the code itself.

P A R T 2

■ ■ ■

9

Objects

C H A P T E R 2

■ ■ ■

11

PHP and Objects

Objects were not always a key part of the PHP project. In fact, they have been described as an
afterthought by PHP’s designers.

As afterthoughts go, this one has proved remarkably resilient. In this chapter, I introduce coverage
of objects by summarizing the development of PHP’s object-oriented features.

We will look at

• PHP/FI 2.0: PHP, but not as we know it.

• PHP 3: Objects make their first appearance.

• PHP 4: Object-oriented programming grows up.

• PHP 5: Objects at the heart of the language.

• PHP 6: A glimpse of the future

The Accidental Success of PHP Objects
With so many object-oriented PHP libraries and applications in circulation, to say nothing of PHP 5’s
extensive object enhancements, the rise of the object in PHP may seem like the culmination of a natural
and inevitable process. In fact, nothing could be further from the truth.

In the Beginning: PHP/FI
The genesis of PHP as we know it today lies with two tools developed by Rasmus Lerdorf using Perl. PHP
stood for Personal Homepage Tools. FI stood for Form Interpreter. Together, they comprised macros for
sending SQL statements to databases, processing forms, and flow control.

These tools were rewritten in C and combined under the name PHP/FI 2.0. The language at this
stage looked different from the syntax we recognize today, but not that different. There was support for
variables, associative arrays, and functions. Objects, though, were not even on the horizon.

Syntactic Sugar: PHP 3
In fact, even as PHP 3 was in the planning stage, objects were off the agenda. As today, the principal
architects of PHP 3 were Zeev Suraski and Andi Gutmans. PHP 3 was a complete rewrite of PHP/FI 2.0,
but objects were not deemed a necessary part of the new syntax.

CHAPTER 2 ■ PHP AND OBJECTS

12

According to Zeev Suraski, support for classes was added almost as an afterthought (on 27 August
1997, to be precise). Classes and objects were actually just another way to define and access
associative arrays.

Of course, the addition of methods and inheritance made classes much more than glorified
associative arrays, but there were still severe limitations as to what you could do with your classes. In
particular, you could not access a parent class’s overridden methods (don’t worry if you don’t know
what this means yet; I will explain later). Another disadvantage that I will examine in the next section
was the less than optimal way that objects were passed around in PHP scripts.

That objects were a marginal issue at this time is underlined by their lack of prominence in official
documentation. The manual devoted one sentence and a code example to objects. The example did not
illustrate inheritance or properties.

PHP 4 and the Quiet Revolution
If PHP 4 was yet another ground-breaking step for the language, most of the core changes took place
beneath the surface. The Zend Engine (its name derived from Zeev and Andi) was written from scratch
to power the language. The Zend Engine is one of the main components that drive PHP. Any PHP
function you might care to call is in fact part of the high level extensions layer. These do the busy work
they were named for, like talking to database APIs or juggling strings for you. Beneath that the Zend
Engine manages memory, delegates control to other components, and translates the familiar PHP syntax
you work with every day into runnable bytecode. It is the Zend Engine we have to thank for core
language features like classes.

From our objective perspective, the fact that PHP 4 made it possible to override parent methods and
access them from child classes was a major benefit.

A major drawback remained, however. Assigning an object to a variable, passing it to a function, or
returning it from a method, resulted in a copy being made. So an assignment like this

$my_obj = new User('bob');
$other = $my_obj;

resulted in the existence of two User objects, rather than two references to the same User object. In most
object-oriented languages you would expect assignment by reference, rather than by value as here. This
means that you pass and assign handles that point to objects rather than copy the objects themselves. The
default pass-by-value behavior resulted in many obscure bugs as programmers unwittingly modified
objects in one part of a script, expecting the changes to be seen via references elsewhere. Throughout this
book, you will see many examples in which I maintain multiple references to the same object.

Luckily, there was a way of enforcing pass-by-reference, but it meant remembering to use a clumsy
construction.

Assign by reference as follows:

$other =& $my_obj;
// $other and $my_obj point to same object

Pass by reference as follows:

 function setSchool(& $school) {
 // $school is now a reference to not a copy of passed object
 }

And return by reference as follows:

 function & getSchool() {
 // returning a reference not a copy
 return $this->school;
 }

CHAPTER 2 ■ PHP AND OBJECTS

13

Although this worked fine, it was easy to forget to add the ampersand, and it was all too easy for
bugs to creep into object-oriented code. These were particularly hard to track down, because they rarely
caused any reported errors, just plausible but broken behavior.

Coverage of syntax in general, and objects in particular, was extended in the PHP manual, and
object-oriented coding began to bubble up to the mainstream. Objects in PHP were not uncontroversial
(then, as now, no doubt), and threads like “Do I need objects?” were common flame-bait in mailing lists.
Indeed, the Zend site played host to articles that encouraged object-oriented programming side by side
with others that sounded a warning note.

Pass-by-reference issues and controversy notwithstanding, many coders just got on and peppered
their code with ampersand characters. Object-oriented PHP grew in popularity. As Zeev Suraski wrote in
an article for DevX.com (http://www.devx.com/webdev/Article/10007/0/page/1):

One of the biggest twists in PHP’s history was that despite the very limited
functionality, and despite a host of problems and limitations, object-oriented
programming in PHP thrived and became the most popular paradigm for the
growing numbers of off-the-shelf PHP applications. This trend, which was mostly
unexpected, caught PHP in a suboptimal situation. It became apparent that objects
were not behaving like objects in other OO languages, and were instead behaving like
[associative] arrays.

As noted in the previous chapter, interest in object-oriented design became obvious in sites and
articles online. PHP’s official software repository, PEAR, itself embraced object-oriented programming.
Some of the best examples of deployed object-oriented design patterns are to be found in the packages
that PEAR makes available to extend PHP’s functionality.

With hindsight, it’s easy to think of PHP’s adoption of object-oriented support as a reluctant
capitulation to an inevitable force. It’s important to remember that, although object-oriented
programming has been around since the sixties, it really gained ground in the mid-nineties. Java, the
great popularizer, was not released until 1995. A superset of C, a procedural language, C++ has been
around since 1979. After a long evolution, it arguably made the leap to the big time during the nineties.
Perl 5 was released in 1994, another revolution within a formerly procedural language that made it
possible for its users to think in objects (although some argue that Perl’s object-oriented support still
feels like something of an afterthought). For a small procedural language, PHP developed its object
support remarkably fast, showing a real responsiveness to the requirements of its users.

Change Embraced: PHP 5
PHP 5 represented an explicit endorsement of objects and object-oriented programming. That is not to
say that objects are now the only way to work with PHP (this book does not say that either, by the way).
Objects, are, however, now recognized as a powerful and important means for developing enterprise
systems, and PHP fully supports them in its core design.

Objects have moved from afterthought to language driver. Perhaps the most important change is
the default pass-by-reference behavior in place of the evils of object copying. This is only the beginning
though. Throughout this book, and particularly this part of it, we will encounter many more changes that
extend and enhance PHP’s object support, including argument hinting, private and protected methods
and properties, the static keyword, namespaces, and exceptions, among many others.

PHP remains a language that supports object-oriented development, rather than an object-oriented
language. Its support for objects, however, is now well enough developed to justify books like this one
that concentrate on design from an exclusively object-oriented point of view.

CHAPTER 2 ■ PHP AND OBJECTS

14

Into the Future
As I write this, PHP 6 is still some way off, but it is under active development. It will be built on an
entirely new generation of the Zend Engine (ZE3), and will provide built-in support for Unicode sting
handling, which will make the language better able to support internationalization. This means you will
be able to use all PHP’s string functions without worrying about whether they can work with the current
character set. In the past, developers had to use multibyte equivalents for many common functions—a
frustrating and error-prone task. As internationalization becomes more and more important, this core
feature is fast becoming essential in any serious programming language..
In some ways the future is already here. A feature that was slated for PHP 6 has now found its way into
PHP 5 (as of PHP 5.3): support for namespaces. Namespaces let you create a naming scope for classes
and functions so that you are less likely to run into duplicate names as you include libraries and expand
your system. They also rescue you from ugly but necessary naming conventions like this:

class megaquiz_util_Conf {
}

Class names like this are one way of preventing clashes between packages, but they can make for
tortuous code.

At the time of this writing, it looks like support for hinted return types is once again slated for PHP 6.
This will allow you to declare in a method or function’s declaration the object type it returns. This
commitment will then be enforced by the PHP engine. Hinted return types will further improve PHP’s
support for pattern principles (principles such as “code to an interface, not an implementation”). I hope
to revise this book to cover that feature!

Advocacy and Agnosticism: The Object Debate
Objects and object-oriented design seem to stir passions on both sides of the enthusiasm divide. Many
excellent programmers have produced excellent code for years without using objects, and PHP
continues to be a superb platform for procedural web programming.

This book naturally displays an object-oriented bias throughout, a bias that reflects my object-
infected outlook. Because this book is a celebration of objects, and an introduction to object-oriented
design, it is inevitable that the emphasis is unashamedly object oriented. Nothing in this book is
intended, however, to suggest that objects are the one true path to coding success with PHP.

As you read, it is worth bearing in mind the famous Perl motto, “There’s more than one way to do
it.” This is especially true of smaller scripts, where quickly getting a working example up and running is
more important than building a structure that will scale well into a larger system (scratch projects of this
sort are known as “spikes” in the eXtreme Programming world).

Code is a flexible medium. The trick is to know when your quick proof of concept is becoming the
root of a larger development, and to call a halt before your design decisions are made for you by sheer
weight of code. Now that you have decided to take a design-oriented approach to your growing project,
there are plenty of books that will provide examples of procedural design for many different kinds of
projects. This book offers some thoughts about designing with objects. I hope that it provides a valuable
starting point.

Summary
This short chapter placed objects in their context in the PHP language. The future for PHP is very

much bound up with object-oriented design. In the next few chapters, I take a snapshot of PHP’s current
support for object features, and introduce some design issues.

C H A P T E R 3

■ ■ ■

15

Object Basics

Objects and classes lie at the heart of this book, and since the introduction of PHP 5, they lie at the heart
of PHP too. In this chapter, I lay down the groundwork for more in-depth work with objects and design
by examining PHP’s core object-oriented features.

PHP 5 brought with it a radical advance in object-oriented support, so if you are already familiar
with PHP 4, you will probably find something new here. If you are new to object-oriented programming,
you should read this chapter carefully.

This chapter will cover

• Classes and objects: Declaring classes and instantiating objects

• Constructor methods: Automating the setup of your objects

• Primitive and class types: Why type matters

• Inheritance: Why we need inheritance and how to use it

• Visibility: Streamlining your object interfaces and protecting your methods and
properties from meddling

Classes and Objects
The first barrier to understanding object-oriented programming is the strange and wonderful
relationship between the class and the object. For many people it is this relationship that represents the
first moment of revelation, the first flash of object-oriented excitement. So let’s not skimp on the basics.

A First Class
Classes are often described in terms of objects. This is interesting, because objects are often described in
terms of classes. This circularity can make the first steps in object-oriented programming hard going.
Since classes define objects, we should begin by defining a class.

In short, a class is a code template used to generate objects. You declare a class with the class
keyword and an arbitrary class name. Class names can be any combination of numbers and letters,
although they must not begin with a number. The code associated with a class must be enclosed within
braces. Let’s combine these elements to build a class.

class ShopProduct {
 // class body
}

CHAPTER 3 ■ OBJECT BASICS

16

The ShopProduct class in the example is already a legal class, although it is not terribly useful yet. I
have done something quite significant, however. I have defined a type; that is, I have created a category
of data that I can use in my scripts. The power of this should become clearer as you work through the
chapter.

A First Object (or Two)
If a class is a template for generating objects, it follows that an object is data that has been structured
according to the template defined in a class. An object is said to be an instance of its class. It is of the
type defined by the class.

I use the ShopProduct class as a mold for generating ShopProduct objects. To do this, I need the new
operator. The new operator is used in conjunction with the name of a class, like this:

$product1 = new ShopProduct();
$product2 = new ShopProduct();

The new operator is invoked with a class name as its only operand and generates an instance of that
class; in our example, it generates a ShopProduct object.

I have used the ShopProduct class as a template to generate two ShopProduct objects. Although they
are functionally identical (that is, empty), $product1 and $product2 are different objects of the same type
generated from a single class.

If you are still confused, try this analogy. Think of a class as a cast in a machine that makes plastic
ducks. Our objects are the ducks that this machine generates. The type of thing generated is determined
by the mold from which it is pressed. The ducks look identical in every way, but they are distinct entities.
In other words, they are different instances of the same type. The ducks may even have their own serial
numbers to prove their identities. Every object that is created in a PHP script is also given its own unique
identifier (unique for the life of the object), that is, PHP reuses identifiers, even within a process. I can
demonstrate this by printing out the $product1 and $product2 objects:

var_dump($product1);
var_dump($product2);

Executing these functions produces the following output:

object(ShopProduct)#1 (0) {
}
object(ShopProduct)#2 (0) {
}

■Note In PHP 4 and PHP 5 (up to version 5.1), you can print an object directly. This casts the object to a string
containing the object’s ID. From PHP 5.2 onwards the language no longer supported this magic, and any attempt
to treat an object as a string now causes an error unless a method called __toString() is defined in the object’s
class. I look at methods later in this chapter, and I cover __toString() in Chapter 4, “Advanced Features.”

By passing our objects to var_dump(), I extract useful information including, after the hash sign,
each object’s internal identifier.

CHAPTER 3 ■ OBJECT BASICS

17

In order to make these objects more interesting, I can amend the ShopProduct class to support
special data fields called properties.

Setting Properties in a Class
Classes can define special variables called properties. A property, also known as a member variable,
holds data that can vary from object to object. So in the case of ShopProduct objects you may wish to
manipulate title and price fields, for example.

A property in a class looks similar to a standard variable except that you must precede your
declaration and assignment with a visibility keyword. This can be public, protected, or private, and it
determines the scope from which the property can be accessed.

■Note Scope refers to the function or class context in which a variable has meaning (it refers in the same way to
methods, which I will cover later in this chapter). So a variable defined in a function exists in local scope, and a
variable defined outside of the function exists in global scope. As a rule of thumb, it is not possible to access data
defined in a scope that is more local than the current. So if you define a variable inside a function, you cannot later
access it from outside that function. Objects are more permeable than this, in that some object variables can
sometimes be accessed from other contexts. Which variables can be accessed and from what context is
determined by the public, protected, and private keywords, as you shall see.

I will return to these keywords and the issue of visibility later in this chapter. For now, I will declare
some properties using the public keyword:

class ShopProduct {
 public $title = "default product";
 public $producerMainName = "main name";
 public $producerFirstName = "first name";
 public $price = 0;
}

As you can see, I set up four properties, assigning a default value to each of them. Any objects that I
instantiate from the ShopProduct class will now be prepopulated with default data. The public keyword
in each property declaration ensures that I can access the property from outside of the object context.

■Note The visibility keywords public, private, and protected were introduced in PHP 5. If you are running
PHP 4, these examples will not work for you. In PHP 4, all properties were declared with the var keyword, which is
identical in effect to using public. For the sake of backward compatibility, PHP 5 accepts var in place of public
for properties.

CHAPTER 3 ■ OBJECT BASICS

18

You can access property variables on an object-by-object basis using the characters '->' in
conjunction with an object variable and property name, like this:

$product1 = new ShopProduct();
print $product1->title;

default product

Because the properties are defined as public, you can assign values to them just as you can read
them, replacing any default value set in the class:

$product1 = new ShopProduct();
$product2 = new ShopProduct();
$product1->title="My Antonia";
$product2->title="Catch 22";

By declaring and setting the $title property in the ShopProduct class, I ensure that all ShopProduct
objects have this property when first created. This means that code that uses this class can work with
ShopProduct objects on that assumption. Because I can reset it, though, the value of $title may vary
from object to object.

■Note Code that uses a class, function, or method is often described as the class’s, function’s, or method’s
client or as client code. You will see this term frequently in the coming chapters.

In fact, PHP does not force us to declare all our properties in the class. You could add properties
dynamically to an object, like this:

$product1->arbitraryAddition = "treehouse";

However, this method of assigning properties to objects is not considered good practice in object-
oriented programming and is almost never used.

Why is it bad practice to set properties dynamically? When you create a class you define a type. You
inform the world that your class (and any object instantiated from it) consists of a particular set of fields
and functions. If your ShopProduct class defines a $title property, then any code that works with
ShopProduct objects can proceed on the assumption that a $title property will be available. There can
be no guarantees about properties that have been dynamically set, though.

My objects are still cumbersome at this stage. When I need to work with an object’s properties, I
must currently do so from outside the object. I reach in to set and get property information. Setting
multiple properties on multiple objects will soon become a chore:

$product1 = new ShopProduct();
$product1->title = "My Antonia";
$product1->producerMainName = "Cather";
$product1->producerFirstName = "Willa";
$product1->price = 5.99;

I work once again with the ShopProduct class, overriding all the default property values one by one
until I have set all product details. Now that I have set some data I can also access it:

CHAPTER 3 ■ OBJECT BASICS

19

print "author: {$product1->producerFirstName} "
 ."{$product1->producerMainName}\n";

This outputs

author: Willa Cather

There are a number of problems with this approach to setting property values. Because PHP lets you
set properties dynamically, you will not get warned if you misspell or forget a property name. For
example, I might mistakenly type the line

$product1->producerMainName = "Cather";

as

$product1->producerSecondName = "Cather";

As far as the PHP engine is concerned, this code is perfectly legal, and I would not be warned. When
I come to print the author’s name, though, I will get unexpected results.

Another problem is that my class is altogether too relaxed. I am not forced to set a title, or a price, or
producer names. Client code can be sure that these properties exist but is likely to be confronted with
default values as often as not. Ideally, I would like to encourage anyone who instantiates a ShopProduct
object to set meaningful property values.

Finally, I have to jump through hoops to do something that I will probably want to do quite often.
Printing the full author name is a tiresome process:

print "author: {$product1->producerFirstName} "
 ."{$product1->producerMainName}\n";

It would be nice to have the object handle such drudgery on my behalf.
All of these problems can be addressed by giving the ShopProduct object its own set of functions that

can be used to manipulate property data from within the object context.

Working with Methods
Just as properties allow your objects to store data, methods allow your objects to perform tasks. Methods
are special functions declared within a class. As you might expect, a method declaration resembles a
function declaration. The function keyword precedes a method name, followed by an optional list of
argument variables in parentheses. The method body is enclosed by braces:

public function myMethod($argument, $another) {
 // ...
}

Unlike functions, methods must be declared in the body of a class. They can also accept a number
of qualifiers, including a visibility keyword. Like properties, methods can be declared public, protected,
or private. By declaring a method public, you ensure that it can be invoked from outside of the current
object. If you omit the visibility keyword in your method declaration, the method will be declared public
implicitly. I will return to method modifiers later in the chapter.

CHAPTER 3 ■ OBJECT BASICS

20

■Note PHP 4 does not recognize visibility keywords for methods or properties. Adding public, protected, or
private to a method declaration will cause a fatal error. All methods in PHP 4 are implicitly public.

In most circumstances, you will invoke a method using an object variable in conjunction with ->
and the method name. You must use parentheses in your method call as you would if you were calling a
function (even if you are not passing any arguments to the method).

class ShopProduct {
 public $title = "default product";
 public $producerMainName = "main name";
 public $producerFirstName = "first name";
 public $price = 0;

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }
}

$product1 = new ShopProduct();
$product1->title = "My Antonia";
$product1->producerMainName = "Cather";
$product1->producerFirstName = "Willa";
$product1->price = 5.99;

print "author: {$product1->getProducer()}\n";

This outputs the following:

author: Willa Cather

I add the getProducer() method to the ShopProduct class. Notice that I do not include a visibility
keyword. This means that getProducer() is a public method and can be called from outside the class.

I introduce a feature in this method. The $this pseudo-variable is the mechanism by which a class
can refer to an object instance. If you find this concept hard to swallow, try replacing $this with “the
current instance.” So the statement

$this->producerFirstName

translates to

the $producerFirstName property of the current instance

CHAPTER 3 ■ OBJECT BASICS

21

So getProducer() combines and returns the $producerFirstName and $producerMainName properties,
saving me from the chore of performing this task every time I need to quote the full producer name.

This has improved the class a little. I am still stuck with a great deal of unwanted flexibility, though. I
rely on the client coder to change a ShopProduct object’s properties from their default values. This is
problematic in two ways. First, it takes five lines to properly initialize a ShopProduct object, and no coder
will thank you for that. Second, I have no way of ensuring that any of the properties are set when a
ShopProduct object is initialized. What I need is a method that is called automatically when an object is
instantiated from a class.

Creating a Constructor Method
A constructor method is invoked when an object is created. You can use it to set things up, ensuring that
essential properties are set, and any necessary preliminary work is completed. In versions previous to
PHP 5, constructor methods took on the name of the class that enclosed them. So the ShopProduct class
would use a ShopProduct() method as its constructor. Although this still works, as of PHP 5, you should
name your constructor method __construct(). Note that the method name begins with two underscore
characters. You will see this naming convention for many other special methods in PHP classes. Here I
define a constructor for the ShopProduct class:

class ShopProduct {
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price = 0;

 function __construct($title,
 $firstName, $mainName, $price) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }

}

Once again, I gather functionality into the class, saving effort and duplication in the code that uses
it. The __construct() method is invoked when an object is created using the new operator.

$product1 = new ShopProduct("My Antonia",
 "Willa", "Cather", 5.99);
print "author: {$product1->getProducer()}\n";

This produces

author: Willa Cather

CHAPTER 3 ■ OBJECT BASICS

22

Any arguments supplied are passed to the constructor. So in my example I pass the title, the first
name, the main name, and the product price to the constructor. The constructor method uses the
pseudo-variable $this to assign values to each of the object’s properties.

■Note PHP 4 does not recognize the __construct() method as a constructor. If you are using PHP 4, you can
create a constructor by declaring a method with the same name as the class that contains it. So for a class called
ShopProduct, you would declare a constructor using a method named shopProduct().

PHP still honors this naming scheme, but unless you are writing for backward compatibility, it is better to use
__construct() when you name your constructor methods.

A ShopProduct object is now easier to instantiate and safer to use. Instantiation and setup are
completed in a single statement. Any code that uses a ShopProduct object can be reasonably sure that all
its properties are initialized.

This predictability is an important aspect of object-oriented programming. You should design your
classes so that users of objects can be sure of their features. By the same token, when you use an object,
you should be sure of its type. In the next section, I examine a mechanism that you can use to enforce
object types in method declarations.

Arguments and Types
Type determines the way that data can be managed in your scripts. You use the string type to display
character data, for example, and manipulate such data with string functions. Integers are used in
mathematical expressions; Booleans are used in test expressions, and so on. These categories are known
as primitive types. On a higher level, though, a class defines a type. A ShopProduct object, therefore,
belongs to the primitive type object, but it also belongs to the ShopProduct class type. In this section, I
will look at types of both kinds in relation to class methods.

Method and function definitions do not necessarily require that an argument should be of a
particular type. This is both a curse and a blessing. The fact that an argument can be of any type offers
you flexibility. You can build methods that respond intelligently to different data types, tailoring
functionality to changing circumstances. This flexibility can also cause ambiguity to creep into code
when a method body expects an argument to hold one type but gets another.

Primitive Types
PHP is a loosely typed language. This means that there is no necessity for a variable to be declared to
hold a particular data type. The variable $number could hold the value 2 and the string "two" within the
same scope. In strongly typed languages, such as C or Java, you must declare the type of a variable before
assigning a value to it, and, of course, the value must be of the specified type.

This does not mean that PHP has no concept of type. Every value that can be assigned to a variable
has a type. You can determine the type of a variable’s value using one of PHP’s type-checking functions.
Table 3-1 lists the primitive types recognized in PHP and their corresponding test functions. Each
function accepts a variable or value and returns true if this argument is of the relevant type.

CHAPTER 3 ■ OBJECT BASICS

23

Table 3-1. Primitive Types and Checking Functions in PHP

Type Checking Function Type Description

is_bool() Boolean One of the two special values true or false

is_integer() Integer A whole number

is_double() Double A floating point number (a number with a decimal point)

is_string() String Character data

is_object() Object An object

is_array() Array An array

is_resource() Resource A handle for identifying and working with external
resources such as databases or files

is_null() Null An unassigned value

Checking the type of a variable can be particularly important when you work with method and
function arguments.

Primitive Types Matter: An Example
You need to keep a close eye on type in your code. Here’s an example of one of the many type-related
problems that you could encounter.

Imagine that you are extracting configuration settings from an XML file. The <resolvedomains> XML
element tells your application whether it should attempt to resolve IP addresses to domain names, a
useful but relatively expensive process in terms of time. Here is some sample XML:

<settings>
 <resolvedomains>false</resolvedomains>
</settings>

The string "false" is extracted by your application and passed as a flag to a method called
outputAddresses(), which displays IP address data. Here is outputAddresses():

class AddressManager {
 private $addresses = array("209.131.36.159", "74.125.19.106");

 function outputAddresses($resolve) {
 foreach ($this->addresses as $address) {
 print $address;
 if ($resolve) {
 print " (".gethostbyaddr($address).")";
 }
 print "\n";
 }
 }
}

CHAPTER 3 ■ OBJECT BASICS

24

As you can see, the outputAddresses() method loops through an array of IP addresses, printing each
one. If the $resolve argument variable itself resolves to true, the method outputs the domain name as
well as the IP address.

Let’s examine some code that might invoke this method:

$settings = simplexml_load_file("settings.xml");
$manager = new AddressManager();
$manager->outputAddresses((string)$settings->resolvedomains);

The code fragment uses the SimpleXML API (which was introduced with PHP 5) to acquire a value
for the resolvedomains element. In this example, I know that this value is the element text "false", and I
cast it to a string as the SimpleXML documentation suggests I should.

This code will not behave as you might expect. In passing the string "false" to the
outputAddresses() method, I misunderstand the implicit assumption the method makes about the
argument. The method is expecting a Boolean value (that is true or false). The string "false" will, in
fact, resolve to true in a test. This is because PHP will helpfully cast a nonempty string value to the
Boolean true for you in a test context. So

if ("false") {
 // ...
}

is equivalent to

if (true) {
 // ...
}

There are a number of approaches you might take to fix this.
You could make the outputAddresses() method more forgiving so that it recognizes a string and

applies some basic rules to convert it to a Boolean equivalent.

// class AddressManager...
 function outputAddresses($resolve) {
 if (is_string($resolve)) {
 $resolve =
 (preg_match("/false|no|off/i", $resolve))?
 false:true;
 }
 // ...
 }

You could leave the outputAddresses() method as it is and include a comment containing clear
instructions that the $resolve argument should contain a Boolean value. This approach essentially tells
the coder to read the small print or reap the consequences.

 /**
 * Outputs the list of addresses.
 * If $resolve is true then each address will be resolved
 * @param $resolve Boolean Resolve the address?
 */
 function outputAddresses($resolve) {
 // ...
 }

Finally, you could make outputAddresses() strict about the type of data it is prepared to find in the
$resolve argument.

CHAPTER 3 ■ OBJECT BASICS

25

 function outputAddresses($resolve) {
 if (! is_bool($resolve)) {
 die("outputAddress() requires a Boolean argument\n");
 }
 //...
 }

This approach forces client code to provide the correct data type in the $resolve argument.
Converting a string argument on the client’s behalf would be friendly but would probably present other
problems. In providing a conversion mechanism, you second-guess the context and intent of the client.
By enforcing the Boolean data type, on the other hand, you leave the client to decide whether to map
strings to Boolean values and which word will map to which value. The outputAddresses() method,
meanwhile, concentrates on the task it is designed to perform. This emphasis on performing a specific
task in deliberate ignorance of the wider context is an important principle in object-oriented
programming, and I will return to it frequently throughout the book.

In fact, your strategies for dealing with argument types will depend on the seriousness of any
potential bugs. PHP casts most primitive values for you depending on context. Numbers in strings are
converted to their integer or floating point equivalents when used in a mathematical expression, for
example. So your code might be naturally forgiving of type errors. If you expect one of your method
arguments to be an array, however, you may need to be more careful. Passing a nonarray value to one of
PHP’s array functions will not produce a useful result and could cause a cascade of errors in your
method.

It is likely, therefore, that you will strike a balance among testing for type, converting from one type
to another, and relying on good, clear documentation (you should provide the documentation whatever
else you decide to do).

However you address problems of this kind, you can be sure of one thing—type matters. The fact
that PHP is loosely typed makes it all the more important. You cannot rely on a compiler to prevent type-
related bugs; you must consider the potential impact of unexpected types when they find their way into
your arguments. You cannot afford to trust client coders to read your thoughts, and you should always
consider how your methods will deal with incoming garbage.

Taking the Hint: Object Types
Just as an argument variable can contain any primitive type, by default it can contain an object of any
type. This flexibility has its uses but can present problems in the context of a method definition.

Imagine a method designed to work with a ShopProduct object:

class ShopProductWriter {
 public function write($shopProduct) {
 $str = "{$shopProduct->title}: " .
 $shopProduct->getProducer() .
 " ({$shopProduct->price})\n";
 print $str;
 }
}

You can test this class like this:

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);
$writer = new ShopProductWriter();
$writer->write($product1);

This outputs

CHAPTER 3 ■ OBJECT BASICS

26

My Antonia: Willa Cather (5.99)

The ShopProductWriter class contains a single method, write(). The write() method accepts a
ShopProduct object and uses its properties and methods to construct and print a summary string. I used
the name of the argument variable, $shopProduct, as a signal that the method expects a ShopProduct
object, but I did not enforce this. That means I could be passed an unexpected object or primitive type
and be none the wiser until I begin trying to work with the $shopProduct argument. By that time, my
code may already have acted on the assumption that it has been passed a genuine ShopProduct object.

You might wonder why I didn't add the write() method directly to ShopProduct. The reason lies with areas of
responsibility. The ShopProduct class is responsible for managing product data; the ShopProductWriter is
responsible for writing it. You will begin to see why this division of labor can be useful as you read this chapter.

To address this problem, PHP 5 introduced class type hints. To add a type hint to a method
argument, you simply place a class name in front of the method argument you need to constrain. So I
can amend the write() method thus:

 public function write(ShopProduct $shopProduct) {
 // ...
 }

Now the write() method will only accept the $shopProduct argument if it contains an object of type
ShopProduct. Let’s try to call write() with a dodgy object:

class Wrong { }
$writer = new ShopProductWriter();
$writer->write(new Wrong());

Because the write() method contains a class type hint, passing it a Wrong object causes a fatal error.

PHP Catchable fatal error: Argument 1 passed to ShopProductWriter::write() must be an
instance of ShopProduct, instance of Wrong given ...

This saves me from having to test the type of the argument before I work with it. It also makes the
method signature much clearer for the client coder. She can see the requirements of the write() method
at a glance. She does not have to worry about some obscure bug arising from a type error, because the
hint is rigidly enforced.

Even though this automated type checking is a great way of preventing bugs, it is important to
understand that hints are checked at runtime. This means that a class hint will only report an error at the
moment that an unwanted object is passed to the method. If a call to write() is buried in a conditional
clause that only runs on Christmas morning, you may find yourself working the holiday if you haven’t
checked your code carefully.

Type hinting cannot be used to enforce primitives like strings and integers in your arguments. For
these, you must fall back on type checking functions such as is_int() in the body of your methods. You
can, however, enforce array arguments:

CHAPTER 3 ■ OBJECT BASICS

27

 function setArray(array $storearray) {
 $this->array = $storearray;
 }

Support for array hinting was added to the language with version 5.1. Support for null default values
in hinted arguments was another late addition. This means that you can demand either a particular type
or a null value in an argument. Here’s how:

 function setWriter(ObjectWriter $objwriter=null) {
 $this->writer = $objwriter;
 }

So far, I have discussed types and classes as if they were synonymous. There is a key difference,
however. When you define a class you also define a type, but a type can describe an entire family of
classes. The mechanism by which different classes can be grouped together under a type is called
inheritance. I discuss inheritance in the next section.

Inheritance
Inheritance is the means by which one or more classes can be derived from a base class.

A class that inherits from another is said to be a subclass of it. This relationship is often described in
terms of parents and children. A child class is derived from and inherits characteristics from the parent.
These characteristics consist of both properties and methods. The child class will typically add new
functionality to that provided by its parent (also known as a superclass); for this reason, a child class is
said to extend its parent.

Before I dive into the syntax of inheritance, I’ll examine the problems it can help you to solve.

The Inheritance Problem
Look again at the ShopProduct class. At the moment, it is nicely generic. It can handle all sorts of
products.

$product1 = new ShopProduct("My Antonia", "Willa", "Cather", 5.99);
$product2 = new ShopProduct("Exile on Coldharbour Lane",
 "The", "Alabama 3", 10.99);
print "author: ".$product1->getProducer()."\n";
print "artist: ".$product2->getProducer()."\n";

Here’s the output:

author: Willa Cather
artist: The Alabama 3

Separating the producer name into two parts works well with both books and CDs. I want to be able
to sort on “Alabama 3” and “Cather”, not on “The” and “Willa”. Laziness is an excellent design strategy,
so there is no need to worry about using ShopProduct for more than one kind of product at this stage.

If I add some new requirements to my example, however, things rapidly become more complicated.
Imagine, for example, that you need to represent data specific to books and CDs. For CDs, you must
store the total playing time; for books, the total number of pages. There could be any number of other
differences, but these will serve to illustrate the issue.

CHAPTER 3 ■ OBJECT BASICS

28

How can I extend my example to accommodate these changes? Two options immediately present
themselves. First, I could throw all the data into the ShopProduct class. Second, I could split ShopProduct
into two separate classes.

Let’s examine the first approach. Here, I combine CD- and book-related data in a single class:

class ShopProduct {
 public $numPages;
 public $playLength;
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price;

 function __construct($title, $firstName,
 $mainName, $price,
 $numPages=0, $playLength=0) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 $this->numPages = $numPages;
 $this->playLength = $playLength;
 }

 function getNumberOfPages() {
 return $this->numPages;
 }

 function getPlayLength() {
 return $this->playLength;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }
}

I have provided method access to the $numPages and $playLength properties to illustrate the
divergent forces at work here. An object instantiated from this class will include a redundant method
and, for a CD, must be instantiated using an unnecessary constructor argument: a CD will store
information and functionality relating to book pages, and a book will support play-length data. This is
probably something you could live with right now. But what would happen if I added more product
types, each with its own methods, and then added more methods for each type? Our class would become
increasingly complex and hard to manage.

So forcing fields that don’t belong together into a single class leads to bloated objects with
redundant properties and methods.

The problem doesn’t end with data, either. I run into difficulties with functionality as well. Consider
a method that summarizes a product. The sales department has requested a clear summary line for use
in invoices. They want me to include the playing time for CDs and a page count for books, so I will be
forced to provide different implementations for each type. I could try using a flag to keep track of the
object’s format. Here’s an example:

CHAPTER 3 ■ OBJECT BASICS

29

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 if ($this->type == 'book') {
 $base .= ": page count - {$this->numPages}";
 } else if ($this->type == 'cd') {
 $base .= ": playing time - {$this->playLength}";
 }
 return $base;
 }

In order to set the $type property, I could test the $numPages argument to the constructor. Still, once
again, the ShopProduct class has become more complex than necessary. As I add more differences to my
formats, or add new formats, these functional differences will become even harder to manage. Perhaps I
should try another approach to this problem.

Since ShopProduct is beginning to feel like two classes in one, I could accept this and create two
types rather than one. Here’s how I might do it:

class CdProduct {
 public $playLength;
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price;

 function __construct($title, $firstName,
 $mainName, $price,
 $playLength) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 $this->playLength = $playLength;

 }

 function getPlayLength() {
 return $this->playLength;
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 $base .= ": playing time - {$this->playLength}";
 return $base;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }
}

class BookProduct {

CHAPTER 3 ■ OBJECT BASICS

30

 public $numPages;
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price;

 function __construct($title, $firstName,
 $mainName, $price,
 $numPages) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 $this->numPages = $numPages;
 }

 function getNumberOfPages() {
 return $this->numPages;
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 $base .= ": page count - {$this->numPages}";
 return $base;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }
}

I have addressed the complexity issue, but at a cost. I can now create a getSummaryLine() method for
each format without having to test a flag. Neither class maintains fields or methods that are not relevant
to it.

The cost lies in duplication. The getProducerName() method is exactly the same in each class. Each
constructor sets a number of identical properties in the same way. This is another unpleasant odor you
should train yourself to sniff out.

If I need the getProducer() methods to behave identically for each class, any changes I make to one
implementation will need to be made for the other. Without care, the classes will soon slip out of
synchronization.

Even if I am confident that I can maintain the duplication, my worries are not over. I now have two
types rather than one.

Remember the ShopProductWriter class? Its write() method is designed to work with a single type:
ShopProduct. How can I amend this to work as before? I could remove the class type hint from the
method declaration, but then I must trust to luck that write() is passed an object of the correct type. I
could add my own type checking code to the body of the method:

class ShopProductWriter {
 public function write($shopProduct) {
 if (! ($shopProduct instanceof CdProduct) &&
 ! ($shopProduct instanceof BookProduct)) {
 die("wrong type supplied");

CHAPTER 3 ■ OBJECT BASICS

31

 }
 $str = "{$shopProduct->title}: " .
 $shopProduct->getProducer() .
 " ({$shopProduct->price})\n";
 print $str;
 }
}

Notice the instanceof operator in the example; instanceof resolves to true if the object in the left-
hand operand is of the type represented by the right-hand operand.

Once again, I have been forced to include a new layer of complexity. Not only do I have to test the
$shopProduct argument against two types in the write() method but I have to trust that each type will
continue to support the same fields and methods as the other. It was all much neater when I simply
demanded a single type because I could use class type hinting, and because I could be confident that the
ShopProduct class supported a particular interface.

The CD and book aspects of the ShopProduct class don’t work well together but can’t live apart, it
seems. I want to work with books and CDs as a single type while providing a separate implementation
for each format. I want to provide common functionality in one place to avoid duplication but allow
each format to handle some method calls differently. I need to use inheritance.

Working with Inheritance
The first step in building an inheritance tree is to find the elements of the base class that don’t fit
together or that need to be handled differently.

I know that the getPlayLength() and getNumberOfPages() methods do not belong together. I also
know that I need to create different implementations for the getSummaryLine() method. Let’s use these
differences as the basis for two derived classes:

class ShopProduct {
 public $numPages;
 public $playLength;
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price;

 function __construct($title, $firstName,
 $mainName, $price,
 $numPages=0, $playLength=0) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 $this->numPages = $numPages;
 $this->playLength = $playLength;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }

 function getSummaryLine() {

CHAPTER 3 ■ OBJECT BASICS

32

 $base = "$this->title ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 return $base;
 }
}

class CdProduct extends ShopProduct {
 function getPlayLength() {
 return $this->playLength;
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 $base .= ": playing time - {$this->playLength}";
 return $base;
 }
}

class BookProduct extends ShopProduct {
 function getNumberOfPages() {
 return $this->numPages;
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 $base .= ": page count - {$this->numPages}";
 return $base;
 }
}

To create a child class, you must use the extends keyword in the class declaration. In the example, I
created two new classes, BookProduct and CdProduct. Both extend the ShopProduct class.

Because the derived classes do not define constructors, the parent class’s constructor is
automatically invoked when they are instantiated. The child classes inherit access to all the parent’s
public and protected methods (though not to private methods or properties). This means that you can
call the getProducer() method on an object instantiated from the CdProduct class, even though
getProducer() is defined in the ShopProduct class.

$product2 = new CdProduct("Exile on Coldharbour Lane",
 "The", "Alabama 3",
 10.99, null, 60.33);
print "artist: {$product2->getProducer()}\n";

So both the child classes inherit the behavior of the common parent. You can treat a BookProduct
object as if it were a ShopProduct object. You can pass a BookProduct or CdProduct object to the
ShopProductWriter class’s write() method and all will work as expected.

Notice that both the CdProduct and BookProduct classes override the getSummaryLine() method,
providing their own implementation. Derived classes can extend but also alter the functionality of their
parents.

The super class’s implementation of this method might seem redundant, because it is overridden by
both its children. Nevertheless it provides basic functionality that new child classes might use. The
method’s presence also provides a guarantee to client code that all ShopProduct objects will provide a

CHAPTER 3 ■ OBJECT BASICS

33

getSummaryLine() method. Later on you will see how it is possible to make this promise in a base class
without providing any implementation at all. Each child ShopProduct class inherits its parent’s
properties. Both BookProduct and CdProduct access the $title property in their versions of
getSummaryLine().

Inheritance can be a difficult concept to grasp at first. By defining a class that extends another, you
ensure that an object instantiated from it is defined by the characteristics of first the child and then the
parent class. Another way of thinking about this is in terms of searching. When I invoke $product2-
>getProducer(), there is no such method to be found in the CdProduct class, and the invocation falls
through to the default implementation in ShopProduct. When I invoke $product2->getSummaryLine(), on
the other hand, the getSummaryLine() method is found in CdProduct and invoked.

The same is true of property accesses. When I access $title in the BookProduct class’s
getSummaryLine() method, the property is not found in the BookProduct class. It is acquired instead from
the parent class, from ShopProduct. The $title property applies equally to both subclasses, and
therefore, it belongs in the superclass.

A quick look at the ShopProduct constructor, however, shows that I am still managing data in the
base class that should be handled by its children. The BookProduct class should handle the $numPages
argument and property, and the CdProduct class should handle the $playLength argument and property.
To make this work, I will define constructor methods in each of the child classes.

Constructors and Inheritance
When you define a constructor in a child class, you become responsible for passing any arguments on to
the parent. If you fail to do this, you can end up with a partially constructed object.

To invoke a method in a parent class, you must first find a way of referring to the class itself: a
handle. PHP provides us with the parent keyword for this purpose.

To refer to a method in the context of a class rather than an object you use :: rather than ->. So

parent::__construct()

means “Invoke the __construct() method of the parent class.” Here I amend my example so that each
class handles only the data that is appropriate to it:

class ShopProduct {
 public $title;
 public $producerMainName;
 public $producerFirstName;
 public $price;

 function __construct($title, $firstName,
 $mainName, $price) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 }

 function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";

CHAPTER 3 ■ OBJECT BASICS

34

 $base .= "{$this->producerFirstName})";
 return $base;
 }
}

class CdProduct extends ShopProduct {
 public $playLength;

 function __construct($title, $firstName,
 $mainName, $price, $playLength) {
 parent::__construct($title, $firstName,
 $mainName, $price);
 $this->playLength = $playLength;
 }

 function getPlayLength() {
 return $this->playLength;
 }

 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 $base .= ": playing time - {$this->playLength}";
 return $base;
 }
}

class BookProduct extends ShopProduct {
 public $numPages;

 function __construct($title, $firstName,
 $mainName, $price, $numPages) {
 parent::__construct($title, $firstName,
 $mainName, $price);
 $this->numPages = $numPages;
 }

 function getNumberOfPages() {
 return $this->numPages;
 }

 function getSummaryLine() {
 $base = "$this->title ($this->producerMainName, ";
 $base .= "$this->producerFirstName)";
 $base .= ": page count - $this->numPages";
 return $base;
 }
}

Each child class invokes the constructor of its parent before setting its own properties. The base
class now knows only about its own data. Child classes are generally specializations of their parents. As a
rule of thumb, you should avoid giving parent classes any special knowledge about their children.

CHAPTER 3 ■ OBJECT BASICS

35

Note Prior to PHP 5, constructors took on the name of the enclosing class. The new unified constructors use the
name __construct(). Using the old syntax, a call to a parent constructor would tie you to that particular class:
parent::ShopProduct();

This could cause problems if the class hierarchy changed. Many bugs result from programmers changing the
immediate parent of a class but forgetting to update the constructor. Using the unified constructor, a call to the
parent constructor, parent::__construct(), invokes the immediate parent, no matter what changes are made in
the hierarchy. Of course, you still need to ensure that the correct arguments are passed to an inserted parent!

Invoking an Overridden Method
The parent keyword can be used with any method that overrides its counterpart in a parent class. When
you override a method, you may not wish to obliterate the functionality of the parent but rather extend
it. You can achieve this by calling the parent class’s method in the current object’s context. If you look
again at the getSummaryLine() method implementations, you will see that they duplicate a lot of code. It
would be better to use rather than reproduce the functionality already developed in the ShopProduct
class.

// ShopProduct class...
 function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 return $base;
 }

// BookProduct class...
 function getSummaryLine() {
 $base = parent::getSummaryLine();
 $base .= ": page count - {$this->numPages}";
 return $base;
 }

I set up the core functionality for the getSummaryLine() method in the ShopProduct base class.
Rather than reproduce this in the CdProduct and BookProduct subclasses, I simply call the parent method
before proceeding to add more data to the summary string.

Now that you have seen the basics of inheritance, I will reexamine property and method visibility in
light of the full picture.

Public, Private, and Protected: Managing Access to Your Classes
So far, I have declared all properties public, implicitly or otherwise. Public access is the default setting
for methods and for properties if you use the old var keyword in your property declaration.

Elements in your classes can be declared public, private, or protected:

• Public properties and methods can be accessed from any context.

• A private method or property can only be accessed from within the enclosing
class. Even subclasses have no access.

CHAPTER 3 ■ OBJECT BASICS

36

• A protected method or property can only be accessed from within either the
enclosing class or from a subclass. No external code is granted access.

So how is this useful to us? Visibility keywords allow you to expose only those aspects of a class that
are required by a client. This sets a clear interface for your object.

By preventing a client from accessing certain properties, access control can also help prevent bugs
in your code. Imagine, for example, that you want to allow ShopProduct objects to support a discount.
You could add a $discount property and a setDiscount() method.

// ShopProduct class
 public $discount = 0;
// ...
 function setDiscount($num) {
 $this->discount=$num;
 }

Armed with a mechanism for setting a discount, you can create a getPrice() method that takes
account of the discount that has been applied.

// ShopProduct class
 function getPrice() {
 return ($this->price - $this->discount);
 }

At this point, you have a problem. You only want to expose the adjusted price to the world, but a
client can easily bypass the getPrice() method and access the $price property:

print "The price is {$product1->price}\n";

This will print the raw price and not the discount-adjusted price you wish to present. You can put a
stop to this straight away by making the $price property private. This will prevent direct access, forcing
clients to use the getPrice() method. Any attempt from outside the ShopProduct class to access the
$price property will fail. As far as the wider world is concerned, this property has ceased to exist.

Setting properties to private can be an overzealous strategy. A private property cannot be accessed
by a child class. Imagine that our business rules state that books alone should be ineligible for discounts.
You could override the getPrice() method so that it returns the $price property, applying no discount.

// BookProduct class
 function getPrice() {
 return $this->price;
 }

Since the private $price property is declared in the ShopProduct class and not BookProduct, the
attempt to access it here will fail. The solution to this problem is to declare $price protected, thereby
granting access to descendent classes. Remember that a protected property or method cannot be
accessed from outside the class hierarchy in which it was declared. It can only be accessed from within
its originating class or from within children of the originating class.

As a general rule, err on the side of privacy. Make properties private or protected at first and relax
your restriction only as needed. Many (if not most) methods in your classes will be public, but once
again, if in doubt, lock it down. A method that provides local functionality for other methods in your
class has no relevance to your class’s users. Make it private or protected.

CHAPTER 3 ■ OBJECT BASICS

37

Accessor Methods
Even when client programmers need to work with values held by your class, it is often a good idea to
deny direct access to properties, providing methods instead that relay the needed values. Such methods
are known as accessors or getters and setters.

You have already seen one benefit afforded by accessor methods. You can use an accessor to filter a
property value according to circumstances, as was illustrated with the getPrice() method.

You can also use a setter method to enforce a property type. You have seen that class type hints can
be used to constrain method arguments, but you have no direct control over property types. Remember
the ShopProductWriter class that uses a ShopProduct object to output list data? I can develop this further
so that it writes any number of ShopProduct objects at one time:

class ShopProductWriter {
 public $products = array();

 public function addProduct(ShopProduct $shopProduct) {
 $this->products[] = $shopProduct;
 }

 public function write() {
 $str = "";
 foreach ($this->products as $shopProduct) {
 $str .= "{$shopProduct->title}: ";
 $str .= $shopProduct->getProducer();
 $str .= " ({$shopProduct->getPrice()})\n";
 }
 print $str;
 }
}

The ShopProductWriter class is now much more useful. It can hold many ShopProduct objects and
write data for them all in one go. I must trust my client coders to respect the intentions of the class,
though. Despite the fact that I have provided an addProduct() method, I have not prevented
programmers from manipulating the $products property directly. Not only could someone add the
wrong kind of object to the $products array property, but he could even overwrite the entire array and
replace it with a primitive value. I can prevent this by making the $products property private:

class ShopProductWriter {
 private $products = array();
//...

It’s now impossible for external code to damage the $products property. All access must be via the
addProduct() method, and the class type hint I use in the method declaration ensures that only
ShopProduct objects can be added to the array property.

The ShopProduct Classes
Let’s close this chapter by amending the ShopProduct class and its children to lock down access control:

class ShopProduct {
 private $title;
 private $producerMainName;
 private $producerFirstName;
 protected $price;

CHAPTER 3 ■ OBJECT BASICS

38

 private $discount = 0;

 public function __construct($title, $firstName,
 $mainName, $price) {
 $this->title = $title;
 $this->producerFirstName = $firstName;
 $this->producerMainName = $mainName;
 $this->price = $price;
 }

 public function getProducerFirstName() {
 return $this->producerFirstName;
 }

 public function getProducerMainName() {
 return $this->producerMainName;
 }

 public function setDiscount($num) {
 $this->discount=$num;
 }

 public function getDiscount() {
 return $this->discount;
 }

 public function getTitle() {
 return $this->title;
 }

 public function getPrice() {
 return ($this->price - $this->discount);
 }

 public function getProducer() {
 return "{$this->producerFirstName}".
 " {$this->producerMainName}";
 }

 public function getSummaryLine() {
 $base = "{$this->title} ({$this->producerMainName}, ";
 $base .= "{$this->producerFirstName})";
 return $base;
 }
}

class CdProduct extends ShopProduct {
 private $playLength = 0;

 public function __construct($title, $firstName,
 $mainName, $price, $playLength) {
 parent::__construct($title, $firstName,
 $mainName, $price);

CHAPTER 3 ■ OBJECT BASICS

39

 $this->playLength = $playLength;
 }

 public function getPlayLength() {
 return $this->playLength;
 }

 public function getSummaryLine() {
 $base = parent::getSummaryLine();
 $base .= ": playing time - {$this->playLength}";
 return $base;
 }

}

class BookProduct extends ShopProduct {
 private $numPages = 0;

 public function __construct($title, $firstName,
 $mainName, $price, $numPages) {
 parent::__construct($title, $firstName,
 $mainName, $price);
 $this->numPages = $numPages;
 }

 public function getNumberOfPages() {
 return $this->numPages;
 }

 public function getSummaryLine() {
 $base = parent::getSummaryLine();
 $base .= ": page count - {$this->numPages}";
 return $base;
 }

 public function getPrice() {
 return $this->price;
 }
}

There is nothing substantially new in this version of the ShopProduct family. I made all methods
explicitly public, and all properties are either private or protected. I added a number of accessor
methods to round things off.

Summary
This chapter covered a lot of ground, taking a class from an empty implementation through to a

fully featured inheritance hierarchy. You took in some design issues, particularly with regard to type and
inheritance. You saw PHP’s support for visibility and explored some of its uses. In the next chapter, I will
show you more of PHP’s object-oriented features.

C H A P T E R 4

■ ■ ■

41

Advanced Features

You have already seen how class type hinting and access control give you more control over a class’s
interface. In this chapter, I will delve deeper into PHP’s object-oriented features.

This chapter will cover

• Static methods and properties: Accessing data and functionality through classes
rather than objects

• Abstract classes and interfaces: Separating design from implementation

• Error handling: Introducing exceptions

• Final classes and methods: Limiting inheritance

• Interceptor methods: Automating delegation

• Destructor methods: Cleaning up after your objects

• Cloning objects: Making object copies

• Resolving objects to strings: Creating a summary method

• Callbacks: Adding functionality to components with anonymous functions

Static Methods and Properties
All the examples in the previous chapter worked with objects. I characterized classes as templates from
which objects are produced, and objects as active components, the things whose methods you invoke
and whose properties you access. I implied that, in object-oriented programming, the real work is done
by instances of classes. Classes, after all, are merely templates for objects.

In fact, it is not that simple. You can access both methods and properties in the context of a class
rather than that of an object. Such methods and properties are “static” and must be declared as such by
using the static keyword.

class StaticExample {
 static public $aNum = 0;
 static public function sayHello() {
 print "hello";
 }
}

CHAPTER 4 ■ ADVANCED FEATURES

42

■Note The static keyword was introduced with PHP 5. It cannot be used in PHP 4 scripts.

Static methods are functions with class scope. They cannot themselves access any normal
properties in the class, because these would belong to an object, but they can access static properties. If
you change a static property, all instances of that class are able to access the new value.

Because you access a static element via a class and not an instance, you do not need a variable that
references an object. Instead, you use the class name in conjunction with ::.

print StaticExample::$aNum;
StaticExample::sayHello();

This syntax should be familiar from the previous chapter. I used :: in conjunction with parent to
access an overridden method. Now, as then, I am accessing class rather than object data. Class code can
use the parent keyword to access a superclass without using its class name. To access a static method or
property from within the same class (rather than from a child), I would use the self keyword. self is to
classes what the $this pseudo-variable is to objects. So from outside the StaticExample class, I access
the $aNum property using its class name:

StaticExample::$aNum;

From within the StaticExample class I can use the self keyword:

class StaticExample {
 static public $aNum = 0;
 static public function sayHello() {
 self::$aNum++;
 print "hello (".self::$aNum.")\n";
 }
}

■Note Making a method call using parent is the only circumstance in which you should use a static reference
to a nonstatic method.

Unless you are accessing an overridden method, you should only ever use :: to access a method or property that
has been explicitly declared static.

In documentation, however, you will often see static syntax used to refer to a method or property. This does not
mean that the item in question is necessarily static, just that it belongs to a certain class. The write() method of
the ShopProductWriter class might be referred to as ShopProductWriter::write(), for example, even though
the write() method is not static. You will see this syntax here when that level of specificity is appropriate.

By definition, static methods are not invoked in the context of an object. For this reason, static
methods and properties are often referred to as class variables and properties.A consequence of this is
you cannot use the $this pseudo-variable inside a static method.

CHAPTER 4 ■ ADVANCED FEATURES

43

So, why would you use a static method or property? Static elements have a number of
characteristics that can be useful. First, they are available from anywhere in your script (assuming that
you have access to the class). This means you can access functionality without needing to pass an
instance of the class from object to object or, worse, storing an instance in a global variable. Second, a
static property is available to every instance of a class, so you can set values that you want to be available
to all members of a type. Finally, the fact that you don’t need an instance to access a static property or
method can save you from instantiating an object purely to get at a simple function.

To illustrate this I will build a static method for the ShopProduct class that automates the
instantiation of ShopProduct objects. Using SQLite, I might define a products table like this:

CREATE TABLE products (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT,
 firstname TEXT,
 mainname TEXT,
 title TEXT,
 price float,
 numpages int,
 playlength int,
 discount int)

Now to build a getInstance() method that accepts a row ID and PDO object, uses them to acquire a
database row, and then returns a ShopProduct object. I can add these methods to the ShopProduct class I
created in the previous chapter. As you probably know, PDO stands for PHP Data Object. The PDO class
provides a common interface to different database applications.

// ShopProduct class...
 private $id = 0;
 // ...
 public function setID($id) {
 $this->id = $id;
 }
 // ...
 public static function getInstance($id, PDO $pdo) {
$stmt = $pdo->prepare("select * from products where id=?");

 $result = $stmt->execute(array($id));

 $row = $stmt->fetch();

 if (empty($row)) { return null; }

 if ($row['type'] == "book") {
 $product = new BookProduct(
 $row['title'],
 $row['firstname'],
 $row['mainname'],
 $row['price'],
 $row['numpages']);
 } else if ($row['type'] == "cd") {
 $product = new CdProduct(
 $row['title'],
 $row['firstname'],
 $row['mainname'],
 $row['price'],

CHAPTER 4 ■ ADVANCED FEATURES

44

 $row['playlength']);
 } else {
 $product = new ShopProduct(
 $row['title'],
 $row['firstname'],
 $row['mainname'],
 $row['price']);
 }
 $product->setId($row['id']);
 $product->setDiscount($row['discount']);
 return $product;
 }
//...

As you can see, the getInstance() method returns a ShopProduct object and, based on a type flag, is
smart enough to work out the precise specialization it should instantiate. I have omitted any error
handling to keep the example compact. In a real-world version of this, for example, I would not be so
trusting as to assume that the provided PDO object was initialized to talk to the correct database. In fact, I
probably wrap the PDO with a class that would guarantee this behavior. You can read more about object-
oriented coding and databases in Chapter 13.

This method is more useful in a class context than an object context. It lets us convert raw data from
the database into an object easily without requiring that I have a ShopProduct object to start with. The
method does not use any instance properties or methods, so there is no reason why it should not be
declared static. Given a valid PDO object, I can invoke the method from anywhere in an application:

$dsn = "sqlite://home/bob/projects/products.db";
$pdo = new PDO($dsn, null, null);
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$obj = ShopProduct::getInstance(1, $pdo);

Methods like this act as “factories” in that they take raw materials (such as row data, for example, or
configuration information) and use them to produce objects. The term factory is applied to code
designed to generate object instances. You will encounter factory examples again in future chapters.

Constant Properties
Some properties should not be changed. The Answer to Life, the Universe, and Everything is 42, and you
want it to stay that way. Error and status flags will often be hard-coded into your classes. Although they
should be publicly and statically available, client code should not be able to change them.

PHP 5 allows us to define constant properties within a class. Like global constants, class constants
cannot be changed once they are set. A constant property is declared with the const keyword. Constants
are not prefixed with a dollar sign like regular properties. By convention, they are often named using
only uppercase characters, like this:

class ShopProduct {
 const AVAILABLE = 0;
 const OUT_OF_STOCK = 1;
 // ...

Constant properties can contain only primitive values. You cannot assign an object to a constant.
Like static properties, constant properties are accessed via the class and not an instance. Just as you
define a constant without a dollar sign, no leading symbol is required when you refer to one:

CHAPTER 4 ■ ADVANCED FEATURES

45

print ShopProduct::AVAILABLE;

Attempting to set a value on a constant once it has been declared will cause a parse error.
You should use constants when your property needs to be available across all instances of a class,

and when the property value needs to be fixed and unchanging.

Abstract Classes
The introduction of abstract classes was one of the major changes ushered in with PHP 5. Its inclusion in
the list of new features was another sign of PHP’s extended commitment to object-oriented design.

An abstract class cannot be instantiated. Instead it defines (and, optionally, partially implements)
the interface for any class that might extend it.

You define an abstract class with the abstract keyword. Here I redefine the ShopProductWriter class
I created in the previous chapter, this time as an abstract class.

abstract class ShopProductWriter {
 protected $products = array();

 public function addProduct(ShopProduct $shopProduct) {
 $this->products[]=$shopProduct;
 }
}

You can create methods and properties as normal, but any attempt to instantiate an abstract object
will cause an error like this:

$writer = new ShopProductWriter();
// output:
// Fatal error: Cannot instantiate abstract class
// shopproductwriter ...

In most cases, an abstract class will contain at least one abstract method. These are declared, once
again, with the abstract keyword. An abstract method cannot have an implementation. You declare it in
the normal way, but end the declaration with a semicolon rather than a method body. Here I add an
abstract write() method to the ShopProductWriter class:

abstract class ShopProductWriter {
 protected $products = array();

 public function addProduct(ShopProduct $shopProduct) {
 $this->products[]=$shopProduct;
 }

 abstract public function write();
}

In creating an abstract method, you ensure that an implementation will be available in all concrete
child classes, but you leave the details of that implementation undefined.

If I were to create a class derived from ShopProductWriter that does not implement the write()
method like this:

class ErroredWriter extends ShopProductWriter{}

I would face the following error:

CHAPTER 4 ■ ADVANCED FEATURES

46

PHP Fatal error: Class ErroredWriter contains 1 abstract method and
must therefore be declared abstract or implement the remaining methods
 (ShopProductWriter::write) in...

So any class that extends an abstract class must implement all abstract methods or itself be declared
abstract. An extending class is responsible for more than simply implementing an abstract method. In
doing so, it must reproduce the method signature. This means that the access control of the
implementing method cannot be stricter than that of the abstract method. The implementing method
should also require the same number of arguments as the abstract method, reproducing any class type
hinting.

Here are two implementations of ShopProductWriter():

class XmlProductWriter extends ShopProductWriter{
 public function write() {
 $str = '<?xml version="1.0" encoding="UTF-8"?>'."\n";
 $str .= "<products>\n";
 foreach ($this->products as $shopProduct) {
 $str .= "\t<product title=\"{$shopProduct->getTitle()}\">\n";
 $str .= "\t\t<summary>\n";
 $str .= "\t\t{$shopProduct->getSummaryLine()}\n";
 $str .= "\t\t</summary>\n";
 $str .= "\t</product>\n";
 }
 $str .= "</products>\n";
 print $str;
 }
}

class TextProductWriter extends ShopProductWriter{
 public function write() {
 $str = "PRODUCTS:\n";
 foreach ($this->products as $shopProduct) {
 $str .= $shopProduct->getSummaryLine()."\n";
 }
 print $str;
 }
}

I create two classes, each with its own implementation of the write() method. The first outputs
XML and the second outputs text. A method that requires a ShopProductWriter object will not know
which of these two classes it is receiving but can be absolutely certain that a write() method is
implemented. Note that I don’t test the type of $products before treating it as an array. This is because
this property is initialized as an empty array in the ShopProductWriter.

Abstract classes were often approximated in PHP 4 by creating methods that contain warnings or
even die() statements. This forces a derived class to implement the abstract methods or risk having
them invoked.

class AbstractClass {
 function abstractFunction() {
 die("AbstractClass::abstractFunction() is abstract\n");
 }
}

CHAPTER 4 ■ ADVANCED FEATURES

47

The problem here is that the abstract nature of the base class is only tested when an abstract
method is invoked. In PHP 5, abstract classes are tested when they are parsed, which is much safer.

Interfaces
While abstract classes let you provide some measure of implementation, interfaces are pure templates.
An interface can only define functionality; it can never implement it. An interface is declared with the
interface keyword. It can contain properties and method declarations, but not method bodies.

Here’s an interface:

interface Chargeable {
 public function getPrice();
}

As you can see, an interface looks very much like a class. Any class that incorporates this interface
commits to implementing all the methods it defines or it must be declared abstract.

A class can implement an interface using the implements keyword in its declaration. Once you have
done this, the process of implementing an interface is the same as extending an abstract class that
contains only abstract methods. Now to make the ShopProduct class implement Chargeable.

class ShopProduct implements Chargeable {
 // ...
 public function getPrice() {
 return ($this->price - $this->discount);
 }
 // ...

ShopProduct already had a getPrice() method, so why might it be useful to implement the
Chargeable interface? Once again, the answer has to do with types. An implementing class takes on the
type of the class it extends and the interface that it implements.

This means that the CdProduct class belongs to

CdProduct
ShopProduct
Chargeable

This can be exploited by client code. To know an object’s type is to know its capabilities. So the
method

 public function cdInfo(CdProduct $prod) {
 // ...
 }

knows that the $prod object has a getPlayLength() method in addition to all the methods defined in the
ShopProduct class and Chargeable interface.

Passed the same object, the method

 public function addProduct(ShopProduct $prod) {
 // ..
 }

knows that $prod supports all the methods in ShopProduct, but without further testing, it will know
nothing of the getPlayLength() method.

Once again, passed the same CdProduct object, the method

 public function addChargeableItem(Chargeable $item) {

CHAPTER 4 ■ ADVANCED FEATURES

48

 //...
 }

knows nothing at all of the ShopProduct or CdProduct types. This method is only concerned with whether
the $item argument contains a getPrice() method.

Because any class can implement an interface (in fact, a class can implement any number of
interfaces), interfaces effectively join types that are otherwise unrelated. I might define an entirely new
class that implements Chargeable:

class Shipping implements Chargeable {
 public function getPrice() {
 //...
 }
}

I can pass a Shipping object to the addChargeableItem() method just as I can pass it a ShopProduct
object.

The important thing to a client working with a Chargeable object is that it can call a getPrice()
method. Any other available methods are associated with other types, whether through the object’s own
class, a superclass, or another interface. These are irrelevant to the client.

A class can both extend a superclass and implement any number of interfaces. The extends clause
should precede the implements clause:

class Consultancy extends TimedService implements Bookable, Chargeable {
 // ...
}

Notice that the Consultancy class implements more than one interface. Multiple interfaces follow
the implements keyword in a comma-separated list.

PHP only supports inheritance from a single parent, so the extends keyword can precede a single
class name only.

Late Static Bindings: The static Keyword
Now that you’ve seen abstract classes and interfaces, it’s time to return briefly to static methods.

You saw that a static method can be used as factory, a way of generating instances of the containing
class. If you’re as lazy a coder as me, you might chafe at the duplication in an example like this:

abstract class DomainObject {
}

class User extends DomainObject {
 public static function create() {
 return new User();
 }
}

class Document extends DomainObject {
 public static function create() {
 return new Document();
 }
}

CHAPTER 4 ■ ADVANCED FEATURES

49

I create a super class named DomainObject. In a real-world project, of course, this would contain
functionality common to its extending classes. Then I create two child classes, User and Document. I
would like my concrete classes to have static create() methods.

■Note Why would I use a static factory method when a constructor performs the work of creating an object
already? In chapter 12, I’ll describe a pattern called Identity Map. An Identity Map component generates and
manages a new object only if an object with the same distinguishing characteristics is not already under
management. If the target object already exists, it is returned. A factory method like create() would make a good
client for a component of this sort.

This code works fine, but it has an annoying amount of duplication. I don’t want to have to create
boilerplate code like this for every DomainObject child class that I create. How about I push the create()
method up to the super class?

abstract class DomainObject {
 public static function create() {
 return new self();
 }
}

class User extends DomainObject {
}

class Document extends DomainObject {
}
Document::create();

Well, that looks neat. I now have common code in one place, and I’ve used self as a reference to the
class. But I have made an assumption about the self keyword. In fact, it does not act for classes exactly
the same way that $this does for objects. self does not refer to the calling context; it refers to the context
of resolution. So if I run the previous example I get this:

PHP Fatal error: Cannot instantiate abstract class DomainObject in

So self resolves to DomainObject, the place where create() is defined, and not to Document, the class
on which it was called. Until PHP 5.3 this was a serious limitation, which spawned many rather clumsy
workarounds. PHP 5.3 introduced a concept called late static bindings. The most obvious manifestation
of this feature is a new keyword: static. static is similar to self, except that it refers to the invoked
rather than the containing class. In this case it means that calling Document::create() results in a new
Document object and not a doomed attempt to instantiate a DomainObject object.

So now I can take advantage of my inheritance relationship in a static context.

abstract class DomainObject {
 public static function create() {
 return new static();
 }

CHAPTER 4 ■ ADVANCED FEATURES

50

}

class User extends DomainObject {
}

class Document extends DomainObject {
}

print_r(Document::create());

Document Object
(
)

The static keyword can be used for more than just instantiation. Like self and parent, it can be
used as an identifier for static method calls, even from a non-static context. Let’s say I want to include
the concept of a group for my DomainObjects. By default, all classes fall into category 'default', but I’d
like to be able override this for some branches of my inheritance hierarchy:

abstract class DomainObject {
 private $group;
 public function __construct() {
 $this->group = static::getGroup();
 }

 public static function create() {
 return new static();
 }

 static function getGroup() {
 return "default";
 }
}

class User extends DomainObject {
}

class Document extends DomainObject {
 static function getGroup() {
 return "document";
 }
}

class SpreadSheet extends Document {
}

print_r(User::create());
print_r(SpreadSheet::create());

I introduced a constructor to the DomainObject class. It uses the static keyword to invoke a static
method: getGroup(). DomainObject provides the default implementation, but Document overrides it. I
also created a new class SpreadSheet that extends Document. Here’s the output:

CHAPTER 4 ■ ADVANCED FEATURES

51

User Object
(
 [group:DomainObject:private] => default
)
SpreadSheet Object
(
 [group:DomainObject:private] => document
)

For the User class, not much clever needs to happen. The DomainObject constructor calls
getGroup(), and finds locally. In the case of SpreadSheet, though, the search begins at the invoked class,
SpreadSheet itself. It provides no implementation, so the getGroup() method in the Document class is
invoked. Before PHP 5.3 and late static binding, I would have been stuck with the self keyword here,
which would only look for getGroup() in the DomainObject class.

Handling Errors
Things go wrong. Files are misplaced, database servers are left uninitialized, URLs are changed, XML
files are mangled, permissions are poorly set, disk quotas are exceeded. The list goes on and on. In the
fight to anticipate every problem, a simple method can sometimes sink under the weight of its own
error-handling code.

Here is a simple Conf class that stores, retrieves, and sets data in an XML configuration file:

class Conf {
 private $file;
 private $xml;
 private $lastmatch;

 function __construct($file) {
 $this->file = $file;
 $this->xml = simplexml_load_file($file);
 }

 function write() {
 file_put_contents($this->file, $this->xml->asXML());
 }

 function get($str) {
 $matches = $this->xml->xpath("/conf/item[@name=\"$str\"]");
 if (count($matches)) {
 $this->lastmatch = $matches[0];
 return (string)$matches[0];
 }
 return null;
 }

 function set($key, $value) {
 if (! is_null($this->get($key))) {
 $this->lastmatch[0]=$value;
 return;

CHAPTER 4 ■ ADVANCED FEATURES

52

 }
 $conf = $this->xml->conf;
 $this->xml->addChild('item', $value)->addAttribute('name', $key);
 }
}

The Conf class uses the SimpleXml extension to access name value pairs. Here’s the kind of format
with which it is designed to work:

<?xml version="1.0"?>
<conf>
 <item name="user">bob</item>
 <item name="pass">newpass</item>
 <item name="host">localhost</item>
</conf>

The Conf class’s constructor accepts a file path, which it passes to simplexml_load_file(). It stores
the resulting SimpleXmlElement object in a property called $xml. The get() method uses XPath to locate
an item element with the given name attribute, returning its value. set() either changes the value of an
existing item or creates a new one. Finally, the write() method saves the new configuration data back to
the file.

Like much example code, the Conf class is highly simplified. In particular, it has no strategy for
handling nonexistent or unwriteable configurations. It is also optimistic in outlook. It assumes that the
XML document will be well-formed and contain the expected elements.

Testing for these error conditions is relatively trivial, but I must still decide how to respond to them
should they arise. You generally have two options:

First, I could end execution. This is simple but drastic. My humble class would then takes
responsibility for bringing an entire script crashing down around it. Although methods like
__construct() and write() are well placed to detect errors, they do not have the information to decide
how to handle them.

Rather than handle the error in my class, then, I could return an error flag of some kind. This could
be a Boolean or an integer value such as 0 or -1. Some classes will also set an error string or flag so that
the client code can request more information after a failure.

Many PEAR packages combine these two approaches by returning an error object (an instance of
PEAR_Error), which acts both as notification that an error has occurred and contains the error message
within it. This approach is now deprecated, but plenty of classes have not been upgraded, not least
because client code often depends upon the old behavior.

The problem here is that you pollute your return value. PHP does not enforce a unified return value.
At the time of this writing, there is no support for return class type hinting in PHP, so there is nothing to
prevent you from returning an error flag instead of the promised object or primitive. When you do this,
you have to rely on the client coder to test for the return type every time your error-prone method is
called. This can be risky. Trust no one!

When you return an error value to the calling code, there is no guarantee that the client will be any
better equipped than your method to decide how to handle the error. If this is the case then the problem
begins all over again. The client method will have to determine how to respond to the error condition,
maybe even implementing a different error reporting strategy.

Exceptions
PHP 5 introduced exceptions to PHP, a radically different way of handling error conditions. Different for
PHP, that is. You will find them hauntingly familiar if you have Java or C++ experience. Exceptions
address all of the issues that I have raised so far in this section.

CHAPTER 4 ■ ADVANCED FEATURES

53

An exception is a special object instantiated from the built-in Exception class (or from a derived
class). Objects of type Exception are designed to hold and report error information.

The Exception class constructor accepts two optional arguments, a message string and an error
code. The class provides some useful methods for analyzing error conditions. These are described in
Table 4–1.

Table 4–1. The Exception Class’s Public Methods

Method Description

getMessage() Get the message string that was passed to the constructor.

getCode() Get the code integer that was passed to the constructor.

getFile() Get the file in which the exception was generated.

getLine() Get the line number at which the exception was generated.

getPrevious() Get a nested Exception object.

getTrace() Get a multidimensional array tracing the method calls that led to the
exception, including method, class, file, and argument data.

getTraceAsString() Get a string version of the data returned by getTrace().

__toString() Called automatically when the Exception object is used in string context.
Returns a string describing the exception details.

The Exception class is fantastically useful for providing error notification and debugging

information (the getTrace() and getTraceAsString() methods are particularly helpful in this regard). In
fact, it is almost identical to the PEAR_Error class that was discussed earlier. There is much more to an
exception than the information it holds, though.

Throwing an Exception
The throw keyword is used in conjunction with an Exception object. It halts execution of the current
method and passes responsibility for handling the error back to the calling code. Here I amend the
__construct() method to use the throw statement:

 function __construct($file) {
 $this->file = $file;
 if (! file_exists($file)) {
 throw new Exception("file '$file' does not exist");
 }
 $this->xml = simplexml_load_file($file);
 }

The write() method can use a similar construct:

 function write() {
 if (! is_writeable($this->file)) {

CHAPTER 4 ■ ADVANCED FEATURES

54

 throw new Exception("file '{$this->file}' is not writeable");
 }
 file_put_contents($this->file, $this->xml->asXML());
 }

The __construct() and write() methods can now check diligently for file errors as they do their
work, but let code more fitted for the purpose decide how to respond to any errors detected.

So how does client code know how to handle an exception when thrown? When you invoke a
method that may throw an exception, you can wrap your call in a try clause. A try clause is made up of
the try keyword followed by braces. The try clause must be followed by at least one catch clause in
which you can handle any error, like this:

try {
 $conf = new Conf(dirname(__FILE__)."/conf01.xml");
 print "user: ".$conf->get('user')."\n";
 print "host: ".$conf->get('host')."\n";
 $conf->set("pass", "newpass");
 $conf->write();
} catch (Exception $e) {
 die($e->__toString());
}

As you can see, the catch clause superficially resembles a method declaration. When an exception is
thrown, the catch clause in the invoking scope is called. The Exception object is automatically passed in
as the argument variable.

Just as execution is halted within the throwing method when an exception is thrown, so it is within
the try clause—control passes directly to the catch clause.

Subclassing Exception
You can create classes that extend the Exception class as you would with any user-defined class. There
are two reasons why you might want to do this. First, you can extend the class’s functionality. Second,
the fact that a derived class defines a new class type can aid error handling in itself.

You can, in fact, define as many catch clauses as you need for a try statement. The particular catch
clause invoked will depend upon the type of the thrown exception and the class type hint in the
argument list. Here are some simple classes that extend Exception:

class XmlException extends Exception {
 private $error;

 function __construct(LibXmlError $error) {
 $shortfile = basename($error->file);
 $msg = "[{$shortfile}, line {$error->line}, col {$error->column}] ➥
{$error->message}";
 $this->error = $error;
 parent::__construct($msg, $error->code);
 }

 function getLibXmlError() {
 return $this->error;
 }
}

class FileException extends Exception { }

CHAPTER 4 ■ ADVANCED FEATURES

55

class ConfException extends Exception { }

The LibXmlError class is generated behind the scenes when SimpleXml encounters a broken XML
file. It has message and code properties, and resembles the Exception class. I take advantage of this
similarity and use the LibXmlError object in the XmlException class. The FileException and
ConfException classes do nothing more than subclass Exception. I can now use these classes in my code
and amend both __construct() and write():

// Conf class...
 function __construct($file) {
 $this->file = $file;
 if (! file_exists($file)) {
 throw new FileException("file '$file' does not exist");
 }
 $this->xml = simplexml_load_file($file, null, LIBXML_NOERROR);
 if (! is_object($this->xml)) {
 throw new XmlException(libxml_get_last_error());
 }
 print gettype($this->xml);
 $matches = $this->xml->xpath("/conf");
 if (! count($matches)) {
 throw new ConfException("could not find root element: conf");
 }
 }

 function write() {

 if (! is_writeable($this->file)) {
 throw new FileException("file '{$this->file}' is not writeable");
 }
 file_put_contents($this->file, $this->xml->asXML());
 }

__construct() throws either an XmlException, a FileException, or a ConfException, depending on
the kind of error it encounters. Note that I pass the option flag LIBXML_NOERROR to
simplexml_load_file(). This suppresses warnings, leaving me free to handle them with my XmlException
class after the fact. If I encounter a malformed XML file, I know that an error has occurred because
simplexml_load_file() won’t have returned an object. I can then access the error using
libxml_get_last_error().

The write() method throws a FileException if the $file property points to an unwriteable entity.
So, I have established that __construct() might throw one of three possible exceptions. How can I

take advantage of this? Here’s some code that instantiates a Conf() object:

class Runner {
 static function init() {
 try {
 $conf = new Conf(dirname(__FILE__)."/conf01.xml");
 print "user: ".$conf->get('user')."\n";
 print "host: ".$conf->get('host')."\n";
 $conf->set("pass", "newpass");
 $conf->write();
 } catch (FileException $e) {
 // permissions issue or non-existent file
 } catch (XmlException $e) {

CHAPTER 4 ■ ADVANCED FEATURES

56

 // broken xml
 } catch (ConfException $e) {
 // wrong kind of XML file
 } catch (Exception $e) {
 // backstop: should not be called
 }
 }
}

I provide a catch clause for each class type. The clause invoked depends on the exception type
thrown. The first to match will be executed, so remember to place the most generic type at the end and
the most specialized at the start. For example, if you were to place the catch clause for Exception ahead
of the clause for XmlException and ConfException, neither of these would ever be invoked. This is
because both of these classes belong to the Exception type, and would therefore match the first clause.

The first catch clause (FileException) is invoked if there is a problem with the configuration file (if
the file is non-existent or unwriteable). The second clause (XmlException) is invoked if an error occurs in
parsing the XML file (if an element is not closed, for example). The third clause (ConfException) is
invoked if a valid XML file does not contain the expected root conf element. The final clause (Exception)
should not be reached, because my methods only generate the three exceptions, which are explicitly
handled. It is often a good idea to have a “backstop” clause like this, in case you add new exceptions to
the code during development.

The benefit of these fine-grained catch clauses is that they allow you to apply different recovery or
failure mechanisms to different errors. For example, you may decide to end execution, log the error and
continue, or explicitly rethrow an error:

 try {
 //...
 } catch (FileException $e) {
 throw $e;
 }

Another trick you can play here is to throw a new exception that wraps the current one. This allows
you to stake a claim to the error, to add your own contextual information, while retaining the data
encapsulated by the exception you have caught. You can read more about this technique in Chapter 15.

So what happens if an exception is not caught by client code? It is implicitly rethrown, and the
client’s own calling code is given the opportunity to catch it. This process continues either until the
exception is caught or until it can no longer be thrown. At this point, a fatal error occurs. Here’s what
would happen if I did not catch one of the exceptions in my example:

PHP Fatal error: Uncaught exception 'FileException' with message
'file 'nonexistent/not_there.xml' does not exist' in ...

So when you throw an exception, you force the client to take responsibility for handling it. This is
not an abdication of responsibility. An exception should be thrown when a method has detected an error
but does not have the contextual information to be able to handle it intelligently. The write() method in
my example knows when the attempt to write will fail, and it knows why, but it does not know what to do
about it. This is as it should be. If I were to make the Conf class more knowledgeable than it currently is,
it would lose focus and become less reusable.

CHAPTER 4 ■ ADVANCED FEATURES

57

Final Classes and Methods
Inheritance allows for enormous flexibility within a class hierarchy. You can override a class or method
so that a call in a client method will achieve radically different effects according to which class instance it
has been passed. Sometimes, though, a class or method should remain fixed and unchanging. If you
have achieved the definitive functionality for your class or method, and you feel that overriding it can
only damage the ultimate perfection of your work, you may need the final keyword.

final puts a stop to inheritance. A final class cannot be subclassed. Less drastically, a final method
cannot be overridden.

Here's a final class:

final class Checkout {
 // ...
}

Here’s an attempt to subclass the Checkout class:

class IllegalCheckout extends Checkout {
 // ...
}

This produces an error:

PHP Fatal error: Class IllegalCheckout may not inherit from
final class (Checkout) in ...

I could relax matters somewhat by declaring a method in Checkout final, rather than the whole class.
The final keyword should be placed in front of any other modifiers such as protected or static, like
this:

class Checkout {
 final function totalize() {
 // calculate bill
 }
}

I can now subclass Checkout, but any attempt to override totalize() will cause a fatal error:

class IllegalCheckout extends Checkout {
 final function totalize() {
 // change bill calculation
 }
}

// Fatal error: Cannot override final method
// checkout::totalize() in ...

Good object-oriented code tends to emphasize the well-defined interface. Behind the interface,
though, implementations will often vary. Different classes or combinations of classes conform to
common interfaces but behave differently in different circumstances. By declaring a class or method
final, you limit this flexibility. There will be times when this is desirable, and you will see some of them

CHAPTER 4 ■ ADVANCED FEATURES

58

later in the book, but you should think carefully before declaring something final. Are there really no
circumstances in which overriding would be useful? You could always change your mind later on, of
course, but this might not be so easy if you are distributing a library for others to use. Use final with
care.

Working with Interceptors
PHP provides built-in interceptor methods, which can intercept messages sent to undefined methods
and properties. This is also known as overloading, but since that term means something quite different
in Java and C++, I think it is better to talk in terms of interception.

PHP 5 supports three built-in interceptor methods. Like __construct(), these are invoked for you
when the right conditions are met. Table 4–2 describes the methods.

Table 4–2. The Interceptor Methods

Method Description

__get($property) Invoked when an undefined property is accessed

__set($property, $value) Invoked when a value is assigned to an undefined property

__isset($property) Invoked when isset() is called on an undefined property

__unset($property) Invoked when unset() is called on an undefined property

__call($method, $arg_array) Invoked when an undefined method is called

The __get() and __set() methods are designed for working with properties that have not been

declared in a class (or its parents).
__get() is invoked when client code attempts to read an undeclared property. It is called

automatically with a single string argument containing the name of the property that the client is
attempting to access. Whatever you return from the __get() method will be sent back to the client as if
the target property exists with that value. Here’s a quick example:

class Person {
 function __get($property) {
 $method = "get{$property}";
 if (method_exists($this, $method)) {
 return $this->$method();
 }
 }

 function getName() {
 return "Bob";
 }

 function getAge() {
 return 44;
 }
}

CHAPTER 4 ■ ADVANCED FEATURES

59

When a client attempts to access an undefined property, the __get() method is invoked. I have
implemented __get() to take the property name and construct a new string, prepending the word “get”.
I pass this string to a function called method_exists(), which accepts an object and a method name and
tests for method existence. If the method does exist, I invoke it and pass its return value to the client. So
if the client requests a $name property:

$p = new Person();
print $p->name;

the getName() method is invoked behind the scenes.

Bob

If the method does not exist, I do nothing. The property that the user is attempting to access will
resolve to NULL.

The __isset() method works in a similar way to __get(). It is invoked after the client calls isset()
on an undefined property. Here’s how I might extend Person:

 function __isset($property) {
 $method = "get{$property}";
 return (method_exists($this, $method));
 }

Now a cautious user can test a property before working with it:

if (isset($p->name)) {
 print $p->name;
}

The __set() method is invoked when client code attempts to assign to an undefined property. It is
passed two arguments: the name of the property, and the value the client is attempting to set. You can
then decide how to work with these arguments. Here I further amend the Person class:

class Person {
 private $_name;
 private $_age;

 function __set($property, $value) {
 $method = "set{$property}";
 if (method_exists($this, $method)) {
 return $this->$method($value);
 }
 }

 function setName($name) {
 $this->_name = $name;
 if (! is_null($name)) {
 $this->_name = strtoupper($this->_name);
 }
 }

 function setAge($age) {
 $this->_age = strtoupper($age);
 }

CHAPTER 4 ■ ADVANCED FEATURES

60

}

In this example I work with “setter” methods rather than “getters.” If a user attempts to assign to an
undefined property, the __set() method is invoked with the property name and the assigned value. I test
for the existence of the appropriate method, and invoke it if it exists. In this way I can filter the assigned
value.

■Note Remember that methods and properties in PHP documentation are frequently spoken of in static terms in
order to identify them with their classes. So you might talk about the Person::$name property, even though the
property is not declared static and would in fact be accessed via an object.

So if I create a Person object and then attempt to set a property called Person::$name, the __set()
method is invoked, because this class does not define a $name property. The method is passed the string
“name” and the value that the client assigned. How the value is then used depends upon the
implementation of __set(). In this example, I construct a method name out of the property argument
combined with the string “set”. The setName() method is found and duly invoked. This transforms the
incoming value and stores it in a real property.

$p = new Person();
$p->name = "bob";
// the $_name property becomes 'BOB'

As you might expect, __unset() mirrors __set(). When unset() is called on an undefined property,
__unset() is invoked with the name of the property. You can then do what you like with the information.
This example passes null to a method resolved using the same technique as you saw used by __set().

 function __unset($property) {
 $method = "set{$property}";
 if (method_exists($this, $method)) {
 $this->$method(null);
 }
 }

The __call() method is probably the most useful of all the interceptor methods. It is invoked when
an undefined method is called by client code. __call() is invoked with the method name and an array
holding all arguments passed by the client. Any value that you return from the __call() method is
returned to the client as if it were returned by the method invoked.

The __call() method can be useful for delegation. Delegation is the mechanism by which one
object passes method invocations on to a second. It is similar to inheritance, in that a child class passes
on a method call to its parent implementation. With inheritance the relationship between child and
parent is fixed, so the ability to switch the receiving object at runtime means that delegation can be more
flexible than inheritance. An example clarify things a little. Here is a simple class for formatting
information from the Person class:

class PersonWriter {

 function writeName(Person $p) {
 print $p->getName()."\n";
 }

CHAPTER 4 ■ ADVANCED FEATURES

61

 function writeAge(Person $p) {
 print $p->getAge()."\n";
 }
}

I could, of course, subclass this to output Person data in various ways. Here is an implementation of
the Person class that uses both a PersonWriter object and the __call() method:

class Person {
 private $writer;

 function __construct(PersonWriter $writer) {
 $this->writer = $writer;
 }

 function __call($methodname, $args) {
 if (method_exists($this->writer, $methodname)) {
 return $this->writer->$methodname($this);
 }
 }

 function getName() { return "Bob"; }
 function getAge() { return 44; }
}

The Person class here demands a PersonWriter object as a constructor argument and stores it in a
property variable. In the __call() method, I use the provided $methodname argument, testing for a
method of the same name in the PersonWriter object I have stored. If I encounter such a method, I
delegate the method call to the PersonWriter object, passing my current instance to it (in the $this
pseudo-variable). So if the client makes this call to Person:

$person = new Person(new PersonWriter());
$person->writeName();

the __call() method is invoked. I find a method called writeName() in my PersonWriter object and
invoke it. This saves me from manually invoking the delegated method like this:

function writeName() {
 $this->writer->writeName($this);
}

The Person class has magically gained two new methods. Although automated delegation can save a
lot of legwork, there can be a cost in clarity. If you rely too much on delegation, you present the world
with a dynamic interface that resists reflection (the runtime examination of class facets) and is not
always clear to the client coder at first glance. This is because the logic that governs the interaction
between a delegating class and its target can be obscure—buried away in methods like __call() rather
than signaled up front by inheritance relationships or method type hints, as is the case for similar
relationships. The interceptor methods have their place, but they should be used with care, and classes
that rely on them should document this fact very clearly.

I will return to the topics of delegation and reflection later in the book.

CHAPTER 4 ■ ADVANCED FEATURES

62

Defining Destructor Methods
You have seen that the __construct() method is automatically invoked when an object is instantiated.
PHP 5 also introduced the __destruct() method. This is invoked just before an object is garbage-
collected; that is, before it is expunged from memory. You can use this method to perform any final
cleaning up that might be necessary.

Imagine, for example, a class that saves itself to a database when so ordered. I could use the
__destruct() method to ensure that an instance saves its data when it is deleted.

class Person {
 private $name;
 private $age;
 private $id;

 function __construct($name, $age) {
 $this->name = $name;
 $this->age = $age;
 }

 function setId($id) {
 $this->id = $id;
 }

 function __destruct() {
 if (! empty($this->id)) {
 // save Person data
 print "saving person\n";
 }
 }
}

The __destruct() method is invoked whenever a Person object is removed from memory. This will
happen either when you call the unset() function with the object in question or when no further
references to the object exist in the process. So if I create and destroy a Person object, you can see the
__destruct() method come into play.

$person = new Person("bob", 44);
$person->setId(343);
unset($person);
// output:
// saving person

Although tricks like this are fun, it’s worth sounding a note of caution. __call(), __destruct(), and
their colleagues are sometimes called magic methods. As you will know if you have ever read a fantasy
novel, magic is not always a good thing. Magic is arbitrary and unexpected. Magic bends the rules. Magic
incurs hidden costs.

In the case of __destruct(), for example, you can end up saddling clients with unwelcome surprises.
Think about the Person class—it performs a database write in its __destruct() method. Now imagine a
novice developer idly putting the Person class through its paces. He doesn’t spot the __destruct()
method and he sets about instantiating a set of Person objects. Passing values to the constructor, he
assigns the CEO’s secret and faintly obscene nickname to the $name property, and sets $age at 150. He
runs his test script a few times, trying out colorful name and age combinations.

The next morning, his manager asks him to step into a meeting room to explain why the database
contains insulting Person data. The moral? Do not trust magic.

CHAPTER 4 ■ ADVANCED FEATURES

63

Copying Objects with __clone()
In PHP 4, copying an object was a simple matter of assigning from one variable to another.

class CopyMe {}
$first = new CopyMe();
$second = $first;
// PHP 4: $second and $first are 2 distinct objects
// PHP 5 plus: $second and $first refer to one object

This “simple matter” was a source of many bugs, as object copies were accidentally spawned when
variables were assigned, methods were called, and objects were returned. This was made worse by the
fact that there was no way of testing two variables to see whether they referred to the same object.
Equivalence tests would tell you whether all fields were the same (==) or whether both variables were
objects (===), but not whether they pointed to the same object.

In PHP, objects are always assigned and passed around by reference. This means that when my
previous example is run with PHP 5, $first and $second contain references to the same object instead of
two copies. While this is generally what you want when working with objects, there will be occasions
when you need to get a copy of an object rather than a reference to an object.

PHP provides the clone keyword for just this purpose. clone operates on an object instance,
producing a by-value copy.

class CopyMe {}
$first = new CopyMe();
$second = clone $first;
// PHP 5 plus: $second and $first are 2 distinct objects

The issues surrounding object copying only start here. Consider the Person class that I implemented
in the previous section. A default copy of a Person object would contain the identifier (the $id property),
which in a full implementation I would use to locate the correct row in a database. If I allow this property
to be copied, a client coder can end up with two distinct objects referencing the same data source, which
is probably not what she wanted when she made her copy. An update in one object will affect the other,
and vice versa.

Luckily you can control what is copied when clone is invoked on an object. You do this by
implementing a special method called __clone() (note the leading two underscores that are
characteristic of built-in methods). __clone() is called automatically when the clone keyword is invoked
on an object.

When you implement __clone(), it is important to understand the context in which the method
runs. __clone() is run on the copied object and not the original. Here I add __clone() to yet another
version of the Person class:

class Person {
 private $name;
 private $age;
 private $id;

 function __construct($name, $age) {
 $this->name = $name;
 $this->age = $age;
 }

 function setId($id) {
 $this->id = $id;
 }

CHAPTER 4 ■ ADVANCED FEATURES

64

 function __clone() {

 $this->id = 0;
 }
}

When clone is invoked on a Person object, a new shallow copy is made, and its __clone() method is
invoked. This means that anything I do in __clone() overwrites the default copy I already made. In this
case, I ensure that the copied object’s $id property is set to zero.

$person = new Person("bob", 44);
$person->setId(343);
$person2 = clone $person;
// $person2 :
// name: bob
// age: 44
// id: 0.

A shallow copy ensures that primitive properties are copied from the old object to the new. Object
properties, though, are copied by reference, which may not be what you want or expect when cloning an
object. Say that I give the Person object an Account object property. This object holds a balance that I
want copied to the cloned object. What I don’t want, though, is for both Person objects to hold
references to the same account.

class Account {
 public $balance;
 function __construct($balance) {
 $this->balance = $balance;
 }
}

class Person {
 private $name;
 private $age;
 private $id;
 public $account;

 function __construct($name, $age, Account $account) {
 $this->name = $name;
 $this->age = $age;
 $this->account = $account;
 }

 function setId($id) {
 $this->id = $id;
 }

 function __clone() {
 $this->id = 0;
 }
}

$person = new Person("bob", 44, new Account(200));
$person->setId(343);

CHAPTER 4 ■ ADVANCED FEATURES

65

$person2 = clone $person;

// give $person some money
$person->account->balance += 10;
// $person2 sees the credit too
print $person2->account->balance;

This gives the output:

210

$person holds a reference to an Account object that I have kept publicly accessible for the sake of
brevity (as you know, I would usually restrict access to a property, providing an accessor method if
necessary). When the clone is created, it holds a reference to the same Account object that $person
references. I demonstrate this by adding to the $person object’s Account and confirming the increased
balance via $person2.

If I do not want an object property to be shared after a clone operation then it is up to me to clone it
explicitly in the __clone() method:

 function __clone() {
 $this->id = 0;
 $this->account = clone $this->account;
 }

Defining String Values for Your Objects
Another Java-inspired feature introduced by PHP 5 was the __toString() method. Before PHP 5.2, when
you printed an object, it would resolve to a string like this:

class StringThing {}
$st = new StringThing();
print $st;

Object id #1

Since PHP 5.2, this code will produce an error like this:

PHP Catchable fatal error: Object of class StringThing could not be
converted to string in ...

By implementing a __toString() method, you can control how your objects represent themselves
when printed. __toString() should be written to return a string value. The method is invoked
automatically when your object is passed to print or echo, and its return value is substituted. Here I add
a __toString() version to a minimal Person class:

class Person {
 function getName() { return "Bob"; }

CHAPTER 4 ■ ADVANCED FEATURES

66

 function getAge() { return 44; }
 function __toString() {
 $desc = $this->getName();
 $desc .= " (age ".$this->getAge().")";
 return $desc;
 }
}

Now when I print a Person object, the object will resolve to this:

$person = new Person();
print $person;

Bob (age 44)

The __toString() method is particularly useful for logging and error reporting, and for classes
whose main task is to convey information. The Exception class, for example, summarizes exception data
in its __toString() method.

Callbacks, Anonymous Functions and Closures
Although not strictly an object-oriented feature, anonymous functions are useful enough to

mention here, because may encounter them in object-oriented applications that utilize callbacks.
What’s more, there have been some pretty interesting recent developments in this area.

To kick things off, here are a couple of classes:

class Product {
 public $name;
 public $price;

 function __construct($name, $price) {
 $this->name = $name;
 $this->price = $price;
 }
}

class ProcessSale {
 private $callbacks;

 function registerCallback($callback) {
 if (! is_callable($callback)) {
 throw new Exception("callback not callable");
 }
 $this->callbacks[] = $callback;
 }

 function sale($product) {
 print "{$product->name}: processing \n";
 foreach ($this->callbacks as $callback) {
 call_user_func($callback, $product);
 }

CHAPTER 4 ■ ADVANCED FEATURES

67

 }
}

This code is designed to run my various callbacks. It consists of two classes. Product simply stores
$name and $price properties. I’ve made these public for the purposes of brevity. Remember, in the real
world you’d probably want to make your properties private or protected and provide accessor methods.
ProcessSale consists of two methods: registerCallback() accepts an unhinted scalar, tests it, and adds
it to a callback array. The test, a built-in function called is_callable(), ensures that whatever I’ve been
given can be invoked by a function such as call_user_func() or array_walk().

The sale() method accepts a Product object, outputs a message about it, and then loops through
the $callback array property. It passes each element to call_user_func() which calls the code, passing
it a reference to the product. All the following examples will work with the framework.

Why are callbacks useful? They allow you to plug functionality into a component at runtime that is
not directly related to that component's core task. By making a component callback aware, you give
others the power to extend your code in contexts you don’t yet know about.

Imagine, for example, that a future user of ProcessSale wants to create a log of sales. If the user has
access to the class she might add logging code directly to the sale() method. This isn’t always a good
idea though. If she is not the maintainer of the package, which provides ProcessSale, then her
amendments will be overwritten next time the package is upgraded. Even if she is the maintainer of the
component, adding many incidental tasks to the sale() method will begin to overwhelm its core
responsibility, and potentially make it less usable across projects. I will return to these themes in the
next section.

Luckily, though, I made ProcessSale callback-aware. Here I create a callback that simulates logging:

$logger = create_function('$product',
 'print " logging ({$product->name})\n";');

$processor = new ProcessSale();
$processor->registerCallback($logger);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

I use create_function() to build my callback. As you can see, it accepts two string arguments.
Firstly, a list of parameters, and secondly the function body. The result is often called an anonymous
function since it's not named in the manner of a standard function. Instead, it can be stored in a variable
and passed to functions and methods as a parameter. That’s just what I do, storing the function in the
$logger variable and passing it to ProcessSale::registerCallback(). Finally I create a couple of
products and pass them to the sale() method. You have already seen what happens there. The sale is
processed (in reality a simple message is printed about the product), and any callbacks are executed.
Here is the code in action:

shoes: processing
 logging (shoes)

coffee: processing
 logging (coffee)

Look again at that create_function() example. See how ugly it is? Placing code designed to be
executed inside a string is always a pain. You need to escape variables and quotation marks, and, if the
callback grows to any size, it can be very hard to read indeed. Wouldn't it be neater if there were a more

CHAPTER 4 ■ ADVANCED FEATURES

68

elegant way of creating anonymous functions? Well since PHP 5.3 there is a much better way of doing it.
You can simply declare and assign a function in one statement. Here's the previous example using the
new syntax:

$logger2 = function($product) {
 print " logging ({$product->name})\n";
};

$processor = new ProcessSale();
$processor->registerCallback($logger2);

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The only difference here lies in the creation of the anonymous variable. As you can see, it’s a lot
neater. I simply use the function keyword inline, and without a function name. Note that because this is
an inline statement, a semi-colon is required at the end of the code block. Of course if you want your
code to run on older versions of PHP, you may be stuck with create_function() for a while yet. The
output here is the same as that of the previous example.

Of course, callbacks needn’t be anonymous. You can use the name of a function, or even an object
reference and a method, as a callback. Here I do just that:

class Mailer {
 function doMail($product) {
 print " mailing ({$product->name})\n";
 }
}

$processor = new ProcessSale();
$processor->registerCallback(array(new Mailer(), "doMail"));

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

I create a class: Mailer. Its single method, doMail(), accepts a $product object, and outputs a
message about it. When I call registerCallback() I pass it an array. The first element is a $mailer object,
and the second is a string that matches the name of the method I want invoked. Remember that
registerCallback() checks its argument for callability. is_callable() is smart enough to test arrays of
this sort. A valid callback in array form should have an object as its first element, and the name of a
method as its second element. I pass that test here, and here is my output:

shoes: processing
 mailing (shoes)

coffee: processing
 mailing (coffee)

Of course you can have a method return an anonymous function. Something like this:

CHAPTER 4 ■ ADVANCED FEATURES

69

class Totalizer {
 static function warnAmount() {
 return function($product) {
 if ($product->price > 5) {
 print " reached high price: {$product->price}\n";
 }
 };
 }
}

$processor = new ProcessSale();
$processor->registerCallback(Totalizer::warnAmount());
...

Apart from the convenience of using the warnAmount() method as a factory for the anonymous
function, I have not added much of interest here. But this structure allows me to do much more than just
generate an anonymous function. It allows me to take advantage of closures. The new style anonymous
functions can reference variables declared in the anonymous functions parent scope. This is a hard
concept to grasp at times. It’s as if the anonymous function continues to remember the context in which
it was created. Imagine that I want Totalizer::warnAmount() to do two things. First of all, I’d like it to
accept an arbitrary target amount. Second, I want it to keep a tally of prices as products are sold. When
the total exceeds the target amount, the function will perform an action (in this case, as you might have
guessed, it will simply write a message.

I can make my anonymous function track variables from its wider scope with a use clause:

class Totalizer {
 static function warnAmount($amt) {
 $count=0;
 return function($product) use ($amt, &$count) {
 $count += $product->price;
 print " count: $count\n";
 if ($count > $amt) {
 print " high price reached: {$count}\n";
 }
 };
 }
}

$processor = new ProcessSale();
$processor->registerCallback(Totalizer::warnAmount(8));

$processor->sale(new Product("shoes", 6));
print "\n";
$processor->sale(new Product("coffee", 6));

The anonymous function returned by Totalizer::warnAmount() specifies two variables in its use
clause. The first is $amt. This is the argument that warnAmount() accepted. The second closure variable is
$count. $count is declared in the body of warnAmount() and set initially to zero. Notice that I prepend an
ampersand to the $count variable in the use clause. This means the variable will be accessed by reference
rather than by value in the anonymous function. In the body of the anonymous function, I increment
$count by the product's value, and then test the new total against $amt. If the target value has been
reached, I output a notification.

Here is the code in action:

CHAPTER 4 ■ ADVANCED FEATURES

70

shoes: processing
 count: 6

coffee: processing
 count: 12

 high price reached: 12

This demonstrates that the callback is keeping track of $count between invocations. Both $count
and $amt remain associated with the function because they were present to the context of its declaration,
and because they were specified in its use clause.

Summary
In this chapter, we came to grips with PHP’s advanced object-oriented features. Some of these will
become familiar as you work through the book. In particular, I will return frequently to abstract classes,
exceptions, and static methods.

In the next chapter, I take a step back from built-in object features and look at classes and functions
designed to help you work with objects.

C H A P T E R 5

■ ■ ■

71

Object Tools

As we have seen, PHP supports object-oriented programming through language constructs such as
classes and methods. The language also provides wider support through functions and classes designed
to help you work with objects.

In this chapter, We will look at some tools and techniques that you can use to organize, test, and
manipulate objects and classes.

This chapter will cover

• Packages: Organizing your code into logical categories

• .Namespaces: Since PHP 5.3 you can encapsulate your code elements in discrete
compartments .

• Include paths: Setting central accessible locations for your library code.

• Class and object functions: Functions for testing objects, classes, properties, and
methods.

• The Reflection API: A powerful suite of built-in classes that provide
unprecedented access to class information at runtime.

PHP and Packages
A package is a set of related classes, usually grouped together in some way. Packages can be used to
separate parts of a system from one another. Some programming languages formally recognize packages
and provide them with distinct namespaces. PHP has no native concept of a package, but as of PHP 5.3,
it does understand namespaces. I’ll look at this feature in the next section.

Since we will probably all have to work with older code for a while yet, I’ll go on to look at the old
way of organizing classes into package-like structures.

PHP Packages and Namespaces
Although PHP does not intrinsically support the concept of a package, developers have traditionally

used both naming schemes and the filesystem to organize their code into package-like structures. Later
on I will cover the way that you can use files and directories to organize your code. First though, I’ll look
at naming schemes, and a new, but related, feature: namespace support.

Up until PHP 5.3, developers were forced to name their files in a global context. In other words, if
you named a class ShoppingBasket, it would become instantly available across your system. This caused
two major problems. First, and most damaging, was the possibility of naming collisions. You might think

CHAPTER 5 ■ OBJECT TOOLS

72

that this is unlikely. After all, all you have to do is remember to give all your classes unique names, right?
The trouble is, we all rely increasingly on library code. This is a good thing, of course, because it
promotes code reuse. But what if your project does this:

// my.php

require_once "useful/Outputter1.php"
class Outputter {
 // output data
}

and the included file does this:

// useful/Outputter1.php
class Outputter {
 //
}

Well you can guess, right? This happens:

Fatal error: Cannot redeclare class Outputter in ../useful/Outputter1.php on line 3

Of course, as you’ll see there was a conventional workaround to this. The answer was to prepend
package names to class names, so that class names are guaranteed unique.

// my.php

require_once "useful/Outputter2.php";
class my_Outputter {
 // output data
}

// useful/Outputter2.php

class useful_Outputter {
 //
}

The problem here was that as projects got more involved, class names grew longer and longer. It
was not an enormous problem, but it resulted in issues with code readability, and made it harder to hold
classnames in your head while you worked. Many cumulative coding hours were lost to typos.

We’ll all be stuck with this convention for years to come, because most of us will be maintaining
legacy code in one form or other for a long time. For that reason, I’ll return to the old way of handling
packages later in this chapter.

Namespaces to the Rescue
Namespaces have been a wish-list feature for a long time now. The previous edition of this book
included a proposed implementation that made it into the PHP 6 development code. The developer
mailing lists have been lit up periodically by debates about the merits of the feature.

With PHP 5.3 the debates are academic. Namespaces are part of the language, and they’re here to
stay.

CHAPTER 5 ■ OBJECT TOOLS

73

So, what are they? In essence a namespace is a bucket in which you can place your classes, functions
and variables. Within a namespace you can access these items without qualification. From outside, you
must either import the namespace, or reference it, in order to access the items it contains.

Confused? An example should help. Here I rewrite the previous example using namespaces:

namespace my;
require_once "useful/Outputter3.php";

class Outputter {
 // output data
}

// useful/Outputter3.php
namespace useful;

class Outputter {
 //
}

Notice the namespace keyword. As you might expect that establishes a namespace. If you are using
this feature, then the namespace declaration must be the first statement in its file. I have created two
namespaces: my and useful. Typically, though, you’ll want to have deeper namespaces. You’ll start with
an organization or project identifier. Then you’ll want to further qualify this by package. PHP lets you
declare nested namespaces. To do this you simply use a backslash character to divide each level.

namespace com\getinstance\util;

class Debug {
 static function helloWorld() {
 print "hello from Debug\n";
 }
}

If I were to provide a code repository, I might use one of my domains: getinstance.com. I might then
use this domain name as my namespace. This is a trick that Java developers typically use for their
package names. They invert domain names so that they run from the most generic to the most specific.
Once I’ve identified my repository, I might go on to define packages. In this case I use util.

So how would I call the method? In fact it depends where you’re doing the calling from. If you are
calling the method from within the namespace, you can go ahead and call the method directly:

Debug::helloWorld();

This is known as an unqualified name. Because I’m already in the com\getinstance\util
namespace, I don’t have to prepend any kind of path to the class name. If I were accessing the class from
outside of a namespaced context I could do this:

com\getinstance\util\Debug::helloWorld();

What output would I get from the following code?

namespace main;

com\getinstance\util\Debug::helloWorld();

That’s a trick question. In fact this is my output:

CHAPTER 5 ■ OBJECT TOOLS

74

PHP Fatal error: Class 'main\com\getinstance\util\Debug' not found in .../listing5.04.php o
n line 12

That’s because I’m using a relative namespace here. PHP is looking below the namespace main for
com\getinstance\util and not finding it. Just as you can make absolute URLs and filepaths by starting
off with a separator so you can with namespaces. This version of the example fixes the previous error:

namespace main;

\com\getinstance\util\Debug::helloWorld();

That leading backslash tells PHP to begin its search at the root, and not from the current
namespace.

But aren’t namespaces supposed to help you cut down on typing? The Debug class declaration is
shorter, certainly, but those calls are just as wordy as they would have been with the old naming
convention. You can get round this with the use keyword. This allows you to alias other namespaces
within the current namespace. Here’s an example:

namespace main;
use com\getinstance\util;
util\Debug::helloWorld();

The com\getinstance\util namespace is imported and implicitly aliased to util. Notice that I didn’t
begin with a leading backslash character. The argument to use is searched from global space and not
from the current namespace. If I don’t want to reference a namespace at all, I can import the Debug class
itself:

namespace main;
use com\getinstance\util\Debug;
util\Debug::helloWorld();

But what would happen if I already had a Debug class in the main namespace? I think you can guess.
Here’s the code and some output.

namespace main;
use com\getinstance\util\Debug;
class Debug {
 static function helloWorld() {
 print "hello from main\Debug";
 }
}

Debug::helloWorld();

PHP Fatal error: Cannot declare class main\Debug because the name is already in use in .../
listing5.08.php on line 13

So I seem to have come full circle, arriving back at class name collisions. Luckily there’s an answer
for this problem. I can make my alias explicit:

namespace main;

CHAPTER 5 ■ OBJECT TOOLS

75

use com\getinstance\util\Debug as uDebug;

class Debug {
 static function helloWorld() {
 print "hello from main\Debug";
 }
}

uDebug::helloWorld();

By using the as clause to use, I am able to change the Debug alias to uDebug.

If you are writing code in a namespace and you want to access a class that resides in global (non-

namespaced) space, you can simply precede the name with a backslash. Here’s a method declared in
global space:

// global.php: no namespace

class Lister {
 public static function helloWorld() {
 print "hello from global\n";
 }
}

And here’s some namespaced code that references the class:

namespace com\getinstance\util;
require_once 'global.php';
class Lister {
 public static function helloWorld() {
 print "hello from ".__NAMESPACE__."\n";
 }
}

Lister::helloWorld(); // access local
\Lister::helloWorld(); // access global

The namespaced code declares its own Lister class. An unqualified name accesses the local version.
A name qualified with a single backslash will access a class in global space.

Here’s the output from the previous fragment.

hello from com\getinstance\util
hello from global

It’s worth showing, because it demonstrates the operation of the __NAMESPACE__ constant. This will
output the current namespace, and is useful in debugging.

You can declare more than one namespace in the same file using the syntax you have already seen.
You can also use an alternative syntax that uses braces with the namespace keyword.

namespace com\getinstance\util {
 class Debug {
 static function helloWorld() {
 print "hello from Debug\n";

CHAPTER 5 ■ OBJECT TOOLS

76

 }
 }
}

namespace main {
 \com\getinstance\util\Debug::helloWorld();
}

If you must combine multiple namespaces in the same file, then this is the recommended practice.
Usually, however, it’s considered best practice to define namespaces on a per-file basis.

One feature that the braces syntax offers is the ability to switch to global space within a file. Earlier
on I used require_once to acquire code from global space. In fact, I could have just used the alternative
namespace syntax and kept everything on file.

namespace {
 class Lister {
 //...
 }
}

namespace com\getinstance\util {
 class Lister {
 //...
 }

 Lister::helloWorld(); // access local
 \Lister::helloWorld(); // access global
}

I step into global space by opening a namespace block without specifying a name.

■Note You can’t use both the brace and line namespace syntaxes in the same file. You must choose one and
stick to it throughout.

Using the File System to Simulate Packages
Whichever version of PHP you use, you should organize classes using the file system, which affords a
kind of package structure. For example, you might create util and business directories and include class
files with the require_once() statement, like this:

require_once('business/Customer.php');
require_once('util/WebTools.php');

You could also use include_once() with the same effect. The only difference between the include()
and require() statements lies in their handling of errors. A file invoked using require() will bring down
your entire process when you meet an error. The same error encountered via a call to include() will
merely generate a warning and end execution of the included file, leaving the calling code to continue.
This makes require() and require_once() the safe choice for including library files and include() and
include_once() useful for operations like templating.

CHAPTER 5 ■ OBJECT TOOLS

77

■Note require() and require_once() are actually statements, not functions. This means that you can omit
the brackets when using them. Personally, I prefer to use brackets anyway, but if you follow suit, be prepared to
be bored by pedants eager to explain your mistake.

Figure 5–1 shows the util and business packages from the point of view of the Nautilus file
manager.

Figure 5–1. PHP packages organized using the file system

■Note require_once() accepts a path to a file and includes it evaluated in the current script. The function will
only incorporate its target if it has not already been incorporated elsewhere. This one-shot approach is particularly
useful when accessing library code, because it prevents the accidental redefinition of classes and functions. This
can happen when the same file is included by different parts of your script in a single process using a function like
require() or include().

It is customary to use require() and require_once() in preference to the similar include() and
include_once() functions. This is because a fatal error encountered in a file accessed with the require()
functions takes down the entire script. The same error encountered in a file accessed using the include()
functions will cause the execution of the included file to cease but will only generate a warning in the calling
script. The former, more drastic, behavior is safer.

There is an overhead associated with the use of require_once() when compared with require(). If you need to
squeeze every last millisecond out of your system you may like to consider using require() instead. As is so often
the case, this is a trade-off between efficiency and convenience.

CHAPTER 5 ■ OBJECT TOOLS

78

As far as PHP is concerned, there is nothing special about this structure. You are simply placing
library scripts in different directories. It does lend itself to clean organization, and can be used in parallel
with either namespaces or a naming convention.

Naming the PEAR Way
Even if you upgraded to PHP 5.3 the moment it became available, you probably won’t always get to use
namespaces. Often employers, clients, and hosting companies are slow to upgrade, often for good
reasons. And even if your project does run on the latest version of PHP, you may find that you’re working
on legacy code. If you’re given time to recode your project for namespaces, that’s great. Most of us won’t
get that luxury.

So, without using the new namespace support, how should you address the danger of name clashes?
I have already touched on one answer, which is to use the naming convention common to PEAR
packages.

■Note PEAR stands for the PHP Extension and Application Repository. It is an officially maintained archive of
packages and tools that add to PHP’s functionality. Core PEAR packages are included in the PHP distribution, and
others can be added using a simple command line tool. You can browse the PEAR packages at
http://pear.php.net. We will look at some other aspects of PEAR in Chapter 15.

PEAR uses the file system to define its packages as I have described. Every class is then named
according to its package path, with each directory name separated by an underscore character.

For example, PEAR includes a package called XML, which has an RPC subpackage. The RPC package
contains a file called Server.php. The class defined inside Server.php is not called Server as you might
expect. Sooner or later that would clash with another Server class elsewhere in the PEAR project or in a
user’s code. Instead, the class is named XML_RPC_Server. This makes for unattractive class names. It does,
however, make your code easy to read in that a class name always describes its own context.

Include Paths
When you organize your components, there are two perspectives that you must bear in mind. I have
covered the first. That is, where files and directories are placed on the filesystem. But you must also
consider the way that components access one another. I have glossed over the issue of include paths so
far in this section. When you include a file, you could refer to it using a relative path from the current
working directory or an absolute path on the file system.

The examples you have seen so far seem to suggest a relative path:

require_once('business/User.php');

But this would require that your current working directory contain the business directory, which
would soon become impractical. Using relative paths for your library inclusions, you would be more
likely to see tortuous require_once() statements:

require_once('../../projectlib/business/User.php');

You could use an absolute path, of course:

require_once('/home/john/projectlib/business/User.php');

CHAPTER 5 ■ OBJECT TOOLS

79

Neither solution is ideal. By specifying paths in this much detail, you freeze the library file in place.
In using an absolute path, you tie the library to a particular file system. Whenever you install the

project on a new server, all require statements will need changing to account for a new file path.
By using a relative path, you fix the relationship between the script’s working directory and the

library. This can make libraries hard to relocate on the filesystem without editing require() statements
and impractical to share among projects without making copies. In either case, you lose the package
idea in all the additional directories. Is it the business package, or is it the projectlib/business package?

In order to make included libraries work well in your code, you need to decouple the invoking code
from the library so that

business/User.php

can be referenced from anywhere on a system. You can do this by putting the package in one of the
directories to which the include_path directive refers. include_path is usually set in PHP’s central
configuration file, php.ini. It defines a list of directories separated by colons on Unix-like systems and
semicolons on Windows systems.

include_path = ".:/usr/local/lib/php-libraries"

If you’re using Apache you can also set include_path in the server application’s configuration file
(usually called httpd.conf) or a per-directory Apache configuration file (usually called .htaccess) with
this syntax:

php_value include_path value .:/usr/local/lib/php-libraries

■Note .htaccess files are particularly useful in web space provided by some hosting companies, which provide
very limited access to the server environment.

When you use a filesystem function such as fopen() or require() with a nonabsolute path that does
not exist relative to the current working directory, the directories in the include path are searched
automatically, beginning with the first in the list (in the case of fopen() you must include a flag in its
argument list to enable this feature). When the target file is encountered, the search ends, and the file
function completes its task.

So by placing a package directory in an include directory, you need only refer to packages and files
in your require() statements.

You may need to add a directory to the include_path so that you can maintain your own library
directory. To do this, you can, of course, edit the php.ini file (remember that, for the PHP server module,
you will need to restart your server for the changes to take effect).

If you do not have the privileges necessary to work with the php.ini file, you can set the include path
from within your scripts using the set_include_path() function. set_include_path() accepts an include
path (as it would appear in php.ini) and changes the include_path setting for the current process only.
The php.ini file probably already defines a useful value for include_path, so rather than overwrite it, you
can access it using the get_include_path() function and append your own directory. Here’s how you can
add a directory to the current include path:

set_include_path(get_include_path().":/home/john/phplib/");

If you are working on a Windows platform, you should use semicolons rather than colons to
separate each directory path.

CHAPTER 5 ■ OBJECT TOOLS

80

Autoload
In some circumstances, you may wish to organize your classes so that each sits in its own file. There is
overhead to this approach (including a file comes with a cost), but this kind of organization can be very
useful, especially if your system needs to expand to accommodate new classes at runtime (see the
Command pattern in Chapters 11 and 12 for more on this kind of strategy). In such cases, each class file
may bear a fixed relationship to the name of the class it contains, so you might define a ShopProduct class
in a file named ShopProduct.php. Using the PEAR convention, on the other hand, you would name the
file ShopProduct.php, but the class would be named according to its package address:
business_ShopProduct, perhaps.

PHP 5 introduced the __autoload() interceptor function to help automate the inclusion of class
files. __autoload() should be implemented by the coder as a function requiring a single argument. When
the PHP engine encounters an attempt to instantiate an unknown class, it invokes the __autoload()
function (if defined), passing it the class name as a string. It is up to the implementer to define a strategy
for locating and including the missing class file.

Here’s a simple __autoload() function:

function __autoload($classname) {
 include_once("$classname.php");
}

$product = new ShopProduct('The Darkening', 'Harry', 'Hunter', 12.99);

Assuming that I have not already included a file that defines a class named ShopProduct, the
instantiation of ShopProduct seems bound to fail. The PHP engine sees that I have defined an
__autoload() function and passes it the string "ShopProduct". My implementation simply attempts to
include the file ShopProduct.php. This will only work, of course, if the file is in the current working
directory or in one of my include directories. I have no easy way here of handling packages. This is
another circumstance in which the PEAR naming scheme can pay off.

function __autoload($classname) {
 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname);
 require_once("$path.php");
}

$y = new business_ShopProduct();

As you can see, the __autoload() function transforms underscores in the supplied $classname to the
DIRECTORY_SEPARATOR character (/ on Unix systems). I attempt to include the class file
(business/shopProduct.php). If the class file exists, and the class it contains has been named correctly,
the object should be instantiated without error. Of course, this does require the programmer to observe
a naming convention that forbids the underscore character in a class name except where it divides up
packages.

What about namespaces? It’s just a matter of testing for the backslash character and adding a
conversion if the character is present:

function __autoload($classname) {
 if (preg_match('/\\\\/', $classname)) {
 $path = str_replace('\\', DIRECTORY_SEPARATOR, $classname);
 } else {
 $path = str_replace('_', DIRECTORY_SEPARATOR, $classname);
 }
 require_once("$path.php");
}

CHAPTER 5 ■ OBJECT TOOLS

81

Again, I make some assumptions about the location of class files and directories and their
relationship to either namespaces or PEAR-style classnames. You might be concerned about the various
ways in which we can call a class in a namespace, given the flexibility of importing and aliasing. After all,
I could use an alias to call business\ShopProduct anything I want. Percy, for example. The good news is
that the value that is passed to __autoload is always normalized to a fully qualified name, without a
leading backslash.

Depending on the organization of your classes and files, the __autoload() function can be a useful
way of managing your library inclusions.

■Note .__autoload is a powerful tool, but it does have some limitations. In particular, you can only define it
once in a process. If you need to change your autoload function dynamically you should look at the
spl_autoload_register function (http://www.php.net/spl_autoload_register), which supports that
functionality.

The Class and Object Functions
PHP provides a powerful set of functions for testing classes and objects. Why is this useful? After all, you
probably wrote most of the classes you are using in your script.

In fact, you don’t always know at runtime about the classes that you are using. You may have
designed a system to work transparently with third-party bolt-on classes, for example. In this case, you
will typically instantiate an object given only a class name. PHP allows you to use strings to refer to
classes dynamically like this:

// Task.php

namespace tasks;

class Task {
 function doSpeak() {
 print "hello\n";
 }
}

// TaskRunner.php

$classname = "Task";

require_once("tasks/{$classname}.php");
$classname = "tasks\\$classname";
$myObj = new $classname();
$myObj->doSpeak();

This script might acquire the string I assign to $classname from a configuration file or by comparing
a web request with the contents of a directory. You can then use the string to load a class file and
instantiate an object. Notice that I’ve constructed a namespace qualification in this fragment.

CHAPTER 5 ■ OBJECT TOOLS

82

Typically, you would do something like this when you want your system to be able to run user-
created plug-ins. Before you do anything as risky as that in a real project, you would have to check that
the class exists, that it has the methods you are expecting, and so on.

Some class functions have been superseded by the more powerful Reflection API, which I will
examine later in the chapter. Their simplicity and ease of use make them a first port of call in some
instances, however.

Looking for Classes
The class_exists() function accepts a string representing the class to check for and returns a Boolean
true value if the class exists and false otherwise.

Using this function, I can make the previous fragment a little safer.

// TaskRunner.php
$classname = "Task";

$path = "tasks/{$classname}.php";
if (! file_exists($path)) {
 throw new Exception("No such file as {$path}");
}

require_once($path);
$qclassname = "tasks\\$classname";
if (! class_exists($qclassname)) {
 throw new Exception("No such class as $qclassname");
}

$myObj = new $qclassname();
$myObj->doSpeak();

Of course, you can’t be sure that the class in question does not require constructor arguments. For
that level of safety, you would have to turn to the Reflection API, covered later in the chapter.
Nevertheless, class_exists() does allow you to check that the class exists before you work with it.

■Note Remember, you should always be wary of any data provided by outside sources. Test it and treat it before
using it in any way. In the case of a file path, you should escape or remove dots and directory separators to
prevent an unscrupulous user from changing directories and including unexpected files.

You can also get an array of all classes defined in your script process using the
get_declared_classes() function.

print_r(get_declared_classes());

This will list user-defined and built-in classes. Remember that it only returns the classes declared at
the time of the function call. You may run require() or require_once() later on and thereby add to the
number of classes in your script.

CHAPTER 5 ■ OBJECT TOOLS

83

Learning About an Object or Class
As you know, you can constrain the object types of method arguments using class type hinting. Even
with this tool, we can’t always be certain of an object’s type. At the time of this writing, PHP does not
allow you to constrain class type returned from a method or function, though this is apparently due for
inclusion at a later date.

There are a number of basic tools available to check the type of an object. First of all, you can check
the class of an object with the get_class() function. This accepts any object as an argument and returns
its class name as a string.

$product = getProduct();
if (get_class($product) == 'CdProduct') {
 print "\$product is a CdProduct object\n";
}

In the fragment I acquire something from the getProduct() function. To be absolutely certain that it
is a CdProduct object, I use the get_class() method.

■Note I covered the CdProduct and BookProduct classes in Chapter 3: Object Basics

Here’s the getProduct() function:

function getProduct() {
 return new CdProduct("Exile on Coldharbour Lane",
 "The", "Alabama 3", 10.99, 60.33);
}

getProduct() simply instantiates and returns a CdProduct object. I will make good use of this
function in this section.

The get_class() function is a very specific tool. You often want a more general confirmation of a
class’s type. You may want to know that an object belongs to the ShopProduct family, but you don’t care
whether its actual class is BookProduct or CdProduct. To this end, PHP provides the instanceof operator.

■Note PHP 4 did not support instanceof. Instead, it provided the is_a() function which was deprecated in PHP
5.0 deprecated. As of PHP 5.3 it is_a() no longer deprecated.

The instanceof operator works with two operands, the object to test on the left of the keyword and
the class or interface name on the right. It resolves to true if the object is an instance of the given type.

$product = getProduct();
if ($product instanceof ShopProduct) {
 print "\$product is a ShopProduct object\n";
}

CHAPTER 5 ■ OBJECT TOOLS

84

Learning About Methods
You can acquire a list of all the methods in a class using the get_class_methods() function. This requires
a class name and returns an array containing the names of all the methods in the class.

print_r(get_class_methods('CdProduct'));

Assuming the CdProduct class exists, you might see something like this:

Array
(
 [0] => __construct
 [1] => getPlayLength
 [2] => getSummaryLine
 [3] => getProducerFirstName
 [4] => getProducerMainName
 [5] => setDiscount
 [6] => getDiscount
 [7] => getTitle
 [8] => getPrice
 [9] => getProducer
)

In the example, I pass a class name to get_class_methods() and dump the returned array with the
print_r() function. I could alternatively have passed an object to get_class_methods() with the same
result.

Unless you’re running a very early version of PHP 5, only the names of public methods will be
included in the returned list.

As you have seen, you can store a method name in a string variable and invoke it dynamically
together with an object, like this:

$product = getProduct(); // acquire an object
$method = "getTitle"; // define a method name
print $product->$method(); // invoke the method

Of course, this can be dangerous. What happens if the method does not exist? As you might expect,
your script will fail with an error. You have already encountered one way of testing that a method exists:

if (in_array($method, get_class_methods($product))) {
 print $product->$method(); // invoke the method
}

I check that the method name exists in the array returned by get_class_methods() before invoking
it. PHP provides more specialized tools for this purpose. You can check method names to some extent
with the two functions is_callable() and method_exists(). is_callable() is the more sophisticated of
the two functions. It accepts a string variable representing a function name as its first argument and
returns true if the function exists and can be called. To apply the same test to a method, you should pass
it an array in place of the function name. The array must contain an object or class name as its first
element and the method name to check as its second element. The function will return true if the
method exists in the class.

if (is_callable(array($product, $method))) {
 print $product->$method(); // invoke the method
}

CHAPTER 5 ■ OBJECT TOOLS

85

is_callable() optionally accepts a second argument, a Boolean. If you set this to true, the function
will only check the syntax of the given method or function name and not its actual existence.

The method_exists() function requires an object (or a class name) and a method name, and returns
true if the given method exists in the object’s class.

if (method_exists($product, $method)) {
 print $product->$method(); // invoke the method
}

■Caution Remember that the fact that a method exists does not mean that it will be callable. method_exists()
returns true for private and protected methods as well as for public ones.

Learning About Properties
Just as you can query the methods of a class, so can you query its fields. The get_class_vars() function
requires a class name and returns an associative array. The returned array contains field names as its
keys and field values as its values. Let’s apply this test to the CdProduct object. For the purposes of
illustration, we add a public property to the class: CdProduct::$coverUrl.

print_r(get_class_vars('CdProduct'));

Only the public property is shown:

Array
(
 [coverUrl] =>
)

Learning About Inheritance
The class functions also allow us to chart inheritance relationships. We can find the parent of a class, for
example, with get_parent_class(). This function requires either an object or a class name, and it returns
the name of the superclass, if any. If no such class exists, that is, if the class we are testing does not have
a parent, then the function returns false.

print get_parent_class('CdProduct');

As you might expect, this yields the parent class: ShopProduct.
We can also test whether a class is a descendent of another using the is_subclass_of() function.

This requires a child object and the name of the parent class. The function returns true if the second
argument is a superclass of the first argument.

$product = getProduct(); // acquire an object
if (is_subclass_of($product, 'ShopProduct')) {
 print "CdProduct is a subclass of ShopProduct\n";
}

CHAPTER 5 ■ OBJECT TOOLS

86

is_subclass_of() will tell you only about class inheritance relationships. It will not tell you that a
class implements an interface. For that, you should use the instanceof operator. Or, you can use a
function which is part of the SPL (Standard PHP Library).; class_implements() accepts a class name or
an object reference, and returns an array of interface names.

if (in_array('someInterface', class_implements($product))) {
 print "CdProduct is an interface of someInterface\n";
}

Method Invocation
You have already encountered an example in which I used a string to invoke a method dynamically:

$product = getProduct(); // acquire an object
$method = "getTitle"; // define a method name
print $product->$method(); // invoke the method

PHP also provides the call_user_func() method to achieve the same end. call_user_func() can
invoke either methods or functions. To invoke a function, it requires a single string as its first argument:

$returnVal = call_user_func("myFunction");

To invoke a method, it requires an array. The first element of this should be an object, and the
second should be the name of the method to invoke:

$returnVal = call_user_func(array($myObj, "methodName"));

You can pass any arguments that the target method or function requires in additional arguments to
call_user_func(), like this:

$product = getProduct(); // acquire an object
call_user_func(array($product, 'setDiscount'), 20);

This dynamic call is, of course, equivalent to

$product->setDiscount(20);

Because you can equally use a string directly in place of the method name, like this:

$method = "setDiscount";
$product->$method(20);

the call_user_func() method won't change your life greatly. Much more impressive, though, is the
related call_user_func_array() function. This operates in the same way as call_user_func() as far as
selecting the target method or function is concerned. Crucially, though, it accepts any arguments
required by the target method as an array.

So why is this useful? Occasionally you are given arguments in array form. Unless you know in
advance the number of arguments you are dealing with, it can be difficult to pass them on. In Chapter 4,
I looked at the interceptor methods that can be used to create delegator classes. Here’s a simple example
of a __call() method:

 function __call($method, $args) {
 if (method_exists($this->thirdpartyShop, $method)) {
 return $this->thirdpartyShop->$method();
 }
 }

CHAPTER 5 ■ OBJECT TOOLS

87

As you have seen, the __call() method is invoked when an undefined method is called by client
code. In this example, I maintain an object in a property called $thirdpartyShop. If I find a method in the
stored object that matches the $method argument, I invoke it. I blithely assume that the target method
does not require any arguments, which is where my problems begin. When I write the __call() method,
I have no way of telling how large the $args array may be from invocation to invocation. If I pass $args
directly to the delegate method, I will pass a single array argument, and not the separate arguments it
may be expecting. call_user_func_array() solves the problem perfectly:

 function __call($method, $args) {
 if (method_exists($this->thirdpartyShop, $method)) {
 return call_user_func_array(
 array($this->thirdpartyShop,
 $method), $args);
 }
 }

The Reflection API
PHP’s Reflection API is to PHP what the java.lang.reflect package is to Java. It consists of built-in
classes for analyzing properties, methods, and classes. It’s similar in some respects to existing object
functions, such as get_class_vars(), but is more flexible and provides much greater detail. It’s also
designed to work with PHP’s object-oriented features, such as access control, interfaces, and abstract
classes, in a way that the older, more limited class functions are not.

Getting Started
The Reflection API can be used to examine more than just classes. For example, the ReflectionFunction
class provides information about a given function, and ReflectionExtension yields insight about an
extension compiled into the language. Table 5–1 lists some of the classes in the API.

Between them, the classes in the Reflection API provide unprecedented runtime access to
information about the objects, functions, and extensions in your scripts.

Because of its power and reach, you should usually use the Reflection API in preference to the class
and object functions. You will soon find it indispensable as a tool for testing classes. You might want to
generate class diagrams or documentation, for example, or you might want to save object information to
a database, examining an object’s accessor (getter and setter) methods to extract field names. Building a
framework that invokes methods in module classes according to a naming scheme is another use of
Reflection.

Table 5–1. Some of the Classes in the Reflection API

Class Description

Reflection Provides a static export() method for summarizing class information

ReflectionClass Class information and tools

ReflectionMethod Class method information and tools

CHAPTER 5 ■ OBJECT TOOLS

88

Class Description

ReflectionParameter Method argument information

ReflectionProperty Class property information

ReflectionFunction Function information and tools

ReflectionExtension PHP extension information

ReflectionException An error class

Time to Roll Up Your Sleeves
You have already encountered some functions for examining the attributes of classes. These are useful
but often limited. Here’s a tool that is up to the job. ReflectionClass provides methods that reveal
information about every aspect of a given class, whether it’s a user-defined or internal class. The
constructor of ReflectionClass accepts a class name as its sole argument:

$prod_class = new ReflectionClass('CdProduct');
Reflection::export($prod_class);

Once you’ve created a ReflectionClass object, you can use the Reflection utility class to dump
information about CdProduct. Reflection has a static export() method that formats and dumps the data
managed by a Reflection object (that is, any instance of a class that implements the Reflector interface,
to be pedantic). Here’s an slightly amended extract from the output generated by a call to
Reflection::export():

Class [<user> class CdProduct extends ShopProduct] {
 @@ fullshop.php 53-73
 - Constants [0] {
 }
 - Static properties [0] {
 }
 - Static methods [0] {
 }
 - Properties [2] {
 Property [<default> private $playLength]
 Property [<default> protected $price]
 }

 - Methods [10] {
 Method [<user, overwrites ShopProduct, ctor> public method __construct] {
 @@ fullshop.php 56 - 61

 - Parameters [5] {
 Parameter #0 [<required> $title]

CHAPTER 5 ■ OBJECT TOOLS

89

 Parameter #1 [<required> $firstName]

 Parameter #2 [<required> $mainName]

 Parameter #3 [<required> $price]
 Parameter #4 [<required> $playLength]
 }
 }

 Method [<user> public method getPlayLength] {
 @@ fullshop.php 63 - 65
 }

 Method [<user, overwrites ShopProduct, prototype ShopProduct> public method
getSummaryLine] {
 @@ fullshop.php 67 - 71
 }
 }
}

As you can see, Reflection::export() provides remarkable access to information about a class.
Reflection::export() provides summary information about almost every aspect of CdProduct, including
the access control status of properties and methods, the arguments required by every method, and the
location of every method within the script document. Compare that with a more established debugging
function. The var_dump() function is a general-purpose tool for summarizing data. You must instantiate
an object before you can extract a summary, and even then, it provides nothing like the detail made
available by Reflection::export().

$cd = new CdProduct("cd1", "bob", "bobbleson", 4, 50);
var_dump($cd);

Here’s the output:

object(CdProduct)#1 (6) {
 ["playLength:private"]=>
 int(50)
 ["title:private"]=>
 string(3) "cd1"
 ["producerMainName:private"]=>
 string(9) "bobbleson"
 ["producerFirstName:private"]=>
 string(3) "bob"
 ["price:protected"]=>
 int(4)
 ["discount:private"]=>
 int(0)
}

var_dump() and its cousin print_r() are fantastically convenient tools for exposing the data in your
scripts. For classes and functions, the Reflection API takes things to a whole new level, though.

CHAPTER 5 ■ OBJECT TOOLS

90

Examining a Class
The Reflection ::export() method can provide a great deal of useful information for debugging, but we
can use the API in more specialized ways. Let’s work directly with the Reflection classes.

You’ve already seen how to instantiate a ReflectionClass object:

$prod_class = new ReflectionClass('CdProduct');

Next, I will use the ReflectionClass object to investigate CdProduct within a script. What kind of
class is it? Can an instance be created? Here’s a function to answer these questions:

function classData(ReflectionClass $class) {
 $details = "";
 $name = $class->getName();
 if ($class->isUserDefined()) {
 $details .= "$name is user defined\n";
 }
 if ($class->isInternal()) {
 $details .= "$name is built-in\n";
 }
 if ($class->isInterface()) {
 $details .= "$name is interface\n";
 }
 if ($class->isAbstract()) {
 $details .= "$name is an abstract class\n";
 }
 if ($class->isFinal()) {
 $details .= "$name is a final class\n";
 }
 if ($class->isInstantiable()) {
 $details .= "$name can be instantiated\n";
 } else {
 $details .= "$name can not be instantiated\n";
 }
 return $details;
}

$prod_class = new ReflectionClass('CdProduct');
print classData($prod_class);

I create a ReflectionClass object, assigning it to a variable called $prod_class by passing the
CdProduct class name to ReflectionClass’s constructor. $prod_class is then passed to a function called
classData() that demonstrates some of the methods that can be used to query a class.

• The methods should be self-explanatory, but here’s a brief description of each
one: ReflectionClass::getName() returns the name of the class being examined.

• The ReflectionClass::isUserDefined() method returns true if the class has been
declared in PHP code, and ReflectionClass::isInternal() yields true if the class
is built-in.

• You can test whether a class is abstract with ReflectionClass::isAbstract() and
whether it’s an interface with ReflectionClass::isInterface().

• If you want to get an instance of the class, you can test the feasibility of that with
ReflectionClass::isInstantiable().

CHAPTER 5 ■ OBJECT TOOLS

91

You can even examine a user-defined class’s source code. The ReflectionClass object provides
access to its class’s file name and to the start and finish lines of the class in the file.

Here’s a quick-and-dirty method that uses ReflectionClass to access the source of a class:

class ReflectionUtil {
 static function getClassSource(ReflectionClass $class) {
 $path = $class->getFileName();
 $lines = @file($path);
 $from = $class->getStartLine();
 $to = $class->getEndLine();
 $len = $to-$from+1;
 return implode(array_slice($lines, $from-1, $len));
 }
}

print ReflectionUtil::getClassSource(
 new ReflectionClass('CdProduct'));

ReflectionUtil is a simple class with a single static method, ReflectionUtil::
getClassSource(). That method takes a ReflectionClass object as its only argument and returns the
referenced class’s source code. ReflectionClass::getFileName() provides the path to the class’s file as
an absolute path, so the code should be able to go right ahead and open it. file() obtains an array of all
the lines in the file. ReflectionClass::getStartLine() provides the class’s start line;
ReflectionClass::getEndLine() finds the final line. From there, it’s simply a matter of using
array_slice() to extract the lines of interest.

To keep things brief, this code omits error handling. In a real-world application, you’d want to check
arguments and result codes.

Examining Methods
Just as ReflectionClass is used to examine a class, a ReflectionMethod object examines a method.

You can acquire a ReflectionMethod in two ways: you can get an array of ReflectionMethod objects
from ReflectionClass::getMethods(), or if you need to work with a specific method,
ReflectionClass::getMethod() accepts a method name and returns the relevant ReflectionMethod
object.

Here, we use ReflectionClass::getMethods() to put the ReflectionMethod class through its paces:

$prod_class = new ReflectionClass('CdProduct');
$methods = $prod_class->getMethods();

foreach ($methods as $method) {
 print methodData($method);
 print "\n----\n";
}

function methodData(ReflectionMethod $method) {
 $details = "";
 $name = $method->getName();
 if ($method->isUserDefined()) {
 $details .= "$name is user defined\n";
 }
 if ($method->isInternal()) {
 $details .= "$name is built-in\n";

CHAPTER 5 ■ OBJECT TOOLS

92

 }
 if ($method->isAbstract()) {
 $details .= "$name is abstract\n";
 }
 if ($method->isPublic()) {
 $details .= "$name is public\n";
 }
 if ($method->isProtected()) {
 $details .= "$name is protected\n";
 }
 if ($method->isPrivate()) {
 $details .= "$name is private\n";
 }
 if ($method->isStatic()) {
 $details .= "$name is static\n";
 }
 if ($method->isFinal()) {
 $details .= "$name is final\n";
 }
 if ($method->isConstructor()) {
 $details .= "$name is the constructor\n";
 }
 if ($method->returnsReference()) {
 $details .= "$name returns a reference (as opposed to a value)\n";
 }
 return $details;
}

The code uses ReflectionClass::getMethods() to get an array of ReflectionMethod objects and then
loops through the array, passing each object to methodData().

The names of the methods used in methodData() reflect their intent: the code checks whether the
method is user-defined, built-in, abstract, public, protected, static, or final. You can also check whether
the method is the constructor for its class and whether or not it returns a reference.

There’s one caveat: ReflectionMethod::returnsReference() doesn’t return true if the tested method
simply returns an object, even though objects are passed and assigned by reference in PHP 5. Instead,
ReflectionMethod::returnsReference() returns true only if the method in question has been explicitly
declared to return a reference (by placing an ampersand character in front of the method name).

As you might expect, you can access a method’s source code using a technique similar to the one
used previously with ReflectionClass:

class ReflectionUtil {
 static function getMethodSource(ReflectionMethod $method) {
 $path = $method->getFileName();
 $lines = @file($path);
 $from = $method->getStartLine();
 $to = $method->getEndLine();
 $len = $to-$from+1;
 return implode(array_slice($lines, $from-1, $len));
 }
}

$class = new ReflectionClass('CdProduct');
$method = $class->getMethod('getSummaryLine');
print ReflectionUtil::getMethodSource($method);

CHAPTER 5 ■ OBJECT TOOLS

93

Because ReflectionMethod provides us with getFileName(), getStartLine(), and
getEndLine() methods, it’s a simple matter to extract the method’s source code.

Examining Method Arguments
Now that method signatures can constrain the types of object arguments, the ability to examine the
arguments declared in a method signature becomes immensely useful. The Reflection API provides the
ReflectionParameter class just for this purpose. To get a ReflectionParameter object, you need the help
of a ReflectionMethod object. The ReflectionMethod::getParameters() method returns an array of
ReflectionParameter objects.

ReflectionParameter can tell you the name of an argument, whether the variable is passed by
reference (that is, with a preceding ampersand in the method declaration), and it can also tell you the
class required by argument hinting and whether the method will accept a null value for the argument.

Here are some of ReflectionParameter’s methods in action:

$prod_class = new ReflectionClass('CdProduct');
$method = $prod_class->getMethod("__construct");
$params = $method->getParameters();

foreach ($params as $param) {
 print argData($param)."\n";
}

function argData(ReflectionParameter $arg) {
 $details = "";
 $declaringclass = $arg->getDeclaringClass();
 $name = $arg->getName();
 $class = $arg->getClass();
 $position = $arg->getPosition();
 $details .= "\$$name has position $position\n";
 if (! empty($class)) {
 $classname = $class->getName();
 $details .= "\$$name must be a $classname object\n";
 }

 if ($arg->isPassedByReference()) {
 $details .= "\$$name is passed by reference\n";
 }

 if ($arg->isDefaultValueAvailable()) {
 $def = $arg->getDefaultValue();
 $details .= "\$$name has default: $def\n";
 }

 return $details;
}

Using the ReflectionClass::getMethod() method, the code acquires a ReflectionMethod object. It
then uses ReflectionMethod::getParameters() to get an array of ReflectionParameter objects. The
argData() function uses the ReflectionParameter object it was passed to acquire information about the
argument.

First, it gets the argument’s variable name with ReflectionParameter::getName(). The
ReflectionParameter::getClass() method returns a ReflectionClass object if a hint’s been provided.

CHAPTER 5 ■ OBJECT TOOLS

94

The code checks whether the argument is a reference with isPassedByReference(), and finally looks
for the availability of a default value, which it then adds to the return string.

Using the Reflection API
With the basics of the Reflection API under your belt, you can now put the API to work.

Imagine that you’re creating a class that calls Module objects dynamically. That is, it can accept plug-
ins written by third parties that can be slotted into the application without the need for any hard coding.
To achieve this, you might define an execute() method in the Module interface or abstract base class,
forcing all child classes to define an implementation. You could allow the users of your system to list
Module classes in an external XML configuration file. Your system can use this information to aggregate a
number of Module objects before calling execute() on each one.

What happens, however, if each Module requires different information to do its job? In that case, the
XML file can provide property keys and values for each Module, and the creator of each Module can
provide setter methods for each property name. Given that foundation, it’s up to your code to ensure
that the correct setter method is called for the correct property name.

Here’s some groundwork for the Module interface and a couple of implementing classes:

class Person {
 public $name;
 function __construct($name) {
 $this->name = $name;
 }
}

interface Module {
 function execute();
}

class FtpModule implements Module {
 function setHost($host) {
 print "FtpModule::setHost(): $host\n";
 }

 function setUser($user) {
 print "FtpModule::setUser(): $user\n";
 }

 function execute() {
 // do things
 }
}

class PersonModule implements Module {
 function setPerson(Person $person) {
 print "PersonModule::setPerson(): {$person->name}\n";
 }

 function execute() {
 // do things
 }
}

CHAPTER 5 ■ OBJECT TOOLS

95

Here, PersonModule and FtpModule both provide empty implementations of the execute() method.
Each class also implements setter methods that do nothing but report that they were invoked. The
system lays down the convention that all setter methods must expect a single argument: either a string
or an object that can be instantiated with a single string argument. The PersonModule::setPerson()
method expects a Person object, so I include a Person class in my example.

To work with PersonModule and FtpModule, the next step is to create a ModuleRunner class. It will use a
multidimensional array indexed by module name to represent configuration information provided in
the XML file. Here’s that code:

class ModuleRunner {
 private $configData
 = array(
 "PersonModule" => array('person'=>'bob'),
 "FtpModule" => array('host'
 =>'example.com',
 'user' =>'anon')
);
 private $modules = array();
 // ...
}

The ModuleRunner::$configData property contains references to the two Module classes. For each
module element, the code maintains a subarray containing a set of properties. ModuleRunner’s init()
method is responsible for creating the correct Module objects, as shown here:

class ModuleRunner {
 // ...

 function init() {
 $interface = new ReflectionClass('Module');
 foreach ($this->configData as $modulename => $params) {
 $module_class = new ReflectionClass($modulename);
 if (! $module_class->isSubclassOf($interface)) {
 throw new Exception("unknown module type: $modulename");
 }
 $module = $module_class->newInstance();
 foreach ($module_class->getMethods() as $method) {
 $this->handleMethod($module, $method, $params);
 // we cover handleMethod() in a future listing!
 }
 array_push($this->modules, $module);
 }
 }

 //...
}

$test = new ModuleRunner();
$test->init();

The init() method loops through the ModuleRunner::$configData array, and for each module
element, it attempts to create a ReflectionClass object. An exception is generated when
ReflectionClass’s constructor is invoked with the name of a nonexistent class, so in a real-world
context, I would include more error handling here. I use the ReflectionClass::isSubclassOf() method
to ensure that the module class belongs to the Module type.

CHAPTER 5 ■ OBJECT TOOLS

96

Before you can invoke the execute() method of each Module, an instance has to be created. That’s
the purpose of method::ReflectionClass::newInstance(). That method accepts any number of
arguments, which it passes on to the relevant class’s constructor method. If all’s well, it returns an
instance of the class (for production code, be sure to code defensively: check that the constructor
method for each Module object doesn’t require arguments before creating an instance).

ReflectionClass::getMethods() returns an array of all ReflectionMethod objects available for the
class. For each element in the array, the code invokes the ModuleRunner::handleMethod() method; passes
it a Module instance, the ReflectionMethod object, and an array of properties to associate with the Module.
handleMethod() verifies; and invokes the Module object’s setter methods.

class ModuleRunner {
 // ...
 function handleMethod(Module $module, ReflectionMethod $method, $params) {
 $name = $method->getName();
 $args = $method->getParameters();

 if (count($args) != 1 ||
 substr($name, 0, 3) != "set") {
 return false;
 }

 $property = strtolower(substr($name, 3));
 if (! isset($params[$property])) {
 return false;
 }

 $arg_class = $args[0]->getClass();
 if (empty($arg_class)) {
 $method->invoke($module, $params[$property]);
 } else {
 $method->invoke($module,
 $arg_class->newInstance($params[$property]));
 }
 }
}

handleMethod() first checks that the method is a valid setter. In the code, a valid setter method must
be named setXXXX() and must declare one and only one argument.

Assuming that the argument checks out, the code then extracts a property name from the method
name by removing set from the beginning of the method name and converting the resulting substring to
lowercase characters. That string is used to test the $params array argument. This array contains the
user-supplied properties that are to be associated with the Module object. If the $params array doesn’t
contain the property, the code gives up and returns false.

If the property name extracted from the module method matches an element in the $params array, I
can go ahead and invoke the correct setter method. To do that, the code must check the type of the first
(and only) required argument of the setter method. The ReflectionParameter::getClass() method
provides this information. If the method returns an empty value, the setter expects a primitive of some
kind; otherwise, it expects an object.

To call the setter method, I need a new Reflection API method. ReflectionMethod::invoke()
requires an object and any number of method arguments to pass on to the method it represents.
ReflectionMethod::invoke() throws an exception if the provided object does not match its method. I
call this method in one of two ways. If the setter method doesn’t require an object argument, I call
ReflectionMethod::invoke() with the user-supplied property string. If the method requires an object, I
use the property string to instantiate an object of the correct type, which is then passed to the setter.

CHAPTER 5 ■ OBJECT TOOLS

97

The example assumes that the required object can be instantiated with a single string argument to
its constructor. It’s best, of course, to check this before calling ReflectionClass::
newInstance().

By the time the ModuleRunner::init() method has run its course, the object has a store of Module
objects, all primed with data. The class can now be given a method to loop through the Module objects,
calling execute() on each one.

Summary
In this chapter, I covered some of the techniques and tools that you can use to manage your libraries

and classes. I explored PHP’s new namespace feature. You saw that we can combine include paths,
namespaces, the PEAR class naming convention, and the file system to provide flexible organization for
classes. We examined PHP’s object and class functions, before taking things to the next level with the
powerful Reflection API. Finally, we used the Reflection classes to build a simple example that
illustrates one of the potential uses that Reflection has to offer.

C H A P T E R 6

■ ■ ■

99

Objects and Design

Now that we have seen the mechanics of PHP’s object support in some detail, in this chapter, we step
back from the details and consider how best to use the tools that we have encountered. In this chapter, I
introduce you to some of the issues surrounding objects and design. I will also look at the UML, a
powerful graphical language for describing object-oriented systems.

This chapter will cover

• Design basics: What I mean by design, and how object-oriented design differs from
procedural code

• Class scope: How to decide what to include in a class

• Encapsulation: Hiding implementation and data behind a class’s interface

• Polymorphism: Using a common supertype to allow the transparent substitution
of specialized subtypes at runtime

• The UML: Using diagrams to describe object-oriented architectures

Defining Code Design
One sense of code design concerns the definition of a system: the determination of a system’s
requirements, scope, and objectives. What does the system need to do? For whom does it need to do it?
What are the outputs of the system? Do they meet the stated need? On a lower level, design can be taken
to mean the process by which you define the participants of a system and organize their relationships.
This chapter is concerned with the second sense: the definition and disposition of classes and objects.

So what is a participant? An object-oriented system is made up of classes. It is important to decide
the nature of these players in your system. Classes are made up, in part, of methods, so in defining your
classes, you must decide which methods belong together. As you will see, though, classes are often
combined in inheritance relationships to conform to common interfaces. It is these interfaces, or types,
that should be your first port of call in designing your system.

There are other relationships that you can define for your classes. You can create classes that are
composed of other types or that manage lists of other type instances. You can design classes that simply
use other objects. The potential for such relationships of composition or use is built into your classes
(through the use of class type hints in method signatures, for example), but the actual object
relationships take place at runtime, which can add flexibility to your design. You will see how to model
these relationships in this chapter, and we’ll explore them further throughout the book.

As part of the design process, you must decide when an operation should belong to a type and when
it should belong to another class used by the type. Everywhere you turn, you are presented with choices,
decisions that might lead to clarity and elegance or might mire you in compromise.

CHAPTER 6 ■ OBJECTS AND DESIGN

100

In this chapter, I will examine some issues that might influence a few of these choices.

Object-Oriented and Procedural Programming
How does object-oriented design differ from the more traditional procedural code? It is tempting to say
that the primary distinction is that object-oriented code has objects in it. This is neither true nor useful.
In PHP, you will often find procedural code using objects. You may also come across classes that contain
tracts of procedural code. The presence of classes does not guarantee object-oriented design, even in a
language like Java, which forces you to do most things inside a class.

One core difference between object-oriented and procedural code can be found in the way that
responsibility is distributed. Procedural code takes the form of a sequential series of commands and
method calls. The controlling code tends to take responsibility for handling differing conditions. This
top-down control can result in the development of duplications and dependencies across a project.
Object-oriented code tries to minimize these dependencies by moving responsibility for handling tasks
away from client code and toward the objects in the system.

In this section I’ll set up a simple problem and then analyze it in terms of both object-oriented and
procedural code to illustrate these points. My project is to build a quick tool for reading from and writing
to configuration files. In order to maintain focus on the structures of the code, I will omit
implementation details in these examples.

I’ll begin with a procedural approach to this problem. To start with, I will read and write text in the
format

key:value

I need only two functions for this purpose:

function readParams($sourceFile) {
 $prams = array();
 // read text parameters from $sourceFile
 return $prams;
}

function writeParams($params, $sourceFile) {
 // write text parameters to $sourceFile
}

The readParams() function requires the name of a source file. It attempts to open it, and reads each
line, looking for key/value pairs. It builds up an associative array as it goes. Finally, it returns the array to
the controlling code. writeParams() accepts an associative array and the path to a source file. It loops
through the associative array, writing each key/value pair to the file. Here’s some client code that works
with the functions:

$file = "./param.txt";
$array['key1'] = "val1";
$array['key2'] = "val2";
$array['key3'] = "val3";
writeParams($array, $file); // array written to file
$output = readParams($file); // array read from file
print_r($output);

This code is relatively compact and should be easy to maintain. The writeParams() is called to create
param.txt and to write to it with something like:

CHAPTER 6 ■ OBJECTS AND DESIGN

101

key1:val1
key2:val2

key3:val3

Then I'm told that the tool should support a simple XML format that looks like this:

<params>
 <param>
 <key>my key</key>
 <val>my val</val>
 </pram>
</params>

The parameter file should be read in XML mode if the parameter file ends in .xml. Although this is
not difficult to accommodate, it threatens to make my code much harder to maintain. I really have two
options at this stage. I can check the file extension in the controlling code, or I can test inside my read
and write functions. Here I go for the latter approach:

function readParams($source) {
 $params = array();
 if (preg_match("/\.xml$/i", $source)) {
 // read XML parameters from $source
 } else {
 // read text parameters from $source
 }
 return $params;
}

function writeParams($params, $source) {
 if (preg_match("/\.xml$/i", $source)) {
 // write XML parameters to $source
 } else {
 // write text parameters to $source
 }
}

■Note Illustrative code always involves a difficult balancing act. It needs to be clear enough to make its point,
which often means sacrificing error checking and fitness for its ostensible purpose. In other words, the example
here is really intended to illustrate issues of design and duplication rather than the best way to parse and write file
data. For this reason, I omit implementation where it is not relevant to the issue at hand.

As you can see, I have had to use the test for the XML extension in each of the functions. It is this
repetition that might cause us problems down the line. If I were to be asked to include yet another
parameter format, I would need to remember to keep the readParams() and writeParams() functions in
line with one another.

CHAPTER 6 ■ OBJECTS AND DESIGN

102

Now I’ll address the same problem with some simple classes. First, I create an abstract base class
that will define the interface for the type:

abstract class ParamHandler {
 protected $source;
 protected $params = array();

 function __construct($source) {
 $this->source = $source;
 }

 function addParam($key, $val) {
 $this->prams[$key] = $val;
 }

 function getAllParams() {
 return $this->params;
 }

 static function getInstance($filename) {
 if (preg_match("/\.xml$/i", $filename)) {
 return new XmlParamHandler($filename);
 }
 return new TextParamHandler($filename);
 }

 abstract function write();
 abstract function read();
}

I define the addParam() method to allow the user to add parameters to the protected $params
property and getAllParams() to provide access to a copy of the array.

I also create a static getInstance() method that tests the file extension and returns a particular
subclass according to the results. Crucially, I define two abstract methods, read() and write(), ensuring
that any subclasses will support this interface.

■Note Placing a static method for generating child objects in the parent class is convenient. Such a design
decision does have its own consequences, however. The ParamHandler type is now essentially limited to working
with the concrete classes in this central conditional statement. What happens if you need to handle another
format? Of course, if you are the maintainer of ParamHandler, you can always amend the getInstance() method.
If you are a client coder, however, changing this library class may not be so easy (in fact, changing it won’t be
hard, but you face the prospect of having to reapply your patch every time you reinstall the package that provides
it). I discuss issues of object creation in Chapter 9.

Now, I’ll define the subclasses, once again omitting the details of implementation to keep the
example clean:

CHAPTER 6 ■ OBJECTS AND DESIGN

103

class XmlParamHandler extends ParamHandler {

 function write() {
 // write XML
 // using $this->params
 }

 function read() {
 // read XML
 // and populate $this->prams
 }

}

class TextParamHandler extends ParamHandler {

 function write() {
 // write text
 // using $this->params
 }

 function read() {
 // read text
 // and populate $this->prams
 }

}

These classes simply provide implementations of the write() and read() methods. Each class will
write and read according to the appropriate format.

Client code will write to both text and XML formats entirely transparently according to the file
extension:

$test = ParamHandler::getInstance("./params.xml");
$test->addParam("key1", "val1");
$test->addParam("key2", "val2");
$test->addParam("key3", "val3");
$test->write(); // writing in XML format

We can also read from either file format:

$test = ParamHandler::getInstance("./params.txt");
$test->read(); // reading in text format

So, what can we learn from these two approaches?

Responsibility
The controlling code in the procedural example takes responsibility for deciding about format, not once
but twice. The conditional code is tidied away into functions, certainly, but this merely disguises the fact
of a single flow making decisions as it goes. The call to readParams() must always take place in a different
context from a call to writeParams(), so we are forced to repeat the file extension test in each function
(or to perform variations on this test).

CHAPTER 6 ■ OBJECTS AND DESIGN

104

In the object-oriented version, this choice about file format is made in the static getInstance()
method, which tests the file extension only once, serving up the correct subclass. The client code takes
no responsibility for implementation. It uses the provided object with no knowledge of, or interest in,
the particular subclass it belongs to. It knows only that it is working with a ParamHandler object, and that
it will support write() and read(). While the procedural code busies itself about details, the object-
oriented code works only with an interface, unconcerned about the details of implementation. Because
responsibility for implementation lies with the objects and not with the client code, it would be easy to
switch in support for new formats transparently.

Cohesion
Cohesion is the extent to which proximate procedures are related to one another. Ideally, you should
create components that share a clear responsibility. If your code spreads related routines widely, you
will find them harder to maintain as you have to hunt around to make changes.

Our ParamHandler classes collect related procedures into a common context. The methods for
working with XML share a context in which they can share data and where changes to one method can
easily be reflected in another if necessary (if you needed to change an XML element name, for example).
The ParamHandler classes can therefore be said to have high cohesion.

The procedural example, on the other hand, separates related procedures. The code for working
with XML is spread across functions.

Coupling
Tight coupling occurs when discrete parts of a system’s code are tightly bound up with one another so
that a change in one part necessitates changes in the others. Tight coupling is by no means unique to
procedural code, though the sequential nature of such code makes it prone to the problem.

You can see this kind of coupling in the procedural example. The writeParams() and readParams()
functions run the same test on a file extension to determine how they should work with data. Any
change in logic you make to one will have to be implemented in the other. If you were to add a new
format, for example, we would have to bring the functions into line with one another so that they both
implement a new file extension test in the same way. This problem can only get worse as you add new
parameter-related functions.

The object-oriented example decouples the individual subclasses from one another and from the
client code. If you were required to add a new parameter format, you could simply create a new subclass,
amending a single test in the static getInstance() method.

Orthogonality
The killer combination in components of tightly defined responsibilities together with independence
from the wider system is sometimes referred to as orthogonality, in particular by Andrew Hunt and
David Thomas in The Pragmatic Programmer (Addison-Wesley Professional, 1999).

Orthogonality, it is argued, promotes reuse in that components can be plugged into new systems
without needing any special configuration. Such components will have clear inputs and outputs
independent of any wider context. Orthogonal code makes change easier because the impact of altering
an implementation will be localized to the component being altered. Finally, orthogonal code is safer.
The effects of bugs should be limited in scope. An error in highly interdependent code can easily cause
knock-on effects in the wider system.

There is nothing automatic about loose coupling and high cohesion in a class context. We could,
after all, embed our entire procedural example into one misguided class. So how can you achieve this
balance in your code? I usually start by considering the classes that should live in my system.

CHAPTER 6 ■ OBJECTS AND DESIGN

105

Choosing Your Classes
It can be surprisingly difficult to define the boundaries of your classes, especially as they will evolve with
any system that you build.

It can seem straightforward when you are modeling the real world. Object-oriented systems often
feature software representations of real things—Person, Invoice, and Shop classes abound. This would
seem to suggest that defining a class is a matter of finding the things in your system and then giving
them agency through methods. This is not a bad starting point, but it does have its dangers. If you see a
class as a noun, a subject for any number of verbs, then you may find it bloating as ongoing
development and requirement changes call for it to do more and more things.

Let’s consider the ShopProduct example that we created in Chapter 3. Our system exists to offer
products to a customer, so defining a ShopProduct class is an obvious choice, but is that the only decision
we need to make? We provide methods such as getTitle() and getPrice() for accessing product data.
When we are asked to provide a mechanism for outputting summary information for invoices and
delivery notes, it seems to make sense to define a write() method. When the client asks us to provide the
product summaries in different formats, we look again at our class. We duly create writeXML() and
writeXHTML() methods in addition to the write() method. Or we add conditional code to write() to
output different formats according to an option flag.

Either way, the problem here is that the ShopProduct class is now trying to do too much. It is
struggling to manage strategies for display as well as for managing product data.

How should you think about defining classes? The best approach is to think of a class as having a
primary responsibility and to make that responsibility as singular and focused as possible. Put the
responsibility into words. It has been said that you should be able to describe a class’s responsibility in
25 words or less, rarely using the words “and” or “or.” If your sentence gets too long or mired in clauses,
it is probably time to consider defining new classes along the lines of some of the responsibilities you
have described.

So ShopProduct classes are responsible for managing product data. If we add methods for writing to
different formats, we begin to add a new area of responsibility: product display. As you saw in Chapter 3,
we actually defined two types based on these separate responsibilities. The ShopProduct type remained
responsible for product data, and the ShopProductWriter type took on responsibility for displaying
product information. Individual subclasses refined these responsibilities.

■Note Very few design rules are entirely inflexible. You will sometimes see code for saving object data in an
otherwise unrelated class, for example. While this would seem to violate the rule that a class should have a
singular responsibility, it can be the most convenient place for the functionality to live, because a method has to
have full access to an instance’s fields. Using local methods for persistence can also save us from creating a
parallel hierarchy of persistence classes mirroring our savable classes, and thereby introducing unavoidable
coupling. We deal with other strategies for object persistence in Chapter 12. Avoid religious adherence to design
rules; they are not a substitute for analyzing the problem before you. Try to remain alive to the reasoning behind
the rule, and emphasize that over the rule itself.

CHAPTER 6 ■ OBJECTS AND DESIGN

106

Polymorphism
Polymorphism, or class switching, is a common feature of object-oriented systems. You have
encountered it several times already in this book.

Polymorphism is the maintenance of multiple implementations behind a common interface. This
sounds complicated, but in fact, it should be very familiar to you by now. The need for polymorphism is
often signaled by the presence of extensive conditional statements in your code.

When I first created the ShopProduct class in Chapter 3, I experimented with a single class which
managed functionality for books and CDs in addition to generic products. In order to provide summary
information, I relied on a conditional statement:

 function getSummaryLine() {
 $base = "$this->title ($this->producerMainName, ";
 $base .= "$this->producerFirstName)";
 if ($this->type == 'book') {
 $base .= ": page count - $this->numPages";
 } else if ($this->type == 'cd') {
 $base .= ": playing time - $this->playLength";
 }
 return $base;
 }

These statements suggested the shape for the two subclasses: CdProduct and BookProduct.
By the same token, the conditional statements in my procedural parameter example contained the

seeds of the object-oriented structure I finally arrived at. I repeated the same condition in two parts of
the script.

function readParams($source) {
 $params = array();
 if (preg_match("/\.xml$/i", $source)) {
 // read XML parameters from $source
 } else {
 // read text parameters from $source
 }
 return $params;
}

function writeParams($params, $source) {
 if (preg_match("/\.xml$/i", $source)) {
 // write XML parameters to $source
 } else {
 // write text parameters to $source
 }
}

Each clause suggested one of the subclasses I finally produced: XmlParamHandler and
TextParamHandler, extending the abstract base class ParamHandler’s write() and read() methods.

// could return XmlParamHandler or TextParamHandler
$test = ParamHandler::getInstance($file);

$test->read(); // could be XmlParamHandler::read() or TextParamHandler::read()
$test->addParam("key1", "val1");
$test->write(); // could be XmlParamHandler::write() or TextParamHandler::write()

CHAPTER 6 ■ OBJECTS AND DESIGN

107

It is important to note that polymorphism doesn’t banish conditionals. Methods like
ParamHandler::getInstance() will often determine which objects to return based on switch or if
statements. These tend to centralize the conditional code into one place, though.

As you have seen, PHP enforces the interfaces defined by abstract classes. This is useful because we
can be sure that a concrete child class will support exactly the same method signatures as those defined
by an abstract parent. This includes all class type hints and access controls. Client code can, therefore,
treat all children of a common superclass interchangeably (as long it only relies on only functionality
defined in the parent). There is an important exception to this rule: there is no way of constraining the
return type of a method.

■Note At the time of this writing, there are plans to incorporate return type hinting in a future release of PHP.
Whether this will happen, though, is by no means certain.

The fact that you cannot specify return types means that it is possible for methods in different
subclasses to return different class types or primitives. This can undermine the interchangeability of
types. You should try to be consistent with your return values. Some methods may be defined to take
advantage of PHP’s loose typing and return different types according to circumstances. Other methods
enter into an implicit contract with client code, effectively promising that they will return a particular
type. If this contract is laid down in an abstract superclass, it should be honored by its concrete children
so that clients can be sure of consistent behavior. If you commit to return an object of a particular type,
you can, of course, return an instance of a subtype. Although the interpreter does not enforce return
types, you can make it a convention in your projects that certain methods will behave consistently. Use
comments in the source code to specify a method’s return type.

Encapsulation
Encapsulation simply means the hiding of data and functionality from a client. And once again, it is a
key object-oriented concept.

On the simplest level, you encapsulate data by declaring properties private or protected. By hiding
a property from client code, you enforce an interface and prevent the accidental corruption of an
object’s data.

Polymorphism illustrates another kind of encapsulation. By placing different implementations
behind a common interface, you hide these underlying strategies from the client. This means that any
changes that are made behind this interface are transparent to the wider system. You can add new
classes or change the code in a class without causing errors. The interface is what matters, and not the
mechanisms working beneath it. The more independent these mechanisms are kept, the less chance
that changes or repairs will have a knock-on effect in your projects.

Encapsulation is, in some ways, the key to object-oriented programming. Your objective should be
to make each part as independent as possible from its peers. Classes and methods should receive as
much information as is necessary to perform their allotted tasks, which should be limited in scope and
clearly identified.

The introduction of the private, protected, and public keywords have made encapsulation easier.
Encapsulation is also a state of mind, though. PHP 4 provided no formal support for hiding data. Privacy
had to be signaled using documentation and naming conventions. An underscore, for example, is a
common way of signaling a private property:

CHAPTER 6 ■ OBJECTS AND DESIGN

108

var $_touchezpas;

Code had to be checked closely, of course, because privacy was not strictly enforced. Interestingly,
though, errors were rare, because the structure and style of the code made it pretty clear which
properties wanted to be left alone.

By the same token, even in PHP 5, we could break the rules and discover the exact subtype of an
object that we are using in a class-switching context simply by using the instanceof operator.

 function workWithProducts(ShopProduct $prod) {

 if ($prod instanceof cdproduct) {

 // do cd thing

 } else if ($prod instanceof bookproduct) {

 // do book thing

 }

 }

You may have a very good reason to do this, but in general, it carries a slightly uncertain odor. By
querying the specific subtype in the example, I am setting up a dependency. While the specifics of the
subtype were hidden by polymorphism, it would have been possible to have changed the ShopProduct
inheritance hierarchy entirely with no ill effects. This code ends that. Now, if I need to rationalize the
CdProduct and BookProduct classes, I may create unexpected side effects in the workWithProducts()
method.

There are two lessons to take away from this example. First, encapsulation helps you to create
orthogonal code. Second, the extent to which encapsulation is enforceable is beside the point.
Encapsulation is a technique that should be observed equally by classes and their clients.

Forget How to Do It
If you are like me, the mention of a problem will set your mind racing, looking for mechanisms that
might provide a solution. You might select functions that will address an issue, revisit clever regular
expressions, track down PEAR packages. You probably have some pasteable code in an old project that
does something somewhat similar. At the design stage, you can profit by setting all that aside for a while.
Empty your head of procedures and mechanisms.

Think only about the key participants of your system: the types it will need and their interfaces. Of
course, your knowledge of process will inform your thinking. A class that opens a file will need a path;
database code will need to manage table names and passwords, and so on. Let the structures and
relationships in your code lead you, though. You will find that the implementation falls into place easily
behind a well-defined interface. You then have the flexibility to switch out, improve, or extend an
implementation should you need to, without affecting the wider system.

In order to emphasize interface, think in terms of abstract base classes rather than concrete
children. In my parameter-fetching code, for example, the interface is the most important aspect of the
design. I want a type that reads and writes name/value pairs. It is this responsibility that is important
about the type, not the actual persistence medium or the means of storing and retrieving data. I design
the system around the abstract ParamHandler class, and only add in the concrete strategies for actually
reading and writing parameters later on. In this way, I build both polymorphism and encapsulation into
my system from the start. The structure lends itself to class switching.

CHAPTER 6 ■ OBJECTS AND DESIGN

109

Having said that, of course, I knew from the start that there would be text and XML implementations
of ParamHandler, and there is no question that this influenced my interface. There is always a certain
amount of mental juggling to do when designing interfaces.

The Gang of Four (Design Patterns) summed up this principle with the phrase “Program to an
interface, not an implementation.” It is a good one to add to your coder’s handbook.

Four Signposts
Very few people get it absolutely right at the design stage. Most of us amend our code as requirements
change or as we gain a deeper understanding of the nature of the problem we are addressing.

As you amend your code, it can easily drift beyond your control. A method is added here, and a new
class there, and gradually your system begins to decay. As you have seen already, your code can point
the way to its own improvement. These pointers in code are sometimes referred to as code smells—that
is, features in code that may suggest particular fixes or at least call you to look again at your design. In
this section, I distill some of the points already made into four signs that you should watch out for as you
code.

Code Duplication
Duplication is one of the great evils in code. If you get a strange sense of déjà vu as you write a routine,
chances are you have a problem.

Take a look at the instances of repetition in your system. Perhaps they belong together. Duplication
generally means tight coupling. If you change something fundamental about one routine, will the similar
routines need amendment? If this is the case, they probably belong in the same class.

The Class Who Knew Too Much
It can be a pain passing parameters around from method to method. Why not simply reduce the pain by
using a global variable? With a global, everyone can get at the data.

Global variables have their place, but they do need to be viewed with some level of suspicion. That’s
quite a high level of suspicion, by the way. By using a global variable, or by giving a class any kind of
knowledge about its wider domain, you anchor it into its context, making it less reusable and dependent
on code beyond its control. Remember, you want to decouple your classes and routines and not create
interdependence. Try to limit a class’s knowledge of its context. I will look at some strategies for doing
this later in the book.

The Jack of All Trades
Is your class trying to do too many things at once? If so, see if you can list the responsibilities of the class.
You may find that one of them will form the basis of a good class itself.

Leaving an overzealous class unchanged can cause particular problems if you create subclasses.
Which responsibility are you extending with the subclass? What would you do if you needed a subclass
for more than one responsibility? You are likely to end up with too many subclasses or an overreliance
on conditional code.

CHAPTER 6 ■ OBJECTS AND DESIGN

110

Conditional Statements
You will use if and switch statements with perfectly good reason throughout your projects. Sometimes,
though, such structures can be a cry for polymorphism.

If you find that you are testing for certain conditions frequently within a class, especially if you find
these tests mirrored across more than one method, this could be a sign that your one class should be two
or more. See whether the structure of the conditional code suggests responsibilities that could be
expressed in classes. The new classes should implement a shared abstract base class. The chances are
that you will then have to work out how to pass the right class to client code. I will cover some patterns
for creating objects in Chapter 9.

The UML
So far in this book, I have let the code speak for itself, and I have used short examples to illustrate
concepts such as inheritance and polymorphism.

This is useful because PHP is a common currency here: it’s a language we have in common, if you
have read this far. As our examples grow in size and complexity, though, using code alone to illustrate
the broad sweep of design becomes somewhat absurd. It is hard to see an overview in a few lines of code.

UML stands for Unified Modeling Language. The initials are correctly used with the definite article.
This isn’t just a unified modeling language, it is the Unified Modeling Language.

Perhaps this magisterial tone derives from the circumstances of the language’s forging. According to
Martin Fowler (UML Distilled, Addison-Wesley Professional, 1999), the UML emerged as a standard only
after long years of intellectual and bureaucratic sparring among the great and good of the object-
oriented design community.

The result of this struggle is a powerful graphical syntax for describing object-oriented systems. We
will only scratch the surface in this section, but you will soon find that a little UML (sorry, a little of the
UML) goes a long way.

Class diagrams in particular can describe structures and patterns so that their meaning shines
through. This luminous clarity is often harder to find in code fragments and bullet points.

Class Diagrams
Although class diagrams are only one aspect of the UML, they are perhaps the most ubiquitous. Because
they are particularly useful for describing object-oriented relationships, I will primarily use these in this
book.

Representing Classes
As you might expect, classes are the main constituents of class diagrams. A class is represented by a
named box, as in Figure 6–1.

Figure 6–1. A class

CHAPTER 6 ■ OBJECTS AND DESIGN

111

The class is divided into three sections, with the name displayed in the first. These dividing lines are
optional when we present no more information than the class name. In designing a class diagram, we
may find that the level of detail in Figure 6–1 is enough for some classes. We are not obligated to
represent every field and method, or even every class in a class diagram.

Abstract classes are represented either by italicizing the class name, as in Figure 6–2, or by adding
{abstract} to the class name, as in Figure 6–3. The first method is the more common of the two, but the
second is more useful when you are making notes.

■Note The {abstract} syntax is an example of a constraint. Constraints are used in class diagrams to describe
the way in which specific elements should be used. There is no special structure for the text between the braces;
it should simply provide a short clarification of any conditions that may apply to the element.

Figure 6–2. An abstract class

Figure 6–3. An abstract class defined using a constraint

Interfaces are defined in the same way as classes, except that they must include a stereotype (that is,
an extension to the UML), as in Figure 6–4.

Figure 6–4. An interface

Attributes
Broadly speaking, attributes describe a class’s properties. Attributes are listed in the section directly
beneath the class name, as in Figure 6–5.

Figure 6–5. An attribute

CHAPTER 6 ■ OBJECTS AND DESIGN

112

Let’s take a close look at the attribute in the example. The initial symbol represents the level of
visibility, or access control, for the attribute. Table 6–1 shows the three symbols available.

Table 6–1. Visibility Symbols

Symbol Visibility Explanation

+ Public Available to all code

- Private Available to the current class only

Protected Available to the current class and its subclasses only

The visibility symbol is followed by the name of the attribute. In this case, I am describing the
ShopProduct::$price property. A colon is used to separate the attribute name from its type (and
optionally its default value).

Once again, you need only include as much detail as is necessary for clarity.

Operations
Operations describe methods, or more properly, they describe the calls that can be made on an instance
of a class. Figure 6–6 shows two operations in the ShopProduct class.

Figure 6–6. Operations

As you can see, operations use a similar syntax to that used by attributes. The visibility symbol
precedes the method name. A list of parameters is enclosed in parentheses. The method’s return type, if
any, is delineated by a colon. Parameters are separated by commas, and follow the attribute syntax, with
the attribute name separated from its type by a colon.

As you might expect, this syntax is relatively flexible. You can omit the visibility flag and the return
type. Parameters are often represented by their type alone, as the argument name is not usually
significant.

Describing Inheritance and Implementation
The UML describes the inheritance relationship as generalization. This relationship is signified by a line
leading from the subclass to its parent. The line is tipped with an empty closed arrow.

Figure 6–7 shows the relationship between the ShopProduct class and its child classes.

CHAPTER 6 ■ OBJECTS AND DESIGN

113

Figure 6–7. Describing inheritance

The UML describes the relationship between an interface and the classes that implement it as
realization. So if the ShopProduct class were to implement the Chargeable interface, we could add it to
our class diagram as in Figure 6–8.

Figure 6–8. Describing interface implementation

Associations
Inheritance is only one of a number of relationships in an object-oriented system. An association occurs
when a class property is declared to hold a reference to an instance (or instances) of another class.

In Figure 6–9, we model two classes and create an association between them.

Figure 6–9. A class association

At this stage, we are vague about the nature of this relationship. We have only specified that a
Teacher object will have a reference to one or more Pupil objects or vice versa. This relationship may or
may not be reciprocal.

You can use arrows to describe the direction of the association. If the Teacher class has an instance of
the Pupil class but not the other way round, then you should make your association an arrow leading from
the Teacher to the Pupil class. This association, which is called unidirectional, is shown in Figure 6–10.

CHAPTER 6 ■ OBJECTS AND DESIGN

114

Figure 6–10. A unidirectional association

If each class has a reference to the other, we can use a double-headed arrow to describe a
bidirectional relationship, as in Figure 6–11.

Figure 6–11. A bidirectional association

You can also specify the number of instances of a class that are referenced by another in an
association. You do this by placing a number or range beside each class. You can also use an asterisk (*)
to stand for any number. In Figure 6–12, there can be one Teacher object and zero or more Pupil objects.

Figure 6–12. Defining multiplicity for an association

In Figure 6–13, there can be one Teacher object and between five and ten Pupil objects in the
association.

Figure 6–13. Defining multiplicity for an association

Aggregation and Composition
Aggregation and composition are similar to association. All describe a situation in which a class holds a
permanent reference to one or more instances of another. With aggregation and composition, though,
the referenced instances form an intrinsic part of the referring object.

In the case of aggregation, the contained objects are a core part of the container, but they can also
be contained by other objects at the same time. The aggregation relationship is illustrated by a line that
begins with an unfilled diamond.

In Figure 6–14, I define two classes: SchoolClass and Pupil. The SchoolClass class aggregates Pupil.

CHAPTER 6 ■ OBJECTS AND DESIGN

115

Figure 6–14. Aggrgation

Pupils make up a class, but the same Pupil object can be referred to by different SchoolClass
instances at the same time. If I were to dissolve a school class, I would not necessarily delete the pupil,
who may attend other classes.

Composition represents an even stronger relationship than this. In composition, the contained
object can be referenced by its container only. It should be deleted when the container is deleted.
Composition relationships are depicted in the same way as aggregation relationships, except that the
diamond should be filled. We illustrate a composition relationship in Figure 6–15.

Figure 6–15. Composition

A Person class maintains a reference to a SocialSecurityData object. The contained instance can
belong only to the containing Person object.

Describing Use
The use relationship is described as a dependency in the UML. It is the most transient of the
relationships discussed in this section, because it does not describe a permanent link between classes.

A used class may be passed as an argument or acquired as a result of a method call.
The Report class in Figure 6–16 uses a ShopProductWriter object. The use relationship is shown by

the broken line and open arrow that connects the two. It does not, however, maintain this reference as a
property in the same way that a ShopProductWriter object maintains an array of ShopProduct objects.

CHAPTER 6 ■ OBJECTS AND DESIGN

116

Figure 6–16. A dependency relationship

Using Notes
Class diagrams can capture the structure of a system, but they provide no sense of process. Figure 6–16
tells us about the classes in our system. From Figure 6–16 you know that a Report object uses a
ShopProductWriter, but you don’t know the mechanics of this. In Figure 6–17, I use a note to clarify
things somewhat.

Figure 6–17. Using a note to clarify a dependency

As you can see, a note consists of a box with a folded corner. It will often contain scraps of pseudo-
code.

This clarifies Figure 6–16; you can now see that the Report object uses a ShopProductWriter to
output product data. This is hardly a revelation, but use relationships are not always so obvious. In some
cases, even a note might not provide enough information. Luckily, you can model the interactions of
objects in your system as well as the structure of your classes.

CHAPTER 6 ■ OBJECTS AND DESIGN

117

Sequence Diagrams
A sequence diagram is object based rather than class based. It is used to model a process in a system
step by step.

Let’s build up a simple diagram, modeling the means by which a Report object writes product data.
A sequence diagram presents the participants of a system from left to right, as in Figure 6–18.

Figure 6–18. Objects in a sequence diagram

I have labeled my objects with class names alone. If I had more than one instance of the same class
working independently in my diagram, I would include an object name using the format label:class
(product1:ShopProduct, for example).

You show the lifetime of the process you are modeling from top to bottom, as in Figure 6–19.

Figure 6–19. Object lifelines in a sequence diagram

The vertical broken lines represent the lifetime of the objects in the system. The larger boxes that
follow the lifelines represent the focus of a process. If you read Figure 6–19 from top to bottom, you can
see how the process moves among objects in the system. This is hard to read without showing the
messages that are passed between the objects. I add these in Figure 6–20.

The arrows represent the messages sent from one object to another. Return values are often left
implicit (though they can be represented by a broken line, passing from the invoked object to the

CHAPTER 6 ■ OBJECTS AND DESIGN

118

message originator). Each message is labeled using the relevant method call. You can be quite flexible
with your labeling, though there is some syntax. Square brackets represent a condition. So

[okToPrint]
write()

means that the write() invocation should only be made if the correct condition is met. An asterisk is
used to indicate a repetition, optionally with further clarification in square brackets:

*[for each ShopProduct]
write()

Figure 6–20. The complete sequence diagram

You can interpret Figure 6–20 from top to bottom. First, a Report object acquires a list of
ShopProduct objects from a ProductStore object. It passes these to a ShopProductWriter object, which
stores references to them (though we can only infer this from the diagram). The ShopProductWriter
object calls ShopProduct::getSummaryLine() for every ShopProduct object it references, adding the result
to its output.

As you can see, sequence diagrams can model processes, freezing slices of dynamic interaction and
presenting them with surprising clarity.

CHAPTER 6 ■ OBJECTS AND DESIGN

119

■Note Look at Figures 6–16 and 6–20. Notice how the class diagram illustrates polymorphism, showing the
classes derived from ShopProductWriter and ShopProduct. Now notice how this detail becomes transparent
when we model the communication among objects. Where possible, we want objects to work with the most
general types available so that we can hide the details of implementation.

Summary
In this chapter, I went beyond the nuts and bolts of object-oriented programming to look at some

key design issues. I examined features such as encapsulation, loose coupling, and cohesion that are
essential aspects of a flexible and reusable object-oriented system. I went on to look at the UML, laying
groundwork that will be essential in working with patterns later in the book.

P A R T 3

■ ■ ■

121

Patterns

C H A P T E R 7

■ ■ ■

123

What Are Design Patterns?

Why Use Them?

Most problems we encounter as programmers have been handled time and again by others in our
community. Design patterns can provide us with the means to mine that wisdom. Once a pattern
becomes a common currency, it enriches our language, making it easy to share design ideas and their
consequences. Design patterns simply distill common problems, define tested solutions, and describe
likely outcomes. Many books and articles focus on the details of computer languages, the available
functions, classes and methods. Pattern catalogs concentrate instead on how you can move on from
these basics (the “what”) to an understanding of the problems and potential solutions in your projects
(the “why” and “how”).

In this chapter, I introduce you to design patterns and look at some of the reasons for their
popularity.

This chapter will cover

• Pattern basics: What are design patterns?

• Pattern structure: The key elements of a design pattern.

• Pattern benefits: Why are patterns worth your time?

What Are Design Patterns?

In the world of software, a pattern is a tangible manifestation of an organization’s tribal
memory.

—Grady Booch in Core J2EE Patterns

[A pattern is] a solution to a problem in a context.

—The Gang of Four, Design Patterns: Elements of Reusable Object-Oriented Software

As these quotations imply, a design pattern is a problem analyzed with good practice for its solution
explained.

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

124

Problems tend to recur, and as web programmers, we must solve them time and time again. How
are we going to handle an incoming request? How can we translate this data into instructions for our
system? How should we acquire data? Present results? Over time, we answer these questions with a
greater or lesser degree of elegance and evolve an informal set of techniques that we use and reuse in our
projects. These techniques are patterns of design.

Design patterns inscribe and formalize these problems and solutions, making hard-won experience
available to the wider programming community. Patterns are (or should be) essentially bottom-up and
not top-down. They are rooted in practice and not theory. That is not to say that there isn’t a strong
theoretical element to design patterns (as we will see in the next chapter), but patterns are based on real-
world techniques used by real programmers. Renowned pattern-hatcher Martin Fowler says that he
discovers patterns, he does not invent them. For this reason, many patterns will engender a sense of déjà
vu as you recognize techniques you have used yourself.

A catalog of patterns is not a cookbook. Recipes can be followed slavishly; code can be copied and
slotted into a project with minor changes. You do not always need even to understand all the code used
in a recipe. Design patterns inscribe approaches to particular problems. The details of implementation
may vary enormously according to the wider context. This context might include the programming
language you are using, the nature of your application, the size of your project, and the specifics of the
problem.

Let’s say, for example that your project requires that you create a templating system. Given the
name of a template file, you must parse it and build a tree of objects to represent the tags you encounter.

You start off with a default parser that scans the text for trigger tokens. When it finds a match, it
hands on responsibility for the hunt to another parser object, which is specialized for reading the
internals of tags. This continues examining template data until it either fails, finishes, or finds another
trigger. If it finds a trigger, it too must hand on to a specialist— perhaps an argument parser. Collectively,
these components form what is known as a recursive descent parser.

So these are your participants: a MainParser, a TagParser, and an ArgumentParser. You create a
ParserFactory class to create and return these objects.

Of course, nothing is easy, and you’re informed late in the game that you must support more than
one syntax in your templates. Now, you need to create a parallel set of parsers according to syntax: an
OtherTagParser, OtherArgumentParser, and so on.

This is your problem: you need to generate a different set of objects according to circumstance, and
you want this to be more or less transparent to other components in the system. It just so happens that
the Gang of Four define the following problem in their book’s summary page for the pattern Abstract
Factory, “Provide an interface for creating families of related or dependent objects without specifying
their concrete classes.”

That fits nicely. It is the nature of our problem that determines and shapes our use of this pattern.
There is nothing cut and paste about the solution either, as you can see in Chapter 9, in which I cover
Abstract Factory.

The very act of naming a pattern is valuable; it provides the kind of common vocabulary that has
arisen naturally over the years in the older crafts and professions. Such shorthand greatly aids
collaborative design as alternative approaches and their various consequences are weighed and tested.
When you discuss your alternative parser families, for example, you can simply tell colleagues that the
system creates each set using the Abstract Factory pattern. They will nod sagely, either immediately
enlightened or making a mental note to look it up later. The point is that this bundle of concepts and
consequences has a handle, which makes for a handy shorthand, as I’ll illustrate later in this chapter.

Finally, it is illegal, according to international law, to write about patterns without quoting
Christopher Alexander, an architecture academic whose work heavily influenced the original object-
oriented pattern advocates. He states in A Pattern Language (Oxford University Press, 1977):

Each pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.

It is significant that this definition (which applies to architectural problems and solutions) begins
with the problem and its wider setting and proceeds to a solution. There has been some criticism in
recent years that design patterns have been overused, especially by inexperienced programmers. This is

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

125

often a sign that solutions have been applied where the problem and context are not present. Patterns
are more than a particular organization of classes and objects, cooperating in a particular way. Patterns
are structured to define the conditions in which solutions should be applied and to discuss the effects of
the solution.

In this book, we will focus on a particularly influential strand in the patterns field: the form
described in Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Professional, 1995). It concentrates on
patterns in object-oriented software development and inscribes some of the classic patterns that are
present in most modern object-oriented projects.

The Gang of Four book is important, because it inscribes key patterns, but also because it describes
the design principles that inform and motivate these patterns. We will look at some of these principles in
the next chapter.

■Note The patterns described by the Gang of Four and in this book are really instances of a pattern language,
that is, a catalog of problems and solutions organized together so that they complement one another, forming an
interrelated whole. There are pattern languages for other problem spaces such as visual design and project
management (and architecture, of course). When I discuss design patterns here, I refer to problems and solutions
in object-oriented software development.

A Design Pattern Overview
At heart, a design pattern consists of four parts: the name, problem, solution, and consequences.

Name
Names matter. They enrich the language of programmers; a few short words can stand in for quite
complex problems and solutions. They must balance brevity and description. The Gang of Four claims,
“Finding good names has been one of the hardest parts of developing our catalog.”

Martin Fowler agrees, “Pattern names are crucial, because part of the purpose of patterns is to
create a vocabulary that allows developers to communicate more effectively”(Patterns of Enterprise
Application Architecture, Addison-Wesley Professional, 2002).

In Patterns of Enterprise Application Architecture, Martin Fowler refines a database access pattern I
first encountered in Core J2EE Patterns by Deepak Alur, Dan Malks, and John Crupi (Prentice Hall, 2003).
Fowler defines two patterns that describe specializations of the older pattern. The logic of his approach
is clearly correct (one of the new patterns models domain objects, while the other models database
tables, a distinction that was vague in the earlier work). It was hard to train myself to think in terms of
the new patterns. I had been using the name of the original in design sessions and documents for so long
that it had become part of my language.

The Problem
No matter how elegant the solution (and some are very elegant indeed), the problem and its context are
the grounds of a pattern. Recognizing a problem is harder than applying any one of the solutions in a
pattern catalog. This is one reason that some pattern solutions can be misapplied or overused.

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

126

Patterns describe a problem space with great care. The problem is described in brief and then
contextualized, often with a typical example and one or more diagrams. It is broken down into its
specifics, its various manifestations. Any warning signs that might help in identifying the problem are
described.

The Solution
The solution is summarized initially in conjunction with the problem. It is also described in detail often
using UML class and interaction diagrams. The pattern usually includes a code example.

Although code may be presented, the solution is never cut and paste. The pattern describes an
approach to a problem. There may be hundreds of nuances in implementation. Think about instructions
for sowing a food crop. If you simply follow a set of steps blindly, you are likely to go hungry come
harvest time. More useful would be a pattern-based approach that covers the various conditions that
may apply. The basic solution to the problem (making your crop grow) will always be the same (plant
seeds, irrigate, harvest crop), but the actual steps you take will depend on all sorts of factors such as your
soil type, your location, the orientation of your land, local pests, and so on.

Martin Fowler refers to solutions in patterns as “half-baked.” That is, the coder must take away the
concept and finish it for himself.

Consequences
Every design decision you make will have wider consequences. This should include the satisfactory
resolution of the problem in question, of course. A solution, once deployed, may be ideally suited to
work with other patterns. There may also be dangers to watch for.

The Gang of Four Format
As I write, I have five pattern catalogs on the desk in front of me. A quick look at the patterns in each
confirms that not one uses the same structure as the others. Some are more formal than others; some are
fine-grained, with many subsections; others are discursive.

There are a number of well-defined pattern structures, including the original form developed by
Christopher Alexander (the Alexandrian form), the narrative approach favored by the Portland Pattern
Repository (the Portland form). Because the Gang of Four book is so influential, and because we will
cover many of the patterns they describe, let’s examine a few of the sections they include in their
patterns:

• Intent: A brief statement of the pattern’s purpose. You should be able to see the
point of the pattern at a glance.

• Motivation: The problem described, often in terms of a typical situation. The
anecdotal approach can help make the pattern easy to grasp.

• Applicability: An examination of the different situations in which you might apply
the pattern. While the motivation describes a typical problem, this section defines
specific situations and weighs the merits of the solution in the context of each.

• Structure/Interaction: These sections may contain UML class and interaction
diagrams describing the relationships among classes and objects in the solution.

• Implementation: This section looks at the details of the solution. It examines any
issues that may come up when applying the technique and provides tips for
deployment.

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

127

• Sample Code: I always skip ahead to this section. I find that a simple code example
often provides a way into a pattern. The example is often chopped down to the
basics in order to lay the solution bare. It could be in any object-oriented
language. Of course, in this book, it will always be PHP.

• Known Uses: Real systems in which the pattern (problem, context, and solution)
occur. Some people say that for a pattern to be genuine, it must be found in at
least three publicly available contexts. This is sometimes called the “rule of three.”

• Related Patterns: Some patterns imply others. In applying one solution, you can
create the context in which another becomes useful. This section examines these
synergies. It may also discuss patterns that have similarities in problem or solution
and any antecedents: patterns defined elsewhere on which the current pattern
builds.

Why Use Design Patterns?
So what benefits can patterns bring? Given that a pattern is a problem defined and solution described,
the answer should be obvious. Patterns can help you to solve common problems. There is more to
patterns, of course.

A Design Pattern Defines a Problem
How many times have you reached a stage in a project and found that there is no going forward? The
chances are you must backtrack some way before starting out again.

By defining common problems, patterns can help you to improve your design. Sometimes, the first
step to a solution is recognizing that you have a problem.

A Design Pattern Defines a Solution
Having defined and recognized the problem (and made certain that it is the right problem), a pattern
gives you access to a solution, together with an analysis of the consequences of its use. Although a
pattern does not absolve you of the responsibility to consider the implications of a design decision, you
can at least be certain that you are using a tried-and-tested technique.

Design Patterns Are Language Independent
Patterns define objects and solutions in object-oriented terms. This means that many patterns apply
equally in more than one language. When I first started using patterns, I read code examples in C++ and
Smalltalk and deployed my solutions in Java. Others transfer with modifications to the pattern’s
applicability or consequences but remain valid. Either way, patterns can help you as you move between
languages. Equally, an application that is built on good object-oriented design principles can be
relatively easy to port between languages (although there are always issues that must be addressed).

Patterns Define a Vocabulary
By providing developers with names for techniques, patterns make communication richer. Imagine a
design meeting. I have already described my Abstract Factory solution, and now I need to describe my
strategy for managing the data the system compiles. I describe my plans to Bob:

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

128

ME: I’m thinking of using a Composite.

BOB: I don’t think you’ve thought that through.

OK, Bob didn’t agree with me. He never does. But he knew what I was talking about, and therefore
why my idea sucked. Let’s play that scene through again without a design vocabulary.

ME: I intend to use a tree of objects that share the same type. The type’s
interface will provide methods for adding child objects of its own type. In this
way, we can build up complex combinations of implementing objects at
runtime.

BOB: Huh?

Patterns, or the techniques they describe, tend to interoperate. The Composite pattern lends itself to
collaboration with Visitor:

ME: And then we can use Visitors to summarize the data.

BOB: You’re missing the point.

Ignore Bob. I won’t describe the tortuous nonpattern version of this; I will cover Composite in
Chapter 10 and Visitor in Chapter 11.

The point is that without a pattern language, we would still use these techniques. They precede their
naming and organization. If patterns did not exist, they would evolve on their own anyway. Any tool that
is used sufficiently will eventually acquire a name.

Patterns Are Tried and Tested
So if patterns document good practice, is naming the only truly original thing about pattern catalogs? In
some senses, that would seem to be true. Patterns represent best practice in an object-oriented context.
To some highly experienced programmers, this may seem an exercise in repackaging the obvious. To the
rest of us, patterns provide access to problems and solutions we would otherwise have to discover the
hard way.

Patterns make design accessible. As pattern catalogs emerge for more and more specializations,
even the highly experienced can find benefits as they move into new aspects of their fields. A GUI
programmer can gain fast access to common problems and solutions in enterprise programming, for
example. A web programmer can quickly chart strategies for avoiding the pitfalls that lurk in PDA and
smart phone projects.

Patterns Are Designed for Collaboration
By their nature, patterns should be generative and composable. This means that you should be able to
apply one pattern and thereby create conditions suitable for the application of another. In other words,
in using a pattern you may find other doors opened for you.

Pattern catalogs are usually designed with this kind of collaboration in mind, and the potential for
pattern composition is always documented in the pattern itself.

Design Patterns Promote Good Design
Design patterns demonstrate and apply principles of object-oriented design. So a study of design
patterns can yield more than a specific solution in a context. You can come away with a new perspective
on the ways that objects and classes can be combined to achieve an objective.

CHAPTER 7 ■ WHAT ARE DESIGN PATTERNS? WHY USE THEM?

129

PHP and Design Patterns
There is little in this chapter that is specific to PHP, which is characteristic of our topic to some extent.
Many patterns apply to many object-capable languages with few or no implementation issues.

This is not always the case, of course. Some enterprise patterns work well in languages in which an
application process continues to run between server requests. PHP does not work that way. A new script
execution is kicked off for every request. This means that some patterns need to be treated with more
care. Front Controller, for example, often requires some serious initialization time. This is fine when the
initialization takes place once at application startup but more of an issue when it must take place for
every request. That is not to say that we can’t use the pattern; I have deployed it with very good results in
the past. We must simply ensure that we take account of PHP-related issues when we discuss the
pattern. PHP forms the context for all the patterns that this book examines.

I referred to object-capable languages earlier in this section. You can code in PHP without defining
any classes at all (although with PEAR’s continuing development you will probably manipulate objects
to some extent). Although this book focuses almost entirely on object-oriented solutions to
programming problems, it is not a broadside in an advocacy war. Patterns and PHP can be a powerful
mix, and they form the core of this book; they can, however, coexist quite happily with more traditional
approaches. PEAR is an excellent testament to this. PEAR packages use design patterns elegantly. They
tend to be object-oriented in nature. This makes them more, not less, useful in procedural projects.
Because PEAR packages are self-enclosed and hide their complexity behind clean interfaces, they are
easy to stitch into any kind of project.

Summary
In this chapter, I introduced design patterns, showed you their structure (using the Gang of Four form),
and suggested some reasons why you might want to use design patterns in your scripts.
It is important to remember that design patterns are not snap-on solutions that can be combined like
components to build a project. They are suggested approaches to common problems. These solutions

C H A P T E R 8

■ ■ ■

131

Some Pattern Principles

Although design patterns simply describe solutions to problems, they tend to emphasize solutions that
promote reusability and flexibility. To achieve this, they manifest some key object-oriented design
principles. We will encounter some of them in this chapter and in more detail throughout the rest of the
book.

This chapter will cover

• Composition: How to use object aggregation to achieve greater flexibility than you
could with inheritance alone

• Decoupling: How to reduce dependency between elements in a system

• The power of the interface: Patterns and polymorphism

• Pattern categories: The types of pattern that this book will cover

The Pattern Revelation
I first started working with objects in the Java language. As you might expect, it took a while before some
concepts clicked. When it did happen, though, it happened very fast, almost with the force of revelation.
The elegance of inheritance and encapsulation bowled me over. I could sense that this was a different
way of defining and building systems. I got polymorphism, working with a type and switching
implementations at runtime.

All the books on my desk at the time focused on language features and the very many APIs available
to the Java programmer. Beyond a brief definition of polymorphism, there was little attempt to examine
design strategies.

Language features alone do not engender object-oriented design. Although my projects fulfilled
their functional requirements, the kind of design that inheritance, encapsulation, and polymorphism
had seemed to offer continued to elude me.

My inheritance hierarchies grew wider and deeper as I attempted to build new classes for every
eventuality. The structure of my systems made it hard to convey messages from one tier to another
without giving intermediate classes too much awareness of their surroundings, binding them into the
application and making them unusable in new contexts.

It wasn’t until I discovered Design Patterns, otherwise known as the Gang of Four book, that I
realized I had missed an entire design dimension. By that time, I had already discovered some of the
core patterns for myself, but others contributed to a new way of thinking.

I discovered that I had overprivileged inheritance in my designs, trying to build too much
functionality into my classes. But where else can functionality go in an object-oriented system?

I found the answer in composition. Software components can be defined at runtime by combining
objects in flexible relationships. The Gang of Four boiled this down into a principle: “favor composition

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

132

over inheritance.” The patterns described ways in which objects could be combined at runtime to
achieve a level of flexibility impossible in an inheritance tree alone.

Composition and Inheritance
Inheritance is a powerful way of designing for changing circumstances or contexts. It can limit flexibility,
however, especially when classes take on multiple responsibilities.

The Problem
As you know, child classes inherit the methods and properties of their parents (as long as they are
protected or public elements). You can use this fact to design child classes that provide specialized
functionality.

Figure 8–1 presents a simple example using the UML.

Figure 8–1. A parent class and two child classes

The abstract Lesson class in Figure 8–1 models a lesson in a college. It defines abstract cost() and
chargeType() methods. The diagram shows two implementing classes, FixedPriceLesson and
TimedPriceLesson, which provide distinct charging mechanisms for lessons.

Using this inheritance scheme, I can switch between lesson implementations. Client code will know
only that it is dealing with a Lesson object, so the details of cost will be transparent.

What happens, though, if I introduce a new set of specializations? I need to handle lectures and
seminars. Because these organize enrollment and lesson notes in different ways, they require separate
classes. So now I have two forces that operate upon my design. I need to handle pricing strategies and
separate lectures and seminars.

Figure 8–2 shows a brute-force solution.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

133

Figure 8–2. A poor inheritance structure

Figure 8–2 shows a hierarchy that is clearly faulty. I can no longer use the inheritance tree to manage
my pricing mechanisms without duplicating great swathes of functionality. The pricing strategies are
mirrored across the Lecture and Seminar class families.

At this stage, I might consider using conditional statements in the Lesson super class, removing
those unfortunate duplications. Essentially, I remove the pricing logic from the inheritance tree
altogether, moving it up into the super class. This is the reverse of the usual refactoring where you
replace a conditional with polymorphism. Here is an amended Lesson class:

abstract class Lesson {
 protected $duration;
 const FIXED = 1;
 const TIMED = 2;
 private $costtype;

 function __construct($duration, $costtype=1) {
 $this->duration = $duration;
 $this->costtype = $costtype;
 }

 function cost() {
 switch ($this->costtype) {
 CASE self::TIMED :
 return (5 * $this->duration);
 break;
 CASE self::FIXED :
 return 30;
 break;
 default:
 $this->costtype = self::FIXED;
 return 30;
 }
 }

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

134

 function chargeType() {
 switch ($this->costtype) {
 CASE self::TIMED :
 return "hourly rate";
 break;
 CASE self::FIXED :
 return "fixed rate";
 break;
 default:
 $this->costtype = self::FIXED;
 return "fixed rate";
 }
 }

 // more lesson methods...
}

class Lecture extends Lesson {
 // Lecture-specific implementations ...
}

class Seminar extends Lesson {
 // Seminar-specific implementations ...
}

Here's how I might work with these classes:

$lecture = new Lecture(5, Lesson::FIXED);

print "{$lecture->cost()} ({$lecture->chargeType()})\n";

$seminar= new Seminar(3, Lesson::TIMED);

print "{$seminar->cost()} ({$seminar->chargeType()})\n";

And here's the output:

30 (fixed rate)

15 (hourly rate)

You can see the new class diagram in Figure 8–3.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

135

Figure 8–3. Inheritance hierarchy improved by removing cost calculations from subclasses

I have made the class structure much more manageable but at a cost. Using conditionals in this
code is a retrograde step. Usually, you would try to replace a conditional statement with polymorphism.
Here, I have done the opposite. As you can see, this has forced me to duplicate the conditional statement
across the chargeType() and cost() methods.

I seem doomed to duplicate code.

Using Composition
I can use the Strategy pattern to compose my way out of trouble. Strategy is used to move a set of
algorithms into a separate type. By moving cost calculations, I can simplify the Lesson type. You can see
this in Figure 8–4.

Figure 8–4. Moving algorithms into a separate type

I create an abstract class, CostStrategy, which defines the abstract methods cost() and
chargeType(). The cost() method requires an instance of Lesson, which it will use to generate cost data. I
provide two implementations for CostStrategy. Lesson objects work only with the CostStrategy type, not
a specific implementation, so I can add new cost algorithms at any time by subclassing CostStrategy.
This would require no changes at all to any Lesson classes.

Here’s a simplified version of the new Lesson class illustrated in Figure 8–4:

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

136

abstract class Lesson {
 private $duration;
 private $costStrategy;

 function __construct($duration, CostStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

 function cost() {
 return $this->costStrategy->cost($this);
 }

 function chargeType() {
 return $this->costStrategy->chargeType();
 }

 function getDuration() {
 return $this->duration;
 }

 // more lesson methods...
}

class Lecture extends Lesson {
 // Lecture-specific implementations ...
}

class Seminar extends Lesson {
 // Seminar-specific implementations ...
}

The Lesson class requires a CostStrategy object, which it stores as a property. The Lesson::cost()
method simply invokes CostStrategy::cost(). Equally, Lesson::chargeType() invokes
CostStrategy::chargeType(). This explicit invocation of another object’s method in order to fulfill a
request is known as delegation. In my example, the CostStrategy object is the delegate of Lesson. The
Lesson class washes its hands of responsibility for cost calculations and passes on the task to a
CostStrategy implementation. Here, it is caught in the act of delegation:

 function cost() {
 return $this->costStrategy->cost($this);
 }

Here is the CostStrategy class, together with its implementing children:

abstract class CostStrategy {
 abstract function cost(Lesson $lesson);
 abstract function chargeType();
}

class TimedCostStrategy extends CostStrategy {
 function cost(Lesson $lesson) {
 return ($lesson->getDuration() * 5);
 }
 function chargeType() {

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

137

 return "hourly rate";
 }
}

class FixedCostStrategy extends CostStrategy {
 function cost(Lesson $lesson) {
 return 30;
 }

 function chargeType() {
 return "fixed rate";
 }
}

I can change the way that any Lesson object calculates cost by passing it a different CostStrategy
object at runtime. This approach then makes for highly flexible code. Rather than building functionality
into my code structures statically, I can combine and recombine objects dynamically.

$lessons[] = new Seminar(4, new TimedCostStrategy());
$lessons[] = new Lecture(4, new FixedCostStrategy());

foreach ($lessons as $lesson) {
 print "lesson charge {$lesson->cost()}. ";
 print "Charge type: {$lesson->chargeType()}\n";
}

lesson charge 20. Charge type: hourly rate

lesson charge 30. Charge type: fixed rate

As you can see, one effect of this structure is that I have focused the responsibilities of my classes.
CostStrategy objects are responsible solely for calculating cost, and Lesson objects manage lesson data.

So, composition can make your code more flexible, because objects can be combined to handle
tasks dynamically in many more ways than you can anticipate in an inheritance hierarchy alone. There
can be a penalty with regard to readability, though. Because composition tends to result in more types,
with relationships that aren’t fixed with the same predictability as they are in inheritance relationships,
it can be slightly harder to digest the relationships in a system.

Decoupling
You saw in Chapter 6 that it makes sense to build independent components. A system with highly
interdependent classes can be hard to maintain. A change in one location can require a cascade of
related changes across the system.

The Problem
Reusability is one of the key objectives of object-oriented design, and tight coupling is its enemy. You
can diagnose tight coupling when you see that a change to one component of a system necessitates
many changes elsewhere. You shouldy aspire to create independent components so that you can make
changes without a domino effect of unintended consequences. When you alter a component, the extent

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

138

to which it is independent is related to the likelihood that your changes will cause other parts of your
system to fail.

You saw an example of tight coupling in Figure 8–2. Because the costing logic was mirrored across
the Lecture and Seminar types, a change to TimedPriceLecture would necessitate a parallel change to the
same logic in TimedPriceSeminar. By updating one class and not the other, I would break my system—
without any warning from the PHP engine. My first solution, using a conditional statement, produced a
similar dependency between the cost() and chargeType() methods.

By applying the Strategy pattern, I distilled my costing algorithms into the CostStrategy type,
locating them behind a common interface and implementing each only once.

Coupling of another sort can occur when many classes in a system are embedded explicitly into a
platform or environment. Let’s say that you are building a system that works with a MySQL database, for
example. You might use functions such as mysql_connect() and mysql_query() to speak to the database
server.

Should you be required to deploy the system on a server that does not support MySQL, you could
convert your entire project to use SQLite. You would be forced to make changes throughout your code,
though, and face the prospect of maintaining two parallel versions of your application.

The problem here is not the system’s dependency on an external platform. Such a dependency is
inevitable. You need to work with code that speaks to a database. The problem comes when such code is
scattered throughout a project. Talking to databases is not the primary responsibility of most classes in a
system, so the best strategy is to extract such code and group it together behind a common interface. In
this way, you promote the independence of your classes. At the same time, by concentrating your
gateway code in one place, you make it much easier to switch to a new platform without disturbing your
wider system. This process, the hiding of implementation behind a clean interface, is known as
encapsulation.

PEAR solves this problem with the PEAR::MDB2 package (which has superceded PEAR::DB). This
provides a single point of access for multiple databases. More recently the bundled PDO extension has
brought this model into the PHP language itself.

The MDB2 class provides a static method called connect() that accepts a Data Source Name (DSN)
string. According to the makeup of this string, it returns a particular implementation of a class called
MDB2_Driver_Common. So for the string "mysql://", the connect() method returns a MDB2_Driver_mysql
object, while for a string that starts with "sqlite://", it would return an MDB2_Driver_sqlite object. You
can see the class structure in Figure 8–5.

Figure 8–5. The PEAR::MDB2 package decouples client code from database objects.

The PEAR::MDB2 package, then, lets you decouple your application code from the specifics of your
database platform . As long as you use uncontroversial SQL, you should be able to run a single system
with MySQL, SQLite, MSSQL, and others without changing a line of code (apart from the DSN, of course,
which is the single point at which the database context must be configured). In fact, the PEAR::MDB2
package can also help manage different SQL dialects to some extent—one reason you might still choose
to use it, despite the speed and convenience of PDO.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

139

Loosening Your Coupling
To handle database code flexibly, you should decouple the application logic from the specifics of the
database platform it uses. You will see lots of opportunities for this kind of component separation of
components in your own projects.

Imagine for example that the Lesson system must incorporate a registration component to add new
lessons to the system. As part of the registration procedure, an administrator should be notified when a
lesson is added. The system's users can't agree whether this notification should be sent by mail, or by
text message. In fact, they're so argumentative, that you suspect they might want to switch to a new
mode of communication in the future. What's more, they want to be notified of all sorts of things. So that
a change to the notification mode in one place, will mean a similar alteration in many other places.

If you've hardcoded calls to a Mailer class, or a Texter class, then your system is tightly coupled to a
particular notification mode. Just as it would be tightly coupled to a database platform by the use of a
specialized database API.

Here is some code that hides the implementation details of a notifier from the system that uses it.

class RegistrationMgr {

 function register(Lesson $lesson) {

 // do something with this Lesson

 // now tell someone

 $notifier = Notifier::getNotifier();

 $notifier->inform("new lesson: cost ({$lesson->cost()})");

 }

}

abstract class Notifier {

 static function getNotifier() {

 // acquire concrete class according to

 // configuration or other logic

 if (rand(1,2) == 1) {

 return new MailNotifier();

 } else {

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

140

 return new TextNotifier();

 }

 }

 abstract function inform($message);

}

class MailNotifier extends Notifier {

 function inform($message) {

 print "MAIL notification: {$message}\n";

 }

}

class TextNotifier extends Notifier {

 function inform($message) {

 print "TEXT notification: {$message}\n";

 }

}

I create RegistrationMgr, a sample client for my Notifier classes. The Notifier class is abstract, but it
does implement a static method: getNotifier() which fetches a concrete Notifier object (TextNotifier
or MailNotifier). In a real project, the choice of Notifier would be determined by a flexible mechanism,
such as a configuration file. Here, I cheat and make the choice randomly. MailNotifier and
TextNotifier do nothing more than print out the message they are passed along with an identifier to
show which one has been called.

Notice how the knowledge of which concrete Notifier should be used has been focused in the
Notifier::getNotifier() method. I could send notifier messages from a hundred different parts of my
system, and a change in Notifier would only have to be made in that one method.

Here is some code that calls the RegistrationMgr,

$lessons1 = new Seminar(4, new TimedCostStrategy());

$lessons2 = new Lecture(4, new FixedCostStrategy());

$mgr = new RegistrationMgr();

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

141

$mgr->register($lessons1);

$mgr->register($lessons2);

and the output from a typical run

TEXT notification: new lesson: cost (20)
MAIL notification: new lesson: cost (30)

Figure 8–6 shows these classes.

Figure 8–6. The Notifier class separates client code from Notifier implementations.

Notice how similar the structure in Figure 8–6 is to that formed by the MDB2 components shown in
Figure 8–5

Code to an Interface, Not to an Implementation
This principle is one of the all-pervading themes of this book. You saw in Chapter 6 (and in the last
section) that you can hide different implementations behind the common interface defined in a
superclass. Client code can then require an object of the superclass’s type rather than that of an
implementing class, unconcerned by the specific implementation it is actually getting.

Parallel conditional statements, like the ones I built into Lesson::cost() and
Lesson::chargeType(), are a common signal that polymorphism is needed. They make code hard to
maintain, because a change in one conditional expression necessitates a change in its twins. Conditional
statements are occasionally said to implement a “simulated inheritance.”

By placing the cost algorithms in separate classes that implement CostStrategy, I remove
duplication. I also make it much easier should I need to add new cost strategies in the future.

From the perspective of client code, it is often a good idea to require abstract or general types in
your methods’ parameters. By requiring more specific types, you could limit the flexibility of your code
at runtime.

Having said that, of course, the level of generality you choose in your argument hints is a matter of
judgment. Make your choice too general, and your method may become less safe. If you require the
specific functionality of a subtype, then accepting a differently equipped sibling into a method could be
risky.

Still, make your choice of argument hint too restricted, and you lose the benefits of polymorphism.
Take a look at this altered extract from the Lesson class:

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

142

 function __construct($duration,
 FixedPriceStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

There are two issues arising from the design decision in this example. First, the Lesson object is now
tied to a specific cost strategy, which closes down my ability to compose dynamic components. Second,
the explicit reference to the FixedPriceStrategy class forces me to maintain that particular
implementation.

By requiring a common interface, I can combine a Lesson object with any CostStrategy
implementation:

 function __construct($duration, CostStrategy $strategy) {
 $this->duration = $duration;
 $this->costStrategy = $strategy;
 }

I have, in other words, decoupled my Lesson class from the specifics of cost calculation. All that
matters is the interface and the guarantee that the provided object will honor it.

Of course, coding to an interface can often simply defer the question of how to instantiate your
objects. When I say that a Lesson object can be combined with any CostStrategy interface at runtime, I
beg the question, “But where does the CostStrategy object come from?”

When you create an abstract super class, there is always the issue as to how its children should be
instantiated. Which child do you choose and according to which condition? This subject forms a
category of its own in the Gang of Four pattern catalog, and I will examine it further in the next chapter.

The Concept That Varies
It’s easy to interpret a design decision once it has been made, but how do you decide where to start?

The Gang of Four recommend that you “encapsulate the concept that varies.” In terms of my lesson
example, the varying concept is the cost algorithm. Not only is the cost calculation one of two possible
strategies in the example, but it is obviously a candidate for expansion: special offers, overseas student
rates, introductory discounts, all sorts of possibilities present themselves.

I quickly established that subclassing for this variation was inappropriate, and I resorted to a
conditional statement. By bringing my variation into the same class, I underlined its suitability for
encapsulation.

The Gang of Four recommend that you actively seek varying elements in your classes and assess
their suitability for encapsulation in a new type. Each alternative in a suspect conditional may be
extracted to form a class extending a common abstract parent. This new type can then be used by the
class or classes from which it was extracted. This has the effect of

• Focusing responsibility

• Promoting flexibility through composition

• Making inheritance hierarchies more compact and focused

• Reducing duplication

So how do you spot variation? One sign is the misuse of inheritance. This might include inheritance
deployed according to multiple forces at one time (lecture/seminar, fixed/timed cost). It might also
include subclassing on an algorithm where the algorithm is incidental to the core responsibility of the
type. The other sign of variation suitable for encapsulation is, of course, a conditional expression.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

143

Patternitis
One problem for which there is no pattern is the unnecessary or inappropriate use of patterns. This has
earned patterns a bad name in some quarters. Because pattern solutions are neat, it is tempting to apply
them wherever you see a fit, whether they truly fulfill a need or not.

The eXtreme Programming (XP) methodology offers a couple of principles that might apply here.
The first is “You aren’t going to need it” (often abbreviated to YAGNI). This is generally applied to
application features, but it also makes sense for patterns.

When I build large environments in PHP, I tend to split my application into layers, separating
application logic from presentation and persistence layers. I use all sorts of core and enterprise patterns
in conjunction with one another.

When I am asked to build a feedback form for a small business web site, however, I may simply use
procedural code in a single page script. I do not need enormous amounts of flexibility, I won’t be
building on the initial release. I don’t need to use patterns that address problems in larger systems.
Instead, I apply the second XP principle: “Do the simplest thing that works.”

When you work with a pattern catalog, the structure and process of the solution are what stick in the
mind, consolidated by the code example. Before applying a pattern, though, pay close attention to the
problem, or “when to use it,” section, and read up on the pattern’s consequences. In some contexts, the
cure may be worse than the disease.

The Patterns
This book is not a pattern catalog. Nevertheless, in the coming chapters, I will introduce a few of the key
patterns in use at the moment, providing PHP implementations and discussing them in the broad
context of PHP programming.

The patterns described will be drawn from key catalogs including Design Patterns, Patterns of
Enterprise Application Architecture by Martin Fowler (Addison-Wesley, 2003) and Core J2EE Patterns by
Alur et al. (Prentice Hall PTR, 2001). I use the Gang of Four’s categorization as a starting point, dividing
patterns as follows.

Patterns for Generating Objects
These patterns are concerned with the instantiation of objects. This is an important category given the
principle “code to an interface.” If you are working with abstract parent classes in your design, then you
must develop strategies for instantiating objects from concrete subclasses. It is these objects that will be
passed around your system.

Patterns for Organizing Objects and Classes
These patterns help you to organize the compositional relationships of your objects. More simply, these
patterns show how you combine objects and classes.

Task-Oriented Patterns
These patterns describe the mechanisms by which classes and objects cooperate to achieve objectives.

CHAPTER 8 ■ SOME PATTERN PRINCIPLES

144

Enterprise Patterns
I look at some patterns that describe typical Internet programming problems and solutions. Drawn
largely from Patterns of Enterprise Application Architecture and Core J2EE Patterns, the patterns deal with
presentation, and application logic.

Database Patterns
An examination of patterns that help with storing and retrieving data and with mapping objects to and
from databases.

Summary
In this chapter, I examined some of the principles that underpin many design patterns. I looked at the
use of composition to enable object combination and recombination at runtime, resulting in more
flexible structures than would be available using inheritance alone. I introduced you to decoupling, the
practice of extracting software components from their context to make them more generally applicable.
I reviewed the importance of interface as a means of decoupling clients from the details of
implementation.

In the coming chapters, I will examine some design patterns in detail.

C H A P T E R 9

■ ■ ■

145

Generating Objects

Creating objects is a messy business. So many object-oriented designs deal with nice, clean abstract
classes, taking advantage of the impressive flexibility afforded by polymorphism (the switching of
concrete implementations at runtime). To achieve this flexibility though, I must devise strategies for
object generation. This is the topic I will look at here.

This chapter will cover

• The Singleton pattern: A special class that generates one and only one object
instance

• The Factory Method pattern: Building an inheritance hierarchy of creator classes

• The Abstract Factory pattern: Grouping the creation of functionally related
products

• The Prototype pattern: Using clone to generate objects

Problems and Solutions in Generating Objects
Object creation can be a weak point in object-oriented design. In the previous chapter, you saw the
principle “Code to an interface, not to an implementation.” To this end, you are encouraged to work
with abstract supertypes in your classes. This makes code more flexible, allowing you to use objects
instantiated from different concrete subclasses at runtime. This has the side effect that object
instantiation is deferred.

Here’s a class that accepts a name string and instantiates a particular object:

abstract class Employee {
 protected $name;
 function __construct($name) {
 $this->name = $name;
 }
 abstract function fire();
}

class Minion extends Employee {
 function fire() {
 print "{$this->name}: I'll clear my desk\n";
 }
}

CHAPTER 9 ■ GENERATING OBJECTS

146

class NastyBoss {
 private $employees = array();

 function addEmployee($employeeName) {
 $this->employees[] = new Minion($employeeName);
 }

 function projectFails() {
 if (count($this->employees) > 0) {
 $emp = array_pop($this->employees);
 $emp->fire();
 }
 }
}

$boss = new NastyBoss();
$boss->addEmployee("harry");
$boss->addEmployee("bob");
$boss->addEmployee("mary");
$boss->projectFails();

// output:
// mary: I'll clear my desk

As you can see, I define an abstract base class: Employee, with a downtrodden implementation:
Minion. Given a name string, the NastyBoss::addEmployee() method instantiates a new Minion object.
Whenever a NastyBoss object runs into trouble (via the NastyBoss::projectFails() method), it looks for
a Minion to fire.

By instantiating a Minion object directly in the NastyBoss class, we limit flexibility. If a NastyBoss
object could work with any instance of the Employee type, we could make our code amenable to variation
at runtime as we add more Employee specializations. You should find the polymorphism in Figure 9-1
familiar.

Figure 9-1. Working with an abstract type enables polymorphism.

CHAPTER 9 ■ GENERATING OBJECTS

147

If the NastyBoss class does not instantiate a Minion object, where does it come from? Authors often
duck out of this problem by constraining an argument type in a method declaration and then
conveniently omitting to show the instantiation in anything other than a test context.

class NastyBoss {
 private $employees = array();

 function addEmployee(Employee $employee) {
 $this->employees[] = $employee;
 }

 function projectFails() {
 if (count($this->employees)) {
 $emp = array_pop($this->employees);
 $emp->fire();
 }
 }
}

// new Employee class...
class CluedUp extends Employee {
 function fire() {
 print "{$this->name}: I'll call my lawyer\n";
 }
}

$boss = new NastyBoss();
$boss->addEmployee(new Minion("harry"));
$boss->addEmployee(new CluedUp("bob"));
$boss->addEmployee(new Minion("mary"));
$boss->projectFails();
$boss->projectFails();
$boss->projectFails();
// output:
// mary: I'll clear my desk
// bob: I'll call my lawyer
// harry: I'll clear my desk

Although this version of the NastyBoss class works with the Employee type, and therefore benefits
from polymorphism, I still haven’t defined a strategy for object creation. Instantiating objects is a dirty
business, but it has to be done. This chapter is about classes and objects that work with concrete classes
so that the rest of your classes do not have to.

If there is a principle to be found here, it is “delegate object instantiation.” I did this implicitly in the
previous example by demanding that an Employee object is passed to the NastyBoss::addEmployee()
method. I could, however, equally delegate to a separate class or method that takes responsibility for
generating Employee objects. Here I add a static method to the Employee class that implements a strategy
for object creation:

abstract class Employee {
 protected $name;
 private static $types = array('minion', 'cluedup', 'wellconnected');

 static function recruit($name) {
 $num = rand(1, count(self::$types))-1;

CHAPTER 9 ■ GENERATING OBJECTS

148

 $class = self::$types[$num];
 return new $class($name);
 }

 function __construct($name) {
 $this->name = $name;
 }
 abstract function fire();
}

// new Employee class...

class WellConnected extends Employee {
 function fire() {
 print "{$this->name}: I'll call my dad\n";
 }
}

As you can see, this takes a name string and uses it to instantiate a particular Employee subtype at
random. I can now delegate the details of instantiation to the Employee class’s recruit() method:

$boss = new NastyBoss();
$boss->addEmployee(Employee::recruit("harry"));
$boss->addEmployee(Employee::recruit("bob"));
$boss->addEmployee(Employee::recruit("mary"));

You saw a simple example of such a class in Chapter 4. I placed a static method in the ShopProduct
class called getInstance(). getInstance() is responsible for generating the correct ShopProduct subclass
based on a database query. The ShopProduct class, therefore, has a dual role. It defines the ShopProduct
type, but it also acts as a factory for concrete ShopProduct objects.

■Note I use the term “factory” frequently in this chapter. A factory is a class or method with responsibility for
generating objects.

// class ShopProduct

 public static function getInstance($id, PDO $dbh) {
 $query = "select * from products where id = ?";
 $stmt = $dbh->prepare($query);

 if (! $stmt->execute(array($id))) {
 $error=$dbh->errorInfo();
 die("failed: ".$error[1]);
 }

 $row = $stmt->fetch();
 if (empty($row)) { return null; }

 if ($row['type'] == "book") {

CHAPTER 9 ■ GENERATING OBJECTS

149

 // instantiate a BookProduct objec
 } else if ($row['type'] == "cd") {
 $product = new CdProduct();
 // instantiate a CdProduct object
 } else {
 // instantiate a ShopProduct object
 }
 $product->setId($row['id']);
 $product->setDiscount($row['discount']);
 return $product;
 }

The getInstance() method uses a large if/else statement to determine which subclass to
instantiate. Conditionals like this are quite common in factory code. Although you should attempt to
excise large conditional statements from your projects, doing so often has the effect of pushing the
conditional back to the moment at which an object is generated. This is not generally a serious
problem, because you remove parallel conditionals from your code in pushing the decision making
back to this point.

In this chapter, then, I will examine some of the key Gang of Four patterns for generating objects.

The Singleton Pattern
The global variable is one of the great bugbears of the object-oriented programmer. The reasons should
be familiar to you by now. Global variables tie classes into their context, undermining encapsulation (see
Chapter 6, “Objects and Design,” and Chapter 8, “Some Pattern Principles,” for more on this). A class
that relies on global variables becomes impossible to pull out of one application and use in another,
without first ensuring that the new application itself defines the same global variables.

Although this is undesirable, the unprotected nature of global variables can be a greater problem.
Once you start relying on global variables, it is perhaps just a matter of time before one of your libraries
declares a global that clashes with another declared elsewhere. You have seen already that, if you are not
using namespaces, PHP is vulnerable to class name clashes, but this is much worse. PHP will not warn
you when globals collide. The first you will know about it is when your script begins to behave oddly.
Worse still, you may not notice any issues at all in your development environment. By using globals,
though, you potentially leave your users exposed to new and interesting conflicts when they attempt to
deploy your library alongside others.

Globals remain a temptation, however. This is because there are times when the sin inherent in
global access seems a price worth paying in order to give all your classes access to an object.

As I hinted, namespaces provide some protection from this. You can at least scope variables to a
package, which means that third-party libraries are less likely to clash with your own system. Even so,
the risk of collision exists within the namespace itself.

The Problem
Well-designed systems generally pass object instances around via method calls. Each class retains its
independence from the wider context, collaborating with other parts of the system via clear lines of
communication. Sometimes, though, you find that this forces you to use some classes as conduits for
objects that do not concern them, introducing dependencies in the name of good design.

Imagine a Preferences class that holds application-level information. We might use a Preferences
object to store data such as DSN strings (Data Source Names hold table and user information about a
database), URL roots, file paths, and so on. This is the sort of information that will vary from installation

CHAPTER 9 ■ GENERATING OBJECTS

150

to installation. The object may also be used as a notice board, a central location for messages that could
be set or retrieved by otherwise unrelated objects in a system.

Passing a Preferences object around from object to object may not always be a good idea. Many
classes that do not otherwise use the object could be forced to accept it simply so that they could pass it
on to the objects that they work with. This is just another kind of coupling.

You also need to be sure that all objects in your system are working with the same Preferences object.
You do not want objects setting values on one object, while others read from an entirely different one.

Let’s distill the forces in this problem:

• A Preferences object should be available to any object in your system.

• A Preferences object should not be stored in a global variable, which can be
overwritten.

• There should be no more than one Preferences object in play in the system. This
means that object Y can set a property in the Preferences object, and object Z can
retrieve the same property, without either one talking to the other directly
(assuming both have access to the Preferences object).

Implementation
To address this problem, I can start by asserting control over object instantiation. Here, I create a class
that cannot be instantiated from outside of itself. That may sound difficult, but it’s simply a matter of
defining a private constructor:

class Preferences {
 private $props = array();

 private function __construct() { }

 public function setProperty($key, $val) {
 $this->props[$key] = $val;
 }

 public function getProperty($key) {
 return $this->props[$key];
 }
}

Of course, at this point, the Preferences class is entirely unusable. I have taken access restriction to
an absurd level. Because the constructor is declared private, no client code can instantiate an object
from it. The setProperty() and getProperty() methods are therefore redundant.

I can use a static method and a static property to mediate object instantiation:

class Preferences {
 private $props = array();
 private static $instance;

 private function __construct() { }

 public static function getInstance() {
 if (empty(self::$instance)) {
 self::$instance = new Preferences();
 }

CHAPTER 9 ■ GENERATING OBJECTS

151

 return self::$instance;
 }

 public function setProperty($key, $val) {
 $this->props[$key] = $val;
 }

 public function getProperty($key) {
 return $this->props[$key];
 }
}

The $instance property is private and static, so it cannot be accessed from outside the class. The
getInstance() method has access though. Because getInstance() is public and static, it can be called via
the class from anywhere in a script.

$pref = Preferences::getInstance();
$pref->setProperty("name", "matt");

unset($pref); // remove the reference

$pref2 = Preferences::getInstance();
print $pref2->getProperty("name") ."\n"; // demonstrate value is not lost

The output is the single value we added to the Preferences object initially, available through a
separate access:

matt

A static method cannot access object properties because it is, by definition, invoked in a class and
not an object context. It can, however, access a static property. When getInstance() is called, I check the
Preferences::$instance property. If it is empty, then I create an instance of the Preferences class and
store it in the property. Then I return the instance to the calling code. Because the static getInstance()
method is part of the Preferences class, I have no problem instantiating a Preferences object even
though the constructor is private.

Figure 9-2 shows the Singleton pattern.

CHAPTER 9 ■ GENERATING OBJECTS

152

Figure 9-2. An example of the Singleton pattern

Consequences
So, how does the Singleton approach compare to using a global variable? First the bad news. Both
Singletons and global variables are prone to misuse. Because Singletons can be accessed from anywhere
in a system, they can serve to create dependencies that can be hard to debug. Change a Singleton, and
classes that use it may be affected. Dependencies are not a problem in themselves. After all, we create a
dependency every time we declare that a method requires an argument of a particular type. The
problem is that the global nature of the Singleton lets a programmer bypass the lines of communication
defined by class interfaces. When a Singleton is used, the dependency is hidden away inside a method
and not declared in its signature. This can make it harder to trace the relationships within a system.
Singleton classes should therefore be deployed sparingly and with care.

Nevertheless, I think that moderate use of the Singleton pattern can improve the design of a system,
saving you from horrible contortions as you pass objects unnecessarily around your system.

Singletons represent an improvement over global variables in an object-oriented context. You
cannot overwrite a Singleton with the wrong kind of data. This kind of protection is especially important
in versions of PHP that do not support namespaces. Any name clash will be caught at compile time,
ending script execution.

Factory Method Pattern
Object-oriented design emphasizes the abstract class over the implementation. That is, we work with
generalizations rather than specializations. The Factory Method pattern addresses the problem of how
to create object instances when your code focuses on abstract types. The answer? Let specialist classes
handle instantiation.

CHAPTER 9 ■ GENERATING OBJECTS

153

The Problem
Imagine a personal organizer project. Among others, you manage Appointment objects. Your business
group has forged a relationship with another company, and you must communicate appointment data
to them using a format called BloggsCal. The business group warns you that you may face yet more
formats as time wears on, though.

Staying at the level of interface alone, you can identify two participants right away. You need a
data encoder that converts your Appointment objects into a proprietary format. Let’s call that class
ApptEncoder. You need a manager class that will retrieve an encoder and maybe work with it to
communicate with a third party. You might call that CommsManager. Using the terminology of the
pattern, the CommsManager is the creator, and the ApptEncoder is the product. You can see this structure
in Figure 9-3.

Figure 9-3. Abstract creator and product classes

How do you get your hands on a real concrete ApptEncoder, though?
You could demand that an ApptEncoder is passed to the CommsManager, but that simply defers your

problem, and you want the buck to stop about here. Here I instantiate a BloggsApptEncoder object
directly within the CommsManager class:

abstract class ApptEncoder {
 abstract function encode();
}

class BloggsApptEncoder extends ApptEncoder {
 function encode() {
 return "Appointment data encoded in BloggsCal format\n";
 }
}

class MegaApptEncoder extends ApptEncoder {
 function encode() {
 return "Appointment data encoded in MegaCal format\n";
 }
}
class CommsManager {
 function getApptEncoder() {
 return new BloggsApptEncoder();
 }
}

The CommsManager class is responsible for generating BloggsApptEncoder objects. When the sands of
corporate allegiance inevitably shift and we are asked to convert our system to work with a new format
called MegaCal, we can simply add a conditional into the CommsManager::getApptEncoder() method. This
is the strategy we have used in the past, after all. Let’s build a new implementation of CommsManager that
handles both BloggsCal and MegaCal formats:

class CommsManager {
 const BLOGGS = 1;

CHAPTER 9 ■ GENERATING OBJECTS

154

 const MEGA = 2;
 private $mode = 1;

 function __construct($mode) {
 $this->mode = $mode;
 }

 function getApptEncoder() {
 switch ($this->mode) {
 case (self::MEGA):
 return new MegaApptEncoder();
 default:
 return new BloggsApptEncoder();
 }
 }
}

$comms = new CommsManager(CommsManager::MEGA);
$apptEncoder = $comms->getApptEncoder();
print $apptEncoder->encode();

I use constant flags to define two modes in which the script might be run: MEGA and BLOGGS. I use a
switch statement in the getApptEncoder() method to test the $mode property and instantiate the
appropriate implementation of ApptEncoder.

There is little wrong with this approach. Conditionals are sometimes considered examples of bad
“code smells,” but object creation often requires a conditional at some point. You should be less
sanguine if you see duplicate conditionals creeping into our code. The CommsManager class provides
functionality for communicating calendar data. Imagine that the protocols we work with require you to
provide header and footer data to delineate each appointment. I can extend the previous example to
support a getHeaderText() method:

class CommsManager {
 const BLOGGS = 1;
 const MEGA = 2;
 private $mode ;

 function __construct($mode) {
 $this->mode = $mode;
 }

 function getHeaderText() {
 switch ($this->mode) {
 case (self::MEGA):
 return "MegaCal header\n";
 default:
 return "BloggsCal header\n";
 }
 }
 function getApptEncoder() {
 switch ($this->mode) {
 case (self::MEGA):
 return new MegaApptEncoder();
 default:
 return new BloggsApptEncoder();

CHAPTER 9 ■ GENERATING OBJECTS

155

 }
 }
}

As you can see, the need to support header output has forced me to duplicate the protocol
conditional test. This will become unwieldy as I add new protocols, especially if I also add a
getFooterText() method.

So, to summarize the problem:

• I do not know until runtime the kind of object I need to produce
(BloggsApptEncoder or MegaApptEncoder).

• I need to be able to add new product types with relative ease. (SyncML support is
just a new business deal away!)

• Each product type is associated with a context that requires other customized
operations (getHeaderText(), getFooterText()).

Additionally, I am using conditional statements, and you have seen already that these are naturally
replaceable by polymorphism. The Factory Method pattern enables you to use inheritance and
polymorphism to encapsulate the creation of concrete products. In other words, you create a
CommsManager subclass for each protocol, each one implementing the getApptEncoder() method.

Implementation
The Factory Method pattern splits creator classes from the products they are designed to generate. The
creator is a factory class that defines a method for generating a product object. If no default
implementation is provided, it is left to creator child classes to perform the instantiation. Typically, each
creator subclass instantiates a parallel product child class.

I can redesignate CommsManager as an abstract class. That way I keep a flexible superclass and put all
my protocol-specific code in the concrete subclasses. You can see this alteration in Figure 9-4.

Figure 9-4. Concrete creator and product classes

Here’s some simplified code:

abstract class ApptEncoder {

CHAPTER 9 ■ GENERATING OBJECTS

156

 abstract function encode();
}

class BloggsApptEncoder extends ApptEncoder {
 function encode() {
 return "Appointment data encode in BloggsCal format\n";
 }
}

abstract class CommsManager {
 abstract function getHeaderText();
 abstract function getApptEncoder();
 abstract function getFooterText();
}

class BloggsCommsManager extends CommsManager {
 function getHeaderText() {
 return "BloggsCal header\n";
 }

 function getApptEncoder() {
 return new BloggsApptEncoder();
 }

 function getFooterText() {
 return "BloggsCal footer\n";
 }
}

The BloggsCommsManager::getApptEncoder() method returns a BloggsApptEncoder object. Client
code calling getApptEncoder() can expect an object of type ApptEncoder and will not necessarily know
about the concrete product it has been given. In some languages, method return types are enforced, so
client code calling a method like getApptEncoder() can be absolutely certain that it will receive an
ApptEncoder object. In PHP, this is a matter of convention at present. It is important to document return
types, or otherwise signal them through naming conventions.

■Note At the time of this writing, hinted return types are a feature slated for a future release of PHP.

So when I am required to implement MegaCal, supporting it is simply a matter of writing a new
implementation for my abstract classes. Figure 9-5 shows the MegaCal classes.

CHAPTER 9 ■ GENERATING OBJECTS

157

Figure 9-5. Extending the design to support a new protocol

Consequences
Notice that the creator classes mirror the product hierarchy. This is a common consequence of the
Factory Method pattern and disliked by some as a special kind of code duplication. Another issue is the
possibility that the pattern could encourage unnecessary subclassing. If your only reason for subclassing
a creator is to deploy the Factory Method pattern, you may need to think again (that’s why I introduced
the header and footer constraints to our example here).

I have focused only on appointments in my example. If I extend it somewhat to include to-do items
and contacts, I face a new problem. I need a structure that will handle sets of related implementations at
one time. The Factory Method pattern is often used with the Abstract Factory pattern, as you will see in
the next section.

Abstract Factory Pattern
In large applications, you may need factories that produce related sets of classes. The Abstract Factory
pattern addresses this problem.

CHAPTER 9 ■ GENERATING OBJECTS

158

The Problem
Let’s look again at the organizer example. I manage encoding in two formats, BloggsCal and MegaCal. I
can grow this structure horizontally by adding more encoding formats, but how can I grow vertically,
adding encoders for different types of PIM object? In fact, I have been working toward this pattern
already.

In Figure 9-6, you can see the parallel families with which I will want to work. These are
appointments (Appt), things to do (Ttd), and contacts (Contact).

The BloggsCal classes are unrelated to one another by inheritance (although they could implement
a common interface), but they are functionally parallel. If the system is currently working with
BloggsTtdEncoder, it should also be working with BloggsContactEncoder.

To see how I enforce this, you can begin with the interface as I did with the Factory Method pattern
(see Figure 9-7).

Figure 9-6. Three product families

CHAPTER 9 ■ GENERATING OBJECTS

159

Figure 9-7. An abstract creator and its abstract products

Implementation
The abstract CommsManager class defines the interface for generating each of the three products
(ApptEncoder, TtdEncoder, and ContactEncoder). You need to implement a concrete creator in order to
actually generate the concrete products for a particular family. I illustrate that for the BloggsCal format
in Figure 9-8.

Here is a code version of CommsManager and BloggsCommsManager:

abstract class CommsManager {
 abstract function getHeaderText();
 abstract function getApptEncoder();
 abstract function getTtdEncoder();
 abstract function getContactEncoder();
 abstract function getFooterText();
}

class BloggsCommsManager extends CommsManager {
 function getHeaderText() {
 return "BloggsCal header\n";
 }

 function getApptEncoder() {
 return new BloggsApptEncoder();
 }

 function getTtdEncoder() {
 return new BloggsTtdEncoder();
 }

 function getContactEncoder() {
 return new BloggsContactEncoder();
 }

CHAPTER 9 ■ GENERATING OBJECTS

160

 function getFooterText() {
 return "BloggsCal footer\n";
 }
}

Figure 9-8. Adding a concrete creator and some concrete products

Notice that I use the Factory Method pattern in this example. getContact() is abstract in
CommsManager and implemented in BloggsCommsManager. Design patterns tend to work together in this
way, one pattern creating the context that lends itself to another. In Figure 9-9, I add support for the
MegaCal format.

CHAPTER 9 ■ GENERATING OBJECTS

161

Figure 9-9. Adding concrete creators and some concrete products

Consequences
So what does this pattern buy you?

• First, you decouple your system from the details of implementation. I can add or
remove any number of encoding formats in my example without causing a knock
on effect.

• You enforce the grouping of functionally related elements of your system. So by
using BloggsCommsManager, I am guaranteed that I will work only with BloggsCal-
related classes.

• Adding new products can be a pain. Not only do I have to create concrete
implementations of the new product but also we have to amend the abstract
creator and every one of its concrete implementers in order to support it.

Many implementations of the Abstract Factory pattern use the Factory Method pattern. This may be
because most examples are written in Java or C++. PHP, however, does not enforce a return type for a
method, which affords us some flexibility that we might leverage.

Rather than create separate methods for each Factory Method, you can create a single make()
method that uses a flag argument to determine which object to return:

CHAPTER 9 ■ GENERATING OBJECTS

162

abstract class CommsManager {
 const APPT = 1;
 const TTD = 2;
 const CONTACT = 3;
 abstract function getHeaderText();
 abstract function make($flag_int);
 abstract function getFooterText();
}

class BloggsCommsManager extends CommsManager {
 function getHeaderText() {
 return "BloggsCal header\n";
 }
 function make($flag_int) {
 switch ($flag_int) {
 case self::APPT:
 return new BloggsApptEncoder();
 case self::CONTACT:
 return new BloggsContactEncoder();
 case self::TTD:
 return new BloggsTtdEncoder();
 }
 }

 function getFooterText() {
 return "BloggsCal footer\n";
 }
}

As you can see, I have made the class interface more compact. I've done this at a considerable cost,
though. In using a factory method, you define a clear interface and force all concrete factory objects to
honor it. In using a single make() method, I must remember to support all product objects in all the
concrete creators. I also introduce parallel conditionals, as each concrete creator must implement the
same flag tests. A client class cannot be certain that concrete creators generate all the products because
the internals of make() are a matter of choice in each case.

On the other hand, you can build more flexible creators. The base creator class can provide a make()
method that guarantees a default implementation of each product family. Concrete children could then
modify this behavior selectively. It would be up to implementing creator classes to call the default make()
method after providing their own implementation.

You will see another variation on the Abstract Factory pattern in the next section.

Prototype
The emergence of parallel inheritance hierarchies can be a problem with the Factory Method pattern.
This is a kind of coupling that makes some programmers uncomfortable. Every time you add a product
family, you are forced to create an associated concrete creator (the BloggsCal encoders are matched by
BloggsCommsManager, for example). In a system that grows fast to encompass many products,
maintaining this kind of relationship can quickly become tiresome.

One way of avoiding this dependency is to use PHP’s clone keyword to duplicate existing concrete
products. The concrete product classes themselves then become the basis of their own generation. This
is the Prototype pattern. It enables you to replace inheritance with composition. This in turn promotes
runtime flexibility and reduces the number of classes you must create.

CHAPTER 9 ■ GENERATING OBJECTS

163

The Problem
Imagine a Civilization-style web game in which units operate on a grid of tiles. Each tile can represent
sea, plains, or forests. The terrain type constrains the movement and combat abilities of units occupying
the tile. You might have a TerrainFactory object that serves up Sea, Forest, and Plains objects. You
decide that you will allow the user to choose among radically different environments, so the Sea object is
an abstract superclass implemented by MarsSea and EarthSea. Forest and Plains objects are similarly
implemented. The forces here lend themselves to the Abstract Factory pattern. You have distinct
product hierarchies (Sea, Plains, Forests), with strong family relationships cutting across inheritance
(Earth, Mars). Figure 9-10 presents a class diagram that shows how you might deploy the Abstract
Factory and Factory Method patterns to work with these products.

As you can see, I rely on inheritance to group the terrain family for the products that a factory will
generate. This is a workable solution, but it requires a large inheritance hierarchy, and it is relatively
inflexible. When you do not want parallel inheritance hierarchies, and when you need to maximize
runtime flexibility, the Prototype pattern can be used in a powerful variation on the Abstract Factory
pattern.

Figure 9-10. Handling terrains with the Abstract Factory method

Implementation
When you work with the Abstract Factory/Factory Method patterns, you must decide, at some point, which
concrete creator we wish to work with, probably by checking some kind of preference flag. Since you must
do this anyway, why not simply create a factory class that stores concrete products, and populate this
during initialization? You can cut down on a couple of classes this way and, as you shall see, take advantage
of other benefits. Here’s some simple code that uses the Prototype pattern in a factory:

CHAPTER 9 ■ GENERATING OBJECTS

164

class Sea {}
class EarthSea extends Sea {}
class MarsSea extends Sea {}

class Plains {}
class EarthPlains extends Plains {}
class MarsPlains extends Plains {}

class Forest {}
class EarthForest extends Forest {}
class MarsForest extends Forest {}

class TerrainFactory {
 private $sea;
 private $forest;
 private $plains;

 function __construct(Sea $sea, Plains $plains, Forest $forest) {
 $this->sea = $sea;
 $this->plains = $plains;
 $this->forest = $forest;
 }

 function getSea() {
 return clone $this->sea;
 }

 function getPlains() {
 return clone $this->plains;
 }

 function getForest() {
 return clone $this->forest;
 }
}

$factory = new TerrainFactory(new EarthSea(),
 new EarthPlains(),
 new EarthForest());
print_r($factory->getSea());
print_r($factory->getPlains());
print_r($factory->getForest());

As you can see, I load up a concrete TerrainFactory with instances of product objects. When a client
calls getSea(), I return a clone of the Sea object that I cached during initialization. Not only have I saved
a couple of classes but I have bought additional flexibility. Want to play a game on a new planet with
Earth-like seas and forests, but Mars-like plains? No need to write a new creator class—you can simply
change the mix of classes you add to TerrainFactory:

$factory = new TerrainFactory(new EarthSea(),
 new MarsPlains(),
 new EarthForest());

So the Prototype pattern allows you to take advantage of the flexibility afforded by composition. We
get more than that, though. Because you are storing and cloning objects at runtime, you reproduce

CHAPTER 9 ■ GENERATING OBJECTS

165

object state when you generate new products. Imagine that Sea objects have a $navigability property.
The property influences the amount of movement energy a sea tile saps from a vessel and can be set to
adjust the difficulty level of a game:

class Sea {
 private $navigability = 0;
 function __construct($navigability) {
 $this->navigability = $navigability;
 }
}

Now, when I initialize the TerrainFactory object, I can add a Sea object with a navigability modifier.
This will then hold true for all Sea objects served by TerrainFactory:

$factory = new TerrainFactory(new EarthSea(-1),
 new EarthPlains(),
 new EarthForest());

This flexibility is also apparent when the object you wish to generate is composed of other objects.
Perhaps all Sea objects can contain Resource objects (FishResource, OilResource, etc.). According to a
preference flag, we might give all Sea objects a FishResource by default. Remember that if your products
reference other objects, you should implement a __clone() method in order to ensure that you make a
deep copy.

■Note I covered object cloning in Chapter 4. The clone keyword generates a shallow copy of any object to
which it is applied. This means that the product object will have the same properties as the source. If any of the
source’s properties are objects, then these will not be copied into the product. Instead, the product will reference
the same object properties. It is up to you to change this default and to customize object copying in any other way,
by implementing a __clone() method. This is called automatically when the clone keyword is used.

class Contained { }

class Container {
 public $contained;
 function __construct() {
 $this->contained = new Contained();
 }

 function __clone() {
 // Ensure that cloned object holds a
 // clone of self::$contained and not
 // a reference to it
 $this->contained = clone $this->contained;
 }
}

CHAPTER 9 ■ GENERATING OBJECTS

166

But That’s Cheating!
I promised that this chapter would deal with the logic of object creation, doing away with the sneaky
buck-passing of many object-oriented examples. Yet some patterns here have slyly dodged the decision-
making part of object creation, if not the creation itself.

The Singleton pattern is not guilty. The logic for object creation is built in and unambiguous. The
Abstract Factory pattern groups the creation of product families into distinct concrete creators. How do
we decide which concrete creator to use though? The Prototype pattern presents us with a similar
problem. Both these patterns handle the creation of objects, but they defer the decision as to which
object, or group of objects, should be created.

The particular concrete creator that a system chooses is often decided according to the value of a
configuration switch of some kind. This could be located in a database, a configuration file, or a server
file (such as Apache’s directory-level configuration file, usually called .htaccess), or it could even be
hard-coded as a PHP variable or property. Because PHP applications must be reconfigured for every
request, you need script initialization to be as painless as possible. For this reason, I often opt to hard-
code configuration flags in PHP code. This can be done by hand or by writing a script that autogenerates
a class file. Here’s a crude class that includes a flag for calendar protocol types:

class Settings {
 static $COMMSTYPE = 'Bloggs';
}

Now that I have a flag (however inelegant), I can create a class that uses it to decide which
CommsManager to serve on request. It is quite common to see a Singleton used in conjunction with the
Abstract Factory pattern, so let’s do that:

require_once('Settings.php');

class AppConfig {
 private static $instance;
 private $commsManager;

 private function __construct() {
 // will run once only
 $this->init();
 }

 private function init() {
 switch (Settings::$COMMSTYPE) {
 case 'Mega':
 $this->commsManager = new MegaCommsManager();
 break;
 default:
 $this->commsManager = new BloggsCommsManager();
 }
 }

 public static function getInstance() {
 if (empty(self::$instance)) {
 self::$instance = new self();
 }
 return self::$instance;
 }

CHAPTER 9 ■ GENERATING OBJECTS

167

 public function getCommsManager() {
 return $this->commsManager;
 }
}

The AppConfig class is a standard Singleton. For that reason, I can get an AppConfig instance
anywhere in our system, and I will always get the same one. The init() method is invoked by the class’s
constructor and is therefore only run once in a process. It tests the Settings::$COMMSTYPE property,
instantiating a concrete CommsManager object according to its value. Now my script can get a
CommsManager object and work with it without ever knowing about its concrete implementations or the
concrete classes it generates:

$commsMgr = AppConfig::getInstance()->getCommsManager();
$commsMgr->getApptEncoder()->encode();

Summary
This chapter covered some of the tricks you can use to generate objects. I examined the Singleton
pattern, which provides global access to a single instance. I looked at the Factory Method pattern, which
applies the principle of polymorphism to object generation. I combined Factory Method with the
Abstract Factory pattern to generate creator classes that instantiate sets of related objects. Finally, I
looked at the Prototype pattern and saw how object cloning can allow composition to be used in object
generation.

C H A P T E R 10

■ ■ ■

169

Patterns for Flexible Object

Programming

With strategies for generating objects covered, we’re free now to look at some strategies for structuring
classes and objects. I will focus in particular on the principle that composition provides greater flexibility
than inheritance. The patterns I examine in this chapter are once again drawn from the Gang of Four
catalog.

This chapter will cover

• The Composite pattern: Composing structures in which groups of objects can be
used as if they were individual objects

• The Decorator pattern: A flexible mechanism for combining objects at runtime to
extend functionality

• The Facade pattern: Creating a simple interface to complex or variable systems

Structuring Classes to Allow Flexible Objects
Way back in Chapter 4, I said that beginners often confuse objects and classes. This was only half true. In
fact, most of the rest of us occasionally scratch our heads over UML class diagrams, attempting to
reconcile the static inheritance structures they show with the dynamic object relationships their objects
will enter into off the page.

Remember the pattern principle “Favor composition over inheritance”? This principle distills this
tension between the organization of classes and of objects. In order to build flexibility into our projects,
we structure our classes so that their objects can be composed into useful structures at runtime.

This is a common theme running through the first two patterns of this chapter. Inheritance is an
important feature in both, but part of its importance lies in providing the mechanism by which
composition can be used to represent structures and extend functionality.

The Composite Pattern
The Composite pattern is perhaps the most extreme example of inheritance deployed in the service of
composition. It is a simple and yet breathtakingly elegant design. It is also fantastically useful. Be
warned, though, it is so neat, you might be tempted to overuse this strategy.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

170

The Composite pattern is a simple way of aggregating and then managing groups of similar objects so
that an individual object is indistinguishable to a client from a collection of objects. The pattern is, in fact,
very simple, but it is also often confusing. One reason for this is the similarity in structure of the classes in
the pattern to the organization of its objects. Inheritance hierarchies are trees, beginning with the super
class at the root, and branching out into specialized subclasses. The inheritance tree of classes laid down by
the Composite pattern is designed to allow the easy generation and traversal of a tree of objects.

If you are not already familiar with this pattern, you have every right to feel confused at this point.
Let’s try an analogy to illustrate the way that single entities can be treated in the same way as collections
of things. Given broadly irreducible ingredients such as cereals and meat (or soya if you prefer), we can
make a food product—a sausage, for example. We then act on the result as a single entity. Just as we eat,
cook, buy, or sell meat, we can eat, cook, buy, or sell the sausage that the meat in part composes. We
might take the sausage and combine it with the other composite ingredients to make a pie, thereby
rolling a composite into a larger composite. We behave in the same way to the collection as we do to the
parts. The Composite pattern helps us to model this relationship between collections and components
in our code.

The Problem
Managing groups of objects can be quite a complex task, especially if the objects in question might also
contain objects of their own. This kind of problem is very common in coding. Think of invoices, with line
items that summarize additional products or services, or things-to-do lists with items that themselves
contain multiple subtasks. In content management, we can’t move for trees of sections, pages, articles,
media components. Managing these structures from the outside can quickly become daunting.

Let’s return to a previous scenario. I am designing a system based on a game called Civilization. A
player can move units around hundreds of tiles that make up a map. Individual counters can be grouped
together to move, fight, and defend themselves as a unit. Here I define a couple of unit types:

abstract class Unit {
 abstract function bombardStrength();
}

class Archer extends Unit {
 function bombardStrength() {
 return 4;
 }
}

class LaserCannonUnit extends Unit {
 function bombardStrength() {
 return 44;
 }
}

The Unit class defines an abstract bombardStrength() method, which sets the attack strength of a
unit bombarding an adjacent tile. I implement this in both the Archer and LaserCannonUnit classes.
These classes would also contain information about movement and defensive capabilities, but I’ll keep
things simple. I could define a separate class to group units together like this:

class Army {
 private $units = array();

 function addUnit(Unit $unit) {
 array_push($this->units, $unit);
 }

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

171

 function bombardStrength() {
 $ret = 0;
 foreach($this->units as $unit) {
 $ret += $unit->bombardStrength();
 }
 return $ret;
 }
}

The Army class has an addUnit() method that accepts a Unit object. Unit objects are stored in an
array property called $units. I calculate the combined strength of my army in the bombardStrength()
method. This simply iterates through the aggregated Unit objects, calling the bombardStrength() method
of each one.

This model is perfectly acceptable as long as the problem remains as simple as this. What happens,
though, if I were to add some new requirements? Let’s say that an army should be able to combine with
other armies. Each army should retain its own identity so that it can disentangle itself from the whole at
a later date. The ArchDuke’s brave forces may have common cause today with General Soames’ push
toward the exposed flank of the enemy, but a domestic rebellion may send his army scurrying home at
any time. For this reason, I can’t just decant the units from each army into a new force.

I could amend the Army class to accept Army objects as well as Unit objects:

 function addArmy(Army $army) {
 array_push($this->armies, $army);
 }

Then I’d need to amend the bombardStrength() method to iterate through all armies as well as units:

 function bombardStrength() {
 $ret = 0;
 foreach($this->units as $unit) {
 $ret += $unit->bombardStrength();
 }

 foreach($this->armies as $army) {
 $ret += $army->bombardStrength();
 }

 return $ret;
 }

This additional complexity is not too problematic at the moment. Remember, though, dI woul need
to do something similar in methods like defensiveStrength(), movementRange(), and so on. My game is
going to be richly featured. Already the business group is calling for troop carriers that can hold up to ten
units to improve their movement range on certain terrains. Clearly, a troop carrier is similar to an army
in that it groups units. It also has its own characteristics. I could further amend the Army class to handle
TroopCarrier objects, but I know that there will be a need for still more unit groupings. It is clear that I
need a more flexible model.

Let’s look again at the model I have been building. All the classes I created shared the need for a
bombardStrength() method. In effect, a client does not need to distinguish between an army, a unit, or a
troop carrier. They are functionally identical. They need to move, attack, and defend. Those objects that
contain others need to provide methods for adding and removing. These similarities lead us to an
inevitable conclusion. Because container objects share an interface with the objects that they contain,
they are naturally suited to share a type family.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

172

Implementation
The Composite pattern defines a single inheritance hierarchy that lays down two distinct sets of
responsibilities. We have already seen both of these in our example. Classes in the pattern must support
a common set of operations as their primary responsibility. For us, that means the bombardStrength()
method. Classes must also support methods for adding and removing child objects.

Figure 10–1 shows a class diagram that illustrates the Composite pattern as applied to our problem.

Figure 10–1. The Composite pattern

As you can see, all the units in this model extend the Unit class. A client can be sure, then, that any
Unit object will support the bombardStrength() method. So an Army can be treated in exactly the same
way as an Archer.

The Army and TroopCarrier classes are composites: designed to hold Unit objects. The Archer and
LaserCannon classes are leaves, designed to support unit operations but not to hold other Unit objects.
There is actually an issue as to whether leaves should honor the same interface as composites as they do
in Figure 1. The diagram shows TroopCarrier and Army aggregating other units, even though the leaf
classes are also bound to implement addUnit(), I will return to this question shortly. Here is the abstract
Unit class:

abstract class Unit {
 abstract function addUnit(Unit $unit);
 abstract function removeUnit(Unit $unit);
 abstract function bombardStrength();
}

As you can see, I lay down the basic functionality for all Unit objects here. Now, let’s see how a
composite object might implement these abstract methods:

class Army extends Unit {
 private $units = array();

 function addUnit(Unit $unit) {
 if (in_array($unit, $this->units, true)) {
 return;
 }
 $this->units[] = $unit;
 }

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

173

 function removeUnit(Unit $unit) {

 $this->units = array_udiff($this->units, array($unit),

 function($a, $b) { return ($a === $b)?0:1; });

 }

 function bombardStrength() {
 $ret = 0;
 foreach($this->units as $unit) {
 $ret += $unit->bombardStrength();
 }
 return $ret;
 }
}

The addUnit() method checks that I have not yet added the same Unit object before storing it in the
private $units array property. removeUnit() uses a similar check to remove a given Unit object from the
property.

■Note I use an anonymous callback function in the removeUnit() method. This checks the array elements in
the $units property for equivalence. Anonymous functions were introduced in PHP 5.3. If you're running an older
version of PHP, you can use the create_function() method to get a similar effect:

 $this->units = array_udiff($this->units, array($unit),

 create_function('$a,$b', 'return ($a === $b)?0:1;'));

Army objects, then, can store Units of any kind, including other Army objects, or leaves such as Archer

or LaserCannonUnit. Because all units are guaranteed to support bombardStrength(), our
Army::bombardStrength() method simply iterates through all the child Unit objects stored in the $units
property, calling the same method on each.

One problematic aspect of the Composite pattern is the implementation of add and remove
functionality. The classic pattern places add() and remove() methods in the abstract super class. This
ensures that all classes in the pattern share a common interface. As you can see here, though, it also
means that leaf classes must provide an implementation:

class UnitException extends Exception {}

class Archer extends Unit {
 function addUnit(Unit $unit) {
 throw new UnitException(get_class($this)." is a leaf");
 }

 function removeUnit(Unit $unit) {
 throw new UnitException(get_class($this)." is a leaf");
 }

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

174

 function bombardStrength() {
 return 4;
 }
}

I do not want to make it possible to add a Unit object to an Archer object, so I throw exceptions if
addUnit() or removeUnit() are called. I will need to do this for all leaf objects, so I could perhaps improve
my design by replacing the abstract addUnit()/removeUnit() methods in Unit with default
implementations like the one in the preceding example.

abstract class Unit {
 abstract function bombardStrength();

 function addUnit(Unit $unit) {
 throw new UnitException(get_class($this)." is a leaf");
 }

 function removeUnit(Unit $unit) {
 throw new UnitException(get_class($this)." is a leaf");
 }
}

class Archer extends Unit {
 function bombardStrength() {
 return 4;
 }
}

This removes duplication in leaf classes but has the drawback that a Composite is not forced at
compile time to provide an implementation of addUnit() and removeUnit(), which could cause
problems down the line.

I will look in more detail at some of the problems presented by the Composite pattern in the next
section. Let’s end this section by examining of some of its benefits.

• Flexibility: Because everything in the Composite pattern shares a common
supertype, it is very easy to add new composite or leaf objects to the design
without changing a program’s wider context.

• Simplicity: A client using a Composite structure has a straightforward interface.
There is no need for a client to distinguish between an object that is composed of
others and a leaf object (except when adding new components). A call to
Army::bombardStrength() may cause a cascade of delegated calls behind the
scenes, but to the client, the process and result are exactly equivalent to those
associated with calling Archer::bombardStrength().

• Implicit reach: Objects in the Composite pattern are organized in a tree. Each
composite holds references to its children. An operation on a particular part of the
tree, therefore, can have a wide effect. We might remove a single Army object from
its Army parent and add it to another. This simple act is wrought on one object, but
it has the effect of changing the status of the Army object’s referenced Unit objects
and of their own children.

• Explicit reach: Tree structures are easy to traverse. They can be iterated through in
order to gain information or to perform transformations. We will look at a
particularly powerful technique for this in the next chapter when we deal with the
Visitor pattern.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

175

Often you really see the benefit of a pattern only from the client’s perspective, so here are a couple
of armies:

// create an army
$main_army = new Army();

// add some units
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCannonUnit());

// create a new army
$sub_army = new Army();

// add some units
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());
$sub_army->addUnit(new Archer());

// add the second army to the first
$main_army->addUnit($sub_army);

// all the calculations handled behind the scenes
print "attacking with strength: {$main_army->bombardStrength()}\n";

I create a new Army object and add some primitive Unit objects. I repeat the process for a second
Army object that I then add to the first. When I call Unit::bombardStrength() on the first Army object, all
the complexity of the structure that I have built up is entirely hidden.

Consequences
If you’re anything like me, you would have heard alarm bells ringing when you saw the code extract for
the Archer class. Why do we put up with these redundant addUnit() and removeUnit() methods in leaf
classes that do not need to support them? An answer of sorts lies in the transparency of the Unit type.

If a client is passed a Unit object, it knows that the addUnit() method will be present. The
Composite pattern principle that primitive (leaf) classes have the same interface as composites is
upheld. This does not actually help you much, because you still do not know how safe you might be
calling addUnit() on any Unit object you might come across.

If I move these add/remove methods down so that they are available only to composite classes, then
passing a Unit object to a method leaves me with the problem that I do not know by default whether or
not it supports addUnit(). Nevertheless, leaving booby-trapped methods lying around in leaf classes
makes me uncomfortable. It adds no value and confuses a system’s design, because the interface
effectively lies about its own functionality.

You can split composite classes off into their own CompositeUnit subtype quite easily. First of all, I
excise the add/remove behavior from Unit:

abstract class Unit {
 function getComposite() {
 return null;
 }

 abstract function bombardStrength();
}

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

176

Notice the new getComposite() method. I will return to this in a little while. Now, I need a new
abstract class to hold addUnit() and removeUnit(). I can even provide default implementations:

abstract class CompositeUnit extends Unit {
 private $units = array();

 function getComposite() {
 return $this;
 }

 protected function units() {
 return $this->units;
 }

 function removeUnit(Unit $unit) {
 $this->units = array_udiff($this->units, array($unit),

 function($a, $b) { return ($a === $b)?0:1; });

 }

 function addUnit(Unit $unit) {
 if (in_array($unit, $this->units, true)) {
 return;
 }
 $this->units[] = $unit;
 }
}

The CompositeUnit class is declared abstract, even though it does not itself declare an abstract
method. It does, however, extend Unit, and does not implement the abstract bombardStrength() method.
Army (and any other composite classes) can now extend CompositeUnit. The classes in my example are
now organized as in Figure 10–2.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

177

Figure 10–2. Moving add/remove methods out of the base class

The annoying, useless implementations of add/remove methods in the leaf classes are gone, but the
client must still check to see whether it has a CompositeUnit before it can use addUnit().

This is where the getComposite() method comes into its own. By default, this method returns a null
value. Only in a CompositeUnit class does it return CompositeUnit. So if a call to this method returns an
object, we should be able to call addUnit() on it. Here’s a client that uses this technique:

class UnitScript {
 static function joinExisting(Unit $newUnit,
 Unit $occupyingUnit) {
 $comp;

 if (! is_null($comp = $occupyingUnit->getComposite())) {
 $comp->addUnit($newUnit);
 } else {
 $comp = new Army();
 $comp->addUnit($occupyingUnit);
 $comp->addUnit($newUnit);
 }
 return $comp;
 }
}

The joinExisting() method accepts two Unit objects. The first is a newcomer to a tile, and the
second is a prior occupier. If the second Unit is a CompositeUnit, then the first will attempt to join it. If
not, then a new Army will be created to cover both units. I have no way of knowing at first whether the
$occupyingUnit argument contains a CompositeUnit. A call to getComposite() settles the matter, though.
If getComposite() returns an object, I can add the new Unit object to it directly. If not, I create the new
Army object and add both.

I could simplify this model further by having the Unit::getComposite() method return an Army
object prepopulated with the current Unit. Or I could return to the previous model (which did not
distinguish structurally between composite and leaf objects) and have Unit::addUnit() do the same
thing: create an Army object, and add both Unit objects to it. This is neat, but it presupposes that you
know in advance the type of composite you would like to use to aggregate your units. Your business logic

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

178

will determine the kinds of assumptions you can make when you design methods like getComposite()
and addUnit().

These contortions are symptomatic of a drawback to the Composite pattern. Simplicity is achieved
by ensuring that all classes are derived from a common base. The benefit of simplicity is sometimes
bought at a cost to type safety. The more complex your model becomes, the more manual type checking
you are likely to have to do. Let’s say that I have a Cavalry object. If the rules of the game state that you
cannot put a horse on a troop carrier, I have no automatic way of enforcing this with the Composite
pattern:

class TroopCarrier {

 function addUnit(Unit $unit) {
 if ($unit instanceof Cavalry) {
 throw new UnitException("Can't get a horse on the vehicle");
 }
 super::addUnit($unit);
 }

 function bombardStrength() {
 return 0;
 }
}

I am forced to use the instanceof operator to test the type of the object passed to addUnit(). Too
many special cases of this kind, and the drawbacks of the pattern begin to outweigh its benefits.
Composite works best when most of the components are interchangeable.

Another issue to bear in mind is the cost of some Composite operations. The Army ::
bombardStrength() method is typical in that it sets off a cascade of calls to the same method down the
tree. For a large tree with lots of subarmies, a single call can cause an avalanche behind the scenes.
bombardStrength() is not itself very expensive, but what would happen if some leaves performed a
complex calculation to arrive at their return values? One way around this problem is to cache the result
of a method call of this sort in the parent object, so that subsequent invocations are less expensive. You
need to be careful, though, to ensure that the cached value does not grow stale. You should devise
strategies to wipe any caches whenever any operations take place on the tree. This may require that you
give child objects references to their parents.

Finally, a note about persistence. The Composite pattern is elegant, but it doesn’t lend itself neatly
to storage in a relational database. This is because, by default, you access the entire structure only
through a cascade of references. So to construct a Composite structure from a database in the natural
way you would have to make multiple expensive queries. You can get round this problem by assigning
an ID to the whole tree, so that all components can be drawn from the database in one go. Having
acquired all the objects, however, you would still have the task of recreating the parent/child references
which themselves would have to be stored in the database. This is not difficult, but it is somewhat messy.

While Composites sit uneasily with relational databases, they lend themselves very well indeed to
storage in XML. This is because XML elements are often themselves composed of trees of subelements.

Composite in Summary
So the Composite pattern is useful when you need to treat a collection of things in the same way as you
would an individual, either because the collection is intrinsically like a component (armies and archers),
or because the context gives the collection the same characteristics as the component (line items in an
invoice). Composites are arranged in trees, so an operation on the whole can affect the parts, and data
from the parts is transparently available via the whole. The Composite pattern makes such operations

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

179

and queries transparent to the client. Trees are easy to traverse (as we shall see in the next chapter). It is
easy to add new component types to Composite structures.

On the downside, Composites rely on the similarity of their parts. As soon as we introduce complex
rules as to which composite object can hold which set of components, our code can become hard to
manage. Composites do not lend themselves well to storage in relational databases but are well suited to
XML persistence.

The Decorator Pattern
While the Composite pattern helps us to create a flexible representation of aggregated components, the
Decorator pattern uses a similar structure to help us to modify the functionality of concrete
components. Once again, the key to this pattern lies in the importance of composition at runtime.
Inheritance is a neat way of building on characteristics laid down by a parent class. This neatness can
lead you to hard-code variation into your inheritance hierarchies, often causing inflexibility.

The Problem
Building all your functionality into an inheritance structure can result in an explosion of classes in a
system. Even worse, as you try to apply similar modifications to different branches of your inheritance
tree, you are likely to see duplication emerge.

Let’s return to our game. Here, I define a Tile class and a derived type:

abstract class Tile {
 abstract function getWealthFactor();
}

class Plains extends Tile {
 private $wealthfactor = 2;
 function getWealthFactor() {
 return $this->wealthfactor;
 }
}

I define a Tile class. This represents a square on which my units might be found. Each tile has
certain characteristics. In this example, I have defined a getWealthFactor() method that affects the
revenue a particular square might generate if owned by a player. As you can see, Plains objects have a
wealth factor of 2. Obviously, tiles manage other data. They might also hold a reference to image
information so that the board could be drawn. Once again, I’ll keep things simple here.

I need to modify the behavior of the Plains object to handle the effects of natural resources and
human abuse. I wish to model the occurrence of diamonds on the landscape, and the damage caused by
pollution. One approach might be to inherit from the Plains object:

class DiamondPlains extends Plains {
 function getWealthFactor() {
 return parent::getWealthFactor() + 2;
 }
}

class PollutedPlains extends Plains {
 function getWealthFactor() {
 return parent::getWealthFactor() - 4;
 }
}

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

180

I can now acquire a polluted tile very easily:

$tile = new PollutedPlains();
print $tile->getWealthFactor();

You can see the class diagram for this example in Figure 10–3.

Figure 10–3. Building variation into an inheritance tree

This structure is obviously inflexible. I can get plains with diamonds. I can get polluted plains. But
can I get them both? Clearly not, unless I am willing to perpetrate the horror that is
PollutedDiamondPlains. This situation can only get worse when I introduce the Forest class, which can
also have diamonds and pollution.

This is an extreme example, of course, but the point is made. Relying entirely on inheritance to
define your functionality can lead to a multiplicity of classes and a tendency toward duplication.

Let’s take a more commonplace example at this point. Serious web applications often have to
perform a range of actions on a request before a task is initiated to form a response. You might need to
authenticate the user, for example, and to log the request. Perhaps you should process the request to
build a data structure from raw input. Finally, you must perform your core processing. You are
presented with the same problem.

You can extend the functionality of a base ProcessRequest class with additional processing in a
derived LogRequest class, in a StructureRequest class, and in an AuthenticateRequest class. You can see
this class hierarchy in Figure 10–4.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

181

Figure 10–4. More hard-coded variations

What happens, though, when you need to perform logging and authentication but not data
preparation? Do you create a LogAndAuthenticateProcessor class? Clearly, it is time to find a more
flexible solution.

Implementation
Rather than use only inheritance to solve the problem of varying functionality, the Decorator pattern
uses composition and delegation. In essence, Decorator classes hold an instance of another class of their
own type. A Decorator will implement an operation so that it calls the same operation on the object to
which it has a reference before (or after) performing its own actions. In this way it is possible to build a
pipeline of decorator objects at runtime.

Let’s rewrite our game example to illustrate this:

abstract class Tile {
 abstract function getWealthFactor();
}

class Plains extends Tile {
 private $wealthfactor = 2;
 function getWealthFactor() {
 return $this->wealthfactor;
 }
}

abstract class TileDecorator extends Tile {
 protected $tile;
 function __construct(Tile $tile) {
 $this->tile = $tile;
 }
}

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

182

Here, I have declared Tile and Plains classes as before but introduced a new class: TileDecorator.
This does not implement getWealthFactor(), so it must be declared abstract. I define a constructor that
requires a Tile object, which it stores in a property called $tile. I make this property protected so that
child classes can gain access to it. Now I’ll redefine the Pollution and Diamond classes:

class DiamondDecorator extends TileDecorator {
 function getWealthFactor() {
 return $this->tile->getWealthFactor()+2;
 }
}

class PollutionDecorator extends TileDecorator {
 function getWealthFactor() {
 return $this->tile->getWealthFactor()-4;
 }
}

Each of these classes extends TileDecorator. This means that they have a reference to a Tile object.
When getWealthFactor() is invoked, each of these classes invokes the same method on its Tile reference
before making its own adjustment.

By using composition and delegation like this, you make it easy to combine objects at runtime.
Because all the objects in the pattern extend Tile, the client does not need to know which combination
it is working with. It can be sure that a getWealthFactor() method is available for any Tile object,
whether it is decorating another behind the scenes or not.

$tile = new Plains();
print $tile->getWealthFactor(); // 2

Plains is a component. It simply returns 2

$tile = new DiamondDecorator(new Plains());
print $tile->getWealthFactor(); // 4

DiamondDecorator has a reference to a Plains object. It invokes getWealthFactor() before adding its
own weighting of 2:

$tile = new PollutionDecorator(
 new DiamondDecorator(new Plains()));
print $tile->getWealthFactor(); // 0

PollutionDecorator has a reference to a DiamondDecorator object which has its own Tile reference.
You can see the class diagram for this example in Figure 10–5.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

183

Figure 10–5. The Decorator pattern

This model is very extensible. You can add new decorators and components very easily. With lots of
decorators you can build very flexible structures at runtime. The component class, Plains in this case,
can be significantly modified in very many ways without the need to build the totality of the
modifications into the class hierarchy. In plain English, this means you can have a polluted Plains object
that has diamonds without having to create a PollutedDiamondPlains object.

The Decorator pattern builds up pipelines that are very useful for creating filters. The Java IO
package makes great use of decorator classes. The client coder can combine decorator objects with core
components to add filtering, buffering, compression, and so on to core methods like read(). My web
request example can also be developed into a configurable pipeline. Here’s a simple implementation
that uses the Decorator pattern:

class RequestHelper{}

abstract class ProcessRequest {
 abstract function process(RequestHelper $req);
}

class MainProcess extends ProcessRequest {
 function process(RequestHelper $req) {
 print __CLASS__.": doing something useful with request\n";
 }
}

abstract class DecorateProcess extends ProcessRequest {
 protected $processrequest;
 function __construct(ProcessRequest $pr) {
 $this->processrequest = $pr;
 }
}

As before, we define an abstract super class (ProcessRequest), a concrete component (MainProcess),
and an abstract decorator (DecorateProcess). MainProcess::process() does nothing but report that it has
been called. DecorateProcess stores a ProcessRequest object on behalf of its children. Here are some
simple concrete decorator classes:

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

184

class LogRequest extends DecorateProcess {
 function process(RequestHelper $req) {
 print __CLASS__.": logging request\n";
 $this->processrequest->process($req);
 }
}

class AuthenticateRequest extends DecorateProcess {
 function process(RequestHelper $req) {
 print __CLASS__.": authenticating request\n";
 $this->processrequest->process($req);
 }
}

class StructureRequest extends DecorateProcess {
 function process(RequestHelper $req) {
 print __CLASS__.": structuring request data\n";
 $this->processrequest->process($req);
 }
}

Each process() method outputs a message before calling the referenced ProcessRequest object’s
own process() method. You can now combine objects instantiated from these classes at runtime to
build filters that perform different actions on a request, and in different orders. Here’s some code to
combine objects from all these concrete classes into a single filter:

$process = new AuthenticateRequest(new StructureRequest(
 new LogRequest (
 new MainProcess()
)));
$process->process(new RequestHelper());

This code will give the following output:

Authenticate
Request: authenticating request
StructureRequest: structuring request data
LogRequest: logging request
MainProcess: doing something useful with request

■Note This example is, in fact, also an instance of an enterprise pattern called Intercepting Filter. Intercepting
Filter is described in Core J2EE Patterns.

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

185

Consequences
Like the Composite pattern, Decorator can be confusing. It is important to remember that both
composition and inheritance are coming into play at the same time. So LogRequest inherits its interface
from ProcessRequest, but it is acting as a wrapper around another ProcessRequest object.

Because a decorator object forms a wrapper around a child object, it helps to keep the interface as
sparse as possible. If you build a heavily featured base class, then decorators are forced to delegate to all
public methods in their contained object. This can be done in the abstract decorator class but still
introduces the kind of coupling that can lead to bugs.

Some programmers create decorators that do not share a common type with the objects they
modify. As long as they fulfill the same interface as these objects, this strategy can work well. You get the
benefit of being able to use the built-in interceptor methods to automate delegation (implementing
__call() to catch calls to nonexistent methods and invoking the same method on the child object
automatically). However, by doing this you also lose the safety afforded by class type checking. In our
examples so far, client code can demand a Tile or a ProcessRequest object in its argument list and be
certain of its interface, whether or not the object in question is heavily decorated.

The Facade Pattern
You may have had occasion to stitch third-party systems into your own projects in the past. Whether or
not the code is object oriented, it will often be daunting, large, and complex. Your own code, too, may
become a challenge to the client programmer who needs only to access a few features. The Facade
pattern is a way of providing a simple, clear interface to complex systems.

The Problem
Systems tend to evolve large amounts of code that is really only useful within the system itself. Just as
classes define clear public interfaces and hide their guts away from the rest of the world, so should well-
designed systems. However, it is not always clear which parts of a system are designed to be used by
client code and which are best hidden.

As you work with subsystems (like web forums or gallery applications), you may find yourself
making calls deep into the logic of the code. If the subsystem code is subject to change over time, and
your code interacts with it at many different points, you may find yourself with a serious maintenance
problem as the subsystem evolves.

Similarly, when you build your own systems, it is a good idea to organize distinct parts into separate
tiers. Typically, you may have a tier responsible for application logic, another for database interaction,
another for presentation, and so on. You should aspire to keep these tiers as independent of one another
as you can, so that a change in one area of your project will have minimal repercussions elsewhere. If
code from one tier is tightly integrated into code from another, then this objective is hard to meet.

Here is some deliberately confusing procedural code that makes a song-and-dance routine of the
simple process of getting log information from a file and turning it into object data:

function getProductFileLines($file) {
 return file($file);
}

function getProductObjectFromId($id, $productname) {
 // some kind of database lookup
 return new Product($id, $productname);
}

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

186

function getNameFromLine($line) {
 if (preg_match("/.*-(.*)\s\d+/", $line, $array)) {
 return str_replace('_',' ', $array[1]);
 }
 return '';
}

function getIDFromLine($line) {
 if (preg_match("/^(\d{1,3})-/", $line, $array)) {
 return $array[1];
 }
 return -1;
}

class Product {
 public $id;
 public $name;
 function __construct($id, $name) {
 $this->id = $id;
 $this->name = $name;
 }
}

Let’s imagine that the internals of this code to be more complicated than they actually are, and that
I am stuck with using it rather than rewriting it from scratch. In order to turn a file that contains lines like

234-ladies_jumper 55
532-gents_hat 44

into an array of objects, I must call all of these functions (note that for the sake of brevity I don’t extract
the final number, which represents a price):

$lines = getProductFileLines('test.txt');
$objects = array();
foreach ($lines as $line) {
 $id = getIDFromLine($line);
 $name = getNameFromLine($line);
 $objects[$id] = getProductObjectFromID($id, $name);
}

If I call these functions directly like this throughout my project, my code will become tightly wound
into the subsystem it is using. This could cause problems if the subsystem changes or if I decide to
switch it out entirely. I really need to introduce a gateway between the system and the rest of our code.

Implementation
Here is a simple class that provides an interface to the procedural code you encountered in the previous
section:

class ProductFacade {
 private $products = array();

 function __construct($file) {
 $this->file = $file;
 $this->compile();

CHAPTER 10 ■ PATTERNS FOR FLEXIBLE OBJECT PROGRAMMING

187

 }

 private function compile() {
 $lines = getProductFileLines($this->file);
 foreach ($lines as $line) {
 $id = getIDFromLine($line);
 $name = getNameFromLine($line);
 $this->products[$id] = getProductObjectFromID($id, $name);
 }
 }

 function getProducts() {
 return $this->products;
 }

 function getProduct($id) {
 return $this->products[$id];
 }
}

From the point of view of client code, now access to Product objects from a log file is much
simplified:

$facade = new ProductFacade('test.txt');
$facade->getProduct(234);

Consequences
A Facade is really a very simple concept. It is just a matter of creating a single point of entry for a tier or
subsystem. This has a number of benefits. It helps to decouple distinct areas in a project from one
another. It is useful and convenient for client coders to have access to simple methods that achieve clear
ends. It reduces errors by focusing use of a subsystem in one place, so changes to the subsystem should
cause failure in a predictable location. Errors are also minimized by Facade classes in complex
subsystems where client code might otherwise use internal functions incorrectly.

Despite the simplicity of the Facade pattern, it is all too easy to forget to use it, especially if you are
familiar with the subsystem you are working with. There is a balance to be struck, of course. On the one
hand, the benefit of creating simple interfaces to complex systems should be clear. On the other hand,
one could abstract systems with reckless abandon, and then abstract the abstractions. If you are making
significant simplifications for the clear benefit of client code, and/or shielding it from systems that might
change, then you are probably right to implement the Facade pattern.

Summary
In this chapter, I looked at a few of the ways that classes and objects can be organized in a system. In
particular, I focused on the principle that composition can be used to engender flexibility where
inheritance fails. In both the Composite and Decorator patterns, inheritance is used to promote
composition and to define a common interface that provides guarantees for client code.

You also saw delegation used effectively in these patterns. Finally, I looked at the simple but
powerful Facade pattern. Facade is one of those patterns that many people have been using for years
without having a name to give it. Facade lets you provide a clean point of entry to a tier or subsystem. In
PHP, the Facade pattern is also used to create object wrappers that encapsulate blocks of procedural
code.

C H A P T E R 11

■ ■ ■

189

Performing and Representing

Tasks

In this chapter, we get active. I look at patterns that help you to get things done, whether interpreting a
minilanguage or encapsulating an algorithm.

This chapter will cover

• The Interpreter pattern: Building a minilanguage interpreter that can be used to
create scriptable applications

• The Strategy pattern: Identifying algorithms in a system and encapsulating them
into their own types

• The Observer pattern: Creating hooks for alerting disparate objects about system
events

• The Visitor pattern: Applying an operation to all the nodes in a tree of objects

• The Command pattern: Creating command objects that can be saved and passed
around

The Interpreter Pattern
Languages are written in other languages (at least at first). PHP itself, for example, is written in C. By the
same token, odd as it may sound, you can define and run your own languages using PHP. Of course, any
language you might create will be slow and somewhat limited. Nonetheless, minilanguages can be very
useful, as you will see in this chapter.

The Problem
When you create web (or command line) interfaces in PHP, you give the user access to functionality. The
trade-off in interface design is between power and ease of use. As a rule, the more power you give your
user, the more cluttered and confusing your interface becomes. Good interface design can help a lot
here, of course, but if 90 percent of users are using the same 30 percent of your features, the costs of
piling on the functionality may outweigh the benefits. You may wish to consider simplifying your system
for most users. But what of the power users, that 10 percent who use your system’s advanced features?
Perhaps you can accommodate them in a different way. By offering such users a domain language (often
called a DSL—Domain Specific Language), you might actually extend the power of your application.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

190

Of course, you have a programming language at hand right away. It’s called PHP. Here’s how you
could allow your users to script your system:

$form_input = $_REQUEST['form_input'];
// contains: "print file_get_contents('/etc/passwd');"
eval($form_input);

This approach to making an application scriptable is clearly insane. Just in case the reasons are not
blatantly obvious, they boil down to two issues: security and complexity. The security issue is well
addressed in the example. By allowing users to execute PHP via your script, you are effectively giving them
access to the server the script runs on. The complexity issue is just as big a drawback. No matter how clear
your code is, the average user is unlikely to extend it easily and certainly not from the browser window.

A minilanguage, though, can address both these problems. You can design flexibility into the
language, reduce the possibility that the user can do damage, and keep things focused.

Imagine an application for authoring quizzes. Producers design questions and establish rules for
marking the answers submitted by contestants. It is a requirement that quizzes must be marked without
human intervention, even though some answers can be typed into a text field by users.

Here’s a question:

How many members in the Design Patterns gang?

You can accept “four” or “4” as correct answers. You might create a web interface that allows a
producer to use regular expression for marking responses:

^4|four$

Most producers are not hired for their knowledge of regular expressions, however. To make
everyone’s life easier, you might implement a more user-friendly mechanism for marking responses:

$input equals "4" or $input equals "four"

You propose a language that supports variables, an operator called equals and Boolean logic (or and
and). Programmers love naming things, so let’s call it MarkLogic. It should be easy to extend, as you
envisage lots of requests for richer features. Let’s leave aside the issue of parsing input for now and
concentrate on a mechanism for plugging these elements together at runtime to produce an answer.
This, as you might expect, is where the Interpreter pattern comes in.

Implementation
A language is made up of expressions (that is, things that resolve to a value). As you can see in Table 11–1,
even a tiny language like MarkLogic needs to keep track of a lot of elements.

Table 11–1. Elements of the MarkLogic Grammar

Description EBNF Name Class Name Example

Variable variable VariableExpression $input

String literal <stringLiteral> LiteralExpression "four"

Boolean and indexer BooleanAndExpression -$input equals '4' and
$other equals '6'

Boolean or orExpr BooleanOrExpression -$input equals '4' or
$other equals '6'

Equality test equalsExpr EqualsExpression $input equals '4'

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

191

Table 11–1 lists EBNF names. So what is EBNF all about? It’s a notation that you can use to describe
a language grammar. EBNF stands for Extended Backus-Naur Form. It consists of a series of lines (called
productions), each one consisting of a name and a description that takes the form of references to other
productions and to terminals (that is, elements that are not themselves made up of references to other
productions). Here is one way of describing my grammar using EBNF:

expr ::= operand (orExpr | andExpr)*
operand ::= ('(' expr ')' | <stringLiteral> | variable) (eqExpr)*
orExpr ::= 'or' operand
andExpr ::= 'and' operand
eqExpr ::= 'equals' operand
variable ::= '$' <word>

Some symbols have special meanings (that should be familiar from regular expression notation): *
means zero or more, for example, and | means or. You can group elements using brackets. So in the
example, an expression (expr) consists of an operand followed by zero or more of either orExpr or
andExpr. An operand can be a bracketed expression, a quoted string (I have omitted the production for
this), or a variable followed by zero or more instances of eqExpr. Once you get the hang of referring from
one production to another, EBNF becomes quite easy to read.

In Figure 11–1, I represent the elements of my grammar as classes.

Figure 11–1. The Interpreter classes that make up the MarkLogic language

As you can see, BooleanAndExpression and its siblings inherit from OperatorExpression. This is
because these classes all perform their operations upon other Expression objects. VariableExpression
and LiteralExpression work directly with values.

All Expression objects implement an interpret() method that is defined in the abstract base class,
Expression. The interpret() method expects an InterpreterContext object that is used as a shared data
store. Each Expression object can store data in the InterpreterContext object. The InterpreterContext

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

192

will then be passed along to other Expression objects. So that data can be retrieved easily from the
InterpreterContext, the Expression base class implements a getKey() method that returns a unique
handle. Let’s see how this works in practice with an implementation of Expression:

abstract class Expression {
 private static $keycount=0;
 private $key;
 abstract function interpret(InterpreterContext $context);

 function getKey() {
 if (! asset($this->key)) {
 self::$keycount++;
 $this->key=self::$keycount;
 }
 return $this->key;
 }
}

class LiteralExpression extends Expression {
 private $value;

 function __construct($value) {
 $this->value = $value;
 }

 function interpret(InterpreterContext $context) {
 $context->replace($this, $this->value);
 }
}

class InterpreterContext {
 private $expressionstore = array();

 function replace(Expression $exp, $value) {
 $this->expressionstore[$exp->getKey()] = $value;
 }

 function lookup(Expression $exp) {
 return $this->expressionstore[$exp->getKey()];
 }
}

$context = new InterpreterContext();
$literal = new LiteralExpression('four');
$literal->interpret($context);
print $context->lookup($literal) . "\n";

Here’s the output:

four

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

193

I’ll begin with the InterpreterContext class. As you can see, it is really only a front end for an
associative array, $expressionstore, which I use to hold data. The replace() method accepts an
Expression object as key and a value of any type, and adds the pair to $expressionstore. It also provides
a lookup() method for retrieving data.

The Expression class defines the abstract interpret() method and a concrete getKey() method that
uses a static counter value to generate, store, and return an identifier.

This method is used by InterpreterContext::lookup() and InterpreterContext::replace() to index
data.

The LiteralExpression class defines a constructor that accepts a value argument. The interpret()
method requires a InterpreterContext object. I simply call replace(), using getKey() to define the key
for retrieval and the $value property. This will become a familiar pattern as you examine the other
expression classes. The interpret() method always inscribes its results upon the InterpreterContext
object.

I include some client code as well, instantiating both an InterpreterContext object and a
LiteralExpression object (with a value of "four"). I pass the InterpreterContext object to
LiteralExpression::interpret(). The interpret() method stores the key/value pair in
InterpreterContext, from where I retrieve the value by calling lookup().

Here’s the remaining terminal class. VariableExpression is a little more complicated:

class VariableExpression extends Expression {
 private $name;
 private $val;

 function __construct($name, $val=null) {
 $this->name = $name;
 $this->val = $val;
 }

 function interpret(InterpreterContext $context) {
 if (! is_null($this->val)) {
 $context->replace($this, $this->val);
 $this->val = null;
 }
 }

 function setValue($value) {
 $this->val = $value;
 }

 function getKey() {
 return $this->name;
 }
}
$context = new InterpreterContext();
$myvar = new VariableExpression('input', 'four');
$myvar->interpret($context);
print $context->lookup($myvar). "\n";
// output: four

$newvar = new VariableExpression('input');
$newvar->interpret($context);
print $context->lookup($newvar). "\n";
// output: four

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

194

$myvar->setValue("five");
$myvar->interpret($context);
print $context->lookup($myvar). "\n";
// output: five
print $context->lookup($newvar) . "\n";
// output: five

The VariableExpression class accepts both name and value arguments for storage in property
variables. I provide the setValue() method so that client code can change the value at any time.

The interpret() method checks whether or not the $val property has a nonnull value. If the $val
property has a value, it sets it on the InterpreterContext. I then set the $val property to null. This is in
case interpret() is called again after another identically named instance of VariableExpression has
changed the value in the InterpreterContext object. This is quite a limited variable, accepting only
string values as it does. If you were going to extend your language, you should consider having it work
with other Expression objects, so that it could contain the results of tests and operations. For now,
though, VariableExpression will do the work I need of it. Notice that I have overridden the getKey()
method so that variable values are linked to the variable name and not to an arbitrary static ID.

Operator expressions in the language all work with two other Expression objects in order to get their
job done. It makes sense, therefore, to have them extend a common superclass. Here is the
OperatorExpression class:

abstract class OperatorExpression extends Expression {
 protected $l_op;
 protected $r_op;

 function __construct(Expression $l_op, Expression $r_op) {
 $this->l_op = $l_op;
 $this->r_op = $r_op;
 }

 function interpret(InterpreterContext $context) {
 $this->l_op->interpret($context);
 $this->r_op->interpret($context);
 $result_l = $context->lookup($this->l_op);
 $result_r = $context->lookup($this->r_op);
 $this->doInterpret($context, $result_l, $result_r);
 }

 protected abstract function doInterpret(InterpreterContext $context,
 $result_l,
 $result_r);
}

OperatorExpression is an abstract class. It implements interpret(), but it also defines the abstract
doInterpret() method.

The constructor demands two Expression objects, $l_op and $r_op, which it stores in properties.
The interpret() method begins by invoking interpret() on both its operand properties (if you have

read the previous chapter, you might notice that I am creating an instance of the Composite pattern
here). Once the operands have been run, interpret() still needs to acquire the values that this yields. It
does this by calling InterpreterContext::lookup() for each property. It then calls doInterpret(), leaving
it up to child classes to decide what to do with the results of these operations.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

195

■Note doInterpret() is an instance of the Template Method pattern. In this pattern, a parent class both
defines and calls an abstract method, leaving it up to child classes to provide an implementation. This can
streamline the development of concrete classes, as shared functionality is handled by the superclass, leaving the
children to concentrate on clean, narrow objectives.

Here’s the EqualsExpression class, which tests two Expression objects for equality:

class EqualsExpression extends OperatorExpression {
 protected function doInterpret(InterpreterContext $context,
 $result_l, $result_r) {
 $context->replace($this, $result_l == $result_r);
 }
}

EqualsExpression only implements the doInterpret() method, which tests the equality of the
operand results it has been passed by the interpret() method, placing the result in the
InterpreterContext object.

To wrap up the Expression classes, here are BooleanOrExpression and BooleanAndExpression:

class BooleanOrExpression extends OperatorExpression {
 protected function doInterpret(InterpreterContext $context,
 $result_l, $result_r) {
 $context->replace($this, $result_l || $result_r);
 }
}

class BooleanAndExpression extends OperatorExpression {
 protected function doInterpret(InterpreterContext $context,
 $result_l, $result_r) {
 $context->replace($this, $result_l && $result_r);
 }
}

Instead of testing for equality, the BooleanOrExpression class applies a logical or operation and
stores the result of that via the InterpreterContext::replace() method. BooleanAndExpression, of
course, applies a logical and operation.

I now have enough code to execute the minilanguage fragment I quoted earlier. Here it is again:

$input equals "4" or $input equals "four"

Here’s how I can build this statement up with my Expression classes:

$context = new InterpreterContext();
$input = new VariableExpression('input');
$statement = new BooleanOrExpression(
 new EqualsExpression($input, new LiteralExpression('four')),
 new EqualsExpression($input, new LiteralExpression('4'))
);

I instantiate a variable called 'input' but hold off on providing a value for it. I then create a
BooleanOrExpression object that will compare the results from two EqualsExpression objects. The first of

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

196

these objects compares the VariableExpression object stored in $input with a LiteralExpression
containing the string "four"; the second compares $input with a LiteralExpression object containing
the string "4".

Now, with my statement prepared, I am ready to provide a value for the input variable, and run the
code:

foreach (array("four", "4", "52") as $val) {
 $input->setValue($val);
 print "$val:\n";
 $statement->interpret($context);
 if ($context->lookup($statement)) {
 print "top marks\n\n";
 } else {
 print "dunce hat on\n\n";
 }
}

In fact, I run the code three times, with three different values. The first time through, I set the
temporary variable $val to "four", assigning it to the input VariableExpression object using its
setValue() method. I then call interpret() on the topmost Expression object (the BooleanOrExpression
object that contains references to all other expressions in the statement). Here are the internals of this
invocation step by step:

• $statement calls interpret() on its $l_op property (the first EqualsExpression
object).

• The first EqualsExpression object calls interpret() on its $l_op property (a
reference to the input VariableExpression object which is currently set to "four").

• The input VariableExpression object writes its current value to the provided
InterpreterContext object by calling InterpreterContext::replace().

• The first EqualsExpression object calls interpret() on its $r_op property (a
LiteralExpression object charged with the value "four").

• The LiteralExpression object registers its key and its value with
InterpreterContext.

• The first EqualsExpression object retrieves the values for $l_op ("four") and $r_op
("four") from the InterpreterContext object.

• The first EqualsExpression object compares these two values for equality and
registers the result (true) together with its key with the InterpreterContext object.

• Back at the top of the tree the $statement object (BooleanOrExpression) calls
interpret() on its $r_op property. This resolves to a value (false, in this case) in
the same way as the $l_op property did.

• The $statement object retrieves values for each of its operands from the
InterpreterContext object and compares them using ||. It is comparing true and
false, so the result is true. This final result is stored in the InterpreterContext
object.

And all that is only for the first iteration through the loop. Here is the final output:

four:
top marks

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

197

4:
top marks

52:
dunce hat on

You may need to read through this section a few times before the process clicks. The old issue of
object versus class trees might confuse you here. Expression classes are arranged in an inheritance
hierarchy just as Expression objects are composed into a tree at runtime. As you read back through the
code, keep this distinction in mind.

Figure 11–2 shows the complete class diagram for the example.

Figure 11–2. The Interpreter pattern deployed

Interpreter Issues
Once you have set up the core classes for an Interpreter pattern implementation, it becomes easy to
extend. The price you pay is in the sheer number of classes you could end up creating. For this reason,
Interpreter is best applied to relatively small languages. If you have a need for a full programming
language, you would do better to look for a third-party tool to use.

Because Interpreter classes often perform very similar tasks, it is worth keeping an eye on the classes
you create with a view to factoring out duplication.

Many people approaching the Interpreter pattern for the first time are disappointed, after some
initial excitement, to discover that it does not address parsing. This means that you are not yet in a

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

198

position to offer your users a nice, friendly language. Appendix B contains some rough code to illustrate
one strategy for parsing a minilanguage.

The Strategy Pattern
Classes often try to do too much. It’s understandable: you create a class that performs a few related
actions. As you code, some of these actions need to be varied according to circumstances. At the same
time, your class needs to be split into subclasses. Before you know it, your design is being pulled apart by
competing forces.

The Problem
Since I have recently built a marking language, I’m sticking with the quiz example. Quizzes need
questions, so you build a Question class, giving it a mark() method. All is well until you need to support
different marking mechanisms.

Imagine you are asked to support the simple MarkLogic language, marking by straight match and
marking by regular expression. Your first thought might be to subclass for these differences, as in Figure
11–3.

Figure 11–3. Defining subclasses according to marking strategies

This would serve you well as long as marking remains the only aspect of the class that varies.
Imagine, though, that you are called on to support different kinds of questions: those that are text based
and those that support rich media. This presents you with a problem when it comes to incorporating
these forces in one inheritance tree as you can see in Figure 11–4.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

199

Figure 11–4. Defining subclasses according to two forces

Not only have the number of classes in the hierarchy ballooned, but you also necessarily introduce
repetition. Your marking logic is reproduced across each branch of the inheritance hierarchy.

Whenever you find yourself repeating an algorithm across siblings in an inheritance tree (whether
through subclassing or repeated conditional statements), consider abstracting these behaviors into their
own type.

Implementation
As with all the best patterns, Strategy is simple and powerful. When classes must support multiple
implementations of an interface (multiple marking mechanisms, for example), the best approach is
often to extract these implementations and place them in their own type, rather than to extend the
original class to handle them.

So, in the example, your approach to marking might be placed in a Marker type. Figure 11–5 shows
the new structure.

Remember the Gang of Four principle “favor composition over inheritance”? This is an excellent
example. By defining and encapsulating the marking algorithms, you reduce subclassing and increase
flexibility. You can add new marking strategies at any time without the need to change the Question
classes at all. All Question classes know is that they have an instance of a Marker at their disposal, and
that it is guaranteed by its interface to support a mark() method. The details of implementation are
entirely somebody else’s problem.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

200

Figure 11–5. Extracting algorithms into their own type

Here are the Question classes rendered as code:

abstract class Question {
 protected $prompt;
 protected $marker;

 function __construct($prompt, Marker $marker) {
 $this->marker=$marker;
 $this->prompt = $prompt;
 }

 function mark($response) {
 return $this->marker->mark($response);
 }
}

class TextQuestion extends Question {
 // do text question specific things
}

class AVQuestion extends Question {
 // do audiovisual question specific things
}

As you can see, I have left the exact nature of the difference between TextQuestion and AVQuestion to
the imagination. The Question base class provides all the real functionality, storing a prompt property
and a Marker object. When Question::mark() is called with a response from the end user, the method
simply delegates the problem solving to its Marker object.

Now to define some simple Marker objects:

abstract class Marker {
 protected $test;

 function __construct($test) {

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

201

 $this->test = $test;
 }

 abstract function mark($response);
}

class MarkLogicMarker extends Marker {
 private $engine;
 function __construct($test) {
 parent::__construct($test);
 // $this->engine = new MarkParse($test);
 }

 function mark($response) {
 // return $this->engine->evaluate($response);
 // dummy return value
 return true;
 }
}

class MatchMarker extends Marker {
 function mark($response) {
 return ($this->test == $response);
 }
}

class RegexpMarker extends Marker {
 function mark($response) {
 return (preg_match($this->test, $response));
 }
}

There should be little if anything that is particularly surprising about the Marker classes themselves.
Note that the MarkParse object is designed to work with the simple parser developed in Appendix B. This
isn’t necessary for the sake of this example though, so I simply return a dummy value of true from
MarkLogicMarker::mark(). The key here is in the structure that I have defined, rather than in the detail of
the strategies themselves. I can swap RegexpMarker for MatchMarker, with no impact on the Question
class.

Of course, you must still decide what method to use to choose between concrete Marker objects. I
have seen two real-world approaches to this problem. In the first, producers use radio buttons to select
the marking strategy they prefer. In the second, the structure of the marking condition is itself used: a
match statement was left plain:

five

A MarkLogic statement was preceded by a colon:

:$input equals 'five'

and a regular expression used forward slashes:

/f.ve/

Here is some code to run the classes through their paces:

$markers = array(new RegexpMarker("/f.ve/"),

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

202

 new MatchMarker("five"),
 new MarkLogicMarker('$input equals "five"')
);

foreach ($markers as $marker) {
 print get_class($marker)."\n";
 $question = new TextQuestion("how many beans make five", $marker);
 foreach (array("five", "four") as $response) {
 print "\tresponse: $response: ";
 if ($question->mark($response)) {
 print "well done\n";
 } else {
 print "never mind\n";
 }
 }
}

I construct three strategy objects, using each in turn to help construct a TextQuestion object. The
TextQuestion object is then tried against two sample responses.

The MarkLogicMarker class shown here is a placeholder at present, and its mark() method always
returns true. The commented out code does work, however, with the parser example shown in Appendix
B, or could be made to work with a third-party parser.

Here is the output:

RegexpMarker
 response: five: well done
 response: four: never mind
MatchMarker
 response: five: well done
 response: four: never mind
MarkLogicMarker
 response: five: well done
 response: four: well done

Remember that the MarkLogicMarker in the example is a dummy which always returns true, so it
marked both responses correct.

In the example, I passed specific data (the $response variable) from the client to the strategy object
via the mark() method. Sometimes, you may encounter circumstances in which you don’t always know
in advance how much information the strategy object will require when its operation is invoked. You can
delegate the decision as to what data to acquire by passing the strategy an instance of the client itself.
The strategy can then query the client in order to build the data it needs.

The Observer Pattern
Orthogonality is a virtue I have described before. One of objectives as programmers should be to build
components that can be altered or moved with minimal impact on other components. If every change
you make to one component necessitates a ripple of changes elsewhere in the codebase, the task of
development can quickly become a spiral of bug creation and elimination.

Of course, orthogonality is often just a dream. Elements in a system must have embedded
references to other elements. You can, however, deploy various strategies to minimize this. You have

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

203

seen various examples of polymorphism in which the client understands a component’s interface but
the actual component may vary at runtime.

In some circumstances, you may wish to drive an even greater wedge between components than
this. Consider a class responsible for handling a user’s access to a system:

class Login {
 const LOGIN_USER_UNKNOWN = 1;
 const LOGIN_WRONG_PASS = 2;
 const LOGIN_ACCESS = 3;
 private $status = array();

 function handleLogin($user, $pass, $ip) {
 switch (rand(1,3)) {
 case 1:
 $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
 $ret = true;
 break;
 case 2:
 $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
 $ret = false;
 break;
 case 3:
 $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
 $ret = false;
 break;
 }
 return $ret;
 }

 private function setStatus($status, $user, $ip) {
 $this->status = array($status, $user, $ip);
 }

 function getStatus() {
 return $this->status;
 }

}

In a real-world example, of course, the handleLogin() method would validate the user against a
storage mechanism. As it is, this class fakes the login process using the rand() function. There are three
potential outcomes of a call to handleLogin(). The status flag may be set to LOGIN_ACCESS,
LOGIN_WRONG_PASS, or LOGIN_USER_UNKNOWN.

Because the Login class is a gateway guarding the treasures of your business team, it may excite
much interest during development and in the months beyond. Marketing might call you up and ask that
you keep a log of IP addresses. You can add a call to your system’s Logger class:

 function handleLogin($user, $pass, $ip) {
 switch (rand(1,3)) {
 case 1:
 $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
 $ret = true;
 break;
 case 2:

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

204

 $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
 $ret = false;
 break;
 case 3:
 $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
 $ret = false;
 break;
 }
 Logger::logIP($user, $ip, $this->getStatus());
 return $ret;
 }

Worried about security, the system administrators might ask for notification of failed logins. Once
again, you can return to the login method and add a new call:

 if (! $ret) {
 Notifier::mailWarning($user, $ip,
 $this->getStatus());
 }

The business development team might announce a tie-in with a particular ISP and ask that a cookie
be set when particular users log in, and so on, and on.

These are all easy enough requests to fulfill but at a cost to your design. The Login class soon
becomes very tightly embedded into this particular system. You cannot pull it out and drop it into
another product without going through the code line by line and removing everything that is specific to
the old system. This isn’t too hard, of course, but then you are off down the road of cut-and-paste
coding. Now that you have two similar but distinct Login classes in your systems, you find that an
improvement to one will necessitate the same changes in the other, until inevitably and gracelessly they
fall out of alignment with one another.

So what can you do to save the Login class? The Observer pattern is a powerful fit here.

Implementation
At the core of the Observer pattern is the unhooking of client elements (the observers) from a central
class (the subject). Observers need to be informed when events occur that the subject knows about. At
the same time, you do not want the subject to have a hard-coded relationship with its observer classes.

To achieve this, you can allow observers to register themselves with the subject. You give the Login
class three new methods, attach(), detach(), and notify(), and enforce this using an interface called
Observable:

interface Observable {
 function attach(Observer $observer);
 function detach(Observer $observer);
 function notify();
}

// ... Login class
class Login implements Observable {

 private $observers;
 //...

 function __construct() {

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

205

 $this->observers = array();

 }

 function attach(Observer $observer) {
 $this->observers[] = $observer;
 }

 function detach(Observer $observer) {
 $newobservers = array();
 foreach ($this->observers as $obs) {
 if (($obs !== $observer)) {
 $newobservers[]=$obs;
 }
 }
 $this->observers = $newobservers;
 }

 function notify() {
 foreach ($this->observers as $obs) {
 $obs->update($this);
 }
 }
//...

So the Login class manages a list of observer objects. These can be added by a third party using the
attach() method and removed via detach(). The notify() method is called to tell the observers that
something of interest has happened. The method simply loops through the list of observers, calling
update() on each one.

The Login class itself calls notify() from its handleLogin() method.

function handleLogin($user, $pass, $ip) {
 switch (rand(1,3)) {
 case 1:
 $this->setStatus(self::LOGIN_ACCESS, $user, $ip);
 $ret = true; break;
 case 2:
 $this->setStatus(self::LOGIN_WRONG_PASS, $user, $ip);
 $ret = false; break;
 case 3:
 $this->setStatus(self::LOGIN_USER_UNKNOWN, $user, $ip);
 $ret = false; break;
 }
 $this->notify();
 return $ret;
 }

Here’s the interface for the Observer class:

interface Observer {
 function update(Observable $observable);
}

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

206

Any object that uses this interface can be added to the Login class via the attach() method. Here’s
create a concrete instance:

class SecurityMonitor extends Observer {
 function update(Observable $observable) {
 $status = $observable->getStatus();
 if ($status[0] == Login::LOGIN_WRONG_PASS) {
 // send mail to sysadmin
 print __CLASS__.":\tsending mail to sysadmin\n";
 }
 }
}
$login = new Login();
$login->attach(new SecurityMonitor());

Notice how the observer object uses the instance of Observable to get more information about the
event. It is up to the subject class to provide methods that observers can query to learn about state. In
this case, I have defined a method called getStatus() that observers can call to get a snapshot of the
current state of play.

This addition also highlights a problem, though. By calling Login::getStatus(), the SecurityMonitor
class assumes more knowledge than it safely can. It is making this call on an Observable object, but
there’s no guarantee that this will also be a Login object. I have a couple of options here. I could extend
the Observable interface to include a getStatus() declaration and perhaps rename it to something like
ObservableLogin to signal that it is specific to the Login type.

Alternatively, I can keep the Observable interface generic and make the Observer classes responsible
for ensuring that their subjects are of the correct type. They could even handle the chore of attaching
themselves to their subject. Since there will be more than one type of Observer, and since I’m planning
to perform some housekeeping that is common to all of them, here’s an abstract superclass to handle
the donkey work:

abstract class LoginObserver implements Observer {
 private $login;
 function __construct(Login $login) {
 $this->login = $login;
 $login->attach($this);
 }

 function update(Observable $observable) {
 if ($observable === $this->login) {
 $this->doUpdate($observable);
 }
 }

 abstract function doUpdate(Login $login);
}

The LoginObserver class requires a Login object in its constructor. It stores a reference and calls
Login::attach(). When update() is called, it checks that the provided Observable object is the correct
reference. It then calls a Template Method: doUpdate(). I can now create a suite of LoginObserver objects
all of whom can be secure they are working with a Login object and not just any old Observable:

class SecurityMonitor extends LoginObserver {
 function doUpdate(Login $login) {
 $status = $login->getStatus();
 if ($status[0] == Login::LOGIN_WRONG_PASS) {

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

207

 // send mail to sysadmin
 print __CLASS__.":\tsending mail to sysadmin\n";
 }
 }
}

class GeneralLogger extends LoginObserver {
 function doUpdate(Login $login) {
 $status = $login->getStatus();
 // add login data to log
 print __CLASS__.":\tadd login data to log\n";
 }
}

class PartnershipTool extends LoginObserver {
 function doUpdate(Login $login) {
 $status = $login->getStatus();
 // check IP address
 // set cookie if it matches a list
 print __CLASS__.":\tset cookie if IP matches a list\n";
 }
}

Creating and attaching LoginObserver classes is now achieved in one go at the time of instantiation:

$login = new Login();
new SecurityMonitor($login);
new GeneralLogger($login);
new PartnershipTool($login);

So now I have created a flexible association between the subject classes and the observers. You can
see the class diagram for the example in Figure 11–6.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

208

Figure 11–6. The Observer pattern

PHP provides built-in support for the Observer pattern through the bundled SPL (Standard PHP
Library) extension. The SPL is a set of tools that help with common largely object-oriented problems.
The Observer aspect of this OO Swiss Army knife consists of three elements: SplObserver, SplSubject,
and SplObjectStorage. SplObserver and SplSubject are interfaces and exactly parallel the Observer and
Observable interfaces shown in this section’s example. SplObjectStorage is a utility class designed to
provide improved storage and removal of objects. Here’s an edited version of the Observer
implementation:

class Login implements SplSubject {
 private $storage;
 //...

 function __construct() {
 $this->storage = new SplObjectStorage();
 }
 function attach(SplObserver $observer) {
 $this->storage->attach($observer);
 }

 function detach(SplObserver $observer) {
 $this->storage->detach($observer);
 }

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

209

 function notify() {
 foreach ($this->storage as $obs) {
 $obs->update($this);
 }
 }
 //...
}

abstract class LoginObserver implements SplObserver {
 private $login;
 function __construct(Login $login) {
 $this->login = $login;
 $login->attach($this);
 }

 function update(SplSubject $subject) {
 if ($subject === $this->login) {
 $this->doUpdate($subject);
 }
 }

 abstract function doUpdate(Login $login);
}

There are no real differences as far as SplObserver (which was Observer) and SplSubject (which was
Observable) are concerned, except, of course, I no longer need to declare the interfaces, and I must alter
my type hinting according to the new names. SplObjectStorage provides you with a really useful service
however. You may have noticed that in my initial example my implementation of Login::detach()
applied array_udiff (together with an anoymous function) to the $observable array, in order to find and
remove the argument object. The SplObjectStorage class does this work for you under the hood. It
implements attach() and detach() methods and can be passed to foreach and iterated like an array.

■Note You can read more about SPL in the PHP documentation at http://www.php.net/spl. In particular, you
will find many iterator tools there. I cover PHP’s built-in Iterator interface in Chapter 13, “Database Patterns.”

Another approach to the problem of communicating between an Observable class and its Observer
could be to pass specific state information via the update() method, rather than an instance of the
subject class. For a quick-and-dirty solution, this is often the approach I would take initially. So in the
example, update() would expect a status flag, the username, and IP address (probably in an array for
portability), rather than an instance of Login. This saves you from having to write a state method in the
Login class. On the other hand, where the subject class stores a lot of state, passing an instance of it to
update() allows observers much more flexibility.

You could also lock down type completely, by making the Login class refuse to work with anything
other than a specific type of observer class (LoginObserver perhaps). If you want to do that, then you may
consider some kind of runtime check on objects passed to the attach() method; otherwise, you may
need to reconsider the Observable interface altogether.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

210

Once again, I have used composition at runtime to build a flexible and extensible model. The Login
class can be extracted from the context and dropped into an entirely different project without
qualification. There, it might work with a different set of observers.

The Visitor Pattern
As you have seen, many patterns aim to build structures at runtime, following the principle that
composition is more flexible than inheritance. The ubiquitous Composite pattern is an excellent
example of this. When you work with collections of objects, you may need to apply various operations to
the structure that involve working with each individual component. Such operations can be built into
the components themselves. After all, components are often best placed to invoke one another.

This approach is not without issues. You do not always know about all the operations you may need
to perform on a structure. If you add support for new operations to your classes on a case-by-case basis,
you can bloat your interface with responsibilities that don’t really fit. As you might guess, the Visitor
pattern addresses these issues.

The Problem
Think back to the Composite example from the previous chapter. For a game, I created an army of
components such that the whole and its parts can be treated interchangeably. You saw that operations
can be built into components. Typically, leaf objects perform an operation and composite objects call on
their children to perform the operation.

class Army extends CompositeUnit {

 function bombardStrength() {
 $ret = 0;
 foreach($this->units() as $unit) {
 $ret += $unit->bombardStrength();
 }
 return $ret;
 }
}

class LaserCannonUnit extends Unit {
 function bombardStrength() {
 return 44;
 }
}

Where the operation is integral to the responsibility of the composite class, there is no problem.
There are more peripheral tasks, however, that may not sit so happily on the interface.

Here’s an operation that dumps textual information about leaf nodes. It could be added to the
abstract Unit class.

 // Unit
 function textDump($num=0) {
 $ret = "";
 $pad = 4*$num;
 $ret .= sprintf("%{$pad}s", "");
 $ret .= get_class($this).": ";
 $ret .= "bombard: ".$this->bombardStrength()."\n";

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

211

 return $ret;
 }

This method can then be overridden in the CompositeUnit class:

 // CompositeUnit
 function textDump($num=0) {
 $ret = parent::textDump($num);
 foreach ($this->units as $unit) {
 $ret .= $unit->textDump($num + 1);
 }
 return $ret;
 }

I could go on to create methods for counting the number of units in the tree, for saving components
to a database, and for calculating the food units consumed by an army.

Why would I want to include these methods in the composite’s interface? There is only one really
compelling answer. I include these disparate operations here because this is where an operation can
gain easy access to related nodes in the composite structure.

Although it is true that ease of traversal is part of the Composite pattern, it does not follow that every
operation that needs to traverse the tree should therefore claim a place in the Composite’s interface.

So these are the forces at work. I want to take full advantage of the easy traversal afforded by my
object structure, but I want to do this without bloating the interface.

Implementation
I’ll begin with the interfaces. In the abstract Unit class, I define an accept() method:

 function accept(ArmyVisitor $visitor) {
 $method = "visit".get_class($this);
 $visitor->$method($this);
 }

 protected function setDepth($depth) {
 $this->depth=$depth;
 }

 function getDepth() {
 return $this->depth;
 }

As you can see, the accept() method expects an ArmyVisitor object to be passed to it. PHP allows
you dynamically to define the method on the ArmyVisitor you wish to call. This saves me from
implementing accept() on every leaf node in my class hierarchy. While I was in the area, I also added
two methods of convenience getDepth() and setDepth(). These can be used to store and retrieve the
depth of a unit in a tree. setDepth() is invoked by the unit’s parent when it adds it to the tree from
CompositeUnit::addUnit().

 function addUnit(Unit $unit) {
 foreach ($this->units as $thisunit) {
 if ($unit === $thisunit) {
 return;
 }
 }

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

212

 $unit->setDepth($this->depth+1);
 $this->units[] = $unit;
 }

The only other accept() method I need to define is in the abstract composite class:

 function accept(ArmyVisitor $visitor) {
 $method = "visit".get_class($this);
 $visitor->$method($this);
 foreach ($this->units as $thisunit) {
 $thisunit->accept($visitor);
 }
 }

This method does the same as Unit::accept(), with one addition. It constructs a method name
based on the name of the current class and invokes that method on the provided ArmyVisitor object. So
if the current class is Army, then it invokes ArmyVisitor::visitArmy(), and if the current class is
TroopCarrier, it invokes ArmyVisitor::visitTroopCarrier(), and so on. Having done this, it then loops
through any child objects calling accept(). In fact, because accept() overrides its parent operation, I
could factor out the repetition here:

 function accept(ArmyVisitor $visitor) {
 parent::accept($visitor);
 foreach ($this->units as $thisunit) {
 $thisunit->accept($visitor);
 }
 }

Eliminating repetition in this way can be very satisfying, though in this case I have saved only one
line, arguably at some cost to clarity. In either case, the accept() method allows me to do two things:

• Invoke the correct visitor method for the current component.

• Pass the visitor object to all the current element children via the accept() method
(assuming the current component is composite).

I have yet to define the interface for ArmyVisitor. The accept() methods should give you some clue.
The visitor class should define accept() methods for each of the concrete classes in the class hierarchy.
This allows me to provide different functionality for different objects. In my version of this class, I also
define a default visit() method that is automatically called if implementing classes choose not to
provide specific handling for particular Unit classes.

abstract class ArmyVisitor {
 abstract function visit(Unit $node);

 function visitArcher(Archer $node) {
 $this->visit($node);
 }

 function visitCavalry(Cavalry $node) {
 $this->visit($node);
 }

 function visitLaserCannonUnit(LaserCannonUnit $node) {
 $this->visit($node);
 }

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

213

 function visitTroopCarrierUnit(TroopCarrierUnit $node) {
 $this->visit($node);
 }

 function visitArmy(Army $node) {
 $this->visit($node);
 }
}

So now it’s just a matter of providing implementations of ArmyVisitor, and I am ready to go. Here is
the simple text dump code reimplemented as an ArmyVisitor object:

class TextDumpArmyVisitor extends ArmyVisitor {
 private $text="";

 function visit(Unit $node) {
 $ret = "";
 $pad = 4*$node->getDepth();
 $ret .= sprintf("%{$pad}s", "");
 $ret .= get_class($node).": ";
 $ret .= "bombard: ".$node->bombardStrength()."\n";
 $this->text .= $ret;
 }

 function getText() {
 return $this->text;
 }
}

Let’s look at some client code and then walk through the whole process:

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCannonUnit());
$main_army->addUnit(new Cavalry());

$textdump = new TextDumpArmyVisitor();
$main_army->accept($textdump);
print $textdump->getText();

This code yields the following output:

Army: bombard: 50
 Archer: bombard: 4
 LaserCannonUnit: bombard: 44
 Cavalry: bombard: 2

I create an Army object. Because Army is composite, it has an addUnit() method that I use to add
some more Unit objects. I then create the TextDumpArmyVisitor object. I pass this to the Army::accept().
The accept() method constructs a method call and invokes TextDumpArmyVisitor::visitArmy(). In this
case, I have provided no special handling for Army objects, so the call is passed on to the generic visit()
method. visit() has been passed a reference to the Army object. It invokes its methods (including the
newly added, getDepth(), which tells anyone who needs to know how far down the object hierarchy the
unit is) in order to generate summary data. The call to visitArmy() complete, the Army::accept()

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

214

operation now calls accept() on its children in turn, passing the visitor along. In this way, the
ArmyVisitor class visits every object in the tree.

With the addition of just a couple of methods, I have created a mechanism by which new
functionality can be plugged into my composite classes without compromising their interface and
without lots of duplicated traversal code.

On certain squares in the game, armies are subject to tax. The tax collector visits the army and levies
a fee for each unit it finds. Different units are taxable at different rates. Here’s where I can take advantage
of the specialized methods in the visitor class:

class TaxCollectionVisitor extends ArmyVisitor {
 private $due=0;
 private $report="";

 function visit(Unit $node) {
 $this->levy($node, 1);
 }

 function visitArcher(Archer $node) {
 $this->levy($node, 2);
 }

 function visitCavalry(Cavalry $node) {
 $this->levy($node, 3);
 }

 function visitTroopCarrierUnit(TroopCarrierUnit $node) {
 $this->levy($node, 5);
 }

 private function levy(Unit $unit, $amount) {
 $this->report .= "Tax levied for ".get_class($unit);
 $this->report .= ": $amount\n";
 $this->due += $amount;
 }

 function getReport() {
 return $this->report;
 }

 function getTax() {
 return $this->due;
 }
}

In this simple example, I make no direct use of the Unit objects passed to the various visit methods.
I do, however, use the specialized nature of these methods, levying different fees according to the
specific type of the invoking Unit object.

Here’s some client code:

$main_army = new Army();
$main_army->addUnit(new Archer());
$main_army->addUnit(new LaserCannonUnit());
$main_army->addUnit(new Cavalry());

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

215

$taxcollector = new TaxCollectionVisitor();
$main_army->accept($taxcollector);
print "TOTAL: ";
print $taxcollector->getTax()."\n";

The TaxCollectionVisitor object is passed to the Army object’s accept() method as before. Once
again, Army passes a reference to itself to the visitArmy() method, before calling accept() on its children.
The components are blissfully unaware of the operations performed by their visitor. They simply
collaborate with its public interface, each one passing itself dutifully to the correct method for its type.

In addition to the methods defined in the ArmyVisitor class, TaxCollectionVisitor provides two
summary methods, getReport() and getTax(). Invoking these provides the data you might expect:

Tax levied for Army: 1
Tax levied for Archer: 2
Tax levied for LaserCannonUnit: 1
Tax levied for Cavalry: 3
TOTAL: 7

Figure 11–7 shows the participants in this example.

Figure 11–7. The Visitor pattern

Visitor Issues
The Visitor pattern, then, is another that combines simplicity and power. There are a few things to bear
in mind when deploying this pattern, however.

First, although it is perfectly suited to the Composite pattern, Visitor can, in fact, be used with any
collection of objects. So you might use it with a list of objects where each object stores a reference to its
siblings, for example.

By externalizing operations, you may risk compromising encapsulation. That is, you may need to
expose the guts of your visited objects in order to let visitors do anything useful with them. You saw, for
example, that for the first Visitor example, I was forced to provide an additional method in the Unit
interface in order to provide information for TextDumpArmyVisitor objects. You also saw this dilemma
previously in the Observer pattern.

Because iteration is separated from the operations that visitor objects perform, you must relinquish
a degree of control. For example, you cannot easily create a visit() method that does something both
before and after child nodes are iterated. One way around this would be to move responsibility for

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

216

iteration into the visitor objects. The trouble with this is that you may end up duplicating the traversal
code from visitor to visitor.

By default, I prefer to keep traversal internal to the visited classes, but externalizing it provides you
with one distinct advantage. You can vary the way that you work through the visited classes on a visitor-
by-visitor basis.

The Command Pattern
In recent years, I have rarely completed a web project without deploying this pattern. Originally
conceived in the context of graphical user interface design, command objects make for good enterprise
application design, encouraging a separation between the controller (request and dispatch handling)
and domain model (application logic) tiers. Put more simply, the Command pattern makes for systems
that are well organized and easy to extend.

The Problem
All systems must make decisions about what to do in response to a user’s request. In PHP, that decision-
making process is often handled by a spread of point-of-contact pages. In selecting a page
(feedback.php), the user clearly signals the functionality and interface she requires. Increasingly, PHP
developers are opting for a single-point-of-contact approach (as I will discuss in the next chapter). In
either case, however, the receiver of a request must delegate to a tier more concerned with application
logic. This delegation is particularly important where the user can make requests to different pages.
Without it, duplication inevitably creeps into the project.

So, imagine you have a project with a range of tasks that need performing. In particular, the system
must allow some users to log in and others to submit feedback. You could create login.php and
feedback.php pages that handle these tasks, instantiating specialist classes to get the job done.
Unfortunately, user interface in a system rarely maps neatly to the tasks that the system is designed to
complete. You may require login and feedback capabilities on every page, for example. If pages must
handle many different tasks, then perhaps you should think of tasks as things that can be encapsulated.
In doing this, you make it easy to add new tasks to your system, and you build a boundary between your
system’s tiers. This, of course, brings us to the Command pattern.

Implementation
The interface for a command object could not get much simpler. It requires a single method: execute().

In Figure 11–8, I have represented Command as an abstract class. At this level of simplicity, it could be
defined instead as an interface. I tend to use abstracts for this purpose, because I often find that the base
class can also provide useful common functionality for its derived objects.

Figure 11–8. The Command class

There are up to three other participants in the Command pattern: the client, which instantiates the
command object; the invoker, which deploys the object; and the receiver on which the command
operates.

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

217

The receiver can be given to the command in its constructor by the client, or it can be acquired from
a factory object of some kind. I like the latter approach, keeping the constructor method clear of
arguments. All Command objects can then be instantiated in exactly the same way.

Here’s a concrete Command class:

abstract class Command {
 abstract function execute(CommandContext $context);
}

class LoginCommand extends Command {
 function execute(CommandContext $context) {
 $manager = Registry::getAccessManager();
 $user = $context->get('username');
 $pass = $context->get('pass');
 $user_obj = $manager->login($user, $pass);
 if (is_null($user_obj)) {
 $context->setError($manager->getError());
 return false;
 }
 $context->addParam("user", $user_obj);
 return true;
 }
}

The LoginCommand is designed to work with an AccessManager object. AccessManager is an imaginary
class whose task is to handle the nuts and bolts of logging users into the system. Notice that the
Command::execute() method demands a CommandContext object (known as RequestHelper in Core J2EE
Patterns). This is a mechanism by which request data can be passed to Command objects, and by which
responses can be channeled back to the view layer. Using an object in this way is useful, because I can
pass different parameters to commands without breaking the interface. The CommandContext is
essentially an object wrapper around an associative array variable, though it is frequently extended to
perform additional helpful tasks. Here is a simple CommandContext implementation:

class CommandContext {
 private $params = array();
 private $error = "";

 function __construct() {
 $this->params = $_REQUEST;
 }

 function addParam($key, $val) {
 $this->params[$key]=$val;
 }

 function get($key) {
 return $this->params[$key];
 }

 function setError($error) {
 $this->error = $error;
 }

 function getError() {

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

218

 return $this->error;
 }
}

So, armed with a CommandContext object, the LoginCommand can access request data: the submitted
username and password. I use Registry, a simple class with static methods for generating common
objects, to return the AccessManager object with which LoginCommand needs to work. If AccessManager
reports an error, the command lodges the error message with the CommandContext object for use by the
presentation layer, and returns false. If all is well, LoginCommand simply returns true. Note that Command
objects do not themselves perform much logic. They check input, handle error conditions, and cache
data as well as calling on other objects to perform the operations they must report on. If you find that
application logic creeps into your command classes, it is often a sign that you should consider
refactoring. Such code invites duplication, as it is inevitably copied and pasted between commands. You
should at least look at where the functionality belongs. It may be best moved down into your business
objects, or possibly into a Facade layer. I am still missing the client, the class that generates command
objects, and the invoker, the class that works with the generated command. The easiest way of selecting
which command to instantiate in a web project is by using a parameter in the request itself. Here is a
simplified client:

class CommandNotFoundException extends Exception {}

class CommandFactory {
 private static $dir = 'commands';

 static function getCommand($action='Default') {
 if (preg_match('/\W/', $action)) {
 throw new Exception("illegal characters in action");
 }
 $class = UCFirst(strtolower($action))."Command";
 $file = self::$dir.DIRECTORY_SEPARATOR."{$class}.php";
 if (! file_exists($file)) {
 throw new CommandNotFoundException("could not find '$file'");
 }
 require_once($file);
 if (! class_exists($class)) {
 throw new CommandNotFoundException("no '$class' class located");
 }
 $cmd = new $class();
 return $cmd;
 }
}

The CommandFactory class simply looks in a directory called commands for a particular class file. The
file name is constructed using the CommandContext object’s $action parameter, which in turn should have
been passed to the system from the request. If the file is there, and the class exists, then it is returned to
the caller. I could add even more error checking here, ensuring that the found class belongs to the
Command family, and that the constructor is expecting no arguments, but this version will do fine for my
purposes. The strength of this approach is that you can drop a new Command object into the commands
directory at any time, and the system will immediately support it.

The invoker is now simplicity itself:

class Controller {
 private $context;
 function __construct() {
 $this->context = new CommandContext();

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

219

 }

 function getContext() {
 return $this->context;
 }

 function process() {
 $cmd = CommandFactory::getCommand($this->context->get('action'));
 if (! $cmd->execute($this->context)) {
 // handle failure
 } else {
 // success
 // dispatch view now..
 }
 }
}

$controller = new Controller();
// fake user request
$context = $controller->getContext();
$context->addParam('action', 'login');
$context->addParam('username', 'bob');
$context->addParam('pass', 'tiddles');
$controller->process();

Before I call Controller::process(), I fake a web request by setting parameters on the
CommandContext object instantiated in the controller’s constructor. The process() method delegates
object instantiation to the CommandFactory object. It then invokes execute() on the returned command.
Notice how the controller has no idea about the command’s internals. It is this independence from the
details of command execution that makes it possible for you to add new Command classes with a relatively
small impact on this framework.

Here's one more Command class:

class FeedbackCommand extends Command {

 function execute(CommandContext $context) {
 $msgSystem = Registry::getMessageSystem();
 $email = $context->get('email');
 $msg = $context->get('msg');
 $topic = $context->get('topic');
 $result = $msgSystem->send($email, $msg, $topic);
 if (! $result) {
 $context->setError($msgSystem->getError());
 return false;
 }
 return true;
 }
}

CHAPTER 11 ■ PERFORMING AND REPRESENTING TASKS

220

■Note I will return to the Command pattern in Chapter 12 with a fuller implementation of a Command factory
class. The framework for running commands presented here is a simplified version of another pattern that you will
encounter: the Front Controller.

As long as this class is contained within a file called FeedbackCommand.php, and is saved in the correct
commands folder, it will be run in response to a “feedback” action string, without the need for any changes
in the controller or CommandFactory classes.

Figure 11–9 shows the participants of the Command pattern.

Figure 11–9. Command pattern participants

Summary
In this chapter, I wrapped up my examination the Gang of Four patterns. I designed a minilanguage and
built its engine with the Interpreter pattern. You encountered in the Strategy pattern another way of
using composition to increase flexibility and reduce the need for repetitive subclassing. The Observer
pattern solved the problem of notifying disparate and varying components about system events. You
revisited the Composite example, and with the Visitor pattern learned how to pay a call on, and apply
many operations to, every component in a tree. Finally, you saw how the Command pattern can help
you to build an extensible tiered system.

In the next chapter, I will step beyond the Gang of Four to examine some patterns specifically
oriented toward enterprise programming.

C H A P T E R 12

■ ■ ■

221

Enterprise Patterns

PHP is first and foremost a language designed for the Web. And since its support for objects was
significantly extended in PHP 5, you can now take advantage of patterns hatched in the context of other
object-oriented languages, particularly Java.

I develop a single example in this chapter, using it to illustrate the patterns I cover. Remember,
though, that by choosing to use one pattern, you are not committed to using all the patterns that work
well with it. Nor should you feel that the implementations presented here are the only way you might go
about deploying these patterns. Use the examples here to help you understand the thrust of the patterns
described, and feel free to extract what you need for your projects.

Because of the amount of material to cover, this is one this book’s longest and most involved
chapters, and it may be a challenge to traverse in one sitting. It is divided into an introduction and two
main parts. These dividing lines might make good break points.

I also describe the individual patterns in the “Architecture Overview” section. Although these are
interdependent to some extent, you should be able to jump straight to any particular pattern and work
through it independently, moving on to related patterns at your leisure.

This chapter will cover

• Architecture overview: An introduction to the layers that typically comprise an
enterprise application

• Registry pattern: Managing application data

• Presentation layer: Tools for managing and responding to requests and for
presenting data to the user

• Business logic layer: Getting to the real purpose of your system: addressing
business problems

Architecture Overview
With a lot of ground to cover, let’s kick off with an overview of the patterns to come, followed by an
introduction to building layered, or tiered, applications.

CHAPTER 12 ■ ENTERPRISE PATTERNS

222

The Patterns
These are the patterns I explore in this chapter. You may read from start to finish or dip in to those
patterns that fit your needs or pique your interest. Note that the Command pattern is not described
individually here (I wrote about it in Chapter 11), but it is encountered once again in both the Front
Controller and Application Controller patterns.

• Registry: This pattern is useful for making data available to all classes in a process.
Through careful use of serialization, it can also be used to store information across
a session or even across instances of an application.

• Front Controller: Use this for larger systems in which you know that you will need
as much flexibility as possible in managing many different views and commands.

• Application Controller: Create a class to manage view logic and command
selection.

• Template View: Create pages that manage display and user interface only,
incorporating dynamic information into display markup with as little raw code as
possible.

• Page Controller: Lighter weight but less flexible than Front Controller, Page
Controller addresses the same need. Use this pattern to manage requests and
handle view logic if you want fast results and your system is unlikely to grow
substantially in complexity.

• Transaction Script: When you want to get things done fast, with minimal up-front
planning, fall back on procedural library code for your application logic. This
pattern does not scale well.

• Domain Model: At the opposite pole from Transaction Script, use this pattern to
build object-based models of your business participants and processes.

Applications and Layers
Many (most, in fact) of the patterns in this chapter are designed to promote the independent operation
of several distinct tiers in an application. Just as classes represent specializations of responsibilities, so
do the tiers of an enterprise system, albeit on a coarser scale. Figure 12–1 shows a typical breakdown of
the layers in a system.

The structure shown in Figure 12–1 is not written in stone: some of these tiers may be combined,
and different strategies used for communication between them, depending on the complexity of your
system. Nonetheless, Figure 12–1 illustrates a model that emphasizes flexibility and reuse, and many
enterprise applications follow it to a large extent.

• The view layer contains the interface that a system’s users actually see and interact
with. It is responsible for presenting the results of a user’s request and providing
the mechanism by which the next request can be made to the system.

CHAPTER 12 ■ ENTERPRISE PATTERNS

223

• The command and control layer processes the request from the user. Based on this
analysis, it delegates to the business logic layer any processing required in order to
fulfill the request. It then chooses which view is best suited to present the results
to the user. In practice, this and the view layer are often combined into a single
presentation layer. Even so, the role of display should be strictly separated from
those of request handling and business logic invocation.

• The business logic layer is responsible for seeing to the business of a request. It
performs any required calculations and marshals the resulting data.

• The data layer insulates the rest of the system from the mechanics of saving and
acquiring persistent information. In some systems, the command and control
layer uses the data layer to acquire the business objects with which it needs to
work. In other systems, the data layer is hidden as far as possible.

Figure 12–1. The layers or tiers in a typical enterprise system

So what is the point of dividing a system in this way? As with so much else in this book, the answer
lies with decoupling. By keeping business logic independent of the view layer, you make it possible to
add new interfaces to your system with little or no rewriting.

Imagine a system for managing event listings (this will be a very familiar example by the end of the
chapter). The end user will naturally require a slick HTML interface. Administrators maintaining the
system may require a command line interface for building into automated systems. At the same time,
you may be developing versions of the system to work with cell phones and other handheld devices. You
may even begin to consider SOAP or a RESTful API.

If you originally combined the underlying logic of your system with the HTML view layer (which is
still a common strategy despite the many strictures against it), these requirements would trigger an
instant rewrite. If, on the other hand, you had created a tiered system, you would be able to bolt on new
presentation strategies without the need to reconsider your business logic and data layers.

By the same token, persistence strategies are subject to change. Once again, you should be able to
switch between storage models with minimal impact on the other tiers in a system.

CHAPTER 12 ■ ENTERPRISE PATTERNS

224

Testing is another good reason for creating systems with separate tiers. Web applications are
notoriously hard to test. Any kind of automated test tends to get caught up in the need to parse the
HTML interface at one end and to work with live databases at the other. This means that tests must work
with fully deployed systems and risk undermining the very system that they were written to protect. In
any tier, the classes that face other tiers are often written so that they extend an abstract superclass or
implement an interface. This supertype can then support polymorphism. In a test context, an entire tier
can be replaced by a set of dummy objects (often called “stubs” or “mock objects”). In this way, you can
test business logic using a fake data layer, for example. You can read more about testing in Chapter 18.

Layers are useful even if you think that testing is for wimps, and your system will only ever have a
single interface. By creating tiers with distinct responsibilities, you build a system whose constituent
parts are easier to extend and debug. You limit duplication by keeping code with the same kinds of
responsibility in one place (rather than lacing a system with database calls, for example, or with display
strategies). Adding to a system is relatively easy, because your changes tend to be nicely vertical as
opposed to messily horizontal.

A new feature, in a tiered system, might require a new interface component, additional request
handling, some more business logic, and an amendment to your storage mechanism. That’s vertical
change. In a nontiered system, you might add your feature and then remember that five separate pages
reference your amended database table, or was it six? There may be dozens of places where your new
interface may potentially be invoked, so you need to work through your system adding code for that.
This is horizontal amendment.

In reality, of course, you never entirely escape from horizontal dependencies of this sort, especially
when it comes to navigation elements in the interface. A tiered system can help to minimize the need for
horizontal amendment, however.

■Note While many of these patterns have been around for a while (patterns reflect well-tried practices, after all),
the names and boundaries are drawn either from Martin Fowler’s key work on enterprise patterns, Patterns of
Enterprise Application Architecture, or from the influential Core J2EE Patterns by Alur et al. For the sake of
consistency, I have tended to use Fowler’s naming conventions where the two sources diverge. This is because
Fowler’s work is less focused on a single technology and, therefore, has the wider application. Alur et al. tend to
concentrate on Enterprise Java Beans in their work, which means that many patterns are optimized for distributed
architectures. This is clearly a niche concern in the PHP world.

If you find this chapter useful, I would recommend both books as a next step. Even if you don’t know Java, as an
object-oriented PHP programmer, you should find the examples reasonably easy to decipher.

All the examples in this chapter revolve around a fictional listings system with the whimsical-
sounding name “Woo,” which stands for something like “What’s On Outside.”

Participants of the system include venues (theaters, clubs, and cinemas), spaces (screen 1, the stage
upstairs) and events (The Long Good Friday, The Importance of Being Earnest).

The operations I will cover include creating a venue, adding a space to a venue, and listing all
venues in the system.

CHAPTER 12 ■ ENTERPRISE PATTERNS

225

Remember that the aim of this chapter is to illustrate key enterprise design patterns and not to build
a working system. Reflecting the interdependent nature of design patterns, most of these examples
overlap to a large extent with code examples, making good use of ground covered elsewhere in the
chapter. As this code is mainly designed to demonstrate enterprise patterns, much of it does not fulfill all
the criteria demanded by a production system. In particular, I omit error checking where it might stand
in the way of clarity. You should approach the examples as a means of illustrating the patterns they
implement, rather than as building blocks in a framework or application.

Cheating Before We Start
Most of the patterns in this book find a natural place in the layers of an enterprise architecture. But some
patterns are so basic that they stand outside of this structure. The Registry pattern is a good example of
this. In fact, Registry is a powerful way of breaking out of the constraints laid down by layering. It is the
exception that allows for the smooth running of the rule.

Registry
The Registry pattern is all about providing systemwide access to objects. It is an article of faith that
globals are bad. Like other sins, though, global data is fatally attractive. This is so much the case that
object-oriented architects have felt it necessary to reinvent globals under a new name. You encountered
the Singleton pattern in Chapter 9. It is true that singleton objects do not suffer from all the ills that beset
global variables. In particular, you cannot overwrite a singleton by accident. Singletons, then, are low-fat
globals. You should remain suspicious of singleton objects, though, because they invite you to anchor
your classes into a system, thereby introducing coupling.

Even so, singletons are so useful at times that many programmers (including me) can’t bring
themselves to give them up.

The Problem
As you have seen, many enterprise systems are divided into layers, with each layer communicating with
its neighbors only through tightly defined conduits. This separation of tiers makes an application
flexible. You can replace or otherwise develop each tier with the minimum impact on the rest of the
system. What happens, though, when you acquire information in a tier that you later need in another
noncontiguous layer?

Let’s say that I acquire configuration data in an ApplicationHelper class:

 // woo\controller\ApplicationHelper
 function getOptions() {
 if (! file_exists("data/woo_options.xml")) {
 throw new woo_base_AppException(
 "Could not find options file");
 }
 $options = simplexml_load_file("data/woo_options.xml");
 $dsn = (string)$options->dsn;
 // what do we do with this now?
 // ...
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

226

Acquiring the information is easy enough, but how would I get it to the data layer where it is later
used? And what about all the other configuration information I must disseminate throughout my
system?

One answer would be to pass this information around the system from object to object: from a
controller object responsible for handling requests, through to objects in the business logic layer, and on
to an object responsible for talking to the database.

This is entirely feasible. In fact, you could pass the ApplicationHelper object itself around, or
alternatively, a more specialized Context object. Either way, contextual information is transmitted
through the layers of your system to the object or objects that need it.

The trade-off is that in order to do this, you must alter the interface of all the objects that relay the
context object whether they need to use it or not. Clearly, this undermines loose coupling to some
extent.

The Registry pattern provides an alternative that is not without its own consequences.
A registry is simply a class that provides access to data (usually, but not exclusively, objects) via static

methods (or via instance methods on a singleton). Every object in a system, therefore, has access to
these objects.

The term “Registry” is drawn from Fowler’s Patterns of Enterprise Application Architecture, but like
all patterns, implementations pop up everywhere. David Hunt and David Thomas (The Pragmatic
Programmer) liken a registry class to a police incident notice board. Detectives on one shift leave
evidence and sketches on the board, which are then picked up by new detectives on another shift. I have
also seen the Registry pattern called Whiteboard and Blackboard.

Implementation
Figure 12–2 shows a Registry object whose job it is to store and serve Request objects.

Figure 12–2. A simple registry

Here is this class in code form:

class Registry {
 private static $instance;
 private $request;

 private function __construct() { }

 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;

CHAPTER 12 ■ ENTERPRISE PATTERNS

227

 }

 function getRequest() {
 return $this->request;
 }

 function setRequest(Request $request) {
 $this->request = $request;
 }
}
// empty class for testing
class Request {}

You can then add a Request object in one part of a system:

$reg = Registry::instance();
$reg->setRequest(new Request());

and access it from another part of the system:

$reg = Registry::instance();
print_r($reg->getRequest());

As you can see, the Registry is simply a singleton (see Chapter 9 if you need a reminder about
singleton classes). The code creates and returns a sole instance of the Registry class via the instance()
method. This can then be used to set and retrieve a Request object. Despite the fact that PHP does not
enforce return types, the value returned by getRequest() is guaranteed to be a Request object because of
the type hint in setRequest().

I have been known to throw caution to the winds and use a key-based system, like this:

class Registry {
 private static $instance;
 private $values = array();

 private function __construct() { }

 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

 function get($key) {
 if (isset($this->values[$key])) {
 return $this->values[$key];
 }
 return null;
 }

 function set($key, $value) {
 $this->values[$key] = $value;
 }
}

CHAPTER 12 ■ ENTERPRISE PATTERNS

228

The benefit here is that you don’t need to create methods for every object you wish to store and
serve. The downside, though, is that you reintroduce global variables by the back door. The use of
arbitrary strings as keys for the objects you store means that there is nothing stopping one part of your
system overwriting a key/value pair when adding an object. I have found it useful to use this map-like
structure during development and shift over to explicitly named methods when I’m clear about the data
I am going to need to store and retrieve.

You can also use registry objects as factories for common objects in your system. Instead of storing a
provided object, the registry class creates an instance and then caches the reference. It may do some
setup behind the scenes as well, maybe retrieving data from a configuration file or combining a number
of objects.

 //class Registry...
 function treeBuilder() {
 if (! isset($this->treeBuilder)) {
 $this->treeBuilder = new TreeBuilder($this->conf()->get('treedir'));
 }
 return $this->treeBuilder;
 }

 function conf() {
 if (! isset($this->conf)) {
 $this->conf = new Conf();
 }
 return $this->conf;
 }

TreeBuilder and Conf are just dummy classes, included to demonstrate a point. A client class that
needs a TreeBuilder object can simply call Registry::treeBuilder(), without bothering itself with the
complexities of initialization. Such complexities may include application-level data such as the dummy
Conf object, and most classes in a system should be insulated from them.

Registry objects can be useful for testing, too. The static instance() method can be used to serve up
a child of the Registry class primed with dummy objects. Here’s how I might amend instance() to
achieve this:

 static function testMode($mode=true) {
 self::$instance=null;
 self::$testmode=$mode;
 }

 static function instance() {
 if (self::$testmode) {
 return new MockRegistry();
 }
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

229

When you need to put your system through its paces, you can use test mode to switch in a fake
registry. This can serve up stubs (objects that fake a real environment for testing purposes) or mocks
(similar objects that also analyze calls made to them and assess them for correctness).

Registry::testMode();
$mockreg = Registry::instance();

You can read more about mock and stub objects in Chapter 18, “Testing with PHPUnit.”

Registry, Scope, and PHP
The term scope is often used to describe the visibility of an object or value in the context of code
structures. The lifetime of a variable can also be measured over time. There are three levels of scope you
might consider in this sense. The standard is the period covered by an HTTP request.

PHP also provides built-in support for session variables. These are serialized and saved to the file
system or the database at the end of a request, and then restored at the start of the next. A session ID
stored in a cookie or passed around in query strings is used to keep track of the session owner. Because
of this, you can think of some variables having session scope. You can take advantage of this by storing
some objects between requests, saving a trip to the database. Clearly, you need to be careful that you
don’t end up with multiple versions of the same object, so you may need to consider a locking strategy
when you check an object that also exists in a database into a session.

In other languages, notably Java and Perl (running on the ModPerl Apache module), there is the
concept of application scope. Variables that occupy this space are available across all instances of the
application. This is fairly alien to PHP, but in larger applications, it is very useful to have access to an
applicationwide space for accessing configuration variables. You can build a registry class that emulates
application scope, though you must be aware of some pretty considerable caveats.

Figure 12–3 shows a possible structure for Registry classes that work on the three levels I have
described.

Figure 12–3. Implementing registry classes for different scopes

CHAPTER 12 ■ ENTERPRISE PATTERNS

230

The base class defines two protected methods, get() and set(). They are not available to client
code, because I want to enforce type for get and set operations. The base class may define other public
methods such as isEmpty(), isPopulated(), and clear(), but I’ll leave those as an exercise for you to do.

■Note In a real-world system, you might want to extend this structure to include another layer of inheritance.
You might keep the concrete get() and set() methods in their respective implementations, but specialize the
public getAaa() and setAaa() methods into domain-specific classes. The new specializations would become the
singletons. That way you could reuse the core save and retrieve operations across multiple applications.

Here is the abstract class as code:

namespace woo\base;

abstract class Registry {
 abstract protected function get($key);
 abstract protected function set($key, $val);
}

■Note Notice that I’m using namespaces in these examples. Because I will be building a complete, if basic,
system in this chapter, it makes sense to use a package hierarchy, and to take advantage of the brevity and clarity
that namespaces can bring to a project.

The request level class is pretty straightforward. In another variation from my previous example, I
keep the Registry sole instance hidden and provide static methods to set and get objects. Apart from
that, it’s simply a matter of maintaining an associative array.

namespace woo\base;
// ...
class RequestRegistry extends Registry {
 private $values = array();
 private static $instance;

 private function __construct() {}
 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

 protected function get($key) {

CHAPTER 12 ■ ENTERPRISE PATTERNS

231

 if (isset($this->values[$key])) {
 return $this->values[$key];
 }
 return null;
 }

 protected function set($key, $val) {
 $this->values[$key] = $val;
 }

 static function getRequest() {
 return self::instance()->get('request');
 }

 static function setRequest(\woo\controller\Request $request) {
 return self::instance()->set('request', $request);
 }
}

The session-level implementation simply uses PHP’s built-in session support:

namespace woo\base;
// ...
class SessionRegistry extends Registry {
 private static $instance;
 private function __construct() {
 session_start();
 }

 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

 protected function get($key) {
 if (isset($_SESSION[__CLASS__][$key])) {
 return $_SESSION[__CLASS__][$key];
 }
 return null;
 }

 protected function set($key, $val) {
 $_SESSION[__CLASS__][$key] = $val;
 }

 function setComplex(Complex $complex) {
 self::instance()->set('complex', $complex);
 }

 function getComplex() {
 return self::instance()->get('complex');
 }
}

CHAPTER 12 ■ ENTERPRISE PATTERNS

232

As you can see, this class uses the $_SESSION superglobal to set and retrieve values. I kick off the
session in the constructor with the session_start() method. As always with sessions, you must ensure
that you have not yet sent any text to the user before using this class.

As you might expect, the application-level implementation is more of an issue. As with all code
examples in this chapter, this is an illustration rather than production-quality code:

namespace woo\base;
// ...
class ApplicationRegistry extends Registry {
 private static $instance;
 private $freezedir = "data";
 private $values = array();
 private $mtimes = array();

 private function __construct() { }

 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

 protected function get($key) {
 $path = $this->freezedir . DIRECTORY_SEPARATOR . $key;
 if (file_exists($path)) {
 clearstatcache();
 $mtime=filemtime($path);
 if (! isset($this->mtimes[$key])) { $this->mtimes[$key]=0; }
 if ($mtime > $this->mtimes[$key]) {
 $data = file_get_contents($path);
 $this->mtimes[$key]=$mtime;
 return ($this->values[$key]=unserialize($data));
 }
 }
 if (isset($this->values[$key])) {
 return $this->values[$key];
 }
 return null;
 }
 protected function set($key, $val) {
 $this->values[$key] = $val;
 $path = $this->freezedir . DIRECTORY_SEPARATOR . $key;
 file_put_contents($path, serialize($val));
 $this->mtimes[$key]=time();
 }

 static function getDSN() {
 return self::instance()->get('dsn');
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

233

 static function setDSN($dsn) {
 return self::instance()->set('dsn', $dsn);
 }
}

This class uses serialization to save and restore individual properties. The get() function checks for
the existence of the relevant value file. If the file exists and has been modified since the last read, the
method unserializes and returns its contents. Because it’s not particularly efficient to open a file for each
variable you are managing, you might want to take a different approach here—placing all properties into
a single save file. The set() method changes the property referenced by $key both locally and in the save
file. It updates the $mtimes property. This is the array of modification times that is used to test save files.
Later, if get() is called, the file can be tested against the corresponding entry in $mtimes to see if it has
been modified since this object’s last write.

If the shm (System V shared memory) extension is enabled in your PHP install, you might use its
functions to implement an application registry. Here’s a simplified example:

namespace woo\base;
// ...

class MemApplicationRegistry extends Registry {
 private static $instance;
 private $values=array();
 private $id;
 const DSN=1;

 private function __construct() {
 $this->id = @shm_attach(55, 10000, 0600);
 if (! $this->id) {
 throw new Exception("could not access shared memory");
 }
 }

 static function instance() {
 if (! isset(self::$instance)) { self::$instance = new self(); }
 return self::$instance;
 }

 protected function get($key) {
 return shm_get_var($this->id, $key);
 }

 protected function set($key, $val) {
 return shm_put_var($this->id, $key, $val);
 }

 static function getDSN() {
 return self::instance()->get(self::DSN);
 }

 static function setDSN($dsn) {
 return self::instance()->set(self::DSN, $dsn);

CHAPTER 12 ■ ENTERPRISE PATTERNS

234

 }

}

If you intend to use a variation on this code example, make sure you check out the next section:
there are some serious issues that you should consider.

Consequences
Because both SessionRegistry and ApplicationRegistry serialize data to the file system, it is important
to restate the obvious point that objects retrieved in different requests are identical copies and not
references to the same object. This should not matter with SessionRegistry, because the same user is
accessing the object in each instance. With ApplicationRegistry, this could be a serious problem. If you
are saving data promiscuously, you could arrive at a situation where two processes conflict. Take a look
at these steps:

Process 1 retrieves an object
Process 2 retrieves an object
Process 1 alters object
Process 2 alters object
Process 1 saves object
Process 2 saves object

The changes made by Process 1 are overwritten by the save of Process 2. If you really want to create
a shared space for data, you will need to work on ApplicationRegistry to implement a locking scheme to
prevent collisions like this. Alternatively, you can treat ApplicationRegistry as a largely read-only
resource. This is the way that I use the class in examples later in this chapter. It sets data initially, and
thereafter, interactions with it are read-only. The code only calculates new values and writes them if the
storage file cannot be found. You can, therefore, force a reload of configuration data only by deleting the
storage file. You may wish to enhance the class so read-only behavior is enforced.

Another point to remember is that not every object is suitable for serialization. In particular, if you
are storing a resource of any type (a database connection handle, for example), it will not serialize. You
will have to devise strategies for disposing of the handle on serialization and reacquiring it on
unserialization.

■Note One way of managing serialization is to implement the magic methods __sleep() and __wakeup().
__sleep() is called automatically when an object is serialized. You can use it to perform any cleaning up before
the object is saved. It should return an array of strings representing the fields you would like to have saved. The
__wakeup() method is invoked when an object is unserialized. You can use this to resume any file or database
handles the object may have been using at the time of storage.

CHAPTER 12 ■ ENTERPRISE PATTERNS

235

Although serialization is a pretty efficient business in PHP, you should be careful of what you save. A
simple-seeming object may contain a reference to an enormous collection of objects pulled from a
database.

Registry objects make their data globally available. This means that any class that acts as a client for
a registry will exhibit a dependency that is not declared in its interface. This can become a serious
problem if you begin to rely on Registry objects for lots of the data in your system. Registry objects are
best used sparingly, for a well-defined set of data items.

The Presentation Layer
When a request hits your system, you must interpret the requirement it carries, then you must invoke
any business logic needed, and finally return a response. For simple scripts, this whole process often
takes place entirely inside the view itself, with only the heavyweight logic and persistence code split off
into libraries.

■Note A view is an individual element in the view layer. It can be a PHP page (or a collection of composed view
elements) whose primary responsibility is to display data and provide the mechanism by which new requests can
be generated by the user. It could also be a template in a templating system such as Smarty.

As systems grow in size, this default strategy becomes less tenable with request processing, business
logic invocation, and view dispatch logic necessarily duplicated from view to view.

In this section, I look at strategies for managing these three key responsibilities of the presentation
layer. Because the boundaries between the view layer and the command and control layer are often
fairly blurred, it makes sense to treat them together under the common term “presentation layer.”

Front Controller
This pattern is diametrically opposed to the traditional PHP application with its multiple points of entry.
The Front Controller pattern presents a central point of access for all incoming requests, ultimately
delegating to a view the task of presenting results back to the user. This is a key pattern in the Java
enterprise community. It is covered in great detail in Core J2EE Patterns, which remains one of the most
influential enterprise patterns resources. The pattern is not universally loved in the PHP community,
partly because of the overhead that initialization sometimes incurs.

Most systems I write tend to gravitate toward the Front Controller. That is, I may not deploy the
entire pattern to start with, but I will be aware of the steps necessary to evolve my project into a Front
Controller implementation should I need the flexibility it affords.

The Problem
Where requests are handled at multiple points throughout a system, it is hard to keep duplication from
the code. You may need to authenticate a user, translate terms into different languages, or simply access
common data. When a request requires common actions from view to view, you may find yourself
copying and pasting operations. This can make alteration difficult, as a simple amendment may need to

CHAPTER 12 ■ ENTERPRISE PATTERNS

236

be deployed across several points in your system. For this reason, it becomes easy for some parts of your
code to fall out of alignment with others. Of course, a first step might be to centralize common
operations into library code, but you are still left with the calls to the library functions or methods
distributed throughout your system.

Difficulty in managing the progression from view to view is another problem that can arise in a
system where control is distributed among its views. In a complex system, a submission in one view may
lead to any number of result pages, according to the input and the success of any operations performed
at the logic layer. Forwarding from view to view can get messy, especially if the same view might be used
in different flows.

Implementation
At heart, the Front Controller pattern defines a central point of entry for every request. It processes the
request and uses it to select an operation to perform. Operations are often defined in specialized command
objects organized according to the Command pattern.

Figure 12–4 shows an overview of a Front Controller implementation.

Figure 12–4. A Controller class and a command hierarchy

In fact, you are likely to deploy a few helper classes to smooth the process, but let’s begin with the
core participants. Here is a simple Controller class:

namespace woo\controller;

//...
class Controller {
 private $applicationHelper;
 private function __construct() {}

 static function run() {
 $instance = new Controller();
 $instance->init();
 $instance->handleRequest();
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

237

 function init() {
 $applicationHelper
 = ApplicationHelper::instance();
 $applicationHelper->init();
 }

 function handleRequest() {
 $request = new \woo\controller\Request();
 $cmd_r = new \woo\command\CommandResolver();
 $cmd = $cmd_r->getCommand($request);
 $cmd->execute($request);
 }
}

Simplified as this is, and bereft of error handling, there isn’t much more to the Controller class. A
controller sits at the tip of a system delegating to other classes. It is these other classes that do most of
the work.

run() is merely a convenience method that calls init() and handleRequest(). It is static, and the
constructor is private, so the only option for client code is to kick off execution of the system. I usually do
this in a file called index.php that contains only a couple of lines of code:

require("woo/controller/Controller.php");
\woo\controller\Controller::run();

The distinction between the init() and handleRequest() methods is really one of category in PHP.
In some languages, init() would be run only at application startup, and handleRequest() or equivalent
would be run for each user request. This class observes the same distinction between setup and request
handling, even though init() is called for each request.

The init() method obtains an instance of a class called ApplicationHelper. This class manages
configuration data for the application as a whole. init() calls a method in ApplicationHelper, also
called init(), which, as you will see, initializes data used by the application.

The handleRequest() method uses a CommandResolver to acquire a Command object, which it runs by
calling Command::execute().

ApplicationHelper

The ApplicationHelper class is not essential to Front Controller. Most implementations must acquire
basic configuration data, though, so I should develop a strategy for this. Here is a simple
ApplicationHelper:

namespace woo\controller;
//...
class ApplicationHelper {
 private static $instance;
 private $config = "/tmp/data/woo_options.xml";

 private function __construct() {}

 static function instance() {
 if (! self::$instance) {
 self::$instance = new self();
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

238

 return self::$instance;
 }

 function init() {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (! is_null($dsn)) {
 return;
 }
 $this->getOptions();
 }

 private function getOptions() {
 $this->ensure(file_exists($this->config),
 "Could not find options file");

 $options = SimpleXml_load_file($this->config);
 print get_class($options);
 $dsn = (string)$options->dsn;
 $this->ensure($dsn, "No DSN found");
 \woo\base\ApplicationRegistry::setDSN($dsn);
 // set other values
 }

 private function ensure($expr, $message) {
 if (! $expr) {
 throw new \woo\base\AppException($message);
 }
 }
}

This class simply reads a configuration file and makes values available to clients. As you can see, it is
another singleton, which is a useful way of making it available to any class in the system. You could
alternatively make it a standard class and ensure that it is passed around to any interested objects. I have
already discussed the trade-offs involved there both earlier in this chapter and in Chapter 9.

The fact that I am using an ApplicationRegistry here suggests a refactoring. It may be worth making
ApplicationHelper itself the registry rather than have two singletons in a system with overlapping
responsibilities. This would involve the refactoring suggested in the previous section (splitting core
ApplicationRegistry functionality from storage and retrieval of domain-specific objects). I will leave
that for you to do!

So the init() method is responsible for loading configuration data. In fact, it checks the
ApplicationRegistry to see if the data is already cached. If the Registry object is already populated,
init() does nothing at all. This is useful for systems that do lots of very expensive initialization.
Complicated setup may be acceptable in a language that separates application initialization from
individual requests. In PHP, you need to minimize initialization.

Caching is very useful for ensuring that complex and time-consuming initialization processes take
place in an initial request only (probably one run by you), with all subsequent requests benefiting from
the results.

CHAPTER 12 ■ ENTERPRISE PATTERNS

239

If this is the first run (or if the cache files have been deleted—a crude but effective way of forcing
configuration data to be re-read), then the getOptions() method is invoked.

In real life, this would probably do a lot more work than the example shows. This version satisfies
itself with acquiring a DSN. getOptions() first checks that the configuration file exists (the path is stored
in a property called $config). It then attempts to load XML data from the file and sets the DSN.

■Note In these examples, both ApplicationRegistry and ApplicationHelper use hard-coded paths to work
with files. In a real-world deployment, these file paths would probably be configurable and acquired through a
registry or configuration object. The actual paths could be set at installation time by a build tool such as PEAR or
Phing (see Chapters 15 and 19 for more on these tools).

Notice that the class uses a trick to throw exceptions. Rather than pepper the code with conditionals
and throw statements like this:

 if (! file_exists($this->config)) {
 throw new \woo\base\AppException(
 "Could not find options file");
 }

the class centralizes the test expression and the throw statement in a method called ensure(). You can
confirm that a condition is true (and throw an exception otherwise) in a single (albeit split) line:

$this->ensure(file_exists($this->config),
 "Could not find options file");

The cache approach taken here allows for the best of both worlds. The system can maintain an easy-
to-use XML configuration file, but caching means that its values can be accessed at near native speed. Of
course, if your end users are programmers too, or if you don’t intend to change configuration very often,
you could include PHP data structures directly in the helper class (or in a separate file that it then
includes). While risky, this approach is certainly the fastest.

CommandResolver

A controller needs a way of deciding how to interpret an HTTP request so that it can invoke the right
code to fulfill that request. You could easily include this logic within the Controller class itself, but I
prefer to use a specialist class for the purpose. That makes it easy to refactor for polymorphism if
necessary.

A front controller often invokes application logic by running a Command object (I introduced the
Command pattern in Chapter 11). The Command that is chosen is usually selected according to a
parameter in the request or according to the structure of the URL itself (you might, for example, use
Apache configuration to make concrete-seeming URLs yield a key for use in selecting a Command). In
these examples, I will use a simple parameter: cmd.

There is more than one way of using the given parameter to select a command. You can test the
parameter against a configuration file or data structure (a logical strategy). Or you can test it directly
against class files on the file system (a physical strategy).

CHAPTER 12 ■ ENTERPRISE PATTERNS

240

A logical strategy is more flexible, but also more labor intensive, in terms of both setup and
maintenance. You can see an example of this approach in the “Application Controller” section.

You saw an example of a command factory that used a physical strategy in the last chapter. Here is a
slight variation that uses reflection for added safety:

namespace woo\command;
//...

class CommandResolver {
 private static $base_cmd;
 private static $default_cmd;

 function __construct() {
 if (! self::$base_cmd) {
 self::$base_cmd = new \ReflectionClass("\woo\command\Command");
 self::$default_cmd = new DefaultCommand();
 }
 }

 function getCommand(\woo\controller\Request $request) {
 $cmd = $request->getProperty('cmd');
 $sep = DIRECTORY_SEPARATOR;
 if (! $cmd) {
 return self::$default_cmd;
 }
 $cmd=str_replace(array('.', $sep), "", $cmd);
 $filepath = "woo{$sep}command{$sep}{$cmd}.php";
 $classname = "woo\\command\\{$cmd}";
 if (file_exists($filepath)) {
 @require_once("$filepath");
 if (class_exists($classname)) {
 $cmd_class = new ReflectionClass($classname);
 if ($cmd_class->isSubClassOf(self::$base_cmd)) {
 return $cmd_class->newInstance();
 } else {
 $request->addFeedback("command '$cmd' is not a Command");
 }
 }
 }

 $request->addFeedback("command '$cmd' not found");
 return clone self::$default_cmd;
 }
}

This simple class looks for a request parameter called cmd. Assuming that this is found, and that it
maps to a real class file in the command directory, and that the class file contains the right kind of class,
the method creates and returns an instance of the relevant class.

If any of these conditions are not met, the getCommand() method degrades gracefully by serving up a
default Command object.

CHAPTER 12 ■ ENTERPRISE PATTERNS

241

You may wonder why this code takes it on trust that the Command class it locates does not require
parameters:

if ($cmd_class->isSubClassOf(self::$base_cmd)) {
 return $cmd_class->newInstance();
}

The answer to this lies in the signature of the Command class itself.

Namespace woo\command;
//...

abstract class Command {

 final function __construct() { }

 function execute(\woo\controller\Request $request) {
 $this->doExecute($request);
 }

 abstract function doExecute(\woo\controller\Request $request);
}

By declaring the constructor method final, I make it impossible for a child class to override it. No
Command class, therefore, will ever require arguments to its constructor.

Remember that you should never use input from the user without checking it first. I have included a
test to ensure that there is no path element to the provided "cmd" string, so that only files in the correct
directory can be invoked (and not something like ../../../tmp/DodgyCommand.php). You can make code
even safer by only accepting command strings that match values in a configuration file.

When creating command classes, you should be careful to keep them as devoid of application logic
as you possibly can. As soon as they begin to do application-type stuff, you’ll find that they turn into a
kind of tangled transaction script, and duplication will soon creep in. Commands are a kind of relay
station: they should interpret a request, call into the domain to juggle some objects, and then lodge data
for the presentation layer. As soon as they begin to do anything more complicated than this, it’s
probably time to refactor. The good news is that refactoring is relatively easy. It’s not hard to spot when a
command is trying to do too much, and the solution is usually clear. Move that functionality down to a
facade or domain class.

Request

Requests are magically handled for us by PHP and neatly packaged up in superglobal arrays. You might
have noticed that I still use a class to represent a request. A Request object is passed to CommandResolver,
and later on to Command.

Why do I not let these classes simply query the $_REQUEST, $_POST, or $_GET arrays for themselves? I
could do that, of course, but by centralizing request operations in one place, I open up new options. You
could, for example, apply filters to the incoming request. Or, as the next example shows, you could
gather request parameters from somewhere other than an HTTP request, allowing the application to be
run from the command line or from a test script. Of course, if your application uses sessions, you may
have to provide an alternative storage mechanism for use in a command line context. The Registry
pattern would work well for you there, allowing you to generate different Registry classes according to
the context of the application.

CHAPTER 12 ■ ENTERPRISE PATTERNS

242

The Request object is also a useful repository for data that needs to be communicated to the view
layer. In that respect, Request can also provide response capabilities.

Here is a simple Request class:

namespace woo\controller;
//...

class Request {
 private $properties;
 private $feedback = array();

 function __construct() {
 $this->init();
 \woo\base\RequestRegistry::setRequest($this);
 }

 function init() {
 if (isset($_SERVER['REQUEST_METHOD'])) {
 $this->properties = $_REQUEST;
 return;
 }

 foreach($_SERVER['argv'] as $arg) {
 if (strpos($arg, '=')) {
 list($key, $val)=explode("=", $arg);
 $this->setProperty($key, $val);
 }
 }
 }

 function getProperty($key) {
 if (isset($this->properties[$key])) {
 return $this->properties[$key];
 }
 }

 function setProperty($key, $val) {
 $this->properties[$key] = $val;
 }

 function addFeedback($msg) {
 array_push($this->feedback, $msg);
 }

 function getFeedback() {
 return $this->feedback;
 }

 function getFeedbackString($separator="\n") {
 return implode($separator, $this->feedback);
 }
}

CHAPTER 12 ■ ENTERPRISE PATTERNS

243

As you can see, most of this class is taken up with mechanisms for setting and acquiring properties.
The init() method is responsible for populating the private $properties array. Notice that it works with
command line arguments as well as the HTTP requests. This is extremely useful when it comes to testing
and debugging.

Once you have a Request object, you should be able to access an HTTP parameter via the
getProperty() method, which accepts a key string and returns the corresponding value (as stored in the
$properties array). You can also add data via setProperty().

The class also manages a $feedback array. This is a simple conduit through which controller classes
can pass messages to the user.

A Command

You have already seen the Command base class, and Chapter 11 covered the Command pattern in detail, so
there’s no need to go too deep into Commands. Let’s round things off, though, with a simple concrete
Command object:

namespace woo\command;
//...

class DefaultCommand extends Command {
 function doExecute(\woo\controller\Request $request) {
 $request->addFeedback("Welcome to WOO");
 include("woo/view/main.php");
 }
}

This is the Command object that is served up by CommandResolver if no explicit request for a particular
Command is received.

As you may have noticed, the abstract base class implements execute() itself, calling down to the
doExecute() implementation of its child class. This allows us to add setup and cleanup code to all
commands simply by altering the base class.

The execute() method is passed a Request object that gives access to user input, as well as to the
setFeedback() method. DefaultCommand makes use of this to set a welcome message.

Finally, the command dispatches control to a view, simply by calling include(). Embedding the
map from command to view in the Command classes is the simplest dispatch mechanism, but for small
systems, it can be perfectly adequate. A more flexible strategy can be seen in the “Application
Controller” section.

The file main.php contains some HTML and a call into the Request object to check for any feedback
(I’ll cover views in more detail shortly). I now have all the components in place to run the system. Here’s
what I see:

<html>
<head>
<title>Woo! it's Woo!</title>
</head>
<body>

<table>
<tr>
<td>
Welcome to WOO</td>
</tr>
</table>

CHAPTER 12 ■ ENTERPRISE PATTERNS

244

</body>
</html>

As you can see, the feedback message set in by the default command has found its way into the
output. Let’s review the full process that leads to this outcome.

Overview

It is possible that the detail of the classes covered in this section might disguise the simplicity of the
Front Controller pattern. Figure 12–5 shows a sequence diagram that illustrates the life cycle of a
request.

As you can see, the front controller delegates initialization to the ApplicationHelper object (which
uses caching to short-circuit any expensive setup). The Controller then acquires a Command object from
the CommandResolver object. Finally, it invokes Command::execute() to kick off the application logic.

In this implementation of the pattern, the Command itself is responsible for delegating to the view
layer. You can see a refinement of this in the next section.

Figure 12–5. The front controller in operation

Consequences
Front Controller is not for the fainthearted. It does require a lot of up-front development before you
begin to see benefits. This is a serious drawback if your project requires fast turnaround or if it is small
enough that the Front Controller framework would weigh in heavier than the rest of the system.

CHAPTER 12 ■ ENTERPRISE PATTERNS

245

Having said that, once you have successfully deployed a Front Controller in one project, you will
find that you can reuse it for others with lightning speed. You can abstract much of its functionality into
library code, effectively building yourself a reusable framework.

The requirement that all configuration information is loaded up for every request is another
drawback. All approaches will suffer from this to some extent, but Front Controller often requires
additional information, such as logical maps of commands and views.

This overhead can be eased considerably by caching such data. The most efficient way of doing this
is to add the data to your system as native PHP. This is fine if you are the sole maintainer of a system, but
if you have nontechnical users, you may need to provide a configuration file. You can still automate the
native PHP approach, though, by creating a system that reads a configuration file and then builds PHP
data structures, which it writes to a cache file. Once the native PHP cache has been created, the system
will use it in preference to the configuration file until a change is made and the cache must be rebuilt.
Less efficient but much easier is the approach I took in the ApplicationRegistry class—simply serialize
the data.

On the plus side, Front Controller centralizes the presentation logic of your system. This means that
you can exert control over the way that requests are processed and views selected in one place (well, in
one set of classes, anyway). This reduces duplication and decreases the likelihood of bugs.

Front Controller is also very extensible. Once you have a core up and running, you can add new
Command classes and views very easily.

In this example, commands handled their own view dispatch. If you use the Front Controller pattern
with an object that helps with view (and possibly command) selection, then the pattern allows for
excellent control over navigation, which is harder to maintain elegantly when presentation control is
distributed throughout a system. I cover such an object in the next section.

Application Controller
Allowing commands to invoke their own views is acceptable for smaller systems, but it is not ideal. It is
preferable to decouple your commands from your view layer as much as possible.

An application controller takes responsibility for mapping requests to commands, and commands
to views. This decoupling means that it becomes easier to switch in alternative sets of views without
changing the codebase. It also allows the system owner to change the flow of the application, again
without the need for touching any internals. By allowing for a logical system of Command resolution, the
pattern also makes it easier for the same Command to be used in different contexts within a system.

The Problem
Remember the nature of the example problem. An administrator needs to be able to add a venue to the
system and to associate a space with it. The system might, therefore, support the AddVenue and AddSpace
commands. According to the examples so far, these commands would be selected using a direct map
from a request parameter (cmd=AddVenue) to a class (AddVenue).

Broadly speaking, a successful call to the AddVenue command should lead to an initial call to the
AddSpace command. This relationship might be hard-coded into the classes themselves, with AddVenue
invoking AddSpace on success. AddSpace might then include a view that contains the form for adding the
space to the venue.

Both commands may be associated with at least two different views, a core view for presenting the
input form and an error or “thank you” screen. According to the logic already discussed, the Command
classes themselves would include those views (using conditional tests to decide which view to present in
which circumstances).

CHAPTER 12 ■ ENTERPRISE PATTERNS

246

This level of hard-coding is fine, as long as the commands will always be used in the same way. It
begins to break down, though, if I want a special view for AddVenue in some circumstances, and if I want
to alter the logic by which one command leads to another (perhaps one flow might include an additional
screen between a successful venue addition and the start of a space addition). If each of your commands
is only used once, in one relationship to other commands, and with one view, then you should hard-
code your commands’ relationship with each other and their views. Otherwise, you should read on.

An application controller class can take over this logic, freeing up Command classes to concentrate on
their job, which is to process input, invoke application logic, and handle any results.

Implementation
As always, the key to this pattern is the interface. An application controller is a class (or a set of classes)
that the front controller can use to acquire commands based on a user request and to find the right view
to present after the command has been run. You can see the bare bones of this relationship in Figure 12–
6.

As with all patterns in this chapter, the aim is to make things as simple as possible for the client
code—hence the spartan front controller class. Behind the interface, though, I must deploy an
implementation. The approach laid out here is just one way of doing it. As you work through this section,
remember that the essence of the pattern lies in the way that the participants, the application controller,
the commands, and the views, interact, and not with the specifics of this implementation.

Let’s begin with the code that uses the application controller.

Figure 12–6. The Application Controller pattern

The Front Controller

Here is how the FrontController might work with the AppController class (simplified and stripped of
error handling):

 function handleRequest() {
 $request = new Request();
 $app_c = \woo\base\ApplicationRegistry::appController();

 while($cmd = $app_c->getCommand($request)) {
 $cmd->execute($request);

CHAPTER 12 ■ ENTERPRISE PATTERNS

247

 }
 $this->invokeView($app_c->getView($request));
 }

 function invokeView($target) {
 include("woo/view/$target.php");
 exit;
 }

As you can see, the principal difference from the previous Front Controller example is that here
Command objects are retrieved and executed in a loop. The code also uses AppController to get the name
of the view that it should include. Notice that this code uses a registry object to acquire the
AppController.

So how do I move from a cmd parameter to a chain of commands and ultimately a view?

Implementation Overview

A Command class might demand a different view according to different stages of operation. The default
view for the AddVenue command might be a data input form. If the user adds the wrong kind of data, the
form may be presented again, or an error page may be shown. If all goes well, and the venue is created in
the system, then I may wish to forward to another in a chain of Command objects: AddSpace, perhaps.

The Command objects tell the system of their current state by setting a status flag. Here are the flags
that this minimal implementation recognizes (set as a property in the Command superclass):

 private static $STATUS_STRINGS = array (
 'CMD_DEFAULT'=>0,
 'CMD_OK' => 1,
 'CMD_ERROR' => 2,
 'CMD_INSUFFICIENT_DATA' => 3
);

The application controller finds and instantiates the correct Command class using the Request object.
Once it has been run, the Command will be associated with a status. This combination of Command and
status can be compared against a data structure to determine which command should be run next, or—
if no more commands should be run—which view to serve up.

The Configuration File

The system’s owner can determine the way that commands and views work together by setting a set of
configuration directives. Here is an extract:

<control>
 <view>main</view>
 <view status="CMD_OK">main</view>
 <view status="CMD_ERROR">error</view>

 <command name="ListVenues">
 <view>listvenues</view>
 </command>

 <command name="QuickAddVenue">

CHAPTER 12 ■ ENTERPRISE PATTERNS

248

 <classroot name="AddVenue" />
 <view>quickadd</view>
 </command>

 <command name="AddVenue">
 <view>addvenue</view>
 <status value="CMD_OK">
 <forward>AddSpace</forward>
 </status>
 </command>

 <command name="AddSpace">
 <view>addspace</view>
 <status value="CMD_OK">
 <forward>ListVenues</forward>
 </status>
 </command>
 ...
</control>

This simplified XML fragment shows one strategy for abstracting the flow of commands and their
relationship to views from the Command classes themselves. The directives are all contained within a
control element. The logic here is search based. The outermost elements defined are the most generic.
They can be overridden by their equivalents within command elements.

So the first element, view, defines the default view for all commands if no other directive contradicts
this order. The other view elements on the same level declare status attributes (which correspond to
flags set in the Command class). Each status represents a flag that might be set by a Command object to signal
its progress with a task. Because these elements are more specific than the first view element, they have
priority. If a command sets the CMD_OK flag, then the corresponding view “menu” is the one that will be
included, unless an even more specific element overrides this.

Having set these defaults, the document presents the command elements. By default, these elements
map directly to Command classes (and their class files on the file system) as in the previous
CommandResolver example. So if the cmd parameter is set to AddVenue, then the corresponding element in
the configuration document is selected. The string "AddVenue" is used to construct a path to the
AddVenue.php class file.

Aliases are supported, however. So if cmd is set to QuickAddVenue, then the following element is used:

 <command name="QuickAddVenue">
 <classroot name="AddVenue" />
 <view>quickadd</view>
 </command>

Here, the command element named QuickAddVenue does not map to a class file. That mapping is
defined by the classroot element. This makes it possible to reference the AddVenue class in the context of
many different flows, and many different views.

Command elements work from outer elements to inner elements, with the inner, more specific,
elements having priority. By setting a view element within a command, I ensure that the command is tied to
that view.

 <command name="AddVenue">

CHAPTER 12 ■ ENTERPRISE PATTERNS

249

 <view>addvenue</view>
 <status value="CMD_OK">
 <forward>AddSpace</forward>
 </status>
 </command>

So here, the addvenue view is associated with the AddVenue command (as set in the Request object’s
cmd parameter). This means that the addvenue.php view will always be included when the AddVenue
command is invoked. Always, that is, unless the status condition is matched. If the AddVenue class sets a
flag of CMD_OK, the default view for the Command is overridden.

The status element could simply contain another view that would be included in place of the
default. Here, though, the forward element comes into play. By forwarding to another command, the
configuration file delegates all responsibility for handling views to the new element.

Parsing the Configuration File

This is a reasonably flexible model for controlling display and command flow logic. The document,
though, is not something that you would want to parse for every single request. You have already seen a
solution to this problem. The ApplicationHelper class provides a mechanism for caching configuration
data.

Here is an extract:

 private function getOptions() {
 $this->ensure(file_exists($this->config),
 "Could not find options file");
 $options = @SimpleXml_load_file($this->config);

 // ...set DSN...

 $map = new ControllerMap();

 foreach ($options->control->view as $default_view) {
 $stat_str = trim($default_view['status']);
 $status = \woo\command\Command::statuses($stat_str);
 $map->addView('default', $status, (string)$default_view);
 }
 // ... more parse code omitted ...
 \woo\base\ApplicationRegistry::setControllerMap($map);
 }

Parsing XML, even with the excellent SimpleXML package, is a wordy business and not particularly
challenging, so I leave most of the details out here. The key thing to note is that the getOptions() method
is only invoked if configuration has not been cached into the ApplicationRegistry object.

Storing the Configuration Data

The cached object in question is a ControllerMap. ControllerMap is essentially a wrapper around three
arrays. I could use raw arrays, of course, but ControllerMap gives us the security of knowing that each
array will follow a particular format. Here is the ControllerMap class:

namespace woo\controller;

CHAPTER 12 ■ ENTERPRISE PATTERNS

250

//...

class ControllerMap {
 private $viewMap = array();
 private $forwardMap = array();
 private $classrootMap = array();

 function addClassroot($command, $classroot) {
 $this->classrootMap[$command]=$classroot;
 }

 function getClassroot($command) {
 if (isset($this->classrootMap[$command])) {
 return $this->classrootMap[$command];
 }
 return $command;
 }

 function addView($command='default', $status=0, $view) {
 $this->viewMap[$command][$status]=$view;
 }

 function getView($command, $status) {
 if (isset($this->viewMap[$command][$status])) {
 return $this->viewMap[$command][$status];
 }
 return null;
 }

 function addForward($command, $status=0, $newCommand) {
 $this->forwardMap[$command][$status]=$newCommand;
 }

 function getForward($command, $status) {
 if (isset($this->forwardMap[$command][$status])) {
 return $this->forwardMap[$command][$status];
 }
 return null;
 }
}

The $classroot property is simply an associative array that maps command handles (that is, the
names of the command elements in configuration) to the roots of Command class names (that is, AddVenue,
as opposed to woo_command_AddVenue). This is used to determine whether the cmd parameter is an alias to
a particular class file. During the parsing of the configuration file, the addClassroot() method is called to
populate this array.

The $forwardMap and $viewMap arrays are both two-dimensional, supporting combinations of
commands and statuses.

CHAPTER 12 ■ ENTERPRISE PATTERNS

251

Recall this fragment:

 <command name="AddVenue">
 <view>addvenue</view>
 <status value="CMD_OK">
 <forward>AddSpace</forward>
 </status>
 </command>

Here is the call the parse code will make to add the correct element to the $viewMap property:

$map->addView('AddVenue', 0, 'addvenue');

and here is the call for populating the $forwardMap property:

$map->addForward('AddVenue', 1, 'AddSpace');

The application controller class uses these combinations in a particular search order. Let’s say the
AddVenue command has returned CMD_OK (which maps to 1, while 0 is CMD_DEFAULT). The application
controller will search the $forwardMap array from the most specific combination of Command and status
flag to the most general. The first match found will be the command string that is returned:

$viewMap['AddVenue'][1]; // AddVenue CMD_OK [MATCHED]
$viewMap['AddVenue'][0]; // AddVenue CMD_DEFAULT
$viewMap['default'][1]; // DefaultCommand CMD_OK
$viewMap['default'][0]; // DefaultCommand CMD_DEFAULT

The same hierarchy of array elements is searched in order to retrieve a view.
Here is an application controller:

namespace woo\controller;
//..

class AppController {
 private static $base_cmd;
 private static $default_cmd;
 private $controllerMap;
 private $invoked = array();

 function __construct(ControllerMap $map) {
 $this->controllerMap = $map;
 if (! self::$base_cmd) {
 self::$base_cmd = new \ReflectionClass("\\woo\\command\\Command");
 self::$default_cmd = new \woo\command\DefaultCommand();
 }
 }

 function getView(Request $req) {
 $view = $this->getResource($req, "View");
 return $view;
 }

 function getForward(Request $req) {
 $forward = $this->getResource($req, "Forward");
 if ($forward) {

CHAPTER 12 ■ ENTERPRISE PATTERNS

252

 $req->setProperty('cmd', $forward);
 }
 return $forward;
 }

 private function getResource(Request $req,
 $res) {
 // get the previous command and its execution status
 $cmd_str = $req->getProperty('cmd');
 $previous = $req->getLastCommand();
 $status = $previous->getStatus();
 if (! $status) { $status = 0; }
 $acquire = "get$res";
 // find resource for previous command and its status
 $resource = $this->controllerMap->$acquire($cmd_str, $status);
 // alternatively find resource for command and status 0
 if (! $resource) {
 $resource = $this->controllerMap->$acquire($cmd_str, 0);
 }

 // or command 'default' and command status
 if (! $resource) {
 $resource = $this->controllerMap->$acquire('default', $status);
 }

 // all else has failed get resource for 'default', status 0
 if (! $resource) {
 $resource = $this->controllerMap->$acquire('default', 0);
 }

 return $resource;
 }

 function getCommand(Request $req) {
 $previous = $req->getLastCommand();
 if (! $previous) {
 // this is the first command this request
 $cmd = $req->getProperty('cmd');
 if (! $cmd) {
 // no cmd property - using default
 $req->setProperty('cmd', 'default');
 return self::$default_cmd;
 }
 } else {
 // a command has been run already in this request
 $cmd = $this->getForward($req);
 if (! $cmd) { return null; }
 }

CHAPTER 12 ■ ENTERPRISE PATTERNS

253

 // we now have a command name in $cmd
 // turn it into a Command object
 $cmd_obj = $this->resolveCommand($cmd);
 if (! $cmd_obj) {
 throw new \woo\base\AppException("couldn't resolve '$cmd'");
 }

 $cmd_class = get_class($cmd_obj);
 if (isset($this->invoked[$cmd_class])) {
 throw new \woo\base\AppException("circular forwarding");
 }

 $this->invoked[$cmd_class]=1;
 // return the Command object
 return $cmd_obj;
 }

 function resolveCommand($cmd) {
 $classroot = $this->controllerMap->getClassroot($cmd);
 $filepath = "woo/command/$classroot.php";
 $classname = "\\woo\\command\\{$classroot}";
 if (file_exists($filepath)) {
 require_once("$filepath");
 if (class_exists($classname)) {
 $cmd_class = new ReflectionClass($classname);
 if ($cmd_class->isSubClassOf(self::$base_cmd)) {
 return $cmd_class->newInstance();
 }
 }
 }
 return null;
 }
}

The getResource() method implements the search for both forwarding and view selection. It is
called by getView() and getForward(), respectively. Notice how it searches from the most specific
combination of command string and status flag to the most generic.

getCommand() is responsible for returning as many commands as have been configured into a
forwarding chain. It works like this: when the initial request is received, there should be a cmd property
available, and no record of a previous Command having been run in this request. The Request object stores
this information. If the cmd request property has not been set, then the method uses default, and returns
the default Command class. The $cmd string variable is passed to resolveCommand(), which uses it to acquire
a Command object.

When getCommand() is called for the second time in the request, the Request object will be holding a
reference to the Command previously run. getCommand() then checks to see if any forwarding is set for the
combination of that Command and its status flag (by calling getForward()). If getForward() finds a match, it
returns a string that can be resolved to a Command and returned to the Controller.

Another thing to note in getCommand() is the essential check I impose to prevent circular forwarding.
I maintain an array indexed by Command class names. If an element is already present when I come to add
it, I know that this command has been retrieved previously. This puts us at risk of falling into an infinite
loop, which is something I really don’t want, so I throw an exception if this happens.

CHAPTER 12 ■ ENTERPRISE PATTERNS

254

The strategies an application controller might use to acquire views and commands can vary
considerably; the key is that these are hidden away from the wider system. Figure 12–7 shows the high-
level process by which a front controller class uses an application controller to acquire first a Command
object and then a view.

Figure 12–7. Using an application controller to acquire commands and views

The Command Class

You may have noticed that the AppController class relies on previous commands having been stored in
the Request object. This is done by the Command base class:

namespace woo\command;
//....

abstract class Command {

 private static $STATUS_STRINGS = array (
 'CMD_DEFAULT'=>0,
 'CMD_OK' => 1,
 'CMD_ERROR' => 2,
 'CMD_INSUFFICIENT_DATA' => 3

CHAPTER 12 ■ ENTERPRISE PATTERNS

255

);
 private $status = 0;

 final function __construct() { }

 function execute(\woo\controller\Request $request) {
 $this->status = $this->doExecute($request);
 $request->setCommand($this);
 }

 function getStatus() {
 return $this->status;
 }

 static function statuses($str='CMD_DEFAULT') {
 if (empty($str)) { $str = 'CMD_DEFAULT'; }
 // convert string into a status number
 return self::$STATUS_STRINGS[$str];
 }
 abstract function doExecute(\woo\controller\Request $request);

}

The Command class defines an array of status strings (severely cut for the sake of this example). It
provides the statuses() method for converting a string ("CMD_OK") to its equivalent number, and
getStatus() for revealing the current Command object’s status flag. If you want to be strict, statuses()
could throw an exception on failure. As it is, the method returns null by default if the right element is
not defined. The execute() method uses the return value of the abstract doExecute() to set the status
flag, and to cache itself in the Request object.

A Concrete Command

Here is how a simple AddVenue command might look:

namespace woo\command;
//...

class AddVenue extends Command {

 function doExecute(\woo\controller\Request $request) {
 $name = $request->getProperty("venue_name");
 if (! $name) {
 $request->addFeedback("no name provided");
 return self::statuses('CMD_INSUFFICIENT_DATA');
 } else {
 $venue_obj = new \woo\domain\Venue(null, $name);
 $request->setObject('venue', $venue_obj);
 $request->addFeedback("'$name' added ({$venue_obj->getId()})");
 return self::statuses('CMD_OK');
 }

 }
}

CHAPTER 12 ■ ENTERPRISE PATTERNS

256

Some of this code will make more sense in the next chapter. For now here's a stub Venue object that
would work with this command:

namespace woo\domain;

class Venue {
 private $id;
 private $name;

 function __construct($id, $name) {
 $this->name = $name;
 $this->id = $id;
 }

 function getName() {
 return $this->name;
 }
 function getId() {
 return $this->id;
 }
}

 Returning to the command, the key thing to note is that the doExecute() method returns a status
flag that the abstract base class stores in a property. The decision as to how to respond to the fact that
this object has been invoked and has set this status is entirely driven by the configuration file. So
according to the example XML, if CMD_OK is returned, the forwarding mechanism will cause the AddSpace
class to be instantiated. This chain of events is triggered in this way only if the request contains
cmd=AddVenue. If the request contains cmd=QuickAddVenue, then no forwarding will take place, and the
quickaddvenue view will be displayed.

Note that this example does not include any code for saving a Venue object to the database. I’ll get to
that in the next chapter.

Consequences
A fully featured instance of the Application Controller pattern can be a pain to set up because of the
sheer amount of work that must go into acquiring and applying metadata that describes the
relationships between command and request, command and command, and command and view.

For this reason, I tend to implement something like this when my application tells me it is needed. I
usually hear this whisper when I find myself adding conditionals to my commands that invoke different
views or invoke other commands according to circumstances. It is at about this time that I feel that
command flow and display logic are beginning to spiral out of my control.

Of course, an application controller can use all sorts of mechanisms to build its associations among
commands and views, not just the approach I have taken here. Even if you’re starting off with a fixed
relationship among a request string, a command name, and a view in all cases, you could still benefit
from building an application controller to encapsulate this. It will give you considerable flexibility when
you must refactor in order to accommodate more complexity.

CHAPTER 12 ■ ENTERPRISE PATTERNS

257

Page Controller
Much as I like the Front Controller pattern, it is not always the right approach to take. The investment in
up-front design tends to reward the larger system and penalize simple need-results-now projects. The
Page Controller pattern will probably be familiar to you already as it is a common strategy. Nevertheless,
it is worth exploring some of the issues.

The Problem
Once again, the problem is your need to manage the relationship among request, domain logic, and
presentation. This is pretty much a constant for enterprise projects. What differs, though, are the
constraints placed on you.

If you have a relatively simple project, and one where big up-front design could threaten your
deadline without adding huge amounts of value, Page Controller can be a good option for managing
requests and views.

Let’s say that you want to present a page that displays a list of all venues in the Woo system. Even
with the database retrieval code finished, without Front Controller already in place, I have a daunting
task to get just this simple result.

The view is a list of venues; the request is for a list of venues. Errors permitting, the request does not
lead to a new view, as you might expect in a complex task. The simplest thing that works here is to
associate the view and the controller—often in the same page.

Implementation
Although the practical reality of Page Controller projects can become fiendish, the pattern is simple.
Control is related to a view, or to a set of views. In the simplest case, this means that the control sits in
the view itself, although it can be abstracted, especially when a view is closely linked with others (that is
when you might need to forward to different pages in different circumstances).

Here is the simplest flavor of Page Controller:

<?php
require_once("woo/domain/Venue.php");
try {
 $venues = \woo\domain\Venue::findAll();
} catch (Exception $e) {
 include('error.php');
 exit(0);
}

// default page follows
?>
<html>
<head>
<title>Venues</title>
</head>
<body>

<h1>Venues</h1>

<?php foreach($venues as $venue) { ?>

CHAPTER 12 ■ ENTERPRISE PATTERNS

258

 <?php print $venue->getName(); ?>

<?php } ?>

</body>
</html>

This document has two elements to it. The view element handles display, while the controller
element manages the request and invokes application logic. Even though view and controller inhabit the
same page, they are rigidly separated.

There is very little to this example (aside from the database work going on behind the scenes, of
which you’ll find more in the section “The Data Layer”). The PHP block at the top of the page attempts to
get a list of Venue objects, which it stores in the $venues global variable.

If an error occurs, the page delegates to a page called error.php by using include(), followed by
exit() to kill any further processing on the current page. I prefer this mechanism to an HTTP forward,
which is much more expensive and loses any environment you may have set up in memory. If no include
takes place, then the HTML at the bottom of the page (the view) is shown.

Figure 12–8. Page Controllers embedded in views

This will do as a quick test, but a system of any size or complexity will probably need more support
than that.

The Page Controller code was previously implicitly separated from the view. Here, I make the break
starting with a rudimentary Page Controller base class:

namespace woo\controller;
//...

abstract class PageController {
 private $request;
 function __construct() {
 $request = \woo\base\RequestRegistry::getRequest();
 if (is_null($request)) { $request = new Request(); }
 $this->request = $request;
 }

 abstract function process();

 function forward($resource) {
 include($resource);
 exit(0);

CHAPTER 12 ■ ENTERPRISE PATTERNS

259

 }

 function getRequest() {
 return $this->request;
 }
}

This class uses some of the tools that you have already looked at, in particular the Request and
RequestRegistry classes. The PageController class’s main roles are to provide access to a Request object
and to manage the including of views. This list of purposes would quickly grow in a real project as more
child classes discover a need for common functionality.

A child class could live inside the view, and thereby display it by default as before, or it could stand
separate from the view. The latter approach is cleaner, I think, so that’s the path I take. Here is a
PageController that attempts to add a new venue to the system:

namespace woo\controller;
//...

class AddVenueController extends PageController {
 function process() {
 try {
 $request = $this->getRequest();
 $name = $request->getProperty('venue_name');
 if (is_null($request->getProperty('submitted'))) {
 $request->addFeedback("choose a name for the venue");
 $this->forward('add_venue.php');
 } else if (is_null($name)) {
 $request->addFeedback("name is a required field");
 $this->forward('add_venue.php');
 }

 // just creating the object is enough to add it
 // to the database
 $venue = new \woo\domain\Venue(null, $name);
 $this->forward("ListVenues.php");
 } catch (Exception $e) {
 $this->forward('error.php');
 }
 }
}

$controller = new AddVenueController();
$controller->process();

The AddVenueController class only implements the process() method. process() is responsible for
checking the user’s submission. If the user has not submitted a form, or has completed the form
incorrectly, the default view (add_venue.php) is included, providing feedback and presenting the form. If
I successfully add a new user, then the method invokes forward() to send the user to the ListVenues
page controller.

Note the format I used for the view. I tend to differentiate view files from class files by using all
lowercase file names in the former and camel case (running words together and using capital letters to
show the boundaries) in the latter.

CHAPTER 12 ■ ENTERPRISE PATTERNS

260

Here is the view associated with the AddVenueController class:

<?php
require_once("woo/base/RequestRegistry.php");
$request = \woo\base\RequestRegistry::getRequest();
?>
<html>
<head>
<title>Add Venue</title>
</head>
<body>
<h1>Add Venue</h1>

<table>
<tr>
<td>
<?php
print $request->getFeedbackString("</td></tr><tr><td>");
?>
</td>
</tr>
</table>

<form action="AddVenue.php" method="get">
 <input type="hidden" name="submitted" value="yes"/>
 <input type="text" name="venue_name" />
</form>
</body>

</html>

As you can see, the view does nothing but display data and provide the mechanism for generating a
new request. The request is made to the PageController, not back to the view. Remember, it is the
PageController class that is responsible for processing requests.

You can see an overview of this more complicated version of the Page Controller pattern in Figure
12–9.

CHAPTER 12 ■ ENTERPRISE PATTERNS

261

Figure 12–9. A Page Controller class hierarchy and its include relationships

Consequences
This approach has the great merit that it immediately makes sense to anyone with any Web experience. I
make a request for venues.php, and that is precisely what I get. Even an error is within the bounds of
expectation, with “server error” and “page not found” pages an everyday reality.

Things get a little more complicated if you separate the view from the page controller class, but the
near one-to-one relationship between the participants is clear enough.

One potential area of confusion lies with the inclusion of views. A page controller includes its view
once it has completed processing. In some circumstances, though, it might use the same inclusion code
to include another page controller. So, for example, when AddVenue successfully adds a venue, it no
longer needs to display the addition form. Instead it delegates to another page controller called
ListVenues. You need to be clear about when you are delegating to a view and when you are delegating
to another page controller. It is the responsibility of the page controller to ensure that its views have the
data they need to do their jobs.

Although a page controller class might delegate to Command objects, the benefit of doing so is not as
marked as it is with Front Controller. Front controller classes need to work out what the purpose of a
request is; page controller classes already know this. The light request checking and logic layer calls that
you would put in a Command sit just as easily in a page controller class, and you benefit from the fact that
you do not need a mechanism to select your Command objects.

Duplication can be a problem, but the use of a common superclass can factor away a lot of that. You
can also save on setup time, because you can avoid loading data you won’t be needing in the current
context. Of course, you could do that with Front Controller too, but the process of discovering what is
needed, and what is not, would be much more complicated.

The real drawback to the pattern lies in situations where the paths through your views are
complex—especially when the same view is used in different ways at different times (add and edit
screens are a good example of this). You can find that you get tangled up in conditionals and state
checking, and it becomes hard to get an overview of your system.

It is not impossible to start with Page Controller and move toward the Front Controller pattern,
however. This is especially true if you are using a PageController superclass.

CHAPTER 12 ■ ENTERPRISE PATTERNS

262

As a rule of thumb, if I estimate a system should take me less than a week or so to complete, and that
it isn’t going to need more phases in the future, I would choose Page Controller and benefit from fast
turnaround. If I were building a large project that needs to grow over time and has complex view logic, I
would go for a Front Controller every time.

Template View and View Helper
Template View is pretty much what you get by default in PHP, in that I can commingle presentation
markup (HTML) and system code (native PHP). As I have said before, this is both a blessing and a curse,
because the ease with which these can be brought together represents a temptation to combine
application and display logic in the same place with potentially disastrous consequences.

In PHP then, programming the view is largely a matter of restraint. If it isn’t strictly a matter of
display, treat any code with the greatest suspicion.

To this end, the View Helper pattern (Alur et al.) provides for a helper class that may be specific to a
view or shared between multiple views to help with any tasks that require more than the smallest
amount of code.

The Problem
These days it is becoming rarer to find SQL queries and other business logic embedded directly in
display pages, but it still happens. I have covered this particular evil in great detail in previous chapters,
so I’ll keep this brief.

Web pages that contain too much code can be hard for web producers to work with, as presentation
components become tangled up in loops and conditionals.

Business logic in the presentation forces you to stick with that interface. You can’t switch in a new
view easily without porting across a lot of application code too.

With many operations recurring from view to view, systems that embed application code in their
templates tend to fall prey to duplication as the same code structures are pasted from page to page.
Where this happens, bugs and maintenance nightmares surely follow.

To prevent this from happening, you should handle application processing elsewhere and allow
views to manage presentation only. This is often achieved by making views the passive recipients of
data. Where a view does need to interrogate the system, it is a good idea to provide a View Helper object
to do any involved work on the view’s behalf.

Implementation
Once you have created a wider framework, the view layer is not a massive programming challenge. Of
course, it remains a huge design and information architecture issue, but that’s another book!

Template View was so named by Fowler. It is a staple pattern used by most enterprise programmers.
In some languages, an implementation might involve cooking up a templating system that translates
tags to values set by the system. You have that option in PHP too. You could use a templating engine like
the excellent Smarty. My preferred option, though, is to use PHP’s existing functionality, but to use it
with care.

In order for a view to have something to work with, it must be able to acquire data. I like to define a
View Helper that views can use. From this, they can get access to the Request object and, through it, to
any other objects that they need to do their job.

CHAPTER 12 ■ ENTERPRISE PATTERNS

263

Here is a simple View Helper class:

namespace woo\view;
class VH {
 static function getRequest() {
 return \woo\base\RequestRegistry::getRequest();
 }
}

All this class does at present is provide access to a Request object. You can extend it to provide
additional functionality as your application evolves. If you find yourself doing something in a view that
takes up more than a couple of lines, chances are it belongs in the View Helper. In a larger application,
you may provide multiple View Helper objects in an inheritance hierarchy in order to provide different
tools for different parts of your system.

Here is a simple view that uses both the View Helper and the Request object:

<?php
require_once("woo/view/ViewHelper.php");
$request = \woo\view\VH::getRequest(); // Controller caches this
$venue = $request->getObject('venue'); // Command caches this
?>

<html>
<head>
<title>Add a Space for venue <?php echo $venue->getName() ?></title>
</head>
<body>
<h1>Add a Space for Venue '<?php print $venue->getName() ?>'</h1>
<table>
<tr>
<td>
<?php print $request->getFeedbackString("</td></tr><tr><td>"); ?>
</td>
</tr>
</table>

<form method="post">
 <input type="text"
 value="<?php echo $request->getProperty('space_name') ?>" name="space_name"/>
 <input type="hidden" name="venue_id" value="<?php echo $venue->getId() ?>" />
 <input type="submit" value="submit" />
</form>

</body>
</html>

The view (add_space.php) gets a Request object from the View Helper (VH) and uses its methods to
supply the dynamic data for the page. In particular, the getFeedback() method returns any messages set
by commands, and getObject() acquires any objects cached for the view layer. getProperty() is used to
access any parameters set in the HTTP request. If you run this view on its own, the Venue and Request

CHAPTER 12 ■ ENTERPRISE PATTERNS

264

objects will not have been made available. Check back to the Controller class to see where the Request
object is set, and to the AddVenue command class to see the Venue object being stored on the Request.

You could simplify things still further here by making the View Helper a proxy that delegates for the
Request object’s most useful methods, saving the view layer the bother of even acquiring a reference to
Request.

Clearly, this example doesn’t banish code from the view, but it does severely limit the amount and
kind of coding that needs to be done. The page contains simple print statements and a few method calls.
A designer should be able to work around code of this kind with little or no effort.

Slightly more problematic are if statements and loops. These are difficult to delegate to a View
Helper, because they are usually bound up with formatted output. I tend to keep both simple
conditionals and loops (which are very common in building tables that display rows of data) inside the
Template View, but to keep them as simple as possible, I delegate things like test clauses where possible.

Consequences
There is something slightly disturbing about the way that data is passed to the view layer, in that a view
doesn’t really have a fixed interface that guarantees its environment. I tend to think of every view as
entering into a contract with the system at large. The view effectively says to the application, “If I am
invoked, then I have a right to access object This, object That, and object TheOther.” It is up to the
application to ensure that this is the case.

Surprisingly, I have always found that this works perfectly well for me, though you could make views
stricter by adding assertions to view-specific helper classes. If you go as far as this, you could go for
complete safety and provide accessor methods in the helper classes that do away with the need for the
evil Request::getObject() method, which is clearly just a wrapper around an associative array.

While I like type safety where I can get it, I find the thought of building a parallel system of views and
View Helper classes exhausting in the extreme. I tend to register objects dynamically for the view layer,
through a Request object, a SessionRegistry, or a RequestRegistry.

While templates are often essentially passive, populated with data resulting from the last request,
there may be times when the view needs to make an ancillary request. The View Helper is a good place to
provide this functionality, keeping any knowledge of the mechanism by which data is required hidden
from the view itself. Even the View Helper should do as little work as possible, delegating to a command
or contacting the domain layer via a facade.

■Note You saw the Facade pattern in Chapter 10. Alur et al. look at one use of Facades in enterprise
programming in the Session Facade pattern (which is designed to limit fine-grained network transactions). Fowler
also describes a pattern called Service Layer, which provides a simple point of access to the complexities within a
layer.

The Business Logic Layer
If the control layer orchestrates communication with the outside world and marshals a system’s
response to it, the logic layer gets on with the business of an application. This layer should be as free as
possible of the noise and trauma generated as query strings are analyzed, HTML tables are constructed,

CHAPTER 12 ■ ENTERPRISE PATTERNS

265

and feedback messages composed. Business logic is about doing the stuff that needs doing—the true
purpose of the application. Everything else exists just to support these tasks.

In a classic object-oriented application, the business logic layer is often composed of classes that
model the problems that the system aims to address. As you shall see, this is a flexible design decision. It
also requires significant up-front planning.

Let’s begin, then, with the quickest way of getting a system up and running.

Transaction Script
The Transaction Script pattern (Patterns of Enterprise Application Architecture) describes the way that
many systems evolve of their own accord. It is simple, intuitive, and effective, although it becomes less
so as systems grow. A transaction script handles a request inline, rather than delegating to specialized
objects. It is the quintessential quick fix. It is also a hard pattern to categorize, because it combines
elements from other layers in this chapter. I have chosen to present it as part of the business logic layer,
because the pattern’s motivation is to achieve the business aims of the system.

The Problem
Every request must be handled in some way. As you have seen, many systems provide a layer that
assesses and filters incoming data. Ideally, though, this layer should then call on classes that are
designed to fulfill the request. These classes could be broken down to represent forces and
responsibilities in a system, perhaps with a facade interface. This approach requires a certain amount of
careful design, however. For some projects (typically small in scope and urgent in nature) such a
development overhead can be unacceptable. In this case, you may need to build your business logic into
a set of procedural operations. Each operation will be crafted to handle a particular request.

The problem, then, is the need to provide a fast and effective mechanism for fulfilling a system’s
objectives without a potentially costly investment in complex design.

The great benefit of this pattern is the speed with which you can get results. Each script takes input
and manipulates the database to ensure an outcome. Beyond organizing related methods within the
same class and keeping the Transaction Script classes in their own tier (that is, as independent as
possible of the command and control and view layers), there is little up-front design required.

While business logic layer classes tend to be clearly separated from the presentation layer, they are
often more embedded in the data layer. This is because retrieving and storing data is key to the tasks that
such classes often perform. You will see mechanisms for decoupling logic objects from the database later
in the chapter. Transaction Script classes, though, usually know all about the database (though they can
use gateway classes to handle the details of their actual queries).

Implementation
Let’s return to my events listing example. In this case, the system supports three relational database
tables: venue, space, and event. A venue may have a number of spaces (a theater can have more than one
stage, for example; a dance club may have different rooms, and so on). Each space plays host to many
events. Here is the schema:

CREATE TABLE 'venue' (
 'id' int(11) NOT NULL auto_increment,
 'name' text,
 PRIMARY KEY ('id')

CHAPTER 12 ■ ENTERPRISE PATTERNS

266

)
CREATE TABLE 'space' (
 'id' int(11) NOT NULL auto_increment,
 'venue' int(11) default NULL,
 'name' text,
 PRIMARY KEY ('id')
)
CREATE TABLE 'event' (
 'id' int(11) NOT NULL auto_increment,
 'space' int(11) default NULL,
 'start' mediumtext,
 'duration' int(11) default NULL,
 'name' text,
 PRIMARY KEY ('id')
)

Clearly, the system will need mechanisms for adding both venues and events. Each of these
represents a single transaction. I could give each method its own class (and organize my classes
according to the Command pattern that you encountered in Chapter 11). In this case, though, I am going
to place the methods in a single class, albeit as part of an inheritance hierarchy. You can see the
structure in Figure 12–10.

So why does this example include an abstract superclass? In a script of any size, I would be likely to
add more concrete classes to this hierarchy. Since most of these will work with the database, a common
superclass is an excellent place to put core functionality for making database requests.

Figure 12–10. A Transaction Script class with its superclass

In fact, this is a pattern in its own right (Fowler has named it Layer Supertype), albeit one that most
programmers use without thinking. Where classes in a layer share characteristics, it makes sense to
group them into a single type, locating utility operations in the base class. You will see this a lot in the
rest of this chapter.

In this case, the base class acquires a PDO object, which it stores in a static property. It also provides
methods for caching database statements and making queries.

namespace woo\process;
//...

CHAPTER 12 ■ ENTERPRISE PATTERNS

267

abstract class Base {
 static $DB;
 static $stmts = array();

 function __construct() {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (is_null($dsn)) {
 throw new \woo\base\AppException("No DSN");
 }

 self::$DB = new \PDO($dsn);
 self::$DB->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
 }

 function prepareStatement($stmt_s) {
 if (isset(self::$stmts[$stmt_s])) {
 return self::$stmts[$stmt_s];
 }
 $stmt_handle = self::$DB->prepare($stmt_s);
 self::$stmts[$stmt_s]=$stmt_handle;
 return $stmt_handle;
 }

 protected function doStatement($stmt_s, $values_a) {
 $sth = $this->prepareStatement($stmt_s);
 $sth->closeCursor();
 $db_result = $sth->execute($values_a);
 return $sth;
 }
}
I use the ApplicationRegistry class to acquire a DSN string, which I pass to the PDO
constructor.

The prepareStatement() method simply calls the PDO class’s prepare() method, which returns a
statement handle. This is eventually passed to the execute() method. To run a query, though, in this
method, I cache the resource in a static array called $stmts. I use the SQL statement itself as the array
element’s index.

prepareStatement() can be called directly by child classes, but it is more likely to be invoked via
doStatement(). This accepts an SQL statement and a mixed array of values (strings and integers). This
array should contain the values that are to be passed to the database in executing the statement. The
method then uses the SQL statement in a call to prepareStatement(), acquiring a statement resource
that it uses with the PDOStatment::execute() method. If an error occurs, I throw an exception. As you will
see, all this work is hidden from the transaction scripts. All they need to do is formulate the SQL and get
on with business logic.

Here is the start of the VenueManager class, which sets up my SQL statements:

namespace woo\process;
//...

class VenueManager extends Base {
 static $add_venue = "INSERT INTO venue
 (name)

CHAPTER 12 ■ ENTERPRISE PATTERNS

268

 values(?)";
 static $add_space = "INSERT INTO space
 (name, venue)
 values(?, ?)";
 static $check_slot = "SELECT id, name
 FROM event
 WHERE space = ?
 AND (start+duration) > ?
 AND start < ?";
 static $add_event = "INSERT INTO event
 (name, space, start, duration)
 values(?, ?, ?, ?)";
 //...

Not much new here. These are the SQL statements that the transaction scripts will use. They are
constructed in a format accepted by the PDO class’s prepare() method. The question marks are
placeholders for the values that will be passed to execute().

Now to define the first method designed to fulfill a specific business need:

 function addVenue($name, $space_array) {
 $ret = array();
 $ret['venue'] = array($name);
 $this->doStatement(self::$add_venue, $ret['venue']);
 $v_id = self::$DB->lastInsertId();
 $ret['spaces'] = array();
 foreach ($space_array as $space_name) {
 $values = array($space_name, $v_id);
 $this->doStatement(self::$add_space, $values);
 $s_id = self::$DB->lastInsertId();
 array_unshift($values, $s_id);
 $ret['spaces'][] = $values;
 }
 return $ret;
 }

As you can see, addVenue() requires a venue name and an array of space names. It uses these to
populate the venue and space tables. It also creates a data structure that contains this information, along
with the newly generated ID values for each row.

This method is spared lots of tedious database work by the superclass. I pass the venue name
provided by the caller to doStatement(). If there’s an error with this, remember, an exception is thrown. I
don’t catch any exceptions here, so anything thrown by doStatement() or (by extension)
prepareStatement() will also be thrown by this method. This is the result I want, although I should to
make it clear that this method throws exceptions in my documentation.

Having created the venue row, I loop through $space_array, adding a row in the space table for each
element. Notice that I include the venue ID as a foreign key in each of the space rows I create, associating
the row with the venue.

The second transaction script is similarly straightforward:

 function bookEvent($space_id, $name, $time, $duration) {
 $values = array($space_id, $time, ($time+$duration));
 $stmt = $this->doStatement(self::$check_slot, $values, false) ;

CHAPTER 12 ■ ENTERPRISE PATTERNS

269

 if ($result = $stmt->fetch()) {
 throw new \woo\base\AppException("double booked! try again");
 }
 $this->doStatement(self::$add_event,
 array($name, $space_id, $time, $duration));
 }

The purpose of this script is to add an event to the events table, associated with a space. Notice that
I use the SQL statement contained in $check_slot to make sure that the proposed event does not clash
with another in the same space.

Consequences
The Transaction Script pattern is an effective way of getting good results fast. It is also one of those
patterns many programmers have used for years without imagining it might need a name. With a few
good helper methods like those I added to the base class, you can concentrate on application logic
without getting too bogged down in database fiddle-faddling.

I have seen Transaction Script appear in a less welcome context. I thought I was writing a much
more complex and object-heavy application than would usually suit this pattern. As the pressure of
deadlines began to tell, I found that I was placing more and more logic in what was intended to be a thin
facade onto a Domain Model (see the next section). Although the result was less elegant than I had
wanted, I have to admit that the application did not appear to suffer for its implicit redesign.

In most cases, you would choose a Transaction Script approach with a small project when you are
certain it isn’t going to grow into a large one. The approach does not scale well, because duplication
often begins to creep in as the scripts inevitably cross one another. You can go some way to factoring this
out, of course, but you probably will not be able to excise it completely.

In my example, I decide to embed database code in the transaction script classes themselves. As you
saw, though, the code wants to separate the database work from the application logic. I can make that
break absolute by pulling it out of the class altogether and creating a gateway class whose role it is to
handle database interactions on the system’s behalf.

Domain Model
The Domain Model is the pristine logical engine that many of the other patterns in this chapter strive to
create, nurture, and protect. It is an abstracted representation of the forces at work in your project. It’s a
kind of plane of forms, where your business problems play out their nature unencumbered by nasty
material issues like databases and web pages.

If that seems a little flowery, let’s bring it down to reality. A Domain Model is a representation of the
real-world participants of your system. It is in the Domain Model that the object-as-thing rule of thumb
is truer than elsewhere. Everywhere else, objects tend to embody responsibilities. In the Domain Model,
they often describe a set of attributes, with added agency. They are things that do stuff.

The Problem
If you have been using Transaction Script, you may find that duplication becomes a problem as different
scripts need to perform the same tasks. That can be factored out to a certain extent, but over time, it’s
easy to fall into cut-and-paste coding.

You can use a Domain Model to extract and embody the participants and process of your system.
Rather than using a script to add space data to the database, and then associate event data with it, you

CHAPTER 12 ■ ENTERPRISE PATTERNS

270

can create Space and Event classes. Booking an event in a space can then become as simple as a call to
Space::bookEvent(). A task like checking for a time clash becomes Event::intersects(), and so on.

Clearly, with an example as simple as Woo, a Transaction Script is more than adequate. But as
domain logic gets more complex, the alternative of a Domain Model becomes increasingly attractive.
Complex logic can be handled more easily, and you need less conditional code when you model the
application domain.

Implementation
Domain Models can be relatively simple to design. Most of the complexity associated with the subject
lies in the patterns that are designed to keep the model pure—that is, to separate it from the other tiers
in the application.

Separating the participants of a Domain Model from the presentation layer is largely a matter of
ensuring that they keep to themselves. Separating the participants from the data layer is much more
problematic. Although the ideal is to consider a Domain Model only in terms of the problems it
represents and resolves, the reality of the database is hard to escape.

It is common for Domain Model classes to map fairly directly to tables in a relational database, and
this certainly makes life easier. Figure 12–11, for example, shows a class diagram that sketches some of
the participants of the Woo system.

Figure 12–11. An extract from a Domain Model

The objects in Figure 12–11 mirror the tables that were set up for the Transaction Script example.
This direct association makes a system easier to manage, but it is not always possible, especially if you
are working with a database schema that precedes your application. Such an association can itself be the

CHAPTER 12 ■ ENTERPRISE PATTERNS

271

source of problems. If you’re not careful, you can end up modeling the database, rather than the
problems and forces you are attempting to address.

Just because a Domain Model often mirrors the structure of a database does not mean that its
classes should have any knowledge of it. By separating the model from the database, you make the entire
tier easier to test and less likely to be affected by changes of schema, or even changes of storage
mechanism. It also focuses the responsibility of each class on its core tasks.

Here is a simplified Venue object, together with its parent class:

namespace woo\domain;

abstract class DomainObject {
 private $id;

 function __construct($id=null) {
 $this->id = $id;
 }

 function getId() {
 return $this->id;
 }

 static function getCollection($type) {
 return array(); // dummy
 }

 function collection() {
 return self::getCollection(get_class($this));
 }
}

class Venue extends DomainObject {
 private $name;
 private $spaces;

 function __construct($id=null, $name=null) {
 $this->name = $name;
 $this->spaces = self::getCollection("\\woo\\domain\\Space");
 parent::__construct($id);
 }

 function setSpaces(SpaceCollection $spaces) {
 $this->spaces = $spaces;
 }

 function getSpaces() {
 return $this->spaces;
 }

 function addSpace(Space $space) {

CHAPTER 12 ■ ENTERPRISE PATTERNS

272

 $this->spaces->add($space);
 $space->setVenue($this);
 }

 function setName($name_s) {
 $this->name = $name_s;
 $this->markDirty();
 }

 function getName() {
 return $this->name;
 }
}

There a few points that distinguish this class from one intended to run without persistence. Instead
of an array, I am using an object of type SpaceCollection to store any Space objects the Venue might
contain. (Though I could argue that a type-safe array is a bonus whether you are working with a database
or not!) Because this class works with a special collection object rather than an array of Space objects, the
constructor needs to instantiate an empty collection on startup. It does this by calling a static method on
the layer supertype.

■Note In this chapter and the next I will discuss amendments to both the Venue and Space objects. These are
simple domain objects and share a common functional core. If you’re coding along, you should be able to apply
concepts I discuss to either class. A Space class may not maintain a collection of Space objects for example, but it
might manage Event objects in exactly the same way.

$this->spaces = self::getCollection("\\woo\\domain\\Space");

I will return to this system’s collection objects in the next chapter, for now, though, the superclass
simply returns an empty array.

I expect an $id parameter in the constructor that I pass to the superclass for storage. It should come
as no surprise to learn that the $id parameter represents the unique ID of a row in the database. Notice
also that I call a method on the superclass called markDirty() (this will be covered when you encounter
the Unit of Work pattern).

Consequences
The design of a Domain Model needs to be as simple or complicated as the business processes you need
to emulate. The beauty of this is that you can focus on the forces in your problem as you design the
model and handle issues like persistence and presentation in other layers—in theory, that is.

In practice, I think that most developers design their domain models with at least one eye on the
database. No one wants to design structures that will force you (or, worse, your colleagues) into
somersaults of convoluted code when it comes to getting your objects in and out of the database.

CHAPTER 12 ■ ENTERPRISE PATTERNS

273

This separation between Domain Model and the data layer comes at a considerable cost in terms of
design and planning. It is possible to place database code directly in the model (although you would
probably want to design a gateway to handle the actual SQL). For relatively simple models, especially if
each class broadly maps to a table, this approach can be a real win, saving you the considerable design
overhead of devising an external system for reconciling your objects with the database.

Summary
I have covered an enormous amount of ground here (although I have also left out a lot). You should not
feel daunted by the sheer volume of code in this chapter. Patterns are meant to be used in the right
circumstances, and combined when useful. Use those described in this chapter that you feel meet the
needs of your project, and do not feel that you must build an entire framework before embarking on a
project. On the other hand, there is enough material here to form the basis of a framework, or just as
likely, to provide some insight into the architecture of some of the prebuilt frameworks you might
choose to deploy.

And there’s more! I left you teetering on the edge of persistence, with just a few tantalizing hints
about collections and mappers to tease you. In the next chapter, I will look at some patterns for working
with databases and for insulating your objects from the details of data storage.

C H A P T E R 13

■ ■ ■

275

Database Patterns

Most web applications of any complexity handle persistence to a greater or lesser extent. Shops must
recall their products and their customer records. Games must remember their players and the state of
play. Social networking sites must keep track of your 238 friends and your unaccountable liking for boy-
bands of the ’80s and ’90s. Whatever the application, the chances are it’s keeping score behind the
scenes. In this chapter, I look at some patterns that can help.

This chapter will cover

• The Data Layer interface: Patterns that define the points of contact between the
storage layer and the rest of the system

• Object watching: Keeping track of objects, avoiding duplicates, automating save
and insert operations

• Flexible queries: Allowing your client coders to construct queries without thinking
about the underlying database

• Creating lists of found objects: Building iterable collections

• Managing your database components: The welcome return of the Abstract Factory
pattern

The Data Layer
In discussions with clients, it’s usually the presentation layer that dominates. Fonts, colors, and ease of
use are the primary topics of conversation. Amongst developers it is often the database that looms large.
It’s not the database itself that concerns us; we can trust that to do its job unless we’re very unlucky. No,
it’s the mechanisms we use to translate the rows and columns of a database table into data structures
that cause the problems. In this chapter, I look at code that can help with this process.

Not everything presented here sits in the Data layer itself. Rather I have grouped some of the
patterns that help to solve persistence problems. All of these patterns are described by one or more of
Clifton Nock, Martin Fowler, and Alur et al.

Data Mapper
If you thought I glossed over the issue of saving and retrieving Venue objects from the database in the
“Domain Model” section of Chapter 12, here is where you might find at least some answers. The Data
Mapper pattern is described by both Alur et al in Core J2EE Patterns (as Data Access Object) and Martin
Fowler in Patterns of Enterprise Application Architecture (in fact, Data Access Object is not an exact

CHAPTER 13 ■ DATABASE PATTERNS

276

match, as it generates data transfer objects, but since such objects are designed to become the real thing
if you add water, the patterns are close enough).

As you might imagine, a data mapper is a class that is responsible for handling the transition from
database to object.

The Problem
Objects are not organized like tables in a relational database. As you know, database tables are grids
made up of rows and columns. One row may relate to another in a different (or even the same) table by
means of a foreign key. Objects, on the other hand, tend to relate to one another more organically. One
object may contain another, and different data structures will organize the same objects in different
ways, combining and recombining objects in new relationships at runtime. Relational databases are
optimized to manage large amounts of tabular data, whereas classes and objects encapsulate smaller
focussed chunks of information.

This disconnect between classes and relational databases is often described as the object-relational
impedance mismatch (or simply impedance mismatch).

So how do you make that transition? One answer is to give a class (or a set of classes) responsibility
for just that problem, effectively hiding the database from the domain model and managing the
inevitable rough edges of the translation.

Implementation
Although with careful programming, it may be possible to create a single Mapper class to service multiple
objects, it is common to see an individual Mapper for a major class in the Domain Model.

Figure 13–1 shows three concrete Mapper classes and an abstract superclass.

Figure 13–1. Mapper classes

CHAPTER 13 ■ DATABASE PATTERNS

277

In fact, since the Space objects are effectively subordinate to Venue objects, it may be possible to
factor the SpaceMapper class into VenueMapper. For the sake of these exercises, I’m going to keep them
separate.

As you can see, the classes present common operations for saving and loading data. The base class
stores common functionality, delegating responsibility for handling object-specific operations to its
children. Typically, these operations include actual object generation and constructing queries for
database operations.

The base class often performs housekeeping before or after an operation, which is why Template
Method is used for explicit delegation (calls from concrete methods like insert() to abstract ones like
doInsert(), etc.). Implementation determines which of the base class methods are made concrete in this
way, as you will see later in the chapter.

Here is a simplified version of a Mapper base class:

namespace woo\mapper;
//...

abstract class Mapper {
 protected static $PDO;
 function __construct() {

 if (! isset(self::$PDO)) {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (is_null($dsn)) {
 throw new \woo\base\AppException("No DSN");
 }
 self::$PDO = new \PDO($dsn);
 self::$PDO->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
 }
 }

 function find($id) {
 $this->selectStmt()->execute(array($id));
 $array = $this->selectStmt()->fetch();
 $this->selectStmt()->closeCursor();
 if (! is_array($array)) { return null; }
 if (! isset($array['id'])) { return null; }
 $object = $this->createObject($array);
 return $object;
 }

 function createObject($array) {
 $obj = $this->doCreateObject($array);
 return $obj;
 }

 function insert(\woo\domain\DomainObject $obj) {
 $this->doInsert($obj);
 }

 abstract function update(\woo\domain\DomainObject $object);
 protected abstract function doCreateObject(array $array);
 protected abstract function doInsert(\woo\domain\DomainObject $object);
 protected abstract function selectStmt();
}

CHAPTER 13 ■ DATABASE PATTERNS

278

The constructor method uses an ApplicationRegistry to get a DSN for use with the PDO extension.
A standalone singleton or a request-scoped registry really come into their own for classes like this. There
isn’t always a sensible path from the control layer to a Mapper along which data can be passed. Another
way of managing mapper creation would be to hand it off to the Registry class itself. Rather than
instantiate it, the mapper would expect to be provided with a PDO object as a constructor argument.

namespace woo\mapper;
//...
abstract class Mapper {
 protected $PDO;
 function __construct(\PDO $pdo) {
 $this->pdo = $pdo;
 }
}

Client code would acquire a new VenueMapper from Registry using \woo\base\Request
Registry::getVenueMapper(). This would instantiate a mapper, generating the PDO object too. For
subsequent requests, the method would return the cached mapper. The trade-off here is that you make
Registry much more knowledgeable about your system, but your mappers remain ignorant of global
configuration data.

The insert() method does nothing but delegate to doInsert(). This would be something that I
would factor out in favor of an abstract insert() method were it not for the fact that I know that the
implementation will be useful here in due course.

find() is responsible for invoking a prepared statement (provided by an implementing child class)
and acquiring row data. It finishes up by calling createObject(). The details of converting an array to an
object will vary from case to case, of course, so the details are handled by the abstract doCreateObject()
method. Once again, createObject() seems to do nothing but delegate to the child implementation, and
once again, I’ll soon add the housekeeping that makes this use of the Template Method pattern worth
the trouble.

Child classes will also implement custom methods for finding data according to specific criteria (I
will want to locate Space objects that belong to Venue objects, for example).

You can take a look at the process from the child’s perspective here:

namespace woo\mapper;
//...

class VenueMapper extends Mapper {
 function __construct() {
 parent::__construct();
 $this->selectStmt = self::$PDO->prepare(
 "SELECT * FROM venue WHERE id=?");
 $this->updateStmt = self::$PDO->prepare(
 "update venue set name=?, id=? where id=?");
 $this->insertStmt = self::$PDO->prepare(
 "insert into venue (name)
 values(?)");
 }

 function getCollection(array $raw) {
 return new SpaceCollection($raw, $this);
 }
 protected function doCreateObject(array $array) {
 $obj = new \woo\domain\Venue($array['id']);
 $obj->setname($array['name']);

CHAPTER 13 ■ DATABASE PATTERNS

279

 return $obj;
 }

 protected function doInsert(\woo\domain\DomainObject $object) {
 print "inserting\n";
 debug_print_backtrace();
 $values = array($object->getName());
 $this->insertStmt->execute($values);
 $id = self::$PDO->lastInsertId();
 $object->setId($id);
 }

 function update(\woo\domain\DomainObject $object) {
 print "updating\n";
 $values = array($object->getName(), $object->getId(), $object->getId());
 $this->updateStmt->execute($values);
 }

 function selectStmt() {
 return $this->selectStmt;
 }
}

Once again, this class is stripped of some of the goodies that are still to come. Nonetheless, it does
its job. The constructor prepares some SQL statements for use later on. These could be made static and
shared across VenueMapper instances, or as described earlier, a single Mapper object could be stored in a
Registry, thereby saving the cost of repeated instantiation. These are refactorings I will leave to you!

The Mapper class implements find(), which invokes selectStmt() to acquire the prepared SELECT
statement. Assuming all goes well, Mapper invokes VenueMapper::doCreateObject(). It’s here that I use
the associative array to generate a Venue object.

From the point of view of the client, this process is simplicity itself:

$mapper = new \woo\mapper\VenueMapper();
$venue = $mapper->find(12);
print_r($venue);

The print_r() method is a quick way of confirming that find() was successful. In my system (where
there is a row in the venue table with ID 12), the output from this fragment is as follows:

woo\domain\Venue Object
(
 [name:woo\domain\Venue:private] => The Eyeball Inn
 [spaces:woo\domain\Venue:private] =>
 [id:woo\domain\DomainObject:private] => 12
)

The doInsert() and update() methods reverse the process established by find(). Each accepts a
DomainObject, extracts row data from it, and calls PDOStatement::execute() with the resulting
information. Notice that the doInsert() method sets an ID on the provided object. Remember that
objects are passed by reference in PHP, so the client code will see this change via its own reference.

Another thing to note is that doInsert() and update() are not really type safe. They will accept any
DomainObject subclass without complaint. You should perform an instanceof test and throw an
Exception if the wrong object is passed. This will guard against the inevitable bugs.

CHAPTER 13 ■ DATABASE PATTERNS

280

Once again, here is a client perspective on inserting and updating:

$venue = new \woo\domain\Venue();
$venue->setName("The Likey Lounge-yy");
// add the object to the database
$mapper->insert($venue);
// find the object again – just prove it works!
$venue = $mapper->find($venue->getId());
print_r($venue);
// alter our object
$venue->setName("The Bibble Beer Likey Lounge-yy");
// call update to enter the amended data
$mapper->update($venue);
// once again, go back to the database to prove it worked
$venue = $mapper->find($venue->getId());
print_r($venue);

Handling Multiple Rows
The find() method is pretty straightforward, because it only needs to return a single object. What do you
do, though, if you need to pull lots of data from the database? Your first thought may be to return an
array of objects. This will work, but there is a major problem with the approach.

If you return an array, each object in the collection will need to be instantiated first, which, if you
have a result set of 1,000 objects, may be needlessly expensive. An alternative would be to simply return
an array and let the calling code sort out object instantiation. This is possible, but it violates the very
purpose of the Mapper classes.

There is one way you can have your cake and eat it. You can use the built-in Iterator interface.
The Iterator interface requires implementing classes to define methods for querying a list. If you do

this, your class can be used in foreach loops just like an array. There are some people who say that
iterator implementations are unnecessary in a language like PHP with such good support for arrays. Tish
and piffle! I will show you at least three good reasons for using PHP’s built-in Iterator interface in this
chapter.

Table 13–1 shows the methods that the Iterator interface requires.

Table 13–1. Methods Defined by the Iterator Interface

Name Description

rewind() Send pointer to start of list.

current() Return element at current pointer position.

key() Return current key (i.e., pointer value).

next() Return element at current pointer and advance pointer.

valid() Confirm that there is an element at the current pointer position.

In order to implement an Iterator, you need to implement its methods and keep track of your place

within a dataset. How you acquire that data, order it, or otherwise filter it is hidden from the client.

CHAPTER 13 ■ DATABASE PATTERNS

281

Here is an Iterator implementation that wraps an array but also accepts a Mapper object in its
constructor for reasons that will become apparent:

namespace woo\mapper;
//...

abstract class Collection implements \Iterator {
 protected $mapper;
 protected $total = 0;
 protected $raw = array();

 private $result;
 private $pointer = 0;
 private $objects = array();

 function __construct(array $raw=null, Mapper $mapper=null) {
 if (! is_null($raw) && ! is_null($mapper)) {
 $this->raw = $raw;
 $this->total = count($raw);
 }
 $this->mapper = $mapper;
 }

 function add(\woo\domain\DomainObject $object) {
 $class = $this->targetClass();
 if (! ($object instanceof $class)) {
 throw new Exception("This is a {$class} collection");
 }
 $this->notifyAccess();
 $this->objects[$this->total] = $object;
 $this->total++;
 }

 abstract function targetClass();

 protected function notifyAccess() {
 // deliberately left blank!
 }
 private function getRow($num) {
 $this->notifyAccess();
 if ($num >= $this->total || $num < 0) {
 return null;
 }
 if (isset($this->objects[$num])) {
 return $this->objects[$num];
 }

 if (isset($this->raw[$num])) {
 $this->objects[$num]=$this->mapper->createObject($this->raw[$num]);
 return $this->objects[$num];
 }
 }

 public function rewind() {

CHAPTER 13 ■ DATABASE PATTERNS

282

 $this->pointer = 0;
 }

 public function current() {
 return $this->getRow($this->pointer);
 }

 public function key() {
 return $this->pointer;
 }

 public function next() {
 $row = $this->getRow($this->pointer);
 if ($row) { $this->pointer++; }
 return $row;
 }

 public function valid() {
 return (! is_null($this->current()));
 }
}

The constructor expects to be called with no arguments or with two (the raw data that may
eventually be transformed into objects and a mapper reference).

Assuming that the client has set the $raw argument (it will be a Mapper object that does this), this is
stored in a property together with the size of the provided dataset. If raw data is provided an instance of
the Mapper is also required, since it’s this that will convert each row into an object.

If no arguments were passed to the constructor, the class starts out empty, though note that there is
the add() method for adding to the collection.

The class maintains two arrays: $objects and $raw. If a client requests a particular element, the
getRow() method looks first in $objects to see if it has one already instantiated. If so, that gets returned.
Otherwise, the method looks in $raw for the row data. $raw data is only present if a Mapper object is also
present, so the data for the relevant row can be passed to the Mapper::createObject() method you
encountered earlier. This returns a DomainObject object, which is cached in the $objects array with the
relevant index. The newly created DomainObject object is returned to the user.

The rest of the class is simple manipulation of the $pointer property and calls to getRow(). Apart,
that is, from the notifyAccess() method, which will become important when you encounter the Lazy
Load pattern.

You may have noticed that the Collection class is abstract. You need to provide specific
implementations for each domain class:

namespace woo\mapper;
//...

class VenueCollection
 extends Collection
 implements \woo\domain\VenueCollection {

 function targetClass() {
 return "\woo\domain\Venue";
 }
}

CHAPTER 13 ■ DATABASE PATTERNS

283

The VenueCollection class simply extends Collection and implements a targetClass() method.
This, in conjunction with the type checking in the super class’s add() method, ensures that only Venue
objects can be added to the collection. You could provide additional checking in the constructor as well
if you wanted to be even safer.

Clearly, this class should only work with a VenueMapper. In practical terms, though, this is a
reasonably type-safe collection, especially as far as the Domain Model is concerned.

There are parallel classes for Event and Space objects, of course.
Note that VenueCollection implements an interface: woo\domain\VenueCollection. This is part of the

Separated Interface trick I will describe shortly. In effect, it allows the domain package to define its
requirements for a Collection independently of the mapper package. Domain objects hint for
woo\domain\VenueCollection objects and not woo\mapper\VenueCollection objects, so that, at a later
date, the mapper implementation might be removed. It could then be replaced with an entirely different
implementing class without many changes within the domain package.

Here is the \woo\domain\VenueCollection interface, together with its siblings.

namespace woo\domain;

interface VenueCollection extends \Iterator {
 function add(DomainObject $venue);
}

interface SpaceCollection extends \Iterator {
 function add(DomainObject $space);
}

interface EventCollection extends \Iterator {
 function add(DomainObject $event);
}

Figure 13–2 shows some Collection classes.

Figure 13–2. Managing multiple rows with collections

CHAPTER 13 ■ DATABASE PATTERNS

284

Because the Domain Model needs to instantiate Collection objects, and because I may need to
switch the implementation at some point (especially for testing purposes), I provide a factory class in the
Domain layer for generating Collection objects on a type-by-type basis. Here’s how I get an empty
VenueCollection object:

$collection = \woo\domain\HelperFactory::getCollection("woo\\domain\\Venue");
$collection->add(new \woo\domain\Venue(null, "Loud and Thumping"));
$collection->add(new \woo\domain\Venue(null, "Eeezy"));
$collection->add(new \woo\domain\Venue(null, "Duck and Badger"));

foreach($collection as $venue) {
 print $venue->getName()."\n";
}

With the implementation I have built here, there isn’t much else you can do with this collection, but
adding elementAt(), deleteAt(), count(), and similar methods is a trivial exercise. (And fun, too! Enjoy!)

The DomainObject superclass is a good place for convenience methods that acquire collections.

// namespace woo\domain;
// ...

// DomainObject

 static function getCollection($type) {
 return HelperFactory::getCollection($type);
 }

 function collection() {
 return self::getCollection(get_class($this));
 }

The class supports two mechanisms for acquiring a Collection object: static and instance. In both
cases, the methods simply call HelperFactory::getCollection() with a class name. You saw the static
getCollection() method used in the Domain Model example Chapter 12. Figure 13–3 shows the
HelperFactory. Notice that it can be used to acquire both collections and mappers.

A variation on the structure displayed in Figure 13–3 would have you create interfaces within the
domain package for Mapper and Collection which, of course would need to be implemented by their
mapper counterparts. In this way, domain objects can be completely insulated from the mapper package
(except within the HelperFactory itself, of course). This basic pattern, which Fowler calls Separated
Interface, would be useful if you knew that some users might need to switch out the entire mapper
package and replace it with an equivalent. If I were to implement Separated Interface, getFinder()
would commit to return an instance of a Finder interface, and my Mapper objects would implement this.
However, in most instances, you can leave this refinement as a possible future refactor. In these
examples, getFinder() returns Mapper objects pure and simple.

In light of all this, the Venue class can be extended to manage the persistence of Space objects. The
class provides methods for adding individual Space objects to its SpaceCollection or for switching in an
entirely new SpaceCollection.

CHAPTER 13 ■ DATABASE PATTERNS

285

Figure 13–3. Using a factory object as an intermediary to acquire persistence tools

// Venue
// namespace woo\domain;
// ...

 function setSpaces(SpaceCollection $spaces) {
 $this->spaces = $spaces;
 }

 function getSpaces() {
 if (! isset($this->spaces)) {
 $this->spaces = self::getCollection("woo\\domain\\Space");
 }
 return $this->spaces;
 }

 function addSpace(wSpace $space) {
 $this->getSpaces()->add($space);
 $space->setVenue($this);
 }

The setSpaces() operation is really designed to be used by the VenueMapper class in constructing the
Venue. It takes it on trust that all Space objects in the collection refer to the current Venue. It would be
easy enough to add checking to the method. This version keeps things simple though. Notice that I only
instantiate the $spaces property when getSpaces() is called. Later on, I’ll demonstrate how you can
extend this lazy instantiation to limit database requests.

The VenueMapper needs to set up a SpaceCollection for each Venue object it creates.

// VenueMapper

CHAPTER 13 ■ DATABASE PATTERNS

286

// namespace woo\mapper;
// ...

 protected function doCreateObject(array $array) {
 $obj = new w\woo\domain\Venue($array['id']);
 $obj->setname($array['name']);
 $space_mapper = new SpaceMapper();
 $space_collection = $space_mapper->findByVenue($array['id']);
 $obj->setSpaces($space_collection);
 return $obj;
 }

The VenueMapper::doCreateObject() method gets a SpaceMapper and acquires a SpaceCollection
from it. As you can see, the SpaceMapper class implements a findByVenue() method. This brings us to the
queries that generate multiple objects. For the sake of brevity, I omitted the Mapper::findAll() method
from the original listing for woo\mapper\Mapper. Here it is restored:

//Mapper
// namespace woo\mapper;
// ...

 function findAll() {
 $this->selectAllStmt()->execute(array());
 return $this->getCollection(
 $this->selectAllStmt()->fetchAll(PDO::FETCH_ASSOC));
 }

This method calls a child method: selectAllStmt(). Like selectStmt(), this should contain a
prepared statement object primed to acquire all rows in the table. Here’s the PDOStatement object as
created in the SpaceMapper class:

// SpaceMapper::__construct()
 $this->selectAllStmt = self::$PDO->prepare(
 "SELECT * FROM space");
//...
 $this->findByVenueStmt = self::$PDO->prepare(
 "SELECT * FROM space where venue=?");

I included another statement here, $findByVenueStmt, which is used to locate Space objects specific
to an individual Venue.

The findAll() method calls another new method, getCollection(), passing it its found data. Here is
SpaceMapper::getCollection():

 function getCollection(array $raw) {
 return new SpaceCollection($raw, $this);
 }

A full version of the Mapper class should declare getCollection() and selectAllStmt() as abstract
methods, so all mappers are capable of returning a collection containing their persistent domain
objects. In order to get the Space objects that belong to a Venue, however, I need a more limited
collection. You have already seen the prepared statement for acquiring the data; now, here is the
SpaceMapper::findByVenue() method, which generates the collection:

 function findByVenue($vid) {
 $this->findByVenueStmt->execute(array($vid));
 return new SpaceCollection(

CHAPTER 13 ■ DATABASE PATTERNS

287

 $this->findByVenueStmt->fetchAll(), $this);
 }

The findByVenue() method is identical to findAll() except for the SQL statement used. Back in the
VenueMapper, the resulting collection is set on the Venue object via Venue::setSpaces().

So Venue objects now arrive fresh from the database, complete with all their Space objects in a neat
type-safe list. None of the objects in that list are instantiated before being requested.

Figure 13–4 shows the process by which a client class might acquire a SpaceCollection and how the
SpaceCollection class interacts with SpaceMapper::createObject() to convert its raw data into an object
for returning to the client.

Figure 13–4. Acquiring a SpaceCollection and using it to get a Space object

Consequences
The drawback with the approach I took to adding Space objects to Venue ones is that I had to take two
trips to the database. In most instances, I think that is a price worth paying. Also note that the work in
Venue::doCreateObject() to acquire a correctly populated SpaceCollection could be moved to
Venue::getSpaces() so that the secondary database connection would only occur on demand. Here’s
how such a method might look:

// Venue
// namespace woo\domain;
// ...

 function getSpaces() {
 if (! isset($this->spaces)) {
 $finder = self::getFinder('woo\\domain\\Space');
 $this->spaces = $finder->findByVenue($this->getId());
 }
 return $this->spaces;
 }

If efficiency becomes an issue, however, it should be easy enough to factor out SpaceMapper
altogether and retrieve all the data you need in one go using an SQL join.

CHAPTER 13 ■ DATABASE PATTERNS

288

Of course, your code may become less portable as a result of that, but efficiency optimization always
comes at a price!

Ultimately, the granularity of your Mapper classes will vary. If an object type is stored solely by
another, then you may consider only having a Mapper for the container.

The great strength of this pattern is the strong decoupling it effects between the Domain layer and
database. The Mapper objects take the strain behind the scenes and can adapt to all sorts of relational
twistedness.

Perhaps the biggest drawback with the pattern is the sheer amount of slog involved in creating
concrete Mapper classes. However, there is a large amount of boilerplate code that can be automatically
generated. A neat way of generating the common methods for Mapper classes is through reflection. You
can query a domain object, discover its setter and getter methods (perhaps in tandem with an argument
naming convention), and generate basic Mapper classes ready for amendment. This is how all the Mapper
classes featured in this chapter were initially produced.

One issue to be aware of with mappers is the danger of loading too many objects at one time. The
Iterator implementation helps us here, though. Because a Collection object only holds row data at
first, the secondary request (for a Space object) is only made when a particular Venue is accessed and
converted from array to object. This form of lazy loading can be enhanced even further, as you shall see.

You should be careful of ripple loading. Be aware as you create your mapper that the use of another
one to acquire a property for your object may be the tip of a very large iceberg. This secondary mapper
may itself use yet more in constructing its own object. If you are not careful, you could find that what
looks on the surface like a simple find operation sets off tens of other similar operations.

You should also be aware of any guidelines your database application lays down for building
efficient queries and be prepared to optimize (on a database-by-database basis if necessary). SQL
statements that apply well to multiple database applications are nice; fast applications are much nicer.
Although introducing conditionals (or strategy classes) to manage different versions of the same queries
is a chore, and potentially ugly in the former case, don’t forget that all this mucky optimization is neatly
hidden away from client code.

Identity Map
Do you remember the nightmare of pass-by-value errors in PHP 4? The sheer confusion that ensued
when two variables that you thought pointed to a single object turned out to refer to different but
cunningly similar ones? Well, the nightmare has returned.

The Problem
Here's some test code created to try out the Data Mapper example:

$venue = new \woo\domain\Venue();
$venue->setName("The Likey Lounge");
$mapper->insert($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);
$venue->setName("The Bibble Beer Likey Lounge");
$mapper->update($venue);
$venue = $mapper->find($venue->getId());
print_r($venue);

The purpose of this code was to demonstrate that an object that you add to the database could also
be extracted via a Mapper and would be identical. Identical, that is, in every way except for being the same
object. I cheated this problem by assigning the new Venue object over the old. Unfortunately, you won’t

CHAPTER 13 ■ DATABASE PATTERNS

289

always have that kind of control over the situation. The same object may be referenced at several
different times within a single request. If you alter one version of it and save that to the database, can
you be sure that another version of the object (perhaps stored already in a Collection object) won’t be
written over your changes?

Not only are duplicate objects risky in a system, they also represent a considerable overhead. Some
popular objects could be loaded three or four times in a process, with all but one of these trips to the
database entirely redundant.

Fortunately, fixing this problem is relatively straightforward.

Implementation
An identity map is simply an object whose task it is to keep track of all the objects in a system, and
thereby help to ensure that nothing that should be one object becomes two.

In fact, the Identity Map itself does not prevent this from happening in any active way. Its role is to
manage information about objects. Here is a simple Identity Map:

namespace woo\domain;
//...

class ObjectWatcher {
 private $all = array();
 private static $instance;

 private function __construct() { }

 static function instance() {
 if (! self::$instance) {
 self::$instance = new ObjectWatcher();
 }
 return self::$instance;
 }

 function globalKey(DomainObject $obj) {
 $key = get_class($obj).".".$obj->getId();
 return $key;
 }

 static function add(DomainObject $obj) {
 $inst = self::instance();
 $inst->all[$inst->globalKey($obj)] = $obj;
 }

 static function exists($classname, $id) {
 $inst = self::instance();
 $key = "$classname.$id";
 if (isset($inst->all[$key])) {
 return $inst->all[$key];
 }
 return null;
 }
}

Figure 13–5 shows how an Identity Map object might integrate with other classes you have seen.

CHAPTER 13 ■ DATABASE PATTERNS

290

Figure 13–5. Identity Map

The main trick with an Identity Map is, pretty obviously, identifying objects. This means that you
need to tag each object in some way. There are a number of different strategies you can take here. The
database table key that all objects in the system already use is no good because the ID is not guaranteed
to be unique across all tables.

You could also use the database to maintain a global key table. Every time you created an object,
you would iterate the key table’s running total and associate the global key with the object in its own
row. The overhead of this is relatively slight, and it would be easy to do.

As you can see, I have gone for an altogether simpler approach. I concatenate the name of the
object’s class with its table ID. There can be no two objects of type woo\domain\Event with an ID of 4, so
my key of woo\domain\Event.4 is safe enough for my purposes.

The globalKey() method handles the details of this. The class provides an add() method for adding
new objects. Each object is labeled with its unique key in an array property, $all.

The exists() method accepts a class name and an $id rather than an object. I don’t want to have to
instantiate an object to see whether or not it already exists! The method builds a key from this data and
checks to see if it indexes an element in the $all property. If an object is found, a reference is duly returned.

There is only one class where I work with the ObjectWatcher class in its role as an Identity Map. The
Mapper class provides functionality for generating objects, so it makes sense to add the checking there.

// Mapper
namespace woo\mapper;
// ...

 private function getFromMap($id) {
 return \woo\domain\ObjectWatcher::exists
 ($this->targetClass(), $id);
 }

 private function addToMap(\woo\domain\DomainObject $obj) {
 return \woo\domain\ObjectWatcher::add($obj);
 }

 function find($id) {
 $old = $this->getFromMap($id);
 if ($old) { return $old; }
 // work with db
 return $object;
 }

CHAPTER 13 ■ DATABASE PATTERNS

291

 function createObject($array) {
 $old = $this->getFromMap($array['id']);
 if ($old) { return $old; }
 // construct object
 $this->addToMap($obj);
 return $obj;
 }

 function insert(\woo\domain\DomainObject $obj) {
 // handle insert. $obj will be updated with new id
 $this->addToMap($obj);
 }

The class provides two convenience methods: addToMap() and getFromMap(). These save the bother
of remembering the full syntax of the static call to ObjectWatcher. More importantly, they call down to
the child implementation (VenueMapper, etc.) to get the name of the class currently awaiting
instantiation.

This is achieved by calling targetClass(), an abstract method that is implemented by all concrete
Mapper classes. It should return the name of the class that the Mapper is designed to generate. Here is the
SpaceMapper class’s implementation of targetClass():

 protected function targetClass() {
 return "woo\\domain\\Space";
 }

Both find() and createObject() first check for an existing object by passing the table ID to
getFromMap(). If an object is found, it is returned to the client and method execution ends. If, however,
there is no version of this object in existence yet, object instantiation goes ahead. In createObject(), the
new object is passed to addToMap() to prevent any clashes in the future.

So why am I going through part of this process twice, with calls to getFromMap() in both find() and
createObject()? The answer lies with Collections. When these generate objects, they do so by calling
createObject(). I need to make sure that the row encapsulated by a Collection object is not stale and
ensure that the latest version of the object is returned to the user.

Consequences
As long as you use the Identity Map in all contexts in which objects are generated from or added to the
database, the possibility of duplicate objects in your process is practically zero.

Of course, this only works within your process. Different processes will inevitably access versions of
the same object at the same time. It is important to think through the possibilities for data corruption
engendered by concurrent access. If there is a serious issue, you may need to consider a locking strategy.
You might also consider storing objects in shared memory or using an external object caching system
like Memcached. You can learn about Memcached at http://danga.com/memcached/ and about PHP
support for it at http://www.php.net/memcache.

Unit of Work
When do you save your objects? Until I discovered the Unit of Work pattern (written up by David Rice in
Martin Fowler’s Patterns of Enterprise Application Architecture), I sent out save orders from the
Presentation layer upon completion of a command. This turned out to be an expensive design decision.

The Unit of Work pattern helps you to save only those objects that need saving.

CHAPTER 13 ■ DATABASE PATTERNS

292

The Problem
One day, I echoed my SQL statements to the browser window to track down a problem and had a shock.
I found that I was saving the same data over and over again in the same request. I had a neat system of
composite commands, which meant that one command might trigger several others, and each one was
cleaning up after itself.

Not only was I saving the same object twice, I was saving objects that didn’t need saving.
This problem then is similar in some ways to that addressed by Identity Map. That problem

involved unnecessary object loading; this problem lies at the other end of the process. Just as these
issues are complementary, so are the solutions.

Implementation
To determine what database operations are required, you need to keep track of various events that befall
your objects. Probably the best place to do that is in the objects themselves.

You also need to maintain a list of objects scheduled for each database operation (insert, update,
delete). I am only going to cover insert and update operations here. Where might be a good place to
store a list of objects? It just so happens that I already have an ObjectWatcher object, so I can develop
that further:

// ObjectWatcher
// ...
 private $all = array();
 private $dirty = array();
 private $new = array();
 private $delete = array(); // unused in this example
 private static $instance;
// ...
 static function addDelete(DomainObject $obj) {

 $self = self::instance();

 $self->delete[$self->globalKey($obj)] = $obj;

 }

 static function addDirty(DomainObject $obj) {
 $inst = self::instance();
 if (! in_array($obj, $inst->new, true)) {
 $inst->dirty[$inst->globalKey($obj)] = $obj;
 }
 }

 static function addNew(DomainObject $obj) {
 $inst = self::instance();
 // we don't yet have an id
 $inst->new[] = $obj;
 }

 static function addClean(DomainObject $obj) {
 $self = self::instance();
 unset($self->delete[$self->globalKey($obj)]);
 unset($self->dirty[$self->globalKey($obj)]);

CHAPTER 13 ■ DATABASE PATTERNS

293

 $self->new = array_filter($self->new,
 function($a) use ($obj) { return !($a === $obj); }
);
 }

 function performOperations() {
 foreach ($this->dirty as $key=>$obj) {
 $obj->finder()->update($obj);
 }
 foreach ($this->new as $key=>$obj) {
 $obj->finder()->insert($obj);
 }
 $this->dirty = array();
 $this->new = array();
 }

The ObjectWatcher class remains an Identity Map and continues to serve its function of tracking all
objects in a system via the $all property. This example simply adds more functionality to the class.

You can see the Unit of Work aspects of the ObjectWatcher class in Figure 13–6.

Figure 13–6. Unit of Work

Objects are described as “dirty” when they have been changed since extraction from the database. A
dirty object is stored in the $dirty array property (via the addDirty() method) until the time comes to
update the database. Client code may decide that a dirty object should not undergo update for its own
reasons. It can ensure this by marking the dirty object as clean (via the addClean() method). As you
might expect, a newly created object should be added to the $new array (via the addNew() method).
Objects in this array are scheduled for insertion into the database. I am not implementing delete
functionality in these examples, but the principle should be clear enough.

The addDirty() and addNew() methods each add an object to their respective array properties.
addClean(), however, removes the given object from the $dirty array, marking it as no longer pending
update.

When the time finally comes to process all objects stored in these arrays, the performOperations()
method should be invoked (probably from the controller class, or its helper). This method loops through
the $dirty and $new arrays either updating or adding the objects.

The ObjectWatcher class now provides a mechanism for updating and inserting objects. The code is
still missing a means of adding objects to the ObjectWatcher object.

Since it is these objects that are operated upon, they are probably best placed to perform this
notification. Here are some utility methods I can add to the DomainObject class. Notice also the
constructor method.

// DomainObject
namespace woo\domain;
//...

CHAPTER 13 ■ DATABASE PATTERNS

294

 abstract class DomainObject {
 private $id = -1;

 function __construct($id=null) {
 if (is_null($id)) {
 $this->markNew();
 } else {
 $this->id = $id;
 }
 }

 function markNew() {
 ObjectWatcher::addNew($this);
 }

 function markDeleted() {
 ObjectWatcher::addDelete($this);
 }

 function markDirty() {
 ObjectWatcher::addDirty($this);
 }

 function markClean() {
 ObjectWatcher::addClean($this);
 }

 function setId($id) {
 $this->id = $id;
 }

 function getId() {
 return $this->id;
 }

 function finder() {
 return self::getFinder(get_class($this));
 }

 static function getFinder($type) {
 return HelperFactory::getFinder($type);
 }
 //...

Before looking at the Unit of Work code, it is worth noting that the Domain class here has finder()
and getFinder() methods. These work in exactly the same way as collection() and getCollection(),
querying a simple factory class, HelperFactory, in order to acquire Mapper objects when needed. This
relationship was illustrated in Figure 13–3.

As you can see, the constructor method marks the current object as new (by calling markNew()) if no
$id property has been passed to it. This qualifies as magic of a sort and should be treated with some
caution. As it stands, this code slates a new object for insertion into the database without any
intervention from the object creator. Imagine a coder new to your team writing a throwaway script to
test some domain behavior. No sign of persistence code there, so all should be safe enough, shouldn’t it?
Now imagine these test objects, perhaps with interesting throwaway names, making their way into

CHAPTER 13 ■ DATABASE PATTERNS

295

persistent storage. Magic is nice, but clarity is nicer. It may be better to require client code to pass some
kind of flag into the constructor in order to queue the new object for insertion.

I also need to add some code to the Mapper class:

// Mapper
 function createObject($array) {
 $old = $this->getFromMap($array['id']);
 if ($old) { return $old; }
 $obj = $this->doCreateObject($array);
 $this->addToMap($obj);
 $obj->markClean();
 return $obj;
 }

Because setting up an object involves marking it new via the constructor’s call to
ObjectWatcher::addNew(), I must call markClean(), or every single object extracted from the database will
be saved at the end of the request, which is not what I want.

The only thing remaining to do is to add markDirty() invocations to methods in the Domain Model
classes. Remember, a dirty object is one that has been changed since it was retrieved from the database.
This is the one aspect of this pattern that has a slightly fishy odor. Clearly, it’s important to ensure that
all methods that mess up the state of an object are marked dirty, but the manual nature of this task
means that the possibility of human error is all too real.

Here are some methods in the Space object that call markDirty():

namespace woo\domain;

//...

class Space extends DomainObject {

//...

 function setName($name_s) {
 $this->name = $name_s;
 $this->markDirty();
 }

 function setVenue(Venue $venue) {
 $this->venue = $venue;
 $this->markDirty();
 }

Here is some code for adding a new Venue and Space to the database, taken from a Command class:

 $venue = new \woo\domain\Venue(null, "The Green Trees");
 $venue->addSpace(
 new \woo\domain\Space(null, 'The Space Upstairs'));
 $venue->addSpace(
 new \woo\domain\Space(null, 'The Bar Stage'));

 // this could be called from the controller or a helper class
 \woo\domain\ObjectWatcher::instance()->performOperations();

I have added some debug code to the ObjectWatcher, so you can see what happens at the end of the
request:

CHAPTER 13 ■ DATABASE PATTERNS

296

inserting The Green Trees
inserting The Space Upstairs
inserting The Bar Stage

Because a high-level controller object usually calls the performOperations() method, all you need to
do in most cases is create or modify an object, and the Unit of Work class (ObjectWatcher) will do its job
just once at the end of the request.

Consequences
This pattern is very useful, but there are a few issues to be aware of. You need to be sure that all modify
operations actually do mark the object in question as dirty. Failing to do this can result in hard-to-spot
bugs.

You may like to look at other ways of testing for modified objects. Reflection sounds like a good
option there, but you should look into the performance implications of such testing— the pattern is
meant to improve efficiency, not undermine it.

Lazy Load
Lazy Load is one of those core patterns most Web programmers learn for themselves very quickly,
simply because it’s such an essential mechanism for avoiding massive database hits, which is something
we all want to do.

The Problem
In the example that has dominated this chapter, I have set up a relationship between Venue, Space, and
Event objects. When a Venue object is created, it is automatically given a SpaceCollection object. If I were
to list every Space object in a Venue, this would automatically kick off a database request to acquire all the
Events associated with each Space. These are stored in an EventCollection object. If I don’t wish to view
any events, I have nonetheless made several journeys to the database for no reason. With many venues,
each with two or three spaces, and with each space managing tens, perhaps hundreds, of events, this is a
costly process.

Clearly, we need to throttle back this automatic inclusion of collections in some instances.
Here is the code in SpaceMapper that acquires Event data:

 protected function doCreateObject(array $array) {
 $obj = new \woo\domain\Space($array['id']);
 $obj->setname($array['name']);
 $ven_mapper = new VenueMapper();
 $venue = $ven_mapper->find($array['venue']);
 $obj->setVenue($venue);
 $event_mapper = new EventMapper();
 $event_collection = $event_mapper->findBySpaceId($array['id']);
 $obj->setEvents($event_collection);
 return $obj;
 }

The doCreateObject() method first acquires the Venue object with which the space is associated.
This is not costly, because it is almost certainly already stored in the ObjectWatcher object. Then the
method calls the EventMapper::findBySpaceId() method. This is where the system could run into
problems.

CHAPTER 13 ■ DATABASE PATTERNS

297

Implementation
As you may know, a Lazy Load means to defer acquisition of a property until it is actually requested by a
client.

As you have seen, the easiest way of doing this is to make the deferral explicit in the containing
object. Here’s how I might do this in the Space object:

 // Space
 function getEvents() {
 if (is_null($this->events)) {
 $this->events = self::getFinder('woo\\domain\\Event')
 ->findBySpaceId($this->getId());
 }
 return $this->events;
 }

This method checks to see whether or not the $events property is set. If it isn’t set, then the method
acquires a finder (that is, a Mapper) and uses its own $id property to get the EventCollection with which
it is associated. Clearly, for this method to save us a potentially unnecessary database query, I would also
need to amend the SpaceMapper code so that it does not automatically preload an EventCollection object
as it does in the preceding example!

This approach will work just fine, although it is a little messy. Wouldn’t it be nice to tidy the mess
away?

This brings us back to the Iterator implementation that goes to make the Collection object. I
amalready hiding one secret behind that interface (the fact that raw data may not yet have been used to
instantiate a domain object at the time a client accesses it). Perhaps I can hide still more.

The idea here is to create an EventCollection object that defers its database access until a request is
made of it. This means that a client object (such as Space, for example) need never know that it is holding
an empty Collection in the first instance. As far as a client is concerned, it is holding a perfectly normal
EventCollection.

Here is the DeferredEventCollection object:

namespace woo\mapper;
//...

class DeferredEventCollection extends EventCollection {
 private $stmt;
 private $valueArray;
 private $run=false;

 function __construct(Mapper $mapper, \PDOStatement $stmt_handle,
 array $valueArray) {
 parent::__construct(null, $mapper);
 $this->stmt = $stmt_handle;
 $this->valueArray = $valueArray;
 }

 function notifyAccess() {
 if (! $this->run) {
 $this->stmt->execute($this->valueArray);
 $this->raw = $this->stmt->fetchAll();
 $this->total = count($this->raw);
 }
 $this->run=true;

CHAPTER 13 ■ DATABASE PATTERNS

298

 }
}

As you can see, this class extends a standard EventCollection. Its constructor requires EventMapper
and PDOStatement objects and an array of terms that should match the prepared statement. In the first
instance, the class does nothing but store its properties and wait. No query has been made of the
database.

You may remember that the Collection base class defines the empty method called notifyAccess()
that I mentioned in the “Data Mapper” section. This is called from any method whose invocation is the
result of a call from the outside world.

DeferredEventCollection overrides this method. Now if someone attempts to access the Collection,
the class knows it is time to end the pretense and acquire some real data. It does this by calling the
PDOStatement::execute() method. Together with PDOStatement::fetch(), this yields an array of fields
suitable for passing along to Mapper::createObject().

Here is the method in EventMapper that instantiates a DeferredEventCollection:

// EventMapper
namespace woo\mapper;
// ...
function findBySpaceId($s_id) {
 return new DeferredEventCollection(
 $this,
 $this->selectBySpaceStmt, array($s_id));
 }

Consequences
Lazy loading is a good habit to get into, whether or not you explicitly add deferred loading logic to your
domain classes.

Over and above type safety, the particular benefit of using a collection rather than an array for your
properties is the opportunity this gives you to retrofit lazy loading should you need it.

Domain Object Factory
The Data Mapper pattern is neat, but it does have some drawbacks. In particular a Mapper class takes a
lot on board. It composes SQL statements; it converts arrays to objects and, of course, converts objects
back to arrays, ready to add data to the database. This versatility makes a Mapper class convenient and
powerful. It can reduce flexibility to some extent, however. This is especially true when a mapper must
handle many different kinds of query or where other classes need to share a Mapper’s functionality. For
the remainder of this chapter, I will decompose Data Mapper, breaking it down into a set of more
focused patterns. These finer-grained patterns combine to duplicate the overall responsibilities
managed in Data Mapper, and some or all can be used in conjunction with that pattern. They are well
defined by Clifton Nock in Data Access Patterns (Addison Wesley 2003), and I have used his names where
overlaps occur.

Let’s start with a core function: the generation of domain objects.

The Problem
You have already encountered a situation in which the Mapper class displays a natural fault line. The
createObject() method is used internally by Mapper, of course, but Collection objects also need it to
create domain objects on demand. This requires us to pass along a Mapper reference when creating a

CHAPTER 13 ■ DATABASE PATTERNS

299

Collection object. While there’s nothing wrong with allowing callbacks (as you have seen in the Visitor
and Observer patterns,), it’s neater to move responsibility for domain object creation into its own type.
This can then be shared by Mapper and Collection classes alike.

The Domain Object Factory is described in Data Access Patterns.

Implementation
Imagine a set of Mapper classes, broadly organized so that each faces its own domain object. The Domain
Object Factory pattern simply requires that you extract the createObject() method from each Mapper
and place it in its own class in a parallel hierarchy. Figure 13–7 shows these new classes:

Figure 13–7. Domain Object Factory classes

Domain Object Factory classes have a single core responsibility, and as such, they tend to be simple:

namespace woo\mapper;
// ...

abstract class DomainObjectFactory {
 abstract function createObject(array $array);
}

Here’s a concrete implementation:

namespace woo\mapper;
// ...
class VenueObjectFactory extends DomainObjectFactory {
 function createObject(array $array) {
 $obj = new \woo\domain\Venue($array['id']);
 $obj->setname($array['name']);
 return $obj;
 }
}

Of course, you might also want to cache objects to prevent duplication and prevent unnecessary
trips to the database as I did within the Mapper class. You could move the addToMap() and getFromMap()

CHAPTER 13 ■ DATABASE PATTERNS

300

methods here, or you could build an observer relationship between the ObjectWatcher and your
createObject() methods. I’ll leave the details up to you. Just remember, it’s up to you to prevent clones
of your domain objects running amok in your system!

Consequences
The Domain Object Factory decouples database row data from object field data. You can perform any
number of adjustments within the createObject() method. This process is transparent to the client,
whose responsibility it is to provide the raw data.

By snapping this functionality away from the Mapper class, it becomes available to other
components. Here’s an altered Collection implementation, for example:

namespace woo\mapper;
// ...

abstract class Collection {
 protected $dofact;
 protected $total = 0;
 protected $raw = array();

 // ...

 function __construct(array $raw=null, ➥
\woo\mapper\DomainObjectFactory $dofact=null) {
 if (! is_null($raw) && ! is_null($dofact)) {
 $this->raw = $raw;
 $this->total = count($raw);
 }
 $this->dofact = $dofact;
 }
// ...

The DomainObjectFactory can be used to generate objects on demand:

 if (isset($this->raw[$num])) {
 $this->objects[$num]=$this->dofact->createObject($this->raw[$num]);
 return $this->objects[$num];
 }

Because Domain Object Factories are decoupled from the database, they can be used for testing
more effectively. I might, for example, create a mock DomainObjectFactory to test the Collection code.
It’s much easier to do this than it would be to emulate an entire Mapper object (you can read more about
mock and stub objects in Chapter 18).

One general effect of breaking down a monolithic component into composable parts is an
unavoidable proliferation of classes. The potential for confusion should not be underestimated. Even
when every component and its relationship with its peers is logical and clearly defined, I often find it
challenging to chart packages containing tens of similarly named components.

This is going to get worse before it gets better. Already, I can see another fault line appearing in Data
Mapper. The Mapper::getCollection() method was convenient, but once again, other classes might
want to acquire a Collection object for a domain type, without having to go to a database facing class.
So I have two related abstract components: Collection and DomainObjectFactory. According to the
domain object I am working with, I will require a different set of concrete implementations:
VenueCollection and VenueDomainObjectFactory, for example, or SpaceCollection and
SpaceDomainObjectFactory. This problem leads us directly to the Abstract Factory pattern of course.

CHAPTER 13 ■ DATABASE PATTERNS

301

Figure 13–8 shows the PersistenceFactory class. I’ll be using this to organize the various components
that make up the next few patterns.

Figure 13–8. Using the Abstract Factory pattern to organize related components

The Identity Object
The mapper implementation I have presented here suffers from a certain inflexibility when it comes to
locating domain objects. Finding an individual object is no problem. Finding all relevant domain objects
is just as easy. Anything in between, though, requires you to add a special method to craft the query
(EventMapper::findBySpaceId() is a case in point).

An identity object (also called a Data Transfer Object by Alur et al.) encapsulates query criteria,
thereby decoupling the system from database syntax.

The Problem
It’s hard to know ahead of time what you or other client coders are going to need to search for in a
database. The more complex a domain object, the greater the number of filters you might need in
your query. You can address this problem to some extent by adding more methods to your Mapper
classes on a case-by-case basis. This is not very flexible, of course, and can involve duplication as you

CHAPTER 13 ■ DATABASE PATTERNS

302

are required to craft many similar but differing queries both within a single Mapper class and across
the mappers in your system.

An identity object encapsulates the conditional aspect of a database query in such a way that
different combinations can be combined at runtime. Given a domain object called Person, for example, a
client might be able to call methods on an identity object in order to specify a male, aged above 30 and
below 40, who is under 6 feet tall. The class should be designed so conditions can combined flexibly
(perhaps you’re not interested in your target’s height, or maybe you want to remove the lower age limit).
An identity object limits a client coder’s options to some extent. If you haven’t written code to
accommodate an income field, then this cannot be factored into a query without adjustment. The ability
to apply different combinations of conditions does provide a step forward in flexibility, however. Let’s
see how this might work:

Implementation
An identity object will typically consist of a set of methods you can call to build query criteria. Having set
the object’s state, you can pass it on to a method responsible for constructing the SQL statement.

Figure 13–9 shows a typical set of IdentityObject classes.

Figure 13–9. Managing query criteria with identity objects

You can use a base class to manage common operations and to ensure that your criteria objects
share a type. Here’s an implementation which is simpler even than the classes shown in Figure 13–9:

namespace woo\mapper;
//...

class IdentityObject {
 private $name = null;
 function setName($name) {
 $this->name=$name;
 }

 function getName() {
 return $this->name;
 }

CHAPTER 13 ■ DATABASE PATTERNS

303

}

class EventIdentityObject
 extends IdentityObject {
 private $start = null;
 private $minstart = null;

 function setMinimumStart($minstart) {
 $this->minstart = $minstart;
 }

 function getMinimumStart() {
 return $this->minstart;
 }

 function setStart($start) {
 $this->start = $start;
 }

 function getStart() {
 return $this->start;
 }
}

Nothing’s too taxing here. The classes simply store the data provided and give it up on request.
Here’s some code that might use SpaceIdentityObject to build a WHERE clause:

$idobj = new EventIdentityObject();
$idobj->setMinimumStart(time());
$idobj->setName("A Fine Show");
$comps = array();
$name = $idobj->getName();
if (! is_null($name)) {
 $comps[] = "name = '{$name}'";
}
$minstart = $idobj->getMinimumStart();
if (! is_null($minstart)) {
 $comps[] = "start > {$minstart}";
}

$start = $idobj->getStart();
if (! is_null($start)) {
 $comps[] = "start = '{$start}'";
}

$clause = " WHERE " . implode(" and ", $comps);

This model will work well enough, but it does not suit my lazy soul. For a large domain object, the
sheer number of getters and setters you would have to build is daunting. Then, following this model,
you’d have to write code to output each condition in the WHERE clause. I couldn’t even be bothered to
handle all cases in my example code (no setMaximumStart() method for me), so imagine my joy at
building identity objects in the real world.

Luckily, there are various strategies you can deploy to automate both the gathering of data and the
generation of SQL. In the past, for example, I have populated associative arrays of field names in the
base class. These were themselves indexed by comparison types: greater than, equal, less than or equal

CHAPTER 13 ■ DATABASE PATTERNS

304

to. The child classes provide convenience methods for adding this data to the underlying structure. The
SQL builder can then loop through the structure to build its query dynamically. I’m sure implementing
such a system is just a matter of coloring in, so I’m going to look at a variation on it here.

I will use a fluent interface. That is a class whose setter methods return object instances, allowing
your users to chain objects together in fluid, language-like way. This will satisfy my laziness, but still, I
hope, give the client coder a flexible way of defining criteria.

I start by creating woo\mapper\Field, a class designed to hold comparison data for each field that will
end up in the WHERE clause:

namespace woo\mapper;

class Field {
 protected $name=null;
 protected $operator=null;
 protected $comps=array();
 protected $incomplete=false;

 // sets up the field name (age, for example)
 function __construct($name) {
 $this->name = $name;
 }

 // add the operator and the value for the test
 // (> 40, for example) and add to the $comps property
 function addTest($operator, $value) {
 $this->comps[] = array('name' => $this->name,
 'operator' => $operator, 'value' => $value);
 }

 // comps is an array so that we can test one field in more than one way
 function getComps() { return $this->comps; }

 // if $comps does not contain elements, then we have
 // comparison data and this field is not ready to be used in
 // a query
 function isIncomplete() { return empty($this->comps); }
}

This simple class accepts and stores a field name. Through the addTest() method the class builds an
array of operator and value elements. This allows us to maintain more than one comparison test for a
single field. Now, here’s the new IdentityObject class:

namespace woo\mapper;

class IdentityObject {
 protected $currentfield=null;
 protected $fields = array();
 private $and=null;
 private $enforce=array();

 // an identity object can start off empty, or with a field
 function __construct($field=null, array $enforce=null) {
 if (! is_null($enforce)) {
 $this->enforce = $enforce;
 }

CHAPTER 13 ■ DATABASE PATTERNS

305

 if (! is_null($field)) {
 $this->field($field);
 }
 }

 // field names to which this is constrained
 function getObjectFields() {
 return $this->enforce;
 }

 // kick off a new field.
 // will throw an error if a current field is not complete
 // (ie age rather than age > 40)
 // this method returns a reference to the current object
 // allowing for fluent syntax
 function field($fieldname) {
 if (! $this->isVoid() && $this->currentfield->isIncomplete()) {
 throw new \Exception("Incomplete field");
 }
 $this->enforceField($fieldname);
 if (isset($this->fields[$fieldname])) {
 $this->currentfield=$this->fields[$fieldname];
 } else {
 $this->currentfield = new Field($fieldname);
 $this->fields[$fieldname]=$this->currentfield;
 }
 return $this;
 }

 // does the identity object have any fields yet
 function isVoid() {
 return empty($this->fields);
 }

 // is the given fieldname legal?
 function enforceField($fieldname) {
 if (! in_array($fieldname, $this->enforce) &&
 ! empty($this->enforce)) {
 $forcelist = implode(', ', $this->enforce);
 throw new \Exception("{$fieldname} not a legal field ($forcelist)");
 }
 }

 // add an equality operator to the current field
 // ie 'age' becomes age=40
 // returns a reference to the current object (via operator())
 function eq($value) {
 return $this->operator("=", $value);
 }

 // less than
 function lt($value) {
 return $this->operator("<", $value);
 }

CHAPTER 13 ■ DATABASE PATTERNS

306

 // greater than
 function gt($value) {
 return $this->operator(">", $value);
 }

 // does the work for the operator methods
 // gets the current field and adds the operator and test value
 // to it
 private function operator($symbol, $value) {
 if ($this->isVoid()) {
 throw new \Exception("no object field defined");
 }
 $this->currentfield->addTest($symbol, $value);
 return $this;
 }

 // return all comparisons built up so far in an associative array
 function getComps() {
 $ret = array();
 foreach ($this->fields as $key => $field) {
 $ret = array_merge($ret, $field->getComps());
 }
 return $ret;
 }
}

The easiest way to work out what’s going on here is to start with some client code and work
backward.

$idobj->field("name")->eq("The Good Show")
 ->field("start")->gt(time())
 ->lt(time()+(24*60*60));

I begin by creating the IdentityObject. Calling add() causes a Field object to be created and
assigned as the $currentfield property. Notice that add() returns a reference to the identity object.
This allows us to hang more method calls off the back of the call to add(). The comparison methods eq(),
gt(), and so forth each call operator(). This checks that there is a current Field object to work with, and
if so, it passes along the operator symbol and the provided value. Once again, eq() returns an object
reference, so that I can add new tests or call add() again to begin work with a new field.

Notice the way that the client code is almost sentence-like: field "name" equals "The Good Show" and
field "start" is greater than the current time, but less than a day away.

Of course, by losing those hard-coded methods, I also lose some safety. This is what the $enforce
array is designed for. Subclasses can invoke the base class with a set of constraints:

namespace woo\mapper;

class EventIdentityObject extends IdentityObject {
 function __construct($field=null) {
 parent::__construct($field,
 array('name', 'id','start','duration', 'space'));
 }
}

CHAPTER 13 ■ DATABASE PATTERNS

307

The EventIdentityObject class now enforces a set of fields. Here’s what happens if I try to work with
a random field name:

PHP Fatal error: Uncaught exception 'Exception' with message 'banana not a ➥
legal field (name, id, start, duration, space)'...

Consequences
Identity objects allow client coders to define search criteria without reference to a database query. They
also save you from having to build special query methods for the various kinds of find operation your
user might need.

Part of the point of an identity object is to shield users from the details of the database. It’s
important, therefore, that if you build an automated solution like the fluent interface in the preceding
example, the labels you use should refer explicitly to your domain objects and not to the underlying
column names. Where these differ, you should construct a mechanism for aliasing between them.

Where you use specialized entity objects, one for each domain object, it is useful to use an abstract
factory (like PersistenceFactory described in the previous section) to serve them up along with other
domain object related objects.

Now that I can represent search criteria, I can use this to build the query itself.

The Selection Factory and Update Factory Patterns
I have already pried a few responsibilities from the Mapper classes. With these patterns in place a Mapper
does not need to create objects or collections. With query criteria handled by Identity Objects, it must no
longer manage multiple variations on the find() method. The next stage is to remove responsibility for
query creation.

The Problem
Any system that speaks to a database must generate queries, but the system itself is organized around
domain objects and business rules rather than the database. Many of the patterns in this chapter can be
said to bridge the gap between the tabular database and the more organic, treelike structures of the
domain. There is, however, a moment of translation—the point at which domain data is transformed
into a form that a database can understand. It is at this point that the true decoupling takes place.

Implementation
Of course, you have seen some of this functionality before in the Data Mapper pattern. In this
specialization, though, I can benefit from the additional functionality afforded by the identity object
pattern. This will tend to make query generation more dynamic, simply because the potential number of
variations is so high.

Figure 13–10 shows my simple selection and update factories.

CHAPTER 13 ■ DATABASE PATTERNS

308

Figure 13–10. Selection and update factories

Selection and update factories are, once again, typically organized so that they parallel the domain
objects in a system (possibly mediated via identity objects). Because of this, they are also candidates for
my PersistenceFactory: the Abstract Factory I maintain as a one-stop shop for domain object
persistence tools. Here is an implementation of a base class for update factories:

namespace woo\mapper;

abstract class UpdateFactory {

 abstract function newUpdate(\woo\domain\DomainObject $obj);

 protected function buildStatement($table, array $fields, array $conditions=null) {
 $terms = array();
 if (! is_null($conditions)) {
 $query = "UPDATE {$table} SET ";

CHAPTER 13 ■ DATABASE PATTERNS

309

 $query .= implode (" = ?,", array_keys($fields))." = ?";
 $terms = array_values($fields);
 $cond = array();
 $query .= " WHERE ";
 foreach ($conditions as $key=>$val) {
 $cond[]="$key = ?";
 $terms[]=$val;
 }
 $query .= implode(" AND ", $cond);
 } else {
 $query = "INSERT INTO {$table} (";
 $query .= implode(",", array_keys($fields));
 $query .= ") VALUES (";
 foreach ($fields as $name => $value) {
 $terms[]=$value;
 $qs[]='?';
 }
 $query .= implode(",", $qs);
 $query .= ")";
 }
 return array($query, $terms);
 }
}

In interface terms, the only thing that this class does is define the newUpdate() method. This will
return an array containing a query string, and a list of terms to apply to it. The buildStatement() method
does the generic work involved in building the update query, with the work specific to individual domain
objects handled by child classes. buildStatement() accepts a table name, an associative array of fields
and their values, and a similar associative array of conditions. The method combines these to create the
query. Here’s a concrete UpdateFactory class:

namespace woo\mapper;
//...

class VenueUpdateFactory extends UpdateFactory {

 function newUpdate(\woo\domain\DomainObject $obj) {
 // not type checking removed
 $id = $obj->getId();
 $cond = null;
 $values['name'] = $obj->getName();
 if ($id > -1) {
 $cond['id'] = $id;
 }
 return $this->buildStatement("venue", $values, $cond);
 }
}

In this implementation, I work directly with a DomainObject. In systems where one might operate on
many objects at once in an update, I could use an identity object to define the set on which I would like
to act. This would form the basis of the $cond array, which here only holds id data.

newUpdate() distills the data required to generate a query. This is the process by which object data is
transformed to database information.

CHAPTER 13 ■ DATABASE PATTERNS

310

Notice that the newUpdate() method will accept any DomainObject. This is so that all UpdateFactory
classes can share an interface. It would be a good idea to add some further type checking to ensure the
wrong object is not passed in.

You can see a similar structure for SelectionFactory classes. Here is the base class:

namespace woo\mapper;

//...

abstract class SelectionFactory {
 abstract function newSelection(IdentityObject $obj);

 function buildWhere(IdentityObject $obj) {
 if ($obj->isVoid()) {
 return array("", array());
 }
 $compstrings = array();
 $values = array();
 foreach ($obj->getComps() as $comp) {
 $compstrings[] = "{$comp['name']} {$comp['operator']} ?";
 $values[] = $comp['value'];
 }
 $where = "WHERE " . implode(" AND ", $compstrings);
 return array($where, $values);
 }
}

Once again, this class defines the public interface in the form of an abstract class. newSelection()
expects an IdentityObject. Also requiring an IdentityObject but local to the type is the utility method
buildWhere(). This uses the IdentityObject::getComps() method to acquire the information necessary
to build a WHERE clause, and to construct a list of values, both of which it returns in a two element array.

Here is a concrete SelectionFactory class:

namespace woo\mapper;

//...

class VenueSelectionFactory extends SelectionFactory {

 function newSelection(IdentityObject $obj) {
 $fields = implode(',', $obj->getObjectFields());
 $core = "SELECT $fields FROM venue";
 list($where, $values) = $this->buildWhere($obj);
 return array($core." ".$where, $values);
 }
}

This builds the core of the SQL statement and then calls buildWhere() to add the conditional clause.
In fact, the only thing that differs from one concrete SelectionFactory to another in my test code is the
name of the table. If I don’t find that I require unique specializations soon, I will refactor these
subclasses out of existence and use a single concrete SelectionFactory. This would query the table name
from the PersistenceFactory.

CHAPTER 13 ■ DATABASE PATTERNS

311

Consequences
The use of a generic identity object implementation makes it easier to use a single parameterized
SelectionFactory class. If you opt for hard-coded identity objects—that is, identity objects which consist
of a list of getter and setter methods—you are more likely to have to build an individual
SelectionFactory per domain object.

One of the great benefits of query factories combined with identity objects is the range of queries
you can generate. This can also cause caching headaches. These methods generate queries on the fly,
and it’s difficult to know when you’re duplicating effort. It may be worth building a means of comparing
identity objects so that you can return a cached string without all that work. A similar kind of database
statement pooling might be considered at a higher level too.

Another issue with the combination of patterns I have presented in the latter part of this chapter is
the fact that they’re flexible, but they’re not that flexible. By this, I mean they are designed to be
extremely adaptable within limits. There is not much room for exceptional cases here, though. Mapper
classes, while more cumbersome to create and maintain, are very accommodating of any kind of
performance kludge or data juggling you might need to perform behind their clean APIs. These more
elegant patterns suffer from the problem that, with their focused responsibilities and emphasis on
composition, it can be hard to cut across the cleverness and do something dumb but powerful.

Luckily, I have not lost my higher level interface—there’s still a controller level where I can head
cleverness off at the pass if necessary.

What’s Left of Data Mapper Now?
So, I have stripped object, query, and collection generation from Data Mapper, to say nothing of the
management of conditionals. What could possibly be left of it? Well, something that is very much like a
mapper is needed in vestigial form. I still need an object that sits above the others I have created and
coordinates their activities. It can help with caching duties and handle database connectivity (although
the database-facing work could be delegated still further). Clifton Nock calls these data layer controllers
domain object assemblers.

Here is an example:

namespace woo\mapper;

//...

class DomainObjectAssembler {
 protected static $PDO;

 function __construct(PersistenceFactory $factory) {
 $this->factory = $factory;
 if (! isset(self::$PDO)) {
 $dsn = \woo\base\ApplicationRegistry::getDSN();
 if (is_null($dsn)) {
 throw new \woo\base\AppException("No DSN");
 }
 self::$PDO = new \PDO($dsn);
 self::$PDO->setAttribute(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION);
 }
 }

 function getStatement($str) {
 if (! isset($this->statements[$str])) {
 $this->statements[$str] = self::$PDO->prepare($str);

CHAPTER 13 ■ DATABASE PATTERNS

312

 }
 return $this->statements[$str];
 }

 function findOne(IdentityObject $idobj) {
 $collection = $this->find($idobj);
 return $collection->next();
 }

 function find(IdentityObject $idobj) {
 $selfact = $this->factory->getSelectionFactory();
 list ($selection, $values) = $selfact->newSelection($idobj);
 $stmt = $this->getStatement($selection);
 $stmt->execute($values);
 $raw = $stmt->fetchAll();
 return $this->factory->getCollection($raw);
 }

 function insert(\woo\domain\DomainObject $obj) {
 $upfact = $this->factory->getUpdateFactory();
 list($update, $values) = $upfact->newUpdate($obj);
 $stmt = $this->getStatement($update);
 $stmt->execute($values);
 if ($obj->getId() < 0) {
 $obj->setId(self::$PDO->lastInsertId());
 }
 $obj->markClean();
 }
}

As you can see, this is not an abstract class. Instead of itself breaking down into specializations, it
uses the PersistenceFactory to ensure that it gets the correct components for the current domain object.

Figure 13–11 shows the high-level participants I built up as I factored out Mapper.
Aside from making the database connection and performing queries, the class manages

SelectionFactory and UpdateFactory objects. In the case of selections, it also works either with a
Collection class or directly with a DomainObjectFactory to generate return values.

From a client’s point of view, acquiring a DomainObjectFactory is easy. It’s simply a matter of getting
the correct concrete PersistenceFactory object:

$factory = \woo\mapper\PersistenceFactory::getFactory("woo\\domain\\Venue");
$finder = new \woo\mapper\DomainObjectAssembler($factory);

Although, of course, it would be even easier to add a getFinder() method to the PersistenceFactory
itself and transform the previous example into a one-liner like this:

$finder = \woo\mapper\PersistenceFactory::getFinder('woo\\domain\\Venue');

I’ll leave that to you, however.

CHAPTER 13 ■ DATABASE PATTERNS

313

Figure 13–11. Some of the persistence classes developed in this chapter

A client coder might then go on to acquire a collection of Venue objects:

$idobj = $factory->getIdentityObject()->field('name')
 ->eq('The Eyeball Inn');
$collection = $finder->find($idobj);

foreach($collection as $venue) {
 print $venue->getName()."\n";
}

Summary
As always, the patterns you choose to use will depend on the nature of your problem. I naturally
gravitate toward a Data Mapper working with an identity object. I like neat automated solutions, but I
also need to know I can break out of the system and go manual when I need to, while maintaining a
clean interface and a decoupled database layer. I may need to optimize an SQL query, for example, or
use a join to acquire data across multiple tables. Even if you’re using a complex pattern-based third-
party framework, you may find that the fancy object-relational mapping on offer does not do quite what
you want. One test of a good framework, and of a good home-grown system, is the ease with which you
can plug your own hack into place without degrading the overall integrity of the system as a whole. I love
elegant, beautifully composed solutions, but I’m also a pragmatist!

Once again, I have covered a lot in this chapter. We examined the following patterns:

CHAPTER 13 ■ DATABASE PATTERNS

314

• Data Mapper: Create specialist classes for mapping Domain Model objects to and
from relational databases.

• Identity Map: Keep track of all the objects in your system to prevent duplicate
instantiations and unnecessary trips to the database.

• Unit of Work: Automate the process by which objects are saved to the database,
ensuring that only objects that have been changed are updated and only those
that have been newly created are inserted.

• Lazy Load: Defer object creation, and even database queries, until they are
actually needed.

• Domain Object Factory: Encapsulate object creation functionality.

• Identity Object: Allow clients to construct query criteria without reference to the
underlying database.

• Query (Selection and Update) Factory: Encapsulate the logic for constructing SQL
queries.

• Domain Object Assembler: Construct a controller that manages the high-level
process of data storage and retrieval.

In the next chapter, we take a welcome break from code, and I’ll introduce some of the wider
practices that can contribute to a successful project.

P A R T 4

■ ■ ■

315

Practice

C H A P T E R 14

■ ■ ■

317

Good (and Bad) Practice

So far in this book, I have focused on coding, concentrating particularly on the role of design in building
flexible and reusable tools and applications. Development doesn’t end with code, however. It is possible
to come away from books and courses with a solid understanding of a language, yet still encounter
problems when it comes to running and deploying a project.

In this chapter, I will move beyond code to introduce some of the tools and techniques that form the
underpinnings of a successful development process. This chapter will cover

• Third-party packages: Where to get them, when to use them

• Build: Creating and deploying packages

• Version control: Bringing harmony to the development process

• Documentation: Writing code that is easy to understand, use, and extend

• Unit testing: A tool for automated bug detection and prevention

• Continuous integration: Using this practice and set of tools to automate project
builds and tests and be alerted of problems as they occur

Beyond Code
When I first graduated from working on my own and took a place in a development team, I was
astonished at how much stuff other developers seemed to have to know. Good-natured arguments
simmered endlessly over issues of vital-seeming importance: Which is the best text editor? Should the
team standardize on an integrated development environment? Should we impose a coding standard?
How should we test our code? Should we document as we develop? Sometimes these issues seemed
more important than the code itself, and my colleagues seemed to have acquired their encyclopedic
knowledge of the domain through some strange process of osmosis.

The books I had read on PHP, Perl, and Java certainly didn’t stray from the code itself to any great
extent. As I have already discussed, most books on programming platforms rarely divert from their tight
focus on functions and syntax to take in code design. If design is off topic, you can be sure that wider
issues such as version control and testing are rarely discussed. This is not a criticism—if a book professes
to cover the main features of a language, it should be no surprise that this is all it does.

In learning about code, however, I found that I had neglected many of the mechanics of a project’s
day-to-day life. I discovered that some of these details were critical to the success or failure of projects I
helped develop. In this chapter, and in more detail in coming chapters, I will look beyond code to
explore some of the tools and techniques on which the success of your projects may depend.

Borrowing a Wheel
When faced with a challenging but discrete requirement in a project (the need to parse a particular
format, perhaps, or use a novel protocol in talking to a remote server), there is a lot to be said for

CHAPTER 14 ■ GOOD (AND BAD) PRACTICE

318

building a component that addresses the need. It can also be one of the best ways to learn your craft. In
creating a package, you gain insight into a problem and file away new techniques that might have wider
application. You invest at once in your project and in your own skills. By keeping functionality internal
to your system, you can save your users from having to download third-party packages. Occasionally,
too, you may sidestep thorny licensing issues. There’s nothing like the sense of satisfaction you can get
when you test a component you designed yourself and find that, wonder of wonders, it works—it does
exactly what you wrote on the tin.

There is a dark side to all this, of course. Many packages represent an investment of thousands of
man-hours: a resource that you may not have on hand. You may be able to address this by developing
only the functionality needed specifically by your project, while a third-party tool might fulfill a myriad
of other needs as well. The question remains though: if a freely available tool exists, why are you
squandering your talents in reproducing it? Do you have the time and resources to develop, test, and
debug your package? Might not this time be better deployed elsewhere?

I am one of the worst offenders when it comes to wheel reinvention. Picking apart problems and
inventing solutions to them is a fundamental part of what we do as coders. Getting down to some
serious architecture is a more rewarding prospect than writing some glue to stitch together three or four
existing components. When this temptation comes over me, I remind myself of projects past. Although
the choice to build from scratch has never killed a project in my experience, I have seen it devour
schedules and murder profit margins. There I sit with a manic gleam in my eye, hatching plots and
spinning class diagrams, failing to notice as I obsess over the details of my component that the big
picture is now a distant memory.

Now, when I map out a project, I try to develop a feel for what belongs inside the codebase and what
should be treated as a third-party requirement. For example, your application may generate (or read) an
RSS feed; you may need to validate e-mail addresses and automate mailouts, authenticate users, or read
from a standard-format configuration file. All of these needs can be fulfilled by external packages.

Once you have defined your needs, your first stop should be the PEAR web site at
http://pear.php.net. PEAR (PHP Extension and Application Repository) is an officially maintained and
quality-controlled repository of packages. It is also a mechanism for installing packages seamlessly and
managing package interdependencies. I will cover PEAR in more detail in the next chapter, in which I
look at the way that you can use PEAR functionality to prepare your own packages. To give you some
idea of what’s available in the PEAR repository, here are just a very few of the things you can do with
PEAR packages:

• Cache output with Cache_Lite.

• Test the efficiency of your code with Benchmark.

• Abstract the details of database access with MDB2.

• Manipulate Apache .htaccess files with File_HtAccess.

• Extract or encode news feeds with XML_RSS.

• Send mail with attachments with Mail_Mime.

• Parse configuration file formats with Config.

• Password protected environments with Auth.

The PEAR web site provides a list of packages categorized by topic. You may find packages that
broadly address your needs there, or you may need to cast your net wider (using the major search
engines). Either way, you should always take time to assess existing packages before setting out to
potentially reinvent that wheel.

The fact that you have a need, and that a package exists to address it, should not be the start and end
of your deliberations. Although it is preferable to use a package where it will save you otherwise
unnecessary development, in some cases, it can add an overhead without real gain. Your client’s need
for your application to send mail, for example, does not mean that you should automatically use PEAR’s

CHAPTER 14 ■ GOOD (AND BAD) PRACTICE

319

Mail package. PHP provides a perfectly good mail() function, so initially this would probably be your
first stop. As soon as you realize that you have a requirement to validate all e-mail addresses according
to the RFC822 standard and that the design team wants to send image attachments with the e-mails, you
may begin to weigh the options differently. As it happens, there are PEAR packages for both these
features.

Many programmers, myself included, often place too much emphasis on the creation of original
code, sometimes to the detriment of their projects. This emphasis on authorship may be one reason that
there often seems to be more creation than actual use of reusable code.

Effective programmers see original code as just one of the tools available to aid them in engineering
a project’s successful outcome. Such programmers look at the resources they have at hand and deploy
them effectively. If a package exists to take some strain, then that is a win. To steal and paraphrase an
aphorism from the Perl world: good coders are lazy.

Playing Nice
The truth of Sartre’s famous dictum that “Hell is other people” is proved on a daily basis in some
software projects. This might describe the relationship between clients and developers, symptomized by
the many ways that lack of communication leads to creeping features and skewed priorities. But the cap
fits too for happily communicative and cooperative team members when it comes to sharing code.

As soon as a project has more than one developer, version control becomes an issue. A single coder
may work on code in place, saving a copy of her working directory at key points in development.
Introduce another programmer to the mix, and this strategy breaks down in minutes. If the new
developer works in the same development directory, then there is a real chance that one programmer
will overwrite the work of his colleague when saving, unless both are very careful to always work on
different files.

Alternatively, our two developers can each take a version of the codebase to work on separately.
That works fine until the moment comes to reconcile the two versions. Unless the developers have
worked on entirely different sets of files, the task of merging two or more development strands rapidly
becomes an enormous headache.

This is where Subversion and similar tools come in. Using Subversion, you can check out your own
version of a codebase and work on it until you are happy with the result. You can then update your
version with any changes that your colleagues have been making. Subversion will automatically merge
these changes into your files, notifying you of any conflicts it cannot handle. Once you have tested this
new hybrid, you can save it to the central Subversion repository, making it available to other developers.

Subversion provides you with other benefits. It keeps a complete record of all stages of a project, so
you can roll back to, or grab a snapshot of, any point in the project’s lifetime. You can also create
branches, so that you can maintain a public release at the same time as a bleeding-edge development
version.

Once you have used version control on a project, you will not want to attempt another without it.
Working simultaneously with multiple branches of a project can be a conceptual challenge, especially at
first, but the benefits soon become clear. Version control is just too useful to live without. I cover
Subversion in Chapter 17.

Giving Your Code Wings
Have you ever seen your code grounded because it is just too hard to install? This is especially true for
projects that are developed in place. Such projects settle into their context, with passwords and
directories, databases and helper application invocations programmed right into the code. Deploying a
project of this kind can be a major undertaking, with teams of programmers picking through source
code to amend settings so that they fit the new environment.

CHAPTER 14 ■ GOOD (AND BAD) PRACTICE

320

This problem can be eased to some degree by providing a centralized configuration file or class so
that settings can be changed in one place, but even then installation can be a chore. The difficulty or
ease of installation will have a major impact upon the popularity of any application you distribute. It will
also impede or encourage multiple and frequent deployment during development.

As with any repetitive and time-consuming task, installation should be automated. An installer can
determine default values for install locations, check and change permissions, create databases, and
initialize variables, among other tasks. In fact, an installer can do just about anything you need to get an
application from a source directory in a distribution to full deployment.

This doesn’t absolve the user from the responsibility for adding information about his environment
to the code, of course, but it can make the process as easy as answering a few questions or providing a
couple of command line switches.

For developers, installers have the further virtue of memory. Once an installer has been run from a
distribution directory, it can cache many of its settings, making subsequent installations even easier. So
the second time you install from a distribution directory, you may not need to provide configuration
information like database names and install directories. These are remembered from the first
installation. This is important for developers who frequently update their local development space using
version control. Version control makes it easy to acquire the latest version of a project. There is little
point, however, to removing impedance from the acquisition of code if you have a bottleneck restricting
its deployment.

There are various build tools available to the developer. PEAR, for example, is, in part, an
installation solution. Most of the time, you will use the PEAR installer to deploy code from the official
PEAR repository. It is possible, however, to create your own PEAR packages that can be downloaded and
installed by users with ease. The PEAR installer is best suited to self-enclosed, functionally focused
packages. It is relatively rigid about the roles and install locations of the files a package should contain,
and it tends to concentrate upon the process of placing file A in location B. I cover this aspect of PEAR in
detail in Chapter 15.

If you need greater flexibility than this, as you might for application installation, you may prefer an
installer that is more flexible and extensible. In Chapter 19, I will look at an application called Phing. This
open source project is a port of the popular Ant build tool that is written in and for Java. Phing is written
in and for PHP, but it’s architecturally similar to Ant and uses the same XML format for its build files.

Where PEAR does a few things very well and offers the simplest possible configuration, Phing is
more daunting at first, but with the tradeoff of immense flexibility. Not only can you use Phing to
automate anything from file copying to XSLT transformation, you can easily write and incorporate your
own tasks should you need to extend the tool. Phing is written using PHP’s object-oriented features, and
its design emphasizes modularity and ease of extension.

Documentation
My code is so sparse and elegant that it doesn’t need documenting. Its purpose is luminously clear at the
slightest of glances. I know your code is the same. The others, though, have a problem.

All irony aside, it is true that good code documents itself to some extent. By defining a clear interface
and well-defined responsibility for each class and method, and naming each descriptively, you
communicate your code’s intent. However, you can improve the transparency of your work still further
by avoiding unnecessary obfuscation: clarity beats cleverness unless cleverness brings with it immense,
and required, gains in efficiency.

The naming of properties, variables, and arguments, too, can play a tremendous role in making your
code easy for others to read. Choose descriptive names, where possible. I often add information about
the type of a variable to the name—especially for argument variables.

public function setName($name_str, $age_int) {
 //...
}

CHAPTER 14 ■ GOOD (AND BAD) PRACTICE

321

No matter how clear your code is, though, it can never be quite clear enough on its own. You have
seen that object-oriented design often involves combining many classes together in relationships of
inheritance, aggregation, or both. When you look at a single class in such a structure, it is often very hard
to extrapolate the bigger picture without some kind of explicit pointer.

At the same time, every programmer knows what a pain it is to write documentation. You tend to
neglect it during development because the code is in flux, and really your project is about getting the
code right. Then when you have reached a point of stability, you suddenly see the enormity of the task of
documenting your work. Who would have thought that you would create so many classes and methods?
Now your deadline is looming, so it’s time to cut your losses and concentrate on quality assurance.

This is an understandable but shortsighted attitude, as you will discover when you return to your
code for a second phase in a year’s time. Here’s a programmer quoted on the popular repository for
Internet Relay Chat (IRC) witticism http://www.bash.org:

<@Logan>: I spent a minute looking at my own code by accident.

<@Logan>: I was thinking “What the hell is this guy doing?”

Without documentation, you are destined to play out that story: wasting your time second-guessing
decisions you probably made for very good reasons (if you only knew what they were). This is bad enough,
but the situation becomes worse, and more expensive, when you hand off your work to a colleague.
Undocumented code will cost you expensive workdays, as your new hire is forced to pepper your code with
debug messages, and work her way through fat printouts of promiscuously interrelated classes.

Clearly the answer is to document and to do it as you code, but can the process be streamlined? As you
might imagine, the answer is “yes,” and once again, the solution is borrowed from a Java tool.
phpDocumentor (http://www.phpdoc.org/) is a reimplementation of JavaDoc, the documentation
application that ships with the Java SDK. From a coder’s perspective, the principle is simple. Add specially
formatted comments above all classes, most methods, and some properties, and phpDocumentor will
incorporate them into a hyperlinked web of documents. Even if you omit these comments, the application
will read the code, summarizing and linking up the classes it finds. This is a benefit in itself, allowing you to
click from class to class and to observe inheritance relationships at a glance.

I examine phpDocumentor in Chapter 16.

Testing
When you create a class, you are probably pretty sure that it works. You will, after all, have put it through
its paces during development. You’ll also have run your system with the component in place, checking
that it integrates well, and your new functionality is available and performing as expected.

Can you be sure that your class will carry on working as expected though? That might seem like a
silly question. After all, you’ve checked your code once; why should it stop working arbitrarily? Well, of
course it won’t; nothing happens arbitrarily, and if you never add another line of code to your system,
you can probably breathe easy. If, on the other hand, your project is active, then it’s inevitable that your
component’s context will change, and highly likely that the component itself will be altered in any
number of ways.

Let’s look at these issues in turn. First, how can changing a component’s context introduce errors?
Even in a system where components are nicely decoupled from one another, they remain
interdependent. Objects used by your class return values, perform actions, and accept data. If any of
these behaviors change, the effects on the operation of your class might cause the kind of error that’s
easy to catch—the kind where your system falls over with a convenient error message that includes a file
name and line number. Much more insidious, though, is the kind of change that does not cause an
engine-level error, but nonetheless confuses your component. If your class makes an assumption based
on another class’s data, a change in that data might cause it to make a wrong decision. Your class is now
in error and without a change to a line of code.

And it’s likely that you will go on altering the class you’ve just completed. Often, these changes will
be minor and obvious. So minor in fact, that you won’t feel the need to run through the careful checks

CHAPTER 14 ■ GOOD (AND BAD) PRACTICE

322

you performed during development. You’ll have probably forgotten them all, anyhow, unless you kept
them in some way (perhaps commented out at the bottom of your class file as I sometimes do). Small
changes, though, have a way of causing large unintended consequences—consequences that might have
been caught had you thought to put a test harness in place.

A test harness is a set of automated tests that can be applied to your system as a whole or to its
individual classes. Well deployed, a test harness helps you to prevent bugs from occurring and from
recurring. A single change may cause a cascade of errors, and the test harness can help you to locate and
eliminate these. This means you can make changes with some confidence that you are not breaking
anything. It is quite satisfying to make an improvement to your system and then see a list of failed tests.
These are all errors that might have been propagated within your system but that now it will not suffer.

Continuous Integration
Have you ever made a schedule that made everything okay? You start with an assignment: code maybe,
or a school project. It’s big and scary, and failure lurks. But you get out a sheet of paper and you slice it
up into manageable tasks. You determine the books to read and the components to write. Maybe you
highlight the tasks in different colors. Individually, none of the tasks is actually that scary, it turns out.
And gradually, as you plan, you conquer the deadline. As long as you do a little bit every day, you’ll be
fine. You can relax.

Sometimes, though, that schedule takes on a talismanic power. You hold it up like a shield, to
protect yourself from doubt, and from the creeping fear that perhaps this time you’ll crash and burn.
And it’s only after several weeks that you realize the schedule is not magic on its own. You actually have
to do the work, too. By then, of course, lulled by the schedule’s reassuring power, you have let things
slide. There’s nothing for it but to make a new schedule. This time it will be less reassuring.

Test and build are like that, too. You have to run your tests. You have to build your projects, and
build them in fresh environments regularly, otherwise the magic won’t work.

And if writing tests is a pain, running them can be a chore. Especially as they gain in complexity
and failures interrupt your plans. Of course, if you were running them more often, you’d probably
have fewer failures, and those you did have would stand a good chance of relating to new code that’s
fresh in your mind.

It’s easy to get comfortable in a sandbox. After all, you’ve got all your toys there. Little scriptlets that
make your life easy, development tools, and useful libraries. The trouble is, your project may be getting
too comfortable in your sandbox, too. It may begin to rely on uncommitted code, or dependencies that
you have left out of your build files. That means it’s broken anywhere else but where you work.

The only answer is to build, build, and build again. And do it in a reasonably virgin environment
each time.

Of course, it’s all very well to advise this. It’s quite another matter to do it. Coders as a breed tend to
like to code. They want to keep the meetings and the housekeeping to a minimum. That’s where
Continuous Integration (CI) comes in. CI is both a practice and a set of tools to make the practice as easy
as it possibly can be. Ideally, builds and tests should be entirely automatic, or at least launchable from a
single command or click. Any problems will be tracked, and you will be notified before an issue becomes
too serious. I will talk more about CI in Chapter 20.

Summary
A developer’s aim is always to deliver a working system. Writing good code is an essential part of this
aim’s fulfillment, but it is not the whole story.

In this chapter, I introduced PEAR (which is also the subject of the next chapter). I discussed two
great aids to collaboration: documentation and version control. You saw that version control requires
automated build, and I introduced Phing, a PHP implementation of Ant, a Java build tool. I discussed
software testing, and introduced CI, a set of tools to automate build and testing.

C H A P T E R 15

■ ■ ■

323

An Introduction to PEAR and Pyrus

Programmers aspire to produce reusable code. This is one of the great goals in object-oriented coding.
We like to abstract useful functionality from the messiness of specific context, turning it into a tool that
can be used again and again. To come at this from another angle, if programmers love the reusable, they
hate duplication. By creating libraries that can be reapplied, programmers avoid the need to implement
similar solutions across multiple projects.

Even if we avoid duplication in our own code, though, there is a wider issue. For every tool you
create, how many other programmers have implemented the same solution? This is wasted effort on an
epic scale: wouldn’t it be much more sensible for programmers to collaborate and to focus their energies
on making a single tool better, rather than producing hundreds of variations on a theme? This is where
PEAR (PHP Extension and Application Repository) comes in.

PEAR is a repository of quality-controlled PHP packages that extend the functionality of PHP. It is
also a client-server mechanism for distributing and installing packages and for managing interpackage
dependencies.

This chapter will cover

• PEAR basics: What is this strange fruit?

• Installing PEAR packages: All it takes is one command.

• Working with Pyrus, PEAR's younger sibling

• Adding PEAR packages to your projects: An example and some notes on error
handling.

• package.xml: The anatomy of a build file.

• Creating your own channel: Providing transparent dependency management and
package downloads for users.

What Is PEAR?
At its core, PEAR is a collection of packages, organized into broad categories, such as networking, mail,
and XML. The PEAR repository is managed centrally, so that when you use an official PEAR package, you
can be sure of its quality.

You can browse the available packages at http://pear.php.net. Before you create a tool for a
project, you should get into the habit of checking the PEAR site to see if someone has got there first.

Support for PEAR comes bundled with PHP (at least up until the time of this writing), which means
that some of the core packages may be available on your system straightaway (unless PHP was compiled
to exclude it using the –without-pear configure flag). Packages are installed in a configurable location

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

324

(on Linux or Unix systems this will often be /usr/local/lib/php). You can check this using the pear
command line application:

$ pear config-get php_dir
/usr/local/lib/php

The core packages (known as the PEAR Foundation Classes) provide a backbone for the wider
repository—including core functions such as error handling and the processing of command line
arguments.

■Note If you use a Unix distribution to install PHP, you may begin with a minimal installation. For example, to get
PHP and PEAR on Fedora 12 you would need issue these commands:

sudo yum install php

sudo yum install php-pear

See your distribution’s documentation if you wish to use its package management tools to manage
PHP. You have already seen the pear application in action. This is a tool for interacting with all aspects of
PEAR, and as such, it is an important part of PEAR in itself. The pear application supports a number of
subcommands. We used config-get, which shows the value of a particular configuration setting. You
can see all settings and their values with the config-show subcommand:

$ pear config-show

$ pear config-show
Configuration (channel pear.php.net):
=====================================
Auto-discover new Channels auto_discover <not set>
Default Channel default_channel pear.php.net
HTTP Proxy Server Address http_proxy <not set>
PEAR server [DEPRECATED] master_server pear.php.net
Default Channel Mirror preferred_mirror pear.php.net
Remote Configuration File remote_config <not set>
PEAR executables directory bin_dir /usr/bin
...

Phar Out with Pyrus
Before I go any further, I should introduce a newcomer to the PEAR world. Pyrus is the next generation
of the PEAR application. The name comes from the genus of trees and shrubs that includes the pear tree.
Incidentally, Pirus is the Latin for “pear tree.” You can get Pyrus at http://pear2.php.net. The
application you will download is a phar package (PHP Archive). If you are familiar with Java, you will
recognize a PHP analog to the jar file. A phar is essentially a bundle of code compressed into a zip file.
It’s a neat way of passing round library code. After download you can simply run Pyrus like this:

php pyrus.phar

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

325

Pyrus version 2.0.0a1 SHA-1: 27EB8EB427EA50C05691185B41BBA0F0666058D0
Pyrus: No user configuration file detected
It appears you have not used Pyrus before, welcome! Initialize install?
...

As you can see, Pyrus will offer you configuration options on first run. You’ll need to tell it where to
save a configuration file, and where you want it to save packages. You should decide whether you want
to use PEAR or Pyrus for your development. While they will both install PEAR packages, their installation
locations are not entirely compatible.

At the time of this writing, Pyrus requires PHP 5.3.1, so it’s pretty new. That means you may
experience usage issues at times (the current version seems incapable of uninstalling packages, for
example). You may be stuck with PHP 5.2 for a while yet. If that’s the case, you’ll need to stick with PEAR.
Third-party tools that work with PEAR may not yet be ready for Pyrus. On the other hand, Pyrus is the
future. Migrating now may work out cheaper in the long run.

Because there are good reasons to go either way, I’ll try to steer a path between both PEAR and
Pyrus in this chapter.

So, to bring you up to date, Pyrus does not support a config-get command. It does, however support
config-show.

$ php pyrus.phar config-show

Pyrus version 2.0.0a1 SHA-1: 27EB8EB427EA50C05691185B41BBA0F0666058D0
Using PEAR installation found at /usr/share/pear2
System paths:
 php_dir => /usr/share/pear2/php
 ext_dir => /usr/lib/php/modules
...

■Note Although Pyrus will run out of the box with a standard PHP build, once again, the PHP installed by some
Linux distributions may not provide everything you need. Pyrus requires the extensions phar, simplexml, libxml2,
spl, and pcre. In order to make Pyrus runnable, Fedora 12 required an additional install:

yum install php-xml

Your favorite distribution may have its own installation issues. Remember also that you need at least PHP 5.3.1 to
be in this game.

Although both PEAR and Pyrus support many subcommands, you will probably get the most use out
of one in particular. install is used for installing PEAR packages.

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

326

Installing a Package
Once you have selected your package, you can download and install it with a single command. Here is
the process for installing Log, a package that provides enhanced support for error logging:

$ pear install pear/Log

■Note In most instances, you will need root privileges to install, update, and remove packages with PEAR, because
this involves writing to areas of the computer outside of your home space. If you do not have write permissions for
these areas, however, all is not lost. In the section “Creating Your Own PEAR Packages,” I describe how to change the
default installation locations. This will allow you to install packages within your own writeable space.

It really is as simple as that. The PEAR installer is bundled with PHP and locates, downloads, and
installs the Log package on your behalf. Here’s the command’s output:

Did not download optional dependencies: pear/DB, pear/MDB2,
 use --alldeps to download automatically
pear/Log can optionally use package "pear/DB" (version >= 1.3)
pear/Log can optionally use package "pear/MDB2" (version >= 2.0.0RC1)
downloading Log-1.12.0.tgz ...
Starting to download Log-1.12.0.tgz (38,479 bytes)
..........done: 44,555 bytes
install ok: channel://pear.php.net/Log-1.9.11

The Log package has some optional dependencies, which you can safely ignore unless you require
functionality associated with the missing packages. Notice the last line. PEAR tells you that it acquired
the Log package from the channel pear.php.net. In fact, I specified as much by installing pear/Log rather
than just Log. I’ll return to channels shortly.

Pyrus can also install the Log package:

php ./pyrus.phar install pear/Log

Pyrus version 2.0.0a1 SHA-1: 27EB8EB427EA50C05691185B41BBA0F0666058D0
Using PEAR installation found at /usr/share/pear2

Connected...

Installed pear.php.net/Log-1.12.0
Optional dependencies that will not be installed, use --optionaldeps:
pear.php.net/DB depended on by pear.php.net/Log
pear.php.net/MDB2 depended on by pear.php.net/Log
pear.php.net/Mail depended on by pear.php.net/Log

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

327

From here onward, I’ll mention differences between the two systems rather than demonstrate them
both in parallel.

If the package you wish to install has compulsory dependencies, the installation will fail with a
warning message by default:

pear/dialekt requires package "pear/Fandango" (version >= 10.5.0)
No valid packages found

You can either install the required package before trying again, or you could run pear install with
the -o flag.

pear install -o dialekt

The -o flag ensures that the PEAR installer will automatically install any required dependencies for
you. Some PEAR packages specify optional dependencies, and these are ignored if -o is specified. To
have all dependencies installed automatically, use the -a flag instead.

■Note Pyrus will attempt to install dependencies by default. It supports an -o flag, which will cause optional
dependencies to be installed as well.

Although PEAR is designed to talk to a repository over a network online, you will find that some
developers produce PEAR-compatible packages for ease of installation. You may be given the location of
a tarball (a tarred and gzipped package). Installing this using PEAR is almost as easy as installing an
official package:

$ pear install -o http://www.example.com/dialekt-1.2.1.tgz
downloading dialekt-1.2.1.tgz ...
Starting to download dialekt-1.2.1.tgz (1,783 bytes)
....done: 1,783 bytes
install ok: channel://pear.php.net/dialekt-1.2.1

You can also download a package and install it from the command line. Here, we use a Unix
command called wget to fetch the dialekt package before installing it from the command line:

$ wget -nv http://127.0.1.2:8080/dialekt-1.2.1.tgz
20:21:40 URL:http://127.0.1.2:8080/dialekt-1.2.1.tgz [1783/1783]

 -> "dialekt-1.2.1.tgz.1" [1]
$ pear install dialekt-1.2.1.tgz

install ok: channel://pear.example.com/Dialekt-1.2.1

You can install a PEAR package by referencing an XML file (usually named package.xml), which
provides information about what files are to be installed where.

$ pear install package.xml
install ok: channel://pear.example.com/Dialekt-1.2.1

PEAR Channels
PEAR introduced channels in version 1.4. This powerful feature allows you to poll repositories other than
pear.php.net for updates and dependencies. This means that you can build an application that requires

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

328

packages from multiple repositories. PEAR can then handle acquiring dependencies on the user’s behalf.
Before the advent of channels, the application developer had to instruct his user to install dependencies
or had to bundle them inside his own distribution.

Sebastian Bergmann’s PHPUnit package is a real-world example. In order to install it, we first need
PEAR to know about the channel in which it can be found:

$ pear channel-discover pear.phpunit.de
Adding Channel "pear.phpunit.de" succeeded
Discovery of channel "pear.phpunit.de" succeeded

Once you have established communication with this channel using discover, you can refer to a
package within it by prefacing its name with phpunit/. In fact, phpunit is just an alias for
pear.phpunit.de. You can find out about the alias for a channel by running channel-info:

$ pear channel-info pear.phpunit.de
Channel pear.phpunit.de Information:
====================================
Name and Server pear.phpunit.de
Alias phpunit
Summary PHPUnit channel server
...

■Note Pyrus does not support the channel-info subcommand

So now I can install PHPUnit:

$ pear install -a phpunit/PHPUnit

Unknown remote channel: pear.symfony-project.com
phpunit/PHPUnit can optionally use package "channel://pear.symfony-project.com/YAML"
(version >= 1.0.2)
phpunit/PHPUnit can optionally use PHP extension "pdo_mysql"
phpunit/PHPUnit can optionally use PHP extension "soap"
phpunit/PHPUnit can optionally use PHP extension "xdebug" (version >= 2.0.5)
downloading PHPUnit-3.4.11.tgz ...
Starting to download PHPUnit-3.4.11.tgz (254,439 bytes)
...done: 254,439 bytes
downloading Image_GraphViz-1.2.1.tgz ...
Starting to download Image_GraphViz-1.2.1.tgz (4,872 bytes)
...done: 4,872 bytes

install ok: channel://pear.phpunit.de/PHPUnit-3.4.11
install ok: channel://pear.php.net/Image_GraphViz-1.2.1

Notice that I used the -a flag, which asks PEAR to download all dependent packages. In this case,
that means the Image_GraphViz package from channel pear.php.net. You may also notice that the
command failed to install a package: YAML. That’s because I have not yet run channel-discover on the
channel pear.symfony-project.com. Pyrus sees this as a fatal error, so you would need to ensure that all

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

329

relevant channels have been discovered before running channel-discover with the -o (optional
dependencies) flag set.

Using a PEAR Package
Once you have installed a PEAR package, you should be able to use it in your projects immediately. Your
PEAR directory should already be in your include path—there should be no problem including the
package once it has been installed. Let’s install PEAR_Config and any dependencies it might have:

$ pear install -a Config
downloading Config-1.10.11.tgz ...
Starting to download Config-1.10.11.tgz (27,718 bytes)
.........done: 27,718 bytes
downloading XML_Parser-1.2.8.tgz ...
Starting to download XML_Parser-1.2.8.tgz (13,476 bytes)
...done: 13,476 bytes
install ok: channel://pear.php.net/Config-1.10.11
install ok: channel://pear.php.net/XML_Parser-1.2.8

Here’s how you would include the package:

require_once("Config.php");

class MyConfig {
 private $rootObj;

 function __construct($filename=null, $type='xml') {
 $this->type=$type;
 $conf = new Config();
 if (! is_null($filename)) {
 $this->rootObj = $conf->parseConfig($filename, $type);
 } else {
 $this->rootObj = new Config_Container('section', 'config');
 $conf->setroot($this->rootObj);
 }
 }

 function set($secname, $key, $val) {
 $section=$this->getOrCreate($this->rootObj, $secname);
 $directive=$this->getOrCreate($section, $key, $val);
 $directive->setContent($val);
 }

 private function getOrCreate(Config_Container $cont, $name, $value=null) {
 $itemtype=is_null($value)?'section':'directive';
 if ($child = $cont->searchPath(array($name))) {
 return $child;
 }
 return $cont->createItem($itemtype, $name, null);
 }

 function __toString() {
 return $this->rootObj->toString($this->type);

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

330

 }
}

We begin by including Config.php. Most PEAR packages work in this way, providing a single top-
level point of access. All further require statements are then made by the package itself.

The rest of the example simply works with the classes provided by the Config package: Config and
Config_Container. The Config package lets you access and create configuration files in a variety of
formats. This simple MyConfig class uses Config to work with configuration data. Here’s a quick usage
example:

$myconf = new MyConfig();
$myconf->set("directories", "prefs", "/tmp/myapp/prefs");
$myconf->set("directories", "scratch", "/tmp/");
$myconf->set("general", "version", "1.0");
echo $myconf;

By default, this generates output in XML format:

<config>
 <directories>
 <prefs>/tmp/myapp/prefs</prefs>
 <scratch>/tmp/</scratch>
 </directories>
 <general>
 <version>1.0</version>
 </general>
</config>

As is often the case with sample code, this class is incomplete—it still requires additional error checking
as well as methods for writing the configuration data to file. Still, it is pretty useful already, thanks to the power
of the PEAR package. By passing different type strings to Config, we could have rendered the previous output
in various configuration formats (like the INI format that the PHP application itself uses, for example).Of
course, the details of the Config package are beyond the scope of this chapter. The good news is that for
official PEAR packages, you will find API instructions on the web site at http://pear.php.net/. In all cases, you
should expect to be able to add the functionality of a PEAR package to your script with minimal effort. The
package should provide you with a clear, well-documented API.

■Note The bad news about PEAR packages is that the struggle to support older versions of PHP is extremely
hard to square with the demands of later versions. Like many PEAR packages, Config now relies on deprecated
language features, which cannot be easily discarded for the sake of backward compatibility. In order to turn off
warnings about this, you can set an error_reporting directive like this:

error_reporting = E_ALL & ~E_DEPRECATED

in your php.ini file.

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

331

Handling PEAR Errors
Many, if not most, official PEAR packages use the standard PEAR error class PEAR_Error. This is often
returned in place of the expected value if something goes wrong in an operation. This behavior should
be documented, and you can test return values using the static PEAR::isError() method.

 $this->rootObj = @$conf->parseConfig($filename, $type);
 if (PEAR::isError($this->rootObj)) {
 print "message: ". $this->rootObj->getMessage() ."\n";
 print "code: ". $this->rootObj->getCode() ."\n\n";
 print "Backtrace:\n";

 foreach ($this->rootObj->getBacktrace() as $caller) {
 print $caller['class'].$caller['type'];
 print $caller['function']."() ";
 print "line ".$caller['line']."\n";
 }
 die;
 }

Here, I test the return value from Config::parseConfig().

PEAR::isError($this->rootObj)

is the functional equivalent of

$this->rootObj instanceof PEAR_Error

So within my conditional block, I know that $this->rootObj is a PEAR_Error rather than a
Config_Container object.

Once I am sure I have a PEAR_Error object, I can interrogate it for more information about the error.
In my example, I have three of the most useful methods: getMessage() returns a message that describes
the error; getCode() returns an integer corresponding to the error type (this is an arbitrary number that
the package author will have declared as a constant and, we hope, documented); and finally,
getBacktrace() returns an array of the methods and classes that lead to the error. This enables us to
work our way back through our script’s operation and locate the root cause of the error. As you can see,
getBacktrace() is itself an array, which describes each method or function that led to the error. The
elements are described in Table 15–1.

Table 15–1. Fields Provided by PEAR_Error::getBacktrace()

Field Description

file Full path to PHP file

args The arguments passed to the method or function

class The name of the class (if in class context)

function The name of the function or method

type If in class context, the nature of the method call (:: or ->)

line The line number

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

332

The way that PEAR_Error pollutes a method’s return value was an unfortunate necessity before the
advent of PHP 5. With PHP 4 at or near the end of its life, it’s no surprise that PEAR_Error has been
deprecated.

Although many packages continue to use PEAR_Error and will probably do so for some time, more
are beginning to use PEAR_Exception. If you were to use the XML_Feed_Parser package, for example you
would be catching exceptions rather than testing return types:

$source="notthere";
try {
 $myfeed = new XML_Feed_Parser($source);

} catch (XML_Feed_Parser_Exception $e) {
 print "message: ". $e->getMessage() ."\n";
 print "code: ". $e->getCode() ."\n";
 print "error class: ". $e->getErrorClass() ."\n";
 print "error method: ".$e->getErrorMethod() ."\n";
 print "trace: ". $e->getTraceAsString()."\n";
 print "error data: ";
 print_r($e->getErrorData());
}

Typically. a PEAR package will extend PEAR_Exception, partly so that it can add any functionality it
needs, but mainly so that you can use your catch clause to distinguish between Exception types.
PEAR_Exception, of course, itself extends Exception, so you get the standard methods I covered in
Chapter 4. You also benefit from some additions. getErrorClass() and getErrorMethod(), for example,
tell you the class and method from which the error originated. getErrorData() may include additional
error information in an associative array, although this is left for extending classes to implement. Before
being thrown to you, a PEAR_Exception object can be initialized with another Exception or with an array
of Exception objects. In this way, PEAR packages can wrap Exception objects. You can get at wrapped
exceptions by calling PEAR::getCause(). This will either return a wrapped Exception object, an array if
there is more than one, or null if none are found.

PEAR_Exception also uses the Observer pattern, allowing you to register callback functions or
methods that will be called whenever an exception is thrown. First, let’s create some error conditions:

class MyPearException extends PEAR_Exception {
}

class MyFeedThing {
 function acquire($source) {
 try {
 $myfeed = @new XML_Feed_Parser($source);
 return $myfeed;
 } catch (XML_Feed_Parser_Exception $e) {
 throw new MyPearException("feed acquisition failed", $e);
 }
 }
}

I extend PEAR_Exception and create a simple class that wraps XML_Feed_Parser. If the
XML_Feed_Parser constructor throws an exception, I catch it and pass it to the constructor of
MyPearException, which I then rethrow. This trick allows me to raise my own error while bundling the
root cause.

Here is a client class and a couple of lines of code to invoke it:

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

333

class MyFeedClient {
 function __construct() {
 PEAR_Exception::addObserver(array($this, "notifyError"));
 }

 function process() {
 try {
 $feedt = new MyFeedThing();
 $parser = $feedt->acquire('wrong.xml');
 } catch (Exception $e) {
 print "an error occurred. See log for details\n";
 }
 }

 function notifyError(PEAR_Exception $e) {
 print get_class($e).":";
 print $e->getMessage()."\n";
 $cause = $e->getCause();
 if (is_object($cause)) {
 print "[cause] ".get_class($cause).":";
 print $cause->getMessage()."\n";
 } else if (is_array($cause)) {
 foreach($cause as $sub_e) {
 print "[cause] ".get_class($sub_e).":";
 print $sub_e->getMessage()."\n";
 }
 }
 print "----------------------\n";
 }
}

$client = new MyFeedClient();
$client->process();

All the usual caveats about sample code apply here, of course—especially since this particular
example is designed to fail. First of all, notice the constructor. PEAR_Exception::addObserver() is a static
method that accepts a callback, either a function name or an array containing an object reference and a
method name. The method or function will be invoked every time a PEAR_Exception is thrown. This trick
allows us to design MyFeedClient so that it logs all exceptions.

The process() method passes a nonexistent file to MyFeedThing::acquire(), which passes it on to
the XML_Feed_Parser constructor, thereby guaranteeing an error. We catch the inevitable exception and
print a simple message. notifyError() is the callback method I referenced in the MyFeedClient
constructor. Notice that it expects a PEAR_Exception object. In this case, I simply query the object and
print out error information, although in a real-world situation, I would probably send this data to a log.
Notice the call to PEAR_Exception::getCause(). Because this could return an array or a single Exception
object, I handle both cases. If I run this toy code, this is what I get:

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

334

XML_Feed_Parser_Exception:Invalid input: this is not valid XML

MyPearException:feed acquisition failed
[cause] XML_Feed_Parser_Exception:Invalid input: this is not valid XML

an error occurred. See log for details

Our logger method is invoked for both the exceptions thrown by this sample (the first by
XML_Feed_Parser, the second by MyFeedThing). The XML_Feed_Parser_Exception object makes a second
appearance in the log output because we added it to the MyPearException object as a cause.

Creating Your Own PEAR Package
Packages from the PEAR repository are well documented and designed to be easy to use. How easy are
they to create, though, and how do you go about creating your own? In this section, we will look at the
anatomy of a PEAR package.

package.xml
The package.xml file is the heart of any PEAR package. It provides information about a package,
determines where and how its participants should be installed, and defines its dependencies. Whether it
operates on a URL, the local file system, or a tarred and gzipped archive, the PEAR installer needs the
package.xml file to acquire its instructions.

No matter how well designed and structured your package is, if you omit the build file, the install
will fail. Here’s what happens if you attempt to install an archive that does not contain package.xml:

$ pear install baddialekt.tgz
could not extract the package.xml file from "baddialekt.tgz"
Cannot initialize 'baddialekt.tgz', invalid or missing package file
Package "baddialekt.tgz" is not valid
install failed

The PEAR installer first unpacks our archive to the temporary directory and then looks for
package.xml. Here, it falls at the first hurdle. So if package.xml is so important, what does it consist of?

Package Elements
The package file must begin with an XML declaration. All elements are then enclosed by the root package
element:

<?xml version="1.0" encoding="UTF-8"?>
<package packagerversion="1.4.11" version="2.0"
 xmlns="http://pear.php.net/dtd/package-2.0"
 xmlns:tasks="http://pear.php.net/dtd/tasks-1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pear.php.net/dtd/tasks-1.0
 http://pear.php.net/dtd/tasks-1.0.xsd
 http://pear.php.net/dtd/package-2.0
 http://pear.php.net/dtd/package-2.0.xsd">

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

335

<!-- additional elements here -->

</package>

This example would fail with an error. The PEAR installer requires a number of elements to work
with. To start with, we must provide overview information:

 <name>Dialekt</name>
 <channel>pear.example.com</channel>
 <summary>A package for translating text and web pages into silly tones
of voice</summary>
 <description>Be the envy of your friends with this hilarious dialect
translator. Easy to extend and altogether delightful.
 </description>

<!-- additional elements here -->

These new elements should be pretty self-explanatory. The name element defines the handle by
which the user will refer to the package. The summary element contains a one-line overview of the
package, and description provides a little more detail. All these elements are compulsory with the
exception of channel. If you are not intending to add your package to a channel you can use the uri
element instead of channel, and in the same part of the file.. This should contain a URI that points to
your package file:

<uri>http://www.example.com/projects/Dialekt-1.2.1</uri>

The file name should not include an extension, even though the package file itself will likely end
with a .tgz extension.

Next, you should provide information about the team behind your package. You should include at
least one lead element:

 <lead>
 <name>Matt Zandstra</name>
 <user>mattz</user>
 <email>matt@example.com</email>
 <active>yes</active>
 </lead>

After this, you can define other projects participants in a similar way. Instead of lead, though, you
can use developer, contributor, or helper elements. These are designations recognized by the PEAR
community, but they should adequately cover most non-PEAR projects too. The user element refers to
the contributor’s user name with PEAR. Most teams use similar handles to allow users to log in to
Subversion, a development server, or both.

Before you get to the files in your project, there are a few more details you must provide:

 <date>2010-02-13</date>
 <time>18:01:44</time>
 <version>
 <release>1.2.1</release>
 <api>1.2.1</api>
 </version>
 <stability>
 <release>beta</release>
 <api>beta</api>
 </stability>
 <license uri="http://www.php.net/license">PHP License</license>

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

336

 <notes>initial work
 </notes>

Although this is mostly self-explanatory, it’s worth pointing out a couple of features. Of the elements
inside version, release is the one that really counts as far as your package is concerned. The release
element is used by PEAR in dependency calculations. If another system claims to require Dialekt 1.0.0,
and the installing user only has version 0.2.1 on her system, PEAR will halt its installation or attempt to
fetch a later version, depending on the mode in which it was run. The api element, on the other hand, is
there so that you can keep track of changes in your code’s interface which may affect compatibility.

The stability element is similarly split between release and api. The value can be one of snapshot,
devel, alpha, beta, or stable; you should choose the one that best describes your project.

If you are releasing your package according to specific license terms (such as GNU’s GPL license, for
example) you should add this information to the license element.

Unlike summary and description, the notes element will accept line breaks in the contents you add.

The contents Element
Now, we’re finally ready to talk about the files and directories in the package. The contents element
defines the files that will be included in the package archive (sometimes called a tarball, because it’s
archived with the tar and Gzip tools). You can describe the structure of your archive by combining dir
and file elements.

Here’s a simplified example:

 <contents>
 <dir name="/">
 <dir name="data">
 <file name="alig.txt" role="data" />
 <file name="dalek.txt" role="data" />
 </dir> <!-- /data -->
 <dir name="Dialekt">
 <file name="AliG.php" role="php" />
 <file name="Dalek.php" role="php" />
 </dir>
 </contents>

Every file in a PEAR package has a role. Every role is associated with a default (configurable)
location. Table 15–2 describes the common roles.

Table 15–2. Some Common PEAR File Roles

Role Description PEAR Config Name Example Location

php PHP file php_dir /usr/local/lib/php

test Unit test file test_dir /usr/local/lib/php/test/<package>

script Command line script bin_dir /usr/local/bin

data Resource file data_dir /usr/local/lib/php/data/<package>

doc Documentation file doc_dir /usr/local/lib/php/doc/<package>

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

337

When installation takes place, files of role doc, data, and test are not dropped directly into their
respective directories. Instead, a subdirectory named after the package is created in the test_dir and
data_dir directories, and files are installed into this.

In a PEAR project, everything must have a role, and every role has its place. If you do not have the
correct privileges to work with the default role locations, you can set your own locations using the pear
command line tool:

$ pear config-set php_dir ~/php/lib/

$ pear config-set data_dir ~/php/lib/data/
$ pear config-set bin_dir ~/php/bin/
$ pear config-set doc_dir ~/php/lib/doc/

$ pear config-set test_dir ~/php/lib/test/

■Note Pyrus uses set rather than config-set for the same purpose.

Now, PEAR will use your directories rather than those described in Table 15–2. Remember that if
you do this, you should add the lib directory to your include path: either in the php.ini file, an
.htaccess file, or using the ini_set() function in your scripts. You should also ensure that the bin
directory is in your shell’s path so that command line commands can be found.

My example revolves around a fictitious package called Dialekt. Here is the package’s directory and
file structure:

./package.xml

./data
 ./data/dalek.txt
 ./data/alig.txt
./script
 ./script/dialekt.sh
 ./script/dialekt.bat
./cli-dialekt.php
./Dialekt.php
./Dialekt
 ./Dialekt/AliG.php
 ./Dialekt/Dalek.php

As you can see, I have mirrored some of the standard PEAR roles in my data structure. So I include
data and script directories. The top-level directory contains two PHP files. These should be installed in
the PEAR directory (/usr/local/php/lib by default). Dialekt.php is designed to be the first port of call for
client code. The user should be able to include Dialekt with

require_once("Dialekt.php");

Additional PHP files (Dalek.php and AliG.php) are stored in a Dialekt directory that will be added to
the PEAR directory (these are responsible for the detailed process of translating web pages and text files
into oh-so-funny versions of themselves). Dialekt.php will include these on behalf of client code. So that
the installed Dialekt package will be callable from the command line, we have included a shell script that
will be moved to PEAR’s script directory. Dialekt uses configuration information stored in text files.
These will be installed in PEAR’s data directory.

Here's the full contents tag:

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

338

<contents>
 <dir name="/">
 <dir name="data">
 <file name="alig.txt" role="data" />
 <file name="dalek.txt" role="data" />
 </dir> <!-- /data -->
 <dir name="Dialekt">
 <file name="AliG.php" role="php" />
 <file name="Dalek.php" role="php" />
 </dir> <!-- /Dialekt -->
 <dir name="script">
 <file name="dialekt.bat" role="script">
 <tasks:replace from="@php_dir@" to="php_dir" type="pear-config" />
 <tasks:replace from="@bin_dir@" to="bin_dir" type="pear-config" />
 <tasks:replace from="@php_bin@" to="php_bin" type="pear-config" />
 </file>
 <file name="dialekt.sh" role="script">
 <tasks:replace from="@php_dir@" to="php_dir" type="pear-config" />
 <tasks:replace from="@bin_dir@" to="bin_dir" type="pear-config" />
 <tasks:replace from="@php_bin@" to="php_bin" type="pear-config" />
 </file>
 </dir> <!-- /script -->
 <file name="cli-dialekt.php" role="php" />
 <file name="Dialekt.php" role="php">
 <tasks:replace from="@bin_dir@" to="bin_dir" type="pear-config" />
 </file>
 </dir> <!-- / -->
 </contents>

I have included a new element in this fragment. The tasks:replace element causes the PEAR
installer to search the file for the trigger string given in the from attribute, replacing it with the pear-
config setting in the to attribute. So the Dialekt.php file, for example, might start out looking like this:

<?php
/*
 * Use this from PHP scripts, for a CLI implementation use
 * @bin_dir@/dialekt
 */
class Dialekt {
 const DIALEKT_ALIG=1;
 const DIALEKT_DALEK=2;
//...
}

After installation, the same class comment should look something like this:

/*
 * Use this from PHP scripts, for a CLI implementation use
 * /home/mattz/php/bin/dialekt
 */

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

339

Dependencies
Although packages are generally stand-alone entities, they often make use of one another. Any use of
another package introduces a dependency. If the used package is not present on the user’s system, then
the package that uses it will not run as expected.

The dependencies tag is a required element, and within it, you must specify at least the PHP, and
PEAR installer versions.

 <dependencies>
 <required>
 <php>
 <min>5.3.0</min>
 </php>
 <pearinstaller>
 <min>1.4.1</min>
 </pearinstaller>
 <!-- other dependencies here if required -->
 </required>
 </dependencies>

Both php and pearinstall can contain min, max, and exclude elements. exlude defines a version
which will be treated as incompatible with the package, and you can include as many of these as you
need. The pearinstaller element can also contain a recommended element, in which you can set a
preferred installer for the package.

If these or other dependencies within the required element are not satisfied, PEAR will refuse to
install the package by default. A package can depend on another package, a PHP extension (such as zlib
or GD) or a particular version of PHP. Here, I insist that Dialekt has access to the Fandango package at
version 10.5.0 or greater (note, that I add this within the required element):

 <package>
 <name>Fandango</name>
 <channel>pear.example.com</channel>
 <min>10.5.0</min>
 </package>

Notice the channel element; this specifies where pear should search for the package should it be
invoked with the -a flag (which tells it to acquire all dependencies). You must specify either a channel or
a uri element. The uri element should point to a package file:

 <package>
 <name>Fandango</name>
 <uri>http://www.example.com/packages/fandango-10.5.0.tgz</uri>
 </package>

The package element accepts the same dependency specifiers as pearinstaller, with the addition of
conflicts in which you can define a version with which this package will not work.

In addition to package you could also specify extension, os, or arch. Table 15–3 summarizes these
dependency elements.

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

340

Table 15–3. package.xml Dependency Types

Element Description

php The PHP application

package A PEAR package

extension A PHP extension (a capability compiled into PHP such as zlib or GD)

arch Operating system and processor architecture

os An operating system

Up until now I have specified mandatory dependencies. In fact, after requires, you can specify an

optional element. This accepts the same dependency elements. When PEAR encounters an unfilled
optional dependency, it will raise a warning but will continue to install nonetheless. You should add
depencies to the optional element where your package can limp along adequately without the preferred
package or extension.

If the user runs the pear install command with the -o flag

pear install -o package.xml

then PEAR will attempt to download and install all unmet required dependencies (remember, though
that passing -o to pyrus means that it will install optional requrements). Running the command with the
-a flag also automates the download of dependencies but will take in optional as well as required
packages.

Tweaking Installation with phprelease
Although you define the files in a package archive with the contents element, you can use phprelease to
fine tune the files that are actually installed onto the users system. Here are the two phprelease elements
in our package:

 <phprelease>
 <installconditions>
 <os>
 <name>unix</name>
 </os>
 </installconditions>
 <filelist>
 <install as="dialekt" name="script/dialekt.sh" />
 <install as="dalek" name="data/dalek.txt" />
 <install as="alig" name="data/alig.txt" />
 <ignore name="script/dialekt.bat" />
 </filelist>
 </phprelease>
 <phprelease>
 <installconditions>
 <os>
 <name>windows</name>
 </os>

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

341

 </installconditions>
 <filelist>
 <install as="dialekt" name="script/dialekt.bat" />
 <install as="dalek" name="data/dalek.txt" />
 <install as="alig" name="data/alig.txt" />
 <ignore name="script/dialekt.sh" />
 </filelist>
 </phprelease>

The installconditions element can be used to determine the phprelease element that is executed.
It accepts the specifier elements os, extension, arch, and php. These elements work in the same way as
their dependency namesakes. As well as providing phprelease elements qualified by installconditions,
you can provide a default version to be executed if none of the others are matched.

Let’s focus on the unix phprelease. The install element specifies that the file dialekt.sh should be
renamed dialekt on installation.

I specify that my data files should be installed without the .txt suffix. I do not need to specify the
dialekt subdirectory—this is automatically included for files with a data role. Note that the install
element’s as element also strips out the leading directory data that we specified in the contents element
for these files. This means that they are installed as <data_dir>/dialekt/dalek and
<data_dir>/dialekt/alig.

Note also that in Unix mode I don’t want to install the dialekt.bat script file. The ignore element
takes care of that. All being well our package is ready to install locally.

Preparing a Package for Shipment
Now that I have created my package and created a package.xml file,, it is time to generate an archived
and compressed product.

There is a single PEAR command to achieve this. We ensure we are in the root directory of our
project and run this subcommand:

$ pear package package.xml
Analyzing Dialekt/AliG.php
Analyzing Dialekt/Dalek.php
Analyzing cli-dialekt.php
Analyzing Dialekt.php
Package Dialekt-1.2.1.tgz done

This will generate a tarred and gzipped archive (including all referenced files as well as the
package.xml file itself) suitable for distribution. You can make this available for straight download. If you
have dependencies between packages, you can reference URIs in your package elements and use the uri
element in place of channel. If you are offering many interdependent packages to your users, though,
perhaps you should consider taking things to the next level.

Setting Up Your Own Channel
Why set up your own channel? Aside from the sheer coolness of such a thing, the main benefits lie in
PEAR’s automatic dependency management and the consequent ease of installation and upgrade for
your users. It’s easy enough for a user to install a single package using a full path to a tarball URL. If you
have designed a library system in tiers working from low-level utility packages to high-level applications,
things become more complicated. It can be a real pain for users to manage multiple interdependent
packages on their systems, especially as they evolve.

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

342

For this section, I will focus on the Pyrus mechanism for creating and hosting channels. There are
two reasons for this. First, Pyrus is the future. It is likely what we’ll all be using in the coming years. It’s
written from the ground up, without the need for backward compatibility, which makes for cruft-free
code and clean architecture. Second, the required packages are officially supported on the Pyrus site at
http://pear2.php.net. Although a perfectly good PEAR-oriented solution for channel management has
been available since 2006, it has somehow never made it from an external site
(http://greg.chiaraquartet.net) onto the PEAR website. Whatever the reasons for this, it does not inspire
confidence that the software will continue to be supported.

Still, with Pyrus so new, you may encounter some glitches along the way. Where I have to work
around rough edges, I’ll be sure to document it here.

If you're still using PEAR to build packages, don’t worry. There’s no reason why you can’t use Pyrus
channel management to serve PEAR packages. In order to create and host your own channel you will
ideally have

• Root access to your web host computer

• Administrative access to a web server (probably Apache) and the ability to support
a subdomain (pear.yourserver.com, for example)

If you do not have this kind of control over your server, don’t worry, you can host your channel with
a third-party provider such as Google Code (http://code.google.com). However you decide to host it,
first of all you will need to define your channel and add some packages to it.

Defining a Channel with PEAR2_SimpleChannelServer
PEAR2_SimpleChannelServer is actually something of a misnomer. It is a tool for defining and channel
and organizing your package files ready for serving, rather than a server or server component.

At the time of this writing, the Pyrus website claims that you should use Pyrus itself to install
PEAR2_SimpleChannelServer. In fact, this currently causes an error. However, you can get the package
in a phar file at http://pear2.php.net/get/PEAR2_SimpleChannelServer-0.1.0.phar

■Note You’ll likely find that PEAR2_SimpleChannelServer installation will be improved. Check in at
http://pear2.php.net/PEAR2_SimpleChannelServer to monitor progress.

Once you have phar file you can place it somewhere central, and rename it for convenience (I chose
/usr/share/pearscs.phar). Then you can run it to set up your basic channel environment.

php /usr/share/pearscs.phar create pear.appulsus.com "Appulsus PHP repository" appulsus

Created pear.appulsus.com
 | ./channel.xml
 | ./rest/
 | ./get/

The create subcommand requires a channel name, which is usually a host and subdomain (I’ll
return to that), a summary, and, optionally, an alias. If you omit the alias, the system will suggest one
taken from the name argument. As you can see I chose 'appulsus'. It then creates a file named

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

343

channel.xml, which defines your channel. It also creates empty get/ and rest/ directories. I want these
to be Web-accessible later, so I ran the command in a Web directory.

Now that I’ve created a channel, I can add some categories.

php /usr/share/pearscs.phar add-category productivity "things to help you work"
php /usr/share/pearscs.phar add-category fun "the fun never stops"

The add-category subcommand takes two arguments: the name of the category, and a description.
It simply amends the channel.xml file.

Before I can add a package to the system, I must ensure that my new channel can be recognized or
PEAR, or Pyrus will complain when the package is built. In order to do this I need another Pyrus package:
PEAR2_SimpleChannelFrontend

Managing a PEAR Channel with PEAR2_SimpleChannelFrontend
Once again, the Pyrus site is not currently consistent about the best way to work with this package. The
suggested installation method:

php pyrus.phar install PEAR2_SimpleChannelFrontend

results in an error at the time of this writing. By the time you read this, you may get more useful
instructions on the package page at http://pear2.php.net/PEAR2_SimpleChannelServer. For now though,
you can get a phar file from http://pear2.php.net/get/PEAR2_SimpleChannelFrontend-0.1.0.phar. You
can also check http://pear2.php.net/get/ for more recent versions of the archive.

Now that I have the PEAR2_SimpleChannelFrontend phar file, I need to make it available via the
Web. I can do this by renaming the file to index.php and placing it in the Web-accessible directory that
houses channel.xml. This location should match up with the domain and subdomain that define the
channel. So, earlier I chose the name pear.appulsus.com for my channel. I should configure Apache 2 so
that pear.appulsus.com resolves to the directory in which I've placed index.php. Here’s an extract from
my httpd.conf file (that is the Apache Web server’s configuration file):

<VirtualHost *:80>
ServerAdmin webmaster@appulsus.com
DocumentRoot /var/www/pear
ServerName pear.appulsus.com
ErrorLog logs/pear.appulsus.com-error_log
TransferLog logs/pear.appulsus.com-access_log
</VirtualHost>

This simply ensures that a request to http://pear.appulsus.com is routed to the DocumentRoot
directory (/var/www/pear) in which I placed the newly renamed index.php. The
SimpleChannelFrontend packages also requires that some mod_rewrite directives are applied to the
channel directory:

<Directory "/var/www/pear">
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . index.php [L]
</IfModule>
</Directory>

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

344

There’s enough in place now to for me to run a browser test. Figure 15.1 shows the default page that
PEAR2_SimpleChannelFrontend-0.1.0.phar generates.

Figure 15–1. The Channel Frontend Default Page

This means I already have my own channel. I can confirm this on a remote command line.

pear channel-discover pear.appulsus.com

Adding Channel "pear.appulsus.com" succeeded
Discovery of channel "pear.appulsus.com" succeeded

Notice I'm using PEAR on the client side. I‘m hoping to demonstrate that these Pyrus tools can
provide service to a user running with a traditional PEAR setup. So far so good!

Managing a Package
Now that pear.appulsus.com can be recognized as a channel, I can alter the package.xml for Dialekt so
that it belongs there:

 <name>Dialekt</name>
 <channel>pear.appulsus.com</channel>
 <summary>A package for translating text and web pages into silly tones of voice</summary>

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

345

and regenerate the PEAR package

Analyzing Dialekt/AliG.php
Analyzing Dialekt/Dalek.php
Analyzing cli-dialekt.php
Analyzing Dialekt.php
Package Dialekt-1.2.1.tgz done

As before, I have a Dialekt-1.2.1.tgz package. This time, though, it's ready for the pear.appulsus.com
channel. Now I can move or upload the package to my channel directory. Then, before I run the
command to make the release, I must first check a setting in the php.ini file. If you don’t know where
that is, by the way, you can run

php --ini

from the command-line and PHP will tell you. Once I’ve looked up its location I can open up php.ini and
look for a line like this:

phar.readonly = Off

If the line is not there, or if it differs, I must add or alter it. Without this setting, my release will likely
fail. Now, at last I’m ready to make my release. I change to my channel directory and run.

php /usr/share/pearscs.phar release Dialekt-1.2.1.tgz mattz

Release successfully saved

Once again, I called the pearscs.phar file. Remember, that’s the PEAR_SimpleChannelServer
package. It requires a path to the package file, and a maintainer name. And that’s it. I now have a
channel, containing a package. I can also associate it with a category:

php /usr/share/pearscs.phar categorize Dialekt fun

Added Dialekt to fun

Figure 15.2 shows how I can confirm my new package from the browser.
Of course, the proof of the pudding is in the installing. So, from a remote system I can try just that:

pear install appulsus/Dialekt

downloading Dialekt-1.2.1.tgz ...
Starting to download Dialekt-1.2.1.tgz (1,913 bytes)
....done: 1,913 bytes
install ok: channel://pear.appulsus.com/Dialekt-1.2.1

All that’s left to do now is publicize the channel!

CHAPTER 15 ■ AN INTRODUCTION TO PEAR AND PYRUS

346

Figure 15–2. A Channel Package Page

Summary
PEAR is extensive almost by definition, and I have only had space to provide an introduction here.
Nevertheless, you should leave this chapter with a sense of how easy it is to leverage PEAR packages to
add power to your projects. Through the package.xml file, the PEAR installer (and Pyrus, its future
replacement), you can also make your code accessible to other users. By setting up a channel, you can
automate dependency downloads for your users and allow third-party packages to use yours without the
need for bundling or complicated dependency management.

PEAR is best suited for relatively self-enclosed packages with well-defined functionality. For larger
applications, other build solutions come into their own. We will be looking at Phing, a powerful tool for
building applications, later in the book.

C H A P T E R 16

■ ■ ■

347

Generating Documentation with

phpDocumentor

Remember that tricky bit of code? The one in which you treated that method argument as a string,
unless it was an integer? Or was it a Boolean? Would you recognize it if you saw it? Maybe you tidied it up
already? Coding is a messy and complex business, and it’s hard to keep track of the way your systems
work and what needs doing. The problem becomes worse when you add more programmers to the
project. Whether you need to signpost potential danger areas or fantastic features, documentation can
help you. For a large codebase, documentation or its absence can make or break a project.

This chapter will cover

• The phpDocumentor application: Installing phpDocumentor and running it from
the command line

• Documentation syntax: The DocBlock comment and documentation tags

• Documenting your code: Using DocBlock comments to provide information about
classes, properties, and methods

• Creating links in documentation: Linking to web sites and to other documentation
elements

Why Document?
Programmers love and loathe documentation in equal measure. When you are under pressure from
deadlines, with managers or customers peering over your shoulders, documentation is often the first
thing to be jettisoned. The overwhelming drive is to get results. Write elegant code, certainly (though
that can be another sacrifice), but with a codebase undergoing rapid evolution, documentation can feel
like a real waste of time. After all, you’ll probably have to change your classes several times in as many
days. Of course, everyone agrees that it’s desirable to have good documentation. It’s just that no one
wants to undermine productivity in order to make it happen.

Imagine a very large project. The codebase is enormous, consisting of very clever code written by
very clever people. The team members have been working on this single project (or set of related
subprojects) for over five years. They know each other well, and they understand the code absolutely.
Documentation is sparse, of course. Everyone has a map of the project in their heads, and a set of
unofficial coding conventions that provide clues as to what is going on in any particular area. Then the
team is extended. The two new coders are given a good basic introduction to the complex architecture
and thrown in. This is the point at which the true cost of undocumented code begins to tell. What would

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

348

otherwise have been a few weeks of acclimatization soon becomes months. Confronted with an
undocumented class, the new programmers are forced to trace the arguments to every method, track
down every referenced global, check all the methods in the inheritance hierarchy. And with each trail
followed, the process begins again. If, like me, you have been one of those new team members, you soon
learn to love documentation.

Lack of documentation costs. It costs in time, as new team members join a project, or existing
colleagues shift beyond their area of specialization. It costs in errors as coders fall into the traps that all
projects set. Code that should be marked private is called, argument variables are populated with the
wrong types, functionality that already exists is needlessly re-created.

Documentation is a hard habit to get into because you don’t feel the pain of neglecting it
straightaway. Documentation needn’t be difficult, though, if you work at it as you code. This process can
be significantly eased if you add your documentation in the source itself as you code. You can then run a
tool to extract the comments into neatly formatted web pages. This chapter is about just such a tool.

phpDocumentor is based on a Java tool called JavaDoc. Both systems extract special comments
from source code, building sophisticated application programming interface (API) documentation from
both the coder’s comments and the code constructs they find in the source.

Installation
The easiest way to install phpDocumentor is by using the PEAR command line interface.

pear upgrade PhpDocumentor

■Note In order to install or upgrade a PEAR package on a Unix-like system, you usually need to run the pear
command as the root user.

This will make a network connection (to http://pear.php.net) and automatically either install or
update phpDocumentor on your system.

You can also download the package from SourceForge.net at
http://sourceforge.net/projects/phpdocu/files/. You will find zipped and tarballed packages here.
Once you have the package on your file system, you may be able to install it directly using PEAR if PHP
was compiled with zlib support.

pear install PhpDocumentor-1.4.3.tgz

Alternatively, you can uncompress the archive and work with phpDocumentor directly from the
distribution directory. The command line interface is handled by the file phpdoc, and you need to have
the library directory phpDocumentor in your include path.

tar -xvzf PhpDocumentor-1.4.3.tgz
cd PhpDocumentor-1.4.3
chmod 755 phpdoc
./phpdoc -h

Here, I unpacked and entered the distribution directory. I made the phpdoc script executable and
ran it with the -h flag, which calls up a usage message.

If you have any problems with installation, the phpDocumentor package includes a file named
INSTALL, which contains extensive instructions and troubleshooting hints.

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

349

Generating Documentation
It might seem odd to generate documentation before we have even written any, but phpDocumentor
parses the code structures in our source code, so it can gather information about your project before you
even start.

I are going to document aspects of an imaginary project called “megaquiz.” It consists of two
directories, command and quiztools, which contain class files. These are also the names of packages in the
project. phpDocumentor can be run as a command line tool or through a slick web GUI. I will
concentrate on the command line, because it’s easy then to embed documentation updates into build
tools or shell scripts. The command to invoke phpDocumentor is phpdoc. You will need to run the
command with a number of arguments in order to generate documentation. Here’s an example:

phpdoc -d megaquiz/ \
 -t docs/megaquiz/ \
 -ti 'Mega Quiz' \
 -dn 'megaquiz'

The -d flag denotes the directory whose contents you intend to document. -t denotes your target
directory (the directory to which you wish to write the documentation files). Use -ti to set a project title,
and -dn to define the default package name.

If we run this command on our undocumented project, we get a surprising amount of detail. You
can see the menu page of our output in Figure 16–1.

Figure 16–1. A basic phpDocumentor output menu

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

350

As you can see, all the classes and files in the project are listed in the left-hand frame. Both the
project name and the package name are incorporated into the documentation. The class names are all
hyperlinks. In Figure 16–2, you can see some of the documentation for the Command class I created in
Chapter 11.

phpDocumentor is smart enough to recognize that Command is an abstract class, and that it is
extended by FeedbackCommand and LoginCommand. Notice also that it has reported both the name and the
type of the argument required by the execute() method.

Because this level of detail alone is enough to provide an easily navigable overview of a large project,
it is a huge improvement over having no documentation at all. However, I can improve it significantly by
adding comments to my source code.

Figure 16–2. Default documentation for the Command class

DocBlock Comments
DocBlock comments are specially formatted to be recognized by a documentation application. They
take the form of standard multiline comments. Standard, that is, with the single addition of an asterisk to
each line within the comment:

/**
 * My DocBlock comment
 */

phpDocumentor is designed to expect special content within DocBlocks. This content includes
normal text descriptive of the element to be documented (for our purposes, a file, class, method, or

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

351

property). It also includes special keywords called tags. Tags are defined using the at sign (@) and may be
associated with arguments. So the following DocBlock placed at the top of a class tells phpDocumentor
the package to which it belongs:

/**
 * @package command
 */

If I add this comment to every class in my project (with the appropriate package name, of course),
phpDocumentor will organize our classes for us. You can see phpDocumentor output that includes
packages in Figure 16–3.

Figure 16–3. Documentation output that recognizes the @package tag

In Figure 16–3, notice that packages have been added to the navigation (top-right corner). In
addition to the default megaquiz package I defined as a command line switch, I can now click command or
quiztools. Because I am currently examining classes in the command package, the links that form the left-
hand navigation list only those classes.

Generally, packages in documentation will mirror your directory structure. So the command package
maps to a command directory. That isn’t necessary, however. A third-party developer may wish to create a
Command class that is part of the command package but lives in her own directory, for example. So the
@package tag makes you take responsibility for associating classes with packages, but it also affords you
flexibility that would not be available by using the file system to guess at package names.

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

352

Documenting Classes
Let’s add some more tags and text that are useful in class- or file-level DocBlocks. I should identify the
class, explain its uses, and add authorship and copyright information.

Here is the Command class in its entirety:

/**
 * Defines core functionality for commands.
 * Command classes perform specific tasks in a system via
 * the execute() method
 *
 * @package command
 * @author Clarrie Grundie
 * @copyright 2004 Ambridge Technologies Ltd
 */
abstract class Command {
 abstract function execute(CommandContext $context);
}

The DocBlock comment has grown significantly. The first sentence is a one-line summary. This is
emphasized in the output and extracted for use in overview listings. The subsequent lines of text contain
more detailed description. It is here that you can provide detailed usage information for the
programmers who come after you. As we will see, this section can contain links to other elements in the
project and fragments of code in addition to descriptive text. I also include @author and @copyright tags,
which should be self-explanatory. You can see the effect of my extended class comment in Figure 16–4.

Figure 16–4. Class details in documentation output

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

353

Notice that I didn’t need to tell phpDocumentor that the Command class is abstract. This confirms
something that we already know, that phpDocmentor interrogates the classes with which it works even
without our help. But it is also important to see that DocBlocks are contextual. phpDocumentor
understands that we are documenting a class in the previous listing, because the DocBlock it encounters
immediately precedes a class declaration.

■Note At the time of this writing, phpDocumentor does not support namespaces. However, the project’s
maintainer, Greg Beaver, is on record as committed to provide this functionality
(<http://lists.bluga.net/pipermail/phpdocumentor-devel/2008-September/000066.html>).

File-Level Documentation
Although I tend to think in terms of classes rather than of the files that contain them, there are good
reasons in some projects for providing a layer of documentation at the file level.

First of all, phpDocumentor likes file comments. If you fail to include a DocBlock for a file in your
project, a warning is raised that can clutter up the application’s reporting, especially in large projects. A
file comment should be the first DocBlock in a document. It should contain a @package tag, and it should
not directly precede a coding construct. In other words, if you add a file-level DocBlock, you should
ensure that you also add a class-level comment before the first class declaration.

Many open source projects require that every file includes a license notice or a link to one. Page-
level DocBlock comments can be used, therefore, for including license information that you do not want
to repeat on a class-by-class basis. You can use the @license tag for this. @license should be followed by
a URL, pointing to a license document and a description:

/**
 * @license http://www.example.com/lic.html Borsetshire Open License
 * @package command
 */

The URL in the license tag will become clickable in the phpDocumentor output.

Documenting Properties
All properties are mixed in PHP. That is, a property can potentially contain a value of any type. There
may be some situations in which you require this flexibility, but most of the time, you think of a property
as containing a particular data type. phpDocmentor allows you to document this fact using the @var tag.

Here are some properties documented in the CommandContext class:

class CommandContext {
/**
 * The application name.
 * Used by various clients for error messages, etc.
 * @var string
 */
 public $applicationName;

/**

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

354

 * Encapsulated Keys/values.
 * This class is essentially a wrapper for this array
 * @var array
 */
 private $params = array();

/**
 * An error message.
 * @var string
 */
 private $error = "";
// ...

As you can see, I provide a summary sentence for each property and fuller information for the first
two. We use the @var tag to define each property’s type. If we were to use the same phpdoc command line
arguments as usual to generate output at this point, you would only see documentation for the public
$applicationName property. This is because private methods and properties do not appear in
documentation by default.

Whether or not you choose to document private elements depends in large part on your intended
audience. If you are writing for client coders, then you should probably hide your classes’ internals. If,
on the other hand, your project is under development, your team members may need more detailed
documentation. You can make phpDocumentor include private elements by using the -pp (--
parseprivate) command line argument when you invoke the script:

phpdoc -d /home/projects/megaquiz/ \
 -t /home/projects/docs/megaquiz/ \
 -ti 'Mega Quiz' \
 -dn 'megaquiz' \
 -pp on

Notice that you must explicitly set the -pp flag to on; it is not enough to include the flag on its own.
You can see the documented properties in Figure 16–5.

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

355

Figure 16–5. Documenting properties

Documenting Methods
Together with classes, methods lie at the heart of a documentation project. At the very least, readers
need to understand the arguments to a method, the operation performed, and its return value.

As with class-level DocBlock comments, method documentation should consist of two blocks of
text: a one-line summary and an optional description. You can provide information about each
argument to the method with the @param tag. Each @param tag should begin a new line and should be
followed by the argument name, its type, and a short description.

Because PHP does not constrain return types, it is particularly important to document the value a
method returns. You can do this with the @return tag. @return should begin a new line and should be
followed by the return value’s type and a short description. I put these elements together here:

/**
 * Perform the key operation encapsulated by the class.
 * Command classes encapsulate a single operation. They
 * are easy to add to and remove from a project, can be
 * stored after instantiation and execute() invoked at
 * leisure.
 * @param $context CommandContext Shared contextual data
 * @return bool false on failure, true on success
 */

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

356

 abstract function execute(CommandContext $context);

It may seem strange to add more documentation than code to a document. Documentation in
abstract classes is particularly important, though, because it provides directions for developers who
need to understand how to extend the class. If you are worried about the amount of dead space the PHP
engine must parse and discard for a well-documented project, it is a relatively trivial matter to add code
to your build tools to strip out comments on installation. You can see our documentation’s output in
Figure 16–6.

Figure 16–6. Documenting methods

Creating Links in Documentation
phpDocumentor generates a hyperlinked documentation environment for you. Sometimes, though, you
will want to generate your own hyperlinks, either to other elements within documentation or to external
sites. In this section, we will look at the tags for both of these and encounter a new syntax: the inline tag.

As you construct a DocBlock comment, you may want to talk about a related class, property, or
method. To make it easy for the user to navigate to this feature, you can use the @see tag. @see requires a
reference to an element in the following format:

class
class::method()

or like this:

class::$property

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

357

So in the following DocBlock comment, I document the CommandContext object and emphasize the
fact that it is commonly used in the Command::execute() method:

/**
 * Encapsulates data for passing to, from and between Commands.
 * Commands require disparate data according to context. The
 * CommandContext object is passed to the Command::execute()
 * method and contains data in key/value format. The class
 * automatically extracts the contents of the $_REQUEST
 * superglobal.
 *
 * @package command
 * @author Clarrie Grundie
 * @copyright 2004 Ambridge Technologies Ltd
 * @see Command::execute()
 */

class CommandContext {
// ...

As you can see in Figure 16–7, the @see tag resolves to a link. Clicking this will lead you to the
execute() method.

Figure 16–7. Creating a link with the @see tag

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

358

Notice, though, that we also embedded a reference to Command::execute() in the DocBlock
description text. We can transform this into a live link by using the @link tag. @link can be added at the
beginning of a line, as @see is, but it can also be used inline. In order to differentiate inline tags from their
surroundings, you must surround them with curly brackets. So, to make my embedded reference to
Command::execute() clickable, I would use the following syntax:

// ...
 * Commands require disparate data according to context. The
 * CommandContext object is passed to the {@link Command::execute()}
 * method and contains data in key/value format. The class
//...

Because the @link tag in the previous fragment includes only the element reference
(Command::execute()), it is this string that becomes clickable. If I were to add some description here, it
would become clickable instead.

@link can be used to refer to URLs as well. Simply replace the element reference with a URL:

@link http://www.example.com More info

Once again, the URL is the target, and the description that follows it is the clickable text.
You may want to make a reciprocal link. Command uses CommandContext objects, so I can create a link

from Command::execute() to the CommandContext class and a reciprocal link in the opposite direction. I
could, of course, do this with two @link or @see tags. @uses handles it all with a single tag, however:

/**
 * Perform the key operation encapsulated by the class.
 * ...
 * @param $context {@link CommandContext} Shared contextual data
 * @return bool false on failure, true on success
 * @link http://www.example.com More info
 * @uses CommandContext
 */
 abstract function execute(CommandContext $context);

In adding the @uses tag, I create a link in the Command::execute() documentation: “Uses:
CommandContext”. In the CommandContext class documentation, a new link will appear: “Used by:
Command::execute()”.

You can see the latest output in Figure 16–8. Note that I have not used @link inline, so it is output in
list format.

CHAPTER 16 ■ GENERATING DOCUMENTATION WITH PHPDOCUMENTOR

359

Figure 16–8. Documentation including @link and @uses tags

Summary
In this chapter, I covered the core features of phpDocumentor. You encountered the DocBlock

comment syntax and the tags that can be used with it. I looked at approaches to documenting classes,
properties, and methods, and you were provided with enough material to transform your
documentation, and thus improve collaborative working immeasurably (especially when used in
conjunction with build tools and version control). There is a lot more to this application than I have
space to cover, though, so be sure to check the phpDocumentor homepage at http://www.phpdoc.org.

C H A P T E R 17

■ ■ ■

361

Version Control with Subversion

All disasters have their tipping point, the moment at which order finally breaks down and events simply
spiral out of control. Do you ever find yourself in projects like that? Are you able to spot that crucial
moment? Perhaps it’s when you make “just a couple of changes” and find that you have brought
everything crashing down around you (and even worse, you’re not quite sure how to get back to the
point of stability you have just destroyed). It could be when you realize that three members of your team
have been working on the same set of classes and merrily saving over each other’s work. Or perhaps it’s
when you discover that a bug fix you have implemented twice has somehow disappeared from the
codebase yet again. Wouldn’t it be nice if there was a tool to help you manage collaborative working,
allowing you to take snapshots of your projects and roll them back if necessary, and to merge multiple
strands of development? In this chapter, we look at Subversion, a tool that does all that and more.

This chapter will cover

• Basic configuration: Some tips for setting up Subversion

• Importing: Starting a new project

• Committing changes: Saving your work to the repository

• Updating: Merging other people’s work with your own

• Branching: Maintaining parallel strands of development

Why Use Version Control?
If it hasn’t already, version control will change your life (if only your life as a developer). How many
times have you reached a stable moment in a project, drawn a breath, and plunged onward into
development chaos once again? How easy was it to revert to the stable version when it came time to
demonstrate your work in progress? Of course, you may have saved a snapshot of your project when it
reached a stable moment, probably by duplicating your development directory. Now, imagine that your
colleague is working on the same codebase. Perhaps he has saved a stable copy of the code as you have.
The difference is that his copy is a snapshot of his work, not yours. Of course, he has a messy
development directory too. So you have four versions of your project to coordinate. Now imagine a
project with four programmers and a web UI developer. You’re looking pale. Perhaps you would like to
lie down?

Subversion exists exclusively to address this problem. Using Subversion, all your developers check
out their own copies of the codebase from a central repository. Whenever they reach a stable point in
their code, they update their copies. This merges any changes in the shared code with their own recent
work. After they fix any conflicts, they can check their new stable versions back into the shared
repository. There is now only one authoritative source of code in your project. The fact that each

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

362

developer merges her work into the central repository means that you no longer have to worry about
reconciling multiple strands of development by hand. Even better, you can check out versions of your
codebase based on a date or a label. So when your code reaches a stable point, suitable for showing to a
client as work in progress, for example, you can tag that with an arbitrary label. You can then use that tag to
check out the correct codebase when your client swoops into your office looking to impress an investor.

Wait! There’s more! You can also manage multiple strands of development at the same time. If this
sounds needlessly complicated, imagine a mature project. You have already shipped the first version,
and you’re well into development of version 2. Does version 1.n go away in the meantime? Of course not.
Your users are spotting bugs and requesting enhancements all the time. You may be months away from
shipping version 2, so where do you make and test the changes? Subversion lets you maintain distinct
branches of the codebase. So you might create a bug-fix branch of your version 1.n for development on
the current production code. At key points, this branch can be merged back into the version 2 code (the
trunk), so that your new release can benefit from improvements to version 1.n.

■Note Subversion is not the only version control system available. You might also like to look into Git
(http://git-scm.com/) or Mercurial (http://mercurial.selenic.com/). These are new and increasingly
popular version control systems. Both use a decentralized model.

Let’s get on and look at some of these features in practice.

Getting Subversion
If you are working with a Unix-like operating system (such as Linux or FreeBSD), you may already have a
Subversion client installed and ready to use.

Try typing

$ svn help

from the command line. You should see some usage information that will confirm that you are ready to get
started. If you do not already have Subversion, you should consult your distribution’s documentation. You
will almost certainly have access to a simple installation mechanism such as Yum or Apt.

■Note Throughout this chapter, I denote command line input by displaying it in bold text. A dollar sign ($)
represents the command prompt.

If you get an error message, you may need to download and install Subversion yourself. You can acquire both
source and binaries from http://subversion.apache.org/.

■Note If you'd rather work with a graphical user interface (GUI) instead of the command line, you might want to
take a look at RapidSVN, a cross-platform front-end to Subversion. You can find it at
http://rapidsvn.tigris.org/. If you’re a Windows user, you should also evaluate TortoiseSVN
(http://tortoisesvn.tigris.org/).

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

363

Configuring a Subversion Repository
Whether you are running Subversion locally or across multiple clients, you must have a repository in
place before you can start work. What’s more, every user’s Subversion client must know where that
repository is. In this section, I look at the steps necessary to get Subversion up and running, either on a
single machine or over the Internet. I assume root access to a Linux machine. In order to create and
manage a repository you need the svnadmin command.

Creating a Repository
You can create a Subversion repository with a simple svnadmin subcommand: create. This will create a
properly configured Subversion repository directory.

Here, I create a repository in the directory /var/local/svn. Generally speaking, only the root user
can create and modify directories in /var/local, so I run the following command as root:

$ svnadmin create --fs-type fsfs /var/local/svn

This command will execute silently, but you should find that it has created a directory called svn in
the /var/local directory. The fs-type flag is not strictly necessary here, because fsfs is the default
setting. This directive orders Subversion to use files to store version information. The alternative bdb
specifies Berkeley DB to manage this data.

Let’s assume that you have multiple users on this Linux machine, all of whom will need to commit
to and update from this repository. You need to ensure that they can all write to the /var/local/svn
directory. You can do this by adding these users to a common group and making the directory writable
by this group.

You can create a new group (called svnusers) on the command line like this:

$ groupadd svnusers

You must run the groupadd command as root. You should now have this group on your system.
First, I'll add a user, bob, on the current host to the svnusers group. You can track this by monitoring

a special file called /etc/group. In /etc/group, you should find a line that looks like this:

$ svnusers:x:504:

I add bob to the group with this command:

$ usermod -aG svnusers bob

Now, if you look at /etc/group, you should see that bob has been associated with the svnusers group.

$ svnusers:x:504:bob,

Next, I need to ensure that /var/local/svn is writable by anyone in the svnusers group. I can do this
by changing the group of /var/local/svn to svnusers.

$ chgrp -R svnusers /var/local/svn/
$ chmod -R g+rws /var/local/svn/

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

364

The second line in the previous fragment causes all directories created here to take on the svnusers
group. Accessing the Subversion Repository

In order to access a project within a subversion repository, you must use a URL to specify its
location. I’m going to jump the gun now and pretend that I’ve already created a project named megaquiz.
Another sneak peak is a subcommand called list (or ls for short), which lists the files at a location
within a repository:

$ svn ls file:///var/local/svn/megaquiz

As you can see, a Subversion URL looks very much like the kind of thing you would type into a
browser’s location field. It consists of a scheme (the kind of connection you’d like to make), possibly a
server name, then a path, which includes the repository location followed by any number of project
directories. Because the fragment above specified the filesystem in its scheme, there was no need to
provide a server.

Assuming the repository machine is running sshd, and that the firewall is properly configured, I
could also access the same repository from a remote machine using ssh:

$ svn ls svn+ssh://localhost/var/local/svn/megaquiz

Subversion handles a number of other modes of communication. Depending on how the repository
server is configured, you may also be able to use the WebDav protocol (the http or https schemes) or the
svn network protocol (the svn scheme). Now that I’ve set up the Subversion repository on the server, I’ll
stick to ssh (more properly this is the svn protocol tunneled over ssh, hence the compound scheme
svn+ssh), apart from some issues discussed below, is an easy and secure communication mechanism.
Setting up Subversion for working with SSH is trivial. If your server is configured to accept ssh
connections, then the repository is accessible as above. There are a couple of annoyances, however. It is
hard, for example, to allow users full access to your repository without first giving them a shell account
on the Subversion machine. If you are allowing nontrusted users, you could look into setting up a chroot
jail, which supports an extremely restricted environment for user accounts. This strays too far into the
realms of system administration for this chapter! A simpler solution is to disable login access for any
users you don’t want to have command line access. You can do this when you create the user’s account.
Check the man page for the adduser command for more details.

Also annoying for users is the requirement to continually type in their password or pass phrase for
every Subversion command. I have already set up the user bob on the Subversion machine, so he has
remote access to the repository using the svn+ssh scheme. How can I make it easier for him to
authenticate himself, though? The finer details of SSH configuration are beyond the scope of this book.

■Note Pro OpenSSH by Michael Stahnke (Apress, 2005) covers SSH comprehensively.

In brief, though, Bob should generate a public key with a program called ssh-keygen on his client
machine. He will be prompted to create a pass phrase. He should copy the generated public key, which
he will find in .ssh/id_rsa.pub (where .ssh is in his client home directory), and append it to a file called
.ssh/authorized_keys (where .ssh is in his home directory) on the Subversion server. He can now use a
program called ssh-agent to handle the details of authentication for him.

Beginning a Project
To use Subversion on a project, you must add that project to the repository. You can do this by
importing a project directory and any contents you might already have.

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

365

Before you start, take a good look at your files and directories, removing any temporary items you
might find. Failure to do this is a common and annoying mistake. Temporary items to watch for include
automatically generated files such as phpDocumentor output, build directories, installer logs, and so on.

■Note You can specify files and patterns to ignore during import, commit, and update by editing the
configuration file that the Subversion should have created in your home directory at .subversion/config. Look
for an option called global_ignores, which will probably need to be uncommented. It should provide examples of
filename wildcarding that you can amend to exclude the various lock files and temporary directories created by
your build processes, editors, and IDEs.

Once your project is clean, it’s time to think about how you’re going to organize your versions.
Subversion allows you to manage multiple versions of your project. You can easily branch the project to
create new versions, and then merge your changes back from whence they came. Although there is
nothing to stop you organizing your versions as you wish, there are some conventions that many
developers observe. Typically, you will elect to keep a single 'main' line of development as the source
and eventual destination of all branches. This branch is known as the trunk. In fact, thanks to
Subversion’s flexibility, this will simply be a directory named trunk. You also need a directory in which
you can save your branches. If you’re following the convention, you’ll call this ‘branches.’ Finally, you
might need a place to save snapshot branches. These are not different in nature from any other kind of
branch, but their purpose is to provide a snapshot of a particular moment in a project’s evolution, rather
than a site for parallel development. These should be saved to a directory called tags.

You can move directories around the repository after import, but because I know what I want at
import time, I might as well set up my directory structure first. If my directory structure looked like this:

megaquiz/
 quiztools/
 commands
 quizobjects/

I might add another layer of directories before import, so I end up with this:

megaquiz/
 branches/
 tags/
 trunk/
 quiztools/
 commands
 quizobjects/

As you can see, there’s nothing magic about branches and tags. They are just regular directories.
With everything in place, I can finally import my project:

$ svn import megaquiz svn+ssh://localhost/var/local/svn/megaquiz

Let’s break down this use of the Subversion command. Subversion is a very big package consisting
of many subcommands and switches. import requires a URL argument that points to the new directory
on the server. The directory name is essentially the project name. As you can see, the import
subcommand also accepts a path to the directory you wish to import. If you don’t specify this, Subersion
will import the current working directory.

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

366

When you run the import subcommand, you will be presented with an editor window and
instructed to provide an import message. In Figure 17–1, you can see vi, my default editor, demanding
just such input.

Figure 17–1. Providing an import message

When you attempt to import, you may get an error like this:

svn: Could not use external editor to fetch log message; consider setting the $SVN_EDITOR
environment variable or using the --message (-m) or --file (-F) options
svn: None of the environment variables SVN_EDITOR, VISUAL or EDITOR are set, and no 'editor-
cmd' run-time configuration option was found

That means that no editor is configured to work with Subversion. Depending on your preferred
editor, something like

$ export SVN_EDITOR=/bin/vi

will quickly solve this problem. You can also pass a message argument to the import command (and
to any command that requires a message) with the -m flag.

The import subcommand should generate output that looks something like this:

Adding megaquiz/quizobjects
Adding megaquiz/quizobjects/User.php
Adding megaquiz/trunk
Adding megaquiz/trunk/megaquiz.orig
Adding megaquiz/trunk/megaquiz.orig/trunk
Adding megaquiz/trunk/megaquiz.orig/trunk/pkg

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

367

Adding megaquiz/trunk/megaquiz.orig/trunk/src
Adding megaquiz/trunk/megaquiz.orig/branches
Adding megaquiz/trunk/megaquiz.orig/tags
Adding megaquiz/branches
Adding megaquiz/quiztools
Adding megaquiz/quiztools/AccessManager.php
Adding megaquiz/main.php
Adding megaquiz/command
Adding megaquiz/command/Command.php
Adding megaquiz/command/FeedbackCommand.php
Adding megaquiz/command/CommandContext.php
Adding megaquiz/command/LoginCommand.php
Adding megaquiz/tags
Committed revision 1.

Now that you have imported your project, you should move your source directory out of the way. If
you’re feeling bold, you could delete it; otherwise rename it. I generally add the extension .orig to the
directory name:

$ cd ..
$ mv megaquiz megaquiz.orig

An important point to remember here is that importing a project does not in any way transform the
source directory. If you want to use version control, you must check out your project from the repository
after you have imported it. You can check out a project with the checkout subcommand.

$ svn checkout svn+ssh://localhost/var/local/svn/megaquiz/trunk megaquiz-trunk

Remember, the dollar sign at the beginning of the line represents the shell prompt. The rest of the
line is what a user might type. Subversion will re-create the trunk directory in a new directory named
megaquiz-trunk, reporting as it does so:

A megaquiz-trunk/megaquiz.orig
A megaquiz-trunk/megaquiz.orig/trunk
A megaquiz-trunk/megaquiz.orig/trunk/pkg
A megaquiz-trunk/megaquiz.orig/trunk/src
A megaquiz-trunk/megaquiz.orig/branches
A megaquiz-trunk/megaquiz.orig/tags
Checked out revision 1.

If you look into the newly created megaquiz-trunk directory, you will see that it, and all of its
subdirectories, contain a folder called .svn. This contains metadata about your project and its
repository. You can pretty much ignore the .svn directories, but you should not delete any of them.

Now that you have a sandbox set up, it is time to start work. You can edit and save your files as
normal, but remember, you are no longer alone! You need to keep your work synchronized with the
central repository, or you will lose the benefits afforded by Subversion.

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

368

Updating and Committing
For the purposes of this chapter, I have invented a team member named Bob. Bob is working with me on
the MegaQuiz project. Bob is, of course, a fine and talented fellow. Except, that is, for one common and
highly annoying trait: he cannot leave other people’s code alone.

Bob is smart and inquisitive, easily excited by shiny new avenues of development, and keen to help
optimize new code. As a result, everywhere I turn, I seem to see the hand of Bob. Bob has added to my
documentation; Bob has implemented an idea I mentioned over coffee. I may have to kill Bob. In the
meantime, though, I must handle the fact that the code on which I am working needs to be merged with
Bob’s input.

Here’s a file called quizobjects/User.php. At the moment, it contains nothing but the barest of
bones:

<?php
class User {}
?>

I have decided to add some documentation. As you know from the last chapter, I should add file and
class comments. I begin by adding the file comment to my version of the file:

<?php
/**
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */

class User {}
?>

Meanwhile, working in his own sandbox, Bob is keen as ever, and he has created the class comment:

<?php

/**
 * @package quizobjects
 */
class User {}
?>

So we now have two distinct versions of User.php. At this time, the Subversion repository contains
only the recently imported version of MegaQuiz. I decide to add my changes to the Subversion
repository. This requires only one command, but two are advisable:

$ svn update quizobjects/User.php

At revision 1.

The update subcommand instructs Subversion to merge any changes stored in the repository into
your local document or documents. Before you commit your own work, it is good practice to first see if
anyone else’s changes conflict with your own, resolving any such conflicts in your own sandbox. The
command’s output indicates that no third-party changes need be applied.

Running update will apply any changes from the repository version of a file to your local copy. If you
omit the filepath, it will perform this operation on all files below your current location.

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

369

You may wish to know which files have changed before you incorporate differences locally. You can
do this with the status subcommand.

$ svn status --show-updates

That gives you a list of files that an update would touch locally.
Whichever subcommand I chose, I can now go ahead and commit my changes:

$ svn commit quizobjects/User.php -m 'added doc level comment'

Sending quizobjects/User.php
Transmitting file data .

I use the commit subcommand to check new data into the Subversion repository. Notice that I used
the -m switch to add a message on the command line, rather than via an editor.

Now it’s Bob’s turn to update and commit:

$ svn update quizobjects/User.php

Conflict discovered in 'quizobjects/User.php'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options:

Subversion will happily merge data from two sources into to the same file so long as the changes
don’t overlap. Subversion has no means of handling changes that affect the same lines. How can it
decide what is to have priority? Should the repository overwrite Bob’s changes, or the other way around?
Should both changes coexist? Which should go first? Subversion has no choice but to report a conflict
and let Bob sort out the problem. When a conflict is encountered, Bob is presented with a bewildering
seeming array of options. In Subversion itself explains the choices. If Bob hits 's'

 (s) show all options: s
 (e) edit - change merged file in an editor
 (df) diff-full - show all changes made to merged file
 (r) resolved - accept merged version of file
 (dc) display-conflict - show all conflicts (ignoring merged version)
 (mc) mine-conflict - accept my version for all conflicts (same)
 (tc) theirs-conflict - accept their version for all conflicts (same)
 (mf) mine-full - accept my version of entire file (even non-conflicts)
 (tf) theirs-full - accept their version of entire file (same)
 (p) postpone - mark the conflict to be resolved later
 (l) launch - launch external tool to resolve conflict
 (s) show all - show this list

When you get a conflict, probably the first thing you’ll want to do is to find out what’s happened.
The dc option will tell you. It shows the conflicting portions of the file in question. Here’s what Bob sees
when he selects dc:<?php

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

370

<<<<<<< MINE (select with 'mc') (2,4)
/**
 * @package quizobjects
 */
||||||| ORIGINAL (2,0)
=======
/**
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */

>>>>>>> THEIRS (select with 'tc') (2,5)
class User {}
?>

Subversion includes both Bob’s comment and the conflicting changes, together with metadata that
tells him which part originates where. The conflicting information is separated by a line of equals signs.
Bob’s input is signaled by a line of less-than signs followed by ”MINE”. Data pulled from the repository is
delineated by a line of greater-than signs followed by “THEIRS”.

Now that Bob has identified the conflict, he can choose an action to take in response to it. As you
can see from the previous output, he can accept the repository version. That’s rc for just conflicts,
leaving his non-controversial changes in place, or rf to override his entire version of the document with
that on the server. He can override the repository version. That’s mc to impose his version of only
conflicts or mf to override the entire repository version of the document with his own. He can choose to
postpone action, which will leave the document tagged locally as a conflict until he runs svn resolve on
the file. Most likely, though, he’ll choose the e option, and resolve the conflict by hand. In this case, he
deletes the metadata and arranges the content in the right order:

<?php
/**
 * @license http://www.example.com Borsetshire Open License
 * @package quizobjects
 */

/**
 * @package quizobjects
 */
class User {}
?>

Having saved changes and closed the editor window, Bob must still confirm his edit by choosing the
r option, which finally resolves the conflict. Even then, the changes are not committed. Bob must
explicitly commit the changed file for his resolution to make it to the repository. There is an important
principle at work here. Update works from the repository down to the local version. It would not do to
change that flow just because a conflict was detected.

$ svn commit -m 'added class comment' quizobjects/User.php

bob@localhost's password:
Sending quizobjects/User.php
Transmitting file data .

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

371

Committed revision 3.

So far, Bob and I have updated and committed a single file only. By omitting the file argument
altogether, we can apply these commands to every file and directory in the project. Here I run update
from the root directory of the project:

$ svn update

U quizobjects/User.php
Updated to revision 3.

Subversion visits every directory in the project, finding nothing to update until it encounters the
document User.php. Bob’s changes are then incorporated into my version of the document.

You can commit globally in the same way. In this example, I have made minor changes to two
documents, command/Command.php and quiztools/AccessManager.php:

$ svn commit -m'documentation amendments'

Sending command/Command.php
Sending quiztools/AccessManager.php
Transmitting file data ..
Committed revision 4.

Once again, Subversion works through every directory below the current working directory. It takes
no action until it encounters a changed file. At this point, it checks the changes in to the repository.

Adding and Removing Files and Directories
Projects change shape as they develop. Version control software must take account of this, allowing
users to add new files and remove deadwood that would otherwise get in the way.

Adding a File
You can add a new document to Subversion with the add subcommand. Here I add a document called
Question.php to the project:

$ touch quizobjects/Question.php

$ svn add quizobjects/Question.php

A quizobjects/Question.php

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

372

In a real-world situation, I would probably start out by adding some content to Question.php. Here, I
confine myself to creating an empty file using the standard touch command. Once I have added a
document, I must still invoke the commit subcommand to complete the addition.

$ svn commit -m'initial checkin'

Adding quizobjects/Question.php
Transmitting file data .
Committed revision 5.

Question.php is now in the repository.

Removing a File
Should I discover that I have been too hasty and need to remove the document, it should come as no
surprise to learn that you can use a subcommand called remove.

$ svn remove quizobjects/Question.php

D quizobjects/Question.php

Once again, a commit is required to finish the job.

$ svn commit -m'removed Question'

Deleting quizobjects/Question.php
Committed revision 6.

Adding a Directory
You can also add and remove directories with add and remove. Let’s say Bob wants to make a new
directory available:

$ mkdir resources
$ touch resources/blah.gif
$ svn add resources/

A resources
A resources/blah.gif

Notice how the contents of resources are added automatically to the repository.
findme

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

373

Removing Directories
As you might expect, you can remove directories with the remove subcommand. Here, I profoundly
disagree with Bob’s decision to add a resources directory.

$ svn remove resources/

D resources/blah.gif
D resources

Notice again that the subcommand works recursively. You’ll need to run commit in order for the
changes to be applied, though.

Tagging and Exporting a Release
All being well, a project will eventually reach a state of readiness, and you will want to ship it or deploy it.
Subversion can help you here in two ways. First, you can generate a version of the project that does not
contain Subversion metadata. Second, you can freeze this moment in your project’s development so
that you can always return to it later on.

Tagging a Project
Other version control systems have the concept of a tag built in at the command level. For Subversion
though, a tag is really just a copy. It doesn’t have any special qualities. Its status as a snapshot, a
reference copy, is a purely a matter of user convention. Remember the directories I created when I first
imported my project? There was trunk, which is where I’ve been working. There were also branch and
tags. To create a tag, I simply ask Subversion to copy my current project into the tags directory.

How do I do that though? I checked out the trunk directory, so I don’t have the other directories
available locally right now. In fact I can order Subversion to make the copy within the repository.

$ svn copy svn+ssh://localhost/var/local/svn/megaquiz/trunk \
 svn+ssh://localhost/var/local/svn/megaquiz/tags/megaquiz-release1.0.0 \
 -m'release branch'

Committed revision 9.

Because I’m dealing solely in URLs here, this is strictly a server operation, so you need to be sure you’ve
committed everything you want included before running the copy command in this way. You can also
run copy within a working copy, and supply file paths rather than URLs. This is a somewhat more
expensive operation though, and it requires you to maintain your tags and branches locally.
Notice that I named my tag as part of the copy operation. I copied trunk to tags/megaquiz-release1.0.0.
I can double-check this with the list command:

$ svn list svn+ssh://localhost/var/local/svn/megaquiz/tags/

megaquiz-release1.0.0/

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

374

I can now acquire this snapshot at anytime with the checkout command. However, a tag is not usually
intended to form the basis of parallel development (see the section on branches later in this chapter for
that). You may, however, want to export a tagged copy, ready for packaging.

Exporting a Project
As you have seen, a checked-out project includes administrative directories (named .svn). Depending
upon how you have configured your build and packaging tools these may clutter up an official release of
your project. Subversion provides the export subcommand to generate clean release versions of your
codebase.

$ svn export svn+ssh://localhost/var/local/svn/megaquiz/tags/megaquiz-release1.0.0 \
 megaquiz1.0.0

A megaquiz1.0.0
A megaquiz1.0.0/quizobjects
A megaquiz1.0.0/quizobjects/User.php
A megaquiz1.0.0/quiztools
A megaquiz1.0.0/quiztools/AccessManager.php
A megaquiz1.0.0/main.php
A megaquiz1.0.0/command
A megaquiz1.0.0/command/Command.php
A megaquiz1.0.0/command/CommandContext.php
A megaquiz1.0.0/command/FeedbackCommand.php
A megaquiz1.0.0/command/LoginCommand.php

Exported revision 9.The first argument to export specifies the source. In this case, the tag I created
in the last section. The second argument specifies a destination directory which Subversion will create if
necessary.

Branching a Project
Now that my project has been released, I can pack it away and wander off to do something new, right?
After all, it was so elegantly written that bugs are an impossibility and so thoroughly specified that no
user could possibly require any new features!

Meanwhile, back in the real world, I must continue to work with the codebase on at least two levels.
Bug reports should be trickling in right about now, and the wish list for version 1.2.0 swelling with
demands for fantastic new features. How do I reconcile these forces? I need to fix the bugs as they are
reported, and I need to push on with primary development. I could fix the bugs as part of development
and release in one go when the next version is stable. But then users may have a long wait before they
see any problems addressed. This is plainly unacceptable. On the other hand, I could release as I go.
Here, I risk shipping broken code. Clearly, I need two strands to my development.

Subversion allows you to maintain parallel strands of development in a project. I can continue
working on as before in the trunk. It is here that I add new and experimental code. Let’s use a particular
file, command/FeedbackCommand.php, as an example.

class FeedbackCommand extends Command {
 function execute(CommandContext $context) {
 // new and risky development
 // goes here

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

375

 $msgSystem = ReceiverFactory::getMessageSystem();
 $email = $context->get('email');
 $msg = $context->get('pass');
 $topic = $context->get('topic');
 $result = $msgSystem->dispatch($email, $msg, $topic);
 if (! $user) {
 $this->context->setError($msgSystem->getError());
 return false;
 }
 $context->addParam("user", $user);
 return true;
 }
}

All I have done here is to add a comment to simulate an addition to the code. Meanwhile, users
begin to report that they are unable to use the feedback mechanism in the system. I locate the bug in the
same file:

 //...
 $result = $msgSystem->dispatch($email, $msg, $topic);
 if (! $user) {
 $this->context->setError($msgSystem->getError());
 //...

I should, in fact, be testing $result, and not $user. I could fix this here, of course, but the users
would not see the fix until my experimental code is stable. Instead, I can create a branch of the project.

In fact, I would do this at the same time as creating the release tag.

$ svn copy svn+ssh://localhost/var/local/svn/megaquiz/trunk \
 svn+ssh://localhost/var/local/svn/megaquiz/branches/megaquiz-branch1.0.0
-m'release branch'

Committed revision 10.

What’s the difference between this use of copy and the tag example from earlier? As far as
Subversion is concerned, absolutely nothing. I’m simply copying into the branches directory rather than
the tags directory. It’s my intention that makes the difference. I intend to commit to this copy, rather
than just to use it as a snapshot.

In order to work with my new branch I’ll have to check it out first. I need to fix the code as it stood at
the point of last release. I move out of the development project directory (so that my current working
directory does not contain a Subversion administration directory), and then check out the project.

$ cd ..
$ svn checkout svn+ssh://localhost/var/local/svn/megaquiz/➥
branches/megaquiz-branch1.0.0
 \
megaquiz-branch1.0.0

A megaquiz-branch1.0.0/quizobjects
A megaquiz-branch1.0.0/quizobjects/User.php
A megaquiz-branch1.0.0/quiztools
A megaquiz-branch1.0.0/quiztools/AccessManager.php
A megaquiz-branch1.0.0/main.php

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

376

A megaquiz-branch1.0.0/command
A megaquiz-branch1.0.0/command/Command.php
A megaquiz-branch1.0.0/command/CommandContext.php
A megaquiz-branch1.0.0/command/FeedbackCommand.php
A megaquiz-branch1.0.0/command/LoginCommand.php
Checked out revision 10.

I moved out of the megaquiz-trunk directory before checking out the branch. Now I have two
directories at the same level: megaquiz-trunk contains the trunk, and I’ll commit my risky but useful new
features here. In fact I’ll do that now:

$ cd megaquiz-trunk/
$ svn commit -m'added new risky dev on trunk'

Sending command/FeedbackCommand.php
Transmitting file data .
Committed revision 11.

megaquiz-branch1.0.0, on the other hand, is my bugfix branch. I’ll only commit defect fixes here. Here’s
my fix:
class FeedbackCommand extends Command {

 function execute(CommandContext $context) {
 $msgSystem = ReceiverFactory::getMessageSystem();
 $email = $context->get('email');
 $msg = $context->get('pass');
 $topic = $context->get('topic');
 $result = $msgSystem->dispatch($email, $msg, $topic);
 if (! $result) {
 $this->context->setError($msgSystem->getError());
 return false;
 }
 $context->addParam("user", $user);
 return true;
 }
}

I have changed

 if (! $user) {

to

 if (! $result) {

Now to commit

$ cd ../megaquiz-branch1.0.0/
$ svn commit -m'fixed bug'

Sending command/FeedbackCommand.php

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

377

Transmitting file data .

Committed revision 12.I have edited this in the meagquiz-branch1.0.0 directory. By editing and
committing here I ensure that my changes end up on the branch and not the trunk. I could tag, export
and distribute this now as a point release.

It doesn’t end there, though. Now that I have fixed the bug, I need to apply the change to my main
development strand (the trunk).

■Note To merge or not to merge? The choice is not always as straightforward as it might seem. In some cases,
for example, your bug fix may be the kind of temporary work that is supplanted by a more thorough refactoring on
the trunk, or it may no longer apply due to a change in specification. This is necessarily a judgment call. Most
teams I have worked in, however, tend to merge to the trunk where possible while keeping work on the branch to
the bare minimum. New features, for us, generally appear on the trunk and find their way quickly to users through
a “release early and often” policy.

Subversion provides the merge command for this purpose. Change your working directory to the
local destination, and invoke merge, passing it the source URL.

$ svn merge svn+ssh://localhost/var/local/svn/megaquiz/branches/megaquiz-branch1.0.0

--- Merging r12 into '.':
U command/FeedbackCommand.php

Now, when I look at the version of FeedbackCommand in the trunk, I confirm that all changes have
been merged.

 function execute(CommandContext $context) {
 // new and risky development
 // goes here
 $msgSystem = ReceiverFactory::getMessageSystem();
 $email = $context->get('email');
 $msg = $context->get('pass');
 $topic = $context->get('topic');
 $result = $msgSystem->dispatch($email, $msg, $topic);
 if (! $result) {
 $this->context->setError($msgSystem->getError());
 return false;
 }
 $context->addParam("user", $user);
 return true;
 }

The execute() method now includes both my simulated trunk development and the bugfix.

CHAPTER 17 ■ VERSION CONTROL WITH SUBVERSION

378

Branches are often seen as an advanced Subversion topic, largely because of the difficulty of some of
the concepts involved. For large or long-lived projects, though, branching soon becomes an essential
technique.

Summary
Subversion comprises an enormous number of tools, each with a daunting range of options and
capabilities. I can only hope to provide a brief introduction in the space available. Nonetheless, if you
only use the features I have covered in this chapter, you should see the benefit in your own work,
whether through protection against data loss or improvements in collaborative working.

In this chapter, we took a tour through the basics of Subversion. I looked briefly at configuration
before importing a project. I checked out, committed, and updated code, finally tagging and exporting a
release. I ended the chapter with a brief look at branches, demonstrating their usefulness in maintaining
concurrent development and bug-fix strands in a project.

There is one issue that I have glossed over here to some extent. We established the principle that
developers should check out their own versions of a project. On the whole, though, projects will not run
in place. In order to test their changes, developers need to deploy code locally. Sometimes, this is as
simple as copying over a few directories. More often, though, deployment must address a whole range of
configuration issues. In the next chapter, we will look at some techniques for automating this process.

C H A P T E R 18

■ ■ ■

379

Testing with PHPUnit

Every component in a system depends, for its continued smooth running, on the consistency of
operation and interface of its peers. By definition, then, development breaks systems. As you improve
your classes and packages, you must remember to amend any code that works with them. For some
changes, this can create a ripple effect, affecting components far away from the code you originally
changed. Eagle-eyed vigilance and an encyclopedic knowledge of a system’s dependencies can help to
address this problem. Of course, while these are excellent virtues, systems soon grow too complex for
every unwanted effect to be easily predicted, not least because systems often combine the work of many
developers. To address this problem, it is a good idea to test every component regularly. This, of course,
is a repetitive and complex task and as such it lends itself well to automation.

Among the test solutions available to PHP programmers, PHPUnit is perhaps the most ubiquitous
and certainly the most fully featured tool. In this chapter, you will learn the following about PHPUnit:

• Installation: Using PEAR to install PHPUnit

• Writing Tests: Creating test cases and using assertion methods

• Handling Exceptions: Strategies for confirming failure

• Running multiple tests: Collecting tests into suites

• Constructing assertion logic: Using constraints

• Faking components: Mocks and stubs

• Testing web applications: With and without additional tools.

Functional Tests and Unit Tests
Testing is essential in any project. Even if you don’t formalize the process, you must have found yourself
developing informal lists of actions that put your system through its paces. This process soon becomes
wearisome, and that can lead to a fingers-crossed attitude to your projects.

One approach to testing starts at the interface of a project, modeling the various ways in which a
user might negotiate the system. This is probably the way you would go when testing by hand, although
there are various frameworks for automating the process. These functional tests are sometimes called
acceptance tests, because a list of actions performed successfully can be used as criteria for signing off a
project phase. Using this approach, you typically treat the system as a black box—your tests remaining
willfully ignorant of the hidden components that collaborate to form the system under test.

Whereas functional tests operate from without, unit tests (the subject of this chapter) work from the
inside out. Unit testing tends to focus on classes, with test methods grouped together in test cases. Each
test case puts one class through a rigorous workout, checking that each method performs as advertised

CHAPTER 18 ■ TESTING WITH PHPUNIT

380

and fails as it should. The objective, as far as possible, is to test each component in isolation from its
wider context. This often supplies you with a sobering verdict on the success of your mission to decouple
the parts of your system.

Tests can be run as part of the build process, directly from the command line, or even via a web
page. In this chapter, I’ll concentrate on the command line.

Unit testing is a good way of ensuring the quality of design in a system. Tests reveal the
responsibilities of classes and functions. Some programmers even advocate a test-first approach. You
should, they say, write the tests before you even begin work on a class. This lays down a class’s purpose,
ensuring a clean interface and short, focused methods. Personally, I have never aspired to this level of
purity—it just doesn’t suit my style of coding. Nevertheless, I attempt to write tests as I go. Maintaining a
test harness provides me with the security I need to refactor my code. I can pull down and replace entire
packages with the knowledge that I have a good chance of catching unexpected errors elsewhere in the
system.

Testing by Hand
In the last section, I said that testing was essential in every project. I could have said instead that testing
is inevitable in every project. We all test. The tragedy is that we often throw away this good work.

So, let’s create some classes to test. Here is a class that stores and retrieves user information. For the
sake of demonstration, it generates arrays, rather than the User objects you'd normally expect to use:

class UserStore {
 private $users = array();

 function addUser($name, $mail, $pass) {
 if (isset($this->users[$mail])) {
 throw new Exception(
 "User {$mail} already in the system");
 }

 if (strlen($pass) < 5) {
 throw new Exception(
 "Password must have 5 or more letters");
 }

 $this->users[$mail] = array('pass' => $pass,
 'mail' => $mail,
 'name' => $name);
 return true;
 }

 function notifyPasswordFailure($mail) {
 if (isset($this->users[$mail])) {
 $this->users[$mail]['failed']=time();
 }
 }

 function getUser($mail) {
 return ($this->users[$mail]);
 }
}

CHAPTER 18 ■ TESTING WITH PHPUNIT

381

This class accepts user data with the addUser() method and retrieves it via getUser(). The user’s
e-mail address is used as the key for retrieval. If you’re like me, you’ll write some sample implementation
as you develop, just to check that things are behaving as you designed them—something like this:

$store=new UserStore();
$store->addUser("bob williams",
 "bob@example.com",
 "12345");
$user = $store->getUser("bob@example.com");
print_r($user);

This is the sort of thing I might add to the foot of a file as I work on the class it contains. The test
validation is performed manually, of course; it’s up to me to eyeball the results and confirm that the data
returned by UserStore::getUser() corresponds with the information I added initially. It’s a test of sorts,
nevertheless.

Here is a client class that uses UserStore to confirm that a user has provided the correct
authentication information:

class Validator {
 private $store;

 public function __construct(UserStore $store) {
 $this->store = $store;
 }

 public function validateUser($mail, $pass) {
 if (! is_array($user = $this->store->getUser($mail))) {
 return false;
 }
 if ($user['pass'] == $pass) {
 return true;
 }
 $this->store->notifyPasswordFailure($mail);
 return false;
 }
}

The class requires a UserStore object, which it saves in the $store property. This property is used by
the validateUser() method to ensure first of all that the user referenced by the given e-mail address
exists in the store and secondly that the user’s password matches the provided argument. If both these
conditions are fulfilled, the method returns true. Once again, I might test this as I go along:

$store = new UserStore();
$store->addUser("bob williams", "bob@example.com", "12345");
$validator = new Validator($store);
if ($validator->validateUser("bob@example.com", "12345")) {
 print "pass, friend!\n";
}

I instantiate a UserStore object, which I prime with data and pass to a newly instantiated Validator
object. I can then confirm a user name and password combination.

Once I’m finally satisfied with my work, I could delete these sanity checks altogether or comment
them out. This is a terrible waste of a valuable resource. These tests could form the basis of a harness to
scrutinize the system as I develop. One of the tools that might help me to do this is PHPUnit.

CHAPTER 18 ■ TESTING WITH PHPUNIT

382

Introducing PHPUnit
PHPUnit is a member of the xUnit family of testing tools. The ancestor of these is SUnit, a framework
invented by Kent Beck to test systems built with the Smalltalk language. The xUnit framework was
probably established as a popular tool, though, by the Java implementation, jUnit, and by the rise to
prominence of agile methodologies like Extreme Programming (XP) and Scrum, all of which place great
emphasis on testing.

The current incarnation of PHPUnit was created by Sebastian Bergmann, who changed its name
from PHPUnit2 (which he also authored) early in 2007 and shifted its home from the pear.php.net
channel to pear.phpunit.de. For this reason, you must tell the pear application where to search for the
framework when you install:

$ pear channel-discover pear.phpunit.de
$ pear channel-discover pear.symfony-project.com
$ pear install phpunit

■Note I show commands that are input at the command line in bold to distinguish them from any output they
may produce.

Notice I added another channel, pear.symfony-project.com. This may be needed to satisfy a
dependency of PHPUnit that is hosted there.

Creating a Test Case
Armed with PHPUnit, I can write tests for the UserStore class. Tests for each target component should be
collected in a single class that extends PHPUnit_Framework_TestCase, one of the classes made available by
the PHPUnit package. Here’s how to create a minimal test case class:

require_once 'PHPUnit/Framework/TestCase.php';

class UserStoreTest extends PHPUnit_Framework_TestCase {

 public function setUp() {
 }

 public function tearDown() {
 }

 //...
}

I named the test case class UserStoreTest. You are not obliged to use the name of the class you are
testing in the test’s name, though that is what many developers do. Naming conventions of this kind can
greatly improve the accessibility of a test harness, especially as the number of components and tests in
the system begins to increase. It is also common to group tests in package directories that directly mirror
those that house the system’s classes. With a logical structure like this, you can often open up a test from
the command line without even looking to see if it exists! Each test in a test case class is run in isolation
from its siblings. The setUp() method is automatically invoked for each test method, allowing us to set

CHAPTER 18 ■ TESTING WITH PHPUNIT

383

up a stable and suitably primed environment for the test. tearDown() is invoked after each test method is
run. If your tests change the wider environment of your system, you can use this method to reset state.
The common platform managed by setUp() and tearDown() is known as a fixture.

In order to test the UserStore class, I need an instance of it. I can instantiate this in setUp() and
assign it to a property. Let’s create a test method as well:

require_once('UserStore.php');
require_once('PHPUnit/Framework/TestCase.php');

class UserStoreTest extends PHPUnit_Framework_TestCase {
 private $store;

 public function setUp() {
 $this->store = new UserStore();
 }

 public function tearDown() {
 }

 public function testGetUser() {
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");
 $this->assertEquals($user['mail'], "a@b.com");
 $this->assertEquals($user['name'], "bob williams");
 $this->assertEquals($user['pass'], "12345");
 }
}

Test methods should be named to begin with the word “test” and should require no arguments. This
is because the test case class is manipulated using reflection.

■Note Reflection is covered in detail in Chapter 5.

The object that runs the tests looks at all the methods in the class and invokes only those that match
this pattern (that is, methods that begin with “test”).

In the example, I tested the retrieval of user information. I don’t need to instantiate UserStore for
each test, because I handled that in setUp(). Because setUp() is invoked for each test, the $store
property is guaranteed to contain a newly instantiated object.

Within the testGetUser() method, I first provide UserStore::addUser() with dummy data, then I
retrieve that data and test each of its elements.

Assertion Methods
An assertion in programming is a statement or method that allows you to check your assumptions about
an aspect of your system. In using an assertion you typically define an expectation that something is the
case, that $cheese is "blue" or $pie is "apple". If your expectation is confounded, a warning of some kind
will be generated. Assertions are such a good way of adding safety to a system that some programming

CHAPTER 18 ■ TESTING WITH PHPUNIT

384

languages support them natively and inline and allow you to turn them off in a production context (Java
is an example). PHPUnit supports assertions though a set of static methods.

In the previous example, I used an inherited static method: assertEquals(). This compares its two
provided arguments and checks them for equivalence. If they do not match, the test method will be
chalked up as a failed test. Having subclassed PHPUnit_Framework_TestCase, I have access to a set of
assertion methods. Some of these methods are listed in Table 18–1.

Table 18–1. PHPUnit_Framework_TestCase Assert Methods

Method Description

assertEquals($val1, $val2, $delta, $message) Fail if $val1 is not equivalent to $val2. ($delta
represents an allowable margin of error.)

assertFalse($expression, $message) Evaluate $expression. Fail if it does not
resolve to false.

assertTrue($expression, $message) Evaluate $expression. Fail if it does not
resolve to true.

assertNotNull($val, $message) Fail if $val is null.

assertNull($val, $message) Fail if $val is anything other than null.

assertSame($val1, $val2, $message) Fail if $val1 and $val2 are not references to
the same object or if they are variables of
different types or values.

assertNotSame($val1, $val2, $message) Fail if $val1 and $val2 are references to the
same object or variables of the same type and
value.

assertRegExp($regexp, $val, $message) Fail if $val is not matched by regular
expression $regexp.

assertType($typestring, $val, $message) Fail if $val is not the type described in $type.

assertAttributeSame($val, $attribute,
$classname, $message)

Fail if $val is not the same type and value as
$classname::$attribute.

fail() Fail.

Testing Exceptions
Your focus as a coder is usually to make stuff work and work well. Often, that mentality carries through
to testing, especially if you are testing your own code. The temptation is test that a method behaves as
advertised. It’s easy to forget how important it is to test for failure. How good is a method’s error
checking? Does it throw an exception when it should? Does it throw the right exception? Does it clean up

CHAPTER 18 ■ TESTING WITH PHPUNIT

385

after an error if for example an operation is half complete before the problem occurs? It is your role as a
tester to check all of this. Luckily, PHPUnit can help.

Here is a test that checks the behavior of the UserStore class when an operation fails:

 //...
 public function testAddUser_ShortPass() {
 try {
 $this->store->addUser("bob williams", "bob@example.com", "ff");
 } catch (Exception $e) { return; }
 $this->fail("Short password exception expected");
 }
 //...

If you look back at the UserStore::addUser() method, you will see that I throw an exception if the
user’s password is less than five characters long. My test attempts to confirm this. I add a user with an
illegal password in a try clause. If the expected exception is thrown, then all is well, and I return silently.
The final line of the method should never be reached, so I invoke the fail() method there. If the
addUser() method does not throw an exception as expected, the catch clause is not invoked, and the
fail() method is called.

Another way to test that an exception is thrown is to use an assertion method called
setExpectedException(), which requires the name of the exception type you expect to be thrown (either
Exception or a subclass). If the test method exits without the correct exception having been thrown, the
test will fail.

Here’s a quick reimplementation of the previous test:

require_once('PHPUnit/Framework/TestCase.php');
require_once('UserStore.php');

class UserStoreTest extends PHPUnit_Framework_TestCase {
 private $store;

 public function setUp() {
 $this->store = new UserStore();
 }

 public function testAddUser_ShortPass() {
 $this->setExpectedException('Exception');
 $this->store->addUser("bob williams", "bob@example.com", "ff");
 }
}

Running Test Suites
If I am testing the UserStore class, I should also test Validator. Here is a cut-down version of a class
called ValidateTest that tests the Validator::validateUser() method:

require_once('UserStore.php');
require_once('Validator.php');
require_once('PHPUnit/Framework/TestCase.php');

class ValidatorTest extends PHPUnit_Framework_TestCase {
 private $validator;

CHAPTER 18 ■ TESTING WITH PHPUNIT

386

 public function setUp() {
 $store = new UserStore();
 $store->addUser("bob williams", "bob@example.com", "12345");
 $this->validator = new Validator($store);
 }

 public function tearDown() {
 }

 public function testValidate_CorrectPass() {
 $this->assertTrue(
 $this->validator->validateUser("bob@example.com", "12345"),
 "Expecting successful validation"
);
 }
}

So now that I have more than one test case, how do I go about running them together? The best way
is to place your test classes in a directory called test. You can then specify this directory and
PHPUnit will run all the tests beneath it.

$ phpunit test/

PHPUnit 3.4.11 by Sebastian Bergmann.
.....

Time: 1 second, Memory: 3.75Mb

OK (5 tests, 10 assertions)

For a larger project you may want to further organize tests in subdirectories preferably in the same
structure as your packages. Then you can specify indivisual packages when required.

Constraints
In most circumstances, you will use off-the-peg assertions in your tests. In fact, at a stretch you can
achieve an awful lot with AssertTrue() alone. As of PHPUnit 3.0, however, PHPUnit_Framework_TestCase
includes a set of factory methods that return PHPUnit_Framework_Constraint objects. You can combine
these and pass them to PHPUnit_Framework_TestCase::AssertThat() in order to construct your own
assertions.

It’s time for a quick example. The UserStore object should not allow duplicate e-mail addresses to
be added. Here’s a test that confirms this:

class UserStoreTest extends PHPUnit_Framework_TestCase {
 //....

 public function testAddUser_duplicate() {
 try {
 $ret = $this->store->addUser("bob williams", "a@b.com", "123456");
 $ret = $this->store->addUser("bob stevens", "a@b.com", "123456");

CHAPTER 18 ■ TESTING WITH PHPUNIT

387

 self::fail("Exception should have been thrown");
 } catch (Exception $e) {
 $const = $this->logicalAnd(
 $this->logicalNot($this->contains("bob stevens")),
 $this->isType('array')
);
 self::AssertThat($this->store->getUser("a@b.com"), $const);
 }
 }

This test adds a user to the UserStore object and then adds a second user with the same e-mail
address. The test thereby confirms that an exception is thrown with the second call to addUser(). In the
catch clause, I build a constraint object using the convenience methods available to us. These return
corresponding instances of PHPUnit_Framework_Constraint. Let’s break down the composite constraint
in the previous example:

$this->contains("bob stevens")

This returns a PHPUnit_Framework_Constraint_TraversableContains object. When passed to
AssertThat, this object will generate an error if the test subject does not contain an element matching
the given value ("bob stevens"). I negate this, though, by passing this constraint to another:
PHPUnit_Framework_Constraint_Not. Once again, I use a convenience method, available though the
TestCase class (actually through a superclass, Assert).

$this->logicalNot($this->contains("bob stevens"))

Now, the AssertThat assertion will fail if the test value (which must be traversable) contains an
element that matches the string "bob stevens". In this way, you can build up quite complex logical
structures. By the time I have finished, my constraint can be summarized as follows: “Do not fail if the
test value is an array and does not contain the string "bob stevens".” You could build much more
involved constraints in this way. The constraint is run against a value by passing both to AssertThat().

You could achieve all this with standard assertion methods, of course, but constraints have a couple
of virtues. First, they form nice logical blocks with clear relationships among components (although
good use of formatting may be necessary to support clarity). Second, and more importantly, a constraint
is reusable. You can set up a library of complex constraints and use them in different tests. You can even
combine complex constraints with one another:

$const = $this->logicalAnd(
 $a_complex_constraint,
 $another_complex_constraint);

Table 18–2 shows the some of the constraint methods available in a TestCase class.

CHAPTER 18 ■ TESTING WITH PHPUNIT

388

Table 18–2. Some Constraint Methods

TestCase Method Constraint Fails Unless . . .

greaterThan($num) Test value is greater than $num.

contains($val) Test value (traversable) contains an
element that matches $val.

identicalTo($val) Test value is a reference to the same object
as $val or, for non-objects, is of the same
type and value.

greaterThanOrEqual($num) Test value is greater than or equal to $num.

lessThan($num) Test value is less than $num.

lessThanOrEqual($num) Test value is less than or equal to $num.

equalTo($value, $delta=0, $depth=10) Test value equals $val. If specified, $delta
defines a margin of error for numeric
comparisons, and $depth determines how
recursive a comparison should be for arrays
or objects.

stringContains($str, $casesensitive=true) Test value contains $str. This is case
sensitive by default.

matchesRegularExpression($pattern) Test value matches the regular expression
in $pattern.

logicalAnd(PHPUnit_Framework_Constraint $const,
[, $const..])

All provided constraints pass.

logicalOr(PHPUnit_Framework_Constraint $const,
[, $const..])

At least one of the provided constraints
match.

logicalNot(PHPUnit_Framework_Constraint $const) The provided constraint does not pass.

Mocks and Stubs
Unit tests aim to test a component in isolation of the system that contains it to the greatest possible
extent. Few components exist in a vacuum, however. Even nicely decoupled classes require access to
other objects as methods arguments. Many classes also work directly with databases or the filesystem.

You have already seen one way of dealing with this. The setUp() and tearDown() methods can be
used to manage a fixture, that is, a common set of resources for your tests, which might include database
connections, configured objects, a scratch area on the file system, and so on.

CHAPTER 18 ■ TESTING WITH PHPUNIT

389

Another approach is to fake the context of the class you are testing. This involves creating objects
that pretend to be the objects that do real stuff. For example, you might pass a fake database mapper to
your test object’s constructor. Because this fake object shares a type with the real mapper class (extends
from a common abstract base or even overrides the genuine class itself), your subject is none the wiser.
You can prime the fake object with valid data. Objects that provide a sandbox of this sort for unit tests
are known as stubs. They can be useful because they allow you to focus in on the class you want to test
without inadvertently testing the entire edifice of your system at the same time.

Fake objects can be taken a stage further than this, however. Since the object you are testing is likely
to call a fake object in some way, you can prime it to confirm the invocations you are expecting. Using a
fake object as a spy in this way is known as behavior verification, and it is what distinguishes a mock
object from a stub.

You can build mocks yourself by creating classes hard-coded to return certain values and to report
on method invocations. This is a simple process, but it can be time consuming.

PHPUnit provides access to an easier and more dynamic solution. It will generate mock objects on
the fly for you. It does this by examining the class you wish to mock and building a child class that
overrides its methods. Once you have this mock instance, you can call methods on it to prime it with
data and to set the conditions for success.

Let’s build an example. The UserStore class contains a method called notifyPasswordFailure(),
which sets a field for a given user. This should be called by Validator when an attempt to set a password
fails. Here, I mock up the UserStore class so that it both provides data to the Validator object and
confirms that its notifyPasswordFailure() method was called as expected:

class ValidatorTest extends PHPUnit_Framework_TestCase {
 //...

 public function testValidate_FalsePass() {
 $store = $this->getMock("UserStore");
 $this->validator = new Validator($store);

 $store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with($this->equalTo('bob@example.com'));

 $store->expects($this->any())
 ->method("getUser")
 ->will($this->returnValue(array("name"=>"bob@example.com",
 "pass"=>"right")));

 $this->validator->validateUser("bob@example.com", "wrong");

 }
}

Mock objects use a fluent interface, that is, a language-like structure. These are much easier to use
than to describe. Such constructs work from left to right, each invocation returning an object reference,
which can then be invoked with a further modifying method call (itself returning an object). This can
make for easy use but painful debugging.

In the previous example, I called the PHPUnit_Framework_TestCase method: getMock(), passing it
"UserStore", the name of the class I wish to mock. This dynamically generates a class and instantiates an
object from it. I store this mock object in $store and pass it to Validator. This causes no error, because
the object’s newly minted class extends UserStore. I have fooled Validator into accepting a spy into its
midst.

Mock objects generated by PHPUnit have an expects() method. This method requires a matcher
object (actually it’s of type PHPUnit_Framework_MockObject_Matcher_Invocation, but don’t worry; you can

CHAPTER 18 ■ TESTING WITH PHPUNIT

390

use the convenience methods in TestCase to generate your matcher). The matcher defines the
cardinality of the expectation, that is, the number of times a method should be called.

Table 18–3 shows the matcher methods available in a TestCase class.

Table 18–3. Some Matcher Methods

TestCase Method Match Fails Unless . . .

any() Zero or more calls are made to corresponding method (useful for stub
objects that return values but don’t test invocations).

never() No calls are made to corresponding method.

atLeastOnce() One or more calls are made to corresponding method.

once() A single call is made to corresponding method.

exactly($num) $num calls are made to corresponding method.

at($num) A call to corresponding method made at $num index (each method call
to a mock is recorded and indexed).

Having set up the match requirement, I need to specify a method to which it applies. For instance,

expects() returns an object (PHPUnit_Framework_MockObject_Builder_InvocationMocker, if you must
know) that has a method called method(). I can simply call that with a method name. This is enough to
get some real mocking done:

$store = $this->getMock("UserStore");
$store->expects($this->once())
 ->method('notifyPasswordFailure');

I need to go further, though, and check the parameters that are passed to notifyPasswordFailure().
The InvocationMocker::method() returns an instance of the object it was called on. InvocationMocker
includes a method name with(), which accepts a variable list of parameters to match. It also accepts
constraint objects, so you can test ranges and so on. Armed with this, you can complete the statement
and ensure the expected parameter is passed to notifyPasswordFailure().

 $store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with($this->equalTo('bob@example.com'));

You can see why this is known as a fluent interface. It reads a bit like a sentence: “The $store object
expects a single call to the notifyPasswordFailure() method with parameter bob@example.com.”

Notice that I passed a constraint to with(). Actually, that’s redundant—any bare arguments are
converted to constraints internally, so I could write the statement like this:

 $store->expects($this->once())
 ->method('notifyPasswordFailure')
 ->with('bob@example.com');

Sometimes, you only want to use PHPUnit’s mocks as stubs, that is, as objects that return values to
allow your tests to run. In such cases you can invoke InvocationMocker::will() from the call to
method(). The will() method requires the return value (or values if the method is to be called

CHAPTER 18 ■ TESTING WITH PHPUNIT

391

repeatedly) that the associated method should be primed to return. You can pass in this return value by
calling either TestCase::returnValue() or TestCase::onConsecutiveCalls(). Once again, this is much
easier to do than to describe. Here’s the fragment from my earlier example in which I prime UserStore to
return a value:

 $store->expects($this->any())
 ->method("getUser")
 ->will($this->returnValue(
 array("name"=>"bob williams",
 "mail"=>"bob@example.com",
 "pass"=>"right")));

I prime the UserStore mock to expect any number of calls to getUser()— right now, I’m concerned
with providing data and not with testing calls. Next, I call will() with the result of invoking
TestCase::returnValue() with the data I want returned (this happens to be a
PHPUnit_Framework_MockObject_Stub_Return object, though if I were you, I’d just remember the
convenience method you use to get it).

You can alternatively pass the result of a call to TestCase::onConsecutiveCalls() to will(). This
accepts any number of parameters, each one of which will be returned by your mocked method as it is
called repeatedly.

Tests Succeed When They Fail
While most agree that testing is a fine thing, you grow to really love it generally only after it has saved
your bacon a few times. Let’s simulate a situation where a change in one part of a system has an
unexpected effect elsewhere.

The UserStore class has been running for a while when, during a code review, it is agreed that it
would be neater for the class to generate User objects rather than associative arrays. Here is the new
version:

class UserStore {
 private $users = array();

 function addUser($name, $mail, $pass) {

 if (isset($this->users[$mail])) {
 throw new Exception(
 "User {$mail} already in the system");
 }

 $this->users[$mail] = new User($name, $mail, $pass);
 return true;
 }

 function notifyPasswordFailure($mail) {
 if (isset($this->users[$mail])) {
 $this->users[$mail]->failed(time());
 }
 }

 function getUser($mail) {
 if (isset($this->users[$mail])) {
 return ($this->users[$mail]);

CHAPTER 18 ■ TESTING WITH PHPUNIT

392

 }
 return null;
 }
}

Here is the simple User class:

class User {
 private $name;
 private $mail;
 private $pass;
 private $failed;

 function __construct($name, $mail, $pass) {

 if (strlen($pass) < 5) {
 throw new Exception(
 "Password must have 5 or more letters");
 }

 $this->name = $name;
 $this->mail = $mail;
 $this->pass = $pass;
 }

 function getName() {
 return $this->name;
 }

 function getMail() {
 return $this->mail;
 }

 function getPass() {
 return $this->pass;
 }

 function failed($time) {
 $this->failed = $time;
 }
}

Of course, I amend the UserStoreTest class to account for these changes. So code designed to work
with an array like this:

 public function testGetUser() {
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");
 $this->assertEquals($user['mail'], "a@b.com");
 //...

is converted into code designed to work with an object like this:

 public function testGetUser() {
 $this->store->addUser("bob williams", "a@b.com", "12345");
 $user = $this->store->getUser("a@b.com");

CHAPTER 18 ■ TESTING WITH PHPUNIT

393

 $this->assertEquals($user->getMail(), "a@b.com");
 // ...

When I come to run my test suite, however, I am rewarded with a warning that my work is not yet
done:

$ php AppTests.php

PHPUnit 3.0.6 by Sebastian Bergmann.

...FF

Time: 00:00

There were 2 failures:

1) testValidate_CorrectPass(ValidatorTest)
Expecting successful validation
Failed asserting that <boolean:false> is identical to <boolean:true>.
/project/wibble/ValidatorTest.php:22

2) testValidate_FalsePass(ValidatorTest)
Expectation failed for method name is equal to <string:notifyPasswordFailure> ➥
when invoked 1 time(s).
Expected invocation count is wrong.

FAILURES!
Tests: 5, Failures: 2.

There is a problem with ValidatorTest. Let’s take another look at the Validator::validateUser()
method:

 public function validateUser($mail, $pass) {

 if (! is_array($user = $this->store->getUser($mail))) {
 return false;
 }
 if ($user['pass'] == $pass) {
 return true;
 }
 $this->store->notifyPasswordFailure($mail);
 return false;
 }

I invoke getUser(). Although getUser() now returns an object and not an array, my method does
not generate a warning. getUser() originally returned the requested user array on success or null on
failure, so I validated users by checking for an array using the is_array() function. Now, of course,
getUser() returns an object, and the validateUser() method will always return false. Without the test
framework, the Validator would have simply rejected all users as invalid without fuss or warning.

Now, imagine making this neat little change on a Friday night without a test framework in place.
Think about the frantic text messages that would drag you out of your pub, armchair, or restaurant,
“What have you done? All our customers are locked out!”

CHAPTER 18 ■ TESTING WITH PHPUNIT

394

The most insidious bugs don’t cause the interpreter to report that something is wrong. They hide in
perfectly legal code, and they silently break the logic of your system. Many bugs don’t manifest where
you are working; they are caused there, but the effects pop up elsewhere, days or even weeks later. A test
framework can help you catch at least some of these, preventing rather than discovering problems in
your systems.

Write tests as you code, and run them often. If someone reports a bug, first add a test to your
framework to confirm it; then fix the bug so that the test is passed—bugs have a funny habit of recurring
in the same area. Writing tests to prove bugs and then to guard the fix against subsequent problems is
known as regression testing. Incidentally, if you keep a separate directory of regression tests, remember
to name your files descriptively. On one project, our team decided to name our regression tests after
Bugzilla bug numbers. We ended up with a directory containing 400 test files, each with a name like
test_973892.php. Finding an individual test became a tedious chore!

Writing Web Tests
You should engineer your web systems in such a way that they can be invoked easily from the

command line or an API call. In Chapter 12, you saw some tricks that might help you with this. In
particular, if you create a Request class to encapsulate an HTTP request, you can just as easily populate
an instance from the command line or method argument lists as from request parameters. The system
can then run in ignorance of its context.

If you find a system hard to run in different contexts, that may indicate a design issue. If, for
example, you have numerous filepaths hardcoded into components, it’s likely you are suffering from
tight coupling. You should consider moving elements that tie your components to their context into
encapsulating objects that can be acquired from a central repository. The registry pattern, also covered
in Chapter 12, will likely help you with this.

Once your system can be run directly from a method call, you’ll find that high level web tests are
relatively easy to write without any additional tools.

You may find, however, that even the most well thought-out project will need some refactoring to
get things ready for testing. In my experience, this almost always results in design improvements. I’m
going to demonstrate this by retrofitting one aspect the WOO example from Chapters 12 and 13 for unit
testing.

Refactoring a Web Application for Testing
We actually left the WOO example in a reasonable state from a tester’s point of view. Because the

system uses a single Front Controller, there’s a simple API interface. This is a simple class called
Runner.php.

require_once("woo/controller/Controller.php");
\woo\controller\Controller::run();
That would be easy enough to add to a unit test, right? But what about command line arguments?
To some extent, this is already handled in the Request class:
// \woo\controller\Request
 function init() {
 if (isset($_SERVER['REQUEST_METHOD'])) {
 $this->properties = $_REQUEST;
 return;
 }

 foreach($_SERVER['argv'] as $arg) {
 if (strpos($arg, '=')) {

CHAPTER 18 ■ TESTING WITH PHPUNIT

395

 list($key, $val)=explode("=", $arg);
 $this->setProperty($key, $val);
 }
 }
 }

The init() method detects whether it is running in a server context, and populates the $properties
array accordingly (either directly or via setProperty()). This works fine for command line invocation. It
means I can run something like:

$ php runner.php cmd=AddVenue venue_name=bob

and get this response:

<html>
<head>
<title>Add a Space for venue bob</title>
</head>
<body>
<h1>Add a Space for Venue 'bob'</h1>
<table>
<tr>
<td>
'bob' added (5)</td></tr><tr><td>please add name for the space</td>
</tr>
</table>
[add space]
<form method="post">
 <input type="text" value="" name="space_name"/>
 <input type="hidden" name="cmd" value="AddSpace" />
 <input type="hidden" name="venue_id" value="5" />
 <input type="submit" value="submit" />
</form>
</body>
</html>

Although this works for the command line, it remains a little tricky to pass in arguments via a
method call. One inelegant solution would be to manually set the $argv array before calling the
controller’s run() method. I don’t much like this, though. Playing directly with magic arrays feels plain
wrong, and the string manipulation involved at each end would compound the sin. Looking at the
controller class more closely, I see an opportunity to improve both design and testability. Here’s an
extract from the handleRequest() method:

// \woo\controller\Controller
 function handleRequest() {

 $request = new Request();

 $app_c = \woo\base\ApplicationRegistry::appController();
 while($cmd = $app_c->getCommand($request)) {
 $cmd->execute($request);
 }

CHAPTER 18 ■ TESTING WITH PHPUNIT

396

 \woo\domain\ObjectWatcher::instance()->performOperations();
 $this->invokeView($app_c->getView($request));
 }

This method is designed to be invoked by the static run() method. The first thing I notice is a very
definite code smell. The Request object is directly instantiated here. That means I can’t swap in a stub
should I want to. Time to pull on the thread. What’s going on in Request? This is the constructor:

// \woo\controller\Request
 function __construct() {
 $this->init();
 \woo\base\RequestRegistry::setRequest($this);
 }

That smell’s getting worse. The Request class refers itself to the RequestRegistry so that other
components can get it. There are two things I don’t like about this on reflection. First, the code implies a
direct invocation must take place before the Registry is used to access the Request object. And second,
there’s a bit of unnecessary coupling going on. The Request class doesn’t really need to know about the
RequestRegistry.

So how can I improve my design and make the system more amenable to testing at the same time? I
prefer to push instantiations back to the RequestRegistry where possible. That way later I can extend the
implementation of RequestRegistry::instance() to return a MockRequestRegistry populated with fake
components if I want to. I love to fool my systems. So first off I remove that setRequest() line from the
Request object. Now I push my Request instantiation back to the RequestRegistry object:

namespace woo/controller;

//...

class RequestRegistry extends Registry {
 private $request;

// ...

 static function getRequest() {
 $that = self::instance();
 if (! isset($that->request)) {
 $that->request = new \woo\controller\Request();
 }
 return $that->request;
 }
}

Finally, I must replace that direct instantiation in the Controller:

// \woo\controller\Controller
 function handleRequest() {

 $request = \woo\base\RequestRegistry::getRequest();
 $app_c = \woo\base\ApplicationRegistry::appController();
 while($cmd = $app_c->getCommand($request)) {
 $cmd->execute($request);
 }
 \woo\domain\ObjectWatcher::instance()->performOperations();
 $this->invokeView($app_c->getView($request));
 }

CHAPTER 18 ■ TESTING WITH PHPUNIT

397

With those refactorings out the way, my system is more amenable to testing. It’s no accident that my
design has improved at the same time. Now it’s to begin writing tests.

Simple Web Testing
Here’s a test case that performs a very basic test on the WOO system:

class AddVenueTest extends PHPUnit_Framework_TestCase {

 function testAddVenueVanilla() {
 $this->runCommand("AddVenue", array("venue_name"=>"bob"));
 }

 function runCommand($command=null, array $args=null) {
 $request = \woo\base\RequestRegistry::getRequest();
 if (! is_null($args)) {
 foreach($args as $key=>$val) {
 $request->setProperty($key, $val);
 }
 }
 if (! is_null($command)) {
 $request->setProperty('cmd', $command);
 }
 woo\controller\Controller::run();
 }
}

In fact, it does not so much test anything as prove that the system can be invoked. The real work is
done in the runCommand() method. There is nothing terribly clever here. I get a Request object from the
RequestRegistry, and I populate it with the keys and values provided in the method call. Because the
Controller will go to the same source for its Request object, I know that it will work the values I have set.

Running this test confirms that all is well. I see the output I expect. The problem is that this output is
printed by the view, and is therefore hard to test. I can fix that quite easily by buffering the output:

class AddVenueTest extends PHPUnit_Framework_TestCase {
 function testAddVenueVanilla() {
 $output = $this->runCommand("AddVenue", array("venue_name"=>"bob"));

 self::AssertRegexp("/added/", $output);

 }

 function runCommand($command=null, array $args=null) {

 ob_start();

 $request = \woo\base\RequestRegistry::getRequest();
 if (! is_null($args)) {
 foreach($args as $key=>$val) {
 $request->setProperty($key, $val);
 }
 }
 if (! is_null($command)) {
 $request->setProperty('cmd', $command);
 }

CHAPTER 18 ■ TESTING WITH PHPUNIT

398

 woo\controller\Controller::run();

 $ret = ob_get_contents();
 ob_end_clean();
 return $ret;

 }
}

By catching the system's output in a buffer, I’m able to return it from the runCommand() method. I
apply a simple assertion to the return value to demonstrate.

Here is the view from the command line:

$ phpunit test/AddVenueTest.php

PHPUnit 3.4.11 by Sebastian Bergmann.
.
Time: 0 seconds, Memory: 4.00Mb
OK (1 test, 1 assertion)

If you are going to be running lots of tests on a system in this way, it would make sense to create a

Web UI superclass to hold runCommand().
I am glossing over some details here that you will face in your own tests. You will need to ensure that

the system works with configurable storage locations. You don’t want your tests going to the same
datastore that you use for your development environment. This is another opportunity for design
improvement. Look for hardcoded filepaths, and DSN values, push them back to the Registry, and then
ensure your tests work within a sandbox, but setting these values in your test case’s setUp() method.
Look into swapping in a MockRequestRegistry, which you can charge up with stubs, mocks, and various
other sneaky fakes.

Approaches like this are great for testing the inputs and output of a web application. There are some
distinct limitations, however. This method won’t capture the browser experience. Where a web
application uses JavaScript, Ajax, and other client-side cleverness, testing the text generated by your
system, won't tell you whether the user is seeing a sane interface.

Luckily, there is a solution.

Introducing Selenium
Selenium (http://seleniumhq.org/) consists of a set of commands (sometimes called selenese) for

defining web tests. It also provides tools for authoring and running browser tests, as well as for binding
tests to existing test platforms. Luckily for us, one of these platforms is PHPUnit.

In this brief introduction, I’ll author a quick WOO test using the Selenium IDE. Then I’ll export the
results, and run it as a PHPUnit test case.

Getting Selenium
You can download Selenium components at http://seleniumhq.org/download/. For the purposes of

this example, you will want Selenium IDE. And Selenium RC.
If you're running Firefox as your browser (and you need to be in order to run the IDE) you should

find that the Selenium IDE installs directly on download (after you've OK’d a prompt or two) and
becomes available in the Tools menu.

CHAPTER 18 ■ TESTING WITH PHPUNIT

399

Selenium RC requires a more manual approach. Once you’ve downloaded the package, you should
find an archive called selenium-remote-control-1.0.3.zip (though, of course, your version number will
probably be different). You should unzip this archive and look for a jar (Java ARchive) file somewhere
like selenium-server-1.0.3/selenium-server.jar. Copy this file somewhere central. To proceed
further, you’ll need need Java installed on your system. Once you’ve confirmed this, you can start the
Selenium Server.

Here, I copy the server to a directory named lib in my home directory. Then I start the server:

$ cp selenium-server-1.0.3/selenium-server.jar ~/lib/
$ java -jar ~/lib/selenium-server.jar

13:03:28.713 INFO - Java: Sun Microsystems Inc. 14.0-b16
13:03:28.745 INFO - OS: Linux 2.6.31.5-127.fc12.i686 i386
13:03:28.787 INFO - v2.0 [a2], with Core v2.0 [a2]
13:03:29.273 INFO - RemoteWebDriver instances should connect to:
http://192.168.1.65:4444/wd/hub
13:03:29.276 INFO - Version Jetty/5.1.x
13:03:29.284 INFO - Started HttpContext[/selenium-server/driver,/selenium-server/driver]
13:03:29.286 INFO - Started HttpContext[/selenium-server,/selenium-server]
13:03:29.286 INFO - Started HttpContext[/,/]
13:03:29.383 INFO - Started org.openqa.jetty.jetty.servlet.ServletHandler@b0ce8f
13:03:29.383 INFO - Started HttpContext[/wd,/wd]
13:03:29.404 INFO - Started SocketListener on 0.0.0.0:4444
13:03:29.405 INFO - Started org.openqa.jetty.jetty.Server@192b996

Now I’m ready to proceed.

Creating a Test
Selenese, the Selenium language, is simple but powerful. There’s nothing to prevent you from

authoring tests in the traditional manner, with a text editor. However, the Selenium IDE is by far the
easiest way into testing. You can launch it from the Tools window.

Once you have the control panel up, you should add an address to the Base URL field. This should
be the address against which relative links will work in the system under test. You should see a red dot
on a button in the right-hand corner of the IDE control panel. It should be depressed, which means the
tool is already in record mode.

Figure 18–1 shows the IDE as it should be at this point.

CHAPTER 18 ■ TESTING WITH PHPUNIT

400

Figure 18–1. The Selenium IDE control panel

As you can see, I have used the base URL http://localhost/webwoo/. This is the address of an
installed instance of the WOO application. I’m going to begin my test at
http://localhost/webwoo/?cmd=AddVenue, so I point my browser to that URL. Having arrived there, I
want to begin with a sanity test. The AddVenue page includes the string “no name provided.” I’d like my
test to verify this. So I right-click on the text in the browser. I’m given the option to select a Selenium
command 'verifyWebText'. You can see this in Figure 18–2.

CHAPTER 18 ■ TESTING WITH PHPUNIT

401

Figure 18–2. Verifying Text on a web page

Meanwhile, Selenium has recorded both of my visits to the page, and my requirement that text be
verified. You can see this in Figure 18–3.

Figure 18–3. The Selenium IDE generates tests

CHAPTER 18 ■ TESTING WITH PHPUNIT

402

Notice that each command is divided into three parts: command, target, and value. These
subdivisions are also known as actions, accessors, and assertions. Essentially, a command then instructs
the test engine to perform something (an action), somewhere (accessor), and then to confirm a result
(assertion).

Now I can return to my WOO web interface, add a venue, confirm some text, add a space, and
confirm again. Ultimately, I will end up with a runable test case. I can run it in the IDE itself by hitting
one of the green “play” buttons at the stop of the IDE control panel. Failed test commands will be
flagged red, and passes flagged green.

You can save your test case from the File menu, and rerun it at a later date. Or you can export your
test as a PHPUnit class. To do this, choose Format from the Options menu and select PHPUnit. You can
see the menu in Figure 18–4.

Figure 18–4. Changing the format

Note the log pane at the bottom of the panel. You can see a report there from a successful run of the
test case. Now that I’ve set the correct format, it’s a matter of saving the file. As you might expect, you
can choose Save As from the File menu. Here’s the contents of the saved file:

class Example extends PHPUnit_Extensions_SeleniumTestCase
{
 function setUp()
 {
 $this->setBrowser("*firefox");
 $this->setBrowserUrl("http://localhost/webwoo/");
 }

 function testMyTestCase()
 {
 $this->open("/webwoo/?cmd=AddVenue");
 try {

CHAPTER 18 ■ TESTING WITH PHPUNIT

403

 $this->assertTrue($this->isTextPresent("no name provided"));
 } catch (PHPUnit_Framework_AssertionFailedError $e) {
 array_push($this->verificationErrors, $e->toString());
 }
 $this->type("venue_name", "my_test_venue");
 $this->click("//input[@value='submit']");
 $this->waitForPageToLoad("30000");
 try {
 $this->assertTrue($this->isTextPresent("'my_test_venue' added"));
 } catch (PHPUnit_Framework_AssertionFailedError $e) {
 array_push($this->verificationErrors, $e->toString());
 }
 $this->type("space_name", "my_test_space");
 $this->click("//input[@value='submit']");
 $this->waitForPageToLoad("30000");
 try {
 $this->assertTrue($this->isTextPresent("space 'my_test_space' added"));
 } catch (PHPUnit_Framework_AssertionFailedError $e) {
 array_push($this->verificationErrors, $e->toString());
 }
 }
}

I changed the default browser from 'chrome' to 'firefox.' Apart from that, I have made no changes at
all to this test. Remember that I started the Selenium Server a while back. This must be running, or
PHPUnit tests that use Selenium will fail. It is the server that launches the browser (Firefox in this case,
though most modern browsers are supported for running tests).

With the test saved and the server running I can execute my test case:

$ phpunit seleniumtest.php

PHPUnit 3.4.11 by Sebastian Bergmann.
.
Time: 11 seconds, Memory: 4.00Mb
OK (1 test, 3 assertions)

If you run the test, not only will you see this output, you’ll see a browser window pop up, invoked by
the server, and the actions executed at lightning speed. The sort of point and click grunt work that we
used to have to do by hand, neatly automated.

Of course I’ve only just scratched the surface of Selenium here. But hopefully it’s enough to give you
an idea of the possibilities. If you want to learn more, there is a complete Selenium manual at
http://seleniumhq.org/docs/index.html. You should also take a look at the Selenium documentation on
the PHPUnit site at http://www.phpunit.de/manual/current/en/selenium.html.

A Note of Caution
It’s easy to get carried away with the benefits that automated tests can offer. I add unit tests to my
projects, and I use PHPUnit for functional tests as well. That is, I test at the level of the system as well as
that of the class. I have seen real and observable benefits, but I believe that these come at a price.

CHAPTER 18 ■ TESTING WITH PHPUNIT

404

Tests add a number of costs to your development. As you build safety into the project, for example,
you are also adding a time penalty into the build process that can impact releases. The time it takes to
write tests is part of this but so is the time it takes to run them. On one system, we may have suites of
functional tests that run against more than one database and more than one version control system. Add
a few more contextual variables like that, and we face a real barrier to running the test suite. Of course,
tests that aren’t run are not useful. One answer to this is to fully automate your tests, so runs are kicked
off by a scheduling application like cron. Another is to maintain a subset of your tests that can be easily
run by developers as they commit code. These should sit alongside your longer, slower test run.

Another issue to consider is the brittle nature of many test harnesses. Your tests may give you
confidence to make changes, but as your test coverage increases along with the complexity of your
system, it becomes easier to break multiple tests. Of course, this is often what you want. You want to
know when expected behavior does not occur or when unexpected behavior does.

Oftentimes, though, a test harness can break because of a relatively trivial change, such as the
wording of a feedback string. Every broken test is an urgent matter, but it can be frustrating to have to
change 30 test cases to address a minor alteration in architecture or output. Unit tests are less prone to
problems of this sort, because by and large, they focus on each component in isolation.

The cost involved in keeping tests in step with an evolving system is a trade-off you simply have to
factor in. On the whole, I believe the benefits justify the costs.

You can also do some things to reduce the fragility of a test harness. It’s a good idea to write tests
with the expectation of change built in to some extent. I tend to use regular expressions to test output
rather than direct equality tests, for example. Testing for a few key words is less likely to make my test fail
when I remove a newline character from an output string. Of course, making your tests too forgiving is
also a danger, so it is a matter of using your judgment.

Another issue is the extent to which you should use mocks and stubs to fake the system beyond the
component you wish to test. Some insist that you should isolate your component as much as possible
and mock everything around it. This works for me in some projects. In others, though, I have found that
maintaining a system of mocks can become a time sink. Not only do you have the cost of keeping your
tests in line with your system but you must keep your mocks up to date. Imagine changing the return
type of a method. If you fail to update the method of the corresponding stub object to return the new
type, client tests may pass in error. With a complex fake system, there is a real danger of bugs creeping
into mocks. Debugging tests is frustrating work, especially when the system itself is not at fault.

I tend to play this by ear. I use mocks and stubs by default, but I’m unapologetic about moving to
real components if the costs begin to mount up. You may lose some focus on the test subject, but this
comes with the bonus that errors originating in the component’s context are at least real problems with
the system. You can, of course, use a combination of real and fake elements. I routinely use an in-
memory database in test mode, for example. This is particularly easy if you are using PDO. Here’s a
simplified class that uses PDO to speak to a database:

class DBFace {
 private $pdo;
 function __construct($dsn, $user=null, $pass=null) {
 $this->pdo = new PDO($dsn, $user, $pass);
 $this->pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 }

 function query($query) {
 $stmt = $this->pdo->query($query);
 return $stmt;
 }
}

If DBFace is passed around our system and used by mappers, then it’s a simple matter to prime it to
use SQLite in memory mode:

 public function setUp() {

CHAPTER 18 ■ TESTING WITH PHPUNIT

405

 $face = new DBFace("sqlite::memory:");
 $face->query("create table user (id INTEGER PRIMARY KEY, name TEXT)");
 $face->query("insert into user (name) values('bob')");
 $face->query("insert into user (name) values('harry')");
 $this->mapper = new ToolMapper($face);
 }

As you may have gathered, I am not an ideologue when it comes to testing. I routinely “cheat” by
combining real and mocked components, and because priming data is repetitive, I often centralize test
fixtures into what Martin Fowler calls Object Mothers. These classes are simple factories that generate
primed objects for the purpose of testing. Shared fixtures of this sort are anathema to some.

Having pointed out some of the problems that testing may force you to confront, it is worth
reiterating a few points that for my money trump all objections. Testing

• Helps you prevent bugs (to the extent that you find them during development and
refactoring)

• Helps you discover bugs (as you extend test coverage)

• Encourages you to focus on the design of your system

• Lets you improve code design with less fear that changes will cause more
problems than they solve

• Gives you confidence when you ship code

In every project for which I’ve written tests, I’ve had occasion to be grateful for the fact sooner or
later.

Summary
In this chapter, I revisited the kinds of tests we all write as developers but all too often thoughtlessly
discard. From there, I introduced PHPUnit, which lets you write the same kind of throw-away tests
during development but then keep them and feel the lasting benefit! I created a test case
implementation, and I covered the available assertion methods. I , examined constraints, and explored
the devious world of mock objects. I showed how refactoring for testing can improve design, and
demonstrated some techniques for testing web applications, first using just PHPUnit, and then using
Selenium. Finally, I risked the ire of some by warning of the costs that tests incur and discussing the
trade-offs involved.

C H A P T E R 19

■ ■ ■

407

Automated Build with Phing

If version control is one side of the coin, then automated build is the other. Version control allows
multiple developers to work collaboratively on a single project. With many coders each deploying a
project in her own space, automated build soon becomes essential. One developer may have her Web-
facing directory in /usr/local/apache/htdocs; another might use /home/bibble/public_html. Developers
may use different database passwords, library directories, or mail mechanisms. A flexible codebase
might easily accommodate all of these differences, but the effort of changing settings and manually
copying directories around your file system to get things working would soon become tiresome—
especially if you need to install code in progress several times a day (or several times an hour).

You have already seen that PEAR handles installation. You'll almost certainly want to deliver a
project to an end user via a PEAR package, because that mechanism provides the lowest barrier to
installation (users will likely already have PEAR present on their systems, and PEAR supports network
installation). PEAR handles the last stages of installation admirably, but there’s a lot of work that might
need automating before a package has been created. You may want to extract files from a version control
repository, for example. You should run tests and compile files together into a build directory. Finally,
you’ll want to automate the creation of the PEAR package itself. In this chapter, I introduce you to Phing,
which handles just such jobs. This chapter will cover

• Getting and installing Phing: Who builds the builder?

• Properties: Setting and getting data.

• Types: Describing complex parts of a project.

• Targets: Breaking a build into callable, interdependent sets of functionality.

• Tasks: The things that get stuff done.

What Is Phing?
Phing is a PHP tool for building projects. It is very closely modeled on the hugely popular (and very
powerful) Java tool called Ant. Ant was so named because it is small but capable of constructing things
that are very large indeed. Both Phing and Ant use an XML file (usually named build.xml) to determine
what to do in order to install or otherwise work with a project.

The PHP world really needs a good build solution. Serious developers have had a number of options
in the past. First, it is possible to use make, the ubiquitous Unix build tool that is still used for most C and
Perl projects. However, make is extremely picky about syntax and requires quite a lot of shell knowledge,
up to and including scripting—this can be challenging for some PHP programmers who have not come
to programming via the Unix or Linux command line. What’s more, make provides very few built-in
tools for common build operations such as transforming file names and contents. It is really just a glue

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

408

for shell commands. This makes it hard to write programs that will install across platforms. Not all
environments will have the same version of make, or even have it at all. Even if you have make, you may
not have all the commands the makefile (the configuration file that drives make) requires.

Phing’s relationship with make is illustrated in its name: Phing stands for PHing Is Not Gnu make.
This playful recursion is a common coder’s joke (for example, GNU itself stands for Gnu is Not Unix).

Phing is a native PHP application that interprets a user-created XML file in order to perform
operations on a project. Such operations would typically involve the copying of files from a distribution
directory to various destination directories, but there is much more to Phing. Phing can be used to
generate documentation, run tests, invoke commands, run arbitrary PHP code, create PEAR packages,
replace keywords in files, strip comments, and generate tar/gzipped package releases. Even if Phing does
not yet do what you need, it is designed to be easily extensible.

Because Phing is itself a PHP application, all you need to run it is a recent PHP engine. Since
Phing is an application for installing PHP applications, the presence of a PHP executable is a
reasonably safe bet.

You have seen that PEAR packages are breathtakingly easy to install. PEAR supports its own
automated build mechanism. Since PEAR is bundled with PHP, should you not use the PEAR
mechanism to install your own projects? Ultimately the answer to this is yes. PEAR makes installation
easy, and supports dependencies well (so that you can ensure your packages are compatible with one
another). There’s a lot of tough work that must be automated during development, up to and including
package creation. This technique, to use Phing for project development but to have it generate a PEAR
package upon release, is used to produce the Phing application itself.

Getting and Installing Phing
If it is difficult to install an install tool, then something is surely wrong! However, assuming that you have
PHP 5 or better on your system (and if you haven’t, this isn’t the book for you!), installation of Phing
could not be easier.

You can acquire and install Phing with two simple commands.

$ pear channel-discover pear.phing.info
$ pear install phing/phing

This will install Phing as a PEAR package. You should have write permission for your PEAR
directories, which, on most Unix or Linux systems, will mean running the command as the root user.

If you run into any installation problems, you should visit the download page at
http://phing.info/trac/wiki/Users/Download. You will find plenty of installation instructions there.

Composing the Build Document
You should now be ready to get cracking with Phing! Let’s test things out:

$ phing -v
Phing version 2.4.0

The -v flag to the phing command causes the script to return version information. By the time you
read this, the version number may have changed, but you should see a similar message when you run
the command on your system.

Now I’ll run the phing command without arguments:

$ phing
Buildfile: build.xml does not exist!

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

409

As you can see, Phing is lost without instructions. By default, it will look for a file called build.xml.
Let’s build a minimal document so that we can at least make that error message go away:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz" default="main">
 <target name="main"/>
</project>

This is the bare minimum you can get away with in a build file. If we save the previous example as
build.xml and run phing again, we should get some more interesting output:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

BUILD FINISHED

Total time: 0.1107 seconds

A lot of effort to achieve precisely nothing, you may think, but we have to start somewhere! Look
again at that build file. Because we are dealing with XML, I include an XML declaration. As you probably
know, XML comments look like this:

<!-- Anything here is ignored. Because it's a comment. OK? -->

The second line in my build file is ignored. You can put as many comments as you like in your build
files, and as they grow, you should make full use of this fact. Large build files can be hard to follow
without suitable comments.

The real start of any build file is the project element. The project element can include up to four
attributes. Of these, name and default are compulsory. The name attribute establishes the project’s name;
default defines a target to run if none are specified on the command line. An optional description
attribute can provide summary information. You can specify the context directory for the build using a
basedir attribute. If this is omitted, the current working directory will be assumed. You can see these
attributes summarized in Table 19–1.

Table 19–1. The Attributes of the project Element

Attribute Required Description Default Value

Name Yes The name of the project None

Description No A brief project summary None

Default Yes The default target to run None

Basedir No The file system context in which build will run Current directory (.)

Once I have defined a project element, I must create at least one target—the one I reference in the

default attribute.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

410

Targets
Targets are similar, in some senses, to functions. A target is a set of actions grouped together to achieve
an objective: to copy a directory from one place another, for example, or to generate documentation.

In my previous example, I included a bare-minimum implementation for a target:

<target name="main"/>

As you can see, a target must define at least a name attribute. I have made use of this in the project
element. Because the default element points to the main target, this target will be invoked whenever
Phing is run without command-line arguments. This was confirmed by the output:

megaquiz > main:

Targets can be organized to depend on one another. By setting up a dependency between one target
and another, you tell Phing that the first target should not run before the target it depends on has been
run. Now to add a dependency to my build file:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
>
 <target name="runfirst" />
 <target name="runsecond" depends="runfirst"/>
 <target name="main" depends="runsecond"/>
</project>

As you can see, I have introduced a new attribute for the target element. depends tells Phing that the
referenced target should be executed before the current one, so I might want a target that copies certain
files to a directory to be invoked before one that runs a transformation on all files in that directory. I
added two new targets in the example: runsecond, on which main depends, and runfirst, on which
runsecond depends. Here's what happens when I run Phing with this build file:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > runfirst:

megaquiz > runsecond:

megaquiz > main:

BUILD FINISHED

Total time: 0.3029 seconds

As you can see, the dependencies are honored. Phing encounters the main target, sees its
dependency, and moves back to runsecond. runsecond has its own dependency, and Phing invokes
runfirst. Having satisfied its dependency, Phing can invoke runsecond. Finally, main is invoked. The
depends attribute can reference more than one target at a time. A comma-separated list of dependencies
can be provided, and each will be honored in turn.

Now that I have more than one target to play with, I can override the project element’s default
attribute from the command line:

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

411

$ phing runsecond
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > runfirst:

megaquiz > runsecond:

BUILD FINISHED

Total time: 0.2671 seconds

By passing in a target name, I cause the default attribute to be ignored. The target matching my
argument is invoked instead (as well as the target on which it depends). This is useful for invoking
specialized tasks, such as cleaning up a build directory or running post-install scripts.

The target element also supports an optional description attribute, to which you can assign a brief
description of the target’s purpose:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
 description="A quiz engine">
 <target name="runfirst"
 description="The first target" />
 <target name="runsecond"
 depends="runfirst"
 description="The second target" />
 <target name="main"
 depends="runsecond"
 description="The main target" />
</project>

Adding a description to your targets makes no difference to the normal build process. If the user
runs Phing with a -projecthelp flag, however, the descriptions will be used to summarize the project:

$ phing -projecthelp
Buildfile: /home/bob/working/megaquiz/build.xml
A quiz engine
Default target:

 main The main target

Main targets:

 main The main target
 runfirst The first target
 runsecond The second target

Notice that I added the description attribute to the project element too.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

412

Properties
Phing allows you to set such values using the property element.

Properties are similar to global variables in a script. As such, they are often declared toward the top
of a project to make it easy for developers to work out what’s what in the build file. Here I create a build
file that works with database information:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
>

 <property name="dbname" value="megaquiz" />
 <property name="dbpass" value="default" />
 <property name="dbhost" value="localhost" />

 <target name="main">
 <echo>database: ${dbname}</echo>
 <echo>pass: ${dbpass}</echo>
 <echo>host: ${dbhost}</echo>
 </target>
</project>

I introduced a new element: property. property requires name and value attributes. Notice also that
I have added to the main target. echo is an example of a task. I will explore tasks more fully in the next
section. For now, though, it’s enough to know that echo does exactly what you would expect—it causes
its contents to be output. Notice the syntax I use to reference the value of a property here: by using a
dollar sign, and wrapping the property name in curly brackets, you tell Phing to replace the string with
the property value.

${propertyname}

All this build file achieves is to declare three properties and to print them to standard output. Here it
is in action:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

 [echo] database: megaquiz
 [echo] pass: default
 [echo] host: localhost

BUILD FINISHED

Total time: 0.4402 seconds

Now that I have introduced properties, I can wrap up my exploration of targets. The target element
accepts two additional attributes: if and unless. Each of these should be set with the name of a property.
When you use if with a property name, the target will only be executed if the given property is set. If the

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

413

property is not set, the target will exit silently. Here, I comment out the dbpass property and make the
main task require it using the if attribute:

 <property name="dbname" value="megaquiz" />
 <!--<property name="dbpass" value="default" />-->
 <property name="dbhost" value="localhost" />

 <target name="main" if="dbpass">
 <echo>database: ${dbname}</echo>
 <echo>pass: ${dbpass}</echo>
 <echo>host: ${dbhost}</echo>
 </target>

Let’s run phing again:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

BUILD FINISHED

Total time: 0.2628 seconds

As you can see, I have raised no error, but the main task did not run. Why might I want to do this?
There is another way of setting properties in a project. They can be specified on the command line. You
tell Phing that you are passing it a property with the -D flag followed by a property assignment. So the
argument should look like this:

-Dname=value

In my example, I want the dbname property to be made available via the command line:

$ phing -Ddbpass=userset
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

 [echo] database: megaquiz
 [echo] pass: userset
 [echo] host: localhost

BUILD FINISHED

Total time: 0.4611 seconds

The if attribute of the main target is satisfied that the dbpass property is present, and the target is
allowed to execute.

As you might expect, the unless attribute is the opposite of if. If a property is set and it is referenced in
a target’s unless attribute, then the target will not run. This is useful if you want to make it possible to
suppress a particular target from the command line. So I might add something like this to the main target:

<target name="main" unless="suppressmain">

main will be executed unless a suppressmain property is present:

$ phing -Dsuppressmain=yes

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

414

Now that I have wrapped up the target element, table 19–2 shows a summary of its attributes.

Table 19–2. The Attributes of the target Element

Attribute Required Description

Name Yes The name of the target

Depends No Targets on which the current depends

If No Execute target only if given property is present

Unless No Execute target only if given property is not present

Description No A short summary of the target’s purpose

When a property is set on the command line, it overrides any and all property declarations within

the build file. There is another condition in which a property value can be overwritten. By default, if a
property is declared twice, the original value will have primacy. You can alter this behavior by setting an
attribute called override in the second property element. Here’s an example:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
>

 <property name="dbpass" value="default" />

 <target name="main">
 <property name="dbpass" override="yes" value="specific" />
 <echo>pass: ${dbpass}</echo>
 </target>

</project>

I set a property called dbpass, giving it the initial value "default". In the main target I set the
property once again, adding an override attribute set to "yes" and providing a new value. The new value
is reflected in the output:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

 [echo] pass: specific

BUILD FINISHED

Total time: 0.3802 seconds

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

415

If I had not set the override element in the second property element, the original value of "default"
would have stayed in place. It is important to note that targets are not functions: there is no concept of
local scope. If you override a property within a task, it remains overridden for all other tasks throughout
the build file. You could get around this, of course, by storing a property value in a temporary property
before overriding, and then resetting it when you have finished working locally.

So far, I have dealt with properties that you define yourself. Phing also provides built-in properties.
You reference these in exactly the same way that you would reference properties you have declared
yourself. Here’s an example:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
>

 <target name="main">
 <echo>name: ${phing.project.name}</echo>
 <echo>base: ${project.basedir}</echo>
 <echo>home: ${user.home}</echo>
 <echo>pass: ${env.DBPASS}</echo>
 </target>

</project>

I reference just a few of the built-in Phing properties. phing.project.name resolves to the name of
the project as defined in the name attribute of the project element; project.basedir gives the starting
directory; user.home provides the executing user’s home directory (this is useful for providing default
install locations).

Finally, the env prefix in a property reference indicates an operating system environment variable.
So by specifying ${env.DBPASS}, I am looking for an environment variable called DBPASS. Here I run Phing
on this file:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

 [echo] name: megaquiz
 [echo] base: /home/bob/working/megaquiz
 [echo] home: /home/bob
 [echo] pass: ${env.DBPASS}

BUILD FINISHED

Total time: 0.1120 seconds

Notice that the final property has not been translated. This is the default behavior when a property
is not found—the string referencing the property is left untransformed. If I set the DBPASS environment
variable and run again, I should see the variable reflected in the output:

$ export DBPASS=wooshpoppow
$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

416

megaquiz > main:
 ...
 [echo] pass: whooshpoppow

BUILD FINISHED

Total time: 0.2852 seconds

So now you have seen three ways of setting a property: the property element, a command line
argument, and an environment variable.

You can use targets to ensure that properties are populated. Let’s say, for example, that my project
requires a dbpass property. I would like the user to set dbpass on the command line (this always has
priority over other property assignment methods). Failing that, I should look for an environment
variable. Finally, I should give up and go for a default value:

<?xml version="1.0"?>
<!-- build xml -->

<project name="megaquiz"
 default="main"
>

 <target name="setenvpass" if="env.DBPASS" unless="dbpass">
 <property name="dbpass" override="yes" value="${env.DBPASS}" />
 </target>

 <target name="setpass" unless="dbpass" depends="setenvpass">
 <property name="dbpass" override="yes" value="default" />
 </target>

 <target name="main" depends="setpass">
 <echo>pass: ${dbpass}</echo>
 </target>

</project>

So, as usual, the default target main is invoked first. This has a dependency set, so Phing goes back to
the setpass target. setpass, though, depends on setenvpass, so I start there. setenvpass is configured to
run only if dbpass has not been set and if env.DBPASS is present. If these conditions are met, then I set the
dbpass property using the property element. At this stage then, dbpass is populated either by a
command-line argument or by an environment variable. If neither of these were present, then the
property remains unset at this stage. The setpass target is now executed, but only if dbpass is not yet
present. In this case, it sets the property to the default string: "default".

Types
You may think that having looked at properties, you are now through with data. In fact, Phing
supports a set of special elements called types that encapsulate different kinds of information useful
to the build process.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

417

FileSet
Let’s say that you need to represent a directory in your build file, a common situation as you might
imagine. You could use a property to represent this directory, certainly, but you’d run into problems
straightaway if your developers use different platforms that support distinct directory separators. The
answer is the FileSet data type. FileSet is platform independent, so if you represent a directory with
forward slashes in the path, they will be automatically translated behind the scenes into backslashes
when the build is run on a Windows machine. You can define a minimal fileset element like this:

 <fileset dir="src/lib" />

As you can see, I use the dir attribute to set the directory I wish to represent. You can optionally add
an id attribute, so that you can refer to the fileset later on:

 <fileset dir="src/lib" id="srclib">

The FileSet data type is particularly useful in specifying types of documents to include or exclude.
When installing a set of files, you may not wish those that match a certain pattern to be included. You
can handle conditions like this in an excludes attribute:

<fileset dir="src/lib" id="srclib"
 excludes="**/*_test.php **/*Test.php" />

Notice the syntax I have used in the excludes attribute. Double asterisks represent any directory or
subdirectory within src/lib. A single asterisk represents zero or more characters. So I am specifying that
I would like to exclude files that end in _test.php or Test.php in all directories below the starting point
defined in the dir attribute. The excludes attribute accepts multiple patterns separated by white space.

I can apply the same syntax to an includes attribute. Perhaps my src/lib directories contain many
non-PHP files that are useful to developers but should not find their way into an installation. I could
exclude those files, of course, but it might be simpler just to define the kinds of files I can include. In this
case, if a file doesn’t end in .php, it isn’t going to be installed:

<fileset dir="src/lib" id="srclib"
 excludes="**/*_test.php **/*Test.php"
 includes="**/*.php" />

As you build up include and exclude rules, your fileset element is likely to become overly long.
Luckily, you can pull out individual exclude rules and place each one in its own exclude subelement. You
can do the same for include rules. I can now rewrite my FileSet like this:

 <fileset dir="src/lib" id="srclib">
 <exclude name="**/*_test.php" />
 <exclude name="**/*Test.php" />
 <include name="**/*.php" />
 </fileset>

You can see some of the attributes of the fileset element in Table 19–3.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

418

Table 19–3. Some Attributes of the fileset Element

Attribute Required Description

Id No A unique handle for referring to the element

Dir No The fileset directory

Excludes No A list of patterns for exclusion

Includes No A list of patterns for inclusion

Refid No Current fileset is a reference to fileset of given ID

PatternSet
As you build up patterns in your fileset elements (and in others), there is a danger that you will begin to
repeat groups of exclude and include elements. In my previous example, I defined patterns for test files
and regular code files. I may add to these over time (perhaps I wish to include .conf and .inc extensions
to my definition of code files). If I define other fileset elements that also use these patterns, I will be
forced to make any adjustments across all relevant fileset elements.

You can overcome this problem by grouping patterns into patternset elements. The patternset
element groups include and exclude elements so that they can be referenced later from within other
types. Here I extract the include and exclude elements from my fileset example and add them to
patternset elements:

 <patternset id="inc_code">
 <include name="**/*.php" />
 <include name="**/*.inc" />
 <include name="**/*.conf" />
 </patternset>

 <patternset id="exc_test">
 <exclude name="**/*_test.php" />
 <exclude name="**/*Test.php" />
 </patternset>

I create two patternset elements, setting their id attributes to inc_code and exc_test respectively.
inc_code contains the include elements for including code files, and exc_test contains the exclude files
for excluding test files. I can now reference these patternset elements within a fileset:

 <fileset dir="src/lib" id="srclib">
 <patternset refid="inc_code" />
 <patternset refid="exc_test" />
 </fileset>

To reference an existing patternset, you must use another patternset element. The second element
must set a single attribute: refid. The refid attribute should refer to the id of the patternset element
you wish to use in the current context. In this way, I can reuse patternset elements:

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

419

 <fileset dir="src/views" id="srcviews">
 <patternset refid="inc_code" />
 </fileset>

Any changes I make to the inc_code patternset will automatically update any types that use it. As
with FileSet, you can place exclude rules either in an excludes attribute or a set of exclude subelements.
The same is true of include rules.

Some patternset element attributes are summarized in Table 19–4.

Table 19–4. Some Attributes of the patternset Element

Attribute Required Description

Id No A unique handle for referring to the element

Excludes No A list of patterns for exclusion

Includes No A list of patterns for inclusion

Refid No Current patternset is a reference to patternset of given ID

FilterChain
The types that I have encountered so far have provided mechanisms for selecting sets of files.
FilterChain, by contrast, provides a flexible mechanism for transforming the contents of text files.

In common with all types, defining a filterchain element does not in itself cause any changes to
take place. The element and its children must first be associated with a task—that is, an element that
tells Phing to take a course of action. I will return to tasks a little later.

A filterchain element groups any number of filters together. Filters operate on files like a
pipeline—the first alters its file and passes its results on to the second, which makes its own alterations,
and so on. By combining multiple filters in a filterchain element, you can effect flexible
transformations.

Here I dive straight in and create a filterchain that removes PHP comments from any text passed
to it:

<filterchain>
 <stripphpcomments />
</filterchain>

The StripPhpComments task does just what the name suggests. If you have provided detailed API
documentation in your source code, you may have made life easy for developers, but you have also
added a lot of dead weight to your project. Since all the work that matters takes place within your source
directories, there is no reason why you should not strip out comments on installation.

■Note If you use a build tool for your projects, ensure that no one makes changes in the installed code. The
installer will copy over any altered files, and the changes will be lost. I have seen it happen.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

420

Let’s sneak a peek of the next section and place the filterchain element in a task:

 <target name="main">
 <copy todir="build/lib">
 <fileset refid="srclib"/>
 <filterchain>
 <stripphpcomments />
 </filterchain>
 </copy>
 </target>

The Copy task is probably the one you get most use out of. It copies files from place to place. As you
can see, I define the destination directory in the todir attribute. The source of the files is defined by the
fileset element I created in the previous section. Then comes the filterchain element. Any file copied
by the Copy task will have this transformation applied to it.

Phing supports filters for many operations including stripping new lines (StripLineBreaks) and
replacing tabs with spaces (TabToSpaces). There is even an XsltFilter for applying XSLT transformations
to source files! Perhaps the most commonly used filter, though, is ReplaceTokens. This allows you to
swap tokens in your source code for properties defined in your build file, pulled from environment
variables, or passed in on the command line. This is very useful for customizing an installation. It’s a
good idea to centralize your tokens into a central configuration file for easy overview of the variable
aspects of your project.

ReplaceTokens optionally accepts two attributes, begintoken and endtoken. You can use these to
define the characters that delineate token boundaries. If you omit these, Phing will assume the default
character of @. In order to recognize and replace tokens, you must add token elements to the
replacetokens element. Now to add a replacetokens element to my example:

 <copy todir="build/lib">
 <fileset refid="srclib"/>
 <filterchain>
 <stripphpcomments />
 <replacetokens>
 <token key="dbname" value="${dbname}" />
 <token key="dbhost" value="${dbhost}" />
 <token key="dbpass" value="${dbpass}" />
 </replacetokens>
 </filterchain>
 </copy>

As you can see, token elements require key and value attributes. Let’s see the effect of running this
task with its transformations on a file in my project. The original file lives in a source directory,
src/lib/Config.php:

/**
 * Quick and dirty Conf class
**/
class Config {
 public $dbname ="@dbname@";
 public $dbpass ="@dbpass@";
 public $dbhost ="@dbhost@";
}

Running my main target containing the Copy task defined previously gives the following output:

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

421

$ phing

Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > main:

 [copy] Copying 8 files to /home/bob/working/megaquiz/build/lib
[filter:ReplaceTokens] Replaced "@dbname@" with "megaquiz"
[filter:ReplaceTokens] Replaced "@dbpass@" with "default"
[filter:ReplaceTokens] Replaced "@dbhost@" with "localhost"

BUILD FINISHED

Total time: 0.1413 seconds

The original file is untouched, of course, but thanks to the Copy task, it has been reproduced at
build/lib/Config.php:

class Config {
 public $dbname ="megaquiz";
 public $dbpass ="default";
 public $dbhost ="localhost";
}

Not only has the comment been removed, but the tokens have been replaced with their property
equivalents.

Tasks
Tasks are the elements in a build file that get things done. You won’t achieve much without using a task,
which is why I have cheated and used a couple already. I'll reintroduce these.

Echo
The Echo task is perfect for the obligatory “Hello World” example. In the real world, you can use it to tell
the user what you are about to do or what you have done. You can also sanity-check your build process
by displaying the values of properties. As you have seen, any text placed within the opening and closing
tags of an echo element will be printed to the browser:

<echo>The pass is '${dbpass}', shhh!</echo>

Alternatively, you can add the output message to a msg attribute:

<echo msg="The pass is '${dbpass}', shhh!" />

This will have the identical effect of printing the following to standard output:

[echo] The pass is 'default', shhh!

Copy
Copying is really what installation is all about. Typically, you will create one target that copies files from
your source directories and assembles them in a temporary build directory. You will then have another

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

422

target that copies the assembled (and transformed) files to their output locations. Breaking the
installation into separate build and install phases is not absolutely necessary, but it does mean that you
can check the results of the initial build before committing to overwriting production code. You can also
change a property and install again to a different location without the need to run a potentially
expensive copy/replace phase again.

At its simplest, the Copy task allows you to specify a source file and a destination directory or file:

 <copy file="src/lib/Config.php" todir="build/conf" />

As you can see, I specify the source file using the file attribute. You may be familiar already with the
todir attribute, which is used to specify the target directory. If the target directory does not exist, Phing
will create it for you.

If you need to specify a target file, rather than a containing directory, you can use the tofile
attribute instead of todir.

 <copy file="src/lib/Config.php" tofile="build/conf/myConfig.php" />

Once again, the build/conf directory is created if necessary, but this time, Config.php is renamed to
myConfig.php.

As you have seen, to copy more than one file at a time, you need to add a fileset element to copy:

 <copy todir="build/lib">
 <fileset refid="srclib"/>
 </copy>

The source files are defined by the srclib fileset element, so all you have to set in copy is the todir
attribute.

Phing is smart enough to test whether or not your source file has been changed since the target file
was created. If no change has been made, then Phing will not copy. This means that you can build many
times and only the files that have changed in the meantime will be installed. This is fine, as long as other
things are not likely to change. If a file is transformed according to the configuration of a replacetokens
element, for example, you may want to ensure that the file is transformed every time that the Copy task
is invoked. You can do this by setting an overwrite attribute:

 <copy todir="build/lib" overwrite="yes">
 <fileset refid="srclib"/>
 <filterchain>
 <stripphpcomments />
 <replacetokens>
 <token key="dbpass" value="${dbpass}" />
 </replacetokens>
 </filterchain>
 </copy>

Now whenever copy is run, the files matched by the fileset element are replaced whether or not
the source has been recently updated.

You can see the copy element summarized in Table 19–5.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

423

Table 19–5. The Attributes of the copy Element

Attribute Required Description Default Value

Todir Yes (if tofile not present) Directory to copy into. None

Tofile Yes (if todir not present) The file to copy to. None

File No Source file. None

Tstamp No Match the timestamp of
any file overwritten
(it will appear unaltered).

false

includeemptydirs No Copy empty
directories over.

FALSE

Mode No Set the (octal) mode 755

Overwrite No Overwrite target if it
already exists.

no

Input
You have seen that the echo element is used to send output to the user. To gather input from the user, I
have used separate methods involving the command line and an environment variable. These
mechanisms are neither very structured nor interactive, however.

■Note One reason for allowing users to set values at build time is to allow for flexibility from build environment
to build environment. In the case of database passwords, another benefit is that this sensitive data is not
enshrined in the build file itself. Of course, once the build has been run, the password will be saved into a source
file, so it is up to the developer to ensure the security of his system!

The input element allows you to output a prompt message. Phing then awaits user input and
assigns it to a property. Here it is in action:

 <target name="setpass" unless="dbpass">
 <input message="You don't seem to have set a db password"
 propertyName="dbpass"
 defaultValue="default"
 promptChar=" >" />
 </target>

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

424

 <target name="main" depends="setpass">
 <echo>pass: ${dbpass}</echo>
 </target>

Once again, I have a default target: main. This depends on another target, setpass, which is
responsible for ensuring that the dbpass property is populated. To this end, I use the target element’s
unless attribute, which ensures that it will not run if dbpass is already set.

The setpass target consists of a single input task element. An input element can have a message
attribute, which should contain a prompt for the user. The propertyName attribute is required and
defines the property to be populated by user input. If the user presses Enter at the prompt without
setting a value, the property is given a fallback value if the defaultValue attribute is set. Finally, you can
customize the prompt character using the promptChar attribute— this provides a visual cue for the user
to input data. Let’s run Phing using the previous targets:

$ phing
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > setpass:

You don't seem to have set a db password [default] > mypass

megaquiz > main:

 [echo] pass: mypass

BUILD FINISHED

Total time: 6.0322 seconds

The input element is summarized in Table 19–6.

Table 19–6. The Attributes of the input Element

Attribute Required Description

propertyName Yes The property to populate with user input.

Message No The prompt message.

defaultValue No A value to assign to the property if the user does not provide
input.

validArgs No A list of acceptable input values separated by commas. If the
user inputs a value that is not on this list Phing will re-present
the prompt.

promptChar No A visual cue that the user should provide input.

CHAPTER 19 ■ AUTOMATED BUILD WITH PHING

425

Delete
Installation is generally about creating, copying, and transforming files. Deletion has its place as well,
though. This is particularly the case when you wish to perform a clean install. As I have already
discussed, files are generally only copied from source to destination for source files that have changed
since the last build. By deleting a build directory, you ensure that the full compilation process will take
place.

Here I delete a directory:

 <target name="clean">
 <delete dir="build" />
 </target>

When I run phing with the argument clean (the name of the target), my delete task element is
invoked. Here’s Phing’s output:

$ phing clean
Buildfile: /home/bob/working/megaquiz/build.xml

megaquiz > clean:
 [delete] Deleting directory /home/bob/working/megaquiz/build

BUILD FINISHED

The delete element accepts an attribute, file, which can be used to point to a particular file.
Alternatively, you can fine-tune your deletions by adding a fileset subelement to delete.

Summary
Serious development rarely happens all in one place. A codebase needs to be separated from its
installation, so that work in progress does not pollute production code that needs to remain functional
at all times. Version control allows developers to check out a project and work on it in their own space.
This requires that they should be able to configure the project easily for their environments. Finally, and
perhaps most importantly, the customer (even if the customer is yourself in a year’s time, when you’ve
forgotten the ins and outs of your code) should be able to install your project after a glance at a Read Me
file.

In this chapter, I have covered some of the basics of Phing, a fantastic tool, which brings much of
the functionality of Apache Ant to the PHP world. I have only scratched the surface of Phing’s
capabilities. Nevertheless, once you are up and running with the targets, tasks, types, and properties
discussed here, you’ll find it easy to bolt on new elements for advanced features, like creating
tar/gzipped distributions, automatically generating PEAR package installations, and running PHP code
directly from the build file.

If Phing does not satisfy all your build needs, you will discover that, like Ant, it is designed to be
extensible—get out there and build your own tasks! Even if you don’t add to Phing, you should take
some time out to examine the source code. Phing is written entirely in object-oriented PHP, and its code
is chock full of design examples.

C H A P T E R 20

■ ■ ■

427

Continuous Integration

In previous chapters, you’ve seen a plethora of tools that are designed to support a well-managed
project. Unit testing, documentation, build, and version control are all fantastically useful. But tools, and
testing in particular, can be bothersome.

 Even if your tests only take a few minutes to run, you’re often too focused on coding to bother with
them. Not only that, but you have clients and colleagues waiting for new features. The temptation to
keep on coding is always there. But bugs are much easier to fix close to the time they are hatched. That’s
because you’re more likely to know which change caused the problem, and better able to come up with a
quick fix.

In this chapter, I introduce Continuous Integration, a practice that automates test and build, and
brings together the tools and techniques you’ve encountered in recent chapters.

This chapter will cover

• Defining Continuous Integration

• Preparing a project for CI

• Looking at CruiseControl: a CI server

• Specializing CruiseControl for PHP with phpUnderControl

• Customizing CruiseControl

What Is Continuous Integration?
In the bad old days, integration was something you did after you’d finished the fun stuff. It was also

the stage at which you realized how much work you still had to do. Integration is the process by which all
the parts of your project are bundled up into packages that can be shipped and deployed. It’s not
glamorous, and it’s actually hard.

Integration is tied up also with QA. You can’t ship a product if it isn’t fit for purpose. That means
tests. Lots of tests. If you haven’t been testing much prior to the integration stage, it probably also means
nasty surprises. Lots of them.

You know from Chapter 18 that it’s best practice to test early and often. You know from Chapters 15
and 19 that you should design with deployment in mind right from the start. Most of us accept that this
is the ideal, but how often does the reality match up?

If you practice test-oriented development (a term I prefer to test-first development, because it better
reflects the reality of most good projects I’ve seen), then the writing of tests is less hard than you might
think. After all, you write tests as you code anyway. Every time you develop a component, you create
code fragments, perhaps at the bottom of the class file, that instantiate objects, call their methods. If you

CHAPTER 20 ■ CONTINUOUS INTEGRATION

428

gather up those throwaway scraps of code, written to put your component through its paces during
development, you’ve got yourself a test case. Stick them into a class and add them to your suite.

Oddly, it’s often the running of tests that people avoid. Over time, tests take longer to run.
Failures related to known issues creep in, making it hard to diagnose new problems. Also, you suspect
someone else committed code that broke the tests, and you don’t have time to hold up your own work
while you fix issues that are someone else’s fault. Better to run a couple of tests related to your work
than the whole suite.

Failing to run tests, and therefore to fix the problems they could reveal, makes issues harder and
harder to address. The biggest overhead in hunting for bugs is usually the diagnosis and not the cure.
Very often, a fix can be applied in a matter of minutes, set against perhaps hours searching for the reason
a test failed. If a test fails within minutes or hours of a commit, though, you’re more likely to know where
to look for the problem.

Software build suffers from a similar problem. If you don’t install your project often, you’re likely to
find that, while everything runs fine on your development box, an installed instance falls over with an
obscure error message. The longer you’ve gone between builds, the more obscure the reason for the
failure will likely be to you.

 It’s often something simple: an undeclared dependency upon a library on your system, or some
class files you failed to check in. Easy to fix if you’re on hand. But what if a build failure occurs when
you’re out the office, though? Whichever unlucky team member gets the job of building and releasing
the project won’t know about your set up, and won’t have easy access to those missing files.

Integration issues are magnified by the number of people involved in a project. You may like and
respect all your team members, but we all know that they are much more likely than you are to leave
tests unrun. And then they commit a week’s work of development at 4 p.m. on Friday, just as you’re
about to declare the project good to go for a release.

Continuous Integration (CI) reduces some of these problems by automating the build and test
process.

CI is both a set of practices and tools. As a practice, it requires frequent commits of project code (at
least daily). With each commit, tests should be run and any packages should be built. You’ve already
seen some of the tools required for CI, in particular PHPUnit and PEAR. Individual tools aren’t enough,
though. A higher-level system is required to coordinate and automate the process.

 Without the higher system, a CI server, it’s likely that the practice of CI will simply succumb to our
natural tendency to skip the chores. After all, we’d rather be coding.

Having a system like this in place has three clear benefits. Firstly, your project gets built, and tested
frequently. That’s the ultimate aim and good of CI. That it’s automated, though, adds two further
dimensions. The test and build happens in a different thread to that of development. It happens behind
the scenes, and doesn’t require that you stop work to run tests. Also, as with testing, CI encourages good
design. In order for it to be possible to automate installation in a remote location, you’re forced to
consider ease of installation from the start.

I don’t know how many times I’ve come across projects where the installation procedure was an
arcane secret known only to a few developers. “You mean you didn’t set up the URL rewriting?” asks one
old hand with barely concealed contempt. “Honestly, the rewrite rules are in the Wiki, you know. Just
paste them into the Apache config file.”

Developing with CI in mind means making systems easier to test and install. This might mean a
little more work upfront, but it makes our lives easier down the line. Much easier.

So, to start off, I’m going to lay down some of that expensive groundwork. In fact, you’ll find that in
most of the sections to come, you’ve encountered these preparatory steps already.

Preparing a Project for CI
First of all, of course, I need a project to integrate continuously. Now, I’m a lazy soul, so I’ll look for

some code that comes with tests already written. The obvious candidate is the project I created in

CHAPTER 20 ■ CONTINUOUS INTEGRATION

429

Chapter 18 to illustrate PHPUnit. I’m going to name it userthing, because it's a thing, with a User object
in it.

First of all, here is a breakdown of my project directory. See Figure 20–1.

Figure 20–1. Part of a sample project to illustrate CI

As you can see, I’ve tidied up the structure a little, adding some package directories. Within the
code, I’ve supported the package structure with the use of namespaces.

Now that I have a project, I should add it to a version control system.

CI and Version Control
Version control is essential for CI. A CI system needs to acquire the most recent version of a project

without human intervention (at least once things have been set up).

CHAPTER 20 ■ CONTINUOUS INTEGRATION

430

You may have noticed that I moved the code for userthing into a directory named trunk. That’s
because I’m going to import the project into Subversion, and the branches, tags and trunk directories
are a useful convention in that system.

Here’s the import:

$ svn import userthing.orig/ file:///var/local/svn/userthing -m'first import'

And here's the checkout.

$ svn checkout file:///var/local/svn/userthing/trunk userthing

I covered Subversion in more detail in Chapter 17.
Now that I have the a local version of my project, I’m going to change my working directory to src/

in order to try out the various tools that my CI implementation will require.

$ cd userthing/src

Unit Tests
Unit tests are the key to continuous integration. It’s no good successfully building a project that

contains broken code. I covered unit testing with PHPUnit in Chapter 18. If you’re reading out of order,
though, you’ll want to install this invaluable tool before proceeding.

$ pear channel-discover pear.phpunit.de
$ pear install phpunit

Also in Chapter 18 I wrote tests for a version of the userthing code I’ll be working with in this
chapter. Here I run them once again, to make sure my reorganization has not broken anything new.

$ phpunit test

PHPUnit 3.4.11 by Sebastian Bergmann.
.....
Time: 0 seconds, Memory: 4.50Mb
OK (5 tests, 6 assertions)

As you can see, I referenced the filesystem to invoke my tests. I passed the test directory as an
argument to PHPUnit, and it automatically sought out my test files. However, one of the CI tools you’ll
encounter later, phpUnderControl, prefers that you reference a single class in order to run tests. To
support this requirement, I can add a test suite class. Here is UserTests.php:

require_once 'PHPUnit/Framework.php';
require_once 'test/UserStoreTest.php';
require_once 'test/ValidatorTest.php';

class UserTests {

 public static function suite() {
 $suite = new PHPUnit_Framework_TestSuite();
 $suite->addTestSuite('UserStoreTest');
 $suite->addTestSuite('ValidatorTest');

CHAPTER 20 ■ CONTINUOUS INTEGRATION

431

 return $suite;
 }
}

■Note In in this case I've kept my test classes in the global namespace. Where tests have a close or one to one
relationship to the components they test, however, it's often neater to place each test class in the same
namespace as its target, and in a parallel directory structure. That way you can tell at a glance the relationship
between a test and its subject both from the test's namespace and the location of its file.

The PHPUnit_Framework_TestSuite class allows you to collect individual test cases into a suite. Here’s
how I can call this from the command line:

$ phpunit test/UserTests

PHPUnit 3.4.11 by Sebastian Bergmann.
.....
Time: 1 second, Memory: 4.50Mb
OK (5 tests, 6 assertions)

Documentation
Transparency is one of the principles of CI. When you're looking at a build in a Continuous

Integration environment, therefore, it’s important to be able to check that the documentation is up to
date, and covers the most recent classes and methods. I examined phpDocumentor in Chapter 16, so
I’ve already run an install like this.

pear upgrade PhpDocumentor

I’d better run the tool just to be sure:

$ mkdir docs
$ phpdoc --directory userthing --target docs/

That generates some pretty bare documentation. Once that’s published on a CI server, I’m sure to
be shamed into writing some real inline documentation.

Code Coverage
It’s no good relying on tests if they don’t apply to the code you have written. PHPUnit includes the

ability to report on code coverage. Here's an extract from PHPUnit’s usage information.

 --coverage-html <dir> Generate code coverage report in HTML format.
 --coverage-clover <file> Write code coverage data in Clover XML format.
 --coverage-source <dir> Write code coverage / source data in XML format.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

432

In order to use this feature you must have the Xdebug extension installed. You can find more about
this at http://pecl.php.net/package/Xdebug (installation information at
http://xdebug.org/docs/install). You may also be able to install directly using your Linux
distribution’s package management system. This should work for you in Fedora 12, for example:

$ yum install php-pecl-xdebug

Here I run PHPUnit with code coverage enabled.

$ mkdir /tmp/coverage
$ phpunit --coverage-html /tmp/coverage test

PHPUnit 3.4.11 by Sebastian Bergmann.
.....
Time: 0 seconds, Memory: 5.25Mb
OK (5 tests, 6 assertions)
Generating code coverage report, this may take a moment.

Now you can see the report in your browser. See Figure 20–2.

Figure 20–2. The code coverage report

It’s important to note that achieving full coverage is not the same as adequately testing a system. On
the other hand, it’s good to know about any gaps in your tests. As you can see from Figure 20–2, I’ve still
got some work to do.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

433

Coding Standards
I can argue all day about the best place to put a brace, whether to indent with tabs or spaces, how to

name a private property variable. Wouldn’t it be nice if I could enforce my prejudices with a tool? Thanks
to PHP_CodeSniffer I can. CodeSniffer can apply one of a set of coding standards to a project and
generate a report, telling you just how bad your style is.

That might sound like a massive pain in the rear end. In fact, it can be just that. But there are
sensible non-passive aggressive uses for a tool like this. I’ll get to these, but first I’ll put the tool through
its paces. Installation first:

$ sudo pear install PHP_CodeSniffer

Now I’m going to apply the Zend coding standard to my code:

$ phpcs --standard=Zend userthing/persist/UserStore.php

FILE: ...userthing/src/userthing/persist/UserStore.php
--
FOUND 10 ERROR(S) AND 0 WARNING(S) AFFECTING 8 LINE(S)
--
 6 | ERROR | Opening brace of a class must be on the line after the definition
 7 | ERROR | Private member variable "users" must contain a leading underscore
 9 | ERROR | Opening brace should be on a new line
 13 | ERROR | Multi-line function call not indented correctly; expected 12
 | | spaces but found 16
 ...

Clearly, I’d have to adjust my style to submit code to Zend!
It makes sense however, for a team to define coding guidelines. In fact, the decision as to which set

of rules you choose is probably less important than the decision to abide by a common standard in the
first place. If a codebase is consistent, then it’s easier to read, and therefore easier to work with. Naming
conventions, for example, can help to clarify the purpose of variables or properties.

Coding conventions can play a role in reducing risky or bug-prone code as well.
This is a dangerous area, though. Some style decisions are highly subjective, and people can be

disproportionately defensive about their way of doing things. CodeSniffer allows you to define your own
rules, so I suggest that you get buy in from your team on a set of rules so that no one feels that their
coding life has become a coding nightmare.

Another benefit of an automated tool is its impersonal nature. If your team does decide to impose a
set of coding conventions, it’s arguably better having a humorless script correcting your style, than a
humorless co-worker doing the same thing.

PHP Code Browser
You may be wedded to your exciting IDE or, like me, you might prefer to edit with vi. Either way,

when you’re looking at a report that tells you your style is lousy, or, more important, trying to
understand a failed test, it’s good to be able to pull up the code right away. The PHP_CodeBrowser
package lets you do just that.

This is bleeding-edge code, so to install you need to tell PEAR that you’re ready to accept an alpha
release.

$ sudo pear config-set preferred_state alpha

CHAPTER 20 ■ CONTINUOUS INTEGRATION

434

config-set succeeded

Then you can install.

$ pear install --alldeps phpunit/PHP_CodeBrowser

downloading PHP_CodeBrowser-0.1.2.tgz ...
Starting to download PHP_CodeBrowser-0.1.2.tgz (76,125 bytes)
.................done: 76,125 bytes
install ok: channel://pear.phpunit.de/PHP_CodeBrowser-0.1.2

If all goes well, you’ll have a command line tool called phpcb available. I’m going to point it at my
source code. phpcb likes to have access to log files generated by PHPUnit, so first I’ll run the tests first.

$ mkdir log
$ phpunit --log-junit log/log.xml test/

Now I can run phpcb:

$ mkdir output
$ phpcb --log log --output output/ --source userthing/

This writes files to the output directory. Figure 20–3 shows the output, which you can get by opening
the generated index.html file in a browser.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

435

Figure 20–3. PHP code browser

Build
While it’s possible to assess code in place, you should all also check that you can build and deploy a

package. To that end, I’ve included a package.xml file in my package. Here I test the build and install
stages.

$ pear package

Analyzing userthing/domain/User.php
Analyzing userthing/util/Validator.php
Analyzing userthing/persist/UserStore.php
Warning: in UserStore.php: class "UserStore" not prefixed with package name "userthing"
Warning: in Validator.php: class "Validator" not prefixed with package name "userthing"
Warning: in User.php: class "User" not prefixed with package name "userthing"
Warning: Channel validator warning: field "date" - Release Date "2010-03-07" is not today
Package userthing-1.2.1.tgz done
Tag the released code with `pear svntag package.xml'
(or set the SVN tag userthing-1.2.1 by hand)

CHAPTER 20 ■ CONTINUOUS INTEGRATION

436

Some of those warnings are a little out of date, since my classes use namespaces rather than the
package underscore convention. Nevertheless, I have a successful build. Now to deploy.

$ pear install --force userthing-1.2.1.tgz

install ok: channel://pear.appulsus.com/userthing-1.2.1

So I have a lot of useful tools I can use to monitor my project. Of course, left to myself I’d soon lose
interest in running them. In fact, I’d probably revert to the old idea of an integration phase, and pull out
the tools only when I’m close to a release, by which time their effectiveness as early warning systems will
be irrelevant. What I need is a CI server to run the tools for me.

CruiseControl and phpUnderControl
CruiseControl is a Continuous Integration server written in Java. It was released by ThoughtWorks (the
company that employs Martin Fowler) in 2001. Version 2.0, a complete rewrite was released in late 2002.

According to directives in a configuration file (config.xml) CruiseControl kicks off a build loop for
the projects it manages. For each project this involves any number of steps, which are defined in an Ant
build file (remember, Ant is the original Java tool upon which Phing is based). Once the build has been
run, CruiseControl, again according to configuration, can invoke tools to build reports.

The results of a build are made available in a Web application, which is the public face of
CruiseControl.

We could configure CruiseControl to run any tools we want, and to generate reports for us, after all
CruiseControl is designed to glue any number of test and build systems together. It would take a fair
amount of work though. I’m sure you’d like something off the peg that already integrates some of the
PHP tools you’ve already seen. phpUnderControl provides exactly that functionality. It customizes
CruiseControl so that tools like PHPUnit and CodeSniffer are run, and their reports integrated into the
Web interface.

Before I can use phpUnderControl, though, I must install CruiseControl.

■Note Why CruiseControl? CruiseControl is well established, and it has an excellent pedigree having been
developed by ThoughtWorks. It’s free and open source. Tools that support integration with PHP are under active
development. The fact that many of these are hosted at phpunit.de bodes well for continuing support and
interoperability. There are many CI server solutions out there, however. If you’re looking for a native PHP
implementation, you should definitely take a look at Xinc (http://code.google.com/p/xinc/).

Installing CruiseControl
CruiseControl is a Java system, so you will need to have Java installed. How you go about this will

vary from system to system. On a Fedora distribution you might do something like

yum install java-1.6.0-openjdk-devel

In a Debian system this should do the job

CHAPTER 20 ■ CONTINUOUS INTEGRATION

437

sudo apt-get install sun-java6-jdk

Otherwise, you can get Java directly from www.java.com.
Once you’ve confirmed that you have java (the java website will tell you if you haven’t), you need to

acquire CruiseControl. You can download the latest version at
http://cruisecontrol.sourceforge.net/download.html. You should end up with an archive named
something like cruisecontrol-bin-2.8.3.zip. Now you can move the directory somewhere central, and
launch the CruiseControl script.

$ unzip cruisecontrol-bin-2.8.3.zip
$ mv cruisecontrol-bin-2.8.3 /usr/local/cruisecontrol

$ cd /usr/local/cruisecontrol/
$ export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk/
$./cruisecontrol.sh

Notice that export line. Like many Java applications CruiseControl needs to know where your java
executable resides. You can see where that is on my system. Your system may differ. You can try
something like

ls -al `which java`

or

locate javac | grep bin

to find the directory you should use for JAVA_HOME. The java and javac (that’s the java compiler)
binaries will usually be found in a directory named bin. You should include the parent directory, and not
bin itself, in JAVA_HOME.

■Note Once you’ve got your proof of concept up and running, you may want ensure that CruiseControl starts up
automatically when you boot your integration server. An excellent blog entry by Felix De Vliegher at
http://felix.phpbelgium.be/blog/2009/02/07/setting-up-phpundercontrol/ includes a start-up script for
CruiseControl.

If all goes well, you should see some text scroll by, but that’s about all. Once you’ve recovered from
the sense of anti-climax, you can really find out whether you’re ready to proceed by firing up your
browser and visiting http://localhost:8080/dashboard. You should see something like the screen in
Figure 20–4.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

438

Figure 20–4. The CruiseControl Dashboard screen

■Note I’m running CruiseControl locally on my development box, so my URLs all point to localhost. You can, of
course, use a different host for your CI Server.

Installing phpUnderControl
Like CruiseControl, phpUnderControl exists to marshal other tools. So you need to make sure that

you have some prerequisites in place. I've already set up some of the tools this chapter. There’s one
more to install though:

$ pear channel-discover components.ez.no
$ pear install -a ezc/Graph

The ezcGraph package is used to generate useful status information. Now that it's in place, I can
install phpUnderControl itself.

$ pear config-set preferred_state beta
$ pear channel-discover pear.phpunit.de
$ pear install --alldeps phpunit/phpUnderControl

As you can see, phpUnderControl remains beta software at the time of this writing. Once I have it
installed, I should have access to a command line tool: phpuc. You can check this, with the usage flag:

CHAPTER 20 ■ CONTINUOUS INTEGRATION

439

$ phpuc --usage

Usage: phpuc.php <command> <options> <arguments>
For single command help type:
 phpuc.php <command> --help
Available commands:
 * clean Removes old build artifacts and logs for a specified project.
 * delete Deletes a CruiseControl project with all logs and artifacts.
 * example Creates a small CruiseControl example.
 * graph Generates the metric graphs with ezcGraph
 * install Installs the CruiseControl patches.
 * merge-phpunit Merges a set of PHPUnit logs into a single new file.
 * project Creates a new CruiseControl project.

So, I’ve already installed the package onto my system. Now I need to amend the CruiseControl
environment to support phpUnderControl. As you can see, phpuc provides a second installation step: a
command named install.

■Note This two-part installation mechanism is a useful one. PEAR is good at getting library code, runnable
scripts, and supporting data files in place. When it comes to complex installation for things like Web applications
and database driven systems, it’s often a good idea to provide a configurable installation command as part of your
application. Of course, Phing would be a good choice for this secondary installation. Most users won’t have Phing
to hand though, so it can be better to build the installation logic into an application command.

$ phpuc install /usr/local/cruisecontrol/

Now to restart CruiseControl

$ cd /usr/local/cruisecontrol/
$ kill `cat cc.pid`
$./cruisecontrol.sh

CruiseControl stores its process id in a file called cc.pid. I use that to kill the current process, then I
run the cruisecontrol.sh script to restart. Now, I can visit http://localhost:8080/cruisecontrol/ to
confirm that CruiseControl had been rebranded. You can see the new interface in Figure 20–5.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

440

Figure 20–5. phpUnderControl

Now that I have phpUnderControl in place, somehow I need to get CruiseControl to acquire and
build the userthing project.

Installing Your Project
I’m a coder. I love fiddling around with text editors. But, like many, I hate writing configuration files.

So I’m lucky that phpuc provides me with a tool to generate the directories and configuration for my
project.

■Note Remember I installed CruiseControl at /usr/local/cruisecontrol. All files and directories discussed in
this section are relative to that location.

If I were to add userthing to CruiseControl manually, I’d start by editing a configuration file called
config.xml, which can be found at the top level of the CruiseControl directory. In that file I’d tell
CruiseControl that it should recognize the project, as well as telling it about some key locations, the
build schedule. I’d set up some publishers that help to build reports.

Then I’d create a working directory called userthing within the projects directory. Probably the
most important file within the userthing project directory is named build.xml. You encountered files
with this name in Chapter 19. Phing is based on Ant, and Ant is the tool that CruiseControl uses to build
its projects and to run any assessment tools. The syntax for Ant and Phing build files is identical.

There’s quite a learning curve to setting up CruiseControl. There’s an excellent reference to the
config.xml file at http://cruisecontrol.sourceforge.net/main/configxml.html which documents 123
XML elements at the time of this writing. You’ll likely use it when you start to delve deeper into CI. As

CHAPTER 20 ■ CONTINUOUS INTEGRATION

441

useful as the documentation is, it might give you the impression that you won’t be up and running with
a build and test cycle any time soon.

phpuc comes to the rescue, though, with the project command. This creates the required files and
directories, and amends any configuration files.

phpuc project --source-dir src \
--version-control svn \
--version-control-url file:///var/local/svn/userthing/trunk \
--test-dir test \
--test-case UserTests \
--test-file UserTests.php \
--coding-guideline Zend \
--project-name userthing \
/usr/local/cruisecontrol/

■Note If I were running CruiseControl on system remote from my version control repository, I’d also want to set
the user and password options.

Much of this should be self-explanatory. CruiseControl will need access to the userthing source, so,
through phpuc, I need to tell it I’m using Subversion, and provide it with the URL for the code. Then I tell
it where to find the tests, the coding standard I wish to apply. To set things up, phpUnderControl needs
to know where to find the cruisecontrol directory, so I provide the path. The output of the phpuc
project command gives you a good idea of the work that needs to be done in order to pass on this
information.

Performing project task.
 1. Creating project directory: projects/userthing
 2. Creating source directory: projects/userthing/source
 3. Creating build directory: projects/userthing/build
 4. Creating log directory: projects/userthing/build/logs
 5. Creating build file: projects/userthing/build.xml
 6. Creating backup of file: config.xml.orig
 7. Searching ant directory
 8. Modifying project file: config.xml
Performing checkout task.
 1. Checking out project.
 2. Preparing config.xml file.
 3. Preparing build.xml checkout target.
Performing PhpDocumentor task.
 1. Creating apidoc dir: project/userthing/build/api
 2. Modifying build file: project/userthing/build.xml
 3. Modifying config file: config.xml
Performing PHP_CodeSniffer task.
 1. Modifying build file: project/userthing/build.xml
Performing PHPUnit task.
 1. Creating coverage dir: project/userthing/build/coverage
 2. Modifying build file: project/userthing/build.xml
 3. Modifying config file: config.xml

CHAPTER 20 ■ CONTINUOUS INTEGRATION

442

Performing PHP_CodeBrowser task.
 1. Creating browser dir: project/userthing/build/php-code-browser
 2. Modifying config file: config.xml
Performing ezcGraph task.
 1. Modifying config file: config.xml

phpuc helpfully tells you exactly what it’s up to. As you can see it amends one or both of config.xml
and build.xml for each of the tasks I want CruiseControl to run.

By the time you read this, running phpuc in this way might be enough to get you up and running. At
the time of this writing though, there are a few issues that must first be addressed. phpUnderControl is a
beta product, after all.

First of all phpuc writes an element to the config.xml file that CruiseControl 2.8.3 chokes on. If you
find this line in config.xml:

<currentbuildstatuspublisher file="logs/${project.name}/buildstatus.txt"/>

and either comment it out, or delete it, you should avoid a fatal error.
Secondly, phpuc writes a call to itself into the main configuration file at config.xml. Here’s the

relevant section:

 <project name="userthing" buildafterfailed="false">
 <!-- ... -->

 <publishers>
 <!-- ... -->

 <execute command="/usr/bin/phpuc graph logs/${project.name}
 artifacts/${project.name}"/>
 </publishers>

 </project>

CruiseControl allows you to add your own publishers to provide custom reports for the user.
Unfortunately, there is a bug with the phpuc graph command that, at the time of this writing, prevents
the command from running. The workaround is to remove a file from the PEAR repository:

$ rm /usr/share/pear/phpUnderControl/Graph/Input/ClassComplexityInput.php

where /usr/share/pear is my PEAR directory. You can find yours with the command:

$ pear config-get php_dir

Since this problem may be fixed by now, you might skip this step, but bear it mind if the project
metrics reports are not generated.

Lastly, I must make a change that is related to my setup, rather than to a problem with the phpuc
command. I like to keep my source code in a subdirectory (named src/) within my project. That way I
can add housekeeping scripts, documentation, and other miscellanea at the top level. phpuc asks me to
specify the test directory in my command line arguments, but it will construct a call from the root of my
source directory. So if I tell phpuc that my test directory is to be found at src/test/ and that my test suite
is in UserTests.php, it will construct a call to src/test/UserTest.php.

Because my tests are designed to be run from the src/ directory, this will fail. All my require
statements use paths that are relative to src/ as a starting point, and not its parent directory. Showing
you how to change this also gives us the opportunity to take a quick look at the build.xml file.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

443

■Note A reminder of the CruiseControl environment: config.xml sits at the top level and handles application wide
configuration. Project specific build targets live in an Ant file at projects/userthing/build.xml. phpUnderControl
created the userthing directory and the build file on my behalf when I ran the phpuc project command.

Here’s the phpunit task, and some context.

<?xml version="1.0" encoding="UTF-8"?>

<project name="userthing" default="build" basedir=".">

 <target name="build" depends="checkout,php-documentor,php-codesniffer,phpunit"/>
 <!-- ... -->

 <target name="phpunit">

 <exec executable="phpunit" dir="${basedir}/source" failonerror="on">

 <arg line=" --log-junit ${basedir}/build/logs/phpunit.xml
 --coverage-clover ${basedir}/build/logs/phpunit.coverage.xml
 --coverage-html ${basedir}/build/coverage UserTests test/UserTests.php"/>
 </exec>
 </target>

</project>

As you can see, this is just the same as a Phing document. It’s divided into target elements, which
relate to one another via their depends attributes. The phpunit task would fail as it stands. It’s calling
test/UserTest.php, but from the context of ${basedir}/source. In order to make this work, all I need do
is amend the exec element, so that it runs from ${basedir}/source/src.

<exec executable="phpunit" dir="${basedir}/source/src" failonerror="on">

Now, I’m about ready to run my project.

Running phpUnderControl / CruiseControl
First of all I need to restart CruiseControl:

$ kill `cat cc.pid`
$./cruisecontrol.sh

Now, I can see the results of my initial build by visiting http://localhost:8080/cruisecontrol. The
control panel should show that the userthing project has been added, and indicate the outcome of the
build. Clicking on the project name will call up the Overview screen.

You can see this screen in Figure 20–6.

CHAPTER 20 ■ CONTINUOUS INTEGRATION

444

Figure 20–6. The Overview screen

As you can see, the build went well, although CodeSniffer is complaining about my style. I can get
the full whine by clicking on the CodeSniffer tab, or I can see the complaints in the context of the code
itself by clicking on Code Browser. Figure 20–7 shows the code browser with the contextual
errors/notices tab open.

Figure 20–7. The code browser showing “Errors”

CHAPTER 20 ■ CONTINUOUS INTEGRATION

445

Most of the tools I tested earlier are available inline through these tabs. I can check code coverage,
examine test results, and browse documentation. And I can be secure that CruiseControl will regularly
update the project and run a build (every five minutes by default). I can see an overview by clicking on
the Metrics tab. You can see this screen in Figure 20–8.

Figure 20–8. The Metrics screen

Test Failures
So far everything seems to be going well, even if userthing won’t be finding its way into the Zend

codebase any time soon. But tests succeed when they fail, so I'd better break something to make sure
that CruiseControl reports on it.

Here is a part of a class named Validate in the namespace userthing\util:

 public function validateUser($mail, $pass) {
 // make it always fail!
 return false;

 $user = $this->store->getUser($mail);
 if (is_null($user)) {
 return null;
 }

 if ($user->getPass() == $pass) {
 return true;
 }

CHAPTER 20 ■ CONTINUOUS INTEGRATION

446

 $this->store->notifyPasswordFailure($mail);
 return false;
 }

See how I’ve sabotaged the method? As it now stands validateUser() will always return false.
Here's the test that should choke on that. It’s in test/ValidatorTest.php:

 public function testValidate_CorrectPass() {
 $this->assertTrue(
 $this->validator->validateUser("bob@example.com", "12345"),
 "Expecting successful validation"
);
 }

Having made my change, all I need do is commit, and wait. Sure enough, before long, my status page
highlights userthing in an alarming orangey red. Once I’ve clicked on the project name, I select the
Tests tab. You can see the error report in Figure 20–9

Figure 20–9. Failed tests

Failure Notification
It’s very well having errors reported on the CruiseControl web interface, so long as people visit

frequently. There is a danger that the system’s quiet efficiency might cause it to be forgotten. You can

CHAPTER 20 ■ CONTINUOUS INTEGRATION

447

change that by making CruiseControl a nag. In order to do this you can use a built-in publisher: email,
which you should add to the publishers element in your project's section of the config.xml file:

<email mailhost="smtp.somemail.com"
 mailport="465"
 username="some.user@somemail.com"
 password="somepass"
 usessl="true"
 returnaddress="ci_guy@getinstance.com"
 buildresultsurl="http://localhost:8080/cruisecontrol/buildresults/${project.name}"
 returnname="CruiseControl">

 <always address="builds@userthing-team.com" />
 <failure address="panic@userthing-team.com" reportWhenFixed="true" />

</email>

The email element contains all the information needed to connect to a mail server. I've assumed
that an SSL connection is required, but you could omit the mailport and and usessl elements otherwise.
The always element defines an address to which a message should be sent for all builds whether
successful or not. The failure element defines an address to which failure notifications should be sent.
As a bonus, with reportWhenFixed set to true, the failure recipient will also get an all clear message when
a builds are once again successful.

The failure message is very short, consisting of a subject line, which gives the build status and a URL
for the full report.

■Note If you want more verbose messages you should look at the htmlemail publisher, which shares a common
set of attributes and child elements with the email publisher, but also provides additional options to help you
format an inline message. You can find more information about htmlemail at
http://cruisecontrol.sourceforge.net/main/configxml.html#htmlemail.

Adding Your Own Build Targets
So far I have stuck to the toolset supported by phpUnderControl. That gets us a long way, after all.

However you should know that you can quite easily add your own checks to CruiseControl.
The biggest omission so far has been a test of for creating and installing a package. This is

significant, because CI is about build as well as testing. One approach would be to create a PHPUnit test
case which attempts to build and install a package.

In order to illustrate some of CruiseControl's features, though, I propose to perform the build and
install from within the product build file. I’ve already shown you the build target. It invokes the other
targets in the file through its depends attribute. Here I add a new dependency.

<target name="build"
 depends="checkout,php-documentor,php-codesniffer,phpunit,install-package"/>

The install-package target does not exist yet. Time to add it.

 <target name="make-package">
 <exec executable="pear" dir="${basedir}/source/src"

CHAPTER 20 ■ CONTINUOUS INTEGRATION

448

 failonerror="on"
 output="${basedir}/build/builderror/index.txt">
 <arg line=" package" />
 </exec>
 </target>

 <target name="install-package" depends="make-package">
 </target>

In fact install-package is currently empty. That’s because it depends on another new target, make-
package, which must be run first. There I use an Ant task called exec to invoke the command pear
package. This looks for a file called package.xml in the ${basedir}/source/src directory. How do I know
that this will be there? That's thanks to the checkout target in the same file that calls Subversion and
updates userthing under ${basedir}/source.

I send any error messages to a file in a directory at build/builderror using the output attribute.
Other tasks use the build directory so it's already in place, but builderror is new, so I need to create it
from the command line.

Once I restart CruiseControl I should see no difference. Once again, I’ll only see the benefit when
things change. So, it’s time to create an error. Here I poison my package.xml file:

<summary>A sample package that demo's aspects of CI</summary>
 <wrong />
 <description>Consisting of tests, code coverage, Subversion, etc
 </description>

Once I’ve committed this, the pear package command will choke that wrong element there. It should
refuse to build the package. Because the exec element has a failonerror attribute set, the build will fail,
and CruiseControl should then alert the team.

Figure 20–10 shows the failed build in the CruiseControl Web interface.

Figure 20–10. The build fails

CHAPTER 20 ■ CONTINUOUS INTEGRATION

449

You can see that an error has occurred, but the details aren’t entirely clear. The error message just
tells me that the build failed. In fact if I hit the XML Log File link I'll eventually find the error, buried
under an avalanche of XML. There are a couple of ways I could make this error more obvious. One way
would be to influence the failure messages generated by Ant. Another is to use a publisher to create an
artifact directory.

Artifacts are arbitrary outputs that can be incorporated into CruiseControl interface. All the reports
you have seen so far this chapter are actually acquired from artifact directories. CruiseControl provides
the artifactspublisher element, which belongs in config.xml under a project’s publishers element.
You’ve already seen email, a sibling element from this section. artifactspublisher simply takes output
generated either during a build or by post processing, and moves it into the artifacts directory. So here I
add an artifactspublisher element to my config.xml directory.

 <artifactspublisher dir="projects/${project.name}/build/builderror"
 dest="artifacts/${project.name}"
 subdirectory="builderror"/>

This copies the builderror directory from projects/userthing/build to
artifacts/userthing/<datestamp>/builderror. Next time CruiseControl encounters a build error, I can
click on the Build Artifacts link you saw in Figure 20.10, and then click through artifact directory links
to arrive at the page you can see in Figure 20–11.

Figure 20–11. A simple artifact report

Now that I’ve set up a basic report for the make-package target, I can go ahead and do the same for
install-package. I’d better implement it at the same time.

 <target name="install-package" depends="make-package">
 <fileset id="package.ref"
 dir="${basedir}/source/src/"
 includes="userthing*.tgz" />
 <pathconvert property="package.file" refid="package.ref" />

 <exec executable="pear" dir="${basedir}/source/src"
 failonerror="on"
 output="${basedir}/build/builderror/index.txt">
 <arg value="install" />
 <arg value="--force" />
 <arg value="--installroot=${basedir}/build/install" />
 <arg file="${package.file}" />

CHAPTER 20 ■ CONTINUOUS INTEGRATION

450

 </exec>

 <delete>
 <fileset refid="package.ref" />
 </delete>
 </target>

Once again, this target consists primarily of a call to the exec task. First, though, I create a fileset
that matches the userthing package file (userthing-1.2.1.tgz), and I convert this to an expanded path
using a new task: pathconvert. Now I have something I can pass to the command invoked by exec which
is pear install. Because the output attribute is set in this exec element, a failure will be accessible as
before. Finally, I delete the package file. It’s important to clean this up, because I’m making an
assumption that there’s only one file in the directory that matches userthing*.tgz. If I let the old
package files remain in my src directory, I would likely suffer unexpected results when I next increment
the version number.

Summary
In this chapter I brought together many of the tools you have seen in previous chapters, and glued them
in place with CruiseControl. I demonstrated that this Continuous Integration server is well suited to PHP
projects thanks to phpUnderControl. I prepared a small project for CI, applying a range of tools
including PHPUnit (both for testing and code coverage), PHP_CodeSniffer, PHP_CodeBrowser,
phpDocumentor and Subversion. Then I set up CruiseControl with phpUnderControl and showed you
how to add a project to the system. I put the system through its paces and, finally, showed you how to
extend CruiseControl so that it can bug you with emails, and test both build and installation.

P A R T 5

■ ■ ■

451

Conclusion

C H A P T E R 21

■ ■ ■

453

Objects, Patterns, Practice

From object basics through design pattern principles, and on to tools and techniques, this book has has
focused on a single objective: the successful PHP project.

In this chapter, I recap some of the topics I have covered and points made throughout the book:

• PHP and objects: How PHP continues to increase its support for object-oriented
programming, and how to leverage these features.

• Objects and design: Summarizing some OO design principles.

• Patterns: What makes them cool.

• Pattern principles: A recap of the guiding object-oriented principles that underlie
many patterns.

• The tools for the job: Revisiting the tools I have described, and checking out a few I
haven’t.

Objects
As you saw in Chapter 2, for a long time, objects were something of an afterthought in the PHP world.
Support was rudimentary to say the least in PHP 3, with objects barely more than associative arrays in
fancy dress. Although things improved radically for the object enthusiast with PHP 4, there were still
significant problems. Not the least of these was that by default, objects were assigned and passed by
reference.

The introduction of PHP 5 finally dragged objects center stage. You can still program in PHP without
ever declaring a class, of course, but there can be no doubt that the language is optimized for object-
oriented design.

In Chapters 3, 4, and 5, I looked at PHP’s object-oriented support in detail. Here are some of the new
features PHP has introduced since version 5: reflection, exceptions, private and protected methods and
properties, the __toString() method, the static modifier, abstract classes and methods, final methods
and properties, interfaces, iterators, interceptor methods, type hinting, the const modifier, passing by
reference, __clone(), the __construct() method, late static binding, and namespaces. The extensive
length of this incomplete list reveals the degree to which the future of PHP is bound up with object-
oriented programming.

I would still like to see a few features that are not yet planned, such as hinting for primitive types. I
would also like to see support for return type hinting—in which a method declaration can include the
return type the method must yield. The engine would then enforce this commitment, both for the
current and overriding methods (at the time of writing, this feature is slated for a future release).

These are quibbles, though. The Zend Engine 2 and PHP 5 have made object-oriented design central
to the PHP project, opening up the language to a new set of developers and opening up new possibilities
for existing devotees.

In Chapter 6, I looked at the benefits that objects can bring to the design of your projects. Since
objects and design are one of the central themes of this book, it is worth recapping some conclusions
in detail.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

454

Choice
There is no law that says you have to develop with classes and objects only. Well-designed object-
oriented code provides a clean interface that can be accessed from any client code, whether procedural
or object oriented. Even if you have no interest in writing objects (unlikely if you are still reading this
book), you will probably find yourself using them, if only as a client of PEAR packages.

Encapsulation and Delegation
Objects mind their own business and get on with their allotted tasks behind closed doors. They provide
an interface through which requests and results can be passed. Any data that need not be exposed, and
the dirty details of implementation, are hidden behind this front.

This gives object-oriented and procedural projects different shapes. The controller in an object-
oriented project is often surprisingly sparse, consisting of a handful of instantiations that acquire objects
and invocations that call up data from one set and pass it on to another.

A procedural project, on the other hand, tends to be much more interventionist. The controlling
logic descends into implementation to a greater extent, referring to variables, measuring return values,
and taking turns along different pathways of operation according to circumstance.

Decoupling
To decouple is to remove interdependence between components, so that making a change to one
component does not necessitate changes to others. Well-designed objects are self-enclosed. That is, they
do not need to refer outside of themselves to recall a detail they learned in a previous invocation.

By maintaining an internal representation of state, objects reduce the need for global variables—a
notorious cause of tight coupling. In using a global variable, you bind one part of a system to another. If
a component (whether a function, a class, or a block of code) refers to a global variable, there is a risk
that another component will accidentally use the same variable name and substitute its value for the
first. There is a chance that a third component will come to rely on the value in the variable as set by the
first. Change the way that the first component works, and you may cause the third to stop working. The
aim of object-oriented design is to reduce such interdependence, making each component as self-
sufficient as possible.

Another cause of tight coupling is code duplication. When you must repeat an algorithm in different
parts of your project, you will find tight coupling. What happens when you come to change the
algorithm? Clearly you must remember to change it everywhere it occurs. Forget to do this, and your
system is in trouble.

A common cause of code duplication is the parallel conditional. If your project needs to do things in
one way according to a particular circumstance (running on Linux, for example), and another according
to an alternative circumstance (running on Windows), you will often find the same if/else clauses
popping up in different parts of your system. If you add a new circumstance together with strategies for
handling it (MacOS), you must ensure that all conditionals are updated.

Object-oriented programming provides a technique for handling this problem. You can replace
conditionals with polymorphism. Polymorphism, also known as class switching, is the transparent use of
different subclasses according to circumstance. Because each subclass supports the same interface as the
common superclass, the client code neither knows nor cares which particular implementation it is using.

Conditional code is not banished from object-oriented systems; it is merely minimized and
centralized. Conditional code of some kind must be used to determine which particular subtypes are to be
served up to clients. This test, though, generally takes place once, and in one place, thus reducing coupling.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

455

Reusability
Encapsulation promotes decoupling, which promotes reuse. Components that are self-sufficient and
communicate with wider systems only through their public interface can often be moved from one
system and used in another without change.

In fact, this is rarer than you might think. Even nicely orthogonal code can be project-specific. When
creating a set of classes for managing the content of a particular web site, for example, it is worth taking
some time in the planning stage to look at those features that are specific to your client, and those that
might form the foundation for future projects with content management at their heart.

Another tip for reuse: centralize those classes that might be used in multiple projects. Do not, in
other words, copy a nicely reusable class into a new project. This will cause tight coupling on a macro
level, as you will inevitably end up changing the class in one project and forgetting to do so in another.
You would do better to manage common classes in a central repository that can be shared by your
projects.

Aesthetics
This is not going to convince anyone who is not already convinced, but to me, object-oriented code is
aesthetically pleasing. The messiness of implementation is hidden away behind clean interfaces, making
an object a thing of apparent simplicity to its client.

I love the neatness and elegance of polymorphism, so that an API allows you to manipulate vastly
different objects that nonetheless perform interchangeably and transparently—the way that objects can
be stacked up neatly or slotted into one another like children’s blocks.

Of course, there are those who argue that the converse is true. Object-oriented code can lead to
tortuous class names that must be combined with method names to form even more labored
invocations. This is especially true of PEAR, where class names include their package names to make up
for PHP’s lack of support for namespaces. There is an end in sight to this now that namespaces are
poised part of the language. PEAR developers prize backward compatibility, though, so it will be some
time before the old naming conventions fall by the wayside.

It is also worth mentioning that a beautiful solution is not always the best, or most efficient. It is
tempting to use a full-blown object-oriented solution where a quick script or a few system calls might
have got the job done.

Another fair criticism is that object-oriented code can dissolve into a babel of classes and objects
that can be very hard to read. There is no denying that this can be the case, although matters can be
eased considerably through careful documentation containing usage examples.

Patterns
Recently a Java programmer applied for a job in a company with which I have some involvement. In his
cover letter, he apologized for only having used patterns for a couple of years. This assumption that
design patterns are a recent discovery—a transformative advance—is testament to the excitement they
have generated. In fact, it is likely that this experienced coder has been using patterns for a lot longer
than he thinks.

Patterns describe common problems and tested solutions. Patterns name, codify, and organize real-
world best practice. They are not components of an invention or clauses in a doctrine. A pattern would
not be valid if it did not describe practices that are already common at the time of hatching.

Remember that the concept of a pattern language originated in the field of architecture. People were
building courtyards and arches for thousands of years before patterns were proposed as a means of
describing solutions to problems of space and function.

Having said that, it is true that design patterns often provoke the kind of emotions associated with
religious or political disputes. Devotees roam the corridors with an evangelistic gleam in their eye and a

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

456

copy of the Gang of Four book under their arm. They accost the uninitiated and reel off pattern names
like articles of faith. It is little wonder that some critics see design patterns as hype.

In languages such as Perl and PHP, patterns are also controversial because of their firm association
with object-oriented programming. In a context in which objects are a design decision and not a given,
associating oneself with design patterns amounts to a declaration of preference, not least because
patterns beget more patterns, and objects beget more objects.

What Patterns Buy Us
I introduced patterns in Chapter 7. Let’s reiterate some of the benefits that patterns can buy us.

Tried and Tested
First of all, as I’ve noted, patterns are proven solutions to particular problems. Drawing an analogy
between patterns and recipes is dangerous: recipes can be followed blindly, whereas patterns are “half-
baked” (Martin Fowler) by nature and need more thoughtful handling. Nevertheless, both recipes and
patterns share one important characteristic: they have been tried out and tested thoroughly before
inscription.

Patterns Suggest Other Patterns
Patterns have grooves and curves that fit one another. Certain patterns slot together with a satisfying
click. Solving a problem using a pattern will inevitably have ramifications. These consequences can
become the conditions that suggest complementary patterns. It is important, of course, to be careful
that you are addressing real needs and problems when you choose related patterns, and not just
building elegant but useless towers of interlocking code. It is tempting to build the programming
equivalent of an architectural folly.

A Common Vocabulary
Patterns are a means of developing a common vocabulary for describing problems and solutions.
Naming is important—it stands in for describing, and therefore lets us cover lots of ground very quickly.
Naming, of course, also obscures meaning for those who do not yet share the vocabulary, which is one
reason why patterns can be so infuriating at times.

Patterns Promote Design
As discussed in the next section, patterns can encourage good design when used properly. There is an
important caveat, of course. Patterns are not fairy dust.

Patterns and Principles of Design
Design patterns are, by their nature, concerned with good design. Used well, they can help you build
loosely coupled and flexible code. Pattern critics have a point, though, when they say that patterns can
be overused by the newly infected. Because pattern implementations form pretty and elegant structures,
it can be tempting to forget that good design always lies in fitness for purpose. Remember that patterns
exist to address problems.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

457

When I first started working with patterns, I found myself creating Abstract Factories all over my
code. I needed to generate objects, and Abstract Factory certainly helped me to do that.

In fact, though, I was thinking lazily and making unnecessary work for myself. The sets of objects I
needed to produce were indeed related, but they did not yet have alternative implementations. The
classic Abstract Factory pattern is ideal for situations in which you have alternative sets of objects to
generate according to circumstance. To make Abstract Factory work, you need to create factory classes
for each type of object and a class to serve up the factory class. It’s exhausting just describing the
process.

My code would have been much cleaner had I created a basic factory class, only refactoring to
implement Abstract Factory if I found myself needing to generate a parallel set of objects.

The fact that you are using patterns does not guarantee good design. When developing, it is a good
idea to bear in mind two expressions of the same principle: KISS (“Keep it simple, stupid”) and “Do the
simplest thing that works.” eXtreme programmers also give us another, related, acronym: YAGNI. “You
aren’t going to need it,” meaning that you should not implement a feature unless it is truly required.

With the warnings out of the way, I can resume my tone of breathless enthusiasm. As I laid out in
Chapter 9, patterns tend to embody a set of principles that can be generalized and applied to all code.

Favor Composition over Inheritance
Inheritance relationships are powerful. We use inheritance to support runtime class switching
(polymorphism), which lies at the heart of many of the patterns and techniques I explored in this book.
By relying on solely on inheritance in design, though, you can produce inflexible structures that are
prone to duplication.

Avoid Tight Coupling
I have already talked about this issue in this chapter, but it is worth mentioning here for the sake of
completeness. You can never escape the fact that change in one component may require changes in
other parts of your project. You can, however, minimize this by avoiding both duplication (typified in
our examples by parallel conditionals) and the overuse of global variables (or Singletons). You should
also minimize the use of concrete subclasses when abstract types can be used to promote
polymorphism. This last point leads us to another principle:

Code to an Interface, Not an Implementation
Design your software components with clearly defined public interfaces that make the responsibility of
each transparent. If you define your interface in an abstract superclass and have client classes demand
and work with this abstract type, you then decouple clients from specific implementations.

Having said that, remember the YAGNI principle. If you start out with the need for only one
implementation for a type, there is no immediate reason to create an abstract superclass. You can just as
well define a clear interface in a single concrete class. As soon as you find that your single
implementation is trying to do more than one thing at the same time, you can redesignate your concrete
class as the abstract parent of two subclasses. Client code will be none the wiser, since it continues to
work with a single type.

A classic sign that you may need to split an implementation and hide the resultant classes behind an
abstract parent is the emergence of conditional statements in the implementation.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

458

Encapsulate the Concept That Varies
If you find that you are drowning in subclasses, it may be that you should be extracting the reason for all
this subclassing into its own type. This is particularly the case if the reason is to achieve an end that is
incidental to your type’s main purpose.

Given a type UpdatableThing, for example, you may find yourself creating FtpUpdatableThing,
HttpUpdatableThing, and FileSystemUpdatableThing subtypes. The responsibility of your type, though, is
to be a thing that is updatable—the mechanism for storage and retrieval are incidental to this purpose.
Ftp, Http, and FileSystem are the things that vary here, and they belong in their own type—let’s call it
UpdateMechanism. UpdateMechanism will have subclasses for the different implementations. You can then
add as many update mechanisms as you want without disturbing the UpdatableThing type, which
remains focused on its core responsibility.

Notice also that I have replaced a static compile-time structure with a dynamic runtime
arrangement here, bringing us (as if by accident) back to our first principle: “Favor composition over
inheritance.”

Practice
The issues that I covered in this section of the book (and introduced in Chapter 14) are often ignored by
texts and coders alike. In my own life as a programmer, I discovered that these tools and techniques
were at least as relevant to the success of a project as design. There is little doubt that issues such as
documentation and automated build are less revelatory in nature than wonders such as the Composite
pattern.

■Note Let’s just remind ourselves of the beauty of Composite: a simple inheritance tree whose objects can be
joined at runtime to form structures that are also trees, but are orders of magnitude more flexible and complex.
Multiple objects that share a single interface by which they are presented to the outside world. The interplay
between simple and complex, multiple and singular, has got to get your pulse racing—that’s not just software
design, it’s poetry.

Even if issues such as documentation and build, testing, and version control are more prosaic than
patterns, they are no less important. In the real world, a fantastic design will not survive if multiple
developers cannot easily contribute to it or understand the source. Systems become hard to maintain
and extend without automated testing. Without build tools, no one is going to bother to deploy your
work. As PHP’s user base widens, so does our responsibility as developers to ensure quality and ease of
deployment.

A project exists in two modes. A project is its structures of code and functionality, and it is also set of
files and directories, a ground for cooperation, a set of sources and targets, a subject for transformation.
In this sense, a project is a system from the outside as much as it is within its code. Mechanisms for
build, testing, documentation, and version control require the same attention to detail as the code such
mechanisms support. Focus on the metasystem with as much fervor as you do on the system itself.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

459

Testing
Although testing is part of the framework that one applies to a project from the outside, it is intimately
integrated into the code itself. Because total decoupling is not possible, or even desirable, test
frameworks are a powerful way of monitoring the ramifications of change. Altering the return type of a
method could influence client code elsewhere, causing bugs to emerge weeks or months after the
change is made. A test framework gives you half a chance of catching errors of this kind (the better the
tests, the better the odds here).

Testing is also a tool for improving object-oriented design. Testing first (or at least concurrently)
helps you to focus on a class’s interface and think carefully about the responsibility and behavior of
every method. I introduced the PHPUnit2 package, which is used for testing, in Chapter 18.

Documentation
Your code is not as clear as you think it is. A stranger visiting a codebase for the first time can be faced
with a daunting task. Even you, as author of the code, will eventually forget how it all hangs together. In
Chapter 16, I covered phpDocumentor, which allows you to document as you go, and automatically
generates hyperlinked output.

The output from phpDocumentor is particularly useful in an object-oriented context, as it allows
the user to click around from class to class. As classes are often contained in their own files, reading the
source directly can involve following complex trails from source file to source file.

Version Control
Collaboration is hard. Let’s face it: people are awkward. Programmers are even worse. Once you’ve
sorted out the roles and tasks on your team, the last thing you want to deal with is clashes in the source
code itself. As you saw in Chapter 17, Subversion (and similar tools such as CVS and Git) enable you to
merge the work of multiple programmers into a single repository. Where clashes are unavoidable,
Subversion flags the fact and points you to the source to fix the problem.

Even if you are a solo programmer, version control is a necessity. Subversion supports branching, so
that you can maintain a software release and develop the next version at the same time, merging bug
fixes from the stable release to the development branch.

Subversion also provides a record of every commit ever made on your project. This means that you
can roll back by date or tag to any moment. This will save your project someday—believe me.

Automated Build
Version control without automated build is of limited use. A project of any complexity takes work to
deploy. Various files need to be moved to different places on a system, configuration files need to be
transformed to have the right values for the current platform and database, database tables need to be
set up or transformed. I covered two tools designed for installation. The first, PEAR (see Chapter 15), is
ideal for standalone packages and small applications. The second build tool I covered was Phing (see
Chapter 19), which is a tool with enough power and flexibility to automate the installation of the largest
and most labyrinthine project.

Automated build transforms deployment from a chore to a matter of a line or two at the command
line. With little effort, you can invoke your test framework and your documentation output from your
build tool. If the needs of your developers do not sway you, bear in mind the pathetically grateful cries of
your users as they discover that they need no longer spend an entire afternoon copying files and
changing configuration fields every time you release a new version of your project.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

460

Continuous Integration
It is not enough to be able to test and build a project; you have do it all the time. This becomes
increasingly important as a project grows in complexity and you manage multiple branches. You should
build and test the stable branch from which you make minor bug fix releases, an experimental
development branch or two, and your main trunk. If you were to try to do all that manually, even with
the aid of build and test tools, you'd never get around to any coding. Of course, all coders hate that, so
build and testing inevitably get skimped on.

In chapter 20 I looked at Continuous Integration, a practice and a set of tools that automate the build
and test processes as much as possible.

What I Missed
A few tools I have had to omit from this book due to time and space constraints are, nonetheless,
supremely useful for any project.

Perhaps foremost among these is Bugzilla. Its name should suggest two things to you. First, it is a
tool concerned with bug tracking. Second, it is part of the Mozilla project.

Like Subversion, Bugzilla is one of those productivity tools that, once you have tried it on a project,
you cannot imagine not using. Bugzilla is available for download from http://www.bugzilla.org.

It is designed to allow users to report problems with a project, but in my experience it is just as often
used as a means of describing required features and allocating their implementation to team members.

You can get a snapshot of open bugs at any time, narrowing the search according to product, bug
owner, version number, and priority. Each bug has its own page, in which you can discuss any ongoing
issues. Discussion entries and changes in bug status can be copied by mail to team members, so it’s easy
to keep an eye on things without going to the Bugzilla URL all the time.

Trust me. You want Bugzilla in your life.
Every serious project needs at least one mailing list so that users can be kept informed of changes

and usage issues, and developers can discuss architecture and allocation of resources. My favorite
mailing list software is Mailman (http://www.gnu.org/software/mailman/), which is free, relatively easy
to install, and highly configurable. If you don’t want to install your own mailing list software, however,
there are plenty of sites that allow you to run mailing lists or newsgroups for free.

Although inline documentation is important, projects also generate a broiling heap of written
material. This includes usage instructions, consultation on future directions, client assets, meeting
minutes, and party announcements. During the lifetime of a project, such materials are very fluid, and a
mechanism is often needed to allow people to collaborate in their evolution.

A wiki (wiki is apparently Hawaiian for “very fast”) is the perfect tool for creating collaborative webs
of hyperlinked documents. Pages can be created or edited at the click of a button, and hyperlinks are
automatically generated for words that match page names. Wiki is another one of those tools that seems
so simple, essential, and obvious that you are sure you probably had the idea first but just didn’t get
around to doing anything about it. There are a number of wikis to choose from. I have had good
experience with one called Foswiki, which is available for download from http://foswiki.org/. Foswiki
is written in Perl. Naturally, there are wiki applications written in PHP. Notable among them are
PhpWiki, which can be downloaded from http://phpwiki.sourceforge.net, and DokuWiki, which you
can find at http://wiki.splitbrain.org/wiki:dokuwiki.

Summary
In this chapter I wrapped things up, revisiting the core topics that make up the book. Although I haven’t
tackled any concrete issues such as individual patterns or object functions here, this chapter should
serve as a reasonable summary of this book’s concerns.

CHAPTER 20 ■ OBJECTS, PATTERNS, PRACTICE

461

There is never enough room or time to cover all the material that one would like. Nevertheless, I
hope that this book has served to make one argument: PHP is growing up. It is now one of the most
popular programming languages in the world. I hope that PHP remains the hobbyist’s favorite language,
and that many new PHP programmers are delighted to discover how far they can get with just a little
code. At the same time, though, more and more professional teams are building large systems with PHP.
Such projects deserve more than a just-do-it approach. Through its extension layer, PHP has always
been a versatile language, providing a gateway to hundreds of applications and libraries. Its object-
oriented support, on the other hand, gains you access to a different set of tools. Once you begin to think
in objects, you can chart the hard-won experience of other programmers. You can navigate and deploy
pattern languages developed with reference not just to PHP but to Smalltalk, C++, C#, or Java, too. It is
our responsibility to meet this challenge with careful design and good practice. The future is reusable.

A P P E N D I X A

■ ■ ■

463

Bibliography

Books
Alexander, Christopher, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid Fiksdahl-King, and

Shlomo Angel. A Pattern Language: Towns, Buildings, Construction. Oxford, UK: Oxford University

Press, 1977.

Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies.

Englewood Cliffs, NJ: Prentice Hall PTR, 2001.

Beck, Kent. Extreme Programming Explained: Embrace Change. Reading, MA: Addison-Wesley, 1999.

Fogel, Karl, and Moshe Bar., Open Source Development with CVS, Third Edition. Scottsdale, AZ:

Paraglyph Press, 2003.

Fowler, Martin, and Kendall Scott. UML Distilled, Second Edition: A Brief Guide to the Standard Object

Modeling Language. Reading, MA: Addison-Wesley, 1999.

Fowler, Martin, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving the

Design of Existing Code. Reading, MA: Addison-Wesley, 1999.

Fowler, Martin. Patterns of Enterprise Application Architecture. Reading, MA: Addison-Wesley, 2003.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to Master. Reading,

MA: Addison-Wesley, 2000.

Kerievsky, Joshua. Refactoring to Patterns. Reading, MA: Addison-Wesley, 2004.

Metsker, Steven John. Building Parsers with Java. Reading, MA: Addison-Wesley, 2001.

Nock, Clifton. Data Access Patterns: Database Interactions in Object-Oriented Applications. Reading, MA:

Addison-Wesley, 2004.

APPENDIX A ■ BIBLIOGRAPHY

464

Shalloway, Alan, and James R Trott. Design Patterns Explained: A New Perspective on Object-Oriented

Design. Reading, MA: Addison Wesley, 2002.

Stelting, Stephen, and Olav Maasen. Applied Java Patterns. Palo Alto, CA: Sun Microsystems Press, 2002.

Articles
Beaver, Greg. “Setting Up Your Own PEAR Channel with Chiara_Pear_Server—The Official Way.”

http://greg.chiaraquartet.net/archives/123-Setting-up-your-own-PEAR-channel-the-official-

way.html

Beck, Kent, and Erich Gamma. “Test Infected: Programmers Love Writing Tests.”

http://junit.sourceforge.net/doc/testinfected/testing.htm

Collins-Sussman, Ben, Brian W. Fitzpatrick, C. Michael Pilato. “Version Control with Subversion”

http://svnbook.red-bean.com/

Lerdorf, Rasmus. “PHP/FI Brief History.” http://www.php.net//manual/phpfi2.php#history

Suraski, Zeev. “The Object-Oriented Evolution of PHP.”

http://www.devx.com/webdev/Article/10007/0/page/1

Sites
Bugzilla: http://www.bugzilla.org

CruiseControl: http://cruisecontrol.sourceforge.net/

CVS: http://www.cvshome.org/

CvsGui: http://www.wincvs.org/

CVSNT: http://www.cvsnt.org/wiki

DokuWiki: http://wiki.splitbrain.org/wiki:dokuwiki

Foswiki: http://foswiki.org/

Eclipse: http://www.eclipse.org/

Java: http://www.java.com

GNU: http://www.gnu.org/

Git: http://git-scm.com/

Google Code: http://code.google.com

APPENDIX A ■ BIBLIOGRAPHY

465

Mailman: http://www.gnu.org/software/mailman/

Martin Fowler: http://www.martinfowler.com/

Memcached: http://danga.com/memcached/

Phing: http://phing.info/trac/

PHPUnit: http://www.phpunit.de

PhpWiki: http://phpwiki.sourceforge.net

PEAR: http://pear.php.net

PECL: http://pecl.php.net/

Phing: http://phing.info/

PHP: http://www.php.net

PhpWiki: http://phpwiki.sourceforge.net

PHPDocumentor: http://www.phpdoc.org/

Portland Pattern Repository’s Wiki (Ward Cunningham): http://www.c2.com/cgi/wiki

Pyrus: http://pear2.php.net

RapidSVN: http://rapidsvn.tigris.org/

QDB: http://www.bash.org

Selenium: http://seleniumhq.org/

SPL: http://www.php.net/spl

Subversion: http://subversion.apache.org/

Ximbiot—CVS Wiki: http://ximbiot.com/cvs/wiki/

Xdebug: http://xdebug.org/

Zend: http://www.zend.com

A P P E N D I X B

■ ■ ■

467

A Simple Parser

The Interpreter pattern discussed in Chapter 11 does not cover parsing. An interpreter without a parser
is pretty incomplete, unless you persuade your users to write PHP code to invoke the interpreter! Third-
party parsers are available that could be deployed to work with the Interpreter pattern, and that would
probably be the best choice in a real-world project. This appendix, however, presents a simple object-
oriented parser designed to work with the MarkLogic interpreter built in Chapter 11. Be aware that these
examples are no more than a proof of concept. They are not designed for use in real-world situations.

■Note The interface and broad structure of this parser code are based on Steven Metsker’s Building Parsers with
Java (Addison-Wesley, 2001). The brutally simplified implementation is my fault, however, and any mistakes
should be laid at my door. Steven has given kind permission for the use of his original concept.

The Scanner
In order to parse a statement, you must first break it down into a set of words and characters (known as
tokens). The following class uses a number of regular expressions to define tokens. It also provides a
convenient result stack that I will be using later in this section. Here is the Scanner class:

namespace gi\parse;

class Scanner {

 // token types
 const WORD = 1;
 const QUOTE = 2;
 const APOS = 3;
 const WHITESPACE = 6;
 const EOL = 8;
 const CHAR = 9;
 const EOF = 0;
 const SOF = -1;

 protected $line_no = 1;
 protected $char_no = 0;

APPENDIX B ■ A SIMPLE PARSER

468

 protected $token = null;
 protected $token_type = -1;
 // Reader provides access to the raw character data. Context stores
 // result data
 function __construct(Reader $r, Context $context) {
 $this->r = $r;
 $this->context = $context;
 }

 function getContext() {
 return $this->context;
 }

 // read through all whitespace characters
 function eatWhiteSpace() {
 $ret = 0;
 if ($this->token_type != self::WHITESPACE &&
 $this->token_type != self::EOL) {
 return $ret;
 }
 while ($this->nextToken() == self::WHITESPACE ||
 $this->token_type == self::EOL) {
 $ret++;
 }
 return $ret;
 }

 // get a string representation of a token
 // either the current token, or that represented
 // by the $int arg
 function getTypeString($int=-1) {
 if ($int<0) { $int=$this->tokenType(); }
 if ($int<0) { return null; }
 $resolve = array(
 self::WORD => 'WORD',
 self::QUOTE => 'QUOTE',
 self::APOS => 'APOS',
 self::WHITESPACE => 'WHITESPACE',
 self::EOL => 'EOL',
 self::CHAR => 'CHAR',
 self::EOF => 'EOF');
 return $resolve[$int];
 }

 // the current token type (represented by an integer)
 function tokenType() {
 return $this->token_type;
 }

 // get the contents of the current token
 function token() {
 return $this->token;
 }

APPENDIX B ■ A SIMPLE PARSER

469

 // return true if the current token is a word
 function isWord() {
 return ($this->token_type == self::WORD);
 }

 // return true if the current token is a quote character
 function isQuote() {
 return ($this->token_type == self::APOS ||
 $this->token_type == self::QUOTE);
 }

 // current line number in source
 function line_no() {
 return $this->line_no;
 }

 // current character number in source
 function char_no() {
 return $this->char_no;
 }

 // clone this object
 function __clone() {
 $this->r = clone($this->r);
 }

 // move on to the next token in the source. Set the current
 // token and track the line and character numbers
 function nextToken() {
 $this->token = null;
 $type;
 while (! is_bool($char=$this->getChar())) {
 if ($this->isEolChar($char)) {
 $this->token = $this->manageEolChars($char);
 $this->line_no++;
 $this->char_no = 0;
 $type = self::EOL;
 return ($this->token_type = self::EOL);

 } else if ($this->isWordChar($char)) {
 $this->token = $this->eatWordChars($char);
 $type = self::WORD;

 } else if ($this->isSpaceChar($char)) {
 $this->token = $char;
 $type = self::WHITESPACE;

 } else if ($char == "'") {
 $this->token = $char;
 $type = self::APOS;

 } else if ($char == '"') {

APPENDIX B ■ A SIMPLE PARSER

470

 $this->token = $char;
 $type = self::QUOTE;

 } else {
 $type = self::CHAR;
 $this->token = $char;
 }

 $this->char_no += strlen($this->token());
 return ($this->token_type = $type);
 }
 return ($this->token_type = self::EOF);
 }

 // return an array of token type and token content for the NEXT token
 function peekToken() {
 $state = $this->getState();
 $type = $this->nextToken();
 $token = $this->token();
 $this->setState($state);
 return array($type, $token);
 }

 // get a ScannerState object that stores the parser's current
 // position in the source, and data about the current token
 function getState() {
 $state = new ScannerState();
 $state->line_no = $this->line_no;
 $state->char_no = $this->char_no;
 $state->token = $this->token;
 $state->token_type = $this->token_type;
 $state->r = clone($this->r);
 $state->context = clone($this->context);
 return $state;
 }

 // use a ScannerState object to restore the scanner's
 // state
 function setState(ScannerState $state) {
 $this->line_no = $state->line_no;
 $this->char_no = $state->char_no;
 $this->token = $state->token;
 $this->token_type = $state->token_type;
 $this->r = $state->r;
 $this->context = $state->context;
 }

 // get the next character from source
 private function getChar() {
 return $this->r->getChar();
 }

 // get all characters until they stop being

APPENDIX B ■ A SIMPLE PARSER

471

 // word characters
 private function eatWordChars($char) {
 $val = $char;
 while ($this->isWordChar($char=$this->getChar())) {
 $val .= $char;
 }
 if ($char) {
 $this->pushBackChar();
 }
 return $val;
 }

 // get all characters until they stop being space
 // characters
 private function eatSpaceChars($char) {
 $val = $char;
 while ($this->isSpaceChar($char=$this->getChar())) {
 $val .= $char;
 }
 $this->pushBackChar();
 return $val;
 }

 // move back one character in source
 private function pushBackChar() {
 $this->r->pushBackChar();
 }

 // argument is a word character
 private function isWordChar($char) {
 return preg_match("/[A-Za-z0-9_\-]/", $char);
 }

 // argument is a space character
 private function isSpaceChar($char) {
 return preg_match("/\t| /", $char);
 }

 // argument is an end of line character
 private function isEolChar($char) {
 return preg_match("/\n|\r/", $char);
 }

 // swallow either \n, \r or \r\n
 private function manageEolChars($char) {
 if ($char == "\r") {
 $next_char=$this->getChar();
 if ($next_char == "\n") {
 return "{$char}{$next_char}";
 } else {
 $this->pushBackChar();
 }
 }

APPENDIX B ■ A SIMPLE PARSER

472

 return $char;
 }
 function getPos() {
 return $this->r->getPos();
 }

}

class ScannerState {
 public $line_no;
 public $char_no;
 public $token;
 public $token_type;
 public $r;
}

First off, I set up constants for the tokens that interest me. I am going to match characters, words,
whitespace, and quote characters. I test for these types in methods dedicated to each token:
isWordChar(), isSpaceChar(), and so on. The heart of the class is the nextToken() method. This attempts
to match the next token in a given string. The Scanner stores a Context object. Parser objects use this to
share results as they work through the target text.

Note also a second class: ScannerState. The Scanner is designed so that Parser objects can save
state, try stuff out, and restore if they’ve gone down a blind alley. The getState() method populates and
returns a ScannerState object. setState() uses a ScannerState object to revert state if required.

Here is the Context class:

namespace gi\parse;
//...

class Context {
 public $resultstack = array();

 function pushResult($mixed) {
 array_push($this->resultstack, $mixed);
 }

 function popResult() {
 return array_pop($this->resultstack);
 }

 function resultCount() {
 return count($this->resultstack);
 }

 function peekResult() {
 if (empty($this->resultstack)) {
 throw new Exception("empty resultstack");
 }
 return $this->resultstack[count($this->resultstack) -1];
 }
}

APPENDIX B ■ A SIMPLE PARSER

473

As you can see, this is just a simple stack, a convenient noticeboard for parsers to work with. It
performs a similar job to that of the context class used in the Interpreter pattern, but it is not the same
class.

Notice that the Scanner does not itself work with a file or string. Instead it requires a Reader object.
This would allow me to easily to swap in different sources of data. Here is the Reader interface and an
implementation: StringReader:

namespace gi\parse;

abstract class Reader {

 abstract function getChar();
 abstract function getPos();
 abstract function pushBackChar();
}

class StringReader extends Reader {
 private $in;
 private $pos;

 function __construct($in) {
 $this->in = $in;
 $this->pos = 0;
 }

 function getChar() {
 if ($this->pos >= strlen($this->in)) {
 return false;
 }
 $char = substr($this->in, $this->pos, 1);
 $this->pos++;
 return $char;
 }

 function getPos() {
 return $this->pos;
 }

 function pushBackChar() {
 $this->pos--;
 }

 function string() {
 return $this->in;
 }
}

This simply reads from a string one character at a time. I could easily provide a file-based version, of
course.

Perhaps the best way to see how the Scanner might be used is to use it. Here is some code to break
up the example statement into tokens:

$context = new \gi\parse\Context();
$user_in = "\$input equals '4' or \$input equals 'four'";

APPENDIX B ■ A SIMPLE PARSER

474

$reader = new \gi\parse\StringReader($user_in);
$scanner = new \gi\parse\Scanner($reader, $context);

while ($scanner->nextToken() != \gi\parse\Scanner::EOF) {
 print $scanner->token();
 print "\t{$scanner->char_no()}";
 print "\t{$scanner->getTypeString()}\n";
}I initialize a Scanner object and then loop through the tokens in the given string by
repeatedly calling nextToken(). The token() method returns the current portion of the input
matched. char_no() tells me where I am in the string, and getTypeString() returns a string
version of the constant flag representing the current token. This is what the output should
look like:
$ 1 CHAR
input 6 WORD
 7 WHITESPACE
equals 13 WORD
 14 WHITESPACE
' 15 APOS
4 16 WORD
' 17 APOS
 18 WHITESPACE
or 20 WORD
 21 WHITESPACE
$ 22 CHAR
input 27 WORD
 28 WHITESPACE
equals 34 WORD
 35 WHITESPACE
' 36 APOS
four 40 WORD
' 41 APOS

I could, of course, match finer-grained tokens than this, but this is good enough for my purposes.
Breaking up the string is the easy part. How do I build up a grammar in code?

The Parser
One approach is to build a tree of Parser objects. Here is the abstract Parser class that I will be using:

namespace gi\parse;
abstract class Parser {

 const GIP_RESPECTSPACE = 1;
 protected $respectSpace = false;
 protected static $debug = false;
 protected $discard = false;
 protected $name;
 private static $count=0;

 function __construct($name=null, $options=null) {
 if (is_null($name)) {
 self::$count++;
 $this->name = get_class($this)." (".self::$count.")";

APPENDIX B ■ A SIMPLE PARSER

475

 } else {
 $this->name = $name;
 }
 if (is_array($options)) {
 if (isset($options[self::GIP_RESPECTSPACE])) {
 $this->respectSpace=true;
 }
 }
 }

 protected function next(Scanner $scanner) {
 $scanner->nextToken();
 if (! $this->respectSpace) {
 $scanner->eatWhiteSpace();
 }
 }

 function spaceSignificant($bool) {
 $this->respectSpace = $bool;
 }

 static function setDebug($bool) {
 self::$debug = $bool;
 }

 function setHandler(Handler $handler) {
 $this->handler = $handler;
 }

 final function scan(Scanner $scanner) {
 if ($scanner->tokenType() == Scanner::SOF) {
 $scanner->nextToken();
 }
 $ret = $this->doScan($scanner);
 if ($ret && ! $this->discard && $this->term()) {
 $this->push($scanner);
 }
 if ($ret) {
 $this->invokeHandler($scanner);
 }

 if ($this->term() && $ret) {
 $this->next($scanner);
 }
 $this->report("::scan returning $ret");
 return $ret;
 }

 function discard() {
 $this->discard = true;
 }

 abstract function trigger(Scanner $scanner);

APPENDIX B ■ A SIMPLE PARSER

476

 function term() {
 return true;
 }

// private/protected

 protected function invokeHandler(
 Scanner $scanner) {
 if (! empty($this->handler)) {
 $this->report("calling handler: ".get_class($this->handler));
 $this->handler->handleMatch($this, $scanner);
 }
 }

 protected function report($msg) {
 if (self::$debug) {
 print "<{$this->name}> ".get_class($this).": $msg\n";
 }
 }

 protected function push(Scanner $scanner) {
 $context = $scanner->getContext();
 $context->pushResult($scanner->token());
 }

 abstract protected function doScan(Scanner $scan);
}

The place to start with this class is the scan() method. It is here that most of the logic resides. scan()
is given a Scanner object to work with. The first thing that the Parser does is defer to a concrete child
class, calling the abstract doScan() method. doScan() returns true or false; you will see a concrete
example later in the section.

If doScan() reports success, and a couple of other conditions are fulfilled, then the results of the
parse are pushed to the Context object’s result stack. The Scanner object holds the Context that is used by
Parser objects to communicate results. The actual pushing of the successful parse takes place in the
Parser::push() method.

 protected function push(Scanner $scanner) {
 $context = $scanner->getContext();
 $context->pushResult($scanner->token());
 }

In addition to a parse failure, there are two conditions that might prevent the result from being
pushed to the scanner’s stack. First, client code can ask a parser to discard a successful match by calling
the discard() method. This toggles a property called $discard to true. Second, only terminal parsers
(that is, parsers that are not composed of other parsers) should push their result to the stack. Composite
parsers (instances of CollectionParser, often referred to in the following text as collection parsers) will
instead let their successful children push their results. I test whether or not a parser is terminal using the
term() method, which is overridden to return false by collection parsers.

If the concrete parser has been successful in its matching then I call another method:
invokeHandler(). This is passed the Scanner object. If a Handler (that is, an object that implements the
Handler interface) has been attached to Parser (using the setHandler() method), then its handleMatch()

APPENDIX B ■ A SIMPLE PARSER

477

method is invoked here. I use handlers to make a successful grammar actually do something, as you will
see shortly.

Back in the scan() method, I call on the Scanner object (via the next() method) to advance its
position by calling its nextToken() and eatWhiteSpace() methods. Finally, I return the value that was
provided by doScan().

In addition to doScan(), notice the abstract trigger() method. This is used to determine whether a
parser should bother to attempt a match. If trigger() returns false then the conditions are not right for
parsing. Let’s take a look at a concrete terminal Parser. CharacterParse is designed to match a particular
character:

namespace gi\parse;

class CharacterParse extends Parser {
 private $char;

 function __construct($char, $name=null, $options=null) {
 parent::__construct($name, $options);
 $this->char = $char;
 }

 function trigger(Scanner $scanner) {
 return ($scanner->token() == $this->char);
 }

 protected function doScan(Scanner $scanner) {
 return ($this->trigger($scanner));
 }
}

The constructor accepts a character to match and an optional parser name for debugging purposes.
The trigger() method simply checks whether the scanner is pointing to a character token that matches
the sought character. Because no further scanning than this is required, the doScan() method simply
invokes trigger().

Terminal matching is a reasonably simple affair, as you can see. Let’s look now at a collection
parser. First I'll define a common superclass, and then go on to create a concrete example.

namespace gi/parse;

// This abstract class holds subparsers
abstract class CollectionParse extends Parser {
 protected $parsers = array();

 function add(Parser $p) {
 if (is_null($p)) {
 throw new Exception("argument is null");
 }
 $this->parsers[]= $p;
 return $p;
 }

 function term() {
 return false;
 }
}

APPENDIX B ■ A SIMPLE PARSER

478

class SequenceParse extends CollectionParse {

 function trigger(Scanner $scanner) {
 if (empty($this->parsers)) {
 return false;
 }
 return $this->parsers[0]->trigger($scanner);
 }

 protected function doScan(Scanner $scanner) {
 $start_state = $scanner->getState();
 foreach($this->parsers as $parser) {
 if (! ($parser->trigger($scanner) &&
 $scan=$parser->scan($scanner))) {
 $scanner->setState($start_state);
 return false;
 }
 }
 return true;
 }
}

The abstract CollectionParse class simply implements an add() method that aggregates Parsers
and overrides term() to return false.

The SequenceParse::trigger() method tests only the first child Parser it contains, invoking its
trigger() method. The calling Parser will first call CollectionParse::trigger() to see if it is worth
calling CollectionParse::scan(). If CollectionParse::scan() is called, then doScan() is invoked and the
trigger() and scan() methods of all Parser children are called in turn. A single failure results in
CollectionParse::doScan() reporting failure.

One of the problems with parsing is the need to try stuff out. A SequenceParse object may contain an
entire tree of parsers within each of its aggregated parsers. These will push the Scanner on by a token or
more and cause results to be registered with the Context object. If the final child in the Parser list returns
false, what should SequenceParse do about the results lodged in Context by the child’s more successful
siblings? A sequence is all or nothing, so I have no choice but to roll back both the Context object and the
Scanner. I do this by saving state at the start of doScan() and calling setState() just before returning
false on failure. Of course, if I return true then there’s no need to roll back.

For the sake of completeness, here are all the remaining Parser classes:

namespace gi\parse;

// This matches if one or more subparsers match
class RepetitionParse extends CollectionParse {
 private $min;
 private $max;

 function __construct($min=0, $max=0, $name=null, $options=null) {
 parent::__construct($name, $options);
 if ($max < $min && $max > 0) {
 throw new Exception(
 "maximum ($max) larger than minimum ($min)");
 }
 $this->min = $min;
 $this->max = $max;

APPENDIX B ■ A SIMPLE PARSER

479

 }

 function trigger(Scanner $scanner) {
 return true;
 }

 protected function doScan(Scanner $scanner) {
 $start_state = $scanner->getState();
 if (empty($this->parsers)) {
 return true;
 }
 $parser = $this->parsers[0];
 $count = 0;

 while (true) {
 if ($this->max > 0 && $count >= $this->max) {
 return true;
 }

 if (! $parser->trigger($scanner)) {
 if ($this->min == 0 || $count >= $this->min) {
 return true;
 } else {
 $scanner->setState($start_state);
 return false;
 }
 }
 if (! $parser->scan($scanner)) {
 if ($this->min == 0 || $count >= $this->min) {
 return true;
 } else {
 $scanner->setState($start_state);
 return false;
 }
 }
 $count++;
 }
 return true;
 }
}

// This matches if one or other of two subparsers match
class AlternationParse extends CollectionParse {

 function trigger(Scanner $scanner) {
 foreach ($this->parsers as $parser) {
 if ($parser->trigger($scanner)) {
 return true;
 }
 }
 return false;
 }

APPENDIX B ■ A SIMPLE PARSER

480

 protected function doScan(Scanner $scanner) {
 $type = $scanner->tokenType();
 foreach ($this->parsers as $parser) {
 $start_state = $scanner->getState();
 if ($type == $parser->trigger($scanner) &&
 $parser->scan($scanner)) {
 return true;
 }
 }
 $scanner->setState($start_state);
 return false;
 }
}

// this terminal parser matches a string literal
class StringLiteralParse extends Parser {

 function trigger(Scanner $scanner) {
 return ($scanner->tokenType() == Scanner::APOS ||
 $scanner->tokenType() == Scanner::QUOTE);
 }

 protected function push(Scanner $scanner) {
 return;
 }

 protected function doScan(Scanner $scanner) {
 $quotechar = $scanner->tokenType();
 $ret = false;
 $string = "";
 while ($token = $scanner->nextToken()) {
 if ($token == $quotechar) {
 $ret = true;
 break;
 }
 $string .= $scanner->token();
 }

 if ($string && ! $this->discard) {
 $scanner->getContext()->pushResult($string);
 }

 return $ret;
 }
}

// this terminal parser matches a word token
class WordParse extends Parser {

 function __construct($word=null, $name=null, $options=null) {
 parent::__construct($name, $options);
 $this->word = $word;
 }

APPENDIX B ■ A SIMPLE PARSER

481

 function trigger(Scanner $scanner) {
 if ($scanner->tokenType() != Scanner::WORD) {
 return false;
 }
 if (is_null($this->word)) {
 return true;
 }
 return ($this->word == $scanner->token());
 }

 protected function doScan(Scanner $scanner) {
 $ret = ($this->trigger($scanner));
 return $ret;
 }
}

By combining terminal and nonterminal Parser objects, I can build a reasonably sophisticated
parser. You can see all the Parser classes I use for this example in Figure B–1.

Figure B–1. The Parser classes

APPENDIX B ■ A SIMPLE PARSER

482

The idea behind this use of the Composite pattern is that a client can build up a grammar in code
that closely matches EBNF notation. Table B–1 shows the parallels between these classes and EBNF
fragments.

Table B–1. Composite Parsers and EBNF

Class EBNF Example Description

AlternationParse orExpr | andExpr Either one or another

SequenceParse 'and' operand A list (all required in order)

RepetitionParse (eqExpr)* Zero or more required

Now to build some client code to implement the mini-language. As a reminder, here is the EBNF

fragment I presented in Chapter 11:

expr ::= operand (orExpr | andExpr)*
operand ::= ('(' expr ')' | <stringLiteral> | variable) (eqExpr)*
orExpr ::= 'or' operand
andExpr ::= 'and' operand
eqExpr ::= 'equals' operand
variable ::= '$' <word>

This simple class builds up a grammar based on this fragment and runs it:

class MarkParse {
 private $expression;
 private $operand;
 private $interpreter;
 private $context;

 function __construct($statement) {
 $this->compile($statement);
 }

 function evaluate($input) {
 $icontext = new InterpreterContext();
 $prefab = new VariableExpression('input', $input);
 // add the input variable to Context
 $prefaB–>interpret($icontext);

 $this->interpreter->interpret($icontext);
 $result = $icontext->lookup($this->interpreter);
 return $result;
 }

 function compile($statement_str) {
 // build parse tree
 $context = new \gi\parse\Context();
 $scanner = new \gi\parse\Scanner(
 new \gi\parse\StringReader($statement_str), $context);
 $statement = $this->expression();

APPENDIX B ■ A SIMPLE PARSER

483

 $scanresult = $statement->scan($scanner);

 if (! $scanresult || $scanner->tokenType() != \gi\parse\Scanner::EOF) {
 $msg = "";
 $msg .= " line: {$scanner->line_no()} ";
 $msg .= " char: {$scanner->char_no()}";
 $msg .= " token: {$scanner->token()}\n";
 throw new Exception($msg);
 }

 $this->interpreter = $scanner->getContext()->popResult();
 }

 function expression() {
 if (! isset($this->expression)) {
 $this->expression = new \gi\parse\SequenceParse();
 $this->expression->add($this->operand());
 $bools = new \gi\parse\RepetitionParse();
 $whichbool = new \gi\parse\AlternationParse();
 $whichbool->add($this->orExpr());
 $whichbool->add($this->andExpr());
 $bools->add($whichbool);
 $this->expression->add($bools);
 }
 return $this->expression;
 }

 function orExpr() {
 $or = new \gi\parse\SequenceParse();
 $or->add(new \gi\parse\WordParse('or'))->discard();
 $or->add($this->operand());
 $or->setHandler(new BooleanOrHandler());
 return $or;
 }

 function andExpr() {
 $and = new \gi\parse\SequenceParse();
 $and->add(new \gi\parse\WordParse('and'))->discard();
 $and->add($this->operand());
 $and->setHandler(new BooleanAndHandler());
 return $and;
 }

 function operand() {
 if (! isset($this->operand)) {
 $this->operand = new \gi\parse\SequenceParse();
 $comp = new \gi\parse\AlternationParse();
 $exp = new \gi\parse\SequenceParse();
 $exp->add(new \gi\parse\CharacterParse('('))->discard();
 $exp->add($this->expression());
 $exp->add(new \gi\parse\CharacterParse(')'))->discard();
 $comp->add($exp);
 $comp->add(new \gi\parse\StringLiteralParse())

APPENDIX B ■ A SIMPLE PARSER

484

 ->setHandler(new StringLiteralHandler());
 $comp->add($this->variable());
 $this->operand->add($comp);
 $this->operand->add(new \gi\parse\RepetitionParse())
 ->add($this->eqExpr());
 }
 return $this->operand;
 }

 function eqExpr() {
 $equals = new \gi\parse\SequenceParse();
 $equals->add(new \gi\parse\WordParse('equals'))->discard();
 $equals->add($this->operand());
 $equals->setHandler(new EqualsHandler());
 return $equals;
 }

 function variable() {
 $variable = new \gi\parse\SequenceParse();
 $variable->add(new \gi\parse\CharacterParse('$'))->discard();
 $variable->add(new \gi\parse\WordParse());
 $variable->setHandler(new VariableHandler());
 return $variable;
 }
}

This may seem like a complicated class, but all it is doing is building up the grammar I have already
defined. Most of the methods are analogous to production names (that is, the names that begin each
production line in EBNF, such as eqExpr and andExpr). If you look at the expression() method, you
should see that I am building up the same rule as I defined in EBNF earlier:

// expr ::= operand (orExpr | andExpr)*
 function expression() {
 if (! isset($this->expression)) {
 $this->expression = new \gi\parse\SequenceParse();
 $this->expression->add($this->operand());
 $bools = new \gi\parse\RepetitionParse();
 $whichbool = new \gi\parse\AlternationParse();
 $whichbool->add($this->orExpr());
 $whichbool->add($this->andExpr());
 $bools->add($whichbool);
 $this->expression->add($bools);
 }
 return $this->expression;
 }

In both the code and the EBNF notation, I define a sequence that consists of a reference to an
operand, followed by zero or more instances of an alternation between orExpr and andExpr. Notice that I
am storing the Parser returned by this method in a property variable. This is to prevent infinite loops, as
methods invoked from expression() themselves reference expression().

The only methods that are doing more than just building the grammar are compile() and
evaluate(). compile() can be called directly or automatically via the constructor, which accepts a
statement string and uses it to create a Scanner object. It calls the expression() method, which returns a
tree of Parser objects that make up the grammar. It then calls Parser::scan(), passing it the Scanner

APPENDIX B ■ A SIMPLE PARSER

485

object. If the raw code does not parse, the compile() method throws an exception. Otherwise, it retrieves
the result of compilation as left on the Scanner object’s Context. As you will see shortly, this should be an
Expression object. This result is stored in a property called $interpreter.

The evaluate() method makes a value available to the Expression tree. It does this by predefining a
VariableExpression object named input and registering it with the Context object that is then passed to
the main Expression object. As with variables such as $_REQUEST in PHP, this $input variable is always
available to MarkLogic coders.

■Note See Chapter 11 for more about the VariableExpression class that is part of the Interpreter pattern
example.

The evaluate() method calls the Expression::interpret() method to generate a final result.
Remember, you need to retrieve interpreter results from the Context object.

So far, you have seen how to parse text and how to build a grammar. You also saw in Chapter 11 how
to use the Interpreter pattern to combine Expression objects and process a query. You have not yet seen,
though, how to relate the two processes. How do you get from a parse tree to the interpreter? The answer
lies in the Handler objects that can be associated with Parser objects using Parser::setHandler(). Let’s
take a look at the way to manage variables. I associate a VariableHandler with the Parser in the
variable() method:

$variable->setHandler(new VariableHandler());

Here is the Handler interface:

namespace gi\parse;

interface Handler {
 function handleMatch(Parser $parser,
 Scanner $scanner);
}

And here is VariableHandler:

class VariableHandler implements \gi\parse\Handler {
 function handleMatch(\gi\parse\Parser $parser, \gi\parse\Scanner $scanner) {
 $varname = $scanner->getContext()->popResult();
 $scanner->getContext()->pushResult(new VariableExpression($varname));
 }
}

If the Parser with which VariableHandler is associated matches on a scan operation, then
handleMatch() is called. By definition, the last item on the stack will be the name of the variable. I
remove this and replace it with a new VariableExpression object with the correct name. Similar
principles are used to create EqualsExpression objects, LiteralExpression objects, and so on.

Here are the remaining handlers:

class StringLiteralHandler implements \gi\parse\Handler {
 function handleMatch(\gi\parse\Parser $parser, \gi\parse\Scanner $scanner) {
 $value = $scanner->getContext()->popResult();
 $scanner->getContext()->pushResult(new LiteralExpression($value));
 }

APPENDIX B ■ A SIMPLE PARSER

486

}

class EqualsHandler implements \gi\parse\Handler {
 function handleMatch(\gi\parse\Parser $parser, \gi\parse\Scanner $scanner) {
 $comp1 = $scanner->getContext()->popResult();
 $comp2 = $scanner->getContext()->popResult();
 $scanner->getContext()->pushResult(
 new EqualsExpression($comp1, $comp2));
 }
}

class BooleanOrHandler implements \gi\parse\Handler {
 function handleMatch(\gi\parse\Parser $parser, \gi\parse\Scanner $scanner) {
 $comp1 = $scanner->getContext()->popResult();
 $comp2 = $scanner->getContext()->popResult();
 $scanner->getContext()->pushResult(
 new BooleanOrExpression($comp1, $comp2));
 }
}

class BooleanAndHandler implements \gi\parse\Handler {
 function handleMatch(\gi\parse\Parser $parser, \gi\parse\Scanner $scanner) {
 $comp1 = $scanner->getContext()->popResult();
 $comp2 = $scanner->getContext()->popResult();
 $scanner->getContext()->pushResult(
 new BooleanAndExpression($comp1, $comp2));
 }
}

Bearing in mind that you also need the Interpreter example from Chapter 11 at hand, you can work
with the MarkParse class like this:

$input = 'five';
$statement = "(\$input equals 'five')";

$engine = new MarkParse($statement);
$result = $engine->evaluate($input);
print "input: $input evaluating: $statement\n";
if ($result) {
 print "true!\n";
} else {
 print "false!\n";
}

This should produce the following results:

input: five evaluating: ($input equals 'five')
true!

Index

■ ■ ■

487

■ A
abstract classes, 45

approximation of, in PHP 4, 46
extending, 46
representing in UML, 111
reproducing the method signature, 46

Abstract Factory pattern, 124, 457
AppConfig class, code listing, 166
benefits of, 161
BloggsCal format, class diagram, 159
BloggsCommsManager class, code listing,

159
Civilization-style game, handling terrains,

163
clone keyword, using, 162, 165
CommsManager class, code listing, 159
getContact(), 160
implementing, 159
interface, class diagram, 158
make(), creating, 161
overview of, 157

abstract keyword, 45
abstract methods, 102
accept(), 211–212
acceptance tests, 379
AccessManager class, 217–218
acquire(), 333
add command, 371–372
add(), 282–283, 290, 478
addChargeableItem(), 48
addClassroot(), 250
addClean(), 293

addDirty(), 293
addEmployee(), 147
addNew(), 293, 295
addObserver(), 333
addParam(), 102
AddSpace command, 245, 247
addTest(), 304
addToMap(), 291, 300
addUnit(), 171, 173, 176, 213
addUser(), 381, 385
AddVenue command, 245, 247, 251, 255
addVenue(), 268
AddVenueController class

associated view, 260
code listing, 259

AddVenueTest class, code listing, 397
aggregation, 114
Alexander, Christopher, 124, 126
always element, 447
anonymous functions, 66, 68
Ant, 7, 407, 436, 440
api element, 336
AppConfig class, code listing, 166
AppController class, code listing, 251
Application Controller pattern, 222

addClassroot(), 250
AddSpace command, 245, 247
AddVenue command, 245, 247, 251, 255
advantages and disadvantages of, 256
AppController class, code listing, 251
application controller, definition of, 246
classroot element, 248

■ INDEX

488

Command class, code listing, 254
command element, 248
ControllerMap class, code listing, 249
doExecute(), 256
execute(), 255
FrontController class, code listing, 246
getCommand(), 253
getForward(), 253
getOptions(), 249
getResource(), 253
getStatus(), 255
getView(), 253
implementing, 246
overview of, 245
parsing the configuration file, 249
setting configuration directives, code

listing, 247
status element, 249
statuses(), 255
storing the configuration data, 249
using an application controller to acquire

commands and views, illustration of,
254

view element, 248
application scope, 229
ApplicationHelper class, 225, 238–239, 244

code listing, 237
ApplicationRegistry class, 234, 238–239, 245

code listing, 232
ApptEncoder class, 153
Archer class, 170
argData(), 93
Army class, 171
ArmyVisitor class, 213–214
array hinting, 27
array_slice(), 91
artifacts, definition of, 449
artifactspublisher element, 449
as element, 341
assertEquals(), 384
assertions

definition of, 383
PHPUnit’s support for, 384

AssertThat(), 387
AssertTrue(), 386
associations, unidirectional and bidirectional,

113

Atkinson, Leon, 5
attach(), 204–206, 209
attributes, 111
AuthenticateRequest class, 180
@author tag, 352
__autoload(), 80
automated build, 407, 459

■ B
Base class, 27, 33

code listing, 266
Beaver, Greg, 353
Beck, Kent, 5, 382
begintoken attribute, 420
behavior verification, 389
Bergmann, Sebastian, 382
Berkeley DB, 363
BinaryCloud, 5
BloggsCal format, 153

class diagram, 159
BloggsCommsManager class, code listing, 159
bombardStrength(), 170–171, 176
BooleanAndExpression class, 195
BooleanOrExpression class, 195
branches, 365
branching, 459
Bugzilla, downloading and using, 460
build reports, 436
build target, 447
build.xml, 407, 409, 440
buildStatement(), 309
buildWhere(), 310
business logic layer, 223

Domain Model pattern, 269
getting on with the business of an

application, 264
Transaction Script pattern, 265
See also presentation layer

■ C
__call(), 60, 86
call_user_func(), 67, 86
call_user_func_array(), 86–87
callbacks, 66
catch clause, 54, 56
cc.pid, 439

■ INDEX

489

channel element, 335, 339
channel-discover command, 328
channel-info command, 328
char_no(), 473
CharacterParse class, code listing, 477
Chargeable interface, 47
checkout command, 374
checkout target, 448
child class, 27
Civilization-style game

accept(), 211–212
addUnit(), 171, 173, 176, 213
Archer class, 170
Army class, 171
ArmyVisitor class, 213–214
AuthenticateRequest class, 180
bombardStrength(), 170–171, 176
code listing, 170
CompositeUnit class, 211
DecorateProcess class, 183
defensiveStrength(), 171
Diamond class, 182
Forest class, 180
getComposite(), 176–177
getDepth(), 211
getReport(), 215
getTax(), 215
getWealthFactor(), 179, 182
handling terrains with the Abstract Factory

method, 163
joinExisting(), 177
LaserCannonUnit class, 170
LogRequest class, 180
MainProcess class, 183
movementRange(), 171
Pollution class, 182
process(), 184
ProcessRequest class, 180, 183
Prototype pattern, code listing, 163
removeUnit(), 173, 176
setDepth(), 211
splitting composite classes off into a

CompositeUnit class, 175
storage in relational databases, 178
storage in XML, 178
StructureRequest class, 180
summary of, 178

TaxCollectionVisitor class, 215
Tile class, 179
$tile property, 182
TileDecorator class, 182
Unit class, 170, 210
$units property, 171, 173
visit(), 212
visitArmy(), 213

class diagrams, 110
classData(), 90
classes

abstract classes, 45–46
abstract super class, creating, 142
accessing a class residing in a global (non-

namespaced) space, 75
accessing methods and properties in the

context of a class, 41
accessing property variables, 18
accessor methods, 37
array hinting, 27
assigning values to properties, 18
__autoload(), 80
__call(), 86
call_user_func(), 86
call_user_func_array(), 86–87
class keyword, 15
class names, 15
class switching, 106
class type hints, 26
class_exists(), code example, 82
classes and objects, understanding, 15
client code, definition of, 18
__construct(), 21
constructor method, 21
constructors and inheritance, 33
declaring, 15
declaring a class or method final, 57
declaring class elements as public, private,

or protected, 35
defining the boundaries of classes, 105
definition of, 15
deriving classes from a base class, 27
describing a class’s responsibility, 105
designing child classes to provide

specialized functionality, 132
documenting with phpDocumentor, 352
extends keyword, 32

■ INDEX

490

function keyword, 19
get_class(), 83
get_class_methods(), 84
get_class_vars(), 85
get_declared_classes(), 82
get_parent_class(), 85
inheritance tree, building, 31
inheritance, definition of, 27
instanceof operator, 31, 83
invoking the parent class’s constructor, 32
is_callable(), 84
is_subclass_of(), 85
leaving an overzealous class unchanged,

109
locking down access control, 37
member variable, 17
method_exists(), 84
methods, definition of, 19
minimizing the use of concrete subclasses,

457
new operator, 16
null default values in hinted arguments, 27
organizing into package-like structures, 71
overridden method, invoking, 35
parent and child classes, 27
parent keyword, 33, 35
polymorphism, definition of, 106
prepending package names to class names,

72
private keyword, 17
properties, setting dynamically, 18
property, definition of, 17
protected keyword, 17
public keyword, 17
scope, definition of, 17
storing a method name in a string variable,

84
superclass, 27
testing that a method exists, 84
$this pseudo-variable, 20
tools for checking the type of an object, 83
using a string to invoke a method

dynamically, 86
using strings to refer to classes dynamically,

81
visibility keyword, 17, 19
See also objects

classroot element, 248
clean argument, 425
client code, definition of, 18
__clone()

copying by reference, 64
copying objects with, 63
implementing, 63, 165
making a new shallow copy, 64

clone keyword, 63, 162, 165
code coverage, generating, 431
code design, 99
code duplication, 109, 454
code smells, 109
CodeSniffer, 444
cohesion, definition of, 104
collection(), 294
CollectionParse class, code listing, 477
command and control layer, 223
Command class, 241, 247

code listing, 254
command element, 248
Command pattern

AccessManager class, 217–218
class diagram, 220
client, invoker, and receiver, 216
Command class, code listing, 217
execute(), 216
FeedbackCommand class, 219
implementing, 216
LoginCommand class, 217
overview of, 216
process(), 219
Registry class, 218
when application logic creeps into

command classes, 218
CommandContext class, code listing, 217
CommandFactory class, code listing, 218
CommandResolver class, 244

code listing, 240
CommsManager class, 153

code listing, 159
redesignating as an abstract class, 155

compile(), 484
components, building from scratch versus

purchasing, 317
composite (collection) parsers, 476
Composite pattern, 482

■ INDEX

491

add and remove functionality,
implementing, 173

benefits of, 174
Civilization-style game, code listing, 170
class diagram, 172
composite classes, 172
implementing, 172
inheritance tree, 170
leaf classes, 172, 174
modelling the relationship between

collections and components, 170
overview of, 169
splitting composite classes off into a

CompositeUnit class, 175
CompositeUnit class, 175, 211
composition, 115

combining objects to handle tasks
dynamically, 137

favoring composition over inheritance, 169
inheritance and, 132

conditional statements and polymorphism, 110
Conf class

code listing, 51
SimpleXml extension, 52

Conf(), 55
ConfException class, 55
Config class, 330
Config_Container class, 330
Config.php, 330
config.xml, 436, 440, 443
config-get command, 324

lack of Pyrus support for, 325
config-show command, 324
configuration flags, hard-coding, 166
connect(), 138
const keyword, 44
constant properties

defining within a class, 44
naming conventions, 44

constraints, 111, 386
constructors

__construct(), 21
inheritance and, 33
naming convention, 21

contents element, 336
Context class, code listing, 472
Continuous Integration (CI), 7, 322, 460

adding a version control system, 429
adding UserTests as a test suite class, 430
applying coding standards to a project, 433
automating the build and test process, 428
building and deploying a package using

package.xml, 435
CruiseControl, 436
defining coding guidelines and conventions

as a team, 433
failing to run tests, 428
Fedora 12, 432
generating a code coverage report, 431
installing a CI server, benefits of, 428
integration, definition of, 427
making systems easier to test and install,

428
PHP_CodeBrowser, installing and using,

433
PHP_CodeSniffer, 433
phpcb command line tool, 434
phpDocumentor, 431
phpUnderControl, 436
PHPUnit, 430
PHPUnit_Framework_TestSuite class, 431
practicing test-oriented development, 427
preparing a project for, 428
running unit tests, 430
Subversion, 430
ThoughtWorks, 436
transparency as a key principle, 431
userthing sample project, 429
writing documentation, 431
Xdebug, 432
Zend coding standard, 433

Controller class, 239
code listing, 236

ControllerMap class, code listing, 249
copy command, 373
copy element, table of attributes, 422
Copy task, 420, 422
@copyright tag, 352
coupling, 104

getNotifier(), 140
hiding the implementation details of a

notifier, 139
loosening, 139
MailNotifier class, 140

■ INDEX

492

Notifier class, 140
RegistrationMgr class, 140
TextNotifier class, 140
See also decoupling

create command, 363
create_function(), 67–68
createObject(), 278, 282, 287, 291, 298–300
CruiseControl

acquiring and building the userthing
project, 440

adding an install-package target, 447
adding your own build targets, 447
always element, 447
amending the CruiseControl environment

to support phpUnderControl, 439
Ant, 436, 440
artifacts, definition of, 449
artifactspublisher element, 449
bug in the phpuc graph command, 442
build target, 447
build.xml, 440
cc.pid, 439
checkout target, 448
CodeSniffer, 444
config.xml, 436, 440, 443
connecting to a mail server, 447
cruisecontrol.sh script, 439
customizing, 436
Dashboard screen, 437
depends attribute, 447
displaying the failed build, 448
downloading and installing, 437
email element, 446
ensuring automatic startup, 437
exec element, 443, 448, 450
failure element, 447
generating build reports, 436
htmlemail publisher, 447
installing Java as a requirement, 436
learning, 440
mailport element, 447
make-package target, 448
Metrics screen, 445
output attribute, 448
Overview screen, 443
pear package command, 448
phpuc project command, using, 441

phpunit task, code example, 443
publishers element, 446, 449
receiving failure notifications, 446
setting up a basic report for the install-

package target, 449
target elements, 443
testing the Validate class, 445
Tests tab, 446
ThoughtWorks, 436
usessl element, 447
validateUser(), 446
viewing an error report for a failed test, 446
wrong element, 448
XML Log File link, 449

CVS, 459

■ D
data layer, 223, 275
Data Mapper pattern

add(), 282–283
advantages and disadvantages of, 287
createObject(), 278, 282, 287
data mapper, definition of, 276
deconstructing into a set of finer-grained

patterns, 298
decoupling between the Domain layer and

database, 288
disconnect between classes and relational

databases, 276
doCreateObject(), 278–279, 286–287
doInsert(), 277–279
domain object assemblers, 311
DomainObject class, code listing, 284
DomainObjectAssembler class, code listing,

311
factoring the SpaceMapper class into

VenueMapper, 277
find(), 278–280
findAll(), 286
findByVenue(), 286
getCollection(), 284, 286
getFinder(), 284
getRow(), 282
getSpaces(), 285, 287
getVenueMapper(), 278
handling multiple rows, 280
implementing, 276

■ INDEX

493

insert(), 277–278
Iterator interface, code listing, 281
Iterator interface, table of methods, 280
managing mapper creation, 278
managing multiple rows with collections,

283
Mapper base class, code listing, 277
Mapper classes, illustration of, 276
Nock, Clifton, 311
notifyAccess(), 282
object-relational impedance mismatch, 276
persistence classes, illustration of, 312
print_r(), 279
Registry class, 278
selectAllStmt(), 286
selectStmt(), 279, 286
setSpaces(), 285, 287
targetClass(), 283
update(), 279
using HelperFactory to acquire both

collections and mappers, 284
Venue class, code listing, 284
VenueCollection class, 282
VenueCollection interface, code listing, 283
VenueMapper class, code listing, 278

Data Source Name (DSN), 138
data types

checking the type of a variable, 23
class type hints, 26
PHP as a loosely typed language, 22
primitive types and test functions, table of,

22
strategies for dealing with argument types,

25
type-related errors, preventing, 25

DBFace class, 404
DecorateProcess class, 183
Decorator pattern

class diagram, 182
inheritance tree, class diagram, 180
overview of, 179
summary of, 185
using composition and delegation, 181

decoupling
creating independent components, 137
definition of, 454

hiding implementation behind a clean
interface, 138

overview of, 137
reusability versus tight coupling, 137
See also coupling

DefaultCommand class, code listing, 243
defaultValue attribute, 424
defensiveStrength(), 171
DeferredEventCollection class, code listing, 297
delegating object instantiation, 147
delegation, definition of, 60
delete element, 425
dependencies tag, 339
depends attribute, 447
description element, 335
design patterns

Abstract Factory pattern, 124, 457
Alexander, Christopher, 124, 126
benefits of, 123, 127, 456
collaborative nature of, 128
defining a vocabulary, 127
defining common problems, 127
defining the conditions in which solutions

should be applied, 125
definition of, 6, 123, 455
developing a vocabulary for describing

problems and solutions, 456
early concept of, 4
favoring composition over inheritance, 169
Fowler, Martin, 124–125, 143, 456
Gamma, Erich, 125
Gang of Four’s categorization of, 143
Gang of Four’s format for structuring

patterns, 126
half-baked nature of, 456
Helm, Richard, 125
implementing nuanced solutions, 126
inscribing approaches to particular

problems, 124
Johnson, Ralph, 125
language independence of, 127
naming, 125
overuse of, 456
overview of, 125
pattern languages, 125
patterns suggest complementary patterns,

456

■ INDEX

494

PEAR and, 129
PHP and, 129
Portland Pattern Repository, 126
programming-related web sites, list of, 464
promoting good design, 128
recognizing and contextualizing problems,

125
recursive descent parser, 124
reference articles and books, list of, 463
representing best practices in an object-

oriented context, 128
rule of three, 127
Strategy pattern, 135
unnecessary or inappropriate use of

patterns, 143
using tried-and-tested techniques, 127
Vlissides, John, 125
working with a pattern catalog, 143
See also object-oriented design

destructor methods, 62
detach(), 204–205, 209
Dialekt package

contents tag, code listing, 337
Dialekt.php, 338
directory and file structure, 337

Diamond class, 182
die(), 46
dir attribute, 417
dir element, 336
DIRECTORY_SEPARATOR character, 80
discard(), 476
DocBlock comments, 350, 352
doCreateObject(), 278–279, 286–287, 296
documentation

adding source-level documentation during
coding, 348

improving code clarity and transparency,
320

measuring the true cost of undocumented
code, 347

megaquiz project, documenting using
phpDocumentor, 349

phpDocumentor, 321, 348
problems caused by undocumented code,

321
See also phpDocumentor

doExecute(), 243, 256
doInsert(), 277–279

doInterpret(), 194
DokuWiki, 460
dollar sign as the command prompt, 362, 367
Domain class, 294
Domain Model pattern, 222

advantages and disadvantages of, 272
extracting and embodying the participants

and process of a system, 269
implementing, 270
markDirty(), 272
overview of, 269
separating the model from the database,

271
Venue class, code listing, 271

Domain Object Factory
addToMap(), 300
altered Collection implementation, code

listing, 300
createObject(), 299–300
decoupling database row data from object

field data, 300
getCollection(), 300
getFromMap(), 300
implementing, 299
Nock, Clifton, 298
parallel hierarchy of classes, 299
PersistenceFactory class, illustration of, 301
using for testing, 300
VenueObjectFactory class, 299

Domain Specific Language (DSL), 189
DomainObject class, 49–50
DomainObject class, code listing, 284, 293
DomainObjectAssembler class, code listing, 311
doScan(), 476–478
doStatement(), 267–268
doUpdate(), 206

■ E
eatWhiteSpace(), 477
EBNF notation, 482, 484
echo element, 423
Echo task, 421
email element, 446
Employee class, 146, 148
encapsulation

benefits of, 108
definition of, 107

■ INDEX

495

encapsulating the concept that varies, 142
hiding implementation behind a clean

interface, 138
endtoken attribute, 420
ensure(), 239
enterprise patterns

Application Controller pattern, 222
architecture overview, 221
business logic layer, 223
command and control layer, 223
data layer, 223
Domain Model pattern, 222
Fowler, Martin, 224
Front Controller pattern, 222
horizontal changes in a nontiered system,

224
keeping business logic independent of the

view layer, 223
layers or tiers in a typical enterprise system,

illustration of, 222
mock objects, 224
Page Controller pattern, 222
presentation layer, 223
Registry pattern, 222, 225
Singleton pattern, 225
singletons, usefulness of, 225
stubs, 224
switching between storage models, 223
Template View pattern, 222
testing systems created with separate tiers,

224
Transaction Script pattern, 222
vertical changes in a tiered system, 224
view layer, 222
Woo system, 224

env prefix, 415
EqualsExpression class, 195
error.php, 258
errors

amending __construct() to use the throw
statement, 53

catch clause, 54, 56
Conf(), 55
ConfException class, 55
ending program execution, 52
Exception class, subclassing, 54
Exception class, table of public methods, 53

exception, definition of, 53
fatal errors, 56
FileException class, 55
getTrace(), 53
getTraceAsString(), 53
handling, 51–52
libxml_get_last_error(), 55
LibXmlError class, 55
no support for return class type hinting in

PHP, 52
PEAR_Error class, 52
returning an error flag, 52
throwing an exception, 53
try clause, 54
XmlException class, 55
See also PHPUnit; testing

evaluate(), 484–485
exclude element, 339
excludes attribute, 417
exec element, 443, 448, 450
execute(), 95, 216, 243, 255, 268, 298
exists(), 290
exit(), 258
expects(), 389–390
export command, 374
Expression class, 191
expression(), 484
Extended Backus-Naur Form (EBNF)

Interpreter classes, class diagram, 191
productions and terminals, 191

extends clause, 48
extends keyword, 32
eXtreme Programming (XP)

Beck, Kent, 5
principles of, 5

ezcGraph, installing, 438

■ F
Facade pattern, 264

getting log information from a file, object-
oriented code example, 186

getting log information from a file,
procedural code example, 185

organizing system parts into separate tiers,
185

overview of, 185
summary of, 187

■ INDEX

496

factory, definition of, 44, 148
Factory Method pattern

ApptEncoder class, 153
being wary of duplicate conditionals, 154
BloggsCal format, 153
CommsManager class, 153
getApptEncoder(), 153, 156
getHeaderText(), code listing, 154
implementing, 155
instantiating a BloggsApptEncoder object,

code listing, 153
letting specialist classes handle object

instantiation, 152
MegaCal classes, class diagram, 156
MegaCal format, 153
overview of, 152, 155
redesignating CommsManager as an

abstract class, 155
return types, documenting, 156
summary of, 157

fail(), 385
failure element, 447
fatal errors, 56
favoring composition over inheritance, 132, 169
Fedora 12, 432
FeedbackCommand class, 219
fetch(), 298
Field class, code listing, 304
file attribute, 422
file element, 336
file(), 91
FileException class, 55
FileSet data type, 417
fileset element

defining, 417
table of attributes, 417

filterchain element, 419–420
filters, 419
final keyword, 57
find(), 278–280, 291
findAll(), 286
findBySpaceId(), 296
findByVenue(), 286
finder(), 294
fixture, definition of, 383
fluent interface, 304, 389–390
fopen(), 79

Forest class, 180
forward(), 259
Foswiki, 460
Fowler, Martin, 5, 110, 124–125, 143, 224, 456
Front Controller pattern

advantages and disadvantages of, 244
ApplicationHelper class, code listing, 237
centralizing a system’s presentation logic,

245
checking input from the user, 241
Command class, 241
CommandResolver class, code listing, 240
Controller class, code listing, 236
creating command classes, 241
DefaultCommand class, code listing, 243
doExecute(), 243
ensure(), 239
execute(), 243
FrontController class, code listing, 246
getCommand(), 240
getOptions(), 239
handleRequest(), 237
implementing, 236
init(), 237
life cycle of a request, illustration of, 244
main.php, code listing, 243
managing the progression from view to

view, 236
overview of, 235
Request class, code listing, 242
run(), 237
throwing exceptions, 239

Fuecks, Harry, 5
function keyword, 19
functional tests, 379

■ G
Gamma, Erich, 5, 125
Gang of Four, 4, 109, 124–126
__get(), 58
get_class(), 83
get_class_methods(), 84
get_class_vars(), 85
get_declared_classes(), 82
get_include_path(), 79
get_parent_class(), 85
getAllParams(), 102

■ INDEX

497

getApptEncoder(), 153, 156
getBacktrace(), table of elements, 331
getCause(), 332–333
getClass(), 93, 96
getClassSource(), 91
getCode(), 331
getCollection(), 284, 286, 294, 300
getCommand(), 240, 253
getComposite(), 176–177
getComps(), 310
getContact(), 160
getDepth(), 211
getEndLine(), 91, 93
getErrorClass(), 332
getErrorData(), 332
getErrorMethod(), 332
getFileName(), 91, 93
getFinder(), 284, 294
getForward(), 253
getFromMap(), 291, 300
getGroup(), 50
getHeaderText(), code listing, 154
getInstance(), 43–44, 102, 104, 149, 151
getKey(), 192–194
getMessage(), 331
getMethod(), 91, 93
getMethods(), 91, 96
getMock(), 389
getName(), 90, 93
getNotifier(), 140
getOptions(), 239, 249
getParameters(), 93
getPlayLength(), 47
getPrice(), 48
getReport(), 215
getRequest(), 227
getResource(), 253
getRow(), 282
getSpaces(), 285, 287
getStartLine(), 91, 93
getState(), 472
getStatus(), 206, 255
getTax(), 215
getTrace(), 53
getTraceAsString(), 53
getTypeString(), 473
getUser(), 381, 393

getVenueMapper(), 278
getView(), 253
getWealthFactor(), 179, 182
Git, 362, 459
global variables, 454

comparing to the Singleton pattern, 152
naming collisions and, 149
problems caused by, 149
using correctly, 109

globalKey(), 290
good mail(), 319
groupadd command, 363
Gutmans, Andi, 5, 11

■ H
handleLogin(), 203
handleMatch(), 476, 485
handleMethod(), 96
handleRequest(), 237, 395
Helm, Richard, 125
HelperFactory class, 284
hinted return types, 14, 156
hinting for primitive types, 453
.htaccess, 337
htmlemail publisher, 447
httpd.conf, 79
Hunt, Andrew, 5, 104
Hunt, David, 226

■ I
id attribute, 417
identifiers, 16
Identity Map

add(), 290
addToMap(), 291
code listing, 289
createObject(), 291
data corruption engendered by concurrent

access, 291
definition of, 289
exists(), 290
find(), 291
getFromMap(), 291
globalKey(), 290
integrating with other classes, illustration

of, 289

■ INDEX

498

maintaining a global key table, 290
managing information about objects, 289
Memcached, 291
ObjectWatcher class, 290
SpaceMapper class, 291
tagging objects for identification, 290
targetClass(), 291

identity object
addTest(), 304
encapsulating query criteria, 301
Field class, code listing, 304
IdentityObject class, code listing, 302, 304
implementing, 302
managing query criteria with identity

objects, illustration of, 302
shielding users from database details, 307
using a fluent interface, 304
using SpaceIdentityObject to build a

WHERE clause, 303
if attribute, 412–413
illustrative code, 101
impedance mismatch, 276
implements clause, 48
implements keyword, 47–48
import command, 365
include(), 76, 258
include paths

fopen(), 79
get_include_path(), 79
include_path, setting in php.ini or

httpd.conf, 79
relative versus absolute paths, 78
require(), 79
set_include_path(), 79

include_once(), 76
includes attribute, 417
inheritance

accessing properties, 33
composition and, 132
constructors and, 33
declaring class elements as public, private,

or protected, 35
definition of, 27
deriving classes from a base class, 27
extends keyword, 32
favoring composition over inheritance, 169
get_parent_class(), 85

inheritance tree, building, 31
instanceof operator, 31
invoking the parent class’s constructor, 32
Lesson class simplified, code listing, 135
Lesson class, class diagram, 132
Lesson class, code listing, 133
misuse of, 142
overridden method, invoking, 35
parent and child classes, 27
parent keyword, 33, 35
poor inheritance structure, example of, 132
solving the inheritance problem, 27
superclass, 27
supporting runtime class switching

(polymorphism), 457
ini_set(), 337
init(), 95, 97, 237
input element

description of, 423
table of attributes, 424

insert(), 277–278
install command, 326
install element, 341
installconditions element, 341
installing applications

automating using installers, 320
PEAR installer, using, 320
Phing, 320
version control and, 320

instance(), 228
instanceof operator, 31, 83, 108
integration, definition of, 427
Intercepting Filter pattern, 184
interceptor methods

__call(), 60
__get(), 58
__isset(), 59
__set(), 59
__unset(), 60
table of, 58

interfaces
Chargeable interface, 47
declaring, 47
explanation of, 47
implementing, 47
interface keyword, 47
multiple interfaces, implementing, 48

■ INDEX

499

programming to, 108
representing in UML, 111

interpret(), 191, 193–194, 485
Interpreter pattern

add(), 478
BooleanAndExpression class, 195
BooleanOrExpression class, 195
building a tree of Parser objects, 474
char_no(), 473
CharacterParse class, code listing, 477
class diagram, 197
CollectionParse class, code listing, 477
compile(), 484
composite (collection) parsers, 476
composite parsers and EBNF notation, 482
Context class, code listing, 472
discard(), 476
doInterpret(), 194
doScan(), 476–478
eatWhiteSpace(), 477
EqualsExpression class, 195
evaluate(), 484–485
Expression class, 191
expression(), 484
Extended Backus-Naur Form (EBNF), 191
getKey(), 192–194
getState(), 472
getting from a parse tree to an interpreter,

485
getTypeString(), 473
handleMatch(), 476, 485
internals for invoking, 196
interpret(), 191, 193–194, 485
Interpreter classes, class diagram, 191
InterpreterContext class, 191, 193
invokeHandler(), 476
isSpaceChar(), 472
isWordChar(), 472
lack of a parser in, 467
MarkLogic grammar elements, table of, 190
MarkLogic interpreter, 467
MarkParse class, code listing, 482
Metsker, Steven, 467
minilanguages, 189–190
next(), 477
nextToken(), 472–473, 477

offering users a Domain Specific Language
(DSL), 189

OperatorExpression class, 194
overview of, 189
Parser class, code listing, 474
Parser classes, illustration of, 481
parsing a statement, requirements for, 467
push(), 476
Reader interface, code listing, 473
replace(), 193
scan(), 476–478
Scanner class, code listing, 467
ScannerState class, 472
SequenceParse class, code listing, 477
setHandler(), 476, 485
setState(), 472, 478
setValue(), 194
StringReader class, code listing, 473
summary of, 197
term(), 476, 478
terminal parsers, 476
token(), 473
tokens, 467
trigger(), 477–478
variable(), 485
VariableExpression class, code listing, 193
VariableHandler class, 485

InterpreterContext class, 191, 193
invoke(), 96
invokeHandler(), 476
is_a(), 83
is_array(), 393
is_callable(), 67–68, 84
is_subclass_of(), 85
isAbstract(), 90
isError(), 331
isInstantiable(), 90
isPassedByReference(), 94
__isset(), 59
isSpaceChar(), 472
isSubclassOf(), 95
isUserDefined(), 90
isWordChar(), 472
Iterator interface

code listing, 281
table of methods, 280

■ INDEX

500

■ J
Java and object-oriented design, 4
Johnson, Ralph, 125
joinExisting(), 177
JUnit, 5, 382

■ K
keywords

abstract, 45
class, 15
clone, 63, 162, 165
const, 44
extends, 32
final, 57
function, 19
implements, 47–48
interface, 47
namespace, 73, 75
parent, 33, 35, 42
private, 17
protected, 17
public, 17
self, 42, 49
static, 41, 49
throw, 53
try, 54
use, 74
var, 17, 35
visibility keyword, definition of, 17

■ L
LaserCannonUnit class, 170
late static bindings, 49
Lazy Load pattern

code in SpaceMapper that acquires Event
data, 296

createObject(), 298
DeferredEventCollection class, code listing,

297
deferring acquisition of a property until

requested, 297
doCreateObject(), 296
execute(), 298
fetch(), 298
findBySpaceId(), 296
implementing, 297

notifyAccess(), 298
lead element, 335
Lerdorf, Rasmus, 5, 11
Lesson class

class diagram, 132
code listing, 133
simplified version, code listing, 135

libxml_get_last_error(), 55
LibXmlError class, 55
license element, 336
@license tag, 353
@link tag, 358
list (ls) command, 364
Log package, installing using PEAR or Pyrus,

326
Logger class, 203
Login class, 203–204
LoginCommand class, 217
LoginObserver class, 206
LogRequest class, 180

■ M
magic methods, 62
Mailman, 460
MailNotifier class, 140
mailport element, 447
main task, 413
MainProcess class, 183
make, using as a build solution for PHP

projects, 407
make(), 161
make-package target, 448
Mapper class, 295
mark(), 199
markClean(), 295
markDirty(), 272, 295
Marker objects, code listing, 200
MarkLogic

defining subclasses, 198
grammar elements, table of, 190
interpreter, 467

MarkLogicMarker class, 202
markNew(), 294
MarkParse class, code listing, 482
matcher methods, table of, 390
max element, 339
MDB2 package, 138

■ INDEX

501

MDB2_Driver_Common class, 138
MegaCal format, 153
MemApplicationRegistry class, code listing, 233
member variable, 17
Memcached, 291
Mercurial, 362
merge command, 377
method_exists(), 84
method(), 390
methodData(), 92
methods

abstract methods, 102
accessing methods and properties in the

context of a class, 41
accessor methods, 37
array hinting, 27
__call(), 60, 86
call_user_func(), 86
call_user_func_array(), 86–87
calling a method from within a namespace,

73
class type hints, 26
__construct(), 21
constructor method, 21
declaring a class or method final, 57
declaring class elements as public, private,

or protected, 35
definition of, 19
delegation, definition of, 60
__destruct(), code example, 62
destructor methods, 62
documenting in phpDocumentor, 355
documenting the value that a method

returns, 355
enforcing object types in method

declarations, 22
enforcing return types, 107
function keyword, 19
__get(), 58
get_class_methods(), 84
interceptor methods, table of, 58
invoking, 20
is_callable(), 84
__isset(), 59
magic methods, 62
method_exists(), 84
null default values in hinted arguments, 27

object types, 25
operations, in UML, 112
primitive types and test functions, table of,

22
primitive types, definition of, 22
__set(), 59
setting to private or protected, 36
static factory method, 49
static methods, 42, 102
storing a method name in a string variable,

84
testing that a method exists, 84
$this pseudo-variable, 20
__unset(), 60
using a string to invoke a method

dynamically, 86
using local methods for persistence, 105
visibility keywords, using in a method

declaration, 19
Metrics screen, 445
Metsker, Steven, 467
min element, 339
minilanguages, 189–190
Minion class, 146
mock objects, 224, 389
ModPerl Apache module, 229
Module interface, code listing, 94
ModuleRunner class, 95
movementRange(), 171
Mozilla project, 460
MyConfig class, code example, 330
mysql_connect(), 138
mysql_query(), 138

■ N
name element, 335
namespaces, 7, 455

accessing a class residing in a global (non-
namespaced) space, 75

aliasing namespaces, 74
calling a method from within a namespace,

73
combining multiple namespaces in the

same file, 76
declaring, 73, 75
definition of, 73
making an alias explicit, 74

■ INDEX

502

naming collisions, 71, 74
nested namespaces, declaring, 73
PHP 5.3 and, 14, 71
phpDocumentor and, 353
relative namespaces, 74
require_once(), 76
switching to global space within a file, 76
unqualified name, 73
use keyword, 74
using a domain name as a namespace, 73
using braces with the namespace keyword,

75
using the as clause with use, 75

NastyBoss class, 146–147
new operator, 16, 21
newInstance(), 96
newSelection(), 310
newUpdate(), 309–310
next(), 477
nextToken(), 472–473, 477
Nock, Clifton, 298, 311
notes element, 336
Notifier class, 140
notify(), 204–205
notifyAccess(), 282, 298
notifyError(), 333
notifyPasswordFailure(), 389
null, using in hinted arguments, 27

■ O
object lifelines, 117
object types, 25
object-oriented design

abstract classes, 45
Abstract Factory pattern, 157
abstract types as enabling polymorphism,

146
addEmployee(), 147
addParam(), 102
aesthetics of, 455
anonymous functions, 66, 68
assigning and passing objects by reference,

63
automated build, 459
call_user_func(), 67
callbacks, 66

centralizing common classes used in
multiple projects, 455

class switching, 106
code duplication, 109, 454
code smells, 109
coding to an interface, 141, 457
cohesion, definition of, 104
comparing to procedural programming,

100, 103
Conf class, code listing, 51
constant properties, 44
Continuous Integration (CI), 460
controller, 454
copying objects with __clone(), 63
coupling in, 104
create_function(), 67–68
declaring a class or method final, 57
decoupling, definition of, 454
defining string values for objects, 65
defining the boundaries of classes, 105
delegating object instantiation, 147
describing a class’s responsibility, 105
designing child classes to provide

specialized functionality, 132
destructor methods, 62
devising strategies for object generation,

145, 147
DomainObject class, 49
Employee class, 146, 148
encapsulating the concept that varies, 458
encapsulation, 107–108
Factory Method pattern, 152
factory, definition of, 44, 148
favoring composition over inheritance, 132
final keyword, 57
focusing on the metasystem, 458
Fowler, Martin, 110
getAllParams(), 102
getInstance(), 44, 102, 104, 149
global variables, 149, 454
instantiating objects as a dirty business, 147
interceptor methods, table of, 58
interfaces, 47
introducing dependencies in the name of

good design, 149
is_callable(), 67–68
Java and, 4

■ INDEX

503

late static bindings, 49
leaving an overzealous class unchanged,

109
magic methods, 62
making code amenable to variation at

runtime, 146
minimizing top-down control and

dependencies, 100
Minion class, 146
NastyBoss class, 146–147
orthogonality, definition of, 104
overloading, 58
parallel conditionals, 149, 454
PDO class, code listing, 43
performing a task in deliberate ignorance of

its wider context, 25
phpDocumentor, 459
polymorphism, 106, 110, 454
programming-related web sites, list of, 464
read(), 102
reading from and writing to configuration

files, code example, 102
recruit(), 148
reference articles and books, list of, 463
registerCallback(), 67–68
responsibility and the controlling code, 103
reusability, promoting, 455
sale(), 67
simplexml_load_file(), 52
Singleton pattern, 149
SpreadSheet class, 50
static elements, characteristics of, 43
static factory method, 49
static methods, definition of, 42
test frameworks, benefits of, 459
$this pseudo-variable, 42
tight coupling, causes of, 454
__toString(), 65
well-designed objects as self-enclosed, 454
write(), 102
See also design patterns

object-relational impedance mismatch, 276
objects

casting an object to a string, 16
classes and objects, understanding, 15
definition of, 16
identifiers, 16

initial rise of, in PHP, 11
new operator, 16, 21
pass-by-reference rather than pass-by-value,

12–13
PEAR and object-oriented programming, 13
PHP 3 and, 11
PHP 4 and, 12
PHP 5 and, 13
PHP 5.3 and namespaces, 14
PHP 6 and, 14
properties, setting dynamically, 18
taking a design-oriented approach to

projects, 14
__toString(), 16
var_dump(), 16
Zend Engine (ZE3), 12, 14
See also classes

ObjectWatcher class, code listing, 292
Observable interface, code listing, 204
Observer pattern

attach(), 204–206, 209
class diagram, 207
detach(), 204–205, 209
doUpdate(), 206
getStatus(), 206
handleLogin(), 203
implementing, 204
Logger class, 203
Login class, 203–204
LoginObserver class, 206
notify(), 204–205
Observable interface, code listing, 204
overview of, 202
PEAR and, 332
SplObjectStorage class, code listing, 208
Standard PHP Library (SPL), 208
update(), 205
user access example, code listing, 203

onConsecutiveCalls(), 391
operations, 112
OperatorExpression class, 194
operators

instanceof, 31, 83, 108
new, 16, 21

optional element, 340
orthogonality

definition of, 104

■ INDEX

504

orthogonal code, advantages of, 104
output attribute, 448
outputAddresses(), 23
overloading, 58
override attribute, 414
Overview screen, 443
overwrite attribute, 422

■ P
package command, 341
package element, 339
@package tag, 351, 353
package.xml, 327, 435

adding the lib directory to the include path,
337

api element, 336
channel element, 335
contents element, 336
dependency elements, table of, 339
description element, 335
description of, 334
Dialekt package, directory and file structure,

337
dir element, 336
elements of, 334
file element, 336
file roles, table of, 336
lead element, 335
license element, 336
name element, 335
notes element, 336
package archive (tarball), 336
phprelease, list of elements, 340
privileges and default role locations, 337
release element, 336
stability element, 336
summary element, 335
uri element, 335
user element, 335
XML declaration, 334

packages
building from scratch versus purchasing,

317
definition of, 71
evaluating, 318
original versus reusable code, 319
PEAR, 318

prepending package names to class names,
72

using the file system to simulate packages,
76

Page Controller pattern, 222
AddVenueController class, code listing, 259
advantages and disadvantages of, 261
controller element, 258
error.php, 258
exit(), 258
forward(), 259
include(), 258
overview of, 257
process(), 259
venues.php, 261
view element, 258

PageController class, code listing, 258
parallel conditionals, 141, 149, 454
@param tag, 355
parameters, 112
ParamHandler class, 104, 108
parent class, 27
parent keyword, 33, 35, 42
Parser class, code listing, 474
pattern languages, 125
patternset element

description of, 418
table of attributes, 419

PDO class, 404
code listing, 43
getInstance(), 44

PEAR, 6, 459
acquire(), 333
adding the lib directory to the include path,

337
addObserver(), 333
as element, 341
browsing repository packages, 323
channel element, 339
channel-discover command, 328
channel-info command, 328
channels, 327
Config class, 330
Config_Container class, 330
Config.php, 330
config-get command, 324
config-show command, 324

■ INDEX

505

connect(), 138
creating PEAR packages, 334
Data Source Name (DSN), 138
dependencies tag, 339
dependency elements, table of, 339
description of, 323
difficulties in managing multiple

interdependent packages, 341
distinguishing between Exception types,

332
downloading and installing a package from

the command line, 327
error handling, 331
exclude element, 339
file roles, table of, 336
finding API documentation, 330
generating archived and compressed

packages for shipment, 341
getBacktrace(), table of elements, 331
getCause(), 332–333
getCode(), 331
getErrorClass(), 332
getErrorData(), 332
getErrorMethod(), 332
getMessage(), 331
handling initial configuration options, 325
handling project installations with, 407
hosting a channel with a third-party

provider, 342
install element, 341
installconditions element, 341
installing packages with the install

command, 326
isError(), 331
Linux systems, 324
Log package, installing, 326
managing packages, 344
max element, 339
MDB2 package, 138
MDB2_Driver_Common class, 138
migrating to, 325
min element, 339
MyConfig class, code example, 330
notifyError(), 333
object-oriented programming and, 13
Observer pattern, 332
optional element, 340

package command, 341
package element, 339
package.xml, 327, 334
pear command line application, 324
PEAR Foundation Classes, 324
PEAR installer, using, 320
PEAR_Error class, 52, 331
PEAR_Exception class, 332
PEAR2_SimpleChannelFrontend, managing

a channel, 343
PEAR2_SimpleChannelServer, defining a

channel, 342
pearinstaller element, 339
Phing and, 408
phprelease, list of elements, 340
phpunit alias, 328
PHPUnit package, installing, 328
PHPUnit, installing, 382
privileges and default role locations, 337
process(), 333
Pyrus, 324
recommended element, 339
required dependencies, installing, 327
required element, 339
required extensions, 325
root privileges, requirements for, 326
runing pear install with the -o flag, 327
sample list of available packages, 318
setting an error_reporting directive, 330
Unix systems, 324
uri element, 339
using PEAR packages, 329
using Pyrus channel management to serve

PEAR packages, 342
using the naming convention common to

PEAR packages, 78
wget command, 327
XML_Feed_Parser package, 332
See also PHP

pear package command, 448
PEAR_Exception class, 332
pearinstaller element, 339
performOperations(), 293
Perl, 11
persistence classes, illustration of, 312
PersistenceFactory class, illustration of, 301
Phing, 7, 439, 459

■ INDEX

506

acquiring and installing, 408
adding a dependency to a build file, 410
Ant, 407
begintoken attribute, 420
build.xml, 407, 409
building up include and exclude rules, 417
clean argument, 425
commenting build files, 409
composing the build document, 408
copy element, table of attributes, 422
Copy task, 420, 422
-D flag, 413
defaultValue attribute, 424
delete element, 425
deleting a build directory, 425
description attribute, 411
description of, 407
dir attribute, 417
echo element, 423
Echo task, 421
endtoken attribute, 420
ensuring that properties are populated, 416
env prefix in a property reference, 415
excludes attribute, 417
file attribute, 422
FileSet data type, 417
fileset element, table of attributes, 417
filterchain element, 419–420
filters, 419
id attribute, 417
if attribute, 412–413
includes attribute, 417
input element, table of attributes, 424
installing applications, 320
main task, 413
override attribute, 414
overriding the project element’s default

attribute, 410
overwrite attribute, 422
patternset element, table of attributes, 419
PEAR and, 408
phing command, 408
project element, 409
-projecthelp flag, 411
promptChar attribute, 424
properties, built-in, 415
properties, declaring, 412

properties, setting on the command line,
414

propertyName attribute, 424
replacetokens element, 420
ReplaceTokens filter, 420
setpass target, 424
srclib fileset element, 422
StripPhpComments task, 419
target element, table of attributes, 414
targets, setting up dependencies, 410
tasks, definition of, 421
unless attribute, 412–413
uses for, 408
using make as a build solution, 407
-v flag, 408
ways of setting a property, 416
when a property isn’t found, 415
XML declaration, including, 409

PHP
Atkinson, Leon, 5
Fuecks, Harry, 5
Gutmans, Andi, 5, 11
hinted return types, 156
Lerdorf, Rasmus, 5, 11
namespaces and, 455
origins of, 4
pass-by-reference rather than pass-by-value,

12–13
PEAR, 6, 13
Phing, description of, 407
PHP 3 and objects, 11
PHP 4 and objects, 12
PHP 4 and var keyword, 17, 35
PHP 5 and objects, 13
PHP 5, release features, 453
PHP 5.3 and namespaces, 14, 71
PHP 6 and objects, 14
PHP as a loosely typed language, 22
PHP/FI 2.0, 11
procedural programming and, 14
projects turning into design disasters, 3
Suraski, Zeev, 5, 11, 13
taking a design-oriented approach to

projects, 14
Unicode string handling, 14
Zend Engine (ZE3), 12, 14
Zend Engine 2, 5, 453

■ INDEX

507

See also PEAR
PHP_CodeBrowser

installing and using, 433
phpcb command line tool, 434

PHP_CodeSniffer, 433
php.ini, 79, 337
phpdoc command, 349
PHPDocumentor, 7, 321, 431, 459

adding comments to source code, 350
@author tag, 352
Beaver, Greg, 353
class relationships, viewing, 350
classes, documenting, 352
@copyright tag, 352
creating hyperlinks in documentation, 356
-d flag, 349
-dn flag, 349
DocBlock comments, 350, 352
documentation, generating, 349
documenting methods, 355
documenting private elements, 354
documenting properties, 353
downloading and installing, 348
file-level documentation, providing, 353
-h flag, 348
@license tag, 353
@link tag, 358
making a reciprocal link, 358
namespaces and, 353
navigating and examing packages, 351
output menu, sample page, 349
@package tag, 351, 353
@param tag, 355
phpdoc command, 349
-pp flag, 354
@return tag, 355
running as a command line tool, 349
@see tag, 356
SourceForge.net, 348
-t flag, 349
tags, defining, 351
-ti flag, 349
@uses tag, 358
@var tag, 353
See also documentation

phprelease, list of elements, 340
phpuc command line tool, 438

amending the config.xml and build.xml
files, 442

bug in the phpuc graph command, 442
project command, using, 441

phpUnderControl
amending the CruiseControl environment

to support phpUnderControl, 439
ezcGraph, installing, 438
installing, 438

PHPUnit, 7, 430
addUser(), 385
AddVenueTest class, code listing, 397
assertEquals(), 384
assertions, definition of, 383
assertions, support for, 384
AssertThat(), 387
AssertTrue(), 386
behavior verification, 389
Bergmann, Sebastian, 382
brittle nature of many test harnesses, 404
centralizing test fixtures into Object

Mothers, 405
checking the behavior of the UserStore class

when an operation fails, 385
combining real and mocked components in

testing, 405
constraints, 386
creating a minimal test case class, 382
creating a test method, 383
creating a Web UI superclass, 398
DBFace class, 404
debugging tests, 404
expects(), 389–390
exporting a Selenium test as a PHPUnit

class, 402
fail(), 385
faking the context of the class you are

testing, 389
fixture, definition of, 383
fluent interface, 389–390
getMock(), 389
getUser(), 393
handleRequest(), 395
installing using PEAR, 382
is_array(), 393
matcher methods, table of, 390
method(), 390
mock objects, generating, 389

■ INDEX

508

notifyPasswordFailure(), 389
onConsecutiveCalls(), 391
overview of, 382
PDO, 404
PHPUnit_Framework_Constraint objects,

386
PHPUnit_Framework_TestCase class, table

of assertion methods, 384
PHPUnit_Framework_TestCase class, table

of some constraint methods, 387
PHPUnit_Framework_TestSuite class, 431
placing test classes in a test directory, 386
refactoring a web application for testing,

394
regression testing, definition of, 394
RequestRegistry class, 396
returnValue(), 391
run(), 395
runCommand(), 397
Runner.php, 394
running test suites, 385
Selenium IDE control panel, 399
setExpectedException(), 385
setting up a library of complex constraints,

387
setUp(), 382–383, 388
stubs, definition of, 389
tearDown(), 383, 388
test case classes, naming, 382
test methods, naming, 383
testGetUser(), 383
testing at the system level and class level,

403
testing for failure, 384
testing that an exception is thrown, 385
User class, code listing, 392
UserStoreTest class, 382
ValidateTest class, code listing, 385
validateUser(), 385, 393
will(), 390
with(), 390
writing web tests, 394
xUnit, 382
See also errors; testing

phpunit alias, 328
PHPUnit_Framework_Constraint objects, 386
PHPUnit_Framework_TestCase class, 382

table of assertion methods, 384
table of some constraint methods, 387

PhpWiki, 460
Pollution class, 182
polymorphism, 454

code examples, 106
conditional statements and, 107, 110
definition of, 106
parallel conditional statements and, 141

Portland Pattern Repository, 126
Preferences class

code listing, 150
getInstance(), 151
mediating object instantiation, 150
Preferences object, instantiating, 151
requirements of, 149

prepareStatement(), 267
presentation layer, 223, 291

Application Controller pattern, 245
Front Controller pattern, 235
Page Controller pattern, 257
Template View pattern, 262
View Helper pattern, 262
view, definition of, 235
See also business logic layer

primitive types
checking the type of a variable, 23
definition of, 22
outputAddresses(), 23
PHP as a loosely typed language, 22
primitive types and test functions, table of,

22
strategies for dealing with argument types,

25
type-related errors, preventing, 25

print_r(), 84, 89, 279
private keyword, 17
procedural programming

cohesion, definition of, 104
comparing to object-oriented design, 100,

103
coupling in, 104
orthogonality, definition of, 104
reading from and writing to configuration

files, code example, 100
readParams(), 100, 103
responsibility and the controlling code, 103

■ INDEX

509

writeParams(), 100, 103
See also object-oriented design

process(), 184, 219, 259, 333
ProcessRequest class, 180, 183
project element, table of attributes, 409
promptChar attribute, 424
properties

access property variables, 18
accessing methods and properties in the

context of a class, 41
accessing properties using inheritance, 33
assigning values to, 18
defining constant properties within a class,

44
definition of, 17
documenting in phpDocumentor, 353
get_class_vars(), 85
setting dynamically, 18
setting to private or protected, 36
static properties, 43
var keyword, 17, 35

propertyName attribute, 424
protected keyword, 17
Prototype pattern

Civilization-style game, code listing, 163
composition and, 164

public keyword, 17
publishers element, 446, 449
push(), 476
Pyrus

config-show command, 325
creating and hosting channels, 342
downloading the phar package, 324
hosting a channel with a third-party

provider, 342
installing, 324
Log package, installing, 326
managing packages, 344
PEAR2_SimpleChannelFrontend, managing

a channel, 343
PEAR2_SimpleChannelServer, defining a

channel, 342
required and optional dependencies,

installing, 327
using Pyrus channel management to serve

PEAR packages, 342

■ Q
Question classes, code listing, 200

■ R
RapidSVN, 362
read(), 102
Reader interface, code listing, 473
readParams(), 100, 103
recommended element, 339
recruit(), 148
recursive descent parser, 124
refactoring, 5
Reflection API

argData(), 93
array_slice(), 91
classData(), 90
definition of, 87
examining a class, 90
examining a method, 91
examining method arguments, 93
execute(), 95
export(), 88
file(), 91
getClass(), 93, 96
getClassSource(), 91
getEndLine(), 91, 93
getFileName(), 91, 93
getMethod(), 91, 93
getMethods(), 91, 96
getName(), 90, 93
getParameters(), 93
getStartLine(), 91, 93
handleMethod(), 96
init(), 95, 97
invoke(), 96
isAbstract(), 90
isInstantiable(), 90
isPassedByReference(), 94
isSubclassOf(), 95
isUserDefined(), 90
methodData(), 92
Module interface, code listing, 94
ModuleRunner class, 95
newInstance(), 96
partial table of classes, 87
Reflection class, 88

■ INDEX

510

ReflectionClass class, 88, 90–91, 95
ReflectionExtension class, 87
ReflectionFunction class, 87
ReflectionMethod class, 91, 93
ReflectionParameter class, 93
ReflectionUtil class, 91
returnsReference(), 92
setPerson(), 95
uses for, 87
using, 94

registerCallback(), 67, 68
RegistrationMgr class, 140
Registry class, 218, 278
Registry pattern, 222

application scope, 229
ApplicationHelper class, 225
ApplicationRegistry class, code listing, 232
getRequest(), 227
Hunt, David, 226
implementing, 226
implementing Registry classes for different

scopes, 229
instance(), 228
managing serialization, 234
MemApplicationRegistry class, code listing,

233
overview of, 225
Registry class, code listing, 226
registry, definition of, 226
RequestRegistry class, code listing, 230
scope, definition of, 229
session_start(), 232
SessionRegistry class, code listing, 231
__sleep(), 234
Thomas, David, 226
using Registry objects as factories and in

testing, 228
variables as having session scope, 229
__wakeup(), 234

regression testing, definition of, 394
relative namespaces, 74
release element, 336
remove command, 372–373
removeUnit(), 173, 176
replace(), 193
replacetokens element, 420
ReplaceTokens filter, 420

Request class, 259
code listing, 242

RequestRegistry class, 259, 396
code listing, 230

require_once(), 76, 82
require(), 76, 79, 82
required element, 339
resolve command, 370
@return tag, 355
return type hinting, 453
returnsReference(), 92
returnValue(), 391
reusability, promoting, 455
Rice, David, 291
rule of three, 127
run(), 237, 395
runCommand(), 397
Runner.php, 394

■ S
sale(), 67
scan(), 476–478
Scanner class, code listing, 467
ScannerState class, 472
scope

application scope, 229
definition of, 17, 229
implementing Registry classes for different

scopes, 229
three levels of, 229

@see tag, 356
selectAllStmt(), 286
Selection Factory pattern

buildWhere(), 310
getComps(), 310
illustration of, 308
implementing, 307
newSelection(), 310
SelectionFactory class, code listing, 310

selectStmt(), 279, 286
Selenium

description of, 398
exporting a test as a PHPUnit class, 402
online documentation for, 403
Selenium IDE and Selenium RC,

downloading and installing, 398
Selenium IDE control panel, 399

■ INDEX

511

testing to verify text on a web page, 400
self keyword, 42, 49
sequence diagrams, 117
SequenceParse class, code listing, 477
session_start(), 232
SessionRegistry class, 231, 234
__set(), 59
set_include_path(), 79
setDepth(), 211
setExpectedException(), 385
setHandler(), 476, 485
setpass target, 424
setPerson(), 95
setSpaces(), 285, 287
setState(), 472, 478
setUp(), 382–383, 388
setValue(), 194
ShopProduct class

getInstance(), 43
products table, defining, 43

ShopProductWriter class
redefining, 45
write(), 45

SimpleXML, 24, 249
simplexml_load_file(), 52
Singleton pattern, 225

comparing to global variables, 152
dependencies created by, 152
deploying sparingly, 152
mediating object instantiation, 150
overview of, 149
Preferences class, code listing, 150
Preferences object, instantiating, 151
summary of, 152

__sleep(), 234
Smarty, 235
snapshot branches, 365
SourceForge.net, 348
SpaceMapper class, 291
SplObjectStorage class, code listing, 208
SpreadSheet class, 50
SQLite, 404
srclib fileset element, 422
ssh-agent, 364
ssh-keygen, 364
stability element, 336
Stahnke, Michael, 364

Standard PHP Library (SPL), 208
static factory method, 49
static keyword, 41, 50
static methods, 102

accessing static properties, 42
definition of, 42

static properties, availability of, 43
status command, 369
status element, 249
statuses(), 255
stereotypes, 111
Strategy pattern, 135

defining subclasses, 198
implementing, 199
mark(), 199
Marker objects, code listing, 200
MarkLogicMarker class, 202
overview of, 198
Question classes, code listing, 200
reducing subclassing and increasing

flexibility, 199
repeating an algorithm across siblings in an

inheritance tree, 199
StringReader class, code listing, 473
strings

casting an object to a string, 16
__toString(), 16

StripPhpComments task, 419
StructureRequest class, 180
stubs, 224, 389
Subversion, 7, 430

accessing a project within the repository,
364

accessing the repository from a remote
machine using SSH, 364

acquiring a snapshot, 374
add command, 371–372
adding a project to the repository, 364
allowing users full access to the repository,

364
beginning a project, 364
benefits of, 319
Berkeley DB, 363
branches, 365, 459
checking out a project from the repository

after importing it, 367
checking out versions of the codebase based

on a date or a label, 362

■ INDEX

512

checking whether Subversion is already
installed, 362

checkout command, 374
configuration file, editing, 365
conflicts, identifying and handling, 370
coordinating the codebase through a

central repository, 361
copy command, 373
create command, 363
creating a new group (svnusers), 363
creating a repository, 363
directories, adding and removing, 372–373
dollar sign as the command prompt, 362,

367
downloading, 362
editor, configuring, 366
errors when importing, 366
explicitly committing a changed file, 370
export command, 374
files, adding and removing, 371–372
freezing a moment in a project’s

development, 373
generating a clean release version of the

codebase, 374
generating a project version without

Subversion metadata, 373
groupadd command, 363
handling version control, 319
import command, 365
importing a project directory, 364
list (ls) command, 364
maintaining parallel strands of project

development, 362, 374
making user authentication easier, 364
managing multiple versions of a project, 365
merge command, 377
overriding the repository version of a file,

370
project, branching, 374
project, exporting, 374
project, tagging, 373
RapidSVN, 362
remove command, 372–373
removing temporary items, 365
resolve command, 370
resolving conflicting files, 370
rolling back by date or tag to any moment,

459

sample output after importing, 366
snapshot branches, saving, 365
specifying files and patterns to ignore

during import, commit, and update, 365
ssh-agent, 364
ssh-keygen, 364
Stahnke, Michael, 364
status command, 369
Subversion URL, format of, 364
svn directory, 363, 367
svn network protocol, 364
svnadmin command, 363
tags directory, 365
TortoiseSVN, 363
trunk, 365, 367
typical conventions for version

management, 365
update command, 368
updating files and committing changes, 368,

371
usermod command, 363
WebDav protocol, 364
working with a graphical user interface

instead of the command line, 362
See also version control

summary element, 335
SUnit, 382
superclass, 27
Suraski, Zeev, 5, 11, 13
svn directory, 363, 367
svn network protocol, 364
svnadmin command, 363

■ T
tags, defining in phpDocumentor, 351
tags directory, 365
targetClass(), 283, 291
targets

definition of, 410
setting up dependencies among, 410

tasks
Copy task, 420, 422
definition of, 421
Echo task, 421
main task, 413
StripPhpComments task, 419

TaxCollectionVisitor class, 215

■ INDEX

513

tearDown(), 383, 388
Template Method pattern, 195
Template View pattern, 222

advantages and disadvantages of, 264
allowing views to manage presentation

only, 262
overview of, 262

term(), 476, 478
terminal parsers, 476
testGetUser(), 383
testing

acceptance tests, 379
addUser(), 381
automated testing, 7
Beck, Kent, 5, 382
benefits of, 405
brittle nature of many test harnesses, 404
combining real and mocked components in

testing, 405
Continuous Integration (CI), 322
debugging tests, 404
eliminating errors using a test harness, 322
functional tests, 379
Gamma, Erich, 5
getUser(), 381
introducing errors by changing a

component’s context, 321
JUnit, 5, 382
maintaining a test harness, 380
PHPUnit, 382
running test suites, 385
running tests from the command line, 380
SUnit, 382
test cases, 379
testing at the system level and class level,

403
testing by hand, 380
testing every component regularly, 379
testing for failure, 384
testing that an exception is thrown, 385
unit tests, 379
UserStore class, code listing, 380, 391
validateUser(), 381
Validator class, code listing, 381
xUnit, 382
See also errors; PHPUnit

Tests tab, 446

TextNotifier class, 140
$this pseudo-variable, 20, 42
Thomas, David, 5, 104, 226
ThoughtWorks, 436
throw keyword, 53
throwing an exception, 53
tight coupling, causes of, 454
Tile class, 179
$tile property, 182
TileDecorator class, 182
token(), 473
tokens, 467
TortoiseSVN, 363
__toString(), 16, 65
totalize(), 57
Transaction Script pattern, 222

addVenue(), 268
advantages and disadvantages of, 269
Base class, code listing, 266
doStatement(), 267–268
execute(), 268
implementing, 265
overview of, 265
prepareStatement(), 267
VenueManager class, code listing, 267

trigger(), 477–478
trunk, 365, 367
try clause, 54

■ U
Unicode, 14
Unified Modeling Language (UML), 6

abstract classes, representing, 111
aggregation, 114
associations, unidirectional and

bidirectional, 113
attributes, 111
class diagrams, 110
composition, 115
constraints, 111
Fowler, Martin, 110
inheritance relationships, describing, 112
interfaces, representing, 111
object lifelines, 117
operations, 112
parameters, 112

■ INDEX

514

sequence diagrams, 117
stereotypes, 111
use relationships, describing, 115
using notes for clarification, 116
visibility symbols in UML, table of, 112
See also object-oriented design

Unit class, 170, 210
Unit of Work pattern

addClean(), 293
addDirty(), 293
addNew(), 293, 295
collection(), 294
defining objects as dirty, 293
Domain class, 294
DomainObject class, code listing, 293
finder(), 294
getCollection(), 294
getFinder(), 294
implementing, 292
Mapper class, 295
markClean(), 295
markDirty(), 295
marking a dirty object as clean, 293
markNew(), 294
ObjectWatcher class, code listing, 292
performOperations(), 293
Rice, David, 291
saving only those objects that need saving,

291
testing for modified objects, 296

unit tests
definition of, 379
goals of, 380

$units property, 171, 173
unless attribute, 412–413
unqualified name, 73
__unset(), 60
update command, 368
Update Factory pattern

buildStatement(), 309
illustration of, 308
implementing, 307
newUpdate(), 309–310
UpdateFactory class, code listing, 308

update(), 205, 279
uri element, 335, 339
use clause, 69

use keyword, 74
use relationships, 115
User class, code listing, 392
user element, 335
usermod command, 363
UserStore class, code listing, 380, 391
UserStoreTest class, 382
@uses tag, 358
usessl element, 447

■ V
ValidateTest class, code listing, 385
validateUser(), 381, 385, 393, 446
Validator class, code listing, 381
var keyword, 17, 35
@var tag, 353
var_dump(), 16, 89
variable(), 485
VariableExpression class, code listing, 193
VariableHandler class, 485
Venue class, code listing, 271, 284
VenueCollection class, 282
VenueManager class, code listing, 267
VenueMapper class, code listing, 278
VenueObjectFactory class, 299
venues.php, 261
version control

benefits of, 459
checking out versions of the codebase based

on a date or a label, 362
coordinating the codebase through a

central repository, 361
Git, 362
maintaining parallel strands of project

development, 362
Mercurial, 362
Subversion, 319
using on a multi-developer project, 319
See also Subversion

view, definition of, 235
view element, 248
View Helper pattern

advantages and disadvantages of, 264
allowing views to manage presentation

only, 262
overview of, 262

■ INDEX

515

using the View Helper class and the Request
object, code listing, 263

view layer, 222
visibility keywords, 36

definition of, 17
using in a method declaration, 19

visibility symbols and UML, 112
visit(), 212
visitArmy(), 213
Visitor pattern

class diagram, 215
implementing, 211
overview of, 210
summary of, 215

Vlissides, John, 125

■ W
__wakeup(), 234
WebDav protocol, 364
wget command, 327
wikis

DokuWiki, 460
Foswiki, 460
PhpWiki, 460

will(), 390
with(), 390
Woo system, description of, 224
write(), 102
writeParams(), 100, 103
wrong element, 448

■ X
Xdebug, 432
Xinc, 436
XML Log File link, 449
XML_Feed_Parser package, 332
XmlException class, 55
xUnit, 7, 382

■ Z
Zend Engine (ZE3), 12, 14

Zend Engine 2, 5, 453

	Title Page�
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction to the Third Edition
	Part 1: Introduction
	Chapter 1 PHP: Design and Management
	The Problem
	PHP and Other Languages
	About This Book
	Objects
	Patterns
	Practice
	What’s New in the Third Edition

	Summary

	Part 2: Objects
	Chapter 2 PHP and Objects
	The Accidental Success of PHP Objects
	In the Beginning: PHP/FI
	Syntactic Sugar: PHP 3
	PHP 4 and the Quiet Revolution
	Change Embraced: PHP 5

	Into the Future
	Advocacy and Agnosticism: The Object Debate
	Summary

	Chapter 3: Object Basics
	Classes and Objects
	A First Class
	A First Object (or Two)

	Setting Properties in a Class
	Working with Methods
	Creating a Constructor Method

	Arguments and Types
	Primitive Types
	Primitive Types Matter: An Example

	Taking the Hint: Object Types

	Inheritance
	The Inheritance Problem
	Working with Inheritance
	Constructors and Inheritance
	Invoking an Overridden Method

	Public, Private, and Protected: Managing Access to Your Classes
	Accessor Methods
	The ShopProduct Classes

	Summary

	Chapter 4 Advanced Features
	Static Methods and Properties
	Constant Properties
	Abstract Classes
	Interfaces
	Late Static Bindings: The static Keyword
	Handling Errors
	Exceptions
	Throwing an Exception
	Subclassing Exception

	Final Classes and Methods
	Working with Interceptors
	Defining Destructor Methods
	Copying Objects with __clone()
	Defining String Values for Your Objects
	Callbacks, Anonymous Functions and Closures
	Summary

	Chapter 5 Object Tools
	PHP and Packages
	PHP Packages and Namespaces
	Namespaces to the Rescue
	Using the File System to Simulate Packages
	Naming the PEAR Way
	Include Paths

	Autoload

	The Class and Object Functions
	Looking for Classes
	Learning About an Object or Class
	Learning About Methods
	Learning About Properties
	Learning About Inheritance
	Method Invocation

	The Reflection API
	Getting Started
	Time to Roll Up Your Sleeves
	Examining a Class
	Examining Methods
	Examining Method Arguments
	Using the Reflection API

	Summary

	Chapter 6 Objects and Design
	Defining Code Design
	Object-Oriented and Procedural Programming
	Responsibility
	Cohesion
	Coupling
	Orthogonality

	Choosing Your Classes
	Polymorphism
	Encapsulation
	Forget How to Do It
	Four Signposts
	Code Duplication
	The Class Who Knew Too Much
	The Jack of All Trades
	Conditional Statements

	The UML
	Class Diagrams
	Representing Classes
	Attributes
	Operations
	Describing Inheritance and Implementation
	Associations
	Aggregation and Composition
	Describing Use
	Using Notes

	Sequence Diagrams

	Summary

	Part 3: Patterns
	Chapter 7 What Are Design Patterns? Why Use Them?
	What Are Design Patterns?
	A Design Pattern Overview
	Name
	The Problem
	The Solution
	Consequences

	The Gang of Four Format
	Why Use Design Patterns?
	A Design Pattern Defines a Problem
	A Design Pattern Defines a Solution
	Design Patterns Are Language Independent
	Patterns Define a Vocabulary
	Patterns Are Tried and Tested
	Patterns Are Designed for Collaboration
	Design Patterns Promote Good Design

	PHP and Design Patterns
	Summary

	Chapter 8 Some Pattern Principles
	The Pattern Revelation
	Composition and Inheritance
	The Problem
	Using Composition

	Decoupling
	The Problem
	Loosening Your Coupling

	Code to an Interface, Not to an Implementation
	The Concept That Varies
	Patternitis
	The Patterns
	Patterns for Generating Objects
	Patterns for Organizing Objects and Classes
	Task-Oriented Patterns
	Enterprise Patterns
	Database Patterns

	Summary

	Chapter 9 Generating Objects
	Problems and Solutions in Generating Objects
	The Singleton Pattern
	The Problem
	Implementation
	Consequences

	Factory Method Pattern
	The Problem
	Implementation
	Consequences

	Abstract Factory Pattern
	The Problem
	Implementation
	Consequences
	Prototype
	The Problem
	Implementation

	But That’s Cheating!
	Summary

	Chapter 10 Patterns for Flexible Object Programming
	Structuring Classes to Allow Flexible Objects
	The Composite Pattern
	The Problem
	Implementation
	Consequences
	Composite in Summary

	The Decorator Pattern
	The Problem
	Implementation
	Consequences

	The Facade Pattern
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 11 Performing and Representing Tasks
	The Interpreter Pattern
	The Problem
	Implementation
	Interpreter Issues

	The Strategy Pattern
	The Problem
	Implementation

	The Observer Pattern
	Implementation

	The Visitor Pattern
	The Problem
	Implementation
	Visitor Issues

	The Command Pattern
	The Problem
	Implementation

	Summary

	Chapter 12 Enterprise Patterns
	Architecture Overview
	The Patterns
	Applications and Layers

	Cheating Before We Start
	Registry
	The Problem

	Implementation
	Registry, Scope, and PHP
	Consequences

	The Presentation Layer
	Front Controller
	The Problem
	Implementation
	Consequences

	Application Controller
	The Problem
	Implementation
	Consequences

	Page Controller
	The Problem
	Implementation
	Consequences

	Template View and View Helper
	The Problem
	Implementation
	Consequences

	The Business Logic Layer
	Transaction Script
	The Problem
	Implementation
	Consequences

	Domain Model
	The Problem
	Implementation
	Consequences

	Summary

	Chapter 13 Database Patterns
	The Data Layer
	Data Mapper
	The Problem
	Implementation
	Handling Multiple Rows

	Consequences

	Identity Map
	The Problem
	Implementation
	Consequences

	Unit of Work
	The Problem
	Implementation
	Consequences
	Lazy Load
	The Problem
	Implementation
	Consequences

	Domain Object Factory
	The Problem
	Implementation
	Consequences

	The Identity Object
	The Problem
	Implementation
	Consequences

	The Selection Factory and Update Factory Patterns
	The Problem
	Implementation
	Consequences

	What’s Left of Data Mapper Now?
	Summary

	Part 4: Practice
	Chapter 14 Good (and Bad) Practice
	Beyond Code
	Borrowing a Wheel
	Playing Nice
	Giving Your Code Wings
	Documentation
	Testing
	Continuous Integration
	Summary

	Chapter 15 An Introduction to PEAR and Pyrus
	What Is PEAR?
	Phar Out with Pyrus
	Installing a Package
	PEAR Channels

	Using a PEAR Package
	Handling PEAR Errors

	Creating Your Own PEAR Package
	package.xml
	Package Elements
	The contents Element
	Dependencies
	Tweaking Installation with phprelease
	Preparing a Package for Shipment
	Setting Up Your Own Channel
	Defining a Channel with PEAR2_SimpleChannelServer
	Managing a PEAR Channel with PEAR2_SimpleChannelFrontend
	Managing a Package

	Summary

	Chapter 16 Generating Documentation with phpDocumentor
	Why Document?
	Installation
	Generating Documentation
	DocBlock Comments
	Documenting Classes
	File-Level Documentation
	Documenting Properties
	Documenting Methods
	Creating Links in Documentation
	Summary

	Chapter 17 Version Control with Subversion
	Why Use Version Control?
	Getting Subversion
	Configuring a Subversion Repository
	Creating a Repository

	Beginning a Project
	Updating and Committing
	Adding and Removing Files and Directories
	Adding a File
	Removing a File
	Adding a Directory
	Removing Directories

	Tagging and Exporting a Release
	Tagging a Project
	Exporting a Project

	Branching a Project
	Summary

	Chapter 18 Testing with PHPUnit
	Functional Tests and Unit Tests
	Testing by Hand
	Introducing PHPUnit
	Creating a Test Case
	Assertion Methods
	Testing Exceptions
	Running Test Suites
	Constraints
	Mocks and Stubs
	Tests Succeed When They Fail

	Writing Web Tests
	Refactoring a Web Application for Testing
	Simple Web Testing
	Introducing Selenium
	Getting Selenium
	Creating a Test

	A Note of Caution
	Summary

	Chapter 19 Automated Build with Phing
	What Is Phing?
	Getting and Installing Phing
	Composing the Build Document
	Targets
	Properties
	Types
	FileSet
	PatternSet
	FilterChain

	Tasks
	Echo
	Copy
	Input
	Delete

	Summary

	Chapter 20 Continuous Integration
	What Is Continuous Integration?
	Preparing a Project for CI
	CI and Version Control
	Unit Tests
	Documentation
	Code Coverage
	Coding Standards
	PHP Code Browser
	Build

	CruiseControl and phpUnderControl
	Installing CruiseControl
	Installing phpUnderControl
	Installing Your Project
	Running phpUnderControl / CruiseControl
	Test Failures
	Failure Notification
	Adding Your Own Build Targets

	Summary

	Part 5: Conclusion
	Chapter 21 Objects, Patterns, Practice
	Objects
	Choice
	Encapsulation and Delegation
	Decoupling
	Reusability
	Aesthetics

	Patterns
	What Patterns Buy Us
	Tried and Tested
	Patterns Suggest Other Patterns
	A Common Vocabulary
	Patterns Promote Design

	Patterns and Principles of Design
	Favor Composition over Inheritance
	Avoid Tight Coupling
	Code to an Interface, Not an Implementation
	Encapsulate the Concept That Varies

	Practice
	Testing
	Documentation
	Version Control
	Automated Build
	Continuous Integration
	What I Missed

	Summary

	Appendix A Bibliography
	Books
	Articles
	Sites

	Appendix B A Simple Parser
	The Scanner
	The Parser

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

