
C H A P T E R  9

Solving Problems with Hadoop

On the Hadoop Core mailing list, a user was wondering about the way to handle a specific 
style of range query with MapReduce. The application had a search space and incoming 
search requests. In this chapter, we’ll look at a similar setup, as follows: 

range begin, range end and the value search space 
data. For simplicity’s sake, let’s assume that ranges in the search space do not overlap.

value and the value search request data.

range begin and range end has the key value 
and the value search request data, search space data.

How do you solve this problem with a traditional MapReduce application? That’s the 
focus of this chapter. 

There are a couple of overall design goals, and the weights of the different factors will 
vary by installation and by job. In today’s environment, there is an intense pressure to get 
processes up quickly and evolve them. Given agile business practices and tight budgets, rapid 
evolution becomes the norm. This practice means that there will be little design time, and 
the application will be modified, possibly by multiple teams, over a medium to long period 
of time.

Design Goals
Our overall goal is to have a job that runs reliably and fast. To achieve reliability, we aim for 
simple code, and implement monitoring to be informed when the algorithms being used are 
no longer suitable for the scale or patterns of data.

Given that this application is going to evolve rapidly, and eventually be modified, perhaps 
by different people, each piece of code needs to be simple and clear. This is in direct opposi-
tion to the requirement that the map and reduce methods be treated as the deeply nested 
inner loops that they are and carefully optimized.

The data is expected to be real-world, dirty, and to change over time. Wherever possible, 
the application must handle malformed records in a graceful manner and report on the mal-
formed rate.

To achieve good performance, the job must minimize underuse of the hardware, by man-
aging how the data is split, partitioned, and compressed and by tuning the number of tasks 
run per node. To avoid having the network speed become the limiting factor, the transform 
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design must attempt to minimize the number of times the data is written to HDFS and the vol-
ume of data passed to reduce tasks.

This example will have as input two datasets. One dataset—the search requests—is composed 
of Apache log file data in common log format. The other dataset—the search space—is composed 
of IP address ranges and a network name. The output of the job, shown in Table 9-1, will be a mod-
ified common log format with the IP address, the network range, and the network name, in place 
of the original IP address, for those search requests for which a network was found.

Note The last two octets of all IP addresses in the log files have been randomized. The command used 
was 

.

Table 9-1. Sample Job Output

 Net Range Net Range 
Log IP Begin End Net Name Log Record
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Note Thanks to Apress for the log file samples.

Design 1: Brute-Force MapReduce
The brute-force MapReduce pattern is generally the quickest to get going and the simplest to 
manage. The downside is that these jobs quickly become bound by the network speed and the 
sorting speed for the cluster.

In a brute-force MapReduce, the only time you have ordered data is in the reduce step. 
This forces all of the data to flow through to the reduce task. There is also the additional com-
plexity that you have multiple record types, which need to be distinguished at reduce time.

The overriding constraint here is ensuring that any given search request record finds all 
records that it is in range of in the search space.

A Single Reduce Task
If a single reduce task is used, all search request records are guaranteed to be in the same par-
tition as their respective search space records. Table 9-2 defines the comparator behavior for 
the three cases the comparator will encounter.

Table 9-2. Comparator Cases

 Comparison  Comparison 
Type of Item 1 Region of Item 1 Type of Item 2 Region of Item 2 Equality Condition

Search request Entire key Search request Entire key Key1 equal to key2

Search request Entire key Search space Begin range  Search request key equal to 
begin range

Search space Begin range,  Search space Begin range,  Begin range1 equal 
 end range  end range  to begin range2 and end 

range1 equal to end range2

The input plan for the reduce method is to receive individual records and to manage the 
join behavior by maintaining memory about previous records. This adds complexity to the 
reduce method and increases the risk of out-of-memory conditions. To enable the framework 
to do the aggregation would require having redundant data in the records; the end range 
would need to be in the value of the search space records. This requirement is driven by the 
fact that the  object receives only the key. A simplification that results from 
this decision is that, in the first pass, using  is acceptable for the key and value, as the 
records may be distinguished lexically. In a future step, as a performance optimization, we will 
implement a key class that provides a  that handles our keys at the byte 
level rather than at the object level. Using the byte-level comparator for a complex key opens 
the door to the key format and the comparator getting out of sync, introducing the possibility 
of errors.
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Note Having  objects for the key and value greatly simplifies the initial debugging of the jobs, as the 
data can be readily examined by eye.

Key Contents and Comparators
For simplicity in this pass, we are going to use the same object, , for the keys for both 
datasets, and  for the values. To do this, a simple encoding must be defined that allows the 
origination dataset to be determined easily from the text of the key. If there is a way to do this 
without needing to write a custom comparator, the job can be up and running very quickly. 
For the stock comparator to work, the keys must lexically compare an order that the reduce 
method understands and can process with minimal complexity.

In this application, a key is an IPv4 address for a search request record, and a pair of IPv4 
addresses for the search space records. If all IP addresses are encoded as a zero-padded, fixed-
length hexadecimal string, the primary lexical ordering issue is addressed. This leaves a single 
issue: lexically, keys for the search requests will sort before a search space key that has a begin 
range value equal to the key of the search request. In the best of all possible worlds, search 
request keys would appear in the sorted output, after the search space key that opens the 
range for the request.

The search space key may simply be the begin range and end range values, with a separa-
tor character. There are many simple tools for splitting strings based on a separator character. 
This has the advantage that if a lexically larger character is used as a suffix for the search 
request keys, the search request keys will sort after the search space key that defines the rel-
evant range. An example is shown in Table 9-3.

Table 9-3. Expected Sorting Order for Search Space and Search Request Keys Using a Separator 
Character for the Space Range and a Suffix Character for the Request Keys

Address Key Type Encoded Key

 Space 

 Search 

This can be quickly tested by running a small sample dataset through a streaming job 
to verify that the data compares the way we expect. A test dataset will be prepared from an 
Apache log file, with the Perl command in Listing 9-1. The code in this section takes the first 
field of the access log, commonly an IP address, and converts it to an unsigned integer, which 
is then printed as an eight-character-wide hexadecimal number, with a semicolon ( ), as a 
suffix. A fake range is generated by printing that original value, without the semicolon, with a 
number ten higher, with a colon ( ) separating them. A few lines of the output are included. 
Notice that the output ordering is exactly the reverse of what our application needs.
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Note Listing 9-1 is structured to run from within the Cygwin environment, in the  directory, on 
a Windows installation. Adjust the paths and file names as needed for your local installation. 

Listing 9-1. Generating a Sample Set of IP Addresses and Ranges from an Apache Log File

In the command shown in Listing 9-1, a dataset was prepared with converted IP addresses 
from an Apache log file. Listing 9-2 runs a streaming job to see how the records will actually be 
sorted by the default comparator. As you can see from the Listing 9-2 output, the search space 
records ( ) sort before a search request record that starts with the same 
address ( ). Success—this is the pattern we were hoping to achieve.

Note Cygwin users are likely to always have an error message that starts with 

. This error may be ignored. Listing 9-2 is structured to run from the Hadoop installation 
directory.

Listing 9-2. Running a Streaming Job to Verify Comparator Ordering
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A Helper Class for Keys
Key management is critical for this job, and to help avoid introducing errors later in the appli-
cation life cycle, a helper class for keys will be provided. The initial version needs to be able to 
validate, pack, and unpack keys to and from the  objects.

TASK-SPECIFIC CONFIGURATION PARAMETERS

The Hadoop framework creates a runtime environment for the tasks of the job. In the TaskTracker’s local 
working area, the path set defined by the configuration key, , a directory tree is built 
for the job, which contains the unpacked  items, a file  that contains the 
job configuration, a shared directory for all tasks of the job, and a working directory for the task to be run. 
An instance of the configuration date is created, and the per-task information modified by adding per-task 
parameters and adjusting the paths of configuration parameters that have been unpacked into the job or task 
working areas. The bulk of this localization process is handled by . The follow-
ing parameters are added or modified for a task as of Hadoop 0.19.0:

: The directory that will be used as root of the local file system space allocated 
for this job.  returns this directory. All tasks of this job running on a 
TaskTracker node will share this directory. A Java system property of the same name is also set.

: The root of the local file system space for this TaskTracker node.

: For the map task, the input file name, if the input split has a file name.

: For the map task, the starting offset in the .
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: The amount of data to read from , starting from 
.

: The task ID for this task. All task attempts for this task will have the same value for 
this key.

: The task ID for this attempt of this task. The framework will make multiple 
attempts to complete a task. This value for this key holds the ID of the current attempt instance. In 
Hadoop 0.19, the value stored under this key is very similar to , except that it will 
have a prefix of . This is unique per task run.

: Set to  if this is a map task.

: The partition number for this task, if known. For a map task, this is the 
ordinal number of the task. For a reduce task, it is both the ordinal number of the reduce task and the 
result of , which will be identical for all 
key/value pairs passed to this reduce task.

: The ID of the job that this task is being run on behalf of.

: The task-specific directory that output files will be created in by default. 
 provides this value.

: In the reduce task, the actual number of map tasks that succeeded.

: Any hostname/IP address mappings that will override the nor-
mal lookup results.

: Set to  if the TaskTracker is enforcing memory utilization limits.

In our example, four classes are associated with key handling: 

, for -based keys

, to verify the expected behavior 

These  classes provide a way to extract the IP address from a key, shown in Listing 9-3, 
and to pack IP addresses into a key, shown in Listing 9-4. Two configuration parameters are 
available: , which defines the character to be used as a suffix 
when encoding a search request IP address, and , which 
defines the character to be used to separate a pair of IP addresses in a search space key. These 
parameters have default values of semicolon ( ) and colon ( ), respectively. They may be any 
pair of characters, as long as the range separator character sorts first.
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Listing 9-3. boolean TextKeyHelperWithSeparators.getFromRaw(Text raw)

In Listing 9-3, the key is converted to a  and examined to see if it is one of the two 
patterns that are accepted. All IP addresses will be encoded as eight hexadecimal digits. If the 
key is a search request, there will be one IP address and a trailing  charac-
ter only, forcing the string to be only nine characters in length. If the key is a search space item, 
there will be two IP addresses, with a  character between them only, forcing the 
string to be seventeen characters in length. The IP addresses are converted into long values via 

. The  method is used for extracting the actual IP 
address data from the raw string.
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If a valid search request or search space definition is found, the helper object is marked 
valid, , and  is set to the first IP address found. If the key con-
tained a search space request,  is set to  and  is set to the second IP 
address.

The  method, in Listing 9-4, is used to create and store a value in a key object that 
correctly encodes either a search request or a search space. If the helper object is not valid, 
nothing is done, and no indication of this is made. This will open the door to missing errors. 
Changing this behavior requires rearchitecting the application to provide a visible trace of this 
error; logging it is not likely to be sufficient. A  and  are  
instance variables, making this class thread-safe. This is done as a small efficiency and a pro-
tection against the day when the helper is used in a multithreaded map task.

Listing 9-4. void TextKeyHelperWithSeparators.setToRaw(Text raw)

Note It is reasonable to assume that anything written to the log by a task will never have been seen by a 
human being unless something is visibly wrong with the job. The volume of data is just too large.

The Mapper
With the plan for the comparator handled, it is time to design the mapper. This mapper must 
handle two tasks:

from the line in the key format, passing the rest of the line as the value.

) separating the 
range from the data. The mapper may distinguish between the two records either from 
the input file name or by the length of the key.
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As a demonstration of using chain mapping, our mapper is going to run a chain to process 
the incoming values. The first element in the chain will take action only if the incoming record 
does not look like a search request or search space key, but instead looks like an Apache log file 
record. This mapper will transform the record into a search request. The next map in the chain 
will perform validity checking on the keys.

Note In the next version, the example will use , 
and have the search space dataset be in a . For simplicity of debugging, this version uses text 
records only.

This example has two mapper classes:  and 
. Listing 9-5 shows the mapper preamble in . This demonstrates 

our standard practice of having a counter, named . This provides a clear indica-
tion of how the job is going. The  object parses a string that is either a search request 
or a search space, returning  if the key was recognized. In this preamble, if the  
can parse the key, it is just passed forward. As a general rule, we log per-key data only at level 
debug, as the logging volume will be very large.

Listing 9-5. The Mapper Preamble, ApacheLogTransformMapper.java

In Listing 9-6, the key was not recognized as a prepared key and is assumed to be an 
Apache log line. If the input separator for the  happens to be a single space: 

then the key is assumed to be the IP address. The test 
 verifies this.

Note If the input format happens to not be , the configuration key changes 
in , or the default value changes, this code will fail silently.
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The method  will take the IP address and convert it into our estab-
lished format and pass the new key and the value to the output.

Lisitng 9-6. The Mapper Log Line Processing Part 1, ApacheLogTransformMapper.java

In Listing 9-7, the default case of a raw log line is handled. This code does make the 
assumption that the  computed in Listing 9-6, is correct. A complete line is 
assembled in , and then parsed. The IP address is assumed to be the first text in the line and 
to be terminated by an ASCII space character. This code accepts only IPv4 addresses in the 
format of four dot-separated octets. Once the correct key and new value are produced, they 
are output. The use of chain mapping actually reduces the efficiency of the task, but it is nice 
to have a demonstration.

Listing 9-7. The Mapper Log Line Processing Part 2, ApacheLogTransformMapper.java
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The , shown in Listing 9-8, just checks the keys for the proper 
shape—that they are valid IPv4 addresses—and swaps the search space begin and end range 
values if begin is greater than end. At this point, all keys are assumed to be valid, and this map 
verifies that. Several counters are kept to help with sort and long-term monitoring of the job. 

Listing 9-8. KeyValidatingMapper.java
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The Combiner
The combiner is often one of the more complex pieces of a MapReduce job, and it’s usually 
given the least thought. What is the correct behavior for encountering duplicate keys in the 
map output? For simple aggregation jobs, this is straightforward. In our case, we have two dif-
ferent types of keys, and what to do for a duplicate in either case is unclear. 

The first proposal would be to use a , and just keep all of values. This 
doesn’t provide much of a space saving, compared to just not running a combiner. The second 
proposal would be to discard duplicates. Neither choice is appealing. A combiner should pro-
vide either a significant reduction in I/O volume or a significant reduction in resource use for 
the reduce phase. Neither of the preceding proposals can provide those. If a custom compara-
tor were written, a combiner might make sense.

In the type of MapReduce application we are working on here, a combiner that suppresses 
duplicate key/value pairs could be helpful. In our constructed example, we know there are no 
exact duplicates.

The Reducer
Each reducer task will need to receive a stream of key values, where the range statements will 
be first in the sorting order. This forces the reducer class to maintain state information about 
which ranges have been seen, and the value of those ranges. This prior range information is 
bounded, and ranges may be flushed when the end range value is less than the current input 
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key. As an added bonus, the reduce task is also run as a chain, with a postprocessing map that 
converts the encoded key formats back into dot-separated octet format. The actual reduce task 
is performed by , shown in Listing 9-9.

Lisitng 9-9. ReducerForStandardComparator.java

In Listing 9-9, our standard counters are in use. At this point, any invalid key is an indica-
tion that something has gone very wrong—data corruption at some level, given the level of 
verification performed on the keys in earlier steps.
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Our algorithm is very simple. We keep a queue of networks, ordered by the network end-
of-address range. If the current key is a search request and the current key is larger than the 
end of a network’s address range, the network is removed from the active queue. The call 

 clears any networks from the  queue 
that can no longer be matched. If the current key is a search space key, it is added to the set of 
active ranges, via the following:

At this point, each network in  is a match. A network’s end range is guaran-
teed to be larger than the search request key, and due to our comparator’s ordering of the keys, 
the network begin range must be less than or equal to our search request.

For each log line, , an output record is generated for each net-
work, , via the call to 

, which is shown in Listing 9-10.

Listing 9-10. ReducerForStandardComparator.handleHit

In Listing 9-10, a  and  are built. These are used to construct the 
actual output key and output value. The key will be the original log record IP address, followed 
by the network begin and end addresses. For ease of parsing, these will be separated by an 
ASCII tab character. The value is simply the network name, ASCII tab, and the rest of the origi-
nal log line.
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The Driver
The driver, shown in Listing 9-11, builds on our base class, , 
and defines only a small number of methods. This example relies on there being only a single 
reduce task, as the default partitioner will cause this job to fail. In our next design iteration, we 
will write a custom partitioner.

All of the examples in this chapter are structured to run on small machines, so the reduce 
sort space has been reduced from 100MB to 10MB, using the following line:

The values for  and  are set by the use of the command-line flags  and 
, respectively. The setup follows the general rule for using the chain, and allocates 

 to use as the private configuration object for the chained map and reduce tasks. The 
framework serializes the contents in each call to the  methods, making it safe to 
clear  and reuse it.

Listing 9-11. The Job Setup, BruteForceMapReduceDriver.java
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The map and reduce methods used do not modify the passed-in key or value objects; 
therefore, the chaining framework is being formed to pass keys and values by reference. The 
second-to-last argument, , in the  and  
methods forces this behavior.

All of the mappers and reducers expect  objects for the input key and value, and out-
put . In an updated version of chaining, in which the key and value objects implement 

 and , passing  objects for the key 
would probably be significantly more efficient.

The Pluses and Minuses of the Brute-Force Design
The biggest plus of this design is that it is simple and took about a day to put together. The 
biggest disadvantages are that all of the data must pass through the mapper and be sorted, 
and that only a single reduce task may be used. Given that the total number of networks is 
relatively bounded, if the incoming log records are batched in smaller sizes, this job will run 
reasonably well and reasonably fast. Without a custom partitioner, this job cannot be made 
to run with multiple reduce tasks.

Design 2: Custom Partitioner for Segmenting the 
Address Space
The biggest boost for the brute-force method would be to find a simple way to allow multiple 
reduce tasks. The standard partitioner uses the hash value of the key, modulus the number of 
partitions as the partition number. A simple strategy for this application might be to simply 
segment the IP address range. There is no guarantee that the network ranges will fall cleanly 
on these segments. There will need to be a mechanism to split search space keys into segment-
appropriate boundaries during the job, while putting the full range in the output record. 
Perhaps simply modifying the format for the search space records to allow for an original 
range to be part of the record will address this.

Note This partitioning method is still subject to uneven distributions of the key space resulting in a subset 
of reduce tasks running much longer. To ameliorate this, the key space may be sampled and the partitioning 
table built using the sample data, in a manner similar to that done by the Hadoop terasort example.

The Simple IP Range Partitioner
The partitioner class for this example is . The  
method, shown in Listing 9-12, simply takes the IP address of a search request key or the begin 
range address of a search space key and returns the partition for that record. 
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A SCOPE REDUCTION IN THE PARTITIONER

The original design supported a configurable table to ensure that the records were partitioned approximately 
evenly. This required a tool to scan the records to generate a distribution map and code to load that map into 
the partitioner. During the process of actually writing the code, the decision was made that if that feature is 
needed, it may be implemented later. Instead, each partition gets an approximately even number or span of 
addresses out of the IPv4 space.

For a job with one reduce task, the span for partition 0 is from  to . For 
a job with two reduce tasks, partition 0 would span from  to , and partition 1 
would span from  to .

This left a few artifacts in the . A  is used instead of simply 
maintaining an array of long values. The array of long values would be faster and would greatly reduce object 
churn.

Listing 9-12. SimpleIPRangePartitioner.getPartition
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The first step is to initialize the key  and to determine if the key is actually a valid 
search space or search request key:

If the key is valid, the IP address of the search request record or the range begin address 
of the search space record is stored in . Once  is known, it may be looked up in the 
table, , that maps addresses to reduce partitions. The table is actually a , and 
entry keys are the ending IP address of the partition. The partition number is the entry value. 
This data structure allows the following line to provide the entry of the partition that the key/
value pair must go to:

The  method  returns the element in  where the entry key is 
closest to , while not being less than . range end is larger than . The value of 
that entry is the partition number for this key/value pair.

For debugging purposes, the entry is assigned to a local variable, . The entry 
value could simply be returned at this point, but a little checking is done to verify that this key/
value pair is a search space record, where the end of the search space is also an address that 
will be in this partition. No checking is made for the case where  returns 

, as it is assumed that the  table spans the full IPv4 address space range.
The  table is constructed in the  method, shown in Listing 9-13, as this 

is the first time the number of reduce tasks is known. 

Listing 9-13. SimpleIPRangePartitioner.configure
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The first step is to save a copy of the  object into , our standard practice. The 
key helper for this example is . This class delegates 
to the  class for any unrecognized input keys, and handles an 
extended form for search space keys that provides a way of splitting a search space key across 
multiple partitions and then assembling the resulting records later.

IPv4 addresses are simply unsigned 32-bit integer values, and the entire space runs from 
 through  inclusive. Each partition will span approximately  addresses, 

defined as . The application uses long values to avoid issues with 
sign extension, as Java does not provide an unsigned integer type.

The variable  contains the ending IPv4 address of the previous partition. Each pass 
through the  loop adds  to  defining the ending address of the next parti-
tion and increments the partition number:

 stores the partition end address and partition 
number in . These are currently added in order, which is not optimal for a , as 

 are stored as red-black trees and ordered insertion will result in an unbalanced tree. 
Casting our gaze into the future, it seems unlikely that there may be more than small hundreds 
of reduce tasks and a rewrite might be planned to eliminate the use of  and simply use 
an array.

Search Space Keys for Each Reduce Task That May Contain 
Matching Keys
The  also provides a method , shown in Listing 9-14, which 
is not part of the partitioner interface. Here, I took a design expedience step that perhaps was 
not optimal given my later experience. I decided to use the  (List-
ing 9-11), and allow more than one reduce task. To achieve this, each search space record 
must be replicated so that any partition that could have matching requests each gets a copy of 
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the search space record. The concept is that an addition map will, for each incoming search 
space record, output a set of search space records such that each reduce partition that could 
receive a matching search request will receive one of the output search space records. This 
addition map,  (shown later in Listing 9-16), will be added 
to the mapper chain.

Listing 9-14. SimpleIPRangePartitioner.spanSpaceKeys Preamble

The first portion of Listing 9-14 handles the setup and validation. The calling con-
vention requires that the caller pass in an initialized key helper ( ) and the 

 to  ( ). The  object ( ) is used to log metrics 
and failures. The key helper is checked for validity ( ) and that 
it contains a search space request ( ). If either constraint 
check fails, an exception is thrown. The key helper class for these spanned keys has two 
additional fields: the actual begin and end of the search space request. The begin and end 
fields will now be fields for the address span of the partition for which the record is output. 

 and 
 initialize the helper correctly if it is not 

already set up.
As a quick recap, the search space key contains an IPv4 address range, represented as 

a beginning and ending address. To enable multiple reduce tasks, the search space records 
must be available in each reduce task that could receive search requests that would match 
the search space record. This allows the search space requests to be mixed into the job input 
with the search requests. Each search space key is split into a set of search space keys, such 



CHAPTER 9   SOLVING PROBLEMS WITH HADOOP 307

that each individual key contains that portion of the original range that fits within the range of 
addresses that will be routed to a specific reduce task. Implicit is that each partition starts with 
the address after the prior partition and there is no overlap in address space between parti-
tions. Partition 0 is assumed to start at address , ( ), and the last partition is assumed to 
end at  ( ).

The block of code in Listing 9-15 is the part of the  method that produces 
the per-partition keys.

Listing 9-15. Producing Search Space Keys for the Required Reduce Partitions
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The passed-in, parsed-input key is in , the working object is , and 
the actual begin and end addresses for the network are stored in the real begin (

) and real end ( ) fields of .
The , a  object, holds both the actual 

original search space key, using the  and  fields, and the begin and 
end address of the range within a partition, in the  and  fields. For each partition, the 
begin  and end  will be set to the address range 
within that partition that this search space record will match, and the  and 

 fields will be untouched.
The variable  is a subset of ranges that contains only partitions that have 

an end address larger or equal to the real begin range of the key, and equal to or less than the 
real end range of the key. Put simply,  contains the partitions that may contain 
addresses that would match the passed-in search space record.

The following loop examines each of the candidate partitions in ascending order of the 
partition end address:

The variable  contains the ending address for the current partition. It is implicit in 
the data structures used that  will be greater than or equal to  
(the beginning address of the portion of the key that has not yet been output to a partition is 
always available as ). 

When a per-partition key is to be output, the  is set up with the correct end address 
for that partition. The end address will either be the last address of the partition, , or 
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the last address of the actual range, , whichever address is least. If the end 
address of the output key is less than or equal to the end address of the current partition, no 
more keys need to be output. The begin field of helper is set to the address after the end of the 
previous output key, .

The core loop is run once for each potential partition that this key may need to have 
a record placed. The variable  keeps track of the number of records output, and  
contains the information about the current partition, in particular the end address and the 
partition number. There are a couple checks: one to see if the partition end addresses are 
not in ascending order ( ) and another to 
see if the key has been fully spanned across the partitions (

).
There are two possible cases:

, 
. The range end of the helper is set to 

the applicable end value in this case, .

. In this case, 
 is called.

The end of the loop actually builds the  object with the appropriate data, 
, and resets begin to the address after the just output key, 

. Each input search space request now has a 
record that will be placed by the partitioner into each partition that could have search requests 
that match.

In , shown in Listing 9-16, is a very simple  
method. It initializes the key helper from the passed-in key, , and 
for a valid search space key, calls the  method of  (search 
requests are just passed through as output). 

Listing 9-16. RangePartitionTransformingMapper
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The original concept was to take the search requests, feed them through the  
 using  as a driver 

class, convert the search space records into a sorted and partitioned dataset, run another 
MapReduce job over the incoming search requests, and then perform a map-side join on the 
resulting datasets. After working with the data for a short time, I realized that the search space 
was so small that it wasn’t worth the extra complexity or time to have an additional step for 
presorting the search space records. I decided to simply add this mapper as part of the mapper 
chain, and read the search space records as input with the search request records. The con-
figuration changes to  are shown in the next section.

Helper Class for Keys Modifications
The class  will be the new  and will support 
carrying the original key data, so that the output records can be provided with the actual net-
work range instead of that portion of the network range that fits in this partition. A new record 
format needs to be designed that can carry the additional data. The key format for the search 
space keys has been , where  and  are the first and last addresses of the 
network, each an eight-digit hexadecimal number. For example,  would be , 

 would be , and the search space key representing the entire IPv4 
address space would be . To allow partitioning, the search case keys must 
match keys in a particular partition. My first idea on how to address this was to just have four 
values instead of two, with the same separator between each. The full code for that version 
is in , 
available with the rest of the downloadable code for this book.

The code for the first design must be modified to examine a configuration 
parameter, , and instantiate the value as a class, defaulting to the 

 class. Listing 9-17 provides an example of this from 
. 

Listing 9-17. Modifications to Load a Key Helper Based on the Value of range.key.helper
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The existing mapper and reducer classes are modified to instantiate their 
 class based on a configuration property, , defaulting to 

.  is modified to set the 
 configuration parameter value to  when the 

number of reduce tasks is more than one. This leaves the old behavior intact, while allowing 
multiple reduce tasks.

In Listing 9-18, the configuration key  is set to be our partitioning class 
by 

, and an additional map is placed in the chain, to span the search space keys:

Listing 9-18. Modifications to the Setup Method in BruteForceMapReduceDriver.java

The reducer, , does not need any changes, but the 
 class, which provides the  method, does. In Listing 9-19, we simplify it to 

make it aware of the  class, and in that case, to use 
the real begin and end ranges for a search space request, rather than the per-partition begin 
and end ranges. If many types of keys are used, this method will quickly become excessively 
complex. In this case, there is only one type of key, so we can defer that code cleanup to a 
future that may not come. 

Listing 9-19. Modifications to ActiveRanges.activate to Support the Partition Spanned Search 
Space Keys
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To provide a secondary sort of the final output, we have the classes , 
, and . This set of classes performs a map-side join on 

all of the reduce output partitions of , producing a single sorted file 
as output. The output uses the network begin, end, and name values as secondary sort keys. 
These also provide an example of how to perform a merge-sort of any reduce task output effi-
ciently using map-side joins.

Listing 9-20 shows the  method. 

Listing 9-20. DataJoinReduceOutput.java, CustomSetup

 accepts the standard command-line arguments, including the 
, to set the input datasets and the output path. Unlike a 

traditional map-side join, where each path item in the input is a table and the matching 
 files of each input path are joined, each individual  file is taken as a table, 

and all of the  files are joined together. This causes the map-side join to perform a 
streaming merge-sort on all of the input data files. 

The  method examines each input in turn. If the input string has a colon ( ), 
it is split and the parts examined:
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If there are exactly two parts and the first part is a class name that implements 
, that input format is used for loading the directory name in . If there is 

not exactly two parts, the original input is used with . Basically, the 
input directory can be preceded by a class name and a colon, and the class will be used as the 
input format for loading files from that input directory.

The  method in shown in Listing 9-21.

Listing 9-21. DataJoinReducerOutput.addFiles
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This method examines , constructed from that passed-in  element. If it 
exists ( ) and is a directory ( ), the method collects the 

 information for each child:

The  restricts the  entries returned to those that satisfy the  
method. In this case, the only items accepted have file names that match the regular expres-
sion , our standard reduce output file format. Rather than try to manage the 
map-side join table format, the following call builds the table format for the input file:

All of the individual table entries are aggregated in the  tables.
The actual join command is built ( ) 

and stored in the configuration under the key . This by itself will merge-sort 
all of the input data into a single output file. The new piece, the specialty sorting of the input 
records before the map method, is triggered by the following line:

This tells the map-side join framework to use  (Listing 9-23) as the key 
comparator when performing the merges. 

The mapper, shown in Listing 9-22, provides a secondary sort by network for the matched 
requests.

Listing 9-22. DataJoinMergeMapper.java
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Each table is checked for a value ( ) and each table value (
) accumulated in the  array. Just as a safety check, 

the values are converted to  objects when needed (
), and the converted value stored (

). 
If more than one table has a value for this key, the accumulated table values are sorted 

via , using the comparator  
 (shown later in Listing 9-24). Once any required sorting is com-

pleted, the records are output ( ).
The actual input and output will be detailed in 

.
The , shown in Listing 9-23, provides a binary comparator that han-

dles keys that are IPv4 addresses in the standard dotted-octet format, such as 192.168.0.1. It 
attempts to operate at the byte level and to minimize object allocation. This class is used in the 
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map-side join to force the correct ordering of the input keys, as the lexical ordering is not what 
is expected.

Listing 9-23. IPv4TextComparator.java
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The comparator in Listing 9-24 expects input lines of the form:

It will do a primary sort using the first IP address, secondary on the second IP address, and 
tertiary on the network name. If at any point there is a parse failure, the element that the parse 
failed on is considered greater. The parsing is deferred as long as possible in the hopes that it 
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won’t be needed. This code tries very hard to work at the byte level and not convert items back 
into strings.

Listing 9-24. DataJoinMergeMapper.TabbedNetRangeComparator
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Listing 9-25 shows the commands used to generate the output. These commands use the 
machine  on port 8021 for JobTracker services and  port 8020 for HDFS services. 
Your local installation will be different.

Listing 9-25. The Commands Used to Generate the Output

The first command runs the , passing in the JAR file included 
with the book examples, and specifies that ten reduce tasks are to be run:

Most of our later examples accept the arguments , enabling verbose log-
ging and causing the job output directory to be deleted if the directory exists. The two input 
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files are a file of network ranges with names, , shown in Listing 9-26, and some 
Apress.com access log data, , shown in Listing 9-27. The first output directory 
is , which will be the input directory of the next command. The second line runs the 
command  to take the ten partition files and produce a single file that is 
sorted in IP address order, with secondary sorts on the network begin and end addresses and 
the network name. The actual output is listed in Table 9-4.

Listing 9-26. searchspace.txt, Search Space Network Ranges

Listing 9-27. First 20 access_log.txt Lines, with the lines truncated for clarity
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Table 9-4. The First 20 Job Output Lines

   Network 
Log IP Network Start Network End Name Log Line
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   Network 
Log IP Network Start Network End Name Log Line

Continued
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Table 9-4. Continued

   Network 
Log IP Network Start Network End Name Log Line

Design 3: Future Possibilities
Two possibilities come to mind for this sample MapReduce job:

An indexed map file of search requests in the reduce task: For each search request key, the 
 method will open the relevant search space map file—either the full map file 

for the entire search space or a partitioned file—where the partition contains the networks 
that keys in this reduce task partition could match. The  method 
would be used to find search space records that could match. 

Map-side join of the presorted search requests and a presorted search space: This method 
requires presorting the search request records and the search space records, and then 
using the map-side join techniques discussed in Chapter 8 and the classes for working 
with the IP address described in this chapter.

Both require that the search space records be presorted. Also, in both cases, the search 
space records can either be partitioned as the search request records are partitioned, or the 
entire search space be present in each task, in Google Bigtable style (see 

).
There are trade-offs between prepartitioning versus full replicas. The partitioned case 

reduces the data volume that must be scanned. Even with indexes, the amount of data that 
needs to be fetched from disk will be smaller in the partitioned case. The downsides are that 
search space needs to be repartitioned if the number of reduce tasks for the search requests 
is changed, and there is additional (though small) code complexity to ensure that the correct 
search space map file is opened in each search request reduce task.

Both techniques lose the data being local for at least the search space records, and neither 
seem worth the bother at present, as it is not clear that there would be any performance gain. 
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They also require the search request records to be sorted, and the search space is expected to 
be relatively small.

Summary
This chapter has walked you through the design and implementation of a nontrivial real-world 
Hadoop application. In the process, you have seen a number of design decisions made that 
become invalid as understanding arrives. The design and development process was deliber-
ately oriented to provide initial functionality quickly so that this understanding could arrive 
sooner, rather than after a large and costly development cycle.

A number of the advanced features, such as chaining and map-side joins, were used in the 
application, and a partitioner and several comparators were written. 

The tight coupling between the custom partitioner and the comparator allowed the appli-
cation to perform range-based matching very efficiently using MapReduce techniques.

The techniques that you have learned will allow you to efficiently and effectively tackle 
very complex problems that do not appear to fit the MapReduce framework, but in fact are 
ideally suited for MapReduce.

Particularly in the rapidly evolving environment of today, you will never have time to 
build the perfect application—just an application that works for yesterday’s goals. Someone 
else will come along later and modify the application until it meets the new goals. Be kind 
to that person by leaving comments, testing, and keeping it simple. The person doing those 
future modifications may be you!




