
C H A P T E R 9

Solving Problems with Hadoop

On the Hadoop Core mailing list, a user was wondering about the way to handle a specific
style of range query with MapReduce. The application had a search space and incoming
search requests. In this chapter, we’ll look at a similar setup, as follows:

range begin, range end and the value search space
data. For simplicity’s sake, let’s assume that ranges in the search space do not overlap.

value and the value search request data.

range begin and range end has the key value
and the value search request data, search space data.

How do you solve this problem with a traditional MapReduce application? That’s the
focus of this chapter.

There are a couple of overall design goals, and the weights of the different factors will
vary by installation and by job. In today’s environment, there is an intense pressure to get
processes up quickly and evolve them. Given agile business practices and tight budgets, rapid
evolution becomes the norm. This practice means that there will be little design time, and
the application will be modified, possibly by multiple teams, over a medium to long period
of time.

Design Goals
Our overall goal is to have a job that runs reliably and fast. To achieve reliability, we aim for
simple code, and implement monitoring to be informed when the algorithms being used are
no longer suitable for the scale or patterns of data.

Given that this application is going to evolve rapidly, and eventually be modified, perhaps
by different people, each piece of code needs to be simple and clear. This is in direct opposi-
tion to the requirement that the map and reduce methods be treated as the deeply nested
inner loops that they are and carefully optimized.

The data is expected to be real-world, dirty, and to change over time. Wherever possible,
the application must handle malformed records in a graceful manner and report on the mal-
formed rate.

To achieve good performance, the job must minimize underuse of the hardware, by man-
aging how the data is split, partitioned, and compressed and by tuning the number of tasks
run per node. To avoid having the network speed become the limiting factor, the transform

285

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP286

design must attempt to minimize the number of times the data is written to HDFS and the vol-
ume of data passed to reduce tasks.

This example will have as input two datasets. One dataset—the search requests—is composed
of Apache log file data in common log format. The other dataset—the search space—is composed
of IP address ranges and a network name. The output of the job, shown in Table 9-1, will be a mod-
ified common log format with the IP address, the network range, and the network name, in place
of the original IP address, for those search requests for which a network was found.

Note The last two octets of all IP addresses in the log files have been randomized. The command used
was

.

Table 9-1. Sample Job Output

 Net Range Net Range
Log IP Begin End Net Name Log Record

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 287

Note Thanks to Apress for the log file samples.

Design 1: Brute-Force MapReduce
The brute-force MapReduce pattern is generally the quickest to get going and the simplest to
manage. The downside is that these jobs quickly become bound by the network speed and the
sorting speed for the cluster.

In a brute-force MapReduce, the only time you have ordered data is in the reduce step.
This forces all of the data to flow through to the reduce task. There is also the additional com-
plexity that you have multiple record types, which need to be distinguished at reduce time.

The overriding constraint here is ensuring that any given search request record finds all
records that it is in range of in the search space.

A Single Reduce Task
If a single reduce task is used, all search request records are guaranteed to be in the same par-
tition as their respective search space records. Table 9-2 defines the comparator behavior for
the three cases the comparator will encounter.

Table 9-2. Comparator Cases

 Comparison Comparison
Type of Item 1 Region of Item 1 Type of Item 2 Region of Item 2 Equality Condition

Search request Entire key Search request Entire key Key1 equal to key2

Search request Entire key Search space Begin range Search request key equal to
begin range

Search space Begin range, Search space Begin range, Begin range1 equal
 end range end range to begin range2 and end

range1 equal to end range2

The input plan for the reduce method is to receive individual records and to manage the
join behavior by maintaining memory about previous records. This adds complexity to the
reduce method and increases the risk of out-of-memory conditions. To enable the framework
to do the aggregation would require having redundant data in the records; the end range
would need to be in the value of the search space records. This requirement is driven by the
fact that the object receives only the key. A simplification that results from
this decision is that, in the first pass, using is acceptable for the key and value, as the
records may be distinguished lexically. In a future step, as a performance optimization, we will
implement a key class that provides a that handles our keys at the byte
level rather than at the object level. Using the byte-level comparator for a complex key opens
the door to the key format and the comparator getting out of sync, introducing the possibility
of errors.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP288

Note Having objects for the key and value greatly simplifies the initial debugging of the jobs, as the
data can be readily examined by eye.

Key Contents and Comparators
For simplicity in this pass, we are going to use the same object, , for the keys for both
datasets, and for the values. To do this, a simple encoding must be defined that allows the
origination dataset to be determined easily from the text of the key. If there is a way to do this
without needing to write a custom comparator, the job can be up and running very quickly.
For the stock comparator to work, the keys must lexically compare an order that the reduce
method understands and can process with minimal complexity.

In this application, a key is an IPv4 address for a search request record, and a pair of IPv4
addresses for the search space records. If all IP addresses are encoded as a zero-padded, fixed-
length hexadecimal string, the primary lexical ordering issue is addressed. This leaves a single
issue: lexically, keys for the search requests will sort before a search space key that has a begin
range value equal to the key of the search request. In the best of all possible worlds, search
request keys would appear in the sorted output, after the search space key that opens the
range for the request.

The search space key may simply be the begin range and end range values, with a separa-
tor character. There are many simple tools for splitting strings based on a separator character.
This has the advantage that if a lexically larger character is used as a suffix for the search
request keys, the search request keys will sort after the search space key that defines the rel-
evant range. An example is shown in Table 9-3.

Table 9-3. Expected Sorting Order for Search Space and Search Request Keys Using a Separator
Character for the Space Range and a Suffix Character for the Request Keys

Address Key Type Encoded Key

 Space

 Search

This can be quickly tested by running a small sample dataset through a streaming job
to verify that the data compares the way we expect. A test dataset will be prepared from an
Apache log file, with the Perl command in Listing 9-1. The code in this section takes the first
field of the access log, commonly an IP address, and converts it to an unsigned integer, which
is then printed as an eight-character-wide hexadecimal number, with a semicolon (), as a
suffix. A fake range is generated by printing that original value, without the semicolon, with a
number ten higher, with a colon () separating them. A few lines of the output are included.
Notice that the output ordering is exactly the reverse of what our application needs.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 289

Note Listing 9-1 is structured to run from within the Cygwin environment, in the directory, on
a Windows installation. Adjust the paths and file names as needed for your local installation.

Listing 9-1. Generating a Sample Set of IP Addresses and Ranges from an Apache Log File

In the command shown in Listing 9-1, a dataset was prepared with converted IP addresses
from an Apache log file. Listing 9-2 runs a streaming job to see how the records will actually be
sorted by the default comparator. As you can see from the Listing 9-2 output, the search space
records () sort before a search request record that starts with the same
address (). Success—this is the pattern we were hoping to achieve.

Note Cygwin users are likely to always have an error message that starts with

. This error may be ignored. Listing 9-2 is structured to run from the Hadoop installation
directory.

Listing 9-2. Running a Streaming Job to Verify Comparator Ordering

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP290

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 291

A Helper Class for Keys
Key management is critical for this job, and to help avoid introducing errors later in the appli-
cation life cycle, a helper class for keys will be provided. The initial version needs to be able to
validate, pack, and unpack keys to and from the objects.

TASK-SPECIFIC CONFIGURATION PARAMETERS

The Hadoop framework creates a runtime environment for the tasks of the job. In the TaskTracker’s local
working area, the path set defined by the configuration key, , a directory tree is built
for the job, which contains the unpacked items, a file that contains the
job configuration, a shared directory for all tasks of the job, and a working directory for the task to be run.
An instance of the configuration date is created, and the per-task information modified by adding per-task
parameters and adjusting the paths of configuration parameters that have been unpacked into the job or task
working areas. The bulk of this localization process is handled by . The follow-
ing parameters are added or modified for a task as of Hadoop 0.19.0:

: The directory that will be used as root of the local file system space allocated
for this job. returns this directory. All tasks of this job running on a
TaskTracker node will share this directory. A Java system property of the same name is also set.

: The root of the local file system space for this TaskTracker node.

: For the map task, the input file name, if the input split has a file name.

: For the map task, the starting offset in the .

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP292

: The amount of data to read from , starting from
.

: The task ID for this task. All task attempts for this task will have the same value for
this key.

: The task ID for this attempt of this task. The framework will make multiple
attempts to complete a task. This value for this key holds the ID of the current attempt instance. In
Hadoop 0.19, the value stored under this key is very similar to , except that it will
have a prefix of . This is unique per task run.

: Set to if this is a map task.

: The partition number for this task, if known. For a map task, this is the
ordinal number of the task. For a reduce task, it is both the ordinal number of the reduce task and the
result of , which will be identical for all
key/value pairs passed to this reduce task.

: The ID of the job that this task is being run on behalf of.

: The task-specific directory that output files will be created in by default.
 provides this value.

: In the reduce task, the actual number of map tasks that succeeded.

: Any hostname/IP address mappings that will override the nor-
mal lookup results.

: Set to if the TaskTracker is enforcing memory utilization limits.

In our example, four classes are associated with key handling:

, for -based keys

, to verify the expected behavior

These classes provide a way to extract the IP address from a key, shown in Listing 9-3,
and to pack IP addresses into a key, shown in Listing 9-4. Two configuration parameters are
available: , which defines the character to be used as a suffix
when encoding a search request IP address, and , which
defines the character to be used to separate a pair of IP addresses in a search space key. These
parameters have default values of semicolon () and colon (), respectively. They may be any
pair of characters, as long as the range separator character sorts first.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 293

Listing 9-3. boolean TextKeyHelperWithSeparators.getFromRaw(Text raw)

In Listing 9-3, the key is converted to a and examined to see if it is one of the two
patterns that are accepted. All IP addresses will be encoded as eight hexadecimal digits. If the
key is a search request, there will be one IP address and a trailing charac-
ter only, forcing the string to be only nine characters in length. If the key is a search space item,
there will be two IP addresses, with a character between them only, forcing the
string to be seventeen characters in length. The IP addresses are converted into long values via

. The method is used for extracting the actual IP
address data from the raw string.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP294

If a valid search request or search space definition is found, the helper object is marked
valid, , and is set to the first IP address found. If the key con-
tained a search space request, is set to and is set to the second IP
address.

The method, in Listing 9-4, is used to create and store a value in a key object that
correctly encodes either a search request or a search space. If the helper object is not valid,
nothing is done, and no indication of this is made. This will open the door to missing errors.
Changing this behavior requires rearchitecting the application to provide a visible trace of this
error; logging it is not likely to be sufficient. A and are
instance variables, making this class thread-safe. This is done as a small efficiency and a pro-
tection against the day when the helper is used in a multithreaded map task.

Listing 9-4. void TextKeyHelperWithSeparators.setToRaw(Text raw)

Note It is reasonable to assume that anything written to the log by a task will never have been seen by a
human being unless something is visibly wrong with the job. The volume of data is just too large.

The Mapper
With the plan for the comparator handled, it is time to design the mapper. This mapper must
handle two tasks:

from the line in the key format, passing the rest of the line as the value.

) separating the
range from the data. The mapper may distinguish between the two records either from
the input file name or by the length of the key.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 295

As a demonstration of using chain mapping, our mapper is going to run a chain to process
the incoming values. The first element in the chain will take action only if the incoming record
does not look like a search request or search space key, but instead looks like an Apache log file
record. This mapper will transform the record into a search request. The next map in the chain
will perform validity checking on the keys.

Note In the next version, the example will use ,
and have the search space dataset be in a . For simplicity of debugging, this version uses text
records only.

This example has two mapper classes: and
. Listing 9-5 shows the mapper preamble in . This demonstrates

our standard practice of having a counter, named . This provides a clear indica-
tion of how the job is going. The object parses a string that is either a search request
or a search space, returning if the key was recognized. In this preamble, if the
can parse the key, it is just passed forward. As a general rule, we log per-key data only at level
debug, as the logging volume will be very large.

Listing 9-5. The Mapper Preamble, ApacheLogTransformMapper.java

In Listing 9-6, the key was not recognized as a prepared key and is assumed to be an
Apache log line. If the input separator for the happens to be a single space:

then the key is assumed to be the IP address. The test
 verifies this.

Note If the input format happens to not be , the configuration key changes
in , or the default value changes, this code will fail silently.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP296

The method will take the IP address and convert it into our estab-
lished format and pass the new key and the value to the output.

Lisitng 9-6. The Mapper Log Line Processing Part 1, ApacheLogTransformMapper.java

In Listing 9-7, the default case of a raw log line is handled. This code does make the
assumption that the computed in Listing 9-6, is correct. A complete line is
assembled in , and then parsed. The IP address is assumed to be the first text in the line and
to be terminated by an ASCII space character. This code accepts only IPv4 addresses in the
format of four dot-separated octets. Once the correct key and new value are produced, they
are output. The use of chain mapping actually reduces the efficiency of the task, but it is nice
to have a demonstration.

Listing 9-7. The Mapper Log Line Processing Part 2, ApacheLogTransformMapper.java

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 297

The , shown in Listing 9-8, just checks the keys for the proper
shape—that they are valid IPv4 addresses—and swaps the search space begin and end range
values if begin is greater than end. At this point, all keys are assumed to be valid, and this map
verifies that. Several counters are kept to help with sort and long-term monitoring of the job.

Listing 9-8. KeyValidatingMapper.java

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP298

The Combiner
The combiner is often one of the more complex pieces of a MapReduce job, and it’s usually
given the least thought. What is the correct behavior for encountering duplicate keys in the
map output? For simple aggregation jobs, this is straightforward. In our case, we have two dif-
ferent types of keys, and what to do for a duplicate in either case is unclear.

The first proposal would be to use a , and just keep all of values. This
doesn’t provide much of a space saving, compared to just not running a combiner. The second
proposal would be to discard duplicates. Neither choice is appealing. A combiner should pro-
vide either a significant reduction in I/O volume or a significant reduction in resource use for
the reduce phase. Neither of the preceding proposals can provide those. If a custom compara-
tor were written, a combiner might make sense.

In the type of MapReduce application we are working on here, a combiner that suppresses
duplicate key/value pairs could be helpful. In our constructed example, we know there are no
exact duplicates.

The Reducer
Each reducer task will need to receive a stream of key values, where the range statements will
be first in the sorting order. This forces the reducer class to maintain state information about
which ranges have been seen, and the value of those ranges. This prior range information is
bounded, and ranges may be flushed when the end range value is less than the current input

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 299

key. As an added bonus, the reduce task is also run as a chain, with a postprocessing map that
converts the encoded key formats back into dot-separated octet format. The actual reduce task
is performed by , shown in Listing 9-9.

Lisitng 9-9. ReducerForStandardComparator.java

In Listing 9-9, our standard counters are in use. At this point, any invalid key is an indica-
tion that something has gone very wrong—data corruption at some level, given the level of
verification performed on the keys in earlier steps.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP300

Our algorithm is very simple. We keep a queue of networks, ordered by the network end-
of-address range. If the current key is a search request and the current key is larger than the
end of a network’s address range, the network is removed from the active queue. The call

 clears any networks from the queue
that can no longer be matched. If the current key is a search space key, it is added to the set of
active ranges, via the following:

At this point, each network in is a match. A network’s end range is guaran-
teed to be larger than the search request key, and due to our comparator’s ordering of the keys,
the network begin range must be less than or equal to our search request.

For each log line, , an output record is generated for each net-
work, , via the call to

, which is shown in Listing 9-10.

Listing 9-10. ReducerForStandardComparator.handleHit

In Listing 9-10, a and are built. These are used to construct the
actual output key and output value. The key will be the original log record IP address, followed
by the network begin and end addresses. For ease of parsing, these will be separated by an
ASCII tab character. The value is simply the network name, ASCII tab, and the rest of the origi-
nal log line.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 301

The Driver
The driver, shown in Listing 9-11, builds on our base class, ,
and defines only a small number of methods. This example relies on there being only a single
reduce task, as the default partitioner will cause this job to fail. In our next design iteration, we
will write a custom partitioner.

All of the examples in this chapter are structured to run on small machines, so the reduce
sort space has been reduced from 100MB to 10MB, using the following line:

The values for and are set by the use of the command-line flags and
, respectively. The setup follows the general rule for using the chain, and allocates

 to use as the private configuration object for the chained map and reduce tasks. The
framework serializes the contents in each call to the methods, making it safe to
clear and reuse it.

Listing 9-11. The Job Setup, BruteForceMapReduceDriver.java

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP302

The map and reduce methods used do not modify the passed-in key or value objects;
therefore, the chaining framework is being formed to pass keys and values by reference. The
second-to-last argument, , in the and
methods forces this behavior.

All of the mappers and reducers expect objects for the input key and value, and out-
put . In an updated version of chaining, in which the key and value objects implement

 and , passing objects for the key
would probably be significantly more efficient.

The Pluses and Minuses of the Brute-Force Design
The biggest plus of this design is that it is simple and took about a day to put together. The
biggest disadvantages are that all of the data must pass through the mapper and be sorted,
and that only a single reduce task may be used. Given that the total number of networks is
relatively bounded, if the incoming log records are batched in smaller sizes, this job will run
reasonably well and reasonably fast. Without a custom partitioner, this job cannot be made
to run with multiple reduce tasks.

Design 2: Custom Partitioner for Segmenting the
Address Space
The biggest boost for the brute-force method would be to find a simple way to allow multiple
reduce tasks. The standard partitioner uses the hash value of the key, modulus the number of
partitions as the partition number. A simple strategy for this application might be to simply
segment the IP address range. There is no guarantee that the network ranges will fall cleanly
on these segments. There will need to be a mechanism to split search space keys into segment-
appropriate boundaries during the job, while putting the full range in the output record.
Perhaps simply modifying the format for the search space records to allow for an original
range to be part of the record will address this.

Note This partitioning method is still subject to uneven distributions of the key space resulting in a subset
of reduce tasks running much longer. To ameliorate this, the key space may be sampled and the partitioning
table built using the sample data, in a manner similar to that done by the Hadoop terasort example.

The Simple IP Range Partitioner
The partitioner class for this example is . The
method, shown in Listing 9-12, simply takes the IP address of a search request key or the begin
range address of a search space key and returns the partition for that record.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 303

A SCOPE REDUCTION IN THE PARTITIONER

The original design supported a configurable table to ensure that the records were partitioned approximately
evenly. This required a tool to scan the records to generate a distribution map and code to load that map into
the partitioner. During the process of actually writing the code, the decision was made that if that feature is
needed, it may be implemented later. Instead, each partition gets an approximately even number or span of
addresses out of the IPv4 space.

For a job with one reduce task, the span for partition 0 is from to . For
a job with two reduce tasks, partition 0 would span from to , and partition 1
would span from to .

This left a few artifacts in the . A is used instead of simply
maintaining an array of long values. The array of long values would be faster and would greatly reduce object
churn.

Listing 9-12. SimpleIPRangePartitioner.getPartition

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP304

The first step is to initialize the key and to determine if the key is actually a valid
search space or search request key:

If the key is valid, the IP address of the search request record or the range begin address
of the search space record is stored in . Once is known, it may be looked up in the
table, , that maps addresses to reduce partitions. The table is actually a , and
entry keys are the ending IP address of the partition. The partition number is the entry value.
This data structure allows the following line to provide the entry of the partition that the key/
value pair must go to:

The method returns the element in where the entry key is
closest to , while not being less than . range end is larger than . The value of
that entry is the partition number for this key/value pair.

For debugging purposes, the entry is assigned to a local variable, . The entry
value could simply be returned at this point, but a little checking is done to verify that this key/
value pair is a search space record, where the end of the search space is also an address that
will be in this partition. No checking is made for the case where returns

, as it is assumed that the table spans the full IPv4 address space range.
The table is constructed in the method, shown in Listing 9-13, as this

is the first time the number of reduce tasks is known.

Listing 9-13. SimpleIPRangePartitioner.configure

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 305

The first step is to save a copy of the object into , our standard practice. The
key helper for this example is . This class delegates
to the class for any unrecognized input keys, and handles an
extended form for search space keys that provides a way of splitting a search space key across
multiple partitions and then assembling the resulting records later.

IPv4 addresses are simply unsigned 32-bit integer values, and the entire space runs from
 through inclusive. Each partition will span approximately addresses,

defined as . The application uses long values to avoid issues with
sign extension, as Java does not provide an unsigned integer type.

The variable contains the ending IPv4 address of the previous partition. Each pass
through the loop adds to defining the ending address of the next parti-
tion and increments the partition number:

 stores the partition end address and partition
number in . These are currently added in order, which is not optimal for a , as

 are stored as red-black trees and ordered insertion will result in an unbalanced tree.
Casting our gaze into the future, it seems unlikely that there may be more than small hundreds
of reduce tasks and a rewrite might be planned to eliminate the use of and simply use
an array.

Search Space Keys for Each Reduce Task That May Contain
Matching Keys
The also provides a method , shown in Listing 9-14, which
is not part of the partitioner interface. Here, I took a design expedience step that perhaps was
not optimal given my later experience. I decided to use the (List-
ing 9-11), and allow more than one reduce task. To achieve this, each search space record
must be replicated so that any partition that could have matching requests each gets a copy of

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP306

the search space record. The concept is that an addition map will, for each incoming search
space record, output a set of search space records such that each reduce partition that could
receive a matching search request will receive one of the output search space records. This
addition map, (shown later in Listing 9-16), will be added
to the mapper chain.

Listing 9-14. SimpleIPRangePartitioner.spanSpaceKeys Preamble

The first portion of Listing 9-14 handles the setup and validation. The calling con-
vention requires that the caller pass in an initialized key helper () and the

 to (). The object () is used to log metrics
and failures. The key helper is checked for validity () and that
it contains a search space request (). If either constraint
check fails, an exception is thrown. The key helper class for these spanned keys has two
additional fields: the actual begin and end of the search space request. The begin and end
fields will now be fields for the address span of the partition for which the record is output.

 and
 initialize the helper correctly if it is not

already set up.
As a quick recap, the search space key contains an IPv4 address range, represented as

a beginning and ending address. To enable multiple reduce tasks, the search space records
must be available in each reduce task that could receive search requests that would match
the search space record. This allows the search space requests to be mixed into the job input
with the search requests. Each search space key is split into a set of search space keys, such

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 307

that each individual key contains that portion of the original range that fits within the range of
addresses that will be routed to a specific reduce task. Implicit is that each partition starts with
the address after the prior partition and there is no overlap in address space between parti-
tions. Partition 0 is assumed to start at address , (), and the last partition is assumed to
end at ().

The block of code in Listing 9-15 is the part of the method that produces
the per-partition keys.

Listing 9-15. Producing Search Space Keys for the Required Reduce Partitions

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP308

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 309

The passed-in, parsed-input key is in , the working object is , and
the actual begin and end addresses for the network are stored in the real begin (

) and real end () fields of .
The , a object, holds both the actual

original search space key, using the and fields, and the begin and
end address of the range within a partition, in the and fields. For each partition, the
begin and end will be set to the address range
within that partition that this search space record will match, and the and

 fields will be untouched.
The variable is a subset of ranges that contains only partitions that have

an end address larger or equal to the real begin range of the key, and equal to or less than the
real end range of the key. Put simply, contains the partitions that may contain
addresses that would match the passed-in search space record.

The following loop examines each of the candidate partitions in ascending order of the
partition end address:

The variable contains the ending address for the current partition. It is implicit in
the data structures used that will be greater than or equal to
(the beginning address of the portion of the key that has not yet been output to a partition is
always available as).

When a per-partition key is to be output, the is set up with the correct end address
for that partition. The end address will either be the last address of the partition, , or

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP310

the last address of the actual range, , whichever address is least. If the end
address of the output key is less than or equal to the end address of the current partition, no
more keys need to be output. The begin field of helper is set to the address after the end of the
previous output key, .

The core loop is run once for each potential partition that this key may need to have
a record placed. The variable keeps track of the number of records output, and
contains the information about the current partition, in particular the end address and the
partition number. There are a couple checks: one to see if the partition end addresses are
not in ascending order () and another to
see if the key has been fully spanned across the partitions (

).
There are two possible cases:

,
. The range end of the helper is set to

the applicable end value in this case, .

. In this case,
 is called.

The end of the loop actually builds the object with the appropriate data,
, and resets begin to the address after the just output key,

. Each input search space request now has a
record that will be placed by the partitioner into each partition that could have search requests
that match.

In , shown in Listing 9-16, is a very simple
method. It initializes the key helper from the passed-in key, , and
for a valid search space key, calls the method of (search
requests are just passed through as output).

Listing 9-16. RangePartitionTransformingMapper

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 311

The original concept was to take the search requests, feed them through the
 using as a driver

class, convert the search space records into a sorted and partitioned dataset, run another
MapReduce job over the incoming search requests, and then perform a map-side join on the
resulting datasets. After working with the data for a short time, I realized that the search space
was so small that it wasn’t worth the extra complexity or time to have an additional step for
presorting the search space records. I decided to simply add this mapper as part of the mapper
chain, and read the search space records as input with the search request records. The con-
figuration changes to are shown in the next section.

Helper Class for Keys Modifications
The class will be the new and will support
carrying the original key data, so that the output records can be provided with the actual net-
work range instead of that portion of the network range that fits in this partition. A new record
format needs to be designed that can carry the additional data. The key format for the search
space keys has been , where and are the first and last addresses of the
network, each an eight-digit hexadecimal number. For example, would be ,

 would be , and the search space key representing the entire IPv4
address space would be . To allow partitioning, the search case keys must
match keys in a particular partition. My first idea on how to address this was to just have four
values instead of two, with the same separator between each. The full code for that version
is in ,
available with the rest of the downloadable code for this book.

The code for the first design must be modified to examine a configuration
parameter, , and instantiate the value as a class, defaulting to the

 class. Listing 9-17 provides an example of this from
.

Listing 9-17. Modifications to Load a Key Helper Based on the Value of range.key.helper

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP312

The existing mapper and reducer classes are modified to instantiate their
 class based on a configuration property, , defaulting to

. is modified to set the
 configuration parameter value to when the

number of reduce tasks is more than one. This leaves the old behavior intact, while allowing
multiple reduce tasks.

In Listing 9-18, the configuration key is set to be our partitioning class
by

, and an additional map is placed in the chain, to span the search space keys:

Listing 9-18. Modifications to the Setup Method in BruteForceMapReduceDriver.java

The reducer, , does not need any changes, but the
 class, which provides the method, does. In Listing 9-19, we simplify it to

make it aware of the class, and in that case, to use
the real begin and end ranges for a search space request, rather than the per-partition begin
and end ranges. If many types of keys are used, this method will quickly become excessively
complex. In this case, there is only one type of key, so we can defer that code cleanup to a
future that may not come.

Listing 9-19. Modifications to ActiveRanges.activate to Support the Partition Spanned Search
Space Keys

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 313

To provide a secondary sort of the final output, we have the classes ,
, and . This set of classes performs a map-side join on

all of the reduce output partitions of , producing a single sorted file
as output. The output uses the network begin, end, and name values as secondary sort keys.
These also provide an example of how to perform a merge-sort of any reduce task output effi-
ciently using map-side joins.

Listing 9-20 shows the method.

Listing 9-20. DataJoinReduceOutput.java, CustomSetup

 accepts the standard command-line arguments, including the
, to set the input datasets and the output path. Unlike a

traditional map-side join, where each path item in the input is a table and the matching
 files of each input path are joined, each individual file is taken as a table,

and all of the files are joined together. This causes the map-side join to perform a
streaming merge-sort on all of the input data files.

The method examines each input in turn. If the input string has a colon (),
it is split and the parts examined:

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP314

If there are exactly two parts and the first part is a class name that implements
, that input format is used for loading the directory name in . If there is

not exactly two parts, the original input is used with . Basically, the
input directory can be preceded by a class name and a colon, and the class will be used as the
input format for loading files from that input directory.

The method in shown in Listing 9-21.

Listing 9-21. DataJoinReducerOutput.addFiles

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 315

This method examines , constructed from that passed-in element. If it
exists () and is a directory (), the method collects the

 information for each child:

The restricts the entries returned to those that satisfy the
method. In this case, the only items accepted have file names that match the regular expres-
sion , our standard reduce output file format. Rather than try to manage the
map-side join table format, the following call builds the table format for the input file:

All of the individual table entries are aggregated in the tables.
The actual join command is built ()

and stored in the configuration under the key . This by itself will merge-sort
all of the input data into a single output file. The new piece, the specialty sorting of the input
records before the map method, is triggered by the following line:

This tells the map-side join framework to use (Listing 9-23) as the key
comparator when performing the merges.

The mapper, shown in Listing 9-22, provides a secondary sort by network for the matched
requests.

Listing 9-22. DataJoinMergeMapper.java

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP316

Each table is checked for a value () and each table value (
) accumulated in the array. Just as a safety check,

the values are converted to objects when needed (
), and the converted value stored (

).
If more than one table has a value for this key, the accumulated table values are sorted

via , using the comparator
 (shown later in Listing 9-24). Once any required sorting is com-

pleted, the records are output ().
The actual input and output will be detailed in

.
The , shown in Listing 9-23, provides a binary comparator that han-

dles keys that are IPv4 addresses in the standard dotted-octet format, such as 192.168.0.1. It
attempts to operate at the byte level and to minimize object allocation. This class is used in the

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 317

map-side join to force the correct ordering of the input keys, as the lexical ordering is not what
is expected.

Listing 9-23. IPv4TextComparator.java

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP318

The comparator in Listing 9-24 expects input lines of the form:

It will do a primary sort using the first IP address, secondary on the second IP address, and
tertiary on the network name. If at any point there is a parse failure, the element that the parse
failed on is considered greater. The parsing is deferred as long as possible in the hopes that it

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 319

won’t be needed. This code tries very hard to work at the byte level and not convert items back
into strings.

Listing 9-24. DataJoinMergeMapper.TabbedNetRangeComparator

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP320

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 321

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP322

Listing 9-25 shows the commands used to generate the output. These commands use the
machine on port 8021 for JobTracker services and port 8020 for HDFS services.
Your local installation will be different.

Listing 9-25. The Commands Used to Generate the Output

The first command runs the , passing in the JAR file included
with the book examples, and specifies that ten reduce tasks are to be run:

Most of our later examples accept the arguments , enabling verbose log-
ging and causing the job output directory to be deleted if the directory exists. The two input

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 323

files are a file of network ranges with names, , shown in Listing 9-26, and some
Apress.com access log data, , shown in Listing 9-27. The first output directory
is , which will be the input directory of the next command. The second line runs the
command to take the ten partition files and produce a single file that is
sorted in IP address order, with secondary sorts on the network begin and end addresses and
the network name. The actual output is listed in Table 9-4.

Listing 9-26. searchspace.txt, Search Space Network Ranges

Listing 9-27. First 20 access_log.txt Lines, with the lines truncated for clarity

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP324

Table 9-4. The First 20 Job Output Lines

 Network
Log IP Network Start Network End Name Log Line

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 325

 Network
Log IP Network Start Network End Name Log Line

Continued

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP326

Table 9-4. Continued

 Network
Log IP Network Start Network End Name Log Line

Design 3: Future Possibilities
Two possibilities come to mind for this sample MapReduce job:

An indexed map file of search requests in the reduce task: For each search request key, the
 method will open the relevant search space map file—either the full map file

for the entire search space or a partitioned file—where the partition contains the networks
that keys in this reduce task partition could match. The method
would be used to find search space records that could match.

Map-side join of the presorted search requests and a presorted search space: This method
requires presorting the search request records and the search space records, and then
using the map-side join techniques discussed in Chapter 8 and the classes for working
with the IP address described in this chapter.

Both require that the search space records be presorted. Also, in both cases, the search
space records can either be partitioned as the search request records are partitioned, or the
entire search space be present in each task, in Google Bigtable style (see

).
There are trade-offs between prepartitioning versus full replicas. The partitioned case

reduces the data volume that must be scanned. Even with indexes, the amount of data that
needs to be fetched from disk will be smaller in the partitioned case. The downsides are that
search space needs to be repartitioned if the number of reduce tasks for the search requests
is changed, and there is additional (though small) code complexity to ensure that the correct
search space map file is opened in each search request reduce task.

Both techniques lose the data being local for at least the search space records, and neither
seem worth the bother at present, as it is not clear that there would be any performance gain.

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 327

They also require the search request records to be sorted, and the search space is expected to
be relatively small.

Summary
This chapter has walked you through the design and implementation of a nontrivial real-world
Hadoop application. In the process, you have seen a number of design decisions made that
become invalid as understanding arrives. The design and development process was deliber-
ately oriented to provide initial functionality quickly so that this understanding could arrive
sooner, rather than after a large and costly development cycle.

A number of the advanced features, such as chaining and map-side joins, were used in the
application, and a partitioner and several comparators were written.

The tight coupling between the custom partitioner and the comparator allowed the appli-
cation to perform range-based matching very efficiently using MapReduce techniques.

The techniques that you have learned will allow you to efficiently and effectively tackle
very complex problems that do not appear to fit the MapReduce framework, but in fact are
ideally suited for MapReduce.

Particularly in the rapidly evolving environment of today, you will never have time to
build the perfect application—just an application that works for yesterday’s goals. Someone
else will come along later and modify the application until it meets the new goals. Be kind
to that person by leaving comments, testing, and keeping it simple. The person doing those
future modifications may be you!

