CHAPTER 5

MapReduce Details for
Multimachine Clusters

Organizations run Hadoop Core to provide MapReduce services for their processing needs.
They may have datasets that can’t fit on a single machine, have time constraints that are
impossible to satisfy with a small number of machines, or need to rapidly scale the computing
power applied to a problem due to varying input set sizes. You will have your own unique rea-
sons for running MapReduce applications.

To do your job effectively, you need to understand all of the moving parts of a MapReduce
cluster and of the Hadoop Core MapReduce framework. This chapter will raise the hood and
show you some schematics of the engine. This chapter will also provide examples that you can
use as the basis for your own MapReduce applications.

Requirements for Successful MapReduce Jobs

For your MapReduce jobs to be successful, the mapper must be able to ingest the input and
process the input record, sending forward the records that can be passed to the reduce task or
to the final output directly, if no reduce step is required. The reducer must be able to accept
the key and value groups that passed through the mapper, and generate the final output of this
MapReduce step.

The job must be configured with the location and type of the input data, the mapper class
to use, the number of reduce tasks required, and the reducer class and I/0 types.

The TaskTracker service will actually run your map and reduce tasks, and the JobTracker
service will distribute the tasks and their input split to the various trackers.

The cluster must be configured with the nodes that will run the TaskTrackers, and with
the number of TaskTrackers to run per node. The TaskTrackers need to be configured with
the JVM parameters, including the classpath for both the TaskTracker and the JVMs that will
execute the individual tasks.

There are three levels of configuration to address to configure MapReduce on your cluster.
From the bottom up, you need to configure the machines, the Hadoop MapReduce frame-
work, and the jobs themselves.

We'll get started with these requirements by exploring how to launch your MapReduce jobs.

127

128

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip A Hadoop job is usually part of a production application, which may have many steps, some of
which are MapReduce jobs. Hadoop Core, as of version 0.19.0, provides a way of optimizing the data
flows between a set of sequential MapReduce jobs. This framework for descriptively and efficiently
running sequential MapReduce jobs together is called chaining, and uses the ChainMapper and the
ChainReducer, as discussed in Chapter 8. An alternative is the cascading package, available from
http://www.cascading.org/.

Launching MapReduce Jobs

Jobs within a MapReduce cluster can be launched by constructing a JobConf object (details on
the JobConf object are provided in this book’s appendix) and passing it to a JobClient object:

JobConf conf = new JobConf(MyClass.class);

/** Configuration setup deleted for clarity*/

/** Launch the Job by submitting it to the Framework. */
RunningJob job = JobClient.runJob(conf);

You can launch the preceding example from the command line as follows:
> bin/hadoop [-libjars jarl.jar,jar2.jar,jar3.jar] jar myjar.jar MyClass

The optional -1ibjars jari.jar... specifications add JARs for your job. The assumption
is that MyClass is in the myjar. jar.

For this to be successful requires a considerable amount of runtime environment setup.
Hadoop Core provides a shell script, bin/hadoop, which manages the setup for a job. Using this
script is the standard and recommended way to start a MapReduce job. This script sets up the
process environment correctly for the installation, including inserting the Hadoop JARs and
Hadoop configuration directory into the classpath, and launches your application. This behav-
ior is triggered by providing the initial command-line argument jar to the bin/hadoop script.

Hadoop Core provides several mechanisms for setting the classpath for your application:

* You can set up a fixed base classpath by altering hadoop-env. sh, via the
HADOOP_CLASSPATH environment variable (on all of your machines) or by setting that
environment variable in the runtime environment for the user that starts the Hadoop
servers.

* You may run your jobs via the bin/hadoop jar command and supply a -1ibjars argu-
ment with a list of JARs.

e The DistributedCache object provides a way to add files or archives to your runtime
classpath.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip The mapred.child.java.opts variable may also be used to specify non-classpath parameters to
the child JVMs. In particular, the java.library.path variable specifies the path for shared libraries if your
application uses the Java Native Interface (JNI). If your application alters the job configuration parameter
mapred.child. java.opts, it is important to ensure that the JVYM memory settings are reset or still present,
or your tasks may fail with out-of-memory exceptions.

The advantage of using the DistributedCache and -1ibjars is that resources, such as JAR
files, do not have to already exist on the TaskTracker nodes. The disadvantages are that the
resources must be unpacked on each machine and it is harder to verify which versions of the
resources are used.

When launching an application, a number of command-line parameters may be provided.
Table 5-1 lists some common command-line arguments. The class org.apache.hadoop.util.
GenericOptionsParser actually handles the processing of Table 5-1 arguments.

Table 5-1. Hadoop Standard Command-Line Arguments

Flag Description

-libjars A comma-separated list of JAR files to add to the classpath to the job being launched
and to the map and reduce tasks run by the TaskTrackers. These JAR files will be
staged into HDFS if needed and made available as local files in a temporary job area
on each of the TaskTracker nodes.

-archives A comma-separated list of archive files to make available to the running tasks via the
distributed cache. These archives will be staged into HDFS if needed.

-files A comma-separated list of files to make available to the running tasks via the distrib-
uted cache. These files will be staged into HDFS if needed.

-fs Override the configuration default file system with the supplied URL, the parameter
fs.default.name.

-jt Override the configuration default JobTracker with the supplied host port, the
parameter mapred. job.tracker.

-conf Use this configuration in place of the conf/hadoop-default.xml and
conf/hadoop-site.xml files.

-D Supply an additional job configuration property in key=value format. This argument
may be provided multiple times. There must be whitespace between the -D and the
key=value.

You can use hadoop jar to launch an application, as follows:

hadoop jar [-fs hdfs://host:port] [-jt host:port] [-conf hadoop-config.xml] =
[-D propi=value] [-D prop2=value..] [-libjars jari[,jar2,jar3]] =

[-files file1[,file2,file3]] [-archives archivel[,archive2,archive3]] =
applicationjar [main class if not supplied in jar] [arguments to main..]

When hadoop jar is used, the main method of org.apache.hadoop.mapred.JobShell is
invoked by the JVM, with all of the remaining command-line arguments. The JobShell in turn

129

130

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

uses the class org.apache.hadoop.util.GenericOptionsParser to process the arguments, as
described in Table 5-1.

There are two distinct steps in the argument processing of jobs submitted by the bin/
hadoop script. The first step is provided by the framework via the JobShell. The arguments
after jar are processed by the JobShell, per Table 5-1. The first argument not in the set rec-
ognized by the JobShell must be the path to a JAR file, which is the job JAR file. If the job JAR
file contains a main class specification in the manifest, that class will be the main class called
after the first step of argument processing is complete. If the JAR file does not have a main
class in the manifest, the next argument becomes required, and is used as main class name.
Any remaining unprocessed arguments are passed to the main method of the main class as the
arguments. The second step is the processing of the remaining command-line arguments by
the user-specified main class.

Using Shared Libraries

Jobs sometime require specific shared libraries. For example, one of my jobs required a shared
library that handled job-specific image processing. You can handle this in two ways:

¢ Pass the shared library via the DistributedCache object. For example, using the
command-line options -file 1ibMyStuff.so would make 1ibMyStuff.so available in
the current working directory of each task. (The DistributedCache object is discussed
shortly, in the “Using the Distributed Cache” section.)

e Install the shared library on every TaskTracker machine, and have the JVM library
loader path java.library.path include the installation directory. The task JVM working
directory is part of the java.library.path for a task, and any file that is symbolic-linked
may be loaded by the JVM.

Caution If you are manually loading shared libraries, the library name passed to System.
loadLibrary() must not have the trailing . so. System.loadLibrary() first calls System.
mapLibraryName() and attempts to load the results. This can result in library load failures that are
hard to diagnose.

MapReduce-Specific Configuration for
Each Machine in a Cluster

For simplicity and ease of ongoing maintenance, this section assumes identical Hadoop Core
installations will be placed on each of the machines, in the same location. The cluster-level
configuration is covered in Chapter 3.

The following are the MapReduce-specific configuration requirements for each machine
in the cluster:

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* You need to install any standard JARs that your application uses, such as Spring, Hiber-
nate, HttpClient, Commons Lang, and so on.

e Itis probable that your applications will have a runtime environment that is deployed
from a configuration management application, which you will also need to deploy to
each machine.

¢ The machines will need to have enough RAM for the Hadoop Core services plus the
RAM required to run your tasks.

e The conf/slaves file should have the set of machines to serve as TaskTracker nodes.
You may manually start individual TaskTrackers by running the command bin/
hadoop-daemon.sh start tasktracker, but this is not a recommended practice for
starting a cluster.

The hadoop-env. sh script has a section for providing custom JVM parameters for the dif-
ferent Hadoop Core servers, including the JobTracker and TaskTrackers. As of Hadoop 0.19.0,
the classpath settings are global for all servers. The hadoop-env. sh file may be modified and
distributed to the machines in the cluster, or the environment variable HADOOP_JOBTRACKER_OPTS
may be set with JVM options before starting the cluster via the bin/start-all.sh command or
bin/start-mapred.sh command. The environment variable HADOOP TASKTRACKER OPTS may be set
to provide per TaskTracker JVM options. It is much better to modify the file, as the changes are
persistent and stored in a single Hadoop-specific location.

When starting the TaskTrackers via the start-*.sh scripts, the environment variable
HADOOP_TASKTRACKER OPTS may be set in the hadoop-env. sh file in the MapReduce conf direc-
tory on the TaskTracker nodes, or the value may be set in the login shell environment so that
the value is present in the environment of commands started via ssh. The start-*.sh scripts
will ssh to each target machine, and then run the bin/hadoop-daemon.sh start tasktracker
command.

Using the Distributed Cache

The DistributedCache object provides a programmatic mechanism for specifying the
resources needed by the mapper and reducer. The job is actually already using the
DistributedCache object to a limited degree, if the job creates the JobConf object with a class as
an argument: new JobConf(MyMapper.class). You may also invoke your MapReduce program
using the bin/hadoop script and provide arguments for -1ibjars, -files, or -archives.

The downloadable code for this book (available from this book’s details page on the
Apress web site, http://www.apress.com) includes several source files for the DistributedCache
examples: Utils. java, DistributedCacheExample. java, and DistributedCacheMapper.java.

Caution The paths and URIs for DistributedCache items are stored as comma-separated lists of
strings in the configuration. Any comma characters in the paths will result in unpredictable and incorrect
behavior.

131

132

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Adding Resources to the Task Classpath

Four methods add elements to the Java classpath for the map and reduce tasks. The first three
in the following list add archives to the classpath. The archives are unpacked in the job local
directory of the task. You can use the following methods to add resources to the task classpath:

JobConf.setJar(String jar): Sets the user JAR for the MapReduce job. It is on the JobConf
object, but it manipulates the same configuration keys as the DistributedCache. The file
jar will be found, and if necessary, copied into the shared file system, and the full path
name on the shared file system stored under the configuration key mapred. jar.

JobConf.setJarByClass(Class cls): Determines the JAR that contains the class c1s and
calls JobConf.setJar(jar) with that JAR.

DistributedCache.addArchiveToClassPath(Path archive, Configuration conf): Adds

an archive path to the current set of classpath entries. This is a static method, and the
archive (a zip or JAR file) will be made available to the running tasks via the classpath

of the JVM. The archive is also added to the list of cached archives. The contents will

be unpacked in the local job directory on each TaskTracker node. The archive path

is stored in the configuration under the key mapred. job.classpath.archives, and the

URI constructed from archive.makeQualified(conf).toUri() is stored under the key
mapred.job.classpath.archives. If the path component of the URI does not exactly equal
archive, archive will not be placed in the classpath of the task correctly.

Caution The archive path must be on the JobTracker shared file system, and must be an absolute
path. Only the path /user/hadoop/myjar. jar is correct; hdfs://host:8020/user/hadoop/myjar.jar
will fail, as will hadoop/myjar.jar or myjar.jar.

DistributedCache.addFileToClassPath(Path file, Configuration conf): Adds a file
path to the current set of classpath entries. It adds the file to the cache as well. This is a
static method that makes the file available to the running tasks via the classpath of the
JVM. The file path is stored under the configuration key mapred. job.classpath.files,
and the URI constructed from file.makeQualified(conf).toUri() is stored under the key
mapred.cache.files. If file is not exactly equal to the path portion of the constructed
UR], file will not be added to the classpath of the task correctly.

Caution The file path added must be an absolute path on the JobTracker shared file system, and be
only a path. /user/hadoop/myfile is correct; hdfs://host:8020/usexr/hadoop/my+ile will fail, as will
hadoop/myfile or myfile.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Distributing Archives and Files to Tasks

In addition to items that become available via the classpath, two methods distribute archives
and individual files: DistributedCache.addCacheArchive(URI uri, Configuration conf) and
DistributedCache.addCacheFile(URI uri, Configuration conf). Local file system copies of
these items are made on all of the TaskTracker machines, in the work area set aside for this job.

Distributing Archives

The DistributedCache.addCacheArchive(URI uri, Configuration conf) method will add an
archive to the list of archives to be distributed to the jobs. The URI must have an absolute path
and be on the JobTracker shared file system.

If the URI has a fragment, a symbolic link to the archive will be placed in the task working
directory as the fragment. The URI hdfs://host:8020/user/hadoop/myfile#fmylink will result in
a symbolic link mylink in the task working directory that points to the local file system location
that myfile was unpacked into at task start. The archive will be unpacked into the local work-
ing directory of the task.

The URI will be stored in the configuration under the key mapred. cache.archives.

Distributing Files

This DistributedCache.addCacheFile(URI uri, Configuration conf) method will make a copy
of the file uri available to all of the tasks, as a local file system file. The URI must be on the
JobTracker shared file system.

If the URI has a fragment, a symbolic link to the URI fragment will be created in the
JVM working directory that points to the location on the local file system where the uri was
unpacked into at task start. The directory where DistributedCache stores the local copies of
the passed items is not the current working directory of the task JVM. This allows the items
to be referenced by names that do not have any path components. In particular, executable
items may be referenced as . /name.

To pass a script via the distributed cache, use DistributedCache.addCacheFile(new URI
("hdfs://host:8020/user/hadoop/myscript.pl"”), conf);.To pass a script so that it may be
invoked via ./script, use DistributedCache.addCacheFile(new URI("hdfs://host:8020/
user/hadoop/myscript.pl#script"), conf);.

The URI is stored in the configuration key mapred.cache.files.

Accessing the DistributedCache Data

Three methods find the locations of the items that were passed to the task via the DistributedCache
object: URT JobConf.getResource(name), public static Path[]getLocalCacheArchives
(Configuration conf),and public static Path[] getlLocalCacheFiles(Configuration conf).

Looking Up Names

The URT JobConf.getResource(name) method will look up name in the classpath. If name has a
leading slash, this method will search for it in each location in the classpath, and return the URI.

If the job passed a file into DistributedCache via the -files command or the
DistributedCache.addFileToClassPath(Path file, conf) method, a getResource() call of the
file name component, with a leading slash, will return the URI.

133

134

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note The standard search rules for resources apply. The cache items will be the last items in the class-
path. This does not appear to work for files that are added via DistributedCache.addFileToClassPath.
The full path is available via the set of paths returned by DistributedCache.getFileClassPaths().

The DistributedCache.addArchiveToClassPath(jarFileForClassPath, job) method
actually stores the JAR information into the configuration. In the following example, Utils.
setupArchiveFile builds a JAR file with ten files in it, in the default file system (HDFS in this
case). Utils.makeAbsolute returns the absolute path.

Path jarFileForClassPath = Utils.makeAbsolute(Utils.setupArchiveFile(job, =
10, true),job);
DistributedCache.addArchiveToClassPath(jarFileForClassPath, job);

Any file that is in the JAR may be accessed via the getResource() method of the configura-
tion object. If there were a file myfile in the JAR, the call conf.getResource("/myfile"); would
return the URL of the resource. The call conf. getConfResourceAsInputStream("/myfile");
would return an InputStream that, when read, would provide the contents of myfile from
the JAR.

Looking Up Archives and Files

The public static Path[]getlLocalCacheArchives (Configuration conf) method returns a
list of the archives that were passed via DistributedCache. The paths will be in the task local
area of the local file system. Any archive passed via the command-line -1ibjars and -archives
options, or the methods DistributedCache.addCacheArchive() and DistributedCache.
addArchiveToClassPath() and the JobConf.setJar line, will have its path returned by this call.

It is possible that the file name portion of your archive will be changed slightly.
DistributedCache provides the following method to help with this situation:

public static String makeRelative(URI cache, Configuration conf)

This takes an original archive path and returns the possibly altered file name component.

The public static Path[] getlocalCacheFiles(Configuration conf) method returns
the set of localized paths for files that are passed via DistributedCache.addCacheFile and
DistributedCache.addFileToClassPath and the command-line option -files. The file name
portions of the paths may be different from the original file name.

Finding a File or Archive in the Localized Cache

The DistributedCache object may change the file name portion of the files and archives it
distributes. This is usually not a problem for classpath items, but it may be a problem for non-
classpath items. The Utils.makeRelativeName() method, described in Table 5-2 provides a
way to determine what the file name portion of the passed item was changed to. In addition to
the file name portion, the items will be stored in a location relative to the working area for the
task on each TaskTracker. Table 5-2 lists the methods provided in the downloadable code that

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

make working with the DistributedCache object simpler. These methods are designed to be
used in the mapper and reducer methods.

Table 5-2. Utility Methods Provided in the Examples for Working with the DistributedCache
Object

Method Description

Utils.makeRelativeName(name, conf) Returns the actual name DistributedCache
will use for the passed-in name.

Utils.findClassPathArchive(name, conf) Returns the actual path on the current ma-
chine of the archive name that was passed via
DistributedCache.addArchiveToClassPath.

Utils.findClassPathFile(name, conf) Returns the actual path on the current ma-
chine of the file name that was passed via Dist
ributeCacheAddFileToClasspath.

Utils.findNonClassPathArchive(name, conf) Returns the actual path on the current ma-
chine of the archive name that was passed via
DistributedCache.addCacheArchive.

Utils.findNonClassPathFile(name, conf) Returns the actual path on the current
machine of the file name that was passed via
DistributedCache.addCacheFile.

Configuring the Hadoop Core Cluster Information

The JobConf object provides two basic and critical ways for specifying the default file system:
the URI to use for all shared file system paths, and the connection information for the Job-
Tracker server. These two items are normally specified in the conf/hadoop-site.xml file, but
they may be specified on the command line or by setting the values on the JobConf object.

Setting the Default File System URI

The default file system URI is normally specified with the fs.default.name setting in the
hadoop-site.xml file, as it is cluster-specific. The value will be hdfs://NamenodeHostname : PORT.
The PORT portion is optional and defaults to 8020, as of Hadoop 0.18

Note The default value for the file system URI is file:///, which stores all files on the local file system.
The file system that is used must be a file system that is shared among all of the nodes in the cluster.

<property>
<name>fs.default.name</name>
<value>hdfs://NamenodeHostname:PORT</value>
</property>

135

136

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The Hadoop tools, examples, and any application that uses the GenericOptionParser
class to handle command-line arguments will accept a -fs hdfs://NamenodeHostname: PORT
command-line argument pair to explicitly set the fs.default.name value in the configuration.
This will override the value specified in the hadoop-site.xml file.

Here’s a sample command line for listing files on an explicitly specified HDFS file system:

bin/hadoop dfs -fs hdfs://AlternateClusterNamenodeHostname:8020 -1s /
You can also use the JobConf object to set the default file system:

conf.set("fs.default.name", "hdfs://NamenodeHostname:PORT");

Setting the JobTracker Location

The JobTracker location is normally specified with the mapred. job.tracker setting in the
hadoop-site.xml file, as it is cluster-specific. The value will be JobTrackerHostname:PORT.
Through Hadoop 0.19, there is not a standard for the PORT. Many installations use a port one
higher that the HDFS port.

Note The default value for the JobTracker location is local, which will result in the job being executed
by the JVM that submits it. The value 1ocal is ideal for testing and debugging new MapReduce jobs. It is
important to ensure that any required Hadoop configuration files are in the classpath of the test jobs.

<property>
<name>mapred. job.tracker</name>
<value>JobtrackerHostname:PORT</value>
</property>

Here’s a sample command line explicitly setting the JobTracker for job control for listing
jobs:
bin/hadoop job -jt AlternateClusterJobtrackerHostname:8021 -list

And here’s how to use the JobConf object to set the JobTracker information:

conf.set("mapred.job.tracker", "JobtrackerHostname:PORT");

The Mapper Dissected

All Hadoop jobs start with a mapper. The reducer is optional. The class providing the map
function must implement the org.apache.hadoop.mapred.Mapper interface, which in turn
requires the interfaces org.apache.hadoop.mapred.JobConfigurable and org.apache.hadoop.
io.Closeable. The Hadoop framework provides org.apache.hadoop.mapred.MapReduceBase
from which to derive mapper and reducer classes. The JobConfigurable and Closable

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

implementations are empty methods. In the utilities supplied with this book’s download-
able code is com.apress.hadoopbook.utils.MapReduceBase, which provides more useful
implementations.

Note The interface org.apache.hadoop.io.Closeable will be replaced with java.io.Closeable in
a later release.

This section examines the sample mapper class SampleMapperRunner. java, which is avail-
able with the rest of the downloadable code for this book. When run as a Java application, this
example accepts all of the standard Hadoop arguments and may be run with custom bean
context and definitions:

bin/hadoop jar hadoopprobook.jar =
com.apress.hadoopbook.examples.ch5.SampleMapperRunner -D =
mapper.bean.context=mycontext.xml -D mapper.bean.name=mybean -files w»
mycontext.xml -deleteOutput

where:

* bin/hadoop jar is the standard Hadoop program invocation.

* hadoopprobook.jar com.apress.hadoopbook.examples.ch5.SampleMapperRunner speci-
fies the JAR file to use and the main class to run.

e -D mapper.bean.context=mycontext.xml and -D mapper.bean.name=mybean spec-
ify that the string mycontext.xml is stored in the configuration under the key
mapper.bean.context, and that the string mybean is stored in the configuration under
the key mapper.bean.name.

e -files mycontext.xml causes the file mycontext.xml to be copied into HDFS, and then
unpacked and made available in the working directory of each task run by the job. The
working directory is in the task classpath. mycontext.xml may have a directory path
component, and not be just a stand-alone file name. The path and file name provided
must be a path that can be opened from the current working directory.

Note If you are using the value local as the value of the mapred.task.tracker configuration key,
using the DistributedCache object is less effective, as the task cannot change working directories.

e --deleteOutput, which must be the last argument, causes the output directory to be
deleted before the job is started. This is convenient when running the job multiple
times.

137

138 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Mapper Methods

For the mapper, the framework will call three methods:

¢ configure() method, defined in the Configurable interface
¢ map() method, defined in the Mapper interface

¢ close() method, defined in the Closable interface

The following sections discuss these methods in detail.

Note The framework uses the static method org.apache.hadoop.util.ReflectionUtils.<T>newIn
stance(Class<T> theClass, Configuration conf) to create instances of objects that need a copy of
the configuration. This will create the instance using the no-argument constructor. If the class is an instance
of Configurable, newInstance will call the setConf method with the supplied configuration. If the class is
an instance of JobConfiguration, newInstance will call the configure method. Any exceptions that are
thrown during the construction or initialization of the instance are rethrown as RuntimeExceptions.

The configure() Method

The void JobConfigurable.configure(JobConf job) method, defined in org.apache.hadoop.
conf.Configurable, is called exactly one time per map task as part of the initialization of the
Mapper instance. If an exception is thrown, this task will fail. The framework may attempt to
retry this task on another host if the allowable number of failures for the task has not been
exceeded. The methods JobConf.getMaxMapAttempts() and JobConf.setMaxMapAttempts(int n)
control the number of times a map task will be retried if the task fails. The default is four times.

It is considered good practice for any Mapper implementation to declare a member vari-
able that the configure() method uses to store a reference to the passed-in JobConf object.
The configure() method is also used for loading any Spring application context or initializing
resources that are passed via DistributedCache.

Listing 5-1 shows the configure() method used in SampleMapperRunner. java (the example
available with the downloadable code for this chapter).

Listing 5-1. configure Method from SampleMapperRunner.java

/** Sample Configure method for a map/reduce class.

* This method assumes the class derives from {@link MapReduceBase}
and saves a copy of the JobConf object, the taskName

and the taskId into member variables.

and makes an instance of the output key and output value

objects as member variables for the

map or reduce to use.

EE S SR

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* If this method fails the Tasktracker will abort this task.
* @param job The Localized JobConf object for this task
*/
public void configure(JobConf job) {
super.configure(job);
LOG.info("Map Task Configure");
this.conf = job;
try {
taskName = conf.getJobName();
taskId = TaskAttemptID.forName(conf.get("mapred.task.id"));
if (taskName == null || taskName.length() == 0) {
/** if the job name is essentially unset make something up. */
taskName = taskId.isMap() ? "map." : "reduce."
+ this.getClass().getName();

}

/**
* These casts are safe as they are checked by the framework
* earlier in the process.
*/
outputKey = (K2) conf.getMapOutputKeyClass().newInstance();
outputValue = (V2) conf.getMapOutputValueClass().newInstance();
} catch (RuntimeException e) {
LOG.error("Map Task Failed to initialize", e);
throw e;
} catch (InstantiationException e) {
LOG. error(
"Failed to instantiate the key or output value class",
e);
throw new RuntimeException(e);
} catch (IllegalAccessException e) {
LOG
.error(
"Failed to run no argument constructor for key or output value objects",
e);
throw new RuntimeException(e);

}
LOG.1info(taskId.isMap() ? "Map" : "Reduce" + " Task Configure complete");

In this example, K2 is the map output key type, which defaults to the reduce output key
type, which defaults to Longhritable. V2 is the map output value key type, which defaults to
the reduce output value type, which defaults to Text.

This configure() method saves a copy of the JobConf object taskId and taskName into
member variables. This method also instantiates a local instance of the key and value classes,

139

140 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

to be used during the map () method calls. By using the isMap method on the taskId, you can
take different actions for map and reduce tasks in the configure() and close() methods. This
becomes very useful when a single class provides both a map method and a reduce method.

The map() Method

A call to the void map(K1 key, Vi value, OutputCollector<K2,V2> output, Reporter
reporter) throws IOException method, defined in org.apache.hadoop.mapred.Mapper, will
be made for every record in the job input. No calls will be made to the map() method in an
instance before the configure() method completes.

If the job is configured for running multithreaded map tasks, as follows, there may be
multiple simultaneous calls to the map() method.

jobConf.setMapRunnerClass(MultithreadedMapRunner.class);
jobConf.setInt("mapred.map.multithreadedrunner.threads"”, 10);

When running multithreaded, each map() call will have a different key and value object.
The output and reporter objects are shared. The default number of threads for a multithreaded
map task is ten.

The contents of the key object and the contents of the value object are valid only during
the map() method call. The framework will reset the object contents with the next key/value
pair prior to the next call to map().

The class converting the input into records is responsible for defining the types of K1 and
V1. The standard textual input format, KeyValueTextInput, defines K1 and V1 to be of type Text.

K2 and V2 are defined by the JobConf.setMapOutputKeyClass(clazz) and JobConf.
setMapOutputValueClass(clazz) methods. The types of K2 and V2 default to the classes set for
the reduce key and value output classes. The reduce key and value output classes are set by
JobConf. setOutputKeyClass(clazz) and JobConf.setOutputValueClass(clazz). The defaults
for K2 and V2 are LongWritable and Text, respectively. You can explicitly configure the map
output key and value classes, as follows:

jobConf.setMapOutputKeyClass(MyMapOutputKey.class);
jobConf.setMapOutputValueClass(MyMapOutputValue.class)

If a map output class is set, the corresponding reduce input class is also set to the class. If
the map output key class is changed to BytesWritable, the Reducer.reduce’s key type will be
BytesWritable.

The close() Method

The void close() method, defined in java.io.Closable, is called one time after the last call
to the map() method is made by the framework. This method is the place to close any open
files or perform any status checking. Unless your configure() method has saved a copy

of the JobConf object, there is little interaction that can be done with the framework. The
close() method example in Listing 5-2 checks the task status based on the ratio of excep-
tions to input keys.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Listing 5-2. close Method from SampleMapperRunner.java

/** Sample close method that sets the task status based on how
* many map exceptions there were.
* This assumes that the reporter object passed into the map method was saved and
* that the JobConf object passed into the configure method was saved.
*/
public void close() throws IOException {
super.close();
LOG.info("Map task close");
if (reporter != null) {
/**
* If we have a reporter we can perform simple checks on the
* completion status and set a status message for this task.
*/
Counter mapExceptionCounter = reporter.getCounter(taskName,
"Total Map Failures");
Counter mapTotalKeys = reporter.getCounter(taskName,
"Total Map Keys");
if (mapExceptionCounter.getCounter() == mapTotalKeys
.getCounter()) {
reporter.setStatus("Total Failure");
} else if (mapExceptionCounter.getCounter() != 0) {
reporter.setStatus("Partial Success");
} else {
/** Use the Spring set bean to show we did get the values. */
reporter.incrCounter(taskName, getSpringSetString(), getSpringSetInt());
reporter.setStatus("Complete Success");
}
}
Vi
* Ensure any HDFS files are closed here, to force them to be
* committed to HDFS.
*/

The close() method in Listing 5-2 will report success or failure status back to the frame-
work, based on an examination of the job counters. It assumes that the map() method reported
an exception under the counter, Total Map Failure, in the counter group taskName, and the
number of keys received is in the counter, Total Map Keys, in the counter group taskName.

If there are no exceptions, the method will report the task status as “Complete Success.”
If there are some exceptions, the status is set to “Partial Success,” If the exception count
equals the key count, the status is set to “Total Failure.”

This example also logs to counters with the values received from the Spring initialization.
I found the Spring value-based counters useful while working out how to initialize map class
member variables via the Spring Framework, as described after the discussion of the mapper
class declaration and member fields.

14

142

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Mapper Class Declaration and Member Fields

It is a best practice to capture the JobConf object passed in the configure() method into a
member variable. It is also a good practice to instantiate member variables, or thread local
variables, for any key or value that would otherwise be created in the body of the map()
method. Having the TaskAttemptId available is also useful, as it is easy to determine if this is
the map phase or the reduce phase of a job.

It is convenient to capture the output collector and the reporter into member fields so that
they may be used in the close() method. This has a downside in that they can be captured
only in the map() method, requiring extra code in that inner loop.

Listing 5-3 shows an example that declares a number of local variables, which are initial-
ized by the configure() method for use by the map() and close() methods.

Listing 5-3. Class and Member Variable Declarations from SampleMapperRunner.java
/**

* Sample Mapper shell showing various practices

*

* K1 and V1 will be defined by the InputFormat. K2 and V2 will be the

* {@link JobConf#getOutputKeyClass()} and

* {@link JobConfttgetOutputValueClass()}, which by default are LongWritable
* and Text. K1 and V1 may be explicitly set via

* {@link JobConf#fsetMapOutputKeyClass(Class)} and

* {@link JobConf#setMapOutputValueClass(Class)}. If K1 and V1 are

* explicitly set, they become the K1 and V1 for the Reducer.

ES

* @author Jason

*

*/

public static class SampleMapper<Ki, Vi, K2, V2> extends MapReduceBase
implements Mapper<Ki, Vi, K2, V2> {

/**

* Create a logging object or you will never know what happened in your
* task.

*/

/** Used in metrics reporting. */

String taskName = null;

/**

* Always save one of these away. They are so handy for almost any
* interaction with the framework.

*/

JobConf conf = null;

/**

* These are nice to save, but require a test or a set each pass through
* the map method.

*/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Reporter reporter = null;
/** Take this early, it is handy to have. */
TaskAttemptID taskId = null;

/**

* If we are constructing new keys or values for the output, it is a

* best practice to generate the key and value object once, and reset
* them each time. Remember that the map method is an inner loop that
* may be called millions of times. These really can't be used without
* knowing an actual type

*/

K2 outputKey = null;
V2 outputValue = null;

Initializing the Mapper with Spring
Many installations use the Spring Framework to manage the services employed by their appli-
cations. One of the more interesting issues is how to use Spring in environments where Spring
does not have full control over the creation of class instances. Spring likes to be in full control
of the application and manage the creation of all of the Spring bean objects. In the Hadoop
case, the Hadoop framework is in charge and will create the object instances. The examples in
this section demonstrate how to use Spring to initialize member variables in the mapper class.
The same techniques apply to the reducer class.

Listing 5-4 shows the bean file used in the Spring example. The file mapper.bean.context.
xml in the downloadable examples src/config directory is the actual file used.

Listing 5-4. Simple Bean Resource File for the Spring-Initialized Task

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://waw.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans =
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context w»
http://www.springframework.org/schema/context/spring-context.xsd">

<bean id="SampleMapperJob.mapper.bean.name"
class="com.apress.hadoopbook.examples.chs.SampleMapperRunner.SampleMapper"
lazy-init="true"
scope="singleton">
<description> Simple bean definition to provide an example for
using Spring to initialize context in a Mapper class.</description>
<property name="springSetString"><value>SetFromDefaultFile</value></property>
<property name="springSetInt"><value>37</value></property>
</bean>
</beans>

143

144

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Creating the Spring Application Context

To create an application context, you need to provide Spring with a resource set from
which to load bean definitions. Being very JobConf-oriented, I prefer to pass the names of
these resources, and possibly the resources themselves, to my tasks via the JobConf and
DistributedCache objects.

The example in Listing 5-5 extracts the set of resource names from the JobConf object,
and if not found, will supply a default set of resource names. This follows the Hadoop style of
using comma-separated elements to store multiple elements in the configuration. The set of
resources names are unpacked and passed to the Spring Framework. Each of these resources
must be in the classpath, which includes the task working directory.

At the very simplest, the user may specify the specific Spring configuration files on the
command line via the -files argument, when the GenericOptionsParser is in use. The map-
per class will need to determine the name of the file passed in via the command line. For the
example, set up the Spring initialization parameters on the application command line as
follows:

hadoop jar appJar main-class -files springl.xml,spring2,xml,spring3.xml w»
-D mapper.bean.context=springl.xml

Note In the command-line specification, the -D mapper.bean. context=value argument must come
after the main class reference to be stored in the job configuration. If it comes before the jar argument, it
will become a Java system property.

The example in Listing 5-5 copies spring1.xml, spring2.xml, and spring3.xml from
the local file system into HDFS, and then copies them to the task local directory and cre-
ates symbolic links from the local copy to the task working directory. The configuration
parameter mapper.bean.context tells the map task which bean file to load. In the example,
SampleMapperRunner looks up the configuration entry mapper.bean.context to determine which
bean files to use when creating the application context.

Listing 5-5. Extracting the Resource File Names from the JobConf Object and Initializing the
Spring Application Context (from utils. Utils.java)

Initialize the Spring environment. This is of course completely
optional.

This method picks up the application context from a file, that is in
the classpath. If the file items are passed through the

{@link DistributedCache} and symlinked

they will be in the classpath.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* @param conf The JobConf object to look for the Spring config file names.
* If this is null, the default value is used.
* @param contextConfigName The token to look under in the config for the names
* @param defaultConfigString A default value
* @return TODO
*
*/
public static ApplicationContext initSpring(JobConf conf, String contextConfigName,
String defaultConfigString) {
/**
* If you are a Spring user, you would initialize your application
* context here.
*/
/** Look up the context config files in the JobConf, provide a default value. */
String applicationContextFileNameSet =
conf == null ? defaultConfigString :
conf.get(contextConfigName, defaultConfigString);
L0G.info("Map Application Context File "
+ applicationContextFileNameSet);

/** If no config information was found, bail out. */
if (applicationContextFileNameSet==null) {
LOG.error("Unable to initialize Spring configuration using "
+ applicationContextFileNameSet);
return null;
}
/** Attempt to split it into components using the config
* standard method of comma separators. */
String[] components = StringUtils.split(applicationContextFileNameSet, ",");

/** Load the configuration. */
ApplicationContext applicationContext =
new ClassPathXmlApplicationContext(components);

return applicationContext;

Using Spring to Autowire the Mapper Class

Once the Spring application context has been created, the task may instantiate beans. The
confusing issue is that the mapper class has already been instantiated, so how can Spring be
forced to initialize/autowire that class?

Accomplishing this autowiring requires two things. The first is that the bean definition
to be used must specify lazy initialization, to prevent Spring from creating an instance of the
bean when the application context is created. The second is to know the bean name/ID of the
mapper class.

145

146 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The example in Listing 5-6 makes some assumptions about how application contexts and
task beans are named, and can be easily modified for your application.

Listing 5-6. Example of a Spring Task Initialization Method

/** Handle Spring configuration for the mapper.

* The bean definition has to be <code>lazy-init="true"</code>

as this object must be initialized.

This will fail if Spring weaves a wrapper class for AOP around
the configure bean.

The bean name is extracted from the configuration as
mapper.bean.name or reducer.bean.name
or defaults to taskName.XXXX.bean.name

The application context is loaded from mapper.bean.context
or reducer.bean.context and may be a set of files
The default is jobName.XXX.bean.context

* K K K X KX K X X KX X ¥

@param job The JobConf object to look up application context w
files and bean names in
* @param RuntimeException if the application context can not be =
loaded or the initializtion requires delegation of the task object.
*/
void springAutoWire(JobConf job) {
String springBaseName = taskId.isMap()? "mapper.bean": "reducer.bean";

/** Construct a bean name for this class using the configuration
* or a default name. */
String beanName = conf.get(springBaseName + ".name",
taskName + "." + springBaseName + ".name");
LOG.info("Bean name is " + beanName);
applicationContext = Utils.initSpring(job, springBaseName
+ ".context", springBaseName + ".context.xml");
if (applicationContext==null) {
throw new RuntimeException(
"Unable to initialize spring configuration for
}
AutowireCapableBeanFactory autowire =
applicationContext.getAutowireCapableBeanFactory();
Object mayBeWrapped = autowire.configureBean(this, beanName);
if (mayBeWrapped != this) {
throw new RuntimeException("Spring wrapped our class for

+ springBaseName);

+ beanName);

}

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

In Listing 5-6, a base name is constructed for looking up information in the configuration
via the following:

String springBaseName = taskId.isMap()? "mapper.bean": "reducer.bean";

The example builds a context file name key, which will be mapper.bean.context in the
case of a map, to look up the application context information in the configuration. If a value
is found, it is treated as a comma-separated list of bean resource files to load. The application
context is loaded and saved in the member variable applicationContext:

applicationContext = SpringUtils.initSpring(job, springBaseName
+ ".context", springBaseName + ".context.xml");

A default bean file is used if no value is found. In this example, the file is
mapper.bean.context.xml.

A bean name key mapper.bean.name, with a default value of mapper.bean.name, is looked up
in the configuration. This is the bean that will be used to configure the task. The following line
constructs the bean name to use:

' non

String beanName = conf.get(springBaseName + ".name", taskName +

+ springBaseName + ".name");

An autowire-capable bean factory is extracted from the application context via the
following:

AutowireCapableBeanFactory autowire =
applicationContext.getAutowireCapableBeanFactory();

The following line actually causes Spring to initialize the task:
Object mayBeWrapped = autowire.configureBean(this, beanName);

The code must ensure that Spring did not return a delegator object when it was initializing
the task from the bean definition:

if (mayBeWrapped != this) {
throw new RuntimeException("Spring wrapped our class for

"

+ beanName);

}

Note This example does not handle the case where Spring returns a delegator object for the task. To
handle this case, the map () method would need to be redirected through the delegated object.

Partitioners Dissected

A core part of the MapReduce concept requires that map outputs be split into multiple
streams called partitions, and that each of these partitions is fed to a single reduce task. The
reduce contract specifies that each reduce task will be given as input the fully sorted set of keys

147

148

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

and their values in a particular partition. The entire partition is the input of the reduce task.
For the framework to satisfy this contract, a number of things have to happen first. The out-
puts of each map task are partitioned and sorted. The partitioner is run in the context of the
map task.

The Hadoop framework provides several partitioning classes and a mechanism to specify
a class to use for partitioning. The actual class to be used must implement the org.apache.
hadoop.mapred.Partitioner interface, as shown in Listing 5-7. The piece that provides a parti-
tion number is the getPartition() method:

int getPartition(K2 key, V2 value, int numPartitions)

Note that both the key and the value are available in making the partition choice.

Listing 5-7. The Partitioner Interface in Hadoop 0.19.0
Vi

* Partitions the key space.

<p><code>Partitioner</code> controls the partitioning of the keys of the
intermediate map-outputs. The key (or a subset of the key) is used to derive
the partition, typically by a hash function. The total number of partitions
is the same as the number of reduce tasks for the job. Hence this controls
which of the <code>m</code> reduce tasks the intermediate key (and hence the
record) is sent for reduction.</p>

* K X XK X X X X ¥

@see Reducer
*/
public interface Partitioner<K2, V2> extends JobConfigurable {

/**

* Get the partition number for a given key (hence record) given the total
* number of partitions i.e. number of reduce tasks for the job.

*

* <p>Typically a hash function on a all or a subset of the key.</p>

*

* @param key the key to be paritioned.

* @param value the entry value.

* @param numPartitions the total number of partitions.

* @return the partition number for the <code>key</code>.
*/

int getPartition(K2 key, V2 value, int numPartitions);

}

The key and value will be streamed into the partition number that this function returns.
Each key/value pair output by the map() method has the partition number determined and is
then written to that map local partition. Each of these map local partition files is sorted in key
order by the class returned by the JobConf.getOutputkeyComparator () method.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

For each reduce task, the framework will collect all the reduce task’s partition pieces
from each of the map tasks and merge-sort those pieces. The results of the merge-sort are
then fed to the reduce() method. The merge-sort is also done by the class returned by the
JobConf.getOutputKeyComparator () method.

The output of a reduce task will be written to the part-XXXXX file, where the XXXXX corre-
sponds to the partition number.

The Hadoop framework provides the following partitioner classes:

e HashPartitioner, which is the default
e TotalOrderPartitioner, which provides a way to partition by range

¢ KeyFieldBasedPartitioner, which provides a way to partition by parts of the key

The following sections describe each of these partitioners.

The HashPartitioner Class

The default partitioner, org.apache.hadoop.mapred.lib.HashPartitioner, simply uses the hash
code value of the key as the determining factor for partitioning. Listing 5-8 shows the actual
code from the default partitioner used by Hadoop. The partition number is simply the hash
value of the key modulus the number of partitions.

Listing 5-8. The HashCode Partitioner from Hadoop 0.19.0

/** Partition keys by their {@link ObjectithashCode()}. */
public class HashPartitioner<K2, V2> implements Partitioner<kK2, V2> {

public void configure(JobConf job) {}

/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K2 key, V2 value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX VALUE) % numReduceTasks;
}

The hash value is converted to a positive value, (key.hashCode() & Integer.MAX VALUE),
to ensure that the partition will be a positive integer. The resulting number has modulus the
number of reduce tasks applied, % numReduceTasks, and the result returned. This produces a
positive number between 0 and one less than the number of partitions.

The TotalOrderPartitioner Class

The TotalOrderPartitioner, org.apache.hadoop.mapred.lib.TotalOrderPartitioner, relies
on a file that provides the class with range information. With this information, the partitioner
is able to determine which range a key/value pair belongs in and route it to the relevant
partition.

149

150

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note The TotalOrderParitioner grew out of the TetraSort example package. Jim Gray introduced
a contest called the TeraByteSort, which was a benchmark to sort one terabyte of data and write the results
to disk. In 2008, Yahoo! produced a Hadoop version of the test that completed in 209 seconds (http://
developer.yahoo.net/blogs/hadoop/2008/07/apache_hadoop_wins_terabyte sort benchmark.
html). The code is included with the Hadoop examples as bin/hadoop jar hadoop-*-examples.jar
terasort in-dir out-dir. The class file is org.apache.hadoop.examples.terasort.TeraSort.

Building a Range Table

The org.apache.hadoop.mapred.1lib.InputSampler class is used to generate a range partition-
ing file for arbitrary input sets. This class will sample the input to build an approximate range
table.

This sampling strategy will take no more than the specified number of samples total from
the input. The user may specify a maximum number of input splits to look in as well. The
actual number of records read from each input split varies based on the number of splits and
the number of records in the input split.

The Hadoop framework controls how the input is split based on the number of input files,
the input format, the input file size, and the minimum split size and the HDFS block size. Let’s
look at a few examples of running InputSampler from the command line.

In the following example, the argument set -splitSample 1000 10 will sample a total of
1,000 input records out of no more than 10 input splits.

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler =
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat w»
-keyClass org.apache.hadoop.io.Text -r 15 -splitSample 1000 10 csvin csvout

If there are 10 or more input splits, each of which has more than 100 records, the first 100
records from each input split will be used for samples. The input is loaded from the directory
csvin, and is parsed by the KeyValueTextInputFormat class. The range file is written to csvout,
and the argument set -r 15 sets up the output for a job with 15 output partitions. The input
splits are examined in the order in which they are returned by InputFormat.

The next example takes 1,000 samples from roughly 10 input splits. The input splits are
sampled in a random order, and the records from each split read are sequentially.

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler w
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat w»
-keyClass org.apache.hadoop.io.Text -r 15 -splitRandom .1 1000 10 csvin csvout

Each record has a 0.1% chance of being selected. The -splitRandom .1 1000 10 argument
set specifies the percentage, the total samples, and the maximum splits to sample. If the 1,000
samples are not selected after processing the recommended number of splits, more splits will
be sampled. The index is set up for 15 reduce tasks, and the input comes from csvin. The index
is written to csvout. The splits to examine are selected randomly.

In the final example, the argument set -splitInterval .01 10 will examine no more than
10 input splits and take one record in 100 from each split.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler =
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat
-keyClass org.apache.hadoop.io.Text -r 15 -splitInterval .01 10 csvin csvout

The frequency parameter defines how many records will be sampled. For a frequency of
0.1, as in this example, one record in 10 will be used. For a frequency of 0.01, one record in
100 will be used. The index is set up for 15 reduce tasks. The input comes from csvin, and the
index is written to csvout.

Using the TotalOrderPartitioner

Once an index is generated, a job may be set up to use the TotalOrderPartitioner and the
index. Three configuration settings are required for this to work:

¢ The partitioner must be set to TotalOrderPartitioner in the JobConf object via conf.se
tPartitionerClass(TotalOrderPartitioner).

¢ The partitioning index must be specified via the configuration key
total.order.partitioner.path:

conf.set("total.order.partitioner.path", "csvout");

¢ The sort type for the keys must also be specified. If the binary representation of the
keys is the correct sorting, the Boolean field total.order.partitioner.natural.order
should be set to true in the configuration. If the binary representation of the keys is not
the correct sort, the Boolean field total.order.partitioner.natural.order must be set
to false. This Boolean field is set as follows:

conf.setBoolean("total.order.partitioner.natural.order");

If the binary representation of the key is the correct sort order, a binary trie (an
ordered tree structure; see http://en.wikipedia.org/wiki/Trie) will be constructed
and used for searching; otherwise, a binary search based on the output key compara-
tor will be used.

Here’s an example of how to put all this together:

TotalOrderPartitioner.setPartitionFile(conf,"csvout");
conf.setPartitionerClass(TotalOrderPartitioner.class);
conf.set("total.order.partitioner.natural.order",false);
conf.setNumReduceTasks (15);

In this example, csvin is the input file, and csvout is the index file. The csvout file was set
up for 15 reduce tasks, and requires the comparator rather than binary comparison.

The KeyFieldBasedPartitioner Class

The KeyFieldBasedPartitioner, org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner,
provides the job with a way of using only parts of the key for comparison purposes. The pri-
mary concept is that the keys may be split into pieces based on a piece separator string. Each
piece is then numbered from 1 to N, and each character of each piece numbered from 1 to M.

151

152

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The separator string is defined by the configuration key map.output.key.field.separator
and defaults to the tab character. It may be set to another string, str, as follows:

conf.set(map.output.key.field.separator, str);

This is functionally equivalent to using the String.split(Pattern.quote(str)) call on
each key and treating the resulting array as if indexes were one-based instead of zero-based.

If the separator is X and the key is oneXtwoXthree, the pieces will be 1) one, 2) two, 3) three.

Referencing individual characters within the pieces is also one-based rather than zero-
based, with the index 0 being the index of the last character of the key part. For the first key
piece in the preceding example, the string one, the characters will be 1) o, 2) n, 3) e, 0) e. Note
that both 3 and 0 refer to e, which is the last character of the key piece.

Note In addition to the one-based ordinal position within the key piece, the last character of the key piece
may also be referenced by o.

The key pieces to compare are specified by setting the key field partition option, via the
following:

conf. setKeyFieldPartitionerOptions(str).

The str format is very similar to the key field-based comparator.
The Javadoc from Hadoop 0.19.0 for KeyFieldBasedPartitioner provides the following
definition:

Defines a way to partition keys based on certain key fields (also see KeyFieldBasedCom-

parator). The key specification supported is of the form -k posl|[,pos2], where, pos is of
the form f.c][opts], where fis the number of the key field to use, and c is the number of the
first character from the beginning of the field. Fields and character posns are numbered
starting with 1; a character position of zero in pos2 indicates the field’s last character. If
“c’is omitted from posl, it defaults to 1 (the beginning of the field); if omitted from pos2,

it defaults to 0 (the end of the field).

In plain English, -k# selects piece # for the comparison, and -k#1,#2 selects the pieces
from #1 through #2. In the preceding example, -k1 selects oneX as the portion of the key to use
for comparison, and -k1,1 selects one as the portion of the key to use for comparison.

There is also the facility to select a start and stop point within an individual key. The
option -k1.2,1 is equivalent to -k1.2,1.0, and selects ne from the one for comparison.

You may also span key pieces. -k1.2,3.2 selects eXtwoXth as the comparison region from
the sample key. It means to start with key piece 1, character 2 and end with key piece 3 charac-
ter 2.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note If your key specification may touch the last key piece, it is important to terminate with
the last character of the key. Otherwise, the current code (as of Hadoop 0.19.0) will generate an
ArrayIndexOutOfBoundsException as it tries to use the missing separator string. In this section’s exam-
ple, -k3, 3 would work, but -k3 would throw the exception.

The Reducer Dissected

The reducer has a very similar shape to the mapper. The class may provide configure() and
close() methods. All of the mapper good practices of saving the JobConf object and making
instances of the output key and output value objects apply to the reducer as well.

The key difference is in the reduce() method. Unlike the map() method, which is given a
single key/value pair on each invocation, each reduce() method invocation is given a key and
all of the values that share that key.

The reducer is an operator on groups. The default is to define a group as all values that
share a key. Common uses for reduce tasks are to suppress duplicates in datasets or to segre-
gate ranges and order output of large datasets.

In the example shown in Listing 5-9, notice that the signature of the reduce() method
contains an Iterator<V>, an iterator over the values that share key. The identity reducer simply
outputs each value in the iterator.

Listing 5-9. The Identity Reducer from Hadoop Core 0.19.0

/** Performs no reduction, writing all input values directly to the output. */
public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {

/** Writes all keys and values directly to output. */
public void reduce(K1 key, Iterator<Vi> values,
OutputCollector<kK2, V2> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(key, values.next());

}

}

The configure() and close() methods have the same requirements and suggested usage
as the corresponding mapper methods.

It is generally recommended that you do not make a copy of all of the value objects, as
there may be very many of these objects.

153

154

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note In one of my early applications, | assumed that there would never be more than a small number of
values per key. The reduce tasks started experiencing out-of-memory exceptions. It turned out that there
were often more than 150,000 values per key!

It is possible to simulate a secondary sort/grouping of the values by setting the
output value grouping. To do this requires the cooperation of the OutputComparator,
OutputPartitioner, and OutputValueGroupingComparator. See this book’s appendix for more
information.

By default, the input key and value types are the same as the output key and value types,
and are set by the conf.setOutputKeyClass(class) and conf.setOutputValueClass(class)
methods. The defaults are LongWritable and Text, respectively.

If the map output keys must be different, using conf.setMapOutputKeyClass(class) and
conf.setMapOutputValueClass(class) will also change the expected input key and value for the
reduce task.

A Simple Transforming Reducer

Listing 5-10 shows the simple transformational reducer, SimpleReduceTransformingReducer.
java, used in this chapter’s SimpleReduce.java example.

Listing 5-10. Transformational Reducer in SimpleReduceTransformingReducer.java

/** Demonstrate some aggregation in the reducer

*

* Produce output records that are the key, the average, the count,
* the min, max and diff

*

* @author Jason

*

*/

public class SimpleReduceTransformingReducer extends MapReduceBase implements
Reducer<LongWiritable, LongWritable, Text, Text> {

/** Save object churn. */
Text outputKey = new Text();
Text outputValue = new Text();

/** Used in building the textual representation of the output key and values. */
StringBuilder sb = new StringBuilder();
Formatter fmt = new Formatter(sb);

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS 155

@0verride
public void reduce(LongWritable key, Iterator<LongWritable> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
/** This is a bad practice, the transformation of
* the key should be done in the map. */
reporter.incrCounter("Reduce Input Keys", "Total", 1);
try {
long total = 0;
long count = 0;
long min = Long.MAX VALUE;
long max = 0;

/** Examine each of the values that grouped with this key. */
while (values.hasNext()) {
final long value = values.next().get();
if (value>max) {
max = value;
}
if (value<min) {
min = value;
}
total += value;
count++;

}

sb.setLength(0);

fmt.format("%12d %3d %12d %12d %12d", total/count,
count, min, max, max-min);

fmt.flush();

outputValue.set(sb.toString());

sb.setLength(0);
fmt. format("%4d", key.get());
outputKey.set(sb.toString());

reporter.incrCounter("Reduce Output Keys", "Total", 1);
output.collect(outputKey, outputValue);

} catch(Throwable e) {
reporter.incrCounter("Reduce Input Keys", "Exception", 1);
if (e instanceof IOException) {
throw (IOException) e;

}

156 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

if (e instanceof RuntimeException) {
throw (RuntimeException) e;

}

throw new IOException(e);

It begins by establishing several member variables that will be used in the reduce()
method to save object generation:

/** Save object churn. */
Text outputKey = new Text();
Text outputValue = new Text();

/** Used in building the textual representation of the output key and values. */
StringBuilder sb = new StringBuilder();
Formatter fmt = new Formatter(sb);

The working body of the reduce() method is within a try block that catches Throwables,
and the input count, output count, and failure count are reported to the framework:

reporter.incrCounter("Reduce Input Keys", "Total", 1);
try {

reporter.incrCounter("Reduce Output Keys", "Total", 1);
output.collect(outputKey, outputValue);

} catch(Throwable e) {
reporter.incrCounter("Reduce Input Keys", "Exception", 1);

In the body of the example in Listing 5-10, each value that is passed in is examined and
aggregated:

/** Examine each of the values that grouped with this key. */
while (values.hasNext()) {
final long value = values.next().get();
if (value>max) {
max = value;
}
if (value<min) {
min = value;
}
total += value;
count++;

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Finally, the output key and value are constructed with the aggregated data:

sb.setLength(0);

fmt.format("%12d %3d %12d %12d %12d", total/count, count, min, max, max-min);
fmt.flush();

outputValue.set(sb.toString());

sb.setLength(0);
fmt. format("%4d", key.get());
outputKey.set(sb.toString());

The example that runs this reducer also uses an output grouping comparator that groups
the records in sets of ten. The comparator Utils.GroupByLongGroupingComparator.java (sup-
plied with the downloadable code for this chapter) handles grouping LonghWritable values in
sets of 10, 0-9, 10-19, and so on.

The following is the core code in SimpleReduce that sets up the job that runs
SimpleReduceTransformingReducer

job.setInputFormat(KeyValueTextInputFormat.class);
FileInputFormat.setInputPaths(job, inputDir);

job.setMapperClass(SimpleReduceTransformingMapper.class);
job.setMapOutputValueClass(LongWritable.class);
job.setMapOutputKeyClass(Longhritable.class);

/** Force the reduce to take text as the output value class,
* instead of the default. */
job.setOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setReducerClass(SimpleReduceTransformingReducer.class);

/** Cause the keys to be grouped by 10s. */
job.setOutputValueGroupingComparator (GroupByLongGroupingComparator.class);
job.setNumReduceTasks(1); /** Ensure that all keys go to 1 reduce so

* the group by is stable. */

The following command will run the SimpleReduce job (your output will vary slightly):

% HADOOP_CLASSPATH=/misc/HadoopSource/commons-lang-2.4.jar =
bin/hadoop jar /misc/HadoopSource/hadoop-0.19.0/hadoopprobook.jar =
com.apress.hadoopbook.examples.ch5.SimpleReduce -libjars =
/misc/HadoopSource/commons-lang-2.4.jar

157

158 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Total input paths to process : 5
Running job: job 200902221346 0079
map 0% reduce 0%
map 20% reduce 0%
map 60% reduce 0%
map 80% reduce 0%
map 100% reduce 0%
map 100% reduce 100%
Job complete: job 200902221346 0079
Counters: 20
File Systems
HDFS bytes read=7103
HDFS bytes written=2135
Local bytes read=9006
Local bytes written=18176
Job Counters
Launched reduce tasks=1
Launched map tasks=5
Data-local map tasks=5
Map Input Keys
Total=500
Reduce Output Keys
Total=35
Map Output Keys
Total=500
Reduce Input Keys
Total=35
Map-Reduce Framework
Reduce input groups=35
Combine output records=0
Map input records=500
Reduce output records=35
Map output bytes=8000
Map input bytes=7103
Combine input records=0
Map output records=500
Reduce input records=500
The Job is complete and successfull

Note how the output keys are multiples of tens. This is the result of the output value
grouping. The actual output is the key, the average value, the number of values averaged,
the minimum value, the maximum value, and the difference between the minimum and the
maximum.

Now you can print the job output (key, average, count, min, max, difference), as follows:

CHAPTER 5

MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

% hadoop dfs -cat SampleReduce.ouput/part-00000

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

1032312560
909677971
1264310186
984307588
925589754
923048786
908071213
1068729097
1216389986
1119730476
638218214
1208679389
958900520
871313033
1328295033
1038185198
980833493
912381685
1247773207
875941698
1051606085
1207066231
1327655145
1148152274
735579301
1115493614
1026999134
1109366173
954780820
778472644
1032042843
822060835
857131707
1153129237
851254291

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10

8929475
40027932
109435752
112010776
38065333
374030611
255471236
63376590
40846046
289044657
10905001
351936606
116429037
52844729
111275382
47621146
72608499
54099516
30716232
6692770
18948588
160161337
75910389
273711624
43456136
190919486
59805730
198612696
44018855
22502766
292411084
90530214
138285402
231919805
135630114

2037836662
2084424645
2002508155
1912518297
1782409589
1725384504
2115349080
1954205116
2120059182
2002422718
1679731545
1701974468
1686303707
2019468622
2059113431
1976756537
2029753820
1961970644
2116148228
1663091528
2123342351
1952936377
2078268756
2074598677
2094659831
1988623879
2072846822
2077682368
2107358734
2063051919
2097164456
2135412572
1675393365
1799184626
1965837214

2028907187
2044396713
1893072403
1800507521
1744344256
1351353893
1859877844
1890828526
2079213136
1713378061
1668826544
1350037862
1569874670
1966623893
1947838049
1929135391
1957145321
1907871128
2085431996
1656398758
2104393763
1792775040
2002358367
1800887053
2051203695
1797704393
2013041092
1879069672
2063339879
2040549153
1804753372
2044882358
1537107963
1567264821
1830207100

A Reducer That Uses Three Partitions

A variant of the SimpleReduce. java example, called TotalOrderSimpleReduce. java (available
with the rest of this chapter’s downloadable code), uses three partitions, rather than just one.
This example demonstrates how to use the InputSampler class and the TotalOrderPartitioner

159

160

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

class, as well as some of the interesting errors that will occur if the partitioner and the
OutputValueGroupingComparator do not coordinate fully.

In this example, the grouping operator groups by multiples of ten in the key space. The
TotalOrderParititioner selects a random sample of the keys and creates three groups that are
roughly even in size given the sample of keys. There is no guarantee that an entire group of
keys will not be split into multiple partitions.

This application also requires a custom InputFormat, LongLongTextInputFormat, as the
input key and the reduce key must be of the same type for the InputSampler. In the previous
version, the map input keys are Text and the reduce input keys are LongWritable. Listing 5-11
shows the core of the LongLongTextInputFormat, the RecordReader.next method.

Listing 5-11. The RecordReader.next Method of the LongLongTextInputFormat

/** Delegated next, read the textual values from the the data source
* and convert them into LongWritables.
* @param key The key object to fill with the next record's key
* @param value The value object to fill with the next record's value
* @return true if a record was read or false if at EOF
* @throws IOException
* @see org.apache.hadoop.mapred.RecordReader#next(java.lang.Object, =
java.lang.Object)
*/
public boolean next(LongWritable key, LongWritable value) throws IOException {
/** Perform the real read. */
final boolean res = realReader.next(this.key, this.value);
if (lres) { /** If at eof, we are done. */
return false;
}
/** Attempt to convert the two text values read into LongWritables.
* If there is an error, throw an IOException.
*/
try {
key.set(Long.valueOf(this.key.toString()));
value.set(Long.valueOf(this.value.toString()));
return true;
} catch(NumberFormatException e) {
throw new IOException("Invalid key, value

+ key + ", " + value);

}

The code in Listing 5-12 sets up the JobConf object for the TotalOrderParitioner. Note
that natural ordering is set to true. As the keys are long values, they are binary compa-
rable. The call to runInputSampler computes the partitioning index and stores it in the file
TotalOrderSimpleReduce. index.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Listing 5-12. TotalOrderPartition Setup, from TotalOrderSimpleReduce.java

job
Fil

job
job
Vaki
job
job
Vaks
job
job
job
Vak
job
Vil
job
Tun

.setInputFormat(LonglongTextInputFormat.class);
eInputFormat.setInputPaths(job, inputDir);

.setMapOutputValueClass(LonghWritable.class);
.setMapOutputKeyClass(LongWritable.class);

Setup for a total order partitioning. */
.setPartitionerClass(TotalOrderPartitioner.class);
.setBoolean("total.order.partitioner.natural.order”, true);

Force reduce to take text as the output value class, instead of the default.

.setOutputValueClass(Text.class);
.setOutputKeyClass(Text.class);
.setReducerClass(SimpleReduceTransformingReducer.class);

Cause the keys to be grouped by 10s. */
.setOutputValueGroupingComparator (GroupByLongGroupingComparator.class);

Ensure that all keys go to 3 reduce to demonstrate order based partitioning.

.setNumReduceTasks(3);
InputSampler(job, inputDir.suffix(".index"));

The code in Listing 5-13 runs the InputSampler to compute and store the index in

*/

*/

indexFile. The assumption here is that the JobConf object conf is already correctly set up with
the InputPaths and InputReader. The sampling strategy is to randomly sample the records with
a 0.1% chance that any record is chosen. No more than 100 samples and a suggested 10 input
splits are to be read.

List

/**
*

*
*
*
*

*
*

*/

ing 5-13. Running the InputSampler

Generate the TotalOrderPartitioner index file for our key space

This will sample the input paths set in conf, using the input format reader.
The index file location is written to conf.

@param conf The Configuration object to use
@param indexFile The index file to generate
@throws IOException

public void runInputSampler(final JobConf conf, Path indexFile) throws IOException {

TotalOrderPartitioner.setPartitionFile(conf, indexFile);
RandomSampler<LongWritable, LongWritable> sampler = new
InputSampler.RandomSampler<Longhritable, Longhritable> (0.1, 100, 10);
InputSampler.<Longhritable,LongWritable>writePartitionFile(conf, sampler);

161

162

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The following results show that the input for group 150 is split between partition 0 and
partition 1, and that the group 220 is split between partition 2 and partition 3. Your results will

differ, as random data generation and selection are occurring.

HADOOP_CLASSPATH=/misc/HadoopSource/commons-lang-2.4.jar hadoop jar /misc w»

/HadoopSource/hadoop-0.19.0/hadoopprobook.jar com.apress.hadoopbook.examples.chs w»

.TotalOrderSimpleReduce -libjars /misc/HadoopSource/commons-lang-2.4.jar

The Job is complete and successfull
Counter Group: File Systems
HDFS bytes read 8060
HDFS bytes written 2257
Local bytes read 9018
Local bytes written 18488
Counter Group: Job Counters
Launched reduce tasks 3
Launched map tasks 5
Data-local map tasks 5
Counter Group: Reduce Output Keys
Total 37
Counter Group: Reduce Input Keys
Total 37
Counter Group: Map-Reduce Framework
Reduce input groups 37
Combine output records o0
Map input records 500
Reduce output records 37
Map output bytes 8000
Map input bytes 7135
Combine input records 0
Map output records 500
Reduce input records 500

Let’s examine the reduce output data:

for a in 0 1 2; do echo part-0000$a; hadoop dfs -cat

.ouput/part-0000%$a; done

TotalOrderSimpleReduce w

part-00000
0 1120696448 10 114767562
10 1262245737 10 147134609
20 1355678543 10 221719466
30 1011945955 10 32549345
40 1141622277 10 14444296
50 1033598416 10 128237459

60 1110802460 10 259693362

2024812642
2118565837
2058534489
1964050949
2091872332
1923443602
1904661969

1910045080
1971431228
1836815023
1931501604
2077428036
1795206143
1644968607

70 1241399906

80 1230683390

90 1128499980
100 1088361665
110 1332495922
120 991086606
130 1020804065
140 967879564
150 1236638804
part-00001
154 1139330738
160 993478558
170 1036438744
180 1101282242
190 1193146388
200 1015890669
210 1234536770
220 1464315969
part-00002
224 954658466
230 964917299
240 1207841113
250 1047422883
260 884844748
270 1143486218
280 1345299024
290 997769299
300 566836001
310 871057357
320 827237669
330 1034732041
340 938330142
Combiners

A combiner is a mini-reducer. The purpose of a combiner is to reduce the volume of data that
must be passed to the reducer from a map task by summarizing output records that share the
same key. A combiner must implement the Reducer interface, and the reduce() method of the
combiner will be called with each output key and all of the output values that share that key.
The output of the combiner is what will be sent over the network to the actual reduce task

for the job or written to the final output directory, if there is no reduce task configured. The
combiner class reduce() method must have the same input and output key/value types as the

reducer class.

12
20

20
20
20

12
20
20
20
20
20

20
10
10
10
10
10

CHAPTER 5

41832977
103825808
107614131
376207299
332169914

18158041
117011726

78769539
401939855

51795064
54628468
156951559
42570729
113670430
130204162
105147150
479100103

96604844
116190161
352735303
158450293
54670426
240046014
267642220
53033105
3288468
2573252
120300136
72330772

49826875

MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

2059443669
2063631220
2028701766
1832969382
2049937661
1954291526
2094067623
2041673853
2012038507

1954863887
2078982662
1983508735
2097760736
2111312959
2104346838
2045372284
2046550989

1853232282
2115557112
2136588979
2047289337
1920120397
2139315373
2099770746
2114447296
1688928276
2059752419
2091904736
2053586973
2145892833

2017610692
1959805412
1921087635
1456762083
1717767747
1936133485
1977055897
1962904314
1610098652

1903068823
2024354194
1826557176
2055190007
1997642529
1974142676
1940225134
1567450886

1756627438
1999366951
1783853676
1888839044
1865449971
1899269359
1832128526
2061414191
1685639808
2057179167
1971604600
1981256201
2096065958

For each call to output.collect made by the map() method, the framework will route the
key/value pair to the applicable partition, based on the result of the Partitioner.getPartition

163

164

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

call. When all of the map task input has been processed, these partitions are sorted, and each
one is passed as input to the combiner. The combiner’s reduce () method will be called once
for each unique key in the partition, and the values will be the set of values that share that key.
The output of the combiner will replace that set of original map outputs, ideally with fewer
records or smaller records. This is suitable for jobs that are producing summary information
from a large dataset.

Caution The combiner must not change the key values, as the map outputs are not re-sorted after the
combiner runs. The reduce phase requires the map outputs to be sorted by key.

It is common for the same class that is used in the reduce task to be used for the com-
biner. However, this practice often leads to difficult-to-diagnose problems. The combiner
must only aggregate values, in a manner that is suitable for processing by the actual reducer.
The actual reducer has the larger job of producing the final job output. Problems occur when
the reducer is modified to provide some change in the job output, and the person doing the
modification is unaware that the reducer is also used as a combiner. It is very important that
the combiner class not have side effects, and that the actual reducer be able to properly pro-
cess the results of the combiner.

Tip 1t not always simple to build a correct combiner. If a job output has problems, try running the job
without the combiner to see if the problem persists. If your actual reduce () method is nontrivial, do not also
use it as a combiner; instead, write a separate object to combine the map outputs.

The classic example of using a combiner is the org.apache.hadoop.examples.WordCount
example. This MapReduce job reads a set of text input files and counts the frequency of occur-
rence of each word in the input files. The map phase outputs each word in the file as a key,
with the count of 1. There will be one output record for each word in the file. The combiner
will aggregate these into a set that contains one output record per unique word in the input,
and the value is the number of times the word appeared in the input. Unless the writer has
such a large vocabulary that no word is used more than once, the combiner will greatly reduce
the number of records to be processed by the reduce phase.

Listings 5-14, 5-15, and 5-16 show the JobConf setup and the map() and reduce() methods
from the WordCount. java example, The default InputFormat is TextInputFormat, which returns
a LongWritable key, the input line number, and a Text value, which is the full line from the
input file. The map() method tokenizes the line and emits a record for each word of the input
record, a Text and the value 1, an IntWritable. The reduce() method simply sums the values
and outputs the word as Text and the sum of values, an IntWritable. By using the reduce()
method as a combiner, there is a large reduction in the size of each map task output.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Listing 5-14. The JobConf Setup, from WordCount.java’s run Method

conf.setJobName ("wordcount™);

// the keys are words (strings)
conf.setOutputKeyClass(Text.class);

// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

Listing 5-15. The Core of the map Method, from WordCount.java

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);

}

Listing 5-16. The Core of the reduce Method, from WordCount.java

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

When the map task has completed and the partitions are sorted, the combiner may run
over the partitions and aggregate values, reducing the total number of key/value pairs that
must go over the network to the reduce task.

For example, suppose the map partition dataset originally contained the following:

165

166

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Key Value
A

A

The

The

The
Xylophone

—_ = e e e

After the combiner has completed, the map partition dataset would contain these keys
and values:

Key Value
A 2
The 3
Xylophone 1

It is fairly simply to shoot yourself in the foot with a combiner. The combiner must not
cause the loss of any information that is needed by the actual reducer. The classic example of
this is a reducer that computes the average of the values for each key. If that reducer is also
used as a combiner, the information on the number of records involved computing the aver-
age will be lost, and the reduce tasks will see only the average values for each key; the final
result will be the average of the averages, instead of the actual average. Combiners also must
be idempotent, as they may be run an arbitrary number of times by the Hadoop framework
over a given map task’s output.

File Types for MapReduce Jobs

The Hadoop framework supports text files, binary (sequence) files, and map files, which are
actually a pair of sequence files. Let’s take a closer look at each of these file types.

Text Files

The Hadoop framework supports a number of textual input files and output files. The input

formats support transparent decompression of input files if an input file name ends in one of

the recognized compression format suffixes (.gz, .deflate, .1zo_deflate, .1zo, and .bz2).
The following formats are available for text files:

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

TextInputFormat: This class reads each line of the input split and returns a record
composed of the line number as a LongWritable key, and the line itself as a Text

value. The workhorse class that actually produces the key/value pairs is org.apache.
hadoop.mapred.LineRecordReader. There is only one tunable parameter: the configura-
tion key, mapred.linerecordreader.maxlength, which sets the maximum number of
characters allowed in a line. The default value is Integer .MAX_VALUE, essentially unlim-
ited. The parameter may be adjusted using the conf.setInt() method. For example,
conf.setInt("mapred.linerecordreader.maxlength”, 1024) limits the line length to
1,204 characters.

KeyValueTextInputFormat: This class reads each line and splits the line into a key/

value pair on a tab character. The workhorse class is org.apache.hadoop.mapred.
KeyValuelLineRecordReader. The separator may be configured by setting the configuration
key key.value.separator.in.input.line. The key and value are both Text. If there is no
separator found, the value will be an empty string.

NLineInputFormat: This format is ideal for using the input data as control informa-
tion. It guarantees that each input split will be N lines long, with one split being the
remaining lines. The configuration key mapred.line.input.format.linespermap con-
trols the number of lines of input per map task. The default value is 1. This may be
changed using the conf.setInt() method. For example, conf.setInt("mapred.line.
input.format.linespermap"”, 10) sets the value to 10. Under the covers, this uses
org.apache.hadoop.mapred.LineRecordReader to read the input data and produce
Longhritable, Text key/value pairs.

MultiFileInputFormat: This is an abstract class that provides a way for a single task to
receive multiple input files as the task’s input split. This is commonly done for perfor-
mance tuning. There is substantial time involved in setting up and starting a task, as well
as collecting the results. If the input split is small, a substantial portion of the job runtime
may be in the setup and teardown of tasks. The developer is responsible for implementing
the getRecordReader () method. The org.apache.hadoop.examples MultiFileWordCount
provides an example of a RecordReader that handles reading from multiple files.

TextOutputFormat: This is the standard textual output format. It basically calls the
toString method on each key and value, producing a single-line key SEPARATOR value
ASCII newline for each output record. The SEPARATOR is specified by the value of the con-
figuration key apred.textoutputformat.separator, which defaults to TAB. If the value is
null, no SEPARATOR and no value will be emitted. If key is null, SEPARATOR value is emitted.
The end-of-record character is hard-coded as an ASCII newline character. Compression is
supported if configured.

MultipleTextOutputFormat: This format allows you to write output records to dif-
ferent files based on the key and value. The test case org.apache.hadoop.mapred.
TestMultipleTextOutputFormat provides a sample implementation. The Java source
to this class is located in src/test/org/apache/hadoop/mapred/
TestMultipleTextOutputFormat.java in your Hadoop distribution. Using
MultipleTextOutputFormat, the user has the option of interceding in the selection

of an output file for each output key/value pair in several different ways by overriding
different methods.

167

168

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* For map-only jobs, a portion of the input file path may be included in the out-
put path, by setting the value of the configuration key mapred.outputformat.
numOfTrailinglegs, to a positive integer. The default is no components of the input
file path are used. The value +1 worth of components from the right side of the
input file are inserted in the output file path before the file name. This happens
after the call to generateFileNameForKeyValue(). The actual key and value param-
eters may be modified by overriding the getActualKey() and getActualValue()
methods.

* You can change the final file name or leaf name via the String
generatelLeafFileName(String name) method. The parameter name is the original
leaf name. The leaf name is normally the part-XXXXX, where the XXXXX corresponds
to the reduce ordinal number, or the map ordinal number if this is a map-only job.
(Changing the leaf name is not commonly done.)

* You can change the path to the output file via the String
generateFileNameForKeyValue(K key, V value, String name) method. The name
parameter is the result of generatelLeafFileName. You can construct arbitrary paths
out of the key, value, and name. This is the method commonly overridden by
developers. The example in Listing 5-17 produces an output file name of the first
letter of the key, a dash, and the partition number. If the key were akey, and the
name were part-00000, this key/value pair would go to the file a-part-00000.

Listing 5-17. Simple MultipleTextOutputFormat Output File Name Generator

static class KeyBasedMultipleTextOutputFormat extends
MultipleTextOutputFormat<Text, Text> {
protected String generateFileNameForKeyValue(Text key, Text v, String name) {
return key.toString().substring(o, 1) + "-"

}
}

+ name;

Caution It is critically important to minimize the number of HDFS files that are opened. HDFS, through
at least Hadoop 0.19.0, is designed for small numbers of very large files. Opening many small files will bring
your cluster to its knees, and may result in catastrophic failure of your job, as well as your HDFS. It is very
easy to open hundreds of thousands of files with MultipleOutputFormats.

Sequence Files

Sequence files are a binary format for storing sets of serialized key/value pairs. Sequence files
support compression, encapsulate the key and value types, and provide validity checksums.
They are an ideal format to use for data that is expensive or complex to parse.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The following formats are available for sequence files:

SequenceFileInputFormat: The basic workhorse, this format supports splitting and pro-
vides the key and value types. If the input file is a map file (described in the next section),
the data file is read.

SequenceFileAsBinaryInputFormat: This format returns the raw key and value bytes. It
returns BytesWritable keys and values.

SequenceFileAsTextInputFormat: This format returns the key and value as text. It calls the
toString method on the key and value classes and returns the key/value pair as Text, Text.

SequenceFileInputFilter: This format returns only specific records from the sequence
file. It provides the static void setFilterClass(Configuration conf, Class
filterClass) method, which supplies a class that is used to determine which records are
returned by the next (key,value) method on the reader. The FilterClass must imple-
ment the SequenceFileInputFilter.Filter interface and provide a method boolean
accept(Object key). Three filters are provided:

e RegexFilter.setPattern(Configuration conf, String regex) provides the regular
expression to filter keys.

e PercentFilter.setFrequency(Configuration conf, int frequency) provides the
way of accepting one record in frequency records.

e MD5Filter.setFrequency(Configuration conf, int frequency) provides a way
of selecting only those records that have an MD5 hash that is evenly divisible by
frequency.

SequenceFileOutputFormat: This format writes the serialized key/value records as output.
This is the standard sequence file output. The key and value types must be specified via
the conf.setOutputKeyClass() and conf.setOutputValueClass() methods.

SequenceFileAsBinaryOutputFormat: This format writes the raw bytes. The key and value
types must be ByteslWritable, and these raw bytes are written as the records.

Map Files

Map files are a pair of sorted sequence files. If a map file named mymap is created, there will

be a directory mymap in HDFS, and two files in mymap: index and data. The data sequence file
contains the key/value pairs as records, where the records are sorted in key order. The index
sequence file is key/location information, where location is the location in data where the first
record containing a key is located.

Map files provide a way to find a particular key, or region of a sorted file, without having to
read the entire file. The HBase project (http://hadoop.apache.org/hbase) provides a persistent
distributed hash table stored in HDFS, using map files as the underlying storage.

When a map file is specified as a job input, the data file is used as the actual input. There is
not aMapFileInputFormat class; the SequenceFileInputFormat class is used. The path specified
is the path to the directory containing the index and data files. SequenceFileInputFormat will
use the data file as the input source.

169

170 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip For best performance, it is strongly suggested that all key lookups be performed in the sort order of
the underlying map file. HDFS is highly optimized for streaming files sequentially, and does a very poor job of
providing low-latency access to random locations within a file.

For the MapFileOutputFormat, the value of the configuration key io.map.index. interval
determines how many records are written to the data sequence file between writes to the
index sequence file. The default is one index entry for every 128 records.

Map files provide the following methods for looking up key/value pairs.

e void reset(): Resets the read position to the beginning of the file.
e WritableComparable midKey(): Returns the key roughly in the middle of the file.
e void finalKey(WritableComparable key): Reads the final key.

¢ boolean seek(WritableComparable key): Seeks to the key, or to the first key after it, if it
does not exist.

¢ boolean next(WritableComparable key, Writable val): Reads the next key/value pair.
e Writable get(WritableComparable key, Writable val): Gets the value for key.

e WritableComparable getClosest(WritableComparable key, Writable val): Gets the
closest match to the key, searching as seek.

e WritableComparable getClosest(WritableComparable key, Writable val, final
boolean before): Works like the previously described getClosest()
method, unless before is true—in which case the key before is returned.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Compression

The Hadoop framework supports several types of compression and several compression for-
mats. The framework supports the gzip, zip, sometimes LZO, and bzip2 compression codecs.
Native libraries are supplied for Linux i386 and x86_64 for gzip, zip, and LZO for some releases.
The framework will transparently compress and uncompress most input and output files.
Input files are uncompressed when the input file name has a suffix that maps to one of the
known codecs, as shown in Table 5-3.

Note Lz0 is licensed under the GPL. It is incompatible with the Apache license and has been removed
from some distributions. | sincerely wish that this will be resolved and that native LZ0 becomes a standard
part of the Hadoop distribution.

Table 5-3. Compression Codecs and Mapped File Name Suffixes

Codec Suffix
GzipCodec .8z
DefaultCodec .deflate
LzoCodec .1zo0 deflate
LzopCodec .1zo
Bzip2Codec .bz2

Codec Specification

The Hadoop framework supports a number of codecs, with native implementations for a
smaller number. GzipCodec, LzoCodec, and the DefaultCodec (zip) have native implementa-
tions. Bzip2Codec has a pure Java implementation. LzoCodec may not be available in some
releases due to licensing issues. Bzip2Codec is available as of Hadoop 0.19.0.

The list of codecs is stored in the configuration under the key io.compression.codecs. In
Hadoop 0.19, it has the following value:

org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress. w
GzipCodec,org.apache.hadoop.io.compress.BZip2Codec

If your environment requires additional codecs, the glue interface is org.apache.hadoop.
io.compress.CompressionCodec. You would then add the class name to the list of codecs in
the io.compression.codecs value. The selection of a compression codec is a choice between
speed and compression rate. LZO is the fastest by far, and produces files about double the size
of gzip. The bzip2 compression is the slowest—substantially slower than gzip—and produces
files about one half the size of gzip.

m

172

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Sequence File Compression

Sequence files are binary record-oriented files, where each record has a serialized key and seri-
alized value. The Hadoop framework supports compressing and decompressing sequence files
transparently.

Sequence files may be, and generally should be, compressed. The framework will trans-
parently compress at the record level or the block level. The key io.seqfile.compression.type
controls the record- or block-level compression for sequence files. A value of BLOCK requests
block-level compression. A value of RECORD, the default, specifies record-level compression. A
value of NONE disables compression.

In general, block-level compression is recommended, because it provides greater data
reduction (at the expense of individual key access). The compression overhead is less, and the
compression ratio is much greater. For sequence files that are being used as input to a map or
reduce phase, block-level compression is ideal. Sequence files that were written using trans-
parent compression may be divided into multiple input splits by the framework.

Many sites will set the default to BLOCK in their hadoop-site.xml file, as follows:

<property>
<name> io.seqfile.compression.type</name>
<value>BLOCK</value>
<description>Force the default sequence file compression to
be block compression for efficiency reasons
</value>
</property>

Map Task Output

The intermediate map task outputs are a set of sequence files, one per reduce task. As these
files must be transferred across the network, a low-overhead compression type, such as gzip or
LZO, can provide a substantial reduction in network traffic for little CPU cost. The blog entry
athttp://blog.oskarsson.nu/2009/03/hadoop-feat-1zo-save-disk-space-and.html has some
interesting information about compression CPU and size reductions for different Hadoop
codecs. Table 5-4 summarizes the compression speed results. For pretty decent compression
LzoCodec provides high throughput.

Note | have spent some time running the same job with different compression codecs and RECORD or
BLOCK set for compression, to determine which combination gave the overall performance for the job. At
present, this must be done manually.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Table 5-4. Compression Timings for Hadoop Compression Codecs

Original Compressed Compression Decompression
Compressor Size Size Speed Speed
bzip2 8.3GB 1.1GB 2.4MB/s 9.5MB/s
gzip 8.3GB 1.8GB 17.5MB/s 58MB/s
LZO—best 8.3GB 2GB 4MB/s 60.6MB/s
LZO 8.3GB 2.9GB 49.3MB/s 74.6MB/s

Map output block-level compression may be specified by the job or in the site configu-
ration. If compressed, map output, destined for a reduce task, is always BLOCK compressed.
Listing 5-18 provides an XML block suitable for inclusion in the conf/hadoop-site.xml file to
make LZO compression the default for the map task outputs.

Listing 5-18. A hadoop-site.xml Specification for Map Output Level Compression with LZO

<property>
<name>mapred.compress.map.output</name>
<value>true</value>
<description>Should the outputs of the maps be compressed before being
sent across the network. Uses SequenceFile compression.
</description>
</property>

<property>
<name>mapred.map.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.LzoCodec</value>
<description>If the map outputs are compressed, how should they be
compressed? Use Lzo fast even though not as good compression.
</description>
</property>

Listing 5-19 demonstrates configuring a cluster to always use compression for final output
files, and if the final output file is a sequence file, to use BLOCK compression.

Listing 5-19. A hadoop-site.xml Specification for Final Output Files to be Compressed with LZO,
and If Sequence Files, BLOCK-Compressed

<property>
<name>mapred.output.compress</name>
<value>true</value>
<description>Should the job outputs be compressed?
</description>

</property>

173

174

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

<property>
<name>mapred.output.compression.type</name>
<value>BLOCK</value>
<description>The type of compression to use for final
output sequence files. May be BLOCK, RECORD or None.
</description>

</property>

<property>
<name>mapred.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.LzoCodec</value>
<description>If the job outputs are compressed, how should they be
compressed? Use Lzo fast even though not as good compression.
</description>
</property>

Listings 5-20 and 5-21 demonstrate specifying the compression codec and type via set-
tings on the JobConf object.

Listing 5-20. Setting Intermediate Map Output Compression via the JobConf

conf. setCompressMapOutput(true);
conf. setMapOutputCompressorClass(LzoCodec.class);

Listing 5-21. Setting Final Output Compression via the JobConf

FileOutputFormat.setOutputCompress (conf, true);
FileOutputFormat.setOutputCompressorClass(LzoCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,CompressionType.BLOCK);

JAR, Zip, and Tar Files

The Hadoop framework knows how to unpack JAR, zip, and tar files, but this is only automati-
cally done for archives passed via the DistributedCache object The class org.apache.hadoop.
fs.FileUtil provides two static methods that may be used to unpack these files: unTar () for
tar files and unzip() for zip files. The archives may be unpacked only onto the native file sys-
tem, not into HDFS.

Summary

The Hadoop Core framework provides a rich set of tools to support a variety of use cases.

As with most powerful tools, using them effectively requires training and experience. This
chapter has provided a solid foundation for configuring jobs to run successfully and building
classes that will actual perform the work for the job.

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The effective use of counters in the map and reduce methods provides both the applica-
tion writer and the organization with metrics for job performance. The DistributedCache
object provides a way of distributing required data to all of the tasks, without need-
ing to have the data already available on the TaskTracker nodes. You can choose from
a variety of input and output formats. The use of compression can greatly reduce the
wall clock runtime of a job, as can the use of a combiner. The KeyFieldBasedComparator
and KeyFieldBasedPartitioner classes allow you to implement a secondary sort via the
OutputValueGroupingComparator. Partitioning is a simple controllable process. You also know
how to use MultipleTextOutputFormat, and the potential problems it can bring. It is now
time to have fun writing MapReduce jobs!

175

