
C H A P T E R  5

MapReduce Details for 
Multimachine Clusters

Organizations run Hadoop Core to provide MapReduce services for their processing needs. 
They may have datasets that can’t fit on a single machine, have time constraints that are 
impossible to satisfy with a small number of machines, or need to rapidly scale the computing 
power applied to a problem due to varying input set sizes. You will have your own unique rea-
sons for running MapReduce applications.

To do your job effectively, you need to understand all of the moving parts of a MapReduce 
cluster and of the Hadoop Core MapReduce framework. This chapter will raise the hood and 
show you some schematics of the engine. This chapter will also provide examples that you can 
use as the basis for your own MapReduce applications.

Requirements for Successful MapReduce Jobs
For your MapReduce jobs to be successful, the mapper must be able to ingest the input and 
process the input record, sending forward the records that can be passed to the reduce task or 
to the final output directly, if no reduce step is required. The reducer must be able to accept 
the key and value groups that passed through the mapper, and generate the final output of this 
MapReduce step.

The job must be configured with the location and type of the input data, the mapper class 
to use, the number of reduce tasks required, and the reducer class and I/O types.

The TaskTracker service will actually run your map and reduce tasks, and the JobTracker 
service will distribute the tasks and their input split to the various trackers.

The cluster must be configured with the nodes that will run the TaskTrackers, and with 
the number of TaskTrackers to run per node. The TaskTrackers need to be configured with 
the JVM parameters, including the classpath for both the TaskTracker and the JVMs that will 
execute the individual tasks.

There are three levels of configuration to address to configure MapReduce on your cluster. 
From the bottom up, you need to configure the machines, the Hadoop MapReduce frame-
work, and the jobs themselves.

We’ll get started with these requirements by exploring how to launch your MapReduce jobs.
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Tip A Hadoop job is usually part of a production application, which may have many steps, some of 
which are MapReduce jobs. Hadoop Core, as of version 0.19.0, provides a way of optimizing the data 
flows between a set of sequential MapReduce jobs. This framework for descriptively and efficiently 
running sequential MapReduce jobs together is called chaining, and uses the  and the 

, as discussed in Chapter 8. An alternative is the cascading package, available from 
.

Launching MapReduce Jobs
Jobs within a MapReduce cluster can be launched by constructing a  object (details on 
the  object are provided in this book’s appendix) and passing it to a  object:

You can launch the preceding example from the command line as follows:

The optional  specifications add JARs for your job. The assumption 
is that  is in the .

For this to be successful requires a considerable amount of runtime environment setup. 
Hadoop Core provides a shell script, , which manages the setup for a job. Using this 
script is the standard and recommended way to start a MapReduce job. This script sets up the 
process environment correctly for the installation, including inserting the Hadoop JARs and 
Hadoop configuration directory into the classpath, and launches your application. This behav-
ior is triggered by providing the initial command-line argument  to the  script.

Hadoop Core provides several mechanisms for setting the classpath for your application:

up a fixed base classpath by altering , via the 
 environment variable (on all of your machines) or by setting that 

environment variable in the runtime environment for the user that starts the Hadoop 
servers.

run your jobs via the  command and supply a  argu-
ment with a list of JARs.

 object provides a way to add files or archives to your runtime 
classpath.
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Tip The  variable may also be used to specify non-classpath parameters to 
the child JVMs. In particular, the  variable specifies the path for shared libraries if your 
application uses the Java Native Interface (JNI). If your application alters the job configuration parameter 

, it is important to ensure that the JVM memory settings are reset or still present, 
or your tasks may fail with out-of-memory exceptions.

The advantage of using the  and  is that resources, such as JAR 
files, do not have to already exist on the TaskTracker nodes. The disadvantages are that the 
resources must be unpacked on each machine and it is harder to verify which versions of the 
resources are used.

When launching an application, a number of command-line parameters may be provided. 
Table 5-1 lists some common command-line arguments. The class 

 actually handles the processing of Table 5-1 arguments.

Table 5-1. Hadoop Standard Command-Line Arguments

Flag Description

  A comma-separated list of JAR files to add to the classpath to the job being launched 
and to the map and reduce tasks run by the TaskTrackers. These JAR files will be 
staged into HDFS if needed and made available as local files in a temporary job area 
on each of the TaskTracker nodes.

  A comma-separated list of archive files to make available to the running tasks via the 
distributed cache. These archives will be staged into HDFS if needed.

  A comma-separated list of files to make available to the running tasks via the distrib-
uted cache. These files will be staged into HDFS if needed.

  Override the configuration default file system with the supplied URL, the parameter 
.

  Override the configuration default JobTracker with the supplied , the 
parameter .

  Use this configuration in place of the  and 
.

  Supply an additional job configuration property in  format. This argument 
may be provided multiple times. There must be whitespace between the  and the 

.

You can use  to launch an application, as follows:

When  is used, the main method of  is 
invoked by the JVM, with all of the remaining command-line arguments. The  in turn 
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uses the class  to process the arguments, as 
described in Table 5-1.

There are two distinct steps in the argument processing of jobs submitted by the 
 script. The first step is provided by the framework via the . The arguments 

after  are processed by the , per Table 5-1. The first argument not in the set rec-
ognized by the  must be the path to a JAR file, which is the job JAR file. If the job JAR 
file contains a main class specification in the manifest, that class will be the main class called 
after the first step of argument processing is complete. If the JAR file does not have a main 
class in the manifest, the next argument becomes required, and is used as main class name. 
Any remaining unprocessed arguments are passed to the main method of the main class as the 
arguments. The second step is the processing of the remaining command-line arguments by 
the user-specified main class.

Using Shared Libraries
Jobs sometime require specific shared libraries. For example, one of my jobs required a shared 
library that handled job-specific image processing. You can handle this in two ways:

the shared library via the  object. For example, using the 
command-line options  would make  available in 
the current working directory of each task. (The  object is discussed 
shortly, in the “Using the Distributed Cache” section.)

loader path  include the installation directory. The task JVM working 
directory is part of the  for a task, and any file that is symbolic-linked 
may be loaded by the JVM. 

Caution If you are manually loading shared libraries, the library name passed to 
 must not have the trailing .  first calls 

 and attempts to load the results. This can result in library load failures that are  
hard to diagnose.

MapReduce-Specific Configuration for 
Each Machine in a Cluster
For simplicity and ease of ongoing maintenance, this section assumes identical Hadoop Core 
installations will be placed on each of the machines, in the same location. The cluster-level 
configuration is covered in Chapter 3.

The following are the MapReduce-specific configuration requirements for each machine 
in the cluster:
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-
nate, HttpClient, Commons Lang, and so on.

from a configuration management application, which you will also need to deploy to 
each machine.

RAM required to run your tasks.

 file should have the set of machines to serve as TaskTracker nodes. 
You may manually start individual TaskTrackers by running the command 

, but this is not a recommended practice for 
starting a cluster.

The  script has a section for providing custom JVM parameters for the dif-
ferent Hadoop Core servers, including the JobTracker and TaskTrackers. As of Hadoop 0.19.0, 
the classpath settings are global for all servers. The  file may be modified and 
distributed to the machines in the cluster, or the environment variable  
may be set with JVM options before starting the cluster via the  command or 

 command. The environment variable  may be set 
to provide per TaskTracker JVM options. It is much better to modify the file, as the changes are 
persistent and stored in a single Hadoop-specific location.

When starting the TaskTrackers via the  scripts, the environment variable 
 may be set in the  file in the MapReduce  direc-

tory on the TaskTracker nodes, or the value may be set in the login shell environment so that 
the value is present in the environment of commands started via . The  scripts 
will  to each target machine, and then run the  
command.

Using the Distributed Cache
The  object provides a programmatic mechanism for specifying the 
resources needed by the mapper and reducer. The job is actually already using the 

 object to a limited degree, if the job creates the  object with a class as 
an argument: . You may also invoke your MapReduce program 
using the  script and provide arguments for , , or .

The downloadable code for this book (available from this book’s details page on the 
Apress web site, ) includes several source files for the  
examples: , , and .

Caution The paths and URIs for  items are stored as comma-separated lists of 
strings in the configuration. Any comma characters in the paths will result in unpredictable and incorrect 
behavior.
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Adding Resources to the Task Classpath
Four methods add elements to the Java classpath for the map and reduce tasks. The first three 
in the following list add archives to the classpath. The archives are unpacked in the job local 
directory of the task. You can use the following methods to add resources to the task classpath:

: Sets the user JAR for the MapReduce job. It is on the  
object, but it manipulates the same configuration keys as the . The file 

 will be found, and if necessary, copied into the shared file system, and the full path 
name on the shared file system stored under the configuration key .

: Determines the JAR that contains the class  and 
calls  with that JAR.

: Adds 
an archive path to the current set of classpath entries. This is a static method, and the 
archive (a zip or JAR file) will be made available to the running tasks via the classpath 
of the JVM. The archive is also added to the list of cached archives. The contents will 
be unpacked in the local job directory on each TaskTracker node. The archive path 
is stored in the configuration under the key , and the 
URI constructed from  is stored under the key 

. If the path component of the URI does not exactly equal 
,  will not be placed in the classpath of the task correctly.

Caution The  path must be on the JobTracker shared file system, and must be an absolute 
path. Only the path  is correct;  
will fail, as will  or .

: Adds a file 
path to the current set of classpath entries. It adds the file to the cache as well. This is a 
static method that makes the file available to the running tasks via the classpath of the 
JVM. The file path is stored under the configuration key , 
and the URI constructed from  is stored under the key 

. If  is not exactly equal to the path portion of the constructed 
URI,  will not be added to the classpath of the task correctly.

Caution The  path added must be an absolute path on the JobTracker shared file system, and be 
only a path.  is correct;  will fail, as will 

 or .
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Distributing Archives and Files to Tasks
In addition to items that become available via the classpath, two methods distribute archives 
and individual files:  and 

. Local file system copies of 
these items are made on all of the TaskTracker machines, in the work area set aside for this job.

Distributing Archives 
The  method will add an 
archive to the list of archives to be distributed to the jobs. The URI must have an absolute path 
and be on the JobTracker shared file system.

If the URI has a fragment, a symbolic link to the archive will be placed in the task working 
directory as the fragment. The URI  will result in 
a symbolic link  in the task working directory that points to the local file system location 
that  was unpacked into at task start. The archive will be unpacked into the local work-
ing directory of the task.

The URI will be stored in the configuration under the key .

Distributing Files
This  method will make a copy 
of the file  available to all of the tasks, as a local file system file. The URI must be on the 
JobTracker shared file system.

If the URI has a fragment, a symbolic link to the URI fragment will be created in the 
JVM working directory that points to the location on the local file system where the  was 
unpacked into at task start. The directory where  stores the local copies of 
the passed items is not the current working directory of the task JVM. This allows the items 
to be referenced by names that do not have any path components. In particular, executable 
items may be referenced as . 

To pass a script via the distributed cache, use 
. To pass a script so that it may be 

invoked via , use 
.

The URI is stored in the configuration key .

Accessing the DistributedCache Data
Three methods find the locations of the items that were passed to the task via the  
object: , 

, and .

Looking Up Names
The  method will look up  in the classpath. If  has a 
leading slash, this method will search for it in each location in the classpath, and return the URI.

If the job passed a file into  via the  command or the 
 method, a  call of the 

file name component, with a leading slash, will return the URI.
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Note The standard search rules for resources apply. The cache items will be the last items in the class-
path. This does not appear to work for files that are added via . 
The full path is available via the set of paths returned by .

The  method 
actually stores the JAR information into the configuration. In the following example, 

 builds a JAR file with ten files in it, in the default file system (HDFS in this 
case).  returns the absolute path. 

Any file that is in the JAR may be accessed via the  method of the configura-
tion object. If there were a file  in the JAR, the call  would 
return the URL of the resource. The call  
would return an  that, when read, would provide the contents of  from 
the JAR.

Looking Up Archives and Files 
The  method returns a 
list of the archives that were passed via . The paths will be in the task local 
area of the local file system. Any archive passed via the command-line  and  
options, or the methods  and 

 and the  line, will have its path returned by this call.
It is possible that the file name portion of your archive will be changed slightly. 

 provides the following method to help with this situation: 

This takes an original archive path and returns the possibly altered file name component.
The  method returns 

the set of localized paths for files that are passed via  and 
 and the command-line option . The file name 

portions of the paths may be different from the original file name.

Finding a File or Archive in the Localized Cache
The  object may change the file name portion of the files and archives it 
distributes. This is usually not a problem for classpath items, but it may be a problem for non-
classpath items. The  method, described in Table 5-2 provides a 
way to determine what the file name portion of the passed item was changed to. In addition to 
the file name portion, the items will be stored in a location relative to the working area for the 
task on each TaskTracker. Table 5-2 lists the methods provided in the downloadable code that 
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make working with the  object simpler. These methods are designed to be 
used in the mapper and reducer methods.

Table 5-2. Utility Methods Provided in the Examples for Working with the DistributedCache 
Object

Method Description

  Returns the actual name  
will use for the passed-in .

  Returns the actual path on the current ma-
chine of the archive  that was passed via 

.

  Returns the actual path on the current ma-
chine of the file  that was passed via 

.

  Returns the actual path on the current ma-
chine of the archive  that was passed via 

.

  Returns the actual path on the current 
machine of the file  that was passed via 

.

Configuring the Hadoop Core Cluster Information
The  object provides two basic and critical ways for specifying the default file system: 
the URI to use for all shared file system paths, and the connection information for the Job-
Tracker server. These two items are normally specified in the  file, but 
they may be specified on the command line or by setting the values on the  object.

Setting the Default File System URI 
The default file system URI is normally specified with the  setting in the 

 file, as it is cluster-specific. The value will be . 
The  portion is optional and defaults to , as of Hadoop 0.18

Note The default value for the file system URI is , which stores all files on the local file system. 
The file system that is used must be a file system that is shared among all of the nodes in the cluster. 



CHAPTER 5   MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS136

The Hadoop tools, examples, and any application that uses the  
class to handle command-line arguments will accept a  
command-line argument pair to explicitly set the  value in the configuration. 
This will override the value specified in the  file.

Here’s a sample command line for listing files on an explicitly specified HDFS file system:

You can also use the  object to set the default file system:

Setting the JobTracker Location 
The JobTracker location is normally specified with the  setting in the 

 file, as it is cluster-specific. The value will be . 
Through Hadoop 0.19, there is not a standard for the . Many installations use a port one 
higher that the HDFS port.

Note The default value for the JobTracker location is , which will result in the job being executed 
by the JVM that submits it. The value  is ideal for testing and debugging new MapReduce jobs. It is 
important to ensure that any required Hadoop configuration files are in the classpath of the test jobs.

Here’s a sample command line explicitly setting the JobTracker for job control for listing 
jobs:

And here’s how to use the  object to set the JobTracker information:

The Mapper Dissected
All Hadoop jobs start with a mapper. The reducer is optional. The class providing the map 
function must implement the  interface, which in turn 
requires the interfaces  and 

. The Hadoop framework provides  
from which to derive mapper and reducer classes. The  and  



CHAPTER 5   MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS 137

implementations are empty methods. In the utilities supplied with this book’s download-
able code is , which provides more useful 
implementations.

Note The interface  will be replaced with  in 
a later release.

This section examines the sample mapper class , which is avail-
able with the rest of the downloadable code for this book. When run as a Java application, this 
example accepts all of the standard Hadoop arguments and may be run with custom bean 
context and definitions:

where:

 is the standard Hadoop program invocation. 

 speci-
fies the JAR file to use and the main class to run.

 and  spec-
ify that the string  is stored in the configuration under the key 

, and that the string  is stored in the configuration under 
the key . 

 causes the file  to be copied into HDFS, and then 
unpacked and made available in the working directory of each task run by the job. The 
working directory is in the task classpath.  may have a directory path 
component, and not be just a stand-alone file name. The path and file name provided 
must be a path that can be opened from the current working directory.

Note If you are using the value  as the value of the  configuration key, 
using the  object is less effective, as the task cannot change working directories.

, which must be the last argument, causes the output directory to be 
deleted before the job is started. This is convenient when running the job multiple 
times.
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Mapper Methods
For the mapper, the framework will call three methods: 

 method, defined in the  interface

 method, defined in the  interface

 method, defined in the  interface

The following sections discuss these methods in detail.

Note The framework uses the static method 
 to create instances of objects that need a copy of 

the configuration. This will create the instance using the no-argument constructor. If the class is an instance 
of ,  will call the  method with the supplied configuration. If the class is 
an instance of ,  will call the  method. Any exceptions that are 
thrown during the construction or initialization of the instance are rethrown as .

The configure() Method
The  method, defined in 

, is called exactly one time per map task as part of the initialization of the 
 instance. If an exception is thrown, this task will fail. The framework may attempt to 

retry this task on another host if the allowable number of failures for the task has not been 
exceeded. The methods  and  
control the number of times a map task will be retried if the task fails. The default is four times.

It is considered good practice for any  implementation to declare a member vari-
able that the  method uses to store a reference to the passed-in  object. 
The  method is also used for loading any Spring application context or initializing 
resources that are passed via .

Listing 5-1 shows the  method used in  (the example 
available with the downloadable code for this chapter).

Listing 5-1. configure Method from SampleMapperRunner.java
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In this example,  is the map output key type, which defaults to the reduce output key 
type, which defaults to .  is the map output value key type, which defaults to 
the reduce output value type, which defaults to . 

This  method saves a copy of the  object  and  into 
member variables. This method also instantiates a local instance of the key and value classes, 
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to be used during the  method calls. By using the  method on the , you can 
take different actions for map and reduce tasks in the  and  methods. This 
becomes very useful when a single class provides both a map method and a reduce method.

The map( ) Method
A call to the 

 method, defined in , will 
be made for every record in the job input. No calls will be made to the  method in an 
instance before the  method completes.

If the job is configured for running multithreaded map tasks, as follows, there may be 
multiple simultaneous calls to the  method.

When running multithreaded, each  call will have a different key and value object. 
The output and reporter objects are shared. The default number of threads for a multithreaded 
map task is ten.

The contents of the key object and the contents of the value object are valid only during 
the  method call. The framework will reset the object contents with the next key/value 
pair prior to the next call to .

The class converting the input into records is responsible for defining the types of  and 
. The standard textual input format, , defines  and  to be of type .

 and  are defined by the  and 
 methods. The types of  and  default to the classes set for 

the reduce key and value output classes. The reduce key and value output classes are set by 
 and . The defaults 

for  and  are  and , respectively. You can explicitly configure the map 
output key and value classes, as follows:

If a map output class is set, the corresponding reduce input class is also set to the class. If 
the map output key class is changed to , the ’s key type will be 

.

The close() Method
The  method, defined in , is called one time after the last call 
to the  method is made by the framework. This method is the place to close any open 
files or perform any status checking. Unless your  method has saved a copy 
of the  object, there is little interaction that can be done with the framework. The 

 method example in Listing 5-2 checks the task status based on the ratio of excep-
tions to input keys. 
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Listing 5-2. close Method from SampleMapperRunner.java

The  method in Listing 5-2 will report success or failure status back to the frame-
work, based on an examination of the job counters. It assumes that the  method reported 
an exception under the counter, , in the counter group , and the 
number of keys received is in the counter, , in the counter group .

If there are no exceptions, the method will report the task status as “Complete Success.” 

equals the key count, the status is set to “Total Failure.” 
This example also logs to counters with the values received from the Spring initialization. 

I found the Spring value-based counters useful while working out how to initialize map class 
member variables via the Spring Framework, as described after the discussion of the mapper 
class declaration and member fields.
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Mapper Class Declaration and Member Fields
It is a best practice to capture the  object passed in the  method into a 
member variable. It is also a good practice to instantiate member variables, or thread local 
variables, for any key or value that would otherwise be created in the body of the  
method. Having the  available is also useful, as it is easy to determine if this is 
the map phase or the reduce phase of a job.

It is convenient to capture the output collector and the reporter into member fields so that 
they may be used in the  method. This has a downside in that they can be captured 
only in the  method, requiring extra code in that inner loop. 

Listing 5-3 shows an example that declares a number of local variables, which are initial-
ized by the  method for use by the  and  methods.

Listing 5-3. Class and Member Variable Declarations from SampleMapperRunner.java
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Initializing the Mapper with Spring
Many installations use the Spring Framework to manage the services employed by their appli-
cations. One of the more interesting issues is how to use Spring in environments where Spring 
does not have full control over the creation of class instances. Spring likes to be in full control 
of the application and manage the creation of all of the Spring bean objects. In the Hadoop 
case, the Hadoop framework is in charge and will create the object instances. The examples in 
this section demonstrate how to use Spring to initialize member variables in the mapper class. 
The same techniques apply to the reducer class. 

Listing 5-4 shows the bean file used in the Spring example. The file 
 in the downloadable examples  directory is the actual file used.

Listing 5-4. Simple Bean Resource File for the Spring-Initialized Task
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Creating the Spring Application Context
To create an application context, you need to provide Spring with a resource set from 
which to load bean definitions. Being very -oriented, I prefer to pass the names of 
these resources, and possibly the resources themselves, to my tasks via the  and 

 objects.
The example in Listing 5-5 extracts the set of resource names from the  object, 

and if not found, will supply a default set of resource names. This follows the Hadoop style of 
using comma-separated elements to store multiple elements in the configuration. The set of 
resources names are unpacked and passed to the Spring Framework. Each of these resources 
must be in the classpath, which includes the task working directory.

At the very simplest, the user may specify the specific Spring configuration files on the 
command line via the  argument, when the  is in use. The map-
per class will need to determine the name of the file passed in via the command line. For the 
example, set up the Spring initialization parameters on the application command line as 
follows:

Note In the command-line specification, the  argument must come 
after the main class reference to be stored in the job configuration. If it comes before the  argument, it 
will become a Java system property.

The example in Listing 5-5 copies , , and  from 
the local file system into HDFS, and then copies them to the task local directory and cre-
ates symbolic links from the local copy to the task working directory. The configuration 
parameter  tells the map task which bean file to load. In the example, 

 looks up the configuration entry  to determine which 
bean files to use when creating the application context.

Listing 5-5. Extracting the Resource File Names from the JobConf Object and Initializing the 
Spring Application Context (from utils.Utils.java)
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Using Spring to Autowire the Mapper Class
Once the Spring application context has been created, the task may instantiate beans. The 
confusing issue is that the mapper class has already been instantiated, so how can Spring be 
forced to initialize/autowire that class? 

Accomplishing this autowiring requires two things. The first is that the bean definition 
to be used must specify lazy initialization, to prevent Spring from creating an instance of the 
bean when the application context is created. The second is to know the bean name/ID of the 
mapper class.
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The example in Listing 5-6 makes some assumptions about how application contexts and 
task beans are named, and can be easily modified for your application.

Listing 5-6. Example of a Spring Task Initialization Method
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In Listing 5-6, a base name is constructed for looking up information in the configuration 
via the following: 

The example builds a context file name key, which will be  in the 
case of a map, to look up the application context information in the configuration. If a value 
is found, it is treated as a comma-separated list of bean resource files to load. The application 
context is loaded and saved in the member variable :

A default bean file is used if no value is found. In this example, the file is 
.

A bean name key , with a default value of , is looked up 
in the configuration. This is the bean that will be used to configure the task. The following line 
constructs the bean name to use: 

An autowire-capable bean factory is extracted from the application context via the 
following: 

The following line actually causes Spring to initialize the task:

The code must ensure that Spring did not return a delegator object when it was initializing 
the task from the bean definition:

Note This example does not handle the case where Spring returns a delegator object for the task. To 
handle this case, the  method would need to be redirected through the delegated object.

Partitioners Dissected
A core part of the MapReduce concept requires that map outputs be split into multiple 
streams called partitions, and that each of these partitions is fed to a single reduce task. The 
reduce contract specifies that each reduce task will be given as input the fully sorted set of keys 
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and their values in a particular partition. The entire partition is the input of the reduce task. 
For the framework to satisfy this contract, a number of things have to happen first. The out-
puts of each map task are partitioned and sorted. The partitioner is run in the context of the 
map task.

The Hadoop framework provides several partitioning classes and a mechanism to specify 
a class to use for partitioning. The actual class to be used must implement the 

 interface, as shown in Listing 5-7. The piece that provides a parti-
tion number is the  method: 

Note that both the key and the value are available in making the partition choice.

Listing 5-7. The Partitioner Interface in Hadoop 0.19.0

The key and value will be streamed into the partition number that this function returns. 
Each key/value pair output by the  method has the partition number determined and is 
then written to that map local partition. Each of these map local partition files is sorted in key 
order by the class returned by the  method.
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For each reduce task, the framework will collect all the reduce task’s partition pieces 
from each of the map tasks and merge-sort those pieces. The results of the merge-sort are 
then fed to the  method. The merge-sort is also done by the class returned by the 

 method.
The output of a reduce task will be written to the  file, where the  corre-

sponds to the partition number.
The Hadoop framework provides the following partitioner classes:

, which is the default

, which provides a way to partition by range

, which provides a way to partition by parts of the key

The following sections describe each of these partitioners.

The HashPartitioner Class
The default partitioner, , simply uses the hash 
code value of the key as the determining factor for partitioning. Listing 5-8 shows the actual 
code from the default partitioner used by Hadoop. The partition number is simply the hash 
value of the key modulus the number of partitions.

Listing 5-8. The HashCode Partitioner from Hadoop 0.19.0

The hash value is converted to a positive value, , 
to ensure that the partition will be a positive integer. The resulting number has modulus the 
number of reduce tasks applied, , and the result returned. This produces a 
positive number between 0 and one less than the number of partitions. 

The TotalOrderPartitioner Class
The , , relies 
on a file that provides the class with range information. With this information, the partitioner 
is able to determine which range a key/value pair belongs in and route it to the relevant 
partition.
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Note The  grew out of the  example package. Jim Gray introduced 
a contest called the TeraByteSort, which was a benchmark to sort one terabyte of data and write the results 
to disk. In 2008, Yahoo! produced a Hadoop version of the test that completed in 209 seconds (

). The code is included with the Hadoop examples as 
. The class file is .

Building a Range Table
The  class is used to generate a range partition-
ing file for arbitrary input sets. This class will sample the input to build an approximate range 
table.

This sampling strategy will take no more than the specified number of samples total from 
the input. The user may specify a maximum number of input splits to look in as well. The 
actual number of records read from each input split varies based on the number of splits and 
the number of records in the input split.

The Hadoop framework controls how the input is split based on the number of input files, 
the input format, the input file size, and the minimum split size and the HDFS block size. Let’s 
look at a few examples of running  from the command line.

In the following example, the argument set  will sample a total of 
1,000 input records out of no more than 10 input splits. 

If there are 10 or more input splits, each of which has more than 100 records, the first 100 
records from each input split will be used for samples. The input is loaded from the directory 

, and is parsed by the  class. The range file is written to , 
and the argument set  sets up the output for a job with 15 output partitions. The input 
splits are examined in the order in which they are returned by .

The next example takes 1,000 samples from roughly 10 input splits. The input splits are 
sampled in a random order, and the records from each split read are sequentially. 

Each record has a 0.1% chance of being selected. The  argument 
set specifies the percentage, the total samples, and the maximum splits to sample. If the 1,000 
samples are not selected after processing the recommended number of splits, more splits will 
be sampled. The index is set up for 15 reduce tasks, and the input comes from . The index 
is written to . The splits to examine are selected randomly.

In the final example, the argument set  will examine no more than 
10 input splits and take one record in 100 from each split. 
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The frequency parameter defines how many records will be sampled. For a frequency of 
, as in this example, one record in 10 will be used. For a frequency of , one record in 

100 will be used. The index is set up for 15 reduce tasks. The input comes from , and the 
index is written to .

Using the TotalOrderPartitioner
Once an index is generated, a job may be set up to use the  and the 
index. Three configuration settings are required for this to work:

 in the  object via 
.

: 

keys is the correct sorting, the Boolean field  
should be set to  in the configuration. If the binary representation of the keys is not 
the correct sort, the Boolean field  must be set 
to . This Boolean field is set as follows:

  If the binary representation of the key is the correct sort order, a binary trie (an 
ordered tree structure; see ) will be constructed 
and used for searching; otherwise, a binary search based on the output key compara-
tor will be used.

Here’s an example of how to put all this together:

In this example,  is the input file, and  is the index file. The  file was set 
up for 15 reduce tasks, and requires the comparator rather than binary comparison.

The KeyFieldBasedPartitioner Class
The , , 
provides the job with a way of using only parts of the key for comparison purposes. The pri-
mary concept is that the keys may be split into pieces based on a piece separator string. Each 
piece is then numbered from 1 to N, and each character of each piece numbered from 1 to M.
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The separator string is defined by the configuration key  
and defaults to the tab character. It may be set to another string, , as follows: 

This is functionally equivalent to using the  call on 
each key and treating the resulting array as if indexes were one-based instead of zero-based.

If the separator is  and the key is , the pieces will be ) , ) , ) .
Referencing individual characters within the pieces is also one-based rather than zero-

based, with the index 0 being the index of the last character of the key part. For the first key 
piece in the preceding example, the string , the characters will be ) , ) , ) , ) . Note 
that both  and  refer to , which is the last character of the key piece. 

Note In addition to the one-based ordinal position within the key piece, the last character of the key piece 
may also be referenced by .

The key pieces to compare are specified by setting the key field partition option, via the 
following:

The  format is very similar to the key field-based comparator. 
The Javadoc from Hadoop 0.19.0 for  provides the following 

definition:

Defines a way to partition keys based on certain key fields (also see KeyFieldBasedCom-

parator). The key specification supported is of the form -k pos1[,pos2], where, pos is of 

the form f[.c][opts], where f is the number of the key field to use, and c is the number of the 

first character from the beginning of the field. Fields and character posns are numbered 

starting with 1; a character position of zero in pos2 indicates the field’s last character. If 

‘.c’ is omitted from pos1, it defaults to 1 (the beginning of the field); if omitted from pos2, 

it defaults to 0 (the end of the field).

In plain English,  selects piece  for the comparison, and  selects the pieces 
from  through . In the preceding example,  selects  as the portion of the key to use 
for comparison, and  selects  as the portion of the key to use for comparison. 

There is also the facility to select a start and stop point within an individual key. The 
option  is equivalent to , and selects  from the  for comparison. 

You may also span key pieces.  selects  as the comparison region from 
the sample key. It means to start with key piece 1, character 2 and end with key piece 3 charac-
ter 2.
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Note If your key specification may touch the last key piece, it is important to terminate with 
the last character of the key. Otherwise, the current code (as of Hadoop 0.19.0) will generate an 

 as it tries to use the missing separator string. In this section’s exam-
ple,  would work, but  would throw the exception.

The Reducer Dissected
The reducer has a very similar shape to the mapper. The class may provide  and 

 methods. All of the mapper good practices of saving the  object and making 
instances of the output key and output value objects apply to the reducer as well.

The key difference is in the  method. Unlike the  method, which is given a 
single key/value pair on each invocation, each  method invocation is given a key and 
all of the values that share that key.

The reducer is an operator on groups. The default is to define a group as all values that 
share a key. Common uses for reduce tasks are to suppress duplicates in datasets or to segre-
gate ranges and order output of large datasets.

In the example shown in Listing 5-9, notice that the signature of the  method 
contains an , an iterator over the values that share . The identity reducer simply 
outputs each value in the iterator.

Listing 5-9. The Identity Reducer from Hadoop Core 0.19.0

The  and  methods have the same requirements and suggested usage 
as the corresponding mapper methods.

It is generally recommended that you do not make a copy of all of the value objects, as 
there may be very many of these objects. 
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Note In one of my early applications, I assumed that there would never be more than a small number of 
values per key. The reduce tasks started experiencing out-of-memory exceptions. It turned out that there 
were often more than 150,000 values per key!

It is possible to simulate a secondary sort/grouping of the values by setting the 
output value grouping. To do this requires the cooperation of the , 

, and . See this book’s appendix for more 
information.

By default, the input key and value types are the same as the output key and value types, 
and are set by the  and  
methods. The defaults are  and , respectively.

If the map output keys must be different, using  and 
 will also change the expected input key and value for the 

reduce task.

A Simple Transforming Reducer
Listing 5-10 shows the simple transformational reducer, 

, used in this chapter’s  example.

Listing 5-10. Transformational Reducer in SimpleReduceTransformingReducer.java
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It begins by establishing several member variables that will be used in the  
method to save object generation:

The working body of the  method is within a  block that catches s, 
and the input count, output count, and failure count are reported to the framework:

In the body of the example in Listing 5-10, each value that is passed in is examined and 
aggregated:
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Finally, the output key and value are constructed with the aggregated data:

The example that runs this reducer also uses an output grouping comparator that groups 
the records in sets of ten. The comparator  (sup-
plied with the downloadable code for this chapter) handles grouping  values in 
sets of 10, 0–9, 10–19, and so on.

The following is the core code in  that sets up the job that runs  
:

The following command will run the  job (your output will vary slightly): 
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Note how the output keys are multiples of tens. This is the result of the output value 
grouping. The actual output is the key, the average value, the number of values averaged, 
the minimum value, the maximum value, and the difference between the minimum and the 
maximum.
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Now you can print the job output (key, average, count, min, max, difference), as follows:

A Reducer That Uses Three Partitions
A variant of the  example, called  (available 
with the rest of this chapter’s downloadable code), uses three partitions, rather than just one. 
This example demonstrates how to use the  class and the  
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class, as well as some of the interesting errors that will occur if the partitioner and the 
 do not coordinate fully.

In this example, the grouping operator groups by multiples of ten in the key space. The 
 selects a random sample of the keys and creates three groups that are 

roughly even in size given the sample of keys. There is no guarantee that an entire group of 
keys will not be split into multiple partitions.

This application also requires a custom , , as the 
input key and the reduce key must be of the same type for the . In the previous 
version, the map input keys are  and the reduce input keys are . Listing 5-11 
shows the core of the , the  method.

Listing 5-11. The RecordReader.next Method of the LongLongTextInputFormat 

The code in Listing 5-12 sets up the  object for the . Note 
that natural ordering is set to . As the keys are long values, they are binary compa-
rable. The call to  computes the partitioning index and stores it in the file 

.
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Listing 5-12. TotalOrderPartition Setup, from TotalOrderSimpleReduce.java

The code in Listing 5-13 runs the  to compute and store the index in 
. The assumption here is that the  object  is already correctly set up with 

the  and . The sampling strategy is to randomly sample the records with 
a 0.1% chance that any record is chosen. No more than 100 samples and a suggested 10 input 
splits are to be read.

Listing 5-13. Running the InputSampler
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The following results show that the input for group 150 is split between partition 0 and 
partition 1, and that the group 220 is split between partition 2 and partition 3. Your results will 
differ, as random data generation and selection are occurring.

Let’s examine the reduce output data:
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Combiners
A combiner is a mini-reducer. The purpose of a combiner is to reduce the volume of data that 
must be passed to the reducer from a map task by summarizing output records that share the 
same key. A combiner must implement the  interface, and the  method of the 
combiner will be called with each output key and all of the output values that share that key. 
The output of the combiner is what will be sent over the network to the actual reduce task 
for the job or written to the final output directory, if there is no reduce task configured. The 
combiner class  method must have the same input and output key/value types as the 
reducer class.

For each call to  made by the  method, the framework will route the 
key/value pair to the applicable partition, based on the result of the  
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call. When all of the map task input has been processed, these partitions are sorted, and each 
one is passed as input to the combiner. The combiner’s  method will be called once 
for each unique key in the partition, and the values will be the set of values that share that key. 
The output of the combiner will replace that set of original map outputs, ideally with fewer 
records or smaller records. This is suitable for jobs that are producing summary information 
from a large dataset.

Caution The combiner must not change the key values, as the map outputs are not re-sorted after the 
combiner runs. The reduce phase requires the map outputs to be sorted by key.

It is common for the same class that is used in the reduce task to be used for the com-
biner. However, this practice often leads to difficult-to-diagnose problems. The combiner 
must only aggregate values, in a manner that is suitable for processing by the actual reducer. 

the reducer is modified to provide some change in the job output, and the person doing the 
modification is unaware that the reducer is also used as a combiner. It is very important that 
the combiner class not have side effects, and that the actual reducer be able to properly pro-
cess the results of the combiner.

Tip It not always simple to build a correct combiner. If a job output has problems, try running the job 
without the combiner to see if the problem persists. If your actual  method is nontrivial, do not also 
use it as a combiner; instead, write a separate object to combine the map outputs.

The classic example of using a combiner is the  
example. This MapReduce job reads a set of text input files and counts the frequency of occur-
rence of each word in the input files. The map phase outputs each word in the file as a key, 
with the count of 1. There will be one output record for each word in the file. The combiner 
will aggregate these into a set that contains one output record per unique word in the input, 
and the value is the number of times the word appeared in the input. Unless the writer has 
such a large vocabulary that no word is used more than once, the combiner will greatly reduce 
the number of records to be processed by the reduce phase.

Listings 5-14, 5-15, and 5-16 show the  setup and the  and  methods 
from the  example, The default  is , which returns 
a  key, the input line number, and a  value, which is the full line from the 
input file. The  method tokenizes the line and emits a record for each word of the input 
record, a  and the value , an . The  method simply sums the values 
and outputs the word as  and the sum of values, an . By using the  
method as a combiner, there is a large reduction in the size of each map task output.
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Listing 5-14. The JobConf Setup, from WordCount.java’s run Method

Listing 5-15. The Core of the map Method, from WordCount.java

Listing 5-16. The Core of the reduce Method, from WordCount.java

When the map task has completed and the partitions are sorted, the combiner may run 
over the partitions and aggregate values, reducing the total number of key/value pairs that 
must go over the network to the reduce task.

For example, suppose the map partition dataset originally contained the following:
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Key Value

A 1

A 1

The 1

The 1

The 1

Xylophone 1

After the combiner has completed, the map partition dataset would contain these keys 
and values:

Key Value

A 2

The 3

Xylophone 1

It is fairly simply to shoot yourself in the foot with a combiner. The combiner must not 
cause the loss of any information that is needed by the actual reducer. The classic example of 
this is a reducer that computes the average of the values for each key. If that reducer is also 
used as a combiner, the information on the number of records involved computing the aver-
age will be lost, and the reduce tasks will see only the average values for each key; the final 
result will be the average of the averages, instead of the actual average. Combiners also must 
be idempotent, as they may be run an arbitrary number of times by the Hadoop framework 
over a given map task’s output.

File Types for MapReduce Jobs
The Hadoop framework supports text files, binary (sequence) files, and map files, which are 
actually a pair of sequence files. Let’s take a closer look at each of these file types.

Text Files
The Hadoop framework supports a number of textual input files and output files. The input 
formats support transparent decompression of input files if an input file name ends in one of 
the recognized compression format suffixes ( , , , , and ).

The following formats are available for text files:
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: This class reads each line of the input split and returns a record 
composed of the line number as a  key, and the line itself as a  
value. The workhorse class that actually produces the key/value pairs is 

. There is only one tunable parameter: the configura-
tion key, , which sets the maximum number of 
characters allowed in a line. The default value is , essentially unlim-
ited. The parameter may be adjusted using the  method. For example, 

 limits the line length to 
1,204 characters. 

: This class reads each line and splits the line into a key/
value pair on a tab character. The workhorse class is 

. The separator may be configured by setting the configuration 
key . The key and value are both . If there is no 
separator found, the value will be an empty string.

: This format is ideal for using the input data as control informa-
tion. It guarantees that each input split will be N lines long, with one split being the 
remaining lines. The configuration key  con-
trols the number of lines of input per map task. The default value is . This may be 
changed using the  method. For example, 

 sets the value to . Under the covers, this uses 
 to read the input data and produce 

,  key/value pairs.

: This is an abstract class that provides a way for a single task to 
receive multiple input files as the task’s input split. This is commonly done for perfor-
mance tuning. There is substantial time involved in setting up and starting a task, as well 
as collecting the results. If the input split is small, a substantial portion of the job runtime 
may be in the setup and teardown of tasks. The developer is responsible for implementing 
the  method. The  
provides an example of a  that handles reading from multiple files.

: This is the standard textual output format. It basically calls the 
 method on each key and value, producing a single-line key  value 

ASCII newline for each output record. The  is specified by the value of the con-
figuration key , which defaults to . If the value is 

, no  and no value will be emitted. If key is ,   is emitted. 
The end-of-record character is hard-coded as an ASCII newline character. Compression is 
supported if configured.

: This format allows you to write output records to dif-
ferent files based on the key and value. The test case 

 provides a sample implementation. The Java source  
to this class is located in 

 in your Hadoop distribution. Using 
, the user has the option of interceding in the selection  

of an output file for each output key/value pair in several different ways by overriding 
different methods.
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-
put path, by setting the value of the configuration key 

, to a positive integer. The default is no components of the input 
file path are used. The value +1 worth of components from the right side of the 
input file are inserted in the output file path before the file name. This happens 
after the call to . The actual key and value param-
eters may be modified by overriding the  and  
methods.

 method. The parameter  is the original 
leaf name. The leaf name is normally the , where the  corresponds 
to the reduce ordinal number, or the map ordinal number if this is a map-only job. 
(Changing the leaf name is not commonly done.)

 method. The  
parameter is the result of . You can construct arbitrary paths 
out of the key, value, and name. This is the method commonly overridden by 
developers. The example in Listing 5-17 produces an output file name of the first 
letter of the key, a dash, and the partition number. If the key were , and the 

 were , this key/value pair would go to the file .

Listing 5-17. Simple MultipleTextOutputFormat Output File Name Generator

Caution It is critically important to minimize the number of HDFS files that are opened. HDFS, through 
at least Hadoop 0.19.0, is designed for small numbers of very large files. Opening many small files will bring 
your cluster to its knees, and may result in catastrophic failure of your job, as well as your HDFS. It is very 
easy to open hundreds of thousands of files with .

Sequence Files
Sequence files are a binary format for storing sets of serialized key/value pairs. Sequence files 
support compression, encapsulate the key and value types, and provide validity checksums. 
They are an ideal format to use for data that is expensive or complex to parse.
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The following formats are available for sequence files:

: The basic workhorse, this format supports splitting and pro-
vides the key and value types. If the input file is a map file (described in the next section), 
the data file is read.

: This format returns the raw key and value bytes. It 
returns  keys and values.

: This format returns the key and value as text. It calls the 
 method on the key and value classes and returns the key/value pair as .

: This format returns only specific records from the sequence 
file. It provides the 

 method, which supplies a class that is used to determine which records are 
returned by the  method on the reader. The  must imple-
ment the  interface and provide a method 

. Three filters are provided:

 provides the regular 
expression to filter keys.

 provides the 
way of accepting one record in  records.

 provides a way 
of selecting only those records that have an MD5 hash that is evenly divisible by 

.

: This format writes the serialized key/value records as output. 
This is the standard sequence file output. The key and value types must be specified via 
the  and  methods.

: This format writes the raw bytes. The key and value 
types must be , and these raw bytes are written as the records.

Map Files
Map files are a pair of sorted sequence files. If a map file named  is created, there will 
be a directory  in HDFS, and two files in :  and . The  sequence file 
contains the key/value pairs as records, where the records are sorted in key order. The  
sequence file is key/location information, where location is the location in  where the first 
record containing a key is located. 

Map files provide a way to find a particular key, or region of a sorted file, without having to 
read the entire file. The HBase project ( ) provides a persistent 
distributed hash table stored in HDFS, using map files as the underlying storage. 

When a map file is specified as a job input, the  file is used as the actual input. There is 
not a  class; the  class is used. The path specified 
is the path to the directory containing the  and  files.  will 
use the  file as the input source.
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Tip For best performance, it is strongly suggested that all key lookups be performed in the sort order of 
the underlying map file. HDFS is highly optimized for streaming files sequentially, and does a very poor job of 
providing low-latency access to random locations within a file.

For the , the value of the configuration key  
determines how many records are written to the  sequence file between writes to the 

 sequence file. The default is one index entry for every 128 records.
Map files provide the following methods for looking up key/value pairs.

: Resets the read position to the beginning of the file.

 : Returns the key roughly in the middle of the file.

: Reads the final key.

: Seeks to the key, or to the first key after it, if it 
does not exist.

: Reads the next key/value pair.

: Gets the value for key.

: Gets the 
closest match to the key, searching as .

: Works like the previously described   
method, unless  is —in which case the key before is returned.
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Compression
The Hadoop framework supports several types of compression and several compression for-
mats. The framework supports the gzip, zip, sometimes LZO, and bzip2 compression codecs. 
Native libraries are supplied for Linux i386 and x86_64 for gzip, zip, and LZO for some releases. 
The framework will transparently compress and uncompress most input and output files. 
Input files are uncompressed when the input file name has a suffix that maps to one of the 
known codecs, as shown in Table 5-3.

Note LZO is licensed under the GPL. It is incompatible with the Apache license and has been removed 
from some distributions. I sincerely wish that this will be resolved and that native LZO becomes a standard 
part of the Hadoop distribution.

Table 5-3. Compression Codecs and Mapped File Name Suffixes

Codec Suffix

 

 .

 

 

 

Codec Specification
The Hadoop framework supports a number of codecs, with native implementations for a 
smaller number. , , and the  (zip) have native implementa-
tions.  has a pure Java implementation.  may not be available in some 
releases due to licensing issues.  is available as of Hadoop 0.19.0.

The list of codecs is stored in the configuration under the key . In 
Hadoop 0.19, it has the following value:

If your environment requires additional codecs, the glue interface is 
. You would then add the class name to the list of codecs in 

the  value. The selection of a compression codec is a choice between 
speed and compression rate. LZO is the fastest by far, and produces files about double the size 
of gzip. The bzip2 compression is the slowest—substantially slower than gzip—and produces 
files about one half the size of gzip.
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Sequence File Compression
Sequence files are binary record-oriented files, where each record has a serialized key and seri-
alized value. The Hadoop framework supports compressing and decompressing sequence files 
transparently. 

Sequence files may be, and generally should be, compressed. The framework will trans-
parently compress at the record level or the block level. The key  
controls the record- or block-level compression for sequence files. A value of  requests 
block-level compression. A value of , the default, specifies record-level compression. A 
value of  disables compression. 

In general, block-level compression is recommended, because it provides greater data 
reduction (at the expense of individual key access). The compression overhead is less, and the 
compression ratio is much greater. For sequence files that are being used as input to a map or 
reduce phase, block-level compression is ideal. Sequence files that were written using trans-
parent compression may be divided into multiple input splits by the framework. 

Many sites will set the default to  in their  file, as follows:

Map Task Output
The intermediate map task outputs are a set of sequence files, one per reduce task. As these 
files must be transferred across the network, a low-overhead compression type, such as gzip or 

at  has some 

codecs. Table 5-4 summarizes the compression speed results. For pretty decent compression 
 provides high throughput.

Note I have spent some time running the same job with different compression codecs and  or 
 set for compression, to determine which combination gave the overall performance for the job. At 

present, this must be done manually.
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Table 5-4. Compression Timings for Hadoop Compression Codecs

 Original Compressed Compression Decompression 
Compressor Size Size Speed Speed

bzip2 8.3GB 1.1GB 2.4MB/s 9.5MB/s

gzip 8.3GB 1.8GB 17.5MB/s 58MB/s

LZO—best 8.3GB 2GB 4MB/s 60.6MB/s

LZO 8.3GB 2.9GB 49.3MB/s 74.6MB/s

Map output block-level compression may be specified by the job or in the site configu-
ration. If compressed, map output, destined for a reduce task, is always  compressed. 
Listing 5-18 provides an XML block suitable for inclusion in the  file to 
make LZO compression the default for the map task outputs. 

Listing 5-18. A hadoop-site.xml Specification for Map Output Level Compression with LZO

Listing 5-19 demonstrates configuring a cluster to always use compression for final output 
files, and if the final output file is a sequence file, to use  compression.

Listing 5-19. A hadoop-site.xml Specification for Final Output Files to be Compressed with LZO, 
and If Sequence Files, BLOCK-Compressed
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Listings 5-20 and 5-21 demonstrate specifying the compression codec and type via set-
tings on the  object.

Listing 5-20. Setting Intermediate Map Output Compression via the JobConf

Listing 5-21. Setting Final Output Compression via the JobConf

JAR, Zip, and Tar Files
The Hadoop framework knows how to unpack JAR, zip, and tar files, but this is only automati-
cally done for archives passed via the  object The class 

 provides two static methods that may be used to unpack these files:  for 
tar files and  for zip files. The archives may be unpacked only onto the native file sys-
tem, not into HDFS.

Summary
The Hadoop Core framework provides a rich set of tools to support a variety of use cases. 
As with most powerful tools, using them effectively requires training and experience. This 
chapter has provided a solid foundation for configuring jobs to run successfully and building 
classes that will actual perform the work for the job. 
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The effective use of counters in the map and reduce methods provides both the applica- 
tion writer and the organization with metrics for job performance. The  
object provides a way of distributing required data to all of the tasks, without need-
ing to have the data already available on the TaskTracker nodes. You can choose from 
a variety of input and output formats. The use of compression can greatly reduce the 
wall clock runtime of a job, as can the use of a combiner. The  
and  classes allow you to implement a secondary sort via the 

how to use , and the potential problems it can bring. It is now 
time to have fun writing MapReduce jobs!




