
C H A P T E R  2

The Basics of a MapReduce Job

This chapter walks you through what is involved in a MapReduce job. You will be able to write 
and run simple stand-alone MapReduce programs by the end of the chapter. 

The examples in this chapter assume the setup as described in Chapter 1. They should be 
explicitly run in a special local mode configuration for executing on a single machine, with no 
requirements for a running the Hadoop Core framework. This single machine (local) configu-
ration is also ideal for debugging and for unit tests. The code for the examples is available from 
this book’s details page at the Apress web site ( ). The downloadable 
code also includes a JAR file you can use to run the examples.

Let’s start by examining the parts that make up a MapReduce job.

The Parts of a Hadoop MapReduce Job
The user configures and submits a MapReduce job (or just job for short) to the framework, 
which will decompose the job into a set of map tasks, shuffles, a sort, and a set of reduce tasks. 
The framework will then manage the distribution and execution of the tasks, collect the out-
put, and report the status to the user.

The job consists of the parts shown in Figure 2-1 and listed in Table 2-1.

Table 2-1. Parts of a MapReduce Job

Part Handled By

Configuration of the job User

Input splitting and distribution Hadoop framework

Start of the individual map tasks with their input split Hadoop framework

Map function, called once for each input key/value pair User

Shuffle, which partitions and sorts the per-map output Hadoop framework

Sort, which merge sorts the shuffle output for each partition of all map  Hadoop framework 
outputs 

Start of the individual reduce tasks, with their input partition Hadoop framework

Reduce function, which is called once for each unique input key, with all of  User 
the input values that share that key 

Collection of the output and storage in the configured job output directory,  Hadoop framework 
in N parts, where N is the number of reduce tasks 
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Figure 2-1. Parts of a MapReduce job

The user is responsible for handling the job setup, specifying the input location(s), speci-
fying the input, and ensuring the input is in the expected format and location. The framework 
is responsible for distributing the job among the TaskTracker nodes of the cluster; running the 
map, shuffle, sort, and reduce phases; placing the output in the output directory; and inform-
ing the user of the job-completion status.

All the examples in this chapter are based on the file , shown in 
Listing 2-1. The job created by the code in  will read all of its textual 
input line by line, and sort the lines based on that portion of the line before the first tab char-
acter. If there are no tab characters in the line, the sort will be based on the entire line. The 

 file is structured to provide a simple example of configuring and running 
a MapReduce job. 
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Listing 2-1. MapReduceIntro.java
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Input Splitting
For the framework to be able to distribute pieces of the job to multiple machines, it needs to 
fragment the input into individual pieces, which can in turn be provided as input to the indi-
vidual distributed tasks. Each fragment of input is called an input split. The default rules for 
how input splits are constructed from the actual input files are a combination of configura-
tion parameters and the capabilities of the class that actually reads the input records. These 
parameters are covered in Chapter 6.

An input split will normally be a contiguous group of records from a single input file, and 
in this case, there will be at least N input splits, where N is the number of input files. If the 
number of requested map tasks is larger than this number, or the individual files are larger 
than the suggested fragment size, there may be multiple input splits constructed of each input 
file. The user has considerable control over the number of input splits. The number and size of 
the input splits strongly influence overall job performance.

A Simple Map Function: IdentityMapper
The Hadoop framework provides a very simple map function, called . It 
is used in jobs that only need to reduce the input, and not transform the raw input. We 
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are going to examine the code of the  class, shown in Listing 2-2, in this 
section. If you have downloaded a Hadoop Core installation and followed the instruc-
tions in Chapter 1, this code is also available in the directory where you installed it, 

.

Listing 2-2. IdentityMapper.java
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The magic piece of code is the line , which passes a key/value 
pair back to the framework for further processing. 

All map functions must implement the  interface, which guarantees that the map 
function will always be called with a key. The key is an instance of a  
object, a value that is an instance of a  object, an output object, and a reporter. For 
now, just remember that the reporter is useful. Reporters are discussed in more detail in the 
“Creating a Custom Mapper and Reducer” section later in this chapter.

Note The code for the  and  interfaces is available from this book’s details 
page at the Apress web site ( ), along with the rest of the downloadable code for 
this book.

The framework will make one call to your map function for each record in your input. 
There will be multiple instances of your map function running, potentially in multiple Java 
Virtual Machines (JVMs), and potentially on multiple machines. The framework coordinates 
all of this for you.

COMMON MAPPERS

One common mapper drops the values and passes only the keys forward:

Another common mapper converts the key to lowercase:
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A Simple Reduce Function: IdentityReducer
The Hadoop framework calls the reduce function one time for each unique key. The frame-
work provides the key and the set of values that share that key.

The framework-supplied class  is a simple example that produces one 
output record for every value. Listing 2-3 shows this class.

Listing 2-3. IdentityReducer.java
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If you require the output of your job to be sorted, the reducer function must pass the key 
objects to the  method unchanged. The reduce phase is, however, free to 
output any number of records, including zero records, with the same key and different values. 
This particular constraint is also why the map tasks may be multithreaded, while the reduce 
tasks are explicitly only single-threaded.

COMMON REDUCERS

A common reducer drops the values and passes only the keys forward:

Another common reducer provides count information for each key:
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Configuring a Job
All Hadoop jobs have a driver program that configures the actual MapReduce job and submits 
it to the Hadoop framework. This configuration is handled through the  object. The 
sample class  provides a walk-through for using the  object to config-
ure and submit a job to the Hadoop framework for execution. The code relies on a class called 

, shown in Listing 2-4, which ensures that the input and output directo-
ries are set up and ready.

Listing 2-4. MapReduceIntroConfig.java
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First, you must create a  object. It is good practice to pass in a class that is con-
tained in the JAR file that has your map and reduce functions. This ensures that the framework 
will make the JAR available to the map and reduce tasks run for your job.
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Now that you have a  object, , you need to set the required parameters for 
the job. These include the input and output directory locations, the format of the input and 
output, and the mapper and reducer classes.

All jobs will have a map phase, and the map phase is responsible for handling the job 
input. The configuration of the map phase requires you to specify the input locations and the 
class that will produce the key/value pairs from the input, the mapper class, and potentially, 
the suggested number of map tasks, map output types, and per-map task threading, as listed 
in Table 2-2.

Table 2-2. Map Phase Configuration

Element Required? Default

Input path(s) Yes   

Class to read and convert the input path elements to key/ Yes 
value pairs    

Map output key class No Job output key class

Map output value class No Job output value class

Class supplying the map function Yes   

Suggested minimum number of map tasks No Cluster default

Number of threads to run in each map task No 1

Most Hadoop Core jobs have their input as some set of files, and these files are either a 
textual key/value pair per line or a Hadoop-specific binary file format that provides serialized 
key/value pairs. The class that handles the key/value text input is . 
The class that handles the Hadoop-specific binary file is .

Specifying Input Formats
The Hadoop framework provides a large variety of input formats. The major distinctions 
are between textual input formats and binary input formats. The following are the available 
formats:

: Key/value pairs, one per line.

: The key is the line number, and the value is the line.

: Similar to , but the splits are based on N 
lines of input rather than Y bytes of input.

: An abstract class that lets the user implement an input format 
that aggregates multiple files into one split.

: The input file is a Hadoop sequence file, containing serial-
ized key/value pairs.

 and  are the most commonly used 
input formats. The examples in this chapter use , as the input files 
are human-readable. 
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The following block of code informs the framework of the type and location of the 
job input:

The line  informs the framework 
that all of the files used for input will be textual key/value pairs, one per line.

THE KEYVALUETEXTINPUTFORMAT CLASS

The  format reads a text file and splits it into records, one record per line. The 
records are further divided into key/value pairs by splitting the line at the first tab character. If there is no tab 
character in the line, the entire line is the key, and the value object will contain a zero-length string. There is 
no way to distinguish an input line that contains a single tab as the last character and the same line without a 
trailing tab character.

Suppose that an input file has the following three lines, where  is replaced by an US-ASCII horizontal 
tab character (0x09):

Your mapper would be called with the following key/value pairs:

, 

, 

The actual order in which the keys are passed to your map function is indeterminate. In a real-world 
example, the actual machine that ran the map that got a given key would be indeterminate. It is very likely, 
however, that sets of contiguous records in the input will be processed by the same map task, as each task is 
given one input split from which to work.

The input bytes are considered to be in the UTF-8 character set. As of Hadoop 0.18.2, there 
is no configurable way to change the character set interpretation of the input files handled by the 

 class. 
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Now that the framework knows where to look for the input files and the class to use to 
generate key/value pairs from the input files, you need to inform the framework which map 
function to use.

Note  The simple example in this chapter does not use the optional configuration parameters. If the map 
function needs to output a different key or value class than the job output, those classes may be set here. In 
addition, Hadoop supports threading for map functions. This is ideal if the map function is not able to fully 
utilize the resources allocated for the map task. A simple case of where this might be beneficial is a map 
task that performs DNS lookups on the IP addresses in a server log.

Setting the Output Parameters
The framework requires that the output parameters be configured, even if the job will not 
produce any output. The framework will collect the output from the specified tasks (either the 
output of the map tasks for a MapReduce job that did not include reduce tasks or the output 
of the job’s reduce tasks) and place them into the configured output directory. To avoid issues 
with file name collisions when placing the task output into the output directory, the frame-
work requires that the output directory not exist when you start the job.

In our simple example, the  class handles ensuring that the output 
directory does not exist and provides the path to the output directory. The output parameters 
are actually a little more comprehensive than just the setting of the output path. The code will 
also set the output format and the output key and value classes.

The  class is the functional equivalent of a . It implements the 
 interface, which is necessary for keys, and the  interface (which is 

actually a subset of ), which is necessary for values. Unlike ,  is 
mutable, and the  class has some explicit methods for UTF-8 byte handling. 

The key feature of a  is that the framework knows how to serialize and deserial-
ize a  object. The  adds the  interface so the framework 
knows how to sort the  objects. The interface references for 

 and  are shown in Listings 2-5 and 2-6.
The following code block provides an example of the minimum required configuration for 

the output of a MapReduce job:
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The 
 

setting is familiar from the input example discussed earlier in the chapter. The 
 and  settings 

are new. These settings inform the framework of the types of the key/value pairs to expect for 
the reduce phase. By default, these classes will also be used to set the values the framework 
will expect from the map output. Unsurprisingly, the method to set the output key class for the 
map output is . To set the 
output value class, the method is .

Listing 2-5. WritableComparable.java
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Listing 2-6. Writable.java
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Configuring the Reduce Phase
To configure the reduce phase, the user must supply the framework with five pieces of 
information:

output

The input and output key and value types, as well as the output file type, are the same as 
those covered in the previous “Setting the Output Parameters” section. Here, we will look at 
setting the number of reduce tasks and the reducer class.
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The configured number of reduce tasks determines the number of output files for a job 
that will run the reduce phase. Tuning this value will have a significant impact on the overall 
performance of your job. The time spent sorting the keys for each output file is a function of 
the number of keys. In addition, the number of reduce tasks determines the maximum num-
ber of reduce tasks that can be run in parallel.

The framework generally has a default number of reduce tasks configured. This value is 
set by the  parameter, which defaults to 1. This will result in a single out-
put file containing all of the output keys, in sorted order. There will be one reduce task, run on 
a single machine that processes every key.

The number of reduce tasks is commonly set in the configuration phase of a job.

In general, unless there is a significant need for a single output file, the number of reduce 
tasks is set to roughly the number of simultaneous execution slots in the cluster. In Chapter 9, 
the class  is provided as a sample for efficiently merging multiple reduce 
task outputs into a single sorted file.

CLUSTER EXECUTION SLOTS

A typical cluster is composed of M TaskTracker machines, with C CPUs, each of which supports T threads. 
This would result in M * C * T execution slots in the cluster. In my environment, the machines typically have 
eight CPUs that support one thread per CPU, and a small cluster might have ten TaskTracker machines. This 
gives us 10 * 8 * 1 = 80 execution slots in the cluster.

If your tasks tend not to be CPU-bound, you may adjust the number of execution slots configured to opti-
mize the CPU utilization on your TaskTracker machines.

The configuration parameter  controls the maximum 
number of map tasks that will be run simultaneously on a TaskTracker node.

The configuration parameter  controls the maxi-
mum number of reduce tasks that will be run simultaneously on a TaskTracker node.

This requires tuning on a per-job basis and is a weakness in Hadoop at present, as the maximum values 
are not per-job configurable and instead require a cluster restart.

The reducer class needs to be set only if the number of reduce tasks is not zero. It is very 
common to not need a reducer, since frequently you do not require sorted output or value 
grouping by key. The actual setting of the reducer class is straightforward:
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A COMMON EXCEPTION

The framework relies on the output parameters being set correctly. One of the more common errors is to have 
each reduce task fail with an exception of the form: 

This error indicates that output key class has been defaulted by the framework, or was set incorrectly 
during the job configuration.

To correct this, use the following:

Or if your map output is not the same as your job output, use this form:

This error may occur for the value class as well: 

The corresponding  or  class methods are needed 
to correct this.

Running a Job
The ultimate aim of all your MapReduce job configuration is to actually run that job. The 

 example (Listing 2-1) demonstrates a common and simple way to run 
a job:

The method  submits the configuration information to the framework and waits 
for the framework to finish running the job. The response is provided in the  object.

The  class provides a number of methods for examining the response. Perhaps 
the most useful is .

Run  as follows (using the  file provided with this book’s 
downloadable code):
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The response should be as follows:
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Congratulations, you have run a MapReduce job.
The single output file of the reduce task in the file /  

will have a series of lines of the form . The 
first thing you will notice is that the numbers don’t seem to be in order. The code that gener-
ates the input produces a random number for the key of each line, but the example tells the 
framework that the keys are . Therefore, the numbers have been sorted as text rather than 
as numbers.
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Creating a Custom Mapper and Reducer
As you’ve seen, your first Hadoop job, in , produced sorted output, but the 
sorting was not suitable, as it sorted lexically rather than numerically, and the keys for the 
job were numbers. Now, let’s work out what is required to sort numerically, using a custom 
mapper. Then we’ll look at a custom reducer that outputs the values in a format that is easy 
to parse.

Setting Up a Custom Mapper
Sorting numerically doesn’t sound difficult. Let’s try making the output key class a 

, another class supplied by the framework:

instead of:

The class with this change is available as . Run this 
class via this command:

You will see the following in the output:

As you can see, just changing the output key class was insufficient. If you are going to 
change the output key class to a , you also need to modify the map function so 
that it outputs  keys. 

For the job to actually produce output that is sorted numerically, you must change the 
job configuration and provide a custom mapper class. This is done by two calls on the  
object:

: Informs the framework of the key class 
for map and reduce output.

: Informs the framework of 
the custom class that provides the map method that takes as input  keys and out-
puts  keys.
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A demonstration class  provides the configu-
ration for this. This class is identical to , except for these two replacement 
method calls.

Note The job configuration could also provide a custom sort option. One way to do this is to provide a 
custom class that implements  and use that as the key class. Another way is to spec-
ify a  in the job configuration via the  method on the 

 object. An example of implementing a custom comparator is provided in Chapter 9.

You also need to provide a mapper class that performs the transforma-
tion. The sample mapper class  does this. The 

 class file has a number of changes from the  
class (shown earlier in Listing 2-2). 

First, the class declaration is no longer generic; the types have been made concrete:

Notice that the code actually provides the types for the key/value pairs for input and for 
output. The original  class was completely generic. In addition, the identity 
mapper’s declaration was . In 

, the declaration is . 
The  method of  is substantially different from the 

 and introduces the use of the reporter object.

The Reporter Object
The map and reduce methods both take four parameters: the key, the value, the output collec-
tor, and the reporter. The  object provides a mechanism for informing the framework 
of the current status of your job.

The  object provides three methods:

: Provides counters that are aggregated and reported at the end of 
the job.

: Provides a status line for this map or reduce task.

: Returns information about the input source for this task. If the input 
is simple files, this can provide useful information for log messages.

Each call on the  object or the output collector provides a heartbeat to the frame-
work, informing it that the task is not deadlocked or otherwise unresponsive. If your map or 
reduce method takes substantial time, the method must make periodic calls on the  
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object methods, to inform the framework that it is still working. The framework will kill tasks 
that have not reported in 600 seconds by default.

Listing 2-6 shows the body of the  mapper that uses the 
 object.

Listing 2-6. The Reporter Object in TransformKeysToLongMapper.java
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This block of code introduces a new object, , and some best practice patterns. 
The key piece of this is the transformation of the  key to a  key.

The code in Listing 2-6 is sufficient to perform the transformation, and also includes some 
additional code for tracking and reporting.

CODE EFFICIENCY

The pattern of creating a new key object in the mapper for the transformation object is not the most effi-
cient pattern. Most key classes provide a  method, which sets the current value of the key. The 

 method uses the current value of the key, and once the  method is com-
plete, the key object or the value object is free to be reused.

If the job is configured to multithread the map method, via 
, the map method will be called by multiple threads. Extreme care must be taken in 

using the mapper class member variables. A   object could be used to ensure 
thread safety. To simplify the example, a new  is constructed. In the reduce method; there are 
no threading issues.

Object churn is a significant performance issue in a map method, and to a lesser extent, in the reduce 
method. Object reuse can provide a significant performance gain.

The Counters and Exceptions
This example includes two  blocks and several calls to the  
method. It is a good practice to wrap your map and reduce methods in a  block that catches 

 and reports on the catches.
The JobTracker, the Hadoop Core server process that manages job execution on the 

cluster, accumulates the counter values and provides a final count in the job output, as well 
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as making the instantaneous count available in the JobTracker web interface (available on 
 by default). This interface will be discussed in more detail in 

Chapter 6, which covers the setup of a multimachine cluster.
You can now run the job:

The output that reflects the counters is as follows:

The first  block handles exceptions related to 
, which may be thrown during the 

key transformation:

You expect that some of the keys may not convert correctly into  values, so you 
capture the exception. The  call tells the framework to increment a 
counter in the  group, of the name , by 1. If the counter does not already 
exist, it will be created.

In the sample input, there are no records that will cause a number format exception. 
The only counters that are accumulated are  and . 
These two counters will show up in the job output as part of the  group:
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If one or more keys caused an exception during the conversion to , the output might 
look more like this:

Note The sum of the parsed records and the number formats should equal the total records. The coun-
ters are also available via the  object, allowing for a more comprehensive check of the success 
status. The totals for your job will vary from this example.

After the Job Finishes
Once the job finishes, the framework will provide you with a filled-out  object. This 
object has information about the framework’s opinion on the success status of your job via the 

 method. The framework will report that the job was unsuccessful if it was 
unable to complete any single map task or if the job was killed. 

This generally doesn’t provide enough information to make a determination on the actual 
success. It may be that there was an exception in the map or method for every key or for most 
keys. If the map or reduce function provides job counters for these cases, your job driver will 
be able to make a better determination regarding the actual success or failure of your job.

In the sample mapper, several counters were collected under different circumstances:

: Reports the total number of input records seen.

: Reports the total number of records successfully 
parsed.

: Reports the total number of records where the 
key could not be parsed.
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: Reports the number of records that generated an 
 exception when being processed.

: Reports the counts of exceptions by type.

Examining the Counters
Once the framework fills in the  object and returns control back to the job driver, 
the driver is able to examine the values of the various counters, as well as the framework’s suc-
cess or failure status.

Making the counter values available is a multistep process.

Now that the job driver has the counters issued by the map method, a much more accu-
rate determination of success can be made.

Caution An accurate determination of success is critical. In one of my production clusters, a TaskTracker 
node was incorrectly configured. The result of this misconfiguration was that none of the computationally 
intense work could be run in the map task, and the map method would return immediately with an exception. 
As far as the framework was concerned, this machine was super fast, and it scheduled almost all of the map 
tasks on this machine. The job was successful as far as the framework was concerned, but totally unsuc-
cessful per the business rules. At that point. the pattern of checking the exception count was not part of the 
standard practice, and the failure was uncovered only when the consumer of the results noticed there were 
no valid results. Save yourself much embarrassment—collect information about the successes and failures 
in the mapper and reducer objects and check those results in your job driver.

Was This Job Really Successful?
The check for success primarily involves ensuring that the number of records output is roughly 
the same as the number of records input. Hadoop jobs are generally dealing with bulk real-
world data, which is never 100% clean, so a small error rate is generally acceptable.
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In this particular case, you would expect a small number of s but 
no other exceptions. If the total number of input records is roughly the number of parsed 
input records, and you have no unexpected exceptions, this job is a success.

Creating a Custom Reducer
The reduce method is called once for each key, and passes the key and an iterator to all of the 
map output values that share that key. The reduce task is an ideal place for summarizing data 
and for doing basic duplicate suppression.
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Note For managing duplicate suppression against a prior seen set, it is usually best to keep the prior 
seen set in either HBase (the Hadoop database) or in a sorted format, such as a Hadoop map file. If this is not 
done, then the dataset of seen records and the dataset of input records must be merged and sorted, which 
can take considerable time if either dataset is large. In the HBase case, if the input data is already sorted, the 
duplicate status of an input record can be rapidly determined. With a simple sorted seen set, map-side joins 
may be performed. HBase is discussed in Chapter 10, and map-side joins are covered in Chapters 8 and 9.

For the sample custom reducer, let’s merge the values into a comma-separated values 
(CSV) form, so you have one output line per key, with all of the values in a simple-to-parse 
format.

After your work with the custom mapper in the preceding sections, creating a custom 
reducer will seem familiar. This version is in , 
which is based on . First, the framework needs to 
be informed of the reducer class. The key piece is, as usual, to inform the framework of the 
reducer class, so add the following single line:

There have been no changes to the output classes, so no other changes are required to 
.

The class to actually perform the work is . As with the map-
per example, , you start with your class declaration, which has 
partially specified the generic types:

The reduce method doesn’t need to know the incoming value class; it requires only the 
 method to work. The reduce method does need to construct a new output value, 

and for simplicity’s sake, given this transformation, the output value is declared to be .
The actual method declaration also has the same type specification:



CHAPTER 2   THE BASICS OF A MAPREDUCE JOB 65

The framework will throw an error if the job is expecting a different output value type than 
. As with the mapper example, you have a method body that employs the 

 method to make detailed information available to the job and via the web 
interface. As a performance optimization, to reduce object churn, two class fields are declared. 
These variables are used in the  method:

The  object is used to build the CSV-style line for the output, and  is the 
actual object that is sent to the output on each  call. It is safe to declare these as class 
fields, rather than as local variables, because the individual reduce tasks are run only as single 
threads by the framework.

Note There may be multiple reduce tasks running simultaneously, but each task is running in a separate 
JVM, and the JVMs are potentially running on separate physical machines.

The  method is called with the key and an iterator to the values that share that 
key. Recall that, ideally, a reduce task will make no changes to the key, and will use that key as 
the key argument to the  method calls in the  method. The design 
goal for this  method is to output only a single row for every key, with a comma-
separated list of the values that shared that key. The core of the  method has a bit of 
boilerplate for the object churn optimizations to reset the  object, and a loop to 
process each of the values for this key:
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It is rare that a  method doesn’t have a loop that iterates over the values. It is 
good form to report on the number of values input. In this example, 

 handles the reporting.
This reducer relies on the  method of the value object, which seems rea-

sonable for a textual output job, as the framework would also be using the  
method to produce the output. The rest of the preceding code block simply builds a 
comma-separated list of values, with Excel-style CSV quoting. 

The actual output block must build a new value for the output. In this case, a class field 
 will be used. In a larger job, there may be a billion keys passed through the 

 method, and by using the class field, the amount of object churn is greatly reduced. 
In this example, there are also counters for the output records:

The value is set on the  object, using the  
statement, and the value is output using the  line. This 
example uses  as the output value class; it is acceptable to use any  as the output 
value class. If the output format is a , there is no need for a functional  
method on your object.

Note The framework serializes the key and value into the output stream during the  method, 
leaving the user free to change the objects values when the method returns.

Why Do the Mapper and Reducer Extend MapReduceBase?
The custom mapper class  and reducer class 

 both extend the class . 
This class provides basic implementations of two additional methods that are required of a 
mapper or a reducer by the framework. The framework calls the  method upon 
initializing a task, and it calls the  method when the task has finished processing its 
input split:

The configure Method
The  method is the only way to get access to the  object for your task. This 
method is where any per-task configuration and setup is done. If your application relies on 
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the Spring Framework for setup, the application context would be established here and the 
relevant beans found. 

It is very common for the developer to have a  member variable, which would be 
initialized in this method with the passed-in  object. (I prefer to issue a logging record 
with detailed information about the input split.) The  method is also the ideal 
place to open additional files that need to be read or written to during the  or  
method.

The close Method
The  method is called by the framework when all of the input-split entries have been 
processed by the applicable  or  method. It is very important to close any sup-
plemental files here to ensure that they are properly flushed to the file system. Particularly for 
HDFS, if the file is not closed, data in the last block may be lost.

The following example also makes a reporter call in the  method:

The  field was made a class instance field, via , and 
set in the  method via . In the  method, the count 
of values is kept in , and if it’s larger than the instance member field, , 

 is set to it. This enables you to output the maximum number of values that 
shared a specific key.

In this case, the overall summary value is not particularly useful, as that value is the sum 
of all of the maximum values, but the per-task value is interesting and available via the web 
interface. A more useful solution would be to maintain an additional output file and output 
the key/value counts into that file.

When you select a completed or running task through the web interface (which is on port 
50030 on the machine running the JobTracker, by default), you are presented with the counter 
summary for the job and links to detailed information about the map and reduce tasks. Each 
map and reduce task will have a link to the counters.

Using a Custom Partitioner
By default, the framework partitions your output based on the hash value of the key, using the 

 class. There are times when you need your output data partitioned differ-
ently. The standard example is a single output file where multiple output files would usually 
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result, which is handled by setting the number of reduce tasks to 1, via , 
or unsorted/unreduced output, which is handled via . If you need dif-
ferent partitioning, you have the option of setting a partitioner.

This chapter’s example has  keys. Some simple partitioner concepts could be to sort 
into odd/even or, if the minimum and maximum key values are known, to sort into key range-
based buckets. It is also possible to partition by the value. 

HOW PARTITIONING IS DONE

When the framework is performing the shuffle, each key output by the mapper is examined, and the following 
operation is performed:

The value  is the number of reduce tasks to perform. The key, if actually output by the 
reducer, will end up in the output file part , with an appropriate number of leading zeros so that 
the file names are all the same length.

The critical issues are that the number of partitions is fixed at job start time and the parti-
tion is determined in the  method of the map task. The only information the 
partitioner has is the key, the value, the number of partitions, and whatever data was made 
available to it when it was instantiated.

The partitioner interface is very simple, as shown in Listing 2-7.

Listing 2-7. The Partitioner Interface
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The  interface provides an additional  method, as the 
 class does.

Summary
This chapter explained what is involved in executing a MapReduce job. You now have a basic 
understanding of the  object and how to use it to inform the framework of the require-
ments for your jobs. 

You’ve seen how to write mapper and reducer classes, and how the  object is 
one of your best friends, because of the wonderful information it can provide about what is 
happening during the execution of your jobs. Output partitions finally make sense, and you 
have a sense of when and why you configure your job to reduce, and how many reducers you 
will use.

As a brilliant Hadoop expert, you are totally prepared to inform people of why the files 
they open in mapper or reducer classes are empty or short, because you know you need to 
close files before the framework will flush the last file system block size worth of data to disk.

In the next chapter, you’ll learn how to set up of a multimachine cluster.




