CHAPTER 2

The Basics of a MapReduce Job

This chapter walks you through what is involved in a MapReduce job. You will be able to write
and run simple stand-alone MapReduce programs by the end of the chapter.

The examples in this chapter assume the setup as described in Chapter 1. They should be
explicitly run in a special local mode configuration for executing on a single machine, with no
requirements for a running the Hadoop Core framework. This single machine (local) configu-
ration is also ideal for debugging and for unit tests. The code for the examples is available from
this book’s details page at the Apress web site (http://www.apress.com). The downloadable
code also includes a JAR file you can use to run the examples.

Let’s start by examining the parts that make up a MapReduce job.

The Parts of a Hadoop MapReduce Job

The user configures and submits a MapReduce job (or just job for short) to the framework,
which will decompose the job into a set of map tasks, shuffles, a sort, and a set of reduce tasks.
The framework will then manage the distribution and execution of the tasks, collect the out-
put, and report the status to the user.

The job consists of the parts shown in Figure 2-1 and listed in Table 2-1.

Table 2-1. Parts of a MapReduce Job

Part Handled By
Configuration of the job User

Input splitting and distribution Hadoop framework
Start of the individual map tasks with their input split Hadoop framework
Map function, called once for each input key/value pair User

Shuffle, which partitions and sorts the per-map output Hadoop framework
Sort, which merge sorts the shuffle output for each partition of all map Hadoop framework
outputs

Start of the individual reduce tasks, with their input partition Hadoop framework
Reduce function, which is called once for each unique input key, with all of User

the input values that share that key

Collection of the output and storage in the configured job output directory, Hadoop framework
in N parts, where N is the number of reduce tasks

27

28 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Provided by Hadoop
Provided by User Framework

Job Configuration .
Input Splitting &

Distribution
Input Format

\

A

v

Start of Individual
Map Tasks

Input Locations

Map Function ¢

Number of Shuffle, Partition/Sort
Reduce Tasks per Map Output
Reduce Function *
Merge Sort for
Output Map Outputs for Each

Reduce Task

Key Type \
Output ¢
Value Type Start of Individual

Reduce Tasks

Output Format ¢
Output Location \

Collection of
Final Output

Figure 2-1. Parts of a MapReduce job

The user is responsible for handling the job setup, specifying the input location(s), speci-
fying the input, and ensuring the input is in the expected format and location. The framework
is responsible for distributing the job among the TaskTracker nodes of the cluster; running the
map, shuffle, sort, and reduce phases; placing the output in the output directory; and inform-
ing the user of the job-completion status.

All the examples in this chapter are based on the file MapReduceIntro.java, shown in
Listing 2-1. The job created by the code in MapReduceIntro.java will read all of its textual
input line by line, and sort the lines based on that portion of the line before the first tab char-
acter. If there are no tab characters in the line, the sort will be based on the entire line. The
MapReduceIntro.java file is structured to provide a simple example of configuring and running

a MapReduce job.

Listing 2-1. MapReducelntro.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

package com.apress.hadoopbook.examples.ch2;

import

import
import
import
import
import
import
import
import
import
import

java.io.IOException;

org

org.
org.
org.
org.
org.
org.
org.
org.
org.

/** A very

* each record is

*
*
*
*
*
*
*
*

*/

apache.log4j.Llogger;

.apache.hadoop.io.Text;
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.
apache.hadoop.mapred.

FileInputFormat;
FileOutputFormat;
JobClient;

JobConf;
KeyValueTextInputFormat;
RunningJob;
lib.IdentityMapper;
lib.IdentityReducer;

simple MapReduce example that reads textual input where

@author Jason Venner

public class MapReduceIntro {
protected static Logger logger = Logger.getlogger(MapReduceIntro.class);

Jkk

a single line, and sorts all of the input lines into
a single output file.

The records are parsed into Key and Value using the first TAB
character as a separator. If there is no TAB character the entire
line is the Key. *

* Configure and run the MapReduceIntro job.

*

* @param args

*

*/

Not used.

public static void main(final String[] args) {
try {

/** Construct the job conf object that will be used to submit this job
* to the Hadoop framework. ensure that the jar or directory that

* contains MapReduceIntroConfig.class is made available to all of the
* Tasktracker nodes that will run maps or reduces for this job.

*/

final JobConf conf =

new JobConf(MapReduceIntro.class);

29

30 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**
* Take care of some housekeeping to ensure that this simple example
* job will run
*/
MapReduceIntroConfig.
exampleHouseKeeping(conf,
MapReduceIntroConfig.getInputDirectory(),
MapReduceIntroConfig.getOutputDirectory());

* This section is the actual job configuration portion /**

* Configure the inputDirectory and the type of input. In this case

* we are stating that the input is text, and each record is a

* single line, and the first TAB is the separator between the key

* and the value of the record.

*/

conf.setInputFormat(KeyValueTextInputFormat.class);

FileInputFormat.setInputPaths(conf,
MapReduceIntroConfig.getInputDirectory());

/** Inform the framework that the mapper class will be the
* {@link IdentityMapper}. This class simply passes the

* input Key Value pairs directly to its output, which in
* our case will be the shuffle.

*/

conf.setMapperClass(IdentityMapper.class);

/** Configure the output of the job to go to the output
* directory. Inform the framework that the Output Key
* and Value classes will be {@link Text} and the output
* file format will {@link TextOutputFormat}. The
* TextOutput format class joins produces a record of
* output for each Key,Value pair, with the following
* format. Formatter.format("%s\t%s%n", key.toString(),

* value.toString());.

*

*

*

*

*

In addition indicate to the framework that there will be
1 reduce. This results in all input keys being placed
into the same, single, partition, and the final output
being a single sorted file.
*/
FileOutputFormat.setOutputPath(conf,
MapReduceIntroConfig.getOutputDirectory());
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setNumReduceTasks(1);

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Inform the framework that the reducer class will be the {@link
* IdentityReducer}. This class simply writes an output record key,
* value record for each value in the key, valueset it receives as
* input. The value ordering is arbitrary.
*/
conf.setReducerClass(IdentityReducer.class);

logger .info("Launching the job.");
/** Send the job configuration to the framework and request that the
* job be run.

*/
final RunningJob job = JobClient.runJob(conf);
logger.info("The job has completed.");
if (!job.isSuccessful()) {
logger.error("The job failed.");
System.exit(1);
}
logger.info("The job completed successfully.");
System.exit(0);
} catch (final IOException e) {
logger.error("The job has failed due to an IO Exception”, e);
e.printStackTrace();
}
}
}
Input Splitting

For the framework to be able to distribute pieces of the job to multiple machines, it needs to
fragment the input into individual pieces, which can in turn be provided as input to the indi-
vidual distributed tasks. Each fragment of input is called an input split. The default rules for
how input splits are constructed from the actual input files are a combination of configura-
tion parameters and the capabilities of the class that actually reads the input records. These
parameters are covered in Chapter 6.

An input split will normally be a contiguous group of records from a single input file, and
in this case, there will be at least N input splits, where N is the number of input files. If the
number of requested map tasks is larger than this number, or the individual files are larger
than the suggested fragment size, there may be multiple input splits constructed of each input
file. The user has considerable control over the number of input splits. The number and size of
the input splits strongly influence overall job performance.

A Simple Map Function: IdentityMapper

The Hadoop framework provides a very simple map function, called IdentityMapper. It
is used in jobs that only need to reduce the input, and not transform the raw input. We

31

32

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

are going to examine the code of the IdentityMapper class, shown in Listing 2-2, in this
section. If you have downloaded a Hadoop Core installation and followed the instruc-
tions in Chapter 1, this code is also available in the directory where you installed it,
${HADOOP_HOME }/src/mapred/org/apache/hadoop/mapred/1ib/IdentityMapper.java.

Listing 2-2. IdentityMapper.java

/ k%

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* K K K X KX X K X K X X X X

*
~

package org.apache.hadoop.mapred.lib;
import java.io.IOException;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.MapReduceBase;

/** Implements the identity function, mapping inputs directly to outputs. */
public class IdentityMapper<K, V>
extends MapReduceBase implements Mapper<K, V, K, V> {

/** The identify function. Input key/value pair is written directly to
* output.*/
public void map(K key, V val,
OutputCollector<K, V> output, Reporter reporter)

throws IOException {

output.collect(key, val);
}

}

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The magic piece of code is the line output.collect(key, val), which passes a key/value
pair back to the framework for further processing.

All map functions must implement the Mapper interface, which guarantees that the map
function will always be called with a key. The key is an instance of a WritableComparable
object, a value that is an instance of a Writable object, an output object, and a reporter. For
now, just remember that the reporter is useful. Reporters are discussed in more detail in the
“Creating a Custom Mapper and Reducer” section later in this chapter.

Note The code for the Mapper. java and Reducer . java interfaces is available from this book’s details
page at the Apress web site (http://www.apress.com), along with the rest of the downloadable code for
this book.

The framework will make one call to your map function for each record in your input.
There will be multiple instances of your map function running, potentially in multiple Java
Virtual Machines (JVMs), and potentially on multiple machines. The framework coordinates
all of this for you.

COMMON MAPPERS

One common mapper drops the values and passes only the keys forward:

public void map(K key,
V val,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException {

output.collect(key, null); /** Note, no value, just a null */

Another common mapper converts the key to lowercase:

/** put the keys in lower case. */
public void map(Text key,
V val,
OutputCollector<Text, V> output,
Reporter reporter)
throws IOException {

Text lowerCaseKey = new Text(key.toString().toLowerCase());
output.collect(lowerCaseKey, value);

33

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A Simple Reduce Function: IdentityReducer

The Hadoop framework calls the reduce function one time for each unique key. The frame-
work provides the key and the set of values that share that key.

The framework-supplied class IdentityReducer is a simple example that produces one
output record for every value. Listing 2-3 shows this class.

Listing 2-3. IdentityReducer.java

/**

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

¥ K XK KX KX X K X XK X X X X

*
~

package org.apache.hadoop.mapred.lib;
import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.MapReduceBase;

/** Performs no reduction, writing all input values directly to the output. */
public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Writes all keys and values directly to output. */
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(key, values.next());

}

}

If you require the output of your job to be sorted, the reducer function must pass the key
objects to the output.collect() method unchanged. The reduce phase is, however, free to
output any number of records, including zero records, with the same key and different values.
This particular constraint is also why the map tasks may be multithreaded, while the reduce
tasks are explicitly only single-threaded.

COMMON REDUCERS

A common reducer drops the values and passes only the keys forward:

public void map(K key,
V val,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException {

output.collect(key, null);

Another common reducer provides count information for each key:

protected Text count = new Text();
/** Writes all keys and values directly to output. */
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {

int 1 = 0;

while (values.hasNext()) {
i++

}

count.set("" + 1);

output.collect(key, count);

35

36

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Configuring a Job

All Hadoop jobs have a driver program that configures the actual MapReduce job and submits
it to the Hadoop framework. This configuration is handled through the JobConf object. The
sample class MapReduceIntro provides a walk-through for using the JobConf object to config-
ure and submit a job to the Hadoop framework for execution. The code relies on a class called
MapReduceIntroConfig, shown in Listing 2-4, which ensures that the input and output directo-
ries are set up and ready.

Listing 2-4. MapReducelntroConfig.java

package com.apress.hadoopbook.examples.ch2;

import java.io.IOException;
import java.util.Formatter;
import java.util.Random;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.mapred.JobCont;

import org.apache.log4j.Llogger;

/** A simple class to handle the housekeeping for the MapReduceIntro
* example job.

<p>

This job explicitly configures the job to run, locally and without a
distributed file system, as a stand alone application.

</p>

<p>

The input is read from the directory /tmp/MapReduceIntroInput and
the output is written to the directory

/tmp/MapReduceIntroOutput. If the directory
/tmp/MapReduceIntroInput is missing or empty, it is created and
some input data files generated. If the directory
/tmp/MapReduceIntroOutput is present, it is removed.

</p>

X K K X KX XK X X K X X X X ¥

@author Jason Venner
*/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public class MapReduceIntroConfig {

/**

* Log4j is the recommended way to provide textual information to the user

* about the job.

*/

protected static Logger logger =
Logger.getlLogger(MapReduceIntroConfig.class);

/** Some simple defaults for the job input and job output. */
/**
* This is the directory that the framework will look for input files in.
* The search is recursive if the entry is a directory.
*/
protected static Path inputDirectory =
new Path("file:///tmp/MapReduceIntroInput”);
/**
* This is the directory that the job output will be written to. It must not
* exist at Job Submission time.
*/
protected static Path outputDirectory =
new Path("file:///tmp/MapReduceIntroOutput");

/**
Ensure that there is some input in the <code>inputDirectory</code>,

the <code>outputDirectory</code> does not exist and that this job will
be run as a local stand alone application.

The {@link JobConf} object that is required for doing file
system access.

@param inputDirectory

The directory the input will reside in.

* @param outputDirectory

ES
ES
ES
ES
* @param conf
ES
ES
ES
ES

* The directory that the output will reside in
* @throws IOException
*/

protected static void exampleHouseKeeping(final JobConf conf,
final Path inputDirectory, final Path outputDirectory)
throws IOException {
/**
* Ensure that this job will be run stand alone rather than relying on
* the services of an external JobTracker.
*/
conf.set("mapred.job.tracker", "local");

37

38 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Ensure that no global file system is required to run this job. */
conf.set("fs.default.name", "file:///");
/**
* Reduce the in ram sort space, so that the user does not need to
* increase the jvm memory size. This sets the sort space to 1 Mbyte,
* which is very small for a real job.
*/
conf.setInt("io.sort.mb", 1);
/**
* Generate some sample input if the <code>inputDirectory</code> is
* empty or absent.
*/
generateSampleInputIf(conf, inputDirectory);

/**

* Remove the file system item at <code>outputDirectory</code> if it

* exists.

*/

if (!removelf(conf, outputDirectory)) {
logger.error("Unable to remove " + outputDirectory + "job aborted");
System.exit(1);

}
}
/**
* Generate <code>fileCount</code> files in the directory
* <code>inputDirectory</code>, where the individual lines of the file
* are a random integer TAB file name.
*
* The file names will be file-N where N is between 0 and
* <code>fileCount</code> - 1. There will be between 1 and
* <code>maxLines</code> + 1 lines in each file.
*
* @param fs
* The file system that <code>inputDirectory</code> exists in.
* @param inputDirectory
* The directory to create the files in. This directory must
* already exist.
* @param fileCount
* The number of files to create.

* @param maxLines

* The maximum number of lines to write to the file.
* @throws IOException

*/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 39

protected static void generateRandomFiles(final FileSystem fs,
final Path inputDirectory, final int fileCount, final int maxLines)
throws IOException {

final Random random = new Random();
logger .info("Generating 3 input files of random data," +
"each record is a random number TAB the input file name");

for (int file = 0; file < fileCount; file++) {

final Path outputFile = new Path(inputDirectory, "file-" + file);

final String qualifiedOutputFile = outputFile.makeQualified(fs)
.toUri().toASCIIString();

FSDataOutputStream out = null;

try {
/**
* This is the standard way to create a file using the Hadoop
* Framework. An error will be thrown if the file already
* exists.
*/
out = fs.create(outputFile);

final Formatter fmt = new Formatter(out);
final int lineCount = (int) (Math.abs(random.nextFloat())
* maxLines + 1);
for (int line = 0; line < lineCount; line++) {
fmt. format ("%d\t%s%n", Math.abs(random.nextInt()),
qualifiedOutputFile);

}
fmt.flush();

} finally {
/**
* It is very important to ensure that file descriptors are
* closed. The distributed file system code can run out of file
* descriptors and the errors generated in that case are
* misleading.
*/
out.close();

40 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

This method will generate some sample input, if the
<code>inputDirectory</code> is missing or empty.

This method also demonstrates some of the basic APIs for interacting
with file systems and files. Note: the code has no particular knowledge
of the type of file system.

*

*

*

*

*

*

*

* @param conf

* The Job Configuration object, used for acquiring the

* {@link FileSystem} objects.

* @param inputDirectory

* The directory to ensure has sample files.

* @throws IOException

*/

protected static void generateSampleInputIf(final JobConf conf,
final Path inputDirectory) throws IOException {

boolean inputDirectoryExists;
final FileSystem fs = inputDirectory.getFileSystem(conf);

if ((inputDirectoryExists = fs.exists(inputDirectory))
88 lisEmptyDirectory(fs, inputDirectory)) {
if (logger.isDebugEnabled()) {

logger
.debug("The inputDirectory "
+ inputDirectory
+ " exists and is either a"
+ " file or a non empty directory");
}
return;
}
/**

* We should only get here if <code>inputDirectory</code> does not
* exist, or is an empty directory.
*/
if (!inputDirectoryExists) {
if (!fs.mkdirs(inputDirectory)) {
logger.error("Unable to make the inputDirectory "
+ inputDirectory.makeQualified(fs) + " aborting job");
System.exit(1);

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

final int fileCount = 3;
final int maxLines = 100;
generateRandomFiles(fs, inputDirectory, fileCount, maxLines);

}

/**

* bean access getter to the {@link #inputDirectory} field.
*

* @return the value of inputDirectory.

*/

public static Path getInputDirectory() {
return inputDirectory;

}

/**

* bean access getter to the {@link outputDirectory} field.
%

* @return the value of outputDirectory.

*/

public static Path getOutputDirectory() {
return outputDirectory;

}

/**
* Determine if a directory has any non zero files in it or its descendant

* directories.
*

* @param fs

* The {@link FileSystem} object to use for access.

* @param inputDirectory

* The root of the directory tree to search

* @return true if the directory is missing or does not contain at least one
* non empty file.

* @throws IOException

*/

private static boolean isEmptyDirectory(final FileSystem s,
final Path inputDirectory) throws IOException {

/**

* This is the standard way to read a directory's contents. This can be
* quite expensive for a large directory.

*/

final FileStatus[] statai = fs.listStatus(inputDirectory);

4

42 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

* This method returns null under some circumstances, in particular if
* the directory does not exist.
*/
if ((statai == null) || (statai.length == 0)) {
if (logger.isDebugEnabled()) {
logger.debug(inputDirectory.makeQualified(fs).toUri()
+ " is empty or missing");
}
return true;
}
if (logger.isDebugEnabled()) {
logger.debug(inputDirectory.makeQualified(fs).toUri()
+ " is not empty");
}
/** Try to find a file in the top level that is not empty. */
for (final FileStatus status : statai) {
if (!status.isDir() & (status.getlen() != 0)) {
if (logger.isDebugEnabled()) {
logger.debug("A non empty file
+ status.getPath().makeQualified(fs).toUri()

+ " was found");
return false;

n

}
}

/** Recurse if there are sub directories,
* looking for a non empty file.
*/
for (final FileStatus status : statai) {
if (status.isDir() 8&& isEmptyDirectory(fs, status.getPath())) {
continue;

}
/**
* If status is a directory it must not be empty or the previous
* test block would have triggered.
*/
if (status.isDir()) {
return false;
}
}
Vs
* Only get here if no non empty files were found in the entire subtree
* of <code>inputPath</code>.
*/
return true;

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

Ensure that the <code>outputDirectory</code> does not exist.

<p>

The framework requires that the output directory not be present at job
submission time.

</p>

<p>

This method also demonstrates how to remove a directory using the
{@link FileSystem} API.

</p>

@param conf
The configuration object. This is needed to know what file
systems and file system plugins are being used.

@param outputDirectory

The directory that must be removed if present.

@return true if the the <code>outputPath</code> is now missing, or
false if the <code>outputPath</code> is present and was unable
to be removed.

@throws IOException

If there is an error loading or configuring the FileSystem
plugin, or other IO error when attempting to access or remove
the <code>outputDirectory</code>.

K K KX KX XK K KX KX X KX KX X X XX

*/
protected static boolean removelf(final JobConf conf,
final Path outputDirectory) throws IOException {

/** This is standard way to acquire a FileSystem object. */
final FileSystem fs = outputDirectory.getFileSystem(conf);

/**
* If the <code>outputDirectory</code> does not exist this method is
* done.
*/
if (!fs.exists(outputDirectory)) {
if (logger.isDebugEnabled()) {
logger .debug("The output directory does not exist,"”

+ " no removal needed.");

}

return true;

}

/**

* The getFileStatus command will throw an IOException if the path does
* not exist.

*/

43

44 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

final FileStatus status = fs.getFileStatus(outputDirectory);
logger.info("The job output directory "

+ outputDirectory.makeQualified(fs) + " exists"

+ (status.isDir() ? " and is not a directory" : "")

"

+ " and will be removed");

"

/**
* Attempt to delete the file or directory. delete recursively just in
* case <code>outputDirectory</code> is a directory with
* sub-directories.
*/
if (!fs.delete(outputDirectory, true)) {

logger.error("Unable to delete the configured output directory "

+ outputDirectory);
return false;

}

/** The outputDirectory did exist, but has now been removed. */
return true;

* bean access setter to the {@link inputDirectory} field.

* @param inputDirectory

* The value to set inputDirectory to.

*/

public static void setInputDirectory(final Path inputDirectory) {
MapReduceIntroConfig.inputDirectory = inputDirectory;

}

/**

* bean access setter for the {@link outpuDirectory field.

*

* @param outputDirectory

* The value to set outputDirectory to.

*/

public static void setOutputDirectory(final Path outputDirectory) {
MapReduceIntroConfig.outputDirectory = outputDirectory;

}

First, you must create a JobConf object. It is good practice to pass in a class that is con-
tained in the JAR file that has your map and reduce functions. This ensures that the framework
will make the JAR available to the map and reduce tasks run for your job.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

JobConf conf = new JobConf(MapReduceIntro.class);

Now that you have a JobConfig object, conf, you need to set the required parameters for
the job. These include the input and output directory locations, the format of the input and
output, and the mapper and reducer classes.

All jobs will have a map phase, and the map phase is responsible for handling the job
input. The configuration of the map phase requires you to specify the input locations and the
class that will produce the key/value pairs from the input, the mapper class, and potentially,
the suggested number of map tasks, map output types, and per-map task threading, as listed
in Table 2-2.

Table 2-2. Map Phase Configuration

Element Required? Default

Input path(s) Yes

Class to read and convert the input path elements to key/ Yes
value pairs

Map output key class No Job output key class
Map output value class No Job output value class
Class supplying the map function Yes

Suggested minimum number of map tasks No Cluster default
Number of threads to run in each map task No 1

Most Hadoop Core jobs have their input as some set of files, and these files are either a
textual key/value pair per line or a Hadoop-specific binary file format that provides serialized
key/value pairs. The class that handles the key/value text input is KeyValueTextInputFormat.
The class that handles the Hadoop-specific binary file is SequenceFileInputFormat.

Specifying Input Formats

The Hadoop framework provides a large variety of input formats. The major distinctions
are between textual input formats and binary input formats. The following are the available
formats:

e KeyValueTextInputFormat: Key/value pairs, one per line.
e TextInputFormant: The key is the line number, and the value is the line.

e NLineInputFormat: Similar to KeyValueTextInputFormat, but the splits are based on N
lines of input rather than Y bytes of input.

e MultiFileInputFormat: An abstract class that lets the user implement an input format
that aggregates multiple files into one split.

¢ SequenceFIleInputFormat: The input file is a Hadoop sequence file, containing serial-
ized key/value pairs.

KeyValueTextInputFormat and SequenceFileInputFormat are the most commonly used
input formats. The examples in this chapter use KeyValueTextInputFormat, as the input files
are human-readable.

45

46

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The following block of code informs the framework of the type and location of the
job input:

* This section is the actual job configuration portion /**

* Configure the inputDirectory and the type of input. In this case

* we are stating that the input is text, and each record is a

* single line, and the first TAB is the separator between the key

* and the value of the record.

*/
conf.setInputFormat(KeyValueTextInputFormat.class);
FileInputFormat.setInputPaths(conf,

MapReduceIntroConfig.getInputDirectory());

The line conf.setInputFormat(KeyValueTextInputFormat.class) informs the framework
that all of the files used for input will be textual key/value pairs, one per line.

THE KEYVALUETEXTINPUTFORMAT CLASS

The KeyValueTextInputFormat format reads a text file and splits it into records, one record per line. The
records are further divided into key/value pairs by splitting the line at the first tab character. If there is no tab
character in the line, the entire line is the key, and the value object will contain a zero-length string. There is
no way to distinguish an input line that contains a single tab as the last character and the same line without a
trailing tab character.

Suppose that an input file has the following three lines, where TAB is replaced by an US-ASCII horizontal
tab character (0x09):

key1TABvalue1
key2
key3TABvalue3TABvalue4

Your mapper would be called with the following key/value pairs:
e key1, valuel

® key2
e key3, value3TABvalue4

The actual order in which the keys are passed to your map function is indeterminate. In a real-world
example, the actual machine that ran the map that got a given key would be indeterminate. It is very likely,
however, that sets of contiguous records in the input will be processed by the same map task, as each task is
given one input split from which to work.

The input bytes are considered to be in the UTF-8 character set. As of Hadoop 0.18.2, there
is no configurable way to change the character set interpretation of the input files handled by the
KeyValueTextInputFormat class.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Now that the framework knows where to look for the input files and the class to use to
generate key/value pairs from the input files, you need to inform the framework which map
function to use.

/** Inform the framework that the mapper class will be the {@link
* IdentityMapper}. This class simply passes the input key-value
* pairs directly to its output, which in our case will be the
* shuffle.

*/
conf.setMapperClass(IdentityMapper.class);

Note The simple example in this chapter does not use the optional configuration parameters. If the map
function needs to output a different key or value class than the job output, those classes may be set here. In
addition, Hadoop supports threading for map functions. This is ideal if the map function is not able to fully
utilize the resources allocated for the map task. A simple case of where this might be beneficial is a map
task that performs DNS lookups on the IP addresses in a server log.

Setting the Output Parameters

The framework requires that the output parameters be configured, even if the job will not
produce any output. The framework will collect the output from the specified tasks (either the
output of the map tasks for a MapReduce job that did not include reduce tasks or the output
of the job’s reduce tasks) and place them into the configured output directory. To avoid issues
with file name collisions when placing the task output into the output directory, the frame-
work requires that the output directory not exist when you start the job.

In our simple example, the MapReduceIntroConfig class handles ensuring that the output
directory does not exist and provides the path to the output directory. The output parameters
are actually a little more comprehensive than just the setting of the output path. The code will
also set the output format and the output key and value classes.

The Text class is the functional equivalent of a String. It implements the
WritableComparable interface, which is necessary for keys, and the Writable interface (which is
actually a subset of WritableComparable), which is necessary for values. Unlike String, Text is
mutable, and the Text class has some explicit methods for UTF-8 byte handling.

The key feature of a Writable is that the framework knows how to serialize and deserial-
ize aWritable object. The WritableComparable adds the compareTo interface so the framework
knows how to sort the WritableComparable objects. The interface references for Writable
Comparable and Writable are shown in Listings 2-5 and 2-6.

The following code block provides an example of the minimum required configuration for
the output of a MapReduce job:

47

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Configure the output of the job to go to the output directory.

* Inform the framework that the Output Key and Value classes will be
{@link Text} and the output file format will {@link
TextOutputFormat}. The TextOutput format class produces a record of
output for each Key,Value pair, with the following format.
Formatter.format("%s\t¥%s%n", key.toString(), value.toString());.

In addition indicate to the framework that there will be
1 reduce. This results in all input keys being placed
into the same, single, partition, and the final output
being a single sorted file.

* K X XK X X X X ¥

*/
FileOutputFormat.setOutputPath(conf,
MapReduceIntroConfig.getOutputDirectory());
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);

The
FileOutputFormat.setOutputPath(conf, MapReduceIntroConfig.getOutputDirectory())
setting is familiar from the input example discussed earlier in the chapter. The
conf.setOutputKeyClass(Text.class) and conf.setOutputValueClass(Text.class) settings
are new. These settings inform the framework of the types of the key/value pairs to expect for
the reduce phase. By default, these classes will also be used to set the values the framework
will expect from the map output. Unsurprisingly, the method to set the output key class for the
map output is conf.setMapOutputkeyClass(Class<? extends WritableComparable>).To set the
output value class, the method is conf.setMapOutputValueClass(Class<? extends Writable>).

Listing 2-5. WritableComparable.java

/¥

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

X K X X K X XK X X X X X X ¥

*
~

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

package org.apache.hadoop.io;

Vs
* A {@link Writable} which is also {@link Comparable}.

<p><code>WritableComparable</code>s can be compared to each other, typically
via <code>Comparator</code>s. Any type which is to be used as a
<code>key</code> in the Hadoop Map-Reduce framework should implement this
interface.</p>

<p>Example:</p>
<p><blockquote><pre>
public class MyWritableComparable implements WritableComparable {
// Some data
private int counter;
private long timestamp;

public void write(DataOutput out) throws IOException {
out.writeInt(counter);
out.writelLong(timestamp);

}

public void readFields(Datalnput in) throws IOException {
counter = in.readInt();
timestamp = in.readlong();

}

public int compareTo(MyWritableComparable w) {

int thisValue = this.value;

int thatValue = ((IntWritable)o).value;

return (thisValue &1t; thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}

}
</pre></blockquote></p>

K X KX KX KK K KX KX KK K KX KK K KX KX X K XX

*/
public interface WritableComparable<T> extends Writable, Comparable<T> {

}

Listing 2-6. Writable.java

Vak

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file

distributed with this work for additional information

*
*
*
* regarding copyright ownership. The ASF licenses this file

49

50 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

*
*
*
*
*
*
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

* limitations under the License.

*/
package org.apache.hadoop.io;

import java.io.DataOutput;
import java.io.Datalnput;
import java.io.IOException;

/**

* A serializable object which implements a simple, efficient, serialization
protocol, based on {@link DataInput} and {@link DataOutput}.

<p>Any <code>key</code> or <code>value</code> type in the Hadoop Map-Reduce
framework implements this interface.</p>

<p>Implementations typically implement a static <code>read(Datalnput)</code>
method which constructs a new instance, calls {@link #readFields(DataInput)}
and returns the instance.</p>

<p>Example:</p>
<p><blockquote><pre>
public class MyWritable implements Writable {
// Some data
private int counter;
private long timestamp;

public void write(DataOutput out) throws IOException {
out.writeInt(counter);
out.writelong(timestamp);

}

public void readFields(Datalnput in) throws IOException {
counter = in.readInt();
timestamp = in.readlong();

}

K K KX KX KK KK X KX KK KK X KX X K X X X

*
*
*
*
*
*
*

*/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public static MyWritable read(DataInput in) throws IOException {
MyWritable w = new MyWritable();
w.readFields(in);
return w;
}
}

</pre></blockquote></p>

public interface Writable {

/**

* Serialize the fields of this object to <code>out</code>.

*

* @param out <code>DataOuput</code> to serialize this object into.
* @throws IOException

*/

void write(DataOutput out) throws IOException;

/**

*
*
%
*
*
*

Deserialize the fields of this object from <code>in</code>.

<p>For efficiency, implementations should attempt to re-use storage in the
existing object where possible.</p>

@param in <code>DatalInput</code> to deseriablize this object from.

* @throws IOException

*/

void readFields(DataInput in) throws IOException;

}

Configuring the Reduce Phase

To configure the reduce phase, the user must supply the framework with five pieces of
information:

The number of reduce tasks; if zero, no reduce phase is run
The class supplying the reduce method

The input key and value types for the reduce task; by default, the same as the reduce
output

The output key and value types for the reduce task
The output file type for the reduce task output

The input and output key and value types, as well as the output file type, are the same as
those covered in the previous “Setting the Output Parameters” section. Here, we will look at
setting the number of reduce tasks and the reducer class.

51

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The configured number of reduce tasks determines the number of output files for a job
that will run the reduce phase. Tuning this value will have a significant impact on the overall
performance of your job. The time spent sorting the keys for each output file is a function of
the number of keys. In addition, the number of reduce tasks determines the maximum num-
ber of reduce tasks that can be run in parallel.

The framework generally has a default number of reduce tasks configured. This value is
set by the mapred.reduce.tasks parameter, which defaults to 1. This will result in a single out-
put file containing all of the output keys, in sorted order. There will be one reduce task, run on
a single machine that processes every key.

The number of reduce tasks is commonly set in the configuration phase of a job.

conf.setNumReduceTasks(1);

In general, unless there is a significant need for a single output file, the number of reduce
tasks is set to roughly the number of simultaneous execution slots in the cluster. In Chapter 9,
the class DataJoinReduceOutput is provided as a sample for efficiently merging multiple reduce
task outputs into a single sorted file.

CLUSTER EXECUTION SLOTS

A typical cluster is composed of M TaskTracker machines, with C CPUs, each of which supports T threads.
This would resultin M* C* T execution slots in the cluster. In my environment, the machines typically have
eight CPUs that support one thread per CPU, and a small cluster might have ten TaskTracker machines. This
gives us 10 * 8 * 1 = 80 execution slots in the cluster.

If your tasks tend not to be CPU-bound, you may adjust the number of execution slots configured to opti-
mize the CPU utilization on your TaskTracker machines.

The configuration parameter mapred. tasktracker.map.tasks.maximum controls the maximum
number of map tasks that will be run simultaneously on a TaskTracker node.

The configuration parameter mapred. tasktracker.reduce.tasks.maximum controls the maxi-
mum number of reduce tasks that will be run simultaneously on a TaskTracker node.

This requires tuning on a per-job basis and is a weakness in Hadoop at present, as the maximum values
are not per-job configurable and instead require a cluster restart.

The reducer class needs to be set only if the number of reduce tasks is not zero. It is very
common to not need a reducer, since frequently you do not require sorted output or value
grouping by key. The actual setting of the reducer class is straightforward:

/** Inform the framework that the reducer class will be the

* {@link IdentityReducer}. This class simply writes an output record
* key/value record for each value in the key/value set it receives as
* input. The value ordering is arbitrary.

*/

conf.setReducerClass(IdentityReducer.class);

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A COMMON EXCEPTION

The framework relies on the output parameters being set correctly. One of the more common errors is to have
each reduce task fail with an exception of the form:

java.io.IOException: Type mismatch in key from map: expected
org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.Text

This error indicates that output key class has been defaulted by the framework, or was set incorrectly
during the job configuration.
To correct this, use the following:

conf.setOutputKeyClass(Text.class)

Or if your map output is not the same as your job output, use this form:
conf.setMapOutputKeyClass(Text.class)

This error may occur for the value class as well:

java.io.IOException: Type mismatch in value from map: expected
org.apache.hadoop.io.LlongWritable, recieved org.apache.hadoop.io.Text

The corresponding setOutputValueClass() or setMapOutputValue() class methods are needed
to correct this.

Running a Job

The ultimate aim of all your MapReduce job configuration is to actually run that job. The
MapReduceIntro.java example (Listing 2-1) demonstrates a common and simple way to run
ajob:

logger .info("Launching the job.");

/** Send the job configuration to the framework
* and request that the job be run.

*/

final RunningJob job = JobClient.runJob(conf);
logger.info("The job has completed.");

The method runJob() submits the configuration information to the framework and waits
for the framework to finish running the job. The response is provided in the job object.

The RunningJob class provides a number of methods for examining the response. Perhaps
the most useful is job.isSuccessful().

Run MapReduceIntro. java as follows (using the CH2. jar file provided with this book’s
downloadable code):

53

54

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

hadoop jar DOWNLOAD PATH/ch2.jar =
com.apress.hadoopbook.examples.ch2.MapReduceIntro

The response should be as follows:

ch2.MapReduceIntroConfig: Generating 3 input files of random data, each record
is a random number TAB the input file name

ch2.MapReducelIntro: Launching the job.

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionld=
mapred.JobClient: Use GenericOptionsParser for parsing the arguments.
Applications should implement Tool for the same.
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.JobClient: Running job: job local 0001
mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160
mapred.MapTask: record buffer = 2620/3276
mapred.MapTask: Starting flush of map output
mapred.MapTask: bufstart = 0; bufend = 664; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 14; length = 3276

mapred.MapTask: Index: (0, 694, 694)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-2:0+664
mapred.TaskRunner: Task 'attempt local 0001 _m 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000000 0' to
file:/tmp/MapReduceIntroOutput

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160

mapred.MapTask: record buffer = 2620/3276

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 3418; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 72; length = 3276

mapred.MapTask: Index: (0, 3564, 3564)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-1:0+3418
mapred.TaskRunner: Task 'attempt local 0001 _m 000001 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000001 0' to
file:/tmp/MapReduceIntroOutput

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160

mapred.MapTask: record buffer = 2620/3276

w w w w

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 3986; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 84; length = 3276

mapred.MapTask: Index: (0, 4156, 4156)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-0:0+3986
mapred.TaskRunner: Task 'attempt local 0001 m 000002 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000002 0' to
file:/tmp/MapReduceIntroOutput

mapred.ReduceTask: Initiating final on-disk merge with 3 files
mapred.Merger: Merging 3 sorted segments

mapred.Merger: Down to the last merge-pass, with 3 segments left of total size:
8414 bytes

mapred.LocalJobRunner: reduce > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 r 000000 0' to
file:/tmp/MapReduceIntroOutput

mapred.JobClient: Job complete: job local 0001

mapred.JobClient: Counters: 11

mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=230060
mapred.JobClient: Local bytes written=319797
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=170
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=170
mapred.JobClient: Reduce output records=170
mapred.JobClient: Map output bytes=8068
mapred.JobClient: Map input bytes=8068
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=170
mapred.JobClient: Reduce input records=170

ch2.MapReduceIntro: The job has completed.
ch2.MapReduceIntro: The job completed successfully.

Congratulations, you have run a MapReduce job.

The single output file of the reduce task in the file /tmp/MapReduceIntroOutput/part-00000
will have a series of lines of the form Number TAB file:/tmp/MapReduceIntroInput/file-N. The
first thing you will notice is that the numbers don’t seem to be in order. The code that gener-
ates the input produces a random number for the key of each line, but the example tells the
framework that the keys are Text. Therefore, the numbers have been sorted as text rather than
as numbers.

55

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Creating a Custom Mapper and Reducer

As you've seen, your first Hadoop job, in MapReduceIntro, produced sorted output, but the
sorting was not suitable, as it sorted lexically rather than numerically, and the keys for the
job were numbers. Now, let’s work out what is required to sort numerically, using a custom
mapper. Then we’ll look at a custom reducer that outputs the values in a format that is easy
to parse.

Setting Up a Custom Mapper

Sorting numerically doesn’t sound difficult. Let’s try making the output key class a
LongWritable, another class supplied by the framework:

conf.setOutputKeyClass(LongWritable.class);
instead of:
conf.setOutputKeyClass(Text.class);

The class with this change is available as MapReduceIntrolLongWritable. java. Run this
class via this command:

hadoop jar DOWNLOAD PATH/ch2.jar =
com.apress.hadoopbook.examples.ch2.MapReduceIntrolLonghritable

You will see the following in the output:

mapred.LocalJobRunner: job local 0001
java.io.IOException: Type mismatch in key from map: expected
org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.Text
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:415)
at org.apache.hadoop.mapred.lib.IdentityMapper.map(IdentityMapper.java:37)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:47)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:227)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:157)
ch2.MapReduceIntrolLongWritable: The job has failed due to an IO Exception

As you can see, just changing the output key class was insufficient. If you are going to
change the output key class to a Longhritable, you also need to modify the map function so
that it outputs Longhiritable keys.

For the job to actually produce output that is sorted numerically, you must change the
job configuration and provide a custom mapper class. This is done by two calls on the JobConf
object:

e conf.setOutputKeyClass(Longhritable.class): Informs the framework of the key class
for map and reduce output.

e conf.setMapperClass(TransformKeysToLongMapper.class): Informs the framework of
the custom class that provides the map method that takes as input Text keys and out-
puts LongWritable keys.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A demonstration class MapReduceIntrolLongWritableCorrect. java provides the configu-
ration for this. This class is identical to MapReduceIntro, except for these two replacement
method calls.

Note The job configuration could also provide a custom sort option. One way to do this is to provide a
custom class that implements WritableComparable and use that as the key class. Another way is to spec-
ify a CustomComparator in the job configuration via the setOutputKeyComparatorClass() method on the
JobConf object. An example of implementing a custom comparator is provided in Chapter 9.

You also need to provide a mapper class that performs the transforma-
tion. The sample mapper class TransformKeysToLongMapper. java does this. The
TransformKeysToLongMapper. java class file has a number of changes from the IdentityMapper
class (shown earlier in Listing 2-2).

First, the class declaration is no longer generic; the types have been made concrete:

/** Transform the input Text, Text key value
* pairs into LongWritable, Text key/value pairs.
*/
public class TransformKeysTolLongMapperMapper
extends MapReduceBase implements Mapper<Text, Text, LongWritable, Text>

Notice that the code actually provides the types for the key/value pairs for input and for
output. The original IdentityMapper class was completely generic. In addition, the identity
mapper’s declaration was implements Mapper<K, V, K, V>.In TransformKeysTolLongMapperMapp
er, the declaration is implements Mapper<Text, Text, LongWritable, Text>.

The map () method of TransformKeysToLongMapper is substantially different from the
IdentityMapper and introduces the use of the reporter object.

The Reporter Object

The map and reduce methods both take four parameters: the key, the value, the output collec-
tor, and the reporter. The reporter object provides a mechanism for informing the framework
of the current status of your job.

The reporter object provides three methods:

e incrCounter(): Provides counters that are aggregated and reported at the end of
the job.

e setStatus(): Provides a status line for this map or reduce task.

e getInputSplit(): Returns information about the input source for this task. If the input
is simple files, this can provide useful information for log messages.

Each call on the reporter object or the output collector provides a heartbeat to the frame-
work, informing it that the task is not deadlocked or otherwise unresponsive. If your map or
reduce method takes substantial time, the method must make periodic calls on the reporter

57

58

CHAPTER 2

THE BASICS OF A MAPREDUCE JOB

object methods, to inform the framework that it is still working. The framework will kill tasks
that have not reported in 600 seconds by default.

Listing 2-6 shows the body of the TransformKeysToLongMapper mapper that uses the
reporter object.

Listing 2-6. The Reporter Object in TransformKeysToLongMapper.java

/**% Map 1
* keys 1
* The va
%

* Report
* @param
* @param
* @param
* {@link
* @param
* to rep
* @excep
*/
public vo

throws

try {
t

}

}
} cat
/

nput to the output, transforming the input {@link Text}
nto {@link LongWritable} keys.
lues are passed through unchanged.

on the status of the job.
key The input key, supplied by the framework, a {@link Text} value.
value The input value, supplied by the framework, a {@link Text} value.
output The {@link OutputCollector} that takes
LonghWritable}, {@link Text} pairs.
reporter The object that provides a way
ort status back to the framework.
tion IOException if there is any error.

id map(Text key, Text value,
OutputCollector<Longhritable, Text> output, Reporter reporter)

I0Exception {

ry {
reporter.incrCounter("Input", "total records", 1);
LongWritable newKey =

new LongWritable(Long.parselLong(key.toString()));

reporter.incrCounter("Input", "parsed records", 1);
output.collect(newKey, value);

catch(NumberFormatException e) {

/** This is a somewhat expected case and we handle it specially. */
logger.warn("Unable to parse key as a long for key,"

+" value " + key + + value, e);
reporter.incrCounter("Input", "number format", 1);
return;

non

ch(Throwable e) {

** It is very important to report back if there were

* exceptions in the mapper.

* In particular it is very handy to report the number of exceptions.
* If this is done, the driver can make better assumptions

* on the success or failure of the job.

*/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

logger.error("Unexpected exception in mapper for key,"

+ " value " + key + ", " + value, e);
reporter.incrCounter("Input", "Exception”, 1);
reporter.incrCounter("Exceptions”, e.getClass().getName(), 1);
if (e instanceof IOException) {

throw (IOException) e;

n

}

if (e instanceof RuntimeException) {
throw (RuntimeException) e;

}

throw new IOException("Unknown Exception”, e);

This block of code introduces a new object, reporter, and some best practice patterns.
The key piece of this is the transformation of the Text key to a LongWritable key.

LongWritable newKey = new LongWritable(Long.parseLong(key.toString()));
output.collect(newKey, value);

The code in Listing 2-6 is sufficient to perform the transformation, and also includes some
additional code for tracking and reporting.

CODE EFFICIENCY

The pattern of creating a new key object in the mapper for the transformation object is not the most effi-
cient pattern. Most key classes provide a set () method, which sets the current value of the key. The
output.collect() method uses the current value of the key, and once the collect () method is com-
plete, the key object or the value object is free to be reused.

If the job is configured to multithread the map method, via conf. setMapRunner (Multithreaded
MapRunner.class), the map method will be called by multiple threads. Extreme care must be taken in
using the mapper class member variables. A ThreadLocal LongWritable object could be used to ensure
thread safety. To simplify the example, a new LongWritable is constructed. In the reduce method; there are
no threading issues.

Object churn is a significant performance issue in a map method, and to a lesser extent, in the reduce
method. Object reuse can provide a significant performance gain.

The Counters and Exceptions

This example includes two try/catch blocks and several calls to the reporter.incrCounter()
method. It is a good practice to wrap your map and reduce methods in a try block that catches
Throwables and reports on the catches.

The JobTracker, the Hadoop Core server process that manages job execution on the
cluster, accumulates the counter values and provides a final count in the job output, as well

59

60

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

as making the instantaneous count available in the JobTracker web interface (available on
http://jobtracker host:50030/ by default). This interface will be discussed in more detail in
Chapter 6, which covers the setup of a multimachine cluster.

You can now run the job:

hadoop jar ch2.jar w=
com.apress.hadoopbook.examples.ch2.MapReduceIntroLonghritableCorrect

The output that reflects the counters is as follows:

mapred.JobClient: Job complete: job_local 0001
mapred.JobClient: Counters: 13
mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=78562
mapred.JobClient: Local bytes written=157868
mapred.JobClient: Input

mapred.JobClient: total records=126
mapred.JobClient: parsed records=126
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=126
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=126
mapred.JobClient: Reduce output records=126
mapred.JobClient: Map output bytes=5670
mapred.JobClient: Map input bytes=5992
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=126
mapred.JobClient: Reduce input records=126

The first catch block handles exceptions related to
reporter.incrCounter("Input", "number format", 1);, which may be thrown during the
key transformation:

} catch(NumberFormatException e) {
/** This is a somewhat expected case and we handle it specially. */
reporter.incrCounter("Input", "number format", 1);
return;

}

You expect that some of the keys may not convert correctly into Long values, so you
capture the exception. The reporter. incrCounter() call tells the framework to increment a
counter in the Input group, of the name number format, by 1. If the counter does not already
exist, it will be created.

In the sample input, there are no records that will cause a number format exception.
The only counters that are accumulated are Input.total records and Input.parsed records.
These two counters will show up in the job output as part of the Input group:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

mapred.JobClient: Input
mapred.JobClient: total records=126
mapred.JobClient: parsed records=126

If one or more keys caused an exception during the conversion to Long, the output might
look more like this:

mapred.JobClient: Input

mapred.JobClient: total records=126
mapred.JobClient: parsed records=125
mapred.JobClient: number format=1

Note The sum of the parsed records and the number formats should equal the total records. The coun-
ters are also available via the RunningJob object, allowing for a more comprehensive check of the success
status. The totals for your job will vary from this example.

After the Job Finishes

Once the job finishes, the framework will provide you with a filled-out RunningJob object. This
object has information about the framework’s opinion on the success status of your job via the
conf.isSuccessful() method. The framework will report that the job was unsuccessful if it was
unable to complete any single map task or if the job was killed.

This generally doesn’t provide enough information to make a determination on the actual
success. It may be that there was an exception in the map or method for every key or for most
keys. If the map or reduce function provides job counters for these cases, your job driver will
be able to make a better determination regarding the actual success or failure of your job.

In the sample mapper, several counters were collected under different circumstances:

¢ reporter.incrCounter(TransformKeysTolLongMapper.INPUT, TransformKeys
TolLongMapper.TOTAL _RECORDS, 1):Reports the total number of input records seen.

e reporter.incrCounter(TransformKeysToLongMapper.INPUT, TransformKeys
TolLongMapper.PARSED RECORDS, 1): Reports the total number of records successfully
parsed.

e reporter.incrCounter(TransformKeysTolLongMapper.INPUT, TransformKeys
ToLongMapper .NUMBER_FORMAT, 1):Reports the total number of records where the
key could not be parsed.

61

62

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

e reporter.incrCounter(TransformKeysTolLongMapper.INPUT, TransformKeys
ToLongMapper.EXCEPTION, 1):Reports the number of records that generated an
exception when being processed.

e reporter.incrCounter(TransformKeysTolLongMapper.EXCEPTIONS, e.getClass().
getName(), 1):Reports the counts of exceptions by type.

Examining the Counters

Once the framework fills in the RunningJob object and returns control back to the job driver,
the driver is able to examine the values of the various counters, as well as the framework’s suc-
cess or failure status.

Making the counter values available is a multistep process.

/** Get the job counters. {@see RunningJob.getCounters()}. */
Counters jobCounters = job.getCounters();

/** Look up the "Input" Group of counters. */
Counters.Group inputGroup = jobCounters.getGroup(TransformKeysToLongMapper.INPUT);

/** The map task potentially outputs 4 counters in the input group.

* Get each of them.

*/
long total = inputGroup.getCounter(TransformKeysTolLongMapper.TOTAL RECORDS);
long parsed = inputGroup.getCounter(TransformKeysTolLongMapper.PARSED RECORDS);
long format = inputGroup.getCounter(TransformKeysTolLongMapper.NUMBER FORMAT);
long exceptions = inputGroup.getCounter(TransformKeysTolLongMapper.EXCEPTION);

Now that the job driver has the counters issued by the map method, a much more accu-
rate determination of success can be made.

Caution An accurate determination of success is critical. In one of my production clusters, a TaskTracker
node was incorrectly configured. The result of this misconfiguration was that none of the computationally
intense work could be run in the map task, and the map method would return immediately with an exception.
As far as the framework was concerned, this machine was super fast, and it scheduled almost all of the map
tasks on this machine. The job was successful as far as the framework was concerned, but totally unsuc-
cessful per the business rules. At that point. the pattern of checking the exception count was not part of the
standard practice, and the failure was uncovered only when the consumer of the results noticed there were
no valid results. Save yourself much embarrassment—collect information about the successes and failures
in the mapper and reducer objects and check those results in your job driver.

Was This Job Really Successful?

The check for success primarily involves ensuring that the number of records output is roughly
the same as the number of records input. Hadoop jobs are generally dealing with bulk real-
world data, which is never 100% clean, so a small error rate is generally acceptable.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

if (format != 0) {
logger.warn("There were " + format + " keys that were not
+ "transformable to long values");

n "

}

/** Check to see if we had any unexpected exceptions.
* This usually indicates some significant problem,
* either with the machine running the task that had
* the exception, or the map or reduce function code.
* Log an error for each type of exception with the count.
*/
if (exceptions > 0) {
Counters.Group exceptionGroup = jobCounters.getGroup(
TransformKeysToLongMapper.EXCEPTIONS);
for (Counters.Counter counter : exceptionGroup) {
logger.error("There were " + counter.getCounter()

n

+ " exceptions of type " + counter.getDisplayName());

}

if (total == parsed) {
logger.info("The job completed successfully.");
System.exit(0);

}

// We had some failures in handling the input records.
// Did enough records process for this to be a successful job?
// is 90% good enough?
if (total * .9 <= parsed) {
logger.warn("The job completed with some errors,
+ (total - parsed) + " out of " + total);
System.exit(0);

}

logger.error("The job did not complete successfully,"
+" too many errors processing the input, only "
+ parsed + " of " + total + "records completed");
System.exit(1);

In this particular case, you would expect a small number of NumberFormatExceptions but
no other exceptions. If the total number of input records is roughly the number of parsed
input records, and you have no unexpected exceptions, this job is a success.

Creating a Custom Reducer

The reduce method is called once for each key, and passes the key and an iterator to all of the
map output values that share that key. The reduce task is an ideal place for summarizing data
and for doing basic duplicate suppression.

63

64

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Note For managing duplicate suppression against a prior seen set, it is usually best to keep the prior
seen set in either HBase (the Hadoop database) or in a sorted format, such as a Hadoop map file. If this is not
done, then the dataset of seen records and the dataset of input records must be merged and sorted, which
can take considerable time if either dataset is large. In the HBase case, if the input data is already sorted, the
duplicate status of an input record can be rapidly determined. With a simple sorted seen set, map-side joins
may be performed. HBase is discussed in Chapter 10, and map-side joins are covered in Chapters 8 and 9.

For the sample custom reducer, let’s merge the values into a comma-separated values
(CSV) form, so you have one output line per key, with all of the values in a simple-to-parse
format.

After your work with the custom mapper in the preceding sections, creating a custom
reducer will seem familiar. This version is in MapReduceIntrolLongWritableReduce. java,
which is based on MapReduceIntroLongWritableCorrect. java. First, the framework needs to
be informed of the reducer class. The key piece is, as usual, to inform the framework of the
reducer class, so add the following single line:

/** Inform the framework that the reducer class will be the
* {@1link MergeValuesToCSV}.
* This class simply writes an output record key,
* value record for each value in the key, valueset it receives as
* input.
* The value ordering is arbitrary.
*/
conf.setReducerClass(MergeValuesToCSV.class);

There have been no changes to the output classes, so no other changes are required to
MapReduceIntroLongWritableCorrect.java.

The class to actually perform the work is MergeValuesToCSVReducer. java. As with the map-
per example, TransformKeysToLongMapper, you start with your class declaration, which has
partially specified the generic types:

public class MergeValuesToCSVReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, Text> {

The reduce method doesn’t need to know the incoming value class; it requires only the
toString() method to work. The reduce method does need to construct a new output value,
and for simplicity’s sake, given this transformation, the output value is declared to be Text.

The actual method declaration also has the same type specification:

/** Merge the values for each key into a CSV text string.

*

* @param key The key object for this group.

* @param values Iterator to the set of values that share the <code>key</code>.
* @param output The {@see OutputCollector} to pass the transformed output to.
* @param reporter The reporter object to update counters and set task status.
* @exception IOException if there is an error.

*/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public void reduce(K key, Iterator<V> values,
OutputCollector<K, Text> output, Reporter reporter)
throws IOException {

The framework will throw an error if the job is expecting a different output value type than
Text. As with the mapper example, you have a method body that employs the reporter.
incrCounter() method to make detailed information available to the job and via the web
interface. As a performance optimization, to reduce object churn, two class fields are declared.
These variables are used in the reduce() method:

/** Used to construct the merged value.
* The {@link Text.set() Text.set} method is used
* to prevent object churn.
*/
protected Text mergedValue = new Text();
/** Working storage for constructing the resulting string. */
protected StringBuilder buffer = new StringBuilder();

The buffer object is used to build the CSV-style line for the output, and mergedValue is the
actual object that is sent to the output on each reduce() call. It is safe to declare these as class
fields, rather than as local variables, because the individual reduce tasks are run only as single
threads by the framework.

Note There may be multiple reduce tasks running simultaneously, but each task is running in a separate
JVM, and the JVMs are potentially running on separate physical machines.

The reduce() method is called with the key and an iterator to the values that share that
key. Recall that, ideally, a reduce task will make no changes to the key, and will use that key as
the key argument to the output.collect() method calls in the reduce() method. The design
goal for this reduce() method is to output only a single row for every key, with a comma-
separated list of the values that shared that key. The core of the reduce() method has a bit of
boilerplate for the object churn optimizations to reset the StringBuilder object, and a loop to
process each of the values for this key:

buffer.setlLength(0);
for (;values.hasNext(); valueCount++) {
reporter.incrCounter(OUTPUT, MergeValuesToCSVReducer.TOTAL VALUES, 1);
String value = values.next().toString();
if (value.contains("\"")) { // Perform Excel style quoting
value.replaceAll("\"", "\\\"");
}
buffer.append('"');
buffer.append(value);
buffer.append("\",");

}
buffer.setlLength(buffer.length() - 1);

65

66

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

It is rare that a reduce() method doesn’t have a loop that iterates over the values. It is
good form to report on the number of values input. In this example, reporter.incrCounter
(OUTPUT, MergeValuesToCSVReducer.TOTAL VALUES, 1) handles the reporting.

This reducer relies on the toString() method of the value object, which seems rea-
sonable for a textual output job, as the framework would also be using the toString()
method to produce the output. The rest of the preceding code block simply builds a
comma-separated list of values, with Excel-style CSV quoting.

The actual output block must build a new value for the output. In this case, a class field
mergedValue will be used. In a larger job, there may be a billion keys passed through the
reduce() method, and by using the class field, the amount of object churn is greatly reduced.
In this example, there are also counters for the output records:

mergedValue.set(buffer.toString());
reporter.incrCounter(OUTPUT, TOTAL OUTPUT RECORDS, 1);
output.collect(key, mergedvalue);

The value is set on the mergedValue object, using the mergedValue.set(buffer.toString())
statement, and the value is output using the output.collect(key, mergedValue) line. This
example uses Text as the output value class; it is acceptable to use any Writable as the output
value class. If the output format is a SequenceFile, there is no need for a functional toString()
method on your object.

Note The framework serializes the key and value into the output stream during the collect() method,
leaving the user free to change the objects values when the method returns.

Why Do the Mapper and Reducer Extend MapReduceBase?

The custom mapper class TransformKeysToLongMapper and reducer class
MergeValuesToCSVReducer both extend the class org.apache.hadoop.mapred.MapReduceBase.
This class provides basic implementations of two additional methods that are required of a
mapper or a reducer by the framework. The framework calls the configure() method upon
initializing a task, and it calls the close() method when the task has finished processing its
input split:

/** Default implementation that does nothing. */
public void close() throws IOException {

}

/** Default implementation that does nothing. */
public void configure(JobConf job) {

}

The configure Method

The configure() method is the only way to get access to the JobConf object for your task. This
method is where any per-task configuration and setup is done. If your application relies on

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

the Spring Framework for setup, the application context would be established here and the
relevant beans found.

It is very common for the developer to have a JobConf member variable, which would be
initialized in this method with the passed-in JobConf object. (I prefer to issue a logging record
with detailed information about the input split.) The configure() method is also the ideal
place to open additional files that need to be read or written to during the map() or reduce()
method.

The close Method

The close() method is called by the framework when all of the input-split entries have been
processed by the applicable map() or reduce() method. It is very important to close any sup-
plemental files here to ensure that they are properly flushed to the file system. Particularly for
HDEFS, if the file is not closed, data in the last block may be lost.

The following example also makes a reporter call in the close() method:

/** Keep track of the maximum number of keys a value had.
* Report it in the counters so that per task counters can be examined as needed
* and set the task status to include this maximum count.
*/
@0verride
public void close() throws IOException {
super.close();
if (reporter!=null) {
reporter.incrCounter(OUTPUT, MAX VALUES, maxValueCount);
reporter.setStatus("Job Complete, maxixmum ValueCount was
+ maxValueCount);

n

The reporter field was made a class instance field, via protected Reporter reporter, and
set in the reduce() method via this.reporter = reporter. In the reduce() method, the count
of values is kept in valueCount, and if it’s larger than the instance member field, maxValueCount,
maxValueCount is set to it. This enables you to output the maximum number of values that
shared a specific key.

In this case, the overall summary value is not particularly useful, as that value is the sum
of all of the maximum values, but the per-task value is interesting and available via the web
interface. A more useful solution would be to maintain an additional output file and output
the key/value counts into that file.

When you select a completed or running task through the web interface (which is on port
50030 on the machine running the JobTracker, by default), you are presented with the counter
summary for the job and links to detailed information about the map and reduce tasks. Each
map and reduce task will have a link to the counters.

Using a Custom Partitioner

By default, the framework partitions your output based on the hash value of the key, using the
HashPartitioner class. There are times when you need your output data partitioned differ-
ently. The standard example is a single output file where multiple output files would usually

67

68

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

result, which is handled by setting the number of reduce tasks to 1, via conf.setNumReduces (1),
or unsorted/unreduced output, which is handled via conf.setNumReduces(0). If you need dif-
ferent partitioning, you have the option of setting a partitioner.

This chapter’s example has Long keys. Some simple partitioner concepts could be to sort
into odd/even or, if the minimum and maximum key values are known, to sort into key range-
based buckets. It is also possible to partition by the value.

HOW PARTITIONING IS DONE

When the framework is performing the shuffle, each key output by the mapper is examined, and the following
operation is performed:

int partition = partitioner.getPartition(key, value, partitions);

The value partitions is the number of reduce tasks to perform. The key, if actually output by the
reducer, will end up in the output file part partition, with an appropriate number of leading zeros so that
the file names are all the same length.

The critical issues are that the number of partitions is fixed at job start time and the parti-
tion is determined in the output.collect() method of the map task. The only information the
partitioner has is the key, the value, the number of partitions, and whatever data was made
available to it when it was instantiated.

The partitioner interface is very simple, as shown in Listing 2-7.

Listing 2-7. The Partitioner Interface

Vioio

* Partitions the key space.

*

* <p><code>Partitioner</code> controls the partitioning of the keys of the

* intermediate map-outputs. The key (or a subset of the key) is used to derive
* the partition, typically by a hash function. The total number of partitions
* is the same as the number of reduce tasks for the job. Hence this controls

* which of the <code>m</code> reduce tasks the intermediate key (and hence the
* record) is sent for reduction.</p>

*

*

@see Reducer
*/
public interface Partitioner<K2, V2> extends JobConfigurable {

/**

* Get the paritition number for a given key (hence record) given the total

* number of partitions i.e. number of reduce-tasks for the job.
*

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

* <p>Typically a hash function on a all or a subset of the key.</p>
*

* @param key the key to be paritioned.

* @param value the entry value.

* @param numPartitions the total number of partitions.

* @return the partition number for the <code>key</code>.

*/

int getPartition(K2 key, V2 value, int numPartitions);

}

The JobConfigurable interface provides an additional configure() method, as the
MapReduceBase class does.

Summary

This chapter explained what is involved in executing a MapReduce job. You now have a basic
understanding of the JobConf object and how to use it to inform the framework of the require-
ments for your jobs.

You've seen how to write mapper and reducer classes, and how the reporter object is
one of your best friends, because of the wonderful information it can provide about what is
happening during the execution of your jobs. Output partitions finally make sense, and you
have a sense of when and why you configure your job to reduce, and how many reducers you
will use.

As a brilliant Hadoop expert, you are totally prepared to inform people of why the files
they open in mapper or reducer classes are empty or short, because you know you need to
close files before the framework will flush the last file system block size worth of data to disk.

In the next chapter, you'll learn how to set up of a multimachine cluster.

69

