
C H A P T E R 2

The Basics of a MapReduce Job

This chapter walks you through what is involved in a MapReduce job. You will be able to write
and run simple stand-alone MapReduce programs by the end of the chapter.

The examples in this chapter assume the setup as described in Chapter 1. They should be
explicitly run in a special local mode configuration for executing on a single machine, with no
requirements for a running the Hadoop Core framework. This single machine (local) configu-
ration is also ideal for debugging and for unit tests. The code for the examples is available from
this book’s details page at the Apress web site (). The downloadable
code also includes a JAR file you can use to run the examples.

Let’s start by examining the parts that make up a MapReduce job.

The Parts of a Hadoop MapReduce Job
The user configures and submits a MapReduce job (or just job for short) to the framework,
which will decompose the job into a set of map tasks, shuffles, a sort, and a set of reduce tasks.
The framework will then manage the distribution and execution of the tasks, collect the out-
put, and report the status to the user.

The job consists of the parts shown in Figure 2-1 and listed in Table 2-1.

Table 2-1. Parts of a MapReduce Job

Part Handled By

Configuration of the job User

Input splitting and distribution Hadoop framework

Start of the individual map tasks with their input split Hadoop framework

Map function, called once for each input key/value pair User

Shuffle, which partitions and sorts the per-map output Hadoop framework

Sort, which merge sorts the shuffle output for each partition of all map Hadoop framework
outputs

Start of the individual reduce tasks, with their input partition Hadoop framework

Reduce function, which is called once for each unique input key, with all of User
the input values that share that key

Collection of the output and storage in the configured job output directory, Hadoop framework
in N parts, where N is the number of reduce tasks

27

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB28

Shuffle, Partition/Sort
per Map Output

Merge Sort for
Map Outputs for Each

Reduce Task

Start of Individual
Reduce Tasks

Collection of
Final Output

Start of Individual
Map Tasks

Input Splitting &
Distribution

Job Configuration

Provided by User
Provided by Hadoop

Framework

Input Format

Input Locations

Map Function

Reduce Function

Output Format

Output Location

Number of
Reduce Tasks

Output
Key Type

Output
Value Type

Figure 2-1. Parts of a MapReduce job

The user is responsible for handling the job setup, specifying the input location(s), speci-
fying the input, and ensuring the input is in the expected format and location. The framework
is responsible for distributing the job among the TaskTracker nodes of the cluster; running the
map, shuffle, sort, and reduce phases; placing the output in the output directory; and inform-
ing the user of the job-completion status.

All the examples in this chapter are based on the file , shown in
Listing 2-1. The job created by the code in will read all of its textual
input line by line, and sort the lines based on that portion of the line before the first tab char-
acter. If there are no tab characters in the line, the sort will be based on the entire line. The

 file is structured to provide a simple example of configuring and running
a MapReduce job.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 29

Listing 2-1. MapReduceIntro.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB30

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 31

Input Splitting
For the framework to be able to distribute pieces of the job to multiple machines, it needs to
fragment the input into individual pieces, which can in turn be provided as input to the indi-
vidual distributed tasks. Each fragment of input is called an input split. The default rules for
how input splits are constructed from the actual input files are a combination of configura-
tion parameters and the capabilities of the class that actually reads the input records. These
parameters are covered in Chapter 6.

An input split will normally be a contiguous group of records from a single input file, and
in this case, there will be at least N input splits, where N is the number of input files. If the
number of requested map tasks is larger than this number, or the individual files are larger
than the suggested fragment size, there may be multiple input splits constructed of each input
file. The user has considerable control over the number of input splits. The number and size of
the input splits strongly influence overall job performance.

A Simple Map Function: IdentityMapper
The Hadoop framework provides a very simple map function, called . It
is used in jobs that only need to reduce the input, and not transform the raw input. We

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB32

are going to examine the code of the class, shown in Listing 2-2, in this
section. If you have downloaded a Hadoop Core installation and followed the instruc-
tions in Chapter 1, this code is also available in the directory where you installed it,

.

Listing 2-2. IdentityMapper.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 33

The magic piece of code is the line , which passes a key/value
pair back to the framework for further processing.

All map functions must implement the interface, which guarantees that the map
function will always be called with a key. The key is an instance of a
object, a value that is an instance of a object, an output object, and a reporter. For
now, just remember that the reporter is useful. Reporters are discussed in more detail in the
“Creating a Custom Mapper and Reducer” section later in this chapter.

Note The code for the and interfaces is available from this book’s details
page at the Apress web site (), along with the rest of the downloadable code for
this book.

The framework will make one call to your map function for each record in your input.
There will be multiple instances of your map function running, potentially in multiple Java
Virtual Machines (JVMs), and potentially on multiple machines. The framework coordinates
all of this for you.

COMMON MAPPERS

One common mapper drops the values and passes only the keys forward:

Another common mapper converts the key to lowercase:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB34

A Simple Reduce Function: IdentityReducer
The Hadoop framework calls the reduce function one time for each unique key. The frame-
work provides the key and the set of values that share that key.

The framework-supplied class is a simple example that produces one
output record for every value. Listing 2-3 shows this class.

Listing 2-3. IdentityReducer.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 35

If you require the output of your job to be sorted, the reducer function must pass the key
objects to the method unchanged. The reduce phase is, however, free to
output any number of records, including zero records, with the same key and different values.
This particular constraint is also why the map tasks may be multithreaded, while the reduce
tasks are explicitly only single-threaded.

COMMON REDUCERS

A common reducer drops the values and passes only the keys forward:

Another common reducer provides count information for each key:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB36

Configuring a Job
All Hadoop jobs have a driver program that configures the actual MapReduce job and submits
it to the Hadoop framework. This configuration is handled through the object. The
sample class provides a walk-through for using the object to config-
ure and submit a job to the Hadoop framework for execution. The code relies on a class called

, shown in Listing 2-4, which ensures that the input and output directo-
ries are set up and ready.

Listing 2-4. MapReduceIntroConfig.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 37

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB38

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 39

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB40

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 41

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB42

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 43

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB44

First, you must create a object. It is good practice to pass in a class that is con-
tained in the JAR file that has your map and reduce functions. This ensures that the framework
will make the JAR available to the map and reduce tasks run for your job.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 45

Now that you have a object, , you need to set the required parameters for
the job. These include the input and output directory locations, the format of the input and
output, and the mapper and reducer classes.

All jobs will have a map phase, and the map phase is responsible for handling the job
input. The configuration of the map phase requires you to specify the input locations and the
class that will produce the key/value pairs from the input, the mapper class, and potentially,
the suggested number of map tasks, map output types, and per-map task threading, as listed
in Table 2-2.

Table 2-2. Map Phase Configuration

Element Required? Default

Input path(s) Yes

Class to read and convert the input path elements to key/ Yes
value pairs

Map output key class No Job output key class

Map output value class No Job output value class

Class supplying the map function Yes

Suggested minimum number of map tasks No Cluster default

Number of threads to run in each map task No 1

Most Hadoop Core jobs have their input as some set of files, and these files are either a
textual key/value pair per line or a Hadoop-specific binary file format that provides serialized
key/value pairs. The class that handles the key/value text input is .
The class that handles the Hadoop-specific binary file is .

Specifying Input Formats
The Hadoop framework provides a large variety of input formats. The major distinctions
are between textual input formats and binary input formats. The following are the available
formats:

: Key/value pairs, one per line.

: The key is the line number, and the value is the line.

: Similar to , but the splits are based on N
lines of input rather than Y bytes of input.

: An abstract class that lets the user implement an input format
that aggregates multiple files into one split.

: The input file is a Hadoop sequence file, containing serial-
ized key/value pairs.

 and are the most commonly used
input formats. The examples in this chapter use , as the input files
are human-readable.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB46

The following block of code informs the framework of the type and location of the
job input:

The line informs the framework
that all of the files used for input will be textual key/value pairs, one per line.

THE KEYVALUETEXTINPUTFORMAT CLASS

The format reads a text file and splits it into records, one record per line. The
records are further divided into key/value pairs by splitting the line at the first tab character. If there is no tab
character in the line, the entire line is the key, and the value object will contain a zero-length string. There is
no way to distinguish an input line that contains a single tab as the last character and the same line without a
trailing tab character.

Suppose that an input file has the following three lines, where is replaced by an US-ASCII horizontal
tab character (0x09):

Your mapper would be called with the following key/value pairs:

,

,

The actual order in which the keys are passed to your map function is indeterminate. In a real-world
example, the actual machine that ran the map that got a given key would be indeterminate. It is very likely,
however, that sets of contiguous records in the input will be processed by the same map task, as each task is
given one input split from which to work.

The input bytes are considered to be in the UTF-8 character set. As of Hadoop 0.18.2, there
is no configurable way to change the character set interpretation of the input files handled by the

 class.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 47

Now that the framework knows where to look for the input files and the class to use to
generate key/value pairs from the input files, you need to inform the framework which map
function to use.

Note The simple example in this chapter does not use the optional configuration parameters. If the map
function needs to output a different key or value class than the job output, those classes may be set here. In
addition, Hadoop supports threading for map functions. This is ideal if the map function is not able to fully
utilize the resources allocated for the map task. A simple case of where this might be beneficial is a map
task that performs DNS lookups on the IP addresses in a server log.

Setting the Output Parameters
The framework requires that the output parameters be configured, even if the job will not
produce any output. The framework will collect the output from the specified tasks (either the
output of the map tasks for a MapReduce job that did not include reduce tasks or the output
of the job’s reduce tasks) and place them into the configured output directory. To avoid issues
with file name collisions when placing the task output into the output directory, the frame-
work requires that the output directory not exist when you start the job.

In our simple example, the class handles ensuring that the output
directory does not exist and provides the path to the output directory. The output parameters
are actually a little more comprehensive than just the setting of the output path. The code will
also set the output format and the output key and value classes.

The class is the functional equivalent of a . It implements the
 interface, which is necessary for keys, and the interface (which is

actually a subset of), which is necessary for values. Unlike , is
mutable, and the class has some explicit methods for UTF-8 byte handling.

The key feature of a is that the framework knows how to serialize and deserial-
ize a object. The adds the interface so the framework
knows how to sort the objects. The interface references for

 and are shown in Listings 2-5 and 2-6.
The following code block provides an example of the minimum required configuration for

the output of a MapReduce job:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB48

The

setting is familiar from the input example discussed earlier in the chapter. The
 and settings

are new. These settings inform the framework of the types of the key/value pairs to expect for
the reduce phase. By default, these classes will also be used to set the values the framework
will expect from the map output. Unsurprisingly, the method to set the output key class for the
map output is . To set the
output value class, the method is .

Listing 2-5. WritableComparable.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 49

Listing 2-6. Writable.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB50

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 51

Configuring the Reduce Phase
To configure the reduce phase, the user must supply the framework with five pieces of
information:

output

The input and output key and value types, as well as the output file type, are the same as
those covered in the previous “Setting the Output Parameters” section. Here, we will look at
setting the number of reduce tasks and the reducer class.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB52

The configured number of reduce tasks determines the number of output files for a job
that will run the reduce phase. Tuning this value will have a significant impact on the overall
performance of your job. The time spent sorting the keys for each output file is a function of
the number of keys. In addition, the number of reduce tasks determines the maximum num-
ber of reduce tasks that can be run in parallel.

The framework generally has a default number of reduce tasks configured. This value is
set by the parameter, which defaults to 1. This will result in a single out-
put file containing all of the output keys, in sorted order. There will be one reduce task, run on
a single machine that processes every key.

The number of reduce tasks is commonly set in the configuration phase of a job.

In general, unless there is a significant need for a single output file, the number of reduce
tasks is set to roughly the number of simultaneous execution slots in the cluster. In Chapter 9,
the class is provided as a sample for efficiently merging multiple reduce
task outputs into a single sorted file.

CLUSTER EXECUTION SLOTS

A typical cluster is composed of M TaskTracker machines, with C CPUs, each of which supports T threads.
This would result in M * C * T execution slots in the cluster. In my environment, the machines typically have
eight CPUs that support one thread per CPU, and a small cluster might have ten TaskTracker machines. This
gives us 10 * 8 * 1 = 80 execution slots in the cluster.

If your tasks tend not to be CPU-bound, you may adjust the number of execution slots configured to opti-
mize the CPU utilization on your TaskTracker machines.

The configuration parameter controls the maximum
number of map tasks that will be run simultaneously on a TaskTracker node.

The configuration parameter controls the maxi-
mum number of reduce tasks that will be run simultaneously on a TaskTracker node.

This requires tuning on a per-job basis and is a weakness in Hadoop at present, as the maximum values
are not per-job configurable and instead require a cluster restart.

The reducer class needs to be set only if the number of reduce tasks is not zero. It is very
common to not need a reducer, since frequently you do not require sorted output or value
grouping by key. The actual setting of the reducer class is straightforward:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 53

A COMMON EXCEPTION

The framework relies on the output parameters being set correctly. One of the more common errors is to have
each reduce task fail with an exception of the form:

This error indicates that output key class has been defaulted by the framework, or was set incorrectly
during the job configuration.

To correct this, use the following:

Or if your map output is not the same as your job output, use this form:

This error may occur for the value class as well:

The corresponding or class methods are needed
to correct this.

Running a Job
The ultimate aim of all your MapReduce job configuration is to actually run that job. The

 example (Listing 2-1) demonstrates a common and simple way to run
a job:

The method submits the configuration information to the framework and waits
for the framework to finish running the job. The response is provided in the object.

The class provides a number of methods for examining the response. Perhaps
the most useful is .

Run as follows (using the file provided with this book’s
downloadable code):

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB54

The response should be as follows:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 55

Congratulations, you have run a MapReduce job.
The single output file of the reduce task in the file /

will have a series of lines of the form . The
first thing you will notice is that the numbers don’t seem to be in order. The code that gener-
ates the input produces a random number for the key of each line, but the example tells the
framework that the keys are . Therefore, the numbers have been sorted as text rather than
as numbers.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB56

Creating a Custom Mapper and Reducer
As you’ve seen, your first Hadoop job, in , produced sorted output, but the
sorting was not suitable, as it sorted lexically rather than numerically, and the keys for the
job were numbers. Now, let’s work out what is required to sort numerically, using a custom
mapper. Then we’ll look at a custom reducer that outputs the values in a format that is easy
to parse.

Setting Up a Custom Mapper
Sorting numerically doesn’t sound difficult. Let’s try making the output key class a

, another class supplied by the framework:

instead of:

The class with this change is available as . Run this
class via this command:

You will see the following in the output:

As you can see, just changing the output key class was insufficient. If you are going to
change the output key class to a , you also need to modify the map function so
that it outputs keys.

For the job to actually produce output that is sorted numerically, you must change the
job configuration and provide a custom mapper class. This is done by two calls on the
object:

: Informs the framework of the key class
for map and reduce output.

: Informs the framework of
the custom class that provides the map method that takes as input keys and out-
puts keys.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 57

A demonstration class provides the configu-
ration for this. This class is identical to , except for these two replacement
method calls.

Note The job configuration could also provide a custom sort option. One way to do this is to provide a
custom class that implements and use that as the key class. Another way is to spec-
ify a in the job configuration via the method on the

 object. An example of implementing a custom comparator is provided in Chapter 9.

You also need to provide a mapper class that performs the transforma-
tion. The sample mapper class does this. The

 class file has a number of changes from the
class (shown earlier in Listing 2-2).

First, the class declaration is no longer generic; the types have been made concrete:

Notice that the code actually provides the types for the key/value pairs for input and for
output. The original class was completely generic. In addition, the identity
mapper’s declaration was . In

, the declaration is .
The method of is substantially different from the

 and introduces the use of the reporter object.

The Reporter Object
The map and reduce methods both take four parameters: the key, the value, the output collec-
tor, and the reporter. The object provides a mechanism for informing the framework
of the current status of your job.

The object provides three methods:

: Provides counters that are aggregated and reported at the end of
the job.

: Provides a status line for this map or reduce task.

: Returns information about the input source for this task. If the input
is simple files, this can provide useful information for log messages.

Each call on the object or the output collector provides a heartbeat to the frame-
work, informing it that the task is not deadlocked or otherwise unresponsive. If your map or
reduce method takes substantial time, the method must make periodic calls on the

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB58

object methods, to inform the framework that it is still working. The framework will kill tasks
that have not reported in 600 seconds by default.

Listing 2-6 shows the body of the mapper that uses the
 object.

Listing 2-6. The Reporter Object in TransformKeysToLongMapper.java

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 59

This block of code introduces a new object, , and some best practice patterns.
The key piece of this is the transformation of the key to a key.

The code in Listing 2-6 is sufficient to perform the transformation, and also includes some
additional code for tracking and reporting.

CODE EFFICIENCY

The pattern of creating a new key object in the mapper for the transformation object is not the most effi-
cient pattern. Most key classes provide a method, which sets the current value of the key. The

 method uses the current value of the key, and once the method is com-
plete, the key object or the value object is free to be reused.

If the job is configured to multithread the map method, via
, the map method will be called by multiple threads. Extreme care must be taken in

using the mapper class member variables. A object could be used to ensure
thread safety. To simplify the example, a new is constructed. In the reduce method; there are
no threading issues.

Object churn is a significant performance issue in a map method, and to a lesser extent, in the reduce
method. Object reuse can provide a significant performance gain.

The Counters and Exceptions
This example includes two blocks and several calls to the
method. It is a good practice to wrap your map and reduce methods in a block that catches

 and reports on the catches.
The JobTracker, the Hadoop Core server process that manages job execution on the

cluster, accumulates the counter values and provides a final count in the job output, as well

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB60

as making the instantaneous count available in the JobTracker web interface (available on
 by default). This interface will be discussed in more detail in

Chapter 6, which covers the setup of a multimachine cluster.
You can now run the job:

The output that reflects the counters is as follows:

The first block handles exceptions related to
, which may be thrown during the

key transformation:

You expect that some of the keys may not convert correctly into values, so you
capture the exception. The call tells the framework to increment a
counter in the group, of the name , by 1. If the counter does not already
exist, it will be created.

In the sample input, there are no records that will cause a number format exception.
The only counters that are accumulated are and .
These two counters will show up in the job output as part of the group:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 61

If one or more keys caused an exception during the conversion to , the output might
look more like this:

Note The sum of the parsed records and the number formats should equal the total records. The coun-
ters are also available via the object, allowing for a more comprehensive check of the success
status. The totals for your job will vary from this example.

After the Job Finishes
Once the job finishes, the framework will provide you with a filled-out object. This
object has information about the framework’s opinion on the success status of your job via the

 method. The framework will report that the job was unsuccessful if it was
unable to complete any single map task or if the job was killed.

This generally doesn’t provide enough information to make a determination on the actual
success. It may be that there was an exception in the map or method for every key or for most
keys. If the map or reduce function provides job counters for these cases, your job driver will
be able to make a better determination regarding the actual success or failure of your job.

In the sample mapper, several counters were collected under different circumstances:

: Reports the total number of input records seen.

: Reports the total number of records successfully
parsed.

: Reports the total number of records where the
key could not be parsed.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB62

: Reports the number of records that generated an
 exception when being processed.

: Reports the counts of exceptions by type.

Examining the Counters
Once the framework fills in the object and returns control back to the job driver,
the driver is able to examine the values of the various counters, as well as the framework’s suc-
cess or failure status.

Making the counter values available is a multistep process.

Now that the job driver has the counters issued by the map method, a much more accu-
rate determination of success can be made.

Caution An accurate determination of success is critical. In one of my production clusters, a TaskTracker
node was incorrectly configured. The result of this misconfiguration was that none of the computationally
intense work could be run in the map task, and the map method would return immediately with an exception.
As far as the framework was concerned, this machine was super fast, and it scheduled almost all of the map
tasks on this machine. The job was successful as far as the framework was concerned, but totally unsuc-
cessful per the business rules. At that point. the pattern of checking the exception count was not part of the
standard practice, and the failure was uncovered only when the consumer of the results noticed there were
no valid results. Save yourself much embarrassment—collect information about the successes and failures
in the mapper and reducer objects and check those results in your job driver.

Was This Job Really Successful?
The check for success primarily involves ensuring that the number of records output is roughly
the same as the number of records input. Hadoop jobs are generally dealing with bulk real-
world data, which is never 100% clean, so a small error rate is generally acceptable.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 63

In this particular case, you would expect a small number of s but
no other exceptions. If the total number of input records is roughly the number of parsed
input records, and you have no unexpected exceptions, this job is a success.

Creating a Custom Reducer
The reduce method is called once for each key, and passes the key and an iterator to all of the
map output values that share that key. The reduce task is an ideal place for summarizing data
and for doing basic duplicate suppression.

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB64

Note For managing duplicate suppression against a prior seen set, it is usually best to keep the prior
seen set in either HBase (the Hadoop database) or in a sorted format, such as a Hadoop map file. If this is not
done, then the dataset of seen records and the dataset of input records must be merged and sorted, which
can take considerable time if either dataset is large. In the HBase case, if the input data is already sorted, the
duplicate status of an input record can be rapidly determined. With a simple sorted seen set, map-side joins
may be performed. HBase is discussed in Chapter 10, and map-side joins are covered in Chapters 8 and 9.

For the sample custom reducer, let’s merge the values into a comma-separated values
(CSV) form, so you have one output line per key, with all of the values in a simple-to-parse
format.

After your work with the custom mapper in the preceding sections, creating a custom
reducer will seem familiar. This version is in ,
which is based on . First, the framework needs to
be informed of the reducer class. The key piece is, as usual, to inform the framework of the
reducer class, so add the following single line:

There have been no changes to the output classes, so no other changes are required to
.

The class to actually perform the work is . As with the map-
per example, , you start with your class declaration, which has
partially specified the generic types:

The reduce method doesn’t need to know the incoming value class; it requires only the
 method to work. The reduce method does need to construct a new output value,

and for simplicity’s sake, given this transformation, the output value is declared to be .
The actual method declaration also has the same type specification:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 65

The framework will throw an error if the job is expecting a different output value type than
. As with the mapper example, you have a method body that employs the

 method to make detailed information available to the job and via the web
interface. As a performance optimization, to reduce object churn, two class fields are declared.
These variables are used in the method:

The object is used to build the CSV-style line for the output, and is the
actual object that is sent to the output on each call. It is safe to declare these as class
fields, rather than as local variables, because the individual reduce tasks are run only as single
threads by the framework.

Note There may be multiple reduce tasks running simultaneously, but each task is running in a separate
JVM, and the JVMs are potentially running on separate physical machines.

The method is called with the key and an iterator to the values that share that
key. Recall that, ideally, a reduce task will make no changes to the key, and will use that key as
the key argument to the method calls in the method. The design
goal for this method is to output only a single row for every key, with a comma-
separated list of the values that shared that key. The core of the method has a bit of
boilerplate for the object churn optimizations to reset the object, and a loop to
process each of the values for this key:

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB66

It is rare that a method doesn’t have a loop that iterates over the values. It is
good form to report on the number of values input. In this example,

 handles the reporting.
This reducer relies on the method of the value object, which seems rea-

sonable for a textual output job, as the framework would also be using the
method to produce the output. The rest of the preceding code block simply builds a
comma-separated list of values, with Excel-style CSV quoting.

The actual output block must build a new value for the output. In this case, a class field
 will be used. In a larger job, there may be a billion keys passed through the

 method, and by using the class field, the amount of object churn is greatly reduced.
In this example, there are also counters for the output records:

The value is set on the object, using the
statement, and the value is output using the line. This
example uses as the output value class; it is acceptable to use any as the output
value class. If the output format is a , there is no need for a functional
method on your object.

Note The framework serializes the key and value into the output stream during the method,
leaving the user free to change the objects values when the method returns.

Why Do the Mapper and Reducer Extend MapReduceBase?
The custom mapper class and reducer class

 both extend the class .
This class provides basic implementations of two additional methods that are required of a
mapper or a reducer by the framework. The framework calls the method upon
initializing a task, and it calls the method when the task has finished processing its
input split:

The configure Method
The method is the only way to get access to the object for your task. This
method is where any per-task configuration and setup is done. If your application relies on

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 67

the Spring Framework for setup, the application context would be established here and the
relevant beans found.

It is very common for the developer to have a member variable, which would be
initialized in this method with the passed-in object. (I prefer to issue a logging record
with detailed information about the input split.) The method is also the ideal
place to open additional files that need to be read or written to during the or
method.

The close Method
The method is called by the framework when all of the input-split entries have been
processed by the applicable or method. It is very important to close any sup-
plemental files here to ensure that they are properly flushed to the file system. Particularly for
HDFS, if the file is not closed, data in the last block may be lost.

The following example also makes a reporter call in the method:

The field was made a class instance field, via , and
set in the method via . In the method, the count
of values is kept in , and if it’s larger than the instance member field, ,

 is set to it. This enables you to output the maximum number of values that
shared a specific key.

In this case, the overall summary value is not particularly useful, as that value is the sum
of all of the maximum values, but the per-task value is interesting and available via the web
interface. A more useful solution would be to maintain an additional output file and output
the key/value counts into that file.

When you select a completed or running task through the web interface (which is on port
50030 on the machine running the JobTracker, by default), you are presented with the counter
summary for the job and links to detailed information about the map and reduce tasks. Each
map and reduce task will have a link to the counters.

Using a Custom Partitioner
By default, the framework partitions your output based on the hash value of the key, using the

 class. There are times when you need your output data partitioned differ-
ently. The standard example is a single output file where multiple output files would usually

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB68

result, which is handled by setting the number of reduce tasks to 1, via ,
or unsorted/unreduced output, which is handled via . If you need dif-
ferent partitioning, you have the option of setting a partitioner.

This chapter’s example has keys. Some simple partitioner concepts could be to sort
into odd/even or, if the minimum and maximum key values are known, to sort into key range-
based buckets. It is also possible to partition by the value.

HOW PARTITIONING IS DONE

When the framework is performing the shuffle, each key output by the mapper is examined, and the following
operation is performed:

The value is the number of reduce tasks to perform. The key, if actually output by the
reducer, will end up in the output file part , with an appropriate number of leading zeros so that
the file names are all the same length.

The critical issues are that the number of partitions is fixed at job start time and the parti-
tion is determined in the method of the map task. The only information the
partitioner has is the key, the value, the number of partitions, and whatever data was made
available to it when it was instantiated.

The partitioner interface is very simple, as shown in Listing 2-7.

Listing 2-7. The Partitioner Interface

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB 69

The interface provides an additional method, as the
 class does.

Summary
This chapter explained what is involved in executing a MapReduce job. You now have a basic
understanding of the object and how to use it to inform the framework of the require-
ments for your jobs.

You’ve seen how to write mapper and reducer classes, and how the object is
one of your best friends, because of the wonderful information it can provide about what is
happening during the execution of your jobs. Output partitions finally make sense, and you
have a sense of when and why you configure your job to reduce, and how many reducers you
will use.

As a brilliant Hadoop expert, you are totally prepared to inform people of why the files
they open in mapper or reducer classes are empty or short, because you know you need to
close files before the framework will flush the last file system block size worth of data to disk.

In the next chapter, you’ll learn how to set up of a multimachine cluster.

