
C H A P T E R 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come in
contact with to Git. Sometimes you’re stuck on a project using another VCS, and many times
that system is Subversion. You’ll spend the first part of this chapter learning about , the
bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second part of
this chapter covers how to migrate your project into Git: first from Subversion, then from
Perforce, and finally via a custom import script for a nonstandard importing case.

Git and Subversion
Currently, the majority of open source development projects and a large number of corporate
projects use Subversion to manage their source code. It’s the most popular open source VCS
and has been around for nearly a decade. It’s also very similar in many ways to CVS, which was
the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called . This
tool allows you to use Git as a valid client to a Subversion server, so you can use all the local
features of Git and then push to a Subversion server as if you were using Subversion locally.
This means you can do local branching and merging, use the staging area, use rebasing and
cherry-picking, and so on, while your collaborators continue to work in their dark and ancient
ways. It’s a good way to sneak Git into the corporate environment and help your fellow devel-
opers become more efficient while you lobby to get the infrastructure changed to support Git
fully. The Subversion bridge is the gateway drug to the DVCS world.

git svn
The base command in Git for all the Subversion bridging commands is . You preface
everything with that. It takes quite a few commands, so you’ll learn about the common ones
while going through a few small workflows.

It’s important to note that when you’re using , you’re interacting with Subver-
sion, which is a system that is far less sophisticated than Git. Although you can easily do local
branching and merging, it’s generally best to keep your history as linear as possible by rebas-
ing your work and avoiding doing things like simultaneously interacting with a Git remote
repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git reposi-
tory to collaborate with fellow Git developers at the same time. Subversion can have only

203

CHAPTER 8 G IT AND OTHER SYSTEMS204

a single linear history, and confusing it is very easy. If you’re working with a team, and some
are using SVN and others are using Git, make sure everyone is using the SVN server to collabo-
rate—doing so will make your life easier.

Setting Up
To demonstrate this functionality, you need a typical SVN repository that you have write
access to. If you want to copy these examples, you’ll have to make a writeable copy of my
test repository. In order to do that easily, you can use a tool called that comes with
more recent versions of Subversion—it should be distributed with at least 1.4. For these tests,
I created a new Subversion repository on Google code that was a partial copy of the
project, which is a tool that encodes structured data for network transmission.

To follow along, you first need to create a new local Subversion repository:

Then, enable all users to change —the easy way is to add a
script that always exits 0:

You can now sync this project to your local machine by calling with the to
and from repositories.

This sets up the properties to run the sync. You can then clone the code by running

Although this operation may take only a few minutes, if you try to copy the original reposi-
tory to another remote repository instead of a local one, the process will take nearly an hour,
even though there are fewer than 100 commits. Subversion has to clone one revision at a time
and then push it back into another repository—it’s ridiculously inefficient, but it’s the only
easy way to do this.

Getting Started
Now that you have a Subversion repository to which you have write access, you can go through
a typical workflow. You’ll start with the command, which imports an entire
Subversion repository into a local Git repository. Remember that if you’re importing from

CHAPTER 8 G IT AND OTHER SYSTEMS 205

a real hosted Subversion repository, you should replace the here with
the URL of your Subversion repository:

This runs the equivalent of two commands— followed by —
on the URL you provide. This can take a while. The test project has only about 75 commits and
the codebase isn’t that big, so it takes just a few minutes. However, Git has to check out each
version, one at a time, and commit it individually. For a project with hundreds or thousands of
commits, this can literally take hours or even days to finish.

The part tells Git that this Subversion repository follows
the basic branching and tagging conventions. If you name your trunk, branches, or tags differ-
ently, you can change these options. Because this is so common, you can replace this entire
part with , which means standard layout and implies all those options. The following com-
mand is equivalent:

At this point, you should have a valid Git repository that has imported your branches and
tags:

It’s important to note how this tool namespaces your remote references differently. When
you’re cloning a normal Git repository, you get all the branches on that remote server available
locally as something like , namespaced by the name of the remote. However,

 assumes that you won’t have multiple remotes and saves all its references to points on
the remote server with no namespacing. You can use the Git plumbing command to
look at all your full reference names:

CHAPTER 8 G IT AND OTHER SYSTEMS206

A normal Git repository looks more like this:

You have two remote servers: one named with a branch; and another
named with two branches, and .

Notice how in the example of remote references imported from , tags are added as
remote branches, not as real Git tags. Your Subversion import looks like it has a remote named

 with branches under it.

Committing Back to Subversion
Now that you have a working repository, you can do some work on the project and push your
commits back upstream, using Git effectively as a SVN client. If you edit one of the files and
commit it, you have a commit that exists in Git locally that doesn’t exist on the Subversion
server:

Next, you need to push your change upstream. Notice how this changes the way you work
with Subversion—you can do several commits offline and then push them all at once to the
Subversion server. To push to a Subversion server, you run the command:

This takes all the commits you’ve made on top of the Subversion server code, does
a Subversion commit for each, and then rewrites your local Git commit to include a unique
identifier. This is important because it means that all the SHA-1 checksums for your commits
change. Partly for this reason, working with Git-based remote versions of your projects

CHAPTER 8 G IT AND OTHER SYSTEMS 207

concurrently with a Subversion server isn’t a good idea. If you look at the last commit, you can
see the new that was added:

Notice that the SHA checksum that originally started with when you committed
now begins with . If you want to push to both a Git server and a Subversion server, you
have to push (dcommit) to the Subversion server first, because that action changes your com-
mit data.

Pulling in New Changes
If you’re working with other developers, then at some point one of you will push, and then the
other one will try to push a change that conflicts. That change will be rejected until you merge
in their work. In , it looks like this:

To resolve this situation, you can run , which pulls down any changes
on the server that you don’t have yet and rebases any work you have on top of what is on the
server:

Now, all your work is on top of what is on the Subversion server, so you can successfully
:

CHAPTER 8 G IT AND OTHER SYSTEMS208

It’s important to remember that unlike Git, which requires you to merge upstream work
you don’t yet have locally before you can push, makes you do that only if the changes
conflict. If someone else pushes a change to one file and then you push a change to another
file, your dcommit will work fine:

This is important to remember, because the outcome is a project state that didn’t exist on
either of your computers when you pushed. If the changes are incompatible but don’t conflict,
you may get issues that are difficult to diagnose. This is different than using a Git server—in
Git, you can fully test the state on your client system before publishing it, whereas in SVN, you
can’t ever be certain that the states immediately before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server, even if
you’re not ready to commit yourself. You can run to grab the new data, but

 does the fetch and then updates your local commits:

Running every once in a while makes sure your code is always up to date.
You need to be sure your working directory is clean when you run this, though. If you have
local changes, you must either stash your work or temporarily commit it before running

—otherwise, the command will stop if it sees that the rebase will result in a merge
conflict.

Git Branching Issues
When you’ve become comfortable with a Git workflow, you’ll likely create topic branches, do
work on them, and then merge them in. If you’re pushing to a Subversion server via ,
you may want to rebase your work onto a single branch each time instead of merging branches
together. The reason to prefer rebasing is that Subversion has a linear history and doesn’t deal
with merges like Git does, so follows only the first parent when converting the snap-
shots into Subversion commits.

CHAPTER 8 G IT AND OTHER SYSTEMS 209

Suppose your history looks like the following: you created an branch, did two
commits, and then merged them back into . When you dcommit, you see output like
this:

Running on a branch with merged history works fine, except that when you
look at your Git project history, it hasn’t rewritten either of the commits you made on the

 branch—instead, all those changes appear in the SVN version of the single merge
commit.

When someone else clones that work, all they see is the merge commit with all the work
squashed into it; they don’t see the commit data about where it came from or when it was
committed.

Subversion Branching
Branching in Subversion isn’t the same as branching in Git; if you can avoid using it much,
that’s probably best. However, you can create and commit to branches in Subversion using

.

Creating a New SVN Branch
To create a new branch in Subversion, you run :

CHAPTER 8 G IT AND OTHER SYSTEMS210

This does the equivalent of the command in Subversion
and operates on the Subversion server. It’s important to note that it doesn’t check you out into
that branch; if you commit at this point, that commit will go to on the server, not .

Switching Active Branches
Git figures out what branch your dcommits go to by looking for the tip of any of your Subver-
sion branches in your history—you should have only one, and it should be the last one with
a in your current branch history.

If you want to work on more than one branch simultaneously, you can set up local
branches to dcommit to specific Subversion branches by starting them at the imported Sub-
version commit for that branch. If you want an branch that you can work on separately,
you can run

Now, if you want to merge your branch into (your branch), you can do
so with a normal . But you need to provide a descriptive commit message (via), or
the merge will say instead of something useful.

Remember that although you’re using to do this operation, and the merge likely
will be much easier than it would be in Subversion (because Git will automatically detect the
appropriate merge base for you), this isn’t a normal Git merge commit. You have to push this
data back to a Subversion server that can’t handle a commit that tracks more than one par-
ent; so, after you push it up, it will look like a single commit that squashed in all the work of
another branch under a single commit. After you merge one branch into another, you can’t
easily go back and continue working on that branch, as you normally can in Git. The
command that you run erases any information that says what branch was merged in, so sub-
sequent merge-base calculations will be wrong—the makes your result look
like you ran . Unfortunately, there’s no good way to avoid this situation—
Subversion can’t store this information, so you’ll always be crippled by its limitations while
you’re using it as your server. To avoid issues, you should delete the local branch (in this case,

) after you merge it into .

Subversion Commands
The toolset provides a number of commands to help ease the transition to Git by
providing some functionality that’s similar to what you had in Subversion. Here are a few com-
mands that give you what Subversion used to.

SVN Style History
If you’re used to Subversion and want to see your history in SVN output style, you can run

 to view your commit history in SVN formatting:

CHAPTER 8 G IT AND OTHER SYSTEMS 211

You should know two important things about . First, it works offline, unlike
the real command, which asks the Subversion server for the data. Second, it only
shows you commits that have been committed up to the Subversion server. Local Git commits
that you haven’t dcommited don’t show up; neither do commits that people have made to the
Subversion server in the meantime. It’s more like the last known state of the commits on the
Subversion server.

SVN Annotation
Much as the command simulates the command offline, you can get the
equivalent of by running . The output looks like this:

Again, it doesn’t show commits that you did locally in Git or that have been pushed to
Subversion in the meantime.

SVN Server Information
You can also get the same sort of information that gives you by running

:

CHAPTER 8 G IT AND OTHER SYSTEMS212

This is like and in that it runs offline and is up to date only as of the last time you
communicated with the Subversion server.

Ignoring What Subversion Ignores
If you clone a Subversion repository that has properties set anywhere, you’ll likely
want to set corresponding files so you don’t accidentally commit files that you
shouldn’t. has two commands to help with this issue. The first is ,
which automatically creates corresponding files for you so your next commit can
include them.

The second command is , which prints to stdout the lines you need
to put in a file so you can redirect the output into your project file:

That way, you don’t litter the project with files. This is a good option if you’re
the only Git user on a Subversion team, and your teammates don’t want files in the
project.

Git-Svn Summary
The tools are useful if you’re stuck with a Subversion server for now or are otherwise
in a development environment that necessitates running a Subversion server. You should con-
sider it crippled Git, however, or you’ll hit issues in translation that may confuse you and your
collaborators. To stay out of trouble, try to follow these guidelines:

.
Rebase any work you do outside of your mainline branch back onto it; don’t merge it
in.

clones for new developers, but don’t push anything to it that doesn’t have a
entry. You may even want to add a pre-receive hook that checks each commit message
for a and rejects pushes that contain commits without it.

If you follow those guidelines, working with a Subversion server can be more bearable.
However, if it’s possible to move to a real Git server, doing so can gain your team a lot more.

Migrating to Git
If you have an existing codebase in another VCS but you’ve decided to start using Git, you
must migrate your project one way or another. This section goes over some importers that are
included with Git for common systems and then demonstrates how to develop your own cus-
tom importer.

CHAPTER 8 G IT AND OTHER SYSTEMS 213

Importing
You’ll learn how to import data from two of the bigger professionally used SCM systems—
Subversion and Perforce—both because they make up the majority of users I hear of who are
currently switching, and because high-quality tools for both systems are distributed with Git.

Subversion
If you read the previous section about using , you can easily use those instructions to

 a repository; then, stop using the Subversion server, push to a new Git server,
and start using that. If you want the history, you can accomplish that as quickly as you can pull
the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well do it
right. The first problem is the author information. In Subversion, each person committing has
a user on the system who is recorded in the commit information. The examples in the previous
section show in some places, such as the output and the log. If you want
to map this to better Git author data, you need a mapping from the Subversion users to the Git
authors. Create a file called that has this mapping in a format like this:

To get a list of the author names that SVN uses, you can run this:

That gives you the log output in XML format—then it looks for the authors, creates
a unique list, and then strips out the XML. (Obviously this only works on a machine with ,

, and installed.) Then, redirect that output into your file so you can add the
equivalent Git user data next to each entry.

You can provide this file to to help it map the author data more accurately. You
can also tell not to include the metadata that Subversion normally imports, by passing

 to the or command. This makes your import command look like this:

Now you should have a nicer Subversion import in your directory. Instead of
commits that look like this:

CHAPTER 8 G IT AND OTHER SYSTEMS214

they look like this:

Not only does the field look a lot better, but the is no longer there,
either.

You then need to do a bit of post-import cleanup. For one thing, you should clean up the
weird references that set up. First you’ll move the tags so they’re actual tags rather
than strange remote branches, and then you’ll move the rest of the branches so they’re local.

To move the tags to be proper Git tags, run

This takes the references that were remote branches that started with and makes
them real (lightweight) tags.

Next, move the rest of the references under to be local branches:

Now all the old branches are real Git branches and all the old tags are real Git tags. The
last thing to do is add your new Git server as a remote and push to it. Because you want all
your branches and tags to go up, you can run this:

All your branches and tags should be on your new Git server in a nice, clean import.

Perforce
The next system you’ll look at importing from is Perforce. A Perforce importer is also distrib-
uted with Git, but only in the section of the source code—it isn’t available by default
like . To run it, you must get the Git source code, which you can download from

:

In this directory, you should find an executable Python script named .
You must have Python and the tool installed on your machine for this import to work. For
example, you’ll import the Jam project from the Perforce Public Depot. To set up your client,
you must export the environment variable to point to the Perforce depot:

Run the command to import the Jam project from the Perforce server, sup-
plying the depot and project path and the path into which you want to import the project:

CHAPTER 8 G IT AND OTHER SYSTEMS 215

If you go to the directory and run , you can see your imported work:

You can see the identifier in each commit. It’s fine to keep that identifier there, in
case you need to reference the Perforce change number later. However, if you’d like to remove
the identifier, now is the time to do so—before you start doing work on the new repository.
You can use to remove the identifier strings en masse:

If you run , you can see that all the SHA-1 checksums for the commits have
changed, but the strings are no longer in the commit messages:

CHAPTER 8 G IT AND OTHER SYSTEMS216

Your import is ready to push up to your new Git server.

A Custom Importer
If your system isn’t Subversion or Perforce, you should look for an importer online—quality
importers are available for CVS, Clear Case, Visual Source Safe, even a directory of archives. If
none of these tools works for you, you have a rarer tool, or you otherwise need a more custom
importing process, you should use . This command reads simple instructions
from stdin to write specific Git data. It’s much easier to create Git objects this way than to run
the raw Git commands or try to write the raw objects (see Chapter 9 for more information).
This way, you can write an import script that reads the necessary information out of the sys-
tem you’re importing from and prints straightforward instructions to stdout. You can then run
this program and pipe its output through .

To quickly demonstrate, you’ll write a simple importer. Suppose you work in , you
back up your project by occasionally copying the directory into a time-stamped

 backup directory, and you want to import this into Git. Your directory structure looks like
this:

In order to import a Git directory, you need to review how Git stores its data. As you may
remember, Git is fundamentally a linked list of commit objects that point to a snapshot of con-
tent. All you have to do is tell what the content snapshots are, what commit data
points to them, and the order they go in. Your strategy will be to go through the snapshots one
at a time and create commits with the contents of each directory, linking each commit back to
the previous one.

As you did in the “An Example Git-Enforced Policy” section of Chapter 7, you’ll write this
in Ruby, because it’s what I generally work with and it tends to be easy to read. You can write
this example pretty easily in anything you’re familiar with—it just needs to print the appropri-
ate information to stdout.

To begin, you’ll change into the target directory and identify every subdirectory, each of
which is a snapshot that you want to import as a commit. You’ll change into each subdirectory
and print the commands necessary to export it. Your basic main loop looks like this:

CHAPTER 8 G IT AND OTHER SYSTEMS 217

You run inside each directory, which takes the manifest and mark of the
previous snapshot and returns the manifest and mark of this one; that way, you can link them
properly. Mark is the term for an identifier you give to a commit; as you create
commits, you give each one a mark that you can use to link to it from other commits. So, the
first thing to do in your method is generate a mark from the directory name:

You’ll do this by creating an array of directories and using the index value as the mark,
because a mark must be an integer. Your method looks like this:

Now that you have an integer representation of your commit, you need a date for the
commit metadata. Because the date is expressed in the name of the directory, you’ll parse it
out. The next line in your file is

where is defined as

CHAPTER 8 G IT AND OTHER SYSTEMS218

That returns an integer value for the date of each directory. The last piece of meta-
information you need for each commit is the committer data, which you hardcode in a
global variable:

Now you’re ready to begin printing out the commit data for your importer. The initial
information states that you’re defining a commit object and what branch it’s on, followed by
the mark you’ve generated, the committer information and commit message, and then the
previous commit, if any. The code looks like this:

You hardcode the time zone 00) because doing so is easy. If you’re importing from
another system, you must specify the time zone as an offset.

The commit message must be expressed in a special format:

The format consists of the word , the size of the data to be read, a newline, and finally
the data. Because you need to use the same format to specify the file contents later, you create
a helper method, :

All that’s left is to specify the file contents for each snapshot. This is easy, because you
have each one in a directory—you can print out the command followed by the con-
tents of each file in the directory. Git will then record each snapshot appropriately:

Note Because many systems think of their revisions as changes from one commit to another,
 can also take commands with each commit to specify which files have been added, removed,

or modified and what the new contents are. You could calculate the differences between snapshots and
provide only this data, but doing so is more complex—you may as well give Git all the data and let it figure it
out. If this is better suited to your data, check the man page for details about how to provide
your data in this manner.

CHAPTER 8 G IT AND OTHER SYSTEMS 219

The format for listing the new file contents or specifying a modified file with the new con-
tents is as follows:

Here, 644 is the mode (if you have executable files, you need to detect and specify 755
instead), and says you’ll list the contents immediately after this line. Your
method looks like this:

You reuse the method you defined earlier, because it’s the same as the way
you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the next
iteration:

That’s it. If you run this script, you’ll get content that looks something like this (you can
download the full script from):

CHAPTER 8 G IT AND OTHER SYSTEMS220

To run the importer, pipe this output through while in the Git directory
you want to import into. You can create a new directory and then run in it for a start-
ing point, and then run your script:

As you can see, when it completes successfully, it gives you a bunch of statistics about
what it accomplished. In this case, you imported 18 objects total for 5 commits into 1 branch.
Now, you can run to see your new history:

CHAPTER 8 G IT AND OTHER SYSTEMS 221

There you go—a nice, clean Git repository. It’s important to note that nothing is checked
out—you don’t have any files in your working directory at first. To get them, you must reset
your branch to where is now:

You can do a lot more with the tool—handle different modes, binary data,
multiple branches and merging, tags, progress indicators, and more. A number of examples of
more complex scenarios are available in the directory of the Git source
code; one of the better ones is the script I just covered.

Summary
You should feel comfortable using Git with Subversion or importing nearly any existing reposi-
tory into a new Git one without losing data. The next chapter will cover the raw internals of Git
so you can craft every single byte, if need be.

