CHAPTER 8

Git and Other Systems

The world isn’t perfect. Usually, you can’t immediately switch every project you come in
contact with to Git. Sometimes you're stuck on a project using another VCS, and many times
that system is Subversion. You'll spend the first part of this chapter learning about git svn, the
bidirectional Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second part of
this chapter covers how to migrate your project into Git: first from Subversion, then from
Perforce, and finally via a custom import script for a nonstandard importing case.

Git and Subversion

Currently, the majority of open source development projects and a large number of corporate
projects use Subversion to manage their source code. It’s the most popular open source VCS
and has been around for nearly a decade. It’s also very similar in many ways to CVS, which was
the big boy of the source-control world before that.

One of Git’s great features is a bidirectional bridge to Subversion called git svn. This
tool allows you to use Git as a valid client to a Subversion server, so you can use all the local
features of Git and then push to a Subversion server as if you were using Subversion locally.
This means you can do local branching and merging, use the staging area, use rebasing and
cherry-picking, and so on, while your collaborators continue to work in their dark and ancient
ways. It's a good way to sneak Git into the corporate environment and help your fellow devel-
opers become more efficient while you lobby to get the infrastructure changed to support Git
fully. The Subversion bridge is the gateway drug to the DVCS world.

git svn

The base command in Git for all the Subversion bridging commands is git svn. You preface
everything with that. It takes quite a few commands, so you'll learn about the common ones
while going through a few small workflows.

It’s important to note that when you're using git svn, you're interacting with Subver-
sion, which is a system that is far less sophisticated than Git. Although you can easily do local
branching and merging, it’s generally best to keep your history as linear as possible by rebas-
ing your work and avoiding doing things like simultaneously interacting with a Git remote
repository.

Don’t rewrite your history and try to push again, and don’t push to a parallel Git reposi-
tory to collaborate with fellow Git developers at the same time. Subversion can have only

203

204

CHAPTER 8 GIT AND OTHER SYSTEMS

a single linear history, and confusing it is very easy. If you're working with a team, and some
are using SVN and others are using Git, make sure everyone is using the SVN server to collabo-
rate—doing so will make your life easier.

Setting Up
To demonstrate this functionality, you need a typical SVN repository that you have write
access to. If you want to copy these examples, you'll have to make a writeable copy of my
test repository. In order to do that easily, you can use a tool called svnsync that comes with
more recent versions of Subversion—it should be distributed with at least 1.4. For these tests,
I created a new Subversion repository on Google code that was a partial copy of the protobuf
project, which is a tool that encodes structured data for network transmission.

To follow along, you first need to create a new local Subversion repository:

$ mkdir /tmp/test-svn
$ svnadmin create /tmp/test-svn

Then, enable all users to change revprops—the easy way is to add a pre-revprop-change
script that always exits 0:

$ cat /tmp/test-svn/hooks/pre-revprop-change
#!/bin/sh

exit 0;

$ chmod +x /tmp/test-svn/hooks/pre-revprop-change

You can now sync this project to your local machine by calling svnsync init with the to
and from repositories.

$ svnsync init file:///tmp/test-svn http://progit-example.googlecode.com/svn/
This sets up the properties to run the sync. You can then clone the code by running

$ svnsync sync file:///tmp/test-svn
Committed revision 1.

Copied properties for revision 1.
Committed revision 2.

Copied properties for revision 2.
Committed revision 3.

Although this operation may take only a few minutes, if you try to copy the original reposi-
tory to another remote repository instead of a local one, the process will take nearly an hour,
even though there are fewer than 100 commits. Subversion has to clone one revision at a time
and then push it back into another repository—it’s ridiculously inefficient, but it’s the only
easy way to do this.

Getting Started

Now that you have a Subversion repository to which you have write access, you can go through
a typical workflow. You'll start with the git svn clone command, which imports an entire
Subversion repository into a local Git repository. Remember that if you're importing from

CHAPTER 8 GIT AND OTHER SYSTEMS

areal hosted Subversion repository, you should replace the file:///tmp/test-svn here with
the URL of your Subversion repository:

$ git svn clone file:///tmp/test-svn -T trunk -b branches -t tags
Initialized empty Git repository in /Users/schacon/projects/testsvnsync/svn/.git/
11 = b4e387bc68740b5af56c2a5faf4003ae42bd135¢ (trunk)

A m4/acx_pthread.m4

A m4/stl_hash.m4

175 = d19573b307922124eec6314e15bcda59e3d9610 (trunk)

Found possible branch point: file:///tmp/test-svn/trunk => \
file:///tmp/test-svn /branches/my-calc-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314e15bcda59e3d9610

Following parent with do_switch

Successfully followed parent

176 = 8624824eccObadd73f40ea2f01fce51894189b01 (my-calc-branch)

Checked out HEAD:

file:///tmp/test-svn/branches/my-calc-branch r76

This runs the equivalent of two commands—git svn init followed by git svn fetch—
on the URL you provide. This can take a while. The test project has only about 75 commits and
the codebase isn’t that big, so it takes just a few minutes. However, Git has to check out each
version, one at a time, and commit it individually. For a project with hundreds or thousands of
commits, this can literally take hours or even days to finish.

The -T trunk -b branches -t tags part tells Git that this Subversion repository follows
the basic branching and tagging conventions. If you name your trunk, branches, or tags differ-
ently, you can change these options. Because this is so common, you can replace this entire
part with -s, which means standard layout and implies all those options. The following com-
mand is equivalent:

$ git svn clone file:///tmp/test-svn -s

At this point, you should have a valid Git repository that has imported your branches and
tags:

$ git branch -a

* master
my-calc-branch
tags/2.0.2

tags/release-2.0.1
tags/release-2.0.2
tags/release-2.0.2rc1
trunk

It’s important to note how this tool namespaces your remote references differently. When
you're cloning a normal Git repository, you get all the branches on that remote server available
locally as something like origin/[branch], namespaced by the name of the remote. However,
git svnassumes that you won't have multiple remotes and saves all its references to points on
the remote server with no namespacing. You can use the Git plumbing command show-ref to
look at all your full reference names:

205

206

CHAPTER 8 GIT AND OTHER SYSTEMS

$ git show-ref

1cbd4904d99821386d8788fcelc24ad7c0f0471 refs/heads/master
aeelecc26318164f355a883f5d99cff0c852d3c4 refs/remotes/my-calc-branch
03dogboe2aad427e34a6d50ff147128e76c0e0f5 refs/remotes/tags/2.0.2
50d02ccOadc9das319eeba0900430ba219b9c376 refs/remotes/tags/release-2.0.1
4caaa711a50c77879a91b8b903800601672745ch refs/remotes/tags/release-2.0.2
1c4cb508144c51311214c3488abe66dcb92916f refs/remotes/tags/release-2.0.2rcl
1cbd4904d99821386d87f88fcelc24ad7c0f0471 refs/remotes/trunk

A normal Git repository looks more like this:

$ git show-ref

83e38c7a0af325a9722f2fdc56b10188806d83a1 refs/heads/master
3e15e38c198baac84223acfc6224bb8b991f2281 refs/remotes/gitserver/master
0a30dd3b0c795b80212ae723640d4e5d48cabdff refs/remotes/origin/master
25812380387fdd551916652be4881c6T11600d6f refs/remotes/origin/testing

You have two remote servers: one named gitserver with a master branch; and another
named origin with two branches, master and testing.

Notice how in the example of remote references imported from git svn, tags are added as
remote branches, not as real Git tags. Your Subversion import looks like it has a remote named
tags with branches under it.

Committing Back to Subversion

Now that you have a working repository, you can do some work on the project and push your
commits back upstream, using Git effectively as a SVN client. If you edit one of the files and
commit it, you have a commit that exists in Git locally that doesn’t exist on the Subversion
server:

$ git commit -am 'Adding git-svn instructions to the README'
[master 97031e5] Adding git-svn instructions to the README
1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way you work
with Subversion—you can do several commits offline and then push them all at once to the
Subversion server. To push to a Subversion server, you run the git svn dcommit command:

$ git svn dcommit
Committing to file:///tmp/test-svn/trunk ...

M README . txt
Committed 179
M README . txt

179 = 938b1a547c2cc92033b74d32030e86468294a5c8 (trunk)
No changes between current HEAD and refs/remotes/trunk
Resetting to the latest refs/remotes/trunk

This takes all the commits you’'ve made on top of the Subversion server code, does
a Subversion commit for each, and then rewrites your local Git commit to include a unique
identifier. This is important because it means that all the SHA-1 checksums for your commits
change. Partly for this reason, working with Git-based remote versions of your projects

CHAPTER 8 GIT AND OTHER SYSTEMS

concurrently with a Subversion server isn’t a good idea. If you look at the last commit, you can
see the new git-svn-id that was added:

$ git log -1

commit 938b1a547c2cc92033b74d32030e86468294a5c8

Author: schacon <schacon@4c93b258-373f-11de-be05-517a86268029>
Date: Sat May 2 22:06:44 2009 +0000

Adding git-svn instructions to the README

git-svn-id: file:///tmp/test-svn/trunk@79 4c93b258-373f-11de-be05-5f7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you committed
now begins with 938b1a5. If you want to push to both a Git server and a Subversion server, you
have to push (dcommit) to the Subversion server first, because that action changes your com-
mit data.

Pulling in New Changes

If you're working with other developers, then at some point one of you will push, and then the
other one will try to push a change that conflicts. That change will be rejected until you merge
in their work. In git svn, itlooks like this:

$ git svn dcommit

Committing to file:///tmp/test-svn/trunk ...

Merge conflict during commit: Your file or directory 'README.txt' is probably \
out-of-date: resource out of date; try updating at /Users/schacon/libexec/git-\
core/git-svn line 482

To resolve this situation, you can run git svn rebase, which pulls down any changes
on the server that you don’t have yet and rebases any work you have on top of what is on the
server:

$ git svn rebase

M README . txt
180 = f829ab914e8775c7c025d741beb3d523ee30bca (trunk)
First, rewinding head to replay your work on top of it...
Applying: first user change

Now, all your work is on top of what is on the Subversion server, so you can successfully
dcommit:

$ git svn dcommit
Committing to file:///tmp/test-svn/trunk ...

M README. txt
Committed 181
M README. txt

181 = 456Ccbe6337abe49154db70106d1836bc1332deed (trunk)
No changes between current HEAD and refs/remotes/trunk
Resetting to the latest refs/remotes/trunk

207

208

CHAPTER 8 GIT AND OTHER SYSTEMS

It’s important to remember that unlike Git, which requires you to merge upstream work
you don’t yet have locally before you can push, git svn makes you do that only if the changes
conflict. If someone else pushes a change to one file and then you push a change to another
file, your dcommit will work fine:

$ git svn dcommit
Committing to file:///tmp/test-svn/trunk ...

M configure.ac

Committed 184
M autogen.sh

183 = 8aab54a74d452182eee10076ab2584c1c424853b (trunk)
M configure.ac

184 = cdbac939211cch18aa744e581e46563af5d962do (trunk)

W: d2f23b80f67aaaalf6f5aaef48fce3263ac71a92 and refs/remotes/trunk differ, \
using rebase:

1100755 100755 efa5a59965fbbb5b2b0a12890f1b351bb5493¢c18 \
015e4c98c482f0fa71e4d5434338014530b37fab M autogen.sh

First, rewinding head to replay your work on top of it...

Nothing to do.

This is important to remember, because the outcome is a project state that didn’t exist on
either of your computers when you pushed. If the changes are incompatible but don’t conflict,
you may get issues that are difficult to diagnose. This is different than using a Git server—in
Git, you can fully test the state on your client system before publishing it, whereas in SVN, you
can’t ever be certain that the states immediately before commit and after commit are identical.

You should also run this command to pull in changes from the Subversion server, even if
you're not ready to commit yourself. You can run git svn fetch to grab the new data, but git
svn rebase does the fetch and then updates your local commits:

$ git svn rebase

M generate descriptor proto.sh
182 = bd16df9173e424c6f52c337abbefa7f7643282f1 (trunk)
First, rewinding head to replay your work on top of it...
Fast-forwarded master to refs/remotes/trunk.

Running git svn rebase every once in a while makes sure your code is always up to date.
You need to be sure your working directory is clean when you run this, though. If you have
local changes, you must either stash your work or temporarily commit it before running git
svn rebase—otherwise, the command will stop if it sees that the rebase will result in a merge
conflict.

Git Branching Issues

When you’ve become comfortable with a Git workflow, you'll likely create topic branches, do
work on them, and then merge them in. If you're pushing to a Subversion server via git svn,
you may want to rebase your work onto a single branch each time instead of merging branches
together. The reason to prefer rebasing is that Subversion has a linear history and doesn’t deal
with merges like Git does, so git svn follows only the first parent when converting the snap-
shots into Subversion commits.

CHAPTER 8 GIT AND OTHER SYSTEMS

Suppose your history looks like the following: you created an experiment branch, did two
commits, and then merged them back into master. When you dcommit, you see output like
this:

$ git svn dcommit
Committing to file:///tmp/test-svn/trunk ...

M CHANGES. txt
Committed 185
M CHANGES. txt

185 = 4bfebeec434d156c36f2bcd18f4e3d97dc3269a2 (trunk)
No changes between current HEAD and refs/remotes/trunk
Resetting to the latest refs/remotes/trunk
COPYING.txt: locally modified

INSTALL.txt: locally modified

M COPYING.txt

M INSTALL.txt
Committed 186

M INSTALL.txt

M COPYING.txt

186 = 2647f6b86ccfcaadsec58c520e369ec81f7c283¢ (trunk)
No changes between current HEAD and refs/remotes/trunk
Resetting to the latest refs/remotes/trunk

Running dcommit on a branch with merged history works fine, except that when you
look at your Git project history, it hasn’t rewritten either of the commits you made on the
experiment branch—instead, all those changes appear in the SVN version of the single merge
commit.

When someone else clones that work, all they see is the merge commit with all the work
squashed into it; they don’t see the commit data about where it came from or when it was
committed.

Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using it much,
that’s probably best. However, you can create and commit to branches in Subversion using
git svn.

Creating a New SVN Branch

To create a new branch in Subversion, you run git svn branch [branchname]:

$ git svn branch opera

Copying file:///tmp/test-svn/trunk at 187 to file:///tmp/test-svn/branches/opera...

Found possible branch point: file:///tmp/test-svn/trunk => \
file:///tmp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfe471083cbca06ac8d4176f7ad4deod62e5+

Following parent with do switch

Successfully followed parent

189 = 9b6fe0b90c5c9adf91651700897518dbc54a7chbf (opera)

209

210

CHAPTER 8 GIT AND OTHER SYSTEMS

This does the equivalent of the svn copy trunk branches/opera command in Subversion
and operates on the Subversion server. It’s important to note that it doesn’t check you out into
that branch; if you commit at this point, that commit will go to trunk on the server, not opera.

Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your Subver-
sion branches in your history—you should have only one, and it should be the last one with
agit-svn-idinyour current branch history.

If you want to work on more than one branch simultaneously, you can set up local
branches to dcommit to specific Subversion branches by starting them at the imported Sub-
version commit for that branch. If you want an opera branch that you can work on separately,
you can run

$ git branch opera remotes/opera

Now, if you want to merge your opera branch into trunk (your master branch), you can do
so with a normal git merge. But you need to provide a descriptive commit message (via -m), or
the merge will say Merge branch opera instead of something useful.

Remember that although you're using git merge to do this operation, and the merge likely
will be much easier than it would be in Subversion (because Git will automatically detect the
appropriate merge base for you), this isn’t a normal Git merge commit. You have to push this
data back to a Subversion server that can’t handle a commit that tracks more than one par-
ent; so, after you push it up, it will look like a single commit that squashed in all the work of
another branch under a single commit. After you merge one branch into another, you can’t
easily go back and continue working on that branch, as you normally can in Git. The dcommit
command that you run erases any information that says what branch was merged in, so sub-
sequent merge-base calculations will be wrong—the dcommit makes your git merge result look
like youran git merge --squash. Unfortunately, there’s no good way to avoid this situation—
Subversion can’t store this information, so you'll always be crippled by its limitations while
you're using it as your server. To avoid issues, you should delete the local branch (in this case,
opera) after you merge it into trunk.

Subversion Commands

The git svn toolset provides a number of commands to help ease the transition to Git by
providing some functionality that’s similar to what you had in Subversion. Here are a few com-
mands that give you what Subversion used to.

SVN Style History

If you're used to Subversion and want to see your history in SVN output style, you can run git
svn log to view your commit history in SVN formatting:

$ git svn log

187 | schacon | 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009) | 2 lines

autogen change

CHAPTER 8 GIT AND OTHER SYSTEMS

186 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Merge branch 'experiment'

185 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updated the changelog

You should know two important things about git svn log. First, it works offline, unlike
the real svn log command, which asks the Subversion server for the data. Second, it only
shows you commits that have been committed up to the Subversion server. Local Git commits
that you haven’t dcommited don’t show up; neither do commits that people have made to the
Subversion server in the meantime. It’s more like the last known state of the commits on the
Subversion server.

SVN Annotation

Much as the git svn log command simulates the svn log command offline, you can get the
equivalent of svn annotate by running git svn blame [FILE]. The outputlooks like this:

$ git svn blame README.txt
temporal Protocol Buffers - Google's data interchange format
temporal Copyright 2008 Google Inc.
temporal http://code.google.com/apis/protocolbuffers/
temporal
22 temporal C++ Installation - Unix
22 temporal =====================--
2 temporal
79 schacon Committing in git-svn.
78 schacon
2 temporal To build and install the C++ Protocol Buffer runtime and the Protocol
2 temporal Buffer compiler (protoc) execute the following:
2 temporal

N N NN

Again, it doesn’t show commits that you did locally in Git or that have been pushed to
Subversion in the meantime.

SVN Server Information

You can also get the same sort of information that svn info gives you by running git svn
info:

$ git svn info

Path: .

URL: https://schacon-test.googlecode.com/svn/trunk
Repository Root: https://schacon-test.googlecode.com/svn
Repository UUID: 4c93b258-373f-11de-be05-5f7a86268029
Revision: 87

211

212

CHAPTER 8 GIT AND OTHER SYSTEMS

Node Kind: directory

Schedule: normal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

This is like blame and log in that it runs offline and is up to date only as of the last time you
communicated with the Subversion server.

Ignoring What Subversion Ignores

If you clone a Subversion repository that has svn: ignore properties set anywhere, you'll likely
want to set corresponding .gitignore files so you don’t accidentally commit files that you
shouldn’t. git svn has two commands to help with this issue. The first is git svn create-ignore,
which automatically creates corresponding .gitignore files for you so your next commit can
include them.

The second command is git svn show-ignore, which prints to stdout the lines you need
toputina .gitignore file so you can redirect the output into your project exclude file:

$ git svn show-ignore > .git/info/exclude

That way, you don’t litter the project with .gitignore files. This is a good option if you're
the only Git user on a Subversion team, and your teammates don’t want .gitignore files in the
project.

Git-Svn Summary

The git svn tools are useful if you're stuck with a Subversion server for now or are otherwise
in a development environment that necessitates running a Subversion server. You should con-
sider it crippled Git, however, or you'll hit issues in translation that may confuse you and your
collaborators. To stay out of trouble, try to follow these guidelines:

* Keep alinear Git history that doesn’t contain merge commits made by git merge.
Rebase any work you do outside of your mainline branch back onto it; don’t merge it
in.

e Don’t set up and collaborate on a separate Git server. Possibly have one to speed up
clones for new developers, but don’t push anything to it that doesn’t have a git-svn-id
entry. You may even want to add a pre-receive hook that checks each commit message
for agit-svn-id and rejects pushes that contain commits without it.

If you follow those guidelines, working with a Subversion server can be more bearable.
However, if it’s possible to move to a real Git server, doing so can gain your team a lot more.

Migrating to Git

If you have an existing codebase in another VCS but you've decided to start using Git, you
must migrate your project one way or another. This section goes over some importers that are
included with Git for common systems and then demonstrates how to develop your own cus-
tom importer.

CHAPTER 8 GIT AND OTHER SYSTEMS

Importing

You'll learn how to import data from two of the bigger professionally used SCM systems—
Subversion and Perforce—both because they make up the majority of users I hear of who are
currently switching, and because high-quality tools for both systems are distributed with Git.

Subversion

If you read the previous section about using git svn, you can easily use those instructions to
git svn clone arepository; then, stop using the Subversion server, push to a new Git server,
and start using that. If you want the history, you can accomplish that as quickly as you can pull
the data out of the Subversion server (which may take a while).

However, the import isn’t perfect; and because it will take so long, you may as well do it
right. The first problem is the author information. In Subversion, each person committing has
a user on the system who is recorded in the commit information. The examples in the previous
section show schacon in some places, such as the blame output and the git svnlog. If you want
to map this to better Git author data, you need a mapping from the Subversion users to the Git
authors. Create a file called users.txt that has this mapping in a format like this:

schacon = Scott Chacon <schacon@geemail.com>
selse = Someo Nelse <selse@geemail.com>

To get a list of the author names that SVN uses, you can run this:
$ svn log --xml | grep author | sort -u | perl -pe 's/.>(.?)<./$1 = /'

That gives you the log output in XML format—then it looks for the authors, creates
a unique list, and then strips out the XML. (Obviously this only works on a machine with grep,
sort, and perl installed.) Then, redirect that output into your users.txt file so you can add the
equivalent Git user data next to each entry.

You can provide this file to git svn to help it map the author data more accurately. You
can also tell git svnnot to include the metadata that Subversion normally imports, by passing
--no-metadata to the clone or init command. This makes your import command look like this:

$ git-svn clone http://my-project.googlecode.com/svn/ \
--authors-file=users.txt --no-metadata -s my project

Now you should have a nicer Subversion import in your my_project directory. Instead of
commits that look like this:

commit 37efa680e8473b615de9801a935944215428a35a
Author: schacon <schacon@4c93b258-373f-11de-be05-5¥7a86268029>
Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://my-project.googlecode.com/svn/trunk@4 4c93b258-373f-11de-
be05-5f7a86268029

213

214

CHAPTER 8 GIT AND OTHER SYSTEMS

they look like this:

commit 03a8785f44c8ea5cdb0e8834b7c8e6c469be2ff2
Author: Scott Chacon <schacon@geemail.com>
Date: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

Not only does the Author field look a lot better, but the git-svn-id is no longer there,
either.

You then need to do a bit of post-import cleanup. For one thing, you should clean up the
weird references that git svn set up. First you’ll move the tags so they’re actual tags rather
than strange remote branches, and then you’ll move the rest of the branches so they’re local.

To move the tags to be proper Git tags, run

$ cp -Rf .git/refs/remotes/tags/* .git/refs/tags/
$ rm -Rf .git/refs/remotes/tags

This takes the references that were remote branches that started with tag/ and makes
them real (lightweight) tags.
Next, move the rest of the references under refs/remotes to be local branches:

$ cp -Rf .git/refs/remotes/* .git/refs/heads/
$ rm -Rf .git/refs/remotes

Now all the old branches are real Git branches and all the old tags are real Git tags. The
last thing to do is add your new Git server as a remote and push to it. Because you want all
your branches and tags to go up, you can run this:

$ git push origin --all

All your branches and tags should be on your new Git server in a nice, clean import.

Perforce

The next system you'll look at importing from is Perforce. A Perforce importer is also distrib-
uted with Git, but only in the contrib section of the source code—it isn’t available by default
like git svn. To run it, you must get the Git source code, which you can download from git.
kernel.org:

$ git clone git://git.kernel.org/pub/scm/git/git.git
$ cd git/contrib/fast-import

In this fast-import directory, you should find an executable Python script named git-p4.
You must have Python and the p4 tool installed on your machine for this import to work. For

example, you'll import the Jam project from the Perforce Public Depot. To set up your client,
you must export the P4APORT environment variable to point to the Perforce depot:

$ export P4PORT=public.perforce.com:1666

Run the git-p4 clone command to import the Jam project from the Perforce server, sup-
plying the depot and project path and the path into which you want to import the project:

CHAPTER 8 GIT AND OTHER SYSTEMS

$ git-p4 clone //public/jam/src@all /opt/p4import

Importing from //public/jam/src@all into /opt/p4import
Reinitialized existing Git repository in /opt/p4import/.git/
Import destination: refs/remotes/p4/master

Importing revision 4409 (100%)

If you go to the /opt/p4import directory and run git log, you can see your imported work:

$ git log -2

commit 1fd4ec126171790efd2db83548b85b1bbbco7dc2
Author: Perforce staff <support@perforce.com>
Date: Thu Aug 19 10:18:45 2004 -0800

Drop 'rc3' moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into
the main part of the document. Built new tar/zip balls.

Only 16 months later.

[git-p4: depot-paths = "//public/jam/src/": change = 4409]

commit ca8870db541a23ed867138847edab5bt4363371d
Author: Richard Geiger <rmg@perforce.com>
Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

[git-p4: depot-paths = "//public/jam/src/": change = 3108]

You can see the git-p4 identifier in each commit. It’s fine to keep that identifier there, in
case you need to reference the Perforce change number later. However, if you'd like to remove
the identifier, now is the time to do so—before you start doing work on the new repository.
You can use git filter-branch to remove the identifier strings en masse:

$ git filter-branch --msg-filter '

sed -e "/"\[git-p4:/d"
Rewrite 1fd4ec126171790efd2db83548b85b1bbbc0o7dc2 (123/123)
Ref 'refs/heads/master' was rewritten

Ifyourun git log, you can see that all the SHA-1 checksums for the commits have
changed, but the git-p4 strings are no longer in the commit messages:

$ git log -2

commit 10a16d60cffcal4d454a15c¢61643784082bc5bo
Author: Perforce staff <support@perforce.com>
Date: Thu Aug 19 10:18:45 2004 -0800

Drop 'rc3' moniker of jam-2.5. Folded rc2 and rc3 RELNOTES into
the main part of the document. Built new tar/zip balls.

215

216

CHAPTER 8 GIT AND OTHER SYSTEMS

Only 16 months later.

commit 2b6c6db311dd76c34c66ec1c40a49405e6b527b2
Author: Richard Geiger <rmg@perforce.com>
Date: Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram.c

Your import is ready to push up to your new Git server.

A Custom Importer

If your system isn’t Subversion or Perforce, you should look for an importer online—quality
importers are available for CVS, Clear Case, Visual Source Safe, even a directory of archives. If
none of these tools works for you, you have a rarer tool, or you otherwise need a more custom
importing process, you should use git fast-import. This command reads simple instructions
from stdin to write specific Git data. It's much easier to create Git objects this way than to run
the raw Git commands or try to write the raw objects (see Chapter 9 for more information).
This way, you can write an import script that reads the necessary information out of the sys-
tem you’re importing from and prints straightforward instructions to stdout. You can then run
this program and pipe its output through git fast-import.

To quickly demonstrate, you'll write a simple importer. Suppose you work in current, you
back up your project by occasionally copying the directory into a time-stamped back_YYYY MM_
DD backup directory, and you want to import this into Git. Your directory structure looks like
this:

$ 1s /opt/import from
back 2009 01 02

back 2009 01 04

back 2009 01 14

back 2009 02 03
current

In order to import a Git directory, you need to review how Git stores its data. As you may
remember, Git is fundamentally a linked list of commit objects that point to a snapshot of con-
tent. All you have to do is tell fast-import what the content snapshots are, what commit data
points to them, and the order they go in. Your strategy will be to go through the snapshots one
at a time and create commits with the contents of each directory, linking each commit back to
the previous one.

Asyou did in the “An Example Git-Enforced Policy” section of Chapter 7, you'll write this
in Ruby, because it’s what I generally work with and it tends to be easy to read. You can write
this example pretty easily in anything you're familiar with—it just needs to print the appropri-
ate information to stdout.

To begin, you'll change into the target directory and identify every subdirectory, each of
which is a snapshot that you want to import as a commit. You’ll change into each subdirectory
and print the commands necessary to export it. Your basic main loop looks like this:

CHAPTER 8 GIT AND OTHER SYSTEMS

last mark = nil

loop through the directories
Dir.chdir(ARGV[0]) do
Dir.glob("*").each do |dir]
next if File.file?(dir)

move into the target directory
Dir.chdir(dir) do
last mark = print export(dir, last mark)
end
end
end

You run print_export inside each directory, which takes the manifest and mark of the
previous snapshot and returns the manifest and mark of this one; that way, you can link them
properly. Mark is the fast-import term for an identifier you give to a commit; as you create
commits, you give each one a mark that you can use to link to it from other commits. So, the
first thing to do in your print_export method is generate a mark from the directory name:

mark = convert dir to_mark(dir)

You'll do this by creating an array of directories and using the index value as the mark,
because a mark must be an integer. Your method looks like this:

$marks = []
def convert dir to mark(dir)
if I$marks.include?(dir)
$marks << dir
end
($marks.index(dir) + 1).to_s
end

Now that you have an integer representation of your commit, you need a date for the
commit metadata. Because the date is expressed in the name of the directory, you’ll parse it
out. The next line in your print_export file is

date = convert dir to date(dir)
where convert dir to dateis defined as

def convert_dir to_date(dir)

if dir == 'current'
return Time.now().to i
else

dir = dir.gsub('back ', '")
(year, month, day) = dir.split(' ')
return Time.local(year, month, day).to i
end
end

217

218

CHAPTER 8 GIT AND OTHER SYSTEMS

That returns an integer value for the date of each directory. The last piece of meta-
information you need for each commit is the committer data, which you hardcode in a
global variable:

$author = 'Scott Chacon <schacon@example.com>'

Now you're ready to begin printing out the commit data for your importer. The initial
information states that you're defining a commit object and what branch it’s on, followed by
the mark you've generated, the committer information and commit message, and then the
previous commit, if any. The code looks like this:

print the import information

puts 'commit refs/heads/master'

puts 'mark :' + mark

puts "committer #{$author} #{date} -0700"
export_data('imported from ' + dir)

puts 'from :' + last mark if last mark

You hardcode the time zone (-0700) because doing so is easy. If you're importing from
another system, you must specify the time zone as an offset.
The commit message must be expressed in a special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and finally
the data. Because you need to use the same format to specify the file contents later, you create
a helper method, export data:

def export data(string)
print "data #{string.size}\n#{string}"
end

All that’s left is to specify the file contents for each snapshot. This is easy, because you
have each one in a directory—you can print out the deleteall command followed by the con-
tents of each file in the directory. Git will then record each snapshot appropriately:

puts 'deleteall’

Dir.glob("**/*").each do |file|
next if !File.file?(file)
inline data(file)

end

Note Because many systems think of their revisions as changes from one commit to another,
fast-import can also take commands with each commit to specify which files have been added, removed,
or modified and what the new contents are. You could calculate the differences between snapshots and
provide only this data, but doing so is more complex—you may as well give Git all the data and let it figure it
out. If this is better suited to your data, check the fast-import man page for details about how to provide
your data in this manner.

CHAPTER 8 GIT AND OTHER SYSTEMS

The format for listing the new file contents or specifying a modified file with the new con-
tents is as follows:

M 644 inline path/to/file
data (size)
(file contents)

Here, 644 is the mode (if you have executable files, you need to detect and specify 755
instead), and inline says you'll list the contents immediately after this line. Your inline data
method looks like this:

def inline data(file, code = 'M', mode = '644")
content = File.read(file)
puts "#{code} #{mode} inline #{file}"
export_data(content)

end

You reuse the export_data method you defined earlier, because it’s the same as the way
you specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the next
iteration:

return mark

That’s it. If you run this script, you'll get content that looks something like this (you can
download the full script from http://github.com/progit/book-examples):

$ ruby import.rb /opt/import from
commit refs/heads/master

mark :1

committer Scott Chacon <schacon@geemail.com> 1230883200 -0700
data 29

imported from back 2009 01 02deleteall
M 644 inline file.rb

data 12

version two

commit refs/heads/master

mark :2

committer Scott Chacon <schacon@geemail.com> 1231056000 -0700
data 29

imported from back_2009 01 04from :1
deleteall

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new version one

(...)

219

220

CHAPTER 8 GIT AND OTHER SYSTEMS

To run the importer, pipe this output through git fast-import while in the Git directory
you want to import into. You can create a new directory and then run git initin it for a start-
ing point, and then run your script:

$ git init

Initialized empty Git repository in /opt/import to/.git/
$ ruby import.rb /opt/import from | git fast-import
git-fast-import statistics:

Alloc'd objects: 5000
Total objects: 18 (1 duplicates)
blobs 7 (1 duplicates 0 deltas)
trees 6 (0 duplicates 1 deltas)
commits: 5 (0 duplicates 0 deltas)
tags 0 (0 duplicates 0 deltas)
Total branches: 1 (1 loads)
marks: 1024 (5 unique)
atoms: 3
Memory total: 2255 KiB
pools: 2098 KiB
objects: 156 KiB
pack report: getpagesize() = 4096
pack_report: core.packedGitWindowSize = 33554432
pack_report: core.packedGitLimit = 268435456
pack_report: pack used ctr = 9
pack_report: pack mmap calls = 5
pack report: pack open windows = 1/ 1
pack_report: pack mapped = 1356 / 1356

As you can see, when it completes successfully, it gives you a bunch of statistics about
what it accomplished. In this case, you imported 18 objects total for 5 commits into 1 branch.
Now, you canrun git log to see your new history:

$ git log -2

commit 10bfe7d22cel15ee25b60a824c8982157ca593d41
Author: Scott Chacon <schacon@example.com>
Date: Sun May 3 12:57:39 2009 -0700

imported from current
commit 7e519590de754d079dd73b44d695a42c9d2df452
Author: Scott Chacon <schacon@example.com>

Date: Tue Feb 3 01:00:00 2009 -0700

imported from back 2009 02 03

CHAPTER 8 GIT AND OTHER SYSTEMS

There you go—a nice, clean Git repository. It's important to note that nothing is checked
out—you don’t have any files in your working directory at first. To get them, you must reset
your branch to where master is now:

$ 1s

$ git reset --hard master

HEAD is now at 10bfe7d imported from current
$ 1s

file.rb 1ib

You can do a lot more with the fast-import tool—handle different modes, binary data,
multiple branches and merging, tags, progress indicators, and more. A number of examples of
more complex scenarios are available in the contrib/fast-import directory of the Git source
code; one of the better ones is the git-p4 scriptI just covered.

Summary

You should feel comfortable using Git with Subversion or importing nearly any existing reposi-
tory into a new Git one without losing data. The next chapter will cover the raw internals of Git
so you can craft every single byte, if need be.

221

