
C H A P T E R 4

Git on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll be
using Git. However, in order to do any collaboration in Git, you’ll need to have a remote Git
repository. Although you can technically push change to and pull changes from individuals’
repositories, doing so is discouraged because you can fairly easily confuse what they’re work-
ing on if you’re not careful. Furthermore, you want your collaborators to be able to access
the repository even if your computer is offline—having a more reliable common repository
is often useful. Therefore, the preferred method for collaborating with someone is to set up
an intermediate repository that you both have access to, and push to and pull from that. I’ll
refer to this repository as a Git server; but you’ll notice that it generally takes a tiny amount of
resources to host a Git repo, so you’ll rarely need to use an entire server for it.

Running a Git server is simple. First, you choose which protocols you want your server to
communicate with. The first section of this chapter will cover the available protocols and the
pros and cons of each. The next sections will explain some typical setups using those proto-
cols and how to get your server running with them. Last, I’ll go over a few hosted options, if
you don’t mind hosting your code on someone else’s server and don’t want to go through the
hassle of setting up and maintaining your own server.

If you have no interest in running your own server, you can skip to the last section of the
chapter to see some options for setting up a hosted account and then move on to the next
chapter, where I discuss the various ins and outs of working in a distributed source control
environment.

A remote repository is generally a bare repository—a Git repository that has no working
directory. Because the repository is only used as a collaboration point, there is no reason to
have a snapshot checked out on disk; it’s just the Git data. In the simplest terms, a bare reposi-
tory is the contents of your project’s directory and nothing else.

The Protocols
Git can use four major network protocols to transfer data: Local, Secure Shell (SSH), Git, and
HTTP. Here I’ll discuss what they are and in what basic circumstances you would want (or not
want) to use them.

It’s important to note that with the exception of the HTTP protocols, all of these require
Git to be installed and working on the server.

79

CHAPTER 4 G IT ON THE SERVER80

Local Protocol
The most basic is the Local protocol, in which the remote repository is in another directory
on disk. This is often used if everyone on your team has access to a shared filesystem such as
an NFS mount, or in the less likely case that everyone logs in to the same computer. The latter
wouldn’t be ideal, because all your code repository instances would reside on the same com-
puter, making a catastrophic loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from
a local file-based repository. To clone a repository like this or to add one as a remote to an
existing project, use the path to the repository as the URL. For example, to clone a local reposi-
tory, you can run something like this:

Or you can do this:

Git operates slightly differently if you explicitly specify at the beginning of the
URL. If you just specify the path, Git tries to use hardlinks or directly copy the files it needs.
If you specify , Git fires up the processes that it normally uses to transfer data over
a network, which is generally a lot less efficient method of transferring the data. The main rea-
son to specify the prefix is if you want a clean copy of the repository with extraneous
references or objects left out—generally after an import from another version-control system
or something similar (see Chapter 9 for maintenance tasks). You’ll use the normal path here
because doing so is almost always faster.

To add a local repository to an existing Git project, you can run something like this:

Then, you can push to and pull from that remote as though you were doing so over a network.

The Pros
The pros of file-based repositories are that they’re simple and they use existing file permis-
sions and network access. If you already have a shared filesystem to which your whole team
has access, setting up a repository is very easy. You stick the bare repository copy somewhere
everyone has shared access to and set the read/write permissions as you would for any other
shared directory. I’ll discuss how to export a bare repository copy for this purpose in the next
section, “Getting Git on a Server.”

This is also a nice option for quickly grabbing work from someone else’s working reposi-
tory. If you and a co-worker are working on the same project and they want you to check
something out, running a command like is often easier than
them pushing to a remote server and you pulling down.

The Cons
The cons of this method are that shared access is generally more difficult to set up and reach
from multiple locations than basic network access. If you want to push from your laptop when
you’re at home, you have to mount the remote disk, which can be difficult and slow compared
to network-based access.

CHAPTER 4 G IT ON THE SERVER 81

It’s also important to mention that this isn’t necessarily the fastest option if you’re using
a shared mount of some kind. A local repository is fast only if you have fast access to the data.
A repository on NFS is often slower than the repository over SSH on the same server, allowing
Git to run off local disks on each system.

The SSH Protocol
Probably the most common transport protocol for Git is SSH. This is because SSH access to
servers is already set up in most places—and if it isn’t, it’s easy to do. SSH is also the only
network-based protocol that you can easily read from and write to. The other two network
protocols (HTTP and Git) are generally read-only, so even if you have them available for the
unwashed masses, you still need SSH for your own write commands. SSH is also an authenti-
cated network protocol; and because it’s ubiquitous, it’s generally easy to set up and use.

To clone a Git repository over SSH, you can specify URL like this:

Or you can not specify a protocol—Git assumes SSH if you aren’t explicit:

You can also not specify a user, and Git assumes the user you’re currently logged in as.

The Pros
The pros of using SSH are many. First, you basically have to use it if you want authenticated
write access to your repository over a network. Second, SSH is relatively easy to set up—SSH
daemons are commonplace, many network admins have experience with them, and many
OS distributions are set up with them or have tools to manage them. Next, access over SSH is
secure—all data transfer is encrypted and authenticated. Last, like the Git and Local protocols,
SSH is efficient, making the data as compact as possible before transferring it.

The Cons
The negative aspect of SSH is that you can’t serve anonymous access of your repository over
it. People must have access to your machine over SSH to access it, even in a read-only capac-
ity, which doesn’t make SSH access conducive to open source projects. If you’re using it only
within your corporate network, SSH may be the only protocol you need to deal with. If you
want to allow anonymous read-only access to your projects, you’ll have to set up SSH for you
to push over but something else for others to pull over.

The Git Protocol
Next is the Git protocol. This is a special daemon that comes packaged with Git; it listens on
a dedicated port (9418) that provides a service similar to the SSH protocol, but with absolutely
no authentication. In order for a repository to be served over the Git protocol, you must cre-
ate the file—the daemon won’t serve a repository without that file in
it—but other than that there is no security. Either the Git repository is available for everyone to
clone or it isn’t. This means that there is generally no pushing over this protocol. You can

CHAPTER 4 G IT ON THE SERVER82

enable push access; but given the lack of authentication, if you turn on push access, anyone on
the Internet who finds your project’s URL could push to your project. Suffice it to say that this
is rare.

The Pros
The Git protocol is the fastest transfer protocol available. If you’re serving a lot of traffic for
a public project or serving a very large project that doesn’t require user authentication for read
access, it’s likely that you’ll want to set up a Git daemon to serve your project. It uses the same
data-transfer mechanism as the SSH protocol but without the encryption and authentication
overhead.

The Cons
The downside of the Git protocol is the lack of authentication. It’s generally undesirable for
the Git protocol to be the only access to your project. Generally, you’ll pair it with SSH access
for the few developers who have push (write) access and have everyone else use for
read-only access.

It’s also probably the most difficult protocol to set up. It must run its own daemon, which
is custom—you’ll look at setting one up in the “Gitosis” section of this chapter—and it requires
xinetd configuration or the like, which isn’t always a walk in the park. It also requires firewall
access to port 9418, which isn’t a standard port that corporate firewalls always allow. Behind
big corporate firewalls, this obscure port is commonly blocked.

The HTTP/S Protocol
Last you have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the simplic-
ity of setting it up. Basically, all you have to do is put the bare Git repository under your HTTP
document root and set up a specific post-receive hook, and you’re done (See Chapter 7 for
details on Git hooks). At that point, anyone who can access the web server under which you
put the repository can also clone your repository. To allow read access to your repository over
HTTP, do something like this:

That’s all. The post-update hook that comes with Git by default runs the appropriate
command (fo) to make HTTP fetching and cloning work properly.
This command is run when you push to this repository over SSH; then, other people can
clone via something like

In this particular case, you’re using the path that is common for Apache
setups, but you can use any static web server—just put the bare repository in its path. The Git
data is served as basic static files (see Chapter 9 for details about exactly how it’s served).

CHAPTER 4 G IT ON THE SERVER 83

It’s possible to make Git push over HTTP as well, although that technique isn’t as widely
used and requires you to set up complex WebDAV requirements. Because it’s rarely used,
I won’t cover it in this book. If you’re interested in using the HTTP-push protocols, you can
read about preparing a repository for this purpose at

xt. One nice thing about making Git push
over HTTP is that you can use any WebDAV server, without specific Git features; so, you can
use this functionality if your web-hosting provider supports WebDAV for writing updates to
your web site.

The Pros
The upside of using the HTTP protocol is that it’s easy to set up. Running the handful of
required commands gives you a simple way to give the world read access to your Git reposi-
tory. It takes only a few minutes to do. The HTTP protocol also isn’t very resource intensive
on your server. Because it generally uses a static HTTP server to serve all the data, a normal
Apache server can serve thousands of files per second on average—it’s difficult to overload
even a small server.

You can also serve your repositories read-only over HTTPS, which means you can encrypt
the content transfer; or you can go so far as to make the clients use specific signed SSL certifi-
cates. Generally, if you’re going to these lengths, it’s easier to use SSH public keys; but it may
be a better solution in your specific case to use signed SSL certificates or other HTTP-based
authentication methods for read-only access over HTTPS.

Another nice thing is that HTTP is such a commonly used protocol that corporate firewalls
are often set up to allow traffic through this port.

The Cons
The downside of serving your repository over HTTP is that it’s relatively inefficient for the
client. It generally takes a lot longer to clone or fetch from the repository, and you often have
a lot more network overhead and transfer volume over HTTP than with any of the other
network protocols. Because it’s not as intelligent about transferring only the data you need—
there is no dynamic work on the part of the server in these transactions—the HTTP protocol is
often referred to as a dumb protocol. For more information about the differences in efficiency
between the HTTP protocol and the other protocols, see Chapter 9.

Getting Git on a Server
In order to initially set up any Git server, you have to export an existing repository into a new
bare repository—a repository that doesn’t contain a working directory. This is generally
straightforward to do.

In order to clone your repository to create a new bare repository, you run the com-
mand with the option. By convention, bare repository directories end in , like so:

CHAPTER 4 G IT ON THE SERVER84

The output for this command is a little confusing. Because is basically a
and then a , you see some output from the part, which creates an empty
directory. The actual object transfer gives no output, but it does happen. You should now have
a copy of the Git directory data in your directory.

This is roughly equivalent to something like

There are a couple of minor differences in the configuration file; but for your purpose, this
is close to the same thing. It takes the Git repository by itself, without a working directory, and
creates a directory specifically for it alone.

Putting the Bare Repository on a Server
Now that you have a bare copy of your repository, all you need to do is put it on a server and
set up your protocols. Let’s say you’ve set up a server called that you have
SSH access to, and you want to store all your Git repositories under the directory.
You can set up your new repository by copying your bare repository over:

At this point, other users who have SSH access to the same server, which has read access
to the directory, can clone your repository by running

If a user SSHs into a server and has write access to the directory,
they also automatically have push access. Git automatically adds group write permissions to
a repository properly if you run the command with the option:

You see how easy it is to take a Git repository, create a bare version, and place it on
a server to which you and your collaborators have SSH access. Now you’re ready to collaborate
on the same project.

It’s important to note that this is literally all you need to do to run a useful Git server to
which several people have access—just add SSH-able accounts on a server, and stick a bare
repository somewhere that all those users have read and write access to. You’re ready to go—
nothing else is needed.

In the next few sections, you’ll see how to expand to more sophisticated setups. This
discussion will include not having to create user accounts for each user, adding public read
access to repositories, setting up web UIs, using the Gitosis tool, and more. However, keep in
mind that to collaborate with a couple of people on a private project, all you need is an SSH
server and a bare repository.

CHAPTER 4 G IT ON THE SERVER 85

Small Setups
If you’re a small outfit or are just trying out Git in your organization and have only a few devel-
opers, things can be simple for you. One of the most complicated aspects of setting up a Git
server is user management. If you want some repositories to be read-only to certain users and
read/write to others, access and permissions can be a bit difficult to arrange.

SSH Access
If you already have a server to which all your developers have SSH access, it’s generally easiest
to set up your first repository there, because you have to do almost no work (as I covered in the
last section). If you want more complex access control type permissions on your repositories,
you can handle them with the normal filesystem permissions of the operating system your
server runs.

If you want to place your repositories on a server that doesn’t have accounts for every-
one on your team whom you want to have write access, then you must set up SSH access for
them. I assume that if you have a server with which to do this, you already have an SSH server
installed, and that’s how you’re accessing the server.

There are a few ways you can give access to everyone on your team. The first is to set up
accounts for everybody, which is straightforward but can be cumbersome. You may not want
to run and set temporary passwords for every user.

A second method is to create a single “git” user on the machine, ask every user who is to
have write access to send you an SSH public key, and add that key to the

 file of your new “git” user. At that point, everyone will be able to access that machine via
the “git” user. This doesn’t affect the commit data in any way—the SSH user you connect as
doesn’t affect the commits you’ve recorded.

Another way to do it is to have your SSH server authenticate from an LDAP server or some
other centralized authentication source that you may already have set up. As long as each user
can get shell access on the machine, any SSH authentication mechanism you can think of
should work.

Generating Your SSH Public Key
That being said, many Git servers authenticate using SSH public keys. In order to provide
a public key, each user in your system must generate one if they don’t already have one. This
process is similar across all operating systems.

First, you should check to make sure you don’t already have a key. By default, a user’s SSH
keys are stored in that user’s directory. You can easily check to see if you have a key
already by going to that directory and listing the contents:

CHAPTER 4 G IT ON THE SERVER86

You’re looking for a pair of files named and , where the
is usually or . The file is your public key, and the other file is your private
key. If you don’t have these files (or you don’t even have a directory), you can create them
by running a program called en, which is provided with the SSH package on Linux/
Mac systems and comes with the MSysGit package on Windows:

First it confirms where you want to save the key (), and then it asks twice for
a passphrase, which you can leave empty if you don’t want to type a password when you use
the key.

Now, each user that does this has to send their public key to you or whoever is adminis-
trating the Git server (assuming you’re using an SSH server setup that requires public keys). All
they have to do is copy the contents of the file and e-mail it. The public keys look some-
thing like this:

For a more in-depth tutorial on creating an SSH key on multiple operating systems, see
the GitHub guide on SSH keys at ey.

Setting Up the Server
Let’s walk through setting up SSH access on the server side. In this example, you’ll use the

 method for authenticating your users. I also assume you’re running a stan-
dard Linux distribution like Ubuntu. First, you create a “git” user and a directory for that
user:

CHAPTER 4 G IT ON THE SERVER 87

Next, you need to add some developer SSH public keys to the file for that
user. Let’s assume you’ve received a few keys by e-mail and saved them to temporary files.
Again, the public keys look something like this:

You append them to your file:

Now, you can set up an empty repository for them by running with the
option, which initializes the repository without a working directory:

Then, John, Josie, or Jessica can push the first version of their project into that repository
by adding it as a remote and pushing up a branch. Note that someone must shell onto the
machine and create a bare repository every time you want to add a project. Let’s use
as the hostname of the server on which you’ve set up your “git” user and repository. If you’re
running it internally, and you set up DNS for to point to that server, then you can
use the commands pretty much as is:

At this point, the others can clone it down and push changes back up just as easily:

CHAPTER 4 G IT ON THE SERVER88

With this method, you can quickly get a read/write Git server up and running for a hand-
ful of developers.

As an extra precaution, you can easily restrict the “git” user to only doing Git activities
with a limited shell tool called that comes with Git. If you set this as your “git” user’s
login shell, then the “git” user can’t have normal shell access to your server. To use this, specify

 instead of or for your user’s login shell. To do so, you’ll likely have to edit
your file:

At the bottom, you should find a line that looks something like this:

Change to (or run to see where it’s
installed). The line should look something like this:

Now, the “git” user can only use the SSH connection to push and pull Git repositories and
can’t shell onto the machine. If you try, you’ll see a login rejection:

Public Access
What if you want anonymous read access to your project? Perhaps instead of hosting an inter-
nal private project, you want to host an open source project. Or maybe you have a bunch of
automated build servers or continuous integration servers that change a lot, and you don’t
want to have to generate SSH keys all the time—you just want to add simple anonymous read
access.

Probably the simplest way for smaller setups is to run a static web server with its docu-
ment root where your Git repositories are, and then enable that post-update hook I mentioned
in the first section of this chapter. You’ll work from the previous example. Say you have your
repositories in the directory, and an Apache server is running on your machine.
Again, you can use any web server for this; but as an example, I’ll demonstrate some basic
Apache configurations that should give you an idea of what you might need.

First you need to enable the hook:

CHAPTER 4 G IT ON THE SERVER 89

If you’re using a version of Git earlier than 1.6, the command isn’t necessary—Git
started naming the hooks examples with the postfix only recently.

What does this post-update hook do? It looks basically like this:

This means that when you push to the server via SSH, Git runs this command to update
the files needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the docu-
ment root as the root directory of your Git projects. Here, I’m assuming that you have wildcard
DNS set up to send to whatever box you’re using to run all this:

You also need to set the Unix user group of the directories to so your
web server can read-access the repositories, because the Apache instance running the CGI
script will (by default) be running as that user:

When you restart Apache, you should be able to clone your repositories under that direc-
tory by specifying the URL for your project:

This way, you can set up HTTP-based read access to any of your projects for a fair number
of users in a few minutes. Another simple option for public unauthenticated access is to start
a Git daemon, although that requires you to daemonize the process—I’ll cover this option in
the next section, if you prefer that route.

CHAPTER 4 G IT ON THE SERVER90

GitWeb
Now that you have basic read/write and read-only access to your project, you may want to set
up a simple web-based visualizer. Git comes with a CGI script called GitWeb that is commonly
used for this. You can see GitWeb in use at sites like (see Figure 4-1).

Figure 4-1. The GitWeb web-based user interface

If you want to check out what GitWeb would look like for your project, Git comes with
a command to fire up a temporary instance if you have a lightweight server on your system
like lighttpd or webrick. On Linux machines, lighttpd is often installed, so you may be able to
get it to run by typing git instaweb in your project directory. If you’re running a Mac, Leop-
ard comes preinstalled with Ruby, so webrick may be your best bet. To start with
a non-lighttpd handler, you can run it with the option.

That starts up an HTTPD server on port 1234 and then automatically starts a web browser
that opens on that page. It’s pretty easy on your part. When you’re done and want to shut
down the server, you can run the same command with the option:

CHAPTER 4 G IT ON THE SERVER 91

If you want to run the web interface on a server all the time for your team or for an open
source project you’re hosting, you’ll need to set up the CGI script to be served by your normal
web server. Some Linux distributions have a package that you may be able to install via

 or , so you may want to try that first.
I’ll walk through installing GitWeb manually very quickly. First, you need to get the Git

source code, which GitWeb comes with, and generate the custom CGI script:

Notice that you have to tell the command where to find your Git repositories with the
 variable. Now, you need to make Apache use CGI for that script, for which

you can add a VirtualHost:

Again, GitWeb can be served with any CGI-capable web server; if you prefer to use some-
thing else, it shouldn’t be difficult to set up. At this point, you should be able to visit

 to view your repositories online, and you can use to clone
and fetch your repositories over HTTP.

Gitosis
Keeping all users’ public keys in the file for access works well only for a while.
When you have hundreds of users, it’s much more of a pain to manage that process. You have
to shell onto the server each time, and there is no access control—everyone in the file has read
and write access to every project.

You may want to turn to a widely used software project called Gitosis. Gitosis is basically
a set of scripts that help you manage the file as well as implement some sim-
ple access controls. The really interesting part is that the UI for this tool for adding people and
determining access isn’t a web interface but a special Git repository. You set up the informa-
tion in that project; and when you push it, Gitosis reconfigures the server based on that, which
is cool.

CHAPTER 4 G IT ON THE SERVER92

Installing Gitosis isn’t the simplest task ever, but it’s not too difficult. It’s easiest to use
a Linux server for it—these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptools pack-
age, which Ubuntu provides as ls:

Next, you clone and install Gitosis from the project’s main site:

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to put its
repositories under , which is fine. But you have already set up your repositories in

, so instead of reconfiguring everything, you create a symlink:

Gitosis is going to manage your keys for you, so you need to remove the current file,
re-add the keys later, and let Gitosis control the file automatically. For now,
move the file out of the way:

You need to turn your shell back on for the “git” user, if you changed it to the
command. People still won’t be able to log in, but Gitosis will control that for you. So, change
this line in your file

back to this:

Now it’s time to initialize Gitosis. You do this by running the command with
your personal public key. If your public key isn’t on the server, you’ll have to copy it there:

This lets the user with that key modify the main Git repository that controls the Gitosis
setup. Next, you have to manually set the execute bit on the post-update script for your new
control repository.

You’re ready to roll. If you’re set up correctly, you can try to SSH into your server as the user
for which you added the public key to initialize Gitosis. You should see something like this:

CHAPTER 4 G IT ON THE SERVER 93

That means Gitosis recognized you but shut you out because you’re not trying to do any
Git commands. So, do an actual Git command and clone the Gitosis control repository:

Now you have a directory named n, which has two major parts:

The file is the control file you use to specify users, repositories, and permis-
sions. The directory is where you store the public keys of all the users who have any sort
of access to your repositories—one file per user. The name of the file in (in the previous
example,) will be different for you—Gitosis takes that name from the description at
the end of the public key that was imported with the script.

If you look at the file, it should only specify information about the
gitosis-admin project that you just cloned:

It shows you that the “scott” user—the user with whose public key you initialized
Gitosis—is the only one who has access to the gitosis-admin project.

Now you can add a new project. You’ll add a new section called where you’ll
list the developers on your mobile team and projects that those developers need access to.
Because “scott” is the only user in the system right now, you add him as the only member
and create a new project called iphone_project to start on:

Whenever you make changes to the gitosis-admin project, you have to commit the
changes and push them back up to the server in order for them to take effect:

CHAPTER 4 G IT ON THE SERVER94

You can make your first push to the new iphone_project project by adding your server as
a remote to your local version of the project and pushing. You no longer have to manually cre-
ate a bare repository for new projects on the server—Gitosis creates them automatically when
it sees the first push:

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a colon
and then the name of the project—Gitosis finds it for you.

You want to work on this project with your friends, so you have to re-add their public keys. But
instead of appending them manually to the file on your server, you’ll add
them, one key per file, into the directory. How you name the keys determines how you refer
to the users in the file. Re-add the public keys for John, Josie, and Jessica:

Now you can add them all to your “mobile” team so they have read and write access to
iphone_project:

After you commit and push that change, all four users will be able to read from and write
to that project.

Gitosis has simple access controls as well. If you want John to have only read access to this
project, you can do this instead:

Now John can clone the project and get updates, but Gitosis won’t allow him to push back
up to the project. You can create as many of these groups as you want, each containing different

CHAPTER 4 G IT ON THE SERVER 95

users and projects. You can also specify another group as one of the members, to inherit all of its
members automatically.

If you have any issues, it may be useful to add under the sec-
tion. If you’ve lost push access by pushing a messed-up configuration, you can manually
fix the file on the server under —the file from which Gitosis reads
its info. A push to the project takes the file you just pushed up and sticks it
there. If you edit that file manually, it remains like that until the next successful push to the
gitosis-admin project.

Git Daemon
For public, unauthenticated read access to your projects, you’ll want to move past the HTTP
protocol and start using the Git protocol. The main reason is speed. The Git protocol is far
more efficient and thus faster than the HTTP protocol, so using it will save your users time.

Again, this is for unauthenticated read-only access. If you’re running this on a server out-
side your firewall, it should only be used for projects that are publicly visible to the world. If
the server you’re running it on is inside your firewall, you might use it for projects that a large
number of people or computers (continuous integration or build servers) have read-only
access to, when you don’t want to have to add an SSH key for each.

In any case, the Git protocol is relatively easy to set up. Basically, you need to run this
command in a daemonized manner:

 allows the server to restart without waiting for old connections to time out,
the option allows people to clone projects without specifying the entire path,
and the path at the end tells the Git daemon where to look for repositories to export. If you’re
running a firewall, you also need to punch a hole in it at port 9418 on the box you’re setting this
up on.

You can daemonize this process a number of ways, depending on the operating system
you’re running. On an Ubuntu machine, you use an Upstart script. So, in the following file

you put this script:

For security reasons, you’re strongly encouraged to have this daemon run as a user
with read-only permissions to the repositories—you can easily do this by creating a new user

 and running the daemon as that user. For the sake of simplicity, run it as the same “git”
user that Gitosis is running as.

CHAPTER 4 G IT ON THE SERVER96

When you restart your machine, your Git daemon starts automatically and respawns if it
goes down. To get it running without having to reboot, you can run this:

On other systems, you may want to use xinetd, a script in your sysvinit system, or some-
thing else—as long as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthenticated Git
server-based access to. If you add a section for each repository, you can specify the ones from
which you want your Git daemon to allow reading. If you want to allow Git protocol access for
your iphone project, you add this to the end of the file:

When that is committed and pushed up, your running daemon should start serving
requests for the project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you have to run this
on each project you want the Git daemon to serve:

The presence of that file tells Git that it’s OK to serve this project without authentication.
Gitosis can also control which projects GitWeb shows. First, you need to add something

like the following to the file:

You can control which projects GitWeb lets users browse by adding or removing a
setting in the Gitosis configuration file. For instance, if you want the iphone project to show up
on GitWeb, you make the repo setting look like this:

Now, if you commit and push the project, GitWeb will automatically start showing your
iphone project.

Hosted Git
If you don’t want to go through all the work involved in setting up your own Git server, you
have several options for hosting your Git projects on an external dedicated hosting site. Doing
so offers a number of advantages: a hosting site is generally quick to set up and easy to start
projects on, and no server maintenance or monitoring is involved. Even if you set up and run
your own server internally, you may still want to use a public hosting site for your open source
code—it’s generally easier for the open source community to find and help you with.

CHAPTER 4 G IT ON THE SERVER 97

These days, you have a huge number of hosting options to choose from, each with differ-
ent advantages and disadvantages. To see an up-to-date list, check out the GitHosting page on
the main Git wiki:

Because I can’t cover all the hosting sites, and because I happen to work at one of them,
I’ll use this section to walk through setting up an account and creating a new project at
GitHub. This will give you an idea of what is involved.

GitHub is by far the largest open source Git hosting site, and it’s also one of the very few
that offers both public and private hosting options so you can keep your open source and pri-
vate commercial code in the same place. In fact, I used GitHub while writing this book.

GitHub
GitHub is slightly different than most code-hosting sites in the way that it namespaces proj-
ects. Instead of being primarily based on the project, GitHub is user centric. That means
when you host our grit project on GitHub, you won’t find it at but instead at

. There is no canonical version of any project, which allows a project
to move from one user to another seamlessly if the first author abandons the project.

GitHub is also a commercial company that charges for accounts that maintain private
repositories, but anyone can quickly get a free account to host as many open source projects
as they want. I’ll quickly go over how that is done.

Setting Up a User Account
The first thing you need to do is set up a free user account. If you visit the Pricing and Signup
page at and click the Sign Up button on the Free account (see
Figure 4-2), you’re taken to the signup page.

Figure 4-2. The GitHub plan page

CHAPTER 4 G IT ON THE SERVER98

Here you must choose a username that isn’t yet taken in the system and enter an e-mail
address that will be associated with the account and a password (see Figure 4-3).

Figure 4-3. The GitHub user signup form

If you have it available, this is a good time to add your public SSH key as well. I covered
how to generate a new key earlier, in the “Small Setups” section. Take the contents of the pub-
lic key of that pair, and paste it into the SSH Public Key text box. Clicking the “explain ssh keys”
link takes you to detailed instructions on how to do so on all major operating systems.

Clicking the “I agree, sign me up” button takes you to your new user dashboard (see
Figure 4-4).

Figure 4-4. The GitHub user dashboard

CHAPTER 4 G IT ON THE SERVER 99

Next, you can create a new repository.

Creating a New Repository
Start by clicking the “create a new one” link next to Your Repositories on the user dashboard.
You’re taken to the Create a New Repository form (see Figure 4-5).

Figure 4-5. Creating a new repository on GitHub

All you really have to do is provide a project name, but you can also add a description.
When that is done, click the Create Repository button. Now you have a new repository on
GitHub (see Figure 4-6).

Figure 4-6. GitHub project header information

CHAPTER 4 G IT ON THE SERVER100

Because you have no code there yet, GitHub shows you instructions for how to create
a brand-new project, push up an existing Git project, or import a project from a public Subver-
sion repository (see Figure 4-7).

Figure 4-7. Instructions for a new repository

These instructions are similar to what you’ve already gone over. To initialize a project if it
isn’t already a Git project, you use

When you have a Git repository locally, add GitHub as a remote and push up your master
branch:

Now your project is hosted on GitHub, and you can give the URL to anyone you want to
share your project with. In this case, it’s . You
can also see from the header on each of your project’s pages that you have two Git URLs (see
Figure 4-8).

CHAPTER 4 G IT ON THE SERVER 101

Figure 4-8. Project header with a public URL and a private URL

The Public Clone URL is a public, read-only Git URL over which anyone can clone the
project. Feel free to give out that URL and post it on your web site or what have you.

The Your Clone URL is a read/write SSH-based URL that you can read or write over only
if you connect with the SSH private key associated with the public key you uploaded for your
user. When other users visit this project page, they won’t see that URL—only the public one.

Importing from Subversion
If you have an existing public Subversion project that you want to import into Git, GitHub can
often do that for you. At the bottom of the instructions page is a link to a Subversion import.
If you click it, you see a form with information about the import process and a text box where
you can paste in the URL of your public Subversion project (see Figure 4-9).

Figure 4-9. Subversion importing interface

If your project is very large, nonstandard, or private, this process probably won’t work for
you. In Chapter 7, you’ll learn how to do more complicated manual project imports.

CHAPTER 4 G IT ON THE SERVER102

Adding Collaborators
You’ll now add the rest of the team. If John, Josie, and Jessica all sign up for accounts on
GitHub, and you want to give them push access to your repository, you can add them to your
project as collaborators. Doing so allows pushes from their public keys to work.

Click the “edit” button in the project header or the Admin tab at the top of the project to
reach the Admin page of your GitHub project (see Figure 4-10).

Figure 4-10. GitHub administration page

To give another user write access to your project, click the “Add another collaborator”
link. A new text box appears, into which you can type a username. As you type, a helper pops
up, showing you possible username matches. When you find the correct user, click the Add
button to add that user as a collaborator on your project (see Figure 4-11).

Figure 4-11. Adding a collaborator to your project

When you’re finished adding collaborators, you should see a list of them in the Repository
Collaborators box (see Figure 4-12).

If you need to revoke access to individuals, you can click the “revoke” link, and their push
access will be removed. For future projects, you can also copy collaborator groups by copying
the permissions of an existing project.

CHAPTER 4 G IT ON THE SERVER 103

Figure 4-12. A list of collaborators on your project

Your Project
After you push your project up or have it imported from Subversion, you have a main project
page that looks something like Figure 4-13.

Figure 4-13. A GitHub main project page

CHAPTER 4 G IT ON THE SERVER104

When people visit your project, they see this page. It contains tabs to different aspects of
your projects. The Commits tab shows a list of commits in reverse chronological order, similar
to the output of the command. The Network tab shows all the people who have forked
your project and contributed back. The Downloads tab allows you to upload project binaries
and link to tarballs and zipped versions of any tagged points in your project. The Wiki tab pro-
vides a wiki where you can write documentation or other information about your project. The
Graphs tab has some contribution visualizations and statistics about your project. The main
Source tab that you land on shows your project’s main directory listing and automatically ren-
ders the file below it if you have one. This tab also shows a box with the latest commit
information.

Forking Projects
If you want to contribute to an existing project to which you don’t have push access, GitHub
encourages forking the project. When you land on a project page that looks interesting and
you want to hack on it a bit, you can click the “fork” button in the project header to have
GitHub copy that project to your user so you can push to it.

This way, projects don’t have to worry about adding users as collaborators to give them
push access. People can fork a project and push to it, and the main project maintainer can pull
in those changes by adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case,) and click the “fork”
button in the header (see Figure 4-14).

Figure 4-14. Get a writable copy of any repository by clicking the “fork” button.

After a few seconds, you’re taken to your new project page, which indicates that this proj-
ect is a fork of another one (see Figure 4-15).

CHAPTER 4 G IT ON THE SERVER 105

Figure 4-15. Your fork of a project

GitHub Summary
That’s all I’ll cover about GitHub, but it’s important to note how quickly you can do all this.
You can create an account, add a new project, and push to it in a matter of minutes. If your
project is open source, you also get a huge community of developers who now have visibility
into your project and may well fork it and help contribute to it. At the very least, this may be
a way to get up and running with Git and try it out quickly.

Summary
You have several options to get a remote Git repository up and running so that you can col-
laborate with others or share your work.

Running your own server gives you a lot of control and allows you to run the server within
your own firewall, but such a server generally requires a fair amount of your time to set up and
maintain. If you place your data on a hosted server, it’s easy to set up and maintain; however,
you have to be able to keep your code on someone else’s servers, and some organizations
don’t allow that.

It should be fairly straightforward to determine which solution or combination of solu-
tions is appropriate for you and your organization.

