CHAPTER 8

Mac OS X and Code

Up to this point, we’ve spent quite a bit of time buried in the weeds with user tools. To a
large extent, we’ve ignored the fact that, aside from providing beautiful and functional user
applications, Mac OS X is also a powerful development platform. Not only is Mac OS X loaded
with the native Apple developer tools, including Xcode, but it’s also very extensible using open
source tools, such as Python, Perl, and PHP. A developer can create Cocoa applications native
to Mac OS X, or use the Apple IDE to create tools that leverage the open source underpinnings
of Mac OS X. It’s also possible to add frameworks to the system that further extend the connec-
tions between these open source technologies and the native Apple development tools.

Mac OS X includes all the scripting tools you would expect in a Linux distribution. With
Python, PHP, Perl, and Ruby, Mac OS X provides a powerful scripting platform, perfect for
when full-blown object-oriented development is overkill. It’s easy to create scripts that “do
one thing and do it well.” Apple also addresses this need in Mac OS X with AppleScript, a clean
and easy-to-learn native scripting language.

Finally, as a developer, you understand the importance of source code and revision
control. Mac OS X provides these tools as well. If you're a lone developer, it’s important to
understand the code control options that are available for your local machine or local network.
If you work in a development house with several developers, you'll be interested in how Mac
OS X can provide centralized code and revision control options, accessible on the network to
all your developers. Again, the options for code control include native Mac OS X applications
as well as tried-and-true open source alternatives, GUI options, and command-line tools. The
flexibility you've seen in the user tools applies equally well to the developer tools in Mac OS X.

In this chapter, we’ll cover development with Xcode, scripting, and code maintenance and
revision control. We’ll begin with a look at the Xcode IDE.

Using Xcode

As discussed in Chapter 4, Xcode is the Apple development environment provided on the Mac
OS X installation DVD. Xcode has everything necessary to develop and debug applications for
the Mac. Xcode is a complete IDE, including a text editor, build system, debugger, and com-
piler. It’s the central point for development of nearly all the applications on the Mac, and the
very same IDE used by developers within Apple.

Instructions for installing Xcode from the Mac OS X installation DVD are provided in
Chapter 4. Once installed, the Xcode tools can be found, by default, on the boot volume. These
tools are installed in the Applications subdirectory of the Developer folder on that volume.

195

196

CHAPTER 8 MAC 0S X AND CODE

As shown in Figure 8-1, the main Xcode window offers all the Xcode options. You can
jump right into the IDE by selecting “Create your first Cocoa application.” Alternatively, you
can choose the other options to work with the Interface Builder, build a new database for your
application data with Core Data, or use Instruments to optimize your application.

Getting Started iPhone Dev Center Mac Dev Center Xcode News [RSS] Mailing Lists Tips

Welcome to Xcode 3.1

Create your first Cocoa application
Learn how easy it is to quickly create, build, and run your first
Mac application.

@0
Build your user interface
- Learn how Interface Builder works Xco esig
- and wire your code to the
—

Store your application data
Learn how Xcode makes it easy to leverage Core Data to store
your application’s data

Optimize your application
Learn how to integ
analyze the performance of your app

te Instru

™ Show at launch

Figure 8-1. Launching the Xcode IDE in Mac OS X

At the top of the main Xcode window, you'll also find links to internal documentation on
arange of topics. These include the iPhone Dev Center, the Mac Dev Center, the latest news
on Xcode, informational mailing lists on development and Xcode-related topics, and tips for
using the Xcode tools. These links point to documentation libraries built into the Xcode tool.
In order to preserve storage space, many of these libraries are initially populated with minimal
information locally, with the complete documentation set being available online. Additionally,
some documentation sets (notably those about Java) are not available at all locally. The com-
plete documentation libraries can be downloaded and installed locally, if needed, by clicking
the Subscribe button in the left pane of the window for the documentation set you would like
to install. Additionally, the documentation tool contains bookmarks, also listed in the left
pane, as shown in Figure 8-2. These open the documentation in the lower pane of the main
screen in the documentation library.

CHAPTER 8 MAC 0S X AND CODE

868 # Xcode 3.1 Release Notes — Developer Documentati =)

€D Tiie Full-Text | Al Docsets (NN | EEITEIED Java, C++, 0bic,Js, C | EEHTIIDP Contains Exact

DOC SETS |Symbol Name &(Class |Language [Tyme Documentation Set
¥ Apple Mac 05 X 10.5

WebOhbjects Library

—
w@r |
e
¥ Apple Xcode 3.1
Developer Tools L ..
BOOKMARKS.
Xcode 3.1 Release
AppKit Reference
Foundation Referance
Xcode Bulld Serting.. = -
Xcode Expert prafer. | * | # Xcode 3.1 Release Notes 3 <No selected symbol> 3 Cab -
Web Kit Referente ADC Home > Reference Library > Refease Notes > Tools > Xeode > m
Search Kit
Human Interface Guide
Xcode 3.1 Release Notes
Xcode 3.1 is a revision of the Xcode LIt both as a dal version of Developer Tools fer Mac 05
X 10.5 ("Leopard”) as well as part of the iPhone SDK. Please see the Xcode 3.0 Release Notes for details about previous versions of Xcode.
The About iPhons SOK document discusses Xcode and its role in development for Mac O3 X and iPhone.
Contents:
General
Summary of New Features
Significant Bug Fixes fram Xcode 3.0
Known Issues and Workarounds
Additional Documentation and Help
PR i General

Bt

Devaloper Tools Likrary ~ Toals » Xcode « Xeode 3.1 Release Motes « Xcode 3.1 Release Notes

Figure 8-2. The online documentation libraries for the Xcode tools

Creating an Application with Xcode

When starting a new project, Xcode provides a number of templates. As shown in Figure 8-3,
these are grouped into several project types, including applications, Automator actions, kernel
extensions, and several others. These templates provide the basic files for your projects. Select
a template category, and then select a specific template for your project. Xcode prompts you
for the location where all project files will be stored, as shown in Figure 8-4.

197

198 CHAPTER 8 MAC 0S X AND CODE

OO, New Project

Choose a template for your new project:

g 9 B °

Alrdioy Linixs Cocoa Cocoa Core Data
Automator Action Application Document-based Application
Bundle Application

Command Line Utility m m "
Dynamic Library u h gy v

Framework

Jva Description This project builds a Cocoa-based application written
Kernel Extension in Objective-C.

Standard Apple Plug-ins

Static Library

Other

'i Cancel \' {Choose,..}

Figure 8-3. Choosing a template for a new Xcode project

Save As: {Tesl Application| l @

Where: afljéveiopmen.t_ - — TT

Cancel [Save)

Figure 8-4. Saving a new Xcode project

As shown in Figure 8-5, the Xcode tool creates a basic library of files for the new applica-
tion. These include header files, app files, necessary frameworks, and plist files, as well as
several others. These are organized in the project within folders in the left pane of the Xcode
window. The folders include classes, other sources, resources, frameworks, and products.
Double-clicking a file name in the Xcode tool will open the file in the built-in text editor.

Xcode creates files with basic information in the header, including the code author and
copyright information. This is based on information in the user’s entry in the Address Book
application. The files also contain the basic code necessary to create the specific file for the
application, again, based on the chosen application type.

The Xcode text editor utilizes full syntax highlighting, in addition to inserting comments
for the developer, specific to the project type. In the example shown in Figure 8-6, the com-
ments provide the developer with information about the creation of a function for setting the
value of input ports. This type of commenting is provided throughout all new project files.

CHAPTER 8 MAC 0S X AND CODE

i

Groups & Files [("Detail | Project Find SCM Results Build !

» [Classes _ [len A[ACde | @ | A [®
» [| Other Sources E] AppController.h
» (| Resources Enj AppController.m v o
» [Frameworks §®= AppKit.framework -
» [Products §= Cocoa.framework "
» @ Targers = CareDat:i.framewort a
» & Executables A= Foundation.framework 5
» [® Errors and Warnings EI Info.plist o
» (4, Find Results E—'J InfoPlist.strings (English)
» 1% Bookmarks 1 Introduction.qtz o
» i scM % main.m v o
@ Project Symbols # [4 MainMenu.xib (English)
» (i@ Implementation Files §= Quantz.framework o
» (& NIB Files QA Test Application.app =
E.‘] Test Application_Prefix.pch

» 1 Breakpoints

Figure 8-5. The file library created by Xcode for a new project

<~ s AppControllerm26 3 [@mplementation AppController & D™=, |Cy| #o| B

/¢ AppController.m
/f Test Application

Created by Tony Steidler-Dennison on 18/11/08.

Copyright Tony Steidler-Dennizon, 2088 . All rights reserved.
#import “AppControl ler.h®
Aimplementation AppController
- {void) awakeFronNib

if(![qcViev loodCompositiornFroeFile: [[NSBundle mainBundle] pathForResource:d"Introduction” of Type:d“gtz®]]) {
NSLog{#@"Could not lood composition®);
b

+
- {voidwindowdil IClose: (NSNot if ication *)notif ication

[NSdpp terminate:self];
}

/¢ An example of programeatically setting the value of input ports
/¢ Notice that the QCPatchParameterView is outonatically updated by setting the (CView inputs
- (IBAction) changeColorToB lue:(id)sender
{
/¢ Colors
focYiew setValue:MNSColor blueColor] forlnoutKey:@ Top Color®l:

TR
R I e —— |1 1]

Figure 8-6. The AppController.m file open for editing in the built-in text editor

200

CHAPTER 8 MAC 0S X AND CODE

Applications in Mac OS X require a property list, or plist file. These simple XML files
describe the application and user settings required for the operation of the application. The
plist files are one of the many direct descendants of the NeXTStep operating system upon
which Mac OS X is built.

As each Mac OS X application requires a plist file, it’s only appropriate that the Xcode
tool would provide the means by which to create these files. As a recent addition to Xcode, the
plist editor is included in Xcode 3.1 and later. To launch it, double-click the Info.plist object
in the project’s Resources folder. A default plist file is shown in Figure 8-7.

Note Though Xcode includes a plist editor, it's not actually necessary in order to create or modify
plist files. As XML files, the p1ist files can be created and edited with any text editor.

066 [Info.plist =
= — :
 10.5 | Debug | i386 -] & ™ - A
Overview Build and Go _ Tasks u d_Project
~ Info.plist & «|"% | Cs|#s =
| Key Value |
| winformation Property List |
Localization native development re English
Executable file ${EXECUTABLE_NAME}
Icon file
Bundle identifier com.yourcompany. ${PRODUCT_NAME:identifier}
InfoDictionary version 6.0
Bundle name ${PRODUCT_NAME}
Bundle OS5 Type code APPL
Bundle creator 05 Type code mn
Bundle version 10
Bundle versions string, short 2.0
Main nib file base name MainMenu
Principal class NSApplication

Figure 8-7. Creating a plist file for the new application

Working in the Main Xcode Window

Rather than launching a single file in the built-in Xcode editor by double-clicking it, you can
configure the tool to provide access to all files in a single window. You can also configure
external editors in the Xcode preferences. Figure 8-8 shows this configuration, opened for
the AppController.mfile. In this configuration, the editor opens in the lower pane of the main
window.

CHAPTER 8 MAC 0S X AND CODE

oA 'm AppController.m - Test Application =]

| = EW| [110.5 | Debug | 1386 | [2-] A &P Q- v

Groups & Files

[Detail | ProjectFind SCM Results Build |
w I Test Application s — .) o
» | Classes __ [File Name & A Code e | a4 o
»] Other Sources |u] AppContraller.h

M | AppController.m

] Resources
b || Frameworks
» [Products
> @Tilg:h
» o Executables
» {® Errors and Warnings
» 4 Find Results
L Bookmarks
(= u]
W Project Symbals
¥ @l Implementation Files
» [NI Files
» '} Breakpoints = - —— ————
4 = AppController.m26 & imple tion AppControll H . Ce ¥. B @
Bincort "AppControl ler.h® | |

Aing lesentol ion Applontroller
= {(woud) euokeFrosiib

(! [ocview looiCompositionFronfile: [[NSBundle wainBundle] pothForResource:@” Introduction” of Typesd'giz"]
MSLog{4"Could not lIcad compesition®);

1}
= (voicpeindow i LIC Lose : (NSNOL LT icat Lon #netif ication
[NSAop terminataiself];
1}

A an mrowple of progromatical ly setbing the valus of 1rput ports
/7 Motice that the CCPatchPorametervisy is cutcaotically updated by setting the (CView irputs
- (IBAction) changeColorToBlue:(id)sendsy

/¢ Calors
[qeYiew setValus: [NSColor blusColor] forlnputkey:2*Top Color™];

Figure 8-8. An expanded view of the Xcode interface

At the top left of the Xcode IDE window are options for configuring both the target envi-
ronment and the window view, as shown in Figure 8-9. Your choices for window view, selected
by clicking one of the two icons at the far left, are the main window or the debugging window
(the bug spray icon). To designate the target environment for the application, select it from the
drop-down menu in the main interface. In the example, the options for target are Mac OS X
10.4 or Mac OS X 10.5 (Target Setting).

000 m| AppC

Figure 8-9. The Xcode IDE settings

201

202

CHAPTER 8 MAC 0S X AND CODE

Note Xcode settings include Project settings and Target settings. Without the parenthetical indication of
which settings you’re modifying, such as “(Target Setting),” it’s possible to confuse the settings type. Chang-
ing these settings may, in fact, give unexpected results. In other words, it’s important to pay close attention

1o the settings type when modifying the Xcode settings.

In addition to selecting the window view and the target environ-
ment for the application, Xcode also provides several actions that are
easily accessible within the main interface. Click the Action drop-
down arrow to see the list shown in Figure 8-10. You can select from
the following types of actions:

¢ Open and add actions, such as adding a new file, opening the
current file in the Finder, or opening the current file as a new
file

* Actions specific to the individual file, such as viewing the file
information (as provided, in part, by the existing plist file),
renaming, touching, untouching, and deleting the file

¢ Actions to compile, preprocess, and show the assembly code
for the file

All in all, the most common file actions are provided from within
the main Xcode window.

As shown in Figure 8-11, Xcode provides other developer
options within the main window, including the ability to build an
executable binary with a single button click. When the Xcode IDE

Add >
Open With Finder
Open As [3

Reveal in Finder

Reveal in Group Tree
Open in Separate Editor
Add to Bookmarks

Get Info
Rename
Touch
Untouch
Delete

Group

Compile
Preprocess
Show Assembly Code

Figure 8-10.
Actions available in
the Xcode interface

is actively building a binary or is engaged in some other task that temporarily excludes user
interaction, the Tasks indicator in the main window bar will become active, painting the stop

sign a bright red.

er.m - Test Application

> @

Build and Co Tasks Info Search

Figure 8-11. Additional file options available within the Xcode main window

In addition to the ability to build and compile from the main window, Xcode also provides
a tool to view and edit all the available information about the current file within the main
interface. The Info button at the top of the main Xcode window reveals another window with
this information, as shown in Figure 8-12. This window includes several tabs of information,
including general information, targets, additional compiler flags for the chosen application

target, and file-specific comments.

CHAPTER 8 MAC 0S X AND CODE

(@) File “AppController.m” Info

{ General | Targets Build Comments

Name: AppController.m

Path: AppController.m 'fChuose

Full Path: fUsers{tony/Development/Test Application/
AppController.m

Path Type: | Relative to Enclosing Group ?

File Type: | sourcecode.c.objc ?

'2‘ Include in index

File Encoding: | Unicode (UTF-8) ﬂ
Line Endings ?
TabWidth: (4 | IndentWidth: 4
5_" Editor uses tabs
| Editor wraps lines
(" Reset to Text Editing Defaults)
(" Make File Localizable)
£a)

Figure 8-12. Information about the current file available from the main Xcode interface window

Finally, the main Xcode window includes a search interface. This provides developers
with the ability to perform string searches within the selected file.

Debugging with Xcode

An essential part of creating applications is, of course, the ability to debug those programs
you've created. Stepping through code execution one line at a time makes it possible to find
coding errors.

In addition to the project coding and creation tools provided by Xcode, you'll also find a
robust debugger. You can step through your own code line by line, or you can attach to and
debug a running process that you did not initiate. And, with your own applications, you can
set the debugger to attach to any process launched from Xcode only when it crashes.

Consistent with Apple’s philosophy of creating tools that are flexible for developers, Xcode
provides a number of ways to debug your applications. The method you choose is entirely up
to you, and will undoubtedly depend on your preferred work style and environment.

Running the Debugger in the Text Editor

The Xcode debugger provides the ability to debug your code directly in the text editor. This can
be a big time-saver if you're creating and debugging code on the fly. To access the debugger in
the text editor, double-click the file to be debugged to open it in the text editor. Then, with the
text editor in the foreground, select Run » Go (Debug) from the Xcode menu.

203

204 CHAPTER 8 MAC 0S X AND CODE

Two pieces of the debugger in the text editor are important to you, as noted in Figure 8-13:
the debugger strip and the gutter. The debugger strip, shown in Figure 8-14, includes the items
listed in Table 8-1. The gutter allows you to set or edit breakpoints.

Debugger Strip

-| -{AppControlier awakeFromnib]

« | = mAppController.m:l5 & [0 -awakefromWib 2 <" Cel#. B &
[l]
#f AppController.m "
A Test Application r
"

/¢ Created by Tony Steidler-Dennison on 18/11,/88.

/4 Copyright Tony Steidler-Dennison, 2888 . All rights reserved.

.4

#inport “AppController.h”

Ainplenentat ion AppControl ler

Gutter —

- (void) owokeFronib
1

}

— (voldwindowdi LICIose: (NShotif {cation *Jnotification
[NSApp terminatesself];

/¢ An exanple of progronmatically setting the value of input ports

/¢ hotice that the (CPotchParometerView 1= outomotically updoted by sstting the Q0View inputs

- {1BAction) changeColorToB lue:{id ender
/4 Colors
[acview setVolue: [NSColor blueColor] for InputKey:@'Top Color"]; "
[acviev setvalus: [NSColor cyonColor] forlnputkey:a"Micdle Color'];
[oc¥iev setValues [NSColor blueColor] forlnputkey :@"Bottom Color”],
/¢ Runbers
[achiew setValue: [NShunber nunberWithDouble:.5] forlnputkey @ Font_Size"]; |-

3

/7 Strings v

—

Figure 8-13. Debugging code in the Xcode text editor

Thread List
—Breakpoints Debugger
Continue Call List
| Thread-1 3| @ > + t [mE [AppController awakeFromNib] :
Step Out
Step In

Step Over

Figure 8-14. The Xcode debugger strip

CHAPTER 8 MAC 0S X AND CODE 205

Table 8-1. Xcode Debugger Strip Items

ltem Description

Thread list Shows the thread currently under control of the debugger
Breakpoints button Sets and deactivates the debugging breakpoints

Continue button Continues the execution of the debugger

Step Over button Instructs the debugger to skip, or “step over,” the current line of code
Step In button Instructs the debugger to step into a function or a specific line of code
Step Out button Instructs the debugger to step out of a function or specific line of code
Debugger button Opens the GDB (GNU Project Debugger) window

Call list Shows the call stack (list of called routines)

Additionally, the debugger provides code data tips. By hovering the cursor over the code
in debugging mode, you'll have access to a progressive disclosure mechanism that allows you
to view and change your application’s variables.

Using the Mini Debugger

The full debugging interface, while powerful, can sometimes be a bit of overkill. It’s not always
necessary to open a full window, nor is it desirable when what you really need is just a quick
assessment of how your program is operating. For those purposes, Xcode provides a mini
debugger. This small debugging interface floats above a running application, providing many
of the same tools that are available in the full version.

The mini debugger, shown in Figure 8-15, includes functions to (from @ Xcode - Test ...
left to right) stop and pause the code, select the project, and activate/ -'_ Q = o
deactivate breakpoints within the code.
Figure 8-16 shows an example of the mini debugger in operation. In Figure 8-15.
this figure, the process under control of the debugger, known as the infe- The Xcode mini
rior, is stopped. debugger
Thread-1 4 » = ¢ t [J] Bl -lAppController awakeFromNib] s
+ AppController.m:15 & 1 -awakeFromNib ™ Cylily 1

~

plementation AppController

- (void) owakeFromNib

[I (T [acViev loadC
NSLog(@"Could no

}
}

L —

Figure 8-16. The mini debugger in operation

206 CHAPTER 8 MAC 0S X AND CODE

The mini debugger offers many of the same tools as the text editor debugger, including
the debugger strip and the gutter. However, unlike the text editor, the mini debugger doesn’t
allow changes to the source files.

Using the Debugger Window

Xcode provides another interface for debugging to accompany the text editor and the mini
debugger. The debugger window, shown in Figure 8-17, is the full debugging interface in
Xcode.

o006 |m| AppController.m - Test Application -

= = — -

= S0 v @06 e .
Page Overview Build and Go Tasks Restart Continue Step Over Step Into Step Out Deactivate

| Thread-1% Variable Value Summary

-[AppController awakeFromNib] ¥ Arguments

N5 L > self Ox18f8fo

_emd 0x949578c8

» Globals

» Registers

» Vector Registers

1]

1

2

3 lo
4 +
5

[b x87 Registers
7

- # AppController.m:15 ¢ [@ -awakeFromNib 3 « " Cyl¥. B A

S reserved.

#import "Ap

2imp lementation AppController v
GDE: Stopped at breakpoint 1 (hit count : 1} - "-awakeFromNib - Line 15" @5Succeeded

Figure 8-17. The Xcode debugger window

The debugger window includes the full set of debugging tools available in Xcode, as listed
in Table 8-2 and shown in Figure 8-18.

Table 8-2. Xcode Debugger Window Toolbar Options

Button Description

Build and Go Builds and runs the application

Tasks (Stop) Terminates the inferior

Activate/Deactivate Toggles breakpoints

Fix Builds a single file fix

Restart Runs the application in the same state as the previous run
Pause/Continue Pauses/continues application execution

Step Over Steps over the current line of code

Step Into Steps into the call to the current line

Step Out Steps out of the current function or method

CHAPTER 8 MAC 0S X AND CODE

Button Description

Breakpoints + Adds a breakpoint
Breakpoints Opens the breakpoint window
Console Opens the Console window

[m| AppController.m - Test Application

Figure 8-18. The debugger window toolbar

With multiple panes, the debugger window provides a wealth of other execution and
debugging information. The upper-left pane contains the thread list, with the call stack of
the current thread. The upper-right pane contains the variables list, displaying the variables
defined in the current scope and any associated values. The lower pane contains the text edi-
tor. The status bar resides at the bottom of the window itself, just beneath the text editor. The
debugger window also provides some display flexibility, with configuration options for both
horizontal (as shown in Figure 8-17) and vertical display.

In short, Xcode provides a powerful set of tools for debugging your application, and maxi-
mum flexibility in how those tools are configured and used.

Xcode and Other Application Development Tools

Even though Xcode is the chosen tool for most developers creating applications specifically
for Mac OS X, it’s not limited to Objective-C, C++, or Java. It is, in fact, a thoroughly modern
tool with the flexibility to make full use of other current programming and scripting languages.
Whether you're a coder developing object-oriented applications in Python, a web guru creat-
ing database-driven sites with Ruby, or a developer who has chosen PHP as your preferred
programming language, Xcode will be useful.

The benefits of using Xcode as your development tool might not be obvious until you've
used Mac OS X itself for awhile. Xcode provides the native Mac OS X environment, including
proper keyboard shortcuts and controls. It also “understands” Subversion, providing both
development and source control within a single tool.

The following sections introduce Java, Python, Ruby, and PHP development with Xcode.

Note Xcode provides a strong set of tools for object-oriented programming and scripted solutions. Xcode
Unleashed by Fritz Anderson (Sams, 2008) and Beginning Xcode by James Bucanek (Wrox, 2006) provide
full, book-length views of Xcode.

207

208

CHAPTER 8 MAC 0S X AND CODE

Xcode and Java

Java is another development language included in Mac OS X. Java 2 Standard Edition 5 (J2SE
5) is included in the standard Mac OS X installation, with J2SE 6 available as a software update.
Both 32- and 64-bit versions of Java are included in the J2SE 5 installation, while the J2SE 6
version is 64-bit and Intel only.

It’s easy to create a new Java project in Xcode, as shown in Figure 8-19. As Java is a native
development language in Mac OS X, no further modification is required for Xcode to see and
make Java available within its tool set.

[oatst ubiew Proiect
Choose a template for your new project:
‘d Mac 05 X
Application |
Audia Units Java Applet L s Aopicaiian] Java JNI
Automatar Action Application

Bundle

Command Line Unility .
amic Libra '\ P;! 'xh
oym ry e 7 A B
Framework
T
T ... pecject bullds an Ant-based Swing application
Kernel Extension
Standasd Apple Pug-ies
Static Library
Other
Camn) @

Figure 8-19. Creating a Java application in Xcode

Some additional tools are installed in Mac OS X specifically for use with Java. Apache Ant
is the tool used by Mac OS X to compile and run Java applications. This, too, is included in the
standard Mac OS X installation. The Jar Bundler allows developers to build and deploy Java
JAR files as applications that can be launched in the same way as any other Mac OS X appli-
cation. These JAR files won’t require the use of the terminal for operation. Additionally, the
Mac OS X installation includes Applet Launcher, which simplifies applet testing in Mac OS X
by providing a GUI to Sun’s Java plug-in. Applets can be launched from an HTML page, with
applet performance and behavior settings configurable via the Java Preferences application.

Mac OS X contains some additional Java-specific development and deployment tools,
including the following:

e Java Web Start: A tool to launch and modify settings for Java Web Start applications.

¢ Java Preferences: A tool that allows developers to specify settings for Java applications,
plug-ins, and applets.

o Input Method HotKey: A tool that lets developers set a keyboard combination for invok-
ing the input method dialog box in applications with multiple input methods.

e JUnit: AJava unit testing interface.

e Apache Maven: A development consolidation tool, including dependency and release
management.

e Apache Ant: A tool to automate Java builds.

CHAPTER 8 MAC 0S X AND CODE

Xcode and Python

Python, the programming language creation of Guido von Rossum in 1990, has become
increasingly popular in the past several years. Renowned for its clean syntax, reasonable learn-
ing curve, extensibility, and full object-orientation, Python has garnered a growing following
of developers. It’s often used as a scripting language to meet quick, one-off needs. Its use has
also broadened to include 3D animation and rendering packages such as Maya, graphics cre-
ation and manipulation applications such as GIMP and Inkscape, and even games, including
Civilization IV.

Released under a GPL-compatible license, Python has also garnered a large and robust
user community. It's now a standard element in most Linux distributions. It’s also included in
Mac OS X, with the Python packages listed in Table 8-3 installed by default.

Table 8-3. Python Packages Included with Mac OS X Installation

Package Description

altgraph Python graph (network) package

bdist_mpkg Tool for building Mac OS X installer packages from distutils
macholib Mach-O header analysis and editing

modulegraph Python module dependency analysis tool

NumPy Array processing for numbers, strings, records, and objects
py2app Tool for creating stand-alone Mac OS X applications with Python
setuptools Utility to download, build, install, upgrade, and uninstall Python packages
xattr Python wrapper for Darwin’s extended filesystem attributes
Twisted Event-driven networking engine

wxPython Python bindings for the wxWidgets tool kit

Zope Open source application server

When the .mpkg or source-built installation is complete, Xcode will recognize PyObjC,
allowing you to create a new Python project from the menu. As shown in Figure 8-20, Xcode
provides the option to create new Python Cocoa projects directly from the New Project
window.

209

210

CHAPTER 8 MAC 0S X AND CODE

OLOUO New Project

Choose a template for your new project:

L Composer Core Application Application
‘, Mac 05 X Data Application
Application | M G
Audio Units E s L O
Automator Action =
Bundle Carbon C++ Cocoa-Python Cocoa-Python
Command Line Utility Standard Application Core Data

Application Application 2
Dynamic Library " e

Framework

Jva Description This project builds a Cocoa-based application written

Kernel Extension in a mix of Python and Objective-C.
Standard Apple Plug-ins

Static Library

Other

(Cancel \ (Choose,..}

Figure 8-20. Creating a new Python project in Xcode

As part of the new Python Cocoa project, the Xcode tool creates the main.py file, as shown
in Figure 8-21. The tool writes appropriate includes to the file, such as objc and Mac OS X
classes, including Foundation and AppKit. Notice that syntax highlighting is fully functional
with the PyObjC bindings in Xcode.

While all the Xcode project management tools are available for Python projects, the Xcode
debugging tools do not work for Python applications. Python does, however, include the built-
in pdb debugging module. This is a robust debugging tool, executed from the command line, as
follows:

$ python -m pdb main.py

> /Users/tony/Development/new python application/main.py(10)<module>()
-> import objc

(Pdb)

A useful overview of the pdb functions is available on the Python site at http://docs.
python.org/library/pdb.html.

CHAPTER 8 MAC 0S X AND CODE

®00 © main.py (=)

[10.5 | Debug

< | » @B mainpy5 3 Sy | Cul #s)
®
E
2
®
B
E

#import wodules required by application
import objc

import Foundation

import AppKit

main.py
new_python_application

Copyright Tony Steidler-Dennison. 2888. All rights reserved.

from PyObiCTools import AppHelper

import modules containing closses required to start application ond lood HainMerw.nib
import new_python_opplicationAppDe legate

poss control to AppKit
AppHe Iper .runEventLoop()

Figure 8-21. The main.py file in the Xcode text editor

Xcode and Ruby

Development with Ruby in Xcode is similar to Python development. Like Python, Ruby is
included in the base installation of Mac OS X. This also includes Rails, the chosen framework
for most current Ruby application development. A number of other Ruby utilities—Ruby
gems—are included in the base installation, as well. Overall, Ruby developers will find the Mac
OS X Ruby implementation to be extremely friendly and well devised. If you're already familiar
with the general user interface layout of the Mac operating system, moving your Ruby devel-
opment to this platform should be a painless process.

Like Python, Mac OS X provides a robust Ruby installation, including the packages listed
in Table 8-4.

211

212

CHAPTER 8 MAC 0S X AND CODE

Table 8-4. Ruby Packages Included with Mac OS X Installation

Package Description

RubyGems Ruby package manager

rake Make-like utility for Ruby scripts

Rails Framework for database-backed web applications

Mongrel HTTP library and server, used primarily to build and test Ruby applications

Capistrano Framework and utility for executing commands in parallel on multiple remote
machines, via SSH

Ferret Search engine

OpenID Service that provides OpenlID identification to Ruby programs

sqlite3-ruby ~ Module that enables Ruby scripts to interact with a SQLite 3 database
libxml-ruby Module to read and write XML documents using Ruby
dnssd Ruby interface for DNS service discovery, implemented as Bonjour in Mac OS X

net Pure Ruby implementations of the SSH and SFTP client protocols

Additional Ruby libraries and modules can be downloaded from http://rubyforge.org/.
These are available in . tgz source code packages or as .gem files, available to RubyGems.

Using the RubyGems tool, a developer can add libraries and packages developed by other
Ruby users. This follows the model created by Perl developers and the CPAN system. In short,
these libraries represent a true implementation of modular design. With a good understanding
and frequent use of the modules found on the RubyForge site, you'll clearly save development
time, effort, and debugging by utilizing prewritten code.

As with PyODbjC, the installation of RubyCocoa will make Ruby visible to the Xcode tool.
As shown in Figure 8-22, it’s possible to create a new Ruby Cocoa project directly from Xcode
with the RubyCocoa framework installed.

Note The RubyCocoa site (http: //rubycocoa.sourceforge.net/HomePage) provides ample
resources to get you started with Ruby development in Mac OS X., including articles on “the Ruby way,”
Ruby extensions, and detailed tutorials on Cocoa programming with Ruby. An even more detailed list of
RubyCocoa resources can be found at the Ruby Inside site (http://www.rubyinside.com/
the-ultimate-1list-of-rubycocoa-tutorials-tips-and-tools-728.html).

It’s clear that the UNIX underpinnings of Mac OS X provide much the same flexibility for
Python and Ruby development as that found in most Linux distributions. While a few extra
steps may be required to configure a Mac OS X system for Cocoa development with Python or
Ruby, the basic functionality of both exists in the standard installation.

CHAPTER 8 MAC 0S X AND CODE

78" New Project

Choose a template for your new project:

‘ Mac 05 X h H
| Application 7% n ¥

Automator Action Cocoa-Python Cocoa-Python Cﬂcn_a—Rub\r
Core Data Document-based Application O

3

Audio Units
Bundle Document-based Application

Command Line Utility T
Dynamic Library h [h A v
Framework — = =
s Description This project builds a Cocoa-based application written
Kernel Extension in Ruby.

Standard Apple Plug-ins

Static Library

Other

(cancel) (Choose...)

Figure 8-22. Creating a new RubyCocoa application project with Xcode

Xcode and PHP

Given the inclusion of Java, Python, and Ruby in the standard Mac OS X installation, it should
come as no surprise that PHP is also included in Mac OS X. Mac OS X 10.5 (Leopard) installs
PHP 5 by default, with built-in support for the SQLite database. The inclusion of PHP and
SQLite, in combination with the default Apache installation, makes Mac OS X a strong web
application development environment, requiring little additional configuration.

PHP configuration in Mac OS X starts with the setup of the built-in Apache server. To turn
on the server, select Sharing from System Preferences, and check the Web Sharing check box,
as shown in Figure 8-23. This enables the Apache server on your Mac OS X machine, using
both a system home page and a user-specific home page, as noted in the links within the con-
figuration window. You can check the status of the server by clicking the home page links in
this window. As shown in Figure 8-24, a default home page is displayed in Mac OS X when the
Apache server is properly configured. The index file is located in /Users/[user]/Sites.

213

214

CHAPTER 8 MAC 0S X AND CODE

Computers on your local network can access your computer at; Edit
Cerebellum.local

On Service _ & Web Sharing: On
] DVD or CD Sharing Web Sharing allows users of other computers 10 view web pages in the Sites
'__| Screen Sharing folders on this computer.
™ File Sharing
™1 Printer Sharing Your computer's website:
o wet -
] Remote Login
™1 Remote Management Your personal websine:
71 Remote Apple Events hitp://192.168.1.110/~tany/
™1 Xgrid Sharing

Internet Sharing
{1 Bluetogth Sharing

K ®
Click the lock 1o prevent further changes.

Figure 8-23. Configuring the Apache server from System Preferences

9 it/ 192.166.1,110/~tormy /|

Your website here.

You can use Mac 05 X Personal Web Sharing to publish web pages or share files on the Internet — or on your company's or
school's lncal area network — fram a folder an your hard disk.

You can display your documents on the Internet — or restrict access to a chosen few within a local area network. Mac 05 X
Personal Web Sharing makes it a snap.

Here's how it works: Create your website by changing this page (it's called "index.html” and it's in the Sites folder in your
home folder) and creating any other HTML pages you want.

Once you're anline, turn on Personal Web Sharing, then send your web address to other people.

That's it. You're done — your page is ready for viewing.

HTML, anyane? Quick start Guide to
Personal Web Sharing

HTML is easy = 50 easy that even a first=time user can do it. That's

because you don't have 1o learn HTML w use it 1. Create the HTML pages for your websive and put them in the Sites
Falder in your home folder.

Leading word such as ‘Word and

AppleWorkes &, actually generate HTML webpages for you with just a few Substitute your oan content for the test, graphics, and links in this page

clicks of a mouse. (inex.nimi) 1o create a customized welcome page. Create ather HTML
e Following your apglication’s instructions for linking gprges and

HTML — short for hypertest markup language — is what webmasters and graphics.

designers use lo publish text and graphics on the Internet in a form that

can be read by any web browser. . Make sure you have a working network coanection. If you need helg,
see your network administrator,

Ta ereate an HTML wehpage in Microsaft Ward, all you have 1o da i€

choose Save as HTML from the File menu. Word will save your work as an 3. Open System Preferences and chck

HTML page, ready for publishing on the Internet. Sharing. Seboct Personal Wb Sharing and - Personal Web Sharing 011
elick Star

In AppleWorks B, choose Save As fram the File menu, then choose HTML @

fram the pop-up menu. Next, just type in the name you want to save the 4. Note the address for your website

page with and click the Save button, and it's like boom — instant HTML. \rider the Services (134 1 Shariivg prelerenses. Be sire o topr the

agdress exactly as it agpears.

.

Apache web server

Figure 8-24. The default user home page in Mac OS X

CHAPTER 8 MAC 0S X AND CODE

While the Apache server is configured out of the box, configuring PHP requires a few addi-
tional steps. To load the PHP module in Apache at startup, uncomment the following line in
/etc/apache2/httpd.cont:

#LoadModule php5_module libexec/apache2/1ibphp5.so
Then restart the Apache server with the following command:
$ sudo /usr/sbin/apachectl restart

This will restart the server, loading the PHP 5 module.
You can check the PHP installation by creating a file in the server directory. Simply create
a file named phpinfo.php in the document root containing the following:

<?php
phpinfo();
>

By loading this page in your browser, as shown in Figure 8-25, you'll test the PHP configu-
ration, as well as display all the pertinent configuration information.

| | | @ | hiip g ftucalhost phpinfo. phyp

System | ocal 8.5 Vession 850 Wed Sop 3 11:29:43 POT 2008:
moalEnu-1228 7 88-1/RELEASE 1386 i3A6
Bullkd Date |Now 29 2007 092809
X = i i
Configure confgure’ thm m'
di MPILIDrary’ -wim-ang- L"%-UUWWN'W"'
it foetip Library' - AMP bin/phps” exee:
binfphps' P St
soap’ i) -fik Coniphps’ “enabie-
bematn' a0’ - ‘-‘H|mm";‘-"
4l eith-agIia’ wilht <=
tHlin=/Apal AMP/LIBFRY l—unmnﬁ';-' Ll
curi=iApolicasonsMAMPLicrary' —enabie-gox ‘—enable-sockeis' —enable-bomain' wiin-
VBp: P -with-kerberag’ -
enablo-calendar' --with WMN!WMW anabho-dhis’ -
bl o st S dirsiApplicatonsMAMP drary' -witr-
AMPILinrary' Librasy' -wilh-
pio e Lt
“ewith-
i Linrary' --with-openssl'
Server APl |Apache 2.0 Handler
Virtual disablod
Directory
Suppart
MAMP/contihps
File: {phpini)
Path
Loaded | ApplicationsMAMPcontiphpS e ini
Flle.
PHP API 20041225
PHP 20060613
Extension
Zand 220060518
Debug Bulld o
Throad disabled
Satoty
2end enabied
Memory
Manager
Pv6 Support |enabled
. Wk, data, hitp, fig, ¥ hitge, | L
FHP Straams i Tos 2
e e e e e e e — S —— |

Figure 8-25. The phpinfo.php page displayed in Safari

215

216

CHAPTER 8 MAC 0S X AND CODE

Note PHP development can be greatly enhanced by the use of PEAR modules, available at http://
pear.php.net/. Like CPAN and RubyGems, PEAR modules are prebuilt code chunks, written to accomplish
a specific task. These can be easily rolled into your PHP development. Full documentation to acquire and use
PEAR modules is available on the PEAR site at http://pear.php.net/manual/.

The inclusion of PHP in the base Mac OS X installation rounds out the remarkably com-
plete set of development tools built into the Mac operating system. You've seen that the Mac
OS X platform includes the most current programming and scripting languages, all of which
are available (some with minor additional configuration) from within the Xcode interface.

Scripting

Aside from the built-in programming languages, Mac OS X supplies a great environment for
scripting and scripting solutions. The UNIX basis of the operating system provides all the
tools necessary for shell scripting. As with a Linux system, you can create scripts on the fly to
accomplish any number of administrative tasks. Scripts can also provide some functionality in
other application development.

Bash, Python, Perl, and Ruby provide strong scripting functionality, and all are available
in the Mac OS X installation. In practice, scripting in Mac OS X using these languages will be
virtually indistinguishable from scripting on a Linux or UNIX system. But for many, scripting
in Mac OS X starts with the native scripting tool: AppleScript.

Using AppleScript

AppleScript is a scripting language that can respond to a number of events in Mac OS X by per-
forming a set of defined operations or by providing data. An event in Mac OS X is an internal
message containing commands or arbitrary data. The Open Scripting Architecture (OSA) is

the API at the heart of AppleScript. OSA makes it possible to communicate with other scripting
languages and with other applications on the system.

Lexically, AppleScript is simple, utilizing 103 reserved keywords. As with Python, the
syntax is also simple, making AppleScript an easy language to learn. However, the simplicity
of the language itself is deceptive. AppleScript is a rich, object-oriented scripting language,
perfectly suited to creating scriptable applications, performing repetitive operations, and
providing access to applications or other scripting languages in the system. Apple provides a
comprehensive guide to using AppleScript at http://developer.apple.com/referencelibrary/
GettingStarted/GS AppleScript/index.html.

The AppleScript Utility, located in the Applications/Applescript directory, is used to
configure the use of the AppleScript tools on your system. As shown in Figure 8-26, the con-
figuration options include a choice between scripting editor versions, the ability to utilize GUI
scripting and provide universal access (including voice control), and the ability to set up folder
actions for AppleScripts. (Folder actions are repetitive actions taken on the contents of a folder,
such as periodically checking whether the folder contents have changed, and moving any new
contents to another folder.)

CHAPTER 8

.00 AppleScript Utility

ar

Default Script Editor: [“J Script Editor (2.2.1)

GUI Scripting: ™ Enable GUI Scripting

Enabling GUI Scripting will also enable access
for assistive devices. See Universal Access
preferences for more information.

Universal Access...

o P EE—
Folder Actions: Set Up Actions...

—| Show Script menu in menu bar
V! show ¢ ite

Figure 8-26. The AppleScript Utility

Creating Scripts with the Script Editor

Mac OS X provides the Script Editor, located in the Applications/Applescript directory. This is

MAC 0S X AND CODE

arich editor used primarily for creating, testing and, where necessary, compiling AppleScript
scripts. However, it also understands the other scripting languages on the system, including

bash, Python, Perl, and Ruby.

As shown in Figure 8-27, the Script Editor utilizes a multipane window and syntax
highlighting. The sample script shown in Figure 8-27 is a pure AppleScript script, with the
appropriate syntax highlighting. Scripts written in other scripting languages in the Script Edi-

tor will be highlighted accordingly.

0

o006 Summarize Message.scpt

o @2 N =)

Bundla Contents

tell application "Mail"
set selectedMessages to selection

onCount to (count of selectedMessages)

“ount is greater than 1 then

k5tring to "There are " & selectionCount & "
selected messages.” & return

tlonCount is equal to 1 then

ring to "There is * & selectionCount & * selected

message.” & return

nCount is less than or equal to D

tring to "There are no selected messages.”

repeat with messagaiNumber from 1 to selectionCount
set heM 3e to item 1 jeNumber of
selectedMessar x:
set sur arv to summarize {eontent of theMessane as b4

Description | -Result | Event Log

Figure 8-27. The Script Editor

217

218

CHAPTER 8 MAC 0S X AND CODE

Figure 8-28 shows the Script Editor toolbar. The buttons on this toolbar allow you to
record macros, run and stop a script, and to compile that script into a stand-alone application
for Mac OS X.

®00 Untitled (=)

Figure 8-28. The Script Editor toolbar

The Script Editor provides a wide range of additional features, including the ability to view
the data dictionaries of scriptable applications.

Tip Also worth noting is Automator, an Apple script-creation tool included in Mac 0S X. Automator makes
it possible to create scripts without actually writing any code. It’s a graphical tool that provides a library of
common actions in the form of graphical objects. The interface allows you to create relationships between
these actions by dragging and dropping them into the proper sequence. The output is in the form of work-
flows, which carry out the actions specified by the user. Ben Waldie’s book Automator for Mac 0S X 10.5
Leopard: Visual QuickStart Guide (Peachpit Press, 2008) provides a detailed discussion of Automator.

Using Other Scripting Languages

As noted, it’s possible to use other programming languages in Mac OS X, just as you would on
any other UNIX system. Bash, Perl, Python, and Ruby are all installed with Mac OS X, and are
available without further configuration. Scripts in these languages can be created with any text
editor or with the Script Editor. The Script Editor also provides GUI-based testing for these
scripts. In practice, scripting in Mac OS X using these languages will be virtually indistinguish-
able from scripting on a Linux or UNIX system.

Code Maintenance and Revision Control

Mac OS X is packed with modern useful development tools: programming languages, a robust
debugger, and a project organization and management tool. Combined, they provide a devel-
opment environment that’s very much the equivalent of most Linux systems. Everything
necessary to create applications and scripts for all computing platforms is available at no addi-
tional cost and only minimal additional effort.

But even a good development environment is incomplete if it doesn’t provide a tool for
source and revision control. Any developer who has lost a significant chunk of irreplace-
able code will vouch for the value of source control. Even lone developers have come to rely
increasingly on revision control. The abilities to assess and summarize differences between
files, to roll back to previous versions, and to take complete control of all source code are criti-
cal to successful software development.

CHAPTER 8 MAC 0S X AND CODE

From what you've seen of the built-in tools in Mac OS X, it should come as no surprise
that it includes the latest and greatest source control system: Subversion. As you would find in
most Linux distributions, Subversion is available both from the command line and with sev-
eral well-developed front-end tools. Additionally, you can use Git with Mac OS X. Let’s look at
each of these revision control options, beginning with an overview of Subversion.

Introducing Subversion

Subversion has become a popular tool for version control. Developed by CollabNet in 2000 as
areplacement for the Concurrent Versions System (CVS), Subversion has become the primary
version control system on open source projects, including Apache, Python, Mono, GNOME,
Ruby, and others. It’s also moving toward prominence in the commercial world, where tools
saddled with annual and per-seat licensing fees have long held sway. Both open source devel-
opers and corporate software developers have begun to appreciate the power of Subversion.

Subversion vs. CVS

Subversion offers several important improvements over the older CVS. These improvements
provide users with more control over the tool, more flexibility in how versioning is accom-
plished, and a full set of APIs that make it extremely customizable for unique uses. These
improvements are accomplished by the following:

Directory versioning: Subversion utilizes a “virtual” versioned filesystem that allows track-
ing of both files and directory trees. This is a significant improvement over CVS, which
tracked versions only on individual files.

Versioned metadata: The metadata of all files and directories—the data describing the
properties of the files and directories—can be created and modified by the user. This data
is versioned with the data contained in the files themselves.

Atomic commits: Atomic commits guarantee that if an entire collection of changes cannot
be committed to the repository, none are committed. This is important to the work flow
of developers, as it allows them to structure their changes in a more logical fashion. It also
guarantees that no problems will arise with committed code for which only a partial set of
changes have been committed.

Network flexibility: Subversion can be plugged into Apache as a module. It can be used
over the network as a stand-alone tool. Subversion can also be implemented within a
secure Shell (SSH) tunnel across a wide network.

Binary/text parity: Both binary and text files can be committed and tracked using Sub-

version. The algorithm implemented to recognize and express the differences between
versions is identical in both text and binary files. This results in a much more seamless
work flow, in which all files are handled in the same way.

Branching and tagging: Subversion creates branches in a manner similar to hard-linking.
(See the “How Does Time Machine Do That?” section of Chapter 7 for a description of
hard-linking.) Both branches and tags are created and maintained using this mechanism.

219

220

CHAPTER 8 MAC 0S X AND CODE

True versioning: One significant drawback of CVS was its inability to distinguish files with
the same name. If, for example, a file in a CVS repository was replaced with a new file of
the same name, the versioning history of the predecessor file attached to the new file.
Though that old versioning history may have literally no relevance to the new file, it was
attached. Subversion creates a new version history with each file added to the repository,
regardless of a similarity in names. Furthermore, file copies and renames are fully sup-
ported in Subversion, unlike CVS.

Open API Subversion is implemented as a collection of shared C libraries. The APIs for
these libraries are well known and well defined. As a result, Subversion can be custom-
ized, modified, and extended to more closely suit the users’ needs.

Clearly, Subversion is a strong evolution from its predecessor CVS. It provides users with
much more power and flexibility than its predecessors, and does so in a much more intelligent
way. And, of course, it’s included and ready to use in Mac OS X.

Subversion’s Copy-Modify-Merge Model

Subversion implements a copy-modify-merge model of version control. Most older version
control systems, including CVS, utilize a lock-modify-unlock model for version control. These
models are critical for capturing all changes to a file, even when those files are under concur-
rent modification by different developers. The problem lies in how those changes are tracked.
If the files are simply shared, without either type of version control model in place, changes
made by one developer will surely be overwritten by another. That is, in the end, one of the
most important reasons to use a version control system, especially in an environment where
many developers will have access to a set of files.

In the lock-modify-unlock version control model utilized by CVS and other older version
control systems, a file can be modified by only one user at a time. The first user to access the
file in the repository “locks” the file, preventing write access by other users. Clearly, this is an
inefficient model. One developer must wait for another to finish making changes to a file. Even
if the second developer intends to make changes that will not conflict with changes made by
the first, she will need to wait until the first user unlocks the file.

The copy-modify-merge model allows individual Subversion users to copy a file from
the repository and make changes to the file locally. When complete, those changes will be
merged with all other changes made to the file after the time it was checked out. At the time of
the commit, Subversion notifies the “last-in” user that additional changes have been made to
the file. The developer will then use the merge command to modify the local working copy of
the file with changes to the file on the repository. If no conflict exists, the “last-in” file is com-
mitted seamlessly to the repository. If a conflict does exist between the changes, the user is
notified of the conflicts and presented a view of both sets. One set will be selected manually
and, once those changes are incorporated, the file can be committed back to the repository.

In short, the copy-modify-merge model is a much more efficient model for tracking modi-
fications to a file. It allows multiple users to truly work on files simultaneously and handles
conflicting changes to files in an intelligent fashion.

CHAPTER 8 MAC 0S X AND CODE

Using Subversion from the Command Line
Subversion is easy to use from the command line. The syntax is as follows:
svn <subcommand> [options] [args]
Table 8-5 lists some of the commonly used subcommands. The Subversion help

(svn --help) lists the full set of subcommands.

Table 8-5. Common Subversion (svn) Subcommands

Subcommand Shortcut Description

add Adds a new file or directory to an existing Subversion repository
checkout co Gets a local copy of a file or directory from a Subversion repository
commit ci Adds a changed local file back into an existing repository

diff di Provides a list of differences between two file versions

merge Incorporates changes made after the file was checked out into the

current version, or displays conflicts

update up Checks out the most current version of a file or directory

Options for the Subversion commands are a bit more esoteric. Subversion options are
global, in that each option has the same effect, regardless of the subcommand used. Some of
these option/argument pairs include those listed in Table 8-6.

Table 8-6. Common Subversion (svn) Options

Option Description
--diff-cmd CMD Uses an external tool (CMD) for diffs
--editor-cmd CMD Uses an external tool (CMD) for editing

--file (-F) FILENAME Uses the contents of FILENAME to execute subcommands

--force Forces the subcommand to run

--help Displays the svn help information

-- password PASS Provides an authentication password on the command line

--quiet Prints only essential information when completing an operation
--revision (-r) REV Manually provides a revision number for the operation; can include a

number, keywords, or dates

--verbose (-v) Instructs the client to print as much information as possible while
running the subcommand

Subversion also includes the svnadmin administrative tool. Like the svn command,
svnadmin utilizes several subcommands, including those listed in Table 8-7.

221

222

CHAPTER 8 MAC 0S X AND CODE

Table 8-7. Common Subversion Administration (svnadmin) Subcommands

Subcommand Description

Create Creates a new Subversion repository

dump Dumps all changes from within a repository (most often used to move a reposi-
tory from one location to another)

hotcopy Makes a safe copy of a repository, regardless of whether other processes are using
the repository

load Loads a set of revisions into a repository, generally from a file created with the

dump command

verify Verifies the contents of a repository, including checksum comparisons of the
data stored in the repository

Using Subversion GUI Front Ends

While command-line Subversion is easily the fastest possible way to utilize it, learning the
subcommands and the options may not be your cup of tea. As with many great Linux com-
mand-line applications, you'll find a full range of GUI front ends for Subversion on the Mac.
These tools are free or very reasonably priced, are easy to learn, and, for the most part, are very
much an asset to your use of Subversion. If you're disinclined to use the command line, these
tools will still maximize your efficiency and your time in using Subversion for your projects.
Here, we’ll look at two Subversion GUI front ends: Versions for the Mac and RapidSVN.

Versions for the Mac

Aside from providing a front end for Subversion, Versions for the Mac provides some other
interesting features that you won'’t find in other Subversion clients.

Versions is available at http://versionsapp.com/. It is provided as a zip file containing a
stand-alone application. It doesn’t require any installation other than unzipping the file and
dragging the binary into the Applications directory. Double-clicking will open Versions.

Figure 8-29 shows the main Versions window. On the first use, Versions provides several
options for setting up a new repository or connecting to an existing one.

CHAPTER 8 MAC 0S X AND CODE

BOOKMARKS

Free Online Repository

| e |

Figure 8-29. The main Versions window

The connections to these repositories are created in the form of bookmarks. Figure 8-30
shows an example of creating a bookmark to an existing Subversion repository (the writing
repository named LinuxToMac on my system).

@ New Repository Bookmark

Name: Linux ToMac

Username: |

Password: |

" Show links to issue tracker in timeline

URL Prefix | https://server/tickets/%s

Comments in the timeline that match £123 will be
linked to the url, %s will be replaced by 123.

Figure 8-30. Creating a bookmark to an existing repository in Versions

223

224

CHAPTER 8 MAC 0S X AND CODE

Figure 8-31 displays the contents of the repository accessed by the bookmark created in
Figure 8-30. This is the view in the Browse tab of Versions, which shows all the files and direc-
tories in the repository.

an6 (] Linux ToMac — Versions —

N

BOOKMARKS P srowse MRE

& Linux ToMac e Date
¥ 8 LinuxToMac 271 | Now 11, 2008 4:08 PM Tony
™ 16506_ch0S5.dec 177 Sep §, 2008 6:57 PM 1oy
_1' 16506_ch05_artwark.zip 175 Sep 7, 2008 T:55 PM tony
™ 16506_ch06.doc 198 Sep 18, 2008 6:18 PM tony
17 16506_ch07.doc 232 Oct 8, 2008 6:33 PM tony
M 16506ch02_FP.doc 160 Sep 5, 2008 7:19 PM ony
'™ 16506chD4.doc 145 Aug 24, 2008 5:45 PM tony
[7116506¢h_1-1_unix_histry_AE_PF1 148 Sep 3, 2008 4:23 PM tony
T 16506ch_1-1_unix_history AE_P... 150 Sep 3, 2008 4:31 PM tony
f‘_'?_ advanced_network_config.png 67 Jul 22, 2008 3.30 PM tony
':‘:_’ bash_prafile.png 67 Jul 22, 2008 3:30 PM tony
£ ch_1-unix histary.txt a6 Jul 10, 2008 6:44 AM tony
& Ch_2-Links.txt 54 Jul 17, 2008 5:16 AM Tony
2 Ch_2-Notes.txt 53 Jul 17, 2008 5:12 AM tony
[¥ chapter_3_images.zip 105 Aug 3, 2008 12:40 PM tony
’3 disk_uril-osx_drive.png 70 Jul 22, 2008 4:40 PM tony
__: dns_config.png &7 Jul 22, 2008 3:30 PM tony
T_"} en_canfig.png &7 Jul 22, 2008 3.30 PM tony
'—_;. eth_config png B Jul 22, 2008 3:30 PM ony
[* finder_home_dir.png 67 Jul 22, 2008 330 PM tony
& Introduction.txt 23 Jun 30, 2008 4:59 PM tony
7 UinuxGeeksToMacChecklist.doc 11 May 20, 2008 4:05 PM tony 74
"7 LinuxGeeksToMacChecklist_V1.2.doc 16 Jun B, 2008 11:30 AM tony v
L - 22 1] [% man_newwnrk_config.png 67 Jul 22, 2008 3:30 PM Tony

Figure 8-31. The contents of the repository, accessed by clicking the bookmark in Versions

By highlighting a file in the Browse tab, you can select from any of the tools in the toolbar
in the main window. Figure 8-32 shows the result of selecting the History tool when highlight-
ing the OSXLG_Chap_5 DRAFT.txt file. As you can see, the default view is the HEAD view, which
reads the commit metadata, including revision, date, author, and messages. Using drop-down
menus in the window, you can further refine your view by broadening or narrowing the num-
ber of viewable entries. You can also view the revisions by date or other Subversion command.

(N sNe)

Repository ltem

OSXLG_Chap_5_DRAFT.txt

CHAPTER 8 MAC 0S X AND CODE

Display: | 20 3] entries [Before (3] [Revision 1] |HEAD -
‘Rev | Date Author | Log Message

166 2008/09/07 09:29:55 tony Warking through the key features of Premiere. 2
165 2008/09/07 07:06:37 tony Continuing an the Adobe stuff. Filling out the details in the introd...
164 2008/09/07 06:50:03 tony Finished the iLife stuff and started on Adobe.

163 2008/09/06 19:58:06 tony Through much of the iLife tools: iPhoto, iMovie, iDVD, iWeb. Inclu...
162 2008/09/06 18:48:44 tony Rework on the multimedia tools section. a) Start the section with ...
161 2008/09/06 09:09:58 tony Started photoshop section, but got hung up. What do | really want ...
159 2008/09/05 17:41:45 tony Created headings and placeholder for the top 5 Photoshop features.
158 2008/09/05 17:29:45 tony Begins discussion of Photoshop.

157 2008/09/05 17:04:08 tony Through the Quartz piece. Ended with Quartz Composer. i
156 2008/09/05 13:18:23 tony Buffer pools for video processing. v
20 entries, from 176 1o 155 Show Changes

Changed Paths
M fOSXLG_Chap_5_DRAFT.txt
™ Show Source Of Copied Paths Show Changes

pS

Figure 8-32. Checking the history of a file from the Browse tab in Versions

Figure 8-33 shows the use of the Compare Diff tool to compare two different versions of
a single file. As you can see, the Versions interface puts all commits of a file side by side in the
window.

225

226

CHAPTER 8

Display: | 22 +) entries | Before

Rev
176
174
173
72
171

MAC 0S X AND CODE

%] [Revision 18] neao =

Date

2006/09/07 20:26:10
2008/09/07 19:25:11
2008/09/07 18:03:51
2008/09/07 16:25:33
2008/09/07 13:00.18

Changed Paths

M

Author
tony
tony
tony
tomy
tony

{DSXLE_Chap_5_DRAFT.txt

W Show Source OF Copied Paths

Figure 8-33. The Compare Diff function in Versions

Log Message

Finished? | believe so!

Finished NeoOffice.

Through the Wark tools. Will now add OpenO...
Started Office. Completed inserting images and..
Begin the GIMP section.

%) [Revision %] neaD #]

Finished? | believe sa! O

Display: | 20 %] entries | Before

Rev | Date Author Log Message

176 2008/03/07 20:26:10 tony

174 2008/03/07 1%:28:11 tony Finished NeoOffice

173 2008/09/07 18:03:51 tony Through the Wark tools, Will now add O
172 2008/09/07 16:25:33 tony Started Office. Completed inserting imag. ..
171 2008/09/07 13:00.18 tony Begin the GIMP section,

Changed Paths

M

{DSXLE_Chap_5_DRAFT.txt

4 Show Source DF Copied Paths

_Cancel) (HConanEs

Figure 8-34 shows the clean diff presentation provided by Versions. Inserts and deletions

are clearly delineated in the Compare Diff window, as is a count of the number of differences.
In short, Versions makes it very easy to quickly scan through changes in multiple document
versions.

noo y

_Chap S
OSXLG_Chap_5_DRAFT.rev174.txt - fvar/folders/i5/i5Gi

Aalct

'4.1xt vs. OSXLG Chap.

CHAPTER 8 MAC 0S X AND CODE

L 76.0
76.tx

OSXLG_Chap_5_DRAFT.revl t - /var/folders/i5/i5GiAalc

Where Poges and Numbers lack a bit for word processing and

Unlike the iLife tools, iWork is not included with 05 X. Hos
** Open Source Productivity Tools

Several open source or open-source-like options exist for pj
*k NeoOff ice

MNeoOffice iz a fully GPL'ed, 05 ¥ productivity suite, bosed
woork NewOffice Write

* neooffice_writer_main.png *¥%

NeoOffice Write is o feature-complete word processing oppli

*E neooffice_calc_main.png

NeoOffice Calc., like Write, is a fully functional spreadshs
*E negoffice_impress_main.png

NeoOffice Impress presents the familiar interface of a powel
*+ neooffice_draw_main.phg

While presented asz a drawing application, Draw iz more anal
%k neoof fice_base_main.png

NeoOffice Base iz o stondalone dotabase application, intends

In most significant ways, NeoOffice iz an outstanding and pe

a J4i»

% NeoOff ice

NeoOffice is o fully GPL'ed, 05 X productivity suite, bosed
ek NewOffice Write

*k nepoffice_writer_main.png #+%

NeoDffice Write iz a feoture-complete word processing appli

#% neooffice_calc_main.png **F

MNeoDffice Calc., like Write, is a fully functional spreadsihs

*% negoffice_impress_main.png *ek

NeoOffice Impress presents the fomilior interfoce of o powel

*% neooffice_draw_main.png ¥

While presented as o drowing application, Drow is more anal

*% neooffice_base_main.png ¥

NeoOffice Base iz o stondalone dotobose applicotion, intends

In most significant ways, NeoOffice iz an outstonding and pd

** Openlffice

OpenOffice iz o productivity suite originally created aos St

=k gpenoffice_main.png *k

OpenOffice, too, contains several tools widely occepted as

In June 2888, OpenDffice.org releosed it's first self-contum
=

* Wropping Up the Apple ond Linux Tools

Tt 's A powerfil and wersntila nilat
la >

g has monw =t rennthes

status: 9 differences

| Actions B3

Figure 8-34. Viewing differences between file commits in Versions

One of the features of Versions that clearly distinguishes it from other front-end Subver-
sion tools is clear the first time you open the client. The main interface, as shown in Figure
8-35, provides the option to create a free online repository via Beanstalk.

227

228

CHAPTER 8 MAC 0S X AND CODE

Beanstalk — Version Control with 2 Human Face =

LE"J "%) A &nnps 1/ 5ignup beanstalkapp. com /accounts/ new
ng 7 Sobicnbe delickoaut Pollen Connt Heroes:~ TV.com _ SurmvUSA - Blog Ac_

7 » JICI" Coogle q)

Create an account

Crante your account for free and get started in minutes. You £on Upgrace a1 any time

Personal Infarmation

Account Setup

GMT-11-00) International Date Line West 8]

Create account

— T T

Figure 8-35. Setting up a free online repository with Versions

Setting up an online repository is a pretty painless process, requiring only that you estab-
lish an online account with Beanstalk, and follow the simple instructions provided once the
account is created. Taking advantage of the Beanstalk account provides an additional measure
of code security, since the files are stored off-site. Committing, checking out, and viewing
files in a Beanstalk repository with Versions is no different from taking those same actions on
locally stored files. The drawbacks to the free Beanstalk accounts are the limits of 20MB stor-
age and three developers.

Versions provides access to the full set of Subversion subcommands and options. With the
additional bonus of an online Beanstalk repository, it’s a tool you’ll certainly want to consider
when looking at GUI front ends for your Subversion installation.

RapidSVN

Another GUI Subversion tool for Mac OS X is RapidSVN. It’s available in .dmg image form at
http://rapidsvn.tigris.org/.

Like Versions, RapidSVN uses bookmarks to create a new repository or to connect to an
existing repository. As shown in Figure 8-36, creating a bookmark to a repository in RapidSVN
requires only that you configure the URL for the repository. This can be an online repository or
alocal version.

M 7 7 Repository URL

URL

[umesfMedia! repos/LinuxToMac @

[lignore externals

(cancel))

Fd

Figure 8-36. Creating a repository bookmark in RapidSVN

CHAPTER 8

MAC 0S X AND CODE

As with other GUI Subversion tools, the repository is browsable in a single RapidSVN

window, as shown in Figure 8-37.

000
] 5 o & |

Name +
Revisions
| 16506_ch05.doc
| 16506_ch0S_artwa...
16506_ch06.doc
16506_ch07.doc
16506ch02_FP.doc
] 16506ch04.doc
16506¢ch_1-1_unix.
7] 16506¢ch_1-1_unix..
) advanced_network...
bash_profile.png
ch_1-unix_history....
Ch_2-Links.txt
| Ch_2-Notes.txt
| chapter_3_images....
| disk_util-osx_driv..

===) <

v = Bookmarks
v (1 file:// /Volumes/Media/repos /L
»] Revisions

| Revision

266
177
175
198
232
160
145
148
150
67
67
46
54
53
105
70

| Rep. Rev.

266
177
175
198
232
160
145
148
150
67
67
46
54
53
105
70

| Author

tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony
tony

| Status | Prog

[

Ready

Figure 8-37. Browsing the repository in RapidSVN

The RapidSVN Preferences window allows you to configure the various tools used to take
actions on the files controlled by Subversion. As shown in Figure 8-38, these include the Diff
tool, the Merge tool, and the editor. The Preferences window also provides general configura-

tion options and options for authentication.

229

230

CHAPTER 8 MAC 0S X AND CODE

Note As is the case in Linux, you can check whether a specific tool is in the path on your Mac 0S X sys-
tem. To do so, simply open a Console window and enter the command which [tool]. If the tool is in the
path, its location will be returned in the command line. To find the Diff and Merge tools for RapidSVN, for
example, | executed the which command, which showed that both tools were located in /usr/bin.

N Preferences

General | Programs = Authentication

Standard Editor Standard Explorer Diff Tool = Merge Tool

fusr/bin/diff } 'r Browse

Program arguments (%1=filel, %2=file2):

0K _Cancel

Figure 8-38. Configuring the RapidSVN preferences

Like Versions, RapidSVN provides the full set of Subversion tools for version control. How-
ever, one of the primary differences between the Versions and RapidSVN applications is the
location of these tools. Versions places the most commonly used tools on the toolbar in the
main window. RapidSVN places those tools in a context menu launched by right-clicking a file.

Managing Changes with Git
Subversion has the current buzz, but it’s not the only version control system for Mac OS X. Git
is a scalable, distributed version control system for Linux that installs easily in Mac OS X.
While Git is a powerful version control tool, its real power is in a distributed environment
serving many developers. Within the open source community, Git is used in projects as diverse
as Linux kernel development, Wine, and X.Org. Like Subversion, Git uses the copy-modify-
merge versioning model, allowing users to create local copies of files, and then managing
concurrent changes at the time of check-in to the repository. Other Git features include the
following:

Git protocol: This is an efficient network protocol created specifically for Git. Users can
also optionally use the HTTP protocol to check out and commit files.

Scalability: Git is designed with large projects in mind. It scales quickly and easily to
accommodate ever-growing project demands.

UNIX tool approach: Git makes full use of the UNIX philosophy of many small tools that
do one thing right. As a collection of these tools written in C, Git provides nearly unlimited
flexibility for developers.

CHAPTER 8 MAC 0S X AND CODE

Cryptographic history authentication: Git histories are stored in a way that prevents those
histories from being changed. This ensures the integrity of the file version histories.

The source code for Git is available at http://git.or.cz/. AMac OS X .dmg image is
available at http://code.google.com/p/git-osx-installer/downloads/1ist?can=3, as is the
OpenInGitGUI front-end zip file.

To build and install Git from the source code package, execute the following commands:

$ tar zxvf git-1.6.0.4.tar.gz
$ cd git-1.6.0.4

$./configure

$ make && sudo make install

To install from the .dmg image, double-click the image file to mount the image, double-
click the installer package, and follow the prompts.
Like Subversion, the command set for Git is deep. The command syntax is as follows:

git [--version] [--exec-path[=GIT EXEC PATH]] [-p|--paginate|--no-pager] [--bare]
[--git-dir=CIT DIR] [--work-tree=GIT WORK TREE] [--help] COMMAND [ARGS]

The most common Git commands are listed in Table 8-8.

Table 8-8. Common Git Commands

Command Description

add Adds file contents to the index

bisect Finds the change that introduced a bug by binary search

branch Lists, creates, or deletes branches

checkout Checks out a branch or paths to the working tree

clone Clones a repository into a new directory

commit Records changes to the repository

diff Shows changes between commits, commit and working tree, and so on
fetch Downloads objects and references from another repository

grep Prints lines matching a pattern

init Creates an empty Git repository or reinitializes an existing one

log Shows commit logs

merge Joins two or more development histories together

mv Moves or renames a file, a directory, or a symlink

pull Fetches from and merges with another repository or a local branch
push Updates remote references along with associated objects

rebase Forward-ports local commits to the updated upstream head

reset Resets the current HEAD to the specified state

Continued

231

232

CHAPTER 8 MAC 0S X AND CODE

Table 8-8. Continued

Command Description

m Removes files from the working tree and from the index

show Shows various types of objects

status Shows the working tree status

tag Creates, lists, deletes, or verifies a tag object signed with GnuPG

Summary

Right out of the box, Mac OS X provides a complete environment for developers. It starts with
the inclusion of several programming languages, focused both on object-oriented program-
ming and on scripting. From C to Objective-C to Perl, Python, and Java—developers will find
those language choices to be nearly complete.

Mac OS X also provides a rich development and debugging environment in Xcode. It’s
powerful and flexible, with all the features developers have come to expect in a modern IDE.
And, as the tool used in the development of Mac OS X itself, Xcode is put to the test every day
by Apple.

Finally, Mac OS X provides several great options for source control. While Mac OS X
developers may install nearly any open source revision control tool, the system includes Sub-
version, currently one of the most popular code control tools. And if you're looking to make
full use of Subversion without the learning curve required for the command-line tool, several
GUI options are available. Versions and RapidSVN are two of those options for GUI-based
source and code control with Subversion.

In short, if you've cut your programming teeth in the open source world, you’ll find a lot
of familiar ground in Mac OS X, and most of the tools provided require no further modification
of your system.

