
11 GETTING STARTED WITH
A DATABASE

7311ch11.qxd 10/10/06 10:54 PM Page 285

What this chapter covers:

Creating MySQL user accounts

Creating a new database

Defining a database table

Choosing the right column type

Using MySQL, MySQLI, and PDO to query a database

When I first started working with databases, one of the greatest frustrations was that all
the books and online tutorials I consulted assumed that you already knew the basics of
database design and construction, or—if you didn’t—that you planned to use Microsoft
Access. MySQL is very different from Access, which is intended for use in small office
environments. MySQL is not only fast and multiplatform; it’s capable of handling a high
number of simultaneous connections without any perceptible loss of performance. The
differences between MySQL and Access also affect the way that you construct and interact
with the database. After describing the basics of a database, I’ll show you how to set up
MySQL user accounts, create your first database, and connect to it with PHP. I’ll also show
you how to choose the correct data type to store each piece of information.

How a database stores information
MySQL is a relational database system. All the data is stored in tables, very much in the
same way as in a spreadsheet, with information organized into rows and columns.
Figure 11-1 shows the database table that you will build later in this chapter, as displayed
in phpMyAdmin.

Figure 11-1. Information in a database table is stored in rows and columns, just like in a
spreadsheet.

Each column has a name (image_id, filename, and caption) indicating what it stores.

The rows aren’t labeled, but the first column (image_id) contains a unique identifier known
as a primary key, which can be used to identify the data associated with a particular row.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

286

7311ch11.qxd 10/10/06 10:54 PM Page 286

Each row contains an individual record of related data. The significance of primary keys is
explained in the next section.

The intersection of a row and a column, where the data is stored, is called a field. So, for
instance, the caption field for the third record in Figure 11-1 contains the value “The
Golden Pavilion in Kyoto” and the primary key for that record is 3.

How primary keys work

Although Figure 11-1 shows image_id as a consecutive sequence from 1 to 8, they’re not
row numbers. Figure 11-2 shows the same table with the captions sorted in alphabetical
order. The field highlighted in Figure 11-1 has moved to the seventh row, but it still has the
same image_id and filename.

Figure 11-2. Even when the table is sorted in a different order, each record can be identified by its
primary key.

Although the primary key is rarely displayed, it identifies the record and all the data stored
in it. Once you know the primary key of a record, you can update it, delete it, or use it to
display data in a separate page. Don’t worry about how you find the primary key. You’ll see
in the next chapter that it’s easily done using Structured Query Language (SQL), the stan-
dard means of communicating with all major databases. The important thing to remember
is that you should assign a primary key to every record.

A primary key doesn’t need to be a number, but it must be unique.

Social security, staff ID, or product numbers make good primary keys. They may
consist of a mixture of numbers, letters, and other characters, but are always dif-
ferent.

MySQL will generate a primary key for you automatically.

Once a primary key has been assigned, it should never—repeat, never—be
changed.

The terms “field” and “column” are often used interchangeably, particularly by
phpMyAdmin. A field holds one piece of information for a single record, whereas a
column contains the same field for all records.

GETTING STARTED WITH A DATABASE

287

11

7311ch11.qxd 10/10/06 10:54 PM Page 287

Because a primary key must be unique, MySQL doesn’t normally reuse the number when a
record is deleted. This leaves holes in the sequence. Don’t even think about renumbering.
Gaps in the sequence are of no importance whatsoever. The purpose of the primary key is
to identify the record, and by changing the numbers to close the gaps, you put the
integrity of your database at serious risk.

Linking tables with primary and foreign keys

A major difference between a spreadsheet and a relational database like MySQL is that
most databases store data in lots of smaller tables, rather than in one huge table. The main
reason for doing this is to prevent duplication and inconsistency. Let’s say you’re building
a database of your favorite quotations. Instead of typing out the name of the author each
time, it’s more efficient to put the authors’ names in a separate table, and store a refer-
ence to an author’s primary key with each quotation.

Storing a primary key from one table in another table is known as creating a foreign key.
As you can see in Figure 11-3, every record in the left-hand table identified by author_id 32
is a quotation from William Shakespeare. Because the name is stored in only one place, it
guarantees that it’s always spelled correctly. And if you do make a spelling mistake, just a
single correction is all that’s needed to ensure that the change is reflected throughout the
database.

Figure 11-3. Foreign keys are used to link information stored in separate tables.

Using foreign keys to link information in different tables is one of the most powerful
aspects of a relational database. It can also be difficult to grasp in the early stages, so we’ll

Some people want to remove gaps in the sequence to keep track of the number of
records in a table. It’s not necessary, as you’ll discover later in the chapter.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

288

7311ch11.qxd 10/10/06 10:54 PM Page 288

work with single tables until Chapter 14, which covers foreign keys in detail. In the mean-
time, bear the following points in mind:

When used as the primary key of a table, the identifier must be unique. So each
author_id in the table on the right is used only once.

When used as a foreign key, there can be multiple references to the same identi-
fier. So 32 appears several times in the author_id column in the table on the left.

Breaking down information into small chunks

You may have noticed that the table on the right in Figure 11-3 has separate columns for
each author’s first name and family name. This is an important principle of a relational
database: break down complex information into its component parts, and store each part
separately.

It’s not always easy to decide how far to go with this process. In addition to first and last
name, you might want separate columns for title (Mr., Mrs., Ms., Dr., and so on) and for
middle names or initials. Addresses are best broken down into street, town, county, state,
zip code, and so on. Although it may be a nuisance to break down information into small
chunks, you can always use SQL and/or PHP to join them together again. However, once
you have more than a handful of records, it’s a major undertaking to try to separate com-
plex information stored in a single field.

Checkpoints for good database design

There is no right way to design a database—each one is different. However, the following
guidelines should point you in the right direction:

Give each record in a table a unique identifier (primary key).

Put each group of associated data in a table of its own.

Cross-reference related information by using the primary key from one table as the
foreign key in other tables.

Store only one item of information in each field.

Stay DRY (don’t repeat yourself).

In the early stages, you are likely to make design mistakes that you later come to regret.
Try to anticipate future needs, and make your table structure flexible. You can add new
tables at any time to respond to new requirements.

That’s enough theory for the moment. Let’s get on with something more practical by
building a database for the Japan Solutions website from Chapters 4 and 5.

As long as author_id remains unique in the table where it’s the primary key, you know
that it always refers to the same person.

GETTING STARTED WITH A DATABASE

289

11

7311ch11.qxd 10/10/06 10:54 PM Page 289

Setting up the phpsolutions database
MySQL is a relational database management system (RDMS), which can support a large
number of databases. In a local testing environment, there’s no limit to the number of
databases that you can create, and you can call them whatever you like. I am going to
assume that you are working in a local testing environment and will show you how to set
up a database called phpsolutions, together with two user accounts called psquery and
psadmin.

MySQL naming rules

The basic MySQL naming rules for databases, tables, and columns are as follows:

Names can be up to 64 characters long.

Legal characters are numbers, letters, the underscore, and $.

Names can begin with a number, but cannot consist exclusively of numbers.

Some hosting companies seem blissfully ignorant of these rules and assign clients data-
bases that contain one or more hyphens (an illegal character) in their name. If a database,
table, or column name contains spaces or illegal characters, you must always surround it
by backticks (`) in SQL queries. Note that this is not a single quote ('), but a separate
character.

When choosing names, you might accidentally choose one of MySQL’s many reserved
words (http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html), such as date
or time. One technique to avoid this is to use compound words, such as arrival_date,
arrival_time, and so on. Alternatively, surround all names with backticks. phpMyAdmin
does this automatically, but you need to do this manually when writing your own SQL in a
PHP script.

Case sensitivity of names
Windows and Mac OS X treat MySQL names as case-insensitive. However, Linux and Unix
servers respect case sensitivity. To avoid problems when transferring databases and PHP
code from your local computer to a remote server, I strongly recommend that you use
lowercase exclusively in database, table, and column names. When building names from
more than one word, join them with an underscore.

On shared hosting, you may be limited to just one database set up by the hosting com-
pany. If you don’t have the freedom to set up a new database and user accounts, sub-
stitute the name and username allocated by your hosting company for phpsolutions
and psadmin respectively throughout the rest of this book.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

290

7311ch11.qxd 10/10/06 10:54 PM Page 290

Using phpMyAdmin to create a new database

Creating a new database in phpMyAdmin is easy.

1. Launch phpMyAdmin in a browser, as described in the previous chapter.

2. Type the name of the new database (phpsolutions) into the field labeled Create new
database. Leave the Collation drop-down menu at its default setting, and click
Create, as shown in the following screenshot:

3. The next screen should confirm that the database has been created and offer you
the opportunity to create your first table. Before creating any tables in a new data-
base, it’s a good idea to create user accounts for it. Leave phpMyAdmin open, as
you’ll continue using it in the next section.

Creating database-specific user accounts

At the moment, your installation of MySQL has only one registered user—the superuser
account called “root,” which has complete control over everything. The root user should
never be used for anything other than top-level administration, such as the creation and
removal of databases, creating user accounts, and exporting and importing data. Each indi-
vidual database should have at least one—preferably two—dedicated user accounts with
limited privileges.

When you put a database online, you should grant users the least privileges they need, and no
more. There are four important privileges—all named after the equivalent SQL commands:

SELECT: Retrieves records from database tables

INSERT: Inserts records into a database

Collation determines the sort order of records. Unless you are using a language
other than English, Swedish, or Finnish, you never need to change its value. Even
if you use a different language, you should use the Collation option only if your
remote server uses MySQL 4.1 or higher.

GETTING STARTED WITH A DATABASE

291

11

7311ch11.qxd 10/10/06 10:54 PM Page 291

UPDATE: Changes existing records

DELETE: Deletes records, but not tables or databases (the command for that is DROP)

Most of the time, visitors need only to retrieve information, so the psquery user account
will have the SELECT privilege only. However, for user registration or site administration,
you need all four privileges. These will be made available to the psadmin account.

1. Return to the main phpMyAdmin screen by clicking either the little house icon at
the top left of the left frame or Server: localhost at the top left of the main frame.

2. Click the Privileges link toward the bottom of the left
column of the main screen.

3. This opens the User overview screen. If you have just installed MySQL, there should
be only one user: root. Click the Add a new User link halfway down the page.

4. In the page that opens, enter psadmin (or the name of the user account that you
want to create) in the User name field. Select Local from the Host drop-down
menu. This automatically enters localhost in the field alongside. Selecting this
option allows the psadmin user to connect to MySQL only from the same com-
puter. Then enter a password in the Password field, and type it again for confirma-
tion in the Re-type field.

5. Beneath the Login Information table is one labeled Global privileges. These give a user
privileges on all databases, including the mysql one, which contains sensitive infor-
mation. Granting such extensive privileges is insecure, so leave the Global privileges
table unchecked, and click the Go button right at the bottom of the page.

6. The next page confirms that the psadmin user has been created and displays many
options, beginning with the Global privileges table again. Scroll down below this to
the section labeled Database-specific privileges. Activate the drop-down menu, as
shown here, to display a list of all databases on your system. Select phpsolutions.

In the download files for this book, I’ve used a simple password (kyoto), but for a
database on the Internet, you should choose a password that’s hard to guess.
MySQL passwords are case-sensitive.

Most links and tabs in phpMyAdmin are context-sensitive. It’s important to go back to
the main screen and click the Privileges link rather than the Privileges tab at the top of
the previous screen. The link on the phpMyAdmin main screen lets you set up new user
accounts. The Privileges tab at the top of a page only provides information about exist-
ing accounts.

Granting user privileges

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

292

7311ch11.qxd 10/10/06 10:54 PM Page 292

7. The next screen allows you to set the privileges for this user on just the
phpsolutions database. You want psadmin to have all four privileges listed earlier,
so click the check boxes next to SELECT, INSERT, UPDATE, and DELETE. (If you
hover your mouse pointer over each option, phpMyAdmin displays a tooltip
describing what the option is for, as shown.) After selecting the four privileges, click
the top Go button. (Always click the Go button at the foot of or alongside the sec-
tion with the options you want to set.)

8. phpMyAdmin presents you with confirmation that the privileges have been
updated for the psadmin user account: the page displays the Database-specific priv-
ileges table again, in case you need to change anything. Click the Privileges tab at
the top of the page. You should now see psadmin listed with root in the User
overview.

A new installation of MySQL 5 contains three databases: information_schema
(phpMyAdmin escapes the underscore by preceding it with a backslash), mysql, and
test. The first, information_schema, is a virtual database that contains details of all
other databases on the same server. You can view the contents in phpMyAdmin, but you
can’t edit them. The mysql database contains details of all user accounts and privileges.
You should never edit it directly unless you’re sure what you’re doing. Always use the
Privileges link on the main phpMyAdmin page to manage user accounts, privileges, and
passwords. The test database is empty.

GETTING STARTED WITH A DATABASE

293

11

7311ch11.qxd 10/10/06 10:54 PM Page 293

If you ever need to make any changes to a user’s privileges, click the Edit Privileges
icon to the right of the listing, as shown. To delete a user, select the check box to
the left of the User column, and then click Go in the Remove selected users section.

9. Click Add a new User, and repeat steps 4 through 8 to create a second user account
called psquery. This user will have much more restricted privileges, so when you
get to step 7, check only the SELECT option. The password I used for psquery is
fuji. Again, for an online database, you should choose something more robust.

Creating a database table

Now that you have a database and dedicated user accounts, you can begin creating tables.
Let’s begin by creating a table to hold the details of images, as shown in Figure 11-1.
Before you can start entering data, you need to define the table structure. This involves
deciding the following:

The name of the table

How many columns it will have

The name of each column

What type of data will be stored in each column

Whether the column must always have data in each field

Which column contains the table’s primary key

If you look at Figure 11-1, you can see that the table contains three columns: image_id
(primary key), filename, and caption. Because it contains details of images, that’s a good
name to use. There’s not much point in storing a filename without a caption, so every col-
umn must contain data. Great! Apart from the data type, all the decisions have been made.
I’ll explain the data types as we go along.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

294

7311ch11.qxd 10/10/06 10:54 PM Page 294

1. Launch phpMyAdmin in a browser, if it’s not already open, and select phpsolutions
from the Database drop-down menu in the left frame. Type the name of the new
table (images) in the field labeled Create new table on database phpsolutions, and
enter 3 as the Number of fields. (As mentioned before, phpMyAdmin refers to
columns as fields. What it means is how many fields each record has.) Then click
the Go button.

2. The next screen is where you define the table. Unless you have a large monitor, you
will probably need to scroll horizontally to see all of it. The following screenshot
shows all the fields filled in, but the values may be difficult to read, so they are also
listed in Table 11-1 (Collation and Default are omitted, as they are both left blank).

Defining the images table

GETTING STARTED WITH A DATABASE

295

11

Table 11-1. Settings for the images table

Field Type Length/Values Attributes Null Extra Primary key

image_id INT UNSIGNED not null auto_increment Selected

filename VARCHAR 25 not null

caption VARCHAR 120 not null

The first column, image_id, is defined as type INT, which stands for integer. Its
attribute is set to UNSIGNED, which means that only positive numbers are allowed.
It’s also set to auto_increment, and is the table’s primary key, so MySQL automati-
cally inserts in this column the next available number (starting at 1) whenever a
new record is inserted.

The next column, filename, is defined as type VARCHAR with a length of 25. This
means it accepts up to 25 characters of text.

The final column, caption, is also VARCHAR with a length of 120, so it accepts up to
120 characters of text.

All columns are defined as not null, so they must always contain something.
However, that “something” can be as little as an empty string. I’ll describe the col-
umn types in more detail in “Choosing the right column type in MySQL” later in the
chapter.

When you have finished, click the Save button at the bottom-center of the screen.

7311ch11.qxd 10/10/06 10:54 PM Page 295

3. The next screen displays the SQL query that phpMyAdmin used to define the
images table. Beneath that, you’ll see the structure of the table displayed like this:

Don’t be alarmed by the fact that Collation displays latin1_swedish_ci. MySQL is based in
Sweden, and Swedish uses the same sort order as English (and Finnish). The underlining of
image_id indicates that it’s the table’s primary key. To change any settings, click the pencil-
like icon in the appropriate row. This opens a version of the previous screen and allows
you to change the values. If you made a complete mess and want to start again, click the
Drop tab at the top right of the screen, and confirm that you want to drop the table. (In
SQL, delete refers only to records. You drop a table or a database.)

Inserting records into a table

Now that you have a table, you need to put some data into it. Eventually, you’ll need to build
your own content management system using XHTML forms, PHP, and SQL; but the quick and
easy way to do it is with phpMyAdmin. First, I’ll show you how to enter a couple of records
manually; and then I’ll show you how to cheat by loading the entire table from a SQL file.

1. If phpMyAdmin is still displaying the structure of the images table as at the end of
the previous section, skip to step 2. Otherwise, launch phpMyAdmin, and select the
phpsolutions database from the drop-down menu in the left frame. Then click
the Structure icon alongside images, as shown in the following screenshot:

The breadcrumb trail at the top of the main frame provides the context for the
tabs across the head of the page. The Structure tab at the top left of the preced-
ing screenshot refers to the structure of the phpsolutions database. At the
moment, it contains only one table, images. To access the structure of an indi-
vidual table, click the Structure icon alongside its name. Use your mouse pointer
to reveal tooltips for each icon. Some, such as Browse, are grayed out because
there are no records in the table.

Using phpMyAdmin to insert records manually

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

296

7311ch11.qxd 10/10/06 10:54 PM Page 296

2. Click the Insert tab in the center top of the page. This displays the following screen,
ready for you to insert up to two records:

3. The forms display the names and details of each column. You can ignore the
Function fields. MySQL has a large number of functions that you can apply to the
values being stored in your table. You’ll learn more about them in the following
chapters. The Value field is where you enter the data you want to insert in the table.

Because you have defined image_id as auto_increment, MySQL inserts the next
available number automatically. So you must leave the first Value field blank. Fill in
the next two Value fields as follows:

filename: basin.jpg

caption: Water basin at Ryoanji temple, Kyoto

4. Deselect the check box labeled Ignore. If you forget to do this, anything entered in
the second form won’t be inserted into the table.

5. Again, leave the Value field for image_id blank, and fill in the next two fields like this:

filename: fountains.jpg

caption: Fountains in central Tokyo

6. Click Go. You should be taken back to the table structure page, but the SQL used
to insert the records is displayed at the top of the page. I’ll explain the basic SQL
commands in the remaining chapters, but studying the SQL that phpMyAdmin dis-
plays is a good way to learn how to build your own queries. SQL is closely based on
human language, so it isn’t all that difficult to learn.

7. Click the Browse tab at the top left of the page. You should now see the first two
entries in the images table, as shown here:

As you can see, MySQL has automatically inserted 1 and 2 in the image_id fields.

You could continue typing out the details of the remaining six images, but let’s speed
things up a bit by using a SQL file that contains all the necessary data.

GETTING STARTED WITH A DATABASE

297

11

7311ch11.qxd 10/10/06 10:54 PM Page 297

Because the primary key of the images table has been set to auto_increment, it’s neces-
sary to drop the original table and all its data. The SQL file does this automatically and
builds the table from scratch. These instructions assume that phpMyAdmin is open at the
page in step 7 of the previous section.

1. If you’re happy to overwrite the data in the images table, skip to step 2. However,
if you have entered data that you don’t want to lose, copy your data to a different
table. Click the Operations tab at the top of the page, type the name of the new
table in the blank field in the section titled Copy table to (database.table), and click
Go. The following screenshot shows the settings for copying the images table to
images_backup:

After clicking Go, you should see confirmation that the table has been copied. The
breadcrumb trail at the top of the page indicates that phpMyAdmin is still in the
images table, so you can proceed to step 2, even though you have a different page
onscreen.

2. Click the Import tab at the top right of the page. In the next screen, click the Browse
(or Choose File) button in File to import, and navigate to images.sql in the download
files. Leave all options at their default setting, and click Go at the foot of the page.

Loading the images records from a SQL file

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

298

7311ch11.qxd 10/10/06 10:54 PM Page 298

3. phpMyAdmin drops the original table, creates a new version, and inserts all the
records. When you see confirmation that the file has been imported, click the
Browse button at the top left of the page. You should now see the same data as
shown in Figure 11-1 at the beginning of the chapter.

Now that you’ve got some useful data in your database table, it’s time to bring it together
with PHP, but first, a quick overview of the main column types in MySQL.

Choosing the right column type in MySQL
You may have received a bit of a shock when selecting Type for the image_id column.
phpMyAdmin lists all available column types—there are 28 in MySQL 5.0. Rather than con-
fuse you with unnecessary details, I’ll explain just the most commonly used. You can find
full details of all column types in the MySQL documentation at http://dev.mysql.com/
doc/refman/5.0/en/data-types.html.

Storing text

The difference between the main text column types boils down to the maximum number of
characters that can be stored in an individual field, and whether you can set a default value.

CHAR: A fixed-length character string. You must specify the required length in the
Length/Values field. The maximum permitted value in all versions of MySQL is 255.
You can define a default value.

VARCHAR: A variable-length character string. You must specify the maximum num-
ber of characters you plan to use in the Length/Values field in phpMyAdmin. Prior
to MySQL 5.0, the limit is 255. This has been increased to 65,535 in MySQL 5.0.
Accepts a default value.

TEXT: Stores text up to a maximum of 65,535 characters (slightly longer than this
chapter). Cannot define a default value.

TEXT is convenient because you don’t need to specify a maximum size (in fact, you can’t).
Although the maximum length of VARCHAR is the same as TEXT in MySQL 5.0, other factors
may limit the actual amount that can be stored. Keep it simple: use VARCHAR for short text
items and TEXT for longer ones.

The term “characters” here refers only to characters in the Latin1 (ISO-8859-1) charac-
ter set—the default encoding for most Western European languages. If you store your
data in UTF-8 (Unicode), the limit is calculated in bytes. Accented characters in
Spanish, French, and other Western languages require only one byte in Latin1, but
occupy two bytes in UTF-8.

Use images323.sql for MySQL 3.23 or images40.sql for MySQL 4.0. Older versions of
phpMyAdmin don’t have an Import tab. Click the SQL tab instead. The File to import
form is at the bottom of the page. It looks slightly different, but works the same way.

GETTING STARTED WITH A DATABASE

299

11

7311ch11.qxd 10/10/06 10:54 PM Page 299

Storing numbers

The most frequently used numeric column types are as follows:

INT: Any whole number (integer) between –2,147,483,648 and 2,147,483,647. If the
column is declared as UNSIGNED, the range is from 0 to 4,294,967,295.

FLOAT: A floating-point number. You can optionally specify two comma-separated
numbers in the Length/Values field. The first number specifies the number of digits
before the decimal point, and the second specifies the precision to which the dec-
imal portion should be rounded. Since PHP will format numbers after calculation,
I recommend that you use FLOAT without the optional parameters.

DECIMAL: A floating-point number stored as a string. This column type is best avoided.

DECIMAL is intended for currencies, but you can’t perform calculations with strings inside a
database, so it’s more practical to use INT. For dollars or euros, store currencies as cents;
for pounds, use pence. Then use PHP to divide the result by 100, and format the currency
as desired.

Storing dates and times

MySQL stores dates in the format YYYY-MM-DD. This comes as a shock to many people, but
it’s the standard approved by the ISO (International Organization for Standardization), and
avoids the ambiguity inherent in different national conventions. I’ll return to the subject of
dates in Chapter 14. The most important column types for dates and times are as follows:

DATE: A date stored as YYYY-MM-DD. The supported range is 1000-01-01 to 9999-
12-31.

DATETIME: A combined date and time displayed in the format YYYY-MM-DD HH:MM:SS.

TIMESTAMP: A timestamp (normally generated automatically by the computer).
Legal values range from the beginning of 1970 to partway through 2037.

MySQL timestamps are based on a human-readable date
and, since MySQL 4.1, use the same format as DATETIME.
As a result, they are incompatible with Unix and PHP
timestamps, which are based on the number of seconds
elapsed since January 1, 1970. Don’t mix them.

Don’t use commas or spaces as the thousands-separator. Apart from
numerals, the only characters permitted in numbers are the negative
operator (-) and the decimal point (.).

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

300

7311ch11.qxd 10/10/06 10:54 PM Page 300

Storing predefined lists

MySQL lets you store two types of predefined list that could be regarded as the database
equivalents of radio button and check box states:

ENUM: This column type stores a single choice from a predefined list, such as “yes,
no, don’t know” or “male, female.” The maximum number of items that can be
stored in the predefined list is a mind-boggling 65,535—some radio-button group!

SET: This column type stores zero or more choices from a predefined list. The list
can hold a maximum of 64 choices.

While ENUM is quite useful, SET tends to be less so, mainly because it violates the principle
of storing only one piece of information in a field. The type of situation where it can be
useful is when recording optional extras on a car or multiple choices in a survey.

Storing binary data

Storing binary data, such as images, isn’t a good idea. It bloats your database, and you
can’t display images directly from a database. However, the following column types are
designed for binary data:

TINYBLOB: Up to 255 bytes

BLOB: Up to 64KB

MEDIUMBLOB: Up to 16MB

LONGBLOB: Up to 4GB

With such whimsical names, it’s a bit of a letdown to discover that BLOB stands for binary
large object.

Connecting to MySQL with PHP
One of the great features of PHP is that it supports all the major database systems—and
some not so major ones, too. It’s also a weakness, because PHP uses dedicated functions
for each type of database. This isn’t a problem if you use the same database all the time,
but it makes code less portable. Consequently, PHP Data Objects (PDO) were introduced in
PHP 5.1. The idea is that you write just one set of code, and it will work with any database.
Strictly speaking, this isn’t 100% true, because there are variations in the way you write SQL
for some databases. Nevertheless, it’s a major change; and the plan is to move PHP data-
base connection entirely to PDO.

Unfortunately, there’s a rather large fly in the ointment . . . Even two years after the release
of PHP 5, a large number of hosting companies still offered only PHP 4, and seemed to be
in no hurry to upgrade. As a result, if your remote server runs on PHP 4, you still need to
use the original MySQL extension. Just to make things more complicated, PHP 5 also offers
the MySQL Improved (MySQLI) extension, which is intended for use with MySQL 4.1 and

GETTING STARTED WITH A DATABASE

301

11

7311ch11.qxd 10/10/06 10:54 PM Page 301

above. So, before you can work with PHP and MySQL on your website, you need to check
which versions are running. You have the following options:

If your remote server runs PHP 4, you must use the MySQL extension.

If your remote server runs PHP 5 and MySQL 4.1 or above, use the MySQL
Improved extension or—if it’s available—PDO.

Checking your remote server setup

As always, run the following one-line script to find out the PHP configuration of your
remote server:

<?php phpinfo(); ?>

Scroll down the configuration page, and look for the following sections.

All websites should have the first section (mysql), but the mysqli and PDO sections will
depend on the server and the version of PHP installed. If you have PDO, you must also
make sure that mysql is listed among the PDO drivers.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

302

7311ch11.qxd 10/10/06 10:54 PM Page 302

If your host provides phpMyAdmin, the easiest way to check MySQL is to look at the top
left of the main phpMyAdmin screen: the MySQL version number is displayed there. If you
don’t have phpMyAdmin on your remote server, use mysql_version.php in the download
files for this chapter. Insert the hostname, username, and password that your hosting com-
pany has given you for connecting to MySQL. Save the file, upload it to your site, and view
it in a browser. It will display the version running on your server.

After you have checked your remote server settings, remove mysql_version.php and the
phpinfo() script. Although the information may seem harmless, it could be of use to a
potential attacker.

How PHP communicates with MySQL

Regardless of whether you use PHP’s MySQL functions, the MySQL Improved functions, or
PDO, the process always follows this sequence:

1. Connect to MySQL using the hostname, username, and password.

2. Select the database you want to work with (combined with 1 in MySQLI and PDO).

3. Prepare a SQL query.

4. Execute the query and save the result.

5. Extract the data from the result (usually with a loop).

Username and password are straightforward: they’re the username and password of the
accounts you have just created or the account given to you by your hosting company. But
what about hostname? In a local testing environment it’s localhost. What comes as a sur-
prise is that MySQL normally uses localhost even on a remote server. This is because the
database server is normally located on the same server as your website. In other words,
the web server and MySQL are local to each other. However, if your hosting company has
installed MySQL on a separate machine, it will tell you the address to use. The important
thing to realize is that the MySQL hostname is not the same as your website domain name.

Let’s take a quick look at how you connect to a MySQL server with each of the methods.

Connecting with the original MySQL extension
You connect to the MySQL server with the mysql_connect() function, which takes three
arguments: hostname, username, and password, like this:

$conn = mysql_connect($hostname, $username, $password) ➥

or die ('Cannot connect to MySQL server');

When using the original MySQL extension or MySQLI, some commands are followed by
the rather foreboding or die(). This stops the script from going any further if the com-
mand fails, and displays any error message that you have inserted between the parenthe-
ses. PDO requires a different approach because of the way it handles connection errors.

GETTING STARTED WITH A DATABASE

303

11

7311ch11.qxd 10/10/06 10:54 PM Page 303

It doesn’t matter whether you pass the arguments as variables or as literal strings. If the
connection is successful, the function returns a reference to the connection, which can be
stored as a variable.

After connecting, you need to select the individual database using mysql_select_db()
like this:

mysql_select_db('phpsolutions') or die ('Cannot open database');

Connecting with the MySQL Improved extension
The MySQL Improved extension has two interfaces: procedural and object-oriented. The
procedural interface is designed to ease the transition from the original MySQL functions.
Since the object-oriented version is more compact, that’s the version adopted here.

To connect to a MySQL server, you create a mysqli object by passing four arguments to
new mysqli(): the hostname, username, password, and the name of the database. The new
keyword tells PHP that you want to create an object. Don’t worry if you’re not familiar with
object-oriented programming (OOP). For the most part, objects act like ordinary variables.
The main difference is that objects have methods (functions) and properties (values),
which are accessed using the -> operator.

So this is how you would connect to the phpsolutions database:

$conn = new mysqli($hostname, $username, $password, 'phpsolutions') ➥

or die ('Cannot open database');

This stores the connection object as $conn.

Connecting with PDO
PHP Data Objects are similar to the MySQLI object-oriented interface, but require a slightly
different approach. The most important difference is that, if you’re not careful, a PDO dis-
plays your database username and password onscreen when it can’t connect to the data-
base. This is because a PDO uses a type of error handling called exceptions, which are new
to PHP 5. Unless you catch the exception, PHP displays debugging information onscreen.
This is great for testing purposes, but a disaster in an online situation. Fortunately, the way
you catch an exception is very easy.

To create a connection to the MySQL server, you create a data object by passing the fol-
lowing three arguments to new PDO():

A string specifying the database type, the hostname, and the name of the database.
The string must be presented in the following format:

'mysql:host=hostname;dbname=databaseName'

The username.

The user’s password.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

304

7311ch11.qxd 10/10/06 10:54 PM Page 304

When creating a PDO—or using any other code that might trigger an exception (the tech-
nical term is throw an exception)—you need to wrap it in a try/catch block. This works
in the same way as if... else. PHP attempts to execute the code in the try block. If it
works, fine. If it doesn’t, it throws an exception for the catch block to . . . well, catch. The
code looks like this:

try {
$conn = new PDO("mysql:host=$hostname;dbname=phpsolutions", ➥

$username, $password);
}

catch (PDOException $e) {
echo 'Error: '.$e->getMessage();
exit;
}

The catch keyword is followed by a pair of parentheses, which take two arguments: the
type of exception (in this case, PDOException) and a variable to catch the exception. The
variable can be anything, but the convention is to use $e.

The catch block uses the -> operator, which tells PHP that you want to use a method
(function) or property (variable) with a particular object. The getMessage() method (func-
tion) gets the error message generated by the exception. Because there’s no point going
any further, exit on the next line terminates the script. It’s not obligatory to display the
error message generated by the exception. You can put anything you like in the catch
block. It may be more user-friendly to send the visitor to an error page using header(), as
described in “Redirecting to another page” in Chapter 5.

Building a database connection function

Connecting to a database is a routine chore that needs to be performed in every page
from now on; and routine tasks are often best left to functions and/or include files. If any
of the details change, you need change them in one place only.

Exceptions are an advanced subject that I wouldn’t normally
cover. However, failure to connect to the database with PDO
throws an automatic exception, so you must handle it in this way
to prevent the exposure of your username and password. Other
PDO errors don’t throw exceptions, so this is the only place I’ll use
a try/catch block.

In PHP 5.1.6, PDOException is case-insensitive. However, there is a
move to make PHP more case-sensitive, so it’s a good idea to
adhere to this mixture of uppercase and lowercase.

GETTING STARTED WITH A DATABASE

305

11

7311ch11.qxd 10/10/06 10:54 PM Page 305

The finished script is in the download files for this chapter. There are three versions—
one each for the original MySQL extension (conn_mysql.inc.php), MySQL Improved
(conn_mysqli.inc.php), and PDO (conn_pdo.inc.php).

1. In a blank file, insert the following code:

<?php
function dbConnect($type) {
if ($type == 'query') {
$user = 'psquery';
$pwd = 'fuji';
}

elseif ($type == 'admin') {
$user = 'psadmin';
$pwd = 'kyoto';
}

else {
exit('Unrecognized connection type');
}

// Connection code goes here
}

?>

This is the basic skeleton for all versions of a function called dbConnect(), which
takes a single argument: the type of connection you want. The if... elseif con-
ditional statement checks the value of the argument and switches between the
psquery and psadmin username and password as appropriate.

If your remote server allows you only one username and password, you can omit
the argument and the conditional statement, and just use the following code:

<?php
function dbConnect() {
// Connection code goes here
}

?>

2. Replace the Connection code goes here comment. The code differs according to
which connection method you need to use, as described earlier.

If you are using the original MySQL extension (PHP 4 and/or MySQL prior to ver-
sion 4.1), use this:

$conn = mysql_connect('localhost', $user, $pwd) ➥

or die ('Cannot connect to MySQL server');
mysql_select_db('phpsolutions') or die ('Cannot open database');
return $conn;

PHP Solution 11-1: Making a reusable database connector

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

306

7311ch11.qxd 10/10/06 10:54 PM Page 306

If you are using MySQL Improved (PHP 5 and MySQL 4.1 or later), use this:

$conn = new mysqli('localhost', $user, $pwd, 'phpsolutions') ➥

or die ('Cannot open database');
return $conn;

If you are using PDO (PHP 5.1 and MySQL 4.1 or later), use this:

try {
$conn = new PDO('mysql:host=localhost;dbname=phpsolutions', ➥

$user, $pwd);
return $conn;
}

catch (PDOException $e) {
echo 'Cannot connect to database';
exit;
}

The script for each version simply encapsulates the connection code described in
the preceding section and returns $conn, which is a reference to the database con-
nection (MySQL) or the connection object (MySQLI and PDO).

3. Because this is an include file, make sure there are no new lines or whitespace
before or after the PHP tags. Save the page in the includes folder. You can either
use the same name as for the download file for your particular version or call it
connection.inc.php.

To use this function, include connection.inc.php, and call the function like this for the
psquery user:

$conn = dbConnect('query');

For the psadmin user, call it like this:

$conn = dbConnect('admin');

Regardless of whether you are using the original MySQL extension, MySQLI, or PDO,
$conn contains the correct type of connection to the phpsolutions database. To adapt
this for any other database, change the username, password, and database name in
connection.inc.php.

Throughout the rest of the book, in scripts that are not specific to
one particular connection method, I use the generic filename
connection.inc.php to refer to the file that contains the
dbConnect() function. Make sure that you use the correct version
for the database connection functions you’re using.

GETTING STARTED WITH A DATABASE

307

11

7311ch11.qxd 10/10/06 10:54 PM Page 307

Finding the number of results from a query

Counting the number of results from a database query is useful in several ways. It’s neces-
sary for creating a navigation system to page through a long set of results (you’ll learn how
to do that in the next chapter). It’s also important for user authentication (covered in
Chapter 15). If you get no results from matching a username and password, you know that
the login procedure should fail.

The original MySQL extension and MySQL Improved both have a convenient method of
finding out the number of results returned by a query. However, this isn’t available with
PDO, so you need to take a different approach. If you’re using PDO, skip ahead to PHP
Solution 11-3.

As you work through this PHP Solution, you’ll see just how similar the code is for the orig-
inal MySQL extension and MySQL Improved. This makes transferring from one to the other
very easy, but you also need to be careful not to mix the two styles. I have indicated the
differences clearly in steps 4 and 5.

1. Create a new folder called mysql in the phpsolutions site root, and create a new
file called mysql.php inside the folder. The page will eventually be used to display
a table, so it should have a DOCTYPE declaration and an XHTML skeleton.

2. Include the appropriate connection file for MySQL or MySQLI above the DOCTYPE
declaration, and create a connection to MySQL like this:

<?php
include('../includes/connection.inc.php');
// connect to MySQL
$conn = dbConnect('query');
?>

You don’t need administrative privileges for this exercise, so I have used the
account that has only SELECT privileges.

3. Next, prepare the SQL query. Add this code immediately after the previous step
(but before the closing PHP tag):

// prepare the SQL query
$sql = 'SELECT * FROM images';

This means “select everything from the images table.” The asterisk (*) is shorthand
for “all columns.”

4. Now execute the query.

The original MySQL extension uses a function called mysql_query(), which takes
the SQL query as an argument. The code looks like this (it goes immediately after
step 3):

// submit the query and capture the result
$result = mysql_query($sql) or die(mysql_error());

PHP Solution 11-2: Counting records in a result set (MySQL and MySQLI)

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

308

7311ch11.qxd 10/10/06 10:54 PM Page 308

The code for MySQL Improved is very similar. You apply the query() method to the
connection object ($conn) using the -> operator, and pass the SQL query as an
argument like this:

// submit the query and capture the result
$result = $conn->query($sql) or die(mysqli_error());

Note that both methods store the result in a variable, which I have imaginatively
named $result. If there is a problem, the database server returns an error mes-
sage, which can be retrieved using mysql_error() or mysqli_error(), depending
on your method of connection. By placing this function between the parentheses
of or die(), the script comes to a halt if there’s a problem and displays the error
message.

5. Assuming there’s no problem, the variable $result now holds a reference to the
number of records found by the SQL query.

If you’re using the original MySQL extension, pass the variable holding the result to
mysql_num_rows() like this (put the code immediately after the preceding step):

// find out how many records were retrieved
$numRows = mysql_num_rows($result);

In MySQL Improved, the number of results is held in the num_rows property of the
result object ($result). You access it with the -> operator like this:

// find out how many records were retrieved
$numRows = $result->num_rows;

6. You can now display the value of $numRows in the body of the page like this:

<p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save the page and load it into a browser. You should see the following result:

Check your code, if necessary, with mysql01.php or mysqli01.php in the down-
load files.

There are no parentheses following num_rows in the MySQLI version.
This is because it’s a property (or value) of the result object.
Functions and methods are followed by parentheses, but variables
and properties are not.

GETTING STARTED WITH A DATABASE

309

11

7311ch11.qxd 10/10/06 10:54 PM Page 309

Because PDO doesn’t have an equivalent of the MySQLI num_rows property or the MySQL
function mysql_num_rows(), you need to use a SQL function called COUNT().

1. Create a new folder called mysql in the phpsolutions site root, and create a new
file called pdo.php inside the folder. The page will eventually be used to display a
table, so it should have a DOCTYPE declaration and an XHTML skeleton.

2. Include the PDO connection file above the DOCTYPE declaration, and create a con-
nection to MySQL like this:

<?php
include('../includes/conn_pdo.inc.php');
// connect to MySQL
$conn = dbConnect('query');
?>

You don’t need administrative privileges for this exercise, so I have used the
account that has only SELECT privileges.

3. Next, prepare the SQL query. Add this code immediately after the previous step
(but before the closing PHP tag):

// prepare the SQL query
$sql = 'SELECT COUNT(*) FROM images';

This means “count every record in the images table.” The asterisk (*) is shorthand
for “all columns.” The COUNT() function gets the total number of records. Make
sure you don’t leave a space between COUNT and the opening parenthesis, as this
generates a SQL error.

4. Now execute the query and store the result in a variable like this (the code goes
immediately after the code in step 3):

// submit the query and capture the result
$result = $conn->query($sql);
$error = $conn->errorInfo();
if (isset($error[2])) die($error[2]);

$conn is the variable that you used to create the connection, so $conn->query()
means “run this query with my connection.” The result is stored in a variable, which
I’ve named, rather predictably, $result.

PDO uses errorInfo() to build an array of error messages from the database. The
third element of the array is created only if something goes wrong. I’ve stored the
result of $conn->errorInfo() as $error, so you can tell if anything went wrong by
using isset() to check whether $error[2] has been defined. If it has, die() brings
the script to a halt and displays the error message.

5. The SQL query in step 3 returns only one piece of information: the number of
records found, so you can use the fetchColumn() method with $result to retrieve

PHP Solution 11-3: Counting records in a result set (PDO)

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

310

7311ch11.qxd 10/10/06 10:54 PM Page 310

it, and store the number of rows found like this (put the code immediately after
the preceding step):

// find out how many records were retrieved
$numRows = $result->fetchColumn();

6. You can now display the value of $numRows in the body of the page like this:

<p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save the page and load it into a browser. You should see the same result as shown
in step 8 of PHP Solution 11-2. Check your code, if necessary, with pdo01.php.

Displaying the results of a query

In spite of the different ways that MySQL, MySQLI, and PDO communicate with a database,
they all produce a result that contains all the information sent back from the database
(and stored as $result). In PHP Solution 11-2, $result contains every field in every
record. In PHP Solution 11-3, a different query was used because PDO handles the count-
ing of records differently; but if you run the same query with PDO, $result also contains
every field in every record.

It’s tempting to think of this result as an array. In one sense, it is; but you can’t use it in the
same way as arrays that you have encountered so far. To extract the information, you need
to deal with one record at a time. The most common way is to use a loop in combination
with a function (or method) to extract the current record into a temporary array, which
you can then use to display the information it holds.

With the MySQL extension, you do it like this:

while ($row = mysql_fetch_assoc($result)) {
// do something with the current record
}

With MySQLI, instead of passing $result to a function, you use the -> operator like this:

while ($row = $result->fetch_assoc()) {
// do something with the current record
}

PDO handles it slightly differently. You can use the query() method directly inside a
foreach loop to create an array for each record like this:

foreach ($conn->query($sql) as $row) {
// do something with the current record
}

In each case, $row is an associative array containing every field in the current record. So, in
the case of the images table, $row contains these three elements: $row['image_id'],
$row['filename'], and $row['caption']. In other words, each element is named after
the corresponding column in the table.

GETTING STARTED WITH A DATABASE

311

11

7311ch11.qxd 10/10/06 10:54 PM Page 311

Continue using the file from PHP Solution 11-2. The finished code is in mysql02.php.

1. Add the following code to the main body of the page (new code is in bold):

<p>A total of <?php echo $numRows; ?> records were found.</p>
<table>
<tr>
<th>image_id</th>
<th>filename</th>
<th>caption</th>

</tr>
<?php
while ($row = mysql_fetch_assoc($result)) {
?>
<tr>
<td><?php echo $row['image_id']; ?></td>
<td><?php echo $row['filename']; ?></td>
<td><?php echo $row['caption']; ?></td>

</tr>
<?php } ?>
</table>
</body>

The while loop iterates through the database result, using mysql_fetch_assoc()
to extract each record into $row. Each element of $row is displayed in a table cell.
The loop continues until mysql_fetch_assoc($result) comes to the end of the
result set.

2. Save mysql.php and view it in a browser. You should see the contents of the images
table displayed as shown in the following screenshot:

PHP Solution 11-4: Displaying the images table using MySQL

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

312

7311ch11.qxd 10/10/06 10:54 PM Page 312

Continue using the file from PHP Solution 11-2. The finished code is in mysqli02.php.

1. Insert the same code into the body of the page as in step 1 of PHP Solution 11-4.
However, replace this line:

while ($row = mysql_fetch_assoc($result)) {

with this:

while ($row = $result->fetch_assoc()) {

2. Save the page and view it in a browser. It should look like the preceding screenshot.

Because PDO doesn’t have a convenient way of finding the number of records in a result
set, you need to submit a second query to the database. It’s also necessary to release the
database resources associated with the first query.

Continue working with the same file as in PHP Solution 11-3. The finished script is in
pdo02.php.

1. Amend the last section of code above the DOCTYPE declaration to release the data-
base resource after the first query, and store the second query in a variable like
this:

// find out how many records were retrieved
$numRows = $result->fetchColumn();
// free the database resources
$result->closeCursor();
// prepare second SQL query
$getDetails = 'SELECT * FROM images';
?>

The closeCursor() method frees the connection to the database so that further
queries can be executed. You apply it to the current result; not to the connection.
The second query, stored in $getDetails, retrieves all the records in the images
table.

2. Insert the same code into the body of the page as in step 1 of PHP Solution 11-4.
However, replace this line:

while ($row = mysql_fetch_assoc($result)) {

with this:

foreach ($conn->query($getDetails) as $row) {

3. Save the page and view it in a browser. It should look like the screenshot in PHP
Solution 11-4.

PHP Solution 11-6: Displaying the images table using PDO

PHP Solution 11-5: Displaying the images table using MySQLI

GETTING STARTED WITH A DATABASE

313

11

7311ch11.qxd 10/10/06 10:54 PM Page 313

MySQL connection crib sheet

Tables 11-2 to 11-4 summarize the basic details of connection and database query for
MySQL, MySQLI, and PDO. Some commands will be used in later chapters, but are
included here for ease of reference.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

314

Table 11-2. Connection to MySQL with the original MySQL extension

Action Usage Comments

Connect $conn = mysql_connect($h,$u,$p); All arguments optional; first three always needed
in practice: hostname, username, password.

Choose DB mysql_select_db('dbName'); Server connection can be second, optional
argument.

Submit query $result = mysql_query($sql); Requires one argument: string containing SQL
query. Server connection can be second, optional
argument. Returns result set.

Count results $numRows = mysql_num_rows($result); Takes result set as sole argument.

Extract record $row = mysql_fetch_assoc($result); Takes result set as sole argument. Extracts
current record as associative array.

Extract record $row = mysql_fetch_row($result); Takes result set as sole argument. Extracts
current record as indexed (numbered) array.

As noted in Table 11-2, you can use a reference to the database connection as an optional
argument with mysql_select_db() and mysql_query(). There is no need to do this unless
you are using more than one connection (say, with different usernames), because PHP
automatically uses the most recent link opened by mysql_connect().

Table 11-3. Connection to MySQL with the MySQL Improved object-oriented interface

Action Usage Comments

Connect $conn = new mysqli($h,$u,$p,$d); All arguments optional; first four always
needed in practice: hostname, username,
password, database name. Creates connection
object.

Choose DB $conn->select_db('dbName'); Use to select different database.

Submit query $result = $conn->query($sql); Returns result object.

Count results $numRows = $result->num_rows; Returns number of rows in result object.

7311ch11.qxd 10/10/06 10:54 PM Page 314

Action Usage Comments

Release DB resources $result->free_result(); Frees up connection to allow new query.

Extract record $row = $result->fetch_assoc(); Extracts current row from result object as
associative array.

Extract record $row = $result->fetch_row(); Extracts current row from result object as
indexed (numbered) array.

Table 11-4. Connection to MySQL with PDO

Action Usage Comments

Connect $conn = new PDO(DSN,$u,$p); In practice, requires three arguments:
data source name (DSN), username,
password. Must be wrapped in
try/catch block.

Choose DB See comments Choice of database is integral part of
DSN.

Submit query $result = $conn->query($sql); Can also be used inside foreach loop
to extract each record.

Count results See comments Use SELECT COUNT(*) in SQL query.

Get single result $item = $result->fetchColumn(); Gets first record in first column of
result. To get result from other
columns, use column number (from 0)
as argument.

Get next record $row = $result->fetch(); Gets next row from result set as
associative array.

Release DB resources $result->closeCursor(); Frees up connection to allow new
query.

Extract records foreach($conn->query($sql) as $row) { Extracts current row from result set as
associative array.

GETTING STARTED WITH A DATABASE

315

11

When using PDO with MySQL, the data source name (DSN) is a string that takes the
following format:

'mysql:host=hostname;dbname=databaseName'

7311ch11.qxd 10/10/06 10:54 PM Page 315

If you need to specify a different port from the MySQL default (3306), use the following
format, substituting the actual port number:

'mysql:host=hostname;port=3307;dbname=databaseName'

MySQL Improved and PDO also use prepared statements, which offer greater security
when incorporating user input into SQL queries. Prepared statement commands are cov-
ered in Chapter 13.

Summary
It’s unfortunate that connection to MySQL is in such a transitional phase. Because PDO is
so new, it may undergo further changes, but along with MySQLI, it has significant advan-
tages over the original MySQL extension, particularly in improved protection against mali-
cious attacks. However, I suspect that a high proportion of readers will have no option
other than to use the traditional method of connecting to MySQL. The good news is that,
for the foreseeable future at least, PHP plans to continue support for all three options.
This means that even when you move to a server that supports PDO, your MySQL or
MySQLI scripts will still work.

In the next chapter, we’ll turn those boring lists of filenames and captions into something
a lot more attractive—an online mini photo gallery. See you there.

PHP SOLUTIONS: DYNAMIC WEB DESIGN MADE EASY

316

7311ch11.qxd 10/10/06 10:54 PM Page 316

