
Script-Based Web UI Testing

6.0 Introduction
The simplest form of Web application testing is manual testing through the UI; however,
because manual testing is often slow, inefficient, and tedious, a good strategy is to supplement
manual testing with basic Web application UI test automation. You can do this in several ways.
The oldest technique uses JavaScript to manipulate a Web application’s controls through the
Internet Explorer Document Object Model (IE DOM). The best way to demonstrate this type of
testing is visually, so Figure 6-1 shows a sample run of a script-based Web UI test harness.

Figure 6-1. Script-based Web application UI testing

167

C H A P T E R 6

■ ■ ■

If you examine Figure 6-1, you’ll see that the test harness is a Web page with two frames.
The right frame hosts the Web AUT; its display title is MiniCalc. In this example, the applica-
tion is a simple calculator program. The left frame hosts JavaScript functions that manipulate
the Web AUT, examine the resulting state of the application, and log test results to an external
file. This chapter presents the various techniques you need to perform script-based Web UI
test automation.

Most of the sections in this chapter reference the Web application shown in the right frame
in Figure 6-1. The application is named WebApp.aspx. The entire code for the application is

<%@ Page Language="C#" Debug="true" %>

<script language="c#" runat="server">
private void Button1_Click(object sender, System.EventArgs e)
{
int alpha = int.Parse(TextBox1.Text.Trim());
int beta = int.Parse(TextBox2.Text.Trim());

if (RadioButton1.Checked)
{
TextBox3.Text = Sum(alpha, beta).ToString("F4");

}
else if (RadioButton2.Checked)
{
TextBox3.Text = Diff(alpha, beta).ToString("F4");

}
else if (RadioButton3.Checked)
{
TextBox3.Text = Product(alpha, beta).ToString("F4");

}
else
TextBox3.Text = "Select method";
}

private static double Sum(int a, int b)
{
double ans = 0.0;
ans = a + b;
return ans;

}

private static double Diff(int a, int b)
{
double ans = 0.0;
ans = a - b;
return ans;

}

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING168

private static double Product(int a, int b)
{
double ans = 0.0;
ans = a * b;
return ans;

}
</script>

<html>
<head><title>WebApp.aspx</title></head>
<style type="text/css">
fieldset { width: 16em }
body { font-size: 10pt; font-family: Arial }
</style>
<body bgColor="#ccffff">
<h3>MiniCalc</h3>
<form method="post" name="theForm" id="theForm" runat="server">
<p><asp:Label id="Label1" runat="server">Enter integer:
</asp:Label>

<asp:TextBox id="TextBox1" size="6" runat="server" /></p>
<p><asp:Label id="Label2" runat="server">Enter another:
</asp:Label>

<asp:TextBox id="TextBox2" size="6" runat="server" /></p>
<p></p>

<fieldset>
<legend>Operation</legend>
<p><asp:RadioButton id="RadioButton1" GroupName="ops"
runat="server"/>Addition</p>

<p><asp:RadioButton id="RadioButton2" GroupName="ops"
runat="server"/>Subtraction</p>

<p><asp:RadioButton id="RadioButton3" GroupName="ops"
runat="server"/>Multipication</p>

<p><asp:RadioButton id="RadioButton4" GroupName="ops"
runat="server"/>Division</p>

<p></p>
</fieldset>

<p><asp:Button id="Button1" runat="server" text=" Calculate "
onclick="Button1_Click" /> </p>

<p><asp:TextBox id="TextBox3" size="10" runat="server" />
</form>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 169

For simplicity, all the Web application code is contained in a single source file rather than
the more usual approach of separating HTML display code and C# (or other .NET-compliant
language) code into two separate files. If you examine this code, you’ll see that the UI contains
two text fields where the user enters two integers, four radio button controls that the user
selects to indicate which of four arithmetic operations to perform (addition, subtraction,
multiplication, division), a button control to submit the calculation request, and a third text
field that displays a result with four decimals.

■Note Notice that the label next to the multiplication radio button control is misspelled as “Multipication”.
Typographical errors in AUTs are common during the testing phase, so be prepared to deal with them when
writing automation.

This Web application is simplistic, and your Web AUTs are likely to be much more complex.
However, this application has all the key components necessary to demonstrate script-based UI
testing. Even if your Web AUT does sophisticated numerical processing or fetches complex data
from a SQL data store, each HTTP request-response will result in a new page state that is
reflected in the UI.

The code in this chapter assumes that the automation is organized with a root folder con-
taining two subfolders named TheWebApp and TestAutomation. The TheWebApp folder holds the
Web AUT (WebApp.aspx). The TestAutomation folder contains the main test harness structure
as a single Web page (WebAuto.html) and the page that houses the JavaScript code which runs
the test scenario (TestCode.html).

Related but lower-level techniques to test a Web application through its UI are presented
in Chapter 7. The techniques in this chapter can handle most basic UI testing situations but
cannot deal with configurations that have JavaScript disabled. These techniques also cannot
manipulate objects that are outside the browser client area (such as alert dialog boxes). The
test harness that produced the test run shown in Figure 6-1 is presented in Section 6.8.

6.1 Creating a Script-Based UI Test Harness
Structure
Problem
You want to create a structure for a script-based Web application UI test harness that allows
you to programmatically manipulate, synchronize, and examine the Web AUT.

Design
Create an HTML page with two frames. One frame hosts the AUT. The second frame hosts the test
harness script. The containing HTML page holds synchronization variables and test scenario
meta-information.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING170

Solution
<html>
<head>
<script language="JavaScript">
var description = "Description of test scenario";
var loadCount = 0;
var pass = true;

</script>
</head>

<frameset cols="40%,*">
<frame src="TestCode.html" name="leftFrame">
<frame src="../TheWebApp/WebApp.aspx" name="rightFrame"
onload="leftFrame.updateState();">

</frameset>
</html>

Comments
Although you can structure a script-based Web application UI test harness in several ways, the
organization presented here has proven simple and effective in practice. The <script> portion of
the HTML harness holds three key variables. Notice we use the language="JavaScript" attribute.
In a pure Microsoft technology environment, you might want to use "JScript" to emphasize the
fact that you are using the IE DOM to access Web page controls. The first variable, description,
is test scenario meta-information. You may want to include other meta-information here such
as a test scenario ID or the date and time when the scenario was run. The second variable,
loadCount, is the key to test harness synchronization. Because HTTP is a stateless protocol,
each request-response pair is independent. You need some way to know which state the Web
application is in. The easiest way to do this is to use a global variable where a value of 0 indicates
an initial state, a value of 1 indicates the next state (after a user clicks a submit button for exam-
ple), and so on. Observe that when the Web page/document under test finishes loading into the
right frame of the test harness, control is transferred to a function updateState()located in the
page in the left (test code) frame:

onload="leftFrame.updateState();"

Section 6.2 describes the updateState() function. The third variable in the HTML harness
page, pass, represents the test scenario pass or fail result.

The body of the HTML test harness page just contains two frames, leftFrame and rightFrame,
in this solution. The frames are organized into two columns with the first (left) column receiving
40% of the display area. There’s nothing special about the column organization or frame names
used here. Using the names leftFrame and rightFrame implies you have the frames organized
in a particular way, but experience has shown that using positionally oriented frame names
tends to be easier to read than functionally oriented names such as frameWithWebApp and
frameWithHarnessCode, although this is a matter of personal preference. Frame rightFrame
holds the AUT. The application does not need to be instrumented in any way, and the techniques
in this chapter apply to both classic ASP Web applications and ASP.NET Web applications. Frame
leftFrame holds the test scenario JavaScript code that manipulates the AUT.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 171

A common mistake when performing script-based UI testing is to attempt to synchronize
events by using the setTimeout() method to pause the test automation. Calling setTimeout()
stops the thread of execution. Unfortunately, because IE runs under a single thread of execu-
tion (with a few rare exceptions), you end up pausing both your test automation and the AUT.

6.2 Determining Web Application State
Problem
You want to determine the state of the Web AUT.

Design
In the TestCode.html page that holds the JavaScript test harness code in the preceding solution,
write a function updateState() that increments the global state counter variable and then calls
the main test logic.

Solution
<html>
<head>
<script language="JavaScript">
function updateState()
{
parent.loadCount++;
if (parent.loadCount > 1) // > 0 for full-automation
runTest();

} // updateState()

function runTest()
{
// runTest() code here

}

// other test functions here

</script>
</head>
<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script
</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();">
</p>
<p>Actions:</p><p><textarea id="comments" rows="15" cols="34">
</textarea></p>
<p>Test Result = <input type="text" name="result" size="12"></p>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING172

Comments
If you create a test harness structure as described in Section 6.1, when the Web AUT finishes
loading into the test harness right frame, control is transferred to function updateState()
located in the script part of the page located in the left frame. This state-updating function
first increments the global application state counter:

parent.loadCount++;

Because the state counter is located in the main test harness structure page, you must
access it using the parent keyword. Next, the updateState() function checks if the value of the
global state counter is greater than 1. Because the counter is initialized to 0, the counter has a
value of 1 when the test harness first launches, which, in turn, loads the Web AUT. If you check
for a value greater than 1, the condition is false on the initial page load so the thread of execu-
tion stops. This allows you to manually view the test harness and Web AUT, and then launch
the test automation manually. If you want full automation, you can edit the condition to

if (parent.loadCount > 0)
runTest();

This condition is true on the initial application page load into the test harness structure,
and control is immediately transferred to function runTest().

In this solution, the page located in the left frame of the containing test harness page is
named TestCode.html. In a fully automated situation, such as just described, you do not need
any UI for page WebAuto.html. However, some minimal UI is required if you want to manually
launch the test automation:

<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();"></p>
<p>Actions:</p>
<p><textarea id="comments" rows="15" cols="34"></textarea></p>
<p>Test Result = <input type="text" name="result" size="12"></p>

</body>

You give a title to the page containing the JavaScript automation code so that other testers
and developers can clearly distinguish which frame holds the AUT and which frame holds the test
automation. You supply a button control so that testers can manually launch the test automation
as described previously. An HTML <textarea> element is handy to display messages containing
information about the progress of the test automation as shown in Figure 6-1. Finally, you add a
text field so that the overall test scenario pass/fail result can be displayed in a way that stands out
from other messages.

6.3 Logging Comments to the Test Harness UI
Problem
You want to display messages that detail the progress of the test automation.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 173

Design
Write a JavaScript helper function logRemark() that uses the IE DOM value property to set a
value into an HTML <textarea> comments field.

Solution
function logRemark(comment)
{
var currComment = document.all["comments"].value;
var newComment = currComment + "\n" + comment;
document.all["comments"].value = newComment;

} // logRemark()

Comments
Although the goal of any test scenario is to produce a pass or fail result, it’s useful to have a way
to display the progress of the automation. This helps you diagnose the inevitable problems
you’ll run into and sometimes reveals bugs in the Web AUT as well. The simple logRemark()
function accepts a comment to log as the single input argument. Notice that JavaScript is a
nontyped language, so you don't specify exactly what data type the comment parameter is. The
function first grabs any existing content in the textarea named "comments" using the value
property and the document.all collection. See Section 6.2 for the definition of the comments
HTML <textarea> element. The function then appends a newline character to the existing
comments contents and then appends the text of the input argument comment using the
JavaScript + string concatenation operator. The logRemark() function finishes by replacing the
value of the old comments contents with the newly updated value.

With this helper function in hand, you can enhance the readability and clarity of your test
harness output by displaying various messages as the test scenario runs. For example:

logRemark("Starting test automation");
logRemark("About to set TextBoxes to '7' and '5'");

6.4 Verifying the Value of an HTML Element on the
Web AUT
Problem
You want to verify that an HTML element on the Web AUT has a certain value and set a test
scenario pass/fail result to the appropriate value.

Design
Write a function verify() that accepts a reference to a control element and an expected value
for the element and sets a global pass/fail result variable that has been initialized to true (to
false if the actual value of the control does not equal the expected value).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING174

Solution
function verify(ctrl, val)
{
if (parent.rightFrame.document.all[ctrl].value != val)
parent.pass = false;

}

Comments
The verify() function accepts a reference to a control and an expected value for the control.
The function assumes the existence of a global variable pass located in the containing harness
structure Web page as described in Section 6.1. Notice that to access a control in the Web AUT
from the left frame, you must “go up” one page using the parent keyword and then “down” one
page into the application using the frame name. If the actual value in the specified control is not
equal to the expected value argument, the global pass variable is set to false. This scheme
assumes that variable pass has been initialized to true. In other words, the logic used here is that
you assume the test scenario will pass. After each state change, you check one or more controls
looking for an inconsistent value; if you find such a problem, you set pass to false. An alternative
approach is to assume the test scenario will fail. Then after all the state changes, you check for a
series of consistency values and set pass to true only if all expected conditions/values are met.

The heart of the techniques in this chapter is the capability to access the HTML elements
on a Web page using the IE DOM. This is a large topic because the IE DOM has more than 500
properties and nearly as many methods. From a testing point of view, you’ll use the value
property most often to verify the state of an HTML element, but you’ll find other properties
useful too. For example, suppose you need to check whether the background color of the Web
AUT is pure red. You can write code like this:

if (parent.rightFrame.document.bgColor == "#FF0000")
backgroundIsRed = true;

As another example, suppose you want to check whether some Label element is visible to
the user. You can write code like this:

if (parent.rightFrame.document.all["Label1"].visibility == "visible")
logRemark("The Label control is visible");

After you understand the test structure presented in the techniques in this chapter, your
next step is to get a firm grasp of the IE DOM. The better you understand the DOM, the more
powerful automation you’ll be able to write.

One common situation that can cause trouble is when you need to access text on a Web
page/application that is not part of any HTML element other than the body. One way to do this
is to use the document.body.innerText property. Another way is to use the createTextRange()
and findText() methods:

var trange = parent.rightFrame.document.body.createTextRange();

if (trange.findText("foo") == true)
logRemark("Found 'foo' on the Web page");

else
logRemark("No 'foo' found");

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 175

6.5 Manipulating the Value of an HTML Element on
the Web AUT
Problem
You want to manipulate an HTML element on the Web AUT to simulate user actions such as
typing data into a text field and clicking on buttons.

Design
Use methods and properties of the IE DOM, such as the checked property and the click()
method. You need to take into account the state of the Web AUT.

Solution
For example:

function runTest()
{
try {
if (parent.loadCount == 1)
{
parent.rightFrame.document.theForm.TextBox1.value = "7";
parent.rightFrame.document.theForm.TextBox2.value = "5";
parent.rightFrame.document.all["RadioButton1"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 2)
{
parent.rightFrame.document.all["RadioButton3"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 3)
{

// determine pass or fail result here
// save test scenario results here

}
}
catch(e) {
logRemark("Unexpected fatal error: " + e);

}
} // runTest ()

This code simulates a user typing 7 and 5 into the input fields, checking the RadioButton1
control (for addition), clicking the Button1 control (to calculate), and then after the Web appli-
cation reloads, checking RadioButton3 for multiplication and clicking the Button1 control
again. On the third page load, you verify the state of the application (see Section 6.4) and save
the scenario result (see Sections 6.6 and 6.7).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING176

Comments
To simulate user interaction with a Web AUT, you first need to determine what user action you
want to simulate. In the case of test automation, this is usually placing text into an HTML ele-
ment to simulate typing, selecting an option from a drop-down control, clicking on a button
control, or checking a radio button control. Each of these actions has an intuitively named
method or property such as value, click(), and checked. There are hundreds of other proper-
ties and methods too. For example, you can simulate a user scrolling a scrollbar component
using the scrollTo() method, you can set the focus of an element using the focus() method,
and you can highlight text using the select() method. The IE DOM gives you virtually full
control over the client area of an HTML Web page. The real trick is knowing which method or
property to use. This is a combination of art and science because it’s not practical to learn the
details of all the IE DOM methods and properties. Fortunately, the methods and properties
have meaningful names and are well documented.

Notice that you are constructing a test scenario here rather than a test case. The terms are
often used interchangeably, but in general the term test scenario refers to test automation that
changes the SUT through several states. For instance, in the techniques in this chapter, each
part of the test code triggers a new HTTP request-response, which creates a new state of the
application that is reflected in the UI. Test case normally refers to a testing situation/item in
which the test automation manipulates the SUT through one (or possibly two) state changes.
For example, in API test cases, inputs are sent to the method under test, and a return value is
produced. Web application UI testing is usually performed as a test scenario because most
bugs are found when transitioning through multiple states of the Web application; single state
bugs are usually detected during the development process.

When constructing test scenarios like the one in this section, you can organize your test
effort in one of two ways. You can hard-code the scenario input values into the test script and
maintain a lot of separate scenario scripts. A second approach is to write just a few scripts,
which are then parameterized to read input files, and maintain a lot of scenario input files. In
practice, most test efforts primarily use the first approach, even though it has the disadvan-
tage of requiring you to manage a large number of test scripts.

6.6 Saving Test Scenario Results to a Text File on
the Client
Problem
You want to save your test scenario pass/fail result to an external text file on the test client
machine.

Design
Instantiate a Scripting.FileSystemObject ActiveX object and then use the object’s
CreateTextFile() and WriteLine() methods.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 177

Solution
function saveResults()
{
var fso = new ActiveXObject("Scripting.FileSystemObject");
var f = fso.CreateTextFile("C:\\results.txt", true, false);
f.WriteLine("Description = " + parent.description);
if (parent.pass == true)
f.WriteLine("Result = Pass");

else
f.WriteLine("Result = FAIL");

f.Close();
}

The JavaScript language by itself does not contain any native file IO routines, so if you want to
save results to file, you must use a JavaScript add-on. Microsoft created script-friendly libraries
called ActiveX technologies that essentially extend JavaScript functionality. To write to a text
file, the first step is to instantiate a Scripting.FileSystemObject object. Next, you use that
object to create a handle to a file object. The CreateTextFile() method accepts one required
argument and two optional arguments. The required argument is the name of the text file to
create. The first of the two optional arguments is a Boolean flag to indicate whether any existing
file with the same name should be overwritten. In this example, you specify true. The second
optional argument is a Boolean flag indicating whether to use Unicode encoding. In this exam-
ple, you set that argument to false, which causes the text file to use the default ASCII encoding.

Comments
When running script-based Web application UI test automation, you’ll often want to write test
scenario results to external storage. The simplest way to save results is to write the results to a
text file on the client machine.

The technique given here assumes the existence of a global variable pass. As a general
rule, the use of global variables is not recommended because it makes your code harder to
read and maintain. In this case, the simplicity gained by using a global variable seems to out-
weigh the readability and maintainability penalty.

To write to a file from a JavaScript function, you may have to modify IE’s security settings.
By default, these settings typically do not allow JavaScript to write to the client machine’s
hard drive. Go to IE’s Security settings and modify the Trusted Sites and ActiveX object script-
ing execution properties. (The exact process to do this varies depending upon your client
configuration.)

One alternative to saving your test results to a text file on the test client machine using
ActiveX technology is to save results as a Cookie object on the client machine. This approach is
more troublesome in general than saving results as a text file because cookies are stored in a
binary format, so you have to write an auxiliary JavaScript helper program to read the cookie
from disk and then parse the results. In general, you should use this approach only when other
approaches are not feasible. A second alternative to saving scenario results as a text file on the
client is to save the results into a lightweight database. This technique is described in Section 6.7.

Several of the techniques in Chapter 1 show how to time-stamp the file name of a results
file and how to create a time-stamped folder to hold results files. You can adapt the techniques

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING178

in Chapter 1 to a JavaScript coding environment by using the Date object and the Date.
toDateString() and Date.toTimeString() methods.

6.7 Saving Test Scenario Results to a Database
Table on the Server
Problem
You want to save your script-based UI test scenario results into a lightweight database on the
Web server.

Design
Create an Access database on the Web server. Then post the test results from the client machine
via an HTML Form element back to the server and execute an ASP/VBScript program on the
server to save the results into the Access database.

Solution
First you create an Access database on the Web server. For example, you could create an Access
database named dbResults.mdb with two columns. The first column is named scenarioID, has
type AutoNumber, and is a primary key. The second column is named scenarioResult and is type
Text. Of course, you may want to add other columns to hold information, such as the date and
time of the test run, and so on.

Next, because you need to post the scenario results back to the Web server, you need to
place the results text field in the test harness UI into an HTML Form element:

<form name="theForm" method="Post" action="..\\SaveResults.asp">
<p>Test Result = <input type="text" name="result" size="12"></p>
<p><input type="submit" name="sender" value="Save Results"></p>

</form>

You give the Form element a name and specify which script to run (SaveResults.asp) when
the form data is posted to the Web server. You also need to edit any lines of code in the test
harness that reference the result field to its new name theForm.result. For example:

theForm.result.value = " Pass ";

You then write a script called SaveResults.asp and save it on the Web server:

<html>
<body>
<%
strResult = Request.Form("result")

%>
<h4>Save Test Results Page</h4>
<%
Response.Write("<p>Scenario result = " & strResult & "
")
Response.Write("<p>Saving result to Access database dbResults.mdb</p>")

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 179

Const adOpenStatic = 3
Const adLockOptimistic = 3
Set objConnection = CreateObject("ADODB.Connection")
Set objRecordSet = CreateObject("ADODB.Recordset")
objConnection.Open _
"Provider = Microsoft.Jet.OLEDB.4.0; " & _
"Data Source = C:\Inetpub\wwwroot\TestAuto\Ch6\dbResults.mdb"

objRecordSet.Open "SELECT * FROM tblResults" , _
objConnection, adOpenStatic, adLockOptimistic
objRecordSet.AddNew
objRecordSet("scenarioResult") = strResult
objRecordSet.Update

objRecordSet.Close
objConnection.Close
Response.Write("Done")

%>
</body>

<html>

With this code in place, to manually save results after the test scenario runs, you can click
on the Save Results button. This action posts the Form element to the Web server and invokes
the SaveResults.asp script that will retrieve the test scenario result from the posted Form
object and save it into the dbResults.mdb Access database.

Comments
You may want to save your test scenario results on the Web server machine instead of the client
machine as described in Section 6.6. One way to do this is to create a lightweight Access data-
base on the Web server and write a script that saves scenario results into the database.

VBScript is used traditionally for server-side scripts, but you can use JavaScript if you
prefer. The SaveResults.asp script grabs the test scenario result from the Form using the
Request.Form() method. Next, you open a connection to the dbResults.mdb database using
the CreateObject() method, which is part of ADO technology. You can think of ADO (ActiveX
Data Objects) as a code library that adds database functionality to JavaScript and VBScript.
You can add data to a database using ADO in several ways. The simplest technique, as used in
this section, is to create a RecordSet object, fill it with the existing data in the database, add a
new row to the RecordSet, add the test scenario result to the new row, and then insert using
the RecordSet.Update() method.

If you want to save test results programmatically, you can write a saveResults() function
that directly submits the Form element containing the scenario result:

function saveResults()
{
document.all["theForm"].submit();

}

You can also indirectly submit the Form element by simulating a user click on the save-
results button:

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING180

function saveResults()
{
document.all["sender"].click();

}

When saving results to the SUT Web server, instead of saving to a database, you can save
as a text file. You would use the techniques presented in Section 6.6 by creating a Scripting.
FileSystemObject. If you use this approach, you must modify the Web server security permis-
sions to allow the virtual user/context under which the saving script executes to have
permission to write to the hard drive. Exactly how to do this varies from system to system
and can be tricky. Additionally, when creating the results file with the CreateTextFile()
method, you’ll either have to specify the full path to the file or use the MapPath() method
because the IIS Web Server interprets relative paths incorrectly for use with file operations.

6.8 Example Program: ScriptBasedUITest
This program combines several of the techniques in this chapter to create a lightweight test
automation harness to test the ASP.NET Web application shown in the right frame in Figure 6-1.
The test automation consists of three files. The first file, WebForm.aspx, is presented in the intro-
duction section of this chapter. It is a simple client-server calculator demonstration program.
The second file is named WebAuto.html. This HTML container houses two frames, one for the
Web AUT and one for the test harness code. Following is the code for WebAuto.html:

<html>
<head>
<script language="JavaScript">
var description = "Demo Test Scenario";
var whenRun = new Date();
var loadCount = 0;
var pass = true;

</script>
</head>

<frameset cols="40%,*">
<frame src="TestCode.html" name="leftFrame">
<frame src="../TheWebApp/WebApp.aspx" name="rightFrame"
onload="leftFrame.updateState();">

</frameset>
</html>

The third file that makes up the test scenario is named TestCode.html. This HTML page
houses the JavaScript test harness code. The entire page is provided in Listing 6-1. When run,
the output will be as shown in Figure 6-1 in the introduction section of this chapter. The code
in this section assumes that the automation is organized with a root folder containing two
subfolders named TheWebApp and TestAutomation. The TheWebApp folder holds the Web AUT
(WebApp.aspx). The TestAutomation folder contains the main test harness structure as a single
Web page (WebAuto.html) and the page that houses the JavaScript code which runs the test
scenario (TestCode.html).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 181

Listing 6-1. Test Harness File TestCode.html

<html>
<head>
<script language="JavaScript">
function updateState()
{
parent.loadCount++;
if (parent.loadCount > 1)
runTest();

} // updateState()

function runTest()
{
try {
if (parent.loadCount == 1)
{
logRemark("Setting TextBoxes to '7' and '5'");
logRemark("Selecting RadioButton1");
logRemark("Clicking Calculate button");
parent.rightFrame.document.theForm.TextBox1.value = "7";
parent.rightFrame.document.theForm.TextBox2.value = "5";
parent.rightFrame.document.all["RadioButton1"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 2)
{
logRemark("Verifying '12.0000'");
verify("TextBox3", "12.0000");
logRemark("Selecting RadioButton2");
logRemark("Clicking Calculate button");
parent.rightFrame.document.all["RadioButton2"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 3)
{
logRemark("Verifying '2.0000'");
verify("TextBox3", "2.0000");
logRemark("Selecting RadioButton3");
logRemark("Clicking Calculate button");
parent.rightFrame.document.all["RadioButton3"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING182

else if (parent.loadCount == 4)
{
logRemark("Verifying '35.0000'");
verify("TextBox3", "35.0000");
logRemark("Determining pass / fail");
if (parent.pass == true)
theForm.result.value = " Pass ";

else
theForm.result.value = " *FAIL* ";

logRemark("Saving result to 'results.txt'");
saveResults();
logRemark("Run at " + parent.whenRun);

}
}
catch(e) {
logRemark("Unexpected fatal error: " + e);

}
} // runTest()

function logRemark(comment)
{
var currComment = document.all["comments"].value;
var newComment = currComment + "\n" + comment;
document.all["comments"].value = newComment;

} // logRemark()

function verify(ctrl, val)
{
if (parent.rightFrame.document.all[ctrl].value != val)
parent.pass = false;

}

function saveResults()
{
var fso = new ActiveXObject("Scripting.FileSystemObject");
var f = fso.CreateTextFile("C:\\results.txt", true, false);
f.WriteLine("Description = " + parent.description);
if (parent.pass == true)
f.WriteLine("Result = Pass");

else
f.WriteLine("Result = FAIL");

f.Close();
// document.all["sender"].click();
//document.all["theForm"].submit();

} // saveResults()

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 183

</script>
</head>
<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script
</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();">
</p>
<p>Actions:</p><p><textarea id="comments" rows="15" cols="34">
</textarea></p>

<form name="theForm" method="Post" action="..\\SaveResults.asp">
<p>Test Result = <input type="text" name="result" size="12"></p>
<p><input type="submit" name="sender" value="Save Results"></p>

</form>
<p>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING184

