
XML Testing

12.0 Introduction
This chapter presents a variety of test automation techniques that involve XML data. The most
common XML-related tasks in test automation situations are reading/parsing test case data
that has been stored as XML, writing test results to external storage as XML, programmatically
modifying XML files to match a new test harness or output format, validating XML files, and
comparing two XML files for equality to determine a test case pass/fail result. The screenshot
in Figure 12-1 demonstrates XML validation and parsing. The program that generated the out-
put shown in Figure 12-1 is presented in Section 12.12.

Figure 12-1. Validating and parsing an XML file
335

C H A P T E R 1 2

■ ■ ■

Most of the example code in this chapter will use a slightly expanded version of the file
shown in Figure 12-1:

<?xml version="1.0" encoding="utf-8" ?>
<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

<testcase id="002" bvt="no">
<inputs>
<arg1>blue</arg1>
<arg2>yellow</arg2>

</inputs>
<expected>green</expected>

</testcase>

<testcase id="003" bvt="yes">
<inputs>
<arg1>white</arg1>
<arg2>black</arg2>

</inputs>
<expected>gray</expected>

</testcase>

</suite>

The preceding example is a dummy XML file of hypothetical test case data. Notice that
XML data is stored as either an element (such as <arg1>red</arg1>) or as an attribute in an
element (such as <testcase id="001" bvt="yes">). Dealing with elements and attributes, and
with a nested/hierarchical structure, are key tasks when working with XML. The five parsing
techniques in this chapter (Sections 12.1 through 12.5) all parse file testCases.xml into a test
case Suite object defined as:

namespace Utility
{
public class TestCase
{
public string id;
public string bvt;
public string arg1;
public string arg2;
public string expected;

}

CHAPTER 12 ■ XML TESTING336

public class Suite
{
public ArrayList cases = new ArrayList();
public void Display()
{
foreach (TestCase tc in cases)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.arg1 + " ");
Console.WriteLine(tc.arg2 + " " + tc.expected);

}
}

} // class Suite
} // ns Utility

The TestCase class represents a single test case and the Suite class represents a collection of
TestCase objects. Encapsulating test case data in this way instead of using individual variables
usually makes your test harnesses easier to maintain.

12.1 Parsing XML Using XmlTextReader
Problem
You want to parse an XML file using the XmlTextReader class.

Design
Iterate through each node of the XML file using the Read() and ReadElementString() methods
of the XmlTextReader class. Use the GetAttribute() method to fetch attribute data, and use the
return value from ReadElementString() to fetch element data.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite col-
lection of TestCase objects (also shown in the introduction):

Console.WriteLine("Start\n");

Utility.Suite suite = new Utility.Suite();

XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
xtr.WhitespaceHandling = WhitespaceHandling.None;
xtr.Read(); // read the XML declaration node, advance to <suite> tag

while (!xtr.EOF) //load loop
{
if (xtr.Name == "suite" && !xtr.IsStartElement()) break;

CHAPTER 12 ■ XML TESTING 337

while (xtr.Name != "testcase" || !xtr.IsStartElement())
xtr.Read(); // advance to <testcase> tag

Utility.TestCase tc = new Utility.TestCase();
tc.id = xtr.GetAttribute("id");
tc.bvt = xtr.GetAttribute("bvt");
xtr.Read(); // advance to <inputs> tag
xtr.Read(); // advance to <arg1> tag
tc.arg1 = xtr.ReadElementString("arg1"); // consumes the </arg1> tag
tc.arg2 = xtr.ReadElementString("arg2"); // consumes the </arg2> tag
xtr.Read(); // advance to <expected> tag
tc.expected = xtr.ReadElementString("expected"); // consumes </expected> tag
// we are now at an </testcase> tag
suite.cases.Add(tc);
xtr.Read(); // and now either at <testcase> tag or </suite> tag

} // load loop

xtr.Close();
suite.Display(); // show the suite of TestCases

Console.WriteLine("\nDone");

When run, this solution will produce this output:

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

The XML file has been parsed into its individual data pieces which can then be used as
needed, typically as input to a method under test.

The key to understanding this solution is to understand the Read() and ReadElementString()
methods of XmlTextReader. To an XmlTextReader object, an XML file is a sequence of nodes. For
example:

<?xml version="1.0" ?>
<alpha id="001">
<beta>123</beta>

</alpha>

There are six nodes, without counting whitespace: the XML declaration, <alpha id="001">,
<beta>, 123, </beta>, and </alpha>. Notice that attributes (id="001") are not considered XML
nodes by an XmlTextReader object.

CHAPTER 12 ■ XML TESTING338

The Read() method advances one node at a time. Unlike many Read() methods in other
classes, the System.XmlTextReader.Read() method does not return significant data. The
ReadElementString() method on the other hand returns the data between begin and end tags
of its argument and advances to the next node after the end tag. Because XML attributes are
not nodes, we have to extract attribute data using the GetAttribute() method. The statement:

xtr.WhitespaceHandling = WhitespaceHandling.None;

is important. It instructs the XmlTextReader object to ignore whitespace characters such as
blanks, tabs, and newlines. Without this statement you would have to Read() over all white-
space, which is very troublesome and error-prone.

Comments
The main loop in this solution:

while (!xtr.EOF) //load loop
{
if (xtr.Name == "suite" && !xtr.IsStartElement()) break;
// etc.

}

is not particularly elegant but is more readable than alternatives. The loop exits when at EOF or
a </suite> tag.

When marching through an XML file, you can either Read() your way one node at a time,
or get a bit more sophisticated with code such as this:

while (xtr.Name != "testcase" || !xtr.IsStartElement())
xtr.Read(); // advance to <testcase> tag

The choice of technique you use is mostly a matter of style. Parsing an XML file with
XmlTextReader has a traditional, pre-.NET feel to it. You walk sequentially through the file
using Read(), and extract data with ReadElementString() and GetAttribute(). Using
XmlTextReader is straightforward and effective and is appropriate when the structure of the
XML file being parsed is relatively simple and consistent, and when you only need to process
the XML in a forward-only manner. In general, using XmlTextReader is the fastest technique
when compared with the other parsing techniques in this chapter. Notice that because the
logic in this solution depends quite a bit on the XML file having a consistent structure, using
XmlTextReader is usually not a good idea if your XML file has an inconsistent structure. Com-
pared to other parsing techniques in this chapter, XmlTextReader operates at a lower level of
abstraction, meaning it is up to you as a programmer to keep track of where you are in the
XML file and Read() correctly.

12.2 Parsing XML Using XmlDocument
Problem
You want to parse an XML file using the XmlDocument class.

CHAPTER 12 ■ XML TESTING 339

Design
Read the entire XML file into memory using the XmlDocument.Load() method. Fetch node
collections using the SelectNodes() method then use the Attributes.GetNamedItem() and
SelectSingleNode() methods combined with the InnerText property to get the values of
attributes and elements.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

Utility.Suite suite = new Utility.Suite();

XmlDocument xd = new XmlDocument();
xd.Load("..\\..\\testCases.xml");

// get all <testcase> nodes
XmlNodeList nodelist = xd.SelectNodes("/suite/testcase");
foreach (XmlNode node in nodelist) // for each <testcase> node
{
Utility.TestCase tc = new Utility.TestCase();

tc.id = node.Attributes.GetNamedItem("id").Value;
tc.bvt = node.Attributes.GetNamedItem("bvt").Value;

XmlNode n = node.SelectSingleNode("inputs"); // get <inputs> node
tc.arg1 = n.ChildNodes.Item(0).InnerText;
tc.arg2 = n.ChildNodes.Item(1).InnerText;

tc.expected = node.ChildNodes.Item(1).InnerText;

suite.cases.Add(tc);
} // foreach <testcase> node

suite.Display();

When run, this solution will produce the exact same output as Section 12.1 (parsing with
XmlTextReader):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

CHAPTER 12 ■ XML TESTING340

XmlDocument objects are based on the notion of XML nodes and child nodes. Instead of
sequentially navigating through a file, we select sets of nodes with the SelectNodes() method,
or individual nodes with the SelectSingleNode() method. Notice that because XML distin-
guishes between attributes and elements, we must get the id and bvt attribute values with
an Attributes.GetNamedItem() method applied to an element node.

Comments
After loading the XmlDocument, we fetch all the testcase nodes at once with:

XmlNodeList nodelist = xd.SelectNodes("/suite/testcase");

Then we iterate through this list of nodes and fetch each <input> node with:

XmlNode n = node.SelectSingleNode("inputs");

and then extract the arg1 (and similarly arg2) value using:

tc.arg1 = n.ChildNodes.Item(0).InnerText;

In this statement, n is the <inputs> node, ChildNodes.Item(0) is the first element of
<inputs>, i.e., <arg1>, and the InnerText property gets the value between <arg1> and </arg1>.

The XmlDocument class is modeled on the W3C XML Document Object Model and may have
a somewhat different feel to it than many .NET Framework classes that you are familiar with.
Using the XmlDocument class is appropriate if you need to extract data in a nonsequential man-
ner, or if you are already using XmlDocument objects and want to maintain a consistent approach
to your test harness code. Because using XmlDocument reads an entire XML document into mem-
ory at the same time, using it may not be suitable in situations where the XML file being parsed
is very, very large.

In addition to the XmlDocument class, the System.Xml namespace contains a closely related
XmlDataDocument class. It is derived from the XmlDocument class and is primarily intended for
use in conjunction with DataSet objects. So, in this solution, we could have used the
XmlDataDocument class but we would not have gained any advantage by doing so.

12.3 Parsing XML with XPathDocument
Problem
You want to parse an XML file using the XPathDocument class.

Design
Read the entire XML file into memory using the XPathDocument() constructor. Create an
XPathNodeIterator object and use it to move through the XPathDocument object with the
MoveNext() method. Fetch attribute values using the GetAttibute() method. Fetch element
values using the SelectChildren() method and the Current.Value property.

CHAPTER 12 ■ XML TESTING 341

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

Utility.Suite suite = new Utility.Suite();

XPathDocument xpd = new XPathDocument("..\\..\\testCases.xml");
XPathNavigator xpn = xpd.CreateNavigator();
XPathNodeIterator xpi = xpn.Select("/suite/testcase");

while (xpi.MoveNext()) // each testcase node
{
Utility.TestCase tc = new Utility.TestCase();
tc.id = xpi.Current.GetAttribute("id", xpn.NamespaceURI);
tc.bvt = xpi.Current.GetAttribute("bvt", xpn.NamespaceURI);

XPathNodeIterator tcChild =
xpi.Current.SelectChildren(XPathNodeType.Element);

while (tcChild.MoveNext()) // each part of <testcase>
{
if (tcChild.Current.Name == "inputs")
{
XPathNodeIterator tcSubChild =

tcChild.Current.SelectChildren(XPathNodeType.Element);
while (tcSubChild.MoveNext()) // each part of <inputs>
{
if (tcSubChild.Current.Name == "arg1")
tc.arg1 = tcSubChild.Current.Value;

else if (tcSubChild.Current.Name == "arg2")
tc.arg2 = tcSubChild.Current.Value;

}
}
else if (tcChild.Current.Name == "expected")
tc.expected = tcChild.Current.Value;

}
suite.cases.Add(tc);

} // each testcase node

suite.Display();

When run, this solution will produce the same output as Section 12.1 (parsing with
XmlTextReader) and Section 12.2 (parsing with XmlDocument):

CHAPTER 12 ■ XML TESTING342

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

After loading the XPathDocument object, we get what is, in essence, a reference to the first
<testcase> node into an XPathNodeIterator object with:

XPathNavigator xpn = xpd.CreateNavigator();
XPathNodeIterator xpi = xpn.Select("/suite/testcase");

Because XPathDocument does not maintain “node identity,” we must iterate through each
<testcase> node with this loop:

while (xpi.MoveNext())

Similarly, we have to iterate through the children nodes with:

while (tcChild.MoveNext())

Comments
Using an XPathDocument object to parse XML has a hybrid feel that is part procedural and lower-
level (as in XmlTextReader), and part object oriented and higher-level (as in XmlDocument). You
can select parts of the document using the Select() method of an XPathNavigator object and
also move through the document using the MoveNext() method of an XPathNodeIterator object.

The XPathDocument class is optimized for XPath data model queries. So using it is particu-
larly appropriate when the XML file to parse is deeply nested, has a complex structure, or
requires extensive searching. You might also consider using XPathDocument if other parts of
your test harness code use that class, so that you maintain a consistent coding look and feel.
An XPathDocument object is read-only, so using XPathDocument is not appropriate if you want to
do any direct, in-memory processing of the XML file you are parsing.

12.4 Parsing XML with XmlSerializer
Problem
You want to parse an XML file using the XmlSerializer class.

Design
Prepare a class that is defined so it will accept the result of calling the Deserialize() method of
the XmlSerializer class. Then create an instance of the receptacle class and use Deserialize()
with a StreamReader object.

CHAPTER 12 ■ XML TESTING 343

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

XmlSerializer xs = new XmlSerializer(typeof(SerializerLib.Suite));
StreamReader sr = new StreamReader("..\\..\\testCases.xml");
SerializerLib.Suite suite = (SerializerLib.Suite)xs.Deserialize(sr);
sr.Close();
suite.Display();

where:

namespace SerializerLib
{
[XmlRootAttribute("suite")]
public class Suite
{
[XmlElementAttribute("testcase")]
public TestCase[] items; // changed name from xsd-generated code
public void Display() // added to xsd-generated code
{
foreach (TestCase tc in items)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.inputs.arg1 + " ");
Console.WriteLine(tc.inputs.arg2 + " " + tc.expected);

}
}

}

public class TestCase // changed name from xsd-generated code
{
[XmlAttributeAttribute()]
public string id;
[XmlAttributeAttribute()]
public string bvt;
[XmlElementAttribute("inputs")]
public Inputs inputs; // change from xsd-generated code: no array
public string expected;

}

public class Inputs // changed name from xsd-generated code
{
public string arg1;
public string arg2;

}
} // ns SerializerLib

CHAPTER 12 ■ XML TESTING344

When run, this solution will produce the same output as in Section 12.1 (parsing with
XmlTextReader), Section 12.2 (parsing with XmlDocument), and Section 12.3 (parsing with
XPathDocument):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

Using the XmlSerializer class is significantly different from using any of the other five
fundamental classes that parse XML, because the in-memory data store must be carefully
prepared beforehand. Observe that pulling the XML data into memory is accomplished in a
single statement:

SerializerLib.Suite suite = (SerializerLib.Suite)xs.Deserialize(sr);

This example uses a SerializerLib namespace to hold the definition for a Suite class that
corresponds to the testCases.xml file so that the XmlSerializer object can store the XML data
into it. The trick of course is to set up this Suite class.

Comments
There are two ways to create a class that is defined so it will accept the result of calling the
Deserialize() method of the XmlSerializer class. The first way is to carefully examine the
structure of the source XML file and then code the destination/receptacle class by hand. A
much easier approach is to use the xsd.exe command line tool that ships with Visual Studio
.NET. First, (assuming file testCases.xml is in the C: folder) issue the command:

C:\>xsd.exe testCases.xml /o:.

This means create an XSD schema definition of file testCases.xml and save the result with
default name testCases.xsd in the current directory. The intermediate .xsd file will contain a
complete structure definition of the XML file. Next, issue the command:

C:\>xsd.exe testCases.xsd /c /o:.

This means use the testCases.xsd definition file to generate a set of class definitions that
are compatible with the Deserialize() method, using the default C# language, and save with
default name testCases.cs in the current directory. Here is the original testCases.cs before
some editing:

[System.Xml.Serialization.XmlRootAttribute(Namespace="",
IsNullable=false)]

public class suite

CHAPTER 12 ■ XML TESTING 345

{
[System.Xml.Serialization.XmlElementAttribute("testcase",
Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]

public suiteTestcase[] Items;
}

public class suiteTestcase
{
[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]

public string expected;

[System.Xml.Serialization.XmlElementAttribute("inputs",
Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]

public suiteTestcaseInputs[] inputs;

[System.Xml.Serialization.XmlAttributeAttribute()]
public string id;

[System.Xml.Serialization.XmlAttributeAttribute()]
public string bvt;

}
public class suiteTestcaseInputs
{
[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]
public string arg1;

[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]

public string arg2;
}

If you examine the resulting class definition code carefully, you will eventually be able to
see the relationship between the code and the original XML file:

<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> data here)

</suite>

CHAPTER 12 ■ XML TESTING346

At this point you can copy and paste the newly created class definitions directly into your
test harness and use them as is to instantiate an object to receive the result of the Deserialize()
method. Alternatively, you can edit the auto-generated file by removing unneeded code, chang-
ing names to those that better match your original XML file, and adding additional methods
(such as a display method or get and set properties). The class definition in the solution to this
section was created using this approach.

Using the XmlSerializer class provides a very elegant solution to the problem of parsing
an XML file. Compared with the other four techniques in this chapter, XmlSerializer operates
at the highest level of abstraction, meaning that the algorithmic details are largely hidden
from you. But this gives you somewhat less control over the XML parsing process.

Using XmlSerializer for parsing is most appropriate for situations when fine-grained
control is not required, the test harness program does not make extensive use of XmlDocument
objects, the XML file is relatively shallow rather than deeply nested, and the application is not
primarily an ADO.NET application.

12.5 Parsing XML with a DataSet Object
Problem
You want to parse an XML file using a DataSet object.

Design
Read the entire XML file into a DataSet object using the ReadXml() method. Then iterate through
each DataTable in the DataSet, and extract related data by using the GetChildRows() method in
conjunction with table relation names.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

DataSet ds = new DataSet();
ds.ReadXml("..\\..\\testCases.xml");

Utility.Suite suite = new Utility.Suite();
foreach (DataRow row in ds.Tables["testcase"].Rows)
{
Utility.TestCase tc = new Utility.TestCase();
tc.id = row["id"].ToString();
tc.bvt = row["bvt"].ToString();
tc.expected = row["expected"].ToString();

DataRow[] children = row.GetChildRows("testcase_inputs"); // relation name

CHAPTER 12 ■ XML TESTING 347

tc.arg1 = (children[0]["arg1"]).ToString(); // there is only 1 row in children
tc.arg2 = (children[0]["arg2"]).ToString();

suite.cases.Add(tc);
}

suite.Display();

When run, this solution will produce the same output as in Section 12.1 (parsing with
XmlTextReader), Section 12.2 (parsing with XmlDocument), Section 12.3 (parsing with
XPathDocument), and Section 12.4 (parsing using XmlSerializer):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

We start by reading the XML file directly into a System.Data.DataSet object using the
ReadXml() method. A DataSet object can be thought of as an in-memory relational database.
The key to parsing XML using a DataSet object is to understand how XML, which is inherently
hierarchical, is mapped to a set of DataTable objects, which are inherently flat. Each level of
the source XML file will generate a table in the DataSet. Recall the structure of the source XML
file:

<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> nodes

</suite>

The top-level, <testcase>, produces a DataTable named testcase. The next level, <inputs>,
produces a DataTable named inputs. A relation named testcase_inputs is created which links
the DataTable objects. Notice that the XML root level does not generate a table and that the
lowest level (in his case the <arg> data) does not generate a table either.

CHAPTER 12 ■ XML TESTING348

Comments
In practice, when parsing XML using a DataSet object, a good approach is to do some prelimi-
nary investigation. Although you could create a custom DataSet object with completely known
characteristics, it is much quicker to let the ReadXml() method do the work and then examine
the result. Read the source XML file into a DataSet and then programmatically examine it to
determine the number and names of the DataTable objects that are created. This utility
method will usually reveal all the information you need:

// names of tables, columns, relations in ds
public static void DisplayInfo(DataSet ds)
{
foreach (DataTable dt in ds.Tables)
{
Console.WriteLine("\n===");
Console.WriteLine("Table = " + dt.TableName + "\n");
foreach (DataColumn dc in dt.Columns)
{
Console.Write("{0,-14}", dc.ColumnName);

}
Console.WriteLine("\n---");

foreach (DataRow dr in dt.Rows)
{
foreach (object data in dr.ItemArray)
{
Console.Write("{0,-14}", data.ToString());

}
Console.WriteLine();

}
Console.WriteLine("===");

} // foreach DataTable

foreach (DataRelation dr in ds.Relations)
{
Console.WriteLine("\n\nRelations:");
Console.WriteLine(dr.RelationName + "\n\n");

}

} // DisplayInfo()

The first table, testcase, holds the data that is one level deep from the XML root: id, bvt,
and expected. The second table, inputs, holds data that is two levels deep: arg1 and arg2. In
general if your XML file is n levels deep, ReadXml() will generate n-1 tables (or n-2 tables,
depending on your exact definition of levels).

Extracting the data from the parent testcase table is easy. Just iterate through each row of
the table and access by column name. To get the data from the child table inputs, get an array
of rows using the GetChildRows() method:

CHAPTER 12 ■ XML TESTING 349

DataRow[] children = row.GetChildRows("testcase_inputs"); // relation name

Because each <testcase> node has only one <inputs> child node, the children array will
only have one row. The trickiest aspect of this technique is to extract the child data:

tc.arg1 = (children[0]["arg1"]).ToString(); // there is only 1 row in children

Using the DataSet class to parse an XML file has a very relational database feel. Compared
with the other parsing techniques in this chapter, it operates at a middle level of abstraction.
The ReadXml() method hides a lot of details, but you must traverse through relational tables.

Using a DataSet object to parse XML files is particularly appropriate when your test har-
ness program is using ADO.NET classes so that you maintain a consistent look and feel. Using a
DataSet object has relatively high overhead and would not be a good choice if performance is
an issue. Because each level of an XML file generates a table, if your XML file is deeply nested,
then using DataSet would not be a good choice. If you need to perform extensive in-memory
processing of the XML file being parsed and the XML is not deeply nested, using a DataSet
approach is generally a good choice because you can easily manipulate the data stored in
DataTable objects.

12.6 Validating XML with XSD Schema
Problem
You want to validate an XML file using an XSD schema definition.

Design
Read through the XML file you wish to validate using an XmlValidatingReader object. If the
XML file is invalid, control is transferred to a delegate method where you can print an error
message. If the XML file is valid, control does not transfer to the delegate.

Solution
This code will validate file testCases.xml (shown in the introduction to this chapter) using a
schema file named testCases.xsd:

try
{
Console.WriteLine("\nStarting XML validation");
XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);
xsc.Add(null, "..\\..\\testCases.xsd");
XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
XmlValidatingReader xvr = new XmlValidatingReader(xtr);
xvr.ValidationType = ValidationType.Schema;
xvr.Schemas.Add(xsc);
xvr.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);
while (xvr.Read()); // note empty loop

CHAPTER 12 ■ XML TESTING350

Console.WriteLine("If no error message then XML is valid");
Console.WriteLine("Done");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Generic exception: " + ex.Message);
Console.ReadLine();

}

Console.WriteLine("\nDone");
Console.ReadLine();

where:

private static void ValidationCallBack(object sender, ValidationEventArgs ea)
{
Console.WriteLine("Validation error: " + ea.Message);
Console.ReadLine();

}

and file testCases.xsd is:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="suite" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="suite" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="testcase">
<xs:complexType>
<xs:sequence>
<xs:element name="inputs" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="arg1" type="xs:string"
minOccurs="1" />
<xs:element name="arg2" type="xs:string"
minOccurs="1" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="expected"
type="xs:string" minOccurs="0"
msdata:Ordinal="1" />

</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="bvt" type="xs:string" />

CHAPTER 12 ■ XML TESTING 351

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

You can generate an XSD schema definition by hand, or you can use the xsd.exe tool as
described in Section 12.4 to generate one for you to use as a starting point.

Comments
When using XML in lightweight software test automation situations, you will often need or
want to check that various XML files are valid. For example, if your test case data is stored as
XML you will likely want to validate it before launching a test run. Or if you store test results as
XML, you may want to validate the results file before distributing the results. Validating XML
with XSD schema is relatively easy. You create an XmlValidatingReader object and set the
ValidationType property to ValidationType.Schema. You add the validating schema definition
file through an XmlSchemaCollection; this approach allows multiple schema definitions to be
used against a single XML file. The only unusual aspect of the validation process is that when
you read through the XML file being validated, instead of getting a return result indicating
success or failure, a delegate method will be called if the XML is invalid, and nothing will
happen if the XML is valid. So you have to create a callback method to handle the validation
error. In this example, we would simply print the validation message.

Generating XSD schema definition files from scratch is not so much fun. A better
approach is to use the xsd.exe tool to generate an initial XSD file to be used as a starting point,
and then manually edit the generated file as needed. For example, when xsd.exe was applied
to the testCases.xml file (presented in the introduction to this chapter), the resulting XSD file
contained this:

<xs:element name="testcase">
<xs:complexType>
<xs:sequence>
<xs:element name="expected" type="xs:string" minOccurs="0"
msdata:Ordinal="1" />
<xs:element name="inputs" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="arg1" type="xs:string" minOccurs="0" />
<xs:element name="arg2" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="bvt" type="xs:string" />

</xs:complexType>
</xs:element>

CHAPTER 12 ■ XML TESTING352

This is close to, but not exactly, what is needed for this solution. Notice that the expected
result is mistakenly defined to come before the inputs, and that arg1 and arg2 were defined to
allow 0 occurrences. You can easily make changes because the XML format of XSD files is very
readable (for example, minOccurs=0) and is self-explanatory.

An alternative approach to validating XML files using XSD schema is to validate using
DTD (Document Type Definition) files. DTD is an older technology that is somewhat easier to
use than XSD, but not as powerful as XSD schema validation.

12.7 Modifying XML with XSLT
Problem
You want to generate a modified version of an XML file using XSLT (Extensible Stylesheet
Language Transformations).

Design
Create an XSLT template file, then create an XslTranform object. Use the Load() and Transform()
methods to generate the modified version of the original XML file.

Solution
Suppose you wish to modify the testCases.xml file from its original form:

<?xml version="1.0" encoding="utf-8" ?>
<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> nodes here)

</suite>

to a modified version that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<allOfTheCases>
<aCase caseID="001">
<bvt>yes</bvt>
<expRes>purple</expRes>

CHAPTER 12 ■ XML TESTING 353

<inputs>
<input1>red</input1>
<input2>blue</input2>

</inputs>
</aCase>

(other <aCase> nodes here)

</allOfTheCases>

The names of all nodes are different in the modified XML file; the bvt attribute in the orig-
inal file is replaced by an element in the modified file; and the expected result comes before
the inputs in the modified file. First, create an XSLT file like this:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<allOfTheCases>
<xsl:for-each select="//testcase">
<aCase>
<xsl:attribute name="caseID"><xsl:value-of select="@id"/></xsl:attribute>
<bvt><xsl:value-of select="@bvt"/></bvt>
<expRes><xsl:value-of select="expected"/></expRes>
<inputs>
<xsl:for-each select="inputs">
<input1><xsl:value-of select="arg1"/></input1>
<input2><xsl:value-of select="arg2"/></input2>

</xsl:for-each>
</inputs>

</aCase>
</xsl:for-each>

</allOfTheCases>

</xsl:template>
</xsl:transform>

and then programmatically apply the transform using C# code like this:

Console.WriteLine("\nStarting XSLT Transformation");
XslTransform xst = new XslTransform();
xst.Load("..\\..\\testCasesModifier.xslt");
xst.Transform("..\\..\\testCases.xml", "..\\..\\testCasesModified.xml");
Console.WriteLine("Done. New XML file is testCasesModified.xml");

CHAPTER 12 ■ XML TESTING354

Comments
You may want to generate an XML file that is a modified version of some other XML file. For
example, in a testing situation you may want to use an existing test case data file created by
some other group as input to one of your test harnesses, but you need to modify the XML to
conform to the structure expected by your harness. One way to do this is to use XSLT technology.
The problem boils down to creating the appropriate .xslt transform template. If you examine the
example in this section, you’ll see that XSLT is fairly intuitive. The xsl:for-each tag is used for
iteration; the xsl:value-of tag is used for assignment; and XPath syntax is used for specifying
particular attributes and elements. Once you have created the XSLT modification file, applying it
with the XslTranform class is also very obvious.

The potential problem with XSLT is not so much technical as it is psychological; using
XSLT has a very different feel than normal procedural-style programming. Because of this,
many testers prefer a completely different approach to generating a modified version of an
XML file, which does not use XSLT—they parse the original XML file into memory using one of
the techniques presented in this chapter, modify the in-memory image of the original file to
match the target structure, then write the modified image to file. This alternate technique is
common. However, there may be situations in which you inherit a system that makes heavy
use of XSLT.

12.8 Writing XML Using XmlTextWriter
Problem
You want to write to an XML file using the XmlTextWriter class.

Design
Use the WriteStartElement() method to write XML element tags. Use the WriteAttributeString()
method to write attribute values. Use the WriteString() method to write element values.

Solution
For example, this code:

string caseID = "0001";
string result = "Pass";
string whenRun = "01/23/2006";

XmlTextWriter xtw = new XmlTextWriter("..\\..\\Results1.xml",
System.Text.Encoding.UTF8);

xtw.Formatting = Formatting.Indented;
xtw.WriteStartDocument();
xtw.WriteStartElement("Results");
xtw.WriteStartElement("result");
xtw.WriteAttributeString("id", caseID);
xtw.WriteStartElement("passfail");
xtw.WriteString(result);

CHAPTER 12 ■ XML TESTING 355

xtw.WriteEndElement();
xtw.WriteStartElement("whenRun");
xtw.WriteString(whenRun);
xtw.WriteEndElement();
xtw.WriteEndElement();
xtw.WriteEndElement();
xtw.Close();

will produce as output:

<?xml version="1.0" encoding="utf-8"?>
<Results>
<result id="0001">
<passfail>Pass</passfail>
<whenRun>01/23/2006</whenRun>

</result>
</Results>

Comments
Writing XML results using an XmlTextWriter object is simple and straightforward. In theory,
all you need is the XmlTextWriter.WriteString() method, which simply writes its argument
to output. But if you only use WriteString() you will not get the benefit of the XmlTextWriter
class and you could just as well have used a series of StreamWriter.WriteLine() statements
to write the XML file. The preceding solution uses explicit WriteStartElement() and
WriteEndElement() calls like this:

xtw.WriteStartElement("whenRun");
xtw.WriteString(whenRun);
xtw.WriteEndElement();

Alternatively, you can use WriteElementString() like this:

xtw.WriteElementString("whenRun" , whenRun);

The XmlTextWriter class has many useful methods such as WriteComment() and WriteCData().

12.9 Comparing Two XML Files for Exact Equality
Problem
You want to compare two XML files for exact equality.

Design
Write a helper method that iterates through each file using two FileStream objects. Read each
file byte-by-byte, and return false if you hit a byte mismatch.

CHAPTER 12 ■ XML TESTING356

Solution
This method will compare two XML files for exact equality:

private static bool XMLExactlySame(string file1, string file2)
{
FileStream fs1 = new FileStream(file1, FileMode.Open);
FileStream fs2 = new FileStream(file2, FileMode.Open);

if (fs1.Length != fs2.Length) // number bytes
return false;

else
{
int b1 = 0;
int b2 = 0;

while ((b1 = fs1.ReadByte()) != -1)
{
b2 = fs2.ReadByte();
//Console.WriteLine("b1 = " + b1 + " b2 = " + b2);
if (b1 != b2)
{
fs1.Close();
fs2.Close();
return false;

}
}
fs1.Close();
fs2.Close();
return true;

}
} // XMLExactlySame()

This code assumes the two files passed in as input arguments exist. First we check the
size of the two files; if the sizes are different, the two files cannot possibly be identical. Next,
we iterate through both files, and read one byte from each, and compare the two byte values.
If the byte values differ, we know the files are different, so we can close the FileStream objects
and return false. If we make it all the way through both files, they must be identical.

Comments
In software test automation, if the system under test produces an XML file as output, you will
have to compare an actual XML file with an expected XML file. One of several ways to do this
is to store an expected XML file and then compare byte-by-byte. Because XML files are just a
particular type of text file, the technique in this section will work for any text file.

CHAPTER 12 ■ XML TESTING 357

12.10 Comparing Two XML Files for Exact Equality,
Except for Encoding
Problem
You want to compare two XML files for exact equality except for their encoding.

Design
Read each of the two files being compared into a string variable. Then compare the two strings
using the ordinary == Boolean comparison operator.

Solution

private static bool XMLExactlySameExceptEncoding(string file1, string file2)
{
FileStream fs1 = new FileStream(file1, FileMode.Open);
FileStream fs2 = new FileStream(file2, FileMode.Open);
StreamReader sr1 = new StreamReader(fs1);
StreamReader sr2 = new StreamReader(fs2);

string s1 = sr1.ReadToEnd();
string s2 = sr2.ReadToEnd();
//Console.WriteLine(s1);
//Console.WriteLine(s2);
sr1.Close();
sr2.Close();
fs1.Close();
fs2.Close();

return (s1 == s2);
}

Comments
In testing situations, you may want to compare an actual XML file with an expected XML file
but you do not care if the encoding schemes are different. In other words, if the actual and
expected XML files both have the same character data but one file is encoded using UTF-8
and the other is encoded using ANSI, the files are equivalent from your perspective. One way
to perform such a comparison is to simply read both files into string variables and compare
using the overloaded == operator. The Boolean == operator is overloaded to take into account
character encoding. This approach may not be feasible if the two XML files being compared
are very, very large. In this situation, you can adapt Section 12.9 by reading through each file a
character at a time and doing a character-by-character comparison.

CHAPTER 12 ■ XML TESTING358

12.11 Comparing Two XML Files for Canonical
Equivalence
Problem
You want to compare two XML files for canonical equivalence. You can think of canonical
equivalence as meaning “the same for most practical purposes.”

Design
Perform a C14N canonicalization on the two XML files being compared using the
XmlDsigC14NTransform class and then compare the two files in memory using two
MemoryStream objects.

Solution

// using System.Security.Cryptography.Xml;

string f1 = "..\\..\\Books1.xml";
XmlDocument xd1 = new XmlDocument();
xd1.Load(f1);

XmlDsigC14NTransform t1 = new XmlDsigC14NTransform(true);
// true = include comments

t1.LoadInput(xd1);
Stream s1 = t1.GetOutput() as Stream;
XmlTextReader xtr1 = new XmlTextReader(s1);
MemoryStream ms1 = new MemoryStream();
XmlTextWriter xtw1 = new XmlTextWriter(ms1, System.Text.Encoding.UTF8);
xtw1.WriteNode(xtr1, false);
// false = do not copy default attributes

xtw1.Flush();
ms1.Position = 0;
StreamReader sr1 = new StreamReader(ms1);
string str1 = sr1.ReadToEnd();
//Console.WriteLine(str1);

//Console.WriteLine("\n======\n");

string f2 = "..\\..\\Books2.xml";
XmlDocument xd2 = new XmlDocument();
xd2.Load(f2);
XmlDsigC14NTransform t2 = new XmlDsigC14NTransform(true);
t2.LoadInput(xd2);

CHAPTER 12 ■ XML TESTING 359

Stream s2 = t2.GetOutput() as Stream;
XmlTextReader xtr2 = new XmlTextReader(s2);
MemoryStream ms2 = new MemoryStream();
XmlTextWriter xtw2 = new XmlTextWriter(ms2, System.Text.Encoding.UTF8);
xtw2.WriteNode(xtr2, false);
xtw2.Flush();
ms2.Position = 0;
StreamReader sr2 = new StreamReader(ms2);
string str2 = sr2.ReadToEnd();
Console.WriteLine(str2);

if (str1 == str2)
Console.WriteLine("Files canonically equivalent");

else
Console.WriteLine("Files NOT canonically equivalent ");

Comments
Suppose an XML file Books1.xml looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<books>

<book>
<title isbn='1111' storeid="A1A1">

All About Apples</title>
<author>
<last>Anderson</last>
<first>Adam</first>

</author>
</book>

</books>

and suppose that a second XML file, Books2.xml, looks like this:

<books>
<book>
<title storeid="A1A1" isbn="1111">
All About Apples

</title>
<author>
<last>Anderson</last>
<first>Adam</first>

</author>
</book>

</books>

CHAPTER 12 ■ XML TESTING360

If the code in this solution is run against these two files, the message “Files canonically
equivalent” would be displayed—these two files are canonically equivalent. The whitespace
differences do not matter; the use of single-quote and double-quote characters does not
matter; XML declarations do not matter; and the order of attributes does not matter. C14N
canonical equivalence is fairly complex. It is defined by the W3C and is primarily used in
security contexts. In order to determine if an XML file has been accidentally or maliciously
changed during transmission over a network, you can compare crypto-hashes of the transmit-
ted file and the received file. However, because networks may modify the files, we need a way
to determine canonical equivalence. This explains why the XmlDsigC14NTransform class is in
the System.Security.dll assembly.

12.12 Example Program: XmlTest
The program in Listing 12-1 demonstrates XML validation using an XSD schema definition,
and XML parsing using the XmlSerializer class. When run, the output will be that shown in
Figure 12-1 in the introduction to this chapter.

Listing 12-1. Program XmlTest

using System;
using System.IO;
using System.Xml;
using System.Xml.Schema; // validation
using System.Xml.Serialization; // deserialization

namespace XmlTest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin XML techniques demonstration\n");

Console.WriteLine("Original file is: \n");
FileStream fs = new FileStream("..\\..\\TestCases.xml",

FileMode.Open);
StreamReader sr = new StreamReader(fs);
string line;
while((line = sr.ReadLine()) != null)
{
Console.WriteLine(line);

}
sr.Close(); fs.Close();

CHAPTER 12 ■ XML TESTING 361

Console.WriteLine("\nValidating original file using
rules in TestCases.xsd");

XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.ValidationEventHandler +=
new ValidationEventHandler(ValidationCallBack);
xsc.Add(null, "..\\..\\testCases.xsd");
XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
XmlValidatingReader xvr = new XmlValidatingReader(xtr);
xvr.ValidationType = ValidationType.Schema;
xvr.Schemas.Add(xsc);
xvr.ValidationEventHandler +=
new ValidationEventHandler(ValidationCallBack);
while (xvr.Read()); // note empty loop

Console.WriteLine("XML test case file is valid");

Console.WriteLine("\nParsing original file into memory
using Deserialization()");

XmlSerializer xs =
new XmlSerializer(typeof(SerializerLib.Suite));

sr = new StreamReader("..\\..\\TestCases.xml");
SerializerLib.Suite suite =
(SerializerLib.Suite)xs.Deserialize(sr);
sr.Close();
Console.WriteLine("Parsed data = \n");
suite.Display();

Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

} // Main()

private static void ValidationCallBack(object sender, ValidationEventArgs ea)
{
Console.WriteLine("Validation error: " + ea.Message);
Console.ReadLine();

}
} // class

namespace SerializerLib
{

CHAPTER 12 ■ XML TESTING362

[XmlRootAttribute("suite")]
public class Suite
{
[XmlElementAttribute("testcase")]
public TestCase[] items; // changed name from xsd-generated code
public void Display() // added to xsd-generated code
{
foreach (TestCase tc in items)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.inputs.arg1 + " ");
Console.WriteLine(tc.inputs.arg2 + " " + tc.expected);

}
}

}

public class TestCase // changed name from xsd-generated code
{
[XmlAttributeAttribute()]
public string id;
[XmlAttributeAttribute()]
public string bvt;
[XmlElementAttribute("inputs")]
public Inputs inputs; // change from xsd-generated code: no array
public string expected;

}

public class Inputs // changed name from xsd-generated code
{
public string arg1;
public string arg2;

}
} // ns SerializerLib

} // ns

CHAPTER 12 ■ XML TESTING 363

