
THE EXPERT’S VOICE® IN .NET

James D. McCaffrey

.NET Test
Automation
Recipes
A Problem-Solution Approach

Discover how to write lightweight yet powerful test tools in .NET

.NET Test Autom
ation Recipes

M
cCaffrey

Companion
eBook Available

James D. McCaffrey

.NET Test Automation
Recipes
A Problem-Solution Approach

.NET Test Automation Recipes: A Problem-Solution Approach

Copyright © 2006 by James D. McCaffrey

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-663-0

ISBN-10: 1-59059-663-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Josh Kelling
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole LeClerc
Copy Editor: Julie McNamee
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Lynn L’Heureux
Proofreader: Elizabeth Berry
Indexer: Becky Hornak
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 API Testing . 3

■CHAPTER 2 Reflection-Based UI Testing . 33

■CHAPTER 3 Windows-Based UI Testing . 65

■CHAPTER 4 Test Harness Design Patterns . 97

■CHAPTER 5 Request-Response Testing . 135

■CHAPTER 6 Script-Based Web UI Testing . 167

■CHAPTER 7 Low-Level Web UI Testing . 185

■CHAPTER 8 Web Services Testing . 207

■CHAPTER 9 SQL Stored Procedure Testing . 237

■CHAPTER 10 Combinations and Permutations . 265

■CHAPTER 11 ADO.NET Testing . 301

■CHAPTER 12 XML Testing . 335

■INDEX . 365

v

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ Windows Application Testing

■CHAPTER 1 API Testing . 3

1.0 Introduction . 3

1.1 Storing Test Case Data . 6

1.2 Reading Test Case Data . 7

1.3 Parsing a Test Case . 8

1.4 Converting Data to an Appropriate Data Type . 9

1.5 Determining a Test Case Result . 11

1.6 Logging Test Case Results . 13

1.7 Time-Stamping Test Case Results . 16

1.8 Calculating Summary Results . 17

1.9 Determining a Test Run Total Elapsed Time . 19

1.10 Dealing with null Input/null Expected Results 20

1.11 Dealing with Methods that Throw Exceptions 22

1.12 Dealing with Empty String Input Arguments . 24

1.13 Programmatically Sending E-mail Alerts on Test Case Failures . . . 26

1.14 Launching a Test Harness Automatically . 28

1.15 Example Program: ApiTest . 29

vii

■CHAPTER 2 Reflection-Based UI Testing . 33

2.0 Introduction . 33

2.1 Launching an Application Under Test . 35

2.2 Manipulating Form Properties . 39

2.3 Accessing Form Properties . 44

2.4 Manipulating Control Properties . 47

2.5 Accessing Control Properties . 50

2.6 Invoking Methods . 53

2.7 Example Program: ReflectionUITest . 58

■CHAPTER 3 Windows-Based UI Testing . 65

3.0 Introduction . 65

3.1 Launching the AUT . 66

3.2 Obtaining a Handle to the Main Window of the AUT 68

3.3 Obtaining a Handle to a Named Control . 73

3.4 Obtaining a Handle to a Non-Named Control . 75

3.5 Sending Characters to a Control . 78

3.6 Clicking on a Control . 80

3.7 Dealing with Message Boxes . 82

3.8 Dealing with Menus . 86

3.9 Checking Application State . 89

3.10 Example Program: WindowsUITest . 91

■CHAPTER 4 Test Harness Design Patterns . 97

4.0 Introduction . 97

4.1 Creating a Text File Data, Streaming Model Test Harness 100

4.2 Creating a Text File Data, Buffered Model Test Harness 104

4.3 Creating an XML File Data, Streaming Model Test Harness 108

4.4 Creating an XML File Data, Buffered Model Test Harness 113

4.5 Creating a SQL Database for Lightweight Test
Automation Storage . 117

4.6 Creating a SQL Data, Streaming Model Test Harness 119

4.7 Creating a SQL Data, Buffered Model Test Harness 123

4.8 Discovering Information About the SUT . 126

4.9 Example Program: PokerLibTest . 129

■CONTENTSviii

PART 2 ■ ■ ■ Web Application Testing

■CHAPTER 5 Request-Response Testing . 135

5.0 Introduction . 135

5.1 Sending a Simple HTTP GET Request and Retrieving
the Response . 138

5.2 Sending an HTTP Request with Authentication and Retrieving
the Response . 139

5.3 Sending a Complex HTTP GET Request and Retrieving
the Response . 140

5.4 Retrieving an HTTP Response Line-by-Line . 141

5.5 Sending a Simple HTTP POST Request to a Classic ASP
Web Page . 143

5.6 Sending an HTTP POST Request to an ASP.NET Web Application . . . 145

5.7 Dealing with Special Input Characters . 150

5.8 Programmatically Determining a ViewState Value and an
EventValidation Value . 152

5.9 Dealing with CheckBox and RadioButtonList Controls 156

5.10 Dealing with DropDownList Controls . 157

5.11 Determining a Request-Response Test Result 159

5.12 Example Program: RequestResponseTest . 162

■CHAPTER 6 Script-Based Web UI Testing . 167

6.0 Introduction . 167

6.1 Creating a Script-Based UI Test Harness Structure 170

6.2 Determining Web Application State . 172

6.3 Logging Comments to the Test Harness UI . 173

6.4 Verifying the Value of an HTML Element on the Web AUT 174

6.5 Manipulating the Value of an HTML Element on the Web AUT 176

6.6 Saving Test Scenario Results to a Text File on the Client 177

6.7 Saving Test Scenario Results to a Database Table on the Server . . 179

6.8 Example Program: ScriptBasedUITest . 181

■CONTENTS ix

■CHAPTER 7 Low-Level Web UI Testing . 185

7.0 Introduction . 185

7.1 Launching and Attaching to IE . 188

7.2 Determining When the Web AUT Is Fully Loaded into the Browser . 190

7.3 Manipulating and Examining the IE Shell . 192

7.4 Manipulating the Value of an HTML Element on the Web AUT 194

7.5 Verifying the Value of an HTML Element on the Web AUT 195

7.6 Creating an Excel Workbook to Save Test Scenario Results 198

7.7 Saving Test Scenario Results to an Excel Workbook 200

7.8 Reading Test Results Stored in an Excel Workbook 201

7.9 Example Program: LowLevelUITest . 203

■CHAPTER 8 Web Services Testing . 207

8.0 Introduction . 207

8.1 Testing a Web Method Using the Proxy Mechanism 212

8.2 Testing a Web Method Using Sockets . 214

8.3 Testing a Web Method Using HTTP . 220

8.4 Testing a Web Method Using TCP . 222

8.5 Using an In-Memory Test Case Data Store . 226

8.6 Working with an In-Memory Test Results Data Store 229

8.7 Example Program: WebServiceTest . 232

PART 3 ■ ■ ■ Data Testing

■CHAPTER 9 SQL Stored Procedure Testing . 237

9.0 Introduction . 237

9.1 Creating Test Case and Test Result Storage . 239

9.2 Executing a T-SQL Script . 241

9.3 Importing Test Case Data Using the BCP Utility Program 243

9.4 Creating a T-SQL Test Harness . 245

9.5 Writing Test Results Directly to a Text File from a T-SQL
Test Harness . 249

9.6 Determining a Pass/Fail Result When the Stored Procedure
Under Test Returns a Rowset . 252

9.7 Determining a Pass/Fail Result When the Stored Procedure
Under Test Returns an out Parameter . 254

9.8 Determining a Pass/Fail Result When the Stored Procedure
Under Test Does Not Return a Value . 256

9.9 Example Program: SQLspTest . 259

■CONTENTSx

■CHAPTER 10 Combinations and Permutations . 265

10.0 Introduction . 265

10.1 Creating a Mathematical Combination Object 267

10.2 Calculating the Number of Ways to Select k Items from n Items . . . 269

10.3 Calculating the Successor to a Mathematical Combination
Element . 271

10.4 Generating All Mathematical Combination Elements for a
Given n and k . 273

10.5 Determining the mth Lexicographical Element of a
Mathematical Combination . 275

10.6 Applying a Mathematical Combination to a String Array 278

10.7 Creating a Mathematical Permutation Object 280

10.8 Calculating the Number of Permutations of Order n 282

10.9 Calculating the Successor to a Mathematical Permutation
Element . 284

10.10 Generating All Mathematical Permutation Elements for a
Given n . 286

10.11 Determining the kth Lexicographical Element of a
Mathematical Permutation . 287

10.12 Applying a Mathematical Permutation to a String Array 291

10.13 Example Program: ComboPerm . 293

■CHAPTER 11 ADO.NET Testing . 301

11.0 Introduction . 301

11.1 Determining a Pass/Fail Result When the Expected Value
Is a DataSet . 303

11.2 Testing a Stored Procedure That Returns
a Value . 306

11.3 Testing a Stored Procedure That Returns a Rowset 309

11.4 Testing a Stored Procedure That Returns a Value into an out
Parameter . 311

11.5 Testing a Stored Procedure That Does Not Return a Value 314

11.6 Testing Systems That Access Data Without Using a Stored
Procedure . 318

11.7 Comparing Two DataSet Objects for Equality 321

11.8 Reading Test Case Data from a Text File into a SQL Table 324

11.9 Reading Test Case Data from a SQL Table into a Text File 327

11.10 Example Program: ADOdotNETtest . 329

■CONTENTS xi

■CHAPTER 12 XML Testing . 335

12.0 Introduction . 335

12.1 Parsing XML Using XmlTextReader . 337

12.2 Parsing XML Using XmlDocument . 339

12.3 Parsing XML with XPathDocument . 341

12.4 Parsing XML with XmlSerializer . 343

12.5 Parsing XML with a DataSet Object . 347

12.6 Validating XML with XSD Schema . 350

12.7 Modifying XML with XSLT . 353

12.8 Writing XML Using XmlTextWriter . 355

12.9 Comparing Two XML Files for Exact Equality 356

12.10 Comparing Two XML Files for Exact Equality, Except for
Encoding . 358

12.11 Comparing Two XML Files for Canonical Equivalence 359

12.12 Example Program: XmlTest . 361

■INDEX . 365

■CONTENTSxii

About the Author

■DR. JAMES MCCAFFREY works for Volt Information Sciences, Inc. He holds a doctorate from
the University of Southern California, a master’s in information systems from Hawaii Pacific
University, a bachelor’s in mathematics from California State University at Fullerton, and a
bachelor’s in psychology from the University of California at Irvine. He was a professor at
Hawaii Pacific University, and worked as a lead software engineer at Microsoft on key prod-
ucts such as Internet Explorer and MSN Search.

xiii

About the Technical Reviewer

■JOSH KELLING is a private consultant working in the business software industry. He is formally
educated in physics and self-taught as a software developer with nearly 10 years of experience
developing business and commercial software using Microsoft technologies. His focus has
been primarily on .NET development since it was a beta product. He also enjoys teaching,
skiing, hiking, hunting for wild mushrooms, and pool.

xv

Acknowledgments

Many people made this book possible. First and foremost, Jonathan Hassell and Elizabeth
Seymour of Apress, Inc. drove the concept, writing, editing, and publication of the entire proj-
ect. My corporate vice presidents at Volt Information Sciences, Inc., Patrick Walker and
Christina Harris, suggested the idea of this book in the first place and supported its develop-
ment. The lead technical reviewer, Josh Kelling (Kelling Consulting) did a terrific job at finding
and correcting my coding mistakes. I’m also grateful to Doug Walter (Microsoft), who con-
tributed significantly to the technical accuracy of this book. Many of the sections of this book
are based on a monthly column I write for Microsoft’s MSDN Magazine. My editors at MSDN,
Joshua Trupin and Stephen Toub, provided me with a lot of advice about writing, without
which this book would never have gotten off the ground. And finally, my staff at Volt—Shirley
Lin, Lisa Vo Carlson, and Grace Son—supplied indispensable administrative help.

Many Volt software engineers working at Microsoft acted as auxiliary technical and edito-
rial reviewers for this book. Primary technical reviewers include: Evan Kaplan, Steven Fusco,
Bruce Ritter, Peter Yan, Ron Starr, Gordon Lippa, Kirk Slota, Joanna Tao, Walter Wittel, Jay Gray,
Robert Hopkins, Sam Abolrous, Rich Bixby, Max Guernsey, Larry Briones, Kristin Jaeger, Joe
Davis, Andrew Lee, Clint Kreider, Craig Green, Daniel Bedassa, Paul Kwiatkowski, Mark Wilcox,
David Blais, Mustafa Al-Hasnawi, David Grossberg, Vladimir Abashyn, Mitchell Harter,
Michael Svob, Brandon Lake, David Reynolds, Rob Gilmore, Cyrus Jamula, Ravichandhiran
Kolandaiswamy, and Rajkumar Ramasamy.

Secondary technical reviewers include Jerry Frost, Michael Wansley, Vanarasi Antony
Swamy, Ted Keith, Chad Fairbanks, Chris Trevino, David Moy, Fuhan Tian, C.J. Eichholz, Stuart
Martin, Justice Chang, Funmi Bolonduro, Alemeshet Alemu, Lori Shih, Eric Mattoon, Luke
Burtis, Aaron Rodriguez, Ajay Bhat, Carol Snyder, Qiusheng Gao, Haik Babaian, Jonathan
Collins, Dinesh Ravva, Josh Silveria, Brian Miller, Gary Roehl, Kender Talylor, Ahlee Ly, Conan
Callen, Kathy Davis, and Florentin Ionescu.

Editorial reviewers include Christina Zubelli, Joey Gonzales, Tony Chu, Alan Vandarwarka,
Matt Carson, Tim Garner, Michael Klevitsky, Mark Soth, Michael Roshak, Robert Hawkins,
Mark McGee, Grace Lou, Reza Sorasi, Abhijeet Shah, April McCready, Creede Lambard, Sean
McCallum, Dawn Zhao, Mike Agranov, Victor Araya Cantuarias, Jason Olsan, Igor Bodi, Aldon
Schwimmer, Andrea Borning, Norm Warren, Dale Dey, Chad Long, Thom Hokama, Ying Guo,
Yong Wang, David Shockley, Allan Lockridge, Prashant Patil, Sunitha Mutnuri, Ping Du, Mark
Camp, Abdul Khan, Moss Willow, Madhavi Kandibanda, John Mooney, Filiz Kurban, Jesse
Larsen, Jeni Jordan, Chris Rosson, Dean Thomas, Brandon Barela, and Scott Lanphear.

xvii

Introduction

What This Book Is About
This book presents practical techniques for writing lightweight software test automation in a
.NET environment. If you develop, test, or manage .NET software, you should find this book
useful. Before .NET, writing test automation was often as difficult as writing the code for the
application under test itself. With .NET, you can write lightweight, custom test automation in
a fraction of the time it used to take. By lightweight automation, I mean small, dedicated test
harness programs that are typically two pages of source code or less in length and take less
than two hours to write. The emphasis of this book is on practical techniques that you can use
immediately.

Who This Book Is For
This book is intended for software developers, testers, and managers who work with .NET
technology. This book assumes you have a basic familiarity with .NET programming but does
not make any particular assumptions about your skill level. The examples in this book have
been successfully used in seminars where the audience background has ranged from begin-
ning application programmers to advanced systems programmers. The content in this book
has also been used in teaching environments where it has proven highly effective as a plat-
form for students who are learning intermediate level .NET programming.

Advantages of Lightweight Test Automation
The automation techniques in this book are intended to complement, not replace, other test-
ing paradigms, such as manual testing, test-driven development, model-based testing, open
source test frameworks, commercial test frameworks, and so on. Software test automation,
including the techniques in this book, has five advantages over manual testing. We sometimes
refer to these automation advantages with the acronym SAPES: test automation has better
Speed, Accuracy, Precision, Efficiency, and Skill-Building than manual testing. Additionally,
when compared with both open source test frameworks and commercial frameworks, light-
weight test automation has the advantage of not requiring you to travel up a rather steep
learning curve and perhaps even learning a proprietary scripting language. Compared with
commercial test automation frameworks, lightweight test automation is much less expensive
and is fully customizable. And compared with open source test frameworks, lightweight
automation is more stable in the sense that you have fewer recurring version updates and bug
fixes to deal with. But the single most important advantage of lightweight, custom test automa-
tion harnesses over commercial and open source test frameworks is subjective—lightweight
automation actively encourages and promotes creative testing, whereas commercial and open
source frameworks often tend to direct the types of automation you create to the types of tests
that are best supported by the framework. The single biggest disadvantage of lightweight test
automation is manageability. Because lightweight test harnesses are so easy to write, if you

xix

aren’t careful, your testing effort can become overwhelmed by the sheer number of test har-
nesses, test case data, and test case result files you create. Test process management is outside
the scope of this book, but it is a challenging topic you should not underestimate when writing
lightweight test automation.

Coding Issues
All the code in this book is written in the C# language. Because of the unifying influence of the
underlying .NET Framework, you can refactor the code in this book to Visual Basic .NET with-
out too much trouble if necessary. All the code in this book was tested and ran successfully on
both Windows XP Professional (SP2) and Windows Server 2003, and with Visual Studio .NET
2003 (with Framework 1.1) and SQL Server 2000. The code was also tested on Visual Studio
2005 (with Framework 2.0) and SQL Server 2005; however, if you are developing in that envi-
ronment, you’ll have to make a few minor changes. I’ve coded the examples so that any
changes you have to make for VS 2005 and SQL Server 2005 are flagged quickly. I decided that
presenting just code for VS 2003 and SQL Server 2000 was a better approach than to sprinkle
the book text with many short notes describing the minor development platform differences
for VS 2005 and SQL Server 2005. The code in this book is intended strictly for 32-bit systems
and has not been tested against 64-bit systems.

If you are new to software test automation, you’ll quickly find that coding as a tester is
significantly different from coding as a developer. Most of the techniques in this book are
coded using a traditional, scripting style, rather than in an object-oriented style. I’ve found that
automation code is easier to understand when written in a scripting style but this is a matter of
opinion. Also, most of the code examples are not parameterized or packaged as methods.
Again, this is for clarity. Most of the normal error-checking code, such as checking the values of
input parameters to methods, is omitted. Error-traps are absolutely essential in production test
automation code (after all, you are expecting to find errors) but error-checking code is often
three or four times the size of the core code being checked. The code in this book is specifically
designed for you to modify, which includes wrapping into methods, adding error-checks,
incorporating into other test frameworks, and encapsulating into utility classes and libraries.

Most of the chapters in this book present dummy applications to test against. By design,
these dummy applications are not examples of good coding style, and these applications under
test often contain deliberate errors. This keeps the size of the dummy applications small and
also simulates the unrefined nature of an application’s state during the development process.
For example, I generally use default control names such as textBox1 rather than use descriptive
names, I keep local variable names short (such as s for a string variable), I sometimes place
multiple statements on the same line, and so forth. I’ve actually left a few minor “severity 4”
bugs (typographical errors) in the screenshots in this book; you might enjoy looking for them.

In most cases, I’ve tried to be as accurate as possible with my terminology. For example, I
use the term method when dealing with a subroutine that is a field/member in a C# class, and
I use the term function when referring to a C++ subroutine in a Win32 API library. However, I
make exceptions when I feel that a slightly incorrect term is more understandable or readable.
For example, I sometimes use the term string variable instead of the more accurate string
object when referring to a C# string type item.

This book uses a problem-solution structure. This approach has the advantage of organiz-
ing various test automation tasks in a convenient way. But to keep the size of the book
reasonable, most of the solutions are not complete, standalone blocks of code. This means

■INTRODUCTIONxx

that I often do not declare variables, explicitly discuss the namespaces and project references
used in the solution, and so on. Many of the solutions in a chapter refer to other solutions
within the same chapter, so you’ll have to make reasonable assumptions about dependencies
and how to turn the solution code into complete test harnesses. To assist you in understand-
ing how the sections of a chapter work together, the last section of every chapter presents a
complete, standalone program.

Contents of This Book
In most computer science books, the contents of the book are summarized in the introduction.
I will forego that practice and say instead that the best way to get a feel for what is contained in
this book is to scan the table of contents; I know that’s what I always do. That said however, let
me mention four specific topics in this book that have generated particular interest among my
colleagues. Chapter 1, “API Testing,” is in many ways the most fundamental type of all software
testing. If you are new to software testing, you will not only learn useful testing techniques, but
you’ll also learn many of the basic principles of software testing. Chapter 3, “Windows-Based
UI Testing,” presents powerful techniques to manipulate an application through its user inter-
face. Even software testers with many years of experience are surprised at how easy UI test
automation is using .NET and the techniques in that chapter. Chapter 5, “Request-Response
Testing,” demonstrates the basic techniques to test any Web-based application. Web developers
and testers are frequently surprised at how powerful these techniques are in a .NET environ-
ment. Chapter 10, “Combinations and Permutations,” gives you the tools you need to
programmatically generate test cases that take into account all combinations and rearrange-
ments of input values. Both new and experienced testers have commented that combinatorics
with .NET makes test case generation significantly more efficient than previously.

Using the Code in This Book
This book is intended to provide practical help for you in developing and testing software. This
means that, within reason, you may use the code in this book in your systems and documenta-
tion. Obvious exceptions include situations where you are reproducing a significant portion of
the code in this book on a Web site or magazine article, or using examples in a conference talk,
and so on. Most authors, including me, appreciate citations if you use examples from their
book in a paper or article. All code is provided without warranty of any kind.

■INTRODUCTION xxi

Windows Application
Testing

P A R T 1

■ ■ ■

API Testing

1.0 Introduction
The most fundamental type of software test automation is automated API (Application
Programming Interface) testing. API testing is essentially verifying the correctness of the
individual methods that make up your software system rather than testing the overall system
itself. API testing is also called unit testing, module testing, component testing, and element
testing. Technically, the terms are very different, but in casual usage, you can think of them as
having roughly the same meaning. The idea is that you must make sure the individual build-
ing blocks of your system work correctly; otherwise, your system as a whole cannot be correct.
API testing is absolutely essential for any significant software system. Consider the Windows-
based application in Figure 1-1. This StatCalc application calculates the mean of a set of
integers. Behind the scenes, StatCalc references a MathLib.dll library, which contains meth-
ods named ArithmeticMean(), GeometricMean(), and HarmonicMean().

Figure 1-1. The system under test (SUT)

3

C H A P T E R 1

■ ■ ■

The goal is to test these three methods, not the whole StatCalc application that uses them.
The program being tested is often called the SUT (system under test), AUT (application under
test), or IUT (implementation under test) to distinguish it from the test harness system. The
techniques in this book use the term AUT.

The methods under test are housed in a namespace MathLib with a single class named
Methods and have the following signatures:

namespace MathLib
{
public class Methods
{
public static double ArithmeticMean(params int[] vals)
{
// calculate and return arithmetic mean

}

private static double NthRoot(double x, int n)
{
// calculate and return the nth root;

}

public double GeometricMean(params int[] vals)
{
//use NthRoot to calculate and return geometric mean

}

public static double HarmonicMean(params int[] vals)
{
// this method not yet implemented

}

} // class Methods
} // ns MathLib

Notice that the ArithmeticMean() method is a static method, GeometricMean() is an
instance method, and HarmonicMean() is not yet ready for testing. Handling static methods,
instance methods, and incomplete methods are the three most common situations you’ll deal
with when writing lightweight API test automation. Each of the methods under test accepts a
variable number of integer arguments (as indicated by the params keyword) and returns a type
double value. In most situations, you do not test private helper methods such as NthRoot().
Any errors in a helper will be exposed when testing the method that uses the helper. But if you
have a helper method that has significant complexity, you’ll want to write dedicated test cases
for it as well by using the techniques described in this chapter.

Manually testing this API would involve creating a small tester program, copying the
Methods class into the program, hard-coding some input values to one of the methods under
test, running the stub program to get an actual result, visually comparing that actual result

CHAPTER 1 ■ API TESTING4

with an expected result to determine a pass/fail result, and then recording the result in an
Excel spreadsheet or similar data store. You would have to repeat this process hundreds of
times to even begin to have confidence that the methods under test work correctly. A much
better approach is to write test automation. Figure 1-2 shows a sample run of test automation
that uses some of the techniques in this chapter. The complete program that generated the
program shown in Figure 1-2 is presented in Section 1.15.

Figure 1-2. Sample API test automation run

Test automation has five advantages over manual testing:

• Speed: You can run thousands of test cases very quickly.

• Accuracy: Not as susceptible to human error, such as recording an incorrect result.

• Precision: Runs the same way every time it is executed, whereas manual testing often
runs slightly differently depending on who performs the tests.

• Efficiency: Can run overnight or during the day, which frees you to do other tasks.

• Skill-building: Interesting and builds your technical skill set, whereas manual testing is
often mind-numbingly boring and provides little skill enhancement.

The following sections present techniques for preparing API test automation, running API
test automation, and saving the results of API test automation runs. Additionally, you’ll learn
techniques to deal with tricky situations, such as methods that can throw exceptions or that
can accept empty string arguments. The following sections also show you techniques to man-
age API test automation, such as programmatically sending test results via e-mail.

CHAPTER 1 ■ API TESTING 5

1.1 Storing Test Case Data

Problem
You want to create and store API test case data in a simple text file.

Design
Use a colon-delimited text file that includes a unique test case ID, one or more input values,
and one or more expected results.

Solution

0001:ArithmeticMean:2 4 8:4.6667
0002:ArithmeticMean:1 5:3.0000
0003:ArithmeticMean:1 2 4 8 16 32:10.5000

Comments
When writing automated tests, you can store test case data externally to the test harness or
you can embed the data inside the harness. In general, external test case data is preferable
because multiple harnesses can share the data more easily, and the data can be more easily
modified. Each line of the file represents a single test case. Each case has four fields separated
by the ‘:’ character—test case ID, method to test, test case inputs separated by a single blank
space, and expected result. You will often include additional test case data, such as a test case
title, description, and category. The choice of delimiting character is arbitrary for the most
part. Just make sure that you don’t use a character that is part of the inputs or expected values.
For instance, the colon character works nicely for numeric methods but would not work well
when testing methods with URLs as inputs because of the colon that follows “http”. In many
lightweight test-automation situations, a text file is the best approach for storage because of
simplicity. Alternative approaches include storing test case data in an XML file or SQL table.
Weaknesses of using text files include their difficulty at handling inherently hierarchical data
and the difficulty of seeing spurious control characters such as extra <CR><LF>s.

The preceding solution has only three test cases, but in practice you’ll often have thou-
sands. You should take into account boundary values (using input values exactly at, just below,
and just above the defined limits of an input domain), null values, and garbage (invalid) val-
ues. You’ll also create cases with permuted (rearranged) input values like

0002:ArithmeticMean:1 5:3.0000
0003:ArithmeticMean:5 1:3.0000

Determining the expected result for a test case can be difficult. In theory, you’ll have a
specification document that precisely describes the behavior of the method under test. Of
course, the reality is that specs are often incomplete or nonexistent. One common mistake
when determining expected results, and something you should definitely not do, is to feed
inputs to the method under test, grab the output, and then use that as the expected value. This
approach does not test the method; it just verifies that you get the same (possibly incorrect)
output. This is an example of an invalid test system.

CHAPTER 1 ■ API TESTING6

During the development of your test harness, you should create some test cases that delib-
erately generate a fail result. This will help you detect logic errors in your harness. For example:

0004:ArithmeticMean:1 5:6.0000:deliberate failure

In general, the term API testing is used when the functions or methods you are testing are
stored in a DLL. The term unit testing is most often used when the methods you are testing are
in a class (which of course may be realized as a DLL). The terms module testing, component
testing, and element testing are more general terms that tend to be used when testing functions
and methods not realized as a DLL.

1.2 Reading Test Case Data

Problem
You want to read each test case in a test case file stored as a simple text file.

Design
Iterate through each line of the test case file using a while loop with a System.IO.StreamReader
object.

Solution

FileStream fs = new FileStream("..\\..\\TestCases.txt", FileMode.Open);
StreamReader sr = new StreamReader(fs);

string line;

while ((line = sr.ReadLine()) != null)
{
// parse each test case line
// call method under test
// determine pass or fail
// log test case result

}

sr.Close();
fs.Close();

Comments
In general, console applications, rather than Windows-based applications, are best suited for
lightweight test automation harnesses. Console applications easily integrate into legacy test
systems and can be easily manipulated in a Windows environment. If you do design a harness
as a Windows application, make sure that it can be fully manipulated from the command line.

CHAPTER 1 ■ API TESTING 7

This solution assumes you have placed a using System.IO; statement in your harness so
you can access the FileStream and StreamReader classes without having to fully qualify them.
We also assume that the test case data file is named TestCases.txt and is located two directo-
ries above the test harness executable. Relative paths to test case data files are generally better
than absolute paths like C:\\Here\\There\\TestCases.txt because relative paths allow you to
move the test harness root directory and subdirectories as a whole without breaking the har-
ness paths. However, relative paths may break your harness if the directory structure of your
test system changes. A good alternative is to parameterize the path and name of the test case
data file:

static void Main(string[] args)
{
string testCaseFile = args[0];
FileStream fs = new FileStream(testCaseFile, FileMode.Open);
// etc.

}

Then you can call the harness along the lines of

C:\Harness\bin\Debug>Run.exe ..\..\TestCases.txt

In this solution, FileStream and StreamReader objects are used. Alternatively, you can use
static methods in the System.IO.File class such as File.Open(). If you expect that two or more
test harnesses may be accessing the test case data file simultaneously, you can use the over-
loaded FileStream constructor that includes a FileShare parameter to specify how the file will
be shared.

1.3 Parsing a Test Case

Problem
You want to parse the individual fields of a character-delimited test case.

Design
Use the String.Split() method, passing as the input argument the delimiting character and
storing the return value into a string array.

Solution

string line, caseID, method;
string[] tokens, tempInput;
string expected;

while ((line = sr.ReadLine()) != null)

CHAPTER 1 ■ API TESTING8

{
tokens = line.Split(':');
caseID = tokens[0];
method = tokens[1];
tempInput = tokens[2].Split(' ');
expected = tokens[3];
// etc.

}

Comments
After reading a line of test case data into a string variable line, calling the Split() method with
the colon character passed in as an argument will break the line into the parts between the
colons. These substrings are assigned to the string array tokens. So, tokens[0] will hold the
first field, which is the test case ID (for example “001”), tokens[1] will hold the string identify-
ing the method under test (for example “ArithmeticMean”), tokens[2] will hold the input
vector as a string (for example “2 4 8”), and tokens[3] will hold the expected value (for exam-
ple “4.667”). Next, you call the Split() method using a blank space argument on tokens[2]
and assign the result to the string array tempInput. If tokens[2] has “2 4 8”, then tempInput[0]
will hold “2”, tempInput[1] will hold “4”, and tempInput[2] will hold “8”.

If you need to use more than one separator character, you can create a character array
containing the separators and then pass that array to Split(). For example,

char[] separators = new char[]{'#',':','!'};
string[] parts = line.Split(separators);

will break the string variable line into pieces wherever there is a pound sign, colon, or exclama-
tion point character and assign those substrings to the string array parts.

The Split() method will satisfy most of your simple text-parsing needs for lightweight test-
automation situations. A significant alternative to using Split() is to use regular expressions.
One advantage of using regular expressions is that they are more powerful, in the sense that you
can get a lot of parsing done in very few lines of code. One disadvantage of regular expressions is
that they are harder to understand by those who do not use them often because the syntax is rel-
atively unusual compared with most C# programming constructs.

1.4 Converting Data to an Appropriate Data Type

Problem
You want to convert your test case input data or expected result from type string into some
other data type, so you can pass the data to the method under test or compare the expected
result with an actual result.

Design
Perform an explicit type conversion with the appropriate static Parse() method.

CHAPTER 1 ■ API TESTING 9

Solution

int[] input = new int[tempInput.Length];
for (int i = 0; i < input.Length; ++i)
input[i] = int.Parse(tempInput[i]);

Comments
If you store your test case data in a text file and then parse the test case inputs, you will end up
with type string. If the method under test accepts any data type other than string you need to
convert the inputs. In the preceding solution, if the string array tempInput holds {“2”,”4”,”8”}
then you first create an integer array named input with the same size as tempInput. After the
loop executes, input[0] will hold 2 (as an integer), input[1] will hold 4, and input[2] will hold 8.
Including type string, the C# language has 14 data types that you’ll deal with most often as
listed in Table 1-1.

Table 1-1. Common C# Data Types and Corresponding .NET Types

C# Type Corresponding .NET Type

int Int32

short Int16

long Int64

uint Uint32

ushort Uint16

ulong Uint64

byte Byte

sbyte Sbyte

char Char

bool Boolean

float Single

double Double

decimal Decimal

Each of these C# data types supports a static Parse() method that accepts a string argument
and returns the calling data type. For example,

string s1 = "345.67";
double d = double.Parse(s1);
string s2 = "true";
bool b = bool.Parse(s2);

will assign numeric 345.67 to variable d and logical true to b. An alternative to using Parse() is
to use static methods in the System.Convert class. For instance,

CHAPTER 1 ■ API TESTING10

string s1 = "345.67";
double d = Convert.ToDouble(s1);
string s2 = "true";
bool b = Convert.ToBoolean(s2);

is equivalent to the preceding Parse() examples. The Convert methods transform to and from
.NET data types (such as Int32) rather than directly to their C# counterparts (such as int). One
advantage of using Convert is that it is not syntactically C#-centric like Parse() is, so if you
ever recast your automation from C# to VB.NET you’ll have less work to do. Advantages of
using the Parse() method include the fact that it maps directly to C# data types, which makes
your code somewhat easier to read if you are in a 100% C# environment. In addition, Parse()
is more specific than the Convert methods, because it accepts only type string as a parameter
(which is exactly what you need when dealing with test case data stored in a text file).

1.5 Determining a Test Case Result

Problem
You want to determine whether an API test case passes or fails.

Design
Call the method under test with the test case input, fetch the return value, and compare the
actual result with the expected result read from the test case.

Solution
string method, expected;
double actual = 0.0;

if (method == "ArithmeticMean")
{
actual = MathLib.Methods.ArithmeticMean(input);
if (actual.ToString("F4") == expected)
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

}
else
{
Console.WriteLine("Method not recognized");

}

Comments
After reading data for a test case, parsing that data, and converting the test case input to an
appropriate data type if necessary, you can call the method under test. For your harness to be

CHAPTER 1 ■ API TESTING 11

able to call the method under test, you must add a project reference to the DLL (in this exam-
ple, MathLib) to the harness. The preceding code first checks to see which method the data will
be applied to. In a .NET environment, methods are either static or instance. ArithmeticMean()
is a static method, so it is called directly using its class context, passing in the integer array
input as the argument, and storing the return result in the double variable actual. Next, the
return value obtained from the method call is compared with the expected return value (sup-
plied by the test case data). Because the expected result is type string, but the actual result is
type double, you must convert one or the other. Here the actual result is converted to a string
with four decimal places to match the format of the expected result. If we had chosen to con-
vert the expected result to type double

if (actual == double.Parse(expected))
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

we would have ended up comparing two double values for exact equality, which is problematic
as types double and float are only approximations. As a general rule of thumb, you should con-
vert the expected result from type string except when dealing with type double or float as in
this example.

GeometricMean()is an instance method, so before calling it, you must instantiate a
MathLib.Methods object. Then you call GeometricMean() using its object context. If the actual
result equals the expected result, the test case passes, and you print a pass message to console:

if (method == "GeometricMean")
{
MathLib.Methods m = new MathLib.Methods();
actual = m.GeometricMean(input);
if (actual.ToString("F4") == expected)
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

}

You’ll usually want to add additional information such as the test case ID to your output
statements, for example:

Console.WriteLine(caseID + " Pass");

For test cases that fail, you’ll often want to print the actual and expected values to help
diagnose the failure, for example:

Console.WriteLine(caseID + " *FAIL* " + method + " actual = " +
actual.ToString("F4") + " expected = " + expected);

A design question you must answer when writing API tests is how many methods will each
lightweight harness test? In many situations, you’ll write a different test harness for every method
under test; however, you can also combine testing multiple methods in a single harness. For
example, to test both the ArithmeticMean() and GeometricMean() methods, you could combine
test case data into a single file:

CHAPTER 1 ■ API TESTING12

0001:ArithmeticMean:2 4 8:4.6667
0002:ArithmeticMean:1 5:3.0000
0004:GeometricMean :1 2 4 8 16 32:6.6569
0006:GeometricMean :2 4 8:4.0000

(The trailing blank space in “GeometricMean ” is for readability only.) Then you can modify
the test harness logic to branch on the value for the method under test:

if (method == "ArithmeticMean")
{
// code to test ArithmeticMean here

}
else if (method == "GeometricMean ")
{
// code to test GeometricMean here

}
else
{
Console.WriteLine("Unknown method"");

}

The decision to combine testing multiple methods in one harness usually depends on how
close the methods’ signatures are to each other. If the signatures are close as in this example
(both methods accept a variable number of integer arguments and return a double), then com-
bining their tests may save you time. If your methods’ signatures are very different, then you’ll
usually be better off writing separate harnesses.

When testing an API method, you must take into account whether the method is stateless
or stateful. Most API methods are stateless, which means that each call is independent. Or put
another way, each call to a stateless method with a given input set will produce the same
result. Sometimes we say that a stateless method has no memory. On the other hand, some
methods are stateful, which means that the return result can vary. For example, suppose you
have a Fibonacci generator method that returns the sum of its two previous integer results. So
the first and second calls return 1, the third call returns 2, the fourth call returns 3, the fifth call
returns 5, and so on. When testing a stateful method, you must make sure your test harness
logic prepares the method’s state correctly.

Your test harness must be able to access the API methods under test. In most cases, you
should add a project reference to the DLL that is housing the API methods. However, in some
situations, you may want to physically copy the code for the methods under test into your test
harness. This approach is necessary when testing a private helper method (assuming you do
not want to change the method’s access modifier from public to private).

1.6 Logging Test Case Results

Problem
You want to save test case results to external storage as a simple text file.

CHAPTER 1 ■ API TESTING 13

Design
Inside the main test case processing loop, use a System.IO.StreamWriter object to write a test
case ID and a pass or fail result.

Solution

// open StreamReader sr here

FileStream ofs = new FileStream("..\\..\\TestResults.txt",
FileMode.CreateNew);

StreamWriter sw = new StreamWriter(ofs);

string line, caseID, method, expected;
double actual = 0.0;

while ((line = sr.ReadLine()) != null)
{
// parse "line" here
if (method == "ArithmeticMean")
{
actual = MathLib.Methods.ArithmeticMean(input);
if (actual.ToString("F4") == expected)
sw.WriteLine(caseID + " Pass");

else
sw.WriteLine(caseID + " *FAIL*");

}
else
{
sw.WriteLine(caseID + " Unknown method");

}
} // while

sw.Close();
ofs.Close();

Comments
In many situations, you’ll want to write your test case results to external storage instead of, or
in addition to, displaying them in the command shell. The simplest form of external storage is
a text file. Alternatives include writing to a SQL table or an XML file. You create a FileStream
object and a StreamWriter object to write test case results to external storage. In this solution,
the FileMode.CreateNew argument creates a new text file named TestResults.txt two directo-
ries above the test harness executable. Using a relative file path allows you to move your entire
test harness directory structure if necessary. Then you can use the StreamWriter object to
write test results to external storage just as you would to the console.

CHAPTER 1 ■ API TESTING14

When passing in a FileMode.CreateNew “TestResults.txt” argument, if a file with the
name TestResults.txt already exists, an exception will be thrown. You can avoid this by using
a FileMode.Create argument, but then any existing TestResults.txt file will be overwritten,
and you could lose test results. One strategy is to parameterize the test results file name

static void Main(string[] args)
{
string testResultsFile = args[0];
FileStream ofs = new FileStream(testResultsFile,

FileMode.CreateNew);
StreamWriter sw = new StreamWriter(ofs);
// etc.

}

and pass in a new manually generated test results file name for each run:

C:\Harness\bin\Debug>Run.exe Results-12-25-06.txt

Alternatives include writing results to a programmatically time-stamped file.
Our examples so far have either written test results to the command shell or to a .txt file,

but you can write results to both console and external storage:

if (actual.ToString("F4") == expected)
{
Console.WriteLine(caseID + " Pass");
sw.WriteLine(caseID + " Pass");

}
else
{
Console.WriteLine(caseID + " *FAIL*");
sw.WriteLine(caseID + " *FAIL*");

}

When the StreamWriter.WriteLine() statement executes, it does not actually write results to
your output file. Results are buffered and then flushed out only when the StreamWriter.Close()
statement executes. You can force results to be written by explicitly issuing a StreamWriter.Flush()
statement. This is usually most important when you have a lot of test cases or when you catch an
exception—be sure to close any open streams in either the catch block or the finally block so that
buffered results will be written to file and not lost:

catch(Exception ex)
{
Console.WriteLine("Unexpected fatal error: " + ex.Message);
sw.Close();
// close other open streams

}

CHAPTER 1 ■ API TESTING 15

1.7 Time-Stamping Test Case Results

Problem
You want to time-stamp your test case results so you can distinguish the results of different
test runs.

Design
Use the DateTime.Now property passed as an argument to the static CreateDirectory() method
to create a time-stamped folder. Alternatively, you can pass DateTime.Now to the FileStream()
constructor to create a time-stamped file name.

Solution

string folder = "Results" + DateTime.Now.ToString("s");
folder = folder.Replace(":","-");
Directory.CreateDirectory("..\\..\\" + folder);
string path = "..\\..\\" + folder + "\\TestResults.txt";
FileStream ofs = new FileStream(path, FileMode.Create);
StreamWriter sw = new StreamWriter(ofs);

Comments
You create a folder name using the DateTime.Now property, which grabs the current system date
and time. Passing an “s” argument to the ToString() method returns a date-time string in a
sortable pattern like “2006-07-30T13:57:00”. You can use many other formatting arguments
with ToString(), but a sortable pattern will help you manage test results better than a non-
sortable pattern. You must replace the colon character with some other character (here we use
a hyphen) because colons are not valid in a path or file name.

Next, you create the time-stamped folder using the static CreateDirectory() method, and
then you can pass the entire path and file name to the FileStream constructor. After instanti-
ating a StreamWriter object using the FileStream object, you can use the StreamWriter object
to write into a file named TestResults.txt, which is located inside the time-stamped folder.

A slight variation on this idea is to write all results to the same folder but time-stamp their
file names:

string stamp = DateTime.Now.ToString("s");
stamp = stamp.Replace(":","-");
string path = "..\\..\\TestResults-" + stamp + ".txt";
FileStream ofs = new FileStream(path, FileMode.Create);
StreamWriter sw = new StreamWriter(ofs);

This variation assumes that an arbitrary result directory is located two directories above the
test harness executable directory. If the directory does not exist, an exception is thrown. The test
case result file name becomes the time-stamp value appended to the string TestResults- with a
.txt extension added, for example, TestResults-2006-12-25T23-59-59.txt.

CHAPTER 1 ■ API TESTING16

1.8 Calculating Summary Results

Problem
You want to tally your test case results to track the number of test cases that pass and the
number of cases that fail.

Design
Use simple integer counters initialized to 0 at the beginning of each test run.

Solution

int numPass = 0, numFail = 0;

while ((line = sr.ReadLine()) != null)
{
// parse "line" here
if (method == "ArithmeticMean")
{
actual = MathLib.Methods.ArithmeticMean(input);
if (actual.ToString("F4") == expected)
{
Console.WriteLine("Pass");
++numPass;

}
else
{
Console.WriteLine("*FAIL*");
++numFail;

}
}
else
{
Console.WriteLine("Unknown method");
// no effect on numPass or numFail

}
} // loop

Console.WriteLine("Number cases passed = " + numPass);
Console.WriteLine("Number cases failed = " + numFail);
Console.WriteLine("Total cases = " + (numPass + numFail));
double percent = ((double)numPass) / (numPass + numFail);
Console.WriteLine("Percent passed = " + percent.ToString("P"));

CHAPTER 1 ■ API TESTING 17

Comments
It is often useful to calculate and record summary metrics such as the total number of test cases
that pass and the number that fail. If you track these numbers daily, you can gauge the progress
of the quality of your software system. You might also want to record and track the percentage
of test cases that pass because most product specifications have exit criteria such as, “for mile-
stone MM3, a full API test pass will achieve a 99.95% test case pass rate.” You can declare
integer variables and initialize them to 0 outside the main test loop. If a test case passes, you
increment the pass counter; if the test case fails, you increment the fail counter. After all tests
have been run, you can display your summary metrics and/or write them to external storage.

In the preceding solution we track the number of test cases that pass and the number that
fail and then add them to determine the total number of cases run. You may also want to ini-
tialize and insert a counter numCases that increments after every test case so you can verify
your test harness logic:

if (actual.ToString("F4") == expected)
{
Console.WriteLine("Pass");
++numPass;
++numCases;

}
else
{
Console.WriteLine("*FAIL*");
++numFail;
++numCases;

}
// etc.
if ((numPass + numFail) != numCases)
Console.WriteLine("Warning: Counter logic failure");

When calculating a percent pass rate, be careful to cast either the numerator or denomi-
nator to type double so that the result of the division operation is implicitly converted to type
double:

double percent = ((double)numPass) / (numPass + numFail);

If you don’t cast, you will be performing integer division and always get either 1.0 (100%)
or 0.0 (0%) for the result. Instead of using an explicit C# cast to type double, you can perform
an implicit cast by multiplying by 1.0:

double percent = (numPass * 1.0) / (numPass + numFail);

This old technique has the advantage of being language-independent but the disadvantage
of doing more work than is necessary.

CHAPTER 1 ■ API TESTING18

1.9 Determining a Test Run Total Elapsed Time

Problem
You want to determine the total elapsed run time for a test run.

Design
Use the DateTime.Now property to record the time when the test run started and when the test
run ended. Then use a TimeSpan object to calculate the elapsed time for the test run.

Solution

DateTime startTime = DateTime.Now;

while ((line = sr.ReadLine()) != null)
{
// run tests

}

DateTime endTime = DateTime.Now;
TimeSpan elapsedTime = endTime - startTime;
Console.WriteLine("Elapsed time = " + elapsedTime.ToString());

Comments
Calling the DateTime.Now property retrieves the current system time on the test harness
machine. You fetch a start time before your tests execute and an end time after the test run
concludes. To determine the elapsed time, you find the difference between the start and end
times. DateTime objects support an overloaded subtraction operator (“–”) that returns a
TimeSpan object. You can think of a DateTime value as being an instant in time and a TimeSpan
value as being a time-duration.

You have to be somewhat careful about exactly where you place the statements that find
the test run start and end times. The guiding principle is to place them as much as possible so
that you capture time spent executing your tests, but not so much that you are capturing test
harness overhead activities that can vary.

The purpose of recording and storing/displaying the total elapsed time of your daily test
run is so that you can detect any significant change in the performance characteristics of your
API methods. If the total elapsed time of a test run increases greatly one day, then you need to
investigate. If you discover that a code change in one of the methods under test produced the
performance degradation, you’ll find out immediately and can decide to recast the code or
accept the performance penalty. If a code change was not the cause of the performance hit,
then you may have a problem with your test harness system (for example some rogue process
running and using up CPU time.) Another cause of a change in test run elapsed time would be
increasing (or decreasing) the number of tests in the test case data file.

CHAPTER 1 ■ API TESTING 19

One of the advantages of test automation is that you can execute many thousands of test
cases quickly. When you are dealing with a huge number of test case results, you may want to
log only summary metrics (the number of cases that passed and the number that failed) and
details only about failed test cases. In a situation like this, determining and logging the test
run elapsed time is important because it can uncover test harness problems that can be hid-
den when you don’t have detailed test results to examine.

1.10 Dealing with null Input/null Expected Results

Problem
You want to verify the correct handling of null arguments passed to API methods under test.

Design
Use a special string token to represent null in your test case data file. Add logic to your test
harness that converts the null-token to a null input value.

Solution
Suppose the original ArithmeticMean() method under test is modified to handle null input:

public static double ArithmeticMean(params int[] vals)
{
if (vals == null) return 0.0; // modification

double sum = 0.0;
foreach (int v in vals)
sum += v;

return (double)(sum / vals.Length);
} // ArithmeticMean

You can add a null-token to your test case data like this:

0001:ArithmeticMean:2 4 8:4.6667
0002:ArithmeticMean:NULL:0.0000

Then process the token like this:

string line, caseID, method;
string[] tokens, tempInput;
int[] input = null;
double expected, actual;

CHAPTER 1 ■ API TESTING20

while ((line = sr.ReadLine()) != null)
{
tokens = line.Split(':');
caseID = tokens[0];
method = tokens[1];

if (tokens[2] == "NULL") // null input
input = null;

else
{
tempInput = tokens[2].Split(' ');
input = new int[tempInput.Length];
for (int i = 0; i < input.Length; ++i)
input[i] = int.Parse(tempInput[i]);

}

expected = double.Parse(tokens[3]);

actual = MathLib.Methods.ArithmeticMean(input);

if (actual == expected)
Console.WriteLine(caseID + " Pass");

else
Console.WriteLine(caseID + " *FAIL*");

} // while

Comments
Testing API methods for null input arguments is essential. Because we can’t store a null value
directly in the test case data, we use the string token “NULL”. Using “NULL” is arbitrary but
makes the test case data and code more readable than alternatives like “nil” or “invalid”. When
we read and parse a test case, we check for the string “NULL” and then branch to special logic
in the test harness. The exact logic you use will depend on the behavior of the method under
test. Notice that we assigned null to our input variable at declaration time:

int[] input = null;

and then reassign a null value if we read “NULL” from the test case file:

if (tokens[2] == "NULL")
input = null;

This is technically unnecessary but makes our code more readable and easier to modify.
Dealing with a null expected result uses the same idea as dealing with a null input argument.
Suppose a new method named Hypergeometric() is added to the MathLib library under test,
and that the Hypergeometric() method returns null if all input arguments are 0. To test, we
store a string token such as “NULL” in the test case file:

CHAPTER 1 ■ API TESTING 21

0001:Hypergeometric:0 0 0 0:NULL:
0002:Hypergeometric:1 3 5 7:2 4:

and then add logic to the test harness:

object expected = null;

while ((line = sr.ReadLine()) != null)
{
if (tokens[3] == "NULL")
expected = null;

else
// parse tokens[3] into object expected here

// etc.
}

1.11 Dealing with Methods that Throw Exceptions

Problem
You want to test a method that throws an exception.

Design
Embed a special string token in your test case data file to signal that an exception should be
thrown, and place the call to the method under test in a try block so you can catch the excep-
tion if it is thrown.

Solution
Add a token “Exception” as the expected value field in your test case data:

0004:GeometricMean :1 2 4 8 16 32:6.6569
0005:GeometricMean :0 0 0 0:Exception
0006:GeometricMean :2 4 8:4.0000

and then process inside the main test loop like this:

MathLib.Methods m = new MathLib.Methods();
if (tokens[3] == "Exception")
{
try
{
actual = m.GeometricMean(input);

}
catch(Exception ex)

CHAPTER 1 ■ API TESTING22

{
Console.WriteLine(caseID + " Pass");
continue;

}
Console.WriteLine(caseID + " *FAIL* no exception thrown");

}
else
{
// use regular test logic

}

Comments
A common situation is that methods will throw an exception for certain input. For example, a
method that performs a division operation with one of its input arguments may throw an excep-
tion if the value of the argument is 0. In this example, we assume the original GeometricMean()
method has been modified so that passing all zero values to the method throws an exception by
design. We check for this special input by examining the test case data for an “Exception” string.
If we find it, we branch to code that wraps the call to GeometricMean() in a try block. If an excep-
tion is thrown as expected, control is transferred to the catch block, and we print a pass result.
Then we move to the next test case when the continue statement is executed. If calling
GeometricMean() does not throw an exception, control will reach the

Console.WriteLine(caseID + " *FAIL* no exception thrown");

statement. Notice you do not want to wrap calls to the method under test that do not throw an
exception in a try block because if the method does throw an exception, you’ll get a pass result.
Dealing with methods that throw an exception can be messy in terms of integrating that special
logic into the “regular” logic of your test harness. Because of this, a good strategy is to create
two different lightweight test harnesses—one harness for test cases that do not throw excep-
tions and one harness just for cases that do.

The preceding solution is designed so that we test only that an exception is thrown, not
necessarily a particular exception. In some situations, you may want to check for a specific
exception. One way to do this is to embed the exception message in your test case file and
check for it in your harness logic. For example, suppose the GeometricMean() method contains
this code:

if (denominator == 0)
throw new Exception("Invalid division");

You could create this test case:

0005:GeometricMean :0 0 0 0:Invalid division

and then test inside the main test loop like this:

CHAPTER 1 ■ API TESTING 23

expected = tokens[3]; // "Invalid division"
try
{
actual = m.GeometricMean(input);

}
catch(Exception ex)
{
if (ex.Message == expected)
{
Console.WriteLine(caseID + " Pass; correct exception");
continue;

}
else
{
Console.WriteLine(caseID + " *FAIL*; wrong exception");

}
}
Console.WriteLine(caseID + " *FAIL*; no exception thrown");

1.12 Dealing with Empty String Input Arguments

Problem
You want to test empty string arguments passed to API methods under test.

Design
Use a special string token to represent an empty string in your test case file and then add
branching logic to your test harness that passes a true empty string argument to the API
method under test.

Solution
Create test case data like this:

0001:SubString:put:computer:true
0002:SubString:xyz:computer:false
0003:SubString:emptystring:computer:true

CHAPTER 1 ■ API TESTING24

and add special logic to the test harness to handle the “emptystring” token like this:

tokens = line.Split(':');

if (tokens[2] == "emptystring") // special input
arg1 = "";

else
arg1 = tokens[2];

bool actual = StringLib.Methods.SubString(arg1, tokens[3]);

if (actual == bool.Parse(tokens[4]))
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

Comments
When testing API methods that accept string arguments, you should always test for empty
strings. One way to deal with this is to store a special string token such as “emptystring” in
your test case data file and then branch your test case logic when that token is read. Suppose,
for example, you are testing a custom StringLib library containing a custom SubString()
method that accepts two string arguments and returns true if the first argument is contained
within the second argument. By design, the custom SubString() method returns true if an
empty string is passed to its first parameter.

Unlike null input, it is possible to indirectly store empty string input in a test case data
file. For example, the test case data string

0003:SubString::computer:true

when parsed by String.Split() into a string array named tokens will store an empty string
into tokens[2] because of the two consecutive colon characters. However, in general, it’s
much better to store a special string token because it makes your test case data easier to read
and validate programmatically.

The technique of embedding special string tokens in your test case data file to deal with
empty string input can be used to test for other unusual input too. For example, suppose you
are testing a method that accepts a character input argument. You will want to test for control
characters such as <CR> and <LF>, and ASCII vs. Unicode characters. You can store strings like
“<cr>”, “<lf>”, and “\u0041” in your test case data and then add special logic to your harness
to deal with them:

char input;

if (tokens[2] == "<CR>") // special input
input = '\x000d';

else
input = char.Parse(tokens[2]);

CHAPTER 1 ■ API TESTING 25

If you have a lot of special tokens in your test case data file as is often the case, you can keep
your harness code cleaner and more scalable by writing a helper method Map(), which converts
the input value read from the test case data file into the appropriate value. For example, you
could write:

private static char Map(string token)
{
if (token == "<CR>")
return '\x000d';

else if (token == "<LF>")
return '\x000a';

// etc.
else
return char.Parse(token);

}

and then use it in your harness like this:

char input = Map(tokens[2]);

1.13 Programmatically Sending E-mail Alerts on
Test Case Failures

Problem
You want your test harness to programmatically send an e-mail message when a test case fails.

Design
Use the System.Web.Mail class to create a MailMessage object. Supply properties such as To and
Subject, and add details of the test case failure to the Body property.

Solution

if (method == "ArithmeticMean")
{
actual = MathLib.Methods.ArithmeticMean(input);
if (actual.ToString("F4") == expected)
{
Console.WriteLine("Pass");

}
else

CHAPTER 1 ■ API TESTING26

{
Console.WriteLine("*FAIL*. Sending e-mail");
try
{
MailMessage m = new MailMessage();
m.From = "Test Automation Harness";
m.To = "you@somewhere.com";
m.Subject = "Test Case Failure";

m.BodyEncoding = System.Text.Encoding.ASCII;
m.BodyFormat = MailFormat.Html;
m.Priority = MailPriority.High;

m.Body = "Test case " + caseID + " failed";
SmtpMail.SmtpServer = "127.0.0.1";
SmtpMail.Send(m);

}
catch(Exception ex)
{
Console.WriteLine("Fatal error sending mail: " + ex.Message);

}

} // test case failed
}

Comments
Because test automation often runs unattended, you may want to send an e-mail message to
yourself or one of your team members when a test case fails, so that the test case failure does
not lie unnoticed in a log file somewhere. You may also want to send an e-mail message summa-
rizing the test run results. There are several ways to programmatically send e-mail in a .NET
environment, but using the MailMessage class in the System.Web.Mail namespace is usually
the easiest. The code in this solution assumes you have first added a project reference to the
System.Web namespace (it’s not accessible by a console application by default) and placed a

using System.Web.Mail;

statement in your harness code.
After instantiating a MailMessage object, you supply values for properties From, To,

Subject, BodyEncoding, BodyFormat, and Body. You can also set the optional Priority property
to MailPriority.High. You set the BodyEncoding value to one of the encoding representations
from System.Text.Encoding. You will usually use Encoding.ASCII, but you can use
Encoding.Unicode or Encoding.UTF8 if you want to. The BodyFormat property can be set to
MailFormat.Html or MailFormat.Text. Either will work fine as long as there are no quirks in
your e-mail system. The Body property is a string that holds the text of the message. At a mini-
mum, you’ll want to include the test case ID that failed and the actual and expected return
values.

CHAPTER 1 ■ API TESTING 27

In theory, programmatically sending e-mail is easy, but in practical terms, a lot of things
can go wrong. You have to deal with relay servers, proxy servers, network security policies, and
firewalls, just to name a few. Because of this, your best strategy is to make sure that whenever
feasible, your test harness machine is running as isolated as possible from other machines.
This will help prevent unintended side effects as well as make sending e-mail from your test
harness much more reliable.

1.14 Launching a Test Harness Automatically

Problem
You want your test harness program to launch automatically.

Design
Use the Windows Task Scheduler.

Solution
You will often want to launch your test automation automatically. For example you might
schedule a test automation harness to start at 2:00 A.M. so that it runs overnight, and the test
results are ready to review when you come to work. The Windows Task Scheduler makes it easy
to schedule tasks in a Windows environment. You specify the test harness executable, the
schedule of when you want the harness to run, and the security context under which you want
the harness to run.

If you have several lightweight test-automation harnesses that you want to run, you can
create a .BAT file with commands to launch them. For example,

@echo off
echo Starting test automation sequence
echo.
C:\TestHarness1\bin\Debug\Run.exe
C:\TestHarness2\bin\Debug\Run.exe
C:\TestHarness3\bin\Debug\Run.exe
echo.
echo Test automation sequence complete

If your harnesses explicitly log test case results to external files, then this is all you need. If
your harnesses log test case results to the command shell, then you can easily save them to
external storage using system redirection such as:

C:\TestHarness1\bin\Debug\Run.exe > C:\Results\Harness1Results.txt
C:\TestHarness2\bin\Debug\Run.exe > C:\Results\Harness2Results.txt

CHAPTER 1 ■ API TESTING28

Comments
For most lightweight test-automation situations, using .BAT files to manage multiple test har-
nesses is simple and effective. An alternative is to write a C# master harness that coordinates
and calls the worker automation harnesses. You can write statements that call the worker har-
nesses by using the static Start() method in the System.Diagnostics.Process namespace:

Console.WriteLine("Starting test automation sequence\n");
Process.Start("C:\\TestHarness1\\bin\\Debug\\Run.exe");
Process.Start("C:\\TestHarness2\\bin\\Debug\\Run.exe");
Process.Start("C:\\TestHarness3\\bin\\Debug\\Run.exe");
Console.WriteLine("\n Test automation sequence complete\n");

and then schedule this one master program using the Task Scheduler. An advantage of using a
.BAT file master solution is simplicity. An advantage of using a C# master solution is that you
have increased power to do things like catch exceptions and add branching logic to execute a
worker harness only if a preceding harness test results meet some condition.

Instead of using the Windows Task Scheduler to automatically launch a test harness, you
can use the old at command. Scheduling a test harness or master harness program to run
using the at command is more difficult than using the Windows Task Scheduler. You should
only use at if your test system does not support the Task Scheduler or if you are integrating a
new test harness system into an existing system that uses the at command.

1.15 Example Program: ApiTest
This program combines many of the techniques we’ve seen in this chapter into a complete
lightweight API test harness. The methods under test are ArithmeticMean(), GeometricMean(),
and HarmonicMean() as described at the beginning of this chapter. The complete lightweight test
harness listing is shown in Listing 1-1. The program reads test case data a line at a time from
the file TestCases.txt. Then the harness parses the test case ID, which includes the method to
test, input values, and an expected result. Input values are sent to the method under test, and
an actual result value is obtained and compared with the test case expected result value. A pass
or fail result is sent to the command shell and logged to the file TestResults.txt.

Listing 1-1. Program ApiTest

using System;
using System.IO;
using MathLib; // houses methods under test

namespace TestAutomation
{
class Class1
{
[STAThread]
static void Main(string[] args)

CHAPTER 1 ■ API TESTING 29

{
try
{
FileStream ifs = new FileStream("..\\..\\TestCases.txt",

FileMode.Open);
StreamReader sr = new StreamReader(ifs);
string stamp = DateTime.Now.ToString("s");
stamp = stamp.Replace(":", "-");
FileStream ofs = new FileStream("..\\..\\TestResults" +

stamp + ".txt", FileMode.CreateNew);
StreamWriter sw = new StreamWriter(ofs);

string line, caseID, method;
string[] tokens, tempInput;
string expected;
double actual = 0.0;
int numPass = 0, numFail = 0;

Console.WriteLine("\nCaseID Result Method Details");
Console.WriteLine("================================\n");

while ((line = sr.ReadLine()) != null)
{
tokens = line.Split(':');
caseID = tokens[0];
method = tokens[1];
tempInput = tokens[2].Split(' ');
expected = tokens[3];

int[] input = new int[tempInput.Length];
for (int i = 0; i < input.Length; ++i)
input[i] = int.Parse(tempInput[i]);

if (method == "ArithmeticMean")
{
actual = MathLib.Methods.ArithmeticMean(input);
if (actual.ToString("F4") == expected)
{
Console.WriteLine(caseID + " Pass " + method +

" actual = " + actual.ToString("F4"));
sw.WriteLine(caseID + " Pass " + method +

" actual = " + actual.ToString("F4"));
++numPass;

}
else

CHAPTER 1 ■ API TESTING30

{
Console.WriteLine(caseID + " *FAIL* " + method +

" actual = " + actual.ToString("F4") +
" expected = " + expected);

sw.WriteLine(caseID + " *FAIL* " + method +
" actual = " + actual.ToString("F4") +
" expected = " + expected);

++numFail;
}

}
else if (method == "GeometricMean ")
{
MathLib.Methods m = new MathLib.Methods();
actual = m.GeometricMean(input);
if (actual.ToString("F4") == expected)
{
Console.WriteLine(caseID + " Pass " + method +

" actual = " + actual.ToString("F4"));
sw.WriteLine(caseID + " Pass " + method +

" actual = " + actual.ToString("F4"));
++numPass;

}
else
{
Console.WriteLine(caseID + " *FAIL* " + method +

" actual = " + actual.ToString("F4") +
" expected = " + expected);

sw.WriteLine(caseID + " *FAIL* " + method +
" actual = " + actual.ToString("F4") +
" expected = " + expected);

++numFail;
}

}
else
{
Console.WriteLine(caseID + " " + method +

" Not yet implemented");
sw.WriteLine(caseID + " " + method +

" Not yet implemented");
}

} // test case loop

CHAPTER 1 ■ API TESTING 31

Console.WriteLine("\n========= end test run ==========");
Console.WriteLine("\nPass = " + numPass +

" Fail = " + numFail);
sw.WriteLine(Environment.NewLine + "Pass = " + numPass +

" Fail = " + numFail);
sr.Close();
ifs.Close();
sw.Close();
ofs.Close();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
Console.ReadLine();

} // Main()
} // class Class1

} // ns TestAutomation

When run with this test case data file:

0001:ArithmeticMean:2 4 8:4.6667
0002:ArithmeticMean:1 5:3.0000
0003:ArithmeticMean:1 2 4 8 16 32:10.5000
0004:GeometricMean :1 2 4 8 16 32:6.6569
0005:GeometricMean :0:0.0000
0006:GeometricMean :2 4 8:4.0000
0007:HarmonicMean :2 4 8:3.4286
0008:HarmonicMean :2 3 6:3.0000

the output is

0001 Pass ArithmeticMean actual = 4.6667
0002 Pass ArithmeticMean actual = 3.0000
0003 Pass ArithmeticMean actual = 10.5000
0004 *FAIL* GeometricMean actual = 5.6569 expected = 6.6569
0005 Pass GeometricMean actual = 0.0000
0006 Pass GeometricMean actual = 4.0000
0007 HarmonicMean Not yet implemented
0008 HarmonicMean Not yet implemented

Pass = 5 Fail = 1

Test case 0004 has a deliberately incorrect expected value to check the validity of the test
harness logic.

CHAPTER 1 ■ API TESTING32

Reflection-Based UI Testing

2.0 Introduction
The most fundamental and simplest form of application testing is manual testing through the
application’s user interface (UI). Paradoxically, automated testing through a user interface
(automated UI testing for short) is challenging. The .NET environment provides you with many
classes in the System.Reflection namespace that can access and manipulate an application at
run time. Using reflection, you can write lightweight automated UI tests. For example, suppose
you had a simple form-based Windows application, as shown in the foreground of Figure 2-1.

Figure 2-1. Reflection-based UI testing

A user types paper, rock, or scissors into the TextBox control, and a second user selects one
of those strings from the ComboBox control. When either user clicks on the Button control, a
message with the winner is displayed in the ListBox control. The key code for this dummy
application is

33

C H A P T E R 2

■ ■ ■

private void button1_Click(object sender, System.EventArgs e)
{
string tb = textBox1.Text;
string cb = comboBox1.Text;

if (tb == cb)
listBox1.Items.Add("Result is a tie");

else if (tb == "paper" && cb == "rock" ||
tb == "rock" && cb == "scissors" ||
tb == "scissors" && cb == "paper")

listBox1.Items.Add("The TextBox wins");
else
listBox1.Items.Add("The ComboBox wins");

}

Note that this is not an example of good coding, and many deliberate errors are included.
For example, the ComboBox player can win by leaving the ComboBox control empty. This simulates
the unrefined character of an application while still under development. Using the techniques
in this chapter, you can write automated UI tests as shown in the background of Figure 2-1. To
write reflection-based lightweight UI test automation, you must be able to perform six tasks
programmatically (each test automation task corresponds to a section in this chapter):

• Launch the application under test (AUT) from your test-harness program in a way that
allows the two programs to communicate.

• Manipulate the application form to simulate a user moving and resizing the form.

• Examine the application form properties to verify that the resulting state of the applica-
tion is correct so you can determine a test scenario pass or fail result.

• Manipulate the application control properties to simulate actions such as a user typing
into a TextBox control.

• Examine the application control properties to verify that the resulting state of the
application is correct so you can determine a test scenario pass or fail result.

• Invoke the application methods to simulate actions such as a user clicking on a Button
control.

The techniques in this chapter are very lightweight. The main advantage of using these
reflection-based test techniques is that they are very quick and easy to implement. The main
disadvantages are that they apply only to pure .NET applications and that they cannot deal
with complex test scenarios. The techniques in Chapter 3 provide you with lower-level, more
powerful UI test-automation techniques at the expense of increased complexity.

CHAPTER 2 ■ REFLECTION-BASED UI TESTING34

2.1 Launching an Application Under Test
Problem
You want to launch the AUT so that you can manipulate it.

Design
Spin off a separate thread of execution from the test harness by creating a Thread object and
then associate that thread with an application state wrapper class.

Solution

using System;
using System.Reflection;
using System.Windows.Forms;
using System.Threading;

class Class1
{

[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("Launching Form");
Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";

Assembly a = Assembly.LoadFrom(path);
Type t1 = a.GetType(formName);
theForm = (Form)a.CreateInstance(t1.FullName);

AppState aps = new AppState(theForm);
ThreadStart ts = new ThreadStart(aps.RunApp);
Thread thread = new Thread(ts);
thread.ApartmentState = ApartmentState.STA;
thread.IsBackground = true;
thread.Start();

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 35

Console.WriteLine("\nForm launched");
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
} // Main()
private class AppState
{
public readonly Form formToRun;

public AppState(Form f)
{
this.formToRun = f;

}

public void RunApp()
{
Application.Run(formToRun);

}
} // class AppState

} // class Class1

To test a Windows-based form application through its UI using reflection techniques,
you must launch the application on a separate thread of execution within the test-harness
process. If, instead, you launch an AUT using the Process.State() method like this:

string exePath = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
System.Diagnostics.Process.Start(exePath);

the application will launch, but your test harness will not be able to directly communicate
with the application because the harness and the application will be running in separate
processes. The trick to enable harness-application communication is to spin off a separate
thread from the harness. This way, the harness and the application will be running in the same
process context and can communicate with each other.

Comments
If your test harness is a console application, you can add the following using statements so
you won’t have to fully qualify classes and objects:

using System.Reflection;
using System.Windows.Forms;
using System.Threading;

The System.Reflection namespace houses the primary classes you’ll be using to access
the AUT. The System.Windows.Forms namespace is not accessible to a console application
by default, so you must add a project reference to the System.Windows.Forms.dll file. The
System.Threading namespace allows you to create a separate thread of execution for the AUT.

CHAPTER 2 ■ REFLECTION-BASED UI TESTING36

Start by getting a reference to the application Form object:

Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";

Assembly a = Assembly.LoadFrom(path);
Type t1 = a.GetType(formName);
theForm = (Form)a.CreateInstance(t1.FullName);

The heart of obtaining a reference to the Form object under test is to use the Assembly.
CreateInstance() method. This is slightly tricky because CreateInstance() is called from the
context of an Assembly object and accepts an argument for the full name of the instance being
created. Furthermore, an Assembly object is created using a factory mechanism instead of the
more usual constructor instantiation with the new keyword. Additionally, the full name argu-
ment is called from a Type context. In short, you must first create an Assembly object using
Assembly.Load(), passing in the path to the assembly. Then you create a Type object using
Assembly.GetType(), passing in the full Form class name. And, finally, you create a reference to
the Form object under test using Assembly.CreateInstance(), passing in the Type.FullName
property. Notice that you must use the full form name (e.g., "AUT.Form1") rather than the
shortened form name (e.g., "Form1").

The code to launch the Form under test is best understood by working backwards. The
goal is to create a new Thread object and then call its Start() method; however, to create
a Thread object, you need to pass a ThreadStart object to the Thread constructor. To create a
ThreadStart object, you need to pass a target method to the ThreadStart constructor. This tar-
get method must return void, and it is the method to invoke when the thread begins execution.
Now in the case of a Form object, you want to call the Application.Run() method. Although it
seems a bit awkward, the easiest way to pass Application.Run() to ThreadStart is to create a
separate wrapper class:

private class AppState
{
public readonly Form formToRun;

public AppState(Form f)
{
this.formToRun = f;

}

public void RunApp()
{
Application.Run(formToRun);

}
}

This AppState class is just a wrapper around a Form object and a call to the Application.Run()
method. We do this to pass Application.Run() to ThreadStart in a convenient way. With this class
in place, you can instantiate an AppState object and pass Application.Run() indirectly to the
ThreadStart constructor:

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 37

AppState aps = new AppState(theForm);
ThreadStart ts = new ThreadStart(aps.RunApp);

With the ThreadStart object created, you can create a new Thread, set its properties if nec-
essary, and start the thread up:

Thread thread = new Thread(ts);
thread.ApartmentState = ApartmentState.STA;
thread.IsBackground = true;
thread.Start();

An alternative to creating a Threadobject directly is to call the ThreadPool.QueueUserWorkItem()
method. That method creates a thread indirectly and requires a starting method to be passed to a
WaitCallBack object. This approach would look like

Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";

Assembly a = Assembly.LoadFrom(path);
Type t1 = a.GetType(formName);
theForm = (Form)a.CreateInstance(t1.FullName);

ThreadPool.QueueUserWorkItem(new WaitCallback(RunApp), theForm);

where

static void RunApp(object o)
{
Application.Run(o as Form);

}

This ThreadPool technique is somewhat simpler than the ThreadStart solution but does not
give you as much control over the thread of execution.

You can increase the modularity of this technique by refactoring your code as a method:

static Form LaunchApp(string path, string formName)
{
Form result = null;
Assembly a = Assembly.LoadFrom(path);
Type t = a.GetType(formName);
result = (Form)a.CreateInstance(t.FullName);
AppState aps = new AppState(result);
ThreadStart ts = new ThreadStart(aps.RunApp);
Thread thread = new Thread(ts);
thread.Start();
return result;

}

which you can call like this:

CHAPTER 2 ■ REFLECTION-BASED UI TESTING38

Form theForm = null;
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
string formName = "AUT.Form1";
theForm = LaunchApp(path, formName);

2.2 Manipulating Form Properties
Problem
You want to set the properties of a Windows form-based application.

Design
Get a reference to the property you want to set using the Type.GetProperty() method. Then use
the PropertyInfo.SetValue() method in conjunction with the Form.Invoke() method and a
method delegate.

Solution

string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
Form theForm = LaunchApp(path, formName); // see Section 2.1

Thread.Sleep(1500);
Console.WriteLine("\nSetting Form1 Location to x=10, y=20");
System.Drawing.Point pt = new System.Drawing.Point(10,20);
object[] o = new object[] { theForm, "Location", pt };
Delegate d = new SetFormPropertyValueHandler(SetFormPropertyValue);
if (theForm.InvokeRequired)
{

theForm.Invoke(d, o);
}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

delegate void SetFormPropertyValueHandler(Form f,
string propertyName,
object newValue);

static void SetFormPropertyValue(Form f, string propertyName,
object newValue)

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 39

{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
pi.SetValue(f, newValue, null);

}

Comments
To simulate user interaction with a Windows-based form application, you may want to move
the form or resize the form. One way to do this using a reflection-based technique is to use the
PropertyInfo.SetValue() method. Although the idea is simple in principle, the details are
tricky. You can best understand the technique by working backwards. The .NET Framework has
a PropertyInfo.SetValue() method that can set the value of a property of an object. But the
SetValue() method requires a PropertyInfo object context. However, a PropertyInfo object
requires a Type object context. So you start by creating a Type object from the Form object you
want to manipulate. Then you get a PropertyInfo object from the Type object, and then you call
the SetValue() method. So, if there were no hidden issues you could simply write code like this:

theForm = LaunchApp(path, formName); // see Section 2.1
Console.WriteLine("\nSetting Form location to x=10, y=20");
Type t = theForm.GetType();
PropertyInfo pi = t.GetProperty("Location");
Point pt = new Point(10,20);
pi.SetValue(theForm, pt, null);

Unfortunately, there is a serious hidden issue that you must deal with. Before explaining that
hidden issue, let’s examine the SetValue() method. SetValue() accepts three arguments. The
PropertyInfo object, whose SetValue() method you call, represents a property, such as a Form
object’s Location property. The first argument to SetValue() is the object to manipulate, which in
this case is the Form object. The second argument is the new value of the property, which in this
example is a new Point object. The third argument is necessary because some properties are
indexed. When a property is not indexed, as is usually the case with form controls, you can just
pass a null value as the argument.

The hidden issue with calling the PropertyInfo.SetValue() method is that you are not
calling SetValue() from the main Form thread; you are calling SetValue() from a thread cre-
ated by the test-automation harness. In situations like this, you should not call SetValue()
directly. A full explanation of this issue is outside the scope of this book, but the conclusion is
that you should call SetValue() indirectly by calling the Form.Invoke() method. This is a bit
tricky because Form.Invoke() requires a delegate object that calls SetValue() and an object
that represents the arguments for SetValue(). So in pseudo-code, you need to do this:

if (theForm.InvokeRequired)
theForm.Invoke(a method delegate, an object array);

else
Console.WriteLine("Unexpected logic flow");

The InvokeRequired property in this situation should always be true because the Form
object was launched by a different thread (the automation harness). If InvokeRequired is not
true, there is a logic error and you may want to print a warning message.

CHAPTER 2 ■ REFLECTION-BASED UI TESTING40

So, now you need a method delegate. Before you create the delegate, which you can think
of as an alias for a real method, you create the real method that will actually do the work:

static void SetFormPropertyValue(Form f, string propertyName,
object newValue)

{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
pi.SetValue(f, newValue, null);

}

Notice that this method is almost exactly like the naive code if the whole InvokeRequired
hidden issue did not exist. After creating the real method, you create a delegate that matches
the real method:

delegate void SetFormPropertyValueHandler(Form f, string propertyName,
object newValue);

In short, if you pass a reference to delegate SetFormPropertyValueHandler(), control is
transferred to the associated SetFormPropertyValue() method (assuming you associate the
two in the delegate constructor).

Now that we’ve dealt with the delegate parameter to the Form.Invoke() method, we have
to deal with the object array parameter. This parameter represents arguments that are passed
to the delegate and then, in turn, are passed to the associated real method. In this case, the
delegate requires a Form object, a property name as a string, and a location as a Point object:

System.Drawing.Point pt = new System.Drawing.Point(10,20);
object[] o = new object[] { theForm, "Location", pt };

Putting these ideas and code together, you can write

delegate void SetFormPropertyValueHandler(Form f,
string propertyName,
object newValue);

static void SetFormPropertyValue(Form f, string propertyName,
object newValue)

{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
pi.SetValue(f, newValue, null);

}

static void Main(string[] args)
{
Form theForm = null;

string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
theForm = LaunchApp(path, formName); // see Section 2.1
Console.WriteLine("\nSetting Form1 Location to 10,20");

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 41

System.Drawing.Point pt = new System.Drawing.Point(10,20);
object[] o = new object[] { theForm, "Location", pt };
Delegate d = new SetFormPropertyValueHandler(SetFormPropertyValue);
if (theForm.InvokeRequired)
theForm.Invoke(d, o);

else
Console.WriteLine("Unexpected logic flow");

//etc.
}

And now manipulating the properties of the application form is very easy. For example,
suppose you want to change the size of the form. Here’s how:

Console.WriteLine("\nSetting Form1 Size to 300x400");

System.Drawing.Size size = new System.Drawing.Size(300,400);
object[] o = new object[] { theForm, "Size", size };
Delegate d = new SetFormPropertyValueHandler(SetFormPropertyValue);
if (theForm.InvokeRequired)
{
theForm.Invoke(d, o);

}
else
Console.WriteLine("Unexpected logic flow");

Console.WriteLine("\n And now setting Form1 Size to 200x500");

Thread.Sleep(1500);

size = new System.Drawing.Size(200,500);
o = new object[] { theForm, "Size", size };
d = new SetFormPropertyValueHandler(SetFormPropertyValue);
if (theForm.InvokeRequired)
{
theForm.Invoke(d, o);

}
else
Console.WriteLine("Unexpected logic flow");

You can significantly increase the modularity of this technique by wrapping up the code
into a single method combined with a delegate:

delegate void SetFormPropertyValueHandler(Form f,
string propertyName, object newValue);

static void SetFormPropertyValue(Form f, string propertyName,
object newValue)

CHAPTER 2 ■ REFLECTION-BASED UI TESTING42

{
if (f.InvokeRequired)
{
// Console.WriteLine("in invoke required");
Delegate d =
new SetFormPropertyValueHandler(SetFormPropertyValue);

object[] o = new object[] { f, propertyName, newValue };
f.Invoke(d, o);
return;

}
else
{
// Console.WriteLine("in the else part");
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
pi.SetValue(f, newValue, null);

}
}

With this helper method, you can make clean calls in your test harness such as

Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
theForm = LaunchApp(path, formName); // see Section 2.1

System.Drawing.Point pt = new System.Drawing.Point(10,10);
SetFormPropertyValue(theForm, "Location", pt);
Thread.Sleep(1500);

pt = new System.Drawing.Point(200,300);
SetFormPropertyValue(theForm, "Location", pt);
Thread.Sleep(1500);

This SetFormPropertyValue() wrapper is slightly tricky because it is self-referential. (A
recursive method calls itself directly; a self-referential method calls itself indirectly.) When
called in the Main() method of your harness, InvokeRequired is initially true because the call-
ing automation thread does not own the form. Execution branches to the Form.Invoke()
statement, which, in turn, calls the SetFormPropertyValueHandler() delegate that calls back
into the associated SetFormPropertyValue() method. But the second time through the wrap-
per, InvokeRequired will be false, because the call comes from the originating thread. Control
transfers to the else part of the logic, where the PropertyInfo.SetValue() changes the Form
property. If you remove the commented lines of code and run, you’ll see how the path of exe-
cution works.

Because placing Thread.Sleep() delays is so common in UI test automation, you may
want to add a delay parameter to all the wrapper methods in this chapter:

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 43

static void SetFormPropertyValue(Form f, string propertyName,
object newValue, int delay)

{
Thread.Sleep(delay);
// other code as before

}

So, if you wanted to delay 1,500 milliseconds (1.5 seconds), you can call
SetFormPropertyValue() like this:

Point point = new Point(50,75);
SetFormPropertyValue (theForm, "Location", point, 1500);

In a lightweight test-automation situation, the most common form properties you will
manipulate are Size and Location. However, the techniques in the section allow you to set any
form property. For example, suppose you want to manipulate the form title bar. You can do
this by passing "Text" as the property name argument and a string for the new title:

Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
theForm = LaunchApp(path, formName); // see Section 2.1

SetFormPropertyValue(theForm, "Text", "SomeNewTitle");
Thread.Sleep(1500);

2.3 Accessing Form Properties
Problem
You want to retrieve the properties of an application form object.

Design
Use the Type.GetProperty() method to get a reference to the property you want to examine.
Then use the PropertyInfo.GetValue() method in conjunction with a method delegate to get
the value of the property.

Solution

if (theForm.InvokeRequired)
{
Delegate d = new GetFormPropertyValueHandler(GetFormPropertyValue);
object[] o = new object[] { theForm, "Location" };
Point p = (Point)theForm.Invoke(d, o);
Console.WriteLine("Form1 location = " + p.X + " " + p.Y);

}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING44

else
{
Console.WriteLine("Unexpected logic flow");

}

where

delegate object GetFormPropertyValueHandler(Form f,
string propertyName);

static object GetFormPropertyValue(Form f, string propertyName)
{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
object result = pi.GetValue(f, null);
return result;

}

Comments
When performing lightweight reflection-based UI test automation, you may want to retrieve
properties of the application form such as the Location and Size properties. This allows you to
verify the state of the Form object under test and determine a test scenario pass/fail result. The
key to obtaining the value of a form property is to use the PropertyInfo.GetValue() method.
Unfortunately, there is a hidden issue—you should not call GetValue() directly from a thread
that is not the main form thread. This issue is discussed in detail in “Section 2.2 Manipulating
Form Properties.” If the hidden issue did not exist, you could get a form property like this:

string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
theForm = LaunchApp(path, formName); // see Section 2.1

Type t = theForm.GetType();
PropertyInfo pi = t.GetProperty("Location");
Point p = (Point)pi.GetValue(theForm, null);

Console.WriteLine("Form1 location = " + p.X + " " + p.Y);

But because you are calling GetValue() from the test-harness thread instead of the main
Form object thread, you should call Form.Invoke() with a delegate like this:

if (theForm.InvokeRequired)
{
Delegate d = new GetFormPropertyValueHandler(GetFormPropertyValue);
object[] o = new object[] { theForm, "Location" };
Point p = (Point)theForm.Invoke(d, o);
Console.WriteLine("Form1 location = " + p.X + " " + p.Y);

}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 45

else
{
Console.WriteLine("Unexpected logic flow");

}

where

delegate object GetFormPropertyValueHandler(Form f,
string propertyName);

static object GetFormPropertyValue(Form f, string propertyName)
{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
return pi.GetValue(f, null);

}

In short, you call Form.Invoke() with a delegate argument. Control of execution is
transferred to the delegate, which is in turn mapped to a helper method that calls the
PropertyInfo.GetValue() method. This strategy solves the Invoke() issue. You can signifi-
cantly increase the modularity of your test automation by wrapping up the code in this
solution like this:

delegate object GetFormPropertyValueHandler(Form f,
string propertyName);

static object GetFormPropertyValue(Form f, string propertyName)
{
if (f.InvokeRequired)
{
Delegate d =
new GetFormPropertyValueHandler(GetFormPropertyValue);

object[] o = new object[] { f, propertyName };
object iResult = f.Invoke(d, o);
return iResult;

}
else
{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
object gResult = pi.GetValue(f, null);
return gResult;

}
}

This can be called in the following way:

Point p = (Point)GetFormPropertyValue(theForm, "Location");
Console.WriteLine("Form location = " + p.X + " " + p.Y);

CHAPTER 2 ■ REFLECTION-BASED UI TESTING46

This GetFormPropertyValue() wrapper is a bit tricky because it is self-referential. When
called in the Main() method of your harness, InvokeRequired is initially true, because the calling
thread does not own the form. Execution branches to the Form.Invoke() statement, which, in
turn, calls the GetFormPropertyValueHandler() delegate that calls back into the associated
GetFormPropertyValue() method. But on the second pass through the wrapper, InvokeRequired
will be false because the call comes from the originating thread. Control transfers to the else part
of the logic, where the PropertyInfo.GetValue() retrieves the form property. With this tech-
nique, you can retrieve the value of any form property. For example:

string title = (string)GetFormPropertyValue(theForm, "Text");
Console.WriteLine("Form title = " + title);
Size size = (Size)GetFormPropertyValue(theForm, "Size");
Console.WriteLine("Form size = " + size.Height + " x " + size.Width);

2.4 Manipulating Control Properties
Problem
You want to set the value of a control property.

Design
Obtain a reference to the control you want to manipulate using the Form.GetType(),
Type.GetField(), and FieldInfo.GetValue() methods. Then use the PropertyInfo.SetValue()
method in conjunction with a method delegate to set the value of the target control.

Solution

if (theForm.InvokeRequired)
{
Delegate d =
new SetControlPropertyValueHandler(SetControlPropertyValue);

object[] o = new object[] { theForm, "textBox1", "Text", "foo" };
Console.WriteLine("Setting textBox1 to 'foo'");
theForm.Invoke(d, o);

}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 47

delegate void SetControlPropertyValueHandler(Form f,
string controlName, string propertyName, object newValue);

static void SetControlPropertyValue(Form f, string controlName,
string propertyName, object newValue)

{
Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName); //?
pi.SetValue(ctrl, newValue, null);

}

Comments
When writing lightweight reflection-based UI test automation, you may need to simulate user
actions by manipulating properties of controls on the application form. Examples include
setting the Text property value of a TextBox control to simulate a user typing and setting the
Checked property value of a RadioButtonList item to true to simulate a user clicking on the
item. The key to setting the value of a control’s property is to use the PropertyInfo.SetValue()
method. Unfortunately, as described in Sections 2.2 “Manipulating Form Properties” and 2.3
“Accessing Form Properties,” there is a hidden issue—you should not call SetValue() directly
from a thread that is not the main Form thread. If the hidden issue did not exist, you could set
the value of a control like this:

BindingFlags flags = BindingFlags.Public | BindingFlags.NonPublic |
BindingFlags.Static | BindingFlags.Instance;

Console.WriteLine("Setting textBox1 to 'foo'");
Type t1 = theForm.GetType();
FieldInfo fi = t1.GetField("textBox1", flags);
object ctrl = fi.GetValue(theForm);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty("Text");
pi.SetValue(ctrl, "foo", null);

The BindingFlags object is a filter for many of the methods in the System.Reflection
namespace. In lightweight test-automation situations, you almost always filter for Public,
NonPublic, Instance, and Static methods, as we’ve done in this example. Because this is such
a common pattern, you’ll often find it convenient to declare a single class-scope BindingFlags
object, rather than recode a new object for each call that requires a BindingFlags argument.

To manipulate a control, you begin by getting a Type object from the parent Form object. This
is the first of two Type objects you’ll need. Then you use the Type object to obtain a reference to a
FieldInfo object by using the GetField() method. With this intermediate FieldInfo object, you
can now get a reference to the actual control object by calling FieldInfo.GetValue(). This is not
entirely intuitive but the pattern is always the same. Next, you use the control object and get its
Type by calling GetType(). Then you can use this second Type object to get a PropertyInfo object
using the GetProperty() method. At this point, you have references to the control object and one

CHAPTER 2 ■ REFLECTION-BASED UI TESTING48

of its properties. Finally, you can manipulate the value of the control’s property by using the
SetValue() method.

The first two arguments passed to SetValue() are the control object to manipulate and
the new value for the control’s property. The third argument represents optional index values.
You only need this when you are dealing with indexed properties. This value should be a null
reference for nonindexed properties, as is almost always the case for controls. Although some
controls, such as the ListBox control, have components that are indexed (the Items property,
for example), the control itself is not indexed.

As described earlier, the hidden issue is that you should not directly call SetValue() on a
control object from a thread that does not own the control’s parent Form object. Doing so can
lead to complex thread synchronization problems. Because you are working from the test-
harness thread instead of the Form thread, the Form.InvokeRequired property is always true.
The recommended technique in situations like this is to call Form.Invoke(), passing a delegate
object that is associated with a method that actually calls SetValue(). Implementing this idea
gives you the code in this solution.

You can significantly increase the modularity of this technique by wrapping the code up
into a single method combined with a delegate object:

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

delegate void SetControlPropertyValueHandler(Form f,
string controlName, string propertyName, object newValue);

static void SetControlPropertyValue(Form f, string controlName,
string propertyName, object newValue)

{
if (f.InvokeRequired)
{
//Console.WriteLine("in invoke req.");
Delegate d =
new SetControlPropertyValueHandler(SetControlPropertyValue);

object[] o = new object[]{f, controlName, propertyName, newValue};
f.Invoke(d, o);

}
else
{
//Console.WriteLine("in else part");
Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName);
pi.SetValue(ctrl, newValue, null);

}
}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 49

The method can be called like this:

SetControlPropertyValue(theForm, "textBox1", "Text", "paper");
SetControlPropertyValue(theForm, "comboBox1", "Text", "rock");

This SetControlPropertyValue() wrapper improves the modularity of your automation
code, but is somewhat tricky because it references itself. When SetControlPropertyValue() is
called in the Main() method of your harness, InvokeRequired is initially true because the calling
thread does not own the form. Execution branches to the Form.Invoke() statement, which, in
turn, calls the SetControlPropertyValueHandler() delegate that calls back into the associated
SetControlPropertyValue() method. But the second time through the wrapper, InvokeRequired
will be false because the call now comes from the originating thread. Execution transfers to the
else part of the logic, where the PropertyInfo.SetValue() changes the control’s property. If you
remove the commented lines of code and run, you’ll see how the path of execution works.

2.5 Accessing Control Properties
Problem
You want to retrieve the properties of a control on a Windows form-based application.

Design
Obtain a reference to the control you want to manipulate using the Form.GetType(),
Type.GetField(), and FieldInfo.GetValue() methods. Then use the PropertyInfo.GetValue()
method in conjunction with a method delegate to retrieve the value of the target control.

Solution

if (theForm.InvokeRequired)
{
Delegate d =
new GetControlPropertyValueHandler(GetControlPropertyValue);

object[] o = new object[] { theForm, "textBox1", "Text" };
string txt = (string)theForm.Invoke(d, o);
Console.WriteLine("textBox1 has " + txt);

}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

CHAPTER 2 ■ REFLECTION-BASED UI TESTING50

delegate object GetControlPropertyValueHandler(Form f,
string controlName, string propertyName);

static object GetControlPropertyValue(Form f, string controlName,
string propertyName)

{
Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName);
object result = pi.GetValue(ctrl, null);
return result;

}

Comments
When writing lightweight reflection-based UI test automation, you may want to retrieve proper-
ties of controls on the application form. Examples include the Text property value of a TextBox
control and the ObjectCollection property of a ListBox control. You must do this to verify the
state of the AUT and determine a pass/fail test result. The key to obtaining the value of a con-
trol’s property is to use the PropertyInfo.GetValue() method. But there is a hidden issue—you
should not call GetValue() directly from a thread that is not the main Form thread. This issue is
discussed in detail in Sections 2.2, 2.3, and 2.4. If the hidden issue did not exist, you could easily
get a control property like this:

// launch object theForm

Type t1 = theForm.GetType();
FieldInfo fi = t1.GetField("textBox1", flags);
object ctrl = fi.GetValue(theForm);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty("Text");
string txt = (string)pi.GetValue(ctrl, null);
Console.WriteLine("TextBox1 Text is " + txt);

To access the property of a control object, you start by getting a Type object from the par-
ent Form object. This is the first of two Type objects you’ll need. Then you use that Type object
to obtain a reference to a FieldInfo object by using the GetField() method. The flags argu-
ment in this example is a BindingFlags object, as described in Section 2.4, and it acts as a
filter. With the FieldInfo object, you can now get a reference to the actual control object by
calling FieldInfo.GetValue(). Next, you use the control object and get its Type by calling
GetType(). Then you can use this second Type object to get a PropertyInfo object using the
GetProperty() method. At this point, you have references to the control object and one of
its properties. Finally, you can manipulate the value of the control’s property by using the
GetValue() method.

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 51

The GetValue() method accepts two arguments. The first argument to GetValue() is the
parent control object. The second argument is an optional array of index values. You only
need this when you are dealing with indexed properties. This value should be null for nonin-
dexed properties, as is almost always the case for controls. Although some controls, such as
the ListBox control, have components that are indexed (the Items property for example), the
control property itself is not indexed.

The hidden issue is that you should not directly call GetValue() on a Form object from a
thread that does not own the form. Doing so can lead to thread problems. Because you are work-
ing from the test-harness thread instead of the Form thread, the Form.InvokeRequired property is
always true. The recommended technique in situations like this is to call Form.Invoke(), passing
a delegate object that is associated with a method that actually calls PropertyInfo.GetValue().

You can significantly increase the modularity of this technique by wrapping the code into
a single method in conjunction with a delegate:

delegate object GetControlPropertyValueHandler(Form f,
string controlName, string propertyName);

static object GetControlPropertyValue(Form f, string controlName,
string propertyName)

{
if (f.InvokeRequired)
{
Delegate d =
new GetControlPropertyValueHandler(GetControlPropertyValue);

object[] o = new object[] { f, controlName, propertyName };
object iResult = f.Invoke(d, o);
return iResult;

}
else
{

Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName);
object gResult = pi.GetValue(ctrl, null);
return gResult;

}
}

with class-scope object

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

CHAPTER 2 ■ REFLECTION-BASED UI TESTING52

The logic behind this self-referential wrapping technique is explained in detail in the
“Comments” part of Sections 2.2, 2.3, and 2.4. With this wrapper method, you can make clean
calls in your test harness like this:

string txt =
(string)GetControlPropertyValue(theForm, "textBox1", "Text");

Console.WriteLine("TextBox1 holds " + txt);

ListBox.ObjectCollection oc =
(ListBox.ObjectCollection)GetControlPropertyValue(theForm,

"listBox1", "Items");
if (oc.Count > 0)
{
string s = oc[0].ToString();
Console.WriteLine("The first line in listBox1 is " + s);

}

if (oc.Contains("The TextBox wins"))
Console.WriteLine("Found 'The TextBox wins' in listBox1");

else
Console.WriteLine("Did not find 'The TextBox wins' in listBox1");

Notice that for a ListBox control, you retrieve the Items property, which is a collection of
type ListBox.ObjectCollection. This component is indexed so you can access each string in
the collection or iterate through all the strings using square bracket syntax.

2.6 Invoking Methods
Problem
You want to invoke a method of a form-based application.

Design
Get a reference to the method you want to invoke using the Form.GetType() and Type.GetMethod()
methods. Then use the MethodInfo.Invoke() method in conjunction with an AutoResetEvent
object and a method delegate to call the target method.

Solution
if (theForm.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
object[] parms = new object[] { null, EventArgs.Empty };
object[] o = new object[] { theForm, "button1_Click", parms };
theForm.Invoke(d, o);
are.WaitOne();

}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 53

else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

static AutoResetEvent are = new AutoResetEvent(false);

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);
are.Set();

}

Comments
When writing lightweight reflection-based UI test automation, you usually need to invoke
methods that are part of the application form to simulate user actions. Examples include
invoking a button1_Click() method, which handles actions when a user clicks on a button1
control, and invoking a menuItem2_Click() method, which handles actions when a user clicks
on a menuItem2 menu item. Notice that reflection-based UI automation simulates a button
click by directly invoking the button control’s associated method rather than by firing an
event. When a real user clicks on a button, it generates a Windows message that is processed
by the control and turned into a managed event. This causes a particular method to be
invoked. So, reflection-based UI automation will not catch the logic error if the AUT has the
wrong method wired to a button click event.

The key to invoking methods is to use the MethodInfo.Invoke() method. If there were no
hidden issues, you could invoke a method like this:

Type t = theForm.GetType();
MethodInfo mi = t.GetMethod("button1_Click", flags);
mi.Invoke(theForm, new object[] { null, EventArgs.Empty });

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

CHAPTER 2 ■ REFLECTION-BASED UI TESTING54

The BindingFlags object is a filter for many of the methods in the System.Reflection
namespace and is discussed in Section 2.4. The MethodInfo.Invoke() method accepts two
arguments. The first argument is the parent Form object that owns the method being invoked.
The second argument is an object array containing the arguments that must be passed to the
method being invoked. In this example, the button1_Click() method has a signature of

private void button1_Click(object sender, System.EventArgs e)

So you need to pass values for parameters sender and e, representing the object associ-
ated with the button1_Click() method and optional event data the method might need. For
lightweight UI test automation, you can ignore these parameters and simply pass null and
EventArgs.Empty.

As described in Sections 2.3, 2.3, and 2.4, there is a hidden issue—you should not call
MethodInfo.Invoke() directly from a thread that is not the main Form thread. The solution to
this hidden invoke issue is to call MethodInfo.Invoke() indirectly through a Delegate object:

if (theForm.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
object[] parms = new object[] { null, EventArgs.Empty };
object[] o = new object[] { theForm, "button1_Click", parms };
theForm.Invoke(d, o);

}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);

}

This code will work most of the time; however, programmatically invoking a method has
a second, very subtle, hidden issue involving synchronization. Suppose your test harness
invokes a method on the AUT, and that method directly or indirectly spins off a new thread
of execution. Before your test harness takes any further action, you must wait until control
is returned to the test harness. There are two solutions to this timing problem. The first is a

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 55

crude but effective approach: place Thread.Sleep() statements in your test harness to slow
the automation down. For example:

if (theForm.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
object[] parms = new object[] { null, EventArgs.Empty };
object[] o = new object[] { theForm, "button1_Click", parms };
theForm.Invoke(d, o);
Thread.Sleep(2000);

}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);
Thread.Sleep(2000);

}

However, this crude approach has a big problem: there’s no way to determine how long
to pause so you must make your delay times long. This leads to a test harness with multiple
lengthy delays. A better solution to the timing problem is to use an AutoResetEvent object for
synchronization. You declare a class scope object like

static AutoResetEvent are = new AutoResetEvent(false);

which creates an object that can have a value of signaled or not-signaled. The false argument
means initialize the object to not-signaled. Then, whenever you want to pause your automa-
tion, you insert the statement are.WaitOne(). This sets the value of the AutoResetEvent object
to not-signaled. The current thread of execution halts until the AutoResetEvent object is set to
signaled from an are.Set() statement. Putting these ideas together led to this code:

CHAPTER 2 ■ REFLECTION-BASED UI TESTING56

if (theForm.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
object[] parms = new object[] { null, EventArgs.Empty };
object[] o = new object[] { theForm, "button1_Click", parms };
theForm.Invoke(d, o);
are.WaitOne();

}
else
{
Console.WriteLine("Unexpected logic flow");

}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

static AutoResetEvent are = new AutoResetEvent(false);

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);
are.Set();

}

So, at the beginning of the code, the test-automation thread does not own the main test
Form object thread, and the InvokeRequired property is true. Execution control is transferred
to the InvokeMethodHandler() delegate, which in turn is associated with an InvokeMethod()
helper method. InvokeMethod() actually performs the work by calling MethodInfo.Invoke().
For synchronization, calling AutoResetEvent.WaitOne() blocks the thread of execution, allow-
ing the MethodInfo.Invoke() method to complete execution. Calling AutoResetEvent.Set()
signals that the thread of execution can resume.

You can greatly modularize this technique by wrapping the code in a single self-referential
method in conjunction with a delegate and an AutoResetEvent object:

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 57

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
if (f.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
f.Invoke(d, new object[] {f, methodName, parms});
are.WaitOne();

}
else
{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);
are.Set();

}
}

where

static BindingFlags flags = BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

static AutoResetEvent are = new AutoResetEvent(false);

With this convenient wrapper method you can make clean calls:

object[] parms = new object[] { null, EventArgs.Empty };
InvokeMethod(theForm, "button1_Click", parms);

The InvokeMethod() wrapper is self-referencing. On the initial call to InvokeMethod() from
your test harness, InvokeRequired is true because the call is coming from your test harness.
Control of execution transfers to the Form.Invoke() method, which passes control to the
InvokeMethodHandler() delegate. The delegate is associated with the original InvokeMethod()
method, so execution control reenters InvokeMethod(). The second time through the helper
method, InvokeRequired will be false, so control is transferred to the else block where
MethodInfo.Invoke() actually invokes the method passed in as an argument to the helper.

2.7 Example Program: ReflectionUITest
This program (see Listing 2-1) combines several of the techniques in the chapter to demon-
strate a lightweight reflection-based UI test-automation scenario. The scenario tests the
“paper-rock-scissors” form application described in the introduction to this chapter. The test
scenario launches the application, moves the form, and then simulates typing rock into the
TextBox control and a user selecting scissors from the ComboBox control. Then the scenario sim-
ulates a button click. The automation checks to see if the expected TextBox1 wins string is in
the ListBox control, and determines a scenario pass or fail result. The scenario finishes by

CHAPTER 2 ■ REFLECTION-BASED UI TESTING58

simulating a user selecting File ➤ Exit to close the application. Figure 2-1 in the introduction
to this chapter shows the result of running this test scenario.

This program assumes you have added project references to the System.Windows.Forms
and System.Drawing namespaces. You can extend this automation scenario by using some of
the techniques described in Chapter 1 and Chapter 4. For example, you can log test results to
external storage, or parameterize the scenario to accept multiple input states.

Listing 2-1. Program ReflectionUITest

using System;
using System.Reflection;
using System.Windows.Forms;
using System.Threading;
using System.Drawing;

namespace ReflectionUITest
{
class Class1
{
static BindingFlags flags = BindingFlags.Public |

BindingFlags.NonPublic |
BindingFlags.Static |
BindingFlags.Instance;

static AutoResetEvent are = new AutoResetEvent(false);

[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nStarting test scenario");
Console.WriteLine("\nLaunching Form1");
Form theForm = null;
string formName = "AUT.Form1";
string path = "..\\..\\..\\AUT\\bin\\Debug\\AUT.exe";
theForm = LaunchApp(path, formName);

Console.WriteLine("\nMoving Form1");
Point pt = new Point(320, 100);
SetFormPropertyValue(theForm, "Location", pt);

Console.WriteLine("\nSetting textBox1 to 'rock'");
SetControlPropertyValue(theForm, "textBox1", "Text", "rock");
Console.WriteLine("Setting comboBox1 to 'scissors'");
SetControlPropertyValue(theForm, "comboBox1", "Text",

"scissors");

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 59

Console.WriteLine("\nClicking button1");
object[] parms = new object[]{ null, EventArgs.Empty };
InvokeMethod(theForm, "button1_Click", parms);

bool pass = true;

Console.WriteLine("\nChecking listBox1 for 'TextBox wins'");
ListBox.ObjectCollection oc =

(ListBox.ObjectCollection)
GetControlPropertyValue(theForm, "listBox1",

"Items");
string s = oc[0].ToString();
if (s.IndexOf("TextBox wins") == -1)
pass = false;

if (pass)
Console.WriteLine("\n-- Scenario result = Pass --");

else
Console.WriteLine("\n-- Scenario result = *FAIL* --");

Console.WriteLine("\nClicking File->Exit in 3 seconds");
Thread.Sleep(3000);
InvokeMethod(theForm, "menuItem2_Click", parms);

Console.WriteLine("\nEnd test scenario");
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
} // Main()

static Form LaunchApp(string path, string formName)
{
Form result = null;
Assembly a = Assembly.LoadFrom(path);
Type t = a.GetType(formName);
result = (Form)a.CreateInstance(t.FullName);
AppState aps = new AppState(result);
ThreadStart ts = new ThreadStart(aps.RunApp);
Thread thread = new Thread(ts);
thread.Start();
return result;

}
private class AppState
{
public readonly Form formToRun;
public AppState(Form f)

CHAPTER 2 ■ REFLECTION-BASED UI TESTING60

{
this.formToRun = f;

}
public void RunApp()
{
Application.Run(formToRun);

}
} // class AppState

delegate void SetFormPropertyValueHandler(Form f,
string propertyName, object newValue);

static void SetFormPropertyValue(Form f, string propertyName,
object newValue)

{
if (f.InvokeRequired)
{
Delegate d =
new SetFormPropertyValueHandler(SetFormPropertyValue);

object[] o = new object[] { f, propertyName, newValue };
f.Invoke(d, o);
are.WaitOne();

}
else
{
Type t = f.GetType();
PropertyInfo pi = t.GetProperty(propertyName);
pi.SetValue(f, newValue, null);
are.Set();

}
}

delegate void SetControlPropertyValueHandler(Form f,
string controlName, string propertyName, object newValue);

static void SetControlPropertyValue(Form f, string controlName,
string propertyName, object newValue)

{
if (f.InvokeRequired)
{
Delegate d =
new SetControlPropertyValueHandler(SetControlPropertyValue);

object[] o = new object[] { f, controlName, propertyName,
newValue };

f.Invoke(d, o);
are.WaitOne();

}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 61

else
{
Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName);
pi.SetValue(ctrl, newValue, null);
are.Set();

}
}

delegate void InvokeMethodHandler(Form f, string methodName,
params object[] parms);

static void InvokeMethod(Form f, string methodName,
params object[] parms)

{
if (f.InvokeRequired)
{
Delegate d = new InvokeMethodHandler(InvokeMethod);
f.Invoke(d, new object[] {f, methodName, parms});
are.WaitOne();

}
else
{
Type t = f.GetType();
MethodInfo mi = t.GetMethod(methodName, flags);
mi.Invoke(f, parms);
are.Set();

}
}

delegate object GetControlPropertyValueHandler(Form f,
string controlName, string propertyName);

static object GetControlPropertyValue(Form f, string controlName,
string propertyName)

{
if (f.InvokeRequired)
{
Delegate d =
new GetControlPropertyValueHandler(GetControlPropertyValue);

object[] o = new object[] { f, controlName, propertyName };
object iResult = f.Invoke(d, o);
are.WaitOne();
return iResult;

}

CHAPTER 2 ■ REFLECTION-BASED UI TESTING62

else
{
Type t1 = f.GetType();
FieldInfo fi = t1.GetField(controlName, flags);
object ctrl = fi.GetValue(f);
Type t2 = ctrl.GetType();
PropertyInfo pi = t2.GetProperty(propertyName);
object gResult = pi.GetValue(ctrl, null);
are.Set();
return gResult;

}
}

} // Class1
} // ns

CHAPTER 2 ■ REFLECTION-BASED UI TESTING 63

Windows-Based UI Testing

3.0 Introduction
This chapter describes how to test an application through its user interface (UI) using low-
level Windows-based automation. These techniques involve calling Win32 API functions such
as FindWindow() and sending Windows messages such as WM_LBUTTONUP to the application
under test (AUT). Although these techniques have been available to developers and testers for
many years, the .NET programming environment dramatically simplifies the process. Figure
3-1 demonstrates the kind of lightweight test automation you can quickly create.

Figure 3-1. Windows-based UI test run

65

C H A P T E R 3

■ ■ ■

The dummy AUT is a color-mixer application. The key code for the application is

void button1_Click(object sender, System.EventArgs e)
{
string tb = textBox1.Text;
string cb = comboBox1.Text;

if (tb == "<enter color>" || cb == "<pick>")
MessageBox.Show("You need 2 colors", "Error");

else
{
if (tb == cb)
listBox1.Items.Add("Result is " + tb);

else if (tb == "red" && cb == "blue" ||
tb == "blue" && cb =="red")

listBox1.Items.Add("Result is purple");
else
listBox1.Items.Add("Result is black");

}
}

Notice that the application may generate an error message box. Dealing with low-level
constructs such as message boxes and the main menu are tasks that can be handled well by
Win32 functions. The fundamental idea is that every Windows-based control is a window.
Each control/window has a handle that can be used to access, manipulate, and examine the
control/window. The three key categories of tasks in lightweight, low-level Windows-based UI
automation are

• Finding a window/control handle

• Manipulating a window/control

• Examining a window/control

Keeping this task-organization structure in mind will help you arrange your test automation.
The code in this chapter is written in a traditional procedural style rather than in an object-

oriented style. This is a matter of personal preference, and you may want to recast the techniques
to an OOP (object-oriented programming) style. Additionally, you may want to modularize the
code solutions further by combining them into a .NET class library. The test automation harness
that produced the test run shown in Figure 3-1 is presented in Section 3.10.

3.1 Launching the AUT
Problem
You want to launch a Windows form-based application so you can test it through its UI.

Design
Use the System.Diagnostics.Process.Start() method.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING66

Solution
static void Main(string[] args)
{
try
{
Console.WriteLine("\nLaunching application under test");

string path = "..\\..\\..\\WinApp\\bin\\Debug\\WinApp.exe";
Process p = Process.Start(path);
if (p == null)
Console.WriteLine("Warning: process may already exist");

// run UI test scenario here

Console.WriteLine("\nDone");
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
}

There are several ways to launch a Windows form application so that you can test it through
its UI using Windows-based techniques. The simplest way is to use the Process.Start() static
method located in the System.Diagnostics namespace.

Comments
The Process.Start() method has four overloads. The overload used in this solution accepts a
path to the AUT and returns a Process object that represents the resources associated with the
application. You need to be a bit careful with the Process.Start() return value. A return of null
does not necessarily indicate failure; null is also returned if an existing process is reused. Regard-
less, a return of null is not good because your UI test automation will often become confused if
more than one target application is running. This idea is explained more fully in Section 3.2.

If you need to pass arguments to the AUT, you can use the Process.Start() overload that
accepts a second argument, which represents command-line arguments to the application.
For example:

Process p = null;
p = Process.Start("SomeApp.exe", "C:\\Somewhere\\Somefile.txt");
if (p == null)
Console.WriteLine("Warning: process may already exist");

The Process.Start() method also supports an overload that accepts a ProcessStartInfo
object as an argument. A ProcessStartInfo object can direct the AUT to launch and run in a
variety of ways; however, this technique is rarely needed in a lightweight test automation sce-
nario. The Process.Start() method is asynchronous, so when you use it to launch the AUT, be
careful about attempting to access the application through your test harness until after you
are sure the application has launched. This problem is discussed and solved in Section 3.2.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 67

3.2 Obtaining a Handle to the Main Window of the AUT
Problem
You want to obtain a handle to the application main window.

Design
Use the FindWindow()Win32 API function with the .NET platform invoke (P/Invoke) mechanism.

Solution

class Class1
{
[DllImport("user32.dll", EntryPoint="FindWindow",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindow(string lpClassName,
string lpWindowName);

[STAThread]
static void Main(string[] args)
{
try
{
// launch AUT; see Section 3.1

IntPtr mwh = IntPtr.Zero; // main window handle
bool formFound = false;
int attempts = 0;

while (!formFound && attempts < 25)
{
if (mwh == IntPtr.Zero)
{
Console.WriteLine("Form not yet found");
Thread.Sleep(100);
++attempts;
mwh = FindWindow(null, "Form1");

}
else
{
Console.WriteLine("Form has been found");
formFound = true;

}
}

if (mwh == IntPtr.Zero)
throw new Exception("Could not find main window");

CHAPTER 3 ■ WINDOWS-BASED UI TESTING68

Console.WriteLine("\nDone");
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
}

} // Class1

To manipulate and examine the state of a Windows application, you must obtain a handle
to the application’s main window. A window handle is a system-generated value that you can
think of as being both an ID for the associated window and a way to access the window.

Comments
In a .NET environment, a window handle is type System.IntPtr, which is a platform-specific
type used to represent either a pointer (memory address) or a handle. To obtain a handle to
the main window of an AUT, you can call the Win32 API FindWindow() function. The
FindWindow() function is essentially a part of the Windows operating system, which is
available to you. Because FindWindow() is part of Windows, it is written in traditional C++
and not managed code. The C++ signature for FindWindow() is

HWND FindWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName);

This function accepts a window class name and a window name as arguments, and it
returns a handle to the window. To call into unmanaged code like the FindWindow() function
from C#, you can use a .NET mechanism called platform invoke (P/Invoke). P/Invoke func-
tionality is contained in the System.Runtime.InteropServices namespace. The mechanism is
very elegant. In essence, you create a C# wrapper, or alias for the Win32 function you want to
use, and then call that alias. You start by placing a

using System.Runtime.InteropServices;

statement in your test harness so you can easily access P/Invoke functionality. Next you
determine a C# signature for the unmanaged function you want to call. This really involves
deter- mining C# data types that map to the return type and parameter types of the unman-
aged function. In the case of FindWindow(), the unmanaged return type is HWND, which is a
Win32 data type representing a handle to a window. As explained earlier, the corresponding
C# data type is System.IntPtr. The Win32 FindWindow() function accepts two parameters of
type LPCTSTR. Although the details are fairly deep, this is basically a Win32 data type that can
be represented by a C# type string.

■Note One of the greatest productivity-enhancing improvements that .NET introduced to application develop-
ment is a vastly simplified data type model. To use the P/Invoke mechanism, you must determine the C# equiv-
alents to Win32 data types. A detailed discussion of the mappings between Win32 data types and .NET data
types is outside the scope of this book, but fortunately most mappings are fairly obvious. For example, the Win32
data types LPCSTR, LPCTSTR, LPCWSTR, LPSTR, LPTSTR, and LPWSTR usually map to the C# string data type.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 69

After determining the C# alias method signature, you can place a class-scope DllImport
attribute with the C# method signature that corresponds to the Win32 function signature into
your test harness:

[DllImport("user32.dll", EntryPoint="FindWindow",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindow(string lpClassName,
string lpWindowName);

The “user32.dll” argument specifies the DLL file where the unmanaged function you
want to use is located. Because the DllImport attribute is expecting a DLL, the .dll extension
is optional; however, including it makes your code more readable. The EntryPoint attribute
specifies the name of the Win32 API function that you will be calling through the C# alias. If
the C# method name is exactly the same as the Win32 function name, you may omit the
EntryPoint argument. But again, putting the argument in the attribute makes your code easier
to read and maintain. The CharSet argument is optional but should be used whenever the C#
method alias has a return type or one or more parameters that are type char or string. Speci-
fying CharSet.Auto essentially means to let the .NET Framework take care of all character type
conversions, for example, ASCII to Unicode. The CharSet.Auto argument dramatically simpli-
fies working with type char and type string.

When you code the C# method alias for a Win32 function, you almost always use the
static and extern modifiers because most Win32 functions are static functions rather than
instance functions in C# terminology, and Win32 functions are external to your test harness.
You may name the C# method anything you like but keeping the C# method name the same
as the Win32 function name is the most readable approach. Similarly, you can name the C#
parameters anything you like, but again, a good strategy is to make C# parameter names the
same as their Win32 counterparts.

With the P/Invoke plumbing in place, if a subtle timing issue did not exist, you could now
get the handle to the main window of the AUT like this:

IntPtr mwh = FindWindow(null, "Form1");

Before explaining the timing issue, let’s look at the method call. The second argument to
FindWindow() is the window name. In help documentation, this value is sometimes called the
window title or the window caption. In the case of a Windows form application, this will usually
be the form name. The first argument to FindWindow() is the window class name. A window
class name is a system-generated string that is used to register the window with the operating
system. Note that the term “class name” in this context is an old pre-OOP term and is not at all
related to the idea of a C# language class container structure. Window/control class names are
not unique, so they have little value when trying to find a window/control.

In this example, if you pass null as the window class name when calling FindWindow(),
FindWindow() will return the handle of the first instance of a window with name "Form1". This
means you should be very careful about having multiple AUTs active, because you may get the
wrong window handle.

If you attempt to obtain the application main window handle in the simple way just
described, you are likely to run into a timing issue. The problem is that your AUT may not be
fully launched and registered. A poor way to deal with this problem is to place Thread.Sleep()
calls with large delays into your test harness to give the application time to launch. A better

CHAPTER 3 ■ WINDOWS-BASED UI TESTING70

way to deal with this issue is to wrap the call to FindWindow() in a while loop with a small
delay, checking to see if you get a valid window handle:

IntPtr mwh = IntPtr.Zero; // main window handle
bool formFound = false;

while (!formFound)
{
if (mwh == IntPtr.Zero)
{
Console.WriteLine("Form not yet found");
Thread.Sleep(100);
mwh = FindWindow(null, "Form1");

}
else
{
Console.WriteLine("Form has been found");
formFound = true;

}
}

You use a Boolean flag to control the while loop. If the value of the main window handle is
IntPtr.Zero, then you delay the test automation by 100 milliseconds (one-tenth of a second)
using the Thread.Sleep() method from the System.Threading namespace. This approach could
lead to an infinite loop if the main window handle is never found, so in practice you will often
want to add a counter to limit the maximum number of times you iterate through the loop:

IntPtr mwh = IntPtr.Zero; // main window handle
bool formFound = false;
int attempts = 0;

while (!formFound && attempts < 25)
{
if (mwh == IntPtr.Zero)
{
Console.WriteLine("Form not yet found");
Thread.Sleep(100);
++attempts;
mwh = FindWindow(null, "Form1");

}
else
{
Console.WriteLine("Form has been found");
formFound = true;

}
}

if (mwh == IntPtr.Zero)
throw new Exception("Could not find Main Window");

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 71

If the value of the main window handle variable is still IntPtr.Zero after the while loop
terminates, you know that the handle was never found, and you should abort the test run by
throwing an exception.

You can increase the modularity of your lightweight test harness by wrapping the code in
this solution in a helper method. For example, if you write

static IntPtr FindMainWindowHandle(string caption)
{
IntPtr mwh = IntPtr.Zero;
bool formFound = false;
int attempts = 0;

do
{
mwh = FindWindow(null, caption);
if (mwh == IntPtr.Zero)
{
Console.WriteLine("Form not yet found");
Thread.Sleep(100);
++attempts;

}
else
{
Console.WriteLine("Form has been found");
formFound = true;

}
} while (!formFound && attempts < 25);

if (mwh != IntPtr.Zero)
return mwh;

else
throw new Exception("Could not find Main Window");

} // FindMainWindowHandle()

then you can make a clean call in your harness Main() method like this:

Console.WriteLine("Finding main window handle");
IntPtr mwh = FindMainWindowHandle("Form1");
Console.WriteLine("Handle to main window is " + mwh);

Depending on the complexity of your AUT, you may want to parameterize the delay time
and the maximum number of attempts, leading to a helper signature such as

static IntPtr FindMainWindowHandle(string caption, int delay,
int maxTries)

which can be called like this:

CHAPTER 3 ■ WINDOWS-BASED UI TESTING72

Console.WriteLine("Finding main window handle");
int delay = 100;
int maxTries = 25;
IntPtr mwh = FindMainWindowHandle("Form1", delay, maxTries);
Console.WriteLine("Handle to main window is " + mwh);

3.3 Obtaining a Handle to a Named Control
Problem
You want to obtain a handle to a control/window that has a window name.

Design
Use the FindWindowEx()Win32 API function with the .NET P/Invoke mechanism.

Solution

IntPtr mwh = IntPtr.Zero; // main window handle
// obtain main window handle here; see Section 3.2

Console.WriteLine("Finding handle to textBox1");
IntPtr tb = FindWindowEx(mwh, IntPtr.Zero, null, "<enter color>");
if (tb == IntPtr.Zero)
throw new Exception("Unable to find textBox1");

else
Console.WriteLine("Handle to textBox1 is " + tb);

Console.WriteLine("Finding handle to button1");
IntPtr butt = FindWindowEx(mwh, IntPtr.Zero, null, "button1");
if (butt == IntPtr.Zero)
throw new Exception("Unable to find button1");

else
Console.WriteLine("Handle to button1 is " + butt);

where a class-scope DllImport attribute is

[DllImport("user32.dll", EntryPoint="FindWindowEx",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindowEx(IntPtr hwndParent,
IntPtr hwndChildAfter, string lpszClass, string lpszWindow);

To access and manipulate a control on a form-based application, you must obtain a han-
dle to the control. In a Windows environment, all GUI controls are themselves windows. So, a
button control is a window, a textbox control is a window, and so forth. To get a handle to a
control/window, you can use the FindWindowEx()Win32 API function.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 73

Comments
To call a Win32 function such as FindWindowEx() from a C# test harness, you can use the
P/Invoke mechanism as described in Section 3.2. The Win32 FindWindowEx() function has
this C++ signature:

HWND FindWindowEx(HWND hwndParent, HWND hwndChildAfter,
LPCTSTR lpszClass, LPCTSTR lpszWindow);

The FindWindowEx() function accepts four arguments. The first argument is a handle to the
parent window of the control you are seeking. The second argument is a handle to a control
and directs FindWindowEx() where to begin searching; the search begins with the next child
control. The third argument is the class name of the target control, and the fourth argument is
the window name/title/caption of the target control.

As discussed in Section 3.2, the C# equivalent to the Win32 type HWND is IntPtr and the C#
equivalent to type LPCTSTR is string. Because the Win32 FindWindowEx() function is located in
file user32.dll, you can insert this class-scope attribute and C# alias into the test harness:

[DllImport("user32.dll", EntryPoint="FindWindowEx",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindowEx(IntPtr hwndParent,
IntPtr hwndChildAfter, string lpszClass, string lpszWindow);

Notice that the C# alias method signature uses the same function name and same param-
eter names as the Win32 function for code readability. With this P/Invoke plumbing in place,
you can obtain a handle to a named control:

// get main window handle in variable mwh; see Section 3.2

Console.WriteLine("Finding handle to textBox1");
IntPtr tb = FindWindowEx(mwh, IntPtr.Zero, null, "<enter color>");

Console.WriteLine("Finding handle to button1");
IntPtr butt = FindWindowEx(mwh, IntPtr.Zero, null, "button1");

The first argument is the handle to the main window form that contains the target control.
By specifying IntPtr.Zero as the second argument, you instruct FindWindowEx() to search all
controls on the main form window. You ignore the target control class name by passing in null
as the third argument. The fourth argument is the target control’s name/title/caption.

You should not assume that a call to FindWindowEx() has succeeded. To check, you can
test if the return handle has value IntPtr.Zero along the lines of

if (tb == IntPtr.Zero)
throw new Exception("Unable to find textBox1");

if (butt == IntPtr.Zero)
throw new Exception("Unable to find button1");

So, just how do you determine a control name/title/caption? The simplest way is to use
the Spy++ tool included with Visual Studio .NET. The Spy++ tool is indispensable for light-
weight UI test automation. Figure 3-2 shows Spy++ after its window finder has been placed on
the button1 control of the AUT shown in the foreground of Figure 3-1.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING74

Figure 3-2. The Spy++ tool

In addition to a control’s caption, Spy++ provides other useful information such as the
control’s class name, Windows events related to the control, and the control’s parent, child,
and sibling controls.

3.4 Obtaining a Handle to a Non-Named Control
Problem
You want to obtain a handle to a control that does not have a window name.

Design
Write a FindWindowByIndex() helper method that finds the control by using its implied index
value.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 75

Solution

static IntPtr FindWindowByIndex(IntPtr hwndParent, int index)
{
if (index == 0)
return hwndParent;

else
{
int ct = 0;
IntPtr result = IntPtr.Zero;
do
{
result = FindWindowEx(hwndParent, result, null, null);
if (result != IntPtr.Zero)
++ct;

} while (ct < index && result != IntPtr.Zero);

return result;
}

}

and then call like this:

Console.WriteLine("Finding handle to listBox1");
IntPtr lb = FindWindowByIndex(mwh, 3);
if (lb == IntPtr.Zero)
throw new Exception("Unable to find listBox1");

else
Console.WriteLine("Handle to listBox1 is " + lb);

To access and manipulate a control on a form-based application, you must obtain a han-
dle to the control. If the target control has a unique window name, then you can obtain its
handle using the techniques in Section 3.3. But a control may not have a name/caption/title.
Examples include empty textbox controls and empty listbox controls. Furthermore, controls
may have nonunique names. To deal with these situations, you can write a helper method that
uses the Win32 FindWindowEx() function to return a control handle based on the control’s
order index value.

Comments
The index value of a control is implied rather than explicit. The idea is that each control on a
form has a predecessor and a successor control (except for the first control, which has no
predecessor, and the last control, which has no successor). This predecessor-successor rela-
tionship can be used to find window handles.

Before examining this control index order concept further, let’s imagine that we know the
index value of a control and see how the FindWindowByIndex() helper method works to return
the control handle. Suppose, for example, that an application has a listbox control, and the
index of the control is 3. This means that index 0 represents the main form window, and indexes
1 and 2 represent predecessor controls to the listbox control. The FindWindowByIndex() helper

CHAPTER 3 ■ WINDOWS-BASED UI TESTING76

method accepts two arguments. The first argument is a handle to the parent control, and the
second is a control index. If the index argument is 0, the FindWindowByIndex() method immedi-
ately returns the handle to the parent control. This design choice is arbitrary. The heart of the
helper method is a call to FindWindwEx() inside a loop:

int ct = 0;
do
{
result = FindWindowEx(hwndParent, result, null, null);
if (result != IntPtr.Zero)
++ct;

} while (ct < index && result != IntPtr.Zero);

Each call to FindWindowEx() returns a handle to the next available control because you pass
in as arguments the current window handle, the result returned in the preceding iteration of
the loop, null, and null again, as the first, second, third, and fourth arguments, respectively.
As explained in Section 3.3, the second argument to FindWindowEx() directs the method where
to begin searching, and passing null as the third and fourth arguments means to find the first
available window/control regardless of class name or window name. If this loop executes n
times, variable result will hold the handle of the nth window/control, or IntPtr.Zero if the
control could not be found.

So, if you know the index value of a control, you can get the control handle using the
FindWindowByIndex() helper method. But just how do you determine a control’s implied index
value? There are two simple ways to get this index value. First, if you have access to the AUT
source code, you can get a control index value because the value is the order in which the
control is added to the main form control. For example, suppose the AUT code contains

this.Controls.Add(this.comboBox1);
this.Controls.Add(this.button1);
this.Controls.Add(this.listBox1);
this.Controls.Add(this.textBox1);

The implied index of the comboBox1 control is 1, the index of button1 is 2, the index of
listBox1 is 3, and the index of textBox1 is 4. Note that the implied index value of a control is
not the same as the control tab order. Now if you do not have access to the source code of the
AUT, you can still determine the index value of each control by examining the predecessors
and successors of the controls with the Spy++ tool as described in Section 3.3.

The FindWindowByIndex() helper method gives you a way to deal with controls with
nonunique names. Suppose your AUT has two buttons with the same label:

this.Controls.Add(this.button1); // window name is "Click me"
this.Controls.Add(this.button2); // window name also "Click me"

You can still obtain handles to each button control:

IntPtr butt1 = FindWindowByIndex(mwh, 1);
IntPtr butt2 = FindWindowByIndex(mwh, 2);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 77

3.5 Sending Characters to a Control
Problem
You want to send characters to a text-based control.

Design
Use the Win32 SendMessage() function with a WM_CHAR notification message.

Solution

// launch app; see Section 3.1
// get main window handle; see Section 3.2
// get handle to textBox1 as tb; see Sections 3.3 and 3.4

Console.WriteLine("Sending 'x' to textBox1");
uint WM_CHAR = 0x0102;
SendMessage1(tb, WM_CHAR, 'x', 0);

Console.WriteLine("Now adding 'foo' to textBox1");
string s = "foo";
foreach (char c in s)
{
SendMessage1(tb, WM_CHAR, c, 0);

}

where the class-scope DllImport attribute is

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

A common lightweight UI test automation task is to simulate a user typing characters into
a UI control. One way to do this is to use the Win32 SendMessage() function with the .NET
P/Invoke mechanism.

Comments
The SendMessage() function has this C++ signature:

LRESULT SendMessage(HWND hWnd, UINT Msg,
WPARAM wParam, LPARAM lParam);

There are four parameters. The first parameter is a handle to the window/control that you
are sending a Windows message to. The second parameter is the Windows message to send to
the control. The third and fourth parameters are generic and their meaning and data type
depend upon the Windows message. Similarly, the meaning and type of the return value for
SendMessage() depend upon the message being sent. So, before you can create a C# signature

CHAPTER 3 ■ WINDOWS-BASED UI TESTING78

alias for the C++ SendMessage() function, you need to examine the particular Windows mes-
sage you will be sending. In this case, you want to send a WM_CHAR message. The WM_CHAR
message is sent to the control that has keyboard focus when a key is pressed. WM_CHAR is actu-
ally a Windows symbolic constant defined as 0x0102. If you look up “WM_CHAR” in the
integrated Visual Studio .NET Help, you will find that wParam parameter specifies the character
code of the key pressed. The lParam parameter specifies various key-state masks such as the
repeat count, scan code, extended-key flag, context code, previous key-state flag, and transi-
tion-state flag values. So, with this information in hand, you can create a C# signature like:

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

You use a C# method alias name of SendMessage1() rather than SendMessage() because
there will be several different C# signatures depending on the particular Windows message
passed to the SendMessage() function. As explained in Section 3.2, a C# IntPtr type corre-
sponds to a C++ HWND type. All Windows messages are type uint, and the WM_CHAR message
requires two int parameters for the scan code of the key pressed and a value for the key-state
mask.

With this code in place, you can send a character to a control like this:

Console.WriteLine("Finding handle to textBox1");
IntPtr tb = FindWindowEx(mwh, IntPtr.Zero, null, "<enter color>");

Console.WriteLine("Sending 'x' to textBox1");
uint WM_CHAR = 0x0102;
SendMessage1(tb, WM_CHAR, 'x', 0);

Notice that an implicit type conversion is occurring here. When you pass a character such
as 'x' as the third argument to SendMessage(), the character will be implicitly converted to
type int.

You can increase the modularity of your test automation by wrapping the essential code
into two helper methods:

static void SendChar(IntPtr hControl, char c)
{
uint WM_CHAR = 0x0102;
SendMessage1(hControl, WM_CHAR, c, 0);

}

static void SendChars(IntPtr hControl, string s)
{
foreach (char c in s)
{
SendChar(hControl, c);

}
}

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 79

Then you can make clean calls such as

Console.WriteLine("Sending 'x' to textBox1");
SendChar(tb, 'x');

Console.WriteLine("Now adding 'foo' to textBox1");
SendChars(tb, "foo");

3.6 Clicking on a Control
Problem
You want to automate a mouse click on a control.

Design
Use the Win32 PostMessage() function with WM_LBUTTONDOWN and WM_LBUTTONUP notification
messages.

Solution

Console.WriteLine("Clicking on button1");
uint WM_LBUTTONDOWN = 0x0201;
uint WM_LBUTTONUP = 0x0202;
PostMessage1(butt, WM_LBUTTONDOWN, 0, 0);
PostMessage1(butt, WM_LBUTTONUP, 0, 0);

where a class-scope DllImport attribute is

[DllImport("user32.dll", EntryPoint="PostMessage",
CharSet=CharSet.Auto)]

static extern bool PostMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

Comments
A common lightweight UI test automation task is to simulate a user clicking on a UI control.
One way to do this is to use the Win32 PostMessage() function with the .NET P/Invoke mecha-
nism. The PostMessage() function has this C++ signature:

BOOL PostMessage(HWND hWnd, UINT Msg,
WPARAM wParam, LPARAM lParam);

The PostMessage() function is closely related to the SendMessage() function described in
Section 3.5. In lightweight test automation scenarios, you will use SendMessage() most often.
The primary difference between SendMessage() and PostMessage() is that SendMessage() calls
the specified procedure and does not return until after the procedure has processed the Win-
dows message; PostMessage() returns without waiting for the message to be processed. In the

CHAPTER 3 ■ WINDOWS-BASED UI TESTING80

case of a mouse button click action, you want control to return to the test automation harness
without waiting for the thread to process the message. In practical terms, deciding whether to
use SendMessage() or PostMessage() is difficult. You should consider the actions associated
with the message you want to send; if the actions are very closely related and must happen
more or less together, try PostMessage(), otherwise try SendMessage(). Regardless, you may
have to experiment to get the desired effect.

The PostMessage() function accepts four arguments: a handle to the window/control that
you are posting a Windows message to, the Windows message to post to the control, and
generic arguments whose data type and meaning depend upon the Windows message being
posted. To create a C# signature alias for the C++ PostMessage() function, you need to exam-
ine the particular Windows message you will be posting. In this instance, you want to post a
WM_LBUTTONDOWN (mouse left button down) message followed by a WM_LBUTTONUP message. As
with all Windows messages, WM_LBUTTONDOWN and WM_LBUTTONUP are symbolic constants, in this
case 0x0201 and 0x0202, respectively. The wParam parameter for both messages indicates
whether various virtual keys are down while the mouse button is being clicked. A value of 0
means no keys are down when the mouse button is clicked. The lParam parameter specifies
where in the target control the mouse clicks at; a value of 0 means the upper-left corner of the
control (the low byte is the x coordinate, and the high byte is the y coordinate). With this infor-
mation in hand, you can create a C# signature such as

[DllImport("user32.dll", EntryPoint="PostMessage",
CharSet=CharSet.Auto)]

static extern bool PostMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

Choose a C# method alias name of PostMessage1() rather than PostMessage() because
there may be several different C# signatures depending on the particular Windows message
passed to the PostMessage() function. As explained in Section 3.2, a C# IntPtr type corre-
sponds to a C++ HWND type.

After you have placed the P/Invoke plumbing in your lightweight test automation harness,
you can simulate a user clicking on a control:

// get button1 handle into variable 'butt'; see Section 3.3
Console.WriteLine("Clicking on button1");
uint WM_LBUTTONDOWN = 0x0201;
uint WM_LBUTTONUP = 0x0202;
PostMessage1(butt, WM_LBUTTONDOWN, 0, 0);
PostMessage1(butt, WM_LBUTTONUP, 0, 0);

Notice that you are ignoring the PostMessage1() return value. Win32 function return values
are often used for error-checking, and you should take advantage of them. Somewhat surpris-
ingly, however, Windows message return values are often not very helpful in lightweight UI test
automation. The main reason for this is that the return values are generally intended for use by
the message receiver; however, in a test automation situation, you are effectively the message
sender.

You can increase the modularity of your test automation by wrapping the essential control-
click code into a helper method:

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 81

static void ClickOn(IntPtr hControl)
{
uint WM_LBUTTONDOWN = 0x0201;
uint WM_LBUTTONUP = 0x0202;
PostMessage1(hControl, WM_LBUTTONDOWN, 0, 0); // button down
PostMessage1(hControl, WM_LBUTTONUP, 0, 0); // button up

}

Then you can make calls such as

// get button1 handle into variable 'butt'; see Section 3.3

Console.WriteLine("Clicking on button1");
ClickOn(butt);

In addition to using this solution to click on button controls, you can use the technique to
give focus to a control in situations where a real user might do so, so that you can send charac-
ters to the control. For example:

// get comboBox1 handle into variable 'cb'; see Section 3.4

Console.WriteLine("Clicking on comboBox1 to set keyboard focus");
ClickOn(cb);
Thread.Sleep(500);
Console. WriteLine("Now sending 'foo' to comboBox1");
SendChars(cb, "foo");

3.7 Dealing with Message Boxes
Problem
You want to deal with a message box, such as clicking it away.

Design
Treat the message box as a top-level window/control rather than as a child control, and use
the Win32 FindWindow() function with the P/Invoke mechanism.

Solution

Console.WriteLine("Clicking button1");
ClickOn(butt); // see Section 3.6
// generates a message box with title "Error" and button "OK"

CHAPTER 3 ■ WINDOWS-BASED UI TESTING82

Console.WriteLine("\nLooking for Message Box");
IntPtr mb = IntPtr.Zero;
bool mbFound = false;
int tries = 0;
while (!mbFound && tries < 25)
{
mb = FindWindow(null, "Error");
++tries;

if (mb == IntPtr.Zero)
{
Console.WriteLine("Message Box window not yet found");
Thread.Sleep(100);

}
else
{
Console.WriteLine("Message Box found; handle = " + mb);
mbFound = true;

}
} // while

Console.WriteLine("Clicking away Message Box in 2.5 seconds");
Thread.Sleep(2500);

IntPtr okButt = FindWindowEx(mb, IntPtr.Zero, null, "OK");
ClickOn(okButt);

The key to dealing with message box windows is to realize that message box controls are
not child controls of the application form. Message box controls are top-level windows, so you
treat them just as you would the main application form. You can think of a message box as a
tiny subprogram that runs independently from the AUT. So, first you get a handle to the mes-
sage box, and then you get a handle to the “OK” button (or other control on the message box),
which you can then manipulate.

Comments
The heart of the technique to obtain a handle to a message box is to call the Win32 API
FindWindow() function using the .NET P/Invoke mechanism. This technique is described in
detail in Section 3.2. To summarize, you create a C# alias for the Win32 FindWindow() function
using a class-scope DllImport attribute. The C# FindWindow() method alias accepts the target
message box class name (which is rarely useful), accepts the window name/title/caption, and
returns a handle to the message box:

IntPtr mb = IntPtr.Zero;
mb = FindWindow(null, "Error");

After you obtain a handle to a message box, if you want to simulate a user clicking the box
away as is usually the case, you obtain a handle to the OK button using the FindWindowEx()
function as described in Section 3.3:

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 83

IntPtr okButt = FindWindowEx(mb, IntPtr.Zero, null, "OK");

The FindWindowEx() method accepts a handle to the parent control (the message box), a
handle to the window/control to begin searching at (a value of IntPtr.Zero means search all
child controls), the target control class name (rarely useful so we usually pass in null), and the
target control name/title/caption. An alternative way to get the handle to the message box OK
button is to use the FindWindowByIndex() helper method described in Section 3.4. For exam-
ple, if the OK button is the only control on a message box, then you can get a handle to the
button with

IntPtr okButt = FindWindowByIndex(mb, 1);

Because message box controls are top-level windows, a slight delay may occur before they
are ready to be accessed. This is especially true if you are running your lightweight test automa-
tion under a stress condition (reduced system resources). So, you can use the same idea as
presented in Section 3.2—place the call to FindWindow() in a while loop with a slight delay,
checking each time through the loop until the message box handle variable does not have a
IntPtr.Zero value:

Console.WriteLine("\nLooking for message box");
IntPtr mb = IntPtr.Zero;
bool mbFound = false;
int attempts = 0;
while (!mbFound && attempts < 25)
{
mb = FindWindow(null, "Error");
++attempts;

if (mb == IntPtr.Zero)
{
Console.WriteLine("Message Box window not found yet . . . ");
Thread.Sleep(100);

}
else
{
Console.WriteLine("Message Box window found with ptr = " + mb);
mbFound = true;

}
}

You can increase the modularity of this solution by wrapping the code up into a helper
method:

static IntPtr FindMessageBox(string caption)
{
IntPtr result = IntPtr.Zero;
bool mbFound = false;
int attempts = 0;

CHAPTER 3 ■ WINDOWS-BASED UI TESTING84

do
{
result = FindWindow(null, caption);
if (result == IntPtr.Zero)
{
Console.WriteLine("Message Box not yet found");
Thread.Sleep(100);
++attempts;

}
else
{
Console.WriteLine("Message Box has been found");
mbFound = true;

}
} while (!mbFound && attempts < 25);

if (result != IntPtr.Zero)
return result;

else
throw new Exception("Could not find Message Box");

}

With this helper method, you can now make calls like this:

Console.WriteLine("\nLooking for message box");
IntPtr mb = FindMessageBox("Error");
Console.WriteLine("Message box handle = " + mb);

Except for some minor details such as the progress messages, this helper method is exactly
the same as the helper method to find the main window handle presented in the discussion
section of Section 3.2. Therefore, you could combine them both into a single helper:

static IntPtr FindTopLevelWindow(string caption)
{
// code as shown previously

}

Then, make calls like this:

// launch AUT here; see Section 3.1

Console.WriteLine("\nLooking for main window handle");
IntPtr mwh = FindTopLevelWindow ("Form1");
Console.WriteLine("Main window handle = " + mwh);

ClickOn(butt); // see Section 3.6

Console.WriteLine("\nLooking for message box");
IntPtr mb = FindTopLevelWindow ("Error");
Console.WriteLine("Message box handle = " + mb);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 85

This approach is more efficient than having two separate helper methods and makes
technical sense, but the downside is that your code will be slightly harder to read and modify
for specific message box or main window issues. A compromise approach is to write a single
FindTopLevelWindow() method as shown previously and then write tiny wrapper methods
such as

static IntPtr FindMainWindowHandle(string caption, int delay, int maxTries)
{
return FindTopLevelWindow(caption, delay, maxTries);

}

static IntPtr FindMessageBox(string caption)
{
int delay = 100;
int maxTries = 25;
return FindTopLevelWindow(caption, delay, maxTries);

}

3.8 Dealing with Menus
Problem
You want to simulate a user clicking on a main menu item such as Help ➤ About or File ➤ Exit.

Design
Use the Win32 API functions GetMenu(), GetSubMenu(), GetMenuItemID(), and SendMessage()
with a WM_COMMANDWindows message.

Solution

// Launch AUT; See Section 3.1
// Get main window handle into mwh; See Section 3.2

IntPtr hMainMenu = GetMenu(mwh);
Console.WriteLine("Handle to main menu is " + hMainMenu);

IntPtr hHelp = GetSubMenu(hMainMenu, 2);
Console.WriteLine("\nHandle to Help is " + hHelp);

int iAbout = GetMenuItemID(hHelp, 0);
Console.WriteLine("\nIndex to About is " + iAbout);

uint WM_COMMAND = 0x0111;
SendMessage2(mwh, WM_COMMAND, iAbout, IntPtr.Zero);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING86

where class-scope attributes are

// Menu routines
[DllImport("user32.dll")]
static extern IntPtr GetMenu(IntPtr hWnd);

[DllImport("user32.dll")]
static extern IntPtr GetSubMenu(IntPtr hMenu, int nPos);

[DllImport("user32.dll")]
static extern int GetMenuItemID(IntPtr hMenu, int nPos);

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage2(IntPtr hWnd, uint Msg,
int wParam, IntPtr lParam);

Comments
Suppose your AUT has a main menu structured like this:

File Edit Help
New Cut About
Save Copy Update
Print Paste
Exit

The preceding solution would simulate a user clicking on Help ➤ About. The GetMenu()
function returns a handle to the main application menu. The GetSubMenu() function
accepts a parent menu handle and a 0-based submenu index, and returns a handle to a
submenu. In this example, if variable hMainMenu holds a handle to the main menu, then the
call GetSubMenu(hMainMenu, 2) would return a handle to the Help part of the main menu,
GetSubMenu(hMainMenu, 0) would return a handle to the File part of the main menu, and so
on. After you have the submenu handle, the next step is to get an index value of the item you
want to manipulate using the GetMenuItemID() function. If hHelp holds a handle to the Help
part of the main menu, the call GetMenuItemID(hHelp, 0) returns the index of the About part
of the submenu and GetMenuItemID(hHelp, 1) returns the index of the Update part of the
submenu.

After obtaining an index to the menu item you want to manipulate, the last step to simulate
clicking on the menu item is to call the SendMessage()Win32 API function using a WM_COMMAND
message. If variable iAbout holds the index of the About item in the Help submenu, then the
statements

uint WM_COMMAND = 0x0111;
SendMessage2(mwh, WM_COMMAND, iAbout, IntPtr.Zero);

will simulate a user clicking on Help ➤ About.

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 87

A common task in lightweight UI test automation scenarios is to simulate a user perform-
ing a File ➤ Exit. If File is the first menu item, and Exit is the first submenu item under File,
then the pattern is

Console.WriteLine("\nDoing a File -> Exit in 2.5 seconds");
Thread.Sleep(2500);
IntPtr hMainMenu = GetMenu(mwh);
IntPtr hFile = GetSubMenu(hMainMenu, 0);
int iExit = GetMenuItemID(hFile, 0);
uint WM_COMMAND = 0x0111;
SendMessage2(mwh, WM_COMMAND, iExit, IntPtr.Zero);

The WM_COMMAND message is sent when the user selects a command item from a menu. Like
all Windows messages, it is really just a constant; in this case, the value is 0x0111. Notice we are
using a C# alias named SendMessage2(). As discussed in Section 3.2, the C# alias signatures for
the Win32 SendMessage() and the PostMessage() functions depend on the message being
sent/posted. In the case of WM_COMMAND, the wParam parameter represents two values. The high-
order word of wParam specifies the notification code if the message comes from a control. If
the message is from an accelerator, this value is 1; if the message is from a menu, this value is
0. The low-order word of wParam specifies the identifier of the menu item. In other words, the
wParam parameter is type int. The lParam parameter specifies the handle to the control send-
ing the message (if the message is from a control) or null if the message is not from a control
(which is the case when notification comes from a user-initiated event). In other words, the
lParam parameter is type IntPtr. Therefore, you create a DllImport attribute of

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage2(IntPtr hWnd, uint Msg,
int wParam, IntPtr lParam);

You could rely on .NET overloading and just use one common SendMessage() alias signature,
but creating separate SendMessageX()-style alias signatures tends to be a bit more readable in
general. The .NET alias signatures for GetMenu(), GetSubMenu(), and GetMenuItemID() follow their
Win32 counterparts. Because these functions are used in only one way, you do not give them a
MethodNameX()-style alias, such as GetMenu1() for example.

The pattern to simulate more complex menu structures follows the same general pattern
as the preceding solution. For example, suppose you have a menu structure like this:

File Edit Help
HelpItem0 [0]
HelpItem1 [1]
HelpItem2 [2]
HelpItem2SubItem0 [0]
HelpItem2SubItem1 [1]

HelpItem3 [3]

To simulate a user selecting Help ➤ HelpItem2 ➤ HelpItem2SubItem1, you could write
this code:

CHAPTER 3 ■ WINDOWS-BASED UI TESTING88

IntPtr hMainMenu = GetMenu(mwh);
Console.WriteLine("Handle to main menu is " + hMainMenu);

IntPtr hHelp = GetSubMenu(hMainMenu, 2);
Console.WriteLine("\nHandle to Help is " + hHelp);

IntPtr hSub = GetSubMenu(hHelp, 2);
Console.WriteLine("\nHandle to HelpItem2 is " + hSub);

int iSub = GetMenuItemID(hSub, 1);
Console.WriteLine("\nIndex to HelpItem2SubItem1 is " + iSub);

uint WM_COMMAND = 0x0111;
SendMessage2(mwh, WM_COMMAND, iSub, IntPtr.Zero);

3.9 Checking Application State
Problem
You want to check the contents of a control on the AUT.

Design
Use the WM_GETTEXT message with the SendMessage()Win32 API function.

Solution

// launch AUT; see Section 3.1
// get handle to textBox1 into variable tb; see Section 3.3
// manipulate app; see Sections 3.5 and 3.6

Console.WriteLine("\nChecking the contents of textBox1");
uint WM_GETTEXT = 0x000D;
byte[] buffer = new byte[256];
string text = null;
int numFetched = SendMessage3(tb, WM_GETTEXT, 256, buffer);
text = System.Text.Encoding.Unicode.GetString(buffer);
Console.WriteLine("Fetched " + numFetched + " chars");
Console.WriteLine("TextBox1 contains = " + text);

where

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern int SendMessage3(IntPtr hWndControl,
uint Msg, int wParam, byte[] lParam);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 89

Comments
To determine a pass or fail test result when performing lightweight UI test automation, you
must be able to programmatically examine the AUT to determine if the result state is what is
expected. For example, you may need to determine if an expected text string is in a textbox
control. The WM_GETTEXT message used with the SendMessage() function is one of several ways
to retrieve the text from a textbox control or a combobox control. As described in Section 3.2,
the C# method signature for SendMessage() depends on the particular message being sent. In
the case of WM_GETTEXT, the wParam parameter is the maximum number of characters to fetch
from the control, so you can use the C# int data type. The lParam parameter is a pointer to a
buffer array to receive the text fetched from the control, so you can use a C# byte array. This
leads to the following class-scope DllImport attribute to create a C# alias for SendMessage()
when used in conjunction with a WM_GETTEXT message:

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern int SendMessage3(IntPtr hWndControl, uint Msg,
int wParam, byte[] lParam);

With this P/Invoke plumbing in place, you can prepare the call to retrieve the text in a
textbox control like this:

uint WM_GETTEXT = 0x000D;
byte[] buffer = new byte[256];
string text = null;

The Windows message WM_GETTEXT is just a symbolic constant with value 0x000D. You declare
a byte array to hold the text in the control we are examining. In this example, placing a hard-
coded 256 value in the automation is a simple approach but assumes the text in the target
control is no longer than 256 bytes (or 128 Unicode characters). If you need to determine the
actual size of the text in the target control, you can use the WM_GETTEXTLENGTH message first, and
then use that return value to allocate your buffer array.

Now, if variable tb holds the handle to textBox1, you can make the call to SendMessage()
like this:

int numFetched = SendMessage3(tb, WM_GETTEXT, 256, buffer);
text = System.Text.Encoding.Unicode.GetString(buffer);

This technique works for simple text-based controls. For example, you can retrieve the
text in a combobox control in the exact same way. More complex controls, such as listbox con-
trols, require a different approach:

Console.WriteLine("\nChecking contents of listBox1 for 'foo'");
uint LB_FINDSTRING = 0x018F;
int result = SendMessage4(lb, LB_FINDSTRING, -1, "foo");
if (result >= 0)
Console.WriteLine("Found 'foo'");

else
Console.WriteLine("Did not find 'foo'");

where

CHAPTER 3 ■ WINDOWS-BASED UI TESTING90

[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern int SendMessage4(IntPtr hWnd, uint Msg,
int wParam, string lParam);

The LB_FINDSTRING message can be used to determine if a particular string is in a listbox
control. The wParam parameter specifies which item in the listbox to begin searching at, with
a value of -1 indicating to search the entire control. The lParam parameter is the target string
to search for. The return value is a 0-based index of the location of the target string in the
listbox, or -1 if the target is not found.

3.10 Example Program: WindowsUITest
This program combines several of the techniques from this chapter to create a lightweight test
automation harness to test the Windows application shown in the foreground of Figure 3-1.
The program is a test scenario with test inputs hard-coded into the harness, rather than using
test case inputs read from an external file. The test automation first launches the color-mixer
AUT. Then the test scenario clicks the button control to generate an error message box. Next
the automation clicks the error message box away and then simulates a user typing “red” and
“blue” to the application. The automation clicks the button control again and then examines
the listbox control, looking for an expected “Result is purple” string. The complete light-
weight test harness is listed in Listing 3-1. When run, the output will be as shown in Figure 3-1
in the introduction section of this chapter.

Listing 3-1. Program WindowsUITest

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;

namespace WindowsUITest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nLaunching application under test");

string path = "..\\..\\..\\WinApp\\bin\\Debug\\WinApp.exe";
Process p = Process.Start(path);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 91

Console.WriteLine("\nFinding main window handle");
IntPtr mwh = FindMainWindowHandle("Form1", 100, 25);
Console.WriteLine("Main window handle = " + mwh);

Console.WriteLine("\nFinding handles to textBox1, comboBox1");
Console.WriteLine(" button1, listBox1");

// you may want to add delays here to make sure Form has rendered
IntPtr tb = FindWindowEx(mwh, IntPtr.Zero, null, "<enter color>");
IntPtr cb = FindWindowByIndex(mwh, 1);
IntPtr butt = FindWindowEx(mwh, IntPtr.Zero, null, "button1");
IntPtr lb = FindWindowByIndex(mwh, 3);

if (tb == IntPtr.Zero || cb == IntPtr.Zero ||
butt == IntPtr.Zero || lb == IntPtr.Zero)

throw new Exception("Unable to find all controls");
else
Console.WriteLine("All control handles found");

Console.WriteLine("\nClicking button1");
ClickOn(butt);

Console.WriteLine("Clicking away Error message box");
Thread.Sleep(1000);
IntPtr mb = FindMessageBox("Error");
if (mb == IntPtr.Zero)
throw new Exception("Unable to find message box");

IntPtr okButt = FindWindowEx(mb, IntPtr.Zero, null, "OK");
if (okButt == IntPtr.Zero)
throw new Exception("Unable to find OK button");

ClickOn(okButt);

Console.WriteLine("Typing 'red' and 'blue' to application");
SendChars(tb, "red");
ClickOn(cb);
SendChars(cb, "blue");

Console.WriteLine("Clicking on button1");
ClickOn(butt);
Console.WriteLine("\nChecking listBox1 for 'purple'");

uint LB_FINDSTRING = 0x018F;
int result = SendMessage4(lb, LB_FINDSTRING, -1,

"Result is purple");
if (result >= 0)
Console.WriteLine("\nTest scenario result = Pass");

else
Console.WriteLine("\nTest scenario result = *FAIL*");

CHAPTER 3 ■ WINDOWS-BASED UI TESTING92

Console.WriteLine("\nExiting app in 3 seconds . . . ");
Thread.Sleep(3000);
IntPtr hMainMenu = GetMenu(mwh);
IntPtr hFile = GetSubMenu(hMainMenu, 0);
int iExit = GetMenuItemID(hFile, 0);
uint WM_COMMAND = 0x0111;
SendMessage2(mwh, WM_COMMAND, iExit, IntPtr.Zero);

Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
} // Main()

static IntPtr FindTopLevelWindow(string caption, int delay,
int maxTries)

{
IntPtr mwh = IntPtr.Zero;
bool formFound = false;
int attempts = 0;

do
{
mwh = FindWindow(null, caption);
if (mwh == IntPtr.Zero)
{
Console.WriteLine("Form not yet found");
Thread.Sleep(delay);
++attempts;

}
else
{
Console.WriteLine("Form has been found");
formFound = true;

}
} while (!formFound && attempts < maxTries);

if (mwh != IntPtr.Zero)
return mwh;

else
throw new Exception("Could not find Main Window");

} // FindTopLevelWindow()

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 93

static IntPtr FindMainWindowHandle(string caption, int delay, int maxTries)
{
return FindTopLevelWindow(caption, delay, maxTries);

}

static IntPtr FindMessageBox(string caption)
{
int delay = 100;
int maxTries = 25;
return FindTopLevelWindow(caption, delay, maxTries);

}

static IntPtr FindWindowByIndex(IntPtr hwndParent, int index)
{
if (index == 0)
return hwndParent;

else
{
int ct = 0;
IntPtr result = IntPtr.Zero;
do
{
result = FindWindowEx(hwndParent, result, null, null);
if (result != IntPtr.Zero)
++ct;

} while (ct < index && result != IntPtr.Zero);

return result;
}

} // FindWindowByIndex()

static void ClickOn(IntPtr hControl)
{
uint WM_LBUTTONDOWN = 0x0201;
uint WM_LBUTTONUP = 0x0202;
PostMessage1(hControl, WM_LBUTTONDOWN, 0, 0);
PostMessage1(hControl, WM_LBUTTONUP, 0, 0);

}

static void SendChar(IntPtr hControl, char c)
{
uint WM_CHAR = 0x0102;
SendMessage1(hControl, WM_CHAR, c, 0);

}

CHAPTER 3 ■ WINDOWS-BASED UI TESTING94

static void SendChars(IntPtr hControl, string s)
{
foreach (char c in s)
{
SendChar(hControl, c);

}
}

// P/Invoke Aliases

[DllImport("user32.dll", EntryPoint="FindWindow",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindow(string lpClassName,
string lpWindowName);

[DllImport("user32.dll", EntryPoint="FindWindowEx",
CharSet=CharSet.Auto)]

static extern IntPtr FindWindowEx(IntPtr hwndParent,
IntPtr hwndChildAfter, string lpszClass, string lpszWindow);

// for WM_CHAR message
[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

// for WM_COMMAND message
[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern void SendMessage2(IntPtr hWnd, uint Msg,
int wParam, IntPtr lParam);

// for WM_LBUTTONDOWN and WM_LBUTTONUP messages
[DllImport("user32.dll", EntryPoint="PostMessage",
CharSet=CharSet.Auto)]

static extern bool PostMessage1(IntPtr hWnd, uint Msg,
int wParam, int lParam);

// for WM_GETTEXT message
[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern int SendMessage3(IntPtr hWndControl, uint Msg,
int wParam, byte[] lParam);

CHAPTER 3 ■ WINDOWS-BASED UI TESTING 95

// for LB_FINDSTRING message
[DllImport("user32.dll", EntryPoint="SendMessage",
CharSet=CharSet.Auto)]

static extern int SendMessage4(IntPtr hWnd, uint Msg,
int wParam, string lParam);

// Menu routines
[DllImport("user32.dll")] //
static extern IntPtr GetMenu(IntPtr hWnd);

[DllImport("user32.dll")] //
static extern IntPtr GetSubMenu(IntPtr hMenu, int nPos);

[DllImport("user32.dll")] //
static extern int GetMenuItemID(IntPtr hMenu, int nPos);

} // class
} // ns

CHAPTER 3 ■ WINDOWS-BASED UI TESTING96

Test Harness Design Patterns

4.0 Introduction
One of the advantages of writing lightweight test automation instead of using a third-party
testing framework is that you have great flexibility in how you can structure your test har-
nesses. A practical way to classify test harness design patterns is to consider the type of test
case data storage and the type of test-run processing. The three fundamental types of test case
data storage are flat, hierarchical, and relational. For example, a plain-text file is usually flat
storage; an XML file is typically hierarchical; and SQL data is often relational. The two funda-
mental types of test-run processing are streaming and buffered. Streaming processing
involves processing one test case at a time; buffered processing processes a collection of test
cases at a time. This categorization leads to six fundamental test harness design patterns:

• Flat test case data, streaming processing model

• Flat test case data, buffered processing model

• Hierarchical test case data, streaming processing model

• Hierarchical test case data, buffered processing model

• Relational test case data, streaming processing model

• Relational test case data, buffered processing model

Of course, there are many other ways to categorize, but thinking about test harness
design in this way has proven to be effective in practice. Now, suppose you are developing a
poker game application as shown in Figure 4-1.

97

C H A P T E R 4

■ ■ ■

Figure 4-1. Poker Game AUT

Let’s assume that the poker application references a PokerLib.dll library that houses
classes to create and manipulate various poker objects. In particular, a Hand() constructor
accepts a string argument such as “Ah Kh Qh Jh Th” (ace of hearts through ten of hearts), and
a Hand.GetHandType() method returns an enumerated type with a string representation such
as “RoyalFlush”. As described in Chapter 1, you need to thoroughly test the methods in the
PokerLib.dll library. This chapter demonstrates how to test the poker library using each of the
six fundamental test harness design patterns and explains the advantages and disadvantages
of each pattern. For example, Section 4.3 uses this hierarchical test case data:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS98

<?xml version="1.0" ?>
<testcases>
<case id="0001">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>

</case>
<case id="0002">
<input>4s 5s 6s 7s 3s</input>
<expected>StraightSevenHigh</expected>

</case>
<case id="0003">
<input>5d 5c Qh 5s Qd</input>
<expected>FullHouseFivesOverQueens</expected>

</case>
</testcases>

and uses a streaming processing model to produce this result:

<?xml version="1.0" encoding="utf-8"?>
<TestResults>
<case id="0001">
<result>Pass</result>

</case>
<case id="0002">
<input>4s 5s 6s 7s 3s</input>
<expected>StraightSevenHigh</expected>
<actual>StraightFlushSevenHigh</actual>
<result>*FAIL*</result>

</case>
<case id="0003">
<result>Pass</result>

</case>
</TestResults>

Although the techniques in this chapter demonstrate the six fundamental design patterns
by testing a .NET class library, the patterns are general and apply to testing any type of software
component.

The streaming processing model, expressed in pseudo-code, is

loop
read a single test case from external store
parse test case data into input(s) and expected(s)
call component under test
determine test case result
save test case result to external store

end loop

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 99

The buffered processing model, expressed in pseudo-code, is

loop // 1. read all test cases
read a single test case from external store into memory

end loop

loop // 2. run all test cases
read a single test case from in-memory store
parse test case data into input(s) and expected(s)
call component under test
determine test case result
store test case result to in-memory store

end loop

loop // 3. save all results
save test case result from in-memory store to external store

end loop

The streaming processing model is simpler than the buffered model, so it is often your
best choice. However, in two common scenarios, you should consider using the buffered
processing model. First, if the aspect in the system under test (SUT) involves file input/out-
put, you often want to minimize test harness file operations. This is especially true if you are
monitoring performance. Second, if you need to perform any preprocessing of your test case
input (for example, pulling in and filtering test case data from more than one data store) or
postprocessing of your test case results (for example, aggregating various test case category
results), it’s almost always more convenient to have data in memory where you can process it.

4.1 Creating a Text File Data, Streaming Model
Test Harness
Problem
You want to create a test harness that uses text file test case data and a streaming processing
model.

Design
In one continuous processing loop, use a StreamReader object to read a test case data into
memory, then parse the test case data into input and expected values using the String.Split()
method, and call the component under test (CUT). Next, check the actual result with the
expected result to determine a test case pass or fail. Then, write the results to external storage
with a StreamWriter object. Do this for each test case.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS100

Solution
Begin by creating a tagged and end-of-file delimited test case file:

[id]=0001
[input]=Ac Ad Ah As Tc
[expected]=FourOfAKindAces

[id]=0002
[input]=4s 5s 6s 7s 3s
[expected]=StraightSevenHigh

[id]=0003
[input]=5d 5c Qh 5s Qd
[expected]=FullHouseFivesOverQueens

*

Then process using StreamReader and StreamWriter objects:

Console.WriteLine("\nBegin Text File Streaming model test run\n");

FileStream ifs = new FileStream("..\\..\\..\\TestCases.txt",
FileMode.Open);

StreamReader sr = new StreamReader(ifs);
FileStream ofs = new FileStream("TextFileStreamingResults.txt",

FileMode.Create);
StreamWriter sw = new StreamWriter(ofs);

string id, input, expected, blank, actual;

while (sr.Peek() != '*')
{
id = sr.ReadLine().Split('=')[1];
input = sr.ReadLine().Split('=')[1];
expected = sr.ReadLine().Split('=')[1];
blank = sr.ReadLine();

string[] cards = input.Split(' ');
Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

sw.WriteLine("====================");
sw.WriteLine("ID = " + id);
sw.WriteLine("Input = " + input);
sw.WriteLine("Expected = " + expected);
sw.WriteLine("Actual = " + actual);

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 101

if (actual == expected)
sw.WriteLine("Pass");

else
sw.WriteLine("*FAIL*");

}
sw.WriteLine("====================");

sr.Close(); ifs.Close();
sw.Close(); ofs.Close();

Console.WriteLine("\nDone");

Comments
You begin by creating a test case data file. As shown in the techniques in Chapter 1, you could
structure the file with each test case on one line:

0001:Ac Ad Ah As Tc:FourOfAKindAces
0002:4s 5s 6s 7s 3s:StraightSevenHigh:deliberate error
0003:5d 5c Qh 5s Qd:FullHouseFivesOverQueens

When using this approach, notice that the meaning of each part of the test case data is
implied (the first item is the case ID, the second is the input, and the third is the expected
result). A more flexible solution is to provide some structure to your test case data by adding
tags such as "[id]" and "[input]". This allows you to easily perform rudimentary validity
checks. For example:

string temp = sr.ReadLine(); // should be the ID
if (temp.StartsWith("[id]"))
id = temp.Split('=')[1];

else
throw new Exception("Invalid test case line");

You can perform validity checks on your test case data via a separate program that you
run before you run the test harness, or you can perform validity checks inside the test harness
itself. In addition to validity checks, structure tags also allow you to deal with test case data
that has a variable number of inputs.

This technique assumes that you have added a project reference to the PokerLib.dll library
under test and that you have supplied appropriate using statements so you don’t have to fully
qualify classes and objects:

using System;
using PokerLib;
using System.IO;

You should also always wrap your test harness code in try-catch-finally blocks:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS102

static void Main(string[] args)
{
// Open any files here
try
{
// main harness code here

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
finally
{
// Close any open streams here

}

} // Main()

When the code in this section is run with the preceding test case input data, the output is

====================
ID = 0001
Input = Ac Ad Ah As Tc
Expected = FourOfAKindAces
Actual = FourOfAKindAces
Pass
====================
ID = 0002
Input = 4s 5s 6s 7s 3s
Expected = StraightSevenHigh
Actual = StraightFlushSevenHigh
FAIL
====================
ID = 0003
Input = 5d 5c Qh 5s Qd
Expected = FullHouseFivesOverQueens
Actual = FullHouseFivesOverQueens
Pass
====================

Test case #0002 is an intentional failure. Using a special character token in the test case
data file to signal end-of-file is an old but effective technique. With such a token in place, you
can use the StreamReader.Peek() method to check the next input character without actually
consuming it from the associated stream.

To create meaningful test cases, you must understand how the SUT works. This can be dif-
ficult. Techniques to discover information about the SUT are discussed in Section 4.8. This
solution represents a minimal test harness. You can extend the harness, for example, by adding

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 103

summary counters of the number of test cases that pass and the number that fail by using the
techniques in Chapter 1.

4.2 Creating a Text File Data, Buffered Model Test
Harness
Problem
You want to create a test harness that uses text file test case data and a buffered processing
model.

Design
Read all test case data into an ArrayList collection that holds lightweight TestCase objects.
Then iterate through the test cases ArrayList object, executing each test case and storing the
results into a second ArrayList object that holds lightweight TestCaseResult objects. Finally,
iterate through the results ArrayList object, saving the results to an external text file.

Solution
Begin by creating lightweight TestCase and TestCaseResult classes:

class TestCase
{
public string id;
public string input;
public string expected;

public TestCase(string id, string input, string expected)
{
this.id = id;
this.input = input;
this.expected = expected;

}
} // class TestCase

class TestCaseResult
{
public string id;
public string input;
public string expected;
public string actual;
public string result;

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS104

public TestCaseResult(string id, string input, string expected,
string actual, string result)

{
this.id = id;
this.input = input;
this.expected = expected;
this.actual = actual;
this.result = result;

}
} // class TestCaseResult

Notice these class definitions use public data fields for simplicity. A reasonable alternative
is to use a C# struct type instead of a class type. The data fields for the TestCase class should
match the test case input data. The data fields for the TestCaseResult class should generally
contain most of the fields in the TestCase class, the fields for the actual result of calling the CUT,
and the test case pass or fail result. Because of this, a design option for you to consider is plac-
ing a reference to a TestCase object in the definition of the TestCaseResult class. For example:

class TestCaseResult
{
public TestCase tc;
public string actual;
public string result;

public TestCaseResult(TestCase tc, string actual, string result)
{
this.tc = tc;
this.actual = actual;
this.result = result;

}
} // class TestCaseResult

You may also want to include fields for the date and time when the test case was run. You
process the test case data using three loop control structures and two ArrayList objects like
this:

Console.WriteLine("\nBegin Text File Buffered model test run\n");

FileStream ifs = new FileStream("..\\..\\..\\TestCases.txt",
FileMode.Open);

StreamReader sr = new StreamReader(ifs);
FileStream ofs = new FileStream("TextFileBufferedResults.txt",

FileMode.Create);
StreamWriter sw = new StreamWriter(ofs);

string id, input, expected = "", blank, actual;
TestCase tc = null;
TestCaseResult r = null;

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 105

// 1. read all test case data into memory
ArrayList tcd = new ArrayList(); // test case data
while (sr.Peek() != '*')
{
id = sr.ReadLine().Split('=')[1];
input = sr.ReadLine().Split('=')[1];
expected = sr.ReadLine().Split('=')[1];
blank = sr.ReadLine();
tc = new TestCase(id, input, expected);
tcd.Add(tc);

}
sr.Close(); ifs.Close();

// 2. run all tests, store results to memory
ArrayList tcr = new ArrayList(); // test case result
for (int i = 0; i < tcd.Count; ++i)
{
tc = (TestCase)tcd[i];
string[] cards = tc.input.Split(' ');
Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

if (actual == tc.expected)
r = new TestCaseResult(tc.id, tc.input, tc.expected,

actual, "Pass");
else
r = new TestCaseResult(tc.id, tc.input, tc.expected,

actual, "*FAIL*");

tcr.Add(r);
} // main processing loop

// 3. emit all results to external storage
for (int i = 0; i < tcr.Count; ++i)
{
r = (TestCaseResult)tcr[i];
sw.WriteLine("====================");
sw.WriteLine("ID = " + r.id);
sw.WriteLine("Input = " + r.input);
sw.WriteLine("Expected = " + r.expected);
sw.WriteLine("Actual = " + r.actual);
sw.WriteLine(r.result);

}
sw.WriteLine("====================");

sw.Close(); ofs.Close();

Console.WriteLine("\nDone");

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS106

Comments
The buffered processing model has three distinct phases. First, you read all test case data into
memory. Although you can do this in many ways, experience has shown that your harness will
be much easier to maintain if you create a very lightweight class for the test case data. Don’t
get carried away and try to make a universal test case class that can accommodate any kind of
test case input, however, because you’ll end up with a class that is so general it’s too awkward
to use effectively.

You have many choices of the kind of data structure to store your TestCase objects into.
A System.Collections.ArrayList object is simple and effective. Because test case data is
processed strictly sequentially in some situations, you may want to consider using a Stack
or a Queue collection.

In the second phase of the buffered processing model, you iterate through each test case in
the ArrayList object that holds TestCase objects. After retrieving the current TestCase object,
you execute the test and determine a result. Then you instantiate a new TestCaseResult object
and add it to the ArrayList that holds TestCaseResult objects. Although it’s not a major issue,
you do need to take some care to avoid confusing your objects. Notice that you’ll have two
ArrayList objects, a TestCase object and a TestCaseResult object, both of which contain a test
case ID, test case input, and expected result.

In the third phase of the buffered processing model, you iterate through each test case
result in the result ArrayList object and write information to an external text file. Of course,
you can also easily emit results to an XML file, SQL database, or other external storage. If you
run this code with the test case data file from Section 4.1

[id]=0001
[input]=Ac Ad Ah As Tc
[expected]=FourOfAKindAces
etc.

you will get the identical output as in Section 4.1:

====================
ID = 0001
Input = Ac Ad Ah As Tc
Expected = FourOfAKindAces
Actual = FourOfAKindAces
Pass
====================
etc.

You can modularize this technique by writing three helper methods that wrap the code in
the section. With these helper methods, your harness might look like:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 107

class Class1
{
static void Main(string[] args)
{
ArrayList tcd = null; // test case data
ArrayList tcr = null; // test case results
tcd = ReadData("..\\TestCases.txt");
tcr = RunTests(tcd);
SaveResults(tcr, "..\\TestResults.txt");

}
static ArrayList ReadData(string file)
{
// code here

}
static ArrayList RunTests(ArrayList testdata)
{
// code here

}
static void SaveResults(ArayList results, string file)
{
// code here

}
}
class TestCase
{
// code here

}
class TestCaseResult
{
// code here

}

4.3 Creating an XML File Data, Streaming Model
Test Harness
Problem
You want to create a test harness that uses XML file test case data and a streaming processing
model.

Design
In one continuous processing loop, use an XmlTextReader object to read a test case into mem-
ory, then parse the test case data into input and expected values using the GetAttribute() and
ReadElementString() methods, and call the CUT. Next, check the actual result with the

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS108

expected result to determine a test case pass or fail. Then, write the results to external storage
using an XmlTextWriter object. Do this for each test case.

Solution
Begin by creating an XML test case file:

<?xml version="1.0" ?>
<testcases>
<case id="0001">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>

</case>
<case id="0002">
<input>4s 5s 6s 7s 3s</input>
<expected>StraightSevenHigh</expected>

</case>
<case id="0003">
<input>5d 5c Qh 5s Qd</input>
<expected>FullHouseFivesOverQueens</expected>

</case>
</testcases>

Then process the test case data using XmlTextReader and XmlTextWriter objects:

Console.WriteLine("\nBegin XML File Streaming model test run\n");

XmlTextReader xtr = new XmlTextReader("..\\..\\..\\TestCases.xml");
xtr.WhitespaceHandling = WhitespaceHandling.None;
XmlTextWriter xtw = new XmlTextWriter("XMLFileStreamingResults.xml",

System.Text.Encoding.UTF8);
xtw.Formatting = Formatting.Indented;
string id, input, expected, actual;

xtw.WriteStartDocument();
xtw.WriteStartElement("TestResults"); // root node

while (!xtr.EOF) // main loop
{
if (xtr.Name == "testcases" && !xtr.IsStartElement())
break;

while (xtr.Name != "case" || !xtr.IsStartElement())
xtr.Read(); // go to a <case> element if not there yet

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 109

id = xtr.GetAttribute("id");
xtr.Read(); // advance to <input>
input = xtr.ReadElementString("input"); // go to <expected>
expected = xtr.ReadElementString("expected"); // go to </case>
xtr.Read(); // go to next <case> or </testcases>

string[] cards = input.Split(' ');
Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

xtw.WriteStartElement("case");

xtw.WriteStartAttribute("id", null);
xtw.WriteString(id); xtw.WriteEndAttribute();

xtw.WriteStartElement("input");
xtw.WriteString(input); xtw.WriteEndElement();

xtw.WriteStartElement("expected");
xtw.WriteString(expected); xtw.WriteEndElement();

xtw.WriteStartElement("actual");
xtw.WriteString(actual); xtw.WriteEndElement();

xtw.WriteStartElement("result");
if (actual == expected)
xtw.WriteString("Pass");

else
xtw.WriteString("*FAIL*");

xtw.WriteEndElement(); // </result>

xtw.WriteEndElement(); // </case>
} // main loop

xtw.WriteEndElement(); // </TestResults>
xtr.Close();
xtw.Close();

Console.WriteLine("\nDone");

The XmlTextReader.Read() method advances one XML node at a time through the XML
file. Because XML is hierarchical, keeping track of exactly where you are within the file is a bit
tricky. To write results, you use an XmlTextWriter object with the WriteStartElement(), the
WriteString(), and the WriteEndElement() methods, along with the WriteStartAttribute()
and WriteEndAttribute() methods.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS110

Comments
The use of XML for test case storage has become very common. The key to understanding
this technique is to understand the Read() and ReadElementString() methods of the
System.Xml.XmlTextReader class. To an XmlTextReader object, an XML file is a sequence
of nodes. For example, if you do not count whitespace, the XML file

<?xml version="1.0" ?>
<foo att="x">
<bar>99</bar>

</foo>

has six nodes: the XML declaration, <foo>, <bar>, 99, </bar>, and </foo>. This means that the
statement

xtr.WhitespaceHandling = WhitespaceHandling.None;

in your harness is critical because without it you would have to keep track of blank lines, tab
characters, end-of-line sequences, and so on. The Read() method advances one node at a
time. Unlike many Read() methods in other classes, the XmlTextReader.Read() method does
not return significant data. The ReadElementString() method, on the other hand, returns the
data between begin and end tags of its argument and advances to the next node after the
end tag. Because XML attributes are not nodes, you have to extract attribute data using the
GetAttribute() method.

When run with the preceding test case data, this code produces the following as output:

<?xml version="1.0" encoding="utf-8"?>
<TestResults>
<case id="0001">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>
<actual>FourOfAKindAces</actual>
<result>Pass</result>

</case>
<case id="0002">
<input>4s 5s 6s 7s 3s</input>
<expected>StraightSevenHigh</expected>
<actual>StraightFlushSevenHigh</actual>
<result>*FAIL*</result>

</case>
<case id="0003">
<input>5d 5c Qh 5s Qd</input>
<expected>FullHouseFivesOverQueens</expected>
<actual>FullHouseFivesOverQueens</actual>
<result>Pass</result>

</case>
</TestResults>

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 111

Because XML is so flexible, you can use many alternative structures. For example, you can
store all data as attributes:

<?xml version="1.0" ?>
<testcases>
<case id="0001" input="Ac Ad Ah As Tc" expected="FourOfAKindAces"/>
<case id="0002" input="4s 5s 6s 7s 3s" expected="StraightSevenHigh"/>
etc.
</testcases>

This flexibility characteristic of XML is both a strength and a weakness. From a light-
weight test automation point of view, the main disadvantage of XML is that you have to
slightly modify your test harness code for every XML test case data structure.

Processing an XML test case file with this loop structure:

while (!xtr.EOF) // main loop
{
if (xtr.Name == "testcases" && !xtr.IsStartElement()) break;

// process file here
}

may look a bit odd at first glance. The loop exits on end-of-file or when at the </testcases>
tag. But this structure is more readable than alternatives. When marching through the XML
file, you can either Read() your way one node at a time or get a bit more sophisticated with
code such as:

while (xtr.Name != "testcase" || !xtr.IsStartElement())
xtr.Read(); // advance to <testcase> tag

The choice of technique you use is purely a matter of style. Writing an XML element with
XmlTextWriter tends to be a bit wordy but is straightforward. For example:

xtw.WriteStartElement("alpha");
xtw.WriteStartElement("beta");

xtw.WriteString("b");

xtw.WriteEndElement(); // writes </beta>
xtw.WriteEndElement(); // writes </alpha>

would create

<alpha>
<beta>b</beta>

</alpha>

Notice that the WriteEndElement() method does not accept an argument; the end element
written is kept on an internal stack structure and popped off the stack.

Writing an XML attribute follows a pattern similar to writing an element. For example:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS112

xtw.WriteStartElement("alpha");
xtw.WriteStartAttribute("beta", null);
xtw.WriteString("b");
xtw.WriteEndAttribute();
xtw.WriteEndElement();

produces as output:

<alpha beta="b" />

4.4 Creating an XML File Data, Buffered Model
Test Harness
Problem
You want to create a test harness that uses XML file test case data and a buffered processing
model.

Design
To create a harness structure that uses a buffered processing model with XML test case data, you
follow the same pattern as in Section 4.2 combined with the XML reading and writing techniques
demonstrated in Section 4.3. You read all test case data into an ArrayList collection that holds
lightweight TestCase objects, iterate through that ArrayList object, execute each test case, store
the results into a second ArrayList object that holds lightweight TestCaseResult objects, and
finally save the results to an external XML file.

Solution
With lightweight TestCase and TestCaseResult classes in place (see Section 4.2), you can write:

Console.WriteLine("\nBegin XML File Buffered model test run\n");

XmlTextReader xtr = new XmlTextReader("..\\..\\..\\TestCases.xml");
xtr.WhitespaceHandling = WhitespaceHandling.None;
XmlTextWriter xtw = new XmlTextWriter("XMLFileStreamingResults.xml",

System.Text.Encoding.UTF8);
xtw.Formatting = Formatting.Indented;

string id, input, expected, actual;
TestCase tc = null;
TestCaseResult r = null;

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 113

// 1. read all test case data into memory
ArrayList tcd = new ArrayList();
while (!xtr.EOF) // main loop
{
if (xtr.Name == "testcases" && !xtr.IsStartElement()) break;

while (xtr.Name != "case" || !xtr.IsStartElement())
xtr.Read(); // advance to a <case> element if not there yet

id = xtr.GetAttribute("id");
xtr.Read(); // advance to <input>
input = xtr.ReadElementString("input"); // advance to <expected>
expected = xtr.ReadElementString("expected"); // advance to </case>
tc = new TestCase(id, input, expected);
tcd.Add(tc);

xtr.Read(); // advance to next <case> or </TestResults>
}
xtr.Close();

// 2. run all tests, store results to memory
ArrayList tcr = new ArrayList();
for (int i = 0; i < tcd.Count; ++i)
{
tc = (TestCase)tcd[i];
string[] cards = tc.input.Split(' ');
Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

if (actual == tc.expected)
r = new TestCaseResult(tc.id, tc.input, tc.expected, actual, "Pass");

else
r = new TestCaseResult(tc.id, tc.input, tc.expected, actual, "*FAIL*");

tcr.Add(r);
} // main processing loop

// 3. emit all results to external storage
xtw.WriteStartDocument();
xtw.WriteStartElement("TestResults"); // root node

for (int i = 0; i < tcr.Count; ++i)
{
r = (TestCaseResult)tcr[i];
xtw.WriteStartElement("case");

xtw.WriteStartAttribute("id", null);
xtw.WriteString(r.id); xtw.WriteEndAttribute();

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS114

xtw.WriteStartElement("input");
xtw.WriteString(r.input); xtw.WriteEndElement();

xtw.WriteStartElement("expected");
xtw.WriteString(r.expected); xtw.WriteEndElement();

xtw.WriteStartElement("actual"); xtw.WriteString(r.actual);
xtw.WriteEndElement();

xtw.WriteStartElement("result");
xtw.WriteString(r.result); xtw.WriteEndElement();

xtw.WriteEndElement(); // </case>
}
xtw.WriteEndElement(); // </TestResults>

xtw.Close();

Console.WriteLine("\nEnd test run\n");

Comments
All the pertinent details to this technique are discussed in Sections 4.2 (buffered processing
models) and 4.3 (reading and writing XML). If this code is run using the XML test case data file
from Section 4.3:

<?xml version="1.0" ?>
<testcases>
<case id="0001">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>

</case>
etc.

</testcases>

the output will be identical to that produced by the technique code in Section 4.3:

<?xml version="1.0" encoding="utf-8"?>
<TestResults>
<case id="0001">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>
<actual>FourOfAKindAces</actual>
<result>Pass</result>

</case>
etc.

</TestResults>

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 115

Notice that this technique is starting to get a bit messy, mostly due to the large number of
statements required to read and write XML. This makes it an excellent candidate for modular-
ization by wrapping the code to read data, run tests, and save data into three helper methods.
Furthermore, because the technique uses helper classes TestCase and TestCaseResult, recast-
ing this solution to an OOP design is an attractive option. Such a design could take many forms,
but here is one possibility:

class XMLBufferedHarness
{

private ArrayList tcd = null; // test case data
private ArrayList tcr = null; // test case results
private XmlTextReader xtr = null;
private XmlTextWriter xtw = null;

public XMLBufferedHarness(string datafile, string resultfile)
{
// initialize tcd, tcr, xtr, xtw here

}

public void ReadData()
{
// use xtr to read datafile into tcd here

}

public void RunTests()
{
// run tests, store results to tcr here

}

public void SaveResults()
{
// save results to resultfile here

}

class TestCase
{
// see Section 4.2

}

class TestCaseResult
{
// see Section 4.2

}

}

With this class in place, you can write very clean harness code like this:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS116

static void Main(string[] args)
{
string data = "TestCases.xml";
string result = "TestResults.xml";
XMLBufferedHarness h = new XMLBufferedHarness(data, result);
h.ReadData();
h.RunTests();
h.SaveResults();

} // Main()

This approach has the advantage of being more modular than a non-OOP approach.
However, the methods are very specific to a particular test scenario, meaning you’d have
to significantly rewrite the methods for each CUT and associated XML test case file.

This technique uses an XmlTextReader object to iterate through the XML test case data file
and store test case data into memory. You have two significant alternatives: the XmlSerializer
class and the XmlDocument class. The techniques to use these classes to read and parse test case
data into memory are explained in Chapter 12.

4.5 Creating a SQL Database for Lightweight Test
Automation Storage
Problem
You want to create a SQL database for a lightweight test automation harness.

Design
Write a lightweight T-SQL script and run it using the Query Analyzer or the osql.exe programs.

Solution

-- makeDbTestPoker.sql
use master
go

if exists (select * from sysdatabases where name='dbTestPoker')
drop database dbTestPoker
go

create database dbTestPoker
go

use dbTestPoker
go

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 117

create table tblTestCases
(
caseid char(4) primary key,
input char(14) not null,
expected varchar(35) not null,
)
go

insert into tblTestCases
values('0001','Ac Ad Ah As Tc','FourOfAKindAces')
insert into tblTestCases
values('0002','4s 5s 6s 7s 3s','StraightSevenHigh')
insert into tblTestCases
values('0003','5d 5c Qh 5s Qd','FullHouseFivesOverQueens')
go

create table tblTestResults
(
resultid int identity(1,1) primary key,
caseid char(4) not null,
input char(14) not null,
expected varchar(35) not null,
actual varchar(35) not null,
result char(4) not null,
runat datetime not null
)
go

Comments
An alternative to using text files or XML files for your test case storage is to use a SQL database.
SQL is particularly appropriate when you have many test cases (making the use of huge text
files awkward) or when your SUT has a long development cycle (making management of
many test case result files awkward).

To run a SQL script, you can paste the code into the Query Analyzer program that ships
with Microsoft SQL Server, and execute it directly. An alternative is to run the script using the
osql.exe command-line program, which also ships with SQL Server. If the preceding script is
saved as makeDbTestPoker.sql, you can run it like this:

>osql -S(local) -E -i makeDbTestPoker.sql

The -S switch specifies the name of the SQL Server machine. The -E switch means to use a
trusted connection (explained later in this section). The -i switch specifies the name of the
SQL script to run.

The preceding script starts by setting the current database context to the “master” data-
base, which is necessary to create or drop a database. Next, you check to see if the database
dbTestPoker already exists by querying the sysdatabases system database. If dbTestPoker
exists, then you drop it. Dropping a SQL database is surprisingly easy, so when using SQL for

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS118

test automation, be sure to back up your databases often. After creating database dbTestPoker,
you switch context to that database. A common mistake is to forget to switch context, when all
subsequent SQL commands will be directed at the master database. Next, you create a SQL
table to hold test case data. The primary key argument to the caseid column means that each
caseid value must be unique. The not null arguments mean that each test case must have an
input and expected value. After creating the test case data table, you use the T-SQL insert
command to populate the table. The last step is to create a table to hold test case results.
Because each test run adds additional test results to the table, you usually want to include a
column that holds the date and time when the test case result was added to the SQL database:

runat datetime not null

This technique creates a single database with a single test results table. An alternative
approach is to create a new table for each test harness run. As a general rule, however, placing
all harness run results into a single table is better than creating multiple tables—one table
with thousands of rows of data is easier to manage than thousands of tables with any number
of rows of data. If you do plan to put all test results into a single table, then you should create a
column that uniquely identifies the test case result. The simplest way to do this is by adding
an identity column to your test case data table definition:

resultid int identity(1,1) primary key

The identity(1,1) modifier instructs SQL Server to automatically generate an integer value
for the resultid column, starting with value 1, and increasing by 1 on each insert operation.

The technique in this section assumes that your test harness will be using a trusted
connection. SQL Server requires a default Windows Authentication mode, which means in
essence to integrate Windows security with SQL. This mode is the one used by a trusted con-
nection. But SQL Server also supports an optional, additional SQL Authentication mode that
can be used to gain access to SQL databases. The interaction between Windows Authentica-
tion and SQL Authentication modes can be tricky and is outside the scope of this book.

4.6 Creating a SQL Data, Streaming Model Test
Harness
Problem
You want to create a test harness that uses SQL test case data and a streaming processing
model.

Design
In one continuous processing loop, use a SqlDataReader object from the System.Data.SqlClient
namespace to read a test case into memory from SQL, then parse the test case data into input
and expected values using the GetString() method, and call the CUT. Next, check the actual
result with the expected result to determine a test case pass or fail. Write the results to external
storage using a SqlCommand object with a SQL insert statement as an argument. Do this for each
test case. This technique assumes you have previously prepared a SQL database with test case
data and a table to hold test results. See Section 4.5 for details.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 119

Solution

using System.Data.SqlClient;
Console.WriteLine("\nBegin SQL Streaming model test run\n");

SqlConnection isc = new SqlConnection("Server=(local);
Database=dbTestPoker;Trusted_Connection=yes");

SqlConnection osc = new SqlConnection("Server=(local);
Database=dbTestPoker;Trusted_Connection=yes");

SqlCommand scSelect = new SqlCommand("SELECT * FROM tblTestCases", isc);
isc.Open();
osc.Open();
SqlDataReader sdr;
sdr = scSelect.ExecuteReader();
string caseid, input, expected, actual, result;

while (sdr.Read()) // main loop
{
caseid = sdr.GetString(0); // parse input
input = sdr.GetString(1);
expected = sdr.GetString(2);
string[] cards = input.Split(' ');

Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

if (actual == expected) // emit results
result = "Pass";

else
result = "FAIL";

string runat = DateTime.Now.ToString("s");
string insert = "INSERT INTO tblTestResults
VALUES('" + caseid + "','" + input + "','" + expected +

"','" + actual + "','" + result + "','" + runat + "')";
SqlCommand scInsert = new SqlCommand(insert, osc);
scInsert.ExecuteNonQuery();

} // while

sdr.Close();
isc.Close();
osc.Close();

Console.WriteLine("\nEnd test run\n");

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS120

Comments
Although there are several ways to iterate through a SQL table, the simplest is to use the
SqlDataReader class. A SqlDataReader object gives you a way of reading a forward-only stream
of rows from a SQL Server database. Notice that to create a SqlDataReader object, you use
a factory mechanism by calling the ExecuteReader() method of the SqlCommand object,
rather than directly by using a constructor and the new keyword. You also must prepare the
SqlCommand object by passing in a T-SQL select statement to the SqlCommand constructor,
so that the resulting SqlDataReader object knows how to traverse through the rows of its
associated table.

If the code in this section is run with the input data from Section 4.5:

insert into tblTestCases
values('0001','Ac Ad Ah As Tc','FourOfAKindAces')
insert into tblTestCases
values('0002','4s 5s 6s 7s 3s','StraightSevenHigh')
insert into tblTestCases
values('0003','5d 5c Qh 5s Qd','FullHouseFivesOverQueens')

then table tblTestResults in database dbTestPoker will hold this result data:

resultid caseid input expected
===
1 0001 Ac Ad Ah As Tc FourOfAKindAces
2 0002 4s 5s 6s 7s 3s StraightSevenHigh
3 0003 5d 5c Qh 5s Qd FullHouseFivesOverQueens

actual result runat
===

FourOfAKindAces Pass 2006-06-15 07:50:20.000
StraightFlushSevenHigh FAIL 2006-06-15 07:50:20.000
FullHouseFivesOverQueens Pass 2006-06-15 07:50:20.000

The values in the runat column will be the date and time when the results were inserted into
the SQL table.

You use the SqlDataReader.GetString() method to extract each column value as a string.
The GetString() method accepts a zero-based column index rather than a column name as a
string as you might expect. So you must write caseid = sdr.GetString(0); rather than
caseid = sdr.GetString("caseid"); which would be more readable.

If you insert all test case results into one SQL table rather than creating a new table to hold
the results of each test run, you usually should time-stamp the result. A simple way to do this is
to fetch the current system date and time:

string runat = DateTime.Now.ToString("s");

The "s" argument will format the DateTime object into a sortable pattern such as:

'2006-09-20T11:46:41.000'

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 121

SQL Server understands this format, and a C# string variable in this format is converted
into a SQL datetime data type automatically when you insert it into a datetime column.

The technique used in this solution to insert a row of data into the SQL test results table is
rather ugly. If you were inserting literals into the results table, code might look like this:

string insert = "INSERT INTO tblTestResults
VALUES('0001', 'Ac Ad Ah As Kc', 'FourOfAKindAces',

'FourOfAKindAces', 'Pass', '2006-09-20 11:46:41.000')";

But because you are inserting values stored in variables, you have to build up a fairly
complex insert string like this:

string insert = "INSERT INTO tblTestResults VALUES('" + caseid +
"','" + input + "','" + expected + "','" + actual + "','" + result +
"','" + runat + "')";

Creating such SQL strings can be an error-prone process, so you must be careful when
coding them. An alternative to writing such long strings is to create a SQL stored procedure
and then call it from your harness. For example, if your SQL database creation script contains
this user stored procedure T-SQL code:

create procedure usp_insert
@caseid char(4),
@input char(14),
@expected varchar(35),
@actual varchar(35),
@result char(4),
@runat datetime

as

insert into tblTestResults
values(@caseid, @input, @expected, @actual, @result, @runat)

go

then you can prepare a SqlCommand object like this:

SqlConnection osc = new SqlConnection("Server=(local);
Database=dbTestPoker; Trusted_Connection=yes");

SqlCommand sp = new SqlCommand("usp_insert", osc);
sp.CommandType = CommandType.StoredProcedure;

SqlParameter paramCaseID = sp.Parameters.Add("@caseid",
SqlDbType.Char, 4);

SqlParameter paramInput = sp.Parameters.Add("@input",
SqlDbType.Char, 14);

SqlParameter paramExpected = sp.Parameters.Add("@expected",
SqlDbType.VarChar, 35);

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS122

SqlParameter paramActual = sp.Parameters.Add("@actual",
SqlDbType.VarChar, 35);

SqlParameter paramResult = sp.Parameters.Add("@result",
SqlDbType.Char, 4);

SqlParameter paramRunAt = sp.Parameters.Add("@runat",
SqlDbType.DateTime);

osc.Open();

And then in the main processing loop, you can insert test case results in SQL like this:

// read caseid, input, expected from test case data here
// run test and get actual, result here
string runat = DateTime.Now.ToString("s");

paramCaseID.Value = caseid;
paramInput.Value = input;
paramExpected.Value = expected;
paramActual.Value = actual;
paramResult.Value = result;
paramRunAt.Value = runat;

sp.ExecuteNonQuery(); // insert using usp_insert

This technique has the advantage of reducing complexity by eliminating an ugly SQL insert
command string, but has the disadvantage of increasing complexity by adding many more lines
of code to your test harness.

4.7 Creating a SQL Data, Buffered Model Test
Harness
Problem
You want to create a test harness that uses SQL test case data and a buffered processing model.

Design
To create a harness structure that uses a buffered processing model with SQL test case data,
you follow the same pattern as in Section 4.2 combined with the SQL reading and writing
techniques demonstrated in Section 4.6. You use a SqlDataReader object to read all test case
data into an ArrayList collection that holds lightweight TestCase objects. Next, you iterate
through that ArrayList object, execute each test case, and store the results into a second
ArrayList object that holds lightweight TestCaseResult objects. Then you save the results to
an external SQL database.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 123

Solution
With lightweight TestCase and TestCaseResult classes in place (see Section 4.2), you can write:

Console.WriteLine("\nBegin SQL Buffered model test run\n");

SqlConnection isc = new SqlConnection("Server=(local);
Database=dbTestPoker; Trusted_Connection=yes");

SqlConnection osc = new SqlConnection("Server=(local);
Database=dbTestPoker;Trusted_Connection=yes");

isc.Open();
osc.Open();

SqlCommand scSelect = new SqlCommand("SELECT * FROM tblTestCases", isc);
SqlDataReader sdr = scSelect.ExecuteReader();

string caseid, input, expected = "", actual;
TestCase tc = null; // see Section 4.2
TestCaseResult r = null;

// 1. read all test case data into memory
ArrayList tcd = new ArrayList();
while (sdr.Read()) // main loop
{
caseid = sdr.GetString(0);
input = sdr.GetString(1);
expected = sdr.GetString(2);
tc = new TestCase(caseid, input, expected);
tcd.Add(tc);

}
isc.Close();

// 2. run all tests, store results to memory
ArrayList tcr = new ArrayList();
for (int i = 0; i < tcd.Count; ++i)
{
tc = (TestCase)tcd[i];
string[] cards = tc.input.Split(' ');
Hand h = new Hand(cards[0], cards[1], cards[2], cards[3], cards[4]);
actual = h.GetHandType().ToString();

if (actual == tc.expected)
r = new TestCaseResult(tc.id, tc.input, tc.expected, actual, "Pass");

else
r = new TestCaseResult(tc.id, tc.input, tc.expected, actual, "FAIL");

tcr.Add(r);
} // main processing loop

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS124

// 3. emit all results to external SQL storage
for (int i = 0; i < tcr.Count; ++i)
{
r = (TestCaseResult)tcr[i];
string runat = DateTime.Now.ToString("s");
string insert = "INSERT INTO tblTestResults
VALUES('" + r.id + "','" + r.input + "','" + r.expected +

"','" + r.actual + "','" + r.result + "','" + runat + "')";
SqlCommand scInsert = new SqlCommand(insert, osc);
scInsert.ExecuteNonQuery();
}
osc.Close();

Console.WriteLine("\nDone");

Comments
All the pertinent details to this technique are discussed in Sections 4.2 and 4.4 (buffered pro-
cessing models), and Section 4.6 (reading and writing SQL). If the following code is run using
the SQL test case data file from Section 4.5:

insert into tblTestCases
values('0001','Ac Ad Ah As Tc','FourOfAKindAces')
insert into tblTestCases
values('0002','4s 5s 6s 7s 3s','StraightSevenHigh')
insert into tblTestCases
values('0003','5d 5c Qh 5s Qd','FullHouseFivesOverQueens')

then the output will be identical to that produced by the technique in Section 4.6:

resultid caseid input expected
===
1 0001 Ac Ad Ah As Tc FourOfAKindAces
2 0002 4s 5s 6s 7s 3s StraightSevenHigh
3 0003 5d 5c Qh 5s Qd FullHouseFivesOverQueens

actual result runat
===

FourOfAKindAces Pass 2006-06-15 07:50:20.000
StraightFlushSevenHigh FAIL 2006-06-15 07:50:20.000
FullHouseFivesOverQueens Pass 2006-06-15 07:50:20.000

Using a buffered test automation-processing model makes it easy for you to perform test
case data filtering or test case results filtering. For example, suppose you want to filter your
test cases so that only certain suites of tests are run rather than all your tests. Test suite means
a collection of test cases, usually a subset of a larger set of tests. Following are examples of
common test suite categorizations:

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 125

• Developer Regression Tests (DRTs): A set of tests run on some new code (typically a set
of classes or methods) before a developer checks in the code to the main build system.
Designed to verify that the new code has not broken existing functionality.

• Build Verification Tests (BVTs): A set of tests run on a new build of the SUT immediately
after the build process. Designed to verify that the new build has minimal functionality
and can be released to the test team for further testing.

• Daily Test Runs (DTRs): A set of tests run by the test team every day. Designed to verify
that previous functionality is still correct, uncover new functionality and performance
bugs, and so on.

• Weekly Test Runs (WTRs): A set of tests that is more extensive than Daily Test Run test
cases but only run once a week due primarily to time constraints.

• Milestone Test Runs (MTRs): A comprehensive set of tests run before the release of a
major or minor milestone. May require several days to run.

• Full Test Pass (FTP): Running every test case available. Typically requires several days to
run.

Of course, there are many variations on these categories of test suites, but the general prin-
ciple is that you’ll have many test cases and you’ll run various subsets of test cases at different
times. This holds true whether you are working in a traditional spiral software development
methodology environment or in any of a number of currently fashionable methodologies,
such as test-driven development, extreme programming, agile development, and so on.

4.8 Discovering Information About the SUT
Problem
You want to discover information about the SUT so that you can create meaningful test cases.

Solution
One of the greatest challenges of software testing in almost any environment is discovering
the essential information about the SUT (SUT) so that you can test it meaningfully. There are
six primary ways to perform system discovery in a .NET environment:

• Read traditional specification documents.

• Examine SUT source code.

• Write experimental stub programs.

• Use XML auto-documentation.

• Examine .NET intermediate language code.

• Use reflection techniques.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS126

Comments
In a very small production environment where developers test their own code, system discov-
ery may not be an issue. As the size of a development effort increases, however, the discovery
process becomes more difficult. The most common approach is for you to read traditional
written specification documents that describe the SUT. In theory at least, every system has a
set of documents, usually written by senior developers, managers, or architects, that com-
pletely and precisely describes the SUT. In reality, of course, such specification documents are
often out-of-date, incomplete, or even nonexistent. Regardless, examining traditional specifi-
cation documents is an important way to determine how to create meaningful test cases.

You can examine the source code of the SUT to gain insights on how to test your system,
although in some cases, this may not be possible for security or legal reasons. Even when
source code examination is possible, reviewing the source code for a complex SUT can be
enormously time consuming. When you have access to system source code while developing
test cases, the situation is sometimes called white box or clear box testing. When you do not
have access to source code, the situation is sometimes called black box testing. When you have
partial access to system source code, for example, the signatures of methods but not the body
of the method, the situation is sometimes called gray box testing. These labels are some of the
most overused but least-useful terms in software testing. However, the principles behind these
labels are important. You cannot test every possible input to a system (see Chapter 10 for dis-
cussions of this idea), so the more you know about your SUT, the better your test cases will
be. Although there has been much research in the area of automatic test case generation, cur-
rently test case development is still for the most part a human activity where experience and
intuition play a big role.

A third discovery mechanism available to you is to experiment with the SUT by creating
small stub programs. Again, this is not always possible for legal and security reasons and even
when possible, it may not be a realistic technique: large software systems can be so complex
that trying to understand them through experimentation just requires too much time. The
development environment is often so dynamic that by the time you’ve figured a part of the
system out, it has changed. This is not to say that experimentation is not important. On the
contrary, initial experimentation with stub programs is usually the key first step when devel-
oping lightweight test automation.

The Visual Studio .NET IDE allows developers to add XML-based comments into their
source code and have an XML-based document created automatically at project build time.
In source code files, lines that begin with “///” and that precede user-defined items such as
classes, delegates, interfaces, fields, events, properties, methods, or namespace declarations,
can be processed as comments and placed in a file. There is a recommended set of tags. For
example, the <param> tag is used to describe parameters. When used, the compiler verifies that
the parameter exists and that all parameters are described in the documentation. This mecha-
nism requires developers to expend extra effort, but the payoff is that system specs are always
up to date.

Because .NET-compliant languages compile to an intermediate language, a terrific way to
expose information about a SUT is to examine the SUT’s intermediate language. The .NET envi-
ronment provides developers and testers with a tool named ILDASM. The ILDASM tool parses
.NET Framework .exe or .dll assemblies and shows the information in human-readable format.
ILDASM also displays namespaces and types, including their interfaces. The use of ILDASM for
system discovery is essential for any lightweight test automation situation.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 127

The sixth primary way for you to discover information about the SUT is through the
.NET reflection mechanism. Reflection means the process of programmatically obtaining
information about .NET assemblies and the types defined within them. Using classes in the
System.Reflection namespace, you can easily write short utility scripts that expose a wide
range of data about the SUT. For example:

Console.WriteLine("\nBegin Reflection Discovery");
string assembly = "..\\..\\..\\LibUnderTest\\PokerLib.dll";
Assembly a = Assembly.LoadFrom(assembly);
Console.WriteLine("Assembly name = " + a.GetName());

Type[] tarr = a.GetTypes();
BindingFlags flags = BindingFlags.NonPublic | BindingFlags.Public |

BindingFlags.Static | BindingFlags.Instance;

foreach(Type t in tarr)
{
Console.WriteLine(" Type name = " + t.Name);

MemberInfo[] members = t.GetMembers(flags);
foreach (MemberInfo mi in members) // fields, methods, ctors, etc.
{
if (mi.MemberType == MemberTypes.Field)
Console.WriteLine(" (Field) member name = " + mi.Name);

} // each member

MethodInfo[] miarr = t.GetMethods(); // public only
foreach (MethodInfo mi in miarr)
{
Console.WriteLine(" Method name = " + mi.Name);
Console.WriteLine(" Return type = " + mi.ReturnType);
ParameterInfo[] piarr = mi.GetParameters();
foreach (ParameterInfo pi in piarr)
{
Console.WriteLine(" Parameter name = " + pi.Name);
Console.WriteLine(" Parameter type = " + pi.ParameterType);

}
} // each method

} // each Type

Console.WriteLine("\nDone");

This example loads the PokerLib.dll assembly and then iterates through each type
(classes, enumerations, interfaces, and so on) in the assembly. Then for each type, you iterate
through each member (fields, methods, properties, constructors, and so on), printing some
information if you hit a field. After iterating through the members, you iterate through each
method, printing the method’s name, return type, parameter names, and parameter types.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS128

4.9 Example Program: PokerLibTest
This demonstration program combines several of the techniques in this chapter to create a
lightweight test automation harness to test the PokerLib.dll library described in Section 4.1.
The harness reads test case data from a SQL database, processes test cases using a buffered
model, and emits test results to an XML file. If the test case input is

caseid input expected
==
0001 Ac Ad Ah As Tc FourOfAKindAces
0002 4s 5s 6s 7s 3s StraightSevenHigh
0003 5d 5c Qh 5s Qd FullHouseFivesOverQueens

then the resulting XML output (where the runat attribute will be the value of the date and time
the harness executed) is

<?xml version="1.0" encoding="utf-8"?>
<TestResults>

<case id="0001" runat="2006-10-28T12:41:36">
<input>Ac Ad Ah As Tc</input>
<expected>FourOfAKindAces</expected>
<actual>FourOfAKindAces</actual>
<result>Pass</result>

</case>

<case id="0002" runat="2006-10-28T12:41:36">
<input>4s 5s 6s 7s 3s</input>
<expected>StraightSevenHigh</expected>
<actual>StraightFlushSevenHigh</actual>
<result>FAIL</result>

</case>

<case id="0003" runat="2006-10-28T12:41:36">
<input>5d 5c Qh 5s Qd</input>
<expected>FullHouseFivesOverQueens</expected>
<actual>FullHouseFivesOverQueens</actual>
<result>Pass</result>

</case>

</TestResults>

The complete lightweight test harness is presented in Listing 4-1.

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 129

Listing 4-1. Program PokerLibTest

using System;
using System.Collections;
using System.Data.SqlClient;
using System.Xml;
using PokerLib;

namespace PokerLibTest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin PokerLibTest run\n");

SqlConnection isc = new SqlConnection("Server=(local);
Database=dbTestPoker;Trusted_Connection=yes");

isc.Open();
SqlCommand scSelect = new SqlCommand("SELECT * FROM tblTestCases",

isc);
SqlDataReader sdr = scSelect.ExecuteReader();

string caseid, input, expected = "", actual;
TestCase tc = null;
TestCaseResult r = null;

// 1. read all test case data from SQL into memory
ArrayList tcd = new ArrayList();
while (sdr.Read())
{
caseid = sdr.GetString(0);
input = sdr.GetString(1);
expected = sdr.GetString(2);
tc = new TestCase(caseid, input, expected);
tcd.Add(tc);

}
isc.Close();

// 2. run all tests, store results to memory
ArrayList tcr = new ArrayList();
for (int i = 0; i < tcd.Count; ++i)
{
tc = (TestCase)tcd[i];
string[] cards = tc.input.Split(' ');

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS130

Hand h = new Hand(cards[0], cards[1], cards[2],
cards[3], cards[4]);

actual = h.GetHandType().ToString();
string runat = DateTime.Now.ToString("s");

if (actual == tc.expected)
r = new TestCaseResult(tc.id, tc.input, tc.expected,

actual, "Pass", runat);
else
r = new TestCaseResult(tc.id, tc.input, tc.expected,

actual, "FAIL", runat);
tcr.Add(r);

}

// 3. emit all results to external XML storage
XmlTextWriter xtw = new XmlTextWriter("PokerLibResults.xml",
System.Text.Encoding.UTF8);

xtw.Formatting = Formatting.Indented;
xtw.WriteStartDocument();
xtw.WriteStartElement("TestResults"); // root node

for (int i = 0; i < tcr.Count; ++i)
{
r = (TestCaseResult)tcr[i];
xtw.WriteStartElement("case");

xtw.WriteStartAttribute("id", null);
xtw.WriteString(r.id); xtw.WriteEndAttribute();

xtw.WriteStartAttribute("runat", null);
xtw.WriteString(r.runat); xtw.WriteEndAttribute();

xtw.WriteStartElement("input");
xtw.WriteString(r.input); xtw.WriteEndElement();

xtw.WriteStartElement("expected");
xtw.WriteString(r.expected); xtw.WriteEndElement();

xtw.WriteStartElement("actual");
xtw.WriteString(r.actual); xtw.WriteEndElement();

xtw.WriteStartElement("result");
xtw.WriteString(r.result); xtw.WriteEndElement();

xtw.WriteEndElement(); // </case>
}
xtw.WriteEndElement(); // </TestResults>
xtw.Close();

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS 131

Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}
} // Main()

class TestCase
{
public string id;
public string input;
public string expected;

public TestCase(string id, string input, string expected)
{
this.id = id;
this.input = input;
this.expected = expected;

}
} // class TestCase

class TestCaseResult
{
public string id;
public string input;
public string expected;
public string actual;
public string result;
public string runat;

public TestCaseResult(string id, string input, string expected,
string actual, string result, string runat)

{
this.id = id;
this.input = input;
this.expected = expected;
this.actual = actual;
this.result = result;
this.runat = runat;

}
} // class TestCaseResult

} // Class1
} // ns

CHAPTER 4 ■ TEST HARNESS DESIGN PATTERNS132

Web Application
Testing

P A R T 2

■ ■ ■

Request-Response Testing

5.0 Introduction
The most fundamental type of Web application testing is request-response testing. You pro-
grammatically send an HTTP request to a Web server, and then after the Web server processes
the request and sends an HTTP response (usually in the form of an HTML page), you capture
the response and examine it for an expected value. The request-response actions normally
occur together, meaning that in a lightweight test automation situation, it is unusual for you to
send an HTTP request and not retrieve the response, or to retrieve an HTTP response from a
request you did not create. Accordingly, most of the techniques in this chapter show you how to
send an HTTP request and fetch the HTTP response, or how to examine an HTTP response for
an expected value. Consider the simple ASP.NET Web application shown in Figure 5-1.

Figure 5-1. Web AUT

135

C H A P T E R 5

■ ■ ■

The code that produced the Web application shown in Figure 5-1 is

<html>
<head>
<script language="c#" runat="server">
void Button1_Click(object sender, System.EventArgs e)
{
TextBox1.Text = "You picked " + DropDownList1.SelectedValue;

}
</script>

</head>
<body>
<h3>Request-Response</h3>
<form id="Form1" method="post" runat="server">

<p>Choose one:
<asp:DropDownList id="DropDownList1" runat="server">
<asp:ListItem Value="red">red</asp:ListItem>
<asp:ListItem Value="blue">blue</asp:ListItem>
<asp:ListItem Value="green">green</asp:ListItem>

</asp:DropDownList>

<p><asp:Button id="Button1" text="Send" onclick=
"Button1_Click" runat="server" />

<p><asp:TextBox id="TextBox1" runat="server" /></p>

</form>
</body>

</html>

Notice that for simplicity, the C# logic and HTML display code are combined in the same
file rather than the more usual approach of storing them in separate files using the ASP.NET
code-behind mechanism (as when you create a Web application using Visual Studio .NET).
This ASP.NET Web application is coded in C#, but the request-response testing techniques in
this chapter will work for ASP.NET applications written in any .NET-compliant language.

To test this application manually, you select a color from the Choose One drop-down list
and click the Send button. The drop-down value is sent as part of an HTTP request to the
ASP.NET Web server. The server processes the request and constructs an HTTP response. The
response is returned to the Internet Explorer (IE) client where the HTML is rendered in
friendly form as shown in Figure 5-1. You have to visually examine the result for some indica-
tion that the HTTP response was correct (the message in the text box control in this case).
Manually testing a Web application in this way is slow, inefficient, error-prone, and tedious. A
better approach is to write lightweight test automation.

An automated request-response test programmatically sends an HTTP request that con-
tains the same information as the result of a user selecting a drop-down value, and the test
programmatically examines the HTTP response for data that indicates a correct response as
shown in Figure 5-2.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING136

Figure 5-2. Request-response test run

The .NET Framework provides you with three fundamental ways and two low-level ways
to send an HTTP request and retrieve the corresponding HTTP response. Listed from easiest-
to-use but least-flexible to hardest-to-use but most-flexible, following are the five ways to send
and retrieve HTTP data:

• WebClient: Particularly simple to use but does not allow you to send authentication
credentials.

• WebRequest - WebResponse: Gives you more flexibility, including the ability to send
authentication credentials.

• HttpWebRequest - HttpWebResponse: Gives you full control at the expense of a slight
increase in complexity.

• TcpClient: A low-level class available to you, but except in unusual situations, it isn’t
needed for lightweight request-response test automation.

• Socket: A very low-level class not often used in lightweight test automation.

The .NET Framework also has an HttpRequest class, but it’s a base class that is not intended
to be used directly. The techniques in this chapter use the three higher-level classes (WebClient,
WebRequest - WebResponse, and HttpWebRequest - HttpWebResponse). The TcpClient and Socket
classes are explained in Chapter 8. The test harness that produced the test run shown in Figure 5-2
is presented in Section 5.12.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 137

5.1 Sending a Simple HTTP GET Request and
Retrieving the Response
Problem
You want to send a simple HTTP GET request and retrieve the HTTP response.

Design
Create an instance of the WebClient class and use its DownloadData() method.

Solution
string uri = "http://server/path/WebForm.aspx";

WebClient wc = new WebClient();
Console.WriteLine("Sending an HTTP GET request to " + uri);
byte[] bResponse = wc.DownloadData(uri);
string strResponse = Encoding.ASCII.GetString(bResponse);
Console.WriteLine("HTTP response is: ");
Console.WriteLine(strResponse);

Comments
The WebClient class is part of the System.Net namespace, which is accessible by default from the
console application. Using the WebClient.DownloadData() method to fetch an HTTP response is
particularly simple, but DownLoadData() only returns a byte array that must be converted into a
string using the System.Text.Encoding.ASCII.GetString() method. An alternative is to use the
WebClient.OpenRead() method and associate it with a stream:

string uri = " http://server/path/WebForm.aspx";

WebClient wc = new WebClient();
Console.WriteLine("Sending an HTTP GET request to " + uri);
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();
Console.WriteLine("HTTP Response is ");
Console.WriteLine(res);

The WebClient class is most useful when you are testing static HTML pages rather than
ASP.NET Web applications. This code may be used to examine an ASP.NET application response
but to expand this code into an automated test, you need to examine the HTTP response for an
expected value. The techniques in this section are used in Section 5.8 to programmatically
determine an ASP.NET Web application ViewState value. The techniques in Section 5.11 show
you how to examine an HTTP response for an expected value.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING138

5.2 Sending an HTTP Request with Authentication
and Retrieving the Response
Problem
You want to send an HTTP request with network authentication credentials and retrieve the
HTTP response.

Design
Create a WebRequest object and create a NetworkCredential object. Assign the NetworkCredential
object to the Credentials property of WebRequest object and fetch the HTTP response using the
WebRequest.GetResponse() method.

Solution
string uri = " http://server/path/WebForm.aspx";
WebRequest wreq = WebRequest.Create(uri);

string uid = "someDomainUserID";
string pwd = "theDomainPassword";
string domain = "theDomainName";
NetworkCredential nc = new NetworkCredential(uid, pwd, domain);
wreq.Credentials = nc;
Console.WriteLine("Sending authenticated request to " + uri);
WebResponse wres = wreq.GetResponse();
Stream st = wres.GetResponseStream();
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();

sr.Close();
st.Close();
Console.WriteLine("HTTP Response is ");
Console.WriteLine(res);

Comments
If you need to send an HTTP request with network authentication credentials (user ID, domain,
and password), you can use the WebRequest and WebResponse classes. These classes are located
in the System.Web namespace, which is not accessible by default in a console application, so
you have to add a project reference to file System.Web.dll. Notice that a WebRequest object is
created using a factory mechanism with the Create() method rather than the more usual con-
structor approach using the new keyword. After creating a NetworkCredential object, you can
attach that object to the WebRequest object. The WebResponse object is returned by a call to the
WebRequest.GetResponse() method; there is no explicit “Send” method as you might have
expected. The response stream can be associated, like any stream, to a StreamReader object so
that you can fetch the entire HTTP response as a string using the ReadToEnd() method.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 139

The WebRequest and WebResponse classes are actually abstract base classes. In practical
terms, you’ll use WebRequest - WebResponse for relatively simple HTTP requests that require
authentication. If authentication isn’t necessary, the WebClient class is often a better choice. If
you need to send an HTTP POST request, the HttpWebRequest and HttpWebResponse classes are
often a better choice. The WebRequest and WebResponse classes support asynchronous calls, but
this is rarely needed in lightweight test automation situations. The code in this section may be
used to examine an ASP.NET application response, but to expand this code into an automated
test, you need to examine the HTTP response for an expected value as described in Section 5.11.

5.3 Sending a Complex HTTP GET Request and
Retrieving the Response
Problem
You want to send an HTTP GET Request and have full control over the request properties.

Design
Create an instance of an HttpWebRequest class and fetch the HTTP response using the
GetResponse() method.

Solution
string uri = " http://server/path/WebForm.aspx";

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(uri);
req.Method = "GET";
req.MaximumAutomaticRedirections = 3;
req.Timeout = 5000;

Console.WriteLine("Sending HTTP request");
HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();
StreamReader sr = new StreamReader(resst);

Console.WriteLine("HTTP Response is: ");
Console.WriteLine(sr.ReadToEnd());
sr.Close();
resst.Close();

Comments
The HttpWebRequest and HttpWebResponse classes are your best all around choice for sending
and receiving HTTP data in lightweight test automation scenarios. They support a wide range
of useful properties. These classes are located in the System.Net namespace, which is accessible
by default in a console application. Notice that an HttpWebRequest object is created using a fac-
tory mechanism with the Create() method rather than the more usual constructor approach

CHAPTER 5 ■ REQUEST-RESPONSE TESTING140

using the new keyword. Also, there is no explicit “Send” method as you might have expected; an
HttpWebResponse object is returned by a call to the HttPWebRequest.GetResponse() method. You
can associate the response stream to a StreamReader object so that you can retrieve the entire
HTTP response as a string using the ReadToEnd() method. You can also retrieve the HTTP
response line-by-line using the StreamReader.ReadLine() method.

This technique shows how you can limit the number of request redirections and set a
timeout value. Following are a few of the HttpWebRequest properties that are most useful for
lightweight test automation:

• AllowAutoRedirect: Gets or sets a value that indicates whether the request should follow
redirection responses.

• CookieContainer: Gets or sets the cookies associated with the request.

• Credentials: Provides authentication information for the request.

• KeepAlive: Gets or sets a value indicating whether to make a persistent connection to
the Internet resource.

• MaximumAutomaticRedirections: Gets or sets the maximum number of redirects that the
request will follow.

• Proxy: Gets or sets proxy information for the request.

• SendChunked: Gets or sets a value indicating whether to send data in segments to the
Internet resource.

• Timeout: Gets or sets the timeout value for a request.

• UserAgent: Gets or sets the value of the User-Agent HTTP header.

The purpose of each of these properties is fairly obvious from their names, and they are
fully documented in case you need to use them.

5.4 Retrieving an HTTP Response Line-by-Line
Problem
You want to retrieve an HTTP response line-by-line rather than as an entire string.

Design
Obtain the HTTP response stream using the HttpWebRequest.GetResponse() method and pass
that stream to a StreamReader() constructor. Then use the StreamReader.ReadLine() method
inside a while loop.

Solution
// send an HTTP request using the WebClient class,
// the WebRequest class, or the HttpWebRequest class

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 141

Stream st = null;

// attach Stream st to an HTTP response using the
// WebClient.OpenRead() method, the WebRequest.GetResponseStream()
// method, or the HttpWebRequest.GetResponse() method
StreamReader sr = new StreamReader(st);
string line = null;

Console.WriteLine("HTTP response line-by-line: ");
while ((line = sr.ReadLine()) != null)
{
Console.WriteLine(line);

}

sr.Close();
st.Close();

Comments
Each of the three fundamental ways to send an HTTP request (WebClient, WebRequest,
HttpWebRequest) supports a method that returns their associated HTTP response as a Stream
object. The Stream object can be associated to a StreamReader object that has several ways to
fetch stream data. Using the StreamReader.ReadToEnd() method, you can retrieve the HTTP
response as one big string. This is fine for most test automation situations, but sometimes you
want to retrieve the HTTP response a line at a time. For instance, if the response is very large,
you may not want to store it into one huge string. Or if you are searching the response for a tar-
get string, searching line-by-line is sometimes more efficient. To search line-by-line, you can
use the StreamReader.ReadLine() method in conjunction with a while loop. The ReadLine()
method returns a string consisting of everything up to and including a newline character, or
null if no characters are available.

In addition to fetching an HTTP response stream a line at a time, you can also retrieve the
response a block of characters at a time:

// attach response stream to Stream st
// associate st to StreamReader sr

char[] block = new char[3];
int ct = 0;
while ((ct = sr.Read(block, 0, 3)) != 0)
{
for (int i = 0; i < ct; i++)
Console.Write(block[i] + " ");

}

Code like this is useful when you want to examine the HTTP response at the character level
rather than at the line or string level. In this example, you prepare a character array block of size
3 to hold the response. The StreamReader.Read() method reads 3 characters (or as many charac-
ters as are available in the stream), stores the characters into an array block starting at position 0,

CHAPTER 5 ■ REQUEST-RESPONSE TESTING142

and returns the actual number of characters read. If 0 characters are read, that means the stream
has been exhausted and you can exit the while loop. Notice that a degenerative case is defined
when you declare a character array of size 1; in this situation, you are reading a single character
at a time.

5.5 Sending a Simple HTTP POST Request to a
Classic ASP Web Page
Problem
You want to send a simple HTTP POST request to a classic ASP page/script and retrieve the
resulting HTTP response.

Design
Create an instance of the HttpWebRequest class. Set the object’s Method property to "POST" and
the ContentType property to "application/x-www-form-urlencoded". Add the POST data to the
request using the GetRequestStream() method and the Stream.Write() method. Fetch the
HTTP response using the HttpWebRequest.GetResponse() method.

Solution
string url = "http://localhost/TestAuto/Ch5/classic.asp";
string data = "inputBox1=orange";
byte[] buffer = Encoding.ASCII.GetBytes(data);

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";
req.ContentLength = buffer.Length;

Stream reqst = req.GetRequestStream();
reqst.Write(buffer, 0, buffer.Length);
reqst.Flush();
reqst.Close();

Console.WriteLine("\nPosting 'orange'");
HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();
StreamReader sr = new StreamReader(resst);

Console.WriteLine("\nGrabbing HTTP response\n");
Console.WriteLine(sr.ReadToEnd());
sr.Close();
resst.Close();
Console.WriteLine("Done");

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 143

Comments
Suppose you have an HTML page form like this:

<html>
<!-- classic.html -->
<body>
<form name="theForm" method="post" action="classic.asp">
<p>Enter color:
<input type="text" name="inputBox1"/>
</p>
<input type="submit" value="Send It"/>

</form>
</body>

</html>

And you have a related classic ASP page/script like this:

<html>
<!-- classic.asp -->
<body>
<p>You submitted: </p>
<%
strColor = Request.Form("inputBox1")
Response.Write(strColor)

%>
<p>Bye</p>

</body>
</html>

If a user loads page classic.html into a Web client such as IE, an “Enter color:” prompt and
a text field are displayed. After entering some text and clicking on the submit button, an HTTP
request containing the HTML form data is sent to the Web server. The Web server accepts the
POST request and runs the classic.asp script. The script grabs the value entered in the text field
and inserts it into the HTML result stream, which is then sent as an HTTP response back to the
client (where the HTML would be rendered in human-friendly form).

To send an HTTP request directly to page/script classic.asp and retrieve the HTTP
response, the most flexible option is to use the HttpWebRequest class. The key is to first set up
data to post as a string of name-value pairs connected with &:

string data = "inputBox1=orange&inputBox2=green";

Next, you must convert the post data from type string into a byte array using the System.
Text.Encoding.ASCII.GetBytes() method because all HTTP data is transferred as bytes. After
creating an HttpWebRequest object, you must set the request object’s Method property to "POST"
and the ContentType to "application/x-www-form-urlencoded". You can think of the ContentType
value as a magic string that tells the Web server to interpret the HTTP request data as HTML
form data. You must set the value of the ContentLength property to the length of the post data
stored in the byte array. Notice that because the ContentLength property is required, you must
prepare the post data before setting up the HttpWebRequest object. After setting up the request,

CHAPTER 5 ■ REQUEST-RESPONSE TESTING144

you obtain the request stream using the HttpWebRequest.GetRequestStream() method so that
you can add the post data into the stream. You do this by writing to the stream like this:

reqst.Write(buffer, 0, buffer.Length);

You specify what byte array to write into the request stream, the starting position within
the byte array, and the number of bytes to write. If you use the Length property as the number
of bytes to write, you will write the entire byte array to the request stream. Now you can send
the HTTP request and retrieve the HTTP response as a string using a StreamReader object. If
the preceding solution is run, the output is

Posting 'orange'

Grabbing HTTP response:

<html>
<!-- classic.asp -->
<body>
<p>You submitted: </p>
orange
<p>Bye</p>

</body>
</html>
Done

This technique uses the HttpWebRequest and HttpWebResponse classes, but you can use the
WebClient class or the WebRequest and WebResponse classes, too. The technique in this section
is useful to examine an HTTP response from a classic ASP Web application, but to extend the
solution into test automation, you must search the HTTP response for an expected value as
discussed in Section 5.11.

This technique assumes that the POST data string does not contain any characters that
may be misinterpreted by the Web server such as blank spaces and ampersands. To deal with
such characters see Section 5.7. This solution also assumes that the HTTP request-response
does not travel through a proxy server. To deal with proxy servers, see the “Comments” section
in Section 5.6.

5.6 Sending an HTTP POST Request to an ASP.NET
Web Application
Problem
You want to send an HTTP POST request to an ASP.NET Web application and retrieve the result-
ing HTTP response.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 145

Design
Create an HttpWebRequest object. Set the object’s Method property to "POST" and the ContentType
property to "application/x-www-form-urlencoded". Concatenate the application’s ViewState
value to the POST data. If your Web application is running on ASP.NET 2.0, you must also con-
catenate the application’s EventValidation value to the POST data. Add the POST data to the
request using the GetRequestStream() method and the Stream.Write() method. Fetch the
HTTP response using the HttpWebRequest.GetResponse() method.

Solution
string url = "http://localhost/TestAuto/Ch5/WebForm.aspx";
string data = "TextBox1=red&TextBox2=empty&Button1=clicked";
string vs = "dDwtMTQwNDA4NDA4ODs7PeWiylVlaimBKuqooykeHvDojL2i";
vs = HttpUtility.UrlEncode(vs);
data += "&__VIEWSTATE=" + vs;
byte[] buffer = Encoding.ASCII.GetBytes(data);

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";
req.ContentLength = buffer.Length;

Stream reqst = req.GetRequestStream();
reqst.Write(buffer, 0, buffer.Length);
reqst.Flush();
reqst.Close();

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();
StreamReader sr = new StreamReader(resst);

Console.WriteLine("\nGrabbing HTTP response:\n");
Console.WriteLine(sr.ReadToEnd());
sr.Close();
resst.Close();

Console.WriteLine("Done");

Comments
Suppose you have this ASP.NET Web application named WebForm1.aspx:

<html>
<head>
<script language="c#" runat="server">
void Button1_Click(object sender, System.EventArgs e)

CHAPTER 5 ■ REQUEST-RESPONSE TESTING146

{
if (TextBox1.Text == "red")
TextBox2.Text = "Roses are red";

else if (TextBox1.Text == "blue")
TextBox2.Text = "The sky is blue";

else
TextBox2.Text = "unknown color";

}
</script>

</head>
<body>
<h3>Color Commenter</h3>
<form id="Form1" method="post" runat="server">
<p>Enter color:
<asp:TextBox id="TextBox1" runat="server"/></p>
<p>My comment:
<asp:TextBox id="TextBox2" runat="server" /></p>
<p><asp:Button id="Button1" text="Send"

onclick="Button1_Click" runat="server" />
</form>

</body>
</html>

This Web application was created manually rather than by using Visual Studio .NET, which
would have resulted in the C# logic code and the HTML display code being in different files.
This fact does not affect how you automate the application. The Web application has two text
fields and a button control. The user enters a string such as “red” into the TextBox1 control.
Clicking on the Button1 control sends an HTTP request to the Web server. The ASP.NET server
logic checks the value in TextBox1 and creates an HTTP response page that displays a short
message such as “Roses are red” in TextBox2. If the code in this solution executes, the output is

Sending TextBox1=red

Grabbing the HTTP response:

<html>
<head>

</head>
<body>
<h3>Color Commenter</h3>
<form name="Form1" method="post" action="WebForm.aspx"

id="Form1">
<input type="hidden" name="__VIEWSTATE"
value="dDwtMTQwNDA4NDA

4ODs7PuWdy3VjanmrKIqoo7kBHkDzjH2p" />

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 147

<p>Enter color:
<input name="TextBox1" type="text" value="red"

id="TextBox1" /></p>
<p>My comment:
<input name="TextBox2" type="text" value="Roses are red"

id="TextBox2" /></p>
<p><input type="submit" name="Button1" value="Send"

id="Button1" />
</form>

</body>
</html>

Done

Notice that the value attribute of the TextBox2 input tag is "Roses are red". To send an
HTTP request directly to an ASP.NET Web application and retrieve the HTTP response, your
most flexible option is to use the HttpWebRequest class. The first step is to set up data to post
a string of name-value pairs:

string data = "TextBox1=red&TextBox2=empty&Button1=clicked";

The "TextBox1=red" is self-explanatory. The "TextBox2=empty" and the "Button1=clicked"
part of the post data are there to keep the ViewState value synchronized between the client
test automation program and the ASP.NET Web server. Every ASP.NET Web application has a
ViewState value that represents the state of the application after each request-response round
trip. The ViewState value is a Base64-encoded string. By creating and maintaining a ViewState
value, the Web server can maintain application state between successive HTTP requests. You
must determine the ViewState value and add it to the post data:

string vs = "dDwtMTQwNDA4NDA4ODs7PuWdy3VjanmrKIqoo7kBHkDzjH2p";
vs = HttpUtility.UrlEncode(vs);
data += "&__VIEWSTATE=" + vs;

Because the ViewState value can have characters that may confuse the ASP.NET Web server
(&, for example), you should apply the HttpUtility.UrlEncode() method to the ViewState
value. The HttpUtility class is contained in the System.Web namespace, which is not accessible
by default to a console application, so you’ll have to add a project reference to System.Web.dll
(see Section 5.7 for details). Note that two underscore characters appear before the VIEWSTATE.
You have two ways to determine an initial ViewState value. The first, as demonstrated here, is
to manually find the value by simply launching IE (or another client), loading the WebForm.aspx
application, and then choosing View ➤ Source. The second way to determine an initial ViewState
value is to programmatically send an HTTP request to WebForm.aspx and then programmatically
grab the ViewState value from the HTTP response. This technique is explained in Section 5.8.

Exactly which components of an ASP.NET application contribute to the ViewState value
and how the ViewState value is calculated by the ASP.NET Web server is not fully documented,
so it requires some trial and error to determine exactly what to place in the post data string. For
instance, in this example, you can leave out the "TextBox2=empty" portion of the string, how-
ever the "Button1=clicked" is necessary. The "empty" and "clicked" string values are arbitrary.
In other words, you can type "Button1=foo" or even "Button1=" and the ViewState value will

CHAPTER 5 ■ REQUEST-RESPONSE TESTING148

remain synchronized, and your automation will succeed. Using string constants such as
"empty" and "clicked" makes your code more readable at the expense of possibly misleading
code reviewers into thinking there is something special about those values. When adding the
ViewState value to a post data string, the position of the ViewState value does not matter. How-
ever, your code will be more readable if you place the ViewState value at the end of the string.

In ASP.NET 2.0, a new EventValidation feature was added for security against fraudulent
postbacks. The framework posts encrypted data, which is part of the __EVENTVALIDATION hidden
field. The hidden field is generated as the last element in the Web application form element. So in
an ASP.NET 2.0 environment, you have to add the EventValidation value to the POST data like this:

string ev = "d+waMTswVDA4NDA4OQs7buWdy3VwbjkrKIqoo7kBHkDzjH2p";
ev = HttpUtility.UrlEncode(ev);
data += "&__EVENTVALIDATION=" + ev;

After building up the post data string, you must convert it into a byte array using the
System.Text.Encoding.ASCII.GetBytes() method, because all HTTP traffic works at the
byte level. Next, you must set the request object’s Method property to "POST" and the
ContentType to "application/x-www-form-urlencoded". The ContentType value is a string
that tells the Web server that the HTTP request data should be interpreted as HTML form
data. Then, you need to set the value of the ContentLength property to the length of the post
data stored in the byte array. After setting up the request, you can obtain the request stream
using the HttpWebRequest.GetRequestStream() method so that you can add the post data into
the HTTP request stream:

reqst.Write(buffer, 0, buffer.Length);

You specify which byte array to write into the stream, the starting position within the byte
array, and the total number of bytes to write. Finally, you are ready to send the HTTP request
and retrieve the HTTP response:

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();

You can then fetch the response as a string using a StreamReader object. The technique presented
here is useful to examine an HTTP response from an ASP.NET Web application, but to extend the
solution into true test automation, you must search the response for an expected value.

If you must deal with a proxy server, you can easily add the optional Proxy property to an
HttpWebRequest object:

// instantiate HttpWebRequest req here
string proxy = "someProxyMachineNameOrIPAddress";
req.Proxy = new WebProxy(proxy, true);

You pass the name or IP address of the proxy server machine as a string to a WebProxy con-
structor and attach the resulting object to the HttpWebRequest object. The Boolean argument
specifies whether or not to ignore the proxy server for local addresses; true means ignore the
proxy server for local addresses.

You can significantly increase the modularity of and extend your test automation by factor-
ing the code in this section into a helper method:

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 149

private static bool ResponseHasTarget(string uri,
string postData,
string target)

{
// create HttpWebRequest
// add postData to request stream
// obtain HttpResponse stream
// attach response to StreamReader object sr
string result = sr.ReadToEnd();

if (result.IndexOf(target) >= 0)
return true;
else
return false;

}

The helper accepts the URI of the Web application (such as "http://server/path/WebForm.
aspx"), the data that is to be posted to the application (such as "TextBox1=red&TextBox2=blue"),
and a target string (such as "The result is purple"). The method returns true if the HTTP
response associated with the HTTP request contains the target string and returns false if the
target string is not in the HTTP response. The example program in Section 5.12 has a complete
implementation of the helper method ResponseHasTarget().

5.7 Dealing with Special Input Characters
Problem
You want to handle special characters such as “&” in your HTTP POST data.

Design
Use the HttpUtility.UrlEncode() method to convert potentially troublesome characters into
their character-entity equivalents.

Solution
string badValueForTextBox1 = "this&that";
string goodValueForTextBox1 =
HttpUtility.UrlEncode(badValueForTextBox1);

string data = "TextBox1=" + goodValueForTextBox1;

Comments
If you place characters (such as blank spaces) and/or punctuation (such as “&”) into an HTTP
request stream, the receiving ASP.NET Web server may misinterpret them. URL encoding converts
characters that are not allowed in a URL into character-entity equivalents. For example, when
embedded in a string to be transmitted in a URL, the characters “<” and “>” are encoded as %3c
and %3d, respectively.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING150

The HttpUtility.UrlEncode() method handles the mapping of potentially troublesome
characters into a three-character sequence starting with “%”. The UrlEncode() method is located
inside the System.Web namespace. Suppose you have an ASP.NET Web application that contains
this code:

if (TextBox1.Text == "this&that")
TextBox2.Text = "Oh really";

else
TextBox2.Text = "unknown input";

To test this logic, you need to post the string “this&that” to the Web application. If you try
this directly as

string data = "TextBox1=this&that";

you will get an HTTP response with "unknown input" as the TextBox2 attribute instead of "Oh
really" because the Web server will get confused by the “&” character embedded in the POST
data. To solve this issue, you can use the HttpUtility.UrlEncode() method that converts the
“&” character to the sequence “%26”. When the Web server receives the HTTP request, the %26
will be URL decoded into a “&” character and your automation logic will succeed.

One strategy you can employ is to always apply HttpUtility.UrlEncode() to your input POST
data even when it does not contain troublesome characters:

string anyValue = "whatever";
anyValue = HttpUtility.UrlEncode(anyValue);
string data = "TextBox1=" + anyValue;

The downside to this strategy is that when testing, you sometimes want to actually send
troublesome characters. One approach is to create two harnesses: one that always performs
a UrlEncode() on the value part of name-value post pairs and one that never performs a
UrlEncode(). Another approach is to parameterize your harness to read input POST data and
expected values from an external test case data store and to include a value in the test case
data to indicate whether the input data should be URL encoded or not:

001!TextBox1!red!noencode!Roses are red
002!TextBox1!this&that!encode!Oh really
003!TextBox1!this&that!noencode!unknown input

You then use branching logic to determine whether you should URL-encode or not:

while ((line = sr.ReadLine()) != null) // test loop
{
tokens = line.Split('!');

if (tokens[3] == "encode")
input = HttpUtility.UrlEncode(tokens[2]);

else
input = tokens[2];

data = tokens[1] + "=" + input;
// etc.

}

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 151

5.8 Programmatically Determining a ViewState
Value and an EventValidation Value
Problem
You want to programmatically determine an initial ViewState value (and an initial
EventValidation value under ASP.NET 2.0) for an ASP.NET Web application.

Design
Use a WebClient object to send a simple, initial probing HTTP request to the application. Fetch
the HTTP probe response and parse out the ViewState value (and the EventValidation value
under ASP.NET 2.0) using the String.IndexOf() and String.SubString() methods.

Solution
If you are running under ASP.NET 1.1:

string uri = "http://server/path/WebForm.aspx";

WebClient wc = new WebClient();
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();
int start = res.IndexOf("__VIEWSTATE", 0) + 20;
int end = res.IndexOf("\"", start);
string vs = res.Substring(start, (end-start));
Console.WriteLine("ViewState = " + vs);

If you are running under ASP.NET 2.0:

string uri = "http://server/path/WebForm.aspx";

WebClient wc = new WebClient();
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();

int startVS = res.IndexOf("__VIEWSTATE", 0) + 37;
int endVS = res.IndexOf("\"", startVS);
string vs = res.Substring(startVS, (endVS-startVS));
Console.WriteLine("ViewState = " + vs);

CHAPTER 5 ■ REQUEST-RESPONSE TESTING152

int startEV = res.IndexOf("__EVENTVALIDATION", 0) + 49;
int endEV = res.IndexOf("\"", startEV);
string ev = res.Substring(startEV, (endEV-startEV));
Console.WriteLine("EventValidation = " + ev);

Comments
Before you can programmatically send an HTTP request to an ASP.NET Web application, you
must determine the application’s ViewState value (and the application’s EventValidation
value if you are running under ASP.NET 2.0). These are Base64-encoded values that represent
the state of the Web application after each request-response round trip. This built-in mecha-
nism is similar to how Web developers must maintain state in classic ASP Web pages by using
HTML hidden input values. Although you can manually determine the ViewState value of an
ASP.NET Web application by launching the application in a client such as IE and then choos-
ing View ➤ Source, many times a better technique is to programmatically determine the
ViewState value. The idea is to send an HTTP request for the Web application, retrieve the
HTTP response into a string, and then parse the ViewState value out from the response string.

After instantiating a WebClient object and attaching a stream to the HTTP response with the
OpenRead() method, you fetch the entire response string into variable res using the ReadToEnd()
method. The ViewState value is embedded in an HTML input tag:

<input type="hidden" name="__VIEWSTATE" value="dDwtMTQwNDA4N==" />

To extract the ViewState value in ASP.NET 1.1, you first get the location within the entire
response string where the identifying "__VIEWSTATE" string occurs:

int start = res.IndexOf("__VIEWSTATE", 0) + 20;

If you add 20 to that index value, the index will point to the double-quote character just
before the ViewState value. (Note: two underscores appear before VIEWSTATE). Next, you get an
index pointing to the double-quote character that is just after the ViewState value:

int end = res.IndexOf("\"", start);

Notice you need to escape the double-quote character. After you have the indexes of the
two double-quote characters that delimit the ViewState value, you can extract and save the
ViewState value using the SubString() method:

string vs = res.Substring(start, (end-start));

You can increase the modularity of your lightweight test automation code by recasting this
solution into a method that accepts a URI string and returns a ViewState string:

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 153

private static string ViewState(string uri)
{
try
{
WebClient wc = new WebClient();
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();
int start = res.IndexOf("__VIEWSTATE", 0) + 20;
int end = res.IndexOf("\"", start);
string vs = res.Substring(start, (end-start));
return vs;

}
catch
{
throw new Exception("Fatal error finding ViewState");

}
}

With this helper method, you can append a ViewState value to a POST data string:

string uri = "http://server/path/WebForm.aspx";
string postData = "TextBox1=red&";

string vs = ViewState(uri);
vs = HttpUtility.UrlEncode(vs);

postData += "__VIEWSTATE=" + vs;

Because a ViewState value may contain characters such as “&” that need to be URL encoded,
you must apply the HttpUtility.UrlEncode() method to the ViewState value at some point. A
design decision you’ll have to make is whether to apply UrlEncode() inside your helper method or
outside the helper as you’ve done here. You must also be careful where you place the connecting
“&” characters.

The code in this solution is referred to as “brittle.” Brittle code makes assumptions about
external dependencies and will break if those dependencies change. Notice the hard-coded 20
value in the code. The external dependency here is the way in which an ASP.NET 1.1 Web
server returns the ViewState value to the calling client. The 20 assumes that exactly 20 charac-
ters appear between the start of "__VIEWSTATE" and the double-quote character that appears
before the ViewState value. If, for example, a future modification to ASP.NET results in charac-
ters other than the two underscore characters in front of VIEWSTATE, then your test automation
will break. Writing brittle code is almost always unacceptable in a development environment,
but you can often get away with it in lightweight test automation. The idea is that lightweight
automation is supposed to be quick and easy, which means you are willing to accept the con-
sequences of brittle code—if the automation breaks, then you’ll just have to fix it.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING154

In ASP.NET 2.0, the ViewState value occurs 37 characters after the start of the "__VIEWSTATE"
string because the 17-character string id="__VIEWSTATE" (with a preceding blank space) is added
to the HTML hidden input element. Additionally, the new EventValidation value occurs 49 char-
acters after the start of the "__EVENTVALIDATION" string. So, in an ASP.NET 2.0 environment, you
can either write separate ViewState() and EventValidation() methods that programmatically
fetch their values, or you can combine the logic into a single ViewStateEventValidation()
method that returns a URL-encoded string containing both values like this:

private static string ViewStateAndEventValidation(string uri)
{
try
{
WebClient wc = new WebClient();
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();

int startVS = res.IndexOf("__VIEWSTATE", 0) + 37;
int endVS = res.IndexOf("\"", startVS);
string vs = res.Substring(startVS, (endVS-startVS));
vs = HttpUtility.UrlEncode(vs);

int startEV = res.IndexOf("__EVENTVALIDATION", 0) + 49;
int endEV = res.IndexOf("\"", startEV);
string ev = res.Substring(startEV, (endEV-startEV));
ev = HttpUtility.UrlEncode(ev);

return "&__VIEWSTATE=" + vs + "&__EVENTVALIDATION=" + ev;

}
catch
{
throw new Exception("Fatal error finding ViewState or EventValidation");

}
}

With this method, setting up POST data to an ASP.NET 2.0 Web application looks like this:

string uri = "http://server/path/WebForm.aspx";
string postData = "TextBox1=red";
postData += ViewStateAndEventValidation(uri);

Executing this code results in the variable postData having a value resembling

"TextBox1=red&__VIEWSTATE=%2fQazwJ&__EVENTVALIDATION=%2fMaR4d8j="

where the actual values for ViewState and EventValidation depend on the particular Web AUT.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 155

5.9 Dealing with CheckBox and RadioButtonList
Controls
Problem
You want to send an HTTP request indicating a CheckBox or RadioButtonList control is checked.

Design
Modify the POST data string to include a name-value pair with the ID of the control you want to
manipulate and the new value of the control.

Solution
string url = "http://server/path/WebForm.aspx";
string data = "CheckBox1=checked&RadioButtonList1=Alpha";
string viewstate = HttpUtility.UrlEncode("dDwtMTQ2MzgwNTQ2MD==");

data += "&__VIEWSTATE=" + viewstate;
// send data to Web application here

Comments
Two of the most common ASP.NET Web application controls are CheckBox and RadioButtonList.
Suppose you have this Web application:

<html>
<head>
<script language="c#" runat="server">
void Button1_Click(object sender, System.EventArgs e)
{
if (CheckBox1.Checked == true)
TextBox1.Text = "CheckBox is checked";

else
TextBox1.Text = "CheckBox NOT checked";

if (RadioButtonList1.Items[0].Selected == true)
TextBox2.Text = "Alpha selected";

else if (RadioButtonList1.Items[1].Selected == true)
TextBox2.Text = "Beta selected";

}
</script>

</head>
<body>
<h3>CheckBox and RadioButtonList</h3>
<form id="Form1" method="post" runat="server">

CHAPTER 5 ■ REQUEST-RESPONSE TESTING156

<p>Check or not:
<asp:CheckBox id="CheckBox1" runat="server" />

<p>Select one:
<asp:RadioButtonList id="RadioButtonList1" runat="server">
<asp:ListItem Value="Alpha">Alpha</asp:ListItem>
<asp:ListItem Value="Beta">Beta</asp:ListItem>

</asp:RadioButtonList>

<p><asp:Button id="Button1" text="Send" onclick="Button1_Click"
runat="server" />

<p>My obervations:
<p><asp:TextBox id="TextBox1" runat="server" /></p>
<p><asp:TextBox id="TextBox2" runat="server" /></p>

</form>
</body>

</html>

This Web application checks to determine whether the CheckBox1 control is checked and
whether the radio button with value Alpha or with Beta is selected, and prints a brief diagnos-
tic message in a TextBox control. To programmatically send an HTTP request that corresponds
to CheckBox1 being checked and Alpha being selected in RadioButtonList1, you can set up a
POST data string like this:

string data = "CheckBox1=checked&RadioButtonList1=Alpha";
data += "&TextBox1=empty&TextBox2=empty&Button1=clicked";

If you submit this data to the Web application, the HTTP response includes the following:

<p>My obervations:
<p><input name="TextBox1" type="text" value="CheckBox is checked"

id="TextBox1" /></p>
<p><input name="TextBox2" type="text" value="Alpha selected"

id="TextBox2"
/></p>

To indicate that CheckBox1 is unchecked, you send an HTTP request with a name-value
pair that has no value component: "CheckBox1=". Similarly, to indicate that none of the
RadioButtonList1 options are selected, you send "RadioButtonList1=".

5.10 Dealing with DropDownList Controls
Problem
You want to send an HTTP request indicating the selected value of a DropDownList control.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 157

Design
Modify the POST data string to include the ID of the DropDownList control and the selected value
you want to indicate has been chosen in name-value form.

Solution
string url = "http://server/path/WebForm.aspx";
string data = "DropDownList1=SomeOption";
string viewstate = HttpUtility.UrlEncode("dDwtMTQ2MzgwNTQ2MD==");

data += "&__VIEWSTATE=" + viewstate;
// send data to Web application here

Comments
A common Web control used in ASP.NET Web applications is the DropDownList control. For
example, suppose you have this application:

<html>
<head>
<script language="c#" runat="server">
void Button1_Click(object sender, System.EventArgs e)
{
TextBox1.Text = DropDownList1.SelectedValue;

}
</script>

</head>
<body>
<h3>DropDownList</h3>
<form id="Form1" method="post" runat="server">

<p>Choose one:
<asp:DropDownList id="DropDownList1" runat="server">
<asp:ListItem Value="ant">ant</asp:ListItem>
<asp:ListItem Value="bug">bug</asp:ListItem>
<asp:ListItem Value="cat">cat</asp:ListItem>

</asp:DropDownList>

<p><asp:Button id="Button1" text="Send" onclick="Button1_Click"
runat="server" />

<p>You chose:
<p><asp:TextBox id="TextBox1" runat="server" /></p>

</form>
</body>

</html>

CHAPTER 5 ■ REQUEST-RESPONSE TESTING158

This application grabs the selected value on control DropDownList1 and displays that value
in TextBox1. To programmatically send an HTTP request that corresponds to "bug" selected in
DropDownList1, you can set up a POST data string like this:

string data = "DropDownList1=bug&TextBox1=empty";
data += "&Button1=clicked";

If you submit this data to the Web application, the HTTP response includes the following:

<p>You chose:
<p><input name="TextBox1" type="text" value="bug"

id="TextBox1" /></p>

5.11 Determining a Request-Response Test Result
Problem
You want to determine whether a request-response test case passes or fails.

Design
Read the HTTP response a line at a time using the StreamReader.ReadLine() method. Parse each
line of the HTTP response using the String.IndexOf() method for an identifying target string
that unambiguously determines a pass or fail test result.

Solution
// set up url here
// set up post data in byte array buffer here

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";
req.ContentLength = buffer.Length;
// write buffer into request stream here

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
// get response stream and associate to StreamReader sr here

string expected = "someTargetString";
bool expectedFound = false;
string line = null;
while ((line = sr.ReadLine()) != null && !expectedFound)
{
if (line.IndexOf(expected) >= 0)
{
Console.WriteLine("expected value found");
expectedFound = true;

}
}

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 159

if (expectedFound)
Console.WriteLine("Pass");

else
Console.WriteLine("Fail");

Comments
The essence of performing a request-response test of an ASP.NET Web application is to send
an HTTP request to the application, retrieve the HTTP response, and examine the response for
an identifying expected value. The following sets up the request, sends the request, and asso-
ciates the response with a Stream object:

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream(); // fetch HTTP response

You then create a StreamReader object from the stream so that you access the response
stream:

StreamReader sr = new StreamReader(resst);

You need to assign a target string to search for in the HTTP response:

string expected = "someTargetString";

The expected string is some string that, if found in the HTTP response, will uniquely identify
a correct response. This is not always easy to specify. For example, suppose you have a Web appli-
cation with a DropDownList control that has options “red”, “blue”, and “green”. If the user selects
“red” from the control, a message such as “apples are red” is displayed in a TextBox control. If you
naively use the string “red” as an expected target, you will always get a pass result because “red”
will be in the HTML <option> tag:

<select name="DropDownList1" id="DropDownList1">
<option value="red">red</option>
<option value="blue">blue</option>
<option value="green">green</option>

</select>

Red will also be in the HTML <input> result tag:

<input name="TextBox1" type="text" value="apples are red"
id="TextBox1" />

You can avoid this pitfall by making the expected target more specific:

string expected = "value=\"apples are red\"";

You search the HTTP response line-by-line. You declare a Boolean variable expectedFound
and set it to false and declare a string variable line to hold one line of the HTTP response. Next,
you examine each line of the HTTP response:

CHAPTER 5 ■ REQUEST-RESPONSE TESTING160

while ((line = sr.ReadLine()) != null && !expectedFound)
{
if (line.IndexOf(expected) >= 0)
{
Console.WriteLine("Found expected target");
expectedFound = true;

}
}

The loop will exit if it reaches the end of the HTTP response stream or if the target expected
value is found. After the loop terminates, if expectedFound is still set to false, the loop exited
because it reached the end of the stream and did not find the expected target, and the test case
fails. If expectedValue has been set to true, that means the loop exited because it found the
expected target, and the test case passes.

As an alternative, you can retrieve the HTTP response as one big string using the
StreamReader.ReadToEnd() method and then search it using String.IndexOf():

string entireResponse = sr.ReadToEnd();
if (entireResponse.IndexOf(expected) >= 0)
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

This approach is simpler but may not be feasible if the HTTP response is very large.
In lightweight test automation, you often can create test bed scenarios where a unique

identifying string or other characteristic is used. In some situations, however, you may need to
search for a nonunique target string in the HTTP response. One solution to this problem is to
specify two strings that represent where to begin searching in the response and where to end
searching:

private static bool IsThere(string strToSearch,
string strTarget,
string strBegin, string strEnd)

{
int start = strToSearch.IndexOf(strBegin);
int end = strToSearch.IndexOf(strEnd);
int numCharsToSearch = end - (start + strBegin.Length);
if (strToSearch.IndexOf(strTarget, start, numCharsToSearch) >= 0)
return true;

else
return false;

}

(This code assumes that strTarget and strBegin are not the same.) In other words, even
though multiple occurrences of some target string may appear in your HTTP response, if you
can limit somewhat where a target string must be found, you can search for the nonunique
target. With such a method, you can search through an HTTP response:

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 161

string entireResponse = sr.ReadToEnd();
string target = "red";
if (IsThere(entireResponse, target, "<form", "</form>"))
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

This code will return true if "red" is found between "<form" and "</form>" in the HTTP
response. Notice the missing “>” to terminate "<form>" because the response looks like

<form name="Form1" method="post" action="WebForm.aspx" id="Form1">
...
</form>

rather than

<form>
...
</form>

An alternative approach to the problem of searching for nonunique target strings in an
HTTP response stream is to use regular expressions. Regular expressions are more powerful
than simple string search methods, but in general, regular expressions are harder to code,
modify, and maintain.

5.12 Example Program: RequestResponseTest
This program combines several of the techniques in this chapter to create a lightweight test
automation harness to test the ASP.NET Web application shown earlier in Figure 5-1. The
program reads test case data from a “!” delimited text file, TestCases.txt:

0001!DropDownList1=red&Button1=clicked!You picked red
0002!DropDownList1=red&Button1=clicked!Bad choice!deliberate fail
0003!DropDownList1=green&Button1=clicked!You picked green

The first field is a test case ID, the second field is HTTP request POST data, the third field
is an expected string in the HTTP response, and the fourth field (e.g., “deliberate fail”) is an
optional comment. The test harness reads the test case file a line at a time, and then parses
the test case ID, input POST data string, and the expected target string. For each test case,
the input is sent to the Web AUT using HttpWebRequest, the response is captured with an
HttpWebResponse, and the response is examined to determine whether the expected string is
in the response. The complete lightweight test harness is listed in Listing 5-1. When run, the
output appears as shown in Figure 5-2 at the beginning of this chapter.

CHAPTER 5 ■ REQUEST-RESPONSE TESTING162

Listing 5-1. Program RequestResponse Test

using System;
using System.Net; // WebClient
using System.Text; // Encoding
using System.IO; // Streams
using System.Web; // request-response classes
using System.Web.Util; // HttpUtility.UrlEncode

namespace RequestResponseTest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("Start test run\n");
string uri = "http://localhost/TestAuto/Ch5/WebForm.aspx";
FileStream fs = new FileStream("..\\..\\TestCases.txt",

FileMode.Open);
StreamReader sr = new StreamReader(fs);
string line;

while ((line = sr.ReadLine()) != null)
{
string[] tokens = line.Split('!');
string data = tokens[1];
string expected = tokens[2];
string vs = ViewState(uri);
vs = HttpUtility.UrlEncode(vs);
data += "&__VIEWSTATE=" + vs;

Console.WriteLine("==========");
Console.WriteLine("TestCase ID = " + tokens[0]);
Console.WriteLine("Sending: " + data);
Console.Write("Looking for: '" + expected + "'");
Console.WriteLine(" in HTTP response stream");

if (ResponseHasTarget(uri, data, expected))
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

}

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 163

Console.WriteLine("==========");
Console.WriteLine("\nEnd test run");

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
} // Main()

private static string ViewState(string uri)
{
try
{
WebClient wc = new WebClient();
Stream st = wc.OpenRead(uri);
StreamReader sr = new StreamReader(st);
string res = sr.ReadToEnd();
sr.Close();
st.Close();
int start = res.IndexOf("__VIEWSTATE", 0) + 20;
int end = res.IndexOf("\"", start);
string vs = res.Substring(start, (end-start));
return vs;

}
catch
{
throw new Exception("Fatal error finding ViewState");

}
}

private static bool ResponseHasTarget(string uri,
string postData,
string target)

{
byte[] buffer = Encoding.ASCII.GetBytes(postData);

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(uri);
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";
req.ContentLength = buffer.Length;
req.Timeout = 5000;

Stream reqst = req.GetRequestStream();
reqst.Write(buffer, 0, buffer.Length);

CHAPTER 5 ■ REQUEST-RESPONSE TESTING164

reqst.Flush();
reqst.Close();

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();
StreamReader sr = new StreamReader(resst);

string result = sr.ReadToEnd();

sr.Close();
resst.Close();

if (result.IndexOf(target) >= 0)
return true;

else
return false;

}

} // class
} // ns

CHAPTER 5 ■ REQUEST-RESPONSE TESTING 165

Script-Based Web UI Testing

6.0 Introduction
The simplest form of Web application testing is manual testing through the UI; however,
because manual testing is often slow, inefficient, and tedious, a good strategy is to supplement
manual testing with basic Web application UI test automation. You can do this in several ways.
The oldest technique uses JavaScript to manipulate a Web application’s controls through the
Internet Explorer Document Object Model (IE DOM). The best way to demonstrate this type of
testing is visually, so Figure 6-1 shows a sample run of a script-based Web UI test harness.

Figure 6-1. Script-based Web application UI testing

167

C H A P T E R 6

■ ■ ■

If you examine Figure 6-1, you’ll see that the test harness is a Web page with two frames.
The right frame hosts the Web AUT; its display title is MiniCalc. In this example, the applica-
tion is a simple calculator program. The left frame hosts JavaScript functions that manipulate
the Web AUT, examine the resulting state of the application, and log test results to an external
file. This chapter presents the various techniques you need to perform script-based Web UI
test automation.

Most of the sections in this chapter reference the Web application shown in the right frame
in Figure 6-1. The application is named WebApp.aspx. The entire code for the application is

<%@ Page Language="C#" Debug="true" %>

<script language="c#" runat="server">
private void Button1_Click(object sender, System.EventArgs e)
{
int alpha = int.Parse(TextBox1.Text.Trim());
int beta = int.Parse(TextBox2.Text.Trim());

if (RadioButton1.Checked)
{
TextBox3.Text = Sum(alpha, beta).ToString("F4");

}
else if (RadioButton2.Checked)
{
TextBox3.Text = Diff(alpha, beta).ToString("F4");

}
else if (RadioButton3.Checked)
{
TextBox3.Text = Product(alpha, beta).ToString("F4");

}
else
TextBox3.Text = "Select method";
}

private static double Sum(int a, int b)
{
double ans = 0.0;
ans = a + b;
return ans;

}

private static double Diff(int a, int b)
{
double ans = 0.0;
ans = a - b;
return ans;

}

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING168

private static double Product(int a, int b)
{
double ans = 0.0;
ans = a * b;
return ans;

}
</script>

<html>
<head><title>WebApp.aspx</title></head>
<style type="text/css">
fieldset { width: 16em }
body { font-size: 10pt; font-family: Arial }
</style>
<body bgColor="#ccffff">
<h3>MiniCalc</h3>
<form method="post" name="theForm" id="theForm" runat="server">
<p><asp:Label id="Label1" runat="server">Enter integer:
</asp:Label>

<asp:TextBox id="TextBox1" size="6" runat="server" /></p>
<p><asp:Label id="Label2" runat="server">Enter another:
</asp:Label>

<asp:TextBox id="TextBox2" size="6" runat="server" /></p>
<p></p>

<fieldset>
<legend>Operation</legend>
<p><asp:RadioButton id="RadioButton1" GroupName="ops"
runat="server"/>Addition</p>

<p><asp:RadioButton id="RadioButton2" GroupName="ops"
runat="server"/>Subtraction</p>

<p><asp:RadioButton id="RadioButton3" GroupName="ops"
runat="server"/>Multipication</p>

<p><asp:RadioButton id="RadioButton4" GroupName="ops"
runat="server"/>Division</p>

<p></p>
</fieldset>

<p><asp:Button id="Button1" runat="server" text=" Calculate "
onclick="Button1_Click" /> </p>

<p><asp:TextBox id="TextBox3" size="10" runat="server" />
</form>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 169

For simplicity, all the Web application code is contained in a single source file rather than
the more usual approach of separating HTML display code and C# (or other .NET-compliant
language) code into two separate files. If you examine this code, you’ll see that the UI contains
two text fields where the user enters two integers, four radio button controls that the user
selects to indicate which of four arithmetic operations to perform (addition, subtraction,
multiplication, division), a button control to submit the calculation request, and a third text
field that displays a result with four decimals.

■Note Notice that the label next to the multiplication radio button control is misspelled as “Multipication”.
Typographical errors in AUTs are common during the testing phase, so be prepared to deal with them when
writing automation.

This Web application is simplistic, and your Web AUTs are likely to be much more complex.
However, this application has all the key components necessary to demonstrate script-based UI
testing. Even if your Web AUT does sophisticated numerical processing or fetches complex data
from a SQL data store, each HTTP request-response will result in a new page state that is
reflected in the UI.

The code in this chapter assumes that the automation is organized with a root folder con-
taining two subfolders named TheWebApp and TestAutomation. The TheWebApp folder holds the
Web AUT (WebApp.aspx). The TestAutomation folder contains the main test harness structure
as a single Web page (WebAuto.html) and the page that houses the JavaScript code which runs
the test scenario (TestCode.html).

Related but lower-level techniques to test a Web application through its UI are presented
in Chapter 7. The techniques in this chapter can handle most basic UI testing situations but
cannot deal with configurations that have JavaScript disabled. These techniques also cannot
manipulate objects that are outside the browser client area (such as alert dialog boxes). The
test harness that produced the test run shown in Figure 6-1 is presented in Section 6.8.

6.1 Creating a Script-Based UI Test Harness
Structure
Problem
You want to create a structure for a script-based Web application UI test harness that allows
you to programmatically manipulate, synchronize, and examine the Web AUT.

Design
Create an HTML page with two frames. One frame hosts the AUT. The second frame hosts the test
harness script. The containing HTML page holds synchronization variables and test scenario
meta-information.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING170

Solution
<html>
<head>
<script language="JavaScript">
var description = "Description of test scenario";
var loadCount = 0;
var pass = true;

</script>
</head>

<frameset cols="40%,*">
<frame src="TestCode.html" name="leftFrame">
<frame src="../TheWebApp/WebApp.aspx" name="rightFrame"
onload="leftFrame.updateState();">

</frameset>
</html>

Comments
Although you can structure a script-based Web application UI test harness in several ways, the
organization presented here has proven simple and effective in practice. The <script> portion of
the HTML harness holds three key variables. Notice we use the language="JavaScript" attribute.
In a pure Microsoft technology environment, you might want to use "JScript" to emphasize the
fact that you are using the IE DOM to access Web page controls. The first variable, description,
is test scenario meta-information. You may want to include other meta-information here such
as a test scenario ID or the date and time when the scenario was run. The second variable,
loadCount, is the key to test harness synchronization. Because HTTP is a stateless protocol,
each request-response pair is independent. You need some way to know which state the Web
application is in. The easiest way to do this is to use a global variable where a value of 0 indicates
an initial state, a value of 1 indicates the next state (after a user clicks a submit button for exam-
ple), and so on. Observe that when the Web page/document under test finishes loading into the
right frame of the test harness, control is transferred to a function updateState()located in the
page in the left (test code) frame:

onload="leftFrame.updateState();"

Section 6.2 describes the updateState() function. The third variable in the HTML harness
page, pass, represents the test scenario pass or fail result.

The body of the HTML test harness page just contains two frames, leftFrame and rightFrame,
in this solution. The frames are organized into two columns with the first (left) column receiving
40% of the display area. There’s nothing special about the column organization or frame names
used here. Using the names leftFrame and rightFrame implies you have the frames organized
in a particular way, but experience has shown that using positionally oriented frame names
tends to be easier to read than functionally oriented names such as frameWithWebApp and
frameWithHarnessCode, although this is a matter of personal preference. Frame rightFrame
holds the AUT. The application does not need to be instrumented in any way, and the techniques
in this chapter apply to both classic ASP Web applications and ASP.NET Web applications. Frame
leftFrame holds the test scenario JavaScript code that manipulates the AUT.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 171

A common mistake when performing script-based UI testing is to attempt to synchronize
events by using the setTimeout() method to pause the test automation. Calling setTimeout()
stops the thread of execution. Unfortunately, because IE runs under a single thread of execu-
tion (with a few rare exceptions), you end up pausing both your test automation and the AUT.

6.2 Determining Web Application State
Problem
You want to determine the state of the Web AUT.

Design
In the TestCode.html page that holds the JavaScript test harness code in the preceding solution,
write a function updateState() that increments the global state counter variable and then calls
the main test logic.

Solution
<html>
<head>
<script language="JavaScript">
function updateState()
{
parent.loadCount++;
if (parent.loadCount > 1) // > 0 for full-automation
runTest();

} // updateState()

function runTest()
{
// runTest() code here

}

// other test functions here

</script>
</head>
<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script
</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();">
</p>
<p>Actions:</p><p><textarea id="comments" rows="15" cols="34">
</textarea></p>
<p>Test Result = <input type="text" name="result" size="12"></p>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING172

Comments
If you create a test harness structure as described in Section 6.1, when the Web AUT finishes
loading into the test harness right frame, control is transferred to function updateState()
located in the script part of the page located in the left frame. This state-updating function
first increments the global application state counter:

parent.loadCount++;

Because the state counter is located in the main test harness structure page, you must
access it using the parent keyword. Next, the updateState() function checks if the value of the
global state counter is greater than 1. Because the counter is initialized to 0, the counter has a
value of 1 when the test harness first launches, which, in turn, loads the Web AUT. If you check
for a value greater than 1, the condition is false on the initial page load so the thread of execu-
tion stops. This allows you to manually view the test harness and Web AUT, and then launch
the test automation manually. If you want full automation, you can edit the condition to

if (parent.loadCount > 0)
runTest();

This condition is true on the initial application page load into the test harness structure,
and control is immediately transferred to function runTest().

In this solution, the page located in the left frame of the containing test harness page is
named TestCode.html. In a fully automated situation, such as just described, you do not need
any UI for page WebAuto.html. However, some minimal UI is required if you want to manually
launch the test automation:

<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();"></p>
<p>Actions:</p>
<p><textarea id="comments" rows="15" cols="34"></textarea></p>
<p>Test Result = <input type="text" name="result" size="12"></p>

</body>

You give a title to the page containing the JavaScript automation code so that other testers
and developers can clearly distinguish which frame holds the AUT and which frame holds the test
automation. You supply a button control so that testers can manually launch the test automation
as described previously. An HTML <textarea> element is handy to display messages containing
information about the progress of the test automation as shown in Figure 6-1. Finally, you add a
text field so that the overall test scenario pass/fail result can be displayed in a way that stands out
from other messages.

6.3 Logging Comments to the Test Harness UI
Problem
You want to display messages that detail the progress of the test automation.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 173

Design
Write a JavaScript helper function logRemark() that uses the IE DOM value property to set a
value into an HTML <textarea> comments field.

Solution
function logRemark(comment)
{
var currComment = document.all["comments"].value;
var newComment = currComment + "\n" + comment;
document.all["comments"].value = newComment;

} // logRemark()

Comments
Although the goal of any test scenario is to produce a pass or fail result, it’s useful to have a way
to display the progress of the automation. This helps you diagnose the inevitable problems
you’ll run into and sometimes reveals bugs in the Web AUT as well. The simple logRemark()
function accepts a comment to log as the single input argument. Notice that JavaScript is a
nontyped language, so you don't specify exactly what data type the comment parameter is. The
function first grabs any existing content in the textarea named "comments" using the value
property and the document.all collection. See Section 6.2 for the definition of the comments
HTML <textarea> element. The function then appends a newline character to the existing
comments contents and then appends the text of the input argument comment using the
JavaScript + string concatenation operator. The logRemark() function finishes by replacing the
value of the old comments contents with the newly updated value.

With this helper function in hand, you can enhance the readability and clarity of your test
harness output by displaying various messages as the test scenario runs. For example:

logRemark("Starting test automation");
logRemark("About to set TextBoxes to '7' and '5'");

6.4 Verifying the Value of an HTML Element on the
Web AUT
Problem
You want to verify that an HTML element on the Web AUT has a certain value and set a test
scenario pass/fail result to the appropriate value.

Design
Write a function verify() that accepts a reference to a control element and an expected value
for the element and sets a global pass/fail result variable that has been initialized to true (to
false if the actual value of the control does not equal the expected value).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING174

Solution
function verify(ctrl, val)
{
if (parent.rightFrame.document.all[ctrl].value != val)
parent.pass = false;

}

Comments
The verify() function accepts a reference to a control and an expected value for the control.
The function assumes the existence of a global variable pass located in the containing harness
structure Web page as described in Section 6.1. Notice that to access a control in the Web AUT
from the left frame, you must “go up” one page using the parent keyword and then “down” one
page into the application using the frame name. If the actual value in the specified control is not
equal to the expected value argument, the global pass variable is set to false. This scheme
assumes that variable pass has been initialized to true. In other words, the logic used here is that
you assume the test scenario will pass. After each state change, you check one or more controls
looking for an inconsistent value; if you find such a problem, you set pass to false. An alternative
approach is to assume the test scenario will fail. Then after all the state changes, you check for a
series of consistency values and set pass to true only if all expected conditions/values are met.

The heart of the techniques in this chapter is the capability to access the HTML elements
on a Web page using the IE DOM. This is a large topic because the IE DOM has more than 500
properties and nearly as many methods. From a testing point of view, you’ll use the value
property most often to verify the state of an HTML element, but you’ll find other properties
useful too. For example, suppose you need to check whether the background color of the Web
AUT is pure red. You can write code like this:

if (parent.rightFrame.document.bgColor == "#FF0000")
backgroundIsRed = true;

As another example, suppose you want to check whether some Label element is visible to
the user. You can write code like this:

if (parent.rightFrame.document.all["Label1"].visibility == "visible")
logRemark("The Label control is visible");

After you understand the test structure presented in the techniques in this chapter, your
next step is to get a firm grasp of the IE DOM. The better you understand the DOM, the more
powerful automation you’ll be able to write.

One common situation that can cause trouble is when you need to access text on a Web
page/application that is not part of any HTML element other than the body. One way to do this
is to use the document.body.innerText property. Another way is to use the createTextRange()
and findText() methods:

var trange = parent.rightFrame.document.body.createTextRange();

if (trange.findText("foo") == true)
logRemark("Found 'foo' on the Web page");

else
logRemark("No 'foo' found");

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 175

6.5 Manipulating the Value of an HTML Element on
the Web AUT
Problem
You want to manipulate an HTML element on the Web AUT to simulate user actions such as
typing data into a text field and clicking on buttons.

Design
Use methods and properties of the IE DOM, such as the checked property and the click()
method. You need to take into account the state of the Web AUT.

Solution
For example:

function runTest()
{
try {
if (parent.loadCount == 1)
{
parent.rightFrame.document.theForm.TextBox1.value = "7";
parent.rightFrame.document.theForm.TextBox2.value = "5";
parent.rightFrame.document.all["RadioButton1"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 2)
{
parent.rightFrame.document.all["RadioButton3"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 3)
{

// determine pass or fail result here
// save test scenario results here

}
}
catch(e) {
logRemark("Unexpected fatal error: " + e);

}
} // runTest ()

This code simulates a user typing 7 and 5 into the input fields, checking the RadioButton1
control (for addition), clicking the Button1 control (to calculate), and then after the Web appli-
cation reloads, checking RadioButton3 for multiplication and clicking the Button1 control
again. On the third page load, you verify the state of the application (see Section 6.4) and save
the scenario result (see Sections 6.6 and 6.7).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING176

Comments
To simulate user interaction with a Web AUT, you first need to determine what user action you
want to simulate. In the case of test automation, this is usually placing text into an HTML ele-
ment to simulate typing, selecting an option from a drop-down control, clicking on a button
control, or checking a radio button control. Each of these actions has an intuitively named
method or property such as value, click(), and checked. There are hundreds of other proper-
ties and methods too. For example, you can simulate a user scrolling a scrollbar component
using the scrollTo() method, you can set the focus of an element using the focus() method,
and you can highlight text using the select() method. The IE DOM gives you virtually full
control over the client area of an HTML Web page. The real trick is knowing which method or
property to use. This is a combination of art and science because it’s not practical to learn the
details of all the IE DOM methods and properties. Fortunately, the methods and properties
have meaningful names and are well documented.

Notice that you are constructing a test scenario here rather than a test case. The terms are
often used interchangeably, but in general the term test scenario refers to test automation that
changes the SUT through several states. For instance, in the techniques in this chapter, each
part of the test code triggers a new HTTP request-response, which creates a new state of the
application that is reflected in the UI. Test case normally refers to a testing situation/item in
which the test automation manipulates the SUT through one (or possibly two) state changes.
For example, in API test cases, inputs are sent to the method under test, and a return value is
produced. Web application UI testing is usually performed as a test scenario because most
bugs are found when transitioning through multiple states of the Web application; single state
bugs are usually detected during the development process.

When constructing test scenarios like the one in this section, you can organize your test
effort in one of two ways. You can hard-code the scenario input values into the test script and
maintain a lot of separate scenario scripts. A second approach is to write just a few scripts,
which are then parameterized to read input files, and maintain a lot of scenario input files. In
practice, most test efforts primarily use the first approach, even though it has the disadvan-
tage of requiring you to manage a large number of test scripts.

6.6 Saving Test Scenario Results to a Text File on
the Client
Problem
You want to save your test scenario pass/fail result to an external text file on the test client
machine.

Design
Instantiate a Scripting.FileSystemObject ActiveX object and then use the object’s
CreateTextFile() and WriteLine() methods.

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 177

Solution
function saveResults()
{
var fso = new ActiveXObject("Scripting.FileSystemObject");
var f = fso.CreateTextFile("C:\\results.txt", true, false);
f.WriteLine("Description = " + parent.description);
if (parent.pass == true)
f.WriteLine("Result = Pass");

else
f.WriteLine("Result = FAIL");

f.Close();
}

The JavaScript language by itself does not contain any native file IO routines, so if you want to
save results to file, you must use a JavaScript add-on. Microsoft created script-friendly libraries
called ActiveX technologies that essentially extend JavaScript functionality. To write to a text
file, the first step is to instantiate a Scripting.FileSystemObject object. Next, you use that
object to create a handle to a file object. The CreateTextFile() method accepts one required
argument and two optional arguments. The required argument is the name of the text file to
create. The first of the two optional arguments is a Boolean flag to indicate whether any existing
file with the same name should be overwritten. In this example, you specify true. The second
optional argument is a Boolean flag indicating whether to use Unicode encoding. In this exam-
ple, you set that argument to false, which causes the text file to use the default ASCII encoding.

Comments
When running script-based Web application UI test automation, you’ll often want to write test
scenario results to external storage. The simplest way to save results is to write the results to a
text file on the client machine.

The technique given here assumes the existence of a global variable pass. As a general
rule, the use of global variables is not recommended because it makes your code harder to
read and maintain. In this case, the simplicity gained by using a global variable seems to out-
weigh the readability and maintainability penalty.

To write to a file from a JavaScript function, you may have to modify IE’s security settings.
By default, these settings typically do not allow JavaScript to write to the client machine’s
hard drive. Go to IE’s Security settings and modify the Trusted Sites and ActiveX object script-
ing execution properties. (The exact process to do this varies depending upon your client
configuration.)

One alternative to saving your test results to a text file on the test client machine using
ActiveX technology is to save results as a Cookie object on the client machine. This approach is
more troublesome in general than saving results as a text file because cookies are stored in a
binary format, so you have to write an auxiliary JavaScript helper program to read the cookie
from disk and then parse the results. In general, you should use this approach only when other
approaches are not feasible. A second alternative to saving scenario results as a text file on the
client is to save the results into a lightweight database. This technique is described in Section 6.7.

Several of the techniques in Chapter 1 show how to time-stamp the file name of a results
file and how to create a time-stamped folder to hold results files. You can adapt the techniques

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING178

in Chapter 1 to a JavaScript coding environment by using the Date object and the Date.
toDateString() and Date.toTimeString() methods.

6.7 Saving Test Scenario Results to a Database
Table on the Server
Problem
You want to save your script-based UI test scenario results into a lightweight database on the
Web server.

Design
Create an Access database on the Web server. Then post the test results from the client machine
via an HTML Form element back to the server and execute an ASP/VBScript program on the
server to save the results into the Access database.

Solution
First you create an Access database on the Web server. For example, you could create an Access
database named dbResults.mdb with two columns. The first column is named scenarioID, has
type AutoNumber, and is a primary key. The second column is named scenarioResult and is type
Text. Of course, you may want to add other columns to hold information, such as the date and
time of the test run, and so on.

Next, because you need to post the scenario results back to the Web server, you need to
place the results text field in the test harness UI into an HTML Form element:

<form name="theForm" method="Post" action="..\\SaveResults.asp">
<p>Test Result = <input type="text" name="result" size="12"></p>
<p><input type="submit" name="sender" value="Save Results"></p>

</form>

You give the Form element a name and specify which script to run (SaveResults.asp) when
the form data is posted to the Web server. You also need to edit any lines of code in the test
harness that reference the result field to its new name theForm.result. For example:

theForm.result.value = " Pass ";

You then write a script called SaveResults.asp and save it on the Web server:

<html>
<body>
<%
strResult = Request.Form("result")

%>
<h4>Save Test Results Page</h4>
<%
Response.Write("<p>Scenario result = " & strResult & "
")
Response.Write("<p>Saving result to Access database dbResults.mdb</p>")

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 179

Const adOpenStatic = 3
Const adLockOptimistic = 3
Set objConnection = CreateObject("ADODB.Connection")
Set objRecordSet = CreateObject("ADODB.Recordset")
objConnection.Open _
"Provider = Microsoft.Jet.OLEDB.4.0; " & _
"Data Source = C:\Inetpub\wwwroot\TestAuto\Ch6\dbResults.mdb"

objRecordSet.Open "SELECT * FROM tblResults" , _
objConnection, adOpenStatic, adLockOptimistic
objRecordSet.AddNew
objRecordSet("scenarioResult") = strResult
objRecordSet.Update

objRecordSet.Close
objConnection.Close
Response.Write("Done")

%>
</body>

<html>

With this code in place, to manually save results after the test scenario runs, you can click
on the Save Results button. This action posts the Form element to the Web server and invokes
the SaveResults.asp script that will retrieve the test scenario result from the posted Form
object and save it into the dbResults.mdb Access database.

Comments
You may want to save your test scenario results on the Web server machine instead of the client
machine as described in Section 6.6. One way to do this is to create a lightweight Access data-
base on the Web server and write a script that saves scenario results into the database.

VBScript is used traditionally for server-side scripts, but you can use JavaScript if you
prefer. The SaveResults.asp script grabs the test scenario result from the Form using the
Request.Form() method. Next, you open a connection to the dbResults.mdb database using
the CreateObject() method, which is part of ADO technology. You can think of ADO (ActiveX
Data Objects) as a code library that adds database functionality to JavaScript and VBScript.
You can add data to a database using ADO in several ways. The simplest technique, as used in
this section, is to create a RecordSet object, fill it with the existing data in the database, add a
new row to the RecordSet, add the test scenario result to the new row, and then insert using
the RecordSet.Update() method.

If you want to save test results programmatically, you can write a saveResults() function
that directly submits the Form element containing the scenario result:

function saveResults()
{
document.all["theForm"].submit();

}

You can also indirectly submit the Form element by simulating a user click on the save-
results button:

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING180

function saveResults()
{
document.all["sender"].click();

}

When saving results to the SUT Web server, instead of saving to a database, you can save
as a text file. You would use the techniques presented in Section 6.6 by creating a Scripting.
FileSystemObject. If you use this approach, you must modify the Web server security permis-
sions to allow the virtual user/context under which the saving script executes to have
permission to write to the hard drive. Exactly how to do this varies from system to system
and can be tricky. Additionally, when creating the results file with the CreateTextFile()
method, you’ll either have to specify the full path to the file or use the MapPath() method
because the IIS Web Server interprets relative paths incorrectly for use with file operations.

6.8 Example Program: ScriptBasedUITest
This program combines several of the techniques in this chapter to create a lightweight test
automation harness to test the ASP.NET Web application shown in the right frame in Figure 6-1.
The test automation consists of three files. The first file, WebForm.aspx, is presented in the intro-
duction section of this chapter. It is a simple client-server calculator demonstration program.
The second file is named WebAuto.html. This HTML container houses two frames, one for the
Web AUT and one for the test harness code. Following is the code for WebAuto.html:

<html>
<head>
<script language="JavaScript">
var description = "Demo Test Scenario";
var whenRun = new Date();
var loadCount = 0;
var pass = true;

</script>
</head>

<frameset cols="40%,*">
<frame src="TestCode.html" name="leftFrame">
<frame src="../TheWebApp/WebApp.aspx" name="rightFrame"
onload="leftFrame.updateState();">

</frameset>
</html>

The third file that makes up the test scenario is named TestCode.html. This HTML page
houses the JavaScript test harness code. The entire page is provided in Listing 6-1. When run,
the output will be as shown in Figure 6-1 in the introduction section of this chapter. The code
in this section assumes that the automation is organized with a root folder containing two
subfolders named TheWebApp and TestAutomation. The TheWebApp folder holds the Web AUT
(WebApp.aspx). The TestAutomation folder contains the main test harness structure as a single
Web page (WebAuto.html) and the page that houses the JavaScript code which runs the test
scenario (TestCode.html).

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 181

Listing 6-1. Test Harness File TestCode.html

<html>
<head>
<script language="JavaScript">
function updateState()
{
parent.loadCount++;
if (parent.loadCount > 1)
runTest();

} // updateState()

function runTest()
{
try {
if (parent.loadCount == 1)
{
logRemark("Setting TextBoxes to '7' and '5'");
logRemark("Selecting RadioButton1");
logRemark("Clicking Calculate button");
parent.rightFrame.document.theForm.TextBox1.value = "7";
parent.rightFrame.document.theForm.TextBox2.value = "5";
parent.rightFrame.document.all["RadioButton1"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 2)
{
logRemark("Verifying '12.0000'");
verify("TextBox3", "12.0000");
logRemark("Selecting RadioButton2");
logRemark("Clicking Calculate button");
parent.rightFrame.document.all["RadioButton2"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}
else if (parent.loadCount == 3)
{
logRemark("Verifying '2.0000'");
verify("TextBox3", "2.0000");
logRemark("Selecting RadioButton3");
logRemark("Clicking Calculate button");
parent.rightFrame.document.all["RadioButton3"].checked = true;
parent.rightFrame.document.theForm.Button1.click();

}

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING182

else if (parent.loadCount == 4)
{
logRemark("Verifying '35.0000'");
verify("TextBox3", "35.0000");
logRemark("Determining pass / fail");
if (parent.pass == true)
theForm.result.value = " Pass ";

else
theForm.result.value = " *FAIL* ";

logRemark("Saving result to 'results.txt'");
saveResults();
logRemark("Run at " + parent.whenRun);

}
}
catch(e) {
logRemark("Unexpected fatal error: " + e);

}
} // runTest()

function logRemark(comment)
{
var currComment = document.all["comments"].value;
var newComment = currComment + "\n" + comment;
document.all["comments"].value = newComment;

} // logRemark()

function verify(ctrl, val)
{
if (parent.rightFrame.document.all[ctrl].value != val)
parent.pass = false;

}

function saveResults()
{
var fso = new ActiveXObject("Scripting.FileSystemObject");
var f = fso.CreateTextFile("C:\\results.txt", true, false);
f.WriteLine("Description = " + parent.description);
if (parent.pass == true)
f.WriteLine("Result = Pass");

else
f.WriteLine("Result = FAIL");

f.Close();
// document.all["sender"].click();
//document.all["theForm"].submit();

} // saveResults()

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING 183

</script>
</head>
<body bgColor="#aaff99">
<h3 style="font-size: 14; font-family: Verdana">UI Test Script
</h3>
<p><input type="button" value="Run UI Test" onclick="runTest();">
</p>
<p>Actions:</p><p><textarea id="comments" rows="15" cols="34">
</textarea></p>

<form name="theForm" method="Post" action="..\\SaveResults.asp">
<p>Test Result = <input type="text" name="result" size="12"></p>
<p><input type="submit" name="sender" value="Save Results"></p>

</form>
<p>

</body>
</html>

CHAPTER 6 ■ SCRIPT-BASED WEB UI TESTING184

Low-Level Web UI Testing

7.0 Introduction
The techniques in this chapter show you how to perform Web application UI testing by mak-
ing calls to low-level API functions. These techniques are closely related to those in Chapter 6,
which manipulate the client area of a Web application using JavaScript calls to the Internet
Explorer Document Object Model (IE DOM). The techniques in this chapter are more power-
ful, meaning they give you greater control and flexibility over your test automation. This
allows you to perform more complex UI testing. The heart of these low-level techniques is
calling directly into the mshtml.dll and shdocvw.dll libraries to access and manipulate
HTML objects in the client area of IE. Although these techniques have been available for
several years, before .NET your only option was to write fairly complex COM code. The .NET
environment greatly simplifies writing test automation code using this low-level technique.
Figure 7-1 shows a sample run of a low-level Web UI test scenario.

Figure 7-1. Low-level Web application UI testing

185

C H A P T E R 7

■ ■ ■

If you examine Figure 7-1, you’ll see that the test harness is a console application. The test
harness launches an instance of the IE browser and attaches to it, loads the Web AUT into the
browser, manipulates the browser, simulates a user exercising a product-search Web applica-
tion, and checks the application state to determine a test scenario pass or fail result.

Many of the techniques in this chapter make reference to the Web application shown in the
foreground of Figure 7-1. The application was created using Visual Studio .NET 2003 and has
the default WebForm1.aspx name. The application has three Label controls, a RadioButtonList
control, a TextBox control, a Button control, and a ListBox control. For simplicity, all the names
of the controls are the Visual Studio defaults: Label1, Label2, Button1, and so on. Obviously, your
Web AUTs will be more complex than this, but the demonstration application has all the key fea-
tures necessary to illustrate low-level Web application UI testing. The Web application searches
through a data store of product information, filtering by product name or product ID. A realistic
Web application would likely search through a SQL database of product information. However,
the demonstration application searches through a local data store implemented as an ArrayList
of Product objects. The local Product class is defined as

class Product
{
public string name;
public string id;
public double price;

public Product(string name, string id, double price)
{
this.name = name;
this.id = id;
this.price = price;

}
}

and the data store is created when the Web application loads

private System.Collections.ArrayList al =
new System.Collections.ArrayList();

private void Page_Load(object sender, System.EventArgs e)
{
Product p1 = new Product("widgets", "1A11A", 11.11);
Product p2 = new Product("gadgets", "2B22B", 22.22);
Product p3 = new Product("foozles", "3C33C", 33.33);

al.Add(p1);
al.Add(p2);
al.Add(p3);

Label3.Visible = false; // "Search Complete" message
}

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING186

The key code for the Web AUT search functionality is

private void Button1_Click(object sender, System.EventArgs e)
{
ListBox1.Items.Clear();
string filter = TextBox1.Text;
ListBox1.Items.Add("ProdName ProdID Price");
ListBox1.Items.Add("=====================");

if (RadioButtonList1.SelectedValue == "Name")
{
foreach (Product p in al)
{
if (p.name.IndexOf(filter) >= 0)
ListBox1.Items.Add(p.name + ", " + p.id + ", " + p.price);

}
}
else if (RadioButtonList1.SelectedValue == "ID")
{
foreach (Product p in al)
{
if (p.id.IndexOf(filter) >= 0)
ListBox1.Items.Add(p.name + ", " + p.id + ", " + p.price);

}
}

Label3.Visible = true;

}

When testing an application through its UI, it does not particularly matter where or how
the new application state is determined. In other words, in UI testing, you don’t care if the
application is searching through a SQL database, a text file, or a local data store. Each user
action on the application (for example, clicking on the Search button) ultimately causes the
state of the application to change, which will be reflected in the UI (for example, the text dis-
played in the ListBox control). Testing situations like this, in which you do not have access to
the source code of the AUT/SUT, are often referred to as black box testing. If you have full
access to the source code, the situation is often called white box testing. These two terms,
along with variations such as gray box and clear box testing, are probably the most overused
terms in software testing. The terms themselves are not important, but the principles behind
them help you identify the limitations on the types of testing you can perform. For example, in
a black box testing situation, you must rely on general testing principles when creating test
cases; however, in a white box testing situation, you can create test cases specifically designed
to exercise a particular code path in the SUT.

Related but higher-level techniques to test a Web application through its UI were presented
in Chapter 6. Those techniques access the client area of a Web application using the IE DOM.
You can think of the IE DOM as essentially a wrapper around functions in the mshtml.dll and
shdocvw.dll libraries. The techniques in this chapter are called low-level because they call

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 187

directly into mshtml.dll and shdocvw.dll functions, in effect operating at one level of abstraction
lower than the techniques presented in Chapter 6. The techniques in this chapter, combined
with those in Chapter 3, allow you to access all areas of a Web application—the client area, the
browser shell, and external windows. The test harness that produced the test run shown in
Figure 7-1 is presented in Section 7.9.

7.1 Launching and Attaching to IE
Problem
You want to launch an instance of an IE browser and attach to it in a way that will allow you to
programmatically manipulate, synchronize, and examine the Web AUT.

Design
Launch an instance of IE using the Process.Start() method and retrieve the returned process
object. Then instantiate an InternetExplorer object and associate the InternetExplorer object
handle to the process handle.

Solution

try
{
InternetExplorer ie = null;
Console.WriteLine("\nLaunching an instance of IE");
Process p = Process.Start("iexplore.exe", "about:blank");
if (p == null)
throw new Exception("Could not launch IE");

Console.WriteLine("Process handle = " + p.MainWindowHandle.ToString());

SHDocVw.ShellWindows allBrowsers = new SHDocVw.ShellWindows();
Console.WriteLine("Number active browsers = " + allBrowsers.Count);

if (allBrowsers.Count == 0)
throw new Exception("Cannot find IE");

Console.WriteLine("Attaching to IE");
int i = 0; // attach to correct browser
while (i < allBrowsers.Count && ie == null)
{
InternetExplorer e = (InternetExplorer)allBrowsers.Item(i);
if (e.HWND == (int)p.MainWindowHandle)
ie = e;

++i;
}

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING188

if (ie == null)
throw new Exception("Failed to attach to IE");

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}

You can use the static Process.Start() method from the System.Diagnostics namespace to
launch the IE program. However, you now have two different processes, and the test harness
cannot directly communicate with the Web browser. To solve this problem, you instantiate an
InternetExplorer object from the shdocvw.dll library and then assign the process handle of
the IE program/process to the InternetExplorer object. This allows you to directly access the
IE program from your test harness.

Comments
You begin by calling Process.Start() with arguments "iexplore.exe" and "about:blank".
Notice you must fetch the return value from Start() into a Process object. Instead of loading
the virtual page "about:blank", you could load the Web AUT at this time. However, experience
has shown that you are less likely to run into problems with your test automation if you load
the AUT only after you have attached to the IE program. Additionally, if IE fails to launch at
this point in your automation, you know that the AUT was not the source of the error.

After launching an instance of the IE program, you instantiate and fetch a collection of all
active browser objects using the ShellWindows() method. The ShellWindows() method is housed
in the shdocvw.dll API library. To access ShellWindows() you must add a project reference to your
test automation harness that points to the Microsoft Internet Controls component in the classic
COM list of references. (Notice that unlike using .NET references, determining the name of the
COM component that houses a particular DLL or function is sometimes not obvious.) The .NET
Framework marshals shdocvw.dll to a .NET namespace aliased to SHDocVw; this lets you add

using SHDocVw;

to your test harness if you want to avoid fully qualifying the InternetExplorer class and other
classes and objects you use from the shdocvw.dll library.

The collection of browser objects returned by ShellWindows() includes the instance of IE
you just launched, any previously launched IE programs, and running instances of Windows
Explorer. You must iterate through the collection to find exactly which one is your test
instance. To do this, you first instantiate an InternetExplorer object. This object is also
defined in the SHDocVw namespace. The solution here loops through the shell windows collec-
tion using an index variable initialized to 0 and a while loop:

while (i < allBrowsers.Count && ie == null)

The loop exits if all available shell window objects have been examined but the test IE
program was not found or if the InternetExplorer object is not null. In the first case, a fatal
logic flaw exists in the test harness, and you can throw an exception. In the second case, you
have successfully found the test IE program. The actual attaching of the InternetExplorer
object to the running IE program occurs when a match is found between the HWND (handle to

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 189

window) of the current shell window object being examined and the MainWindowHandle prop-
erty of the test IE process:

if (e.HWND == (int)p.MainWindowHandle)
ie = e;

Notice that because shdocvw.dll is a pre-.NET unmanaged library, the HWND member of an
InternetExplorer object is a handle that is really just an alias for an integer. But the .NET process
object’s MainWindowHandle is type IntPtr, which is a platform-specific .NET type used to repre-
sent either a pointer (memory address) or a handle. To make these two values comparable with
the == operator, you cast the IntPtr type to an int.

In some testing situations, you may want to set a precondition that no other instances of IE
or other browsers may be running. This prevents any possible browser interaction side effects.
If this is the case, after launching an IE process, you can check to make sure no other browser
instances are active and then attach to the single item in the ShellWindows collection:

InternetExplorer ie = null;
if (allBrowsers.Count > 1)
throw new Exception("Other browser instances found");

else
ie = (InternetExplorer)allBrowsers.Item(0);

7.2 Determining When the Web AUT Is Fully
Loaded into the Browser
Problem
You want to determine whether the Web AUT is completely loaded into the test IE browser.

Design
Register a DWebBrowserEvents2 interface event handler and synchronize the handler with a
class-scope AutoResetEvent object and class-scope method delegate.

Solution
class Class1
{
static AutoResetEvent documentComplete = new AutoResetEvent(false);

static void Main(string[] args)
{
SHDocVw.InternetExplorer ie = null;
// launch Internet Explorer program - see Section 7.1
// attach object ie to IE program process - see Section 7.1

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING190

ie.DocumentComplete += new
DWebBrowserEvents2_DocumentCompleteEventHandler(ie_DocumentComplete);

Console.WriteLine("\nNavigating to the Web app");
object nil = new object();
ie.Navigate("http://server/path/WebApp.aspx", ref nil, ref nil,

ref nil, ref nil);

documentComplete.WaitOne();
} // Main()

private static void ie_DocumentComplete(object pDisp, ref object URL)
{
documentComplete.Set();

}
} // class

A surprisingly tricky task when writing low-level Web application UI automation is determin-
ing exactly when the AUT is completely loaded into the test IE browser. This is essential because
otherwise your automation may attempt to manipulate the AUT before it’s ready, which almost
certainly causes an exception to be thrown. The InternetExplorer object in the shdocvw.dll
library contains a DocumentComplete event, which is associated with the DWebBrowserEvents2
interface. (This interface replaces an older, obsolete DWebBrowserEvents interface.) It designates
an event sink interface that your automation harness can implement to receive event notifica-
tions from the IE program. The second piece of the solution is to use an AutoResetEvent object
to synchronize your test automation control flow.

Comments
After you’ve created an InternetExplorer object and attached it to a running IE process (as
described in Section 7.1), you can register an event handler using the DWebBrowserEvents2
interface and associate it with the InternetExplorer.DocumentComplete event. The constructor
accepts a method delegate that is an alias for a real method to transfer control to when the
DocumentComplete event fires. In this solution, you transfer control to a method that just sets an
AutoResetEvent synchronizing object to signaled. In other words, when the IE process finishes
loading its HTTP response page, the DocumentComplete event fires and control transfers to the
method delegate that sets the AutoResetEvent object to signaled. So, you can pause your test
automation at any point by inserting an AutoResetEvent.WaitOne() call. The thread of execu-
tion is blocked until AutoResetEvent.Set() is called, which only happens when the current
document in IE has finished loading completely. Notice that as written, your automation could
wait forever if there is a problem, and your Web AUT never finishes loading. To avoid this, you
can pass an integer argument and a Boolean flag to the WaitOne() method, which will specify a
maximum timeout in milliseconds and determine whether or not to exit the synchronization
domain for the context before the wait. For example:

documentComplete.WaitOne(9000, true);

A common, but incorrect way to attempt to pause test automation until a Web AUT is
completely loaded into the test IE browser, is to insert Thread.Sleep() statements. Because,

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 191

with few exceptions, IE runs under a single thread of execution, Thread.Sleep() will cause
both the test automation and IE to halt.

With a mechanism for making sure that a Web page is fully loaded in hand, you can navi-
gate to the AUT using the InternetExplorer.Navigate() method. For example:

object nil = new object();
ie.Navigate("http://server/path/WebApp.aspx", ref nil, ref nil,

ref nil, ref nil);

The Navigate() method accepts five arguments. The first argument is required and is the
URL of the application to navigate to. The other four parameters are optional. In most cases,
you can pass references to a dummy object for the other four arguments as you’ve done here.
The first optional parameter is a reference to an object holding a constant that specifies
whether to add the resource to the history list, whether to read from or write to the cache, and
whether to display the resource in a new window. The second optional parameter is a refer-
ence to an object holding a string that specifies which frame to display. The third optional
parameter is a reference to an object holding a string that is HTTP POST data (typically that
data contained in an HTML form element). The fourth optional parameter is a reference to an
object holding a string that specifies additional HTTP headers to send to the Web server.
Because your automation manipulates IE through its UI, you do not need to pass any of these
optional arguments. For example, instead of using the argument that directly sends HTTP
POST data, you just simulate a click on the submit button associated with a form element.

7.3 Manipulating and Examining the IE Shell
Problem
You want to programmatically manipulate and examine the test IE browser to simulate user
actions such as resizing the browser and reading the status bar.

Design
Use the methods and properties of the InternetExplorer object such as Height, Width, and
StatusText.

Solution

InternetExplorer ie = null;
// attach ie to test Internet Explorer process - see Section 7.1

Console.WriteLine("Setting IE to size 450x360");
ie.Width = 450;
ie.Height = 360;
Thread.Sleep(1000);

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING192

if (ie.StatusText.IndexOf("Done") == -1)
Console.WriteLine("Could not find 'Done' in status bar");

else
Console.WriteLine("Found 'Done' in status bar as expected");

Thread.Sleep(1000);

Console.WriteLine("Moving IE to position (50,100)");
ie.Left = 50;
ie.Top = 100;
Thread.Sleep(1000);

Console.WriteLine("Checking address bar value");
if (ie.LocationURL != "http://server/path/WebApp.aspx")
pass = false;

Comments
When writing Web application UI test automation, there are three different areas of IE to take
into account—the client area, which holds the Web page under test; the shell area, which
holds IE controls such as the Address bar and the Back button; and the windows, such as alert
boxes, which are separate from IE altogether. The InternetExplorer object has methods and
properties you can use to manipulate the shell (to simulate user actions) and to examine the
shell (to determine a test scenario pass/fail result). These properties and methods are fully
documented, but here are nine of the most useful ways to manipulate the shell:

• GoBack(): Navigate backward one item in the history list.

• GoForward(): Navigate forward one item in the history list.

• GoHome(): Navigate to the current home page.

• Refresh(): Refresh the page currently loaded in IE.

• Quit(): Close IE.

• Height, Width: Set the height/width of the shell (in pixels).

• Top, Left: Set the top/left location of the shell (in pixels).

In addition to the methods and properties listed here, following are five useful properties
you can use to determine a test scenario pass/fail result:

• FullScreen: Returns true if IE is in full-screen mode.

• MenuBar: Returns true if the IE menu bar is visible.

• Resizable: Returns true if IE is resizable.

• LocationURL: Returns the URL of the current page being displayed in IE.

• StatusText: Returns the text in the IE status bar.

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 193

7.4 Manipulating the Value of an HTML Element on
the Web AUT
Problem
You want to manipulate an HTML input element on the Web AUT to simulate user actions
such as typing data into a text field and clicking on buttons.

Design
Create a reference to the Web application document body using the Document property of the
InternetExplorer object. Then use the getElementById() method from the mshtml.dll library
to get a reference to the HTML element you want to manipulate and set the value or other
appropriate property of the element object to the desired value.

Solution
HTMLDocument theDoc = (HTMLDocument)ie.Document;

Console.WriteLine("\nSelecting 'Name' radio button");
HTMLInputElement radioButton =
(HTMLInputElement)theDoc.getElementById("RadioButtonList1_0");

radioButton.@checked = true;

Console.WriteLine("Setting text box to 'foo'");
HTMLInputElement textBox =
(HTMLInputElement)theDoc.getElementById("TextBox1");

textBox.value = "foo";

Console.WriteLine("Setting dropdown list to 'blue'");
HTMLSelectElement dropdown =
(HTMLSelectElement)theDoc.getElementById("DropDownList1");

dropdown.value = "blue";

Console.WriteLine("Clicking search button");
HTMLInputElement butt =
(HTMLInputElement)theDoc.getElementById("Button1");

butt.click();

documentComplete.WaitOne(); // see Section 7.2

This example assumes you have created and attached to an InternetExplorer object as
described in Sections 7.1 and 7.2. You declare an HTMLDocument object and assign it to a reference
to the application document body. The HTMLDocument type is defined in the mshtml.dll library.
To access this library, you can add a project reference to the .NET Microsoft.mshtml component.
This managed code library maps to the mshtml namespace, so you can add the statement

using mshtml;

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING194

to your test harness to avoid having to fully qualify the HTMLDocument type and other classes
you want to use. After you have an HTMLDocument object, you can obtain a reference to an
HTML element that has an ID string by using the getElementByID() method. After you have
this object, you can simulate a user manipulating the element by assigning a value using the
value property. In the preceding solution, to simulate a user checking the radio button con-
trol, you must use @checked because checked is a keyword in the C# language.

Comments
The technique to manipulate controls on your Web AUT is relatively simple in the .NET program-
ming environment, at least compared with doing the same task using unmanaged code. Notice
that because the getElementById() method is used to obtain a reference to the element/control
you want to manipulate, the control must have an ID attribute that uniquely identifies it. If your
Web AUT is created by Visual Studio .NET UI designer, this is not a problem because all controls
receive an ID attribute. However, ID attributes are optional, so Web applications created manu-
ally, using Notepad for example, may need to be modified to include an ID attribute to use the
technique presented here.

A key tool to help you understand and extend this solution is the Object Browser in Visual
Studio .NET. If you point the Object Browser to the mshtml reference and expand the tree control,
you’ll see literally thousands of classes and methods that are available to you. There is far more
data here than you can possibly memorize, but fortunately, very few of these classes are needed
to write effective test automation. To determine which object interface in the mshtml namespace
you need to use, probe an object on your Web application. For example, notice that in the pre-
ceding solution, both a button control and a text box control are type HTMLInputElement but a
drop-down control is type HTMLSelectElement. Just how can you know this? You can determine
the correct class to use with code like this:

object o1 = (object)theDoc.getElementById("TextBox1");
Console.WriteLine("The textbox has type "+ o1.GetType().ToString());

object o2 = (object)theDoc.getElementById("DropDownList1");
Console.WriteLine("The dropdown has type " + o2.GetType().ToString());

The techniques in this section manipulate only controls in the client area of the IE browser.
To manipulate menu bar items or windows that are not part of the client area, you can use the
techniques in Chapter 3.

7.5 Verifying the Value of an HTML Element on the
Web AUT
Problem
You want to verify that an HTML element on the Web AUT has a certain value so you can set a
test scenario pass/fail result to the appropriate value.

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 195

Design
Create a reference to the Web application document body using the Document property of the
InternetExplorer object. Then use the getElementsByTagName() method from the mshtml.dll
library to get a collection of HTML elements, followed by the item() method to get the partic-
ular element you want to examine. You can then retrieve the actual value of the HTML
element using the InnerText property.

Solution
Suppose, for example, a Web AUT has several <p> elements, a <div> element with ID "div2",
and a single <select> element. This code will look for "aloha" in the <p> element, "adios" in
the <div> element, and "ciao" in the <select> element:

bool pass = true;

// get HTMLDocument object theDoc -- see Section 7.4

Console.WriteLine("Seeking 'aloha' in <p>[2]");
HTMLParaElement paraElement =
(HTMLParaElement)theDoc.getElementsByTagName("p").item(2, null);

if (paraElement.innerText.ToString().IndexOf("aloha") >= 0)
{
Console.WriteLine("Found target 'aloha");

}
else
{
Console.WriteLine("*Target string not found*");
pass = false;

}

Console.WriteLine("Seeking 'adios' in <div id='div2'>");
HTMLDivElement divElement =
(HTMLDivElement)theDoc.getElementsByTagName("div").item("div2", null);

if (divElement.innerText.ToString().IndexOf("adios") >= 0)
{
Console.WriteLine("Found target 'adios'");

}
else
{
Console.WriteLine("*Target string not found*");
pass = false;

}

Console.WriteLine("\nSeeking 'ciao' in list box");
HTMLSelectElement selElement =
(HTMLSelectElement)theDoc.getElementsByTagName("select").item(0, null);
if (selElement.innerText.ToString().IndexOf("ciao") >= 0)

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING196

{
Console.WriteLine("Found target 'ciao'");

}
else
{
Console.WriteLine("*Target string not found*");
pass = false;

}

The parameters to the item() method are a bit tricky. The first parameter can be either an
integer that is interpreted as a 0-based index value, or the parameter can be a string that is inter-
preted as the tag name. The second argument to item() is also an index value, but it is only used
when the item() method returns a collection instead of an atomic object. In the preceding solu-
tion, the code

getElementsByTagName("p").item(2, null);

gets a collection of all the <p> elements, and then returns the particular <p> element that has
index [2], that is, the third <p> element.

Comments
You’ll often need to programmatically examine HTML element values on the document body
of the AUT that are not part of any child HTML element. Here’s one way to do that:

Console.WriteLine("Seeking 'howdy' in body");
HTMLBody body =
(HTMLBody)theDoc.getElementsByTagName("body").item(0, null);

if (body.createTextRange().findText("howdy", 0, 0) == true)
{
Console.WriteLine("Found target 'howdy'");

}
else
{
Console.WriteLine("*Target string not found*");
pass = false;

}

You get a reference to the document body and use the textRange object and its findText()
method to search for a target string. The findText() method accepts two optional arguments
after a required target string argument. The first optional argument specifies the number of
characters to search. A positive value means to search forward from the beginning of the
textRange. A negative value means to search backwards from the end. A value of 0 means to
search the entire textRange from the beginning. The second optional argument to findText()
is a flag that indicates the search type according to Table 7-1.

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 197

Table 7-1. Search-Type Flags for findText()

Value Meaning

0 Match partial words (default)

1 Match backwards

2 Match whole words only

4 Case-sensitive matching

131072 Match by comparing byte values

536870912 Match diacritical marks

1073741824 Match Kashida characters

2147483648 Match AlefHamza characters

These flag values may be combined. So the call

bool result = body.createTextRange().findText("foo", 0, 6);

will perform a case-sensitive, whole-word search of the entire body object. Notice that passing
a positive-valued first optional argument (meaning to search forward a certain number of char-
acters) is inconsistent with passing 1 as the second optional argument (meaning to search
backwards).

7.6 Creating an Excel Workbook to Save Test
Scenario Results
Problem
You want to create an Excel workbook to act as a data store to hold the results of test scenario
runs.

Design
Use an OleDbConnection object from the System.Data.OleDb namespace to connect to the target
machine where you want to store data. Then use an OleDbCommand object, with an appropriate
CommandText property, and the ExecuteNonQuery() method.

Solution

Console.WriteLine("\nCreating Excel database");

string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;" +
"Data Source=C:\\Results\\results.xls;" +
"Extended Properties=\"Excel 8.0;HDR=YES\"";

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING198

OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connStr;
conn.Open();
OleDbCommand cmd = new OleDbCommand();
cmd.Connection = conn;
cmd.CommandText = "CREATE TABLE tblResults (ScenarioID char(5),

Result char(4), WhenRun char(19))";
cmd.ExecuteNonQuery();
conn.Close();

This example creates a new Excel file named results.xls with a single worksheet named
tblResults. The worksheet has three columns with headers named ScenarioID (in cell A1),
Result (in cell B1), and WhenRun (in cell C1).

Comments
You may sometimes want to store your test scenario results in an Excel workbook instead of a
text file, SQL database, or other more usual data stores. If so, you must create an Excel work-
book in such a way that the workbook can programmatically accept data. The easiest way to
programmatically interoperate between .NET and Excel is by using OLE DB technology. You
start by creating a connection string. You have to be somewhat careful with the syntax. Notice
that in the DataSource attribute, you use the double backslash sequence (to represent a single
backslash), and in the Extended Properties attribute, you use a \" sequence to embed a double
quote character into the connection string. The HDR=YES part of the connection string means to
create a header in the first row of the Excel workbook. The "Excel 8.0" part does not directly
refer to the version of the Excel spreadsheet program on your computer; it refers to the Jet data-
base ISAM (Indexed Sequential Access Methods) format installed. You can verify the version on
the test client machine by viewing system registry setting HKEY_LOCAL_MACHINE\Software\
Microsoft\Jet\4.0\ISAM Formats.

After creating an appropriate connection string, you create an OleDbCommand object that
will create a worksheet in the workbook specified in the connection string. The creation of the
file is implicit—you don’t use a Create() or similar method as you might expect. Notice that
OLE DB data types are assigned to each column. In this example, you have five characters for a
test scenario ID ("12345", for example), four characters for a scenario result ("pass" or "fail"),
and 19 characters for information about when the scenario was run ("2006-10-27T13:42:25",
for example). You can specify other OLE DB data types, such as int, date, and so on, but gen-
erally you are better off making all your data columns type char. Three different data models
are in play—C# data types, OLE DB data types, and Excel data types. Experience has shown
that using just char data avoids a lot of potential data type conversion problems when you
insert test scenario results. If you intend to perform numerical analysis of your test results
directly in the Excel results workbook, however, you may want to consider storing directly as
type int and so on. For example

cmd.CommandText = "CREATE TABLE tblResults (ScenarioID int,
Result char(4), WhenRun date)";

will create the scenario ID column as a column of integers, the result column as text, and the
time when run column as a date (stripping away the time part of the WhenRun variable).

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 199

The solution assumes that file results.xls does not already exist. If it does exist, an
exception will be thrown. The solution also assumes the existence of folder C:\Results. When
storing test results into an Excel workbook, you can use several organizational strategies. First,
you can create just one Excel results file and insert the results of many different test scenario
runs into the file. Alternatively, you can create a new Excel results file for each test run. If you
are creating many Excel results files, check whether a file with the same name already exists by
using the File.Exists() method from the System.IO namespace.

Several of the techniques in Chapter 1 show how to time-stamp the file name of a results
file and how to create a time-stamped folder to hold results files. You can use those same tech-
niques with Excel data files.

7.7 Saving Test Scenario Results to an Excel
Workbook
Problem
You want to save your test scenario result into an existing Excel workbook.

Design
Use the OleDbConnection and OleDbCommand classes in the System.Data.OleDb namespace, com-
bined with a CommandText property set to an appropriate insert statement.

Solution

// run test scenario here
// determine pass/fail result, save in string variable 'result'

string id = "00001";
string whenRun = DateTime.Now.ToString("s");

string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;" +
"Data Source=C:\\Results\\results.xls;" +
"Extended Properties=\"Excel 8.0;HDR=YES\"";

conn.ConnectionString = connStr;
conn.Open();
OleDbCommand cmd = new OleDbCommand();
cmd.Connection = conn;

cmd.CommandText = "INSERT INTO tblResults (ScenarioID, Result, WhenRun)
values ('" + id + "', '" + result + "', '" + whenRun + "')";

cmd.ExecuteNonQuery();
conn.Close();

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING200

This code assumes you have created an Excel file named results.xls, which has a work-
sheet named tblResults and a header row with labels ScenarioID, Result, and WhenRun. (See
Section 7.6 for details.) After opening a connection to the Excel existing data store, you create
an INSERT command where the Excel workbook name acts as a table name, and where the
Excel headers act as column names.

Comments
It’s very easy to make syntax mistakes when constructing the INSERT string for the OleDbCommand
object. For example, suppose an INSERT statement with two literals looks like:

INSERT INTO table (col1, col2) values ('abc', 'xyz')

If the values for col1 and col2 are stored in variables, you need to break the INSERT statement
into five parts: the part up to the first single quote character, the value for col1, the part from the
second single quote to the third single quote, the value for col2, and finally the part from the
fourth single quote to the end of the statement:

string part1 = "INSERT INTO table (col1, col2) values ('";
string part2 = col1Value.ToString();
string part3 = "', '";
string part4 = col2Value.ToString();
string part5 = "')";

There is no shortcut to crafting INSERT statements; you just have to be careful.

7.8 Reading Test Results Stored in an Excel
Workbook
Problem
You want to programmatically read test results that have been stored in an Excel workbook.

Design
Create an OleDbConnection object that points to the workbook, then create an OleDbCommand
object that has a SELECT statement, and then use an OleDbDataReader object to iterate through
the workbook one row at a time.

Solution
string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;" +

"Data Source=C:\\Results\\results.xls;" +
"Extended Properties=\"Excel 8.0;HDR=YES;IMEX=0\"";

OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connStr;
conn.Open();

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 201

OleDbCommand cmd = new OleDbCommand();
cmd.CommandText = "SELECT * FROM tblResults";
cmd.Connection = conn;

OleDbDataReader rdr = cmd.ExecuteReader();
while (rdr.Read() == true)
{
Console.WriteLine(rdr.GetString(0) + " " + rdr.GetString(1) + " " +

rdr.GetString(2));
}
rdr.Close();
conn.Close();

Here you select all the data columns from an Excel worksheet/table named tblResults.
You can also select just some columns using SQL syntax like this:

SELECT ScenarioID, Result FROM tblResults WHERE Result='Pass'

This pulls out just the ScenarioID values and the Result values for rows of data where the
Result value is "Pass". Notice the IMEX=0 part of the Extended Properties attribute portion of
the connection string. Using IMEX is optional and specifies the import/export mode. IMEX can
take one of three possible values:

• 0 = Export mode (used when reading from Excel)

• 1 = Import mode (used when inserting into Excel)

• 2 = Linked mode (used for full Excel update capabilities)

If all the data in Excel is type text, then specifying an IMEX has no effect. But if you have
mixed data types, you should use an IMEX value. The interaction between data types through
the ISAM driver can be very complex, so in a test automation scenario, you are generally bet-
ter off by simply making all data text for import/output purposes.

Comments
As an alternative to using an OleDbDataReader solution for programmatically reading data from
an Excel workbook, you can read all data into an in-memory DataSet object. For example:

string connStr = "Provider=Microsoft.Jet.OLEDB.4.0;" +
"Data Source=C:\\Results\\results.xls;" +
"Extended Properties=\"Excel 8.0;HDR=YES;IMEX=0\"";

OleDbConnection conn = new OleDbConnection(connStr);

string select = "SELECT * FROM tblResults";
OleDbDataAdapter oda = new OleDbDataAdapter(select, conn);

DataSet ds = new DataSet();
oda.Fill(ds);

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING202

foreach (DataRow dr in ds.Tables[0].Rows)
{
Console.WriteLine(dr["ScenarioID"] + " " + dr["Result"] +

" " + dr["WhenRun"]);
}

conn.Close();

The DataSet class is defined in the System.Data namespace. You can essentially read the
entire Excel worksheet into memory and then iterate through the result set. This technique
has more system overhead than using an OleDbDataReader object but is useful if you want to
perform some processing of the Excel data. Having your data in a DataSet object is also useful
if you need to make a backward pass through the data because an OleDbDataReader object is a
forward-only reader.

In addition to saving test scenario results into an Excel workbook, you may also want to
store your test case input data in Excel and programmatically read from the workbook. The
basic techniques for reading test case input data are exactly the same as reading test results
data. As discussed previously in the context of result data, you should probably store all test
case input data as type char. Then you can read the char test case input data and convert to
other types if necessary. The situation is very similar to reading test case data from a text file
as described in several of the sections in Chapter 1.

7.9 Example Program: LowLevelUITest
This program combines several of the techniques in this chapter to create a lightweight test
automation harness to test an ASP.NET Web application through its UI (see Listing 7-1). When
run, the output will be as shown in Figure 7-1 earlier in this chapter.

Listing 7-1. Program LowLevelUITest

using System;
using SHDocVw; // COM component = Microsoft Internet Controls. IE object
using mshtml; // .NET component = Microsoft.mshtml. HTML interfaces
using System.Diagnostics; // Process
using System.Threading; // Sleep()

namespace RunTest
{
class Class1
{
static AutoResetEvent documentComplete = new AutoResetEvent(false);

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 203

[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nStarting test run");

bool pass = true; // assume test run will pass
SHDocVw.InternetExplorer ie = null;

Console.WriteLine("\nLaunching an instance of IE");
Process p = Process.Start("iexplore.exe", "about:blank");
if (p == null)
throw new Exception("Could not launch IE");

Console.WriteLine("Process handle = " + p.MainWindowHandle.ToString());

SHDocVw.ShellWindows allBrowsers = new SHDocVw.ShellWindows();
Console.WriteLine("Number active browsers = " + allBrowsers.Count);

if (allBrowsers.Count == 0)
throw new Exception("Cannot find IE");

Console.WriteLine("Attaching to IE");
int i = 0;
while (i < allBrowsers.Count && ie == null)
{
InternetExplorer e = (InternetExplorer)allBrowsers.Item(i);
if (e.HWND == (int)p.MainWindowHandle)
ie = e;

++i;
}

if (ie == null)
throw new Exception("Failed to attach to IE");

ie.DocumentComplete += new
DWebBrowserEvents2_DocumentCompleteEventHandler(ie_DocumentComplete);

Console.WriteLine("\nNavigating to the Web app");
object nil = new object();
ie.Navigate("http://localhost/TestAuto/Ch7/WebForm1.aspx",

ref nil, ref nil, ref nil, ref nil);

documentComplete.WaitOne();

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING204

Console.WriteLine("Setting IE to size 450x360");
ie.Width = 450;
ie.Height = 360;
Thread.Sleep(1000);

HTMLDocument theDoc = (HTMLDocument)ie.Document;

Console.WriteLine("\nSelecting 'ID' radio button");
HTMLInputElement radioButton =

(HTMLInputElement)theDoc.getElementById("RadioButtonList1_1");
radioButton.@checked = true;

Console.WriteLine("Setting text box to '2B'");
HTMLInputElement textBox =

(HTMLInputElement)theDoc.getElementById("TextBox1");
textBox.value = "2B";

Console.WriteLine("Clicking search button");
HTMLInputElement butt =

(HTMLInputElement)theDoc.getElementById("Button1");
butt.click();

documentComplete.WaitOne();

// non-HTML element
Console.WriteLine("Seeking 'Search Complete' in body");
HTMLBody body =

(HTMLBody)theDoc.getElementsByTagName("body").item(0, null);
if (body.createTextRange().findText("Search Complete", 0, 4)

== true)
{
Console.WriteLine("Found target string");

}
else
{
Console.WriteLine("*Target string not found*");
pass = false;

}

if (pass)
Console.WriteLine("\nTest result = Pass\n");

else
Console.WriteLine("\nTest result = *FAIL*\n");

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING 205

Console.WriteLine("Closing IE in 4 seconds . . . ");
Thread.Sleep(4000);
ie.Quit();

Finish:

Console.WriteLine("\nEnd test run");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

} // Main()

private static void ie_DocumentComplete(object pDisp, ref object URL)
{
documentComplete.Set();

}

} // class Class1
} // ns RunTest

CHAPTER 7 ■ LOW-LEVEL WEB UI TESTING206

Web Services Testing

8.0 Introduction
The techniques in this chapter show you how to test ASP.NET Web services. You can think of a
Web service as a collection of methods that resides on a server machine, which can be called
by a client machine over a network. Web services often expose data from a SQL database. For
example, suppose you own a company that sells books. You want your book data available to
other companies’ Web sites to expand your reach. However, you don’t want to allow direct
access to your databases. One solution to this problem is for you to create an ASP.NET Web
service that exposes your book data in a simple, standardized, and secure way. Figure 8-1
shows a demonstration Web application. Users can query a data store of book information.
What is not obvious from the figure is that the data displayed on the Web application comes
from an ASP.NET Web service, rather than directly from a SQL database.

Figure 8-1. Web application using an ASP.NET Web service

207

C H A P T E R 8

■ ■ ■

Behind the scenes, there is an ASP.NET Web service in action. This Web service accepts
requests for data from the Web application BookSearch.aspx, pulls the appropriate data from a
backend SQL database, and returns the data to the Web application where it is displayed. The
Web service has two methods. The first is GetTitles(), which accepts a target string as an input
argument and returns a DataSet of book information where the book titles contain the target
string. This is the method being called by the Web application in Figure 8-1. The second Web
method is CountTitles(), which also accepts a target string but just returns the number of titles
that contain the string. The terms Web service and Web method are often used interchangeably.

Testing the methods of a Web service is conceptually similar to the API testing described
in Chapter 1—you pass input arguments to the method under test, fetch a return value, and
compare the actual return value with an expected value. The main difference is that because
Web methods reside on a remote computer and are called over a network, they may be called
in several different ways. The fundamental communication protocol for Web services is SOAP
(Simple Object Access Protocol). As you’ll see, SOAP is nothing more than a particular form of
XML. Because of this, Web services are sometimes called XML web services. Although Web
services are transport protocol-independent, in practice, Web services are almost always used
in conjunction with HTTP. So when a typical Web service request is made, the request is
encapsulated in a SOAP/XML packet. That packet is in turn encapsulated in an HTTP packet.
The HTTP request packet is then sent via TCP/IP. The TCP/IP packet is finally sent between
two network sockets as raw bytes. To hide all this complexity, Visual Studio .NET can call Web
methods and receive the return values in a way called a Web service proxy mechanism. There-
fore, there are four fundamental ways to call a Web method in an ASP.NET Web service. Listed
in order from highest level of abstraction and easiest to code, to lowest level of abstraction,
following are the ways to call a Web method:

• Using a Proxy Mechanism (Section 8.1)

• Using HTTP (Section 8.3)

• Using TCP (Section 8.4)

• Using Sockets (Section 8.2)

The techniques in this chapter demonstrate each of these four techniques. Figure 8-2
shows such a run.

Test case #001 in the test run in Figure 8-2 corresponds to the user input and response in
Figure 8-1. Each test case is run twice: first by sending test case input and receiving a return
value at a high level of abstraction using the proxy mechanism, and second by sending and
receiving at a lower level of abstraction using the TCP mechanism. The idea behind testing a
system in two different ways is validation. If you test your system in two different ways using
the same test case data, you should get the same test results. If you don’t get identical results,
then the two test approaches are not testing the same thing, and you need to investigate.
Notice that test case 002 produces a pass result when calling the GetTitles() method with
input and via TCP, but a fail result when calling via the proxy mechanism. (Test case 002 con-
tains a deliberately faulty expected value to demonstrate the idea of validation.) Validation is
closely related to verification. We often say that verification asks if the SUT works correctly,
whereas validation asks if we are testing correctly. However, the two terms are often used
interchangeably.

CHAPTER 8 ■ WEB SERVICES TESTING208

Figure 8-2. Web service test run with validation

Many of the techniques in this chapter make reference to the Web service, which supplies
the data to the Web application shown previously in Figure 8-1. The Web service is based on a
SQL database. The key SQL statements that create and populate the database are

create database dbBooks
go

use dbBooks
go

create table tblBooks
(
bookid char(3) primary key,
booktitle varchar(50) not null,
bookprice money not null
)

CHAPTER 8 ■ WEB SERVICES TESTING 209

go

insert into tblBooks values('001','First Test Automation Principles',11.11)
insert into tblBooks values('002','Theory and Practice of Testing',22.22)
insert into tblBooks values('003','Build Better Software through Automation',33.33)
insert into tblBooks values('004','Lightweight Testing Techniques',44.44)
insert into tblBooks values('005','Testing Principles and Algorithms',55.55)
go

exec sp_addlogin 'webServiceLogin', 'secret'
go

-- grant execute permissions to webServiceLogin here

The database dbBooks contains a single table, tblBooks, which has three columns: bookid,
booktitle, and bookprice. The table is populated with five dummy records. A SQL login named
webServiceLogin is associated with the database. Two stored procedures are contained in the
database to access the data:

create procedure usp_GetTitles
@filter varchar(50)
as
select * from tblBooks where booktitle like '%' + @filter + '%'
go

create procedure usp_CountTitles
@filter varchar(50)
as
declare @result int
select @result = count(*) from tblBooks where booktitle like '%' + @filter + '%'
return @result
go

Stored procedure usp_GetTitles() accepts a string filter and returns a SQL rowset of the rows
that have the filter contained in the booktitle column. Stored procedure usp_CountTitles() is
similar except that it just returns the number of rows in the rowset rather than the rowset itself.

The Web service under test is named BookSearch. The service has two Web methods. The
first method is named GetTitles() and is defined as

[WebMethod]
public DataSet GetTitles(string filter)
{
try
{
string connStr =

"Server=(local);Database=dbBooks;UID=webServiceLogin;PWD=secret";
SqlConnection sc = new SqlConnection(connStr);
SqlCommand cmd = new SqlCommand("usp_GetTitles", sc);
cmd.CommandType = CommandType.StoredProcedure;

CHAPTER 8 ■ WEB SERVICES TESTING210

cmd.Parameters.Add("@filter", SqlDbType.VarChar, 50);
cmd.Parameters["@filter"].Direction = ParameterDirection.Input;
cmd.Parameters["@filter"].Value = filter;
SqlDataAdapter sda = new SqlDataAdapter(cmd);
DataSet ds = new DataSet();
sda.Fill(ds);
sc.Close();
return ds;

}
catch
{
return null;

}
} // GetTitles

The GetTitles() method calls the usp_GetTitles() stored procedure to populate a DataSet
object, which is returned by the method. Similarly, the CountTitles()Web method calls the
usp_CountTitles() stored procedure:

[WebMethod]
public int CountTitles(string filter)
{
try
{
string connString =

"Server=(local);Database=dbBooks;UID=webServiceLogin;PWD=secret";
SqlConnection sc = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("usp_CountTitles", sc);
cmd.CommandType = CommandType.StoredProcedure;
SqlParameter p1 = cmd.Parameters.Add("ret_val", SqlDbType.Int, 4);
p1.Direction = ParameterDirection.ReturnValue;
SqlParameter p2 = cmd.Parameters.Add("@filter", SqlDbType.VarChar, 50);
p2.Direction = ParameterDirection.Input;
p2.Value = filter;
sc.Open();
cmd.ExecuteNonQuery();
int result = (int)cmd.Parameters["ret_val"].Value;
sc.Close();
return result;

}
catch
{
return -1;

}
} // CountTitles()

CHAPTER 8 ■ WEB SERVICES TESTING 211

Except for the [WebMethod] attribute, nothing distinguishes these Web methods from
ordinary methods; the .NET environment takes care of all the details for you. These are the
two methods we want to test. Now, although not absolutely necessary to write test automation
code, it helps to see the key code from the Web application that calls the Web service:

private void Button1_Click(object sender, System.EventArgs e)
{
try
{
TheWebReference.BookSearch bs = new TheWebReference.BookSearch();
string filter = TextBox1.Text.Trim();
DataSet ds = bs.GetTitles(filter);
DataGrid1.DataSource = ds;
DataGrid1.DataBind();
Label3.Text = "Found " + ds.Tables["Table"].Rows.Count + " items";

}
catch(Exception ex)
{
Label3.Text = ex.Message;

}
}

This code illustrates the proxy mechanism. Calling a Web method of a Web service follows
the same pattern as calling an ordinary method. When you test the Web service using a proxy
mechanism, the test automation code will look very much like the preceding application code.

When a Web service accesses a database using stored procedures, the stored procedures
are parts of the SUT. Techniques to test stored procedure are presented in Chapter 9. The
techniques in this chapter demonstrate how to call and test a Web method with a single test
case. To construct a complete test harness, you can use one of the harness patterns described
in Chapter 4. The complete test harness that produced the test run shown in Figure 8-2 is
presented in Section 8.7.

8.1 Testing a Web Method Using the Proxy Mechanism
Problem
You want to test a Web method in a Web service by calling the method using the proxy mechanism.

Design
Using Visual Studio .NET, add a Web Reference to your test automation harness that points to
the Web service under test. This creates a proxy for the Web service that gives the Web service
the appearance of being a local class. You can then instantiate an object that represents the
Web service, and call the Web methods belonging to the service.

CHAPTER 8 ■ WEB SERVICES TESTING212

Solution
try
{
string input = "the";
int expectedCount = 1;
TheWebReference.BookSearch bs = new TheWebReference.BookSearch();
DataSet ds = new DataSet();

Console.WriteLine("Calling Web Method GetTitles() with 'the'");
ds = bs.GetTitles(input);
if (ds == null)
Console.WriteLine("Web Method GetTitles() returned null");

else
{
int actualCount = ds.Tables["Table"].Rows.Count;
Console.WriteLine("Web Method GetTitles() returned " + actualCount + " rows");
if (actualCount == expectedCount)
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

}

Console.WriteLine("Done");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

This code assumes there is a Web service named BookSearch that contains a Web method
named GetTitles(). The GetTitles() method accepts a target string as an input parameter and
returns a DataSet object containing book information (ID, title, price) of the books that have the
target string in their titles. When the Web Reference was added to the harness code, the reference
name was changed from the default localhost to the slightly more descriptive TheWebReference.
This name is then used as a namespace alias. The Web service name, BookSearch, acts as a proxy
and is instantiated just as any local class would be, so you can call the GetTitles() method like
an ordinary instance method. Notice that the fact that GetTitles() is a Web method rather than
a regular method is almost completely transparent to the calling program.

CHAPTER 8 ■ WEB SERVICES TESTING 213

Comments
Of the four main ways to test an ASP.NET Web service (by proxy mechanism, HTTP, TCP, sock-
ets), using the Visual Studio proxy mechanism is by far the simplest. You call the Web method
under test just as an application would. This situation is analogous to API testing where your
test harness calls the API method under test just like an application would. Using the proxy
mechanism is the most basic way to call a Web service and should always be a part of your test
automation effort.

In this example, determining the correct return value from the GetTitles() method is more
difficult than calling the method. Because GetTitles() returns a DataSet object, a complete
expected value would be another DataSet object. In cases where the Web method under test
returns a scalar value, such as a single int value for example, determining a pass/fail result is
easy. For example, to test the CountTitles() method:

Console.WriteLine("Testing CountTitles() via poxy mechanism");
TheWebReference.BookSearch bs = new TheWebReference.BookSearch();
string input = "testing";
int expected = 3;

int actual = bs.CountTitles(input);

if (actual == expected)
Console.WriteLine("Pass");

else
Console.WriteLine("*FAIL*");

In the preceding solution, after calling GetTitles(), you compare the actual number of
rows in the returned DataSet object with an expected number of rows. But this only checks
for the correct number of rows and does not check whether the correct row data has been
returned. Additional techniques to deal with complex return types, such as DataSet objects,
are presented in Chapter 11.

8.2 Testing a Web Method Using Sockets
Problem
You want to test a Web method in a Web service by calling the method using sockets.

Design
First, construct a SOAP message to send to the Web method. Second, instantiate a Socket
object and connect to the remote server that hosts the Web service. Third, construct a header
that contains HTTP information. Fourth, send the header plus SOAP message using the
Socket.Send() method. Fifth, receive the SOAP response using Socket.Receive() in a while
loop. Sixth, analyze the SOAP response for an expected value(s).

CHAPTER 8 ■ WEB SERVICES TESTING214

Solution
Here is an example that sends the string “testing” to Web method GetTitles() and checks the
response:

Console.WriteLine("Calling Web Method GetTitles() using sockets");
string input = "testing";

string soapMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
soapMessage += "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-

instance\"";
soapMessage += " xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"";
soapMessage += " xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">";
soapMessage += "<soap:Body>";
soapMessage += "<GetTitles xmlns=\"http://tempuri.org/\">";
soapMessage += "<filter>" + input + "</filter>";
soapMessage += "</GetTitles>";
soapMessage += "</soap:Body>";
soapMessage += "</soap:Envelope>";

Console.WriteLine("SOAP message is: \n");
Console.WriteLine(soapMessage);

string host = "localhost";
string webService = "/TestAuto/Ch8/TheWebService/BookSearch.asmx";
string webMethod = "GetTitles";

IPHostEntry iphe = Dns.Resolve(host);
IPAddress[] addList = iphe.AddressList; // addList[0] == 127.0.0.1
EndPoint ep = new IPEndPoint(addList[0], 80); // ep = 127.0.0.1:80
Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp);
socket.Connect(ep);
if (socket.Connected)
Console.WriteLine("\nConnected to " + ep.ToString());

else
Console.WriteLine("\nError: socket not connected");

string header = "POST " + webService + " HTTP/1.1\r\n";
header += "Host: " + host + "\r\n";
header += "Content-Type: text/xml; charset=utf-8\r\n";
header += "Content-Length: " + soapMessage.Length.ToString() + "\r\n";
header += "Connection: close\r\n";
header += "SOAPAction: \"http://tempuri.org/" + webMethod + "\"\r\n\r\n";
Console.Write("Header is: \n" + header);

CHAPTER 8 ■ WEB SERVICES TESTING 215

string sendAsString = header + soapMessage;
byte[] sendAsBytes = Encoding.ASCII.GetBytes(sendAsString);
int numBytesSent = socket.Send(sendAsBytes, sendAsBytes.Length,

SocketFlags.None);
Console.WriteLine("Sending = " + numBytesSent + " bytes\n");

byte[] receiveBufferAsBytes = new byte[512];
string receiveAsString = "";
string entireReceive = "";
int numBytesReceived = 0;

while ((numBytesReceived = socket.Receive(receiveBufferAsBytes, 512,
SocketFlags.None)) > 0)

{
receiveAsString = Encoding.ASCII.GetString(receiveBufferAsBytes, 0,

numBytesReceived);
entireReceive += receiveAsString;

}

Console.WriteLine("\nThe SOAP response is " + entireReceive);

Console.WriteLine("\nDetermining pass/fail");

if (entireReceive.IndexOf("002") >= 0 &&
entireReceive.IndexOf("004") >= 0 &&
entireReceive.IndexOf("005") >= 0)

Console.WriteLine("\nPass");
else
Console.WriteLine("\nFail");

Each of the six steps when using sockets to call a Web method could be considered a separate
problem-solution, but because the steps are so completely interrelated, it’s easier to understand
them when presented together.

Comments
Of the four main ways to test an ASP.NET Web service (by proxy mechanism, HTTP, TCP, sockets),
using sockets operates at the lowest level of abstraction. This gives you the most flexibility but
requires the most code.

The first step is to construct a SOAP message. You must construct the SOAP message before
constructing the HTTP header string because the header string requires the length (in bytes) of
the SOAP message. Constructing the appropriate SOAP message is easier than you might expect.
You can get a template of the SOAP message from Visual Studio .NET by loading up the Web
service as a project. Next you instruct Visual Studio to run the Web service by pressing F5.
Because a Web service is a type of library and not an executable, the service cannot run. Instead,
Visual Studio launches a utility application that gives you a template for the SOAP message to
send. For example, instructing the BookSearch service to run and selecting the GetTitles()
method produces a Web page that contains this template information:

CHAPTER 8 ■ WEB SERVICES TESTING216

The following is a sample SOAP request and response. The placeholders shown need
to be replaced with actual values.

POST /TestAuto/Ch8/TheWebService/BookSearch.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/GetTitles"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<GetTitles xmlns="http://tempuri.org/">
<filter>string</filter>

</GetTitles>
</soap:Body>

</soap:Envelope>

The lower part of the template is the SOAP message. You can build up the message by
appending short strings together as demonstrated in the preceding solution, or you can simply
assign the entire SOAP message as one long string. Notice that SOAP is nothing more than a par-
ticular type of XML. In XML, you can use either single quotes or double quotes, so replacing the
double quote characters in the template with single quote characters often improves readability.
If you want to retain the double quote characters, be sure to escape them using the \" sequence
as demonstrated in the “Solution” part of this technique. In the preceding template, <filter>
corresponds to the input parameter for method GetTitles(), and the string placeholder repre-
sents the value of the parameter. You have to be careful when constructing the SOAP message
because the syntax is very brittle, meaning that it usually only takes one wrong character in the
message (a missing blank space for example) to generate a general internal server error message.

The second step when calling a Web method using sockets is to instantiate a Socket object
and connect to the remote server that hosts the Web service. The Socket class is housed in the
System.Net.Sockets namespace. You can instantiate a Socket object with a single statement:

Socket socket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

Socket objects implement the Berkeley sockets interface, which is an abstraction mecha-
nism for sending and receiving network data. The first argument to the Socket() constructor
specifies the addressing scheme that the instance of the Socket class will use. The InterNetwork
value specifies ordinary IP version 4. Some of the other schemes include the following:

• InterNetworkV6: Address for IP version 6.

• NetBios: NetBios address.

• Unix: Unix local to host address.

• Sna: IBM SNA (Systems Network Architecture) address.

CHAPTER 8 ■ WEB SERVICES TESTING 217

The second argument to the Socket() constructor specifies one of six types of sockets you
can create. Using SocketType.Stream means the socket is a TCP socket. The other common
socket type is Dgram, which is used for UDP (User Datagram Protocol) sockets. The third
argument to the Socket constructor represents the network protocol that the Socket object
will use for communication. The type ProtocolType.Tcp is most common but others such as
ProtocolType.Udp are available too. The great flexibility you have when instantiating a Socket
object points out some of the situations in which you want to call a Web method using sockets
instead of the much easier proxy mechanism—for example, using sockets lets you call a UDP-
specific Web service. After you have created a Socket object, you can connect to the server that
houses the Web service:

IPHostEntry iphe = Dns.Resolve(host);
IPAddress[] addList = iphe.AddressList; // addList[0] == 127.0.0.1
EndPoint ep = new IPEndPoint(addList[0], 80); // ep = 127.0.0.1:80

socket.Connect(ep);
if (socket.Connected)
Console.WriteLine("\nConnected to " + ep.ToString());

else
Console.WriteLine("\nError: socket not connected");

The Socket.Connect() method accepts an EndPoint object. You can think of an EndPoint
as an IP address plus a port number. You can specify the IP address directly like this:

IPAddress ipa = IPAddress.Parse("127.0.0.1");

You can also get the IP address by calling the Dns.Resolve() method that returns a list of
IP addresses that map to the host input argument. After you have the IP address, you can cre-
ate an EndPoint object and then pass that object to the Socket.Connect() method.

The third step when calling a Web method using sockets is to construct a header that con-
tains HTTP information. You can get this information from the Visual Studio-generated template
in the first step described earlier in this “Comments” section. You have to be careful with two
minor issues, however. The first issue is that HTTP headers are terminated by a \r\n sequence
instead of the \n sequence. Additionally the last line of the HTTP header is indicated by a double
set of \r\n sequences. The second issue is the SOAPAction header. This header essentially tells the
Web server that the HTTP request has SOAP content. This header has been deprecated in the
SOAP 1.2 specification in favor of a new "Content-Type:application/soap+xml" header, but for
now most servers are expecting a SOAPAction header.

The fourth step when calling a Web method using sockets is to send the header plus SOAP
message using the Socket.Send() method:

string sendAsString = header + soapMessage;
byte[] sendAsBytes = Encoding.ASCII.GetBytes(sendAsString);
int numBytesSent = socket.Send(sendAsBytes, sendAsBytes.Length,

SocketFlags.None);
Console.WriteLine("Sending header + body = " + numBytesSent + " bytes\n");

This part of the process is straightforward. You take the data to send as a string, convert to a
byte array using the GetBytes() method (located in the System.Text namespace), and then call
Socket.Send() passing in the byte array, its length, and a SocketFlags value. The SocketFlags

CHAPTER 8 ■ WEB SERVICES TESTING218

enumeration is rarely needed. For example, SocketFlags.DontRoute means to send the bytes
without using any routing tables. The Socket.Send() method returns the number of bytes sent,
which is useful for diagnosing troubles with your test automation. The Socket.Send() method
and its counterpart Socket.Receive() are synchronous methods. You can send and receive
asynchronously using Socket.BeginSend() and Socket.BeginReceive().

The fifth step when calling a Web method using sockets is to receive the SOAP response
using Socket.Receive() inside a while loop:

byte[] receiveBufferAsBytes = new byte[512];
string receiveAsString = "";
string entireReceive = "";
int numBytesReceived = 0;

while ((numBytesReceived = socket.Receive(receiveBufferAsBytes, 512,
SocketFlags.None)) > 0)

{
receiveAsString = Encoding.ASCII.GetString(receiveBufferAsBytes, 0,

numBytesReceived);
entireReceive += receiveAsString;

}

This code snippet uses a classic stream-reading technique. You declare a byte array buffer to
hold chunks of the return data—there is no way to predict how big the return will be. The size of
512 bytes used here is arbitrary. The Socket.Receive() method reads bytes from the associated
socket, stores those bytes, and returns the actual number of bytes read. If the number of bytes
read is 0, then the return bytes have been used up, and you exit the loop. After each block of 512
bytes is received, it is stored as an ASCII string using the GetString() method. A second string
accumulates the entire received data by appending as each new block arrives.

At this point, you have the entire SOAP response stored into a string variable. If you are
just calling a Web method using sockets, then you are done. But if you are testing the Web
method, then you must perform the sixth step in the process, which is to examine the received
data for an expected value. This is not so easy to do. In the preceding solution, you check the
received string for the presence of three substrings, which are the IDs of the three expected
books that have “testing” in their titles:

if (entireReceive.IndexOf("002") >= 0 &&
entireReceive.IndexOf("004") >= 0 &&
entireReceive.IndexOf("005") >= 0)

Console.WriteLine("\nPass");
else
Console.WriteLine("\nFail");

This approach does not absolutely guarantee that the SOAP response is exactly correct.
Because the actual return value when calling a Web method using sockets is a SOAP string,
which in turn is a kind of XML, a complete expected value would be another SOAP/XML string.
Comparing two XML fragments or documents is rather subtle and is discussed in Chapter 12.

This technique reads the entire SOAP response into a string variable. This string could be
very long. An alternative approach is to process each 512-byte string as it arrives. However,
this approach is tricky because the target string you are searching for could be chopped by the

CHAPTER 8 ■ WEB SERVICES TESTING 219

buffering process. For example, if you were searching for the string "002", the response could
conceivably break in the middle of the string with "00" coming as the last two characters of
one receive block and "2" coming as the first character of the next receive block.

8.3 Testing a Web Method Using HTTP
Problem
You want to test a Web method in a Web service by calling the method using HTTP.

Design
Create an HTTPWebRequest object that points to the Web method, use the GetResponse()
method to send name-value pairs that correspond to parameter-argument pairs, and then
fetch the response using the GetResponseStream() method.

Solution
This example sends the string "testing" to Web method GetTitles():

Console.WriteLine("Calling Web Method GetTitles() using HTTP");

string input = "testing";
string postData = "filter=" + input;
byte[] buffer = Encoding.ASCII.GetBytes(postData);
string uri =
"http://localhost/TestAuto/Ch8/TheWebService/BookSearch.asmx/GetTitles";

HttpWebRequest req = (HttpWebRequest)WebRequest.Create(uri);
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";
req.ContentLength = buffer.Length;
req.Headers.Add("SOAPAction: \"http://tempuri.org/GetTitles\"");
req.Timeout = 5000;

Stream reqst = req.GetRequestStream(); // add form data to request stream
reqst.Write(buffer, 0, buffer.Length);

reqst.Flush();
reqst.Close();

HttpWebResponse res = (HttpWebResponse)req.GetResponse();
Stream resst = res.GetResponseStream();
StreamReader sr = new StreamReader(resst);

string response = sr.ReadToEnd();

Console.WriteLine("HTTP response is " + response);

CHAPTER 8 ■ WEB SERVICES TESTING220

Console.WriteLine("\nDetermining pass/fail");

if (response.IndexOf("002") >= 0 &&
response.IndexOf("004") >= 0 &&
response.IndexOf("005") >= 0)

Console.WriteLine("\nPass");
else
Console.WriteLine("\nFail");

sr.Close();
resst.Close();

Because ASP.NET Web services operate over HTTP, you can use the HttpWebRequest class
to post data directly to Web methods. Web methods expect data in name-value pairs such as

filter=testing

where the name part is the Web method parameter name, and the value part is the parameter
value. The HttpWebRequest.GetResponse() method returns an HttpWebResponse object, which, in
turn, has a GetResponseStream() method that can be used to read the response as string data.

Comments
Of the four main ways to test an ASP.NET Web service, using HTTP operates at the middle level
of abstraction. The technique provides a nice compromise between simplicity and flexibility.
Just as you can generate a SOAP request template as described in Section 8.2, you can also
generate an HTTP request template by instructing Visual Studio to run the Web service.

Depending on the particular configuration of the server that hosts the Web service, you
may or may not need to add the special SOAPAction header:

req.Headers.Add("SOAPAction: \"http://tempuri.org/GetTitles\"");

In practical terms, it’s often easier to first try the request with the header because unrecog-
nized headers are typically ignored by the server. The pattern to post HTTP data is fairly simple:
first create a string of name-value pairs that correspond to the Web method’s parameter-
argument pairs, and then convert the post string to bytes. Next, create an HttpWebRequest
object using the factory mechanism with the WebRequest.Create() method (as opposed to
instantiation using the new keyword), and then specify values for the Method, ContentType, and
ContentLength properties. Send the HTTP request by writing the POST data into a Stream object
(as opposed to using an explicit Write() method of some sort), and fetch the response using a
StreamReader object. The process is best understood by examining concrete examples like the
solution in this section, rather than by general principles.

As discussed in Section 8.2, determining a pass/fail result is harder than calling the Web
method under test. One good strategy is to structure your underlying database test bed as
much as possible so that the data is easily and uniquely identifiable. This is not always feasi-
ble, however, and, in such situations, you must sometimes simply rely on manual testing to
supplement your test automation. The essence of calling a Web method using HTTP is pro-
grammatically posting data to a Web server; see Chapter 5 for additional techniques.

CHAPTER 8 ■ WEB SERVICES TESTING 221

8.4 Testing a Web Method Using TCP
Problem
You want to test a Web method in a Web service by calling the method using TCP.

Design
First, instantiate a TcpClient object and connect to the remote server that hosts the Web serv-
ice. Second, construct a SOAP message to send to the Web method. Third, construct a header
that contains HTTP information. Fourth, instantiate a NetworkStream object associated with the
TcpClient object and send the header plus SOAP message using the NetworkStream.Write()
method. Fifth, receive the SOAP response using a NetworkStream.Read() method in a while
loop. Sixth, analyze the SOAP response for an expected value(s).

Solution
This example sends the string "testing" to Web method GetTitles() via TCP:

Console.WriteLine("Calling Web Method GetTitles() using TCP");
string input = "testing";

//TcpClient client = new TcpClient("127.0.0.1", 80);
TcpClient client = new TcpClient(AddressFamily.InterNetwork);
client.Connect("127.0.0.1", 80);

string soapMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
soapMessage += "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-
instance\"";
soapMessage += " xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"";
soapMessage += " xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">";
soapMessage += "<soap:Body>";
soapMessage += "<GetTitles xmlns=\"http://tempuri.org/\">";
soapMessage += "<filter>" + input + "</filter>";
soapMessage += "</GetTitles>";
soapMessage += "</soap:Body>";
soapMessage += "</soap:Envelope>";

string webService = "/TestAuto/Ch8/TheWebService/BookSearch.asmx";
string host = "localhost";
string webMethod = "GetTitles";

string header = "POST " + webService + " HTTP/1.1\r\n";
header += "Host: " + host + "\r\n";
header += "Content-Type: text/xml; charset=utf-8\r\n";
header += "Content-Length: " + soapMessage.Length.ToString() + "\r\n";
header += "Connection: close\r\n";
header += "SOAPAction: \"http://tempuri.org/" + webMethod + "\"\r\n\r\n";

CHAPTER 8 ■ WEB SERVICES TESTING222

Console.Write("Header is: \n" + header);

string requestAsString = header + soapMessage;
byte[] requestAsBytes = Encoding.ASCII.GetBytes(requestAsString);

NetworkStream stream = client.GetStream();
stream.Write(requestAsBytes, 0, requestAsBytes.Length);

byte[] responseBufferAsBytes = new byte[512];
string responseAsString = "";
string entireResponse = "";
int numBytesReceived = 0;

while ((numBytesReceived = stream.Read(responseBufferAsBytes, 0, 512)) > 0)
{
responseAsString = Encoding.ASCII.GetString(responseBufferAsBytes, 0,

numBytesReceived);
entireResponse += responseAsString;

}

Console.WriteLine(entireResponse);

if (entireResponse.IndexOf("002") >= 0 &&
entireResponse.IndexOf("004") >= 0 &&
entireResponse.IndexOf("005") >= 0)

Console.WriteLine("\nPass");
else
Console.WriteLine("\nFail");

Calling a Web method using TCP is very similar to calling a Web method using sockets.
This makes sense because the TcpClient class was designed to act as a friendly wrapper
around the Socket class. The two techniques are so similar that it’s difficult to choose between
them. There are two ways to view the question of which technique to use. One argument is
that because using TcpClient is slightly cleaner than using the Socket class, you should use
TcpClient when calling a Web service over TCP, and you should use Socket only when calling a
Web service that is implemented using a non-TCP protocol. In practical terms, because
ASP.NET Web services use HTTP, which, in turn, uses TCP, the first argument simplifies to
“always use the TcpClient class to call Web methods at a low level.” The second argument
about which technique to use is that because using TcpClient and Socket are so similar, you
might just as well use the Socket class because it’s more flexible. So the second argument sim-
plifies to “always use the Socket class to call Web methods at a low level.” Ultimately having
two different methods in your skill set is better than having just one to choose from. However,
because using TcpClient is so similar to using the Socket class, when you are testing a Web
method by calling in two different ways as a means to validate your test automation, you
should use one or the other technique but not both.

CHAPTER 8 ■ WEB SERVICES TESTING 223

Comments
Of the four main ways to test an ASP.NET Web service, using TCP operates at a low level of
abstraction, one just barely above using sockets. There are six discrete steps to perform when
testing a Web method using the TcpClient class. These six steps could be considered separate
problem/solution pairs but because the steps are so dependent on each other, it’s easier to
understand them when presented together. The first step is to instantiate a TcpClient object
and connect to the server that hosts the Web service under test:

TcpClient client = new TcpClient(AddressFamily.InterNetwork);
client.Connect("127.0.0.1", 80);

See Section 8.2 for a discussion of the AddressFamily enumeration. After the TcpClient
object has been created, you can connect by passing the server IP address and port number.
A minor variation you can employ is to pass the sever IP address and port number to an over-
loaded version of the constructor and omit the AddressFamily specification because
InterNetwork is the default value for the Connect() method:

TcpClient client = new TcpClient("127.0.0.1", 80);

The second step to call a Web method using TCP is to construct a SOAP message to send
to the Web method:

string soapMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
soapMessage += "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-
instance\"";
soapMessage += " xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"";
soapMessage += " xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">";
soapMessage += "<soap:Body>";
soapMessage += "<GetTitles xmlns=\"http://tempuri.org/\">";
soapMessage += "<filter>" + input + "</filter>";
soapMessage += "</GetTitles>";
soapMessage += "</soap:Body>";
soapMessage += "</soap:Envelope>";

As described in Section 8.2, you can get a SOAP message template from Visual Studio. The
third step is to construct a header that contains HTTP information:

string webService = "/TestAuto/Ch8/TheWebService/BookSearch.asmx";
string host = "localhost";
string webMethod = "GetTitles";

string header = "POST " + webService + " HTTP/1.1\r\n";
header += "Host: " + host + "\r\n";
header += "Content-Type: text/xml; charset=utf-8\r\n";
header += "Content-Length: " + soapMessage.Length.ToString() + "\r\n";
header += "Connection: close\r\n";
header += "SOAPAction: \"http://tempuri.org/" + webMethod + "\"\r\n\r\n";
Console.Write("Header is: \n" + header);

CHAPTER 8 ■ WEB SERVICES TESTING224

Again, you can get this information from Visual Studio. The fourth step is to instantiate a
NetworkStream object associated with the TcpClient object and send the header plus SOAP
message using the NetworkStream.Write() method:

string requestAsString = header + soapMessage;
byte[] requestAsBytes = Encoding.ASCII.GetBytes(requestAsString);

NetworkStream stream = client.GetStream();
stream.Write(requestAsBytes, 0, requestAsBytes.Length);

This step differs most from using the Socket class. After converting the HTTP header
and SOAP message into a byte array using the GetBytes() method, you create a NetworkStream
object using TcpClient.GetStream() and then send the data over the network using
NetworkStream.Write()—very clean and easy. The fifth step to call a Web method using TCP
is to receive the SOAP response using a NetworkStream.Read() method inside a while loop:

byte[] responseBufferAsBytes = new byte[512];
string responseAsString = "";
string entireResponse = "";
int numBytesReceived = 0;

while ((numBytesReceived = stream.Read(responseBufferAsBytes, 0, 512)) > 0)
{
responseAsString = Encoding.ASCII.GetString(responseBufferAsBytes, 0,

numBytesReceived);
entireResponse += responseAsString;

}

This step follows almost the same buffered reading pattern as the one described in Section 8.2.
You may find it instructive to compare the two code blocks side by side. After you understand the
general pattern, you’ll find it useful in a wide range of test automation and development scenarios.
The sixth and final step to test a Web method using TCP is to examine the SOAP response for some
sort of an expected value:

Console.WriteLine(entireResponse);

if (entireResponse.IndexOf("002") >= 0 &&
entireResponse.IndexOf("004") >= 0 &&
entireResponse.IndexOf("005") >= 0)

Console.WriteLine("\nPass");
else
Console.WriteLine("\nFail");

As discussed in Sections 8.2 and 8.3, determining a pass or fail result is not easy when the
return value is as complex as it is here.

CHAPTER 8 ■ WEB SERVICES TESTING 225

8.5 Using an In-Memory Test Case Data Store
Problem
You want to use an in-memory test case data store rather than use external storage such as a
text file or SQL table.

Design
Create a class-scope ArrayList object and use the Add() method to insert test case data. Iterate
through the ArrayList object using either a foreach or for loop.

Solution
class Class1
{
static ArrayList testcases = new ArrayList();

static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin test run\n");

testcases.Add("001:GetTitles:testing:3:Theory");
testcases.Add("002:GetTitles:and:1:Theory");
testcases.Add("003:GetTitles:better:1:Build");
testcases.Add("004:GetTitles:Algorithms:1:Algorithms");

foreach (string testcase in testcases) // main test loop
{
string[] tokens = testcase.Split(':');
string id = tokens[0];
string method = tokens[1];
string input = tokens[2];
int expectedCount = int.Parse(tokens[3]);
string hint = tokens[4];

// call method under test here
// compare actual result to expected result here
// display or store test result here

}
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
}

}

CHAPTER 8 ■ WEB SERVICES TESTING226

As a general rule of thumb, in lightweight test automation situations, external test case stor-
age (in the form of text files, XML files, SQL databases, and so on) is preferable to internal storage.
External test case data can be shared among different test harnesses and is easier to edit. But
using an in-memory test case data store has certain advantages; keeping the test case data
embedded within the test harness makes maintenance somewhat easier. The simplest approach
to in-memory test case storage is to use an ArrayList object. In-memory test case storage is par-
ticularly appropriate when your number of test cases is relatively small (generally, under 100) or if
you want to distribute the harness as a single, stand-alone executable to several people for use as
DRT (Developer Regression Test) or BVT (Build Verification Test) regression purposes.

Comments
One alternative to using an ArrayList object for in-memory test case storage is to use an array
object. Using an array, the preceding solution becomes

class Class1
{
static string[] testcases =
new string[] { "001:GetTitles:testing:3:Theory",

"002:GetTitles:and:1:Theory",
"003:GetTitles:better:1:Build"

};

static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin test run\n");

for (int i = 0; i < testcases.Length; ++i) // main test loop
{
string[] tokens = testcases[i].Split(':');
string id = tokens[0];
string method = tokens[1];
string input = tokens[2];
int expectedCount = int.Parse(tokens[3]);
string hint = tokens[4];

// call method under test here
// compare actual result to expected result here
// display or store test result here

}
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
}

}

CHAPTER 8 ■ WEB SERVICES TESTING 227

This approach has an older, pre-.NET feel but otherwise is virtually equivalent to using an
ArrayList object. In theory, using an array object provides better performance than using an
ArrayList, but this would only be a factor with a very large number of test cases, which means
using an in-memory data store is probably not a good idea anyway.

A second minor variation to using an ArrayList object for in-memory test case data stor-
age is to use a Queue object. The solution using a Queue looks like this:

class Class1
{
static Queue testcases = new Queue();

static void Main(string[] args)
{
try
{
testcases.Enqueue("001:GetTitles:testing:3:Theory");
testcases.Enqueue("002:GetTitles:and:1:Theory");
testcases.Enqueue("003:GetTitles:better:1:Build");

while (testcases.Count > 0)
{
string testcase = (string)testcases.Dequeue();
string[] tokens = testcase.Split(':');
string id = tokens[0];
string method = tokens[1];
string input = tokens[2];
int expectedCount = int.Parse(tokens[3]);
string hint = tokens[4];

// call method under test here
// compare actual result to expected result here
// display or store test result here

}
}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);

}
}

}

There are few technical reasons to choose one of these data store objects (ArrayList, array,
Queue) over another. Using an ArrayList or array object allows random access to any test case
because you can fetch a particular test case by index value. Using an ArrayList or Queue object
gives you the possibility of adding test case data programmatically via the ArrayList.Add() or
Queue.Enqueue() methods. However, your choice will most often be based on personal coding
style preference.

CHAPTER 8 ■ WEB SERVICES TESTING228

8.6 Working with an In-Memory Test Results
Data Store
Problem
You want to save your test results to an in-memory data store in such a way that you can easily
determine if a particular test case passed or not before running a new test case.

Design
If your test cases have dependencies, where running one case depends on the result of a previ-
ous case, then consider storing test results into a Hashtable object. For general processing of
test results, using an ArrayList object is usually the best choice.

Solution
To insert a test result into a Hashtable, use

TestResult tr = null;
if (actualResult == expectedResult)
{
tr = new TestResult(id, "Pass");
testResults.Add(id, tr);

}
else
{
tr = new TestResult(id, "FAIL");
testResults.Add(id, tr);

}

where

static Hashtable testResults = new Hashtable();

class TestResult
{
public string id;
public string pf; // "pass" or "fail"
public TestResult(string id, string pf)
{
this.id = id; this.pf = pf;

}
}

The result of each test case is stored into a Hashtable. Now suppose that all test cases are
dependent upon test case 002 passing. You can write code like this snippet:

CHAPTER 8 ■ WEB SERVICES TESTING 229

string mustPass = "002";

TestResult tr = testResults[mustPass] as TestResult;

if (tr.pf == "Pass")
{
Console.WriteLine("The dependency passed so I can run case " + id);
// run test and store result

}
else
{
Console.WriteLine("The dependency failed so I will skip case " + id);
continue;

}

You will sometimes have test cases that have dependencies on other test cases, meaning
whether or not a test case runs is contingent on whether a previous test case passes (or fails).
In situations like this, you should store test results to an in-memory data store. This data store
must be searched before executing each test case. Even for a moderate number of test cases,
you need a data structure that can be searched as quickly as possible. The Hashtable object is
designed for just such situations.

Comments
Working with test case data that has dependencies on the results of other test cases is simple in
principle but can be tricky in practice. A Hashtable object accepts a key, which you can think of
as an ID, and an object to store. For test case results, the test case ID is a natural choice as a key.
Because a Hashtable stores objects, a good design approach is to create a lightweight class to
hold test result information so you can call the Hashtable.Add() method passing in a TestResult
object as the value to be added.

If the number of test case dependencies is very small, you can hard-code the dependency
logic into your test automation harness. If the number of dependencies is large, however, you
should first rethink your entire test harness design and see if you can simplify. Then, if the
dependencies are unavoidable, you’ll want to store the dependencies as part of the test case
input data. This pushes you to store test case data in a lightweight class such as

class TestCase
{
public string id;
public string input;
public string expected;
public ArrayList dependencies;

public TestCase(string id, string input, string expected,
ArrayList dependencies)

{
// constructor code here

}
}

CHAPTER 8 ■ WEB SERVICES TESTING230

Then you can structure your test harness (in pseudo-code) like this:

loop thru test case collection
fetch a TestCase object
bool shouldRun = true;
loop thru each dependency
{
pull dependency result from Hashtable
if (dependency case failed)
shouldRun = false;
break;

}

if (shouldRun == true)
{
run test;
store test result;

}
else
{
skip test;

}
end loop

When using a Hashtable object for an in-memory test results data store, at some point
you have to either display the results or save them to external storage. There are several ways
to do this. One approach is to maintain two different data structures—one Hashtable to deter-
mine test case dependencies and one ArrayList to hold test case results for display/external
storage. This is simple but inefficient. A second approach is to keep test results in a Hashtable
and then after the main test-processing loop has finished, traverse the Hashtable and save to
external storage. For example:

Hashtable testResults = new Hashtable();

// run harness, store all results into testResults

FileStream fs = new FileStream("TestResults.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs);

foreach (DictionaryEntry de in testResults)
{
TestResult t = de.Value as TestResult;
sw.WriteLine(t.id + " " + t.pf);

}
sw.Close();
fs.Close();

Because each element in a Hashtable object is a DictionaryEntry object, you can iterate
through a Hashtable in this nonobvious way.

CHAPTER 8 ■ WEB SERVICES TESTING 231

8.7 Example Program: WebServiceTest
This program combines several of the techniques in this chapter to create a lightweight test
automation harness to test a Web service (see Listing 8-1). When run, the output will be as
shown in Figure 8-2 in the introduction to this chapter. The test harness uses an in-memory
test case data store. Test case 002 has a deliberate error to demonstrate the concept of valida-
tion. The expected count for case 002 should be 2, not 1 as coded. Each test case is used to call
the Web method under test, GetTitles(), twice. The first call is via the simple proxy mecha-
nism. The second test call is via the low-level TCP technique.

Listing 8-1. Program WebServiceTest

using System;
using System.Collections;
using System.Data;
using System.Net.Sockets;
using System.Text;

namespace RunTests
{
class Class1
{
static ArrayList testcases = new ArrayList();

[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin BookSearch Web service test run\n");

testcases.Add("001:GetTitles:testing:3:Theory");
testcases.Add("002:GetTitles:and:1:Theory"); // error
testcases.Add("003:GetTitles:better:1:Build");
// other test cases go here

foreach (string testcase in testcases)
{
string[] tokens = testcase.Split(':');
string id = tokens[0];
string method = tokens[1];
string input = tokens[2];
int expectedCount = int.Parse(tokens[3]);
string hint = tokens[4];

CHAPTER 8 ■ WEB SERVICES TESTING232

Console.WriteLine("========================");
Console.WriteLine("Case ID = " + id);
Console.WriteLine("Sending input = '" + input + "' to Web

method GetTitles()");

Console.WriteLine("\nTesting using proxy mechanism . . . ");
BookReference.BookSearch bs = new BookReference.BookSearch();
DataSet ds = bs.GetTitles(input);
Console.WriteLine("Expected count = " + expectedCount);

bool proxyPass;
if (ds.Tables["Table"].Rows.Count == expectedCount &&

ds.Tables["Table"].Rows[0]["booktitle"].ToString().IndexOf(hint) >= 0)
proxyPass = true;

else
proxyPass = false;

Console.WriteLine("Pass via proxy = " + proxyPass);

Console.WriteLine("\nTesing using TCP mechanism . . . ");
TcpClient client = new TcpClient(AddressFamily.InterNetwork);
client.Connect("127.0.0.1", 80);

string soapMessage = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
soapMessage +=

"<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"";
soapMessage += " xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"";
soapMessage +=

"xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">";
soapMessage += "<soap:Body>";
soapMessage += "<GetTitles xmlns=\"http://tempuri.org/\">";
soapMessage += "<filter>" + input + "</filter>";
soapMessage += "</GetTitles>";
soapMessage += "</soap:Body>";
soapMessage += "</soap:Envelope>";
// Console.WriteLine("SOAP message is " + soapMessage);

string webService = "/TestAuto/Ch8/TheWebService/BookSearch.asmx";
string host = "localhost";
string webMethod = "GetTitles";

string header = "POST " + webService + " HTTP/1.1\r\n";
header += "Host: " + host + "\r\n";
header += "Content-Type: text/xml; charset=utf-8\r\n";
header += "Content-Length: " + soapMessage.Length.ToString() + "\r\n";
header += "Connection: close\r\n";
header += "SOAPAction: \"http://tempuri.org/" + webMethod + "\"\r\n\r\n";
//Console.Write("Header is: \n" + header);

CHAPTER 8 ■ WEB SERVICES TESTING 233

string requestAsString = header + soapMessage;
byte[] requestAsBytes = Encoding.ASCII.GetBytes(requestAsString);

NetworkStream ns = client.GetStream();
ns.Write(requestAsBytes, 0, requestAsBytes.Length);

byte[] responseBufferAsBytes = new byte[512];
string responseAsString = "";
string entireResponse = "";
int numBytesReceived = 0;

while ((numBytesReceived = ns.Read(responseBufferAsBytes, 0, 512)) > 0)
{
responseAsString = Encoding.ASCII.GetString(responseBufferAsBytes, 0,

numBytesReceived);
entireResponse += responseAsString;

}

//Console.WriteLine(entireResponse);
Console.WriteLine("Seeking '" + hint + "'");
bool tcpPass;
if (entireResponse.IndexOf(hint) >= 0)
tcpPass = true;

else
tcpPass = false;

Console.WriteLine("Pass via TCP = " + tcpPass);

if (proxyPass == true && tcpPass == true)
Console.WriteLine("\nPass");

else
Console.WriteLine("\n** FAIL or INCONSISTENT **");

} // main test loop

Console.WriteLine("========================");
Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

} // Main()
} // Class1

} // ns

CHAPTER 8 ■ WEB SERVICES TESTING234

Data Testing

P A R T 3

■ ■ ■

SQL Stored Procedure Testing

9.0 Introduction
Many Windows-based systems have a SQL Server backend component. The AUT or SUT often
accesses the database using stored procedures. In these situations, you can think of the SQL
stored procedures as auxiliary functions of the application. There are two fundamental
approaches to writing lightweight test automation for SQL stored procedures. The first
approach is to write the automation in a native SQL environment, meaning the harness code
is written using the T-SQL language, and the harness is executed within a SQL framework such
as the Query Analyzer program or the Management Studio program. The second approach is
to write the test automation in a .NET environment, meaning the harness code is written
using C# or another .NET language, and the harness is executed from a general Windows envi-
ronment such as a command shell. This chapter presents techniques to test SQL stored
procedures using a native SQL environment. The second approach, using C#, is covered by the
techniques in Chapter 11. In general, because the underlying models of SQL and .NET are so
different, you should test stored procedures using both approaches. The techniques in this
chapter are also useful in situations where you inherit an existing T-SQL test harness.

Figure 9-1 illustrates some of the key techniques in this chapter. The figure shows a portion
of a T-SQL test harness (in the upper pane) and sample output (lower pane). The automation is
testing a SQL stored procedure named usp_HiredAfter(). The stored procedure accepts a date
as an input argument and returns a SQL rowset object of employee information (employee ID,
last name, date of hire) of those employees in a table named tblEmployees whose date of hire is
after the input argument date. Although the actual and expected values in this situation are
SQL rowsets, the test automation compares the two using a binary aggregate checksum. Test
case 0002 is a deliberate error for demonstration purposes. The complete source code for the
test harness and database under test shown in Figure 9-1 is presented in Section 9.9.

The script shown in Figure 9-1 assumes the existence of test case data and test result stor-
age in another database named dbTestCasesAndResults. The script tests stored procedure
usp_HiredAfter(), which is contained in a database named dbEmployees and pulls data from
table tblEmployees. When testing SQL stored procedures, you do not want to test against the
development database for two reasons. First, testing stored procedures sometimes modifies
the containing database. Second, development databases usually do not contain data that is
rich enough or designed for dedicated testing purposes. Therefore, you’ll create a test bed
database that is an exact replica of the development database’s structure but fill it with rich
data. In this example, the dbEmployees database containing the stored procedure under test is
an exact replica of the development database.

237

C H A P T E R 9

■ ■ ■

Figure 9-1. Sample test run of a SQL stored procedure

If your background is primarily in procedural programming, you probably tend to think
of SQL stored procedures as much like functions in a traditional programming language. But
SQL stored procedures are significantly different from regular functions because, in most
cases, they have a logical dependency on a table or other database object. In this example,
notice that the return value from stored procedure usp_HiredAfter() depends completely on
the data in table tblEmployees. This fact makes testing SQL stored procedures somewhat dif-
ferent from testing regular functions, as you will see. The current version of SQL Server, SQL
Server 2005, provides greatly enhanced integration with .NET, including the capability to write
stored procedures in C# and other .NET languages. This will certainly increase the use and
importance of stored procedures and the importance of thoroughly testing them.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING238

9.1 Creating Test Case and Test Result Storage
Problem
You want to create a SQL data store to hold test case input data and test results.

Design
Write a T-SQL script that creates a database and then creates tables to hold test case input
data and test result data. Create a dedicated SQL login if you want to connect to the data
stores using SQL authentication. Run the T-SQL script from within Query Analyzer or by using
the osql.exe program.

Solution
The following script creates a database named dbTestCasesAndResults containing a table for
test case data, a table for test results, and a dedicated SQL login so that programs can connect
to the database using either Windows Authentication or SQL Authentication.

-- makeDbTestCasesAndResults.sql
use master
go

if exists (select * from sysdatabases where name='dbTestCasesAndResults')
drop database dbTestCasesAndResults
go

if exists (select * from sysxlogins where name = 'testLogin')
exec sp_droplogin 'testLogin'
go

create database dbTestCasesAndResults
go

use dbTestCasesAndResults
go

create table tblTestCases
(
caseID char(4) primary key,
input char(3) not null, -- an empID
expected int not null
)
go

-- this is the test case data for usp_StatusCode
-- can also read from a text file using BCP, DTS, or a C# program

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 239

insert into tblTestCases values('0001','e11', 77)
insert into tblTestCases values('0002','e22', 77) -- should be 66
insert into tblTestCases values('0003','e33', 99)
insert into tblTestCases values('0004','e44', 88)
go

create table tblResults
(
caseID char(4) not null,
result char(4) null,
whenRun datetime not null
)
go

exec sp_addlogin 'testLogin', 'secret'
go
exec sp_grantdbaccess 'testLogin'
go

grant select, insert, delete on tblTestCases to testLogin
go

grant select, insert on tblResults to testLogin
go

The first step is to set the current database context to the SQL Server master database.
This is necessary when creating a new user database. To prevent an error if the database you
are about to create already exists, you can check by querying the sysdatabases table before
you attempt to drop an old version of the new database. You can then create a test case storage
database using the create database statement. Many optional parameters are available for the
create database statement, but in a lightweight test automation scenario, accepting all the
default values will usually meet your needs.

Next you set the current database context to the newly created database with the use
statement. This is important because if you omit this step, all subsequent SQL statement will
be directed at the SQL master database, which would be very bad. Now you can create a table
to hold test case input. The structure of the table depends on exactly what you will be testing,
but at a minimum, you should have a test case ID, one or more test case inputs, and one or
more test case expected result values. For the test results table, you need a test case ID column
and a test result pass/fail column at a minimum. If you intend to store the results of multiple
test runs into the table, as is almost always the case, you need some way to distinguish results
from different test runs. One way to do this is to include a column that stores the date/time
when the test result was generated. This column acts as an implicit test run ID. An alternative
is to create an explicit, dedicated test run ID.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING240

Comments
SQL databases support two different security modes: Windows Authentication, where you
connect using a Windows user ID and password, and Mixed Mode Authentication, where you
connect using a SQL login ID with a SQL password. If you want the option of connecting to
your test database using SQL authentication, you should create a SQL login and associated
password using the sp_addlogin() system stored procedure. You can drop a SQL login using
sp_droplogin(), after first checking whether the login exists by querying the sysxlogins table.
After creating a SQL login, you need to grant permission to the login to connect to the data-
base. Then you need to grant-specific SQL statement permissions, such as SELECT, INSERT,
DELETE, and UPDATE, on the tables in the database.

A SQL login is easy to confuse with a SQL user. SQL logins are server-scope objects used
to control connection permissions to the SQL server machine. SQL users are database-scope
objects used to control permissions to a database and its tables, stored procedures, and other
objects. When you assign permissions to a SQL login, a SQL user with the identical name is
also created. So you end up with a SQL login and a SQL user, both with the same name and
associated with each other. Although it’s possible to have associated logins and users with
different names, this can get very confusing, so you are better off using the same-name default
mechanism.

When creating SQL test case storage for testing stored procedures, you must decide when
and how to insert the actual test case data into the table that holds it. The easiest technique is
to add test case data when you create the table. You can do this easily with the INSERT statement
as demonstrated in this solution. However, you will almost certainly be adding and removing
test case data at many points in your testing effort, so a more flexible approach is to insert data
later using BCP (Bulk Copy Program), DTS (Data Transformation Services), or an auxiliary C#
helper program. If you intend to insert and delete test case data, then you should grant INSERT
and DELETE permissions on the test case data table to the SQL login.

Your SQL test case and results storage creation script can be run in several ways. One
way is to open the script in the Query Analyzer program and execute the script using the
Execute (F5 is the shortcut key) command. A second way to execute a SQL script is by using
the osql.exe program.

Executing SQL scripts is discussed in detail in Section 9.2. Section 9.3 shows how to
import and export data into a SQL database using BCP. Chapter 11 shows how to import
and export data using C# code.

9.2 Executing a T-SQL Script
Problem
You want to run a T-SQL script.

Solution
You have several alternatives, including using the Query Analyzer program, using the osql.exe
program, and using a batch (BAT) file. For example, if you have a script named myScript.sql,
then you can execute it using the osql.exe program with the command:

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 241

C:\>osql.exe -S(local) -UsomeLogin -PsomePassword -i myScript.sql -n > nul

This command runs the osql.exe program by connecting to the local machine SQL
server, logging in using SQL login someLogin with SQL password somePassword, and using
T-SQL script myScript.sql as input. The osql.exe line numbering is suppressed (-n), and
miscellaneous shell messages is also suppressed (> nul).

Comments
The osql.exe program, which ships with SQL Server, provides you with an automation-friendly
way to run T-SQL scripts. The -S argument specifies the name of the database server to use. You
can use "(local)" or "." to specify the local machine, or you can use a machine name or IP
address to specify a remote machine. If you want to connect and run your script using SQL
authentication, you must specify the SQL login and the SQL password. If you want to connect
and run using integrated Windows Authentication, you can do so with the -E argument:

C:\>osql.exe -S. -E -i myScript.sql -n > nul

Be careful here because the osql.exe arguments are case sensitive: -E means use Windows
Authentication, whereas -e means to echo the input. In a pure Windows environment, you are
generally better off using Windows Authentication. Mixed Mode Authentication can be trouble-
some because it’s difficult to diagnose problems that arise when there is an authentication or
authorization conflict between the two modes.

A variation on using the osql.exe program to run T-SQL scripts is to use a batch file, which
calls an osql.exe command. For example, you could write a batch file such as

@echo off

rem File name: runMyScript.bat
rem Executes myScript.sql

echo.
echo Start test run
osql.exe -S(local) -E -i myScript.sql -n > nul

echo Done

This approach allows you to consolidate the execution of several scripts, such as a test
harness preparation script, a harness execution script, and a results processing script. With a
batch file, you can also schedule the test automation to run using the Windows Task Scheduler
or the command line at command.

An alternative to using the osql.exe program to run a T-SQL script is to run the script
from the Query Analyzer program. You simply open the .sql file and then use the Execute
command (F5 is the shortcut key). This is your best approach when developing scripts
because Query Analyzer has a very nice development environment. Figure 9-1 (earlier in this
chapter) shows the Query Analyzer program in use.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING242

9.3 Importing Test Case Data Using the BCP
Utility Program
Problem
You want to import test case data from a text file into a SQL table using BCP.

Design
Construct a BCP format file that maps the information in the text file you want to import from,
to the SQL table you want to import into. Then use the command-line bcp.exe utility program
with the format file as an argument.

Solution
Suppose, for example, you have a SQL table defined as

create table tblTestCases
(
caseID char(4) primary key, -- like '0001'
input char(3) not null, -- an empID like 'e43'
expected int not null -- a status code like 77
)

and a text file containing test case data named newData.dat:

0020,e13,66
0021,e14,77
0022,e15,88
0023,e16,99
0024,e17,66

Create a tab-delimited BCP format file named newData.fmt:

8.0
3
1 SQLCHAR 0 4 "," 1 caseID SQL_Latin1_General_CP1_CI_AS
2 SQLCHAR 0 3 "," 2 input SQL_Latin1_General_CP1_CI_AS
3 SQLCHAR 0 2 "\r\n" 3 expected SQL_Latin1_General_CP1_CI_AS

The command to import the test case data is

C:\>bcp.exe dbTestCasesAndResults..tblTestCases in newData.dat
-fnewData.fmt -S. -UtestLogin -Psecret

This command means run the BCP on SQL table tblTestCases located in database
dbTestCasesAndResults, importing from file newData.dat using the mappings defined in file
newData.fmt. The instruction is to be executed on the local SQL server machine, connecting
using the testLogin SQL login and the testLogin user, with SQL password secret.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 243

The key to using this technique is to understand the structure of the format file used by the
bcp.exe program. The first line contains a single value that represents the version of SQL server.
SQL Server 7.0 is version 7.0, SQL Sever 2000 is version 8.0, SQL Server 2005 is version 9.0, and
so on. The second line of the format file is an integer, which is the number of actual mapping
lines in the format file. The third through remaining lines are the mapping information. Each
mapping line has eight columns. The first five columns represent information about the input
data (the text file in this example), and the last three columns represent information about the
destination (the SQL table in this example). The first column is a simple 1-based sequence
number. These values will always be 1, 2, 3, and so on, in that order. (These numbers, and some
of the other information in a BCP format file, seem somewhat unnecessary but are needed for
use in other situations.) The second column of a mapping line is the import type. When import-
ing from a text file, this value will always be SQLCHAR regardless of what the value represents. The
third column is the prefix length. This is a rather complicated value used for BCP optimization
when copying from SQL to SQL. Fortunately, when importing text data into SQL, the prefix
length value is always 0. The fourth column is the maximum length, in characters, of the input
field. Notice that test case IDs (for example, 0001) have four characters in the input file, test case
inputs (such as e29) have three characters, and test case expected values (such as 77) have two
characters. The fifth column in a mapping line is the field separator, and comma characters
separate all fields. If, for example, fields in the input data file were tab-delimited, you would
specify \t. The last mapping line should specify \r\n as the separator when importing data
from a text file. The sixth through eighth columns refer to the target SQL table, not the input
file. Columns six and seven are the order and name of the SQL columns in the destination
table. Notice in this example, the new data is inserted into the SQL table in the same order it is
stored in the text file. The eighth column of a mapping line is the SQL collation scheme to use.
The SQL_Latin1_General_CP1_CI_AS designator is the default collation for SQL Server.

Comments
Using the BCP utility program gives you a high-performance, automation-friendly way to
import test case data from a text file into a SQL test case table. You must be careful of two
nasty syntax issues. Your test case data file must not have a newline character after the very
last line of its data. The newline will be interpreted as an empty line of data. However, the for-
mat file must have a single newline character after the last mapping line. Without that
newline, the BCP program won’t read the last line of the format file.

The BCP utility allows you to import data from a text file when the file does not exactly
match the structure of the SQL table. In other words, even if the text file has data in a different
order from the corresponding SQL columns and/or has extra fields, you can still use BCP. For
example, suppose a text file looks like this:

0020,66,useless,e13
0021,77,no-need,e14
0022,88,go-away,e15
0023,99,drop-it,e16

This file has extra information that you don’t want to import, and the order of the fields
(case ID, expected value, unneeded data, input value) does not match the order of the SQL
columns (case ID, input, expected). The BCP format file for this text file is

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING244

8.0
4
1 SQLCHAR 0 4 "," 1 caseID SQL_Latin1_General_CP1_CI_AS
2 SQLCHAR 0 2 "," 3 expected SQL_Latin1_General_CP1_CI_AS
3 SQLCHAR 0 7 "," 0 junk SQL_Latin1_General_CP1_CI_AS
4 SQLCHAR 0 3 "\r\n" 2 input SQL_Latin1_General_CP1_CI_AS

The sixth column of the mapping file controls removing an input by specifying a 0 and
controls the order in which to insert.

Because bcp.exe is a command-line program, you can run it manually or put the command
you want to execute into a simple BAT file that can be called programmatically. If you want to
use BCP from within a SQL environment, you can do so using the BULK INSERT command:

bulk insert dbTestCasesAndResults..tblTestCases
from 'C:\somewhere\newData.dat'
with (formatfile = 'C:\somewhere\newData.fmt')

A significant alternative to using BCP for importing data into a database is using the DTS
(Data Transformation Services) utility, which can be accessed through the Enterprise Manager
program. DTS is a powerful, easy-to-use service that can import and export a huge variety of
data stores to SQL. A full discussion of DTS is outside the scope of this book but knowing how
to use DTS should certainly be a part of your test automation skill set.

■Note In SQL Server 2005, DTS has been enhanced and renamed to SSIS (SQL Server Integration Services).

9.4 Creating a T-SQL Test Harness
Problem
You want to create a T-SQL test harness structure to test a SQL stored procedure.

Design
First, prepare the underlying database that contains the stored procedure under test by insert-
ing rich test bed data. Next, use a SQL cursor to iterate through a test case data table. For each
test case, call the stored procedure under test and retrieve its return value. Compare the actual
return value with the expected return value to determine a pass or fail result, and display or
save the test result.

Solution
-- testAuto.sql

-- prepare dbEmployees with rich data (see section 9.9)
truncate table dbEmployees.dbo.tblEmployees

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 245

insert into dbEmployees.dbo.tblEmployees
values('e11','Adams', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e22','Baker', '06/15/2001')
insert into dbEmployees.dbo.tblEmployees
values('e33','Young', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e44','Zetta', '06/15/2001')
-- insert much other rich data here

declare tCursor cursor fast_forward
for select caseID, input, expected
from dbTestCasesAndResults.dbo.tblTestCases
order by caseID

declare @caseID char(4), @input char(3), @expected int
declare @actual int, @whenRun datetime
declare @resultLine varchar(50)

set @whenRun = getdate()

open tCursor
fetch next
from tCursor
into @caseID, @input, @expected

while @@fetch_status = 0
begin
exec @actual = dbEmployees.dbo.usp_StatusCode @input

if (@actual = @expected)
begin
set @resultLine = @caseID + ': Pass'
print @resultLine
end
else
begin
set @resultLine = @caseID + ': FAIL'
print @resultLine
end
fetch next
from tCursor
into @caseID, @input, @expected

end

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING246

close tCursor
deallocate tCursor

-- end script

If the stored procedure under test depends upon data, as is almost always the case, you
must populate the underlying database table(s) with rich test bed data. As discussed in the
introduction to this chapter, in a SQL testing environment, you typically have two databases:
the development database that developers use when writing code and a testing database that
testers use when testing. Because the process of testing stored procedures often changes the
database containing the stored procedures (because stored procedures often insert, update,
or delete data), you certainly do not want to run tests against the development database. So
you make a copy of the development database and use the copy for testing purposes. Now the
development database will have “developer data” stored in the tables. This is data necessary
for doing rudimentary verification testing while developing the SUT. However, this data is
generally not rich enough in its variety or designed with testing in mind to provide you with
an adequate base for rigorous testing purposes.

Although there are several ways to iterate through a table of test case data, using a SQL
cursor is simple and effective. SQL cursor operations are designed to work with a single row of
data rather than rowsets like most other SQL operations such as SELECT and INSERT. You begin
by declaring a cursor that points to the SQL table holding your test case data:

declare tCursor cursor fast_forward
for select caseID, input, expected
from dbTestCasesAndResults.dbo.tblTestCases
order by caseID

Notice that unlike most other SQL variables, cursor variable names are not preceded by
the @ character. There are several types of cursors you can declare. Using FAST_FORWARD is most
appropriate for reading test case data. Other cursor types include FORWARD_ONLY, READ_ONLY,
and OPTIMISTIC. The FAST_FORWARD type is actually an alias for FORWARD_ONLY plus READ_ONLY.

Before using a cursor, you must open it. Then, if you intend to iterate through an entire table,
you must perform a priming read of the first row of the table using the fetch next statement:

open tCursor
fetch next
from tCursor
into @caseID, @input, @expected

You need to do a priming read because in order to control the reading loop, you use the
@@fetch_status variable that holds a code representing the result of the most recent fetch
attempt. The @@fetch_status variable holds 0 if data was successfully fetched. Values of -1 and -2
indicate a failed fetch. So, you can loop through an entire table one row at a time like this:

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 247

while @@fetch_status = 0
begin

-- run a test case here

fetch next
from tCursor
into @caseID, @input, @expected

end

Inside the main processing loop, you need to call the stored procedure under test, feeding
it the test case input. You retrieve the return value and then print a pass/fail message:

exec @actual = dbEmployees.dbo.usp_StatusCode @input

if (@actual = @expected)
begin
set @resultLine = @caseID + ': Pass'
print @resultLine

end
else
begin
set @resultLine = @caseID + ': FAIL'
print @resultLine

end

After using a SQL cursor, you must be sure to close it and then release it as a resource by
calling the deallocate command:

close tCursor
deallocate tCursor

If you forget to deallocate the cursor, your script will fail when the cursor is declared the
next time you execute the test harness script.

Comments
Instead of, or in addition to, printing a pass/fail message, you’ll probably want to insert test
results into a SQL table. This is easy:

-- declare @actual int, @whenRun datetime
-- set @whenRun = getdate()

while @@fetch_status = 0
begin
exec @actual = dbEmployees.dbo.usp_StatusCode @input

if (@actual = @expected)
insert into dbTestCasesAndResults.dbo.tblResults values(@caseID, 'Pass',

@whenRun)

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING248

else
insert into dbTestCasesAndResults.dbo.tblResults values(@caseID, 'FAIL',

@whenRun)

fetch next
from tCursor
into @caseID, @input, @expected

end

You can use the GETDATE() function to retrieve the current system date and time. Using an
INSERT statement stores the test case result.

Instead of populating the underlying database tables, which the stored procedure under
test accesses by using hard-coded INSERT statements, you can use the BULK INSERT statement
as demonstrated in Section 9.3:

-- prepare dbEmployees with rich data
truncate table dbEmployees.dbo.tblEmployees

bulk insert dbEmployees.dbo.tblEmployees
from 'C:\somehere\richTestbedData.dat'
with (formatfile = 'C:\somewhere\richTestbedData.fmt')

This approach has the advantages of making your test harness more modular and more
flexible, but has the disadvantage of increasing complexity by adding one more file to a test
harness system that already has a lot of objects.

9.5 Writing Test Results Directly to a Text File
from a T-SQL Test Harness
Problem
You want your T-SQL test harness to write test case results directly to a text file.

Design
Use ActiveX technology to instantiate a FileSystemObject object. Then use the OpenTextFile()
and WriteLine() methods.

Solution

declare @fsoHandle int, @fileID int

exec sp_OACreate 'Scripting.FileSystemObject', @fsoHandle out
exec sp_OAMethod @fsoHandle, 'OpenTextFile', @fileID out,
'C:\pathToResults\Results.txt', 8, 1

-- main test loop

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 249

if (@result = @expected)
exec sp_OAMethod @fileID, 'WriteLine', null, 'Pass'
else
exec sp_OAMethod @fileID, 'WriteLine', null, 'FAIL'

-- end main test loop

exec sp_OADestroy @fileID
exec sp_OADestroy @fsoHandle

You need a file handle and a file ID, both of which are type int. SQL Server has an
sp_OACreate() stored procedure that can instantiate an ActiveX object. The sp_OACreate()
routine accepts a string, which is the name of the ActiveX object to create, and returns a refer-
ence to the created object as an int type in the form of an out parameter. In the case of
Scripting.FileSystemObject, the return value is a reference to a file handle. Next you can
open a file by calling the sp_OAMethod() method. In this example, the first argument is the file
handle created by sp_OACreate(), the second argument is the name of the method you want to
use, the third argument is a variable in which to store a returned file handle, and the fourth
argument specifies the physical file name. The fifth argument is an optional IO mode:

• 1: Open file for reading only (default).

• 2: Open a file for writing.

• 8: Open a file for appending to the end of the file.

The sixth argument is an optional create-flag that specifies whether or not to create the
file if the file name does not exist:

• 0: Do not create a new file (default).

• 1: Create a new file.

The eighth argument is an optional format-flag that specifies the character encoding:

• 0: Open file as ASCII (default).

• 1: Open file as Unicode.

• 2: Open file using system default.

Comments
When running a T-SQL test harness, you have several ways to save test results. If you want to
save test results as a text file, the usual technique is to first save all your results into a SQL table
and then later transfer the results to a text file. An alternative is to write test results directly to a
text file from your T-SQL harness.

The preceding solution uses the OpenTextFile() method of the FileSystemObject class.
This approach essentially assumes that the file you’ll be writing to already exists. An alterna-
tive is to use the CreateTextFile() method:

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING250

declare @fsoHandle int, @fileID int

exec sp_OACreate 'Scripting.FileSystemObject', @fsoHandle out
exec sp_OAMethod @fsoHandle, 'CreateTextFile', @fileID out,
'C:\pathToResults\Results.txt', 0, 0

-- main test loop

if (@result = @expected)
exec sp_OAMethod @fileID, 'WriteLine', null, 'Pass'
else
exec sp_OAMethod @fileID, 'WriteLine', null, 'FAIL'

-- end main test loop

exec sp_OADestroy @fileID
exec sp_OADestroy @fsoHandle

The CreateTextFile() method accepts a required file name and two optional Boolean val-
ues. Because SQL does not support a native Boolean data type, you must use integers: 0 for
false and 1 for true. The first optional Boolean value specifies an overwrite-flag. A value of
true/1 means overwrite the file if it already exists. A value of false/0 means do not overwrite if
the file exists. The second optional Boolean parameter is an encoding-flag. A value of true/1
means create the file using Unicode encoding. A value of false/0 means create using ASCII
encoding. Both parameters have default values of false/0, or in other words, the default is to
not overwrite an existing file and to use ASCII encoding.

In addition to writing data directly to a text file from T-SQL, you can also read text data:

declare @fsoHandle int, @fileID int
declare @eof int
declare @line varchar(1000)

exec sp_OACreate 'Scripting.FileSystemObject', @fsoHandle out
exec sp_OAMethod @fsoHandle, 'OpenTextFile', @fileID out,
'C:\path\FileToRead.txt', 1, 1

set @eof = 0
while @eof = 0
begin
exec sp_OAMethod @fileID, 'ReadLine', @line out
print @line
exec sp_OAMethod @fileID, 'AtEndOfStream', @eof out
end

exec sp_OADestroy @fileID
exec sp_OADestroy @fsoHandle

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 251

9.6 Determining a Pass/Fail Result When the
Stored Procedure Under Test Returns a Rowset
Problem
You want to determine a pass/fail result when the stored procedure under test returns a SQL
rowset.

Design
First, create a temporary table. Then, call the stored procedure under test and retrieve the
returned rowset into the temporary table. Compute the aggregate checksum of the temporary
table and compare against an expected checksum value.

Solution
Suppose your stored procedure under test is named usp_HiredAfter(), and it accepts a
datetime input parameter. The stored procedure selects all employee columns (empID,
empLast, empDOH) where the date of hire is greater than the input argument:

create procedure usp_HiredAfter
@dt datetime
as
select * from tblEmployees where empDOH > @dt

First, you create a temporary table to hold the SQL rowset returned by the stored proce-
dure:

create table #results
(
empID char(3) primary key,
empLast varchar(35) not null,
empDOH datetime not null
)

Notice the # character in front of the table name is used to flag it as a temporary table. You
then call the stored procedure under test and save the return rowset into the temporary table:

insert #results (empID, empLast, empDOH)
exec dbEmployees.dbo.usp_HiredAfter '01/01/2000'

Next, you compute the aggregate checksum of the temporary table and compare that
actual value against an expected value:

if (@@rowcount = 0)
set @actual = 0
else
select @actual = checksum_agg(binary_checksum(*)) from #results

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING252

if (@actual = 25527856)
print 'Pass'
else
print 'FAIL'

The built-in SQL binary_checksum() function returns the checksum of a row of a SQL table.
You can think of it as an integer value that is an alternative representation of the character data
in the row. The checksum_agg() function returns the aggregate checksum of the values in a
group. When used together, they compute a single integer that identifies a rowset.

Comments
Many stored procedures return a SQL rowset object. It’s not entirely obvious how to compare an
actual rowset returned by a stored procedure under test to an expected value of some sort. One
approach is to create your test case data store so that it can hold a close replica of a SQL rowset.
This is difficult and sometimes not feasible if the rowset you are dealing with is very large. In
most testing situations, a better alternative is to store a single integer value that uniquely maps
to an expected rowset object. SQL Server has the binary_checksum() and checksum_agg() func-
tions that can be used to do exactly this. So, instead of having to go through a very elaborate
process of directly comparing an actual rowset with an expected rowset, you can simply com-
pare their checksum values. This approach also greatly simplifies your test case storage. Instead
of storing a fairly complex representation of a rowset, you can simply store a single integer.

In addition to the binary_checksum() function, SQL contains a checksum() function. The
checksum() function computes its return value in a case-insensitive way. For test automation,
you’ll generally want to use binary_checksum() rather than the checksum() method.

Although using a checksum expected/actual return value approach when testing stored
procedures has many advantages over alternative approaches, there are two disadvantages.
First, when expected rowset values are stored as a single integer value, examining your test
case data visually is difficult. For example, if an expected rowset returned from the stored pro-
cedure under test when called with test case input '01/01/2000' is

e22 Baker 06/15/2001
e44 Zetta 06/15/2001

then a test case data file storing test case ID, input, and expected value as a checksum would
look like this:

'0007','01/01/2000', 25527856

It’s impossible to directly see the relationship between the rowset and its checksum.
Therefore, you have to maintain careful documentation of what each checksum value repre-
sents. A second disadvantage of using a checksum approach is that it generally requires more
time to create test cases. For each test case input for the stored procedure under test, you have
to determine what the resulting rowset should be, and then compute the aggregate binary
checksum of that hypothetical rowset. A common mistake is to determine the expected check-
sum value by calling the stored procedure under test and then computing the checksum of the

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 253

returned rowset. This approach creates a situation in which test case data validates that the
stored procedure under test returns the same, possibly incorrect, results.

When using the checksum technique, you need to remember to delete all the data in the
temporary table before each call to the stored procedure:

truncate table #results

You should also drop the temporary table after all test cases have been run:

drop table #results

A different approach to testing a stored procedure that returns a rowset is to use just the
number of rows returned as actual/expected values:

-- read test case input into @caseID, @input, @expected

exec dbEmployees.dbo.usp_HiredAfter @input
set @actual = @@ROWCOUNT

if (@actual = @expected)
begin
set @resultLine = @caseID + ': Pass'
print @resultLine
end
else
begin
set @resultLine = @caseID + ': FAIL'
print @resultLine

end

You can use the @@rowcount function to retrieve how many rows were actually returned by
the stored procedure under test and then compare that against an expected number of rows.
This technique obviously has some severe limitations, most importantly the fact that you are
checking only how many rows are returned by the store procedure under test, and you have
no indication whether these rows contain the correct SQL data or are in the correct order. That
said, however, this simple technique is sometimes useful by itself or when used in conjunction
with the checksum technique as a way to validate your test harness.

9.7 Determining a Pass/Fail Result When the Stored
Procedure Under Test Returns an out Parameter
Problem
You want to test a SQL stored procedure that returns a value into an out parameter.

Design
Declare a variable of the appropriate type to accept the out parameter and call the stored pro-
cedure under test using the out keyword.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING254

Solution
For example, suppose the database containing the stored procedure under test has a table
defined as

create table tblEmployees
(
empID char(3) primary key,
empLast varchar(35) not null,
empDOH datetime not null,
)

Suppose the stored procedure under test has an out parameter in which to store a result
and is defined as

create procedure usp_GetLast
@empID char(3),
@empLast varchar(35) out
as
select @empLast = empLast from tblEmployees where empID = @empID
return @@rowcount

Then T-SQL code to test the stored procedure could be

declare @input char(3)
declare @empLast varchar(35)
declare @retval int

declare @expectedLast varchar(35)
declare @expectedRet int

set @input = 'e22'
set @expectedLast = 'Baker'
set @expectedRet = 1

exec @retval = dbEmployees.dbo.usp_GetLast @input, @empLast out
if (@retval = @expectedRet and @empLast = @expectedLast)
print 'Pass'
else
print 'FAIL'

The usp_GetLast() stored procedure accepts an input parameter of an employee ID. The
procedure retrieves the row that matches the input employee ID and stores the associated
employee last name into an out parameter. The stored procedure returns the number of rows
returned by the SELECT statement. The idea is that the AUT can use the return value as an
error-checking mechanism: if the return is 0, then no matching employee was found, but if the
return is greater than 1, then more than one employee with a particular ID was found (which
is probably an error in most situations).

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 255

Comments
A very common design pattern for SQL stored procedures is one in which the stored procedure
returns one or more values into out parameters. This pattern is necessary when the stored pro-
cedure returns a value that is not type int because the return keyword only accepts int types.
The pattern is also necessary when the stored procedure must return more than one value.

You call a stored procedure with an out parameter just as you would a stored procedure
that only has input parameters except that you place the SQL keyword out after the argument
that accepts the output. The preceding solution calls by parameter-position. You also can call
by parameter-name. However, this way of calling can be messy because after the form
“@name = value” has been used, all subsequent parameters must be passed in the form
“@name = value” form too.

9.8 Determining a Pass/Fail Result When the Stored
Procedure Under Test Does Not Return a Value

Problem
You want to test a SQL stored procedure that performs some action but does not return a value.

Design
Call the stored procedure under test and then compute an aggregate checksum on the object
affected by the stored procedure. Compare the computed checksum with an expected check-
sum value.

Solution
For example, suppose the stored procedure under test deletes specified employee record from
a tblEmployees table:

create procedure usp_DeleteEmployee
@empID char(3)
as
delete from tblEmployees where empID = @empID

To test this stored procedure, you can call it, compute an aggregate checksum on table
tblEmployees, and then compare against an expected value:

declare @input char(3)
declare @expected int
declare @actual int

set @input = 'e22'
set @expected = 150847775

exec dbEmployees.dbo.usp_DeleteEmployee 'e22'

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING256

select @actual = checksum_agg(checksum(*)) from dbEmployees.dbo.tblEmployees
if (@actual = @expected)
print 'Pass'
else
print 'FAIL'

If the stored procedure does not return a value, then it must perform some action, such as
deleting data from a table. To test such stored procedures, you need to compare actual and
expected values of the object acted upon by the stored procedure. This situation is very similar
to testing stored procedures that return a SQL rowset object.

Comments
Many stored procedures affect an underlying data table. Obvious examples include stored
procedures that use an INSERT, DELETE, or UPDATE statement. When testing such stored proce-
dures, you must be sure to reset the state of the underlying data tables to some known state
before each call in the test harness. For example, suppose you are testing a stored procedure
usp_DeleteEmployee() defined as

create procedure usp_DeleteEmployee
@empID char(3)
as
delete from tblEmployees where @empID = empID
return @@rowcount
go

If the code in your test harness resembled

declare @input char(3)
declare @actualRows int

-- main test loop
-- read test case data into @caseID, @input, @expectedRows

exec @actualRows = dbEmployees.dbo.usp_DeleteEmployee @input
-- determine pass/fail
-- store or display test case result
-- end main loop

then each iteration through the main test loop would be testing against a different state of the
database, which would make determining an expected value very difficult. You need to reset
the database state before each test harness call to the stored procedure under test:

declare @input char(3)
declare @actualRows int

-- main test loop
-- read test case data into @caseID, @input, @expectedRows

truncate table dbEmployees.dbo.tblEmployees

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 257

insert into dbEmployees.dbo.tblEmployees
values('001', 'Adams', '06/15/1998')

insert into dbEmployees.dbo.tblEmployees
values('e22','Baker', '06/15/2001')

-- etc.

exec @actualRows = dbEmployees.dbo.usp_DeleteEmployee @input
-- determine pass/fail
-- store or display test case result
-- end main loop

In most situations, resetting the state of the database under test requires many statements
that can make your test harness script very long. So, a good approach is to write an auxiliary
stored procedure in your test harness script to handle the task of resetting the database state
before each call to the stored procedure under test:

if exists (select * from sysobjects where name='tap_Reset')
drop procedure tap_Reset
go

create procedure tap_Reset
as
truncate table dbEmployees.dbo.tblEmployees

insert into dbEmployees.dbo.tblEmployees
values('e11','Adams', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e22','Baker', '06/15/2001')
insert into dbEmployees.dbo.tblEmployees
values('e33','Young', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e44','Zetta', '06/15/2001')
-- other data would be inserted too
go

Here you create a utility test automation procedure that deletes all the rows in table
tblEmployees and then repopulates with rich test bed data. Your script can then call the stored
procedure inside the main test loop just before each call to the stored procedure under test.
An alternative to hard-coding the INSERT statements that populate the target table is to use the
BULK INSERT statement in conjunction with an external data store, as described in Section 9.3.

Do not misinterpret this discussion to mean that you should always reset the database
under test to some initial state. You must also perform test scenarios that manipulate system
state through several changes. For example, a test scenario could insert five data rows, delete
one of the new rows and one of the original rows, then insert three new rows, and delete a row.
Each state of the database could be examined for correctness to determine an overall scenario
pass/fail result.

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING258

9.9 Example Program: SQLspTest
The scripts in this section combine several of the techniques in this chapter to create a
lightweight T-SQL test harness system. There are three scripts: script makeDbEmployees.sql,
which creates the underlying test bed and the stored procedure under test; script
makeDbTestCasesAndResults.sql, which creates test case data and result storage; and
script SQLspTest.sql, which is the actual test harness. The stored procedure under test is
usp_HiredAfter(), which accepts a datetime input argument and returns a SQL rowset of
those employees in tblEmployees whose date of hire is after the input argument. When
run, the output will be that shown in Figure 9-1 in the introduction section of this chapter.
Listing 9-1 shows the script that creates the underlying database and the stored procedure
under test.

Listing 9-1. Script to Create Test Bed Database and Stored Procedure Under Test

-- ===

-- makeDbEmployees.sql
use master
go

if exists (select * from sysdatabases where name='dbEmployees')
drop database dbEmployees
go

if exists (select * from sysxlogins where name = 'employeesLogin')
exec sp_droplogin 'employeesLogin'
go

create database dbEmployees
go

use dbEmployees
go

create table tblEmployees
(
empID char(3) primary key,
empLast varchar(35) not null,
empDOH datetime not null,
)
go

-- this is dev data, not test case data
insert into tblEmployees values('e11','Adams', '06/15/1998')
insert into tblEmployees values('e22','Baker', '06/15/2001')
go

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 259

exec sp_addlogin 'employeesLogin', 'secret'
go
exec sp_grantdbaccess 'employeesLogin'
go

create procedure usp_HiredAfter
@dt datetime
as
select * from tblEmployees where empDOH > @dt
go

grant execute on usp_HiredAfter to employeesLogin
go

-- end script

Listing 9-2 shows the script that creates a test case data and test result store.

Listing 9-2. Script to Create Test Case Data and Test Results Stores

-- ===

-- makeDbTestCasesAndResults.sql
use master
go

if exists (select * from sysdatabases where name='dbTestCasesAndResults')
drop database dbTestCasesAndResults
go

if exists (select * from sysxlogins where name = 'testLogin')
exec sp_droplogin 'testLogin'
go

create database dbTestCasesAndResults
go

use dbTestCasesAndResults
go

create table tblTestCases
(
caseID char(4) primary key,
input datetime not null,
expectedChecksum int not null
)
go

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING260

-- this is the test case data for usp_HiredAfter using a checksum expected
-- value approach
-- can also read from a text file using BCP, DTS, or a C# program
insert into tblTestCases values('0001','01/01/1998', 1042032)
insert into tblTestCases values('0002','01/01/1998', 9999999) -- deliberate error
insert into tblTestCases values('0003','01/01/2000', 25527856)
insert into tblTestCases values('0004','01/01/2006', 0)
go

create table tblResults
(
caseID char(4) not null,
result char(4) null,
whenRun datetime not null
)
go

exec sp_addlogin 'testLogin', 'secret'
go
exec sp_grantdbaccess 'testLogin'
go

grant select, insert, delete, update on tblTestCases to testLogin
go

grant select, insert, delete, update on tblResults to testLogin
go

-- end script

Listing 9-3 is the test harness script.

Listing 9-3. The Test Automation Harness Script

-- ===

-- SQLspTest.sql
-- test dbEmployees..usp_HiredAfter
-- reads test case data and writes results
-- to dbTestCasesAndResults

set nocount on

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 261

if not exists
(select * from master.dbo.sysdatabases where name='dbTestCasesAndResults')
raiserror('Fatal error: dbTestCasesAndResults not found', 16, 1)
go

if exists (select * from sysobjects where name='tap_Reset')
drop procedure tap_Reset
go

create procedure tap_Reset
as
truncate table dbEmployees.dbo.tblEmployees

insert into dbEmployees.dbo.tblEmployees
values('e11','Adams', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e22','Baker', '06/15/2001')
insert into dbEmployees.dbo.tblEmployees
values('e33','Young', '06/15/1998')
insert into dbEmployees.dbo.tblEmployees
values('e44','Zetta', '06/15/2001')
-- other data would be inserted too
go

-- prepare dbEmployees with rich data
exec tap_Reset
go

declare tCursor cursor fast_forward
for select caseID, input, expectedChecksum
from dbTestCasesAndResults.dbo.tblTestCases
order by caseID

declare @caseID char(4), @input datetime, @expectedChecksum int
declare @whenRun datetime
declare @resultMsg varchar(80)
declare @actualChecksum int

create table #resultRowset -- for checksum technique
(
empID char(3) primary key,
empLast varchar(35) not null,
empDOH datetime not null,
)

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING262

set @whenRun = getdate()

print 'Stored procedure under test = usp_HiredAfter'
print ' '
print 'CaseID Input Expected Actual Result'
print '==='

open tCursor
fetch next
from tCursor
into @caseID, @input, @expectedChecksum

while @@fetch_status = 0
begin

exec tap_Reset -- reset test bed data

truncate table #resultRowset -- empty out the result rowset

insert #resultRowset (empID, empLast, empDOH) -- call sp under test
exec dbEmployees.dbo.usp_HiredAfter @input

if (@@rowcount = 0)
set @actualChecksum = 0
else
select @actualChecksum = checksum_agg(binary_checksum(*)) from #resultRowset

if (@actualChecksum = @expectedChecksum)
begin
set @resultMsg = @caseID + ' ' + cast(@input as varchar(11)) +
' ' + cast(@expectedChecksum as varchar(20)) + ' ' +

cast(@actualChecksum as varchar(20)) + ' Pass'
print @resultMsg
insert into dbTestCasesAndResults.dbo.tblResults values(@caseID, 'Pass',

@whenRun)
end
else
begin
set @resultMsg = @caseID + ' ' + cast(@input as varchar(11)) +
' ' + cast(@expectedChecksum as varchar(20)) + ' ' +

cast(@actualChecksum as varchar(20)) + ' FAIL'
print @resultMsg
insert into dbTestCasesAndResults.dbo.tblResults values(@caseID, 'FAIL',

@whenRun)
end

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING 263

fetch next
from tCursor
into @caseID, @input, @expectedChecksum

end

close tCursor
deallocate tCursor

drop table #resultRowset

-- end script

CHAPTER 9 ■ SQL STORED PROCEDURE TESTING264

Combinations and
Permutations

10.0 Introduction
Combinations and permutations are fundamental concepts in software testing, and the ability
to programmatically generate and manipulate them is an essential test automation skill. An
arbitrary combination is a subset of k items selected from a larger set of n items, where order
does not matter. For example, if you have the 5 items

{ "ant", "bug", cat", "dog", "elk" }

then the 10 possible combinations of size 3 are

{ "ant", "bug", "cat" }
{ "ant", "bug", "dog" }
{ "ant", "bug", "elk" }
{ "ant", "cat", "dog" }
{ "ant", "cat", "elk" }
{ "ant", "dog", "elk" }
{ "bug", "cat", "dog" }
{ "bug", "cat", "elk" }
{ "bug", "dog", "elk" }
{ "cat", "dog", "elk" }

You can imagine that these could be test case inputs to a method that accepts three string
arguments. Notice that { "cat", "bug", "dog" } is not listed because it is considered the same
as { "bug", "cat", "dog" }. A mathematical combination is a generalization of this idea of sub-
sets. Instead of being a subset of arbitrary items, a mathematical combination of order (n, k) is a
subset of size k of the integers from 0 up to n-1. So the 10 elements of a mathematical combina-
tion of 5 items taken 3 at a time are

{ 0, 1, 2 }
{ 0, 1, 3 }
{ 0, 1, 4 }
{ 0, 2, 3 }
{ 0, 2, 4 }
{ 0, 3, 4 }

265

C H A P T E R 1 0

■ ■ ■

{ 1, 2, 3 }
{ 1, 2, 4 }
{ 1, 3, 4 }
{ 2, 3, 4 }

In this example, the elements of the combination are listed in lexicographical order (also
called lexicographic order or dictionary order). For mathematical combinations, this means
that the elements, if interpreted as integers, are listed in increasing order. For example, if n = 5
and k = 3, the first element is { 0, 1, 2 } and the next element is { 0, 1, 3 } because “12”
comes before “13”. Notice, too, that the atoms (individual integers) of a combination element
also appear in increasing order so there is a kind of dual orderedness to a lexicographical com-
bination. With a lexicographical combination of order (n, k), the identity element is defined to
be the first element: { 0, 1, 2, . . . n-k }.

The function that calculates the total number of combinations for given n and k values is a
very important function when dealing with combinations. For instance, the previous two exam-
ples demonstrate that the total number of combinations of 5 items taken 3 at a time is 10. This
helper function is often called Choose. So, you can write Choose(5,3) = 10.

Closely related to combinations are permutations. An arbitrary permutation is one of the
possible arrangements of a set of n items. For example, if you have the three items

{ "Adam", "Barb", "Carl" }

then, the six permutations of these items are

{ "Adam", "Barb", "Carl" }
{ "Adam", "Carl", "Barb" }
{ "Barb", "Adam", "Carl" }
{ "Barb", "Carl", "Adam" }
{ "Carl", "Adam", "Barb" }
{ "Carl", "Barb", "Adam" }

Notice that unlike combinations, permutations take order into account by definition. A
mathematical permutation is a generalization of this idea of rearrangements. Instead of being a
rearrangement of arbitrary items, a mathematical permutation of order n is a rearrangement of
the integers from 0 up to n-1. So the six elements of a mathematical permutation of order 3 are

{ 0, 1, 2 }
{ 0, 2, 1 }
{ 1, 0, 2 }
{ 1, 2, 0 }
{ 2, 0, 1 }
{ 2, 1, 0 }

Permutations can be lexicographical as in this example—notice that if the permutation
elements were interpreted as integers, you would have { 12, 21, 102, 120, 201, 210 }. The
total number of permutations of order n is given by n factorial, often denoted by n! or Factor-
ial(n). So in the preceding two examples, because we are dealing with n = 3, the total number
of permutations is 3! = 3 * 2 * 1 = 6.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS266

Combinations and permutations occur in many aspects of software testing. For example,
suppose you had a program with a UI that has three drop-down controls. You need to analyze
how many different combinations and permutations of user inputs there are so you can design
your test cases. Or suppose you are testing a program designed for multiple hardware configu-
rations. You need to analyze the different combinations and permutations of the configurations
so you can plan your test effort.

You can write combination and permutation methods that work directly on type string.
But a more flexible approach is to write methods that work on integers and then map these
mathematical combination and permutation methods to string arrays.

10.1 Creating a Mathematical Combination Object
Problem
You want to create an object to represent a mathematical combination.

Design
Use an object-oriented design to create a Combination class with an array of type long to hold a
combination element, and long values n and k to hold the total number of integers and subset
size, respectively.

Solution

public class Combination
{
private long n = 0;
private long k = 0;
private long[] data = null;

public Combination(long n, long k)
{
if (n < 0 || k < 0)
throw new Exception("Negative argument in constructor");

this.n = n;
this.k = k;
this.data = new long[k];
for (long i = 0; i < k; ++i)
this.data[i] = i;

}
}

Comments
A mathematical combination lends itself nicely to implementation as a class. Because a
mathematical combination represents a subset of k items selected from a set of integers from
0 through n-1, you need to store those values as well as an array to hold the combination

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 267

element’s atoms (individual integer values). The letters “n” and “k” are often used in mathe-
matical literature, so we use them instead of more descriptive variable names such as
totalSize and subsetSize. A long array named data is declared to hold the atoms of a specific
combination. Type long is used rather than type int to get a wider range of values (type ulong
can be used to get an even bigger range, of course). The constructor accepts values for n and k,
and checks to see whether either argument is negative.

The constructor allocates a new long array “data” of size k and populates the array with
values from 0 through k-1. For instance if n = 5 and k = 3 are passed to the constructor,
data[0] has 0, data[1] has 1, and data[2] has 2, representing the initial combination element
{ 0, 1, 2 }. You would call the combination constructor like this:

Combination c = new Combination(5, 3);

You can place your combination class directly in your test harness program, but a more
flexible alternative is to create a separate code library to house the class. It’s very useful to have
a display method so you can see a Combination object:

public override string ToString()
{
string s = "{ ";
for (long i = 0; i < this.k; ++i)
s += this.data[i] + " ";

s += "}";
return s;

}

Here you just return a string with the combination atoms separated by blank spaces and
delimited by curly brace characters. So if you wrote

Combination c = new Combination(7, 4);
Console.WriteLine(c.ToString());

you would see

{ 0 1 2 3 }

displayed. You can use the StringBuilder class instead of the += operator if efficiency is a major
concern. As it turns out, it’s useful to implement a Combination constructor that accepts an
array as an argument:

public Combination(long n, long k, long[] a)
{
if (k != a.Length)
throw new Exception("Bad array size in constructor");

this.n = n;
this.k = k;
this.data = new long[k];

for (long i = 0; i < a.Length; ++i)
this.data[i] = a[i];

}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS268

With this constructor, you can write code to initialize a Combination object to a specific
element:

long[] array = new long[] {0, 2, 3, 6};
Combination c = new Combination(7, 4, array);
Console.WriteLine(c.ToString());

This auxiliary constructor is useful in its own right, but you’ll use it in Section 10.5 to gen-
erate a combination element from an index value. Notice that the caller is responsible for
ensuring that the values in the array argument are in proper lexicographical order, and n and k
are nonnegative.

10.2 Calculating the Number of Ways to Select
k Items from n Items
Problem
You want to calculate the total number of combinations for n items taken k at a time.

Design
Write a Choose() method that implements the alternative definition of Choose() rather than
the canonical definition. Be sure to handle arithmetic overflow.

Solution

public static long Choose(long n, long k)
{
if (n < 0 || k < 0)
throw new Exception("Negative argument in Choose");

if (n < k)
return 0;

if (n == k)
return 1;

long delta, iMax;

if (k < n - k)
{
delta = n - k;
iMax = k;

}
else
{
delta = k;
iMax = n - k;

}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 269

long answer = delta + 1;
for (long i = 2; i <= iMax; ++i)
{
checked { answer = (answer * (delta + i)) / i; }

}

return answer;
}

Comments
An important function for combinations is the total number of elements for particular n
and k values. This function is most often called Choose(). So if n = 5 and k = 3, you can write
Choose(5, 3) and it should return 10, meaning that for 5 items taken 3 at a time there are
10 total combination elements. Note that it’s easy to confuse a combination of n and k with a
Choose() function of n and k. A mathematical combination with order n = 7 and k = 4 (7 items
taken 4 at a time) has elements such as { 0, 3, 4, 6 }, whereas the associated Choose(7,4)
function returns 35 and is the total number of elements of 7 items taken 4 at a time.

The canonical definition of Choose() is Choose(n, k) = Factorial(n) / (Factorial (k)
* Factorial(n-k)). For example, Choose(7, 3) = Factorial(7) / (Factorial(3) *
Factorial(7-3)) = 5040 / (6 * 24) = 35. But implementing Choose() directly from the
definition is a weak approach because the numerator and denominator can easily overflow for
relatively small values of n and k. A better solution uses an alternative definition for Choose():

Choose(n, k) = (n * (n-1) * (n-2) * ... * (n-k+1)) / (1 * 2 * ... * k)

This equation looks a bit confusing at first glance but is understandable with an example:

Choose(7, 3) = (7 * 6 * 5) / (1 * 2 * 3)

Instead of computing the numerator (a big number), then the denominator (a big number),
and then dividing, you can calculate partial products and divide as you go. For Choose(7, 3),
you first calculate 7 * 6 and divide by 2, getting 21 (skipping the first 1 term on the bottom of the
fraction because dividing by 1 has no effect). Then multiplying that partial product (21) by 5 and
dividing by 3, you get an answer of 35.

A second optimization for the Choose(n, k) method is a consequence of the following
property:

Choose(n, k) = Choose(n, n-k).

For example, Choose(10, 8) = Choose(10, 2). This is not an obvious relationship, but if
you experiment with a few examples you’ll see why this is true. Calculating Choose(10, 8)
directly involves computing seven partial products and seven divisions, but calculating the
equivalent Choose(10, 2) requires only one multiplication and one division operation.

The Choose() implementation starts by checking for the case when n < k. We define a
0 result here—for example, the number of ways to select 6 items from 3 items is 0. Next we
check if n = k, in which case we return 1—for example, the number of ways to select 5 items
from 5 items is 1. If neither special case holds, we use the two shortcuts to calculate the return
value. Using the checked keyword causes arithmetic overflow to raise an exception (in an
unchecked context, arithmetic overflow is ignored and the result is truncated).

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS270

This Choose() method is relatively lightweight but will meet most of your test automation
needs. However, there are many algorithms and implementations available through third-party
scientific libraries that are optimized for various purposes. For example, an algorithm optimized
for performance at the expense of memory could store results up to certain values of n and k in a
table for quick retrieval.

10.3 Calculating the Successor to a Mathematical
Combination Element
Problem
You want to determine the successor element to a given mathematical combination element.

Design
Write a Successor() method that finds the rightmost atom that must be incremented, increments
it, and then increments all atoms to the right of the incremented atom.

Solution

public Combination Successor()
{
if (this.data[0] == this.n - this.k)
return null;

Combination ans = new Combination(this.n, this.k);

for (long i = 0; i < this.k; ++i)
ans.data[i] = this.data[i];

long x;
for (x = this.k - 1; x > 0 && ans.data[x] == this.n - this.k + x;

--x);

++ans.data[x];

for (long j = x; j < this.k - 1; ++j)
ans.data[j+1] = ans.data[j] + 1;

return ans;
}

Comments
To iterate through all mathematical combinations of order (n, k) you need to determine the lex-
icographic successor element to a given element. For example, if n = 7 and k = 4, combination

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 271

element [0] is { 0, 1, 2, 3 } and its successor element [1] is { 0, 1, 2, 4 }. Start by deter-
mining whether you are at the last Combination element so you can return null. Consider the
case with n = 7 and k = 4:

[0] { 0, 1, 2, 3 }
[1] { 0, 1, 2, 4 }
[2] { 0, 1, 2, 5 }
. . .
[32] { 2, 3, 5, 6 }
[33] { 2, 4, 5, 6 }
[34] { 3, 4, 5, 6 }

Notice that the last element is the only one that has atom value n-k at position 0. This prop-
erty is true in general, so you can use it to identify when you’re at the last element. Alternatives to
returning null for the successor to the last element include throwing an exception or returning
the first element. Next, the Successor() method creates a Combination object to hold the answer.
The key to the algorithm is finding which rightmost atom must be incremented. You use an
index x and start at the last position within array data and work to the left (decrementing) until
you find a false result to the condition

ans.data[x] == this.n - this.k + x

or hit the beginning of the data array. The atom at this position is incremented. Then every
atom to the right of that atom must be incremented also. With this Successor() method in
hand, if you write

long[] array = new long[] { 2, 3, 5, 6 };
Combination c = new Combination(7, 4, array);
c = c.Successor();
Console.WriteLine("Successor to 2, 3, 5, 6 is: " + c.ToString());

the output would be

Successor to 2, 3, 5, 6 is: { 2, 4, 5, 6 }

It’s often useful to implement a Predecessor() method that returns the lexicographic
predecessor element to a given element. Here is one possibility:

public Combination Predecessor()
{
if (this.data[k-1] == this.k - 1)
return null;

Combination ans = new Combination(this.n, this.k);

for (long i = 0; i < this.k; ++i)
ans.data[i] = this.data[i];

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS272

long x;
for (x = this.k - 1; x > 0 && ans.data[x] == ans.data[x-1] + 1;

--x);

--ans.data[x];

for (long j = x + 1; j < this.k; ++j)
ans.data[j] = this.n - this.k + j;

return ans;
}

You start by identifying the case where you’re at the first element so you can return null.
This happens when the atom at position k-1 in array data has value k-1. For example, if n = 9
and k = 6, element [0] is { 0, 1, 2, 3, 4, 5 } and the atom at position k-1 = 5 has value 5.
After instantiating a Combination object to hold the answer, you use an index variable x and
start at the rightmost atom and work to the left until the condition

ans.data[x] == ans.data[x-1] + 1

is not true. The atom at position x must be decremented, and all atoms to the right of that
atom must be incremented.

10.4 Generating All Mathematical Combination
Elements for a Given n and k
Problem
You want to generate all mathematical combination elements for given values of n and k.

Design
Instantiate a Combination object, and then use the Combination.Successor() method inside a
while loop.

Solution
Console.WriteLine("\nStart\n");
Combination c = new Combination(5,3);
int i = 0;

while (c != null)
{
Console.WriteLine("[" + i + "] " + c.ToString());
c = c.Successor();
++i;

}
Console.WriteLine("\nDone\n");

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 273

Comments
In situations with sufficiently small values for n and k, you can exhaustively list all mathemati-
cal combination elements. When the preceding code is run, the result is

Start

[0] { 0 1 2 }
[1] { 0 1 3 }
[2] { 0 1 4 }
[3] { 0 2 3 }
[4] { 0 2 4 }
[5] { 0 3 4 }
[6] { 1 2 3 }
[7] { 1 2 4 }
[8] { 1 3 4 }
[9] { 2 3 4 }

Done

The call to Combination.Successor() returns the next mathematical combination element
in lexicographical order or null if you are at the last element. So, you can use a while loop with
null as an exit condition to iterate through all elements. Notice that after the loop terminates,
the Combination object will be null, so you need to reinstantiate it if you want to use it further.
If you want to explicitly create all possible elements, you can create an array of Combination
objects and store each object:

long ct = Combination.Choose(5,3);
Combination[] combos = new Combination[ct];
combos[0] = new Combination(5,3);

for (long i = 1; i < ct; ++i)
{
combos[i] = combos[i-1].Successor();

}

for (long i = 0; i < ct; ++i)
{
Console.WriteLine("[" + i + "] " + combos[i].ToString());

}

When this code is run, the output will be the same as the previous example. You determine
how many Combination objects you’ll be creating using the Combination.Choose() method and
then initialize an array of Combination objects with that size. You seed the first array cell with
the initial Combination object by calling the default constructor. Then each cell in the array is
assigned a Combination object that has the successor element to the element of the Combination
object in the previous cell. Using this technique, you’ll have all Combination elements available
to you. Be careful when employing this technique because the number of combination ele-
ments can be very large.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS274

10.5 Determining the mth Lexicographical Element
of a Mathematical Combination
Problem
You want to determine a specific element of a mathematical combination.

Design
Write a method Element() that calculates the combinadic of the specified element and then
transform the combinadic to a combination element.

Solution
public Combination Element(long m)
{
long[] ans = new long[this.k];

long a = this.n;
long b = this.k;
long x = (Choose(this.n, this.k) - 1) - m;

for (long i = 0; i < this.k; ++i) // store combinadic
{
ans[i] = LargestV(a,b,x);
x = x - Choose(ans[i],b);
a = ans[i];
b = b-1;

}

for (long i = 0; i < this.k; ++i)
{
ans[i] = (n-1) - ans[i];

}

return new Combination(this.n, this.k, ans);
}

// return largest value v where v < a and Choose(v,b) <= x
private static long LargestV(long a, long b, long x)
{
long v = a - 1;

while (Choose(v,b) > x)
--v;

return v;
}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 275

Comments
Computing a specific Combination from a specified lexicographical index is often useful. For
example, if you call the code in this solution

Combination c = new Combination(7,4);
Console.WriteLine("Element[17] is: " + c.Element(17));

you determine combination element [17], and the output is

Element[17] is: { 0 3 4 6 }

This problem is not as trivial as it may first appear. A brute force solution to generating the
mth lexicographical combination element would be to start with the first element and then
iterate, calling a successor method or code, m times. This approach works, but the technique is
bad when the value of m is large. And, unfortunately, m can be very, very large. For example, if
you have a combination of n = 200 items taken k = 10 at a time, there are 22,451,004,309,013,280
possible elements. Using the naive looping technique described on a reasonably fast desktop
machine, calculating element [999,999,999,999] for n = 200 and k = 10 takes more than 100
hours. But by using an interesting mathematical idea called the combinadic of a number, the
preceding solution calculates the [999,999,999,999] element for n = 200 and k = 10 in approxi-
mately 1 second.

The combinadic of an integer is an alternative representation of the number based on com-
binations. As it turns out, the combinadic of some integer m maps directly to the mth combination
element. Consider, for example, the number 27. If you fix n = 7 and k = 4, the combinadic of 27 is
(6 5 2 1). This means that

27 = Choose(6,4) + Choose(5,3) + Choose(2,2) + Choose(1,1).

With n = 7 and k = 4, any number z between 0 and 34 (the total number of combination
elements for n and k) can be uniquely represented as

z = Choose(c1,4) + Choose(c2,3) + Choose(c3,2) + Choose(c4,1)

where n > c1 > c2 > c3 > c4. Notice that n is analogous to a base because all combinadic digits
are between 0 and n-1 (just like all digits in ordinary base 10 are between 0 and 9). The k value
determines the number of terms in the combinadic. The combinadic of a number can be cal-
culated fairly quickly, so the idea to generate the mth combination element is to compute the
combinadic of m and then transform the combinadic into a combination element.

The relationship between the combinadic of a number and the mth lexicographical ele-
ment of a combination uses the concept of the dual of each lexicographic index. Suppose
n = 7 and k = 4. There are Choose(7, 4) = 35 combination elements, indexed from 0 to 34.
The dual indexes are the ones on opposite ends of the index list—indexes 0 and 34 are
duals, indexes 1 and 33 are duals, indexes 2 and 32, and so forth. Notice that each pair of dual
indexes sum to 34, so if you know any index, it’s easy to compute its dual.

Suppose you are somehow able to find the combinadic of 27 and get (6 5 2 1). Now
suppose you subtract each digit in the combinadic from n-1 = 6 to get (0 1 4 5). Interest-
ingly, this gives you the combination element [7], which is the dual index of 27. So, to find the

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS276

combination element for some index m, first find its dual and call that x. Next, find the combi-
nadic of x. Then subtract each digit of the combinadic of x from n-1 and the result is the mth
lexicographic combination element. Table 10-1 shows the relationships among m, the dual of
m, Combination.Element(m), the combinadic of m, and (n-1) - ci for n=5 and k=3.

Table 10-1. Relationships Between an Integer m and Its Combinadic

m dual(m) Element(m) combinadic(m) (n-1) – ci

0 9 { 0 1 2 } (2 1 0) (2 3 4)

1 8 { 0 1 3 } (3 1 0) (1 3 4)

2 7 { 0 1 4 } (3 2 0) (1 2 4)

3 6 { 0 2 3 } (3 2 1) (1 2 3)

4 5 { 0 2 4 } (4 1 0) (0 3 4)

5 4 { 0 3 4 } (4 2 0) (0 2 4)

6 3 { 1 2 3 } (4 2 1) (0 2 3)

7 2 { 1 2 4 } (4 3 0) (0 1 4)

8 1 { 1 3 4 } (4 3 1) (0 1 3)

9 0 { 2 3 4 } (4 3 2) (0 1 2)

So, the real problem is finding the combinadic of a number. Now you’ll see how to find
the combinadic of 28. Most of the work of finding the combinadic is done with an unusual
little helper method, LargestV(). The basic structure of the combinadic of 28 will be
(c1, c2, c3, c4), where

28 = Choose(c1,4) + Choose(c2,3) + Choose(c3,2) + Choose(c4,1)

So, you need to find values c1, c2, c3, and c4. Method LargestV(a,b,x) returns the largest
value v that is less than a given value a, and so that Choose(v,b) is less than or equal to x. To
compute c1, you call LargestV(7,4,28), the largest value v less than 7, so that Choose(v,4) is
less than or equal to 28. In this case, LargestV() returns 6 because Choose(6,4) = 15, which is
less than 28. The value 6 is the first number c1 of the combinadic.

Now to compute the c2 value, you subtract 15 from 28, and now you only have 13 left to
consume because you used up 15 for the c1 coefficient. Call LargestV(6,3,13), which returns 5
and note that Choose(5,3) is 10, leaving you with 3. The combinadic is now (6 5 ? ?). Next,
you call LargestV(4,2,10) and get 3 for c3, noting that Choose(3,2) is 3, leaving you with 0 left.
Finally, to compute c4, you call LargestV(3,1,0), which returns 0.

Now that you have the combinadic (6 5 3 0), map it to a combination element by
subtracting each of the combinadic values from n-1 = 6, which gives you (0 1 3 6). Finally,
pass the answer array to the auxiliary Combination constructor to convert it into a combina-
tion object and you get { 0, 1, 3, 6 }—combination element [6] in lexicographical order
for n = 7 and k = 4.

Notice that the LargestV(a,b,x) method calls the Choose(n,k) method in such a way that
n can be less than k. This is why we allow this possibility in the Choose() method, and also in
the Combination constructor.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 277

10.6 Applying a Mathematical Combination to a
String Array
Problem
You want one or more combinations of a set of strings.

Design
Write a Combination.ApplyTo() method that accepts an array of strings and returns a subset
array corresponding to the Combination element context.

Solution
public string[] ApplyTo(string[] sa)
{
if (sa.Length != this.n)
throw new Exception("Bad array size in ApplyTo()");

string[] result = new string[this.k];

for (long i = 0; i < result.Length; ++i)
result[i] = sa[this.data[i]];

return result;
}

Comments
In software test automation situations, you usually want to generate combinations of strings.
If you called the code in this solution

string[] animals = new string[]{"ant", "bat", "cow", "dog", "emu"};
Combination c = new Combination(5,3);
string[] subset = new string[3];
Console.WriteLine("All combinations taken 3 at a time are:\n");
while (c != null)
{
subset = c.ApplyTo(animals);
Console.WriteLine(subset[0] + " " + subset[1] + " " + subset[2]);
c = c.Successor();

}

c = new Combination(5,3);
Console.WriteLine("\nJust element[5] is:\n");
subset = c.Element(5).ApplyTo(animals);
Console.WriteLine(subset[0] + " " + subset[1] + " " + subset[2]);

the output would be

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS278

All combinations taken 3 at a time are:

ant bat cow
ant bat dog
ant bat emu
ant cow dog
ant cow emu
ant dog emu
bat cow dog
bat cow emu
bat dog emu
cow dog emu

Just element[5] is:

ant dog emu

Suppose you have a Combination object with n = 5 and k = 3. The object will have a data array
with atoms from 0 to n-1, which represent a mathematical combination, for instance, { 0, 3, 4 }.
The ApplyTo() method accepts a string array that contains n = 5 strings. That input array is indexed
from 0 to n-1. The idea is to create an answer array of size k and store into that answer array the
string values that correspond to the atoms of the Combination element. For example, if you pass
array "animals" with "ant" at [0], "bat" at [1], "cow" at [2], "dog" at [3], and "emu" at [4] to
ApplyTo() where the Combination object context has 0 at data[0], 3 at data[1], and 4 at data[2],
the method will place "ant" into result[0], "dog" into result[1], and "emu" into result[2].

Although strings are the most common items to take combinations of in a software-testing
situation, you can modify the ApplyTo() method to work with any type. One way to do this is to
recast ApplyTo() to accept and return arrays of type object, and then use explicit type casts
when calling this new version. Another alternative is to use the generics mechanism; the C#
language in Visual Studio .NET 2003 and the .NET Framework 1.1 does not support generics,
but generics are supported in Visual Studio 2005 with .NET Framework 2.0.

A lightweight alternative for generating all combinations of a set of strings is to use nested
for loops. The technique is best explained by an example. Suppose you have the five animals
from the previous example: "ant", "bat", "cow", "dog", "emu".

Console.WriteLine("\nAll elements of 5 animals, 3 at a time: ");
string[] animals = new string[]{"ant", "bat", "cow", "dog", "emu"};
for (int i = 0; i < animals.Length; ++i)
{
for (int j = i+1; j < animals.Length; ++j)
{
for (int k = j+1; k < animals.Length; ++k)
{
Console.WriteLine("{ " + animals[i] + ", " + animals[j] +

", " + animals[k] + " }");
}

}
}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 279

This technique has the advantage of avoiding the overhead of a Combination object, and
is somewhat easier to understand than using a Combination object. However, this simple tech-
nique has three disadvantages. First, the technique works well if you want to generate all
elements of a combination, but what if you only want some of the elements or a particular
element? Second, this technique is very specific to a particular problem and doesn’t generalize
well. And third, it works nicely when the number of items in each subset element, k, is small,
but what if k is very large? If you were interested in n = 100 items taken k = 50 at a time, you
would have to code 50 for loops.

10.7 Creating a Mathematical Permutation Object
Problem
You want to create an object to represent a mathematical permutation.

Design
Use an object-oriented approach and write a Permutation class with an array of type int to repre-
sent each permutation element, and a single int value named order to represent the subset size.

Solution
public class Permutation
{
private int[] data = null;
private int order = 0;

public Permutation(int n)
{
this.data = new int[n];

for (int i = 0; i < n; ++i)
this.data[i] = i;

this.order = n;
}

}

Comments
A mathematical permutation lends itself nicely to implementation as a class. Because a
mathematical permutation of order n represents an arrangement of the set of integers from
0 through n-1, you need an array to store those values as well as a single integer field to hold
the order value. An integer array named data is declared to hold the atoms of a specific per-
mutation. The constructor accepts values for the order but does not check to see whether
that value is negative (which will throw an exception).

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS280

The constructor allocates a new int array data of size n and populates the array with values
from 0 through n-1. For instance, if n = 4 is passed to the Permutation constructor, data[0] gets 0,
data[1] gets 1, data[2] gets 2, and data[3] gets 3 to represent the initial identity permutation ele-
ment { 0, 1, 2, 3 }. You would call the permutation constructor like this:

Permutation p = new Permutation(4);

You can place your Permutation class directly into your test harness program, but a more
flexible approach is to create a separate library to house the Permutation class. It’s very useful
to have a display method so you can see a Permutation object:

public override string ToString()
{
string s = "% ";
for (int i = 0; i < this.order; ++i)
s += this.data[i] + " ";

s += "%";
return s;

}

Here you just return a string with the permutation atoms separated by blank spaces and
delimited by % characters. The % is arbitrary and used instead of the more natural curly brace
characters just so that you can distinguish a Permutation representation from a Combination.
If you wrote

Permutation p = new Permutation(6);
Console.WriteLine(p.ToString());

you would see

% 0 1 2 3 4 5 %

displayed. As you’ll see, it's useful to implement an auxiliary Permutation constructor that accepts
an array as an argument:

public Permutation(int[] a)
{
this.data = new int[a.Length];
for (int i = 0; i < a.Length; ++i)
this.data[i] = a[i];

this.order = a.Length;
}

With this constructor, you can write code to initialize a Permutation object to a specific
element

int[] a = new int[] { 2, 0, 3, 1 };
Permutation p = new Permutation(a);
Console.WriteLine("\nPermutation from array [2, 0, 3, 1] is:");
Console.WriteLine(p.ToString());

which would display:

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 281

Permutation from array [2, 0, 3, 1] is:
% 2 0 3 1 %

10.8 Calculating the Number of Permutations of
Order n
Problem
You want to calculate the total number of permutations for n items.

Design
The total number of permutations of order n is given by n! (n factorial) so write a Factorial()
method. Avoid calculating n! directly, if possible, and use some form of lookup instead. But if
you absolutely must calculate, code the Factorial() method so that it catches arithmetic
overflow.

Solution
public static int Factorial(int n)
{
int answer = 1;
for (int i = 1; i <= n; ++i)
{
checked { answer *= i; }

}
return answer;

}

Comments
Dealing with n factorial is problematic because the result becomes very large, very quickly. For
example, although 6! = 6 * 5 * 4 * 3 * 2 * 1 = only 720, the value of 64! is

64 * 63 * 62 * . . . * 1 =
126,886,932,100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000

approximately. With the C# type int, the largest factorial that can be stored is
12! = 479,001,600. Even with type ulong

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS282

public static ulong Factorial(int n)
{
ulong answer = 1;
for (int i = 1; i <= n; ++i)
{
checked { answer *= (ulong)i; }

}
return answer;

}

you can calculate at most 20! = 2,432,902,008,176,640,000. With such small result sets, you
might as well just do a simple lookup:

public static int FactorialLookUp(int n)
{
int[] answers = new int[] { 1, 2, 6, 24, 120, 720, 5040, 40320,

362880, 3628800, 39916800, 479001600 };
if (n > 12)
throw new Exception("Factorial overflow");

return answers[n-1];
}

If you must calculate a factorial, be sure to use the checked keyword to force arithmetic
overflow to throw an exception. Without checked, instead of throwing an exception, results
may wrap around int.MaxValue (depending on factors such as compiler options). For exam-
ple, without checked, this

for (int i = 11; i < 20; ++i)
{
Console.WriteLine(i + "! = " + Permutation.Factorial(i));

}

produces this output:

11! = 39916800
12! = 479001600
13! = 1932053504
14! = 1278945280
15! = 2004310016
16! = 2004189184
17! = -288522240
18! = -898433024
19! = 109641728

Notice that all the results past 12! are incorrect, but no exception was thrown.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 283

10.9 Calculating the Successor to a Mathematical
Permutation Element
Problem
You want to determine the successor element to a given mathematical permutation element.

Design
This is a very tricky algorithm. Locate two atoms in the current permutation element to swap,
swap them, and then shuffle the tail atoms that are to the right of the swap position.

Solution
public Permutation Successor()
{
Permutation result = new Permutation(this.order);

int left, right;

for (int k = 0; k < result.order; ++k)
{
result.data[k] = this.data[k];

}

left = result.order - 2;
while ((result.data[left] > result.data[left+1]) && (left >= 1))
{
--left;

}
if ((left == 0) && (this.data[left] > this.data[left+1]))
return null;

right = result.order - 1;
while (result.data[left] > result.data[right])
{
--right;

}

int temp = result.data[left];
result.data[left] = result.data[right];
result.data[right] = temp;

int i = left + 1;
int j = result.order - 1;

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS284

while (i < j)
{
temp = result.data[i];
result.data[i++] = result.data[j];
result.data[j--] = temp;

}

return result;
}

Comments
To iterate through all mathematical permutations of order n, you must be able to determine
the lexicographic successor element to a given element. For example, if n = 4, permutation
element [0] is { 0, 1, 2, 3 } and its successor element [1] is { 0, 1, 3, 2 }.

The main trick involves finding the two swap positions that are called left and right
in the code. Now you'll see how the algorithm finds the successor to the { 2 1 3 5 4 0 }
permutation element. To find position left, you start with an index at the second value from
the right and move left until the value at index+1 is greater than that at index. In this example,
left stops when it points to the 3 in the permutation. To find position right, you start with an
index at the rightmost value and move left until you find a value that is greater than that
pointed to by left. In this example, right stops when it points to the 4. Now you swap to get
an intermediate result of

(2 1 4 5 3 0)

Finally, you perform a shuffle of the values between left and the right end to get the suc-
cessor permutation:

(2 1 4 0 3 5)

The Successor() method returns null when applied to the last permutation of a particular
order. Although we could have checked to see if the permutation is in the form
(n-1 n-2 . . . 0), it's easier to observe that this state will occur when index left walks
all the way down to the data element at index 0. With this Successor() method, if you write

int[] array = new int[] { 2, 0, 3, 1 };
Permutation p = new Permutation(array);
p = p.Successor();
Console.WriteLine("Successor to 2, 0, 3, 1 is: " + p.ToString());

the output would be

Successor to 2, 0, 3, 1 is: % 2 1 0 3 %

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 285

There are many well-known algorithms that return the lexicographic successor of a per-
mutation. This algorithm is a general-purpose one, but you can find algorithms that optimize
for performance or memory use.

10.10 Generating All Mathematical Permutation
Elements for a Given n
Problem
You want to generate all mathematical permutation elements for given values of n.

Design
Instantiate an identity Permutation object and then use the Permutation.Successor() method
inside a while loop.

Solution

Console.WriteLine("\nStart\n");
Permutation p = new Permutation(3);
int i = 0;

while (p != null)
{
Console.WriteLine("p[" + i + "] = " + p.ToString());
p = p.Successor();
++i;

}

Console.WriteLine("\nDone\n");

Comments
In situations with sufficiently small values for n, you can exhaustively list all mathematical
permutation elements. When the preceding code is run, the result is

Start

p[0] = % 0 1 2 %
p[1] = % 0 2 1 %
p[2] = % 1 0 2 %
p[3] = % 1 2 0 %
p[4] = % 2 0 1 %
p[5] = % 2 1 0 %

Done

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS286

The call to Permutation.Successor() returns the next mathematical permutation element
in lexicographical order, or null if you are at the last element. You can use a while loop with
null as an exit condition to iterate through all elements. Notice that after the loop terminates,
the Permutation object will be null, so you’ll need to reinstantiate it if you want to use it fur-
ther. If you want to explicitly create all possible permutation elements, you can create an array
of Permutation objects and store each object:

long ct = Permutation.Factorial(3);
Permutation[] perms = new Permutation[ct];
perms[0] = new Permutation(3);

for (int i = 1; i < ct; ++i)
{
perms[i] = perms[i-1].Successor();

}

for (int i = 0; i < ct; ++i)
{
Console.WriteLine("p[" + i + "] = " + perms[i].ToString());

}

When this code is run, the output will be the same as the previous example. You deter-
mine how many Permutation objects you’ll be creating using the Permutation.Factorial()
method and then initialize an array of Permutation objects with that size. You seed the first
array cell with the initial identity Permutation object by calling the default constructor. Then
each cell in the array is assigned a Permutation object, which has the successor element to the
element of the Permutation object in the previous cell. Using this technique, you’ll have all
Permutation elements available to you. Be careful when employing this technique because
the number of permutation elements can be very large.

10.11 Determining the kth Lexicographical
Element of a Mathematical Permutation
Problem
You want to determine a specific element of a mathematical permutation.

Design
Write an auxiliary Permutation constructor that calculates the factoradic of the specified ele-
ment and then transforms the factoradic into a permutation element.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 287

Solution
public Permutation(int n, int k)
{
this.data = new int[n];
this.order = this.data.Length;

int[] factoradic = new int[n];

for (int j = 1; j <= n; ++j)
{
factoradic[n-j] = k % j;
k /= j;

}

int[] temp = new int[n];

for (int i = 0; i < n; ++i)
{
temp[i] = ++factoradic[i];

}

this.data[n-1] = 1;

for (int i = n-2; i >= 0; --i)
{
this.data[i] = temp[i];
for (int j = i+1; j < n; ++j)
{
if (this.data[j] >= this.data[i])
++this.data[j];

}
}

for (int i = 0; i < n; ++i)
{
--this.data[i];

}

}

Comments
It’s often useful to be able to create a specific Permutation from a specified lexicographical
index. For example, if you call the code in this solution such as

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS288

Permutation p = new Permutation(4,0);
Console.WriteLine(p.ToString());
p = new Permutation(4,23);
Console.WriteLine(p.ToString());

you would create permutation element [0] and element [23] (i.e., the first and last elements
of order 4), and the output is

% 0 1 2 3 %
% 3 2 1 0 %

This problem is not as simple as you might first think. A brute force solution to generating
the kth lexicographical permutation element would be to start with the first element and then
iterate, calling a successor method or code, k times. This approach works, but the technique is
bad when the value of k is large. And, unfortunately, k can be very large because it can be up to
n! where n is the order of the permutation. For example, if you are interested in permutations
of order 20, there are 2,432,902,008,176,640,000 different permutations. Using the naive loop-
ing technique even on a fast desktop machine is often just not feasible. But by using a
mathematical concept called the factoradic of a number, the preceding solution calculates
permutation element [999,999,999,999] in well under 1 second.

You can think of a factoradic as an alternate representation of an integer. Consider the
integer 859, which can be represented as

(8 * 100) + (5 * 10) + (9 * 1)

Or another way of looking at it is as based on a fixed radix (base) of powers of 10:

(8 * 102) + (5 * 101) + (9 * 100)

The factoradic of an integer is its representation based on a variable base corresponding
to the values of n factorial. It turns out that any integer i can be uniquely represented in the
form

(a0 * 1!) + (a1 * 2!) + (a2 * 3!) + . . .
= (a0 * 1) + (a1 * 2) + (a2 * 6) + . . .

For example, the integer 859 can be represented as

(1 * 1!) + (0 * 2!) + (3 * 3!) + (0 * 4!) + (1 * 5!) + (1 * 6!)
= (1 * 1) + (3 * 6) + (1 * 120) + (1 * 720)
= 1 + 18 + 120 + 720
= 859

So you can represent 859 in factoradic form as { 1 1 0 3 0 1 } where the rightmost digit
is the value of the 1!’s. It will be easier to convert a factoradic to a permutation if you append a
trailing 0 onto the right end of all factoradics, so you get { 1 1 0 3 0 1 0 } as the final form.
Furthermore, there is a one-to-one mapping between the factoradic of an integer k and the
kth permutation of order n, meaning that each factoradic uniquely determines a permutation.
To illustrate this, Table 10-2 shows the values of k, the factoradic of k, and the kth permutation
for order 4.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 289

Table 10-2. Relationship Between k, Factoradic(k), and kth Permutation

k factoradic(k) permutation(k)

0 { 0 0 0 0 } (0 1 2 3)

1 { 0 0 1 0 } (0 1 3 2)

2 { 0 1 0 0 } (0 2 1 3)

3 { 0 1 1 0 } (0 2 3 1)

4 { 0 2 0 0 } (0 3 1 2)

5 { 0 2 1 0 } (0 3 2 1)

6 { 1 0 0 0 } (1 0 2 3)

7 { 1 0 1 0 } (1 0 3 2)

8 { 1 1 0 0 } (1 2 0 3)

9 { 1 1 1 0 } (1 2 3 0)

10 { 1 2 0 0 } (1 3 0 2)

11 { 1 2 1 0 } (1 3 2 0)

12 { 2 0 0 0 } (2 0 1 3)

13 { 2 0 1 0 } (2 0 3 1)

14 { 2 1 0 0 } (2 1 0 3)

15 { 2 1 1 0 } (2 1 3 0)

16 { 2 2 0 0 } (2 3 0 1)

17 { 2 2 1 0 } (2 3 1 0)

18 { 3 0 0 0 } (3 0 1 2)

19 { 3 0 1 0 } (3 0 2 1)

20 { 3 1 0 0 } (3 1 0 2)

21 { 3 1 1 0 } (3 1 2 0)

22 { 3 2 0 0 } (3 2 0 1)

23 { 3 2 1 0 } (3 2 1 0)

So, an efficient way to derive the kth permutation of order n is to first find the factoradic of
k and then transform the factoradic into the corresponding permutation. The factoradic is
computed with

for (int j = 1; j <= n; ++j)
{
factoradic[n-j] = k % j;
k /= j;

}

On each pass through the loop, the remainder is calculated using the modulus (%) opera-
tor and stored in the rightmost available cell (n-j) of the working array. Then k is reduced by
division (k /= j), which, in effect, changes the base for the next pass by doing a reverse facto-
rial calculation. The trickiest part of the algorithm is the computation of the permutation that
corresponds to the factoradic. Take, for example, how the algorithm converts the factoradic

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS290

{ 1 2 3 2 1 1 0 }

into its corresponding permutation. You first create a temp[] array and copy into it the factoradic
values incremented by 1:

[2 3 4 3 2 2 1]

You seed the rightmost cell of the result data[] array with 1:

[? ? ? ? ? ? 1]

Now starting with the second value from the rightmost value (skip over the rightmost value,
which is always 1 because it came from the padded 0 value), you add it to the data[] array:

[? ? ? ? ? 2 1]

Now you scan through all the values to the right of the new value and increment by 1 all
values that are greater than or equal to the new value. Continuing this process generates:

[? ? ? ? 2 3 1]
[? ? ? 3 2 4 1]
[? ? 4 3 2 5 1]
[? 3 5 4 2 6 1]
[2 4 6 5 3 7 1]

Finally, you traverse the data[] array and decrement all values by 1 to put the resulting
permutation in 0-based form:

(1 3 5 4 2 6 0)

To summarize, if you want to generate the kth permutation of order n, first you compute
the factoradic of k, and then use that result to compute the corresponding permutation. In the
preceding example, you started with k = 1,047, computed its factoradic = { 1 2 3 2 1 1 0 },
and then computed the permutation (1 3 5 4 2 6 0). So permutation element [1047] of
order 7 is (1 3 5 4 2 6 0).

10.12 Applying a Mathematical Permutation to a
String Array
Problem
You want one or more permutations of a set of strings.

Design
Write a Permutation.ApplyTo() method that accepts an array of strings and returns a
rearranged array corresponding to the Permutation element context.

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 291

Solution
public string[] ApplyTo(string[] sa)
{
if (sa.Length != this.order)
throw new Exception("Bad array size in Permutation.ApplyTo()");

string[] result = new string[this.order];

for (long i = 0; i < result.Length; ++i)
result[i] = sa[this.data[i]];

return result;
}

Comments
In software test automation situations, you usually want to generate permutations of strings.
If you called the code in this solution such as

string[] names = new string[]{"Adam", "Barb", "Carl"};
Permutation p = new Permutation(3);
string[] rearrange = new string[3];
Console.WriteLine("All perms of the 3 are:\n");
while (p != null)
{
rearrange = p.ApplyTo(names);
Console.WriteLine(rearrange[0] + " " + rearrange[1] +

" " + rearrange[2]);
p = p.Successor();

}

p = new Permutation(3,4);
Console.WriteLine("\nJust element[4] is:\n");
rearrange = p.ApplyTo(names);
Console.WriteLine(rearrange[0] + " " + rearrange[1] +

" " + rearrange[2]);

the output would be

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS292

All perms of the 3 are:

Adam Barb Carl
Adam Carl Barb
Barb Adam Carl
Barb Carl Adam
Carl Adam Barb
Carl Barb Adam

Just element[4] is:

Carl Adam Barb

Suppose you have a Permutation object of order 5. The object will have a data array with
atoms from 0 to n-1 = 4 that represent a mathematical permutation, for instance { 0, 3, 4,
2, 1 }. The ApplyTo() method accepts a string array that contains n = 5 strings. That input
array will be indexed from 0 to n-1. The idea is to create an answer array of size n = 5 and store
into that answer array the string values that correspond to the atoms of the Permutation ele-
ment. For example, if you pass an array "animals" with "ant" at [0], "bat" at [1], "cow" at [2],
"dog" at [3], and "emu" at [4] to ApplyTo() where the Permutation object context has values
{ 0, 3, 4, 2, 1 } in its data array, then the ApplyTo() method will place "ant" into
result[0], "dog" into result[1], "emu" into result[2], "cow" into result[3], and "bat" into
result[4].

10.13 Example Program: ComboPerm
Listing 10-1 combines several of the techniques in this chapter to create a demonstration pro-
gram that shows how to manipulate combinations and permutations. The program creates a
string array with 13 values such as As and 8s to represent a shortened deck of playing cards
consisting only of spades (As = ace of spade, 8s = eight of spades, and so forth). The program
generates all five-card combinations of the shortened deck and generates all permutations of
one specific combination. When run, the program produces this output:

Combination & Permutation demonstration

There are 1287 combinations of 13 cards taken 5 at a time.

They are:
[0] As Ks Qs Js Ts
[1] As Ks Qs Js 9s
[2] As Ks Qs Js 8s

(much output deleted)

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 293

[1284] 7s 6s 4s 3s 2s
[1285] 7s 5s 4s 3s 2s
[1286] 6s 5s 4s 3s 2s

Just hand[1286] is:
6s 5s 4s 3s 2s

There are 120 permutations of this 5-card hand.

They are:
[0] 6s 5s 4s 3s 2s
[1] 6s 5s 4s 2s 3s
[2] 6s 5s 3s 4s 2s

(much output deleted)

[117] 2s 3s 5s 4s 6s
[118] 2s 3s 4s 6s 5s
[119] 2s 3s 4s 5s 6s

Done

Listing 10-1. Program ComboPerm

namespace ComboPerm
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("Combination & Permutation demonstration");
string[] shortDeck = new string[] { "As", "Ks", "Qs", "Js",

"Ts", "9s", "8s", "7s", "6s", "5s", "4s", "3s", "2s" };

long ct = Combination.Choose(13,5);
Console.WriteLine("\nThere are " + ct + " combinations of 13

cards taken 5 at a time.");
Console.WriteLine("\nThey are: ");

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS294

Combination c = new Combination(13,5);
string[] hand = new string[5];
int i = 0;
while (c != null)
{
hand = c.ApplyTo(shortDeck);
Console.WriteLine("[" + i + "] " + hand[0] + " " + hand[1]

+ " " + hand[2] + " " + hand[3] + " " + hand[4]);
c = c.Successor();
++i;

}

Console.WriteLine("\nJust hand[1286] is: ");
c = new Combination(13,5).Element(1286);
hand = c.ApplyTo(shortDeck);
Console.WriteLine(hand[0] + " " + hand[1] + " " + hand[2] +

" " + hand[3] + " " + hand[4]);

Console.WriteLine("\nThere are " + Permutation.Factorial(5) +
" permutations of this 5-card hand.");

Console.WriteLine("\nThey are:");
Permutation p = new Permutation(5);
string[] rearrangement = new string[5];
i = 0;
while (p != null)
{
rearrangement = p.ApplyTo(hand);
Console.WriteLine("[" + i + "] " + rearrangement[0] + " " +

rearrangement[1] + " " + rearrangement[2] + " " +
rearrangement[3] + " " + rearrangement[4]);

p = p.Successor();
++i;

}

Console.WriteLine("\nDone\n");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

} // Main()
} // Class1

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 295

public class Combination
{
private long n = 0;
private long k = 0;
private long[] data = null;

public Combination(long n, long k)
{
if (n < 0 || k < 0)
throw new Exception("Negative argument in constructor");

this.n = n;
this.k = k;
this.data = new long[k];
for (long i = 0; i < k; ++i)
this.data[i] = i;

}

public Combination(long n, long k, long[] a)
{
if (k != a.Length)
throw new Exception("Bad array size in constructor");

this.n = n;
this.k = k;
this.data = new long[k];
for (long i = 0; i < a.Length; ++i)
this.data[i] = a[i];

}

public static long Choose(long n, long k)
{
if (n < 0 || k < 0)
throw new Exception("Negative argument in Choose");

if (n < k)
return 0;

if (n == k)
return 1;

long delta, iMax;

if (k < n - k)
{
delta = n - k;
iMax = k;

}
else
{
delta = k;
iMax = n - k;

}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS296

long answer = delta + 1;
for (long i = 2; i <= iMax; ++i)
{
checked { answer = (answer * (delta + i)) / i; }

}

return answer;
}

public Combination Successor()
{
if (this.data[0] == this.n - this.k)
return null;

Combination ans = new Combination(this.n, this.k);

for (long i = 0; i < this.k; ++i)
ans.data[i] = this.data[i];

long x;
for (x = this.k - 1; x > 0 &&

ans.data[x] == this.n - this.k + x; --x);

++ans.data[x];

for (long j = x; j < this.k - 1; ++j)
ans.data[j+1] = ans.data[j] + 1;

return ans;
}

public Combination Element(long m)
{
long[] ans = new long[this.k];

long a = this.n;
long b = this.k;
long x = (Choose(this.n, this.k) - 1) - m;

for (long i = 0; i < this.k; ++i)
{
ans[i] = LargestV(a,b,x);
x = x - Choose(ans[i],b);
a = ans[i];
b = b-1;

}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 297

for (long i = 0; i < this.k; ++i)
{
ans[i] = (n-1) - ans[i];

}

return new Combination(this.n, this.k, ans);
}

private static long LargestV(long a, long b, long x)
{
long v = a - 1;

while (Choose(v,b) > x)
--v;

return v;
}

public string[] ApplyTo(string[] sa)
{
if (sa.Length != this.n)
throw new Exception("Bad array size in ApplyTo()");

string[] result = new string[this.k];

for (long i = 0; i < result.Length; ++i)
result[i] = sa[this.data[i]];

return result;
}

} // class Combination

public class Permutation
{
private int[] data = null;
private int order = 0;

public Permutation(int n)
{
this.data = new int[n];
for (int i = 0; i < n; ++i)
{
this.data[i] = i;

}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS298

this.order = n;
}

public Permutation Successor()
{
Permutation result = new Permutation(this.order);

int left, right;

for (int k = 0; k < result.order; ++k)
{
result.data[k] = this.data[k];

}

left = result.order - 2;
while ((result.data[left] > result.data[left+1]) &&

(left >= 1))
{
--left;

}
if ((left == 0) && (this.data[left] > this.data[left+1]))
return null;

right = result.order - 1;
while (result.data[left] > result.data[right])
{
--right;

}

int temp = result.data[left];
result.data[left] = result.data[right];
result.data[right] = temp;

int i = left + 1;
int j = result.order - 1;

while (i < j)
{
temp = result.data[i];
result.data[i++] = result.data[j];
result.data[j--] = temp;

}

return result;
}

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS 299

public static ulong Factorial(int n)
{
ulong answer = 1;
for (int i = 1; i <= n; ++i)
{
checked { answer *= (ulong)i; }

}
return answer;

}

public string[] ApplyTo(string[] sa)
{
if (sa.Length != this.order)
throw new Exception("Bad array size in ApplyTo()");

string[] result = new string[this.order];

for (long i = 0; i < result.Length; ++i)
result[i] = sa[this.data[i]];

return result;
}

} // class Permutation
} // ns

CHAPTER 10 ■ COMBINATIONS AND PERMUTATIONS300

ADO.NET Testing

11.0 Introduction
This chapter presents a variety of test automation techniques that involve ADO.NET technology.
ADO.NET is an enormous topic, but the most common development/testing situation is simple:
an application (either Windows form-based or Web-based) acts as a front-end interface to select,
insert, update, and delete data in a backend SQL database. In addition, test automation often
uses ADO.NET to read and write test data to a data store. So the title of this chapter means testing
Windows programs that use ADO.NET technology, and/or writing test automation that uses
ADO.NET, but does not mean testing ADO.NET technology itself.

Consider the demonstration Windows application shown in Figure 11-1. It is a simple but
representative program that accesses a SQL database of employee information using ADO.NET
technology. In particular, the application calls local method GetEmployees(), which accepts a
string, uses a SqlDataAdapter object to connect to and retrieve employee data where the
employee last name contains the input string, and returns a DataSet object containing the
employee data. The DataSet then acts as a data source for a DataGrid control.

Figure 11-1. Application under test that uses ADO.NET

301

C H A P T E R 1 1

■ ■ ■

Here is the key code for the application:

private void button1_Click(object sender, System.EventArgs e)
{
string filter = textBox1.Text.Trim();
DataSet ds = GetEmployees(filter);
if (ds != null)
dataGrid1.DataSource = ds;

}

where:

private DataSet GetEmployees(string s)
{
try
{
string connString = "Server=(local);Database=dbEmployees;

Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string select = "SELECT empID, empLast, empDOB FROM tblEmployees

WHERE empLast LIKE '%" + s + "%'";
SqlCommand cmd = new SqlCommand(select, sc);
sc.Open();

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(select, sc);
sda.Fill(ds);
sc.Close();
return ds;

}
catch
{
return null;

}
}

One important aspect of testing the application shown in Figure 11-1 is testing the appli-
cation’s ADO.NET plumbing. The screenshot shown in Figure 11-2 shows a sample run of a
test harness that tests the GetEmployee() method used by the application. The complete
source code for the test harness shown in Figure 11-2 is presented in Section 11.10.

The techniques in this chapter are closely related to those in Chapter 9 and Chapter 12.
Several of the sections in this chapter describe testing SQL stored procedures from within a
.NET environment (as opposed to the SQL environment techniques discussed in Chapter 9).
And there is a strong connection between XML and ADO.NET DataSet objects.

CHAPTER 11 ■ ADO.NET TESTING302

Figure 11-2. Sample test run

11.1 Determining a Pass/Fail Result When the
Expected Value Is a DataSet
Problem
You want to determine if a test case or a scenario passes or fails in a situation where the actual
and expected values are DataSet objects.

Design
Iterate through each row in the DataTable object in the actual DataSet object and build up a
string that represents the aggregate row data. Compare that string with an expected string. Alter-
natively you can compute a hash of the aggregate string and compare with an expected hash.

Solution
For example, suppose a SQL table of product information has a product ID like “001” and a
product description like “Widget.” The system under test uses a SqlDataAdapter object to read
data from the table into a DataSet object. Suppose that for a particular test case input, the
expected DataSet should contain three rows of data:

CHAPTER 11 ■ ADO.NET TESTING 303

001 Widget
002 Wadget
003 Wodget

Then an expected aggregate string is:

001Widget002Wadget003Wodget

and you can check whether the actual DataSet object contains expected row data with code
like this:

DataSet ds = new DataSet();
// run test, store actual result into DataSet ds

string expectedData = "001Widget002Wadget005Wodget";
string actualData = null;

DataTable dt = ds.Tables[0];
foreach (DataRow dr in dt.Rows)
{
foreach (DataColumn dc in dt.Columns)
{
actualData += dr[dc];

}
}

if (actualData == expectedData)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

You first retrieve the DataTable object in the actual DataSet, then iterate through the
DataRow collection, grabbing each column value, and appending onto a string variable.

Comments
This approach to determining a pass/fail result when the expected value is a DataSet object
is simple and effective. However, the technique does have three drawbacks. First, this solution
assumes the actual and expected DataSet objects contain only a single table. Second, this
solution only checks table data and does not check other DataSet components such as
Constraint objects and Relation objects. Third, this solution is not feasible if the actual and
expected table data is very large. If you need to compare the data in multiple DataTable
objects, you can refactor this solution into a helper method that compares the aggregate row
data with an expected string:

static bool IsEqual(DataTable dt, string s)
{
string aggregate = null;
foreach (DataRow dr in dt.Rows)

CHAPTER 11 ■ ADO.NET TESTING304

{
foreach (DataColumn dc in dt.Columns)
{
aggregate += dr[dc];

}
}
return (s == aggregate);

}

and instead of using a single aggregate string as an expected value, maintain an array of
expected strings. Then iterate over the DataTable collection. For example, suppose the system
under test should return a DataSet with two tables where the first table should hold:

001 Widget
004 Wudget
009 Wizmo

and the second table should hold:

005 Gizmo
007 Gazmo

then you can determine a pass/fail result like this:

string[] expecteds = new string[] { "001Widget004Wudget009Wizmo",
"005Gizmo007Gazmo" };

bool pass = true;

for (int i = 0; i < expecteds.Length; ++i)
{
if (!IsEqual(ds.Tables[i], expecteds[i]))
pass = false;

}

Now if the expected data is very large, instead of comparing an aggregate string variable
consisting of row data appended together, you can compute and compare hashes of the data.
Using this approach, the original solution becomes:

DataSet ds = new DataSet();

// run test, store actual result into ds

//string expectedData = "001Widget002Wadget005Wodget";
string expectedHash = "EC-5C-E5-E5-6D-1D-8C-DD-6E-2A-2B-6B-D3-CB-C1-28";
string actualData = null;
string actualHash = null;

CHAPTER 11 ■ ADO.NET TESTING 305

DataTable dt = ds.Tables[0];
foreach (DataRow dr in dt.Rows)
{
foreach (DataColumn dc in dt.Columns)
{
actualData += dr[dc];

}
}

MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider();
byte[] ba = md5.ComputeHash(Encoding.ASCII.GetBytes(actualData));
actualHash = BitConverter.ToString(ba);

if (actualHash == expectedHash)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

By comparing an MD5 (Message Digest version 5) hash of the expected table data, you
can avoid storing huge expected string data because all MD5 hashes are size 16 bytes. You can
loosely think of an MD5 hash as “one-way encryption”: a sequence of input bytes of any size
is mapped to a sequence of 16 bytes in such a way that even if you have the hashing algorithm,
you cannot determine the original input from the result hash. Furthermore, a slight change in
the input to a hash algorithm produces a huge change in the resulting output byte array. These
are very tricky concepts if you are new to hashing. The whole purpose of crypto-hashes (as
opposed to hash table–related hashes) is to produce a fingerprint, or a digest, of a sequence
of bytes. Because the hashing process is not reversible, hashes are used only for identification,
not encryption/decryption. Here we use the hashes to identify aggregate row data in a table
in a DataSet.

Because the ComputeHash() method returns a byte array, in a testing situation it is usually
convenient to convert the 16-byte array to a more friendly string form using the BitConverter
class. The BitConverter.ToString() method returns a string of hexadecimal digits separated
by hyphens.

The MD5 routines are part of the System.Security.Cryptography namespace. In addition
to the MD5 hashing class, the .NET Framework has an SHA1 (Secure Hash Algorithm version 1)
class. The only real difference between the two from a testing point of view is that SHA1 returns
a 20-byte array instead of a 16-byte array. SHA1 uses a different algorithm and is considered
more secure than MD5; but for testing purposes either hashing algorithm is fine.

11.2 Testing a Stored Procedure That Returns
a Value
Problem
You want to test a SQL stored procedure that explicitly returns an int value.

CHAPTER 11 ■ ADO.NET TESTING306

Design
Create a SqlCommand object and set its CommandType property to StoredProcedure. Add input
parameters and a return value using the Parameters.Add() method, and specify ReturnValue
for the ParameterDirection property. Call the stored procedure under test using the
SqlCommand.ExecuteScaler() method. Compare the actual return value with an expected
return value.

Solution
Suppose, for example, you want to test a stored procedure usp_PricierThan() that returns the
number of movies in a SQL table that have a price greater than an input argument:

create procedure usp_PricierThan
@price money
as
declare @ans int
select @ans = count(*) from tblPrices where movPrice > @price
return @ans
go

Notice that the stored procedure accepts an input parameter named @price and returns
an int value. You can test the stored procedure like this:

int expected = 2;
int actual;
string input = "30.00";

string connString = "Server=(local);Database=dbMovies;UID=moviesLogin;
PWD=secret";

SqlConnection sc = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("usp_PricierThan", sc);
cmd.CommandType = CommandType.StoredProcedure;

SqlParameter p1 = cmd.Parameters.Add("ret_val", SqlDbType.Int);
p1.Direction = ParameterDirection.ReturnValue;
SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money);
p2.Direction = ParameterDirection.Input;
p2.Value = input;
sc.Open();

cmd.ExecuteScalar();
actual = (int)cmd.Parameters["ret_val"].Value;
sc.Close();

if (actual == expected)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

CHAPTER 11 ■ ADO.NET TESTING 307

Comments
This solution begins by connecting to the SQL server that houses the stored procedure under
test, using SQL authentication mode. This assumes that the database contains a SQL login
named moviesLogin, with password “secret,” and that the login has execute permissions on the
stored procedure under test. If you want to connect using Windows authentication mode, you
can do so like this:

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

The SqlCommand() constructor is overloaded and one of the constructors accepts the name of
a stored procedure as its argument. However, you must also specify CommandType.StoredProcedure
so that the SqlCommand object knows it will be using a stored procedure rather than a text
command. The key to calling a stored procedure that returns an explicit int value is to use the
ParameterDirection.ReturnValue property. Before you write this statement you must call the
SqlCommand.Parameters.Add() method:

SqlParameter p1 = cmd.Parameters.Add("ret_val", SqlDbType.Int);

The Add() method returns a reference to a SqlParameter object to which you can specify
the ParameterDirection.ReturnValue property. The Add() method accepts a parameter name
as a string and a SqlDbType type. You can name the parameter anything you like but specifying
a string such as “ret_val” or “returnVal,” or something similar, is the most readable approach.
The SqlDbType enumeration will always be SqlDbType.Int because SQL stored procedures can
only return an int. (Here we mean an explicit return value using the return keyword rather
than an implicit return value via an out parameter, or a return of a SQL rowset, or as an effect
of the procedure code.) Unlike return value parameters, with input parameters, the name you
specify in Add() must exactly match that used in the stored procedure definition:

SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money);

Using anything other than @price would throw an exception. The Add() method accepts
an optional third argument, which is the size, in SQL terms, of the parameter. When using
fixed size data types such as SqlDbType.Int and SqlDbType.Money, you do not need to pass in
the size, but if you want to do so, the code will look like this:

SqlParameter p1 = cmd.Parameters.Add("ret_val", SqlDbType.Int, 4);
p1.Direction = ParameterDirection.ReturnValue;
SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money, 8);

because the SQL int type is size 4 and the SQL money type is size 8. The only time you should
definitely specify the size argument is when using variable size SQL types such as char and
varchar.

Notice that when you assign a value to an input parameter, you can pass a string variable
if you wish, rather than using some sort of cast:

CHAPTER 11 ■ ADO.NET TESTING308

string input = "30.00";

// other code
SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money, 8);

// other code

p2.Value = input;

Although we specify that input parameter p2 is type SqlDbType.Money, we can assign its value
using a string. This works because the SqlParameter.Value property accepts an object type which
is then implicitly cast to the appropriate SqlDbType type. In other words, we can write:

double input = 30.00;

// other code
SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money, 8);

// other code

p2.Value = input;

and the test automation will work exactly as before. Actually calling the stored procedure under
test uses a somewhat indirect mechanism:

cmd.ExecuteScalar();
actual = (int)cmd.Parameters["ret_val"].Value;

You call the SqlCommand.ExecuteScalar() method. This calls the stored procedure and stores
the return value into the SqlCommand.Parameters collection. Because of this mechanism, you
can call SqlCommand.ExecuteNonQuery(), or even SqlCommand.ExecuteReader(), and still get the
return value from the Parameters collection.

11.3 Testing a Stored Procedure That Returns
a Rowset
Problem
You want to test a stored procedure that returns a SQL rowset.

Design
Capture the rowset into a DataSet object, then compare this actual DataSet with an expected
DataSet. First, create a SqlCommand object and set its CommandType property to StoredProcedure.
Add input parameters using the Parameters.Add() method. Instead of calling the stored proce-
dure directly, instantiate a DataSet object and a SqlDataAdapter object. Pass the SqlCommand
object to the SqlDataAdapter object, then fill the DataSet with the rowset returned from the
stored procedure.

CHAPTER 11 ■ ADO.NET TESTING 309

Solution
For example, suppose you want to test a stored procedure usp_PricierThan() that returns a SQL
rowset containing information about movies that have a price greater than an input argument:

create procedure usp_PricierThan
@price money
as
select movID, movPrice from tblPrices
where movPrice > @price
go

Notice that the stored procedure returns a rowset via the SELECT statement. You can popu-
late a DataSet object with the returned rowset and test like this:

string input = "30.00";
string expectedHash = "EC-5C-E5-E5-6D-1D-8C-DD-6E-2A-2B-6B-D3-CB-C1-28";
string actualHash = null;

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("usp_PricierThan", sc);
cmd.CommandType = CommandType.StoredProcedure;
SqlParameter p = cmd.Parameters.Add("@price", SqlDbType.Money, 8);
p.Direction = ParameterDirection.Input;
p.Value = input;
sc.Open();

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(cmd);
sda.Fill(ds);

// compute actualHash of DataSet ds - see Section 11.1

if (actualHash == expectedHash)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

This code fills a DataSet with the rowset returned by the usp_PricierThan() stored proce-
dure. To test the stored procedure you will have to compare the actual rowset data with
expected rowset data. Techniques for doing this are explained in Section 11.1.

Comments
Many stored procedures call the SQL SELECT statement and return a rowset. To test such stored
procedures you can capture the rowset into a DataSet object. The easiest way to do this is to
use a SqlDataAdapter object as shown in the previous solution. Once the rowset data is in a
DataSet, you can examine it against an expected value using one of the techniques described

CHAPTER 11 ■ ADO.NET TESTING310

in Section 11.1. An alternative approach is to capture the rowset into a different in-memory
data structure, such as an ArrayList or an array of type string. Using this approach, the easi-
est way to capture the rowset data is to use a SqlDataReader object. For example, this code will
capture the rowset data returned by the usp_PricierThan() stored procedure into an ArrayList:

string connString = "Server=(local);Database=dbMovies;
UID=moviesLogin;PWD=secret";

SqlConnection sc = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("usp_PricierThan", sc);
cmd.CommandType = CommandType.StoredProcedure;
SqlParameter p = cmd.Parameters.Add("@price", SqlDbType.Money, 8);
p.Direction = ParameterDirection.Input;
p.Value = input;
sc.Open();

ArrayList list = new ArrayList();
string line;
SqlDataReader sdr = cmd.ExecuteReader();
while (sdr.Read() == true)
{
line = "";
line += sdr.GetString(0) + " " + sdr.GetDecimal(1);
list.Add(line);

}

Storing rowset return data into an ArrayList object instead of a DataSet object is some-
times useful in situations where you want to do processing of the return data before placing it
into memory, as, for example, when normalizing the rowset data into a standard form so you
can more easily compare the data with an expected value. After reading a row of data with
SqlDataReader() you can manipulate it and then store into an ArrayList object. Although data
in DataSet objects is in general easy to manipulate, sometimes an ArrayList is easier to use.

11.4 Testing a Stored Procedure That Returns a
Value into an out Parameter
Problem
You want to test a SQL stored procedure that returns a value into an out parameter.

Design
Create a SqlParameter object for the out parameter and specify ParameterDirect.Output for it.
Call the stored procedure using the SqlCommand.ExecuteScaler() method, and then fetch the
value of the out parameter from the SqlCommand.Parameters collection.

CHAPTER 11 ■ ADO.NET TESTING 311

Solution
Suppose a stored procedure under test, usp_GetPrice(), accepts a movie ID as an input
parameter and stores the price of the corresponding movie into an out parameter:

create procedure usp_GetPrice
@movID char(3),
@price money out
as
select @price = movPrice from tblPrices where movID = @movID
go

You can test the stored procedure like this:

decimal expected = 33.3300M;
decimal actual;
string input = "m03";

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand("usp_GetPrice", sc);
cmd.CommandType = CommandType.StoredProcedure;

SqlParameter p1 = cmd.Parameters.Add("@movID", SqlDbType.Char, 3);
p1.Direction = ParameterDirection.Input;
p1.Value = input;

SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money);
p2.Direction = ParameterDirection.Output;

sc.Open();
cmd.ExecuteScalar();

actual = (decimal)cmd.Parameters["@price"].Value;
sc.Close();

if (actual == expected)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

You set up the call to the stored procedure by preparing an input parameter using the
Parameters.Add() method, setting the ParameterDirection property to Input, and supplying
a value for the input parameter. You prepare the out parameter similarly except you specify
ParameterDirection.Output. Calling the ExecuteScalar() method will invoke the stored
procedure and place the value of the out parameter in the SqlCommand.Parameters collection
where you can retrieve it and compare it against an expected value.

CHAPTER 11 ■ ADO.NET TESTING312

Comments
Testing a stored procedure that returns a value into an out parameter is a very common task.
This is a consequence of the fact that SQL stored procedures can only return an int type using
the return keyword. So when a stored procedure must return a non-int type, or must return
more than one result, using an out parameter is the usual approach taken. In the solution
above, the stored procedure places a SqlDbType.Money value into the out parameter. This data
type maps to the C# decimal type. Type decimal literals are specified using a trailing “M” char-
acter.

The input argument is a SqlDbType.Char type. Because this type can have variable size, we
must be sure to pass the optional size argument to the Parameter.Add() method. In this case
we pass 3 because the input is a movie ID that is defined as char(3) in the movies table.

Stored procedures often place a return value in an out parameter and also explicitly
return a value using the return keyword. The explicit return value is typically used as an
error-check of some sort. For example, suppose you wish to test this stored procedure:

create procedure usp_GetPrice2
@movID char(3),
@price money out
as
declare @count int
select @price = movPrice from tblPrices where movID = @movID
select @count = count(*) from tblPrices where movID = @movID
return @count
go

The procedure works as before except that in addition to storing the price of a specified
movie into an out parameter, it also returns the number of rows with the specified movie ID.
(Note: This stored procedure code is particularly inefficient but makes the idea of a hybrid-
return approach clear.) The explicit return value can be used as an error-check; it should
always be 1 because a value of 0 means no movie was found and a value of 2 or more means
there are multiple movies with the same ID. In such situations you can either ignore the
explicit return value, which is not such a good idea, or you can test like this:

decimal expected = 33.3300M;
decimal actual;
int retval;
string input = "m03";

string connString = "Server=(local);Database=dbMovies;Trusted_Connection=Yes";
SqlConnection sc = new SqlConnection(connString);

SqlCommand cmd = new SqlCommand("usp_GetPrice2", sc);
cmd.CommandType = CommandType.StoredProcedure;

SqlParameter p1 = cmd.Parameters.Add("@movID", SqlDbType.Char, 3);
p1.Direction = ParameterDirection.Input;
p1.Value = input;

CHAPTER 11 ■ ADO.NET TESTING 313

SqlParameter p2 = cmd.Parameters.Add("@price", SqlDbType.Money);
p2.Direction = ParameterDirection.Output;

SqlParameter p3 = cmd.Parameters.Add("@ret_val", SqlDbType.Int);
p3.Direction = ParameterDirection.ReturnValue;

sc.Open();
cmd.ExecuteScalar();
actual = (decimal)cmd.Parameters["@price"].Value;
retval = (int)cmd.Parameters["@ret_val"].Value;
sc.Close();

if (actual == expected && retval == 1)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

As mentioned above, the SQL data type SqlDbType.Money maps to the C# type decimal. When
writing lightweight test automation in C# that involves ADO.NET, you will often have to convert
between a SQL data type and the corresponding C# data type. Table 11-1 lists most of the com-
mon SQL data types and their corresponding C# data types that you are likely to encounter.

Table 11-1. SQL Data Types and Corresponding C# Types

SQL Data Type Equivalent C# Data Type

Bit bool

Decimal, Money, SmallMoney decimal

DateTime, SmallDateTime DateTime()

Int int

SmallInt short

Real float

Float double

Char, NChar, NText, NVarchar, Text, VarChar string

TinyInt byte

Binary, Image, TimeStamp, VarBinary byte[]

Variant object

11.5 Testing a Stored Procedure That Does Not
Return a Value
Problem
You want to test a SQL stored procedure that performs an action but does not explicitly return
a value.

CHAPTER 11 ■ ADO.NET TESTING314

Design
Call the stored procedure under test and then check the database object affected by the call.

Solution
For example, suppose you wish to test this stored procedure that adds movie data into the
main table and the prices table:

create procedure usp_AddMovie
@movID char(3),
@movTitle varchar(35),
@movRunTime int,
@movPrice money
as
insert into tblMain values(@movID, @movTitle, @movRunTime)
insert into tblPrices values(@movID, @movPrice)
go

Notice that there is no explicit return value; the stored procedure affects database tables
tblMain and tblPrices by inserting data. To test such a stored procedure you must examine
the state of the affected objects (in this case the two tables) and compare with some expected
values. The simplest way to do so is to compute a hash of the affected objects. We start by set-
ting up the input arguments and expected values:

string inMovieID = "m06";
string inMovieTitle = "F is for Function";
int inMovieRunTime = 96;
decimal inMoviePrice = 66.6600M;

string expectedMainHash = "2F-63-51-A8-C6-E2-CC-C2-1C-1C-A0-A2-A5-41-D9-79";
string expectedPriceHash = "21-E5-23-85-C3-F7-02-9C-0D-F5-85-72-78-A0-52-91";

string actualMainHash = null;
string actualPriceHash = null;

Here we are going to add data for a movie with ID “m06,” title “F is for Function,” and so
forth. Of course, in a full test harness you would probably read these values in from external
test case storage. The expected hash values are MD5 hashes of all of the data in the main
movie table and the prices table after the usp_AddMovie() stored procedure has been called.
See Section 11.1 for a discussion of this process. Next we set up the SqlConnection to the target
database:

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString)
SqlCommand cmd = new SqlCommand("usp_AddMovie", sc);
cmd.CommandType = CommandType.StoredProcedure;

This process is explained in Section 11.2. The next step is to prepare the four input arguments:

CHAPTER 11 ■ ADO.NET TESTING 315

SqlParameter p1 = cmd.Parameters.Add("@movID", SqlDbType.Char, 3);
p1.Direction = ParameterDirection.Input;
p1.Value = inMovieID;

SqlParameter p2 = cmd.Parameters.Add("@movTitle", SqlDbType.VarChar, 35);
p2.Direction = ParameterDirection.Input;
p2.Value = inMovieTitle;

SqlParameter p3 = cmd.Parameters.Add("@movRunTime", SqlDbType.Int);
p3.Direction = ParameterDirection.Input;
p3.Value = inMovieRunTime;

SqlParameter p4 = cmd.Parameters.Add("@movPrice", SqlDbType.Money);
p4.Direction = ParameterDirection.Input;
p4.Value = inMoviePrice;

This process is discussed in detail in Sections 11.2 and 11.3. Next we call the stored proce-
dure under test:

sc.Open();
cmd.ExecuteScalar();

At this point, the stored procedure under test has been executed, so now we need to
determine a pass/fail result. We must examine the two affected tables, tblMain and tblPrices,
to verify that the new data was actually inserted. We do this by capturing all the data in the
tables into a DataSet object, iterating through each row and building up an aggregate result
string. We then compute an MD5 hash of the aggregate string and compare against an
expected value:

// get both tables into a DataSet
DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter("select * from tblMain", sc);
sda.Fill(ds, "tblMain");

sda = new SqlDataAdapter("select * from tblPrices", sc);
sda.Fill(ds, "tblPrices");

// get agregate row data for tblMain
string aggregateMain = null;
foreach (DataRow dr in ds.Tables["tblMain"].Rows)
{
foreach (DataColumn dc in ds.Tables["tblMain"].Columns)
{
aggregateMain += dr[dc];

}
}

CHAPTER 11 ■ ADO.NET TESTING316

// compute hash for tblMain
MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider();
byte[] ba = md5.ComputeHash(Encoding.ASCII.GetBytes(aggregateMain));
actualMainHash = BitConverter.ToString(ba);

// get agregate row data for tblPrices
string aggregatePrices = null;
foreach (DataRow dr in ds.Tables["tblPrices"].Rows)
{
foreach (DataColumn dc in ds.Tables["tblPrices"].Columns)
{
aggregatePrices += dr[dc];

}
}

// compute hash for tblPrices
ba = md5.ComputeHash(Encoding.ASCII.GetBytes(aggregatePrices));
actualPriceHash = BitConverter.ToString(ba);

// determine pass/fail
if (actualMainHash == expectedMainHash &&

actualPriceHash == expectedPriceHash)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

Comments
Using MD5 or SHA1 hashes is an effective way to determine a pass/fail result for stored proce-
dures that do not return a value. An alternative approach is to store an in-memory facsimile of
the expected result and compare with an in-memory facsimile of the actual result. This will
most often be facsimiles of a SQL data table. A particularly easy way to do this in a .NET envi-
ronment is to store the expected facsimile as an XML file. Then you can read the XML
facsimile into a DataSet object in memory. Next you can call the stored procedure under test.
Then you read the affected table into a second DataSet object. You determine a pass/fail result
by comparing the values in the two DataSet objects. The techniques in Chapter 12 will show
several ways to read XML into a DataSet object, and Section 11.7 demonstrates how to com-
pare two DataSet objects. In pseudo-code, the technique looks like this:

DataSet ds1 = new DataSet();
// read XML facsimile of an expected table result into ds1

DataSet ds2 = new DataSet();
// call stored procedure under test
// read affected table (actual table result) into ds2

// compare ds1 and ds2 to determine pass/fail

CHAPTER 11 ■ ADO.NET TESTING 317

11.6 Testing Systems That Access Data Without
Using a Stored Procedure
Problem
You want to test an application that accesses a SQL database directly rather than through a
stored procedure.

Design
Use the same techniques as those used when testing an application that accesses a SQL database
through a stored procedure, except access the backend database in the same way used by the
application under test.

Solution
Suppose an application under test contains this code:

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string command = "INSERT INTO tblMain VALUES('m07', 'G is for GUI', 97)";
SqlCommand cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;
sc.Open();
int rowsAffected = cmd.ExecuteNonQuery();
Console.WriteLine("Affected = " + rowsAffected + " rows");
sc.Close();

Notice that instead of using a stored procedure to insert data into the application backend
database, the application calls a SQL INSERT command directly. There is no explicit return value
to test against; the application affects a database table. This situation corresponds to Section 11.5,
which explains how to test a stored procedure that does not return a value. Your test code will
resemble this:

string inMovieID = "m07";
string inMovieTitle = "G is for GUI";
int inMovieRunTime = 97;

string expectedHash = "4A-65-6E-6E-69-66-65-72-20-4A-69-6E-68-6F-6E-67";
string actualHash;

CHAPTER 11 ■ ADO.NET TESTING318

string connString = "Server=(local);Database=dbMovies;Trusted_Connection=Yes";
SqlConnection sc = new SqlConnection(connString);
string command = "INSERT INTO tblMain VALUES('" + inMovieID +

"', '" + inMovieTitle + "'," + inMovieRunTime + ")";
SqlCommand cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;
sc.Open();
cmd.ExecuteNonQuery();
sc.Close();

// compute actualHash of tblMain here - see Section 11.5

if (actualHash == expectedHash)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

Comments
Many systems under test that access an underlying SQL database do so without using stored
procedures. Although access through a stored procedure provides more flexibility, better per-
formance, and better security, it is common for very simple data access needs to just call a
SQL command directly. Or you may be testing a new application that accesses a legacy back-
end database system where there are no stored procedures. The techniques used to test stored
procedures can be used when the application under test issues SQL commands directly. Here
is a second example. Suppose an application under test fills a DataSet object:

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string command = "SELECT * FROM tblMain WHERE movTitle > 'M'";
sc.Open();

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(command, sc);
sda.Fill(ds);
sc.Close();

The application calls an explicit SELECT statement rather than calling a stored procedure.
The result is a SQL rowset. This situation corresponds to Section 11.3 where we examined test-
ing a stored procedure that returns a SQL rowset. Your test code will look like this:

string input = "M";
string expectedHash = "4A-65-6E-6E-69-66-65-72-20-4A-69-6E-68-6F-6E-67";
string actualHash;

CHAPTER 11 ■ ADO.NET TESTING 319

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string command = "SELECT * FROM tblMain WHERE movTitle > '" +

input + "'";
sc.Open();

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(command, sc);
sda.Fill(ds);
sc.Close();

// compute actualHash of ds here - see Section 11.1

if (actualHash == expectedHash)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

One final example should make the idea of this technique clear. Suppose an application
under test inserts data into an ArrayList object using a SqlDataReader object like this:

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string command = "SELECT * FROM tblPrices WHERE movPrice < 40.00";
SqlCommand cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;
sc.Open();

SqlDataReader sdr = cmd.ExecuteReader();

ArrayList list = new ArrayList();

while (sdr.Read() == true)
{
string s = sdr.GetString(0);
s += sdr.GetDecimal(1).ToString();
list.Add(s);

}

sc.Close();

Then, using the key idea of this section, your test automation code will look something
like this:

string input = "40.00";
string[] expecteds = new string[] { "m01 11.1100", "m03 33.3300" };

CHAPTER 11 ■ ADO.NET TESTING320

string connString = "Server=(local);Database=dbMovies;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string command = "SELECT * FROM tblPrices WHERE movPrice < " + input;
SqlCommand cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;
sc.Open();

SqlDataReader sdr = cmd.ExecuteReader();
ArrayList list = new ArrayList();

while (sdr.Read() == true)
{
string s = sdr.GetString(0);
s += " " + sdr.GetDecimal(1).ToString();
list.Add(s);

}
sc.Close();

// determine pass/fail
bool pass = true;
for (int i = 0; i < expecteds.Length; ++i)
{
string s = (string)list[i];
if (s != expecteds[i])
pass = false;

}

if (pass == true)
Console.WriteLine("Pass");

else
Console.WriteLine("FAIL");

Here we write code that manipulates the state of the system under test just like the appli-
cation does. In the previous example, the application uses a SqlDataReader object to store
rowset data into an ArrayList object, so our test code does the same. Exactly how you check
an expected value in order to determine a pass/fail result will depend on the system under
test. Here the expected result is an ArrayList that contains the string “m01 11.1100” at index
position 0, and the string “m03 33.3300” at index position 1. The test code declares a string
array, expecteds, with these two values, and compares each string in the expecteds array with
the corresponding string in the DataSet result.

11.7 Comparing Two DataSet Objects for Equality
Problem
You want to compare the data in two DataSet objects for equality.

CHAPTER 11 ■ ADO.NET TESTING 321

Design
Write an IsEqual() helper method that does a string comparison of each row of each table in
the two DataSet objects.

Solution

static bool IsEqual(DataTable dt1, DataTable dt2)
{
if (dt1.Rows.Count != dt2.Rows.Count)
return false;

if (dt1.Columns.Count != dt2.Columns.Count)
return false;

for (int r = 0; r < dt1.Rows.Count; ++r)
{
for (int c = 0; c < dt1.Columns.Count; ++c)
{
if (dt1.Rows[r][c].ToString() != dt2.Rows[r][c].ToString())
return false;

}
}
return true;

}

static bool IsEqual(DataSet ds1, DataSet ds2)
{
if (ds1.Tables.Count != ds2.Tables.Count)
return false;

for (int t = 0; t < ds1.Tables.Count; ++t)
{
if (!IsEqual(ds1.Tables[t], ds2.Tables[t]))
return false;

}
return true;

}

The first IsEqual() method compares two DataTable objects and returns true if each of
the tables has the same string data in each corresponding row and column location. The first
two checks in IsEqual() determine whether the two tables being compared have the same
number of rows and columns. Once past those criteria, we can imagine the two tables as being
matrices with rows and columns, and then do a cell-by-cell comparison of the string represen-
tation in each corresponding cell. This approach assumes that the column values can be
meaningfully mapped to type string.

CHAPTER 11 ■ ADO.NET TESTING322

The second IsEqual() method compares two DataSet objects by calling the first helper
method. Notice that this approach does not do a full comparison of the DataSet objects; it
checks the data in the tables but does not check things like Constraint objects, column
names, and so on. You may need to customize this code to suit your particular definition of
DataSet equality.

Comments
When testing applications that use ADO.NET technology, it is very common to have to com-
pare two DataSet objects for equality in order to determine a pass/fail result. The important
design decision you must make when comparing two DataSet objects is what exactly consti-
tutes equality in your particular testing situation. DataSet objects are fairly complex. Doing a
full comparison of two DataSet objects is not simple but it can be done. The real problem with
a full comparison of all the attributes in two DataSet objects is storing meaningful test case
expected value data. If you are going to do a complete comparison of an actual DataSet
returned by a call to the system under test with an expected DataSet, your test case expected
value data could be huge. Comparing just the string representations of the data in two DataSet
objects is usually a reasonable approach in lightweight test automation scenarios.

An alternative approach for comparing two DataSet objects is to just compare their
respective sizes and a small subset of the data in each table. For example:

static bool IsEqual2(DataTable dt1, DataTable dt2)
{
if (dt1.Rows.Count != dt2.Rows.Count)
return false;

if (dt1.Columns.Count != dt2.Columns.Count)
return false;

int col = 0;
for (int r = 0; r < dt1.Rows.Count; ++r)
if (dt1.Rows[r][col].ToString() != dt2.Rows[r][col].ToString())
return false;

return true;
}

This helper method examines only the values in the first column of each row of the two
DataSet objects being compared. You might want to consider such an approach when the
DataSet objects you are comparing are very large and you have many thousands of test cases.
Obviously using an approach like this makes the determination of a pass/fail result somewhat
probabilistic. However, all software testing is probabilistic to some extent, and in a lightweight
testing environment, practicality often trumps theory.

CHAPTER 11 ■ ADO.NET TESTING 323

11.8 Reading Test Case Data from a Text File into
a SQL Table
Problem
You want to read test case data from a text file and store into a SQL table using ADO.NET tech-
nology.

Design
Use a StreamReader object to iterate through the text file you wish to store into the SQL table.
Parse the text file and load the parsed tokens into the SQL table using a SqlCommand object with
command text containing a SQL INSERT statement.

Solution
For example, suppose you have a SQL table of test case data defined as:

create table tblTestCases
(
caseID char(5) primary key,
input varchar(35) not null,
expected int not null
)
go

and you have a tab-delimited text file containing this data:

00001 foobar 1
00002 bizbaz 2
00003 wixtel 3

The data fields are a test case ID, a test case input, and an expected result. You want to
store the text data into the SQL table. This code will do that:

FileStream fs = new FileStream("..\\..\\TestCases.txt", FileMode.Open);
StreamReader sr = new StreamReader(fs);

string line;
string[] tokens;
string command;

string connString = "Server=(local);Database=dbTestData;
UID=testDataLogin;PWD=thepwd";

SqlConnection sc = new SqlConnection(connString);
sc.Open();
SqlCommand cmd = null;

CHAPTER 11 ■ ADO.NET TESTING324

while ((line = sr.ReadLine()) != null)
{
tokens = line.Split('\t');
command = "INSERT INTO tblTestCases VALUES('" + tokens[0] + "', '" +

tokens[1] + "', " + tokens[2] + ")";
cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;

cmd.ExecuteNonQuery();
}

sc.Close();
sr.Close();
fs.Close();

The only tricky issue here is creating a new INSERT statement during each pass through
the loop that iterates through the text file.

Comments
As with most ADO.NET techniques, there are a huge number of alternatives available to you.
The solution above is particularly suitable when the structure of the text file you are importing
from matches the structure of the SQL table you are storing to. Notice that in the previous
example, the number and order of the data fields (test case ID, test case input, expected result)
in the text file match the SQL table. This solution can be easily modified for situations where
the number and order of fields do not match. For example, suppose the text file you are read-
ing from looks like this:

00001 extradata 1 foobar extradata
00002 junkydata 2 bizbaz junkydata
00003 donotneed 3 wixtel donotneed

The text file has two extra fields, and the order of the fields does not match the SQL table.
You just create a second string array to hold the fields you want, copy the needed fields into
that array in the correct order, and pass the second array values to the INSERT statement:

FileStream fs = new FileStream("..\\..\\TestCases2.txt", FileMode.Open);
StreamReader sr = new StreamReader(fs);

string line;
string[] tokens;
string[] info;
string command;

CHAPTER 11 ■ ADO.NET TESTING 325

string connString = "Server=(local);Database=dbTestData;
UID=testDataLogin;PWD=thepwd";

SqlConnection sc = new SqlConnection(connString);
sc.Open();
SqlCommand cmd = null;

while ((line = sr.ReadLine()) != null)
{
tokens = line.Split('\t'); // parse text file
info = new string[3];
info[0] = tokens[0]; // test case ID
info[1] = tokens[3]; // input
info[2] = tokens[2]; // expected

command = "INSERT INTO tblTestCases VALUES('" + info[0] +
"', '" + info[1] + "', " + info[2] + ")";

cmd = new SqlCommand(command, sc);
cmd.CommandType = CommandType.Text;

cmd.ExecuteNonQuery();
}

sc.Close();
sr.Close();
fs.Close();

A significantly different approach to reading a text file into a SQL table is to read the text
file data into a DataSet object and then emit the DataSet to the destination SQL table using a
SqlDataAdapter.Update() method. For example:

FileStream fs = new FileStream("..\\..\\TestCases.txt", FileMode.Open);
StreamReader sr = new StreamReader(fs);

DataSet ds = new DataSet();
ds.Tables.Add("tblTestCases");
ds.Tables["tblTestCases"].Columns.Add("caseID");
ds.Tables["tblTestCases"].Columns.Add("input");
ds.Tables["tblTestCases"].Columns.Add("expected");

string line;
string[] tokens;

while ((line = sr.ReadLine()) != null)
{
tokens = line.Split('\t');
ds.Tables["tblTestCases"].Rows.Add(tokens);

}

CHAPTER 11 ■ ADO.NET TESTING326

sr.Close();
fs.Close();

string connString = "Server=(local);Database=dbTestData;
UID=testDataLogin;PWD=thepwd";

SqlConnection sc = new SqlConnection(connString);
SqlDataAdapter sda = new SqlDataAdapter();

SqlCommand cmd = null;
cmd = new SqlCommand("insert into tblTestCases (caseID, input, expected)

values(@caseID, @input, @expected)", sc);
cmd.Parameters.Add("@caseID", SqlDbType.Char, 5, "caseID");
cmd.Parameters.Add("@input", SqlDbType.VarChar, 35, "input");
cmd.Parameters.Add("@expected", SqlDbType.Int, 4, "expected");
sda.InsertCommand = cmd;

sda.Update(ds, "tblTestCases");
sc.Close();

This approach is useful when you need to do some in-memory processing of the text file
data before you send it to the SQL store. With the text data in a DataSet object you can easily
process it. We start by creating a DataSet object and then make a DataTable object to hold data
from the text file. Here we give the DataTable and its columns the same names as the corre-
sponding objects in the destination SQL table. This is not required but makes our automation
code much more readable. After the DataTable is ready, we prepare a SqlDataAdapter object
and a SqlCommand object. When we call the SqlDataAdapter.Update() method, it will invoke the
prepared InsertCommand.

11.9 Reading Test Case Data from a SQL Table into
a Text File
Problem
You want to read test case data from a SQL table and store into a text file using ADO.NET
technology.

Design
Use a SqlDataReader object to iterate through each row of the SQL table. For each row, parse
the SQL column using the GetString() method if the SQL data is char or varchar, or use
another appropriate GetX() method for different types. Write the data using the WriteLine()
method of a StreamWriter object.

Solution
Suppose, for example, you have a SQL table that contains test results defined as:

CHAPTER 11 ■ ADO.NET TESTING 327

create table tblTestResults
(
caseID char(5) null,
result char(4) null,
whenRun datetime null
)
go

and you want to read all the data in the table and write it to a tab-delimited text file. Here is
one solution:

string connString = "Server=(local);Database=dbTestData;
UID=testDataLogin;PWD=thepwd";

SqlConnection sc = new SqlConnection(connString);
string select = "SELECT caseID, result, whenRun FROM tblTestResults";
SqlCommand cmd = new SqlCommand(select, sc);
sc.Open();
SqlDataReader sdr = cmd.ExecuteReader();

FileStream fs = new FileStream("..\\..\\TestResults.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs);

while (sdr.Read() == true)
{
sw.WriteLine(sdr.GetString(0) + "\t" +

sdr.GetString(1) + "\t" +
sdr.GetSqlDateTime(2).ToString());

}

sw.Close();
fs.Close();
sdr.Close();
sc.Close();

This approach is simple and effective. The SqlCommand.ExecuteReader() method returns a
SqlDataReader object that can be used to read through the source SQL table one row at a time.
For each column you must use the appropriate GetX() method: Use GetString() for char,
varchar, and similar type columns. Use GetSqlDateTime() for datetime columns, and so on.

Comments
This solution can be easily modified if the structure of the source SQL table does not match
the structure of the destination text file. You simply read each data column value in the SQL
table, then build up an output string using string concatenation, or the StringBuilder class if
performance is a major issue.

A significant alternative approach to reading a SQL table and storing into a text file is to
read the entire SQL table into memory using a SqlDataAdapter, and then iterate through the
DataTable object one row at a time, writing to the destination text file. Here is an example of
this approach:

CHAPTER 11 ■ ADO.NET TESTING328

string connString = "Server=(local);Database=dbTestData;
UID=testDataLogin;PWD=thepwd";

SqlConnection sc = new SqlConnection(connString);
string select = "SELECT caseID, result, whenRun FROM tblTestResults";
SqlCommand cmd = new SqlCommand(select, sc);
sc.Open();

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(select, sc);
sda.Fill(ds);

FileStream fs = new FileStream("..\\..\\TestResults.txt", FileMode.Create);
StreamWriter sw = new StreamWriter(fs);

for (int i = 0; i < ds.Tables["Table"].Rows.Count; ++i)
{
string line = "";
for (int j = 0; j < ds.Tables["Table"].Columns.Count-1; ++j)
{
line += ds.Tables["Table"].Rows[i][j] + "\t";
}
line += ds.Tables["Table"].Rows[i][ds.Tables["Table"].Columns.Count-1];
sw.WriteLine(line);

}

sw.Close();
fs.Close();
sc.Close();

This technique is useful if you want to perform some processing of the SQL data before
you send it to the destination text file. With the SQL data in a DataSet object, you can easily
manipulate it.

You build up a string representing a line of the text file by fetching each column value and
appending to a string, then add a tab character as a delimiter. Notice one mildly annoying
detail: to avoid having a tab character at the end of each line of the text file, for each row, you
have to process all but the last column of SQL data, and then append the last column without
adding a tab character.

11.10 Example Program: ADOdotNETtest
The program in Listing 11-1 combines several of the techniques in this chapter to create a test
harness that verifies an application method that uses ADO.NET technology. The application
under test is the demonstration program shown in Figure 11-1 in the introduction section of
this chapter. The method under test, GetEmployees(), accepts a string, then accesses a back-
end database, dbEmployees, using ADO.NET, and fills and returns a DataSet object that is then
displayed by the application via a DataGrid control.

CHAPTER 11 ■ ADO.NET TESTING 329

Listing 11-1. Program ADOdotNETtest

using System;
using System.Data;
using System.Data.SqlClient;

namespace ADOdotNETtest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin test run\n");
Console.WriteLine("\nADO.NET method under test = GetEmployees()");
Console.WriteLine("Test case data source = dbTestData..tblTestCases\n");

string connString = "Server=(local);Database=dbTestData;
Trusted_Connection=Yes";

SqlConnection sc = new SqlConnection(connString);
string select = "SELECT caseID, input, expected FROM tblTestCases";
SqlCommand cmd = new SqlCommand(select, sc);
sc.Open();
SqlDataReader sdr = cmd.ExecuteReader();

string caseID, input, expected, actual;
DataSet ds;

while (sdr.Read() == true) // main test loop
{
Console.WriteLine("===========================");
caseID = sdr.GetString(0);
input = sdr.GetString(1);
expected = sdr.GetString(2); // aggregate string
if (expected == "")
expected = null;

actual = null;

ds = GetEmployees(input); // call method under test

// build aggregate string of actual DataSet
foreach (DataRow dr in ds.Tables[0].Rows)

CHAPTER 11 ■ ADO.NET TESTING330

{
foreach (DataColumn dc in ds.Tables[0].Columns)
{
actual += dr[dc];

}
}

Console.WriteLine("Case ID = " + caseID);
Console.WriteLine("Input = '" + input + "'");
Console.WriteLine("Expected DataSet = ");
Console.WriteLine(" " + expected);
Console.WriteLine("Actual DataSet = ");
Console.WriteLine(" " + actual);

if (actual == expected)
Console.WriteLine("Result = Pass");

else
Console.WriteLine("Result = FAIL");

}
Console.WriteLine("===========================");

sdr.Close();
sc.Close();

Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}
} // Main()

private static DataSet GetEmployees(string s) // copy from App under test
{
try
{
string connString = "Server=(local);Database=dbEmployees;

Trusted_Connection=Yes";
SqlConnection sc = new SqlConnection(connString);
string select = "SELECT empID, empLast, empDOB

FROM tblEmployees
WHERE empLast LIKE '%" + s + "%'";

SqlCommand cmd = new SqlCommand(select, sc);
sc.Open();

CHAPTER 11 ■ ADO.NET TESTING 331

DataSet ds = new DataSet();
SqlDataAdapter sda = new SqlDataAdapter(select, sc);
sda.Fill(ds);
sc.Close();
return ds;

}
catch
{
return null;

}
}

} // class
} // ns

In situations like this, where significant functionality is embedded directly into the appli-
cation code (as opposed to a modular approach where the functionality is placed in a code
library), you have no choice but to make an exact replica of the application functionality for
use by your test harness.

The test harness uses ADO.NET technology to read test case data from a SQL table in
database dbTestData. The harness displays results to the command shell, but can be easily
modified to save results to a SQL table. When run, the output will be as shown in Figure 11-2
in the introduction section of this chapter. The script that creates the underlying database
under test, dbEmployees, is presented in Listing 11-2. The script that creates the test case
data, dbTestData, is presented in Listing 11-3.

Listing 11-2. Script to Create Underlying Database Under Test

-- makeDbEmployees.sql
use master
go

if exists (select * from sysdatabases where name='dbEmployees')
drop database dbEmployees
go

create database dbEmployees
go

use dbEmployees
go

create table tblEmployees
(
empID char(3) primary key,
empLast varchar(35) not null,
empDOB datetime not null
)
go

CHAPTER 11 ■ ADO.NET TESTING332

insert into tblEmployees
values('111', 'Adams', '6/15/1981')
insert into tblEmployees
values('222', 'Baker', '6/15/1982')
insert into tblEmployees
values('333', 'Chung', '6/15/1983')
insert into tblEmployees
values('444', 'Donne', '6/15/1984')
go

-- end script

Listing 11-3. Script to Create TestCase Data

-- makeDbTestData.sql
use master
go

if exists (select * from sysdatabases where name='dbTestData')
drop database dbTestData
go

create database dbTestData
go

use dbTestData
go

create table tblTestCases
(
caseID char(4) primary key,
input varchar(35) not null,
expected varchar(250) not null
)
go

insert into tblTestCases
values('0001', 'Adams', '111Adams6/15/1981 12:00:00 AM')
insert into tblTestCases
values('0002', 'A', '111Adams6/15/1981 12:00:00 AM222Baker6/15/1982 12:00:00 AM')
insert into tblTestCases
values('0003', 'Z', '')

-- end script

CHAPTER 11 ■ ADO.NET TESTING 333

XML Testing

12.0 Introduction
This chapter presents a variety of test automation techniques that involve XML data. The most
common XML-related tasks in test automation situations are reading/parsing test case data
that has been stored as XML, writing test results to external storage as XML, programmatically
modifying XML files to match a new test harness or output format, validating XML files, and
comparing two XML files for equality to determine a test case pass/fail result. The screenshot
in Figure 12-1 demonstrates XML validation and parsing. The program that generated the out-
put shown in Figure 12-1 is presented in Section 12.12.

Figure 12-1. Validating and parsing an XML file
335

C H A P T E R 1 2

■ ■ ■

Most of the example code in this chapter will use a slightly expanded version of the file
shown in Figure 12-1:

<?xml version="1.0" encoding="utf-8" ?>
<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

<testcase id="002" bvt="no">
<inputs>
<arg1>blue</arg1>
<arg2>yellow</arg2>

</inputs>
<expected>green</expected>

</testcase>

<testcase id="003" bvt="yes">
<inputs>
<arg1>white</arg1>
<arg2>black</arg2>

</inputs>
<expected>gray</expected>

</testcase>

</suite>

The preceding example is a dummy XML file of hypothetical test case data. Notice that
XML data is stored as either an element (such as <arg1>red</arg1>) or as an attribute in an
element (such as <testcase id="001" bvt="yes">). Dealing with elements and attributes, and
with a nested/hierarchical structure, are key tasks when working with XML. The five parsing
techniques in this chapter (Sections 12.1 through 12.5) all parse file testCases.xml into a test
case Suite object defined as:

namespace Utility
{
public class TestCase
{
public string id;
public string bvt;
public string arg1;
public string arg2;
public string expected;

}

CHAPTER 12 ■ XML TESTING336

public class Suite
{
public ArrayList cases = new ArrayList();
public void Display()
{
foreach (TestCase tc in cases)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.arg1 + " ");
Console.WriteLine(tc.arg2 + " " + tc.expected);

}
}

} // class Suite
} // ns Utility

The TestCase class represents a single test case and the Suite class represents a collection of
TestCase objects. Encapsulating test case data in this way instead of using individual variables
usually makes your test harnesses easier to maintain.

12.1 Parsing XML Using XmlTextReader
Problem
You want to parse an XML file using the XmlTextReader class.

Design
Iterate through each node of the XML file using the Read() and ReadElementString() methods
of the XmlTextReader class. Use the GetAttribute() method to fetch attribute data, and use the
return value from ReadElementString() to fetch element data.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite col-
lection of TestCase objects (also shown in the introduction):

Console.WriteLine("Start\n");

Utility.Suite suite = new Utility.Suite();

XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
xtr.WhitespaceHandling = WhitespaceHandling.None;
xtr.Read(); // read the XML declaration node, advance to <suite> tag

while (!xtr.EOF) //load loop
{
if (xtr.Name == "suite" && !xtr.IsStartElement()) break;

CHAPTER 12 ■ XML TESTING 337

while (xtr.Name != "testcase" || !xtr.IsStartElement())
xtr.Read(); // advance to <testcase> tag

Utility.TestCase tc = new Utility.TestCase();
tc.id = xtr.GetAttribute("id");
tc.bvt = xtr.GetAttribute("bvt");
xtr.Read(); // advance to <inputs> tag
xtr.Read(); // advance to <arg1> tag
tc.arg1 = xtr.ReadElementString("arg1"); // consumes the </arg1> tag
tc.arg2 = xtr.ReadElementString("arg2"); // consumes the </arg2> tag
xtr.Read(); // advance to <expected> tag
tc.expected = xtr.ReadElementString("expected"); // consumes </expected> tag
// we are now at an </testcase> tag
suite.cases.Add(tc);
xtr.Read(); // and now either at <testcase> tag or </suite> tag

} // load loop

xtr.Close();
suite.Display(); // show the suite of TestCases

Console.WriteLine("\nDone");

When run, this solution will produce this output:

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

The XML file has been parsed into its individual data pieces which can then be used as
needed, typically as input to a method under test.

The key to understanding this solution is to understand the Read() and ReadElementString()
methods of XmlTextReader. To an XmlTextReader object, an XML file is a sequence of nodes. For
example:

<?xml version="1.0" ?>
<alpha id="001">
<beta>123</beta>

</alpha>

There are six nodes, without counting whitespace: the XML declaration, <alpha id="001">,
<beta>, 123, </beta>, and </alpha>. Notice that attributes (id="001") are not considered XML
nodes by an XmlTextReader object.

CHAPTER 12 ■ XML TESTING338

The Read() method advances one node at a time. Unlike many Read() methods in other
classes, the System.XmlTextReader.Read() method does not return significant data. The
ReadElementString() method on the other hand returns the data between begin and end tags
of its argument and advances to the next node after the end tag. Because XML attributes are
not nodes, we have to extract attribute data using the GetAttribute() method. The statement:

xtr.WhitespaceHandling = WhitespaceHandling.None;

is important. It instructs the XmlTextReader object to ignore whitespace characters such as
blanks, tabs, and newlines. Without this statement you would have to Read() over all white-
space, which is very troublesome and error-prone.

Comments
The main loop in this solution:

while (!xtr.EOF) //load loop
{
if (xtr.Name == "suite" && !xtr.IsStartElement()) break;
// etc.

}

is not particularly elegant but is more readable than alternatives. The loop exits when at EOF or
a </suite> tag.

When marching through an XML file, you can either Read() your way one node at a time,
or get a bit more sophisticated with code such as this:

while (xtr.Name != "testcase" || !xtr.IsStartElement())
xtr.Read(); // advance to <testcase> tag

The choice of technique you use is mostly a matter of style. Parsing an XML file with
XmlTextReader has a traditional, pre-.NET feel to it. You walk sequentially through the file
using Read(), and extract data with ReadElementString() and GetAttribute(). Using
XmlTextReader is straightforward and effective and is appropriate when the structure of the
XML file being parsed is relatively simple and consistent, and when you only need to process
the XML in a forward-only manner. In general, using XmlTextReader is the fastest technique
when compared with the other parsing techniques in this chapter. Notice that because the
logic in this solution depends quite a bit on the XML file having a consistent structure, using
XmlTextReader is usually not a good idea if your XML file has an inconsistent structure. Com-
pared to other parsing techniques in this chapter, XmlTextReader operates at a lower level of
abstraction, meaning it is up to you as a programmer to keep track of where you are in the
XML file and Read() correctly.

12.2 Parsing XML Using XmlDocument
Problem
You want to parse an XML file using the XmlDocument class.

CHAPTER 12 ■ XML TESTING 339

Design
Read the entire XML file into memory using the XmlDocument.Load() method. Fetch node
collections using the SelectNodes() method then use the Attributes.GetNamedItem() and
SelectSingleNode() methods combined with the InnerText property to get the values of
attributes and elements.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

Utility.Suite suite = new Utility.Suite();

XmlDocument xd = new XmlDocument();
xd.Load("..\\..\\testCases.xml");

// get all <testcase> nodes
XmlNodeList nodelist = xd.SelectNodes("/suite/testcase");
foreach (XmlNode node in nodelist) // for each <testcase> node
{
Utility.TestCase tc = new Utility.TestCase();

tc.id = node.Attributes.GetNamedItem("id").Value;
tc.bvt = node.Attributes.GetNamedItem("bvt").Value;

XmlNode n = node.SelectSingleNode("inputs"); // get <inputs> node
tc.arg1 = n.ChildNodes.Item(0).InnerText;
tc.arg2 = n.ChildNodes.Item(1).InnerText;

tc.expected = node.ChildNodes.Item(1).InnerText;

suite.cases.Add(tc);
} // foreach <testcase> node

suite.Display();

When run, this solution will produce the exact same output as Section 12.1 (parsing with
XmlTextReader):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

CHAPTER 12 ■ XML TESTING340

XmlDocument objects are based on the notion of XML nodes and child nodes. Instead of
sequentially navigating through a file, we select sets of nodes with the SelectNodes() method,
or individual nodes with the SelectSingleNode() method. Notice that because XML distin-
guishes between attributes and elements, we must get the id and bvt attribute values with
an Attributes.GetNamedItem() method applied to an element node.

Comments
After loading the XmlDocument, we fetch all the testcase nodes at once with:

XmlNodeList nodelist = xd.SelectNodes("/suite/testcase");

Then we iterate through this list of nodes and fetch each <input> node with:

XmlNode n = node.SelectSingleNode("inputs");

and then extract the arg1 (and similarly arg2) value using:

tc.arg1 = n.ChildNodes.Item(0).InnerText;

In this statement, n is the <inputs> node, ChildNodes.Item(0) is the first element of
<inputs>, i.e., <arg1>, and the InnerText property gets the value between <arg1> and </arg1>.

The XmlDocument class is modeled on the W3C XML Document Object Model and may have
a somewhat different feel to it than many .NET Framework classes that you are familiar with.
Using the XmlDocument class is appropriate if you need to extract data in a nonsequential man-
ner, or if you are already using XmlDocument objects and want to maintain a consistent approach
to your test harness code. Because using XmlDocument reads an entire XML document into mem-
ory at the same time, using it may not be suitable in situations where the XML file being parsed
is very, very large.

In addition to the XmlDocument class, the System.Xml namespace contains a closely related
XmlDataDocument class. It is derived from the XmlDocument class and is primarily intended for
use in conjunction with DataSet objects. So, in this solution, we could have used the
XmlDataDocument class but we would not have gained any advantage by doing so.

12.3 Parsing XML with XPathDocument
Problem
You want to parse an XML file using the XPathDocument class.

Design
Read the entire XML file into memory using the XPathDocument() constructor. Create an
XPathNodeIterator object and use it to move through the XPathDocument object with the
MoveNext() method. Fetch attribute values using the GetAttibute() method. Fetch element
values using the SelectChildren() method and the Current.Value property.

CHAPTER 12 ■ XML TESTING 341

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

Utility.Suite suite = new Utility.Suite();

XPathDocument xpd = new XPathDocument("..\\..\\testCases.xml");
XPathNavigator xpn = xpd.CreateNavigator();
XPathNodeIterator xpi = xpn.Select("/suite/testcase");

while (xpi.MoveNext()) // each testcase node
{
Utility.TestCase tc = new Utility.TestCase();
tc.id = xpi.Current.GetAttribute("id", xpn.NamespaceURI);
tc.bvt = xpi.Current.GetAttribute("bvt", xpn.NamespaceURI);

XPathNodeIterator tcChild =
xpi.Current.SelectChildren(XPathNodeType.Element);

while (tcChild.MoveNext()) // each part of <testcase>
{
if (tcChild.Current.Name == "inputs")
{
XPathNodeIterator tcSubChild =

tcChild.Current.SelectChildren(XPathNodeType.Element);
while (tcSubChild.MoveNext()) // each part of <inputs>
{
if (tcSubChild.Current.Name == "arg1")
tc.arg1 = tcSubChild.Current.Value;

else if (tcSubChild.Current.Name == "arg2")
tc.arg2 = tcSubChild.Current.Value;

}
}
else if (tcChild.Current.Name == "expected")
tc.expected = tcChild.Current.Value;

}
suite.cases.Add(tc);

} // each testcase node

suite.Display();

When run, this solution will produce the same output as Section 12.1 (parsing with
XmlTextReader) and Section 12.2 (parsing with XmlDocument):

CHAPTER 12 ■ XML TESTING342

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

After loading the XPathDocument object, we get what is, in essence, a reference to the first
<testcase> node into an XPathNodeIterator object with:

XPathNavigator xpn = xpd.CreateNavigator();
XPathNodeIterator xpi = xpn.Select("/suite/testcase");

Because XPathDocument does not maintain “node identity,” we must iterate through each
<testcase> node with this loop:

while (xpi.MoveNext())

Similarly, we have to iterate through the children nodes with:

while (tcChild.MoveNext())

Comments
Using an XPathDocument object to parse XML has a hybrid feel that is part procedural and lower-
level (as in XmlTextReader), and part object oriented and higher-level (as in XmlDocument). You
can select parts of the document using the Select() method of an XPathNavigator object and
also move through the document using the MoveNext() method of an XPathNodeIterator object.

The XPathDocument class is optimized for XPath data model queries. So using it is particu-
larly appropriate when the XML file to parse is deeply nested, has a complex structure, or
requires extensive searching. You might also consider using XPathDocument if other parts of
your test harness code use that class, so that you maintain a consistent coding look and feel.
An XPathDocument object is read-only, so using XPathDocument is not appropriate if you want to
do any direct, in-memory processing of the XML file you are parsing.

12.4 Parsing XML with XmlSerializer
Problem
You want to parse an XML file using the XmlSerializer class.

Design
Prepare a class that is defined so it will accept the result of calling the Deserialize() method of
the XmlSerializer class. Then create an instance of the receptacle class and use Deserialize()
with a StreamReader object.

CHAPTER 12 ■ XML TESTING 343

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

XmlSerializer xs = new XmlSerializer(typeof(SerializerLib.Suite));
StreamReader sr = new StreamReader("..\\..\\testCases.xml");
SerializerLib.Suite suite = (SerializerLib.Suite)xs.Deserialize(sr);
sr.Close();
suite.Display();

where:

namespace SerializerLib
{
[XmlRootAttribute("suite")]
public class Suite
{
[XmlElementAttribute("testcase")]
public TestCase[] items; // changed name from xsd-generated code
public void Display() // added to xsd-generated code
{
foreach (TestCase tc in items)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.inputs.arg1 + " ");
Console.WriteLine(tc.inputs.arg2 + " " + tc.expected);

}
}

}

public class TestCase // changed name from xsd-generated code
{
[XmlAttributeAttribute()]
public string id;
[XmlAttributeAttribute()]
public string bvt;
[XmlElementAttribute("inputs")]
public Inputs inputs; // change from xsd-generated code: no array
public string expected;

}

public class Inputs // changed name from xsd-generated code
{
public string arg1;
public string arg2;

}
} // ns SerializerLib

CHAPTER 12 ■ XML TESTING344

When run, this solution will produce the same output as in Section 12.1 (parsing with
XmlTextReader), Section 12.2 (parsing with XmlDocument), and Section 12.3 (parsing with
XPathDocument):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

Using the XmlSerializer class is significantly different from using any of the other five
fundamental classes that parse XML, because the in-memory data store must be carefully
prepared beforehand. Observe that pulling the XML data into memory is accomplished in a
single statement:

SerializerLib.Suite suite = (SerializerLib.Suite)xs.Deserialize(sr);

This example uses a SerializerLib namespace to hold the definition for a Suite class that
corresponds to the testCases.xml file so that the XmlSerializer object can store the XML data
into it. The trick of course is to set up this Suite class.

Comments
There are two ways to create a class that is defined so it will accept the result of calling the
Deserialize() method of the XmlSerializer class. The first way is to carefully examine the
structure of the source XML file and then code the destination/receptacle class by hand. A
much easier approach is to use the xsd.exe command line tool that ships with Visual Studio
.NET. First, (assuming file testCases.xml is in the C: folder) issue the command:

C:\>xsd.exe testCases.xml /o:.

This means create an XSD schema definition of file testCases.xml and save the result with
default name testCases.xsd in the current directory. The intermediate .xsd file will contain a
complete structure definition of the XML file. Next, issue the command:

C:\>xsd.exe testCases.xsd /c /o:.

This means use the testCases.xsd definition file to generate a set of class definitions that
are compatible with the Deserialize() method, using the default C# language, and save with
default name testCases.cs in the current directory. Here is the original testCases.cs before
some editing:

[System.Xml.Serialization.XmlRootAttribute(Namespace="",
IsNullable=false)]

public class suite

CHAPTER 12 ■ XML TESTING 345

{
[System.Xml.Serialization.XmlElementAttribute("testcase",
Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]

public suiteTestcase[] Items;
}

public class suiteTestcase
{
[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]

public string expected;

[System.Xml.Serialization.XmlElementAttribute("inputs",
Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]

public suiteTestcaseInputs[] inputs;

[System.Xml.Serialization.XmlAttributeAttribute()]
public string id;

[System.Xml.Serialization.XmlAttributeAttribute()]
public string bvt;

}
public class suiteTestcaseInputs
{
[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]
public string arg1;

[System.Xml.Serialization.XmlElementAttribute(Form=
System.Xml.Schema.XmlSchemaForm.Unqualified)]

public string arg2;
}

If you examine the resulting class definition code carefully, you will eventually be able to
see the relationship between the code and the original XML file:

<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> data here)

</suite>

CHAPTER 12 ■ XML TESTING346

At this point you can copy and paste the newly created class definitions directly into your
test harness and use them as is to instantiate an object to receive the result of the Deserialize()
method. Alternatively, you can edit the auto-generated file by removing unneeded code, chang-
ing names to those that better match your original XML file, and adding additional methods
(such as a display method or get and set properties). The class definition in the solution to this
section was created using this approach.

Using the XmlSerializer class provides a very elegant solution to the problem of parsing
an XML file. Compared with the other four techniques in this chapter, XmlSerializer operates
at the highest level of abstraction, meaning that the algorithmic details are largely hidden
from you. But this gives you somewhat less control over the XML parsing process.

Using XmlSerializer for parsing is most appropriate for situations when fine-grained
control is not required, the test harness program does not make extensive use of XmlDocument
objects, the XML file is relatively shallow rather than deeply nested, and the application is not
primarily an ADO.NET application.

12.5 Parsing XML with a DataSet Object
Problem
You want to parse an XML file using a DataSet object.

Design
Read the entire XML file into a DataSet object using the ReadXml() method. Then iterate through
each DataTable in the DataSet, and extract related data by using the GetChildRows() method in
conjunction with table relation names.

Solution
This code parses file testCases.xml (shown in the introduction to this chapter) into a Suite
collection of TestCase objects (also shown in the introduction):

DataSet ds = new DataSet();
ds.ReadXml("..\\..\\testCases.xml");

Utility.Suite suite = new Utility.Suite();
foreach (DataRow row in ds.Tables["testcase"].Rows)
{
Utility.TestCase tc = new Utility.TestCase();
tc.id = row["id"].ToString();
tc.bvt = row["bvt"].ToString();
tc.expected = row["expected"].ToString();

DataRow[] children = row.GetChildRows("testcase_inputs"); // relation name

CHAPTER 12 ■ XML TESTING 347

tc.arg1 = (children[0]["arg1"]).ToString(); // there is only 1 row in children
tc.arg2 = (children[0]["arg2"]).ToString();

suite.cases.Add(tc);
}

suite.Display();

When run, this solution will produce the same output as in Section 12.1 (parsing with
XmlTextReader), Section 12.2 (parsing with XmlDocument), Section 12.3 (parsing with
XPathDocument), and Section 12.4 (parsing using XmlSerializer):

Start

001 yes red blue purple
002 no blue yellow green
003 yes white black gray

Done

We start by reading the XML file directly into a System.Data.DataSet object using the
ReadXml() method. A DataSet object can be thought of as an in-memory relational database.
The key to parsing XML using a DataSet object is to understand how XML, which is inherently
hierarchical, is mapped to a set of DataTable objects, which are inherently flat. Each level of
the source XML file will generate a table in the DataSet. Recall the structure of the source XML
file:

<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> nodes

</suite>

The top-level, <testcase>, produces a DataTable named testcase. The next level, <inputs>,
produces a DataTable named inputs. A relation named testcase_inputs is created which links
the DataTable objects. Notice that the XML root level does not generate a table and that the
lowest level (in his case the <arg> data) does not generate a table either.

CHAPTER 12 ■ XML TESTING348

Comments
In practice, when parsing XML using a DataSet object, a good approach is to do some prelimi-
nary investigation. Although you could create a custom DataSet object with completely known
characteristics, it is much quicker to let the ReadXml() method do the work and then examine
the result. Read the source XML file into a DataSet and then programmatically examine it to
determine the number and names of the DataTable objects that are created. This utility
method will usually reveal all the information you need:

// names of tables, columns, relations in ds
public static void DisplayInfo(DataSet ds)
{
foreach (DataTable dt in ds.Tables)
{
Console.WriteLine("\n===");
Console.WriteLine("Table = " + dt.TableName + "\n");
foreach (DataColumn dc in dt.Columns)
{
Console.Write("{0,-14}", dc.ColumnName);

}
Console.WriteLine("\n---");

foreach (DataRow dr in dt.Rows)
{
foreach (object data in dr.ItemArray)
{
Console.Write("{0,-14}", data.ToString());

}
Console.WriteLine();

}
Console.WriteLine("===");

} // foreach DataTable

foreach (DataRelation dr in ds.Relations)
{
Console.WriteLine("\n\nRelations:");
Console.WriteLine(dr.RelationName + "\n\n");

}

} // DisplayInfo()

The first table, testcase, holds the data that is one level deep from the XML root: id, bvt,
and expected. The second table, inputs, holds data that is two levels deep: arg1 and arg2. In
general if your XML file is n levels deep, ReadXml() will generate n-1 tables (or n-2 tables,
depending on your exact definition of levels).

Extracting the data from the parent testcase table is easy. Just iterate through each row of
the table and access by column name. To get the data from the child table inputs, get an array
of rows using the GetChildRows() method:

CHAPTER 12 ■ XML TESTING 349

DataRow[] children = row.GetChildRows("testcase_inputs"); // relation name

Because each <testcase> node has only one <inputs> child node, the children array will
only have one row. The trickiest aspect of this technique is to extract the child data:

tc.arg1 = (children[0]["arg1"]).ToString(); // there is only 1 row in children

Using the DataSet class to parse an XML file has a very relational database feel. Compared
with the other parsing techniques in this chapter, it operates at a middle level of abstraction.
The ReadXml() method hides a lot of details, but you must traverse through relational tables.

Using a DataSet object to parse XML files is particularly appropriate when your test har-
ness program is using ADO.NET classes so that you maintain a consistent look and feel. Using a
DataSet object has relatively high overhead and would not be a good choice if performance is
an issue. Because each level of an XML file generates a table, if your XML file is deeply nested,
then using DataSet would not be a good choice. If you need to perform extensive in-memory
processing of the XML file being parsed and the XML is not deeply nested, using a DataSet
approach is generally a good choice because you can easily manipulate the data stored in
DataTable objects.

12.6 Validating XML with XSD Schema
Problem
You want to validate an XML file using an XSD schema definition.

Design
Read through the XML file you wish to validate using an XmlValidatingReader object. If the
XML file is invalid, control is transferred to a delegate method where you can print an error
message. If the XML file is valid, control does not transfer to the delegate.

Solution
This code will validate file testCases.xml (shown in the introduction to this chapter) using a
schema file named testCases.xsd:

try
{
Console.WriteLine("\nStarting XML validation");
XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);
xsc.Add(null, "..\\..\\testCases.xsd");
XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
XmlValidatingReader xvr = new XmlValidatingReader(xtr);
xvr.ValidationType = ValidationType.Schema;
xvr.Schemas.Add(xsc);
xvr.ValidationEventHandler += new ValidationEventHandler(ValidationCallBack);
while (xvr.Read()); // note empty loop

CHAPTER 12 ■ XML TESTING350

Console.WriteLine("If no error message then XML is valid");
Console.WriteLine("Done");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Generic exception: " + ex.Message);
Console.ReadLine();

}

Console.WriteLine("\nDone");
Console.ReadLine();

where:

private static void ValidationCallBack(object sender, ValidationEventArgs ea)
{
Console.WriteLine("Validation error: " + ea.Message);
Console.ReadLine();

}

and file testCases.xsd is:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="suite" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="suite" msdata:IsDataSet="true">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="testcase">
<xs:complexType>
<xs:sequence>
<xs:element name="inputs" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="arg1" type="xs:string"
minOccurs="1" />
<xs:element name="arg2" type="xs:string"
minOccurs="1" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="expected"
type="xs:string" minOccurs="0"
msdata:Ordinal="1" />

</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="bvt" type="xs:string" />

CHAPTER 12 ■ XML TESTING 351

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

You can generate an XSD schema definition by hand, or you can use the xsd.exe tool as
described in Section 12.4 to generate one for you to use as a starting point.

Comments
When using XML in lightweight software test automation situations, you will often need or
want to check that various XML files are valid. For example, if your test case data is stored as
XML you will likely want to validate it before launching a test run. Or if you store test results as
XML, you may want to validate the results file before distributing the results. Validating XML
with XSD schema is relatively easy. You create an XmlValidatingReader object and set the
ValidationType property to ValidationType.Schema. You add the validating schema definition
file through an XmlSchemaCollection; this approach allows multiple schema definitions to be
used against a single XML file. The only unusual aspect of the validation process is that when
you read through the XML file being validated, instead of getting a return result indicating
success or failure, a delegate method will be called if the XML is invalid, and nothing will
happen if the XML is valid. So you have to create a callback method to handle the validation
error. In this example, we would simply print the validation message.

Generating XSD schema definition files from scratch is not so much fun. A better
approach is to use the xsd.exe tool to generate an initial XSD file to be used as a starting point,
and then manually edit the generated file as needed. For example, when xsd.exe was applied
to the testCases.xml file (presented in the introduction to this chapter), the resulting XSD file
contained this:

<xs:element name="testcase">
<xs:complexType>
<xs:sequence>
<xs:element name="expected" type="xs:string" minOccurs="0"
msdata:Ordinal="1" />
<xs:element name="inputs" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="arg1" type="xs:string" minOccurs="0" />
<xs:element name="arg2" type="xs:string" minOccurs="0" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="bvt" type="xs:string" />

</xs:complexType>
</xs:element>

CHAPTER 12 ■ XML TESTING352

This is close to, but not exactly, what is needed for this solution. Notice that the expected
result is mistakenly defined to come before the inputs, and that arg1 and arg2 were defined to
allow 0 occurrences. You can easily make changes because the XML format of XSD files is very
readable (for example, minOccurs=0) and is self-explanatory.

An alternative approach to validating XML files using XSD schema is to validate using
DTD (Document Type Definition) files. DTD is an older technology that is somewhat easier to
use than XSD, but not as powerful as XSD schema validation.

12.7 Modifying XML with XSLT
Problem
You want to generate a modified version of an XML file using XSLT (Extensible Stylesheet
Language Transformations).

Design
Create an XSLT template file, then create an XslTranform object. Use the Load() and Transform()
methods to generate the modified version of the original XML file.

Solution
Suppose you wish to modify the testCases.xml file from its original form:

<?xml version="1.0" encoding="utf-8" ?>
<suite>

<testcase id="001" bvt="yes">
<inputs>
<arg1>red</arg1>
<arg2>blue</arg2>

</inputs>
<expected>purple</expected>

</testcase>

(other <testcase> nodes here)

</suite>

to a modified version that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<allOfTheCases>
<aCase caseID="001">
<bvt>yes</bvt>
<expRes>purple</expRes>

CHAPTER 12 ■ XML TESTING 353

<inputs>
<input1>red</input1>
<input2>blue</input2>

</inputs>
</aCase>

(other <aCase> nodes here)

</allOfTheCases>

The names of all nodes are different in the modified XML file; the bvt attribute in the orig-
inal file is replaced by an element in the modified file; and the expected result comes before
the inputs in the modified file. First, create an XSLT file like this:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<allOfTheCases>
<xsl:for-each select="//testcase">
<aCase>
<xsl:attribute name="caseID"><xsl:value-of select="@id"/></xsl:attribute>
<bvt><xsl:value-of select="@bvt"/></bvt>
<expRes><xsl:value-of select="expected"/></expRes>
<inputs>
<xsl:for-each select="inputs">
<input1><xsl:value-of select="arg1"/></input1>
<input2><xsl:value-of select="arg2"/></input2>

</xsl:for-each>
</inputs>

</aCase>
</xsl:for-each>

</allOfTheCases>

</xsl:template>
</xsl:transform>

and then programmatically apply the transform using C# code like this:

Console.WriteLine("\nStarting XSLT Transformation");
XslTransform xst = new XslTransform();
xst.Load("..\\..\\testCasesModifier.xslt");
xst.Transform("..\\..\\testCases.xml", "..\\..\\testCasesModified.xml");
Console.WriteLine("Done. New XML file is testCasesModified.xml");

CHAPTER 12 ■ XML TESTING354

Comments
You may want to generate an XML file that is a modified version of some other XML file. For
example, in a testing situation you may want to use an existing test case data file created by
some other group as input to one of your test harnesses, but you need to modify the XML to
conform to the structure expected by your harness. One way to do this is to use XSLT technology.
The problem boils down to creating the appropriate .xslt transform template. If you examine the
example in this section, you’ll see that XSLT is fairly intuitive. The xsl:for-each tag is used for
iteration; the xsl:value-of tag is used for assignment; and XPath syntax is used for specifying
particular attributes and elements. Once you have created the XSLT modification file, applying it
with the XslTranform class is also very obvious.

The potential problem with XSLT is not so much technical as it is psychological; using
XSLT has a very different feel than normal procedural-style programming. Because of this,
many testers prefer a completely different approach to generating a modified version of an
XML file, which does not use XSLT—they parse the original XML file into memory using one of
the techniques presented in this chapter, modify the in-memory image of the original file to
match the target structure, then write the modified image to file. This alternate technique is
common. However, there may be situations in which you inherit a system that makes heavy
use of XSLT.

12.8 Writing XML Using XmlTextWriter
Problem
You want to write to an XML file using the XmlTextWriter class.

Design
Use the WriteStartElement() method to write XML element tags. Use the WriteAttributeString()
method to write attribute values. Use the WriteString() method to write element values.

Solution
For example, this code:

string caseID = "0001";
string result = "Pass";
string whenRun = "01/23/2006";

XmlTextWriter xtw = new XmlTextWriter("..\\..\\Results1.xml",
System.Text.Encoding.UTF8);

xtw.Formatting = Formatting.Indented;
xtw.WriteStartDocument();
xtw.WriteStartElement("Results");
xtw.WriteStartElement("result");
xtw.WriteAttributeString("id", caseID);
xtw.WriteStartElement("passfail");
xtw.WriteString(result);

CHAPTER 12 ■ XML TESTING 355

xtw.WriteEndElement();
xtw.WriteStartElement("whenRun");
xtw.WriteString(whenRun);
xtw.WriteEndElement();
xtw.WriteEndElement();
xtw.WriteEndElement();
xtw.Close();

will produce as output:

<?xml version="1.0" encoding="utf-8"?>
<Results>
<result id="0001">
<passfail>Pass</passfail>
<whenRun>01/23/2006</whenRun>

</result>
</Results>

Comments
Writing XML results using an XmlTextWriter object is simple and straightforward. In theory,
all you need is the XmlTextWriter.WriteString() method, which simply writes its argument
to output. But if you only use WriteString() you will not get the benefit of the XmlTextWriter
class and you could just as well have used a series of StreamWriter.WriteLine() statements
to write the XML file. The preceding solution uses explicit WriteStartElement() and
WriteEndElement() calls like this:

xtw.WriteStartElement("whenRun");
xtw.WriteString(whenRun);
xtw.WriteEndElement();

Alternatively, you can use WriteElementString() like this:

xtw.WriteElementString("whenRun" , whenRun);

The XmlTextWriter class has many useful methods such as WriteComment() and WriteCData().

12.9 Comparing Two XML Files for Exact Equality
Problem
You want to compare two XML files for exact equality.

Design
Write a helper method that iterates through each file using two FileStream objects. Read each
file byte-by-byte, and return false if you hit a byte mismatch.

CHAPTER 12 ■ XML TESTING356

Solution
This method will compare two XML files for exact equality:

private static bool XMLExactlySame(string file1, string file2)
{
FileStream fs1 = new FileStream(file1, FileMode.Open);
FileStream fs2 = new FileStream(file2, FileMode.Open);

if (fs1.Length != fs2.Length) // number bytes
return false;

else
{
int b1 = 0;
int b2 = 0;

while ((b1 = fs1.ReadByte()) != -1)
{
b2 = fs2.ReadByte();
//Console.WriteLine("b1 = " + b1 + " b2 = " + b2);
if (b1 != b2)
{
fs1.Close();
fs2.Close();
return false;

}
}
fs1.Close();
fs2.Close();
return true;

}
} // XMLExactlySame()

This code assumes the two files passed in as input arguments exist. First we check the
size of the two files; if the sizes are different, the two files cannot possibly be identical. Next,
we iterate through both files, and read one byte from each, and compare the two byte values.
If the byte values differ, we know the files are different, so we can close the FileStream objects
and return false. If we make it all the way through both files, they must be identical.

Comments
In software test automation, if the system under test produces an XML file as output, you will
have to compare an actual XML file with an expected XML file. One of several ways to do this
is to store an expected XML file and then compare byte-by-byte. Because XML files are just a
particular type of text file, the technique in this section will work for any text file.

CHAPTER 12 ■ XML TESTING 357

12.10 Comparing Two XML Files for Exact Equality,
Except for Encoding
Problem
You want to compare two XML files for exact equality except for their encoding.

Design
Read each of the two files being compared into a string variable. Then compare the two strings
using the ordinary == Boolean comparison operator.

Solution

private static bool XMLExactlySameExceptEncoding(string file1, string file2)
{
FileStream fs1 = new FileStream(file1, FileMode.Open);
FileStream fs2 = new FileStream(file2, FileMode.Open);
StreamReader sr1 = new StreamReader(fs1);
StreamReader sr2 = new StreamReader(fs2);

string s1 = sr1.ReadToEnd();
string s2 = sr2.ReadToEnd();
//Console.WriteLine(s1);
//Console.WriteLine(s2);
sr1.Close();
sr2.Close();
fs1.Close();
fs2.Close();

return (s1 == s2);
}

Comments
In testing situations, you may want to compare an actual XML file with an expected XML file
but you do not care if the encoding schemes are different. In other words, if the actual and
expected XML files both have the same character data but one file is encoded using UTF-8
and the other is encoded using ANSI, the files are equivalent from your perspective. One way
to perform such a comparison is to simply read both files into string variables and compare
using the overloaded == operator. The Boolean == operator is overloaded to take into account
character encoding. This approach may not be feasible if the two XML files being compared
are very, very large. In this situation, you can adapt Section 12.9 by reading through each file a
character at a time and doing a character-by-character comparison.

CHAPTER 12 ■ XML TESTING358

12.11 Comparing Two XML Files for Canonical
Equivalence
Problem
You want to compare two XML files for canonical equivalence. You can think of canonical
equivalence as meaning “the same for most practical purposes.”

Design
Perform a C14N canonicalization on the two XML files being compared using the
XmlDsigC14NTransform class and then compare the two files in memory using two
MemoryStream objects.

Solution

// using System.Security.Cryptography.Xml;

string f1 = "..\\..\\Books1.xml";
XmlDocument xd1 = new XmlDocument();
xd1.Load(f1);

XmlDsigC14NTransform t1 = new XmlDsigC14NTransform(true);
// true = include comments

t1.LoadInput(xd1);
Stream s1 = t1.GetOutput() as Stream;
XmlTextReader xtr1 = new XmlTextReader(s1);
MemoryStream ms1 = new MemoryStream();
XmlTextWriter xtw1 = new XmlTextWriter(ms1, System.Text.Encoding.UTF8);
xtw1.WriteNode(xtr1, false);
// false = do not copy default attributes

xtw1.Flush();
ms1.Position = 0;
StreamReader sr1 = new StreamReader(ms1);
string str1 = sr1.ReadToEnd();
//Console.WriteLine(str1);

//Console.WriteLine("\n======\n");

string f2 = "..\\..\\Books2.xml";
XmlDocument xd2 = new XmlDocument();
xd2.Load(f2);
XmlDsigC14NTransform t2 = new XmlDsigC14NTransform(true);
t2.LoadInput(xd2);

CHAPTER 12 ■ XML TESTING 359

Stream s2 = t2.GetOutput() as Stream;
XmlTextReader xtr2 = new XmlTextReader(s2);
MemoryStream ms2 = new MemoryStream();
XmlTextWriter xtw2 = new XmlTextWriter(ms2, System.Text.Encoding.UTF8);
xtw2.WriteNode(xtr2, false);
xtw2.Flush();
ms2.Position = 0;
StreamReader sr2 = new StreamReader(ms2);
string str2 = sr2.ReadToEnd();
Console.WriteLine(str2);

if (str1 == str2)
Console.WriteLine("Files canonically equivalent");

else
Console.WriteLine("Files NOT canonically equivalent ");

Comments
Suppose an XML file Books1.xml looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<books>

<book>
<title isbn='1111' storeid="A1A1">

All About Apples</title>
<author>
<last>Anderson</last>
<first>Adam</first>

</author>
</book>

</books>

and suppose that a second XML file, Books2.xml, looks like this:

<books>
<book>
<title storeid="A1A1" isbn="1111">
All About Apples

</title>
<author>
<last>Anderson</last>
<first>Adam</first>

</author>
</book>

</books>

CHAPTER 12 ■ XML TESTING360

If the code in this solution is run against these two files, the message “Files canonically
equivalent” would be displayed—these two files are canonically equivalent. The whitespace
differences do not matter; the use of single-quote and double-quote characters does not
matter; XML declarations do not matter; and the order of attributes does not matter. C14N
canonical equivalence is fairly complex. It is defined by the W3C and is primarily used in
security contexts. In order to determine if an XML file has been accidentally or maliciously
changed during transmission over a network, you can compare crypto-hashes of the transmit-
ted file and the received file. However, because networks may modify the files, we need a way
to determine canonical equivalence. This explains why the XmlDsigC14NTransform class is in
the System.Security.dll assembly.

12.12 Example Program: XmlTest
The program in Listing 12-1 demonstrates XML validation using an XSD schema definition,
and XML parsing using the XmlSerializer class. When run, the output will be that shown in
Figure 12-1 in the introduction to this chapter.

Listing 12-1. Program XmlTest

using System;
using System.IO;
using System.Xml;
using System.Xml.Schema; // validation
using System.Xml.Serialization; // deserialization

namespace XmlTest
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
try
{
Console.WriteLine("\nBegin XML techniques demonstration\n");

Console.WriteLine("Original file is: \n");
FileStream fs = new FileStream("..\\..\\TestCases.xml",

FileMode.Open);
StreamReader sr = new StreamReader(fs);
string line;
while((line = sr.ReadLine()) != null)
{
Console.WriteLine(line);

}
sr.Close(); fs.Close();

CHAPTER 12 ■ XML TESTING 361

Console.WriteLine("\nValidating original file using
rules in TestCases.xsd");

XmlSchemaCollection xsc = new XmlSchemaCollection();
xsc.ValidationEventHandler +=
new ValidationEventHandler(ValidationCallBack);
xsc.Add(null, "..\\..\\testCases.xsd");
XmlTextReader xtr = new XmlTextReader("..\\..\\testCases.xml");
XmlValidatingReader xvr = new XmlValidatingReader(xtr);
xvr.ValidationType = ValidationType.Schema;
xvr.Schemas.Add(xsc);
xvr.ValidationEventHandler +=
new ValidationEventHandler(ValidationCallBack);
while (xvr.Read()); // note empty loop

Console.WriteLine("XML test case file is valid");

Console.WriteLine("\nParsing original file into memory
using Deserialization()");

XmlSerializer xs =
new XmlSerializer(typeof(SerializerLib.Suite));

sr = new StreamReader("..\\..\\TestCases.xml");
SerializerLib.Suite suite =
(SerializerLib.Suite)xs.Deserialize(sr);
sr.Close();
Console.WriteLine("Parsed data = \n");
suite.Display();

Console.WriteLine("\nDone");
Console.ReadLine();

}
catch(Exception ex)
{
Console.WriteLine("Fatal error: " + ex.Message);
Console.ReadLine();

}

} // Main()

private static void ValidationCallBack(object sender, ValidationEventArgs ea)
{
Console.WriteLine("Validation error: " + ea.Message);
Console.ReadLine();

}
} // class

namespace SerializerLib
{

CHAPTER 12 ■ XML TESTING362

[XmlRootAttribute("suite")]
public class Suite
{
[XmlElementAttribute("testcase")]
public TestCase[] items; // changed name from xsd-generated code
public void Display() // added to xsd-generated code
{
foreach (TestCase tc in items)
{
Console.Write(tc.id + " " + tc.bvt + " " + tc.inputs.arg1 + " ");
Console.WriteLine(tc.inputs.arg2 + " " + tc.expected);

}
}

}

public class TestCase // changed name from xsd-generated code
{
[XmlAttributeAttribute()]
public string id;
[XmlAttributeAttribute()]
public string bvt;
[XmlElementAttribute("inputs")]
public Inputs inputs; // change from xsd-generated code: no array
public string expected;

}

public class Inputs // changed name from xsd-generated code
{
public string arg1;
public string arg2;

}
} // ns SerializerLib

} // ns

CHAPTER 12 ■ XML TESTING 363

Symbols
== (Boolean comparison operator), 358
@@rowcount function, 254

A
accessing

backend databases for testing, 318–321
control properties, 50–53
form properties, 44–47
text on Web page/application, 175

Add() method, 226–228
ADO.NET testing

comparing two DataSet objects for
equality, 321–323

determining pass/fail result when
expected value is DataSet
object, 303–306

example program, 329–333
overview of, 301–302
reading test case data

from SQL table into text file, 327–329
from text file into SQL table, 324–327

stored procedure
that does not return value, 314–317
that returns rowset, 309–311
that returns value, 306–309
that returns value into out

parameter, 311–314
of systems that access data without using

stored procedure, 318–321
aggregate checksum, computing, 256–258
AllowAutoRedirect property

(HttpWebRequest class), 141
API (Application Programming Interface)

testing
calculating summary results, 17–18
converting test case data, 9–11
description of, 3–4
determining test case result, 11–13
empty string input arguments, dealing

with, 24–26
launching test harness

automatically, 28–29
logging test case result, 13–15
methods that throw exceptions, dealing

with, 22–23
null input/null expected results, dealing

with, 20–22

parsing test case, 8–9
program example, 29–32
reading test case data, 7–8
sending e-mail alerts on test case

failures, 26–28
storing test case data, 6–7
test automation run, 5
test run total elapsed time,

determining, 19–20
time-stamping test case result, 16

API functions. See low-level Web UI testing
application state

checking with Windows-based UI
testing, 89–91

description of, 187
application under test (AUT)

checking contents of control on, 89–91
color-mixer example, 66
description of, 4
determining when fully loaded into

browser, 190–192
launching

reflection-based UI testing, 35–38
Windows-based UI testing, 66–67

manipulating value of HTML element
on, 194–195

obtaining handle to main window of,
Windows-based UI testing, 68–73

typographical errors in, 170
verifying value of HTML element

on, 195–198
applications under development, unrefined

nature of, 34
applying

mathematical combination to string
array, 278–280

mathematical permutation to string
array, 291–293

ArrayList collection
SQL file data, 123–125
text file data, 104–108
XML file data, 113–117

ArrayList object, 226–231, 311
ASP Web page, sending simple HTTP POST

request to, 143–145
ASP.NET Web application, sending simple

HTTP POST request to, 145–150
ASP.NET Web services, 207–208

Index

365

Assembly.CreateInstance() method, 37
associating Thread object with application

state wrapper class, 35–38
attaching to Internet Explorer, 188–190
Attribute.GetNamedItem() method, 339–341
attributes (XML), 336
AUT. See application under test (AUT)
automating mouse click on control,

Windows-based UI testing, 80–82
AutoResetEvent object, 53–58, 190–192

B
backend databases, accessing for

testing, 318–321
.BAT file, creating, 28
batch file, running T-SQL script using, 242
BCP utility, importing test case data

using, 243–245
Berkeley sockets interface, 217
binary checksum() function, 253
BindingFlags object, 48
BitConverter.ToString() method, 306
black box testing, 127, 187
Boolean comparison operator (==), 358
boundary values, 6
branching logic, adding to test

harnesses, 24–26
browser

determining when Web AUT is fully
loaded into, 190–192

Internet Explorer (IE), 188–190, 193
buffered processing

advantages of, 100
description of, 97
in pseudo-code, 100
SQL file data and, 123–125
text file data and, 104–108
XML file data and, 113–117

Build Verification Tests (BVTs), 126
BULK INSERT command, 245

C
C# data type

converting to SQL data type, 314
description of, 10

C# method alias for Win32 function, 69
C14N Canonical equivalence, 361
calculating

number of permutations of order
n, 282–283

number of ways to select k items from n
items, 269–270

successor to mathematical combination
element, 271–273

successor to mathematical permutation
element, 284–286

summary results, API testing and, 17–18
calling

GetValue() method directly, 51
method under test, 11–13
SetValue() method directly, 49
Web methods

HTTP, using, 220–221
overview of, 208, 212
proxy mechanism, 212–214
sockets, using, 214–219, 223
TCP, using, 222–225

canonical equivalence, comparing two XML
files for, 359–361

characters, sending to control, and Windows-
based UI testing, 78–80

CheckBox control and HTTP POST
data, 156–157

checked property, 176–177
checksum agg() function, 253
checksum expected/actual return value

approach to testing stored
procedures, 253

Choose function, 266
Choose() method, 269–270
classes

application state wrapper, 35–38
Combination, 267–269
HttpUtility, special input characters

and, 150–151
HttpWebRequest - HttpWebResponse, 137
HttpWebRequest

retrieving response line-by-line, 141–142
sending complex HTTP GET request

and retrieving response, 140–141
sending simple HTTP POST request to

ASP.NET Web application, 145–150
sending simple HTTP POST request to

classic ASP Web page, 143–145
Permutation, 280–281
Socket, 137
System.Web.Mail, 26–28
System.Xml.XmlTextReader, 111
TcpClient, 137
Test Case, 104
Test CaseResult, 104
WebClient, 137–138
WebRequest - WebResponse, 137
XmlDataDocument, 341
XmlDocument, parsing XML data

using, 339–341
XmlDsigC14NTransform, 359–361
XmlSerializer, parsing XML data

using, 343–347

■INDEX366

XmlTextReader, parsing XML data
using, 337–339

XmlTextWriter, writing to XML file
using, 355–356

XPathDocument, parsing XML data
using, 341–343

clear box testing, 127, 187
click() method, 176–177
clicking on control, Windows-based UI

testing and, 80–82
client area of Internet Explorer, 193
client machine, saving test scenario results to

text file on, 177–178
colon-delimited text file, 6
color-mixer application, key code for, 66
combinadic of number, finding, 276
combination

calculating number of ways to select k
items from n items, 269–270

description of, 265–266
example program, 293–300
mathematical

applying to string array, 278–280
creating, 267–269
determining mth lexicographical

element of, 275–277
mathematical combination element

calculating successor to, 271–273
generating all, for given n and

k, 273–274
software testing and, 267

Combination class, 267–269
Combination.ApplyTo() method, 278–280
Combination.Successor() method, 273–274
comments, logging to test harness

UI, 173–174
comparing

two DataSet objects for equality, 321–323
two XML files

for canonical equivalence, 359–361
for exact equality, 356–357
for exact equality, except for

encoding, 358
component testing, 7
ComputeHash() method, 306
console, writing test case results to, 15
console applications, lightweight test

automation harnesses and, 7
control

clicking on, 80–82
content of, checking, 89–91
message box, dealing with, and Windows-

based UI testing, 82–86
named, obtaining handle to, 73–75
non-named, obtaining handle to, 75–77
sending characters to, 78–80

control properties
accessing, 50–53
manipulating, 47–50

converting
null token to null input value, 20–22
test case data, and API testing, 9–11

Cookie Container property (HttpWebRequest
class), 141

Cookie object, 178
CountTitles() method, 208, 211
create database statement, 240
CreateDirectory() method, 16
CreateTextFile() method, 177–178, 250
createTextRange() method, 175
creating Excel workbook to save test scenario

results, 198–200
Credentials property (HttpWebRequest

class), 141
Current.Value property, 341–343

D
Daily Test Runs (DTRs), 126
data type model, 69
data type

converting SQL to C#, 314
description of, 10

database table, saving test scenario results
to, 179–181

databases
backend, accessing for testing, 318–321
dbTestCasesAndResults, creating, 239
development

copying for testing purposes, 247
testing SQL stored procedures, 237

SQL databases
for lightweight test automation storage,

creating, 117–119
security modes of, 241

DataSet object
comparing two for equality, 321–323
as data source, 301–302
determining pass/fail result when

expected value is, 303–306
parsing XML data using, 347–350
testing stored procedure that returns

rowset and, 309–311
DataTable object, 303–306
DateTime.Now property

test run total elapsed time,
determining, 19–20

time-stamping test case results, 16
dbTestCasesAndResults database,

creating, 239
declaring SQL cursors, 247
delimiting character, choosing, 6
dependencies, test cases with, 230

■INDEX 367

Find it faster at http://superindex.apress.com
/

Deserialize() method, 343–347
determining

expected results, 6
kth lexicographical element of

mathematical permutation, 287–291
mth lexicographical element of

mathematical combination, 275–277
pass/fail result

when expected value is DataSet
object, 303–306

when stored procedure under test
returns no value, 256–258

when stored procedure under test
returns parameter, 254–256

when stored procedure under test
returns rowset, 252–254

result of request-response test, 159–162
test case result, API testing and, 11–13
test run total elapsed time, API testing

and, 19–20
Web application state, 172–173
when Web AUT is fully loaded into

browser, 190–192
Developer Regression Tests (DRTs), 126
development database

copying for testing purposes, 247
testing SQL stored procedures, 237

discovering information about SUT, 126–128
displaying progress of test

automation, 173–174
DLL

adding project reference to, 12
API testing and, 7

Dns.Resolve() method, 218
Document property (InternetExplorer

object), 194–198
Document Type Definition (DTD) file,

validating XML data using, 353
document.body.innerText property, 175
DownloadData() method, 138
DropDownList control and HTTP POST

data, 157–159
DRTs (Developer Regression Tests), 126
DTD (Document Type Definition) file,

validating XML data using, 353
DTRs (Daily Test Runs), 126
DTS utility, 245
DWebBrowserEvents2 interface events

handler, 190–192

E
e-mail alerts, sending on test case

failures, 26–28
element testing, 7
Element() method, 275–277
elements (XML), 336

empty string input arguments, dealing with,
and API testing, 24–26

equality except for encoding, comparing two
XML files for, 358

equality, comparing two XML files for
exact, 356–357

EventValidation value, programmatically
determining, 152–155

examining
IE shell, 192–193
received data for expected value, 219, 225

Excel workbook
creating to save test scenario

results, 198–200
reading test scenario results stored

in, 201–203
saving test scenario results to, 200–201

exceptions, dealing with methods that
throw, 22–23

ExecuteNonQuery() method, 198–200
expected results

determining, 6
null, dealing with, 20–22

explicit type conversion, 9–11
Extensible Stylesheet Language

Transformations (XSLT), modifying
XML data using, 353–355

external compared to internal storage, 227

F
factoradic of number, finding, 289
Factorial() method, 282–283
fail result, deliberately generating, 7
failure, sending e-mail alerts on, 26–28
FieldInfo.GetValue() method

accessing control properties, 50–53
manipulating control properties, 47–50

FileStream object, 356–357
FileSystemObject object, 249–250
filtering test case data or test case results, 125
findText() method, 175, 197
FindWindow() function

message box, dealing with, 82–86
obtaining handle to main window of

AUT, 68–73
FindWindowByIndex() function, 75–77
FindWindowEx() function, 73–75
flat data storage, 97
flexibility of XML, 112
foreach or for loop, ArrayList object

and, 226–228
Form element (HTML), 179–181
Form object, obtaining reference to, 36
form properties

accessing, 44–47
manipulating, 39–44

■INDEX368

Form.GetType() method
accessing control properties, 50–53
invoking methods, 53–58
manipulating control properties, 47–50

Form.Invoke() method, 39–44
Full Test Pass (FTP), 126
functions

See also low-level Web UI testing; Win32
functions

@@rowcount, 254
binary checksum(), 253
checksum agg(), 253
Choose, 266
JavaScript, writing to file from, 178
logRemark(), 173–174
saveResults(), 180
SQL stored procedures compared to, 238
updateState(), 171–173
verify(), 174–175

G
generating

all mathematical combination elements
for given n and k, 273–274

all mathematical permutation elements
for given n, 286–287

fail result, 7
GetAttribute() method

description of, 108–112
XmlTextReader class, 337–339
XPathDocument class, 341–343

GetBytes() method, 218
GetChildRows() method, 347–350
GetControlPropertyValue() wrapper, 52
getElementById() method, 194–195
getElementByTagName() method, 195–198
GetEmployees() method, 301–302
GetFormPropertyValue() wrapper, 46–47
GetMenu() function, 86–89
GetMenuItem() function, 86–89
GetRequestStream() method

sending HTTP POST request to ASP.NET
Web Application, 145–150

sending simple HTTP POST request to
classic ASP Web page, 143–145

GetResponse() method, 139–141, 220–221
GetResponseStream() methods, 220–221
GetString() method, 119–123, 327–329
GetSubMenu() function, 86–89
GetTitles() method, 208–210
GetValue() method

arguments, 52
calling directly, 51

GetX() method, 327–329
global variables, 178
gray box testing, 127, 187

H
handle, obtaining

to main window of AUT, 68–73
to named control, 73–75
to non-named control, 75–77

harness design patterns
classifying, 97–100
example program, 129–132
SQL database, creating, 117–119
SQL file data

buffered model, 123–125
streaming model, 119–123

text file data
buffered model, 104–108
streaming model, 100–103

XML file data
buffered model, 113–117
streaming model, 108–112

harnesses
adding branching logic to, 24–26
adding logic to convert null token to null

input value, 20–22
console applications and, 7
for script-based Web application UI test,

creating, 170–172
launching automatically, 28–29
logging comments to UI, 173–174
methods and, 12
relative paths and, 8
T-SQL

creating, 245–249
reading text data, 251
writing test results directly to, 249–250

testing multiple methods in, 13
Hashtable object, 229–231
header containing HTTP information

constructing, 218, 224
sending, 218

helper methods
IsEqual(), 321–323
Map(), 26
NthRoot(), 4

hierarchical data storage, 97
HTML element

Form, 179–181
on Web AUT

manipulating value
of, 176–177, 194–195

verifying value of, 174–175, 195–198
HTTP

calling Web methods and, 220–221
data, ways to send and receive, 137
GET request

complex, sending, and retrieving
response, 140–141

■INDEX 369

Find it faster at http://superindex.apress.com
/

simple, sending, and retrieving
response, 138

POST data
CheckBox and RadioButtonList controls

and, 156–157
DropDownList control and, 157–159
special input characters and, 150–151

POST request, simple, sending
to ASP.NET Web application, 145–150
to classic ASP Web page, 143–145

request with authentication, sending, and
retrieving response, 139

retrieving response line-by-line, 141–142
Web services and, 208

HttpUtility class, special input characters
and, 150–151

HttpWebRequest - HttpWebResponse
class, 137

HttpWebRequest class
retrieving HTTP response line-by-

line, 141–142
sending complex HTTP GET request and

retrieving response, 140–141
sending simple HTTP POST request

to ASP.NET Web application, 145–150
to classic ASP Web page, 143–145

HTTPWebRequest object, 220–221

I
IE DOM (Internet Explorer Document Object

Model), 167, 175
IE shell, manipulating and

examining, 192–193
ILDASM tool, 127
importing test case data

using BCP utility, 243–244
using DTS utility, 245

in-memory test case data store
saving to, 229–231
using, 226–228

incomplete methods, handling in API
testing, 4

index value of control, 76
InnerText property, 339–341
INSERT statement, 324–327
insert statement (SQL), 119–123
inserting test results into SQL table, 248
instance methods, handling in API testing, 4
instantiating

NetworkStream object, 225
Socket object, 217–219
TcpClient object, 224

integer counters, calculating summary
results using, 17–18

intermediate language code, 127

Internet Explorer (IE)
launching and attaching to, 188–190
shell area of, 193

Internet Explorer Document Object Model
(IE DOM), 167, 175, 187

InternetExplorer object
Document property, 194–198
DocumentComplete event, 191
Navigate() method, 192
properties of, 192–193

IntPtr. See System.IntPtr
InvokeMethod() wrapper, 57–58
InvokeRequired property, hidden issue

with, 40
invoking methods, 53–58
IsEqual() helper method, 321–323
iterating through

DataTable object, 303–306
table of test case data, 247
test case file, 7–8
XML file, 339

J
JavaScript function, writing to file from, 178

K
KeepAlive property (HttpWebRequest

class), 141

L
launching

application under test
reflection-based UI testing, 35–38
Windows-based UI testing, 66–67

Internet Explorer, 188–190
test harness automatically, API testing

and, 28–29
lexicographical element

determining kth, of mathematical
permutation, 287–291

determining mth, of mathematical
combination, 275–277

lexicographical order, 266
listings

ADO.NETtest, 329–332
ApiTest program, 29–32
ComboPerm program, 294–300
LowLevelUITest program, 203–206
PokerLibTest, 129–132
ReflectionUITest, 58–63
RequestResponse Test, 162–165
Test Automation Harness, 261–263
Test Bed Database and Stored Procedure

Under Test, Creating, 259
Test Case Data and Test Results Stores,

Creating, 260–261

■INDEX370

TestCase Data, Creating, 333
TestCode.html, 181
Underlying Database Under Test,

Creating, 332–333
WebServiceTest program, 232–234
WindowsUITest, 91–96
XmlTest program, 361–362

Load() method, 353–355
logging

comments to test harness UI, 173–174
test case result, API testing and, 13–15

logRemark() function, 173–174
loops

foreach or for, and ArrayList object, 226–228
while

Combination.Successor() method
and, 273–274

FindWindow() function and, 71
iterating through test case file with, 7–8
NetworkStream object, 222–225
Permutation.Successor() method

and, 286–287
Socket.Receive() method and, 219
StreamReader.ReadLine() method

inside, 141–142
low-level Web UI testing

application state and, 187
demonstration application, 186–187
determining when Web AUT is fully

loaded into browser, 190–192
example program, 203–206
Excel workbook

creating to save test scenario
results, 198–200

reading test scenario results stored
in, 201–203

saving test scenario results to, 200–201
launching and attaching to IE, 188–190
manipulating and examining IE

shell, 192–193
manipulating value of HTML element on

Web AUT, 194–195
overview of, 185–187
verifying value of HTML element on Web

AUT, 195–198

M
MailMessage object, 26–28
manipulating

control properties, 47–50
form properties, 39–44
IE shell, 192–193
value of HTML element on Web

AUT, 176–177, 194–195
manual testing, test automation compared

to, 5

mappings between Win32 and .NET data
types, 69

mathematical combination
applying to string array, 278–280
determining mth lexicographical element

of, 275–277
mathematical combination element

calculating successor to, 271–273
generating all, for given n and k, 273–274

mathematical combination object,
creating, 267–269

mathematical permutation
applying to string array, 291–293
description of, 266
determining kth lexicographical element

of, 287–291
mathematical permutation element

calculating successor to, 284–286
generating all, for given n, 286–287

mathematical permutation object,
creating, 280–281

MathLib namespace, 4
MaximumAutomaticRedirections property

(HttpWebRequest class), 141
MD5 (Message Digest version 5) hash, 306, 317
MemoryStream object, 359–361
menu, dealing with, and Windows-based UI

testing, 86–89
message box, dealing with, and Windows-

based UI testing, 82–86
MethodInfo.Invoke() method, 53–58
methods

Add(), 226–228
Assembly.CreateInstance(), 37
Attribute.GetNamedItem(), 339–341
BitConverter.ToString(), 306
Choose(), 269–270
click(), 176–177
Combination.ApplyTo(), 278–280
Combination.Successor(), 273–274
ComputeHash(), 306
CountTitles(), 208, 211
CreateDirectory(), 16
CreateTextFile(), 177–178, 250
createTextRange(), 175
Deserialize(), 343–347
Dns.Resolve(), 218
DownloadData(), 138
Element(), 275–277
ExecuteNonQuery(), 198–200
Factorial(), 282–283
FieldInfo.GetValue()

accessing control properties, 50–53
manipulating control properties, 47–50

findText(), 175, 197

■INDEX 371

Find it faster at http://superindex.apress.com
/

Form.GetType()
accessing control properties, 50–53
invoking methods, 53–58
manipulating control properties, 47–50

Form.Invoke(), 39–44
GetAttribute()

description of, 108–112
XmlTextReader class, 337–339
XPathDocument class, 341–343

GetBytes(), 218
GetChildRows(), 347–350
getElementById(), 194–195
getElementByTagName(), 195–198
GetEmployees(), 301–302
GetRequestStream()

sending HTTP POST request to ASP.NET
Web application, 145–150

sending simple HTTP POST request to
classic ASP Web page, 143–145

GetResponse(), 139–141, 220–221
GetResponseStream(), 220–221
GetString(), 119–123, 327–329
GetTitles(), 208–210
GetValue()

arguments, 52
calling directly, 51

GetX(), 327–329
harnesses and, 12
helper

IsEqual(), 321–323
Map(), 26
NthRoot(), 4

incomplete, 4
InternetExplorer object, Navigate(), 192
invoking, 53–58
Load(), 353–355
MethodInfo.Invoke(), 53–58
MoveNext(), 341–343
NetworkStream.Write() and

NetworkStream.Read(), 222–225
OpenTextFile(), 249–250
Parameters.Add(), 306–311
Parse(), 9–11
Permutation.ApplyTo(), 291–293
Permutation.Successor(), 286–287
Predecessor(), 272
Process.Start(), 67, 188–190
Process.State(), 36
programmatically invoking, 55
PropertyInfo.GetValue(), 44–47
PropertyInfo.SetValue(), 39–44
Read(), 337–339
ReadElementString(), 108–112, 337–339
ReadLine(), 141–142
ReadXml(), 347–350
recursive versus self-referential, 43
SelectChildren(), 341–343

SelectNodes() and
SelectSingleNode(), 339–341

setTimeout(), 172
SetValue(), calling directly, 49
ShellWindows(), 189
Socket.Connect, 218
Socket.Send() and

Socket.Receive(), 214–219
stateless versus stateful, 13
static, 4
Stream.IndexOf(), 159–162
StreamReader.Peek(), 103
StreamReader.ReadLine(), 159–162
StreamReader.ReadToEnd(), 161
String.IndexOf(), 152–155
String.Split(), 8–9, 100–103
String.SubString(), 152–155
Successor(), 271–273
System.Diagnostic.Process.Start(), 66–67
that throw exceptions, dealing with

API testing, 22–23
Thread.Sleep(), 70
ThreadPool.QueueUserWorkItem(), 38
Transform(), 353–355
Type.GetField()

accessing control properties, 50–53
manipulating control properties, 47–50

Type.GetMethod(), 53–58
Type.GetProperty()

accessing form properties and, 44–47
manipulating form properties

and, 39–44
under test, calling, 11–13
UrlEncode(), 150–151
Web, calling

HTTP, using, 220–221
overview of, 208, 212
proxy mechanism, 212–214
sockets, using, 214–219, 223
TCP, using, 222–225

WriteAttributeString(), 355–356
WriteEndAttribute(), 110
WriteEndElement(), 110
WriteLine(), 177–178, 249–250, 327–329
WriteStartAttribute(), 110
WriteStartElement(), 110, 355–356
WriteString(), 110, 355–356
of XmlDocument class, 339–341
of XmlTextReader class, 337–339
XmlTextWriter class, 356
of XPathDocument class, 341–343

Milestone Test Runs (MTRs), 126
Mixed Mode Authentication, 241
modifying XML file using XSLT, 353–355
modularizing code solutions, 66
module testing, 7
mouse click on control, automating, 80–82

■INDEX372

MoveNext() method, 341–343
moving form, 40
mshtml.dll library

getElementById() method, 194–195
getElementByTagName()

method, 195–198
overview of, 185

MTRs (Milestone Test Runs), 126

N
named control, obtaining handle to, and

Windows-based UI testing, 73–75
namespace

MathLib, 4
SeralizerLib, 345
System.Data.OleDb, 198–201
System.Data.SqlClient, 119–123
System.Diagnostics, 189
System.Net, 138–140
System.Net.Sockets, 217
System.Reflection, 33, 48, 128
System.Runtime.Interop.Services, 69
System.Security.Cryptography, 306
System.Threading, 36
System.Web, 139
System.Windows.Forms, 36
System.Xml, 341

NetworkCredential object, 139
NetworkStream.Write() and

NetworkStream.Read()
methods, 222–225

newline character and BCP utility, 244
non-named control, obtaining handle to, and

Windows-based UI testing, 75–77
notification messages

WM CHAR, 78–80
WM_COMMAND, 86–89
WM_GETTEXT, 89–91
WM_LBUTTONDOWN and

WM_LBUTTONUP, 80–82
null input/null expected results, dealing

with, and API testing, 20–22
number of permutations of order n,

calculating, 282–283
number of ways to select k items from n

items, calculating, 269–270

O
Object Browser (Visual Studio.NET), 195
object-oriented style versus procedural style

of code, 66
objects

See also SqlCommand object;
SqlDataReader object; StreamReader
object; TestCase object;
TestCaseResult object

ArrayList, 226–231, 311

AutoResetEvent, 53–58, 190–192
BindingFlags, 48
InternetExplorer, 192
MemoryStream, 359–361
NetworkCredential, 139
OleDbCommand, 198–203
OleDbConnection, 198–203
OleDbDataReader, 201–203
ProcessStartInfo, 67
Queue, 228
Scripting.FileSystemObject, 177–178
SqlDataAdapter, 301
SqlParameter, 311–314
StreamWriter, 100–103, 327–329
System.Collections.ArrayList, 107
System.IO.StreamReader, 7–8
System.IO.StreamWriter, 13–15
TcpClient, 222–225
TextRange, 197
Thread, 35–38
TimeSpan, 19–20
WebRequest, 139
XmlTextReader, 108–112, 117
XmlTextWriter, 108–112
XmlValidatingReader, 350–352
XPathNavigator, 343
XPathNodeIterator, 341–343
XslTransform, 353–355

obtaining handle
to main window of AUT, 68–73
to named control, 73–75
to non-named control, 75–77

OleDbCommand object, 198–203
OleDbConnection object, 198–203
OleDbDataReader object, 201–203
opening SQL cursors, 247
OpenTextFile() method, 249–250
osql.exe program, 117–119, 239–242
out parameter

out keyword and, 254–256
testing stored procedure that

returns, 311–314
overloads, Process.Start() method, 67

P
parameter, determining pass/fail result when

stored procedure under test
returns, 254–256

Parameters.Add() method, 306–311
Parse() method, 9–11
parsing

test case, API testing and, 8–9
XML file

DataSet object, using, 347–350
overview of, 335–336
XmlDocument class, using, 339–341
XmlSerializer class, using, 343–347

■INDEX 373

Find it faster at http://superindex.apress.com
/

XmlTextReader class, using, 337–339
XPathDocument class, using, 341–343

pass (global variable), 178
pass/fail result, determining

when expected value is DataSet
object, 303–306

when stored procedure under test returns
no value, 256–258

when stored procedure under test returns
parameter, 254–256

when stored procedure under test returns
rowset, 252–254

permutation
calculating

number of permutations of order
n, 282–283

successor to mathematical permutation
event, 284–286

description of, 266
example program, 293–300
mathematical

applying to string array, 291–293
determining kth lexicographical

element of, 287–291
mathematical permutation elements,

generating all, for given n, 286–287
mathematical permutation object,

creating, 280–281
software testing and, 267

Permutation class, 280–281
Permutation.ApplyTo() method, 291–293
Permutation.Successor() method, 286–287
platform invoke (P/Invoke) functionality, 69
poker game application under test

(PokerLib.dll), 98–99, 129–132
PostMessage() function, 80–82
predecessor control, 76
Predecessor() method, 272
procedural style versus object-oriented style

of code, 66
Process.Start() method, 67, 188–190
Process.State() method, 36
ProcessStartInfo object, 67
programmatically determining ViewState

and EventValidation values, 152–155
programmatically invoking method, hidden

issue with, 55
progress of test automation,

displaying, 173–174
project reference, adding to DLL, 12
properties

checked, 176–177
Current.Value, 341–343
DateTime.Now

test run total elapsed time,
determining, 19–20

time-stamping test case results, 16

document.body.innerText, 175
of HttpWebRequest class, 141
InnerText, 339–341
InternetExplorer object, 192–193, 194–198
InvokeRequired, hidden issue with, 40

PropertyInfo.GetValue() method, 44–47
PropertyInfo.SetValue() method, 39–44
proxy mechanism for calling Web

methods, 212–214
Proxy property (HttpWebRequest class), 141

Q
Query Analyzer

overview of, 117–119
running T-SQL script from, 242
SQL stored procedure testing and, 237

querying sysdatabases table, 240
Queue object, 228

R
RadioButtonList control and HTTP POST

data, 156–157
Read() method, 337–339
ReadElementString()

method, 108–112, 337–339
reading

test case data
API testing, 7–8
from SQL table into text file, 327–329
from text file into SQL table, 324–327

test scenario results stored in Excel
workbook, 201–203

text data from T-SQL test harness, 251
ReadLine() method, 141–142
ReadXml() method, 347–350
recasting solution to OOP design, 116
recursive methods, 43
reflection techniques, 128
reflection-based UI testing

control properties
accessing, 50–53
manipulating, 47–50

example program, 58–63
form properties

accessing, 44–47
manipulating, 39–44

invoking methods, 53–58
launching application under test, 35–38
overview of, 33
writing, 34

relational data storage, 97
relationships

between integer m and its
combinadic, 276

between k, factoradic(k), and kth
permutation, 289

relative paths and test harnesses, 8

■INDEX374

request-response testing
determining result, 159–162
example program, 162–165
HTTP POST data

CheckBox and RadioButtonList controls
and, 156–157

DropDownList control and, 157–159
special input characters and, 150–151

overview of, 135–136
programmatically determining ViewState

and EventValidation values, 152–155
retrieving HTTP response line-by-

line, 141–142
sending

complex HTTP GET request and
retrieving response, 140–141

HTTP request with authentication and
retrieving response, 139

simple HTTP GET request and
retrieving response, 138

simple HTTP POST request to ASP.NET
Web application, 145–150

simple HTTP POST request to classic
ASP Web page, 143–145

ways to send and receive HTTP data, 137
resetting state of data tables, 257–258
resizing form, 40
result of request-response test,

determining, 159–162
retrieving response

from complex HTTP GET request, 140–141
HTTP, line-by-line, 141–142
from HTTP request with

authentication, 139
from simple HTTP GET request, 138

@@rowcount function, 254
rowset

determining pass/fail result when stored
procedure under test
returns, 252–254

testing stored procedure that
returns, 309–311

running
SQL test case and results storage creation

script, 241
T-SQL script, 241–242

S
saveResults() function, 180
SaveResults.asp script, 179
saving test scenario results

to database table on server, 179–181
to Excel workbook, 200–201
to text file on client, 177–178

script-based Web UI testing
creating test harness structure, 170–172

determining Web application
state, 172–173

example program, 181–183
logging comments to test harness

UI, 173–174
manipulating value of HTML element on

Web AUT, 176–177
overview of, 167–168
saving test scenario results

to database table on server, 179–181
to text file on client, 177–178

verifying value of HTML element on Web
AUT, 174–175

Scripting.FileSystemObject ActiveX
object, 177–178

security modes and SQL databases, 241
SelectChildren() method, 341–343
SelectNodes() and SelectSingleNode()

methods, 339–341
self-referential methods, 43
SendChunked property (HttpWebRequest

class), 141
sending

characters to control, Windows-based UI
testing and, 78–80

complex HTTP GET request and retrieving
response, 140–141

e-mail alerts on test case failures, API
testing and, 26–28

HTTP request with authentication and
retrieving response, 139

simple HTTP GET request and retrieving
response, 138

simple HTTP POST request
to ASP.NET Web application, 145–150
to classic ASP Web page, 143–145

SendMessage() function
application state, checking, 89–91
menu, dealing with, 86–89
PostMessage() compared to, 80
sending characters to control, 78–80

SerializerLib namespace, 345
server, saving test scenario results to

database table on, 179–181
SetControlPropertyValue() wrapper, 49
SetFormPropertyValue() wrapper, 42–44
setTimeout() method, 172
SetValue() method, calling directly, 49
SHA1 (Secure Hash Algorithm version 1)

hash, 306, 317
shdocvw.dll library

InternetExplorer object, 189
overview of, 185
ShellWindows() method, 189

shell area of Internet Explorer, 193
ShellWindows() method, 189

■INDEX 375

Find it faster at http://superindex.apress.com
/

signaling exception should be thrown, 22–23
Simple Object Access Protocol (SOAP)

description of, 208
message, constructing, 216–217, 224
response, receiving, 219, 225

simulating user interaction with Web
AUT, 177

Socket class, 137
Socket.Connect() method, 218
Socket.Send() and Socket.Receive()

methods, 214–219
sockets for calling Web methods, 214–219, 223
source code, reviewing, 127
special input characters and HTTP POST

data, 150–151
specification documents, reading, 127
SQL cursor operations, 247
SQL data type, converting to C# data

type, 314
SQL databases

for lightweight test automation storage,
creating, 117–119

security modes of, 241
SQL file data

buffered model test harness, creating
for, 123–125

streaming model test harness, creating
for, 119–123

SQL login compared to SQL user, 241
SQL Server 2005, integration with .NET, 238
SQL stored procedure testing

approaches to, 237
creating test case and test result

storage, 239–241
determining pass/fail result

when no value returned, 256–258
when parameter returned, 254–256
when rowset object returned, 252–254

development database and, 237
example program, 259–263
importing test case data

using BCP utility, 243–245
using DTS utility, 245

running T-SQL script, 241–242
T-SQL test harness

creating, 245–249
reading text data, 251
writing test results directly to, 249–250

techniques of, 237
SQL table

inserting test results into, 248
reading test case data

from into text file, 327–329
from text file into, 324–327

SqlCommand object
description of, 119–123

determining pass/fail result when
expected value is, 306–309

reading test case data from text file into
SQL table, 324–327

SqlDataAdapter object, 301
SqlDataReader object

buffered model test harness, 123–125
description of, 311
reading test case data from SQL table into

text file, 327–329
streaming model test harness, 119–123

SqlParameter object, 311–314
StatCalc application, 3–4
state of Web AUT, determining, 172–173
stateful method, 13
stateless method, 13
static methods, handling in API testing, 4
storage, external compared to internal, 227
stored procedures

See also SQL stored procedure testing
SUT and, 212
that do not return value, testing, 314–317
that return rowset, testing, 309–311
that return value into out parameter,

testing, 311–314
that return value, testing, 306–309

storing
test case data, 6–7
XML data, 336

stream-reading technique, 219
Stream.IndexOf() method, 159–162
streaming processing

description of, 97
in pseudo-code, 99
SQL file data, streaming model test

harness, creating, 119–123
text file data, streaming model test

harness, creating, 100–103
XML file data, streaming model test

harness, creating, 108–112
StreamReader object

description of, 100–103
Deserialize() method and, 343–347
reading test case data from text file into

SQL table, 324–327
StreamReader() constructor, 141–142
StreamReader.Peek() method, 103
StreamReader.ReadLine() method, 159–162
StreamReader.ReadToEnd() method, 161
StreamWriter object, 100–103, 327–329
string array

applying mathematical combination
to, 278–280

applying mathematical permutation
to, 291–293

■INDEX376

string token
converting null token to null input

value, 20–22
representing empty string, 24–26
signaling that exception should be

thrown, 22–23
String.IndexOf() method, 152–155
String.Split() method, 8–9, 100–103
String.SubString() method, 152–155
structure for script-based Web application UI

test harness, creating, 170–172
structure tags, adding to test case data, 102
stub programs, creating, 127
successor

to mathematical combination element,
calculating, 271–273

to mathematical permutation element,
calculating, 284–286

successor control, 76
Successor() method, 271–273
summary results, calculating, API testing

and, 17–18
synchronization, hidden issue with, 55
sysdatabases table, querying, 240
system under test (SUT)

discovering information about, 126–128
stored procedures and, 212

System.Collections.ArrayList object, 107
System.Data.OleDb namespace, 198–201
System.Data.SqlClient namespace, 119–123
System.Diagnostic.Process.Start()

method, 66–67
System.Diagnostics namespace, 189
System.IntPtr type, 69
System.IO.StreamReader object, iterating

through test case file with, 7–8
System.IO.StreamWriter object, 13–15
System.Net namespace, 138–140
System.Net.Sockets namespace, 217
System.Reflection namespace

BindingFlags object and, 48
description of, 33, 128

System.Runtime.InteropServices
namespace, 69

System.Security.Cryptography
namespace, 306

System.Threading namespace, 36
System.Web namespace, 139
System.Web.Mail class, 26–28
System.Windows.Forms namespace, 36
System.Xml namespace, 341
System.Xml.XmlTextReader class, 111
systems that access data without using

stored procedures, testing, 318–321

T
T-SQL language, 237
T-SQL script, running, 241–242
T-SQL test harness

creating, 245–249
reading text data, 251
writing test results directly to, 249–250

TCP, calling Web methods and, 222–225
TcpClient class, 137
TcpClient object, 222–225
test case

converting, API testing and, 9–11
definition of, 177
with dependencies, 230
failures, sending e-mail alerts on, 26–28
parsing, API testing and, 8–9

test case data
determining expected result for, 6
reading

API testing, 7–8
from SQL table into text file, 327–329
from text file into SQL table, 324–327

storage, types of, 97
storing, API testing and, 6–7

test case result, and API testing
determining, 11–13
logging, 13–15
time-stamping, 16

test harness design patterns
classifying, 97–100
example program, 129–132
SQL database, creating, 117–119
SQL file data

buffered model, 123–125
streaming model, 119–123

text file data
buffered model, 104–108
streaming model, 100–103

XML file data
buffered model, 113–117
streaming model, 108–112

test harnesses
adding branching logic to, 24–26
adding logic to convert null token to null

input value, 20–22
console applications and, 7
for script-based Web application UI test,

creating, 170–172
launching automatically, 28–29
logging comments to UI, 173–174
methods and, 12
relative paths and, 8
T-SQL

creating, 245–249
reading text data, 251
writing test results directly to, 249–250

■INDEX 377

Find it faster at http://superindex.apress.com
/

testing multiple methods in, 13
test scenario

constructing, 177
saving results

to database table on server, 179–181
to text file on client, 177–178

test scenario results
creating Excel workbook for, 198–200
reading in Excel workbook, 201–203
saving in Excel workbook, 200–201

test suite, 125–126
TestCase object

SQL file data, 123–125
text file data, 104–108
XML file data, 113–117

TestCaseResult object
SQL file data, 123–125
text file data, 104–108
XML file data, 113–117

TestCode.html listing, 181
text file

colon-delimited, 6
importing data from using BCP utility, 244
reading from T-SQL test harness, 251
reading test case data

from into SQL table, 324–327
from SQL table into, 327–329

saving test scenario results to, 177–178
writing test case results to, 14
writing test results directly to from T-SQL

test harness, 249–250
text file data

buffered model test harness, creating
for, 104–108

streaming model test harness, creating
for, 100–103

text on Web page/application, accessing, 175
textRange object, 197
Thread object, creating and associating with

application state wrapper
class, 35–38

Thread.Sleep() method, 70
Thread.Sleep() statement, 55, 191
ThreadPool.QueueUserWorkItem()

method, 38
time-stamping test case result, and API

testing, 16
Timeout property (HttpWebRequest

class), 141
TimeSpan object, 19–20
total elapsed time, determining, 19–20
tracking passes and failures, 18
Transform() method, 353–355
try-catch-finally block, wrapping test harness

code in, 102
type conversion, explicit, 9–11

Type.GetField() method
accessing control properties, 50–53
manipulating control properties, 47–50

Type.GetMethod() method, 53–58
Type.GetProperty() method

accessing form properties and, 44–47
manipulating form properties and, 39–44

typographical errors in application under
test (AUT), 170

U
UI testing

See also script-based Web UI testing
reflection-based

accessing control properties, 50–53
accessing form properties, 44–47
example program, 58–63
invoking methods, 53–58
launching application under test, 35–38
manipulating control properties, 47–50
manipulating form properties, 39–44
overview of, 33
writing, 34

Windows-based
application state, checking, 89–91
clicking on control, 80–82
example program, 91–96
handle to main window of AUT,

obtaining, 68–73
handle to named control,

obtaining, 73–75
handle to non-named control,

obtaining, 75–77
launching application under test, 66–67
menu, dealing with, 86–89
message box, dealing with, 82–86
overview of, 65–66
sending characters to control, 78–80

unit testing, 7
updateState() function, 171–173
UrlEncode() method, 150–151
user interface (UI) testing. See reflection-

based UI testing; Windows-based
UI testing

UserAgent property (HttpWebRequest
class), 141

V
validating XML file

overview of, 335
using DTD file, 353
using XSD schema, 350–352

Validation, 208–209, 232
validity checks on test case data, 102

■INDEX378

value
determining pass/fail result when stored

procedure under test returns
no, 256–258

of HTML element
manipulating, 194–195
verifying, 195–198

testing stored procedure
that does not return, 314–317
that returns, 306–309

Verification, 208, 227, 247
verify() function, 174–175
verifying value of HTML element on Web

AUT, 174–175, 195–198
ViewState value, programmatically

determining, 152–155
Visual Studio.NET

calling Web methods and, 208
Object Browser, 195
proxy mechanism, 212–214
SOAP message and, 216–217, 224

W
Web application state, determining, 172–173
Web services testing

example program, 232–234
HTTP, using, 220–221
in-memory test case data store

saving to, 229–231
using, 226–228

key code from application that calls Web
service, 212

overview of, 207–208
proxy mechanism, using, 212–214
sockets, using, 214–219, 223
SQL database, creating and

populating, 209–211
TCP, using, 222–225
test run with validation, 208

Web UI testing. See low-level Web UI testing;
script-based Web UI testing

WebApp.aspx application, 168–170
WebClient class, 137–138
WebRequest - WebResponse class, 137
WebRequest object, 139
Weekly Test Runs (WTRs), 126
while loop

Combination.Successor() method
and, 273–274, 287

FindWindow() function and, 71
iterating through test case file with, 7–8
NetworkStream object, 222–225
Permutation.Successor() method

and, 286–287
Socket.Receive() method and, 219
StreamReader.ReadLine() method

inside, 141–142

white box testing, 127
Win32 functions

C# method alias for, 69
FindWindow()

message box, dealing with, 82–86
obtaining handle to main window of

AUT, 68–73
FindWindowByIndex(), 75–77
FindWindowEx(), 73–75
GetMenu(), 86–89
GetMenuItem(), 86–89
GetSubMenu(), 86–89
PostMessage(), 80–82
SendMessage()

application state, checking, 89–91
menu, dealing with, 86–89
PostMessage() compared to, 80
sending characters to control, 78–80

Windows-based UI testing and, 65
window handle, obtaining

to main window of AUT, 68–73
to named control, 73–75
to non-named control, 75–77

Windows Authentication, 241
windows of Internet Explorer, 193
Windows Task Scheduler, launching test

harness automatically using, 28–29
Windows-based UI testing

application state, checking, 89–91
clicking on control, 80–82
example program, 91–96
launching application under test, 66–67
menu, dealing with, 86–89
message box, dealing with, 82–86
obtaining handle

to main window of AUT, 68–73
to named control, 73–75
to non-named control, 75–77

overview of, 65–66
sending characters to control, 78–80

WM CHAR notification message, 78–80
WM_COMMAND notification

message, 86–89
WM_GETTEXT notification message, 89–91
WM_LBUTTONDOWN and

WM_LBUTTONUP notification
messages, 80–82

wrapping test harness code in try-catch-
finally block, 102

WriteAttributeString() method, 355–356
WriteEndAttribute() method, 110
WriteEndElement() method, 110
WriteLine() method, 177–178, 249–250,

327–329
WriteStartAttribute() method, 110
WriteStartElement() method, 110, 355–356
WriteString() method, 110, 355–356

■INDEX 379

Find it faster at http://superindex.apress.com
/

writing
automated tests, 6
procedural versus object-oriented style, 66
reflection-based UI testing, 34
test case results to external storage, 13–15
test results directly to text file from T-SQL

test harness, 249–250
to XML file using XmlTextWriter

class, 355–356
WTRs (Weekly Test Runs), 126

X
XML auto-documentation, 127
XML file data

buffered model test harness, creating
for, 113–117

streaming model test harness, creating
for, 108–112

XML testing
comparing files

for canonical equivalence, 359–361
for exact equality, 356–357
for exact equality, except for

encoding, 358
example program, 361–362
modifying using XSLT, 353–355
overview of, 335–336
parsing

DataSet object, using, 347–350
XmlDocument class, using, 339–341
XmlSerializer class, using, 343–347
XmlTextReader class, using, 337–339
XPathDocument class, using, 341–343

validating
DTD file, using, 353
XSD schema, using, 350–352

writing to XML file using XmlTextWriter
class, 355–356

XML Web services, 208
XmlDataDocument class, 341
XmlDocument class, parsing XML data

using, 339–341
XmlDsigC14NTransform class, 359–361
XmlSerializer class, parsing XML data

using, 343–347
XmlTextReader class, parsing XML data

using, 337–339
XmlTextReader object, 108–112, 117
XmlTextWriter class, writing to XML file

using, 355–356
XmlTextWriter object, 108–112
XmlValidatingReader object, 350–352
XPathDocument class, parsing XML data

using, 341–343
XPathNavigator object, 343
XPathNodeIterator object, 341–343

XSD schema, validating XML data
using, 350–352

XSLT (Extensible Stylesheet Language
Transformations), modifying XML
data using, 353–355

XslTransform object, 353–355

■INDEX380

