
191

■ ■ ■

C H A P T E R 9

Strings and
Regular Expressions

As programmers, we build applications that are based on established rules regarding the
classification, parsing, storage, and display of information, whether that information consists
of gourmet recipes, store sales receipts, poetry, or some other collection of data. In this chapter,
we examine many of the PHP functions that you’ll undoubtedly use on a regular basis when
performing such tasks.

This chapter covers the following topics:

• PHP 5’s new string offset syntax: In an effort to remove ambiguity and pave the way for
potential optimization of run-time string processing, a change to the string offset syntax
was made in PHP 5.

• Regular expressions: A brief introduction to regular expressions touches upon the features
and syntax of PHP’s two supported regular expression implementations: POSIX and
Perl. Following that is a complete introduction to PHP’s respective function libraries.

• String manipulation: It’s conceivable that throughout your programming career, you’ll
somehow be required to modify every conceivable aspect of a string. Many of the powerful
PHP functions that can help you to do so are introduced in this chapter.

• The PEAR Validate_US package: In this and subsequent chapters, various PEAR packages
are introduced that are relevant to the respective chapter’s subject matter. This chapter
introduces Validate_US, a PEAR package that is useful for validating the syntax for items
of information commonly used in applications of all types, including phone numbers,
social security numbers, ZIP codes, and state abbreviations. (If you’re not familiar with
PEAR, it’s introduced in Chapter 11.)

Complex (Curly) Offset Syntax
Because PHP is a loosely typed language, it makes sense that a string could also easily be treated as
an array. Therefore, any string, php for example, could be treated as both a contiguous entity
and as a collection of three characters, meaning that you could output such a string in two
fashions:

192 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 $thing = "php";
 echo $thing;
 echo "
";
 echo $thing[0];
 echo $thing[1];
 echo $thing[2];
?>

This returns the following:

php
php

Although this behavior is quite convenient, it isn’t without problems. For starters, it invites
ambiguity. Looking at the code, was it the developer’s intention to treat this data as a string or
as an array? Also, this loose syntax prevents you from creating any sort of run-time code opti-
mization intended solely for strings, because the scripting engine can’t differentiate between
strings and arrays. To resolve this problem, the square bracket offset syntax has been deprecated
in preference to curly bracket syntax when working with strings. Here’s another look at the
previous example, this time using the preferred syntax:

<?php
 $thing = "php";
 echo $thing;
 echo "
";
 echo $thing{0};
 echo $thing{1};
 echo $thing{2};
?>

This example yields the same results as the original version.
The square bracket syntax has been around so long that it’s unlikely to go away any time

soon, if ever. Nonetheless, in the spirit of clean programming practice, it’s suggested that you
migrate to the curly bracketing syntax style for future applications.

Regular Expressions
Regular expressions provide the foundation for describing or matching data according to defined
syntax rules. A regular expression is nothing more than a pattern of characters itself, matched
against a certain parcel of text. This sequence may be a pattern with which you are already
familiar, such as the word “dog,” or it may be a pattern with specific meaning in the context of
the world of pattern matching, <(?)>.*<\ /.?> for example.

PHP offers functions specific to two sets of regular expression functions, each corresponding
to a certain type of regular expression: POSIX and Perl-style. Each has its own unique style of
syntax and is discussed accordingly in later sections. Keep in mind that innumerable tutorials
have been written regarding this matter; you can find them both on the Web and in various

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 193

books. Therefore, this chapter provides just a basic introduction to both, leaving it to you to
search out further information should you be so inclined.

If you are not already familiar with the mechanics of general expressions, please take some
time to read through the short tutorial comprising the remainder of this section. If you are
already a regular expression pro, feel free to skip past the tutorial to the section “PHP’s Regular
Expression Functions (POSIX Extended).”

Regular Expression Syntax (POSIX)
The structure of a POSIX regular expression is similar to that of a typical arithmetic expression:
various elements (operators) are combined to form a more complex expression. The meaning
of the combined regular expression elements is what makes them so powerful. You can locate
not only literal expressions, such as a specific word or number, but also a multitude of seman-
tically different but syntactically similar strings, such as all HTML tags in a file.

The simplest regular expression is one that matches a single character, such as g, which
would match strings such as g, haggle, and bag. You could combine several letters together to
form larger expressions, such as gan, which logically would match any string containing gan:
gang, organize, or Reagan, for example.

You can also test for several different expressions simultaneously by using the pipe (|)
operator. For example, you could test for php or zend via the regular expression php|zend.

Prior to introducing PHP’s POSIX-based regular expression functions, we’ll introduce
three syntactical variations that POSIX supports for easily locating different character sequences:
brackets, quantifiers, and predefined character classes.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions, which
are used to find a range of characters. Contrary to the regular expression php, which will find
strings containing the explicit string php, the regular expression [php] will find any string containing
the character p or h. Bracketing plays a significant role in regular expressions, because many
times you may be interested in finding strings containing any of a range of characters. Several
commonly used character ranges follow:

• [0-9] matches any decimal digit from 0 through 9.

• [a-z] matches any character from lowercase a through lowercase z.

• [A-Z] matches any character from uppercase A through uppercase Z.

• [A-Za-z] matches any character from uppercase A through lowercase z.

Of course, the ranges shown here are general; you could also use the range [0-3] to match
any decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase character
ranging from b through v. In short, you are free to specify whatever range you wish.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted
by a special character, with each special character having a specific connotation. The +, *, ?,
{occurrence_range}, and $ flags all follow a character sequence:

194 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• p+ matches any string containing at least one p.

• p* matches any string containing zero or more p’s.

• p? matches any string containing zero or one p.

• p{2} matches any string containing a sequence of two p’s.

• p{2,3} matches any string containing a sequence of two or three p’s.

• p{2,} matches any string containing a sequence of at least two p’s.

• p$ matches any string with p at the end of it.

Still other flags can precede and be inserted before and within a character sequence:

• ^p matches any string with p at the beginning of it.

• [^a-zA-Z] matches any string not containing any of the characters ranging from a
through z and A through Z.

• p.p matches any string containing p, followed by any character, in turn followed by
another p.

You can also combine special characters to form more complex expressions. Consider the
following examples:

• ^.{2}$ matches any string containing exactly two characters.

• (.*) matches any string enclosed within and (presumably HTML
bold tags).

• p(hp)* matches any string containing a p followed by zero or more instances of the
sequence hp.

You may wish to search for these special characters in strings instead of using them in
the special context just described. If you want to do so, the characters must be escaped with
a backslash (\). For example, if you wanted to search for a dollar amount, a plausible regular
expression would be as follows: ([\$])([0-9]+); that is, a dollar sign followed by one or more
integers. Notice the backslash preceding the dollar sign. Potential matches of this regular
expression include $42, $560, and $3.

Predefined Character Ranges (Character Classes)

For your programming convenience, several predefined character ranges, also known as character
classes, are available. Character classes specify an entire range of characters, for example, the
alphabet or an integer set. Standard classes include:

• [:alpha:]: Lowercase and uppercase alphabetical characters. This can also be specified
as [A-Za-z].

• [:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits. This
can also be specified as [A-Za-z0-9].

• [:cntrl:]: Control characters such as a tab, escape, or backspace.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 195

• [:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9].

• [:graph:]: Printable characters found in the range of ASCII 33 to 126.

• [:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].

• [:punct:]: Punctuation characters, including ~ ` ! @ # $ % ^ & * () - _ + = { } [] : ; ' < > ,
. ? and /.

• [:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z].

• [:space:]: Whitespace characters, including the space, horizontal tab, vertical tab, new
line, form feed, or carriage return.

• [:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)
PHP currently offers seven functions for searching strings using POSIX-style regular expressions:
ereg(), ereg_replace(), eregi(), eregi_replace(), split(), spliti(), and sql_regcase(). These
functions are discussed in this section.

ereg()

boolean ereg (string pattern, string string [, array regs])

The ereg() function executes a case-sensitive search of string for pattern, returning TRUE if the
pattern is found and FALSE otherwise. Here’s how you could use ereg() to ensure that a user-
name consists solely of lowercase letters:

<?php
 $username = "jasoN";
 if (ereg("([^a-z])",$username)) echo "Username must be all lowercase!";
?>

In this case, ereg() will return TRUE, causing the error message to output.
The optional input parameter regs contains an array of all matched expressions that were

grouped by parentheses in the regular expression. Making use of this array, you could segment
a URL into several pieces, as shown here:

<?php
 $url = "http://www.apress.com";

 // break $url down into three distinct pieces:
 // "http://www", "apress", and "com"
 $parts = ereg("^(http://www)\.([[:alnum:]]+)\.([[:alnum:]]+)", $url, $regs);

 echo $regs[0]; // outputs the entire string "http://www.apress.com"
 echo "
";
 echo $regs[1]; // outputs "http://www"
 echo "
";

196 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

 echo $regs[2]; // outputs "apress"
 echo "
";
 echo $regs[3]; // outputs "com"
?>

This returns:

http://www.apress.com
http://www
apress
com

eregi()

int eregi (string pattern, string string, [array regs])

The eregi() function searches string for pattern. Unlike ereg(), the search is case insensitive.
This function can be useful when checking the validity of strings, such as passwords. This concept
is illustrated in the following example:

<?php
 $pswd = "jasongild";
 if (!eregi("^[a-zA-Z0-9]{8,10}$", $pswd))
 echo "The password must consist solely of alphanumeric characters,
 and must be 8-10 characters in length!";
?>

In this example, the user must provide an alphanumeric password consisting of 8 to 10
characters, or else an error message is displayed.

ereg_replace()

string ereg_replace (string pattern, string replacement, string string)

The ereg_replace() function operates much like ereg(), except that the functionality is extended
to finding and replacing pattern with replacement instead of simply locating it. If no matches
are found, the string will remain unchanged. Like ereg(), ereg_replace() is case sensitive.
Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo ereg_replace("http://([a-zA-Z0-9./-]+)$", "\\0",
 $text);
?>

This returns:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 197

This is a link to
http://www.wjgilmore.com.

A rather interesting feature of PHP’s string-replacement capability is the ability to back-
reference parenthesized substrings. This works much like the optional input parameter regs in
the function ereg(), except that the substrings are referenced using backslashes, such as \0, \1,
\2, and so on, where \0 refers to the entire string, \1 the first successful match, and so on. Up to
nine back references can be used. This example shows how to replace all references to a URL
with a working hyperlink:

$url = "Apress (http://www.apress.com)";
$url = ereg_replace("http://([a-zA-Z0-9./-]+)([a-zA-Z/]+)",
 "\\0", $url);
print $url;
// Displays Apress (http://www.apress.com)

■Note Although ereg_replace() works just fine, another predefined function named str_replace()
is actually much faster when complex regular expressions are not required. str_replace() is discussed
later in this chapter.

eregi_replace()

string eregi_replace (string pattern, string replacement, string string)

The eregi_replace() function operates exactly like ereg_replace(), except that the search for
pattern in string is not case sensitive.

split()

array split (string pattern, string string [, int limit])

The split() function divides string into various elements, with the boundaries of each element
based on the occurrence of pattern in string. The optional input parameter limit is used to
specify the number of elements into which the string should be divided, starting from the left
end of the string and working rightward. In cases where the pattern is an alphabetical character,
split() is case sensitive. Here’s how you would use split() to break a string into pieces based
on occurrences of horizontal tabs and newline characters:

<?php
 $text = "this is\tsome text that\nwe might like to parse.";
 print_r(split("[\n\t]",$text));
?>

This returns:

198 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Array ([0] => this is [1] => some text that [2] => we might like to parse.)

spliti()

array spliti (string pattern, string string [, int limit])

The spliti() function operates exactly in the same manner as its sibling split(), except that it
is case insensitive.

sql_regcase()

string sql_regcase (string string)

The sql_regcase() function converts each character in string into a bracketed expression
containing two characters. If the character is alphabetic, the bracket will contain both forms;
otherwise, the original character will be left unchanged. This function is particularly useful
when PHP is used in conjunction with products that support only case-sensitive regular
expressions. Here’s how you would use sql_regcase() to convert a string:

<?php
 $version = "php 4.0";
 print sql_regcase($version);
 // outputs [Pp] [Hh] [Pp] 4.0
?>

Regular Expression Syntax (Perl Style)
Perl has long been considered one of the greatest parsing languages ever written, and it provides
a comprehensive regular expression language that can be used to search and replace even the
most complicated of string patterns. The developers of PHP felt that instead of reinventing the
regular expression wheel, so to speak, they should make the famed Perl regular expression
syntax available to PHP users, thus the Perl-style functions.

Perl-style regular expressions are similar to their POSIX counterparts. In fact, Perl’s regular
expression syntax is a derivation of the POSIX implementation, resulting in considerable simi-
larities between the two. You can use any of the quantifiers introduced in the previous POSIX
section. The remainder of this section is devoted to a brief introduction of Perl regular expression
syntax. Let’s start with a simple example of a Perl-based regular expression:

/food/

Notice that the string food is enclosed between two forward slashes. Just like with POSIX
regular expressions, you can build a more complex string through the use of quantifiers:

/fo+/

This will match fo followed by one or more characters. Some potential matches include
food, fool, and fo4. Here is another example of using a quantifier:

/fo{2,4}/

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 199

This matches f followed by two to four occurrences of o. Some potential matches include
fool, fooool, and foosball.

Modifiers

Often, you’ll want to tweak the interpretation of a regular expression; for example, you may
want to tell the regular expression to execute a case-insensitive search or to ignore comments
embedded within its syntax. These tweaks are known as modifiers, and they go a long way
toward helping you to write short and concise expressions. A few of the more interesting modi-
fiers are outlined in Table 9-1.

These modifiers are placed directly after the regular expression; for example, /string/i.
Let’s consider a few examples:

• /wmd/i: Matches WMD, wMD, WMd, wmd, and any other case variation of the string wmd.

• /taxation/gi: Case insensitivity locates all occurrences of the word taxation. You might
use the global modifier to tally up the total number of occurrences, or use it in conjunction
with a replacement feature to replace all occurrences with some other string.

Metacharacters

Another useful thing you can do with Perl regular expressions is use various metacharacters to
search for matches. A metacharacter is simply an alphabetical character preceded by a backslash
that symbolizes special meaning. A list of useful metacharacters follows:

• \A: Matches only at the beginning of the string.

• \b: Matches a word boundary.

• \B: Matches anything but a word boundary.

Table 9-1. Six Sample Modifiers

Modifier Description

i Perform a case-insensitive search.

g Find all occurrences (perform a global search).

m Treat a string as several (m for multiple) lines. By default, the ^ and $ characters
match at the very start and very end of the string in question. Using the m modifier
will allow for ^ and $ to match at the beginning of any line in a string.

s Treat a string as a single line, ignoring any newline characters found within;
this accomplishes just the opposite of the m modifier.

x Ignore whitespace and comments within the regular expression.

U Stop at the first match. Many quantifiers are “greedy”; they match the pattern as
many times as possible rather than just stop at the first match. You can cause
them to be “ungreedy” with this modifier.

200 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• \d: Matches a digit character. This is the same as [0-9].

• \D: Matches a nondigit character.

• \s: Matches a whitespace character.

• \S: Matches a nonwhitespace character.

• []: Encloses a character class. A list of useful character classes was provided in the
previous section.

• (): Encloses a character grouping or defines a back reference.

• $: Matches the end of a line.

• ^: Matches the beginning of a line.

• .: Matches any character except for the newline.

• \: Quotes the next metacharacter.

• \w: Matches any string containing solely underscore and alphanumeric characters.
This is the same as [a-zA-Z0-9_].

• \W: Matches a string, omitting the underscore and alphanumeric characters.

Let’s consider a few examples:

/sa\b/

Because the word boundary is defined to be on the right side of the strings, this will match
strings like pisa and lisa, but not sand.

/\blinux\b/i

This returns the first case-insensitive occurrence of the word linux.

/sa\B/

The opposite of the word boundary metacharacter is \B, matching on anything but a word
boundary. This will match strings like sand and Sally, but not Melissa.

/\$\d+\g

This returns all instances of strings matching a dollar sign followed by one or more digits.

PHP’s Regular Expression Functions (Perl Compatible)

PHP offers seven functions for searching strings using Perl-compatible regular expressions:
preg_grep(), preg_match(), preg_match_all(), preg_quote(), preg_replace(),
preg_replace_callback(), and preg_split(). These functions are introduced in the following
sections.

preg_grep()

array preg_grep (string pattern, array input [, flags])

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 201

The preg_grep() function searches all elements of the array input, returning an array consisting of
all elements matching pattern. Consider an example that uses this function to search an array
for foods beginning with p:

<?php
 $foods = array("pasta", "steak", "fish", "potatoes");
 $food = preg_grep("/^p/", $foods);
 print_r($food);
?>

This returns:

Array ([0] => pasta [3] => potatoes)

Note that the array corresponds to the indexed order of the input array. If the value at that
index position matches, it’s included in the corresponding position of the output array. Other-
wise, that position is empty. If you want to remove those instances of the array that are blank,
filter the output array through the function array_values(), introduced in Chapter 5.

The optional input parameter flags was added in PHP version 4.3. It accepts one value,
PREG_GREP_INVERT. Passing this flag will result in retrieval of those array elements that do not
match the pattern.

preg_match()

int preg_match (string pattern, string string [, array matches]
 [, int flags [, int offset]]])

The preg_match() function searches string for pattern, returning TRUE if it exists and FALSE
otherwise. The optional input parameter pattern_array can contain various sections of the
subpatterns contained in the search pattern, if applicable. Here’s an example that uses
preg_match() to perform a case-sensitive search:

<?php
 $line = "Vim is the greatest word processor ever created!";
 if (preg_match("/\bVim\b/i", $line, $match)) print "Match found!";
?>

For instance, this script will confirm a match if the word Vim or vim is located, but not
simplevim, vims, or evim.

preg_match_all()

int preg_match_all (string pattern, string string, array pattern_array
 [, int order])

The preg_match_all() function matches all occurrences of pattern in string, assigning each
occurrence to array pattern_array in the order you specify via the optional input parameter
order. The order parameter accepts two values:

202 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• PREG_PATTERN_ORDER is the default if the optional order parameter is not included.
PREG_PATTERN_ORDER specifies the order in the way that you might think most logical:
$pattern_array[0] is an array of all complete pattern matches, $pattern_array[1] is an
array of all strings matching the first parenthesized regular expression, and so on.

• PREG_SET_ORDER orders the array a bit differently than the default setting. $pattern_array[0]
contains elements matched by the first parenthesized regular expression,
$pattern_array[1] contains elements matched by the second parenthesized regular
expression, and so on.

Here’s how you would use preg_match_all() to find all strings enclosed in bold HTML tags:

<?php
 $userinfo = "Name: Zeev Suraski
 Title: PHP Guru";
 preg_match_all ("/(.*)<\/b>/U", $userinfo, $pat_array);
 print $pat_array[0][0]."
 ".$pat_array[0][1]."\n";
?>

This returns:

Zeev Suraski
PHP Guru

preg_quote()

string preg_quote(string str [, string delimiter])

The function preg_quote() inserts a backslash delimiter before every character of special
significance to regular expression syntax. These special characters include: $ ^ * () + = { } [] |
\\ : < >. The optional parameter delimiter is used to specify what delimiter is used for the
regular expression, causing it to also be escaped by a backslash. Consider an example:

<?php
 $text = "Tickets for the bout are going for $500.";
 echo preg_quote($text);
?>

This returns:

Tickets for the bout are going for \$500\.

preg_replace()

mixed preg_replace (mixed pattern, mixed replacement, mixed str [, int limit])

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 203

The preg_replace() function operates identically to ereg_replace(), except that it uses a Perl-
based regular expression syntax, replacing all occurrences of pattern with replacement, and
returning the modified result. The optional input parameter limit specifies how many matches
should take place. Failing to set limit or setting it to -1 will result in the replacement of all
occurrences. Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo preg_replace("/http:\/\/(.*)\//", "\${0}", $text);
?>

This returns:

This is a link to
http://www.wjgilmore.com/.

Interestingly, the pattern and replacement input parameters can also be arrays. This function
will cycle through each element of each array, making replacements as they are found. Consider
this example, which we could market as a corporate report generator:

<?php
 $draft = "In 2006 the company faced plummeting revenues and scandal.";
 $keywords = array("/faced/", "/plummeting/", "/scandal/");
 $replacements = array("celebrated", "skyrocketing", "expansion");
 echo preg_replace($keywords, $replacements, $draft);
?>

This returns:

In 2006 the company celebrated skyrocketing revenues and expansion.

preg_replace_callback()

mixed preg_replace_callback(mixed pattern, callback callback, mixed str
 [, int limit])

Rather than handling the replacement procedure itself, the preg_replace_callback() function
delegates the string-replacement procedure to some other user-defined function. The pattern
parameter determines what you’re looking for, while the str parameter defines the string you’re
searching. The callback parameter defines the name of the function to be used for the replace-
ment task. The optional parameter limit specifies how many matches should take place. Failing to
set limit or setting it to -1 will result in the replacement of all occurrences. In the following
example, a function named acronym() is passed into preg_replace_callback() and is used to
insert the long form of various acronyms into the target string:

204 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 // This function will add the acronym long form
 // directly after any acronyms found in $matches
 function acronym($matches) {
 $acronyms = array(
 'WWW' => 'World Wide Web',
 'IRS' => 'Internal Revenue Service',
 'PDF' => 'Portable Document Format');
 if (isset($acronyms[$matches[1]]))
 return $matches[1] . " (" . $acronyms[$matches[1]] . ")";
 else
 return $matches[1];
 }

 // The target text
 $text = "The <acronym>IRS</acronym> offers tax forms in
 <acronym>PDF</acronym> format on the <acronym>WWW</acronym>.";
 // Add the acronyms' long forms to the target text
 $newtext = preg_replace_callback("/<acronym>(.*)<\/acronym>/U", 'acronym',
 $text);

 print_r($newtext);
?>

This returns:

The IRS (Internal Revenue Service) offers tax forms
in PDF (Portable Document Format) on the WWW (World Wide Web).

preg_split()

array preg_split (string pattern, string string [, int limit [, int flags]])

The preg_split() function operates exactly like split(), except that pattern can also be defined in
terms of a regular expression. If the optional input parameter limit is specified, only limit
number of substrings are returned. Consider an example:

<?php
 $delimitedText = "+Jason+++Gilmore+++++++++++Columbus+++OH";
 $fields = preg_split("/\+{1,}/", $delimitedText);
 foreach($fields as $field) echo $field."
";
?>

This returns the following:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 205

Jason
Gilmore
Columbus
OH

■Note Later in this chapter, the section titled “Alternatives for Regular Expression Functions” offers several
standard functions that can be used in lieu of regular expressions for certain tasks. In many cases, these
alternative functions actually perform much faster than their regular expression counterparts.

Other String-Specific Functions
In addition to the regular expression–based functions discussed in the first half of this chapter,
PHP offers over 100 functions collectively capable of manipulating practically every imaginable
aspect of a string. To introduce each function would be out of the scope of this book and would
only repeat much of the information in the PHP documentation. This section is devoted to a
categorical FAQ of sorts, focusing upon the string-related issues that seem to most frequently
appear within community forums. The section is divided into the following topics:

• Determining string length

• Comparing string length

• Manipulating string case

• Converting strings to and from HTML

• Alternatives for regular expression functions

• Padding and stripping a string

• Counting characters and words

Determining the Length of a String
Determining string length is a repeated action within countless applications. The PHP function
strlen() accomplishes this task quite nicely.

strlen()

int strlen (string str)

You can determine the length of a string with the strlen() function. This function returns the
length of a string, where each character in the string is equivalent to one unit. The following
example verifies whether a user password is of acceptable length:

206 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 $pswd = "secretpswd";
 if (strlen($string) < 10) echo "Password is too short!";
?>

In this case, the error message will not appear, because the chosen password consists of
10 characters, whereas the conditional expression validates whether the target string consists
of less than 10 characters.

Comparing Two Strings
String comparison is arguably one of the most important features of the string-handling capa-
bilities of any language. Although there are many ways in which two strings can be compared
for equality, PHP provides four functions for performing this task: strcmp(), strcasecmp(),
strspn(), and strcspn(). These functions are discussed in the following sections.

strcmp()

int strcmp (string str1, string str2)

The strcmp() function performs a binary-safe, case-sensitive comparison of the strings str1
and str2, returning one of three possible values:

• 0 if str1 and str2 are equal

• -1 if str1 is less than str2

• 1 if str2 is less than str1

Web sites often require a registering user to enter and confirm his chosen password, less-
ening the possibility of an incorrectly entered password as a result of a typing error. Because
passwords are often case sensitive, strcmp() is a great function for comparing the two:

<?php
 $pswd = "supersecret";
 $pswd2 = "supersecret";
 if (strcmp($pswd,$pswd2) != 0) echo "Your passwords do not match!";
?>

Note that the strings must match exactly for strcmp() to consider them equal. For example,
Supersecret is different from supersecret. If you’re looking to compare two strings case-
insensitively, consider strcasecmp(), introduced next.

Another common point of confusion regarding this function surrounds its behavior of
returning 0 if the two strings are equal. This is different from executing a string comparison
using the == operator, like so:

if ($str1 == $str2)

While both accomplish the same goal, which is to compare two strings, keep in mind that
the values they return in doing so are different.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 207

strcasecmp()

int strcasecmp (string str1, string str2)

The strcasecmp() function operates exactly like strcmp(), except that its comparison is case
insensitive. The following example compares two e-mail addresses, an ideal use for strcasecmp()
because casing does not determine an e-mail address’s uniqueness:

<?php
 $email1 = "admin@example.com";
 $email2 = "ADMIN@example.com";

 if (! strcasecmp($email1, $email2))
 print "The email addresses are identical!";
?>

In this case, the message is output, because strcasecmp() performs a case-insensitive
comparison of $email1 and $email2 and determines that they are indeed identical.

strspn()

int strspn (string str1, string str2)

The strspn() function returns the length of the first segment in str1 containing characters also
in str2. Here’s how you might use strspn() to ensure that a password does not consist solely
of numbers:

<?php
 $password = "3312345";
 if (strspn($password, "1234567890") == strlen($password))
 echo "The password cannot consist solely of numbers!";
?>

In this case, the error message is returned, because $password does indeed consist solely
of digits.

strcspn()

int strcspn (string str1, string str2)

The strcspn() function returns the length of the first segment in str1 containing characters
not found in str2. Here’s an example of password validation using strcspn():

<?php
 $password = "a12345";
 if (strcspn($password, "1234567890") == 0) {
 print "Password cannot consist solely of numbers! ";
 }
?>

208 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

In this case, the error message will not be displayed, because $password does not consist
solely of numbers.

Manipulating String Case
Four functions are available to aid you in manipulating the case of characters in a string:
strtolower(), strtoupper(), ucfirst(), and ucwords(). These functions are discussed in
this section.

strtolower()

string strtolower (string str)

The strtolower() function converts str to all lowercase letters, returning the modified string.
Nonalphabetical characters are not affected. The following example uses strtolower() to
convert a URL to all lowercase letters:

<?php
 $url = "http://WWW.EXAMPLE.COM/";
 echo strtolower($url);
?>

This returns:

http://www.example.com/

strtoupper()

string strtoupper (string str)

Just as you can convert a string to lowercase, you can convert it to uppercase. This is accom-
plished with the function strtoupper(). Nonalphabetical characters are not affected. This
example uses strtoupper() to convert a string to all uppercase letters:

<?php
 $msg = "i annoy people by capitalizing e-mail text.";
 echo strtoupper($msg);
?>

This returns:

I ANNOY PEOPLE BY CAPITALIZING E-MAIL TEXT.

ucfirst()

string ucfirst (string str)

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 209

The ucfirst() function capitalizes the first letter of the string str, if it is alphabetical. Nonalpha-
betical characters will not be affected. Additionally, any capitalized characters found in the
string will be left untouched. Consider this example:

<?php
 $sentence = "the newest version of PHP was released today!";
 echo ucfirst($sentence);
?>

This returns:

The newest version of PHP was released today!

Note that while the first letter is indeed capitalized, the capitalized word “PHP” was left
untouched.

ucwords()

string ucwords (string str)

The ucwords() function capitalizes the first letter of each word in a string. Nonalphabetical
characters are not affected. This example uses ucwords() to capitalize each word in a string:

<?php
 $title = "O'Malley wins the heavyweight championship!";
 echo ucwords($title);
?>

This returns:

O'Malley Wins The Heavyweight Championship!

Note that if “O’Malley” was accidentally written as “O’malley,” ucwords() would not catch
the error, as it considers a word to be defined as a string of characters separated from other
entities in the string by a blank space on each side.

Converting Strings to and from HTML
Converting a string or an entire file into a form suitable for viewing on the Web (and vice versa)
is easier than you would think. Several functions are suited for such tasks, all of which are intro-
duced in this section. For convenience, this section is divided into two parts: “Converting Plain
Text to HTML” and “Converting HTML to Plain Text.”

210 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Converting Plain Text to HTML

It is often useful to be able to quickly convert plain text into HTML for readability within a Web
browser. Several functions can aid you in doing so. These functions are the subject of this section.

nl2br()

string nl2br (string str)

The nl2br() function converts all newline (\n) characters in a string to their XHTML-compliant
equivalent,
. The newline characters could be created via a carriage return, or explicitly
written into the string. The following example translates a text string to HTML format:

<?php
 $recipe = "3 tablespoons Dijon mustard
 1/3 cup Caesar salad dressing
 8 ounces grilled chicken breast
 3 cups romaine lettuce";
 // convert the newlines to
's.
 echo nl2br($recipe);
?>

Executing this example results in the following output:

3 tablespoons Dijon mustard

1/3 cup Caesar salad dressing

8 ounces grilled chicken breast

3 cups romaine lettuce

htmlentities()

string htmlentities (string str [, int quote_style [, int charset]])

During the general course of communication, you may come across many characters that are
not included in a document’s text encoding, or that are not readily available on the keyboard.
Examples of such characters include the copyright symbol (©), cent sign (¢), and the French
accent grave (è). To facilitate such shortcomings, a set of universal key codes was devised, known
as character entity references. When these entities are parsed by the browser, they will be converted
into their recognizable counterparts. For example, the three aforementioned characters would
be presented as ©, ¢, and È, respectively.

The htmlentities() function converts all such characters found in str into their HTML equiv-
alents. Because of the special nature of quote marks within markup, the optional quote_style
parameter offers the opportunity to choose how they will be handled. Three values are accepted:

• ENT_COMPAT: Convert double-quotes and ignore single quotes. This is the default.

• ENT_NOQUOTES: Ignore both double and single quotes.

• ENT_QUOTES: Convert both double and single quotes.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 211

A second optional parameter, charset, determines the character set used for the conversion.
Table 9-2 offers the list of supported character sets. If charset is omitted, it will default to
ISO-8859-1.

The following example converts the necessary characters for Web display:

<?php
 $advertisement = "Coffee at 'Cafè Française' costs $2.25.";
 echo htmlentities($advertisement);
?>

This returns:

Coffee at 'Cafè Française' costs $2.25.

Two characters were converted, the accent grave (è) and the cedilla (ç). The single quotes
were ignored due to the default quote_style setting ENT_COMPAT.

htmlspecialchars()

string htmlspecialchars (string str [, int quote_style [, string charset]])

Several characters play a dual role in both markup languages and the human language. When
used in the latter fashion, these characters must be converted into their displayable equivalents.

Table 9-2. htmlentities()’s Supported Character Sets

Character Set Description

BIG5 Traditional Chinese

BIG5-HKSCS BIG5 with additional Hong Kong extensions, traditional Chinese

cp866 DOS-specific Cyrillic character set

cp1251 Windows-specific Cyrillic character set

cp1252 Windows-specific character set for Western Europe

EUC-JP Japanese

GB2312 Simplified Chinese

ISO-8859-1 Western European, Latin-1

ISO-8859-15 Western European, Latin-9

KOI8-R Russian

Shift-JIS Japanese

UTF-8 ASCII-compatible multibyte 8 encode

212 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

For example, an ampersand must be converted to &, whereas a greater-than character
must be converted to >. The htmlspecialchars() function can do this for you, converting
the following characters into their compatible equivalents:

• & becomes &

• " (double quote) becomes "

• ' (single quote) becomes '

• < becomes <

• > becomes >

This function is particularly useful in preventing users from entering HTML markup into
an interactive Web application, such as a message board.

The following example converts potentially harmful characters using htmlspecialchars():

<?php
 $input = "I just can't get <<enough>> of PHP!";
 echo htmlspecialchars($input);
?>

Viewing the source, you’ll see:

I just can't get <<enough>> of PHP &!

If the translation isn’t necessary, perhaps a more efficient way to do this would be to use
strip_tags(), which deletes the tags from the string altogether.

■Tip If you are using gethtmlspecialchars() in conjunction with a function like nl2br(), you should
execute nl2br() after gethtmlspecialchars(); otherwise, the
 tags that are generated with
nl2br() will be converted to visible characters.

get_html_translation_table()

array get_html_translation_table (int table [, int quote_style])

Using get_html_translation_table() is a convenient way to translate text to its HTML equivalent,
returning one of the two translation tables (HTML_SPECIALCHARS or HTML_ENTITIES) specified by
table. This returned value can then be used in conjunction with another predefined function,
strtr() (formally introduced later in this section), to essentially translate the text into its corre-
sponding HTML code.

The following sample uses get_html_translation_table() to convert text to HTML:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 213

<?php
 $string = "La pasta é il piatto piú amato in Italia";
 $translate = get_html_translation_table(HTML_ENTITIES);
 echo strtr($string, $translate);
?>

This returns the string formatted as necessary for browser rendering:

La pasta é il piatto piú amato in Italia

Interestingly, array_flip() is capable of reversing the text-to-HTML translation and vice
versa. Assume that instead of printing the result of strtr() in the preceding code sample, you
assigned it to the variable $translated_string.

The next example uses array_flip() to return a string back to its original value:

<?php
 $entities = get_html_translation_table(HTML_ENTITIES);
 $translate = array_flip($entities);
 $string = "La pasta é il piatto piú amato in Italia";
 echo strtr($string, $translate);
?>

This returns the following:

La pasta é il piatto piú amato in italia

strtr()

string strtr (string str, array replacements)

The strtr() function converts all characters in str to their corresponding match found in
replacements. This example converts the deprecated bold () character to its XHTML equivalent:

<?php
 $table = array("" => "", "" => "");
 $html = "Today In PHP-Powered News";
 echo strtr($html, $table);
?>

This returns the following:

Today In PHP-Powered News

214 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Converting HTML to Plain Text

You may sometimes need to convert an HTML file to plain text. The following function can
help you accomplish this.

strip_tags()

string strip_tags (string str [, string allowable_tags])

The strip_tags() function removes all HTML and PHP tags from str, leaving only the text
entities. The optional allowable_tags parameter allows you to specify which tags you would
like to be skipped during this process. This example uses strip_tags() to delete all HTML tags
from a string:

<?php
 $input = "Email spammer@example.com";
 echo strip_tags($input);
?>

This returns the following:

Email spammer@example.com

The following sample strips all tags except the <a> tag:

<?php
 $input = "This example
 is awesome!";
 echo strip_tags($input, "<a>");
?>

This returns the following:

This example is awesome!

■Note Another function that behaves like strip_tags() is fgetss(). This function is described in
Chapter 10.

Alternatives for Regular Expression Functions
When you’re processing large amounts of information, the regular expression functions can
slow matters dramatically. You should use these functions only when you are interested in
parsing relatively complicated strings that require the use of regular expressions. If you are

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 215

instead interested in parsing for simple expressions, there are a variety of predefined functions
that speed up the process considerably. Each of these functions is described in this section.

strtok()

string strtok (string str, string tokens)

The strtok() function parses the string str based on the characters found in tokens. One
oddity about strtok() is that it must be continually called in order to completely tokenize a
string; each call only tokenizes the next piece of the string. However, the str parameter needs
to be specified only once, because the function keeps track of its position in str until it either
completely tokenizes str or a new str parameter is specified. Its behavior is best explained via
an example:

<?php
 $info = "J. Gilmore:jason@example.com|Columbus, Ohio";

 // delimiters include colon (:), vertical bar (|), and comma (,)
 $tokens = ":|,";
 $tokenized = strtok($info, $tokens);
 // print out each element in the $tokenized array
 while ($tokenized) {
 echo "Element = $tokenized
";
 // Don't include the first argument in subsequent calls.
 $tokenized = strtok($tokens);
 }
?>

This returns the following:

Element = J. Gilmore
Element = jason@example.com
Element = Columbus
Element = Ohio

parse_str()

void parse_str (string str [, array arr]))

The parse_str() function parses string into various variables, setting the variables in the
current scope. If the optional parameter arr is included, the variables will be placed in that
array instead. This function is particularly useful when handling URLs that contain HTML
forms or other parameters passed via the query string. The following example parses informa-
tion passed via a URL. This string is the common form for a grouping of data that is passed from
one page to another, compiled either directly in a hyperlink or in an HTML form:

216 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 // suppose that the URL is http://www.example.com?ln=gilmore&zip=43210
 parse_str($_SERVER['QUERY_STRING']);
 // after execution of parse_str(), the following variables are available:
 // $ln = "gilmore"
 // $zip = "43210"
?>

Note that parse_str() is unable to correctly parse the first variable of the query string
if the string leads off with a question mark. Therefore, if you use a means other than
$_SERVER['QUERY_STRING'] for retrieving this parameter string, make sure you delete that
preceding question mark before passing the string to parse_str(). The ltrim() function, intro-
duced later in the chapter, is ideal for such tasks.

explode()

array explode (string separator, string str [, int limit])

The explode() function divides the string str into an array of substrings. The original string is
divided into distinct elements by separating it based on the character separator specified by
separator. The number of elements can be limited with the optional inclusion of limit. Let’s
use explode() in conjunction with sizeof() and strip_tags() to determine the total number
of words in a given block of text:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to
PHP 5's object-oriented architecture.
summary;
$words = sizeof(explode(' ',strip_tags($summary)));
echo "Total words in summary: $words";
?>

This returns:

Total words in summary: 22

The explode() function will always be considerably faster than preg_split(), split(), and
spliti(). Therefore, always use it instead of the others when a regular expression isn’t necessary.

implode()

string implode (string delimiter, array pieces)

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 217

Just as you can use the explode() function to divide a delimited string into various array elements,
you concatenate array elements to form a single delimited string. This is accomplished with
the implode() function. This example forms a string out of the elements of an array:

<?php
 $cities = array("Columbus", "Akron", "Cleveland", "Cincinnati");
 echo implode("|", $cities);
?>

This returns:

Columbus|Akron|Cleveland|Cincinnati

■Note join() is an alias for implode().

strpos()

int strpos (string str, string substr [, int offset])

The strpos() function finds the position of the first case-sensitive occurrence of substr in str.
The optional input parameter offset specifies the position at which to begin the search. If
substr is not in str, strpos() will return FALSE. The optional parameter offset determines the
position from which strpos() will begin searching. The following example determines the
timestamp of the first time index.html is accessed:

<?php
 $substr = "index.html";
$log = <<< logfile
192.168.1.11:/www/htdocs/index.html:[2006/02/10:20:36:50]
192.168.1.13:/www/htdocs/about.html:[2006/02/11:04:15:23]
192.168.1.15:/www/htdocs/index.html:[2006/02/15:17:25]
logfile;

 // what is first occurrence of the time $substr in log?
 $pos = strpos($log, $substr);

 // Find the numerical position of the end of the line
 $pos2 = strpos($log,"\n",$pos);

 // Calculate the beginning of the timestamp
 $pos = $pos + strlen($substr) + 1;

218 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

 // Retrieve the timestamp
 $timestamp = substr($log,$pos,$pos2-$pos);

 echo "The file $substr was first accessed on: $timestamp";
?>

This returns the position in which the file index.html was first accessed:

The file index.html was first accessed on: [2006/02/10:20:36:50]

stripos()

int stripos(string str, string substr [, int offset])

The function stripos() operates identically to strpos(), except that that it executes its search
case-insensitively.

strrpos()

int strrpos (string str, char substr [, offset])

The strrpos() function finds the last occurrence of substr in str, returning its numerical posi-
tion. The optional parameter offset determines the position from which strrpos() will begin
searching. Suppose you wanted to pare down lengthy news summaries, truncating the summary
and replacing the truncated component with an ellipsis. However, rather than simply cut off
the summary explicitly at the desired length, you want it to operate in a user-friendly fashion,
truncating at the end of the word closest to the truncation length. This function is ideal for such
a task. Consider this example:

<?php
 // Limit $summary to how many characters?
 $limit = 100;

$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to
PHP 5's object-oriented
architecture.
summary;

 if (strlen($summary) > $limit)
 $summary = substr($summary, 0, strrpos(substr($summary, 0, $limit),
 ' ')) . '...';
 echo $summary;
?>

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 219

This returns:

In the latest installment of the ongoing Developer.com PHP series,
I discuss the many...

str_replace()

mixed str_replace (string occurrence, mixed replacement, mixed str [, int count])

The str_replace() function executes a case-sensitive search for occurrence in str, replacing
all instances with replacement. If occurrence is not found in str, then str is returned unmodi-
fied. If the optional parameter count is defined, then only count occurrences found in str will
be replaced.

This function is ideal for hiding e-mail addresses from automated e-mail address retrieval
programs:

<?php
 $author = "jason@example.com";
 $author = str_replace("@","(at)",$author);
 echo "Contact the author of this article at $author.";
?>

This returns:

Contact the author of this article at jason(at)example.com.

str_ireplace()

mixed str_ireplace(mixed occurrence, mixed replacement, mixed str [, int count])

The function str_ireplace() operates identically to str_replace(), except that it is capable of
executing a case-insensitive search.

strstr()

string strstr (string str, string occurrence)

The strstr() function returns the remainder of str beginning at the first occurrence. This
example uses the function in conjunction with the ltrim() function to retrieve the domain
name of an e-mail address:

<?php
 $url = "sales@example.com";
 echo ltrim(strstr($url, "@"),"@");
?>

220 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

This returns the following:

example.com

substr()

string substr(string str, int start [, int length])

The substr() function returns the part of str located between the start and start + length
positions. If the optional length parameter is not specified, the substring is considered to be
the string starting at start and ending at the end of str. There are four points to keep in mind
when using this function:

• If start is positive, the returned string will begin at the start position of the string.

• If start is negative, the returned string will begin at the string length – start position of
the string.

• If length is provided and is positive, the returned string will consist of the characters
between start and (start + length). If this distance surpasses the total string length,
then only the string between start and the string’s end will be returned.

• If length is provided and is negative, the returned string will end length characters from
the end of str.

Keep in mind that start is the offset from the first character of str; therefore, the returned
string will actually start at character position (start + 1).

Consider a basic example:

<?php
 $car = "1944 Ford";
 echo substr($car, 5);
?>

This returns the following:

Ford

The following example uses the length parameter:

<?php
 $car = "1944 Ford";
 echo substr($car, 0, 4);
?>

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 221

This returns the following:

1944

The final example uses a negative length parameter:

<?php
 $car = "1944 Ford";
 $yr = echo substr($car, 2, -5);
?>

This returns:

44

substr_count()

int substr_count (string str, string substring)

The substr_count() function returns the number of times substring occurs in str. The following
example determines the number of times an IT consultant uses various buzzwords in his
presentation:

<?php
 $buzzwords = array("mindshare", "synergy", "space");
$talk = <<< talk
I'm certain that we could dominate mindshare in this space with our new product,
establishing a true synergy between the marketing and product development teams.
We'll own this space in three months.
talk;
 foreach($buzzwords as $bw) {
 echo "The word $bw appears ".substr_count($talk,$bw)." time(s).
";
 }
?>

This returns the following:

The word mindshare appears 1 time(s).
The word synergy appears 1 time(s).
The word space appears 2 time(s).

222 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

substr_replace()

string substr_replace (string str, string replacement, int start [, int length])

The substr_replace() function replaces a portion of str with replacement, beginning the substitu-
tion at start position of str, and ending at start + length (assuming that the optional input
parameter length is included). Alternatively, the substitution will stop on the complete placement
of replacement in str. There are several behaviors you should keep in mind regarding the values of
start and length:

• If start is positive, replacement will begin at character start.

• If start is negative, replacement will begin at (str length – start).

• If length is provided and is positive, replacement will be length characters long.

• If length is provided and is negative, replacement will end at (str length – length)
characters.

Suppose you built an e-commerce site, and within the user profile interface, you want to
show just the last four digits of the provided credit card number. This function is ideal for such
a task:

<?php
 $ccnumber = "1234567899991111";
 echo substr_replace($ccnumber,"************",0,12);
?>

This returns:

************1111

Padding and Stripping a String
For formatting reasons, you sometimes need to modify the string length via either padding or
stripping characters. PHP provides a number of functions for doing so. We’ll examine many of
the commonly used functions in this section.

ltrim()

string ltrim (string str [, string charlist])

The ltrim() function removes various characters from the beginning of str, including whitespace,
the horizontal tab (\t), newline (\n), carriage return (\r), NULL (\0), and vertical tab (\x0b).You can
designate other characters for removal by defining them in the optional parameter charlist.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 223

rtrim()

string rtrim(string str [, string charlist])

The rtrim() function operates identically to ltrim(), except that it removes the designated
characters from the right side of str.

trim()

string trim (string str [, string charlist])

You can think of the trim() function as a combination of ltrim() and rtrim(), except that it
removes the designated characters from both sides of str.

str_pad()

string str_pad (string str, int length [, string pad_string [, int pad_type]])

The str_pad() function pads str to length characters. If the optional parameter pad_string is
not defined, str will be padded with blank spaces; otherwise, it will be padded with the character
pattern specified by pad_string. By default, the string will be padded to the right; however, the
optional parameter pad_type may be assigned the values STR_PAD_RIGHT, STR_PAD_LEFT, or
STR_PAD_BOTH, padding the string accordingly. This example shows how to pad a string using
str_pad():

<?php
 echo str_pad("Salad", 10)." is good.";
?>

This returns the following:

Salad is good.

This example makes use of str_pad()’s optional parameters:

<?php
 $header = "Log Report";
 echo str_pad ($header, 20, "=+", STR_PAD_BOTH);
?>

This returns:

=+=+=Log Report=+=+=

Note that str_pad() truncates the pattern defined by pad_string if length is reached
before completing an entire repetition of the pattern.

224 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Counting Characters and Words
It’s often useful to determine the total number of characters or words in a given string. Although
PHP’s considerable capabilities in string parsing has long made this task trivial, two functions
were recently added that formalize the process. Both functions are introduced in this section.

count_chars()

mixed count_chars(string str [, mode])

The function count_chars() offers information regarding the characters found in str. Its behavior
depends upon how the optional parameter mode is defined:

• 0: Returns an array consisting of each found byte value as the key and the corresponding
frequency as the value, even if the frequency is zero. This is the default.

• 1: Same as 0, but returns only those byte-values with a frequency greater than zero.

• 2: Same as 0, but returns only those byte-values with a frequency of zero.

• 3: Returns a string containing all located byte-values.

• 4: Returns a string containing all unused byte-values.

The following example counts the frequency of each character in $sentence:

<?php
 $sentence = "The rain in Spain falls mainly on the plain";
 // Retrieve located characters and their corresponding frequency.
 $chart = count_chars($sentence, 1);

 foreach($chart as $letter=>$frequency)
 echo "Character ".chr($letter)." appears $frequency times
";
?>

This returns the following:

Character appears 8 times
Character S appears 1 times
Character T appears 1 times
Character a appears 5 times
Character e appears 2 times
Character f appears 1 times
Character h appears 2 times
Character i appears 5 times
Character l appears 4 times
Character m appears 1 times
Character n appears 6 times
Character o appears 1 times
Character p appears 2 times
Character r appears 1 times

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 225

Character s appears 1 times
Character t appears 1 times
Character y appears 1 times

str_word_count()

mixed str_word_count (string str [, int format])

The function str_word_count() offers information regarding the total number of words found
in str. If the optional parameter format is not defined, it will simply return the total number of
words. If format is defined, it modifies the function’s behavior based on its value:

• 1: Returns an array consisting of all words located in str.

• 2: Returns an associative array, where the key is the numerical position of the word in
str, and the value is the word itself.

Consider an example:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
 $words = str_word_count($summary);
 echo "Total words in summary: $words";
?>

This returns the following:

Total words in summary: 23

You can use this function in conjunction with array_count_values() to determine the
frequency in which each word appears within the string:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
 $words = str_word_count($summary,2);
 $frequency = array_count_values($words);
 print_r($frequency);
?>

226 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

This returns the following:

Array ([In] => 1 [the] => 3 [latest] => 1 [installment] => 1 [of] => 1
[ongoing] => 1 [Developer] => 1 [com] => 1 [PHP] => 2 [series] => 1
[I] => 1 [discuss] => 1 [many] => 1 [improvements] => 1 [and] => 1
[additions] => 1 [to] => 1 [s] => 1 [object-oriented] => 1
[architecture] => 1)

Taking Advantage of PEAR: Validate_US
Regardless of whether your Web application is intended for use in banking, medical, IT, retail,
or some other industry, chances are that certain data elements will be commonplace. For instance,
it’s conceivable you’ll be tasked with inputting and validating a telephone number or state
abbreviation, regardless of whether you’re dealing with a client, patient, staff member, or
customer. Such repeatability certainly presents the opportunity to create a library that is capable
of handling such matters, regardless of the application. Indeed, because we’re faced with such
repeatable tasks, it follows that so are other programmers. Therefore, it’s always prudent to
investigate whether somebody has already done the hard work for us and made a package
available via PEAR.

■Note If you’re unfamiliar with PEAR, then take some time to review Chapter 11 before continuing.

Sure enough, our suspicions have proved fruitful, because a quick PEAR search turns up
Validate_US, a package that is capable of validating various informational items specific to the
United States. Although still in beta at press time, Validate_US is already capable of syntacti-
cally validating phone numbers, social security numbers, state abbreviations, and ZIP codes.
This section introduces Validate_US, showing you how to install and implement this immensely
useful package.

Installing Validate_US
To take advantage of Validate_US, you need to install it. The process for doing so follows:

%>pear install -f Validate_US
Warning: Validate_US is state 'beta' which is less stable than state 'stable'
downloading Validate_US-0.5.0.tgz ...
Starting to download Validate_US-0.5.0.tgz (5,611 bytes)
.....done: 5,611 bytes
install ok: Validate_US 0.5.0

Note that because Validate_US is still a beta release, you need to pass the -f option to the
install command in order to force installation. Once you have installed the package, proceed
to the next section.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 227

Using Validate_US
The Validate_US package is extremely easy to use; simply instantiate the Validate_US() class
and call the appropriate validation method. In total there are seven methods, three of which
are relevant to this discussion, including:

• phoneNumber(): Validates a phone number, returning TRUE on success and FALSE other-
wise. It accepts phone numbers in a variety of formats, including xxx xxx-xxxx, (xxx)
xxx-xxxx, and similar combinations without dashes, parentheses, or spaces. For example,
(614)999-9999, 6149999999, and (614)9999999 are all valid, whereas (6149999999,
614-999-9999, and 614999 are not.

• postalCode(): Validates a ZIP code, returning TRUE on success and FALSE otherwise. It
accepts ZIP codes in a variety of formats, including xxxxx, xxxxxxxxx, xxxxx-xxxx, and
similar combinations without the dash. For example, 43210 and 43210-0362 are both
valid, whereas 4321 and 4321009999 are not.

• region(): Validates a state abbreviation, returning TRUE on success and FALSE otherwise.
It accepts two-letter state abbreviations as supported by the United States Postal Service
(http://www.usps.com/ncsc/lookups/usps_abbreviations.html). For example, OH, CA,
and NY are all valid, whereas CC, DUI, and BASF are not.

• ssn(): Validates a social security number (SSN) by not only checking the SSN syntax but
also reviewing validation information made available via the Social Security Administra-
tion Web site (http://www.ssa.gov/), returning TRUE on success and FALSE otherwise. It
accepts SSNs in a variety of formats, including xxx-xx-xxxx, xxx xx xxx, xxx/xx/xxxx,
xxx\txx\txxxx (\t = tab), xxx\nxx\nxxxx (\n = newline), or any nine-digit combination
thereof involving dashes, forward slashes, tabs, or newline characters. For example,
479-35-6432 and 591467543 are valid, whereas 999999999, 777665555, and 45678 are not.

Once you have an understanding of the method definitions, implementation is trivial. For
example, suppose you want to validate a phone number. Just include the Validate_US class and
call phoneNumber() like so:

<?php
 include "Validate/US.php";
 $validate = new Validate_US();
 echo $validate->phoneNumber("614-999-9999");
?>

Because phoneNumber() returns a boolean, in this example a 1 will be returned. Contrast
this with supplying 614-876530932 to phoneNumber(), which will return FALSE.

Summary
Many of the functions introduced in this chapter will be among the most commonly used
within your PHP applications, as they form the crux of the language’s string-manipulation
capabilities.

In the next chapter, we’ll turn our attention toward another set of well-worn functions:
those devoted to working with the file and operating system.

