
777

■ ■ ■

C H A P T E R 3 7

Importing and Exporting Data

Back in the Stone Age, cavemen never really had any issues with data incompatibility, as
slabs of rock and one’s own memory were the only storage media. Copying data involved
pulling out the old chisel and getting busy on a new piece of granite. Of course, these days the
situation is much different, as hundreds of data storage solutions exist. For instance, how would
one go about converting data found in a PostgreSQL table into a format suitable for viewing in
a spreadsheet, or vice versa? If this is done in a non-optimal fashion, you could spend hours,
and even days or weeks, massaging the converted data into a usable format. It’s unlikely the
marketing department or company president is going to be willing to wait more than a few
minutes for such data, much less want to put in a special request to have it prepared for them.

So how can you programmatically create mechanisms for easily importing and exporting
data into other formats? In this chapter, you’ll learn how to do so with ease, using a variety of
SQL commands, PostgreSQL-specific commands, and programming techniques. Specifically,
this chapter introduces the following topics:

• PostgreSQL’s COPY Command: PostgreSQL’s COPY command and its PHP equivalents,
pg_copy_to() and pg_copy_from(), make importing and exporting table data a snap. You’ll
see how to accomplish these tasks both from the command line and from a PHP script.

• Importing and exporting data with phpPgAdmin: phpPgAdmin offer user-friendly yet
powerful tools for easily importing and exporting data without having to jump through
programmatic hoops.

■Note In Chapter 26, you learned about several of PostgreSQL’s backup- and recovery-related utilities,
including pg_dump, pg_dumpall, and pg_restore, that are capable of helping you to eliminate these
issues. However, these commands are generally most efficiently used when importing data from and restoring data
to a PostgreSQL database, rather than readying it for use within another data manager or viewer.

The COPY Command
The COPY command is a PostgreSQL-specific command used to quickly copy data between a
database table and a file. This section introduces the syntax necessary both for copying data
from a table to a file, and vice versa. The section that follows shows you how to execute COPY
from a PHP script using the pg_copy_from() and pg_copy_to() functions, first introduced in
Chapter 30.

778 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Copying Data to and from a Table
Copying data from a table to a text file or standard output is accomplished using the COPY
tablename TO {filename | STDOUT} variant of the COPY command. The complete syntax follows:

COPY tablename [(column [, ...])]
 TO {'filename' | STDOUT}
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE NOT NULL column [, ...]]

Copying data residing in a text file to a table or standard output is accomplished using the
same syntax as that for copying from a table, except for three slight variations of the syntax.
These changes are bolded in the syntax that follows:

COPY tablename [(column [, ...])]
 FROM {'filename' | STDIN}
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE QUOTE column [, ...]]

As you can see, COPY has quite a bit to offer. Perhaps the best way to understand its many
capabilities is through several examples.

Copying Data from a Table

To begin, let’s dump data from a table containing employee information to standard output:

psql>COPY employee TO STDOUT;

This returns the following:

1 JG100011 Jason Gilmore jason@example.com
2 RT435234 Robert Treat rob@example.com
3 GS998909 Greg Sabino Mullane greg@example.com
4 MW777983 Matt Wade matt@example.com

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 779

To redirect this output to a file, simply specify a filename, like so:

psql>COPY employee TO '/home/jason/sqldata/employee.sql';

Keep in mind that the PostgreSQL daemon user will require the necessary privileges for
writing to the specified directory. Also, an absolute path is required, because COPY will not
accept relative pathnames.

■Note On Windows, forward slashes should be used to specify the absolute path. So, for example, to COPY
data to PostgreSQL’s data directory, the path might look like c:/pgsql/data/employee.sql.

Copying Data from a Text File

Copying data from a text file to a table is as simple as copying data to it. Let’s begin by importing the
employee data dumped to employee.sql in the earlier example into an identical but newly
named and empty employee table:

psql>COPY employeenew FROM '/home/jason/sqldata/employee.sql';

Now, SELECT the data from employeenew and you’ll see the following output:

 employeeid | employeecode | name | email
------------+--------------+---------------------+---------------
 1 | JG100011 | Jason Gilmore | jason@example.com
 2 | RT435234 | Robert Treat | rob@example.com
 3 | GS998909 | Greg Sabino Mullane | greg@example.com
 4 | MW777983 | Matt Wade | matt@example.com
(4 rows)

Note that an absolute path must be used to refer to the file. Additionally, the PostgreSQL
daemon user must be capable of reading the target file. Finally, keep in mind that COPY will not
attempt to perform any processing on the file to determine whether the data in each field can
legally be placed in a particular table column; rather, it will simply incrementally match each
field in the text file to the table column of the same offset.

COPY FROM presumes each field is delimited by a predefined character string, which is by
default a tab (\t) for text files, and a comma for CSV files (see the later section “Working with
CSV Files”). Furthermore, each row is presumed to be delimited by a similar predefined string,
which is by default newline (\n). These predefined characters can be changed if necessary; see
the later section “Changing the Default Delimiter” for more information.

Binary

This clause tells PostgreSQL to copy data using a custom format, resulting in a slight increase
in performance. However, executing COPY FROM ... BINARY can only be used when the data was
previously written using COPY TO ... BINARY. Furthermore, this has nothing to do with storing
data such as Word documents or images. It’s merely a slightly more efficient way to copy large files.

780 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Exporting the Table OIDs

If the target table was created with OIDs (object identifiers), you can specify that they are output
along with the rest of the table data by using the OIDS clause. For example:

psql>COPY employee TO STDOUT OIDS;

This produces:

24627 1 GM100011 Jason Gilmore jason@example.com
24628 2 RT435234 Robert Treat rob@example.com
24629 3 GS998909 Greg Sabino Mullane greg@example.com
24630 4 MW777983 Matt Wade matt@example.com

Changing the Default Delimiter

Note the apparent white space found in between each column in the previous example’s output.
This is actually a tab (\t), which is the default delimiter. By using the DELIMITER clause, you can
change the default to, for instance, a vertical pipe (|):

psql>COPY employee TO STDOUT DELIMITER '|';

This returns the preceding output (minus the OIDs) in the following format:

1|GM100011|Jason Gilmore|jason@example.com
2|RT435234|Robert Treat|rob@example.com
3|GS998909|Greg Sabino Mullane|greg@example.com
4|MW777983|Matt Wade|matt@example.com

Likewise, if a text file you’d like to import does not use tab characters to delimit fields,
specify it similarly to the previous command:

psql>COPY employeenew FROM '/home/jason/sqldata/employee.sql' DELIMITER |;

Copying Only Specific Columns

If you wanted to copy just the employees’ names and e-mail addresses to standard output,
specify the column names like so:

psql>COPY employee (name,email) TO STDOUT;

This produces the following:

Jason Gilmore jason@example.com
Robert Treat rob@example.com
Greg Sabino Mullane greg@example.com
Matt Wade matt@example.com

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 781

Likewise, if a text file contains only some of the fields to be inserted in a table, you can
specify them as was done previously. Keep in mind, however, that the other table columns
need to either be nullable or possess default values.

Dealing with Null Values

While e-mail is a crucial communications tool for individuals working in an office environment,
suppose some of the employees work solely in the warehouse, negating the need for e-mail.
Therefore, some of the e-mail values in the employee table might be null. When exporting data
using COPY, the default for null values is \N, and when using CSV mode (discussed later in this
section), it’s an empty string. However, what if you want to declare a custom string for such
instances, no email for example? You should use the NULL clause, like so:

psql>COPY employee TO STDOUT NULL 'no email';

This produces output similar to this (presuming some of the employee e-mail addresses
have been set to null):

Jason Gilmore no email
Robert Treat rob@example.com
Greg Sabino Mullane greg@example.com
Matt Wade no email

Similarly, if you are importing data from a text file and a NULL value is specified, anytime
that value is located, the corresponding column will be nulled.

Working with CSV Files

A comma-separated value (CSV) file is a format accepted by possibly every mainstream rela-
tional database in existence today, not to mention a wide variety of products such as Microsoft
Excel. You can easily create a CSV file from a PostgreSQL table by using COPY accompanied by
the CSV clause. For instance, to create a file capable of immediately being viewed in Microsoft
Excel or OpenOffice.org Calc, execute the following command:

psql>COPY employee (name, email) TO '/home/jason/sqldata/employee.csv' CSV HEADER;

Specifying the HEADER clause as indicated above causes the names of the retrieved columns
to be listed in the first row as column headers. For example, executing this command and
opening the employee.csv file in Microsoft Excel produces output similar to that shown in
Figure 37-1.

Figure 37-1. Viewing the employee.csv file in Microsoft Excel

782 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

If you are reading a CSV file into a table using COPY FROM and the HEADER clause is declared,
the first line will be ignored.

Some data may be delimited by single or double quotes, which have special significance
within PostgreSQL, so you need to be aware of them to make sure they are properly accounted
for. You can use the QUOTE clause to specify this character, which by default is set to double
quotes. The specified quotation character can then be escaped using the character identified
by the ESCAPE clause, which also defaults to double quotes.

If you’re exporting data from a table and use FORCE NOT NULL, it is presumed that no value
is null; if any null value is encountered, it will be inserted as an empty string.

If you’re importing data into a table and use FORCE QUOTE, then all non-null values will be
quoted, either using the default double quotes or whatever value is specified if the QUOTE clause
is declared.

Calling COPY from a PHP Script
While the COPY command as described previously is useful for developers and database
administrators, certainly a more intuitive solution is required for end users. To satisfy this
need, the pg_copy_from() and pg_copy_to() functions (introduced in Chapter 30) are made
available via PHP’s PostgreSQL extension. Both functions operate identically to the previously
introduced COPY FROM and COPY TO commands, respectively, except that they’re also easily
executable from within your Web application.

In this section, we’ll consider a real-world example in which pg_copy_to() is used to copy
data from a PostgreSQL table to a text file.

Copying Data from a Table to a Text File

Suppose you want to create an interface that allows managers to create CSV files consisting of
employee contact information. These files are saved by date to a folder made available to a
directory placed on a shared drive. The code for doing so is found in Listing 37-1.

Listing 37-1. Saving Employee Data to a CSV File (saveemployeedata.php)

<?php

 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate")
 or die("Could not connect to db server.");

 // Copy the employee table data to an array
 $array = pg_copy_to($pg, "employee", ",");

 // Retrieve current date for file-naming purposes
 $date = date("Ymd");

 // Open the file
 $fh = fopen("/home/reports/share/employees-$date.csv", "w");

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 783

 // Collapse the array to a newline-delimited set of rows
 $contents = implode("\n", $array);

 // Write $contents to the file
 fwrite($fh, $contents);

 // Close the file
 fclose($fh);

?>

Once the script has executed, open the newly created file and you’ll see output similar
to this:

1,JG1000011,Jason Gilmore,jason@example.com
2,RT435234,Robert Treat,rob@example.com
3,GS998909,Greg Sabino Mullane,greg@example.com
4,MW777983,Matt Wade,matt@example.com

Now try opening this in a spreadsheet program such as Microsoft Excel or OpenOffice.org
Calc!

You can also easily add a header to the CSV file by writing a line to it before outputting the
array contents, like so:

fwrite($fh, "Employee ID,Name,Email\n");

Importing and Exporting Data with phpPgAdmin
If you’re looking for a convenient and powerful administration utility that is capable of being
accessed from anywhere you have a Web browser, phpPgAdmin (http://www.phppgadmin.net/) is
the most capable solution around. First introduced in Chapter 27, phpPgAdmin is capable of
managing your database with ease, in addition to both importing and exporting data in a
variety of formats.

■Note At the time of writing, using this phpPgAdmin feature with Windows is not supported.

To export data, navigate to the target table and click the Export link located in the top-right
corner of the page. Doing so produces the interface found in Figure 37-2.

784 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Figure 37-2. phpPgAdmin’s export interface

As you can see, you can export data in three ways:

• Only the table data: If you want to export only the data, you can do so in six different
formats, including COPY, CSV, SQL, Tabbed, XHTML, and XML.

• Only the table structure: If you want to export just the table structure, then the table
creation SQL syntax is exported. Checking the corresponding Drop checkbox causes
table DROP commands to be inserted at the top of the output file so that any preexisting
tables of the same name are dropped before being re-created.

• Both the data and structure: If you want to export both the table structure and the table
data, you can choose to export it in both COPY and SQL formats. Checking the corre-
sponding Drop checkbox causes table DROP commands to be inserted at the top of the
output file so that any preexisting tables of the same name are dropped before being
re-created.

Note that in all cases, you can either output the information to the browser or download it.
Choosing to download it saves the information in a file with the extension .sql before prompting
you to download it to your local computer.

Importing data is accomplished by navigating to the target table and clicking the Import
menu item. Doing so produces the interface found in Figure 37-3.

Figure 37-3. phpPgAdmin’s import interface

Imported files are accepted in four formats: Auto, CSV, Tabbed, and XML. The purpose of
each format should be obvious, except for perhaps Auto. Selecting Auto causes phpPgAdmin to

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 785

choose one of the other three formats by examining the file extension (valid extensions are
.csv, .tab, and .xml). Also, if any null characters are found in the file, you can specify whether
they appear using the sequence \N, the word NULL, or as an empty string.

Summary
As you learned in this chapter, you have several options at your disposal for importing data into
and exporting data from your PostgreSQL database. You can do it manually via the command
line or through scripting by using the COPY command. Or, you can incorporate these features into
a Web application by using PHP’s pg_copy_to() and pg_copy_from() functions. Alternatively, you
can rely on applications such as phpPgAdmin to facilitate the process.

This concludes the book. We hope you enjoyed reading it as much as we enjoyed the process
of writing it. Good luck!

