
535

■ ■ ■

C H A P T E R 2 2

SQLite

As of PHP 5.0, support for the open source database server SQLite (http://www.sqlite.org/) is
enabled by default. This was done in response to both the decision to unbundle MySQL from
version 5 due to licensing discrepancies, and a realization that users might benefit from the
availability of another powerful database server that nonetheless requires measurably less
configuration and maintenance as compared to similar products. This chapter introduces
both SQLite and PHP’s ability to interface with this surprisingly capable database server.

Introduction to SQLite
SQLite is a very compact, multiplatform SQL database engine written in C. Practically SQL-92–
compliant, SQLite offers many of the core database management features made available by
competing products such as MySQL, Oracle, and PostgreSQL, yet at considerable savings in
terms of cost, learning curve, and administration investment. Some of SQLite’s more compel-
ling characteristics include:

• SQLite stores an entire database in a single file, allowing for easy backup and transfer.

• SQLite’s entire database security strategy is based entirely on the executing user’s file
permissions. So, for example, user web might own the Web server daemon process and,
through a script executed on that server, attempt to open and write to an SQLite data-
base named mydatabase.db. Whether this user is capable of doing so depends entirely on
the mydatabase.db permissions.

• SQLite offers default transactional support, automatically integrating commit and roll-
back support.

• SQLite is available under a public domain license (it’s free) for both the Microsoft Windows
and Unix platforms.

This section offers a brief guide to the SQLite command-line interface. The purpose of this
section is twofold. First, it provides you with at least an introductory look at this useful client.
Second, the steps demonstrated create the data that will serve as the basis for all subsequent
examples in this chapter.

536 C H A P T E R 2 2 ■ SQ L I T E

Installing SQLite
As mentioned, SQLite comes bundled with PHP as of version 5.0, including both the database
engine and the interface. This means you can take advantage of SQLite without having to install
any other software. However, there is one related utility omitted from the PHP distribution,
namely sqlite, a command-line interface to the engine. Because this utility is quite useful,
consider installing the SQLite library from http://www.sqlite.org/, which includes a copy of
the utility. Then configure (or reconfigure) PHP with the --with-sqlite=/path/to/library flag.
The next section shows you how to use this interface.

Windows users need to download the SQLite extension from the following location:

http://snaps.php.net/win32/PECL_STABLE/php_sqlite.dll

Once downloaded, place this DLL file within the same directory as the others (PHP-
INSTALL-DIR\ext) and add the following line to your php.ini file:

php_extension=php_sqlite.dll

■Note Shortly before press time, PHP 5.1 was released, and with it came a significant change in which
SQLite is supported in this and newer versions. According to the developers, users interested in taking advantage
of SQLite should consider using PDO in conjunction with the SQLite version 3 driver. See Chapter 23 for more
information about PDO.

Using the SQLite Command-Line Interface
The SQLite command-line interface offers a simple means for interacting with the SQLite data-
base server. With this tool, you can create and maintain databases, execute administrative
processes such as backups and scripts, and tweak the client’s behavior. Begin by opening a
terminal window and executing SQLite with the help option:

%>sqlite -help

If you’ve downloaded SQLite version 3 for Windows, then you need to execute it like so:

%>sqlite3 -help

In either case, before exiting back to the command line, you’ll be greeted with the command’s
usage syntax and a menu consisting of numerous options. Note that the usage syntax specifies
that a filename is required to enter the SQLite interface. This filename is actually the name of
the database. When supplied, a connection to this database will be opened, if the executing
user possesses adequate permissions. If the supplied database does not exist, it will be created,
again if the executing user possesses the necessary privileges.

As an example, create a test database named mydatabase.db. This database consists of a
single table, employee. In this section, you’ll learn how to use SQLite’s command-line program
to create the database, table, and sample data. Although this section isn’t intended as a replace-
ment for the documentation, it should be sufficient to enable you to familiarize yourself with the
very basic aspects of SQLite and its command-line interface.

1. Open a new SQLite database, as follows. Because this database presumably doesn’t already
exist, the mere act of opening a nonexistent database will first result in its creation.

%>sqlite mydatabase.db

2. Create a table:

sqlite>create table employee (
...>empid integer primary key,
...>name varchar(25),
...>title varchar(25));

3. Check the table structure for accuracy:

sqlite>.schema employee

Note that a period (.) prefaces the schema command. This syntax requirement holds true
for all commands found under the help menu.

4. Insert a few data rows:

sqlite> insert into employee values(NULL,"Jason Gilmore","Chief Slacker");
sqlite> insert into employee values(NULL,"Sam Spade","Technologist");
sqlite> insert into employee values(NULL,"Ray Fox","Comedian");

5. Query the table, just to ensure that all is correct:

sqlite>select * from employee;

You should see:

1|Jason Gilmore|Chief Slacker
2|Sam Spade|Technologist
3|Ray Fox|Comedian

6. Quit the interface with the following command:

sqlite>.quit

PHP’s SQLite Library
The SQLite functions introduced in this section are quite similar to those found in the other
PHP-supported database libraries such as MySQL and PostgreSQL. In fact, for many of
the functions the name is the only real differentiating factor. If you have a background in
PostgreSQL, picking up SQLite should be a snap. Even if you’re entirely new to the concept,
don’t worry; you’ll likely find that these functions are extremely easy to use.

SQLite Directives
One PHP configuration directive is pertinent to SQLite. It’s introduced in this section.

sqlite.assoc_case (0,1,2)

Scope: PHP_INI_ALL; Default value: 0

While SQLite uses (and retrieves) column names in exactly the same format in which they
appear in the database schema, various other database servers attempt to standardize name
formats by always returning them in uppercase letters. This dichotomy can be problematic
when porting an application to SQLite, because the column names used in the application may
be standardized in uppercase to account for the database server’s tendencies. To modify this
behavior, you can use the sqlite.assoc_case directive. It determines the case used for
retrieved column names. By default, this directive is set to 0, which retains the case used in the
table definitions. If it’s set to 1, the names will be converted to uppercase. If it’s set to 2, the
names will be converted to lowercase.

Opening a Connection
Before you can retrieve or manipulate any data located in an SQLite database, you must first
establish a connection. Two functions are available for doing so, sqlite_open() and
sqlite_popen().

sqlite_open()

resource sqlite_open (string filename [,int mode [,string &error_message]])

The sqlite_open() function opens an SQLite database, first creating the database if it doesn’t
already exist. The filename parameter specifies the database name. The optional mode param-
eter determines the access privilege level under which the database will be opened, and is specified
as an octal value (the default is 0666) as might be used to specify modes in Unix. Currently, this
parameter is unsupported by the API. The optional error_message parameter is actually auto-
matically assigned a value specifying an error if the database could not be opened. If the database
is successfully opened, the function returns a resource handle pointing to that database.

Consider an example:

<?php
 $sqldb = sqlite_open("/home/book/20/mydatabase.db")
 or die("Could not connect!");
?>

This either opens an existing database named mydatabase.db, creates a database named
mydatabase.db within the directory /home/book/20/, or results in an error, likely because of
privilege problems. If you experience problems creating or opening the database, be sure that
the user owning the Web server process possesses adequate permissions for writing to this
directory.

sqlite_popen()

resource sqlite_popen (string filename [,int mode [,string &error_message]])

C H A P T E R 2 2 ■ S Q L I T E 539

The function sqlite_popen() operates identically to sqlite_open() except that it uses PHP’s
persistent connection feature in an effort to conserve resources. The function first verifies
whether a connection already exists; if it does, it reuses this connection; otherwise, it creates a
new one. Because of the performance improvements offered by this function, you should use
sqlite_popen() instead of sqlite_open().

OBJECT-ORIENTED SQLITE

Although this chapter introduces PHP’s SQLite library using the procedural approach, an object-oriented interface is
also supported. All functions introduced in this chapter are also supported as methods when using the object-
oriented interface (however, the names differ slightly in that the sqlite_ prefix is removed from them);
therefore, the only significant usage deviation is in regard to referencing the methods by way of an object
($objectname->methodname()) rather than by passing around a resource handle. Also, the constructor
takes the place of the sqlite_open() function, negating the need to specifically open a database connection. The
class is instantiated by calling the constructor like so:

$sqldb = new SQLiteDatabase(string databasename [, int mode
 [, string &error_message]]);

Once the object is created, you can call methods just as you do for any other class. For example, you can
execute a query and determine the number of rows returned with the following code:

$sqldb = new SQLiteDatabase("mydatabase.db");
$sqldb->query("SELECT * FROM employee");
echo $sqldb->numRows()." rows returned.";

See the PHP manual (http://www.php.net/sqlite) for a complete listing of the available methods.

Creating a Table in Memory
Sometimes your application may require database access performance surpassing even that
offered by SQLite’s default behavior, which is to manage databases in self-contained files. To
satisfy such requirements, SQLite supports the creation of in-memory (RAM-based) databases,
accomplished by calling sqlite_open() like so:

$sqldb = sqlite_open(":memory:");

Once open, you can create a table that will reside in memory by calling sqlite_query(),
passing in a CREATE TABLE statement. Keep in mind that such tables are volatile, disappearing
once the script has finished executing!

Closing a Connection
Good programming practice dictates that you close pointers to resources once you’re finished
with them. This maxim holds true for SQLite; once you’ve completed working with a database,
you should close the open handle. One function, sqlite_close(), accomplishes just this.

540 C H A P T E R 2 2 ■ SQ L I T E

sqlite_close()

void sqlite_close (resource dbh)

The function sqlite_close() closes the connection to the database resource specified by dbh.
You should call it after all necessary tasks involving the database have been completed. An example
follows:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 // Perform necessary tasks
 sqlite_close($sqldb);
?>

Note that if a pending transaction has not been completed at the time of closure, the trans-
action will automatically be rolled back.

Querying a Database
The majority of your time spent interacting with a database server takes the form of SQL
queries. The functions sqlite_query() and sqlite_unbuffered_query() offer the main vehicles
for submitting these queries to SQLite and returning the subsequent result sets. You should
pay particular attention to the specific advantages of each, however, because applying them
inappropriately can negatively impact performance and capabilities.

sqlite_query()

resource sqlite_query (resource dbh, string query)

The sqlite_query() function executes a SQL query, query, against the database specified by
dbh. If the query is intended to return a result set, FALSE is returned if the query fails. All other
queries return TRUE if the query was successful, and FALSE otherwise.

In order to provide a practical example, other functions are used in this example that have
not yet been introduced. Not to worry; just understand that the sqlite_query() function is
responsible for sending and executing a SQL query. Soon enough, you’ll learn the specifics
regarding the other functions used in the example.

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while (list($empid, $name) = sqlite_fetch_array($results)) {
 echo "Name: $name (Employee ID: $empid)
";
 }
 sqlite_close($sqldb);
?>

This yields the following results:

C H A P T E R 2 2 ■ S Q L I T E 541

Name: Jason Gilmore (Employee ID: 1)
Name: Sam Spade (Employee ID: 2)
Name: Ray Fox (Employee ID: 3)

Keep in mind that sqlite_query() will only execute the query and return a result set (if one
is warranted); it will not output or offer any additional information regarding the returned data.
To obtain such information, you need to pass the result set into one or several other functions, all
of which are introduced in the following sections. Furthermore, sqlite_query() is not limited
to executing SELECT queries. You can use this function to execute any supported SQL-92 query.

sqlite_unbuffered_query()

resource sqlite_unbuffered_query (resource dbh, string query)

The sqlite_unbuffered_query() function can be thought of as an optimized version of
sqlite_query(), identical in every way except that it returns the result set in a format intended
to be used in the order in which it is returned, without any need to search or navigate it in any
other way. This function is particularly useful if you’re solely interested in dumping a result set
to output, an HTML table or a text file, for example.

Because this function is optimized for returning result sets intended to be output in a
straightforward fashion, you cannot pass its output to functions like sqlite_num_rows(),
sqlite_seek(), or any other function with the purpose of examining or modifying the output or
output pointers. If you require the use of such functions, use sqlite_query() to retrieve the
result set instead.

sqlite_last_insert_rowid()

int sqlite_last_insert_rowid (resource dbh)

It’s common to reference a newly inserted row immediately after the insertion is completed,
which in many cases is accomplished by referencing the row’s auto-increment field. Because
this value will contain the highest integer value for the field, determining it is as simple as
searching for the column’s maximum value. The function sqlite_last_insert_rowid()
accomplishes this for you, returning that value.

Parsing Result Sets
Once a result set has been returned, you’ll likely want to do something with the data. The functions
in this section demonstrate the many ways that you can parse the result set.

sqlite_fetch_array()

array sqlite_fetch_array (resource result [, int result_type [, bool decode_binary])

The sqlite_fetch_array() function returns an associative array consisting of the items found
in the result set’s next available row, or returns FALSE if no more rows are available. The optional
result_type parameter can be used to specify whether the columns found in the result set row

542 C H A P T E R 2 2 ■ SQ L I T E

should be referenced by their integer-based position in the row or by their actual name. Specifying
SQLITE_NUM enables the former, while SQLITE_ASSOC enables the latter. You can return both
referential indexes by specifying SQLITE_BOTH. Finally, the optional decode_binary parameter
determines whether PHP will decode the binary-encoded target data that had been previously
encoded using the function sqlite_escape_string(). This function is introduced in the later
section, “Working with Binary Data.”

■Tip If SQLITE_ASSOC or SQLITE_BOTH are used, PHP will look to the sqlite.assoc_case configuration
directive to determine the case of the characters.

Consider an example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while ($row = sqlite_fetch_array($results,SQLITE_BOTH)) {
 echo "Name: $row[1] (Employee ID: ".$row['empid'].")
";
 }
 sqlite_close($sqldb);
?>

This returns:

Name: Jason Gilmore (Employee ID: 1)
Name: Sam Spade (Employee ID: 2)
Name: Ray Fox (Employee ID: 3)

Note that the SQLITE_BOTH option was used so that the returned columns could be refer-
enced both by their numerically indexed position and by their name. Although it’s not entirely
practical, this example serves as an ideal means for demonstrating the function’s flexibility.

One great way to render your code a tad more readable is to use PHP’s list() function in
conjunction with sql_fetch_array(). With it, you can both return and parse the array into the
required components all on the same line. Let’s revise the previous example to take this idea
into account:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while (list($empid, $name) = sqlite_fetch_array($results)) {
 echo "Name: $name (Employee ID: $empid)
";
 }
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 543

sqlite_array_query()

array sqlite_array_query (resource dbh, string query [, int res_type
 [, bool decode_binary]])

The sqlite_array_query() function consolidates the capabilities of sqlite_query() and
sqlite_fetch_array() into a single function call, both executing the query and returning the
result set as an array. The input parameters work exactly like those introduced in the compo-
nent functions sqlite_query() and sqlite_fetch_array(). According to the PHP manual, this
function should only be used for retrieving result sets of fewer than 45 rows. However, in instances
where 45 or fewer rows are involved, this function provides both a considerable improvement
in performance and, in certain cases, a slight reduction in total lines of code. Consider an example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $rows = sqlite_array_query($sqldb, "SELECT empid, name FROM employee");
 foreach ($rows AS $row) {
 echo $row["name"]." (Employee ID: ".$row["empid"].")
";
 }
 sqlite_close($sqldb);
?>

This returns:

Jason Gilmore (Employee ID: 1)
Sam Spade (Employee ID: 2)
Ray Fox (Employee ID: 3)

sqlite_column()

mixed sqlite_column (resource result, mixed index_or_name [, bool decode_binary])

The sqlite_column() function is useful if you’re interested in just a single column from a given
result row or set. You can retrieve the column either by name or by index offset. Finally, the
optional decode_binary parameter determines whether PHP will decode the binary-encoded
target data that had been previously encoded using the function sqlite_escape_string(). This
function is introduced in the later section, “Working with Binary Data.”

For example, suppose you retrieved all rows from the employee table. Using this function,
you could selectively poll columns, like so:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT * FROM employee WHERE empid = '1'");
 $name = sqlite_column($results,"name");
 $empid = sqlite_column($results,"empid");
 echo "Name: $name (Employee ID: $empid)
";
 sqlite_close($sqldb);
?>

544 C H A P T E R 2 2 ■ SQ L I T E

This returns:

Name: Jason Gilmore (Employee ID: 1)

Ideally, you’ll want to use this function when you’re working either with result sets consisting
of numerous columns or with particularly large columns.

sqlite_fetch_single()

string sqlite_fetch_single (resource row_set [, int result_type
 [, bool decode_binary]])

The sqlite_fetch_single() function operates identically to sql_fetch_array() except that it
returns just the value located in the first column of the row_set.

■Tip This function has an alias: sqlite_fetch_string(). Except for the name, it’s identical in every way.

Consider an example. Suppose you’re interested in querying the database for a single column.
To reduce otherwise unnecessary overhead, you should opt to use sqlite_fetch_single() over
sqlite_fetch_array(), like so:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT name FROM employee WHERE empid < 3");
 while ($name = sqlite_fetch_single($results)) {
 echo "Employee: $name
";
 }
 sqlite_close($sqldb);
?>

This returns:

Employee: Jason Gilmore
Employee: Sam Spade

Retrieving Result Set Details
You’ll often want to learn more about a result set than just its contents. Several SQLite-specific
functions are available for determining information such as the returned field names, the
number of fields and rows returned, and the number of rows changed by the most recent state-
ment. These functions are introduced in this section.

C H A P T E R 2 2 ■ S Q L I T E 545

sqlite_field_name()

string sqlite_field_name (resource result, int field_index)

The sqlite_field_name() function returns the name of the field located at the index offset
field_index found in the result set. For example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT * FROM employee");
 echo "Field name found at offset #0: ".sqlite_field_name($results,0)."
";
 echo "Field name found at offset #1: ".sqlite_field_name($results,1)."
";
 echo "Field name found at offset #2: ".sqlite_field_name($results,2)."
";
 sqlite_close($sqldb);
?>

This returns:

Field name found at offset #0: empid
Field name found at offset #1: name
Field name found at offset #2: title

As is the case with all numerically indexed arrays, the offset starts at 0, not 1.

sqlite_num_fields()

int sqlite_num_fields (resource result_set)

The sqlite_num_fields() function returns the number of columns located in the result_set.
For example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 echo "Total fields returned: ".sqlite_num_fields($results)."
";
 sqlite_close($sqldb);
?>

This returns:

Total fields returned: 3

sqlite_num_rows()

int sqlite_num_rows (resource result_set)

546 C H A P T E R 2 2 ■ SQ L I T E

The sqlite_num_rows() function returns the number of rows located in the result_set.
An example follows:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 echo "Total rows returned: ".sqlite_num_rows($results)."
";
 sqlite_close($sqldb);
?>

This returns:

Total rows returned: 3

sqlite_changes()

int sqlite_changes (resource dbh)

The sqlite_changes() function returns the total number of rows affected by the most recent
modification query. For instance, if an UPDATE query modified a field located in 12 rows, then
executing this function following that query would return 12.

Manipulating the Result Set Pointer
Although SQLite is indeed a database server, in many ways it behaves much like what you expe-
rience when working with file I/O. One such way involves the ability to move the row “pointer”
around the result set. Several functions are offered for doing just this, all of which are intro-
duced in this section.

sqlite_current()

array sqlite_current (resource result [, int result_type [, bool decode_binary]])

The sqlite_current() function is identical to sqlite_fetch_array() in every way except that it
does not advance the pointer to the next row of the result set. Instead, it only returns the row
residing at the current pointer position. If the pointer already resides at the end of the result
set, FALSE is returned.

sqlite_has_more()

boolean sqlite_has_more (resource result_set)

The sqlite_has_more() function determines whether the end of the result_set has been reached,
returning TRUE if additional rows are still available, and FALSE otherwise. An example follows:

C H A P T E R 2 2 ■ S Q L I T E 547

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while ($row = sqlite_fetch_array($results,SQLITE_BOTH)) {
 echo "Name: $row[1] (Employee ID: ".$row['empid'].")
";
 if (sqlite_has_more($results)) echo "Still more rows to go!
";
 else echo "No more rows!
";
 }
 sqlite_close($sqldb);
?>

This returns:

Name: Jason Gilmore (Employee ID: 1)
Still more rows to go!
Name: Sam Spade (Employee ID: 2)
Still more rows to go!
Name: Ray Fox (Employee ID: 3)
No more rows!

sqlite_next()

boolean sqlite_next (resource result)

The sqlite_next() function moves the result set pointer to the next position, returning TRUE
on success and FALSE if the pointer already resides at the end of the result set.

sqlite_rewind()

boolean sqlite_rewind (resource result)

The sqlite_rewind() function moves the result set pointer back to the first row, returning
FALSE if no rows exist in the result set and TRUE otherwise.

sqlite_seek()

boolean sqlite_seek (resource result, int row_number)

The sqlite_seek() function moves the pointer to the row specified by row_number, returning
TRUE if the row exists and FALSE otherwise. Consider an example in which an employee of the
month will be randomly selected from a result set consisting of the entire staff:

548 C H A P T E R 2 2 ■ SQ L I T E

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT empid, name FROM employee");

 // Choose a random number found within the range of total returned rows
 $random = rand(0,sqlite_num_rows($results)-1);

 // Move the pointer to the row specified by the random number
 sqlite_seek($results, $random);

 // Retrieve the employee ID and name found at this row
 list($empid, $name) = sqlite_current($results);
 echo "Randomly chosen employee of the month: $name (Employee ID: $empid)";
 sqlite_close($sqldb);
?>

This returns the following (this shows only one of three possible outcomes):

Randomly chosen employee of the month: Ray Fox (Employee ID: 3)

One point of common confusion that arises in this example regards the starting index
offset of result sets. The offset always begins with 0, not 1, which is why you need to subtract 1
from the total rows returned in this example. As a result, the randomly generated row offset
integer must fall within a range of 0 and one less than the total number of returned rows.

Learning More About Table Schemas
There is one function available for learning more about an SQLite table schema. It’s introduced
in this section.

sqlite_fetch_column_types()

array sqlite_fetch_column_types (string table, resource dbh)

The function sqlite_fetch_column_types() returns an array consisting of the column types
located in the table identified by table. The returned array includes both the associative and
numerical hash indices. The following example outputs an array of column types located in the
employee table used earlier in this chapter:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $columnTypes = sqlite_fetch_column_types("employee", $sqldb);
 print_r($columnTypes);
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 549

This example returns:

Array (
 [empid] => integer
 [name] => varchar(25)
 [title] => varchar(25)
)

Working with Binary Data
SQLite is capable of storing binary information in a table, such as a GIF or JPEG image, a PDF
document, or a Microsoft Word document. However, unless you treat this data carefully, errors
in both storage and communication could arise. Several functions are available for carrying out
the tasks necessary for managing this data, one of which is introduced in this section. The other
two relevant functions are introduced in the next section.

sqlite_escape_string()

string sqlite_escape_string (string item)

Some characters or character sequences have special meaning to a database, and therefore
they must be treated with special care when trying to insert them into a table. For example,
SQLite expects that single quotes signal the delimitation of a string. However, because this char-
acter is often used within data that you might want to include in a table column, a means is
required for tricking the database server into ignoring single quotes on these occasions. This is
commonly referred to as “escaping” these special characters, often done by prefacing the special
character with some other character, a single quote (') for example. Although you can do this
manually, a function is available that will do the job for you. The sqlite_escape_string() function
escapes any single quotes and other binary-unsafe characters intended for insertion in an SQLite
table found in item.

Let’s use this function to escape an otherwise invalid query string:

<?php
 $str = "As they always say, this is 'an' example.";
 echo sqlite_escape_string($str);
?>

This returns:

As they always say, this is ''an'' example.

If the string contains a NULL character or begins with 0x01, circumstances that have special
meaning when working with binary data, sqlite_escape_string() will take the steps necessary
to properly encode the information so that it can be safely stored and later retrieved.

550 C H A P T E R 2 2 ■ SQ L I T E

■Note The NULL character typically signals the end of a binary string, while 0x01 is the escape character
used within binary data. Therefore, to ensure that the escape character was properly interpreted by the binary
data parser, it would need to be decoded.

When you’re using user-defined functions, a topic discussed in the next section,
you should never use this function. Instead, use the sqlite_udf_encode_binary() and
sqlite_udf_decode_binary() functions. Both are introduced in the next section.

Creating and Overriding SQLite Functions
An intelligent programmer will take every opportunity to reuse code. Because many database-
driven applications often require the use of a core task set, there are ample opportunities to
reuse code. Such tasks often seek to manipulate database data, producing some sort of outcome
based on the retrieved data. As a result, it would be quite convenient if the task results could be
directly returned via the SQL query, like so:

sqlite>SELECT convert_salary_to_gold(salary)
 ...> FROM employee WHERE empID=1";

PHP’s SQLite library offers a means for registering and maintaining customized functions
such as this. This section shows you how it’s accomplished.

sqlite_create_function()

boolean sqlite_create_function (resource dbh, string func, mixed callback
 [, int num_args])

The sqlite_create_function() function enables you to register custom PHP functions as
SQLite user-defined functions (UDFs). For example, this function would be used to register the
convert_salary_to_gold() function discussed in the opening paragraphs of this section, like so:

<?php
 /* Define gold's current price-per-ounce. */
 define("PPO",400);

 /* Calculate how much gold an employee can purchase with salary. */
 function convert_salary_to_gold($salary)
 {
 return $salary / PPO;
 }

 /* Connect to the SQLite database. */
 $sqldb = sqlite_open("mydatabase.db");

C H A P T E R 2 2 ■ S Q L I T E 551

 /* Create the user-defined function. */
 sqlite_create_function($sqldb,"salarytogold", "convert_salary_to_gold", 1);

 /* Query the database using the UDF. */
 $query = "select salarytogold(salary) FROM employee WHERE empid=1";
 $result = sqlite_query($sqldb, $query);
 list($salaryToGold) = sqlite_fetch_array($result);

 /* Display the results. */
 echo "The employee can purchase: ".$salaryToGold." ounces.";

 /* End the database connection. */
 sqlite_close($sqldb);
?>

Assuming user Jason makes $10,000 per year, you can expect the following output:

The employee can purchase 25 ounces.

sqlite_udf_encode_binary()

string sqlite_udf_encode_binary (string data)

The sqlite_udf_encode_binary() function encodes any binary data intended for storage
within an SQLite table. Use this function instead of sqlite_escape_string() when you’re
working with data sent to a UDF.

sqlite_udf_decode_binary()

string sqlite_udf_decode_binary (string data)

The sqlite_udf_decode_binary() function decodes any binary data previously encoded with
the sqlite_udf_encode_binary() function. Use this function when you’re returning possibly
binary unsafe data from a UDF.

Creating Aggregate Functions
When you work with database-driven applications, it’s often useful to derive some value based
on some collective calculation of all values found within a particular column or set of columns.
Several such functions are commonly made available within a SQL server’s core functionality
set. A few such commonly implemented functions, known as aggregate functions, include
sum(), max(), and min(). However, you might require a custom aggregate function not other-
wise available within the server’s default capabilities. SQLite compensates for this by offering
the ability to create your own. The function used to register your custom aggregate functions,
sqlite_create_aggregate(), is introduced in this section.

552 C H A P T E R 2 2 ■ SQ L I T E

sqlite_create_aggregate()

boolean sqlite_create_aggregate (resource dbh, string func, mixed step_func,
 mixed final_func [, int num_args])

The sqlite_create_aggregate() function is used to register a user-defined aggregate function,
step_func. Actually it registers two functions: step_func, which is called on every row of the
query target, and final_func, which is used to return the aggregate value back to the caller.
Once registered, you can call final_func within the caller by the alias func. The optional
num_args parameter specifies the number of parameters the aggregate function should take.
Although the SQLite parser attempts to discern the number if this parameter is omitted, you
should always include it for clarity’s sake.

Consider an example. Building on the salary conversion example from the previous section,
suppose you want to calculate the total amount of gold employees could collectively purchase:

<?php
 /* Define gold's current price-per-ounce. */
 define("PPO",400);

 /* Create the aggregate function. */
 function total_salary(&$total,$salary)
 {
 $total += $salary;
 }

 /* Create the aggregate finalization function. */
 function convert_to_gold(&$total)
 {
 return $total / PPO;
 }

 /* Connect to the SQLite database. */
 $sqldb = sqlite_open("mydatabase.db");

 /* Register the aggregate function. */
 sqlite_create_aggregate($sqldb, "computetotalgold", "total_salary",
 "convert_to_gold",1);

 /* Query the database using the UDF. */
 $query = "select computetotalgold(salary) FROM employee";
 $result = sqlite_query($sqldb, $query);
 list($salaryToGold) = sqlite_fetch_array($result);

 /* Display the results. */
 echo "The employees can purchase: ".$salaryToGold." ounces.";

 /* End the database connection. */
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 553

If your employees’ salaries total $16,000, you could expect the following output:

The employees can purchase 40 ounces.

Summary
The administrative overhead required of many database servers often outweighs the advantages of
added power they offer to many projects. SQLite offers an ideal remedy to this dilemma, providing
a fast and capable back end at a cost of minimum maintenance. Given SQLite’s commitment
to standards, ideal licensing arrangements, and quality, consider saving yourself time, resources,
and money by using SQLite for your future projects.

