
447

■ ■ ■

C H A P T E R 1 9

Templating with Smarty

No matter what prior degree of programming experience we had at the time, the overwhelming
majority of us started our Web development careers from the very same place; with the posting
of a simple Web page. And boy was it easy. Just add some text to a file, save it with an .html
extension, and post it to a Web server. Soon enough, you were incorporating animated GIFs,
JavaScript, and (perhaps later) a powerful scripting language like PHP into your pages. Your
site began to swell, first to 5 pages, then 15, then 50. It seemed to grow exponentially. Then
came that fateful decision, the one you always knew was coming, but always managed to cast
aside: It was time to redesign the site.

Unfortunately, perhaps because of the euphoric emotions induced by the need to make
your Web site the coolest and most informative out there, you forgot one of programming’s
basic tenets: Always strive to separate presentation and logic. Failing to do so not only increases the
possibility that you’ll introduce application errors simply by changing the interface, but also
essentially negates the possibility that you could trust a designer to autonomously maintain
the application’s “look and feel” without him first becoming a programmer.

Sound familiar?
Although practically all of us have found ourselves in a similar position, it’s also worth

noting that many who have actually attempted to implement this key programming principle
often experience varying degrees of success. For no matter the application’s intended platform,
devising a methodology for managing a uniform presentational interface while simultaneously
dealing with the often highly complex code surrounding the application’s feature set has long
been a difficult affair. So should you simply resign yourself to a tangled mess of logic and
presentation? Of course not!

Although none are perfect, numerous solutions are readily available for managing a Web
site’s presentational aspects almost entirely separately from its logic. These solutions are
known as templating engines, and they go a long way toward eliminating the enormous difficulties
otherwise imposed by lack of layer separation. This chapter introduces this topic as it applies
to PHP, and in particular concentrates upon what is perhaps the most popular PHP-specific
templating solution out there: Smarty.

What’s a Templating Engine?
As the opening remarks imply, regardless of whether you’ve actually implemented a templating
engine solution, it’s likely that you’re at least somewhat familiar with the advantages of separating
application and presentational logic in this fashion. Nonetheless, it would probably be useful
to formally define exactly what you may gain through using a templating engine.

448 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Simply put, a templating engine aims to separate an application’s business logic from its
presentational logic. Doing so is beneficial for several reasons, two of the most pertinent being:

• You can use a single code base to generate data for numerous outlets: print, the Web,
spreadsheets, e–mail-based reports, and others. The alternative solution would involve
copying and modifying the code for each outlet, resulting in considerable code redun-
dancy and greatly reducing manageability.

• The application designer (the individual charged with creating and maintaining the
interface) can work almost independently of the application developer, because the
presentational and logical aspects of the application are not inextricably intertwined.
Furthermore, because the presentational logic used by most templating engines is typi-
cally more simplistic than the syntax of whatever programming language is being used
for the application, the designer is not required to undergo a crash course in that language
in order to perform their job.

But how exactly does a templating engine accomplish this separation? Interestingly, most
implementations operate quite similarly to programming languages, offering a well-defined
syntax and command set for carrying out various tasks pertinent to the interface. This presenta-
tional language is embedded in a series of templates, each of which contains the presentational
aspects of the application, and would be used to format and output the data provided by the
application’s logical component. A well-defined delimiter signals the location in which the
provided data and presentational logic is to be placed within the template. A generalized example
of such a template is offered in Listing 19-1. This example is based on the syntax of the Smarty
templating engine, which is the ultimate focus of this chapter. However, all popular templating
engines follow a similar structure, so if you’ve already chosen another solution, chances are
you’ll still find this material useful.

Listing 19-1. A Typical Template (index.tpl)

<html>
 <head>
 <title>{$pagetitle}</title>
 </head>
 <body>
 {if $name eq "Kirk"}
 <p>Welcome back Captain!</p>
 {else}
 <p>Swab the decks, mate!</p>
 {/if}
 </body>
</html>

There are some important items of note regarding this example. First, the delimiters, denoted
by curly brackets ({}), serve as a signal to the template engine that the data found between the
delimiters should be examined and some action potentially taken. Most commonly, this action
is simply the placement of a particular variable value. For example, the $pagetitle variable
found within the HTML title tags denotes the location where this value, passed in from the
logical component, should be placed. Further down the page, the delimiters are again used to

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 449

denote the start and conclusion of an if conditional to be parsed by the engine. If the $name
variable is set to "Kirk", a special message will appear; otherwise, a default message will be
rendered.

Because most templating engine solutions, Smarty included, offer capabilities that go far
beyond the simple insertion of variable values, a templating engine’s framework must be able
to perform a number of tasks that are otherwise ultimately hidden from both the designer and
the developer. Not surprisingly, this is best accomplished via object-oriented programming, in
which such tasks can be encapsulated. (See Chapters 6 and 7 for an introduction to PHP’s object-
oriented capabilities.) Listing 19-2 provides an example of how Smarty is used in conjunction
with the logical layer to prepare and render the index.tpl template shown in Listing 19-1. For
the moment, don’t worry about where this Smarty class resides; this is covered soon enough.
Instead, pay particular attention to the fact that the layers are completely separated, and try to
understand how this is accomplished in the example.

Listing 19-2. A Typical Smarty Template

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;

 // Assign a few page variables.
 $smarty->assign("pagetitle","Welcome to the Starship.");
 $smarty->assign("name","Kirk");

 // Render and display the template.
 $smarty->display("index.tpl");
?>

As you can see, all of the gory implementation details are completely hidden from both the
developer and the designer. Now that your interest has been piqued, let’s move on to a more
formal introduction of Smarty.

Introducing Smarty
Smarty (http://smarty.php.net/) is PHP’s “unofficial-official” templating engine, as you might
infer from its homepage location. Smarty was authored by Andrei Zmievski and Monte Orte, and
is perhaps the most popular and powerful PHP templating engine. Because it’s released under
the GNU Lesser General Public License (LGPL, http://www.gnu.org/copyleft/lesser.html),
Smarty’s users are granted a great degree of flexibility in modifying and redistributing the soft-
ware, not to mention free use.

In addition to a liberal licensing scheme, Smarty offers a powerful array of features, many
of which are discussed in this chapter. Several features are highlighted here:

450 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

• Powerful presentational logic: Smarty offers constructs capable of both conditionally
evaluating and iteratively processing data. Although it is indeed a language unto itself,
its syntax is such that a designer can quickly pick up on it without prior programming
knowledge.

• Template compilation: To eliminate costly rendering overhead, Smarty converts its
templates into comparable PHP scripts by default, resulting in a much faster rendering
upon subsequent calls. Smarty is also intelligent enough to recompile a template if its
contents have changed.

• Caching: Smarty also offers an optional feature for caching templates. Caching differs
from compilation in that enabling caching also prevents the respective logic from even
executing, instead of just rendering the cached contents. For example, you can designate
a time-to-live for cached documents of, say, five minutes, and during that time you can
forego database queries pertinent to that template.

• Highly configurable and extensible: Smarty’s object-oriented architecture allows you to
modify and expand upon its default behavior. In addition, configurability has been a
design goal from the start, offering users great flexibility in customizing Smarty’s behavior
through built-in methods and attributes.

• Secure: Smarty offers a number of features intended to shield the server and the appli-
cation data from potential compromise by the designer, intended or otherwise.

Keep in mind that all popular templating solutions follow the same core set of implemen-
tation principles. Like programming languages, once you’ve learned one, you’ll generally have
an easier time becoming proficient with another. Therefore, even if you’ve decided that Smarty
isn’t for you, you’re still invited to follow along. The concepts you learn in this chapter will
almost certainly apply to any other similar solution. Furthermore, the intention isn’t to parrot
the contents of Smarty’s extensive manual, but rather to highlight Smarty’s key features,
providing you with a jump-start of sorts regarding the solution, all the while keying on general
templating concepts.

Installing Smarty
Installing Smarty is a rather simple affair. To start, go to http://smarty.php.net/ and down-
load the latest stable release. Then follow these instructions to get started using Smarty:

1. Untar and unarchive Smarty to some location outside of your Web document root.
Ideally, this location would be the same place where you’ve placed other PHP libraries
for subsequent inclusion into a particular application. For example, on Unix this location
might be:

/usr/local/lib/php5/includes/smarty/

On Windows, this location might be:

C:\php5\includes\smarty\

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 451

2. Because you’ll need to include the Smarty class library into your application, make sure
that this location is available to PHP via the include_path configuration directive. Namely,
this class file is Smarty.class.php, which is found in the Smarty directory libs/. Assuming
the above locations, on Unix you should set this directive like so:

include_path = ".;/usr/local/lib/php5/includes/smarty/libs"

On Windows, it would be set as:

include_path = ".;c:\php5\includes\smarty\libs"

Of course, you’ll probably want to append this path to whatever other paths are already
assigned to include_path, because you likely are integrating various libraries into appli-
cations in the same manner. Remember that you need to restart the Web server after
making any changes to PHP’s configuration file. Also, note that there are other ways to
accomplish the ultimate goal of making sure that your application can reference Smarty’s
library. For example, you could simply provide the complete absolute path to the class
library. Another solution involves setting a predefined constant named SMARTY_DIR that
points to the Smarty class library directory, and then prefacing the class library name
with this constant. Therefore, if your particular configuration renders it impossible for
you to modify the php.ini file, keep in mind that this doesn’t necessarily prevent you
from using Smarty.

3. Complete the process by creating four directories where Smarty’s templates and config-
uration files will be stored:

• templates: Hosts all site templates. You’ll learn more about the structure of these
templates in the next section.

• configs: Hosts any special Smarty configuration files you may use for this particular
Web site. The specific purpose of these files is introduced in a later section.

• templates_c: Hosts any templates compiled by Smarty. In addition to creating this
directory, you’ll need to change its permissions so that the Web server user (typically
nobody) can write to it.

• cache: Hosts any templates cached by Smarty, if this feature is enabled.

Although Smarty by default assumes that these directories reside in the same directory
as the script instantiating the Smarty class, it’s recommended that you place these
directories somewhere outside of your Web server’s document root. You can change the
default behavior using Smarty’s $template_dir, $compile_dir, $config_dir, and
$cache_dir class members, respectively. So for example, you could modify their locations
like so:

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

452 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;
 $smarty->template_dir="/usr/local/lib/php5/smarty/template_dir/";
 $smarty->compile_dir="/usr/local/lib/php5/smarty/compile_dir/";
 $smarty->config_dir="/usr/local/lib/php5/smarty/config_dir/";
 $smarty->cache_dir="/usr/local/lib/php5/smarty/cache_dir/";
?>

With these three steps complete, you’re ready to begin using Smarty. To whet your appetite
regarding this great templating engine, let’s begin with a simple usage example, and then delve
into some of the more interesting and useful features. Of course, the ensuing discussion will be
punctuated throughout with applicable examples.

Using Smarty
Using Smarty is like using any other class library. For starters, you just need to make it available
to the executing script. This is accomplished easily enough with the require() statement:

require("Smarty.class.php");

With that complete, you can then instantiate the Smarty class:

$smarty = new Smarty;

That’s all you need to do to begin taking advantage of its features. Let’s begin with a simple
example. Listing 19-3 presents a simple design template. Note that there are two variables
found in the template: $title and $name. Both are enclosed within curly brackets, which are
Smarty’s default delimiters. These delimiters are a sign to Smarty that it should do something
with the enclosed contents. In the case of this example, the only action would be to replace the
variables with the appropriate values passed in via the application logic (presented in Listing
19-4). However, as you’ll soon learn, Smarty is also capable of doing a multitude of other tasks,
such as executing presentational logic and modifying the text format.

Listing 19-3. A Simple Smarty Design Template (templates/index.tpl)

<html>
 <head>
 <title>{$title}</title>
 </head>
 <body bgcolor="#ffffff" text="#000000" link="#0000ff"
 vlink="#800080" alink="#ff0000">
 <p>
 Hi, {$name}. Welcome to the wonderful world of Smarty.
 </p>
 </body>
</html>

Also note that Smarty expects this template to reside in the templates directory, unless
otherwise noted by a change to $template_dir.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 453

Listing 19-4 offers the corresponding application logic, which passes the appropriate variable
values into the Smarty template.

Listing 19-4. The index.tpl Template’s Application Logic (index.php)

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;

 // Assign two Smarty variables
 $smarty->assign("name", "Jason Gilmore");
 $smarty->assign("title", "Smarty Rocks!");

 // Retrieve and output the template
 $smarty->display("index.tpl");
?>

The resulting output is offered in Figure 19-1.

Figure 19-1. The output of Listing 19-4

This elementary example demonstrates Smarty’s ability to completely separate the logical
and presentational layers of a Web application. However, this is just a smattering of Smarty’s
total feature set. Before moving on to other topics, it’s worth formally introducing the display()
method used in the previous example to retrieve and render the Smarty template.

display()

void display (string template [, string cache_id [, string compile_id]])

This method is ubiquitous within Smarty-based scripts, because it is responsible for the retrieval
and display of the template referenced by template. The optional parameter cache_id specifies
the name of the caching identifier, a topic discussed later, in the section “Caching.” The other
optional parameter, compile_id, is used when you want to maintain multiple caches of the
same page. Multiple caching is also introduced in a later section, “Creating Multiple Caches

454 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

per Template.” Because you’ll repeatedly encounter this method throughout the chapter,
there’s no need for an additional example.

Smarty’s Presentational Logic
Critics of template engines such as Smarty often complain about the incorporation of some
level of logic into the engine’s feature set. After all, the idea is to completely separate the
presentational and logical layers, right? Although that is indeed the idea, it’s not always the
most practical solution. For example, without allowing for some sort of iterative logic, how
would you output a PostgreSQL result set in a particular format? You couldn’t really, at least
not without coming up with some rather unwieldy solution. Recognizing this dilemma, the
Smarty developers incorporated some rather simplistic, yet very effective, application logic
into the engine. This seems to present an ideal balance, because Web site designers are often
not programmers (and vice versa!).

In this section, you’ll learn all about Smarty’s impressive presentational features: variable
modifiers, control structures, and statements. First, a brief note regarding comments is in order.

Comments
Comments are used as necessary throughout the remainder of this chapter. Therefore, it seems
only practical to start by introducing Smarty’s comment syntax. Comments are enclosed
within the delimiter tags {* and *}, and can consist of a single line or multiple lines. A valid
Smarty comment follows:

{* Some programming note *}

Variable Modifiers
As you saw in Chapter 9, PHP offers an extraordinary number of functions, capable of manip-
ulating text in just about every which way imaginable. However, you’ll really want to use many
of these features from within the presentational layer—for example, to ensure that an article
author’s first and last names are capitalized within the article description. Recognizing this
fact, the Smarty developers have incorporated many such presentation-specific capabilities
into the library. This section introduces many of the more interesting features.

Before starting the overview, it’s worth first introducing Smarty’s somewhat nontraditional
variable modifier syntax. While of course the delimiters are used to signal the requested output
of a variable, any variable value requiring modification prior to output is followed by a vertical
bar, followed by the modifier command, like so:

{$var|modifier}

You’ll see this syntax used repeatedly throughout this section as the modifiers are introduced.

capitalize

The capitalize function capitalizes the first letter of all words found in a variable. An example
follows:

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 455

$smarty = new Smarty;
$smarty->assign("title", "snow expected in northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title|capitalize}

This returns the following:

Snow Expected In Northeast

count_words

The count_words function totals up the number of words found in a variable. An example
follows:

$smarty = new Smarty;
$smarty->assign("title", "Snow Expected in Northeast.");
$smarty->assign("body", "More than 12 inches of snow is expected to
accumulate overnight in New York.");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title} ({$body|count_words} words)

<p>{$body}</p>

This returns:

Snow Expected in Northeast (10 words)

<p>More than 12 inches of snow is expected to accumulate overnight in New York.</p>

date_format

The date_format function is a wrapper to PHP’s strftime() function and is capable of converting
any date/time-formatted string that is capable of being parsed by strftime() into some special
format. Because the formatting flags are documented in the manual and in Chapter 12, it’s not
necessary to reproduce them here. Instead, let’s just jump straight to a usage example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->assign("filed","1072125525");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title}

Submitted on: {$filed,"%B %e, %Y"}

456 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

This returns:

Snow Expected in Northeast

Submitted on: December 22, 2005

default

The default function offers an easy means for designating a default value for a particular variable
if the application layer does not return one. For example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title}

Author: {$author|default:"Anonymous" }

This returns:

Snow Expected in Northeast

Author: Anonymous

strip_tags

The strip_tags function removes any markup tags from a variable string. For example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title|strip_tags}

This returns:

Snow Expected in Northeast

truncate

The truncate function truncates a variable string to a designated number of characters. Although
the default is 80 characters, you can change it by supplying an input parameter (demonstrated
in the example). You can optionally specify a string that will be appended to the end of the
newly truncated string, such as an ellipsis (...). In addition, you can specify whether the trunca-
tion should occur immediately at the designated character limit, or whether a word boundary

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 457

should be taken into account (TRUE to truncate at the exact limit, FALSE to truncate at the closest
following word boundary). For example:

$summaries = array(
 "Snow expected in the Northeast over the weekend.",
 "Sunny and warm weather expected in Hawaii.",
 "Softball-sized hail reported in Wisconsin."
);
$smarty = new Smarty;
$smarty->assign("summaries", $summaries);
$smarty->display("article.tpl");

The article.tpl template contains:

{foreach from=$summaries item=$summary}
 {$summary|truncate:20:"..."|false}

{/foreach}

This returns:

Snow expected in the...

Sunny and warm weather...

Softball-sized hail...

Control Structures
Smarty offers several control structures capable of conditionally and iteratively evaluating
passed-in data. These structures are introduced in this section.

if-elseif-else

Smarty’s if statement operates much like the identical statement in the PHP language. Like
PHP, a number of conditional qualifiers are available, all of which are displayed here:

eq gt gte ge

lt lte le ne

neq is even is not even is odd

is not odd div by even by not

mod odd by == !=

> < <= >=

A simple example follows:

{* Assume $dayofweek = 6. *}
{if $dayofweek > 5}
 <p>Gotta love the weekend!</p>
{/if}

458 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Consider another example. Suppose you want to insert a certain message based on the
month. The following example uses both conditional qualifiers and the if, elseif, and else
statements to carry out this task:

{if $month < 4}
 Summer is coming!
{elseif $month ge 4 && $month <= 9}
 It's hot out today!
{else}
 Brrr... It's cold!
{/if}

Note that enclosing the conditional statement within parentheses is optional, although it’s
required in standard PHP code.

foreach

The foreach tag operates much like the command in the PHP language. As you’ll soon see, the
syntax is quite different, however. Four parameters are available, two of which are required:

• from: This required parameter specifies the name of the target array.

• item: This required parameter determines the name of the current element.

• key: This optional parameter determines the name of the current key.

• name: This optional parameter determines the name of the section. The name is arbitrary
and should be set to whatever you deem descriptive of the section’s purpose.

Consider an example. Suppose you want to loop through the days of the week:

require("Smarty.class.php");
$smarty = new Smarty;
$daysofweek = array("Mon.","Tues.","Weds.","Thurs.","Fri.","Sat.","Sun.");
$smarty->assign("daysofweek", $daysofweek);
$smarty->display("daysofweek.tpl");

The daysofweek.tpl file contains:

{foreach from=$daysofweek item=day}
 {$day}

{/foreach}

This returns the following:

Mon.
Tues.
Weds.
Thurs.
Fri.
Sat.
Sun.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 459

You can use the key attribute to iterate through an associative array. Consider this example:

 require("Smarty.class.php");
 $smarty = new Smarty;
 $states = array("OH" => "Ohio", "CA" => "California", "NY" => "New York");
 $smarty->assign("states",$states);
 $smarty->display("states.tpl");

The states.tpl template contains:

{foreach key=key item=item from=$states }
 {$key}: {$item}

{/foreach}

This returns:

OH: Ohio
CA: California
NY: New York

Although the foreach statement is indeed useful, you should definitely take a moment to
learn about the functionally similar, yet considerably more powerful, section statement, intro-
duced later.

foreachelse

The foreachelse tag is used in conjunction with foreach, and operates much like the default
tag does for strings, producing some alternative output if the array is empty. An example of a
template using foreachelse follows:

{foreach key=key item=item from=$titles}
 {$key}: $item}

{foreachelse}
 <p>No states matching your query were found.</p>
{/foreach}

Note that foreachelse does not use a closing bracket; rather, it is embedded within foreach,
much like an elseif is embedded within an if statement.

section

The section function operates in a fashion much like an enhanced for/foreach statement,
iterating over and outputting a data array, although the syntax differs significantly. The term
“enhanced” refers to the fact that it offers the same looping feature as the for/foreach
constructs but also has numerous additional options that allow you to exert greater control
over the loop’s execution. These options are enabled via function parameters. Each available
option (parameter) is introduced next, concluding with a few examples.

460 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Two parameters are required:

• name: Determines the name of the section. This is arbitrary and should be set to whatever
you deem descriptive of the section’s purpose.

• loop: Sets the number of times the loop will iterate. This should be set to the same name
as the array variable.

Several optional parameters are also available:

• start: Determines the index position from which the iteration will begin. For example, if
the array contains five values, and start is set to 3, then the iteration will begin at index
offset 3 of the array. If a negative number is supplied, then the starting position will be
determined by subtracting that number from the end of the array.

• step: Determines the stepping value used to traverse the array. By default, this value is 1.
For example, setting step to 3 will result in iteration taking place on array indices 0, 3, 6, 9,
and so on. Setting step to a negative value will cause the iteration to begin at the end of
the array and work backward.

• max: Determines the maximum number of times loop iteration will occur.

• show: Determines whether or not this section will actually display. You might use this
parameter for debugging purposes, and then set it to FALSE upon deployment.

Consider two examples. The first involves iteration over a simple indexed array:

 require("Smarty.class.php");
 $smarty = new Smarty;
 $titles = array(
 "A Programmer's Introduction to PHP 4.0",
 "Beginning Python",
 "Pro Perl"
);

 $smarty->assign("titles",$titles);
 $smarty->display("titles.tpl");

The titles.tpl template contains:

{section name=book loop=$titles}
 {$titles[book]}

{/section}

This returns:

A Programmer's Introduction to PHP 4.0

Beginning Python

Pro Perl

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 461

Note the somewhat odd syntax in that the section name must be referenced like an index
value would within an array. Also, note that the $titles variable name does double duty,
serving as the reference both for the looping indicator and for the actual variable reference.

Now consider an example using an associative array:

 require("Smarty.class.php");
 $smarty = new Smarty;
 // Create the array
 $titles[] = array(
 "title" => "A Programmer's Introduction to PHP 4.0",
 "author" => "Jason Gilmore",
 "published" => "2001"
);
 $titles[] = array(
 "title" => "Beginning Python",
 "author" => "Magnus Lie Hetland",
 "published" => "2005"
);
 $smarty->assign("titles", $titles);
 $smarty->display("section2.tpl");

The section2.tpl template contains:

{section name=book loop=$titles}
 <p>Title: {$titles[book].title}

 Author: {$titles[book].author}

 Published: {$titles[book].published}</p>
{/section}

This returns:

<p>
Title: A Programmer's Introduction to PHP 4.0

Author: Jason Gilmore

Published: 2001
</p>
<p>
Title: Beginning Python

Author: Magnus Lie Hetland

Published: 2005
</p>

sectionelse

The sectionelse function is used in conjunction with section, and operates much like the
default function does for strings, producing some alternative output if the array is empty. An
example of a template using sectionelse follows:

462 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

{section name=book loop=$titles}
 {$titles[book]}

{sectionelse}
 <p>No entries matching your query were found.</p>
{/section}

Note that sectionelse does not use a closing bracket; rather, it is embedded within section,
much like an elseif is embedded within an if statement.

Statements
Smarty offers several statements used to perform special tasks. This section introduces several
of these statements.

include

The include statement operates much like the statement of the same name found in the PHP
distribution, except that it is to be used solely for including other templates into the current
template. For example, suppose you want to include two files, header.tpl and footer.tpl, into
the Smarty template:

{include file="/usr/local/lib/pmnp/19/header.tpl"}
{* Execute some other Smarty statements here. *}
{include file="/usr/local/lib/pmnp/19/footer.tpl"}

This statement also offers two other features. First, you can pass in the optional assign
attribute, which will result in the contents of the included file being assigned to a variable
possessing the name provided to assign. For example:

{include file="/usr/local/lib/pmnp/19/header.tpl" assign="header"}

Rather than outputting the contents of header.tpl, they will be assigned to the variable
$header.

A second feature allows you to pass various attributes to the included file. For example,
suppose you want to pass the attribute title="My home page" to the header.tpl file:

{include file="/usr/local/lib/pmnp/19/header.tpl" title="My home page"}

Keep in mind that any attributes passed in this fashion are only available within the scope
of the included file, and are not available anywhere else within the template.

■Note The fetch statement accomplishes the same task as include, embedding a file into a template,
with two differences. First, in addition to retrieving local files, fetch can retrieve files using the HTTP and FTP
protocols. Second, fetch does not have the option of assigning attributes at file retrieval time.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 463

insert

The insert tag operates in the same capacity as the include tag, except that it’s intended to
include data that’s not meant to be cached. For example, you might use this function for inserting
constantly updated data, such as stock quotes, weather reports, or anything else that is likely to
change over a short period of time. It also accepts several parameters, one of which is required,
and three of which are optional:

• name: This required parameter determines the name of the insert function.

• assign: This optional parameter can be used when you’d like the output to be assigned
to a variable rather than sent directly to output.

• script: This optional parameter can point to a PHP script that will execute immediately
before the file is included. You might use this if the output file’s contents depends specif-
ically on a particular action performed by the script. For example, you might execute
a PHP script that would return certain default stock quotes to be placed into the
noncacheable output.

• var: This optional parameter is used to pass in various other parameters of use to the
inserted template. You can pass along numerous parameters in this fashion.

The name parameter is special in the sense that it’s used to designate a namespace of
sorts that is specific to the contents intended to be inserted by the insertion statement. When
the insert tag is encountered, Smarty seeks to invoke a user-defined PHP function named
insert_name(), and will pass any variables included with the insert tag via the var parameters
to that function. Whatever output is returned from this function will then be output in the
place of the insert tag.

Consider an example. Suppose you want to insert one of a series of banner advertisements
of a specific size within a given location of your template. You might start by creating the function
responsible for retrieving the banner ID number from the database:

function insert_banner($height,$width) {
 $query = "SELECT id FROM banner WHERE height='$height' AND width='$width'
 ORDER BY RAND() LIMIT 0,1";
 $result = pg($query);
 return pg_fetch_result($result, 0, 0);
}

This banner could then be inserted into the template like so:

Once encountered, Smarty will reference any available user-defined PHP function named
insert_banner(), and pass it two parameters, namely height and width.

■Note For reasons of practicality, the preceding example uses some basic PostgreSQL syntax. For the
moment, just note that this example queries the database and retrieves a random advertisement identifier. If
you’re not familiar with PostgreSQL syntax and would like to know what the pg_ functions mean, see Chapter 30.

464 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

literal

The literal tag signals to Smarty that any data embedded within its tags should be output as-is,
without interpretation. It’s most commonly used to embed JavaScript and CSS into the template
without worrying about clashing with Smarty’s assigned delimiter (curly brackets by default).
Consider the following example in which some CSS markup is embedded into the template:

<html>
<head>
 <title>Welcome, {$user}</title>
 {literal}
 <style type="text/css">
 p {
 margin: 5px;
 }
 </style>
 {/literal}
</head>
...

Neglecting to enclose the CSS information within the literal brackets would result in a
Smarty-generated parsing error, because it would attempt to make sense of the curly brackets
found within the CSS markup (assuming that the default curly-bracket delimiter hasn’t been
modified).

php

You can use the php function to embed PHP code into the template. Any code found within the
{php}{/php} tags will be handled by the PHP engine. An example of a template using this
function follows:

Welcome to my Web site.

{php}echo date("F j, Y"){/php}

The result is:

Welcome to my Web site.

December 23, 2005

■Note Another function similar to php exists, named include_php. You can use this function to include
a separate script containing PHP code into the template, allowing for cleaner separation. Several other options
are available to this function; consult the Smarty manual for additional details.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 465

Creating Configuration Files
Developers have long used configuration files as a means for storing data that determines the
behavior and operation of an application. For example, the php.ini file is responsible for deter-
mining a great deal of PHP’s behavior. With Smarty, template designers can also take advantage
of the power of configuration files. For example, the designer might use a configuration file for
storing page titles, user messages, and just about any other item you deem worthy of storing in
a centralized location.

A sample configuration file (called app.config) follows:

Global Variables
appName = "PMNP News Service"
copyright = "Copyright 2005 PMNP News Service, Inc."

[Aggregation]
title = "Recent News"
warning = """Copyright warning. Use of this information is for
 personal use only."""

[Detail]
title = "A Closer Look..."

The items surrounded by brackets are called sections. Any items lying outside of a section
are considered global. These items should be defined prior to defining any sections. The next
section shows you how to use the config_load function to load in a configuration file, and also
explains how configuration variables are referenced within templates. Finally, note that the
warning variable data is enclosed in triple quotes. This syntax must be used in case the string
requires multiple lines of the file.

■Note Of course, Smarty’s configuration files aren’t intended to take the place of cascading style sheets
(CSS). Use CSS for all matters specific to the site design (background colors, fonts, and the like), and use
Smarty configuration files for matters that CSS is not intended to support, such as page title designations.

config_load
Configuration files are stored within the configs directory, and loaded using the Smarty func-
tion config_load. Here’s how you would load in the example configuration file, app.config:

{config_load file="app.config"}

However, keep in mind that this call will load just the configuration file’s global variables.
If you’d like to load a specific section, you need to designate it using the section attribute. So,
for example, you would use this syntax to load app.config’s Aggregation section:

{config_load file="app.config" section="Aggregation"}

466 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Two other optional attributes are also available, both of which are introduced here:

• scope: Determines the scope of the loaded configuration variables. By default, this is set
to local, meaning that the variables are only available to the local template. Other possible
settings include parent and global. Setting the scope to parent makes the variables
available to both the local and the calling template. Setting the scope to global makes
the variables available to all templates.

• section: Specifies a particular section of the configuration file to load. Therefore, if you’re
solely interested in a particular section, consider loading just that section rather than the
entire file.

Referencing Configuration Variables
Variables derived from a configuration file are referenced a bit differently than other variables.
Actually, they can be referenced using several different syntax variations, all of which are intro-
duced in the following sections.

Hash Mark

You can reference a configuration variable within a Smarty template by prefacing it with a hash
mark (#). For example:

{#title}

Smarty’s $smarty.config Variable

If you’d like a somewhat more formal syntax for referencing configuration variables, you can
use Smarty’s $smarty.config variable. For example:

{$smarty.config.title}

The get_config_vars() Method

array get_config_vars([string variablename])

The get_config_vars() method returns an array consisting of all loaded configuration variable
values. If you’re interested in just a single variable value, you can pass that variable in as
variablename. For example, if you were only interested in the $title variable found in the
Aggregation section of the above app.config configuration file, you would first load that
section using the config_load function:

{config_load file="app.config" section="Aggregation"}

You would then call get_config_vars() from within a PHP-enabled section of the
template, like so:

$title = $smarty->get_config_vars("title");

Of course, regardless of which configuration parameter retrieval syntax you choose, don’t
forget to first load the configuration file using the config_load function.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 467

Using CSS in Conjunction with Smarty
Those of you familiar with CSS likely quickly became concerned over the clash of syntax between
Smarty and CSS, because both depend on the use of curly brackets ({}). Simply embedding CSS
tags into the head of an HTML document will result in an “unrecognized tag” error:

<html>
<head>
<title>{$title}</title>
<style type="text/css">
 p {
 margin: 2px;
 }
</style>
</head>
...

Not to worry, as there are three alternative solutions that come to mind:

• Use the link tag to pull the style information in from another file:

 <html>
 <head>
 <title>{$title}</title>
 <link rel="stylesheet" type="text/css" href="default.css" />
 </head>
 ...

• Use Smarty’s literal tag to surround the style sheet information. These tags tell Smarty
to not attempt to parse anything within the tag enclosure:

 <literal>
 <style type="text/css">
 p {
 margin: 2px;
 }
 </literal>

• Change Smarty’s default delimiters to something else. You can do this by setting the
left_delimiter and right_delimiter attributes:

 <?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->left_delimiter = '{{{';
 $smarty->right_delimiter = '{{{';
 ...
 ?>

468 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Although all three solutions resolve the issue, the first is probably the most convenient,
because placing the CSS in a separate file is common practice anyway. In addition, this solution
does not require you to modify one of Smarty’s key defaults (the delimiter).

Caching
Powerful applications typically require a considerable amount of overhead, often incurred
through costly data retrieval and processing operations. For Web applications, this problem is
compounded by the fact that the HTTP protocol is stateless. Thus for every page request, the
same operations will be performed repeatedly, regardless of whether the data remains unchanged.
This problem is further exacerbated by making the application available on the world’s largest
network. In an environment, it might not come as a surprise that much ado has been made
regarding how to make Web applications run more efficiently. One particularly powerful solution
is also one of the most logical: Convert the dynamic pages into a static version, rebuilding only
when the page content has changed or on a regularly recurring schedule. Smarty offers just
such a feature, commonly referred to as page caching. This feature is introduced in this section,
accompanied by a few usage examples.

■Note Caching differs from compilation in two ways. First, although compilation reduces overhead by
converting the templates into PHP scripts, the actions required for retrieving the data on the logical layer are
always executed. Caching reduces overhead on both levels, both eliminating the need to repeatedly execute
commands on the logical layer and converting the template contents to a static version. Second, compilation
is enabled by default, whereas caching must be explicitly turned on by the developer.

If you want to use caching, you need to first enable it by setting Smarty’s caching attribute
like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;
 $smarty->display("news.tpl");
?>

Once enabled, calls to the display() and fetch()methods save the target template’s contents
in the template specified by the $cache_dir attribute.

Working with the Cache Lifetime
Cached pages remain valid for a lifetime (in seconds) specified by the $cache_lifetime attribute,
which has a default setting of 3,600 seconds, or 1 hour. Therefore, if you wanted to modify this
setting, you could set it, like so:

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 469

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 // Set the cache lifetime to 30 minutes.
 $smarty->cache_lifetime = 1800;
 $smarty->display("news.tpl");
?>

Any templates subsequently called and cached during the lifetime of this object would
assume that lifetime.

It’s also useful to override previously set cache lifetimes, allowing you to control cache life-
times on a per-template basis. You can do so by setting the $caching attribute to 2, like so:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 2;

 // Set the cache lifetime to 20 minutes.
 $smarty->cache_lifetime = 1200;
 $smarty->display("news.tpl");
?>

In this case, the news.tpl template’s age will be set to 20 minutes, overriding whatever
global lifetime value was previously set.

Eliminating Processing Overhead with is_cached()
As mentioned earlier in this chapter, caching a template also eliminates processing overhead
that is otherwise always incurred when caching is disabled (leaving only compilation enabled).
However, this isn’t enabled by default. To enable it, you need to enclose the processing instruc-
tions with an if conditional and evaluate the is_cached() method, like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 if (!$smarty->is_cached("news.tpl")) {
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
 $query = "SELECT rowid, title, author, summary FROM news";
 ...
 }
 $smarty->display("news.tpl");
?>

470 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

In this example, the news.tpl template will first be verified as valid. If it is, the costly data-
base access will be skipped. Otherwise, it will be executed.

■Note For reasons of practicality, the preceding example uses some basic PostgreSQL syntax. For the
moment, just understand that this example queries the database and retrieves a random advertisement identifier.
If you’re not familiar with PostgreSQL syntax and would like to know what the pg_ functions mean, see Chapter 30.

Creating Multiple Caches per Template
Any given Smarty template might be used to provide a common interface for an entire series of
tutorials, news items, blog entries, and the like. Because the same template is used to render
any number of distinct items, how can you go about caching multiple instances of a template?
The answer is actually easier than you might think. Smarty’s developers have actually resolved
the problem for you by allowing you to assign a unique identifier to each instance of a cached
template via the display() method. For example, suppose that you want to cache each instance
of the template used to render professional boxers’ biographies:

<?php
 require("Smarty.class.php");
 require("boxer.class.php");

 $smarty = new Smarty;

 $smarty->caching = 1;

 try {

 // If the template isn't already cached, retrieve the appropriate information.
 if (!is_cached("boxerbio.tpl", $_GET['boxerid'])) {
 $bx = new boxer();

 if (! $bx->retrieveBoxer($_GET['boxerid']))
 throw new Exception("Boxer not found.");

 // Create the appropriate Smarty variables
 $smarty->assign("name", $bx->getName());
 $smarty->assign("bio", $bx->getBio());
 }

 /* Render the template, caching it and assigning it the name
 * represented by $_GET['boxerid']. If already cached, then
 * retrieve that cached template
 */
 $smarty->display("boxerbio.tpl", $_GET['boxerid']);

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 471

 } catch (Exception $e) {
 echo $e->getMessage();
 }
?>

In particular, take note of this line:

$smarty->display("boxerbio.tpl", $_GET['boxerid']);

This line serves double duty for the script, both retrieving the cached version of boxerbio.tpl
named $_GET["boxerid"], and caching that particular template rendering under that name, if
it doesn’t already exist. Working in this fashion, you can easily cache any number of versions of
a given template.

Some Final Words About Caching
Template caching will indeed greatly improve your application’s performance, and should
seriously be considered if you’ve decided to incorporate Smarty into your project. However,
because most powerful Web applications derive their power from their dynamic nature, you’ll
need to balance these performance gains with consideration taken for the cached page’s relevance
as time progresses. In this section, you learned how to manage cache lifetimes on a per-page
basis, and execute parts of the logical layer based on a particular cache’s validity. Be sure to
take these features under consideration for each template.

Summary
Smarty is a powerful solution to a nagging problem that developers face on a regular basis.
Even if you don’t choose it as your templating engine, hopefully the concepts set forth in this
chapter at least convinced you that some templating solution is necessary.

In the next chapter, the fun continues, as we turn our attention to PHP’s abilities as applied
to one of the newer forces to hit the IT industry in recent years: Web Services. You’ll learn about
several interesting Web Services features, some built into PHP and others made available via
third-party extensions.

