
271

■ ■ ■

C H A P T E R  1 2

Date and Time

Temporal matters play a role in practically every conceivable aspect of programming and are 
often crucial to representing data in a fashion of interest to users. When was a tutorial published? 
Is the pricing information for a particular product recent? What time did the office assistant log 
into the accounting system? At what hour of the day does the corporate Web site see the most 
visitor traffic? These and countless other time-oriented questions come about on a regular 
basis, making the proper accounting of such matters absolutely crucial to the success of your 
programming efforts.

This chapter introduces PHP’s powerful date and time manipulation capabilities. After 
offering some preliminary information regarding how Unix deals with date and time values, 
you’ll learn about several of the more commonly used functions found in PHP’s date and time 
library. Next, we’ll engage in a bout of Date Fu, where you’ll learn how to use the date functions 
together to produce deadly (okay, useful) combinations, young grasshopper. We’ll also create 
grid calendars using the aptly named PEAR package Calendar. Finally, the vastly improved date 
and time manipulation functions available as of PHP 5.1 are introduced.

The Unix Timestamp
Fitting the oft-incongruous aspects of our world into the rigorous constraints of a programming 
environment can be a tedious affair. Such problems are particularly prominent when dealing 
with dates and times. For example, suppose you were tasked with calculating the difference in 
days between two points in time, but the dates were provided in the formats July 4, 2005 3:45pm 
and 7th of December, 2005 18:17. As you might imagine, figuring out how to do this program-
matically would be a daunting affair. What you would need is a standard format, some sort of 
agreement regarding how all dates and times will be presented. Preferably, the information 
would be provided in some sort of numerical format, 20050704154500 and 20051207181700, 
for example. Date and time values formatted in such a manner are commonly referred to as 
timestamps.

However, even this improved situation has its problems. For instance, this proposed solu-
tion still doesn’t resolve challenges presented by time zones, matters pertinent to time adjustment 
due to daylight savings, or cultural date format variances. What we need is to standardize 
according to a single time zone, and to devise an agnostic format that could easily be converted 
to any desired format. What about representing temporal values in seconds, and basing every-
thing on Coordinated Universal Time (UTC)? In fact, this strategy was embraced by the early 
Unix development team, using 00:00:00 UTC January 1, 1970 as the base from which all dates 



272 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

are calculated. This date is commonly referred to as the Unix epoch. Therefore, the incongruously 
formatted dates in the previous example would actually be represented as 1120491900 and 
1133979420, respectively.

■Caution  You may be wondering whether it’s possible to work with dates prior to the Unix epoch (00:00:00 UTC 
January 1, 1970). Indeed it is, at least if you’re using a Unix-based system. On Windows, due to an integer 
overflow issue, an error will occur if you attempt to use the timestamp-oriented functions in this chapter in 
conjunction with dates prior to the epoch definition.

PHP’s Date and Time Library
Even the simplest of PHP applications often involve at least a few of PHP’s date- and time-related 
functions. Whether validating a date, formatting a timestamp in some particular arrangement, 
or converting a human-readable date value to its corresponding timestamp, these functions 
can prove immensely useful in tackling otherwise quite complex tasks.

checkdate()

boolean checkdate (int month, int day, int year)

Although most readers could distinctly recall learning the “Thirty Days Hath September” 
poem1 back in grade school, it’s unlikely many of us could recite it, present company included. 
Thankfully, the checkdate() function accomplishes the task of validating dates quite nicely, 
returning TRUE if the date specified by month, day, and year is valid, and FALSE otherwise. Let’s 
consider a few examples:

echo checkdate(4, 31, 2005);
// returns false

echo checkdate(03, 29, 2004);
// returns true, because 2004 was a leap yearf

echo checkdate(03, 29, 2005);
// returns false, because 2005 is not a leap year

date()

string date (string format [, int timestamp])

The date() function returns a string representation of the present time and/or date formatted 
according to the instructions specified by format. Table 12-1 includes an almost complete 

1. “Thirty days hath September, April, June, and November; February has twenty-eight alone, All the rest 
have thirty-one, Excepting leap year, that’s the time When February’s days are twenty-nine.”



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 273

breakdown of all available date() format parameters. Forgive the decision to forego inclusion 
of the parameter for Swatch Internet time2.

Including the optional timestamp parameter, represented in Unix timestamp format, 
prompts date() to produce a string representation according to that designation. The timestamp
parameter must be formatted in accordance with the rules of GNU’s date syntax. If timestamp
isn’t provided, the current Unix timestamp will be used in its place.

2. Created in the midst of the dotcom insanity, the watchmaker Swatch (http://www.swatch.com/) came 
up with the concept of Swatch time, which intended to do away with the stodgy old concept of time 
zones, instead setting time according to “Swatch beats.” Not surprisingly, the universal reference for 
maintaining Swatch time was established via a meridian residing at the Swatch corporate office.

Table 12-1. The date() Function’s Format Parameters

Parameter Description Example

a Lowercase ante meridiem and post meridiem am or pm

A Uppercase ante meridiem and 
post meridiem

AM or PM

d Day of the month, with leading zero 01 to 31

D Three-letter text representation of day Mon through Sun

F Complete text representation of month January through December

g 12-hour format of hour, sans zeros 1 through 12

G 24-hour format, sans zeros 1 through 24

h 12-hour format of hour, with zeros 01 through 24

H 24-hour format, with zeros 01 through 24

i Minutes, with zeros 01 through 60

I Daylight saving time 0 if no, 1 if yes

j Day of month, sans zeros 1 through 31

l Text representation of day Monday through Sunday

L Leap year 0 if no, 1 if yes

m Numeric representation of month, 
with zeros

01 through 12

M Three-letter text representation 
of month

Jan through Dec

n Numeric representation of month, 
sans zeros

1 through 12

O Difference to Greenwich Mean Time (GMT) –0500

r Date formatted according to RFC 2822 Tue, 19 Apr 2005 22:37:00 –0500

s Seconds, with zeros 01 through 59

S Ordinal suffix of day st, nd, rd, th



274 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

Despite having regularly used PHP for years, many PHP programmers still need to visit the 
PHP documentation to refresh their memory about the list of parameters provided in Table 12-1. 
Therefore, although you likely won’t be able to remember how to use this function simply by 
reviewing a few examples, let’s look at a few examples just to give you a clearer understanding 
of what exactly date() is capable of accomplishing.

The first example demonstrates one of the most commonplace uses for date(), which is 
simply to output a standard date to the browser:

echo "Today is ".date("F d, Y");
// Today is April 27, 2005

The next example demonstrates how to output the weekday:

echo "Today is ".date("l");
// Today is Wednesday

Let’s try a more verbose presentation of the present date:

$weekday = date("l");
$daynumber = date("dS");
$monthyear = date("F Y");

printf("Today is %s the %s day of %s", $weekday, $daynumber, $monthyear);

This returns the following output:

Today is Wednesday the 27th day of April 2005

You might be tempted to insert the nonparameter-related strings directly into the date()
function, like this:

t Number of days in month 28 through 31

T Timezone setting of executing machine PST, MST, CST, EST, etc.

U Seconds since Unix epoch 1114646885

w Numeric representation of weekday 0 for Sunday through 6 for 
Saturday

W ISO-8601 week number of year 1 through 53

Y Four-digit representation of year 1901 through 2038 (Unix); 
1970 through 2038 (Windows)

z The day of year 0 through 365

Z Timezone offset in seconds –43200 through 43200

Table 12-1. The date() Function’s Format Parameters (Continued)

Parameter Description Example



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 275

echo date("Today is l the ds day of F Y");

Indeed, this does work in some cases; however, the results can be quite unpredictable. For 
instance, executing the preceding code produces:

EDTo27pm05 0351 Wednesday 3008e 2751 27pm05 of April 2005

However, because punctuation doesn’t conflict with any of the parameters, feel free to 
insert it as necessary. For example, to format a date as mm-dd-yyyy, use the following:

echo date("m-d-Y");
// 04-26-2005

Working with Time 

The date() function can also produce time-related values. Let’s run through a few examples, 
starting with simply outputting the present time: 

echo "The time is ".date("h:i:s");
// The time is 07:44:53

But is it morning or evening? Just add the a parameter:

echo "The time is ".date("h:i:sa");
// The time is 07:44:53pm

getdate()

array getdate ([int timestamp])

The getdate() function returns an associative array consisting of timestamp components. This 
function returns these components based on the present date and time unless a Unix-format 
timestamp is provided. In total, 11 array elements are returned, including:

• hours: Numeric representation of the hours. The range is 0 through 23.

• mday: Numeric representation of the day of the month. The range is 1 through 31.

• minutes: Numeric representation of the minutes. The range is 0 through 59.

• mon: Numeric representation of the month. The range is 1 through 12.

• month: Complete text representation of the month, e.g. July.

• seconds: Numeric representation of seconds. The range is 0 through 59.

• wday: Numeric representation of the day of the week, e.g. 0 for Sunday.

• weekday: Complete text representation of the day of the week, e.g. Friday.

• yday: Numeric offset of the day of the year. The range is 0 through 365.



276 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

• year: Four-digit numeric representation of the year, e.g. 2005.

• 0: Number of seconds since the Unix epoch. While the range is system-dependent, on 
Unix-based systems, it’s generally –2147483648 through 2147483647, and on Windows, 
the range is 0 through 2147483648.

■Caution  The Windows operating system doesn’t support negative timestamp values, so the earliest date 
you could parse with this function on Windows is midnight, January 1, 1970.

Consider the timestamp 1114284300 (April 23, 2005 15:25:00 EDT). Let’s pass it to getdate()
and review the array elements:

Array ( 
 [seconds] => 0
 [minutes] => 25
 [hours] => 15
 [mday] => 23
 [wday] => 6
 [mon] => 4
 [year] => 2005
 [yday] => 112
 [weekday] => Saturday
 [month] => April
 [0] => 1114284300
)

gettimeofday()

mixed gettimeofday ([bool return_float])

The gettimeofday() function returns an associative array consisting of elements regarding the 
current time. For those running PHP 5.1.0 and newer, the optional parameter return_float
causes gettimeofday() to return the current time as a float value. In total, four elements are 
returned, including:

• dsttime: Indicates the daylight savings time algorithm used, which varies according to 
geographic location. There are 11 possible values, including 0 (no daylight savings 
time enforced), 1 (United States), 2 (Australia), 3 (Western Europe), 4 (Middle Europe), 
5 (Eastern Europe), 6 (Canada), 7 (Great Britain and Ireland), 8 (Romania), 9 (Turkey), 
and 10 (the Australian 1986 variation).

• minuteswest: The number of minutes west of Greenwich Mean Time (GMT).



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 277

• sec: The number of seconds since the Unix epoch.

• usec: The number of microseconds should the time fractionally supercede a whole 
second value.

Executing gettimeofday() from a test server on April 23, 2005 16:24:55 EDT produces the 
following output: 

Array (
  [sec] => 1114287896
  [usec] => 110683
  [minuteswest] => 300
  [dsttime] => 1 
)

Of course, it’s possible to assign the output to an array and then reference each element as 
necessary:

$time = gettimeofday();
$GMToffset = $time['minuteswest'] / 60;
echo "Server location is $GMToffset hours west of GMT.";

This returns the following:

Server location is 5 hours west of GMT.

mktime()

int mktime ([int hour [, int minute [, int second [, int month
            [, int day [, int year [, int is_dst]]]]]]])

The mktime() function is useful for producing a timestamp, in seconds, between the Unix 
epoch and a given date and time. The purpose of each optional parameter should be obvious, 
save for perhaps is_dst, which should be set to 1 if daylight savings time is in effect, 0 if not, or –1 
(default) if you’re not sure. The default value prompts PHP to try to determine whether daylight 
savings is in effect. For example, if you want to know the timestamp for April 27, 2005 8:50 p.m., 
all you have to do is plug in the appropriate values:

echo mktime(20,50,00,4,27,2005);

This returns the following:

1114649400



278 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

This is particularly useful for calculating the difference between two points in time. For 
instance, how many hours are there between now and midnight April 15, 2006 (the next major 
U.S. tax day)?

$now = mktime();
$taxday = mktime(0,0,0,4,15,2006);

// Difference in seconds
$difference = $taxday - $now;

// Calculate total hours
$hours = round($difference / 60 / 60);

echo "Only $hours hours until tax day!";

This returns the following:

Only 8451 hours until tax day!

time()

int time()

The time() function is useful for retrieving the present Unix timestamp. The following example 
was executed at 15:25:00 EDT on April 23, 2005: 

echo time();

This produces the following:

1114284300

Using the previously introduced date() function, this timestamp can later be converted 
back to a human-readable date:

echo date("F d, Y h:i:s", 1114284300);

This returns the following:

April 23, 2005 03:25:00

If you’d like to convert a specific date/time value to its corresponding timestamp, see the 
previous section for mktime().



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 279

Date Fu
Some prize fighters never reach the upper echelons of their sport because they’re one-
dimensional. That is, they rely too heavily on one particular aspect of their fighting repertoire, 
a left hook, for instance. The truly world-class boxers take advantage of everything at their 
disposal, using combinations to attack, wear down, and ultimately defeat their competitors. 
This is analogous to effective use of the date functions: While sometimes only one function is 
all you need, often their true power becomes apparent when you use two or three together to 
produce the desired outcome. This section demonstrates several of the most commonly 
requested date-related “moves” (tasks), some of which involve just one function, and others 
that involve some combination of several functions.

Displaying the Localized Date and Time
Throughout this chapter, and indeed this book, the Americanized temporal and monetary 
formats have been commonly used, such as 04-12-05 and $2,600.93. However, other parts of 
the world use different date and time formats, currencies, and even character sets. Given the 
Internet’s global reach, you may have to create an application that’s capable of adhering to 
foreign, or localized, formats. In fact, neglecting to do so can cause considerable confusion. For 
instance, suppose you are going to create a Web site that books reservations for a popular hotel 
in Orlando, Florida. This particular hotel is popular among citizens of various other countries, 
so you decide to create several localized versions of the site. How should you deal with the fact 
that most countries use their own currency and date formats, not to mention different languages? 
While you could go to the trouble of creating a tedious method of managing such matters, it likely 
would be error-prone and take some time to deploy. Thankfully, PHP offers a built-in set of 
features for localizing this type of data. 

PHP not only can facilitate proper formatting of dates, times, currencies, and such, but 
also can translate the month name accordingly. In this section, you’ll learn how to take advantage 
of this feature to format dates according to any locality you please. Doing so essentially requires two 
functions, setlocale() and strftime(). Both are introduced, followed by a few examples.

setlocale()

string setlocale (mixed category, string locale [, string locale...])
string setlocale (mixed category, array locale)

The setlocale() function changes PHP’s localization default by assigning the appropriate 
value to locale. Localization strings officially follow this structure:

language_COUNTRY.characterset

For example, if you wanted to use Italian localization, the locale string should be set to 
it_IT. Israeli localization would be set to he_IL, British localization to en_GB, and United States 
localization to en_US. The characterset component would come into play when potentially 
several character sets are available for a given locale. For example the locale string zh_CN.gb18030
is used for handling Tibetan, Uigur, and Yi characters, whereas zh_CN.gb3212 is for Simplified 
Chinese.

You’ll see that the locale parameter can be passed as either several different strings or an 
array of locale values. But why pass more than one locale? This feature is in place (as of PHP 



280 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

version 4.2.0) to counter the discrepancies between locale codes across different operating 
systems. Given that the vast majority of PHP-driven applications target a specific platform, this 
should rarely be an issue; however, the feature is there should you need it. 

Finally, if you’re running PHP on Windows, keep in mind that, apparently in the interests 
of keeping us on our toes, Microsoft has devised its own set of localization strings. You can 
retrieve a list of the language and country codes from http://msdn.microsoft.com.

■Tip  On some Unix-based systems, you can determine which locales are supported by running the 
command: locale -a.

It’s possible to specify a locale for a particular classification of data. Six different categories
are supported:

• LC_ALL: Set localization rules for all of the following five categories.

• LC_COLLATE: String comparison. This is useful for languages using characters such as â 
and é.

• LC_CTYPE: Character classification and conversion. For example, setting this category 
allows PHP to properly convert â to its corresponding lowercase representation of Â 
using the strtolower() function. 

• LC_MONETARY: Monetary representation. For example, Americans represent 50 dollars as 
$50.00, whereas Italians represent 50 Euro as 50,00.

• LC_NUMERIC: Numeric representation. For example, Americans represent one thousand 
four hundred and twelve as 1,412.00, whereas Italians represent it as 1.412,00.

• LC_TIME: Date and time representation. For example, Americans represent dates with the 
month followed by the day, and finally the year. For example, February 12, 2005 might be 
represented as 02-12-2005. However, Europeans (and much of the rest of the world) 
represent this date as 12-02-2005. Once set, you can use the strftime() function to 
produce the localized format.

For example, suppose we were working with monetary values and wanted to ensure that 
the sums were formatted according to the Italian locale:

setlocale(LC_MONETARY, "it_IT");
echo money_format("%i", 478.54);

This returns:

EUR 478,54

To localize dates and times, you need to use setlocale() in conjunction with strftime(),
introduced next. 



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 281

strftime()

string strftime (string format [, int timestamp])

The strftime() function formats a date and time according to the localization setting as specified 
by setlocale(). While it works in the same format as date(), accepting conversion parameters 
that determine the layout of the requested date and time, unfortunately, the parameters are 
different from those used by date(), necessitating reproduction of all available parameters in 
Table 12-2 for your reference. Keep in mind that all parameters will produce the output according 
to the set locale. Also, note that some of these parameters aren’t supported on Windows.

Table 12-2. The strftime() Function’s Format Parameters

Parameter Description Examples or Range

%a Abbreviated weekly name Mon, Tue

%A Complete weekday name Monday, Tuesday

%b Abbreviated month name Jan, Feb

%B Complete month name January, February

%c Standard date and time 04/26/05 21:40:46

%C Century number 21

%d Numerical day of month, with leading zero 01, 15, 26

%D Equivalent to %m/%d/%y 04/26/05

%e Numerical day of month, no leading zero 26

%g Same output as %G, but without the century 05

%G Numerical year, behaving according to rules 
set by %V

2005

%h Same output as %b Jan, Feb

%H Numerical hour (24-hour clock), 
with leading zero

00 through 23

%I Numerical hour (12-hour clock), 
with leading zero

00 through 12

%j Numerical day of year 001 through 366

%m Numerical month, with leading zero 01 through 12

%M Numerical month, with leading zero 00 through 59

%n Newline character \n

%p Ante meridiem and post meridiem AM, PM

%r Ante meridiem and post meridiem, with periods A.M., P.M.

%R 24-hour time notation 00:01:00 through 23:59:59

%S Numerical seconds, with leading zero 00 through 59



282 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

By using strftime() in conjunction with setlocale(), it’s possible to format dates according 
to your user’s local language, standards, and customs. Recalling the travel site, it would be 
trivial to provide the user with a localized itinerary with travel dates and the ticket cost:

Benvenuto abordo, Sr. Sanzi<br />
<?php
   setlocale(LC_ALL, "it_IT");
   $tickets = 2;
   $departure_time = 1118837700;
   $return_time = 1119457800;
   $cost = 1350.99;
?>
Numero di biglietti: <?php echo $tickets; ?><br />
Orario di partenza: <?php echo strftime("%d %B, %Y", $departure_time); ?><br />
Orario di ritorno: <?php echo strftime("%d %B, %Y", $return_time); ?><br />
Prezzo IVA incluso: <?php echo money_format('%i', $cost); ?><br />

This example returns the following:

%t Tab character \t

%T Equivalent to %H:%M:%S 22:14:54

%u Numerical weekday, where 1 = Monday 1 through 7

%U Numerical week number, where first Sunday is 
first day of first week

17

%V Numerical week number, where week 1 = 
first week with >= 4 days

01 through 53

%W Numerical week number, where first Monday is 
first day of first week

08

%w Numerical weekday, where 0 = Sunday 0 through 6

%x Standard date 04/26/05

%X Standard time 22:07:54

%y Numerical year, without century 05

%Y Numerical year, with century 2005

%Z or %z Time zone Eastern Daylight Time

%% The percentage character %

Table 12-2. The strftime() Function’s Format Parameters (Continued)

Parameter Description Examples or Range



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 283

Benvenuto abordo, Sr. Sanzi
Numero di biglietti: 2
Orario di partenza: 15 giugno, 2005
Orario di ritorno: 22 giugno, 2005
Prezzo IVA incluso: EUR 1.350,99

Displaying the Web Page’s Most Recent Modification Date
Barely a decade old, the Web is already starting to look like a packrat’s office. Documents are 
strewn everywhere, many of which are old, outdated, and often downright irrelevant. One of 
the commonplace strategies for helping the visitor determine the document’s validity involves 
adding a timestamp to the page. Of course, doing so manually will only invite errors, as the 
page administrator will eventually forget to update the timestamp. However, it’s possible to 
automate this process using date() and getlastmod(). You already know date(), so this oppor-
tunity is taken to introduce getlastmod().

getlastmod()

int getlastmod()

The getlastmod() function returns the value of the page’s Last-Modified header, or FALSE in the 
case of an error. If you use it in conjunction with date(), providing information regarding the 
page’s last modification time and date is trivial:

$lastmod = date("F d, Y h:i:sa", getlastmod());
echo "Page last modified on $lastmod";

This returns output similar to the following:

Page last modified on April 26, 2005 07:59:34pm

Determining the Number Days in the Current Month
To determine the number of days found in the present month, use the date() function’s 
t parameter. Consider the following code:

printf("There are %d days in %s.", date("t"), date("F"));

If this was executed in April, the following result would be output:

There are 30 days in April. 



284 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

Determining the Number of Days in Any Given Month

Sometimes you might want to determine the number of days in some month other than the 
present month. The date() function alone won’t work because it requires a timestamp, and 
you might only have a month and year available. However, the mktime() function can be used 
in conjunction with date() to produce the desired result. Suppose you want to determine the 
number of days found in February of 2006:

$lastday = mktime(0, 0, 0, 3, 0, 2006);
printf("There are %d days in February, 2006.", date("t",$lastday));

Executing this snippet produces the following output:

There are 28 days in February, 2006.

Calculating the Date X Days from the Present Date
It’s often useful to determine the precise date some specific number of days into the future or 
past. Using the strtotime() function and GNU date syntax, such requests are trivial. Suppose 
you want to know what the date will be 45 days into the future, based on today’s date of April 
23, 2005:

$futuredate = strtotime("45 days");
echo date("F d, Y", $futuredate);

This returns:

June 07, 2005

By prepending a negative sign, you can determine the date 45 days into the past:

$pastdate = strtotime("-45 days");
echo date("F d, Y", $pastdate);

This returns the following:

March 09, 2005

What about 10 weeks and 2 days from today?

$futuredate = strtotime("10 weeks 2 days");
echo date("F d, Y", $futuredate);

This returns:

July 04, 2005



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 285

Usingstrtotime() and the supported GNU date input formats, making such determinations 
is largely limited to your imagination.

Creating a Calendar
The Calendar package consists of 12 classes capable of automating numerous chronological 
tasks. The following list highlights just a few of the useful ways in which you can apply this 
powerful package:

• Render a calendar of any scope (hourly, daily, weekly, monthly, and yearly being the 
most common) in a format of your choice.

• Navigate calendars in a manner reminiscent of that used by the Gnome Calendar and 
Windows Date & Time Properties interface. 

• Validate any date. For example, you can use Calendar to determine whether April 1, 2019 
falls on a Monday (it does).

• Extend Calendar’s capabilities to tackle a variety of other tasks, date analysis for instance.

In this section, you’ll learn about Calendar’s most important capabilities, followed by 
several examples showing you how to actually implement some of these interesting features. But 
before you can begin taking advantage of this powerful package, you need to install it. Although you 
learned all about the PEAR package installation process in Chapter 11, for those of you not 
yet entirely familiar with the installation process, the necessary steps are reproduced next.

Installing Calendar

To capitalize upon all of Calendar’s features, you also need to install the Date package. Let’s 
take care of both during the Calendar installation process, which follows:

%>pear install Date
downloading Date-1.4.3.tgz ...
Starting to download Date-1.4.3.tgz (42,048 bytes)
............done: 42,048 bytes
install ok: Date 1.4.3
%>pear install -f Calendar
Warning: Calendar is state 'beta' which is less stable than state 'stable'
downloading Calendar-0.5.2.tgz ...
Starting to download Calendar-0.5.2.tgz (60,164 bytes)
..............done: 60,164 bytes
Optional dependencies:
package `Date' is recommended to utilize some features.
install ok: Calendar 0.5.2
%>

The –f flag is included when installing Calendar here because, at the time of this writing, 
Calendar is still a beta release. By the time of publication, Calendar could be officially stable, 
meaning you won’t need to include this flag. See Chapter 11 for a complete introduction to 
PEAR and the install command.



286 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

Calendar Fundamentals

Calendar is a rather large package, consisting of 12 public classes broken down into four 
distinct groups:

• Date classes: Used to manage the six date components: years, months, days, hours, 
minutes, and seconds. A separate class exists for each component: Calendar_Year,
Calendar_Month, Calendar_Day, Calendar_Hour, Calendar_Minute, and Calendar_Second,
respectively. 

• Tabular date classes: Used to build monthly and weekly grid-based calendars. Three 
classes are available: Calendar_Month_Weekdays, Calendar_Month_Weeks, and Calendar_Week.
These classes are useful for building monthly tabular calendars in daily and weekly 
formats, and weekly tabular calendars in seven-day format, respectively.

• Validation classes: Used to validate dates. The two classes are Calendar_Validator,
which is used to validate any component of a date and can be called by any subclass, and 
Calendar_Validation_Error, which offers an additional level of reporting if something is 
wrong with a date, and provides several methods for dissecting the date value. 

• Decorator classes: Used to extend the capabilities of the other subclasses without having to 
actually extend them. For instance, suppose you want to extend Calendar’s functionality 
with a few features for analyzing the number of Saturdays falling on the 17th of any given 
month. A decorator would be an ideal way to make that feature available. Several decorators 
are offered for reference and use, including Calendar_Decorator, Calendar_Decorator_Uri,
Calendar_Decorator_Textual, and Calendar_Decorator_Wrapper. In the interests of sticking 
to a discussion of the most commonly used features, Calendar’s decorator internals aren’t 
discussed here; consider examining the decorators installed with Calendar for ideas 
regarding how you can go about creating your own. 

All four classes are subclasses of Calendar, meaning all of the Calendar class’s methods are 
available to each subclass. For a complete summary of the methods for this superclass and the 
four subclasses, see http://pear.php.net/package/Calendar.

Creating a Monthly Calendar

These days, grid-based monthly calendars seem to be one of the most commonly desired Web 
site features, particularly given the popularity of time-based content such as blogs. Yet creating 
one from scratch can be deceivingly difficult. Thankfully, Calendar handles all of the tedium for 
you, offering the ability to create a grid calendar with just a few lines of code. For example, 
suppose we want to create a calendar for the present month and year, as shown in Figure 12-1.

The code for creating this calendar is surprisingly simple, and is presented in Listing 12-1. 
An explanation of key lines follows the code, referring to their line numbers for convenience. 



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 287

Figure 12-1. A grid calendar for April, 2006

Listing 12-1. Creating a Monthly Calendar

01 <?php
02   require_once 'Calendar/Month/Weekdays.php';
03
04   $month = new Calendar_Month_Weekdays(2006, 4, 0);
05
06   $month->build();
07
08   echo "<table cellspacing='5'>\n";
09   echo "<tr><td class='monthname' colspan='7'>April, 2006</td></tr>";
10   echo "<tr><td>Su</td><td>Mo</td><td>Tu</td><td>We</td>
11             <td>Th</td><td>Fr</td><td>Sa</td></tr>";
12   while ($day = $month->fetch()) {
13      if ($day->isFirst()) {
14         echo "<tr>";
15      }
16
17      if ($day->isEmpty()) {
18         echo "<td>&nbsp;</td>";
19      } else {
20         echo '<td>'.$day->thisDay()."</td>";
21      }
22
23      if ($day->isLast()) {
24         echo "</tr>";
25      }
26   }
27
28   echo "</table>";
29 ?>



288 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

• Line 02: Because we want to build a grid calendar representing a month, the 
Calendar_Month_Weekdays class is required. Line 02 makes this class available to 
the script.

• Line 04: The Calendar_Month_Weekdays class is instantiated, and the date is set to April, 
2006. The calendar should be laid out from Sunday to Saturday, so the third parameter 
is set to 0, which is representative of the Sunday numerical offset (1 for Monday, 2 for 
Tuesday, and so forth).

• Line 06: The build() method generates an array consisting of all dates found in the month.

• Line 12: A while loop begins, responsible for cycling through each day of the month.

• Lines 13–15: If $Day is the first day of the week, output a <tr> tag.

• Lines 17–21: If $Day is empty, output an empty cell. Otherwise, output the day number.

• Lines 23–25: If $Day is the last day of the week, output a </tr> tag.

Pretty simple isn’t it? Creating weekly and daily calendars operates on a very similar premise. 
Just choose the appropriate class and adjust the format as you see fit.

Validating Dates and Times

While PHP’s checkdate() function is useful for validating a date, it requires that all three date 
components (month, day, and year) are provided. But what if you want to validate just one 
date component, the month, for instance? Or perhaps you’d like to make sure a time value 
(hours:minutes:seconds), or some particular part of it, is legitimate before inserting it into a 
database. The Calendar package offers several methods for confirming both dates and times, 
or any part thereof. This list introduces these methods:

• isValid(): Executes all the other time and date validator methods, validating a date 
and time

• isValidDay(): Ensures that a day falls between 1 and 31

• isValidHour(): Ensures that the value falls between 0 and 23

• isValidMinute(): Ensures that the value falls between 0 and 59

• isValidMonth(): Ensures that the value falls between 1 and 12

• isValidSecond(): Ensures that the value falls between 0 and 59

• isValidYear(): Ensures that the value falls between 1902 and 2037 on Unix, or 1970 
and 2037 on Windows

PHP 5.1
While the built-in date functions discussed earlier in this chapter are very useful, users inter-
ested in manipulating and navigating dates are left out in the cold. For example, there is no 
readily available function for determining what day comes after Monday, what month comes 



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 289

after November, or whether a given year is a leap year. While the Calendar package introduced 
in the last section offers these capabilities, it would be nice to make these enhancements avail-
able via the default distribution. Those of you who have long yearned for such features are in 
luck, because the PECL3 Date and Time extension has been incorporated into the standard 
PHP distribution as of version 5.1. Authored by Pierre-Alain Joye, the Date and Time Library 
(hereafter referred to as Date) is guaranteed to make the lives of many PHP programmers 
significantly easier. In this section, you’ll learn about Date and see its powerful capabilities 
demonstrated through several examples.

■Caution  This chapter was written several months ahead of the official PHP 5.1 release, at a time when 
no documentation was available for the Date extension. Therefore, be forewarned that any information found 
in this section could indeed be incorrect by the time you read this. Nor does this section offer a comprehensive 
summary of all available features, as at the time of writing several of the methods weren’t working properly, 
and therefore it was decided better to omit them from the material. Such are the risks one takes to stay on 
the leading edge of technology!

Date Fundamentals
Earlier in the chapter, it was half-jokingly mentioned that offering date() examples was just for 
the sake of demonstration, because you’ll nonetheless need to refer to the documentation (or 
this book) for years in order to recall what the somewhat nonsensical parameters do. Date takes 
away much of the guesswork because it’s fully object-oriented, meaning the process involved 
in juggling dates is somewhat natural because the method names are rather self-explanatory. 
For example, to set the month, you call the setMonth() mutator; to retrieve the year, you call the 
getYear() accessor; and so on. The remainder of this chapter is devoted to an introduction of 
this class and its many methods.

■Note  Because Date relies on object-oriented features available as of version 5.0, you cannot use Date
in conjunction with any earlier version. If you haven’t yet upgraded to version 5.1 (but are using version 5.0.X) 
and want to use Date, download it from http://pecl.php.net/package/date_time.

The Date Constructor
Before you can use the Date features, you need to instantiate a date object via its class 
constructor. This constructor is introduced in this section.

3. PECL is the PHP Extension Community Library, containing PHP extensions written in the C language. 
Learn more about it at http://pecl.php.net.



290 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

date()

object date ([integer day [, integer month [, integer year [, integer weekstart]]]])

The date() method is the class constructor. You can set the date either at the time of instantiation 
by using the day, month, and year parameters, or later by using a variety of mutators (setters), 
which are introduced next. To create an empty date object, just call date() like so:

$date = new Date();

To create an object and set the date to April 29, 2005, execute:

$date = new Date(29,4,2005);

You can use the optional weekstart parameter to tell the object which day of the week 
should be considered the first. By default, date objects assume the week begins with Monday, 
meaning Monday has the offset 1.

Curiously, there is no convenient means for setting the date object to the current date. 
To do so, you need to use the date() function:

$date = new Date(date("j"),date("n"),date("Y"));

Accessors and Mutators
Date offers several accessors (getters) and mutators (setters) that are useful for manipulating 
and retrieving date component values. Those methods are introduced in this section.

setDMY()

boolean setDMY (integer day, integer month, integer year)

The setDMY() method sets the date object’s day, month, and year, returning TRUE on success 
and FALSE otherwise. Let’s set the date to April 29, 2005:

$date = new Date();
$date->setDMY(29,4,2005);
$dcs = $date->getArray();
print_r($dcs);

This returns the following:

Array (
   [day] => 29 [month] => 4 [year] => 2005
   [hour] => 0 [min] => 0 [sec] => 0 
)

The getArray() method is convenient for easily storing all three date components in an 
array. This method is introduced next.



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 291

getArray()

array getArray()

The getArray() method returns an associative array consisting of three keys: day, month,
and year:

$date = new Date();
$date->setDMY(29,4,2005);
$dcs = $date->getArray();
echo "The month: ".$dcs['month']."<br />";
echo "The day: ".$dcs['day']."<br />";
echo "The year: ".$dcs['year']."<br />";

The result follows:

The month: 4
The day: 29
The year: 2005

setDay()

boolean setDay (integer day)

The setDay() method sets the date object’s day attribute to day, returning TRUE on success and 
FALSE otherwise. The following example sets the date to April 29, 2006 and then changes the 
day to 15:

$date = new Date(29,4,2006);
$date->setDay15);
// The date is now set to April 15, 2006

getDay()

integer getDay()

The getDay() method returns the day attribute from the date object. An example follows:

$date = new Date(29,4,2006);
echo $date->getDay();

The following is returned:

29



292 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

setJulian()

The Julian date was created by historian Joseph Scaliger (1540–1609) in an attempt to convert 
between the many disparate calendaring systems he encountered when studying historical 
documents. It’s based on a 7,980-year cycle, because this number is a multiple of several common 
time cycles (namely the lunar and solar cycles and a Roman taxation cycle) that served as the 
foundation for these systems. Julian dates are represented by the number of days elapsed from 
a specific date, and the first Julian cycle began at noon on January 1, 4,713 B.C. on the Julian 
calendar; therefore, the Julian date equivalent for April 29, 2006 is 2453851.5.

■Caution  Julian dates bear no relation to the 365-day Julian calendaring system we use today, which was 
instituted by Julius Caesar in 46 B.C.

getJuliaan()

int getJuliaan()

The getJuliaan() method returns the Julian date calculated from the date specified by the date 
object. Interestingly, as of the time of writing, Julian is misspelled as Juliaan. If you use this 
method, be sure to monitor future releases, because this is likely to change to the correct 
spelling in the future.

setMonth()

boolean setMonth (integer month)

The setMonth() method sets the date object’s month attribute to month, returning TRUE on success 
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes 
the month to July:

$date = new Date(29,4,2005);
$date->setMonth(7);
// The month is now set to July (7)

getMonth()

integer getMonth()

The getMonth() method returns the month attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getMonth();

This returns:

4



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 293

setYear()

boolean setYear (integer year)

The setYear() method sets the date object’s year attribute to year, returning TRUE on success 
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes 
the year to 2006:

$date = new Date(29,4,2005);
$date->setYear(2006);
// The year is now set to 2006

getYear()

integer getYear()

The getYear() method returns the year attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getYear();

The result returned follows:

2005

Validators
Date offers a method for determining whether the date falls on a leap year and a method for 
validating the date’s correctness. Both of those methods are introduced in this section.

isLeap()

boolean isLeap()

The isLeap() method returns TRUE if the year represented by the date object is a leap year, and 
FALSE otherwise. The following script uses isLeap() in conjunction with a ternary operator to 
inform the user whether a given year is a leap year:

$year = 2005;
$date = new Date(date("j"),date("n"),$year);
echo "$year is ". ($date->isLeap() == 1 ? "" : "not"). " a leap year.";

This produces the following output:

2005 is not a leap year.



294 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

isValid()

boolean isValid()

The isValid() method returns TRUE if the date represented by the date object is valid, and FALSE
otherwise. Because this method can’t be called statically, and it’s impossible to set an invalid 
date using the constructor of any of the mutators, it isn’t presently apparent why isValid()
exists.

Manipulation Methods
Of course, the true applicability of this class comes from its date-manipulation capabilities. In 
this section, you’ll learn about the functions that allow you to manipulate dates with ease

addDays()

boolean addDays (int days)

The addDays() method adds days days to the date object, adjusting the month and year accord-
ingly should the new day value surpass the present month’s total number of days, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2005 
and we use addDays() to add five days:

$date = new Date();
$date->setDMY(28,4,2005);
$date->addDays(5);
$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
   [day] => 3 [month] => 5 [year] => 2005 
   [hour] => 0 [min] => 0 [sec] => 0 
)

subDays()

boolean subDays (int days)

The subDays() method subtracts days days from the date object, adjusting the month and year 
accordingly should days be greater than the date’s day component, returning TRUE on success 
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use 
addDays() to subtract 14 days:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subDays(14);
$dcs = $date->getArray();
print_r($dcs);



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 295

This returns:

Array (
   [day] => 14 [month] => 4 [year] => 2006
   [hour] => 0 [min] => 0 [sec] => 0 
)

addMonths()

boolean addMonths (int months)

The addMonths() method adds months months to the date object’s month attribute, adjusting the 
year accordingly should the new month value be greater than 12, returning TRUE on success 
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use 
addMonths() to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addMonths(9);
$dcs = $date->getArray();
print_r($dcs);

The following is the output:

Array (
   [day] => 28 [month] => 1 [year] => 2007 
   [hour] => 0 [min] => 0 [sec] => 0 
)

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

subMonths()

boolean subMonths (int months)

The subMonths() method subtracts months months from the date object’s month attribute, adjusting 
the year accordingly should the new month value be less than zero, returning TRUE on success 
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use 
subMonths() to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subMonths(9);
$dcs = $date->getArray();
print_r($dcs);



296 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

This returns:

Array (
   [day] => 28 [month] => 7 [year] => 2005
   [hour] => 0 [min] => 0 [sec] => 0 
)

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

addWeeks()

boolean addWeeks (int weeks)

The addWeeks() method adds weeks weeks to the date object’s date, returning TRUE on success 
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use 
addWeeks() to add seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addWeeks(7);
$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
   [day] => 16 [month] => 6 [year] => 2006
   [hour] => 0 [min] => 0 [sec] => 0
)

subWeeks()

boolean subWeeks (int weeks)

The subWeeks() method subtracts weeks weeks from the date object’s date, returning TRUE on 
success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and 
we use subWeeks() to subtract seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subWeeks(7);
$dcs = $date->getArray();
print_r($dcs);



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 297

This returns the following:

Array (
   [day] => 10 [month] => 3 [year] => 2006
   [hour] => 0 [min] => 0 [sec] => 0
)

addYears()

boolean addYears (int years)

The addYears() method adds years years from the date object’s year attribute, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 
and we use addYears() to add four years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addYears(4);
$dcs = $date->getArray();
print_r($dcs);

This returns the following:

Array (
   [day] => 28 [month] => 4 [year] => 2010
   [hour] => 0 [min] => 0 [sec] => 0 
)

subYears()

boolean subYears (int years)

The subYears() method subtracts years years from the date object’s year attribute, returning 
TRUE on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 
2006 and we use subYears() to subtract two years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subYears(2);
$dcs = $date->getArray();
print_r($dcs);



298 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

The following output is returned:

Array (
   [day] => 28 [month] => 4 [year] => 2004
   [hour] => 0 [min] => 0 [sec] => 0 
)

getWeekday()

integer getWeekday()

The getWeekday() method returns the numerical offset of the day specified by the date object. 
An example follows:

$date = new Date();
$date->setDMY(30,4,2006);
echo $date->getWeekday();

This returns the following, which is a Sunday, because Sunday’s numerical offset is 7:

7

setToWeekday()

boolean setToWeekday (int weekday, int n [, int month [, int year]])

The setToWeekday() method sets the date to the nth weekday of the month and year, returning 
TRUE on success and FALSE otherwise. If no month and year are provided, the present month and 
year are used. As of the time of writing, this method was broken; quite likely it will have been 
fixed by the time this book is published.

getDayOfYear()

integer getDayOfYear()

The getDayOfYear() method returns the numerical offset of the day specified by the date object. 
An example follows:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getDayOfYear();

The following is the result:

186



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 299

getWeekOfYear()

integer getWeekOfYear()

The getDayOfYear() method returns the numerical offset of the week specified by the date object:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getWeekOfYear();

This returns:

27

getISOWeekOfYear()

integer getISOWeekOfYear()

The getISOWeekOfYear() method returns the week number of the date represented by the date 
object according to the ISO 8601 specification. ISO 8601 states that the first week of the year is 
the week containing the first Thursday. For instance, the first day of 2005 fell on a Sunday, but 
January 2 through 8 contained the first Thursday; therefore, January 1 does not even count as 
falling in the first week of the year. You might think this a tad odd; however, the decision is 
almost arbitrary in that it just standardizes the method for determining what constitutes the 
year’s first week. Let’s see this explanation in action by querying for the week number in which 
January 4 falls:

$date = new Date();
$date->setDMY(4,1,2005);
echo $date->getISOWeekOfYear();

The following is returned:

1

So, given that January 1 doesn’t qualify as falling within the first week of the year, within 
what week does it fall? You might be surprised to learn the ISO standard actually considers it to 
be the 53rd week of 2004:

$date = new Date();
$date->setDMY(1,1,2005);
echo $date->getISOWeekOfYear();



300 C H A P T E R  1 2  ■  D A T E  A N D  T I M E

This returns:

53

setToLastMonthDay()

boolean setToLastMonthDay()

The setToLastMonthDay() method adjusts the date object’s day attribute to the last day of the 
month specified by the month attribute, returning TRUE on success and FALSE otherwise. An 
example follows:

$date = new Date();
$date->setDMY(1,4,2006);
$date->setToLastMonthDay();
echo $date->getDay();

The following output is returned:

30

setFirstDow()

boolean setFirstDow()

The setFirstDow() method sets the date object’s day attribute to the first day of the week as 
specified by the weekstart attribute, returning TRUE on success and FALSE otherwise. By default, 
weekstart is set to Monday. The following example sets the date April 28, 2006 (which is a 
Friday), and then moves the date to the first day of the week (a Monday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setFirstDow();
$dcs = $date->getArray();
print_r($dcs);

This returns:

Array (
   [day] => 24 [month] => 4 [year] => 2006 
   [hour] => 0 [min] => 0 [sec] => 0 
)



C H A P T E R  1 2  ■  D A T E  A N D  T I M E 301

setLastDow()

boolean setLastDow()

The setLastDow() method sets the date object’s day attribute to the last day of the week, returning 
TRUE on success and FALSE otherwise. This day is dependent upon the value of the weekstart
attribute, which is set to Monday by default. The following example sets the date April 28, 2006 
(which is a Friday), and then moves the date to the last day of the week (a Sunday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setLastDow();
$dcs = $date->getArray();
print_r($dcs);

This returns:

Array (
   [day] => 30 [month] => 4 [year] => 2006
   [hour] => 0 [min] => 0 [sec] => 0 
)

Summary
This chapter covered quite a bit of material, beginning with an overview of several date and 
time functions that appear almost daily in typical PHP programming tasks. Next up was a 
journey into the ancient art of Date Fu, where you learned how to combine the capabilities of 
these functions to carry out useful chronological tasks. We also covered the useful Calendar
PEAR package, where you learned how to create grid-based calendars, and both validation and 
navigation mechanisms. Finally, for those readers living on the frayed edges of emerging tech-
nology, an introduction to PHP 5.1’s new date-manipulation features was provided.

The next chapter is focused on the topic that is likely responsible for piquing your interest 
in learning more about PHP: user interactivity. We’ll jump into data processing via forms, 
demonstrating both basic features and advanced topics such as how to work with multivalued 
form components and automated form generation. You’ll also learn how to facilitate user navi-
gation by creating breadcrumb navigation trails and custom 404 messages.




