
259

■ ■ ■

C H A P T E R 1 1

PEAR

Good programmers write solid code, while great programmers reuse the code of good
programmers. For PHP programmers, PEAR (http://pear.php.net), acronym for PHP Extension
and Application Repository, is one of the most effective means for finding and reusing good
PHP code. Inspired by Perl’s wildly popular CPAN (http://www.cpan.org), the project was
started in 1999 by noted PHP developer Stig Bakken, with the first stable release bundled with
PHP version 4.3.0. Formally defined, PEAR is a framework and distribution system for reusable
PHP components, and presently offers 442 packages categorized under 41 different topics (and
increasing all the time). Because PEAR contributions are carefully reviewed by the community
before they’re accepted, code quality and adherence to PEAR’s standard development guide-
lines are assured. Furthermore, because many PEAR packages logically implement common
tasks guaranteed to repeatedly occur no matter the type of application, taking advantage of
this community-driven service will save you countless hours of programming time.

This chapter is devoted to a thorough discussion of PEAR, offering the following topics:

• A survey of several popular PEAR packages, intended to give you an idea of just how
useful this repository can really be.

• Instructions regarding the installation and administration of PEAR packages via the
PEAR console.

• A discussion of PEAR coding and documentation guidelines, which could prove useful
not only for building general applications but also for reviewing and submitting PEAR
packages.

• An overview of the PEAR submission process, should you be interested in making your
own contributions to the repository.

Popular PEAR Packages
To give you a taste of just how popular the PEAR packages are, at the time of this writing the
hosted packages have been downloaded almost 14 million times to date! In fact, several packages
are so popular that the developers started including them by default as of version 4.0. A list of
the presently included packages follows:

260 C H A P T E R 1 1 ■ P E A R

• Archive_Tar: The Archive_Tar package facilitates the management of tar files, providing
methods for creating, listing, extracting, and adding to tar files. Additionally, it supports
the Gzip and Bzip2 compression algorithms, provided the respective PHP extensions are
installed. This package is required for PEAR to run properly.

• Console_Getopt: It’s often useful to modify the behavior of scripts executed via the
command line by supplying options at execution time. For example, you can verify the
installed PEAR version by passing -V to the pear command:

%>pear -V

The Console_Getopt package provides a standard means for reading these options and
providing the user with error messages if the supplied syntax does not correspond to
some predefined specifications (such as whether a particular argument requires a
parameter). This package is required for PEAR to run properly.

• DB: The DB package provides an object-oriented query API for abstracting communication
with the database layer. This affords you the convenience of transparently migrating
applications from one database to another potentially as easily as modifying a single line
of code. At present there are 12 supported databases, including: dBase, FrontBase, Informix,
InterBase, Mini SQL, Microsoft SQL Server, MySQL, Oracle, ODBC, PostgreSQL, SQLite, and
Sybase.

• Mail: Writing a portable PHP application that is capable of sending e-mail may be trickier
than you think, because not all operating systems offer the same facilities for supporting
this feature. For instance, by default, PHP’s mail() function relies on the sendmail
program (or a sendmail wrapper), but sendmail isn’t available on Windows. To account
for this incompatibility, it’s possible to alternatively specify the address of an SMTP
server and send mail through it. However, how would your application be able to deter-
mine which method is available? The Mail package resolves this dilemma by offering a
unified interface for sending mail that doesn’t involve modifying PHP’s configuration. It
supports three different back ends for sending e-mail from a PHP application (PHP’s
mail() function, sendmail, and an SMTP server) and includes a method for validating
e-mail address syntax. Using a simple application configuration file or Web-based pref-
erences form, users can specify the methodology that best suits their needs.

• Net_Socket: The Net_Socket package is used to simplify the management of TCP sockets
by offering a generic API for carrying out connections, and reading and writing informa-
tion between these sockets.

• Net_SMTP: The Net_SMTP package offers an implementation of the SMTP protocol, making
it easy for you to carry out tasks such as connecting to and disconnecting from SMTP
servers, performing SMTP authentication, identifying senders, and sending mail.

• PEAR: This package is required for PEAR to run properly.

• PHPUnit: A unit test is a particular testing methodology for ensuring the proper operation
of a block (or unit) of code, typically classes or function libraries. The PHPUnit package
facilitates the creation, maintenance, and execution of unit tests by specifying a general
set of structural guidelines and a means for automating testing.

C H A P T E R 1 1 ■ P E A R 261

• XML_Parser: The XML_Parser package offers an easy, object-oriented solution for parsing
XML files.

• XML_RPC: The XML_RPC package is a PHP-based implementation of the XML-RPC protocol
(http://www.xmlrpc.com/), a means for remotely calling procedures over the Internet.
Using this package, you can create XML-RPC-based clients and servers. This package is
required for PEAR to run properly.

While the preceding packages are among the most popular, keep in mind that they are just
a few of the packages available via PEAR. A few other prominent packages follow:

• Auth: The Auth package facilitates user authentication across a wide variety of mechanisms,
including LDAP, POP3, IMAP, RADIUS, SOAP, and others.

• HTML_QuickForm: The HTML_QuickForm package facilitates the creation, rendering, and
validation of HTML forms.

• Log: The Log package offers an abstract logging facility, supporting logging to console,
file, SQL, SQLite, syslog, mail, and mcal destinations.

It might not come as a surprise that the aforementioned packages are so popular. After all,
if you haven’t yet started taking advantage of PEAR, it’s likely you’ve spent significant effort and
time repeatedly implementing some of these features.

Converting Numeral Formats
To demonstrate the power of PEAR, it’s worth calling attention to a package that exemplifies
why you should regularly look to the repository before attempting to resolve any significant
programming task. While some might consider this particular choice of package a tad odd, it is
meant to show that a package may be available even for a particularly tricky problem that you
may think is too uncommon for a package to have been developed, and thus not bother searching
the repository for an available solution. The package is Numbers_Roman, and it makes converting
Arabic numerals to Roman and vice versa a snap.

Returning to the problem, suppose you were recently hired to create a new Web site for a
movie producer. As we all know, any serious producer uses Roman numerals to represent
years, and the product manager tells you that any date found on the Web site must appear in
this format. Take a moment to think about this requirement, because fulfilling it isn’t as easy as
it may sound. Of course, you could look up a conversion table online and hard code the values,
but how would you ensure that the site copyright year in the page footer is always up to date?
You’re just about to settle in for a long evening of coding when you pause for a moment to
consider whether somebody else has encountered a similar problem. “No way,” you mutter,
but taking a quick moment to search PEAR certainly would be worth the trouble. You navigate
over and, sure enough, encounter Numbers_Roman.

For the purposes of this exercise, assume that the Numbers_Roman package has been installed
on the server. Don’t worry too much about this right now, because you’ll learn how to install
packages in the next section. So how would you go about making sure the current year is
displayed in the footer? By using the following script:

262 C H A P T E R 1 1 ■ P E A R

<?php
 // Make the Numbers_Roman package available
 require_once("Numbers/Roman.php");

 // Retrieve current year
 $year = date("Y");

 // Convert year to Roman numerals
 $romanyear = Numbers_Roman::toNumeral($year);

 // Output the copyright statement
 echo "Copyright © $romanyear";
?>

For the year 2005, this script would produce:

Copyright © MMV

The moral of this story? Even though you may think that a particular problem is obscure,
other programmers likely have faced a similar problem, and if you’re fortunate enough, a solu-
tion is readily available and yours for the taking.

Installing and Updating PEAR
The easiest way to manage your PEAR packages is through the PEAR Package Manager. This is
a command-line program that offers a simple and efficient interface for performing tasks such
as inspecting, adding, updating, and deleting packages, and browsing packages residing in the
repository. In this section, you’ll learn how to install and update the PEAR Package Manager
on both the Unix and Windows platforms. Because many readers run Web sites on a shared
hosting provider, this section also explains how to take advantage of PEAR without running the
Package Manager.

Installing PEAR
PEAR has become such an important aspect of efficient PHP programming that a stable release
has been included with the distribution since version 4.3.0. Therefore, if you’re running this
version or later, feel free to jump ahead and review the section “Updating Pear.” If you’re running
PHP version 4.2.X or earlier on Unix, or are using the Windows platform, the installation process is
trivial, as you’ll soon learn.

Unix

Installing PEAR on Unix is a rather simple process, done by retrieving a script from the
http://go-pear.org/ Web site and executing it with the PHP binary. Open up a terminal and
execute the following command:

C H A P T E R 1 1 ■ P E A R 263

%>lynx -source http://go-pear.org/ | php

Note that you need to have the lynx Web browser installed, a rather standard program on
the Unix platform. If you don’t have it, search the appropriate program repository for your
particular OS distribution; it’s guaranteed to be there. Alternatively, you can just use a standard
Web browser such as Firefox and navigate to the preceding URL, save the retrieved page, and
execute it using the binary.

Once the installation process begins, you’ll be prompted to confirm a few configuration
settings such as the location of the PHP root directory and executable; you’ll likely be able to
accept the default answers (provided between square brackets) without issue. During this round
of questions, you will also be prompted as to whether the six optional default packages should
be installed. It’s presently an all-or-none proposition; therefore, if you’d like to immediately
begin using any of the packages, just go ahead and accede to the request.

Windows

PEAR is not installed by default with the Windows distribution. To install it, you need to run the
go-pear.bat file, located in the PHP distribution’s root directory. This file installs the PEAR
command, the necessary support files, and the aforementioned six PEAR packages. Initiate the
installation process by changing to the PHP root directory and executing go-pear.bat, like so:

%>go-pear.bat

You’ll be prompted to confirm a few configuration settings such as the location of the PHP
root directory and executable; you’ll likely be able to accept the default answers (provided
between square brackets) without issue. During this round of questions, you will also be prompted
as to whether the six optional default packages should be installed. It’s presently an all-or-none
proposition; therefore, if you’d like to immediately begin using any of the packages, just go
ahead and accede to the request.

At the conclusion of the installation process, a registry file named PEAR_ENV.reg is created.
Executing this file will create environment variables for a number of PEAR-specific variables.
Although not critical, adding these variables to the system path affords you the convenience of
executing the PEAR Package Manager from any location while at the Windows command
prompt.

■Caution Executing the PEAR_ENV.reg file will modify your system registry. Although this particular
modification is innocuous, you should nonetheless consider backing up your registry before executing the
script. To do so, go to Start ➤ Run, execute regedit, and then export the registry via File ➤ Export.

PEAR and Hosting Companies
If your hosting company doesn’t allow users to install new software on its servers, don’t fret,
because it likely already offers at least rudimentary support for the most prominent packages.
If PEAR support is not readily obvious, contact customer support and inquire as to whether
they would consider making a particular package available for use on the server. If they accede,
you’re all set. If they deny your request, not to worry, because it’s still possible to use the packages,

264 C H A P T E R 1 1 ■ P E A R

although installing them is accomplished by a somewhat more manual mechanism. This process
is outlined in the later section, “Installing a PEAR Package.”

Updating PEAR
Although it’s been around for years, the PEAR Package Manager is constantly the focus of
ongoing enhancements. That said, you’ll want to occasionally check for and update the system.
Doing so is a trivial process on both the Unix and Windows platforms, done by executing the
go-pear.php script found in the PHP_INSTALLATION_DIR\PEAR directory:

%>php go-pear.php

Executing this command essentially restarts the installation process, overwriting the
previously installed Package Manager version.

Using the PEAR Package Manager
The PEAR Package Manager allows you to browse and search the contributions, view recent
releases, and download packages. It executes via the command line, using the following syntax:

%>pear [options] command [command-options] <parameters>

To get better acquainted with the Package Manager, open up a command prompt and
execute the following:

%>pear

You’ll be greeted with a list of commands and some usage information. This output is
pretty long, so we’ll forego reproducing it here and instead introduce just the most popular
commands available to you. Note that, because the intent of this chapter is to familiarize you
with only the most commonplace PEAR features, this introduction is not exhaustive. Therefore, if
you’re interested in learning more about one of the commands not covered in the remainder
of this chapter, execute that command in the Package Manager, supplying the help parameter
like so:

%>pear help <command>

■Tip If PEAR doesn’t execute because the command was not found, you need to add the PEAR directory to
your system path.

Viewing Installed Packages
Viewing the packages installed on your machine is simple; just execute the following:

%>pear list

Here’s some sample output:

C H A P T E R 1 1 ■ P E A R 265

Installed packages:
===================
Package Version State
Archive_Tar 1.3.1 stable
Console_Getopt 1.2 stable
DB 1.7.6 stable
HTTP 1.2.2 stable
Mail 1.1.3 stable
Net_SMTP 1.2.6 stable
Net_Socket 1.0.1 stable
PEAR 1.3.5 stable
PhpDocumentor 1.3.0RC3 beta
XML_Parser 1.0.1 stable
XML_RPC 1.2.2 stable

Learning More About an Installed Package
The preceding output indicates that 11 packages are installed on the server in question. However,
this information is quite rudimentary and really doesn’t provide anything more than the package
name and version. To learn more about a package, execute the info command, passing it the
package name. For example, you would execute the following command to learn more about
the Console_Getopt package:

%>pear info Console_Getopt

Here’s an example of output from this command:

ABOUT CONSOLE_GETOPT-1.2
========================
Provides Classes: Console_Getopt
Package Console_Getopt
Summary Command-line option parser
Description This is a PHP implementation of "getopt"
 supporting both short and long options.
Maintainers Andrei Zmievski <andrei@php.net> (lead)
 Stig Bakken <stig@php.net> (developer)
Version 1.2
Release Date 2003-12-11
Release License PHP License
Release State stable
Release Notes Fix to preserve BC with 1.0 and allow correct
 behaviour for new users
Last Modified 2005-01-23

As you can see, this output offers some very useful information about the package.

266 C H A P T E R 1 1 ■ P E A R

Installing a Package
Installing a PEAR package is a surprisingly automated process, accomplished simply by executing
the install command. The general syntax follows:

%>pear install [options] package

Suppose for example that you want to install the Auth package, first introduced earlier in
this chapter. The command and corresponding output follows:

%>pear install Auth

pear install auth
downloading Auth-1.2.3.tgz ...
Starting to download Auth-1.2.3.tgz (24,040 bytes)
........done: 24,040 bytes
Optional dependencies:
package 'File_Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net_POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.
package 'Auth_RADIUS' is recommended to utilize some features.
package 'File_SMBPasswd' is recommended to utilize some features.
install ok: Auth 1.2.3

In addition to offering information regarding the installation status, many packages also
present a list of optional dependencies that, if installed, will expand the available features. For
example, installing the File_SMBPasswd package enhances Auth’s capabilities, enabling it to
authenticate against a Samba server.

Assuming a successful installation, you’re ready to begin using the package. Forge ahead
to the section “Using a Package” to learn more about how to make the package available to
your script. If you run into installation problems, it’s almost certainly due to a failed dependency.
Read on to learn how to resolve this problem.

Failed Dependency?

In the preceding example, File_SMBPasswd is an instance of an optional dependency, meaning
it doesn’t have to be installed in order to use Auth, although a certain subset of functionality
will not be available via Auth until File_SMBPasswd is installed. However, it is also possible for
there to be required dependencies involved when installing a package, if developers can save
development time by incorporating existing packages into their project. For instance, because
Auth_HTTP requires the Auth package in order to function, any attempt to install Auth_HTTP
without first installing this requisite package will fail, producing the following error:

downloading Auth_HTTP-2.1.4.tgz ...
Starting to download Auth_HTTP-2.1.4.tgz (7,835 bytes)
.....done: 7,835 bytes
requires package 'Auth' >= 1.2.0
Auth_HTTP: Dependencies failed

C H A P T E R 1 1 ■ P E A R 267

Automatically Installing Dependencies

Of course, chances are that if you need a particular package, then installing any dependencies
is a foregone conclusion. To install required dependencies, pass the -o (or --onlyreqdeps)
option to the install command:

%>pear install -o Auth_HTTP

To install both optional and required dependencies, pass along the -a (or --alldeps)
option:

%>pear install -a Auth_HTTP

Installing a Package from the PEAR Web Site

The PEAR Package Manager by default installs the latest stable package version. But what if you
were interested in installing a previous package release, or were unable to use the Package
Manager altogether due to administration restrictions placed on a shared server? Navigate to
the PEAR Web site at http://pear.php.net and locate the desired package. If you know the
package name, you can take a shortcut by entering the package name at the conclusion of the
URL http://pear.php.net/package/.

Next, click on the Download tab, found toward the top of the package’s home page. Doing
so produces a linked list of the current package and all previous packages released. Select and
download the appropriate package to your server. These packages are stored in TGZ (tar’red
and gzipped) format.

Next, extract the files to an appropriate location. It doesn’t really matter where, provided
you’re consistent in placing all packages in this tree. If you’re taking this installation route
because of the need to install a previous version, then it makes sense to place the files in their
appropriate location within the PEAR directory structure found in the PHP root installation
directory. If you’re forced to take this route in order to circumvent ISP restrictions, then creating
a PEAR directory in your home directory will suffice. Regardless, be sure this directory is found
in the include_path.

The package should now be ready for use, so move on to the next section to learn how this
is accomplished.

Using a Package
Using an installed PEAR package is simple. All you need to do is make the package contents
available to your script with include or preferably require. Examine the following example,
where PEAR DB package is included and used:

<?php
 // Make the PEAR DB package available to the script
 require_once("DB.php");

 // Connect to the database
 $db = DB::connect("mysql://jason:secret@localhost/book");
 ...
?>

268 C H A P T E R 1 1 ■ P E A R

Keep in mind that you need to add the PEAR base directory to your include_path directive;
otherwise, an error similar to the following will occur:

Fatal error: Class 'DB' not found in /home/www/htdocs/book/11/Roman.php on line 9

Those of you with particularly keen eyes might have noticed in the preceding example that
the require_once statement directly references the DB.php file, whereas in the earlier example
involving the Numbers_Roman package, a directory was also referenced:

require_once("Numbers/Roman.php");

A directory is referenced because the Numbers_Roman package falls under the Numbers cate-
gory, meaning that, for purposes of organization, a corresponding hierarchy will be created,
with Roman.php placed in a directory named Numbers. You can determine the package’s location in
the hierarchy simply by looking at the package name. Each underscore is indicative of another level
in the hierarchy, so in the case of Numbers_Roman, it’s Numbers/Roman.php. In the case of DB, it’s
just DB.php.

■Note See Chapter 2 for more information about the include_path directive.

Upgrading a Package
All PEAR packages must be actively maintained, and most are in a regular state of development.
That said, to take advantage of the latest enhancements and bug fixes, you should regularly
check whether a new package version is available. The general syntax for doing so looks like this:

%>pear upgrade [package name]

For instance, on occasion you’ll want to upgrade the PEAR package, responsible for
managing your package environment. This is accomplished with the following command:

%>pear upgrade pear

If your version corresponds with the latest release, you’ll see a message that looks like:

Package 'PEAR-1.3.3.1' already installed, skipping

If for some reason you have a version that’s greater than the version found in the PEAR
repository (for instance, you manually downloaded a package from the author’s Web site
before it was officially updated in PEAR), you’ll see a message that looks like this:

C H A P T E R 1 1 ■ P E A R 269

Package 'PEAR' version '1.3.3.2' is installed and 1.3.3.1 is > requested '1.3.0',
skipping

Otherwise, the upgrade should automatically proceed. When completed, you’ll see a
message that looks like:

downloading PEAR-1.3.3.1.tgz ...
Starting to download PEAR-1.3.3.1.tgz (106,079 bytes)
........................done: 106,079 bytes
upgrade ok: PEAR 1.3.3.1

Upgrading All Packages

It stands to reason that you’ll want to upgrade all packages residing on your server, so why not
perform this task in a single step? This is easily accomplished with the upgrade-all command,
executed like this:

%>pear upgrade-all

Although unlikely, it’s possible some future package version could be incompatible with
previous releases. That said, using this command isn’t recommended unless you’re well aware
of the consequences surrounding the upgrade of each package.

Uninstalling a Package
If you have finished experimenting with a PEAR package, have decided to use another solution,
or have no more use for the package, you should uninstall it from the system. Doing so is trivial
using the uninstall command. The general syntax follows:

%>pear uninstall [options] package name

For example, to uninstall the Numbers_Roman package, execute the following command:

%>pear uninstall Numbers_Roman

Because the options are fairly rarely used, you can perform additional investigation on
your own, by executing:

%>pear help uninstall

Downgrading a Package
There is no readily available means for downgrading a package via the Package Manager. To do
so, download the desired version via the PEAR Web site (http://pear.php.net), which will be
encapsulated in TGZ format, uninstall the presently installed package, and then install the
downloaded package using the instructions provided in the earlier section, “Installing a Package.”

270 C H A P T E R 1 1 ■ P E A R

Summary
PEAR can be a major catalyst for quickly creating PHP applications. Hopefully this chapter
convinced you of the serious time savings this repository can present. You learned about the
PEAR Package Manager, and how to manage and use packages.

Forthcoming chapters introduce additional packages, as appropriate, showing you how
these packages can really speed development and enhance your application’s capabilities.

