
1

■ ■ ■

C H A P T E R 1

An Introduction to PHP

This chapter serves to better acquaint you with the basics of PHP, offering insight into its
roots, popularity, and users. This information sets the stage for a discussion of PHP’s feature
set, including the new features in PHP 5. By the conclusion of this chapter, you’ll learn:

• How a Canadian developer’s Web page hit counter spawned one of the world’s most
popular scripting languages

• What PHP’s developers have done to once again reinvent the language, making version 5 the
best yet released

• Which features of PHP attract both new and expert programmers alike

History
The origins of PHP date back to 1995, when an independent software development contractor
named Rasmus Lerdorf developed a Perl/CGI script that enabled him to know how many visitors
were reading his online résumé. His script performed two tasks: logging visitor information,
and displaying the count of visitors to the Web page. Because the Web as we know it today was
still young at that time, tools such as these were nonexistent, and they prompted e-mails inquiring
about Lerdorf’s scripts. Lerdorf thus began giving away his toolset, dubbed Personal Home
Page (PHP).

The clamor for the PHP toolset prompted Lerdorf to continue developing the language,
perhaps the most notable early change coming when he added a feature for converting data
entered in an HTML form into symbolic variables, encouraging exportation into other systems.
To accomplish this, he opted to continue development in C code rather than Perl. Ongoing
additions to the PHP toolset culminated in November 1997 with the release of PHP 2.0, or
Personal Home Page—Form Interpreter (PHP-FI). As a result of PHP’s rising popularity, the 2.0
release was accompanied by a number of enhancements and improvements from program-
mers worldwide.

The new PHP release was extremely popular, and a core team of developers soon joined
Lerdorf. They kept the original concept of incorporating code directly alongside HTML and
rewrote the parsing engine, giving birth to PHP 3.0. By the June 1998 release of version 3.0,
more than 50,000 users were using PHP to enhance their Web pages.

2 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

■Note 1997 also saw the change of the words underlying the PHP abbreviation from Personal Home Page
to the recursive acronym Hypertext Preprocessor.

Development continued at a hectic pace over the next two years, with hundreds of functions
being added and the user count growing in leaps and bounds. At the beginning of 1999, Netcraft
(http://www.netcraft.com/) reported a conservative estimate of a user base surpassing
1,000,000, making PHP one of the most popular scripting languages in the world. Its popularity
surpassed even the greatest expectations of the developers, as it soon became apparent that
users intended to use PHP to power far larger applications than was originally anticipated. Two
core developers, Zeev Suraski and Andi Gutmans, took the initiative to completely rethink the
way PHP operated, culminating in a rewriting of the PHP parser, dubbed the Zend scripting
engine. The result of this work was found in the PHP 4 release.

■Note In addition to leading development of the Zend engine and playing a major role in steering the overall
development of the PHP language, Zend Technologies Ltd. (http://www.zend.com/), based in Israel,
offers a host of tools for developing and deploying PHP. These include Zend Studio, Zend Encoder, and Zend
Optimizer, among others. Check out the Zend Web site for more information.

PHP 4
On May 22, 2000, roughly 18 months after the first official announcement of the new development
effort, PHP 4.0 was released. Many considered the release of PHP 4 to be the language’s official
debut within the enterprise development scene, an opinion backed by the language’s meteoric rise
in popularity. Just a few months after the major release, Netcraft (http://www.netcraft.com/)
estimated that PHP had been installed on more than 3.6 million domains.

Features

PHP 4 included several enterprise-level improvements, including the following:

• Improved resource handling: One of version 3.X’s primary drawbacks was scalability.
This was largely because the designers underestimated how much the language would
be used for large-scale applications. The language wasn’t originally intended to run
enterprise-class Web sites, and subsequent attempts to do so caused the developers to
rethink much of the language’s mechanics. The result was vastly improved resource-
handling functionality in version 4.

• Object-oriented support: Version 4 incorporated a degree of object-oriented functionality,
although it was largely considered an unexceptional implementation. Nonetheless, the new
features played an important role in attracting users used to working with traditional
object-oriented programming (OOP) languages. Standard class and object development
methodologies were made available, in addition to object overloading, and run-time
class information. A much more comprehensive OOP implementation has been made
available in version 5, and is introduced in Chapter 5.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 3

• Native session-handling support: HTTP session handling, available to version 3.X users
through the third-party package PHPLIB (http://phplib.sourceforge.net), was natively
incorporated into version 4. This feature offers developers a means for tracking user
activity and preferences with unparalleled efficiency and ease. Chapter 15 covers PHP’s
session-handling capabilities.

• Encryption: The MCrypt (http://mcrypt.sourceforge.net) library was incorporated
into the default distribution, offering users both full and hash encryption using encryption
algorithms including Blowfish, MD5, SHA1, and TripleDES, among others. Chapter 18
delves into PHP’s encryption capabilities.

• ISAPI support: ISAPI support offered users the ability to use PHP in conjunction with
Microsoft’s IIS Web server as an ISAPI module, greatly increasing its performance and
security.

• Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability to
access and instantiate COM objects. This functionality opened up a wide range of
interoperability with Windows applications.

• Native Java support: In another boost to PHP’s interoperability, support for binding to
Java objects from a PHP application was made available in version 4.0.

• Perl Compatible Regular Expressions (PCRE) library: The Perl language has long been
heralded as the reigning royalty of the string parsing kingdom. The developers knew that
powerful regular expression functionality would play a major role in the widespread
acceptance of PHP, and opted to simply incorporate Perl’s functionality rather than
reproduce it, rolling the PCRE library package into PHP’s default distribution (as of
version 4.2.0). Chapter 9 introduces this important feature in great detail, and offers a
general introduction to the often confusing regular expression syntax.

In addition to these features, literally hundreds of functions were added to version 4, greatly
enhancing the language’s capabilities. Throughout the course of this book, much of this func-
tionality is discussed, as it remains equally important in the version 5 release.

Drawbacks

PHP 4 represented a gigantic leap forward in the language’s maturity. The new functionality,
power, and scalability offered by the new version swayed an enormous number of burgeoning
and expert developers alike, resulting in its firm establishment among the Web scripting behe-
moths. Yet maintaining user adoration in the language business is a difficult task; programmers
often hold a “what have you done for me lately?” mindset. The PHP development team kept
this notion close in mind, because it wasn’t too long before it set out upon another monumental
task, one that could establish the language as the 800-pound gorilla of the Web scripting world:
PHP 5.

PHP 5
Version 5 is yet another watershed in the evolution of the PHP language. Although previous
major releases had enormous numbers of new library additions, version 5 contains improve-
ments over existing functionality and adds several features commonly associated with mature
programming language architectures:

4 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

• Vastly improved object-oriented capabilities: Improvements to PHP’s object-oriented
architecture is version 5’s most visible feature. Version 5 includes numerous functional
additions such as explicit constructors and destructors, object cloning, class abstraction,
variable scope, interfaces, and a major improvement regarding how PHP handles object
management. Chapters 6 and 7 offer thorough introductions to this topic.

• Try/catch exception handling: Devising custom error-handling strategies within structural
programming languages is, ironically, error-prone and inconsistent. To remedy this
problem, version 5 now supports exception handling. Long a mainstay of error manage-
ment in many languages, C++, C#, Python, and Java included, exception handling offers
an excellent means for standardizing your error-reporting logic. This new and convenient
methodology is introduced in Chapter 8.

• Improved string handling: Prior versions of PHP have treated strings as arrays by default,
a practice indicative of the language’s traditional loose-knit attitude toward datatypes.
This strategy has been tweaked in version 5, in which a specialized string offset syntax
has been introduced, and the previous methodology has been deprecated. The new
features, changes, and effects offered by this new syntax are discussed in Chapter 9.

• Improved XML and Web Services support: XML support is now based on the libxml2
library, and a new and rather promising extension for parsing and manipulating XML,
known as SimpleXML, has been introduced. In addition, a SOAP extension is now avail-
able. In Chapter 20, these two new extensions are introduced, along with a number of
slick third-party Web Services extensions.

• Native support for SQLite: Always keen on choice, the developers have added support
for the powerful yet compact SQLite database server (http://www.sqlite.org/). SQLite
offers a convenient solution for developers looking for many of the features found
in some of the heavyweight database products without incurring the accompanying
administrative overhead. PHP’s support for this powerful database engine is introduced
in Chapter 22.

A host of other improvements and additions are offered in version 5, many of which are
introduced, as relevant, throughout the book.

With the release of version 5, PHP’s prevalence is at a historical high. At press time, PHP
has been installed on almost 19 million domains (Netcraft, http://www.netcraft.com/). According
to E-Soft, Inc. (http://www.securityspace.com/), PHP is by far the most popular Apache module,
available on almost 54 percent of all Apache installations.

So far, this chapter has discussed only version-specific features of the language. Each version
shares a common set of characteristics that play a very important role in attracting and retaining a
large user base. In the next section, you’ll learn about these foundational features.

General Language Features
Every user has his or her own specific reason for using PHP to implement a mission-critical
application, although one could argue that such motives tend to fall into four key categories:
practicality, power, possibility, and price.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 5

Practicality
From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s
original intention was not to design an entirely new language, but to resolve a problem that
had no readily available solution. Furthermore, much of PHP’s early evolution was not the
result of the explicit intention to improve the language itself, but rather to increase its utility to
the user. The result is a minimalist language, both in terms of what is required of the user and
in terms of the language’s syntactical requirements. For starters, a useful PHP script can consist of
as little as one line; unlike C, there is no need for the mandatory inclusion of libraries. For example,
the following represents a complete PHP script, the purpose of which is to output the current
date, in this case one formatted like September 23, 2005:

<?php echo date("F j, Y");?>

Another example of the language’s penchant for compactness is its ability to nest functions.
For example, you can effect numerous changes to a value on the same line by stacking functions
in a particular order, in the following case producing a pseudorandom string of five alphanu-
meric characters, a3jh8 for instance:

$randomString = substr(md5(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or
destroy a variable, although you are not prevented from doing so. PHP handles such matters
internally, creating variables on the fly as they are called in a script, and employing a best-guess
formula for automatically typecasting variables. For instance, PHP considers the following set
of statements to be perfectly valid:

<?php
 $number = "5"; # $number is a string
 $sum = 15 + $number; # Add an integer and string to produce integer
 $sum = "twenty"; # Overwrite $sum with a string.
?>

PHP will also automatically destroy variables and return resources to the system when the
script completes. In these and in many other respects, by attempting to handle many of the
administrative aspects of programming internally, PHP allows the developer to concentrate
almost exclusively on the final goal, namely a working application.

Power
The earlier introduction to PHP 5 alluded to the fact that the new version is more qualitative
than quantitative in comparison to previous versions. Previous major versions were accom-
panied by enormous additions to PHP’s default libraries, to the tune of several hundred new
functions per release. Presently, 113 libraries are available, collectively containing well over
1,000 functions. Although you’re likely aware of PHP’s ability to interface with databases,
manipulate form information, and create pages dynamically, you might not know that PHP
can also do the following:

6 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

• Create and manipulate Macromedia Flash, image, and Portable Document Format
(PDF) files

• Evaluate a password for guessability by comparing it to language dictionaries and easily
broken patterns

• Communicate with the Lightweight Directory Access Protocol (LDAP)

• Parse even the most complex of strings using both the POSIX and Perl-based regular
expression libraries

• Authenticate users against login credentials stored in flat files, databases, and even
Microsoft’s Active Directory

• Communicate with a wide variety of protocols, including IMAP, POP3, NNTP, and DNS,
among others

• Communicate with a wide array of credit-card processing solutions

Of course, the coming chapters cover as many of these and other interesting and useful
features of PHP as possible.

Possibility
PHP developers are rarely bound to any single implementation solution. On the contrary, a
user is typically fraught with choices offered by the language. For example, consider PHP’s
array of database support options. Native support is offered for over 25 database products,
including Adabas D, dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix,
Ingres, Interbase, mSQL, direct MS-SQL, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase,
Unix dbm, and Velocis. In addition, abstraction layer functions are available for accessing
Berkeley DB–style databases. Finally, two database abstraction layers are available, one called
the dbx module, and another via PEAR, titled the PEAR DB.

PHP’s powerful string-parsing capabilities is another feature indicative of the possibility
offered to users. In addition to more than 85 string-manipulation functions, both POSIX- and
Perl-based regular expression formats are supported. This flexibility offers users of differing
skill sets the opportunity not only to immediately begin performing complex string operations
but also to quickly port programs of similar functionality (such as Perl and Python) over to PHP.

Do you prefer a language that embraces functional programming? How about one that
embraces the object-oriented paradigm? PHP offers comprehensive support for both. Although
PHP was originally a solely functional language, the developers soon came to realize the
importance of offering the popular OOP paradigm, and took the steps to implement an
extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current skill
set with very little time investment. The examples set forth here are but a small sampling of this
strategy, which can be found repeatedly throughout the language.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 7

Price
Since its inception, PHP has been without usage, modification, and redistribution restrictions.
In recent years, software meeting such open licensing qualifications has been referred to as
open-source software. Open-source software and the Internet go together like bread and
butter. Open-source projects like Sendmail, Bind, Linux, and Apache all play enormous roles in
the ongoing operations of the Internet at large. Although the fact that open-source software is
freely available for use has been the characteristic most promoted by the media, several other
characteristics are equally important if not more so:

• Free of licensing restrictions imposed by most commercial products: Open-source
software users are freed of the vast majority of licensing restrictions one would expect of
commercial counterparts. Although some discrepancies do exist among license variants,
users are largely free to modify, redistribute, and integrate the software into other products.

• Open development and auditing process: Although there have been some incidents,
open-source software has long enjoyed a stellar security record. Such high standards are
a result of the open development and auditing process. Because the source code is freely
available for anyone to examine, security holes and potential problems are rapidly found
and fixed. This advantage was perhaps best summarized by open-source advocate
Eric S. Raymond, who wrote, “Given enough eyeballs, all bugs are shallow.”

• Participation is encouraged: Development teams are not limited to a particular organi-
zation. Anyone who has the interest and the ability is free to join the project. The absence
of member restrictions greatly enhances the talent pool for a given project, ultimately
contributing to a higher-quality product.

Summary
This chapter has provided a bit of foreshadowing about this wonderful language to which much
of this book is devoted. We looked first at PHP’s history, before outlining version 4 and 5’s core
features, setting the stage for later chapters.

In Chapter 2, prepare to get your hands dirty, as you’ll delve into the PHP installation and
configuration process. Although readers often liken most such chapters to scratching nails on
a chalkboard, you can gain much from learning more about this process. Much like a professional
cyclist or race car driver, the programmer with hands-on knowledge of the tweaking and main-
tenance process often holds an advantage over those without, by virtue of a better understanding
of both the software’s behaviors and quirks. So grab a snack and cozy up to your keyboard; it’s
time to build.

