
Working with Strings

Considered pretty much a staple of any programming language, the ability to work with,
maneuver, and ultimately control strings is an important part of a daily programming routine.
PHP, unlike other languages, has no trouble using data typing to handle strings. Thanks to the
way PHP is set up—that is to say, that when a value is assigned to a variable, the variable auto-
matically typecasts itself—working with strings has never been easier. PHP 5 has not done
much to improve upon, or modify, the way strings are handled in PHP itself, but it has pro-
vided you with new and improved class functionality so you can more readily create tools to
help support PHP’s somewhat clunky string function naming conventions.

This chapter’s focus will be threefold. First, we will offer a bit of a refresher course on how
PHP’s versatile string functions can be quite an asset to the aspiring developer. Second, we
will display some real-world examples not just on how using strings is both important and
practical while deploying applications but also on how to use them to your best advantage.
Last, we will use what we have learned and apply it towards a fully functional, working exam-
ple of a possible string dilemma (see Table 6-1).

Table 6-1. PHP 5 String Functions

Function Description

substr_count() Counts the number of substring occurrences

strstr() Finds the first occurrence of a string

strchr() Can be used as an alias of strstr()

strrchr() Finds the last occurrence of a character in a string

stristr() Performs the same functionality as strstr() but is case-insensitive

substr_replace() Replaces text within a portion of a string

strpos() Finds the position of the first occurrence of a string

substr() Returns a piece of a string

strlen() Returns the length of a string

strtok() Splits a string into smaller tokens

explode() Returns an array of substrings of a target string, delimited by a specific
character

implode() Takes an array of items and puts the items together, delimited by a
specific character

Continued

265

C H A P T E R 6

■ ■ ■

Table 6-1. Continued

Function Description

join() Acts as an alias to implode()

str_split() Converts a string to an array

strtoupper() Converts an entire string to uppercase characters

strtolower() Converts an entire string to lowercase characters

ucfirst() Changes a given string’s first character into uppercase

ucwords() Changes a given string’s first character of each word into uppercase

trim() Strips whitespace from the beginning and end of a string

chop() Acts as an alias for rtrim()

rtrim() Strips whitespace from the end of a string only

ltrim() Strips whitespace from the beginning of a string only

strcmp() Performs a string comparison

Manipulating Substrings
One of the common occurrences developers will come across is the problem of deducing what
is needed, where certain aspects are, or even what order is necessary from a string. Substrings
make up part of a full string. Since manipulating different portions of a string is a common
task while building applications, PHP has granted you the use of some rather powerful func-
tions. None of the string functions need to be included, and the basic string functions are
prepackaged with the PHP 5 release, thus removing the problem of including them as exten-
sions or packaging them with libraries. Table 6-2 lists the functions that prove useful (and
sometimes quite invaluable) when working with substrings.

Table 6-2. PHP 5 Substring Functions

Function Description

substr_count() Counts the number of substring occurrences

strstr() Finds the first occurrence of a string

strchr() Can be used as an alias of strstr()

strrchr() Finds the last occurrence of a character in a string

stristr() Performs the same functionality as strstr() but is case-insensitive

substr_replace() Replaces text within a portion of a string

strops() Finds the position of the first occurrence of a string

substr() Returns a piece of a string

MANIPULATING SUBSTRINGS266

6-1. Testing for Substrings
The first thing you might do when working with substrings is test a string for occurrences of a
specific substring. You can put this sort of functionality to use in almost any kind of applica-
tion. The most obvious usage of this sort of algorithm would be when building a search engine.
Depending on what exactly it is you are building the search engine to do, testing for substrings
manually with PHP may not always be the most efficient plan. For instance, if you were search-
ing something in a database, more than likely it would be beneficial to do a query comparison
using the built-in SQL engine to find whether a substring exists, but certainly sometimes you
will not have the luxury of letting another system’s workhorse do the brunt of the task for you.

Obviously, if you were going to do a search within a given block of text using PHP, it might
be a smart move to check whether any instances of the search query appear within the text;
there is no point in proceeding with your search algorithm if you find no instance of the search
term. Thankfully, PHP has a nicely built function, substr_count(), that is perfect for the task. The
standard definition for the substr_count() function is as follows:

int substr_count (string haystack, string needle)

That is to say, you provide the block of text you want to search as the first parameter for
the function (string haystack), and then you provide the substring you want to obtain as the
second parameter (string needle). The function will then provide you with a return value of
the number of occurrences of the needle parameter from the haystack search block.

The following block of code is basically a mundane search engine.

The Code
<?php
function searchtext ($haystack, $needle){
//First, let's deduce whether there is any point in going on with our little
//string hunting charade.
if (substr_count ($haystack, $needle) == 0){
echo "No instances were found of this search query";

} else {
//Now, we will go through the haystack, find out the
//different positions that the string occurs at, and then output them.

//We will start searching at the beginning.
$startpos = 0;
//And we will set a flag to stop searching once there are no more matches.
$lookagain = true;

//Now, we search while there are still matches.
while ($lookagain){
if ($pos = strpos ($haystack, $needle, $startpos)){
echo "The search term \"$needle\" was found at position: ➥

$pos

";
//We increment the position we are searching in order to continue.
$startpos = $pos + 1;

} else {

6-1 ■ TESTING FOR SUBSTRINGS 267

//If there are no more matches, then we want to break out of the loop.
$lookagain = false;

}
}

echo "Your search for \"$needle\" within \"$haystack\" ➥

returned a total of \"" . substr_count ($haystack, $needle) . "\" matches.";
}

}

searchtext ("Hello World!","o");
?>

The search term "o" was found at position: 4
The search term "o" was found at position: 7
Your search for "o" within "Hello World!" returned a total of "2" matches.

How It Works
The previous function is a bare-bones search engine that is primed to take a block of text and
then output not only whether there are any matches within the block of text but exactly where
those matches occur. For ease of use and cleanliness, the total number of matches found is
displayed at the bottom. Take a moment to review the function, and we will discuss how
exactly it does what it does by using the built-in PHP string functions.

By using substr_count() to make sure there are no instances of the substring, you let the
user know that there were no matches if, indeed, you find no matches.

The next matter that this function attends to is the meat and potatoes of this function; it
actually loops through the search string and outputs the position of all instances of the sub-
string.

//Now, we search while there are still matches.
while ($lookagain){
if ($pos = strpos ($haystack, $needle, $startpos)){
echo "The search term \"$needle\" was found at position: $pos

";
//We increment the position we are searching in order to continue.
$startpos = $pos + 1;
} else {
//If there are no more matches, then we want to break out of the loop.
$lookagain = false;
}

}

By using the strpos() function, which outputs the position within the string of the given
substring, you can go through the entire block of search text, outputting where exactly the
search term falls.

6-1 ■ TESTING FOR SUBSTRINGS268

Now, this is a scaled-down idea for a search engine, but by using these basic concepts you
can see the power you get by taking advantage of built-in string functions.

6-2. Counting the Occurrences of a Substring
As discussed in the previous recipe, counting the number of occurrences of a substring within
a search string is a simple process. PHP has included the function substr_count() that does
the work for you. Naturally, there are more manual ways of doing this (consider adding a
counter to the previous script as it loops), but since this is a stable function that has been
around for some time, there is no need to reinvent the wheel. Thus, when it comes time in
the previous function to output a total search tally, you simply call the substr_count() func-
tion, as in the following example.

The Code
<?php
//Let's find the number of o's in our string.
$counter = substr_count ("Hello World!","o");
echo "There are " . $counter . " instance (s) of \"o\" in Hello World!.";

?>

There are 2 instances of "o" in Hello World!.

How It Works
As you can see, by providing the substr_count() function with a needle substring and a
haystack string to search through, you can determine quickly and easily how many instances
of a given substring exist within the supplied string.

6-3. Accessing Substrings
A fairly common day-to-day activity you might be required to perform while programming
would be to access, and then do something with, a certain substring. PHP has a rather versa-
tile and powerful function that will allow you to do just that. Aptly named substr(), this
function will allow you to access any part of a string using the concise method detailed here:

string substr (string string, int start [, int length])

Basically, the function substr() takes as arguments the string you want to divide, the
position you want to begin dividing from, and (optionally) the end point at which you want to
stop dividing. The function then returns a nicely packaged (in the form of a string) substring
ready for your use and (potentially) abuse.

As you can imagine, the substr() function is a handy tool. You can use it in many real-
world applications, and it is a great help with everything from validation to properly formatted
output. Imagine, for instance, that you have been tasked with building a content management
system (CMS) that takes in information from a client and then outputs it onto the home page
of a website. Sound easy? Now imagine that the design for the website has been built so the

6-2 ■ COUNTING THE OCCURRENCES OF A SUBSTRING 269

height of the block where the text is supposed to be output is big enough to handle only 300
characters of text. If the amount of text outputted exceeds that, the site could potentially
“break,” causing the entire design to look flawed; this is not good considering this is an impor-
tant client.

In addition, consider that the client is not sure at all how many characters to use and even
if you had informed them to use only 300, there is still a real chance they would try their luck
anyway. How then can you guarantee that the design will not break? Well, this sounds like a
lovely test for our good friend Mr. substr() and his buddy Ms. strlen().

The Code
<?php

$theclientstext = "Hello, how are you today? I am fine!";

if (strlen ($theclientstext) >= 30){
echo substr ($theclientstext,0,29);

} else {
echo $theclientstext;

}

?>

Hello, how are you today? I a

How It Works
The first thing this block of code does is check to make sure the text provided by the client is
within the length you need it to be:

if (strlen ($theclientstext) >= 30){

If it happens to fall outside the range of acceptable length, you then use the lovely substr()
function to echo only the portion of the text that is deemed acceptable. If the client has entered
a proper block of text, then the system merely outputs the text that was entered, and no one is
the wiser.

By using the function substr(), you have averted a potential disaster. People browsing the
site will see nothing but a slightly concatenated set of verbiage, so the site’s integrity remains
sound. This sort of rock-solid validation and programming can save business relationships, as
clients are seldom fond of having their site appear “broken” to potential customers or
intrigued individuals.

6-4. Using Substring Alternatives
You can consider the substr() function as something of a jack of all trades. It can get you
whatever you are looking for in a string with the greatest of ease. Sometimes, however, it may
not be necessary to go to the trouble of using such a versatile function. Sometimes it is just

6-4 ■ USING SUBSTRING ALTERNATIVES270

easier to use a more specialized function to accomplish a task; fortunately, PHP has a fairly
decent selection of such methods.

For instance, if you are interested in using only the first instance of a substring, you can use
the function strstr() (or strchr(), which is merely an alias of the former), which takes a block
of text and a search value as arguments (the proverbial haystack and needle). If you are not con-
cerned with the case of the subjects, the function stristr() will take care of any problems you
may have. Alternatively, you may be interested in obtaining the last instance of a substring within
a block of text. You can accomplish this particular maneuver with the strrchr() function, also
available from PHP. The prototypes for strstr() and stristr() are as follows:

string strstr (string haystack, string needle)
string stristr (string haystack, string needle)

The Code
<?php
$url = "www.apress.com";
$domain = strstr ($url, ".");
echo $domain;

?>

.apress.com

How It Works
In this example in which you are attempting to find the domain name of the current string,
the strstr() function finds the first instance of the dot (.) character and then outputs every-
thing starting with the first instance of the dot. In this case, the output would be “.apress.com”.

6-5. Replacing Substrings
How often do you find yourself using the search-and-replace function within your word
processor or text editor? The search-and-replace functionality found within such applications
is a testament to how much easier it is to do things using a computer rather than manually.
(How helpful would it be to have such a function while, say, skimming the local newspaper for
classified ads?) Thankfully, PHP has heard the cries of the people and has provided a function
called substr_replace() that can quickly turn the tedious task of scanning and editing a large
block of text into a lofty walk through the park where you let PHP do your task for you while
you grab yourself another coffee (preferably a white-chocolate mocha…). The
substr_replace() function is defined as follows:

string substr_replace (string str, string replacmnt, int start [, int len])

The function substr_replace() is a powerful and versatile piece of code. While you can
access the core functionality of it easily and painlessly, the depth and customization you can
accomplish through the function is rather daunting. Let’s start with the basics. If you want to
simply make a replacement to the substring, and you want to start from the beginning and

6-5 ■ REPLACING SUBSTRINGS 271

replace the entire instance (say, by changing the ever-so-clichéd “Hello World!” into the more
“l33t” phrase “H3110 W0r1d!” and hence proving your “l33t” status), you could simply invoke
the substr_replace() function as shown in the following example.

The Code
<?php
//By supplying no start or length arguments,
//the string will be added to the beginning.
$mystring = substr_replace("Hello World", "H3110 W0r1d!", 0, 0);
echo $mystring . "
"; //Echoes H3110 W0r1d!Hello World

//Where if we did this:
$mystring = substr_replace("Hello World", "0 w0", 4, 4);
echo $mystring; //Echoes Hell0 w0rld.

?>

H3110 W0r1d!Hello World
Hell0 w0rld

How It Works
This is not all that useful, is it? Happily, the substr_replace() function can do much more
than that. By changing the third argument (the start position) and the last argument (which
is optional and represents a length of characters that you want to replace), you can perform
some pretty powerful and dynamic operations. Let’s say you simply want to add the catchy
“H3110 W0r1d!” phrase to the front of a string. You could perform this operation by simply
using the substr_replace() function as follows:

<?php
substr_replace("Hello World", "H3110 W0r1d!", 0, 0);
?>

You can also do some pretty fancy operations by changing the start and length arguments
of the function from positive to negative values. By changing the start value to a negative
number, you can start the function counting from the end of the string rather than from the
beginning. By changing the length value to a negative number, the function will use this num-
ber to represent the number of characters from the end of the given string argument at which
to stop replacing the text.

6-5 ■ REPLACING SUBSTRINGS272

Processing Strings
Now that we have gone into how to manipulate and use the more intricate substrings con-
tained within a string value, it is only natural to get right into using strings for more powerful
applications. In any given piece of software, it is likely that some sort of string processing will
be involved. Be it a block of text that is being collected from an interested Internet user (for
example, an e-mail address for a newsletter) or a complete block of text for use in a CMS, text
is here to stay, so it is important to be able to put it to good use.

Of particular note in this day and age is security. No matter what form of content is being
submitted, and no matter the form it takes (query strings, post variables, or database submit-
tal), it is important to be able to validate both when collecting the necessary information and
when outputting it. By knowing what is available to you in the form of string processing, you
can quickly turn a security catastrophe into a well-managed, exception-handled occurrence.
In the next recipes, we will show what you can do with the current string functions available
through PHP and what you can do to help preserve the integrity of a data collection.

6-6. Joining and Disassembling Strings
The most basic functionality of strings is joining them. In PHP joining strings is easy. The sim-
plest way to join a string is to use the dot (.) operator. For example:

<?php
$string1 = "Hello";
$string2 = " World!";
$string3 = $string1 . $string2;

?>

The end result of this code is a string that reads “Hello World!” Naturally, this is the easiest
way to do things; in the real world, applications will likely call for a more specific approach.
Thankfully, PHP has a myriad of solutions available to take care of the issue.

A common, and rather inconvenient, dilemma that rears its ugly head is dealing with
dates. With the help of Jon Stephen’s date class (see Chapter 5), you will not have to deal with
this issue; rather, you may have to deal with date variables coming from the database. Gener-
ally, at least in MySQL, dates can either be stored as type date or be stored as type datetime.
Commonly this means they will be stored with a hyphen (-) delimiting the month from the
day from the year. So, this can be annoying when you need just the day or just the month from
a given string. PHP has the functions explode(), implode(), and join() that help you deal with
such situations. The prototypes for the functions implode() and explode() are as follows:

string implode (string glue, array pieces)
array explode (string separator, string string [, int limit])

6-6 ■ JOINING AND DISASSEMBLING STRINGS 273

Consider the following block of code:

<?php
//Break the string into an array.
$expdate = explode ("-","1979-06-23");
echo $expdate[0] . "
"; //echoes 1979.
//Then pull it back together into a string.
$fulldate = implode ("-", $expdate);
echo $fulldate; //Echoes 1979-06-23.

?>

1979
1979-06-23

This block of code will create an array called $expdate that will contain three values: 1979,
06, and 23. Basically, explode() splits a string at every occurrence of the character specified
and packs the individual contents into an array variable for ease of use. Now, if you want to
simply display the year an individual was born (a famous author perhaps?), you can easily
manage to do so, like this:

<?php
echo $expdate[0];

?>

1979

Similarly, if you then want to repackage the contents of an array into a delimited string,
you can use the function implode() by doing something like this:

<?php
$fulldate = implode ("-", $expdate);
echo $fulldate;

?>

1979-06-23

The result of this line of code will repackage the array of date fragments back into a fully
functioning string delimited by whatever character you choose as an argument, in this case
the original hyphen. The join() function acts as an alias to implode() and can be used in the
same way; however, for the sake of coherence, the explode()/implode() duet is probably
the better way to do things if for nothing more than clarity’s sake.

6-6 ■ JOINING AND DISASSEMBLING STRINGS274

By using explode() and implode() to their fullest, you can get away with some classy and
custom maneuvers. For example, if you want to group like fields into just one hidden field,
perhaps to pass along in a form, you can implode them into one string value and then pass
the string value in the hidden field for easy explosion when the data hits your processing
statement.

The strtok() function performs a similar task to explode(). Basically, by entering strings
into the strtok() function, you allow it to “tokenize” the string into parts based on a dividing
character of your choosing. The tokens are then placed into an array much like the explode()
function. Consider the following prototype for strtok():

string strtok (string str, string token)

The Code
<?php
$anemail = "lee@babinplanet.ca";
$thetoken = strtok ($anemail, "@");
while ($thetoken){
echo $thetoken . "
";
$thetoken = strtok ("@");

}
?>

Lee
babinplanet.ca

How It Works
As you can see, the strtok() function skillfully breaks the string down into highly useable
tokens that can then be applied to their desired task.

In this example, say you want to tokenize the string based upon the at (@) symbol. By
using strtok() to break the string down at the symbol, you can cycle through the string out-
putting the individual tokens one at a time. The strtok() function differs from the explode()
function in that you can continue to cycle through the string, taking off or outputting different
elements (as per the dividing character), where the explode() function simply loads the indi-
vidual substrings into an array from the start.

Further, sometimes you will probably prefer to split a string up without using a dividing
character. Let’s face it, strings don’t always (and in fact rarely do) follow a set pattern. More
often than not, the string will be a client- or customer-submitted block of text that reads
coherently across, left to right and up to down (just like the book you currently hold in your
hands). Fortunately, PHP has its answer to this as well; you can use a function called
str_split(). The definition of str_split() is as follows:

array str_split (string string [, int split_length])

6-6 ■ JOINING AND DISASSEMBLING STRINGS 275

Basically, str_split() returns an array filled with a character (or blocks of characters)
that is concurrent to the string that was placed as an argument. The optional length argument
allows you to break down a string into chunks of characters. For example, take note of the fol-
lowing block of code:

<?php
$anemail = "lee@babinplanet.ca";
$newarray = str_split($anemail);

?>

This instance would cause an array that looks like this:

Array {
[0] => l
[1] => e
[2] => e
[3] => @
[4] => b
[5] => a
[6] => b
[7] => i
[8] => n
[9] => p
[10] => l
[11] => a
[12] => n
[13] => e
[14] => t
[15] => .
[16] => c
[17] => a

}

You can also group the output into blocks of characters by providing the optional length
argument to the function call. For instance:

$newarray = str_split ("lee@babinplanet.ca",3);

In this case, the output array would look like this:

Array {
[0] => lee
[1] => @ba
[2] => bin
[3] => pla
[4] => net
[5] => .ca

}

6-6 ■ JOINING AND DISASSEMBLING STRINGS276

6-7. Reversing Strings
While we are on the subject of working with strings, we should note that you can also reverse
strings. PHP provides a bare-bones, yet highly functional, way to take a string and completely
reverse it into a mirror image of itself. The prototype of the function strrev(), which performs
the necessary deed, is as follows:

string strrev (string string)

Therefore, you can take a basic string, such as the fan favorite “Hello World,” and completely
reverse it by feeding it into the strrev() function as an argument.

The Code

<?php
$astring = "Hello World";
echo strrev ($astring);

?>

dlroW olleH

How It Works
The output for such code would change the value of “Hello World” into the rather more convo-
luted “dlroW olleH” string. Quite apart from those who prefer to read using a mirror, the
strrev() function can come in handy in a myriad of ways ranging from using encryption to
developing Internet-based games.

6-8. Controlling Case
From time to time, it can be important to control the case of text strings, particularly from
user-submitted data. For instance, if you have created a form that allows a customer to create
an account with your site and allows them to enter their preferred username and password,
it is probably a good idea to force a case-sensitive submittal. Confusion can occur if a client
creates a password that contains one wrongly created capital letter, especially when using a
password field (with all characters turned into asterisks). If the client meant to enter “mypass”
but instead entered “myPass” accidentally, an exact string match would not occur.

PHP has several ways to control the case of a string and hence remove the potential for such
a disaster. The ones most relevant to the previous problem are the functions strtoupper() and
strtolower(). The prototypes for these two functions are as follows:

string strtoupper (string string)
string strtolower (string str)

These functions do what you would expect them to do. The function strtoupper() turns
an entire block of text into uppercase, and strtolower() changes an entire string into lower-
case. By using either of these functions, you can quickly turn troubles with case sensitivity into
things of the past.

6-7 ■ REVERSING STRINGS 277

The Code
<?php
//The value passed to use by a customer who is signing up.
$submittedpass = "myPass";
//Before we insert into the database, we simply lowercase the submittal.
$newpass = strtolower ($submittedpass);

echo $newpass; //Echoes mypass
?>

mypass

How It Works
This code will work fine if there was a user mistake when entering a field or if you want all the
values in your database to be a certain case, but what about checking logins? Well, the code
can certainly apply there as well; the following block of code will check for a valid username
and password match:

<?php
if (strcmp (strtolower ($password), strtolower ($correctpassword) == 0){
//Then we have a valid match.

}
?>

This function also uses the strcmp() function, which is described in more detail later in
this chapter (see recipe 6-12).

By turning both the correct password and the user-submitted password into lowercase,
you alleviate the problem of case sensitivity. By comparing the two of them using the strcmp()
function (which returns a zero if identical and returns a number greater than zero if the first
string is greater than the second, and vice versa), you can find out whether you have an exact
match and thusly log them in properly.

Besides turning an entire block of text into a specific case, PHP can also do some interest-
ing things regarding word-based strings. The functions ucfirst() and ucwords() have the
following prototypes:

string ucfirst (string str)
string ucwords (string str)

Both functions operate on the same principle but have slightly differing scopes. The ucfirst()
function, for instance, changes the first letter in a string into uppercase. The ucwords() does some-
thing slightly handier; it converts the first letter in each word to uppercase. How does it determine
what a word is? Why, it checks blank spaces, of course. For example:

6-8 ■ CONTROLLING CASE278

<?php
$astring = "hello world";
echo ucfirst ($astring);

?>

Hello world

This would result in the function outputting the “Hello world” phrase. However, if you
changed the function slightly, like so:

<?php
$astring = "hello world";
echo ucwords ($astring);

?>

you would get the (far more satisfying) result of a “Hello World” phrase:

Hello World

As you can see, controlling the case of strings can be both gratifying and powerful; you
can use this feature to control security in your applications and increase readability for your
website visitors.

6-9. Trimming Blank Spaces
A potentially disastrous (and often overlooked) situation revolves around blank spaces. A fre-
quent occurrence is for website visitors (or CMS users) to enter content that contains a myriad
of blank spaces into forms. Of particular frequency is the copy-and-paste flaw. Some people
may compose text in a word processor or perhaps copy text from another web browser. The
problem occurs when they then try to paste the submission into a form field. Although the
field may look properly filled out, a blank space can get caught either at the beginning or at
the end of the submittal, potentially spelling disaster for your data integrity goal. PHP has a
few ways to deal with this.

The more common way of removing blank space is by using PHP’s trim(), ltrim(), and
rtrim() functions, which go a little something like this:

string trim (string str [, string charlist])
string ltrim (string str [, string charlist])
string rtrim (string str [, string charlist])

The trim() function removes all whitespace from the front and back of a given string;
ltrim() and rtrim() remove it exclusively from the front or back of a string, respectively. By
providing a list of characters to remove to the optional charlist argument, you can even spec-
ify what you want to see stripped. Without any argument supplied, the function basically
strips away certain characters that should not be there; you can use this without too much
concern if you are confident about what has to be removed and what does not.

6-9 ■ TRIMMING BLANK SPACES 279

The Code
<?php
$blankspaceallaround = " somepassword ";
//This would result in all blank spaces being removed.
echo trim ($blankspaceallaround) . "
";
//This would result in only the blank space at the beginning being trimmed.
echo ltrim ($blankspaceallaround) . "
";
//And, as you can imagine, only the blank space at the end would be trimmed here.
echo rtrim ($blankspaceallaround) . "
";

?>

How It Works
For security purposes and all-around ease of use, it makes sense to use trim() on pretty much
any field you encounter. Blank spaces cannot be seen and more often than not will cause trou-
ble for the individual who entered them. Particularly disastrous are login fields that can be
next to impossible to decipher should some unruly blank spaces make their appearance. It is
highly recommended that you take care of any information that is integral to the system (vali-
dation, please!), and using the trim functions provides the means to an end in that regard.

As a side note, data storing is not the only place this sort of validation can come in handy.
Pretty much any form consisting of user submittal can benefit from a little extra cleanliness.
Search queries with blank spaces accidentally entered at the beginning or end of a search term
can provide a frustrating experience for visitors to your website, for instance.

6-10. Wrapping Text
Sometimes it is not always a matter of ensuring a proper submittal of data that makes string
manipulation so important; it is frequently important to ensure that strings are displaying
properly to the end user. There is no point in having a beautiful set of information that dis-
plays in a choppy, chunky manner. Once again, PHP comes to your rescue by providing a
couple of clever text formatting functions.

We will first talk about the function nl2br(), whose prototype is as follows:

string nl2br (string string)

Basically, nl2br() changes any new line characters found in the data string into

Hypertext Markup Language (HTML) code. This can be extremely handy when building CMS
type systems with end users who are unfamiliar with HTML code. Which would you consider
easier out of the following two choices? First, is it easier teaching clients who have absolutely
no technical expertise whatsoever (and no time for any) how to use the cryptic
 every
time they want a new line, or, second, is it easier just telling them to hit the Enter key when-
ever they want a new line? If you chose the second option, go grab yourself a cookie (we
recommend the white-chocolate, macadamia-nut variety).

Basically, the nl2br() function can be a lifesaver because it allows your client (or whoever
is entering information) to enter text into a text area in a way that looks normal to them. Then,
rather than displaying one big chunk of run-on text on the website, you can allow the already
formatted text to “automagically” display using this function.

6-10 ■ WRAPPING TEXT280

The Code
<?php
$astring = "Hello\nWorld\n\nHow are you?";
echo nl2br ($astring);

?>

This block of code would result in something that looks like this:

Hello
World

How are you?

How It Works
The nl2br() function is nice if the person submitting the data is aware of carriage returns and
whatnot, but what if they just feel like copying and pasting a huge block of text into your painstak-
ingly prepared web layout? Well, there is a simple way of dealing with this sort of occurrence as
well, using the highly useful wordwrap() function that has the following prototype:

string wordwrap (string str [, int width [, string break [, bool cut]]])

By using this function, you can set a block of text to wrap to a width of your choosing and
then even choose the character you want to break it with. Consider the following block of code
as an example:

<?php
$textblock = "See spot run, run spot run. See spot roll, roll spot roll!";
echo wordwrap ($textblock, 20, "
");

?>

This would create a paragraph whereby the text block would go only to a width of 20 and
then break into a new line. Not only does this help lay out the page in a more readable format,
it can also be a lifesaver in certain circumstances. The output would look something like this:

See spot run, run
spot run. See spot
roll, roll spot roll!

Unfortunately, while HTML layout elements such as tables or divs can contain text and
wrap the text automatically, they do have one interesting flaw. Basically, HTML will wrap text
only if there is a blank space contained (that is, a new word). Sadly, this does not encompass
the end result of someone entering a word that is really long and does not contain a blank
space. For example:

<?php
$alongstring = "Hellllllllllllllllllllllllllllllloooooooooooo World";

?>

6-10 ■ WRAPPING TEXT 281

Now, if the very long “Hello” happened to be contained by a certain design HTML wrap-
per and it exceeded the length of the wrapper, the design could potentially break. But if you
put the wordwrap() function to good use, you should be safe even in such an eventuality.

6-11. Checking String Length
A common occurrence that is quite easily handled in PHP is attempting to find out how long a
string is. This can come in handy in multitudes of places, including validation of form elements,
output of user-submitted data, and even database insertion preparation. PHP’s strlen() func-
tion will instantly retrieve for you the length of any given string. The prototype for strlen() is
as follows:

int strlen (string string)

Since validation and security are such vital issues, it is important to know a few common
string types that should always be checked for proper length. First up is data that will soon be
inserted into a database and that has been submitted from a form by a user. Without going too
in depth into MySQL (Chapter 15 goes into more detail in that regard), we will just begin by
saying that certain data fields in a database can handle only a certain size field. If a string field,
for instance, goes into a database field that cannot take the length of the string, an error will
definitely be generated; and that is no fun for anyone. What is the simple way around this
problem? You can simply validate the string’s length using strlen(), as shown in the following
example.

The Code
<?php
//Define a maximum length for the data field.
define ("MAXLENGTH", 10);
if (strlen ("Hello World!") > MAXLENGTH){
echo "The field you have entered can be only " ➥

. MAXLENGTH . " characters in length.";
} else {
//Insert the field into the database.

}
?>

The field you have entered can be only 10 characters in length.

How It Works
As you can see, by checking to make sure the length of the string is less than the maximum
length that your database field will allow, you prevent a potential tragedy. You can use this in
many occasions such as making sure a password submitted by a user is at least a certain num-
ber of characters in length and when outputting user-submitted text that could potentially
break a design to which a CMS has been applied.

6-11 ■ CHECKING STRING LENGTH282

6-12. Comparing Strings
No matter what language you are programming in, comparing values becomes a common
dilemma. Unlike in most programming languages, however, PHP makes comparing easy, at
least on the surface. The easiest way to compare two strings is with the == operator. The ==
operator, in PHP, basically determines an exact equal match when using a conditional state-
ment. The following block of code shows how to use it.

The Code
<?php
$stringone = "something";
$stringtwo = "something";
if ($stringone == $stringtwo){
echo "These two strings are the same!";

}
?>

These two strings are the same!

How It Works
However, sometimes a simple string comparison as shown previously just will not cut it.
Sometimes a more precise comparison is in order; once again PHP has given you an answer
in the form of strcmp().

int strcmp (string str1, string str2)

The function strcmp() does slightly more than your average == operator as well. Not only
does it check for an exact binary match between strings, but it can also return a result that lets
you know if a string is greater than or less than the other. More specifically, if the value returned
is less than zero, then string 1 is less than string 2; and, as you might expect, if the returned value
is greater than zero, then string 1 is greater than string 2.

A real-world way in which you may want to use a full-on binary comparison function
such as strcmp() is when dealing with usernames and passwords. Quite realistically, it is not
good enough for a string to be “almost” the same as the other one. What we mean by that is
if blank spaces get in the way or some such circumstance, occasionally the == operator will
return a match even when the two strings are not completely identical. By using the strcmp()
function, you can be assured that if the two values are not a complete and absolute match, the
function will not return you a zero.

PHP also has a few other cousin functions to the mighty strcmp() that are a little more
advanced and provide slightly different functionality. The more similar function available is
the strncmp() function, which does almost the same thing as strcmp() but adds the benefit of
being able to choose the length of the characters you want to compare. The strncmp() func-
tion has a prototype that looks like this:

int strncmp (string str1, string str2, int len)

6-12 ■ COMPARING STRINGS 283

Similarly, should you not be interested in case sensitivity when comparing strings, you
can use the functions strcasecmp() and strncasecmp(), which look like this:

int strcasecmp (string str1, string str2)
int strncasecmp (string str1, string str2, int len)

Basically, these two functions do exactly what their case-sensitive counterparts do,
only they completely ignore case sensitivity. The slightly confusing part of the strncmp()
and strncasecmp() functions is the len argument. What this means is that it will compare
len amount of characters from the first string with the second string. For example:

<?php
if (strncmp ("something","some",4) == 0){
echo "A correct match!";

}
?>

A correct match!

6-13. Comparing Sound
A common use for comparing strings has always been a search engine. By entering appropriate
terms as arguments, you can then compare them against similar fields using string comparison.
In quite a few modern-day applications, direct string comparisons may not be enough to satisfy
the ever-growing need for a powerful search application.

To help make search engines a touch friendlier, a concept was created that will allow you
to return accurate search results even if the search term is pronounced in a similar tone. PHP 5
has a function that can determine matching strings based on something called a soundex key.
The function soundex() has the goal of identifying a match based on pronunciation. The pro-
totype for the function is as follows:

string soundex (string str)

The Code
<?php

echo soundex ("Apress") . "
";
echo soundex ("ahhperess") . "
";

echo soundex ("Lee") . "
";
echo soundex ("lhee") . "
";

echo soundex ("babin") . "
";
echo soundex ("bahbeen") . "
";

6-13 ■ COMPARING SOUND284

//Now, say I wanted to buy a xylophone online but had no idea how to spell it.
echo soundex ("xylophone") . "
";

//Here is a common misspelling no doubt.
echo soundex ("zilaphone");
//Note, how the end 3 numbers are the same? That could be used to perform a match!

?>

A162
A162
L000
L000
B150
B150
X415
Z415

How It Works
As you can see, similar-sounding pronunciations can result in similar (if not exact) results. The
first character returned is the first letter used in the query, and the next set of three numerical
values is the soundex key that is based on how the word sounds. By integrating this sort of
functionality into your search engines, you can return a set of potential results with much
greater accuracy than if you were using exact matches.

Project: Creating and Using a String Class
It is certainly one thing to show how string functions could be used but quite another to apply
them to a real-world example. String manipulation is a common solution to many program-
ming dilemmas, and sometimes the ability to put string functionality to use on the fly can
mean the difference between a botched project and a fully functional web solution. In the
next example, we have created an actual real-world project that draws on string functionality
to process a wide range of applications.

6-14. Using a Page Reader Class
One of the more amusing algorithms that you can use is a web page reader, more commonly
referred to as a spider. Basically, the point of the pagereader class is to read a web page that is
located somewhere on the Internet and then parse it for appropriate or interesting information.

The next class’s intent is to read a page and uncover a listing of all links, e-mails, and
words contained within a given web page. The same sort of functionality is applied to many
modern-day, large-scale operations including web search engines and, sadly, spam e-mail col-
lectors. The following class will show you the basics of using a wide variety of string functions
to process an effective application.

6-14 ■ USING A PAGE READER CLASS 285

The Code
<?php

//Class to read in a page and then output various attributes from said page.
class pagereader {

protected $thepage;

//The constructor function.
public function __construct (){

$num_args = func_num_args();

if($num_args > 0){
$args = func_get_args();
$this->thepage = $args[0];

}
}

//Function to determine the validity of a file and then open it.
function getfile () {
try {
if ($lines = file ($this->thepage)){
return $lines;

} else {
throw new exception ("Sorry, the page could not be found.");

}
} catch (exception $e) {
echo $e->getmessage();

}
}

//Function to return an array of words found on a website.
public function getwords (){
$wordarray = array ();
$lines = $this->getfile ();
//An array of characters we count as an end to a word.
$endword = array ("\"","<",">"," ",";","(",")","}","{");
//Go through each line.
for ($i = 0; $i < count ($lines); $i++){
$curline = $lines[$i];
$curline = str_split ($curline);
for ($j = 0; $j < count ($curline); $j++){
//Then start counting.
$afterstop = false;
$afterstring = "";
$counter = 0;

6-14 ■ USING A PAGE READER CLASS286

for ($k = $j; $k < count ($curline); $k++){
$counter++;
if (!$afterstop){
if (!in_array ($curline[$k],$endword)){
$afterstring = $afterstring . $curline[$k];

} else {
$afterstop = true;
//Set j to the next word.
$j = $j + ($counter - 1);

}
}

}
if (trim ($afterstring) != ""){
$wordarray[] = $afterstring;

}
}

}
return $wordarray;

}

//Function to deliver an array of links from a website
public function getlinks (){
//Read the file.
$lines = $this->getfile ();
$impline = implode ("", $lines);
//Remove new line characters.
$impline = str_replace ("\n","",$impline);
//Put a new line at the end of every link.
$impline = str_replace("","\n",$impline);
//Then split the impline into an array.
$nlines = split("\n",$impline);

//We now have an array that ends in an anchor tag at each line.
for($i = 0; $i < count($nlines); $i++){
//Remove everything in front of the anchor tag.
$nlines[$i] = eregi_replace(".*<a ","<a ",$nlines[$i]);
//Grab the info in the href attribute.
eregi("href=[\"']{0,1}([^\"'>]*)",$nlines[$i],$regs);
//And put it into the array.
$nlines[$i] = $regs[1];

}

//Then we pass back the array.
return $nlines;

}

//Function to deliver an array of e-mails from a site.

6-14 ■ USING A PAGE READER CLASS 287

public function getemails (){
$emailarray = array ();
//Read the file.
$lines = $this->getfile ();
//Go through each line.
for ($i = 0; $i < count ($lines); $i++){
//Then, on each line, look for a string that fits our description.
if (substr_count ($lines[$i],"@") > 0){
//Then go through the line.
$curline = $lines[$i];
//Turn curline into an array.
$curline = str_split ($curline);
for ($j = 0; $j < count ($curline); $j++){
if ($curline[$j] == "@"){
//Then grab all characters before and after the "@" symbol.
$beforestring = "";
$beforestop = false;
$afterstring = "";
$afterstop = false;
//Grab all instances after the @ until a blank or tag.
for ($k = ($j + 1); $k < count ($curline); $k++){
if (!$afterstop){
if ($curline[$k] != " " && $curline[$k] != "\"" ➥

&& $curline[$k] != "<"){
$afterstring = $afterstring . $curline[$k];

} else {
$afterstop = true;

}
}

}
//Grab all instances before the @ until a blank or tag.
for ($k = ($j - 1); $k > 0; $k--){

if (!$beforestop){
if ($curline[$k] != " " && $curline[$k] != ">" ➥

&& $curline[$k] != ":"){
$beforestring = $beforestring . $curline[$k];

} else {
$beforestop = true;

}
}

}
//Reverse the string since we were reading it in backwards.
$beforestring = strrev ($beforestring);
$teststring = trim ($beforestring) . "@" . trim ($afterstring);
if (preg_match("/^([a-zA-Z0-9])+([.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])➥

+(.[a-zA-Z0-9_-]+)+[a-zA-Z0-9_-]$/",$teststring)){

6-14 ■ USING A PAGE READER CLASS288

//Only include the e-mail if it is not in the array.
if (!in_array ($teststring,$emailarray)){
$emailarray[] = $teststring;

}
}

}
}

}

}
//Then we pass back the array.
return $emailarray;

}

}

$myreader = new pagereader ("http://www.apress.com");

//None found ;).
?><p style="font-weight: bold;">Emails:</p><?php
print_r ($myreader->getemails ());
//Whoa, a few links.
?><p style="font-weight: bold;">Links:</p><?php
print_r ($myreader->getlinks ());
//Hold on to your hats, this will take a while...
?><p style="font-weight: bold;">Words:</p><?php
print_r ($myreader->getwords ());

?>

How It Works
The pagereader class’s core functionality is based around reading a web page on the Internet
and then performing operations on the read. Therefore, it comes with the validated method
getfile(), whose sole purpose is to attempt to read in a web page using the file() function.
If the function receives a valid read, then you can begin work on the received information.

The class has three main functions, and they all perform somewhat differently to accom-
plish their goals. The getwords() method is perhaps the simplest of the three merely because
of its somewhat global goal. The purpose of the getwords() method is to collect an array filled
with all words contained on a website. The problem is, what constitutes a word? The answer to
such a question will probably vary from user to user, so an array filled with characters that will
be omitted when determining the end of a word has been instantiated. By changing the values
contained within this array, you can determine what constitutes a word and thus change the
way the script reads in a word list.

The way it works after that is quite simple. The script takes in each line of the received file
individually and then splits it into an array. It then parses through the array and waits until it
finds a character that is not in the current array of end characters. After it finds such a character,

6-14 ■ USING A PAGE READER CLASS 289

it loops through the string of characters found after the start character and waits until it finds
another character in the array, adding to a final string as it goes. Once it reaches a final character,
it stores the “word” into an array to be returned when the script has finished processing.

The getemails() method works similarly to the getwords() method, except it bases every-
thing upon the @ symbol. So, although it also goes through each line received from the file and
breaks it down, it instead breaks it down according to the @ symbol. When a valid symbol has
been found, it cycles through all characters before and after the symbol and quits cycling once
an end character has been found. Once an end character has been found before and after the
@ symbol, a full string is concocted and compared against a valid e-mail string using the
preg_match() function. (For more information, see Nathan A. Good’s Chapter 9.) If a valid
match is received, the e-mail is returned in an array filled with e-mail addresses.

The last method in this class also differs the most. It combines string functionality with
regular expressions to create a link targeting script. Basically what this method does is break
the received lines down into a single line and kill off all new line characters. Then, it searches
for any instances of an anchor tag and places a new line character after the closing anchor
tag. Then, with an array of anchor tags delimited by a new line character in place, it strips out
everything from in front of the leading anchor tag and grabs all information from within the
href argument. At this point, the data contained within is stored into an array for returning.

As you can see, you can perform a wide range of functionality using the received file infor-
mation; what is shown here is only a small glimpse. With the wide range of functionality
available in the form of string functions, anything is possible.

Summary
So, as you can see, strings will always be a rather important subject when dealing with a pro-
gramming language such as PHP. Thankfully, because of PHP 5’s new class functionality, it is
becoming easier to take matters into your own hands and concoct some truly powerful classes
to help make your life just a little easier. It is important to experiment and use the tools avail-
able to you. As you can see from the real-world example in this chapter of a pagereader class,
the ability to use string functionality on the fly is a learned and highly appreciated skill.

Looking Ahead
In the next chapter, we will go through the ins and outs of working with your current file system.
This is a handy set of functionality that will likely serve you well in your quest for the perfect web
application. While operating systems and server configurations may differ, the ability to react to
such changes, with a bit of help from this book, will define you as the master programmer that
you are.

6-14 ■ USING A PAGE READER CLASS290

