
Performing Math Operations

Math is one of the fundamental elements of most programming languages. Math allows
the programmer to perform anything from simple additions to advanced calculations. Even
though PHP was designed to create dynamic Hypertext Markup Language (HTML) documents,
it has evolved to a general-purpose programming language that includes a strong and flexible
math implementation.

The implementation of math in PHP looks very much like the implementation in C. In
fact, many of the functions are implemented as simple wrappers around the math functions
found in C libraries.

3-1. Numeric Data Types
Working with numbers or numeric data and math functions in PHP is simple. Basically, you
have two data types to work with, floating point and integer. The internal representations for
these values are the C data types double and int, and these data types follow the same set of
rules as in C.

We’ve designed most the samples in this chapter to work with the command-line inter-
face (CLI) version of PHP. If you use the samples with a web server and view the results in a
browser, you may see different formatting than the results shown in this chapter. This is espe-
cially true if a recipe is using a variable-width font to present the data. In most cases, we show
the generated output following the code sample. When the output generates HTML output,
we will use a figure to display the result.

■Note The minimum and maximum values for integer values depend on the system architecture where
PHP is running. On a 32-bit operating system, an integer can be between –2,147,483,648 and 2,147,483,647.

PHP is a loosely typed scripting language where variables change the data type as needed
by calculations. This allows the engine to perform type conversions on the fly. So, when num-
bers and strings are included in a calculation, the strings will be converted to a numeric value
before the calculation is performed, and numeric values are converted to strings before they
are concatenated with other strings. In the following example, a string and an integer value
are added, and the result is an integer value.

85

C H A P T E R 3

■ ■ ■

The Code
<?php
// Example 3-1-1.php
$a="5";
$b= 7 + $a;
echo "7 + $a = $b";
?>

How It Works
The variable $a is assigned a string value of 5, and then the variable $b is assigned the value of
the calculation of 7 plus the value of $a. The two values are of different types, so the engine will
convert one of them so they are both the same type. The operator + indicates the addition of
numeric values to the string, which is converted to a numeric value of 5 before the addition.
The last line displays the calculation, and the result is as follows:

7 + 5 = 12

PHP will also convert the data types of one or more values in a calculation in order to per-
form the calculation correctly. In the following example, the float is converted to an integer
before the binary and (&) operation is executed.

The Code
<?php
// Example 3-1-2.php
$a = 3.5;
$b = $a & 2;
echo "$a & 2 = $b";
?>

How It Works
The variable $a is assigned a floating-point value of 3.5. Then, the variable $b is assigned the
result of the calculation of $a and 2 with the binary and operation. In this case, the floating-
point value is converted to an integer (3) before the binary and operation is performed. If you
look at the binary values of 3 and 2, you will see these are 011 and 010; if you then perform the
operation on each bit, you get the result (0 & 0 = 0, 1 & 0 = 0, and 1 & 1 = 1).

3.5 & 2 = 2

And as the next example shows, PHP will perform an additional conversion on the result-
ing data type if the result of a calculation requires that. So, when an integer is divided by an
integer, the resulting value might be an integer or a float depending on the result and not on
the operation.

3-1 ■ NUMERIC DATA TYPES86

The Code
<?php
// Example 3-1-3.php
$a = 5;
$b = $a / 2;
echo "$a / 2 = $b\n";

$a = 6;
$b = $a / 2;
echo "$a / 2 = $b\n";
?>

How It Works
This example shows two integer divisions. No data type conversions are needed before the
calculations, as both sides of the division operator are numeric, but in the first case where 5 is
divided by 2, the result is 2.5, so that value must be stored in a floating-point data type. In the
other calculation, where 6 is divided by 2, the result is 6 and can be stored in an integer data
type.

5 / 2 = 2.5
6 / 2 = 3

PHP has a number of functions to test the data type of a variable. Three of these functions
test whether the variable contains a numeric value, or, more specifically, whether it is a float or
an integer.

The function is_numeric() checks if the value passed as the argument is numeric, and as
shown in the next example, it will return a boolean value: true for integers, floats, and string
values with a numeric content and false for all other data types. The following example shows
how you can use the is_numeric() function.

The Code
<?php
// Example 3-1-4.php
$a = 1;
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 1.5;
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = true;
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 'Test';
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

3-1 ■ NUMERIC DATA TYPES 87

$a = '3.5';
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = '3.5E27';
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 0x19;
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";

$a = 0777;
echo "is_numeric($a) = " . (is_numeric($a) ? "true" : "false") . "\n";
?>

How It Works
This example shows how you can use the is_numeric() function on variables of different data
types. In each of the tests, you use the tertiary operator (?) to print the string value of true or
false depending on the result returned by the function.

is_numeric(1) = true
is_numeric(1.5) = true
is_numeric(1) = false
is_numeric(Test) = false
is_numeric(3.5) = true
is_numeric(3.5E27) = true
is_numeric(25) = true
is_numeric(511) = true

The functions is_int() and is_float() check for specific data types. These functions will
return true if an integer or float is passed and false in any other case, even if a string with a
valid numeric representation is passed.

The Code
<?php
// Example 3-1-5.php
$a = 123;
echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";

$a = '123';
echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";
?>

3-1 ■ NUMERIC DATA TYPES88

How It Works
This example shows how the function is_int() will return true if the value passed as the argu-
ment is an integer and false if it is anything else, even if the string contains a numeric value.

is_int(123) = true
is_int(123) = false

To test for other data types, PHP implements is_bool(), is_string(), is_array(),
is_object(), is_resource(), and is_null(). All these functions take one argument and return
a boolean value.

It is possible to force the engine to change the data type. This is called typecasting, and it
works by adding (int), (integer), (float), (double), or (real) in front of the variable or value
or by using the function intval() or floatval(). This next example shows how you can use
the is_int() function with the (int) typecasting to force a string value to be converted to an
integer before the type is checked.

The Code
<?php
// Example 3-1-6.php
$a = 123;
echo "is_int($a) = " . (is_int($a) ? "true" : "false") . "\n";

$a = '123';
echo "is_int((int)$a) = " . (is_int((int)$a) ? "true" : "false") . "\n";
?>

How It Works
This example works as the previous example does, but because of the implicit typecasting of
the string to an integer before calling the is_int() function, both tests will return true.

is_int(123) = true
is_int((int)123) = true

Using typecasting might force the value to become a zero value. This will happen if the
value is an object, an array, or a string that contains a non-numeric value and if this variable is
typecast to an integer or floating-point value.

When the intval() function is used on strings, it’s possible to pass a second parameter
that specifies the base to use for the conversion. The default value is 10, but it’s possible to use
base 2 (binary), 8 (octal), 16 (hexadecimal), or any other value such as 32 or 36, as shown in
the following example.

3-1 ■ NUMERIC DATA TYPES 89

The Code
<?php
// Example 3-1-7.php
echo intval('123', 10) . "\n";
echo intval('101010', 2) . "\n";
echo intval('123', 8) . "\n";
echo intval('123', 16) . "\n";

echo intval('H123', 32) . "\n";
echo intval('H123', 36) . "\n";
?>

How It Works
This example takes numeric values with different bases and converts them to decimal representa-
tions (base 10). A decimal value uses the digits 0123456789, a binary value uses the digits 01, an
octal value uses the digits 01234567, and a hexadecimal value uses the digits 0123456789abcdef.
The digits for base 32 and base 36 are 0123456789 and the first 22 or 26 letters of the alphabet. So,
the value H123 does not denote a hexadecimal value.

123
42
83
291
558147
794523

The intval() function will also work on boolean and float types, returning the integer
value. The integer value of a boolean variable is 0 for false and 1 for true. For a float value,
this function will truncate the value at the decimal point.

When working with integers, it is sometimes necessary to convert between different base
values. The PHP interpreter will accept integers as part of the script, in decimal, octal, and
hexadecimal form, and automatically convert these to the internal decimal representation.
Using the octal and hexadecimal forms can make the code more readable. You can use the
octal form when setting file permissions, as this is the notation used on most Unix and Unix-
like systems, and you can use the hexadecimal form when defining constants where you need
to have a single bit set in each constant.

<?php
// Example 3-1-8.php
chmod("/mydir", 0755);

define('VALUE_1', 0x001);
define('VALUE_2', 0x002);
define('VALUE_3', 0x004);
define('VALUE_4', 0x008);
define('VALUE_5', 0x010);
define('VALUE_6', 0x020);
?>

3-1 ■ NUMERIC DATA TYPES90

It is easier to read and define constants based on single bits when using the hexadecimal
representation, where each digit represents 4 bits, than when using with decimal representa-
tion, where the same values would be 1, 2, 4, 8, 16, and 32.

Sometimes it’s also useful to convert integer values to other bases such as binary or base 32
and base 36, as used in the previous example. You can use the function base_convert() to
convert any integer value from one base to another. The function takes one numeric and two
integer parameters, where the first parameter is the number to be converted. This value can
be an integer or a string with a numeric representation. The second parameter is the base to
convert from, and the third parameter is the base to convert to. The function will always
return a string value, even if the result is an integer in the decimal representation.

The Code
<?php
// Example 3-1-9.php
echo base_convert('123', 10, 10) . "\n";
echo base_convert('42', 10, 2) . "\n";
echo base_convert('83', 10, 8) . "\n";
echo base_convert('291', 10, 16) . "\n";

echo base_convert('558147', 10, 32) . "\n";
echo base_convert('794523', 10, 36) . "\n";

echo base_convert('abcd', 16, 8) . "\n";
echo base_convert('abcd', 16, 2) . "\n";?>

How It Works
In this example, you saw the same values as in the previous example, but this example uses
the base_convert() function to do the reverse conversion. In addition, this example also
shows conversions between bases other than the decimal 10.

123
101010
123
123
h123
h123
125715
1010101111001101

Remember that the maximum width of an integer value in PHP is 32-bit. If you need to
convert integer values with more than 32 bits, you can use the GMP extension (see recipe 3-6).

You can assign a value to a variable in a few ways in PHP (see Chapter 10). The most basic
form is the assignment $a = 10;, where $a is given the integer value 10. If the variable exists,
the old value will be lost, and if the variable is used for the first time, the internal structure will
be allocated. There is no need to declare variables before use, and any variable can be reas-
signed to another value with another type at any time.

3-1 ■ NUMERIC DATA TYPES 91

For variables of a numeric type, it is also possible to assign a new value and at the same
time use the existing value in the calculation of the new value. You do this with $a += 5;,
where the new value of $a will be the old value plus 5. If $a is unassigned at the time the state-
ment is executed, the engine will generate a warning and assume the old value of 0 before
calculating the new value.

Tables 3-1, 3-2, and 3-3 show the arithmetic, bitwise, and assignment operators that are
available in PHP.

Table 3-1. Arithmetic Operators

Example Operation Result

-$a Negation Negative value of $a

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Table 3-2. Bitwise Operators

Example Operation Result

$a & $b And Bits that are set in both $a and $b are set.

$a | $b Or Bits that are set in either $a or $b are set.

$a ^ $b Xor Bits that are set in $$a or $b but not in both are set.

~ $a Not Bits that are set in $a are not set, and vice versa.

$a << $b Shift left Shift the bits of $a to the left $b steps.

$a >> $b Shift right Shift the bits of $a to the right $b steps.

Table 3-3. Assignment Operators

Example Operation Result

$a += $b Addition $a = $a + $b

$a -= $b Subtraction $a = $a - $b

$a *= $b Multiplication $a = $a * $b

$a /= $b Division $a = $a / $b

$a %= $b Modulus $a = $a % $b

$a &= $b Bitwise and $a = $a & $b

$a |= $b Bitwise or $a = $a | $b

$a ^= $b Bitwise xor $a = $a ^ $b

$a <<= $b Left-shift $a = $a << $b

$a >>= $b Right-shift $a = $a >> $b

3-1 ■ NUMERIC DATA TYPES92

■Note If you use bitwise operators on strings, the system will apply the operation on the string character
by character. For example, 123 & 512 equals 102. First, the values 1 and 5 are “anded” together in binary
terms, that is, 001 and 101; only the last bit is common, so the first character becomes 001. The next two
values are 2 and 1 (or in binary values, 10 and 01). These two values are “anded” together to make 00, or 0.
And finally, 3 and 2 are “anded” together, so that’s 11 and 10 with the result of 10, or 2. So, the resulting
string is 102.

Integer values can be signed and unsigned in the range from –2,147,483,648 to
2,147,483,647. If a calculation on any integer value causes the result to get outside these
boundaries, the type will automatically change to float, as shown in the following example.

The Code
<?php
// Example 3-1-10.php
$i = 0x7FFFFFFF;
echo "$i is " . (is_int($i) ? "an integer" : "a float") . "\n";
$i++;
echo "$i is " . (is_int($i) ? "an integer" : "a float") . "\n";
?>

How It Works
The variable $i is assigned a value corresponding to the largest integer number PHP can
handle, and then is_int() is called to verify that $i is an integer. Then the value of $i is
incremented by 1, and the same check is performed again.

2147483647 is an integer
2147483648 is a float

In other languages with strict type handling, the increment of $i by 1 would lead to over-
flow, and the result would be a negative value of –2,147,483,648.

Comparing integer values is simple and exact because there is a limited number of values
and each value is well defined. This is not the case with floating-point values, where the preci-
sion is limited. Comparing two integers with = will result in a true value if the two integers are
the same and false if they are different. This is not always the case with floating-point values.
These are often looked at with a numeric string representation that might change during pro-
cessing. The following example shows that a simple addition of two floating-point variables
compared to a variable with the expected value result can lead to an unexpected result.

3-1 ■ NUMERIC DATA TYPES 93

The Code
<?php
// Example 3-1-11.php
$a=50.3;
$b=50.4;
$c=100.7;

if ($a + $b == $c) {
echo "$a + $b == $c\n";

}
else {
echo "$a + $b != $c\n";

}
?>

How It Works
Three variables are each assigned a floating-point value; then, a calculation is performed with
the two first values, and the result is compared to the last value. One would expect that the
output from this code would indicate that $a + $b == $c.

50.3 + 50.4 != 100.7

This result indicates that PHP is having trouble with simple floating-point operations, but
you will find the same result in other languages. It is possible to compare floating-point val-
ues, but you should avoid the == operator and use the <, >, >=, and <= operators instead. In the
following example, the loop goes from 0 to 100 in steps of 0.1, and the two checks inside the
loop print a line of text when $i reaches the value 50.

The Code
<?php
// Example 3-1-12.php
for ($i = 0; $i < 100; $i += 0.1) {
if ($i == 50) echo '$i == 50' . "\n";
if ($i >= 50 && $i < 50.1) echo '$i >= 50 && $i < 50.1' . "\n";

}
?>

How It Works
This code creates a loop where the variable $i starts as an integer with the value 0. The code
in the loop is executed as long as the value of $i is less than 100. After each run-through, the
value of $i is incremented by 0.1. So, after the first time, $i changes to a floating-point value.
The code in the loop uses two different methods to compare the value of $i, and, as the result
shows, only the second line is printed.

3-1 ■ NUMERIC DATA TYPES94

$i >= 50 && $i < 50.1

Another way to make sure the values are compared correctly is to typecast both sides of
the == operator to integers like this: if ((int)$i == 50) echo '$i == 50' . "\n";. This will
force the engine to compare two integer values, and the result will be as expected.

3-2. Random Numbers
Random numbers are almost a science by themselves. Many different implementations
of random number generators exist, and PHP implements two of them: rand() and mt_rand().
The rand() function is a simple wrapper for the random function that is defined in libc (one
of the basic libraries provided by the compiler used to build PHP). mt_rand() is a drop-in
replacement with well-defined characteristics (Mersenne Twister), and mt_rand() is even
much faster than the version from libc.

Working with random number generation often requires seeding the generator to avoid
generating the same random number each time the program is executed. This is also the case
for PHP, but since version 4.2.0, this seeding takes place automatically. It is still possible to use
the srand() and mt_srand() functions to seed the generators, but it’s no longer required.

You can use both random generators with no arguments or with two arguments. If no
arguments are passed, the functions will return an integer value between 0 and RAND_MAX,
where RAND_MAX is a constant defined by the C compilers used to generate PHP. If two argu-
ments are passed, these will be used as the minimum and maximum values, and the functions
will return a random value between these two numbers, both inclusive.

Both random generators provide functions to get the value of MAX_RAND. The next example
shows how to use these functions.

The Code
<?php
// Example 3-2-1.php
echo "getrandmax = " . getrandmax() . "\n";
echo "mt_getrandmax = " . mt_getrandmax() . "\n";
?>

How It Works
On a Linux or Unix system, this sample code produces this output:

Getrandmax() = 2147483647
mt_getrandmax() = 2147483647

On a Windows system, the same code produces this output:

Getrandmax() = 32767
mt_getrandmax() = 2147483647

3-2 ■ RANDOM NUMBERS 95

This difference is caused by the different libc implementations of the random number
generators and the MAX_RAND value between different platforms.

You can generate random numbers (integer values) between 0 and MAX_RAND by calling
rand() or mt_rand() without any arguments, as shown in the next example.

The Code
<?php
// Example 3-2-2.php
echo "rand() = " . rand() . "\n";
echo "mt_rand() = " . mt_rand() . "\n";
?>

How It Works
On Windows and Linux systems, the output from this code would look like the following,
though the values will be different each time the script is executed:

rand() = 9189
mt_rand() = 1101277682

In many cases, it’s required to get a random value with other minimum and maximum
values than the default. This is where the two optional arguments are used. The first argument
specifies the minimum value, and the second specifies the maximum value. The following
example shows how to get a random value from 5 to 25.

The Code
<?php
// Example 3-2-3.php
echo "rand(5, 25) = " . rand(5, 25) . "\n";
echo "mt_rand(5, 25) = " . mt_rand(5, 25) . "\n";
?>

How It Works
This example prints two random values from 5 to 25.

rand(5, 25) = 8
mt_rand(5, 25) = 6

Random values are not restricted to positive integers. The following example shows how
to get random values from –10 to 10.

3-2 ■ RANDOM NUMBERS96

The Code
<?php
// Example 3-2-4.php
echo "rand(-10, 10) = " . rand(-10, 10) . "\n";
echo "mt_rand(-10, 10) = " . mt_rand(-10, 10) . "\n";
?>

How It Works
This example prints two random values between –10 and 10.

rand(-10, 10) = 5
mt_rand(-10, 10) = -6

Generating random numbers with these two functions will always result in an integer
value. With some simple math it is possible to change this to generate a random floating-point
value. So, if you want to generate random floating-point values from 0 to 10 with two deci-
mals, you could write a function called frand(), as shown next.

The Code
<?php
// Example 3-2-5.php
function frand($min, $max, $decimals = 0) {
$scale = pow(10, $decimals);
return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 2) = " . frand(0, 10, 2) . "\n";
?>

How It Works
The function takes two mandatory arguments and one optional argument. If the third argu-
ment is omitted, the function will work as mt_rand() and return an integer. When the third
argument is given, the function calculates a scale value used to calculate new values for the
minimum and maximum and to adjust the result from mt_rand() to a floating-point value
within the range specified by $min and $max. The output from this sample looks like this:

frand(0, 10, 2) = 3.47

3-2 ■ RANDOM NUMBERS 97

Working with currency values might require the generation of random numbers with
fixed spacing. Generating random values between $0 and $10 and in steps of $0.25 would not
be possible with the frand() function without a few modifications. By changing the third
parameters from $decimals to $precision and changing the logic a bit, it is possible to gener-
ate random numbers that fit both models, as shown in the following example.

The Code
<?php
// Example 3-2-6.php
function frand($min, $max, $precision = 1) {
$scale = 1/$precision;
return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 0.25) = " . frand(0, 10, 0.25) . "\n";
?>

■Note There are no checks on the $precision value. Setting $precision = 0 will cause a division-by-
zero error.

How It Works
The output from the sample looks like this:

frand(0, 10, 0.25) = 3.25

Changing the precision parameter to 0.01 gives the same result as in the first example, and
changing it to 3 causes the function to return random values between 0 and 10 in steps of 3.
The possible values are 0, 3, 6, and 9, as shown in the next example.

The Code
<?php
// Example 3-2-7.php
function frand($min, $max, $precision = 1) {
$scale = 1/$precision;
return mt_rand($min * $scale, $max * $scale) / $scale;

}

echo "frand(0, 10, 3) = " . frand(0, 10, 3) . "\n";
?>

3-2 ■ RANDOM NUMBERS98

How It Works
The precision parameter has been changed to 3, so the ||$scale value will be 1/3. This reduces
the internal minimum and maximum values to 0 and 3, and the result of mt_rand() is divided
by $scale, which is the same as multiplying by 3. The internal random value will be 0, 1, 2, or 3,
and when that’s multiplied by 3, the possible values are 0, 3, 6, or 9.

frand(0, 10, 3) = 6

■Note The arguments to mt_rand() are expected to be integers. If other types are passed, the values
are converted to integers before calculating the random value. This might cause the minimum and maximum
values to be truncated, if the calculation of $min * $scale or $max * $scale results in a floating-point
value.

You can also use the random number generators to generate random strings. This can be
useful for generating passwords. The next example defines a function called GeneratePassword()
that takes two optional arguments. These arguments specify the minimum and maximum
lengths of the generated password.

The Code
<?php
// Example 3-2-8.php
function GeneratePassword($min = 5, $max = 8) {
$ValidChars = "abcdefghijklmnopqrstuvwxyz123456789";
$max_char = strlen($ValidChars) - 1;
$length = mt_rand($min, $max);
$password = "";
for ($i = 0; $i < $length; $i++) {
$password .= $ValidChars[mt_rand(0, $max_char)];

}
return $password;

}

echo "New Password = " . GeneratePassword() . "\n";
echo "New Password = " . GeneratePassword(4, 10) . "\n";
?>

3-2 ■ RANDOM NUMBERS 99

How It Works
The output from this script could look like this:

New Password = bbeyq
New Password = h3igij3bd7

The mt_rand() function is first used to get the length of the new password and then used
within the for loop to select each character randomly from a predefined string of characters.
You could extend this string to include both uppercase and lowercase characters and other
characters that might be valid.

The variable $max_char defines the upper limit of the random number generation. This is
set to the length of the string of valid characters minus 1 to avoid the mt_rand() function from
returning a value that is outside the string’s boundaries.

3-3. Logarithms and Exponents
PHP implements the log(), log10(), exp(), and pow() functions, as well as logp1() and
expm1() that are marked as experimental, to calculate logarithms and exponents.

The exp() and log() functions are considered to be the inverse of each other, and they
use e as the base. This number is called neperian, or the natural logarithm base. $e = exp(1);
gives the value of e, and it’s equal to 2.71828182846. This number is also defined as a constant
called M_E, and it’s defined as 2.7182818284590452354.

The following example shows the calculation of e and the inverse nature of the two
functions.

The Code
<?php
// Example 3-3-1.php
$e = exp(1);
echo "$e\n";
$i = log($e);
echo "$i\n";
?>

How It Works
This example calculates the value of e and assigns it to the variable $e, which is printed before
it is used as a parameter to the log() function.

2.71828182846
1

You can calculate logarithms with other base values by dividing the result of the log()
function with log(base). If the base is 10, it is faster to use the built-in log10() function, but
for all other values of base, you can use this method.

3-3 ■ LOGARITHMS AND EXPONENTS100

The Code
<?php
// Example 3-3-2.php
$val = 100;
$i = log($val);
echo "log($val) = $i\n";
$i10 = log($val) / log(10);
echo "log($val) / log(10) = $i10\n";
$i10 = log10($val);
echo "log10($val) = $i10\n";
?>

How It Works
This example calculates the natural logarithm of 10 and prints it. Then it uses the nature of
the logarithmic functions to calculate log10 of the same value, and at last it uses the building
log10() function to verify the result. The output from this example looks like this:

log(100) = 4.60517018599
log(100) / log(10) = 2
log10(100) = 2

The pow() function calculates one number to the power of another number. The function
takes two arguments, where the first is the base and the second is the exponent. The return
value will be an integer, if possible, or a float value. In the case of an error, the return value will
be FALSE. When the base value is e, the pow() function becomes equal to the exp() function.

■Note PHP cannot handle negative base values if the exponent is a noninteger.

The following example shows how to use the pow() function with integers, floats, and
both negative and positive numbers.

The Code
<?php
// Example 3-3-3.php
echo pow(2, 8) . "\n";
echo pow(-2, 5) . "\n";
echo pow(-2.5, 5) . "\n";
echo pow(0, 0) . "\n";
echo pow(M_E, 1) . "\n";
echo pow(3.2, 4.5) . "\n";
echo pow(2, -2) . "\n";
echo pow(-2, -3) . "\n";
?>

3-3 ■ LOGARITHMS AND EXPONENTS 101

How It Works
This example shows how the pow() function can calculate the power of both positive and neg-
ative values of both integer and floating-point types.

256
-32
-97.65625
1
2.71828182846
187.574977246
0.25
-0.125

Another special case of pow() is that when the exponent is 0.5, the function is equal to the
sqrt() function.

When presenting data in a graphical form (bar or line charts), it is sometimes practical to
use a logarithmic scale to avoid small values being too close to the X axis and to reduce the
visual difference between small and large values.

The next example uses a simple HTML-based technology to draw bar charts from an
array of data. The script defines two constants used by the ShowChart() function to select a
linear or logarithmic scale when drawing the chart. The ShowChart() function takes three
arguments, where the first is the array of data used to draw the chart, the second is the
optional chart type, and the third is an optional height value used to calculate the scaling of
the data. In this case, the data used is hard-coded, but this part of the script could use a data-
base connection or a log file from a web server to fetch the data. The final part of the script is
where the HTML document is created and sent to the client.

The Code
<?php
// Example 3-3-4.php
define('BAR_LIN', 1);
define('BAR_LOG', 2);

function ShowChart($arrData, $iType = BAR_LIN, $iHeight = 200) {
echo '<table border=0><tr>';

$max = 0;
foreach($arrData as $y) {
if ($iType == BAR_LOG) {
$y = log10($y);

}
if ($y > $max) $max = $y;

}
$scale = $iHeight / $max;

3-3 ■ LOGARITHMS AND EXPONENTS102

foreach($arrData as $x=>$y) {
if ($iType == BAR_LOG) {
$y = log10($y);

}
$y = (int)($y*$scale);
echo "<td valign=bottom>

</td>
<td width=5> </td>";

}
echo '</tr></table>';

}

$arrData = array(
150,
5,
200,
8,
170,
50,
3

);

echo '<html><body>';

echo 'Show chart with linear scale';
ShowChart($arrData, BAR_LIN);

echo '
Show chart with logarithmic scale';
ShowChart($arrData, BAR_LOG);

echo '</body></html>';
?>

How It Works
The ShowChart() function uses a small image of 1✕1 pixels to generate the bars. Each bar is
represented with the image being scaled to a height and width that matches the data in the
first array passed to the function. The second parameter selects linear or logarithmic scale,
and the third parameter defines the height of the entire chart. Figure 3-1 shows the resulting
charts with linear and logarithmic scale.

3-3 ■ LOGARITHMS AND EXPONENTS 103

Figure 3-1. Sample bar charts with linear and logarithmic scale

Using plain HTML to generate charts is not optimal because of the limitations of the
markup language. It’s possible to generate more advanced charts with the GD (GIF, PNG, or
JPG images) and Ming (Flash movies) extensions. Figure 3-2 shows an example of a bar chart
generated with the Ming extension.

Figure 3-2. Bar chart generated with the Ming extension

Linear Logarithmic

3-3 ■ LOGARITHMS AND EXPONENTS104

3-4. Trigonometric Functions
PHP implements a full set of trigonometric and hyperbolic functions as well as a few
functions to convert from degrees to radians and back. A number of constants, including
M_PI (3.1415926538979323846), and a few derivatives are also defined to make life easier for
the developer, as described in Table 3-4 and Table 3-5.

Table 3-4. Trigonometric Functions

Name Description

cos() Cosine

sin() Sine

tan() Tangent

acos() Arc cosine

asin() Arc sine

atan() Arc tangent

atan2() Arc tangent of two variables

pi() A function returning pi (the same as M_PI)

deg2rad() Degree to radians

rad2deg() Radians to degrees

Table 3-5. Hyperbolic Functions

Name Description

cosh() Hyperbolic cosine (exp(arg) + exp(-arg))/2

sinh() Hyperbolic sine (exp(arg) - exp(-arg))/2

tanh() Hyperbolic tangent sinh(arg)/cosh(arg)

acosh() Inverse hyperbolic cosine

asinh() Inverse hyperbolic sine

atanh() Inverse hyperbolic tangent

■Note acosh(), asinh(), and atanh() are not implemented on the Windows platform.

You can use the trigonometric functions to calculate positions of elements in a plane. This
can be useful when using GD or Ming extensions to generate dynamic graphical content. If a
line that starts in (0, 0) and ends in (100, 0) is to be duplicated starting at (20, 20) and rotated
35 degrees, you can calculate the ending point with the trigonometric functions, as shown in
the following example.

3-4 ■ TRIGONOMETRIC FUNCTIONS 105

The Code
<?php
// Example 3-4-1.php
$start = array(0, 0);
$end = array(100, 0);
$length = sqrt(pow($end[0] - $start[0], 2) + pow($end[1] - $start[1], 2));

$angle = 35;
$r = deg2rad($angle);
$new_start = array(20, 20);
$new_end = array(
$new_start[0] + cos($r) * $length,
$new_start[1] + sin($r) * $length

);

var_dump($new_end);
?>

How It Works
The first line is defined by two sets of coordinates. These are assigned as arrays to the variables
$start and $end and used to calculate the length of the line. Setting the starting point of the
new line is as simple as assigning $new_start the coordinates as an array. This is then used
together with the angle (35 degrees) to calculate the value of $new_end.

array(2) {
[0]=>
float(101.915204429)
[1]=>
float(77.3576436351)

}

The arguments to cos(), sin(), and tan() should always be given in radians, and the
values returned by acos(), asin(), and atan() will always be in radians. If you need to operate
on angles specified in degrees, you can use the deg2rad() and rad2deg() functions to convert
between the two.

Trigonometric functions have a wide range of usages; one of them is to calculate the dis-
tance between two locations on the earth. Each location is specified by a set of coordinates.
Several different methods with varying accuracy are available, and they can more or less com-
pensate for the fact that the earth is not a perfect sphere. One of the simplest methods is
called the Great Circle Distance, and it’s based on the assumptions that 1 minute of arc is
1 nautical mile and the radius of the earth is 6,364.963 kilometers (3,955.00465 miles). These
assumptions work fine when both locations are far from the poles and equator.

3-4 ■ TRIGONOMETRIC FUNCTIONS106

The formula used to calculate the distance takes the longitude and latitude for each loca-
tion, and it looks like this:

D = R * ARCOS (SIN(L1) * SIN(L2) + COS(L1) * COS(L2) * COS(DG))

This formula returns the distance in kilometers or miles (depending on the radius value)
and assumes all the trigonometric functions to be working in degrees. For most calculators it
is possible to choose degrees or radians, but for PHP only radians is available, so you need to
convert everything to and from degrees. It would also be nice to have the function return the
result in miles or kilometers.

R is the earth’s radius in kilometers or miles, L1 and L2 are the latitude of the first and sec-
ond locations in degrees, and DG is the longitude of the second location minus the longitude of
the first location, also in degrees. Latitude values are negative south of the equator. Longitudes
are negative to the west with the center being the Greenwich mean time (GMT) line.

Calculating the distance between two locations starts by finding the longitude and lati-
tude of each location and inserting the values in the formula. A Google search is an easy way
to find longitude and latitude values for many popular locations. You can use maps and even
Global Positioning System (GPS) receivers. As an example, we have chosen Copenhagen and
Los Angeles. Copenhagen is located east of the GMT line at 12.56951 and north of the equator
at 55.67621, and Los Angeles is located west of the GMT line at –118.37323 and a bit closer to
the equator at 34.01241.

To make the calculations a little easier, you can start by creating a function that will
return the distance between two locations in either kilometers or miles. The function is called
GetDistance(); it takes four mandatory parameters and one optional parameter. The two con-
stants (KM and MILES) select the format of the return value as well as define the earth’s radius in
both formats.

The Code
<?php
// Example 3-4-2.php
define('KM', 6364.963);
define('MILES', 3955.00465);

function GetDistance($la1, $lo1, $la2, $lo2, $r = KM) {
$l1 = deg2rad($la1);
$l2 = deg2rad($la2);
$dg = deg2rad($lo2 - $lo1);
$d = $r * acos(sin($l1) * sin($l2) + cos($l1) * cos($l2) * cos($dg));
return $d;

}

// Copenhagen
$lat1 = 55.67621;
$long1 = 12.56951;

3-4 ■ TRIGONOMETRIC FUNCTIONS 107

// Los Angeles
$lat2 = 34.01241;
$long2 = -118.37323;

echo "The distance from Copenhagen to Los Angeles is " .
round(GetDistance($lat1, $long1, $lat2, $long2)) . " km\n";

echo "The distance from Copenhagen to Los Angeles is " .
round(GetDistance($lat1, $long1, $lat2, $long2, MILES)) . " miles\n";

?>

How It Works
Two constants define the radius of the earth in kilometers and miles. The same two constants
are used as parameters to the GetDistance() function, so there is no need for additional con-
stants here. The GetDistance() function takes four mandatory parameters that specify the
latitude and longitude of each point for which the distance should be calculated.

The round() function is used on the return value, before printing, to get rid of any deci-
mals, because the calculation is not that accurate anyway. The output from the script is the
distance between Copenhagen and Los Angeles in kilometers and in miles:

The distance from Copenhagen to Los Angeles is 9003 km
The distance from Copenhagen to Los Angeles is 5594 miles

3-5. Formatting of Numeric Data
Except for warnings, errors, and so on, most output from PHP is generated by a few functions,
such as echo, print(), and printf(). These functions convert the argument to a string and
send it to the client (console or web browser). The PHP-GTK extension uses other
methods/functions to generate output. You can use the sprintf() function in the same way as
the printf() function, except it returns the formatted string for further processing. The con-
version of numbers to string representation takes place in a simple way without any special
formatting, except for a few options used with the |printf() function. It is possible to embed
integer and floating-point values in strings for easy printing, as shown in the following sample.

The Code
<?php
// Example 3-5-1.php
$i = 123;
$f = 12.567;

echo "\$i = $i and \$f = $f\n";
?>

3-5 ■ FORMATTING OF NUMERIC DATA108

How It Works
Two numeric variables are defined and assigned an integer and a floating-point value. The two
variables are then embedded in a string. This generates the following output:

$i = 123 and $f = 12.567

Other functions can format numeric values before the value is output to the client. You
can convert an integer into a string representation with a different base using one of these
functions: decbin(), decoct(), dechex(), or base_convert(). The base_convert() function can
convert an integer to any base, as you saw in recipe 3-1, but the first three functions make the
code a bit more readable, and there is no need for additional parameters. Three functions—
bindec(), octdec(), and hexdec()—can convert binary, octal, and hexadecimal strings to
decimal integer values; again, these conversions can be handled by base_convert(), but the
result will be a string value for any conversion, where the three other functions will return an
integer or a float depending on the number of bits needed to represent the number.

When decimal numbers (integers or floats) are presented, it’s common to use a decimal
point, a thousand separator, and a fixed number of decimals after the decimal point. This
makes it much easier to read the value when it contains many digits. In PHP the function
number_format() converts integers and floating-point values into a readable string representa-
tion. The function takes one, two, or four parameters. The first parameter is the numeric value
to be formatted. This is expected to be a floating-point value, but the function allows it to be
an integer or a string and performs the conversion to a float when needed.

■Note If a non-numeric string value is passed as the first parameter, the internal conversion will result in 0.
No warnings or errors will be generated.

The second parameter indicates the number of decimals after the decimal point. The
default number of decimals is zero. The third and fourth parameters specify the character for
the decimal point and thousand separator. The default values are a dot (.) and a comma (,),
but you can change to any character. The following example shows how you can format an
integer and a floating-point value with the number_format() function.

The Code
<?php
// Example 3-5-2.php
$i = 123456;
$f = 98765.567;

$si = number_format($i, 0, ',', '.');
$sf = number_format($f, 2);

echo "\$si = $si and \$sf = $sf\n";
?>

3-5 ■ FORMATTING OF NUMERIC DATA 109

How It Works
Two floating-point values are defined and formatted with the number_format() function. The
first value is presented as an integer with zero decimals, the decimal point is represented with
a comma (not shown), and the thousand separator is a dot. The second value is formatted
with two decimals and uses the system default for the decimal point and thousand separator.

$si = 123.456 and $sf = 98,765.57

You can use two other functions to format numbers: printf() and sprintf(). Both func-
tions take one or more arguments, where the first argument is a string that describes the
format and the remaining arguments replace placeholders defined in the formatting string
with values. The main difference between the two functions is the way the output is handled.
The printf() function sends the output directly to the client and returns the length of the
printed string; sprintf() returns the string to the program. Both functions follow the same
formatting rules, where % followed by a letter indicates a placeholder. Table 3-6 lists the
allowed placeholders.

Table 3-6. printf() and sprintf() Formatting Types

Type Description

% A literal percent character. No argument is required.

b The argument is treated as an integer and presented as a binary number.

c The argument is treated as an integer and presented as the character with that American
Standard Code for Information Interchange (ASCII) value.

d The argument is treated as an integer and presented as a (signed) decimal number.

e The argument is treated as scientific notation (for example, 1.2e+2).

|u The argument is treated as an integer and presented as an unsigned decimal number.

f The argument is treated as a float and presented as a floating-point number (locale aware).

F The argument is treated as a float and presented as a floating-point number (nonlocale
aware). Available since PHP 4.3.10 and PHP 5.0.3.

o The argument is treated as an integer and presented as an octal number.

s The argument is treated and presented as a string.

x The argument is treated as an integer and presented as a hexadecimal number (with
lowercase letters).

X The argument is treated as an integer and presented as a hexadecimal number (with upper-
case letters).

The following example shows how you can format an integer and a floating-point value
with the printf() function.

3-5 ■ FORMATTING OF NUMERIC DATA110

The Code
<?php
// Example 3-5-3.php
$i = 123456;
$f = 98765.567;

printf("\$i = %x and \$i = %b\n", $i, $i);
printf("\$i = %d and \$f = %f\n", $i, $f);
printf("\$i = %09d and \$f = %0.2f\n", $i, $f);
?>

How It Works
This example shows how the printf() function can format numbers as different data types.

$i = 1E240 and $i = 11110001001000000
$i = 123456 and $f = 98765.567000
$i = 000123456 and $f = 98765.57

It is also possible to use typecasting to convert numbers to strings; this works as if the
variable were embedded in a string, as shown in the next example.

The Code
<?php
// Example 3-5-4.php
$i = 123456;
$f = 98765.567;

echo "\$i = " . (string)$i . "\n";
echo "\$f = " . (string)$f . "\n";
?>

How It Works
The two variables are typecast into a string value and used to generate the output.

$i = 123456
$f = 98765.567

3-5 ■ FORMATTING OF NUMERIC DATA 111

On systems where libc implements the function strfmon(), PHP will also define a
function called money_format(). The function takes a formatting string and a floating-point
number as arguments. The result of this function depends on the setting of the LC_MONETARY
category of the locale settings. You can change this value with the setlocale() function before
calling money_format(). This function can convert only one floating-point value at the time,
and the formatting string can contain one placeholder along with other characters that will be
returned with the formatted number.

The placeholder is defined as a sequence of the following elements:

• The % character indicates the beginning of the placeholder.

• Optional flags.

• Optional width.

• Optional left precision.

• Optional right precision.

• A conversion character.

The following example shows a few ways of formatting currency values and shows how to
change the locale setting before showing a money value, as well as a few other formatting
options.

The Code
<?php
// Example 3-5-5.php
$number = 1234.56;
setlocale(LC_MONETARY, 'en_US');
echo money_format('%i', $number) . "\n";

setlocale(LC_MONETARY, 'en_DK');
echo money_format('%.2i', $number) . "\n";

$number = -1234.5672;
setlocale(LC_MONETARY, 'en_US');
echo money_format('%(#10n', $number) . "\n";
echo money_format('%(#10i', $number) . "\n";
?>

How It Works
A floating-point value is passed to the money_format() function. Before each call to this func-
tion, the LC_MONETARY value is changed by a call to the setlocale() function.

USD 1,234.56
DKK 1.234,56
($ 1,234.57)
(USD 1,234.57)

3-5 ■ FORMATTING OF NUMERIC DATA112

3-6. Math Libraries
PHP comes with two math extensions: BCMath and GMP. BCMath is a binary calculator that
supports numbers of any size and precision. This extension is bundled with PHP. (It’s compiled
by default on Windows systems; on Unix systems it can be enabled with the -enable-bcmath con-
figure option.) There is no need for external libraries. The GMP extension is a wrapper around
the GNU MP library, and it allows you to work with arbitrary-length integers. This extension
requires the GNU library and can be included by adding -with-gmp when configuring PHP. (For
binary Windows distributions this will be included in the php_gmp.dll file). Table 3-7 shows the
functions implemented by the BCMath extension.

Table 3-7. BCMath Functions

Name Description

bcadd() Adds two numbers

bccomp() Compares two numbers

|bcdiv() Divides two numbers

bcmod() Calculates the remainder with the division of two numbers

bcmul() Multiplies two numbers

bcpow() Raises one number to the power of another

bcpowmod() Raises one number to the power of another, raised by the specified modulus

bcscale() Sets the default scale for all BCMath functions

bcsqrt() Calculates the square root of a number

bcsub() Subtracts two numbers

Most of these functions take an optional scale parameter. If the scale parameter is omit-
ted, the functions will use the value defined by a call to bcscale(). The scale parameter defines
the number of decimals returned by the function, as shown in the following example.

The Code
<?php
// Example 3-6-1.php
bcscale(3);
$a = 1.123;
$b = 2.345;

$c = bcadd($a, $b);
echo "$c\n";

$c = bcadd($a, $b, 1);
echo "$c\n";
?>

3-6 ■ MATH LIBRARIES 113

How It Works
Two floating-point values are defined and added with the bcadd() function using the default
scale (3) set by a call to bcscae(). Then the same two values are added, but this time the
default scale is overwritten by the third argument. Note how the result is truncated and not
rounded.

3.468
3.4

The GMP extension implements a long list of functions (see Table 3-8) that can be used to
manipulate large integer values (more than 32 bits).

Table 3-8. GMP Functions

Name Description

gmp_abs Calculates absolute value

gmp_add Adds numbers

|gmp_and Logical and

gmp_clrbit Clears bit

gmp_cmp Compares numbers

gmp_com Calculates one’s complement

|gmp_div_q Divides numbers

gmp_div_qr Divides numbers and gets quotient and remainder

gmp_div_r Remainder of the division of numbers

gmp_div Alias of gmp_div_q()

gmp_divexact Exact division of numbers

gmp_fact Factorial

gmp_gcd Calculates GCD

gmp_gcdext Calculates GCD and multipliers

gmp_hamdist Hamming distance

gmp_init Creates GMP number

gmp_intval Converts GMP number to integer

gmp_invert Inverse by modulo

gmp_jacobi Jacobi symbol

gmp_legendre Legendre symbol

gmp_mod Modulo operation

gmp_mul Multiplies numbers

gmp_neg Negates number

gmp_or Logical or

gmp_perfect_square Perfect square check

gmp_popcount Population count

3-6 ■ MATH LIBRARIES114

Name Description

gmp_pow Raises number into power

gmp_powm Raises number into power with modulo

gmp_prob_prime Checks if number is “probably prime”

gmp_random Random number

gmp_scan0 Scans for 0

gmp_scan1 Scans for 1

gmp_setbit Sets bit

gmp_sign Sign of number

gmp_sqrt Calculates square root

gmp_sqrtrem Square root with remainder

gmp_strval Converts GMP number to string

gmp_sub Subtracts numbers

gmp_xor Logical xor

The following is an alternative to base_convert() that works on integers up to 32-bit.

The Code

<?php
// Example 3-6-2.php
if (!extension_loaded("gmp")) {
dl("php_gmp.dll");

}
/*use gmp library to convert base. gmp will convert numbers > 32bit*/
function gmp_convert($num, $base_a, $base_b)
{

return gmp_strval(gmp_init($num, $base_a), $base_b);
}

echo "12345678987654321 in hex is: " .
gmp_convert('12345678987654321', 10, 16) . "\n";

?>

How It Works
This example takes a large integer value and converts it into a hexadecimal representation.
The output will look like this:

12345678987654321 in hex is: 2bdc546291f4b1

Note that all the integer values are represented as strings.

3-6 ■ MATH LIBRARIES 115

■Note Loading the GMP extension as a DLL will work only on Windows systems, and using the dl() func-
tion will work only for CLI and Common Gateway Interface (CGI) versions of PHP. For the Unix system, the
GMP extension will be built-in or must be loaded as gmp.so.

The large integer values are stored internally as resource types. The function gmp_init()
takes two parameters, where the first is a string representation and the second is an optional
base value if the integer is given in a base value other than 10. The function gmp_strval() can
convert a GMP resource to a readable string value. The rest of the functions manipulate one or
more large integer values.

3-7. A Static Math Class
The math functions in PHP are, for the most part, designed to be used directly as functions
and procedures, but with the new object model introduced in PHP 5 it’s possible to create a
static Math() class that will act like math classes in other languages such as Java or JavaScript.

■Note It’s always faster to call the functions directly than it is to use classes to wrap around the functions.
However, static classes can make function names easier to remember, as they can be defined closer to what
is used in other languages.

The next example shows how you can create and use a simple static Math() class. Using
the static keyword in front of class members and methods makes it possible to use these
without instantiating the class.

The Code
<?php
// Example math.php
define('RAND_MAX', mt_getrandmax());

class Math {
static $pi = M_PI;
static $e = M_E;

static function pi() {
return M_PI;

}
static function intval($val) {
return intval($val);

}

3-7 ■ A STATIC MATH CLASS116

static function floor($val) {
return floor($val);

}
static function ceil($val) {
return ceil($val);

}
static function round($val, $decimals = 0) {
return round($val, $decimals);

}
static function abs($val) {
return abs($val);

}
static function floatval($val) {
return floatval($val);

}
static function rand($min = 0, $max = RAND_MAX) {
return mt_rand($min, $max);

}
static function min($var1, $var2) {
return min($var1, $var2);

}
static function max($var1, $var2) {
return max($var1, $var2);

}
}

$a = 3.5;

echo "Math::\$pi = " . Math::$pi . "\n";
echo "Math::\$e = " . Math::$e . "\n";
echo "Math::intval($a) = " . Math::intval($a) . "\n";
echo "Math::floor($a) = " . Math::floor($a) . "\n";
echo "Math::ceil($a) = " . Math::ceil($a) . "\n";
echo "Math::round(Math::\$pi, 2) = " . Math::round(Math::$pi, 2) . "\n";
echo "Math::abs(-$a) = " . Math::abs(-$a) . "\n";
echo "Math::floatval($a) = " . Math::floatval($a) . "\n";
echo "Math::rand(5, 25) = " . Math::rand(5, 25) . "\n";
echo "Math::rand() = " . Math::rand() . "\n";
echo "Math::min(2, 28) = " . Math::min(3, 28) . "\n";
echo "Math::max(3, 28) = " . Math::max(3, 28) . "\n";
?>

3-7 ■ A STATIC MATH CLASS 117

How It Works
The output from this script is simple but shows how the class is used:

Math::$pi = 3.14159265359
Math::$e = 2.71828182846
Math::intval(3.5) = 3
Math::floor(3.5) = 3
Math::ceil(3.5) = 4
Math::round(Math::$pi, 2) = 3.14
Math::abs(-3.5) = 3.5
Math::floatval(3.5) = 3.5
Math::rand(5, 25) = 13
Math::rand() = 1651387578
Math::min(2, 28) = 3
Math::max(3, 28) = 28

The JavaScript Math() class does not implement the intval(), floatval(), and rand()
functions, and the round() function does not take a second argument to specify the number
of decimals. The following example shows the same code in JavaScript.

The Code
<html>
<!-- Example math.html -->
<body>
<script language=JavaScript>
a = 3.5;
document.write('Math.PI = ' + Math.PI + '
');
document.write('Math.E = ' + Math.E + '
');
document.write('floor(' + a + ') = ' + Math.floor(a) + '
');
document.write('ceil(' + a + ') = ' + Math.ceil(a) + '
');
document.write('round(Math.PI) = ' + Math.round(Math.PI) + '
');
document.write('min(3, 28) = ' + Math.min(3, 28) + '
');
document.write('max(3, 28) = ' + Math.max(3, 28) + '
');

</script>
</body>
</html>

How It Works
Figure 3-3 shows the output in a browser.

3-7 ■ A STATIC MATH CLASS118

Figure 3-3. Using the Math() class in JavaScript

Summary
This chapter demonstrated how you can use many of the built-in math functions and opera-
tors in conjunction with the advantages of a loosely typed language such as PHP to calculate
simple but advanced computations.

We first covered the basic data types and how PHP handles them when assigning and cal-
culating values. Then we discussed the conversion of integers between different base values.

Next, we talked about random numbers and how to build functions to generate random
values of floating-point or string data types.

The next two topics were logarithmic and trigonometric functions. These functions have
a wide range of usages, but this chapter concentrated on how you can use them to generate
charts and calculate the distance between two points on the earth.

Then, we discussed two extensions for handling math on numbers that do not fit into the
simple numeric data types of PHP. Finally, we showed how you can create a static math class
and use it like you would implement math classes in other languages.

Looking Ahead
In Chapter 4, Jon Stephens will demonstrate how to use arrays as complex data types in PHP.
The chapter will show how you can manipulate arrays, how you can search arrays to find a
specific value, and how you can sort and traverse arrays with different methods.

3-7 ■ A STATIC MATH CLASS 119

