
Chapter 8
Series Analysis

Anthony J. Guttmann and Iwan Jensen

8.1 Objective and General Principles

As we have seen in earlier chapters, the problem of determining the critical be-
haviour of various generating functions, such as that for SAP and polyominoes is an
unsolved problem. One is thus forced to resort to numerical methods, of which the
most successful for determining the precise behaviour of a given model on a given
lattice, is the method of exact series expansions. In this method, one generates as
many terms as possible in the generating function, so that if the generating function
is written

F(x) = ∑
n≥0

fnxn,

the coefficient fn which counts the number of objects with some measure of size
indexed by n—typically the perimeter or area—is known for n ≤ N.

The fundamental problem of series analysis is this: Given a finite number of terms
in the series expansion of a function F(x) what can one say about the asymptotic
and in general singular behaviour of F(x) or fn? This after all is a property of the
infinite series. The problem is thus mathematically ill-posed, as given the first N
coefficients of a power series expansion, one can add to it the function xN+1H(x),
for any function H(x). The behaviour of the modified function is then not reflected
in the known series coefficients.

It is thus a (usually) unstated assumption that the coefficients to hand are indeed
representative of the underlying function, so that a careful analysis can then reveal
something of the true large-n behaviour. For the same reason, quoting error bars
in any method of series analysis is fraught with difficulty. It must be understood
that quoted error bars are in no sense rigorous. Often unfortunately they reflect the
optimism of the investigator in the quality of his/her investigations! Usually the best
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one can do is to calculate some mean and variance of a range of estimates, and try
and present evidence that there is no systematic drift of estimates. If there is drift,
one can try and estimate that too.

We will show examples of this type of error analysis, which can, in favourable
cases, give rise to surprisingly accurate critical parameters. Most of the generating
functions pertaining to polygons, polyominoes and polyhedra are believed to have
algebraic singularities, though in most cases this has not been proved. That is to say,
the generating function above is believed to behave as

F(x) ∼ A(1− x/xc)
θ as x → x−c . (8.1)

Hence it follows that

fn = [xn]F(x) ∼ An−θ−1

Γ (θ )xn
c
. (8.2)

Here A is referred to as the critical amplitude, xc as the critical point, and θ as the
critical exponent.

A more comprehensive review of various methods used to analyse and estimate
the asymptotic behaviour of series can be found in [7].

8.2 Ratio Method

The ratio method was perhaps the earliest systematic method of series analysis em-
ployed, and is still a useful starting point, prior to the application of more sophisti-
cated methods. It was first used by M F Sykes in his 1951 D Phil studies, under the
supervision of C Domb. From equation (8.2), it follows that the ratio of successive
terms

rn =
fn

fn−1
=

1
xc

(
1− θ + 1

n
+ O(

1
n
)

)
. (8.3)

From this idea, it is then natural to plot the successive ratios {rn} against 1/n. If the
correction term O( 1

n ) can be ignored, such a plot will be linear, with gradient− θ+1
xc

,

and intercept 1/xc at 1/n = 0.
We show this method in action by considering the application of the ratio method

to the polygon generating function for SAP on the triangular lattice. The first few
terms in the generating function (in fact from p3 to p26) are: 2, 3, 6, 15, 42, 123,
380, 1212, 3966, 13265, 45144, 155955, 545690, 1930635, 6897210, 24852576,
90237582, 329896569, 1213528736, 4489041219, 16690581534, 62346895571,
233893503330, 880918093866. Plotting successive ratios against 1/n results in the
plot shown in Fig. 8.1. The critical point is known [16] to be at xc ≈ 0.240917574 . . .
= 1/4.15079722 . . .. From Fig. 8.1, one sees that the locus of points, after some
initial (low n) curvature becomes linear to the naked eye for n > 15 or so, (corre-
sponding to 1/n < 0.067). Visual extrapolation to 1/xc is quite obvious. A straight
line drawn through the last 4− 6 data points intercepts the horizontal axis around
1/n ≈ 0.13. Thus the gradient is approximately 4.1508−2.8

−0.13 ≈ −10.39, from which
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we conclude that the exponent θ + 1 = −2.50. It is known [19] that the exact value
is θ = −7/2, which is in complete agreement with this simple graphical analysis.

Various refinements of the method can be readily derived. If the critical point is
known exactly, it follows from equation (8.3) that estimators of the exponent θ are
given by

θ = n(1− xc · rn)−1 + O(1).

Similarly, if the exponent θ is known, estimators of the critical point xc are given by

xc =
1
rn

(
1− θ + 1

n
+ O(

1
n
)

)
.

One problem with the ratio method is that if the singularity closest to the origin
is not the singularity of interest (the so-called physical singularity), then the ratio
method will not give information about the physical singularity. Worse still, if the
closest singularity to the origin is a conjugate pair of singularities, lying in the com-
plex plane and off the real axis, the ratios will vary dramatically in both sign and
magnitude. To overcome this difficulty G A Baker Jr [1] proposed the use of Padé
approximants applied to the logarithmic derivative of the series expansion.
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Fig. 8.1 Plot of ratios against 1/n for triangular lattice polygons. A straight line through the last
few data points intercepts the Ratios axis at 1/xc.
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8.3 Padé Approximants

The basic idea of Padé approximation is very simple. Given a function F(x) with a
simple pole at some point xc we then use the series expansion of F(x) to form an
approximation to F(x) as a ratio of two polynomials,

F(x) =
Pi(x)
Q j(x)

(8.4)

where Pi(x) and Q j(x) are polynomials of degree i and j, respectively, whose coef-
ficients are chosen such that the first i+ j +1 terms in the series expansion for F(x)
are identical to those of the expansion for Pi(x)/Q j(x). It is a convention to impose
the normalisation condition Q j(0) = 1.

In order to use this basic Padé approximation scheme for polygon problems we
must first transform the series into a suitable form, which brings us to the classic
method called Dlog-Padé approximation [1]. If we have a function with the expected
critical behaviour typical of regular singular points, as given by equation (8.1), then
taking the derivative of the log of F(x) gives

F̂(x) =
d
dx

logF(x) ≃ θ
x− xc

+C. (8.5)

This form is perfectly suited for Padé analysis and we see that an estimate x∗c of
the critical point xc can be obtained from the roots of the denominator polynomial
Q j(x), while an estimate of the critical exponent θ is given by the residue at the pole
found at x = x∗c . Such an estimate of the exponent is known as an unbiased estimate.
If xc is exactly known, as is sometimes the case, a biased estimate of the critical
exponent θ can be obtained from the residue of the Padé approximant to F̂(x) at xc,
that is

θ = lim
x→xc

(x− xc)
Pi(x)
Q j(x)

. (8.6)

Finally, if F(x) ∼ A(1− x/xc)
θ as x → x−c , then once estimates x∗c and θ ∗ of the

critical point and critical exponent, respectively, have been obtained, one can then
estimate the critical amplitude A by forming Padé approximants to

(x∗c − x)F(x)1/θ∗ |x=x∗c ,

which should approximate x∗cA1/θ∗
, from which estimates of A follow.

Noting that the Dlog-Padé function F̂(x) = F ′(x)/F(x), we see that forming a
Dlog-Padé approximant is simply equivalent to seeking an approximation to F(x)
by solving the first order homogeneous differential equation.

F ′(x)Q j(x)−F(x)Pi(x) = 0.

This observation leads us straight into the more powerful and more general method
of differential approximants by noting that we can approximate F(x) by a solution
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to a higher order ODE (possibly inhomogeneous). This method was first proposed
and developed by Guttmann and Joyce [11] in 1972, and was subsequently extended
to the inhomogeneous case by Au-Yang and Fisher [5] and Hunter and Baker [13]
in 1979.

8.4 Differential Approximants

As we have seen in earlier chapters the majority of polygon and polyomino models
in statistical mechanics and combinatorics have generating functions with regular
singular points. From the known exact solutions it is clear that the generating func-
tions are often algebraic, or otherwise are given by the solution of simple linear
ordinary differential equations. This observation (originally made in the context of
the Ising model) forms the nucleus of the method of differential approximants. The
basic idea is to approximate the function F(x) by solutions to differential equations
with polynomial coefficients. The singular behaviour of such ODEs is a well-known
classical mathematics problem (see e.g. [6, 14]) and the singular points and expo-
nents are easily calculated. Even if the function globally is not a solution of such a
linear ODE (as is the case for SAP, as proved in Chapter 6) one hopes that locally in
the vicinity of the (physical) critical points the generating function can still be well
approximated by a solution to a linear ODE.

An Mth-order differential approximant (DA) to a function F(x) is formed by
matching the coefficients in the polynomials Qk(x) and P(x) of degree Nk and L,
respectively, so that (one) of the formal solutions to the inhomogeneous differential
equation

M

∑
k=0

Qk(x)

(
x

d
dx

)k

F̃(x) = P(x) (8.7)

agrees with the first N = L + ∑k(Nk + 1) series coefficients of F(x). The function
F̃(x) thus agrees with the power series expansion of the (generally unknown) func-
tion F(x) up to the first N series expansion coefficients. We normalise the DA by
setting QM(0) = 1 thus leaving us with N rather than N + 1 unknown coefficients
to find, in order to specify the ODE. From the theory of ODEs, the singularities of
F(x) are approximated by zeros xi, i = 1, . . . ,NM of QM(x), and the associated crit-
ical exponent λi is estimated from the indicial equation. If there is only a single root
at xi this is just

λi = M−1− QM−1(xi)

xiQ′
M(xi)

. (8.8)

The physical critical point is the first singularity on the positive real axis.
In order to locate the singularities of the series in a systematic fashion we often

use the following procedure: We calculate all [L;N0,N1,N2] and [L;N0,N1,N2,N3]
second- and third-order inhomogeneous differential approximants with |Ni −Nj| ≤
2, that is the degrees of the polynomials Qk differ by at most 2. In addition we
demand that the total number of terms used by the DA is at least Nmax −10, where
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Nmax is the total number of terms available in the series. Each approximant yields
NM possible singularities and associated exponents from the NM zeroes of QM(x)
(most of these are not singularities of the series but merely spurious zeros). Next
these zeros are sorted into equivalence classes by the requirement that they lie at
most a distance 1/2 j apart, where we typically start with j = 35. An equivalence
class is accepted as a singularity if an associated zero appears in more than 75% of
the total number of approximants, and an estimate for the singularity and exponent
is obtained by averaging over the included approximants (the spread among the
approximants is also calculated). The calculation is then repeated for j−1, j−2, . . .
until a minimum value of 8 or 10. To avoid outputting well-converged singularities
at every level, once an equivalence class has been accepted, the data used in the
estimate is discarded, and the subsequent analysis is carried out on the remaining
data only.

One advantage of this method is that spurious outliers, some of which will almost
always be present when so many approximants are generated, are discarded system-
atically and automatically. Unfortunately, it is not possible to provide rigorous error
bounds for differential approximant estimates. In quoting errors we have adopted
the following general procedure: For typical individual estimates with a fixed value
of L the error is calculated from the spread (basically one or two standard devia-
tions) among the approximants used in obtaining the estimate. Note that these error
bounds should not be viewed as a measure of the true error as they cannot include
possible systematic sources of error. The final estimates (and error bounds) take into
account the individual estimates and their error bounds. Note that DA estimates are
not statistically independent so the true error may exceed the estimated error-bars.
This is frequently accommodated by doubling or tripling the calculated error.

8.4.1 The Honeycomb SAP Generating Function

As a first example we apply the differential approximant analysis to the generating
function for SAP on the honeycomb lattice. On this lattice the critical point, criti-
cal exponent and some universal amplitude ratios are known exactly, so this model
provides us with a perfect test-bed for series analysis. In Table 8.1 we have listed
the estimates for the critical point x2

c and exponent 2−α obtained from second- and
third-order DAs. We note that all the estimates are in perfect agreement (surely a
best case scenario) in that within ‘error-bars’ they take the same value. From this
we arrive at the estimate x2

c = 0.2928932186(5) and 2−α = 1.5000004(10). The
final estimates are in perfect agreement with the conjectured [19, 20] exact values
x2

c = 1/µ2 = 1/(2 +
√

2) = 0.292893218813 . . . and 2−α = 3/2.
Before proceeding we will consider possible sources of systematic errors. First

and foremost is the possibility that the estimates might display a systematic drift
as the number of terms used is increased, and secondly there is the possibility of
numerical errors. The latter possibility is quickly dismissed. The calculations were
performed using 128-bit real numbers. The estimates from a few approximants were
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Table 8.1 Critical point and exponent estimates for self-avoiding polygons.

L Second order DA Third order DA
x2

c 2−α x2
c 2−α

0 0.29289321854(19) 1.50000065(41) 0.29289321865(12) 1.50000040(28)
5 0.29289321875(21) 1.50000010(59) 0.29289321852(48) 1.50000041(99)
10 0.29289321855(23) 1.50000060(48) 0.29289321878(32) 1.49999999(97)
15 0.29289321859(19) 1.50000054(43) 0.29289321861(37) 1.50000035(67)
20 0.29289321866(15) 1.50000038(33) 0.29289321860(21) 1.50000049(43)

compared to values obtained using MAPLE with 100 digits accuracy and this clearly
showed that the program was numerically stable and rounding errors were negligi-
ble. In order to address the possibility of systematic drift and lack of convergence to
the true critical values we refer to Fig. 8.2 (this is probably not really necessary in
this case but we include the analysis here in order to present the general method).

In the left panel of Fig. 8.2 we have plotted the estimates from third-order DAs
for x2

c vs. the highest order coefficient index N < Nmax used by the DA. Each dot
in the figure is an estimate obtained from a specific approximant. As can be seen
the estimates clearly settle down to the conjectured exact value (solid line) as N is
increased and there is little to no evidence of any systematic drift at large N. One
curious aspect though is the widening of the spread in the estimates around N = 140.
We have no explanation for this behaviour but it could quite possibly be caused by
just a few ‘spurious’ approximants. In the right panel we show the variation in the
exponent estimates with the critical point estimates. The ‘curve’ traced out by the
estimates passes through the intersection of the lines given by the exact values. We
have not been able to determine the reason for the apparent branching into two parts.
However, the lower ‘branch’ contains many more approximants than the upper one,
and is therefore the selected branch.
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Fig. 8.2 Plot of estimates from third order differential approximants for x2
c vs. the highest order

term used, and the right panel shows 2−α vs. x2
c . The straight lines are the exact predictions.
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The differential approximant analysis can also be used to find possible non-
physical singularities of the generating function. Averaging over the estimates from
the DAs shows that there is an additional non-physical singularity on the negative
x-axis at x = x− = −1/µ2

− = −0.41230(2), where the estimates of the associated
critical exponent α− are consistent with the exact value α− = 3/2. In the left panel
of Fig. 8.3 we have plotted α− vs. the highest order term used by the DAs and we
clearly see the convergence to α− = 3/2. If we take this value as being exact we can
get a refined estimate of x− from the plot in the right panel of Fig. 8.3, where we
notice that the estimates for α− cross the value 3/2 for x− = −0.412305(5) which
we take as our final estimate. From this we then get µ− = 1.557366(10).
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Fig. 8.3 Plot of estimates from third order differential approximants for the location x− of the
non-physical singularity and the associated exponent α−. The left panel shows α− vs. the highest
order term used, and the right panel shows α− vs. x−.

8.5 Amplitude Estimates

Now that the exact values of µ and the exponents have been confirmed we turn
our attention to the “fine structure” of the asymptotic form of the coefficients. In
particular we are interested in obtaining accurate estimates for the leading critical
amplitudes. The method of analysis consists in fitting the coefficients to an assumed
asymptotic form. Generally one must include a number of asymptotic terms in or-
der to account for the behaviour of the generating function at both the physical sin-
gularity and the non-physical singularities as well as accounting for sub-dominant
corrections to the leading order behaviour. As we hope to demonstrate, this method
of analysis can not only yield accurate amplitude estimates, but it is often possible
to clearly demonstrate which corrections to scaling are present.
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Before proceeding with the analysis we briefly consider the kind of terms which
occur in the generating functions, and how they influence the asymptotic behaviour
of the series coefficients. At the most basic level a function G(x) with a power-law
singularity1

G(x) = ∑
n

gnxn ∼ A(x)(1− µx)−ξ , (8.9)

where A(x) is analytic in the vicinity of x = xc = 1/µ , gives rise to the following
asymptotic form of the coefficients:

gn ∼ µnnξ−1

[
Ã+ ∑

i≥1

ai/ni

]
, (8.10)

that is, we get the dominant exponential growth given by the term µn, modified
by a sub-dominant term given by the term nξ−1, involving the critical exponent ξ ,
followed by analytic corrections. The amplitude Ã is related to the function A(x) in
(8.9) via the relation Ã = A(1/µ)/Γ (ξ ). If G(x) has a non-analytic correction to
scaling such as

G(x) = ∑
n

gnxn ∼ (1− µx)−ξ
[
A(x)+ B(x)(1− µx)∆

]
, (8.11)

we get the more complicated form,

gn ∼ µnnξ−1

[
Ã + ∑

i≥1

ai/ni + ∑
i≥0

bi/n∆+i

]
. (8.12)

A singularity on the negative x-axis ∝ (1 + µ−x)−η leads to additional corrections
of the form

∼ (−1)nµn
−nη−1 ∑

i≥0
ci/ni. (8.13)

Singularities in the complex plane are still more complicated. However, a pair of
singularities on the imaginary axis at ±i/τ , that is a term of the form D(x)(1 +
τ2x2)−η , generally results in coefficients that change sign according to a ++−−
pattern. This can be accommodated by terms of the form

∼ (−1)⌊n/2⌋τnnη−1 ∑
i≥0

di/ni. (8.14)

All of these possible contributions must then be put together in an assumed
asymptotic expansion for the coefficients gn and we obtain estimates for the un-
known amplitudes by directly fitting gn to the assumed form. That is, we take a
sub-sequence of terms {gn,gn−1, . . . ,gn−k}, plug into the assumed form and solve

1 We have rewritten equation (8.1) in a more convenient form for this analysis.
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the k + 1 linear equations to obtain estimates for the first few amplitudes. As we
shall demonstrate below this allows us to probe the asymptotic form.

8.5.1 Estimating the Polygon Amplitude Ã

Here we illustrate the method by analysing the coefficients of the generating func-
tion for honeycomb lattice polygons,

P(x) = ∑
n=0

p2nxn.

As well as the physical singularity of interest at x = x2
c , there is a non-physical

singularity at x = x−, where |x−| > x2
c . The asymptotic form of the coefficients

pn of the generating function of square and triangular lattice SAP has been pre-
viously studied in detail [3, 17, 15]. There is now clear numerical evidence that
the leading correction-to-scaling exponent for SAPs is ∆1 = 3/2, as predicted by
Nienhuis [19, 20]. As argued in [3] this leading correction term combined with the
2−α = 3/2 term of the SAP generating function produces an analytic background
term as can be seen from equation (8.11). Indeed, in the previous analysis of SAPs
there was no sign of non-analytic corrections-to-scaling to the generating function
(a strong indirect argument that the leading correction-to-scaling exponent must be
half-integer valued). At first we ignore the singularity at x− (since |x−| > x2

c it is
exponentially suppressed) and obtain estimates for Ã by fitting pn to the form

pn = µnn−5/2

[
Ã+

k

∑
i=1

ai/ni

]
. (8.15)

That is, we take a sub-sequence of terms {pn, pn−2, . . . , pn−2k} (n even), plug into
the formula above and solve the k + 1 linear equations to obtain estimates for the
amplitudes. It is then advantageous to plot estimates for the leading amplitude Ã
against 1/n for several values of k. The results are plotted in the left panel of Fig. 8.4.
Obviously the amplitude estimates are not well behaved and display clear parity
effects. So clearly we can’t just ignore the singularity at x− (which gives rise to
such effects) and we thus try fitting to the more general form

pn = µnn−5/2

[
Ã +

k

∑
i=1

ai/ni

]
+(−1)n/2µn

−n−5/2
k

∑
i=0

bi/ni. (8.16)

The results from these fits are shown in the middle panel of Fig. 8.4. Now we clearly
have very well-behaved estimates (note the significant change of scale along the y-
axis from the left to the middle panel). In the right panel we take a more detailed
look at the data and from the plot we estimate that Ã = 1.2719299(1). We notice
that as more and more correction terms are added (k is increased) the plots of the
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amplitude estimates exhibit less curvature and the slope become less steep. This is
very strong evidence that (8.16) indeed is the correct asymptotic form of pn.
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Fig. 8.4 Plots of fits for the self-avoiding polygon amplitude Ã using in the left panel the asymp-
totic form (8.15) which ignores the singularity at x = x−, and in the middle panel the asymptotic
form (8.16) which includes the singularity at x = x−. The right panel gives a closer look at the data
from the middle panel.

8.5.2 The Correction-to-Scaling Exponent

In this section we shall briefly show how the method of direct fitting can be used to
differentiate between various possible values for the leading correction-to-scaling
exponent ∆1. There are two competing theoretical predictions, ∆1 = 3/2 by Nien-
huis [19] and ∆1 = 11/16 by Saleur [21]. As already stated there is now firm evi-
dence from previous work that the Nienhuis result is correct. Here we shall present
further evidence. Different values for ∆1 lead to different assumed asymptotic forms
for the coefficients. For the SAP series we argued that a value ∆1 = 3/2 (or indeed
any half-integer value) would result only in analytic corrections to the generating
function and thus that pn asymptotically would be given by (8.16). If we have a
generic value for ∆1 we would get

pn = µnn−5/2

[
Ã+

k

∑
i=1

ai/ni +
k

∑
i=0

bi/n∆1+i

]
+(−1)n/2µn

−n−5/2
k

∑
i=0

ci/ni. (8.17)

Fitting to this form we can then estimate the amplitude b0 of the term 1/n∆1. We
would expect that if we used a manifestly incorrect value for ∆1 then b0 should
vanish asymptotically thus demonstrating that this term is really absent from (8.17).
So let us fit to this form using the value ∆1 = 11/16. More precisely we fit to the
generic form

pn = µnn−5/2
k

∑
i=0

ai/nαi +(−1)n/2µn
−n−5/2

k

∑
i=0

bi/ni. (8.18)
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First we include only the leading term arising from ∆1 using the sequence of ex-
ponents αi = {0,11/16,1,2,3, . . .}. Next we fit to a form including additional an-
alytical corrections arising from ∆1 leading to the sequence of exponents αi =
{0,11/16,1,27/16,2,33/16,3,49/16, . . .}. More generally one also expects terms
of the form 1/nm∆1+i with m a non-negative integer. This leads to fits to the form
above but with αi = {0,11/16,1,11/8,27/16,2,33/16,19/8,43/16,11/4,3 . . .}.
The estimates of the amplitude of the term 1/n∆1 obtained from fits to these forms
are shown in Fig. 8.5. As can be seen from the left panel, where we fit to the first
scenario, the amplitude clearly seems to converge to 0, which would indicate the
absence of this term in the asymptotic expansion for pn. In the middle and right
panels we show the results from fits to the more general forms. The estimates are
consistent with the amplitude being identically zero, though the evidence is not quite
as convincing. This is however not really surprising given that the incorrect value
∆1 = 11/16 gives rise to a plethora of absent terms which will tend to greatly ob-
scure the true asymptotic behaviour.
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Fig. 8.5 Plots of estimates for the amplitude of the term 1/n∆1 . The left panel shows results from
fits to the form (8.18) where only the leading order term 1/n∆1 is included (as well as analytical
corrections). In the middle panel additional terms of the form 1/n∆1+i are included and in the right
panel terms like 1/nm∆1+i are included.

8.6 Exact Fuchsian ODEs for Polygon Models

In recent work Zenine et al. [22, 23, 24] obtained, by experimental computer search,
the linear differential equations whose solutions give some quantities of interest in
the study of the Ising model of ferromagnetism. Adopting their methods, Guttmann
and Jensen [8, 9] used the same ideas to find linear differential equations which have
as a solution the generating function T (x) for three-choice polygons and P(x) for
punctured staircase polygons.

Punctured staircase polygons [10] are staircase polygons with internal holes
which are also staircase polygons (the polygons are mutually- as well as self-
avoiding). Here we will study only the case with a single hole (see Fig. 8.6), and
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Imperfect staircasePunctured staircase

Fig. 8.6 A punctured staircase polygon and an imperfect staircase polygon.

we will refer to these objects as punctured staircase polygons. The perimeter length
of staircase polygons is even and thus the total perimeter (the outer perimeter plus
the perimeter of the hole) is also even. We denote by pn the number of punctured
staircase polygons of perimeter 2n.

Three-choice self-avoiding walks on the square lattice were introduced by Manna
[18] and can be defined as follows: Starting from the origin one can step in any di-
rection; after a step upward or downward one can head in any direction (except
backward); after a step to the left one can only step forward or head downward, and
similarly after a step to the right one can continue forward or turn upward. As usual
one can define a polygon version of the walk model by requiring the walk to return
to the origin. So a three-choice polygon [12] is simply a three-choice self-avoiding
walk which returns to the origin, but has no other self-intersections. There are two
distinct classes of three-choice polygons. The three-choice rule either leads to stair-
case polygons or imperfect staircase polygons [4] (see Fig. 8.6). The three-choice
rules produce imperfect staircase polygons in two ways and staircase polygons of
perimeter n in n ways. We denote by tn the number of three-choice polygons of
perimeter 2n.

Here we briefly outline the method used to find the exact ODE, which we will
illustrate by looking at the perimeter generating function of three-choice polygons.
Assume we have a function F(x) with a singularity at x = xc = 1/µ . Starting from
a (long) series expansion for the function F(x) we look for a linear differential
equation of order M of the form

M

∑
k=0

Pk(x)
dk

dxk F(x) = 0, (8.19)

such that F(x) is a solution of this homogeneous linear differential equation, where
the Pk(x) are polynomials. In order to make it as simple as possible we start by
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searching for a Fuchsian [14] equation. Such equations have only regular singular
points. There are several reasons for searching for a Fuchsian equation, rather than
a more general D-finite equation. Computationally the Fuchsian assumption simpli-
fies the search for a solution. One may also argue, less precisely, that for “sensible”
combinatorial models one would expect Fuchsian equations, as non-Fuchsian equa-
tions are characterized by explosive, super-exponential behaviour. Such behaviour is
not normally characteristic of combinatorial problems. (The point at infinity may be
an exception to this somewhat imprecise observation.) One may also ask the ques-
tion whether most of the problems in combinatorics with D-finite solutions have
Fuchsian solutions? While we have not made an exhaustive study, we know of no
counter-example to this suggestion.

From the general theory of Fuchsian [14] equations it follows that the degree of
Pk(x) is at most NM −M + k where NM is the degree of PM(x). To simplify matters
(reduce the order of the unknown polynomials) it is often advantageous to explicitly
assume that the origin and x = xc are regular singular points and to set Pk(x) =
Qk(x)S(x)k, where S(x) = xR(x) and R(x) is a polynomial of minimal degree having
xc as a root (in our case we have R(x) = 1−4x). S(x) could be generalised to include
more regular singular points if some were known from other methods of analysis,
but we have not found this to be particularly advantageous. Thus when searching
for a solution of Fuchsian type there are only two parameters: namely the order
M of the differential equation and the degree qM of the polynomial QM(x). Let
ρ be the degree of S(x) (2 in our case), then for given M and qM there are L =
(M+1)(qM +1)+ρM(M+1)/2−1 unknown coefficients, where we have assumed
without loss of generality that the leading order coefficient in PM(x) = QM(x)S(x)M

is 1. We can then search systematically for solutions by varying M and qM.
In this way we first found a solution with M = 10 and qM = 12, which required

the determination of L = 206 unknown coefficients. We have 260 terms in the half-
perimeter series and thus have more than 50 additional terms with which to check the
correctness of our solution. Having found this conjectured solution we then turned
the ODE into a recurrence relation and used this to generate more series terms in
order to search for a lower order Fuchsian equation. The lowest order equation we
found was eighth order (M = 8) and with qM = 30, which requires the determination
of L = 321 unknown coefficients. Thus from our original 260 term series we could
not have found this 8th order solution since we did not have enough terms to deter-
mine all the unknown coefficients in the ODE. This raises the question as to whether
perhaps there is an ODE of lower order than 8 that generates the coefficients? The
short answer to this is no. Further study of our differential operator revealed that it
can be factorised. In fact we found a factorization into three first-order linear oper-
ators, a second order and a third order. The generating function is a solution of the
8th order operator, not of any of the smaller factors.

So the (half)-perimeter generating function T (x) for three-choice polygons is
conjectured to be a solution of the linear differential equation of order 8,

8

∑
k=0

Pk(x)
dk

dxk F(x) = 0 (8.20)
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with

P8(x) = x3(1−4x)4(1 + 4x)(1 + 4x2)(1 + x + 7x2)Q8(x),

P7(x) = x2(1−4x)3Q7(x), P6(x) = 2x(1−4x)2Q6(x),

P5(x) = 6(1−4x)Q5(x), P4(x) = 24Q4(x), (8.21)

P3(x) = 24Q3(x), P2(x) = 144x(1−2x)Q2(x),

P1(x) = 144(1−4x)Q1(x), P0(x) = 576Q0(x),

where Q8(x), Q7(x), . . ., Q0(x), are polynomials of degree 25, 31, 32, 33, 33, 32, 29,
29, and 29, respectively. See [8] for further details.

The singular points of the differential equation are given by the roots of P8(x).
One can easily check that all the singularities (including x = ∞) are regular singular
points so equation (8.20) is indeed of the Fuchsian type. It is thus possible, using
the method of Frobenius, to obtain from the indicial equation the critical exponents
at the singular points. These are listed in Table 8.2.

Table 8.2 Critical exponents for the regular singular points of the Fuchsian differential equation
satisfied by T (x).

Singularity Exponents
x = 0 −1, 0, 0, 0, 1, 2, 3, 4
x = 1/4 −1/2, −1/2, 0, 1/2, 1, 3/2, 2, 3
x = −1/4 0, 1, 2, 3, 4, 5, 6, 13/2
x = ± i/2 0, 1, 2, 3, 4, 5, 6, 13/2
1+ x+7x2 = 0 0, 1, 2, 2, 3, 4, 5, 6
x = ∞ −2, −3/2, −1, −1, −1/2, 1/2, 3/2, 5/2
Q8(x) = 0 0, 1, 2, 3, 4, 5, 6, 8

We shall now consider the local solutions of the differential equation around each
singularity. Recall that in general it is known [6, 14] that if the indicial equation
yields k critical exponents which differ by an integer, then the local solutions may
contain logarithmic terms up to logk−1. However, for the Fuchsian equation (8.20)
only multiple roots of the indicial equation give rise to logarithmic terms in the
local solution around a given singularity, so that a root of multiplicity k gives rise to
logarithmic terms up to logk−1.

In particular this means that near any of the 25 roots of Q8(x) the local solutions
have no logarithmic terms and the solutions are thus analytic since all the exponents
are positive integers. The roots of Q8(x) are thus apparent singularities [6, 14] of
the Fuchsian equation (8.20). There are methods for distinguishing real and appar-
ent singularities (see, e.g, [6] §45) and in principle one should check that the roots
of Q8(x) satisfy the conditions for being apparent singularities. However, this theo-
retical method is quite cumbersome. An easier numerical way to see that the roots
of Q8(x) must be apparent singularities is as follows: We already found a 10th order
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Fuchsian equation for which the polynomial P10(x) was of a form similar to P8(x) as
listed in equation (8.21), but with the degree of Q10(x) being only 7. That is all the
singularities as tabulated in Table 8.2 also appear in this higher order equation with
the exception of the 25 roots of Q8(x) (at most 7 of these could appear in the order
10 Fuchsian equation). In fact we can find a solution of order 14 of the same form
as above but with Q14(x) being just a constant. So at this order none of the roots of
Q8(x) appear. Clearly any real singularity of the system cannot be made to vanish
and we conclude that the 25 roots of Q8(x) must indeed be apparent singularities.

Assuming that only repeated roots give rise to logarithmic terms, and thus that
a sequence of positive integers give rise to analytic terms, then near the physical
critical point x = xc = 1/4 we expect the singular behaviour

T (x) ∼ A(x)(1−4x)−1/2 + B(x)(1−4x)−1/2 log(1−4x), (8.22)

where A(x) and B(x) are analytic in the neighbourhood of xc. Note that the terms
associated with the exponents 1/2 and 3/2 become part of the analytic correction to
the (1− 4x)−1/2 term. Near the singularity on the negative x-axis, x = x− = −1/4
we expect the singular behaviour

T (x) ∼C(x)(1 + 4x)13/2, (8.23)

where again C(x) is analytic near x−. We expect similar behaviour near the pair of
singularities x =±i/2, and finally at the roots of 1+x+7x2 we expect the behaviour
T (x) ∼ D(x)(1 + x + 7x2)2 log(1 + x + 7x2).

Next we turn our attention to the asymptotic behaviour of the coefficients of
T (x). To standardise our analysis, we assume that the critical point is at 1. The
growth constant of three-choice polygons is 4, so we normalise the series by consid-
ering a new series with coefficients rn, defined by rn = tn+2/4n. Thus the generating
function we study is R(y) = ∑n≥0 rnyn = 4 + 3y + 2.625y2 + · · · . From equations
(8.22) and (8.23) it follows that the asymptotic form of the coefficients is

[yn]R(y) = rn =
1√
n ∑

i≥0

(
ai logn + bi

ni +(−1)n
( ci

n7+i

))
+ O(λ−n). (8.24)

The last term includes the effect of other singularities, further from the origin than
the dominant singularities. These will decay exponentially since λ > 1 in the scaled
variable y = x/4.

Using the recurrence relations for tn (derived from the ODE) it is easy and fast to
generate many more terms rn. We generated the first 100000 terms and saved them
as floats with 500 digit accuracy (this calculation took less than 15 minutes). With
such a long series it is possible to obtain accurate numerical estimates of the first
20 amplitudes ai, bi, ci for i ≤ 19 with precision of more than 100 digits for the
dominant amplitudes, shrinking to 10–20 digits for the the case when i = 18 or 19.
In making these estimates we have ignored the exponentially decaying term, which
is the last term in equation (8.23). In this way we confirmed an earlier conjecture [4]

that a0 = 3
√

3
π3/2 , (where we have taken into account the different normalisation used
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in that paper). We also find that b0 = 3.173275384589898481765 . . . and c0 = −24
π3/2 ,

though we have not been able to identify b0. However, we have successfully iden-
tified further sub-dominant amplitudes, and find a1 = −89

8
√

3π3/2 , a2 = 1019
384

√
3π3/2 , and

a3 = −10484935
248832

√
3π3/2 , and c1 = 225

π3/2 , c2 = −16575
16π3/2 , and c3 = 389295

128π3/2 . It seems possible

that the amplitudes π3/2
√

3ai and π3/2ci are rational.
Estimates for the amplitudes were obtained by fitting rn to the form given above

using an increasing number of amplitudes. ‘Experimentally’ we find we need about
the same total number of terms at xc and −xc = x−.

So in the fits we used the terms with amplitudes ai, and bi, i = 0, . . . ,K and ci,
i = 0, . . . ,2K. Going only to i = K with the ci amplitudes results in much poorer
convergence and going beyond 2K leads to no improvement. For a given K we thus
have to estimate 4K + 3 unknown amplitudes. So we use the last 4K + 3 terms rn

with n ranging from 100000 to 100000− 4K− 2 and solve the resulting system of
4K + 3 linear equations. We find that the amplitudes are fairly stable up to around
2K/3. We observed this by doing the calculation with K = 30 and K = 40 and then
looking at the difference in the amplitude estimates. For a0 and b0 the difference
is less than 10−131, while for c0 the difference is less than 10−123. Each time we
increase the amplitude index by 1 we lose around 106 in accuracy. With i = 20 the
differences are respectively around 10−16 and 10−8.

The excellent convergence is solid evidence (though naturally not a proof) that
the assumptions leading to equation (8.24) are correct. Further evidence was ob-
tained as follows: We can add extra terms to the asymptotic form and check what
happens to the amplitudes of the new terms. If the amplitudes are very small it is
highly likely that the terms are not truly present (if the calculation could be done ex-
actly these amplitudes would be zero). One possibility is that our assumption about
integer exponents leading only to analytic terms is incorrect. To test this we fitted to
the form

1√
n ∑

i≥0

(
ãi logn + b̃i

ni/2
+(−1)n

(
c̃i

n7+i

))
+ O(λ−n)

(as above, in making these estimates we have ignored the exponentially decaying
term, which is the last term in the above equation). With K = 30 we found that
the amplitudes ã1 and b̃1 of the terms logn/n and 1/n, respectively, were less than
10−60, while the amplitudes ã3 and b̃3 were less than 10−50. We think we can safely
say that all the additional terms we just added are not present. We found similar
results if we added terms like log2 n or additional logn terms at y = −1. That is,
we found that those terms were not present. So this fitting procedure provides con-
vincing evidence that the asymptotic form (8.24), and thus the assumption leading
to this formula, is correct.
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8.6.1 Exact ODEs Modulo a Prime

In the above calculations we searched for the ODE using the full series. However, if
the size of the ODE is large then this is very time consuming both in terms of gener-
ating the actual series and then searching through values of M and D looking for the
ODE. In very recent work [2] we have adopted a different and much more efficient
strategy. Rather than perform the search on the full series we search only for a solu-
tion modulo a specific prime (in practice we used the prime p0 = 32749 = 215−19).
The advantages of this approach are obvious. Firstly we only need generate a long
series for a single prime (at least initially) and secondly solving the system deter-
mined by (8.25) amounts to finding whether or not the system of linear equations has
a zero determinant. This is easily done using Gaussian elimination, and if a zero-
determinant is found one can then proceed to solve the system, which yields the
ODE modulo the prime p0. In theory one has to worry about possible false positive
results, but in widespread use we have never encountered this situation in practice
(and in most cases one can check the result using a different prime). Below we give
a brief outline of the procedure developed in [2]. Further details can be found there.

Here we illustrate the method by looking at a different generating function for
punctured and imperfect staircase polygons. We study the case where the count-
ing variable is the ‘length’ (extent along the main diagonal) of the polygons. The
‘length’ is equal to the sum of the coordinates of the point of the polygon furthest
from the origin. For punctured staircase polygons this is also equivalent to counting
according to the half-perimeter of the outer staircase polygon (rather than the to-
tal perimeter of the outer and inner polygons combined). We denote the associated
generating functions as L (x) in the punctured case and I (x) in the imperfect case.

Starting from a (long) series expansion for some function F(x) we look for a
linear differential equation of order M satisfied by F(x). An essential constraint on
the ODE of the type we shall consider here is that it be Fuchsian. In particular this
means that x = 0 and x = ∞ are regular singular points. A form for the ODE that
automatically satisfies this constraint is

M

∑
k=0

Qk(x)

(
x

d
dx

)k

F(x) = 0, (8.25)

where the Qk(x) = ∑D
j=0 qk, jx j are polynomials of degree D. The condition aM,0 6= 0

makes x = 0 a regular singular point and the use of the operator (xd/dx) rather than
just d/dx makes analysis around x = ∞ simple. Finding the ODE (if it exists) then
essentially amounts to solving a system of (M + 1)× (D+ 1) linear equations.

To determine the coefficients qk, j of the polynomials in (8.25) we arrange the
set of linear equations in a well-defined order. There exists a non-trivial solution if
the determinant of the matrix of the system of (M + 1)× (D + 1) linear equations
vanishes. We test this by standard Gaussian elimination, creating an upper triangular
matrix U in the process. If we find that a diagonal element U(N,N) = 0 for some
N, then a non-trivial solution exists. If N < NMD = (M + 1)× (D + 1) we set to
zero all qk, j in the ordered list beyond N. Of the remaining qk, j we set qM,0 = 1,
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Table 8.3 M is the order of the ODE, D is the degree of each polynomial multiplying each deriva-
tive, NMD = (M + 1)(D + 1), N is the actual number of terms predicted by (8.26) as necessary to
find an ODE of the given order M, and ∆ is the difference NMD −N. The first five columns gives
this data for L (x) while the next five columns gives this data for I (x).

Terms needed to find L (x) Terms needed to find I (x)
M D NMD N ∆ M D NMD N ∆
11 53 648 648 0 14 92 1395 1395 0
12 31 416 415 1 15 52 848 848 0
13 23 336 336 0 16 39 680 679 1
14 20 315 312 3 17 32 594 594 0
15 17 288 288 0 18 28 551 551 0
16 16 289 286 3 19 26 540 536 4
17 15 288 284 4 20 24 525 521 4
18 14 285 280 5 21 22 506 506 0
19 13 280 280 0 22 21 506 505 1
20 13 294 289 5 23 20 504 504 0
21 13 308 298 10 24 20 525 517 8
22 12 299 296 3 25 19 520 516 4

thus guaranteeing that x = 0 is a regular singular point and determine the remaining
coefficients by back substitution. The N for which U(N,N) = 0 is the minimum
number of series coefficients needed to find the ODE within the constraint of a given
M and D. Obviously, N ≤ NMD = (M + 1) · (D + 1). Henceforth, D will always
refer to the minimum D for which a solution can be found for a given M. Then, for
example, we can define a unique non-negative deviation ∆ by N = NMD −∆ =
(M + 1) · (D+ 1) −∆ . Examples of such constants are given in Table 8.3 based on
our analysis of L (x) and I (x). A very striking empirical observation was made in
[2], namely that the numbers N in Table 8.3 are given by a simple linear relation

N = A ·M + B ·D −C = (M + 1) · (D+ 1)−∆ (8.26)

where A, B and C are constants depending on the particular series. For L (x) they
are A = 9, B = 11, C = −34 and for I (x) they are A = 13, B = 14, C = −75 as
can be verified from Table 8.3. Note that (8.26) has no (positive) solution for D if
M < B. Thus B = M0 is the minimum order possible for the ODE. Similarly, A = D0

is the minimum possible degree and thus we can rewrite (8.26) in the more definitive
form

N = D0 ·M + M0 ·D −C = (M + 1) · (D+ 1)−∆ . (8.27)

The minimum order M0 and degree D0 can be inferred directly from the ODE inde-
pendently of (8.27). The head polynomial QM(x) in (8.25) can be factored modulo
a prime and the greatest common divisor of these from several different orders M is
the polynomial Q(x) whose zeros are the true singularities of the linear ODE. In all
cases we have tested, the degree of this polynomial factor is the D0 in (8.27).
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8.6.2 Reconstructing the Exact ODE from Modular Results

Finding the minimal exact ODE for I (x) using the exact series coefficients would
be a difficult task since the size of the coefficients grow as 24n, so we would have to
handle integers of some 1700 digits using an array of size 13962 in order to solve
the set of linear equations arising out of equation (8.25). This would be stretching
the capacity of our current algorithms. So instead we decided to use a different and
as we shall see much more efficient approach. It is possible to reconstruct the exact
ODE using the results from several modulo prime calculations (actually as we shall
show only 10 primes are needed). Here we schematically outline the procedure for
finding the exact minimum order ODE.

Procedure for ODE reconstruction:

1. Generate a long series modulo a single prime.
2. Find ODEs at different orders and identify the constants A, B, and C of (8.26).
3. Then use this formula to identify both the minimal order ODE and the ODE

requiring the least number of terms.
4. Generate series for more primes pi long enough to find the minimal term

ODEs.
5. Turn these ODEs into recurrences and generate longer series.
6. Use these series to find the minimal order ODE mod pi.
7. Combine to find the exact minimal order ODE:

(a)Use the Chinese Remainder Theorem to get coefficients ai j.
This gives us bi j = ai j modulo P, where P = ∏ pi.

(b)Find the exact rational coefficients say by using the Maple call ai j =
iratrecon(bi j,P).

We managed to reconstruct the exact ODE for I (x) using 18 primes of the form
p j = 230− r j. Reconstructing the exact series coefficients up to the length needed to
find the exact ODE by the more traditional approach would require at least 10 times
as many primes. We note that it takes only a few minutes to find the ODEs mod
the primes and then reconstruct the exact ODE coefficient. Even fewer primes are
actually needed. In general the numerators are much smaller than the denominators
so we can modify the call to read r/s = ai j = iratrecon(bi j,P,R,S), where R and S
are positive integers such that |r| ≤ R and 0 < s ≤ S with 2RS ≤ P. If we assume
that s <

√
r then we may choose S = 4

√
P and R = P/(2S) and we can then find the

ai j using only 12 primes.
A further refinement is possible by generating the ai j starting from aMD. We

then multiply all the residues by the denominator of aMD modulo the respective
primes. We then run through the remaining coefficients by decreasing first j so as
to generate all aM j. Whenever a fraction is encountered we multiply all residues by
its denominator (after this we found that the only remaining denominator was 9).
We then repeat for i = M −1 and so on until all ai j have been exhausted. After this
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the modified residues for the ai j are representations of integer coefficients which we
then reconstruct. This procedure can generate the exact integer coefficients of the
ODE using only 10 primes. We note that for this problem the new procedure is at
least 1000 times faster than the original one described above in Section 8.6.1.

For completeness and comparison to the results for three-choice polygons we list
in Table 8.4 the critical points and exponents of I (x).

Table 8.4 Critical exponents at the regular singular points of the Fuchsian differential equation
satisfied by I (x) as obtained from the exact ODE.

Singularity Exponents
x = 0 0, 1, 2, 2, 7/3, 8/3, 3, 3, 3, 4, 5, 6, 7, 8
x = 1/16 0, 1, 2, 3, 4, 4, 5, 6, 13/2, 7, 8, 9, 10, 11
x = 1/5 0, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
x = 1/4 −1, −1/2, 0, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 5, 6, 7
x = 1 −2, −3/2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
x = −1/4 0, 1, 2, 3, 4, 5, 6, 13/2, 7, 8, 9, 10, 11, 12
x = ∞ −2, −3/2, −7/6, −1, −1, −5/6, −1/4, 0, 0, 1/4, 1, 2, 3, 4
P14(x) = 0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14

8.7 Conclusion

In this chapter we have given an outline of the principal methods used for the analy-
sis of series. The method of series analysis was originally developed as a numerical
tool, designed to estimate the various constants and exponents that appear in asymp-
totic estimates. More recently, with the enhancement of both algorithms and com-
putational hardware, it has been possible in some cases to obtain very long series
expansions. Then by use of the techniques outlined in Section 8.6, it is sometimes
possible to actually obtain the exact ODE whose solution gives the generating func-
tion. In such cases the method becomes not just an approximate tool, but an exact
one. This development is quite recent, and is likely to enable us to solve hitherto
unsolvable problems.
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